
CS 373 Lecture 11: Shortest Paths Fall 2002

11 Shortest Paths (October 22)

11.1 Introduction

Given a weighted directed graph G = (V,E,w) with two special vertices, a source s and a target t,
we want to find the shortest directed path from s to t. In other words, we want to find the path p

starting at s and ending at t minimizing the function

w(p) =
∑

e∈p

w(e).

For example, if I want to answer the question ‘What’s the fastest way to drive from my old
apartment in Champaign, Illinois to my wife’s old apartment in Columbus, Ohio?’, we might
use a graph whose vertices are cities, edges are roads, weights are driving times, s is Champaign,
and t is Columbus.1 The graph is directed since the driving times along the same road might be
different in different directions.2

Perhaps counter to intuition, we will allow the weights on the edges to be negative. Negative
edges make our lives complicated, since the presence of a negative cycle might mean that there
is no shortest path. In general, a shortest path from s to t exists if and only if there is at least

one path from s to t, but there is no path from s to t that touches a negative cycle. If there is a
negative cycle between s and t, then se can always find a shorter path by going around the cycle
one more time.

s t5

2 −8

4 1

3

There is no shortest path from s to t.

Every algorithm known for solving this problem actually solves (large portions of) the following
more general single source shortest path or SSSP problem: find the shortest path from the source
vertex s to every other vertex in the graph. In fact, the problem is usually solved by finding a
shortest path tree rooted at s that contains all the desired shortest paths.

It’s not hard to see that if the shortest paths are unique, then they form a tree. To prove this,
it’s enough to observe that sub-paths of shortest paths are also shortest paths. If there are multiple
shortest paths to the same vertices, we can always choose one path to each vertex so that the union
of the paths is a tree. If there are shortest paths to two vertices u and v that diverge, then meet,
then diverge again, we can modify one of the paths so that the two paths only diverge once.

s

u

v

a

b c

d

x y

If s→ a→ b→ c→ d→ v and s→ a→ x→ y → d→ u are both shortest paths,
then s→ a→ b→ c→ d→ u is also a shortest path.

1West on Church, north on Prospect, east on I-74, south on I-465, east on Airport Expressway, north on I-65,

east on I-70, north on Grandview, east on 5th, north on Olentangy River, east on Dodridge, north on High, west on

Kelso, south on Neil. Depending on traffic. We both live in Urbana now.
2There is a speed trap on I-70 just inside the Ohio border, but only for eastbound traffic.

1

CS 373 Lecture 11: Shortest Paths Fall 2002

I should emphasize here that shortest path trees and minimum spanning trees are usually very
different. For one thing, there is only one minimum spanning tree, but in general, there is a different
shortest path tree for every source vertex.

8 5
10

2 3

18 16
12

14

30

4 26

8 5
10

2 3

18 16
12

14

30

4 26

A minimum spanning tree and a shortest path tree (rooted at the topmost vertex) of the same graph.

All of the algorithms I’m describing in this lecture also work for undirected graphs, with some
slight modifications. Most importantly, we must specifically prohibit alternating back and forth
across the same undirected negative-weight edge. Our unmodified algorithms would interpret any
such edge as a negative cycle of length 2.

11.2 The Only SSSP Algorithm

Just like graph traversal and minimum spanning trees, there are several different SSSP algorithms,
but they are all special cases of the a single generic algorithm. Each vertex v in the graph stores
two values, which describe a tentative shortest path from s to v.

• dist(v) is the length of the tentative shortest s ; v path.

• pred(v) is the predecessor of v in the tentative shortest s ; v path.

Notice that the predecessor pointers automatically define a tentative shortest path tree. We already
know that dist(s) = 0 and pred(s) = Null. For every vertex v 6= s, we initially set dist(v) = ∞
and pred(v) = Null to indicate that we do not know of any path from s to v.

We call an edge u → v tense if dist(u) + w(u → v) < dist(v). If u → v is tense, then the
tentative shortest path s ; v is incorrect, since the path s ; u → v is shorter. Our generic
algorithm repeatedly finds a tense edge in the graph and relaxes it:

Relax(u→ v):

dist(v)← dist(u) + w(u→ v)
pred(v)← u

If there are no tense edges, our algorithm is finished, and we have our desired shortest path tree.
The correctness of the relaxation algorithm follows directly from three simple claims:

1. If dist(v) 6=∞, then dist(v) is the total weight of the predecessor chain ending at v:

s→ · · · → pred(pred(v))→ pred(v)→ v.

This is easy to prove by induction on the number of relaxation steps. (Hint, hint.)

2. If the algorithm halts, then dist(v) ≤ w(s ; v) for any path s ; v. This is easy to prove by
induction on the number of edges in the path s ; v. (Hint, hint.)

