
CS 373 Notes on Solving Recurrence Relations

1 Fun with Fibonacci numbers

Consider the reproductive cycle of bees. Each male bee has a mother but no father; each female
bee has both a mother and a father. If we examine the generations we see the following family tree:

♂

♀

♀

♀

♀

♀

♀

♀ ♂

♂

♀

♂

♀

♀ ♂

♂

♀

♀

♀ ♂

♂

♀

♂

♀

♀

♀

♀ ♂

♂

♀

♂

♀

♀ ♂

♂

♀

♀

♀

♀

♀ ♂

♂

♀

♂

♀

♀ ♂

♂

♀

♀

♀ ♂

♂

♀

We easily see that the number of ancestors in each generation is the sum of the two numbers
before it. For example, our male bee has three great-grandparents, two grandparents, and one
parent, and 3 = 2 + 1. The number of ancestors a bee has in generation n is defined by the
Fibonacci sequence; we can also see this by applying the rule of sum.

As a second example, consider light entering two adjacent planes of glass:

At any meeting surface (between the two panes of glass, or between the glass and air), the light
may either reflect or continue straight through (refract). For example, here is the light bouncing
seven times before it leaves the glass.

In general, how many different paths can the light take if we are told that it bounces n times before
leaving the glass?

The answer to the question (in case you haven’t guessed) rests with the Fibonacci sequence.
We can apply the rule of sum to the event E constituting all paths through the glass in n bounces.
We generate two separate sub-events, E1 and E2, illustrated in the following picture.

1

CS 373 Notes on Solving Recurrence Relations

� Sub-event E1: Let E1 be the event that the first bounce is not at the boundary between
the two panes. In this case, the light must first bounce off the bottom pane, or else we are
dealing with the case of having zero bounces (there is only one way to have zero bounces).
However, the number of remaining paths after bouncing off the bottom pane is the same as
the number of paths entering through the bottom pane and bouncing n − 1 bounces more.
Entering through the bottom pane is the same as entering through the top pane (but flipped
over), so E1 is the number of paths of light bouncing n− 1 times.

� Sub-event E2: Let E2 be the event that the first bounce is on the boundary between the
two panes. In this case, we consider the two options for the light after the first bounce: it
can either leave the glass (in which case we are dealing with the case of having one bounce,
and there is only one way for the light to bounce once) or it can bounce yet again on the top
of the upper pane, in which case it is equivalent to the light entering from the top with n− 2
bounces to take along its path.

By the rule of sum, we thus get the following recurrence relation for Fn, the number of paths
in which the light can travel with exactly n bounces. There is exactly one way for the light to
travel with no bounces—straight through—and exactly two ways for the light to travel with only
one bounce—off the bottom and off the middle. For any n > 1, there are Fn−1 paths where the
light bounces off the bottom of the glass, and Fn−2 paths where the light bounces off the middle
and then off the top.

F0 = 1

F1 = 2

Fn = Fn−1 + Fn−2

Stump a professor

What is the recurrence relation for three panes of glass? This question once stumped an anonymous
professor1 in a science discipline, but now you should be able to solve it with a bit of effort. Aren’t
you proud of your knowledge?

1Not me! —Jeff

2

CS 373 Notes on Solving Recurrence Relations

2 Sequences, sequence operators, and annihilators

We have shown that several different problems can be expressed in terms of Fibonacci sequences,
but we don’t yet know how to explicitly compute the nth Fibonacci number, or even (and more
importantly) roughly how big it is. We can easily write a program to compute the n th Fibonacci
number, but that doesn’t help us much here. What we really want is a closed form solution for the
Fibonacci recurrence—an explicit algebraic formula without conditionals, loops, or recursion.

In order to solve recurrences like the Fibonacci recurrence, we first need to understand operations

on infinite sequences of numbers. Although these sequences are formally defined as functions of
the form A : IN → IR, we will write them either as A = 〈a0, a1, a2, a3, a4, . . .〉 when we want to
emphasize the entire sequence2, or as A = 〈ai〉 when we want to emphasize a generic element. For
example, the Fibonacci sequence is 〈0, 1, 1, 2, 3, 5, 8, 13, 21, . . .〉.