2

CS 373 Lecture 11: Shortest Paths Fall 2002

3. The algorithm halts if and only if there is no negative cycle reachable from s. The ‘only if’
direction is easy—if there is a reachable negative cycle, then after the first edge in the cycle
is relaxed, the cycle always has at least one tense edge. The ‘if’ direction follows from the
fact that every relaxation step reduces either the number of vertices with dist(v) = ∞ by 1
or reduces the sum of the finite shortest path lengths by some positive amount.

I haven’t said anything about how we detect which edges can be relaxed, or what order we relax
them in. In order to make this easier, we can refine the relaxation algorithm slightly, into something
closely resembling the generic graph traversal algorithm. We maintain a ‘bag’ of vertices, initially
containing just the source vertex s. Whenever we take a vertex u out of the bag, we scan all of its
outgoing edges, looking for something to relax. Whenever we successfully relax and edge u → v,
we put v in the bag.

InitSSSP(s):

dist(s)← 0
pred(s)← Null

for all vertices v 6= s

dist(v)←∞
pred(v)← Null

GenericSSSP(s):

InitSSSP(s)
put s in the bag
while the bag is not empty

take u from the bag
for all edges u→ v

if u→ v is tense
Relax(u→ v)
put v in the bag

Just as with graph traversal, using different data structures for the ‘bag’ gives us different
algorithms. There are three obvious choices to try: a stack, a queue, and a heap. Unfortunately, if
we use a stack, we have to perform Θ(2V) relaxation steps in the worst case! (This is a problem in
the current homework.) The other two possibilities are much more efficient.

11.3 Dijkstra’s Algorithm

If we implement the bag as a heap, where the key of a vertex v is dist(v), we obtain an algorithm
first published by Edsger Dijkstra in 1959.

Dijkstra’s algorithm is particularly well-behaved if the graph has no negative-weight edges. In
this case, it’s not hard to show (by induction, of course) that the vertices are scanned in increasing
order of their shortest-path distance from s. It follows that each vertex is scanned at most once,
and thus that each edge is relaxed at most once. Since the key of each vertex in the heap is its
tentative distance from s, the algorithm performs a DecreaseKey operation every time an edge is
relaxed. Thus, the algorithm performs at most E DecreaseKeys. Similarly, there are at most V

Insert and ExtractMin operations. Thus, if we store the vertices in a Fibonacci heap, the total

running time of Dijkstra’s algorithm is O(E + V log V) .

This analysis assumes that no edge has negative weight. Dijkstra’s algorithm (in the form I’m
presenting here) is still correct if there are negative edges3, but the worst-case running time could
be exponential. (I’ll leave the proof of this unfortunate fact as an extra credit problem.)

3The version of Dijkstra’s algorithm presented in CLRS gives incorrect results for graphs with negative edges.

3

CS 373 Lecture 11: Shortest Paths Fall 2002

1

3 2

0 5

10 12

8

4

6 3

7

s

∞

∞

∞

∞

4

3

1

3 2

0 5

10 12

8

4

6 3

7

s
0

∞

∞

∞

∞

∞

∞

1

3 2

0 5

10 12

8

4

6 3

7

s

∞

∞

∞

4

3

12

1

3 2

0 5

10 12

8

4

6 3

7

s

∞

∞

4

3

94
1

3 2

0 5

10 12

8

4

6 3

7

s

4

3

94

7

14

0 0

0 0

Four phases of Dijkstra’s algorithm run on a graph with no negative edges.
At each phase, the shaded vertices are in the heap, and the bold vertex has just been scanned.

The bold edges describe the evolving shortest path tree.

11.4 The A
∗ Heuristic

A slight generalization of Dijkstra’s algorithm, commonly known as the A∗ algorithm, is frequently
used to find a shortest path from a single source node s to a single target node t. A∗ uses a black-
box function GuessDistance(v, t) that returns an estimate of the distance from v to t. The only
difference between Dijkstra and A∗ is that the key of a vertex v is dist(v) + GuessDistance(v, t).

The function GuessDistance is called admissible if GuessDistance(v, t) never overestimates
the actual shortest path distance from v to t. If GuessDistance is admissible and the actual edge
weights are all non-negative, the A∗ algorithm computes the actual shortest path from s to t at least
as quickly as Dijkstra’s algorithm. The closer GuessDistance(v, t) is to the real distance from v

to t, the faster the algorithm. However, in the worst case, the running time is still O(E +V log V).
The heuristic is especially useful in situations where the actual graph is not known. For example,

A∗ can be used to solve puzzles (15-puzzle, Freecell, Shanghai, Minesweeper, Sokoban, Atomix,
Rush Hour, Rubik’s Cube, . . .) and other path planning problems where the starting and goal
configurations are given, but the graph of all possible configurations and their connections is not
given explicitly.