We can naturally define several sequence operators:

� We can add or subtract any two sequences:

〈ai〉+ 〈bi〉 = 〈a0, a1, a2, . . .〉+ 〈b0, b1, b2, . . .〉 = 〈a0 + b0, a1 + b1, a2 + b2, . . .〉 = 〈ai + bi〉
〈ai〉 − 〈bi〉 = 〈a0, a1, a2, . . .〉 − 〈b0, b1, b2, . . .〉 = 〈a0 − b0, a1 − b1, a2 − b2, . . .〉 = 〈ai − bi〉

� We can multiply any sequence by a constant:

c · 〈ai〉 = c · 〈a0, a1, a2, . . .〉 = 〈c · a0, c · a1, c · a2, . . .〉 = 〈c · ai〉

� We can shift any sequence to the left by removing its initial element:

E〈ai〉 = E〈a0, a1, a2, a3, . . .〉 = 〈a1, a2, a3, a4, . . .〉 = 〈ai+1〉

Example: We can understand these operators better by looking at some specific examples, using
the sequence T of powers of two.

T = 〈20, 21, 22, 23, . . .〉 = 〈2i〉
ET = 〈21, 22, 23, 24, . . .〉 = 〈2i+1〉
2T = 〈2 · 20, 2 · 21, 2 · 22, 2 · 23, . . .〉 = 〈21, 22, 23, 24, . . .〉 = 〈2i+1〉

2T −ET = 〈21 − 21, 22 − 22, 23 − 23, 24 − 24, . . .〉 = 〈0, 0, 0, 0, . . .〉 = 〈0〉

2.1 Properties of operators

It turns out that the distributive property holds for these operators, so we can rewrite ET − 2T as
(E− 2)T . Since (E− 2)T = 〈0, 0, 0, 0, . . .〉, we say that the operator (E− 2) annihilates T , and we
call (E−2) an annihilator of T . Obviously, we can trivially annihilate any sequence by multiplying
it by zero, so as a technical matter, we do not consider multiplication by 0 to be an annihilator.

What happens when we apply the operator (E − 3) to our sequence T ?

(E− 3)T = ET − 3T = 〈2i+1〉 − 3〈2i〉 = 〈2i+1 − 3 · 2i〉 = 〈−2i〉 = −T

The operator (E − 3) did very little to our sequence T ; it just flipped the sign of each number in
the sequence. In fact, we will soon see that only (E − 2) will annihilate T , and all other simple

2It really doesn’t matter whether we start a sequence with a0 or a1 or a5 or even a
−17. Zero is often a convenient

starting point for many recursively defined sequences, so we’ll usually start there.

3

CS 373 Notes on Solving Recurrence Relations

operators will affect T in very minor ways. Thus, if we know how to annihilate the sequence, we
know what the sequence must look like.

In general, (E− c) annihilates any geometric sequence A = 〈a0, a0c, a0c
2, a0c

3, . . .〉 = 〈a0c
i〉:

(E− c)〈a0c
i〉 = E〈a0c

i〉 − c〈a0ci〉 = 〈a0c
i+1〉 − 〈c · a0ci〉 = 〈a0c

i+1 − a0c
i+1〉 = 〈0〉

To see that this is the only operator of this form that annihilates A, let’s see the effect of operator
(E− d) for some d 6= c:

(E− d)〈a0c
i〉 = E〈a0c

i〉 − d〈a0ci〉 = 〈a0c
i+1 − da0ci〉 = 〈(c− d)a0c

i〉 = (c− d)〈a0c
i〉

So we have a more rigorous confirmation that an annihilator annihilates exactly one type of se-
quence, but multiplies other similar sequences by a constant.

We can use this fact about annihilators of geometric sequences to solve certain recurrences. For
example, consider the sequence R = 〈r0, r1, r2, . . .〉 defined recursively as follows:

r0 = 3

ri+1 = 5ri

We can easily prove that the operator (E− 5) annihilates R:

(E− 5)〈ri〉 = E〈ri〉 − 5〈ri〉 = 〈ri+1〉 − 〈5ri〉 = 〈ri+1 − 5ri〉 = 〈0〉

Since (E− 5) is an annihilator for R, we must have the closed form solution ri = r05
i = 3 · 5i. We

can easily verify this by induction, as follows:

r0 = 3 · 50 = 3 X [definition]

ri = 5ri−1 [definition]

= 5 · (3 · 5i−1) [induction hypothesis]

= 5i · 3 X [algebra]

2.2 Multiple operators

An operator is a function that transforms one sequence into another. Like any other function, we can
apply operators one after another to the same sequence. For example, we can multiply a sequence
〈ai〉 by a constant d and then by a constant c, resulting in the sequence c(d〈ai〉) = 〈c·d·ai〉 = (cd)〈ai〉.
Alternatively, we may multiply the sequence by a constant c and then shift it to the left to get
E(c〈ai〉) = E〈c · ai〉 = 〈c · ai+1〉. This is exactly the same as applying the operators in the
reverse order: c(E〈ai〉) = c〈ai+1〉 = 〈c · ai+1〉. We can also shift the sequence twice to the left:
E(E〈ai〉) = E〈ai+1〉 = 〈ai+2〉. We will write this in shorthand as E2〈ai〉. More generally, the
operator Ek shifts a sequence k steps to the left: Ek〈ai〉 = 〈ai+k〉.

We now have the tools to solve a whole host of recurrence problems. For example, what
annihilates C = 〈2i +3i〉? Well, we know that (E− 2) annihilates 〈2i〉 while leaving 〈3i〉 essentially
unscathed. Similarly, (E− 3) annihilates 〈3i〉 while leaving 〈2i〉 essentially unscathed. Thus, if we
apply both operators one after the other, we see that (E− 2)(E− 3) annihilates our sequence C.

In general, for any integers a 6= b, the operator (E− a)(E − b) annihilates any sequence of the
form 〈c1a

i + c2b
i〉 but nothing else. We will often ‘multiply out’ the operators into the shorthand

notation E2 − (a + b)E + ab. It is left as an exhilarating exercise to the student to verify that this

4

CS 373 Notes on Solving Recurrence Relations

shorthand actually makes sense—the operators (E − a)(E − b) and E2 − (a + b)E + ab have the
same effect on every sequence.

We now know finally enough to solve the recurrence for Fibonacci numbers. Specifically, notice
that the recurrence Fi = Fi−1 + Fi−2 is annihilated by E2 −E− 1:

(E2 −E− 1)〈Fi〉 = E2〈Fi〉 −E〈Fi〉 − 〈Fi〉
= 〈Fi+2〉 − 〈Fi+1〉 − 〈Fi〉
= 〈Fi−2 − Fi−1 − Fi〉
= 〈0〉

Factoring E2 −E− 1 using the quadratic formula, we obtain

E2 −E− 1 = (E− φ)(E− φ̂)

where φ = (1 +
√

5)/2 ≈ 1.618034 is the golden ratio and φ̂ = (1−
√

5)/2 = 1− φ = −1/φ. Thus,
the operator (E − φ)(E − φ̂) annihilates the Fibonacci sequence, so Fi must have the form

Fi = cφi + ĉφ̂i

for some constants c and ĉ. We call this the generic solution to the recurrence, since it doesn’t
depend at all on the base cases. To compute the constants c and ĉ, we use the base cases F0 = 0
and F1 = 1 to obtain a pair of linear equations:

F0 = 0 = c + ĉ

F1 = 1 = cφ + ĉφ̂

Solving this system of equations gives us c = 1/(2φ − 1) = 1/
√

5 and ĉ = −1/
√

5.
We now have a closed-form expression for the ith Fibonacci number:

Fi =
φi − φ̂i

√
5

=
1√
5

(

1 +
√

5

2

)i

− 1√
5

(

1−
√

5

2

)i

With all the square roots in this formula, it’s quite amazing that Fibonacci numbers are integers.
However, if we do all the math correctly, all the square roots cancel out when i is an integer. (In
fact, this is pretty easy to prove using the binomial theorem.)

2.3 Degenerate cases

We can’t quite solve every recurrence yet. In our above formulation of (E− a)(E− b), we assumed
that a 6= b. What about the operator (E − a)(E − a) = (E− a)2? It turns out that this operator
annihilates sequences such as 〈iai〉:

(E− a)〈iai〉 = 〈(i + 1)ai+1 − (a)iai〉
= 〈(i + 1)ai+1 − iai+1〉
= 〈ai+1〉

(E− a)2〈iai〉 = (E− a)〈ai+1〉 = 〈0〉

More generally, the operator (E − a)k annihilates any sequence 〈p(i) · ai〉, where p(i) is any
polynomial in i of degree k− 1. As an example, (E− 1)3 annihilates the sequence 〈i2 · 1i〉 = 〈i2〉 =
〈1, 4, 9, 16, 25, . . .〉, since p(i) = i2 is a polynomial of degree n− 1 = 2.