11.5 Moore’s Algorithm (‘Bellman-Ford’)

If we replace the heap in Dijkstra’s algorithm with a queue, we get an algorithm that was first
published by Moore in 1957, and then independently by Bellman in 1958. (Since Bellman used the
idea of relaxing edges, which was first proposed by Ford in 1956, this algorithm is usually called
‘Bellman-Ford’.) Moore’s algorithm is efficient even if there are negative edges, and it can be used
to quickly detect the presence of negative cycles. If there are no negative edges, however, Dijkstra’s

4

CS 373 Lecture 11: Shortest Paths Fall 2002

algorithm is faster. (In fact, in practice, Dijkstra’s algorithm is often faster even for graphs with
negative edges.)

The easiest way to analyze the algorithm is to break the execution into phases. Before we
even begin, we insert a token into the queue. Whenever we take the token out of the queue, we
begin a new phase by just reinserting the token into the queue. The 0th phase consists entirely
of scanning the source vertex s. The algorithm ends when the queue contains only the token. A
simple inductive argument (hint, hint) implies the following invariant:

At the end of the ith phase, for every vertex v, dist(v) is less than or equal to the length
of the shortest path s ; v consisting of i or fewer edges.

Since a shortest path can only pass through each vertex once, either the algorithm halts before
the V th phase, or the graph contains a negative cycle. In each phase, we scan each vertex at most
once, so we relax each edge at most once, so the running time of a single phase is O(E). Thus, the

overall running time of Moore’s algorithm is O(V E) .

−2

1

2

0 5

4

6 3

s
0

−3

−18

a

b

c

d

e

f 1

2

0 5

4

6 3

s
0

−3

−18

a

b

c

d

e

f

1

2

0 5

4

6 3

s
0

∞

−3

−18

a

b

c

d

e

f1

2

0 5

4

6 3

s
0

∞

∞

∞

∞

∞

∞ −3

−18

a

b

c

d

e

f 1

2

0 5

4

6 3

s
0

∞

∞

∞

−3

−18

a

b

c

d

e

f

6

4

3 6

2

3

74

3

2

2 7

9
−8−8

−8−8−8

−3 −3

−3 −3

−3

1

9

7

2

3

1

Four phases of Moore’s algorithm run on a directed graph with negative edges.
Nodes are taken from the queue in the order s � a b c � d f b � a e d � d a � �, where � is the token.

Shaded vertices are in the queue at the end of each phase. The bold edges describe the evolving shortest path tree.

Now that we understand how the phases of Moore’s algorithm behave, we can simplify the
algorithm considerably. Instead of using a queue to perform a partial breadth-first search of the
graph in each phase, let’s just scan through the adjacency list directly and try to relax every edge
in the graph.

5

CS 373 Lecture 11: Shortest Paths Fall 2002

MooreSSSP(s)

InitSSSP(s)
repeat V times:

for every edge u→ v

if u→ v is tense
Relax(u→ v)

for every edge u→ v

if u→ v is tense
return ‘Negative cycle!’

This is closer to how CLRS presents the ‘Bellman-Ford’ algorithm. The O(V E) running time
of this version of the algorithm should be obvious, but it may not be clear that the algorithm is
still correct. To prove correctness, we just have to show that our earlier invariant holds; as before,
this can be proved by induction on i.

11.6 Greedy Shortest Paths?

Here’s another algorithm that fits our generic framework, but which I’ve never seen analyzed.

Repeatedly relax the tensest edge.

Specifically, let’s define the ‘tenseness’ of an edge u→ v as follows:

tenseness(u→ v) = max {0, dist(v)− dist(u)− w(u→ v)}

(This is defined even when dist(v) = ∞ or dist(u) = ∞, as long as we treat ∞ just like some
indescribably large but finite number.) If an edge has zero tenseness, it’s not tense. If we relax an
edge u→ v, then dist(v) decreases by the edge’s tenseness.

Intuitively, we can keep the edges of the graph in some sort of heap, where the key of each edge
is its tenseness. Then we repeatedly pull out the tensest edge u→ v and relax it. Then we need to
recompute the tenseness of other edges adjacent to v. Edges leaving v possibly become more tense,
and edges coming into v possibly become less tense. So we need a heap that efficiently supports
the operations Insert, ExtractMax, IncreaseKey, and DecreaseKey.

If there are no negative cycles, this algorithm eventually halts with a shortest path tree, but
how quickly? Can the same edge be relaxed more than once, and if so, how many times? Is it
faster if all the edge weights are positive? Hmm....

6