As a review, try to explain the following statements:

5

CS 373 Notes on Solving Recurrence Relations

� (E− 1) annihilates any constant sequence 〈α〉.
� (E− 1)2 annihilates any arithmetic sequence 〈α + βi〉.
� (E− 1)3 annihilates any quadratic sequence 〈α + βi + γi2〉.
� (E− 3)(E− 2)(E− 1) annihilates any sequence 〈α + β2i + γ3i〉.
� (E− 3)2(E− 2)(E− 1) annihilates any sequence 〈α + β2i + γ3i + δi3i〉.

2.4 Summary

In summary, we have learned several operators that act on sequences, as well as a few ways of
combining operators.

Operator Definition

Addition 〈ai〉+ 〈bi〉 = 〈ai + bi〉
Subtraction 〈ai〉+ 〈bi〉 = 〈ai + bi〉

Scalar multiplication c〈ai〉 = 〈cai〉
Shift E〈ai〉 = 〈ai+1〉

Composition of operators (X + Y)〈ai〉 = X〈ai〉+ Y〈ai〉
(X−Y)〈ai〉 = X〈ai〉 −Y〈ai〉
XY〈ai〉 = X(Y〈ai〉) = Y(X〈ai〉)

k-fold shift Ek〈ai〉 = 〈ai+k〉
Notice that we have not defined a multiplication operator for two sequences. This is usually
accomplished by convolution:

〈ai〉 ∗ 〈bi〉 =

〈

i
∑

j=0

ajbi−j

〉

.

Fortunately, convolution is unnecessary for solving the recurrences we will see in this course.
We have also learned some things about annihilators, which can be summarized as follows:

Sequence Annihilator

〈α〉 E− 1
〈

αai
〉

E− a
〈

αai + βbi
〉

(E− a)(E− b)
〈

α0a
i
0 + α1a

i
1 + · · ·+ αnai

n

〉

(E− a0)(E− a1) · · · (E− an)
〈αi + β〉 (E− 1)2

〈

(αi + β)ai
〉

(E− a)2
〈

(αi + β)ai + γbi
〉

(E− a)2(E− b)
〈

(α0 + α1i + · · ·αn−1i
n−1)ai

〉

(E− a)n

If X annihilates 〈ai〉, then X also annihilates c〈ai〉 for any constant c.

If X annihilates 〈ai〉 and Y annihilates 〈bi〉, then XY annihilates 〈ai〉 ± 〈bi〉.

3 Solving Linear Recurrences

3.1 Homogeneous Recurrences

The general expressions in the annihilator box above are really the most important things to
remember about annihilators because they help you to solve any recurrence for which you can
write down an annihilator. The general method is:

6

CS 373 Notes on Solving Recurrence Relations

1. Write down the annihilator for the recurrence
2. Factor the annihilator
3. Determine the sequence annihilated by each factor
4. Add these sequences together to form the generic solution
5. Solve for constants of the solution by using initial conditions

Example: Let’s show the steps required to solve the following recurrence:

r0 = 1

r1 = 5

r2 = 17

ri = 7ri−1 − 16ri−2 + 12ri−3

1. Write down the annihilator. Since ri+3 − 7ri+2 + 16ri+1 − 12ri = 0, the annihilator is E3 −
7E2 + 16E− 12.

2. Factor the annihilator. E3 − 7E2 + 16E− 12 = (E− 2)2(E− 3).

3. Determine sequences annihilated by each factor. (E − 2)2 annihilates 〈(αi + β)2i〉 for any
constants α and β, and (E− 3) annihilates 〈γ3i〉 for any constant γ.

4. Combine the sequences. (E − 2)2(E − 3) annihilates 〈(αi + β)2i + γ3i〉 for any constants
α, β, γ.

5. Solve for the constants. The base cases give us three equations in the three unknowns α, β, γ:

r0 = 1 = (α · 0 + β)20 + γ · 30 = β + γ

r1 = 5 = (α · 1 + β)21 + γ · 31 = 2α + 2β + 3γ

r2 = 17 = (α · 2 + β)22 + γ · 32 = 8α + 4β + 9γ

We can solve these equations to get α = 1, β = 0, γ = 1. Thus, our final solution is

ri = i2i + 3i , which we can verify by induction.

3.2 Non-homogeneous Recurrences

A height balanced tree is a binary tree, where the heights of the two subtrees of the root differ by
at most one, and both subtrees are also height balanced. To ground the recursive definition, the
empty set is considered a height balanced tree of height −1, and a single node is a height balanced
tree of height 0.

Let Tn be the smallest height-balanced tree of height n—how many nodes does Tn have? Well,
one of the subtrees of Tn has height n− 1 (since Tn has height n) and the other has height either
n − 1 or n − 2 (since Tn is height-balanced and as small as possible). Since both subtrees are
themselves height-balanced, the two subtrees must be Tn−1 and Tn−2.

We have just derived the following recurrence for tn, the number of nodes in the tree Tn:

t−1 = 0 [the empty set]

t0 = 1 [a single node]

tn = tn−1 + tn−2 + 1

7

CS 373 Notes on Solving Recurrence Relations

The final ‘+1’ is for the root of Tn.
We refer to the terms in the equation involving ti’s as the homogeneous terms and the rest

as the non-homogeneous terms. (If there were no non-homogeneous terms, we would say that the
recurrence itself is homogeneous.) We know that E2 − E − 1 annihilates the homogeneous part
tn = tn−1 + tn−2. Let us try applying this annihilator to the entire equation:

(E2 −E− 1)〈ti〉 = E2〈ti〉 −E〈ai〉 − 1〈ai〉
= 〈ti+2〉 − 〈ti+1〉 − 〈ti〉
= 〈ti+2 − ti+1 − ti〉
= 〈1〉

The leftover sequence 〈1, 1, 1, . . .〉 is called the residue. To obtain the annihilator for the entire
recurrence, we compose the annihilator for its homogeneous part with the annihilator of its residue.
Since E− 1 annihilates 〈1〉, it follows that (E2 −E− 1)(E− 1) annihilates 〈tn〉. We can factor the
annihilator into

(E− φ)(E− φ̂)(E− 1),

so our annihilator rules tell us that

tn = αφn + βφ̂n + γ

for some constants α, β, γ. We call this the generic solution to the recurrence. Different recurrences
can have the same generic solution.

To solve for the unknown constants, we need three equations in three unknowns. Our base cases
give us two equations, and we can get a third by examining the next nontrivial case t1 = 2:

t−1 = 0 = αφ−1 + βφ̂−1 + γ = α/φ + β/φ̂ + γ

t0 = 1 = αφ0 + βφ̂0 + γ = α + β + γ

t1 = 2 = αφ1 + βφ̂1 + γ = αφ + βφ̂ + γ

Solving these equations, we find that α =
√

5+2√
5

, β =
√

5−2√
5

, and γ = −1. Thus,

tn =

√
5 + 2√

5

(

1 +
√

5

2

)n

+

√
5− 2√

5

(

1−
√

5

2

)n

− 1

Here is the general method for non-homogeneous recurrences:

1. Write down the homogeneous annihilator, directly from the recurrence
11
2
. ‘Multiply’ by the annihilator for the residue

2. Factor the annihilator
3. Determine what sequence each factor annihilates
4. Add these sequences together to form the generic solution
5. Solve for constants of the solution by using initial conditions

8

CS 373 Notes on Solving Recurrence Relations

3.3 Some more examples

In each example below, we use the base cases a0 = 0 and a1 = 1.

� an = an−1 + an−2 + 2

– The homogeneous annihilator is E2 −E− 1.

– The residue is the constant sequence 〈2, 2, 2, . . .〉, which is annihilated by E− 1.

– Thus, the annihilator is (E2 −E− 1)(E− 1).

– The annihilator factors into (E− φ)(E− φ̂)(E− 1).

– Thus, the generic solution is an = αφn + βφ̂n + γ.

– The constants α, β, γ satisfy the equations

a0 = 0 = α + β + γ

a1 = 1 = αφ + βφ̂ + γ

a2 = 3 = αφ2 + βφ̂2 + γ

– Solving the equations gives us α =
√

5+2√
5

, β =
√

5−2√
5

, and γ = −2

– So the final solution is an =

√
5 + 2√

5

(

1 +
√

5

2

)n

+

√
5− 2√

5

(

1−
√

5

2

)n

− 2

(In the remaining examples, I won’t explicitly enumerate the steps like this.)

� an = an−1 + an−2 + 3

The homogeneous annihilator (E2 − E − 1) leaves a constant residue 〈3, 3, 3, . . .〉, so the
annihilator is (E2 − E− 1)(E− 1), and the generic solution is an = αφn + βφ̂n + γ. Solving
the equations

a0 = 0 = α + β + γ

a1 = 1 = αφ + βφ̂ + γ

a2 = 4 = αφ2 + βφ̂2 + γ

gives us the final solution an =

√
5 + 3√

5

(

1 +
√

5

2

)n

+

√
5− 3√

5

(

1−
√

5

2

)n

− 3

� an = an−1 + an−2 + 2n

The homogeneous annihilator (E2 − E− 1) leaves an exponential residue 〈4, 8, 16, 32, . . .〉 =
〈2i+2〉, which is annihilated by E − 2. Thus, the annihilator is (E2 − E − 1)(E − 2), and
the generic solution is an = αφn + βφ̂n + γ2n. The constants α, β, γ satisfy the following
equations:

a0 = 0 = α + β + γ

a1 = 1 = αφ + βφ̂ + 2γ

a2 = 5 = αφ2 + βφ̂2 + 4γ

9

CS 373 Notes on Solving Recurrence Relations

� an = an−1 + an−2 + n

The homogeneous annihilator (E2 − E − 1) leaves a linear residue 〈2, 3, 4, 5 . . .〉 = 〈i + 2〉,
which is annihilated by (E − 1)2. Thus, the annihilator is (E2 − E − 1)(E − 1)2, and the
generic solution is an = αφn + βφ̂n + γ + δn. The constants α, β, γ, δ satisfy the following
equations:

a0 = 0 = α + β + γ

a1 = 1 = αφ + βφ̂ + γ + δ

a2 = 3 = αφ2 + βφ̂2 + γ + 2δ

a3 = 7 = αφ3 + βφ̂3 + γ + 3δ

� an = an−1 + an−2 + n2

The homogeneous annihilator (E2 − E − 1) leaves a quadratic residue 〈4, 9, 16, 25 . . .〉 =
〈(i + 2)2〉, which is annihilated by (E − 1)3. Thus, the annihilator is (E2 − E − 1)(E − 1)3,
and the generic solution is an = αφn + βφ̂n + γ + δn + εn2. The constants α, β, γ, δ, ε satisfy
the following equations:

a0 = 0 = α + β + γ

a1 = 1 = αφ + βφ̂ + γ + δ + ε

a2 = 5 = αφ2 + βφ̂2 + γ + 2δ + 4ε

a3 = 15 = αφ3 + βφ̂3 + γ + 3δ + 9ε

a4 = 36 = αφ4 + βφ̂4 + γ + 4δ + 16ε

� an = an−1 + an−2 + n2
− 2n

The homogeneous annihilator (E2−E− 1) leaves the residue 〈(i+2)2− 2i−2〉. The quadratic
part of the residue is annihilated by (E − 1)3, and the exponential part is annihilated by
(E− 2). Thus, the annihilator for the whole recurrence is (E2 −E− 1)(E− 1)3(E− 2), and
so the generic solution is an = αφn + βφ̂n + γ + δn + εn2 + η2i. The constants α, β, γ, δ, ε, η
satisfy a system of six equations in six unknowns determined by a0, a1, . . . , a5.

� an = an−1 + an−2 + φn

The annihilator is (E2 − E − 1)(E − φ) = (E − φ)2(E − φ̂), so the generic solution is an =
αφn + βnφn + γφ̂n. (Other recurrence solving methods will have a “interference” problem
with this equation, while the operator method does not.)

Our method does not work on recurrences like an = an−1 + 1
n or an = an−1 + lg n, because the

functions 1
n and lg n do not have annihilators. Our tool, as it stands, is limited to linear recurrences.

4 Divide and Conquer Recurrences and the Master Theorem

Divide and conquer algorithms often give us running-time recurrences of the form

T (n) = aT (n/b) + f(n) (1)

where a and b are constants and f(n) is some other function. The so-called ‘Master Theorem’ gives
us a general method for solving such recurrences f(n) is a simple polynomial.

10

CS 373 Notes on Solving Recurrence Relations

Unfortunately, the Master Theorem doesn’t work for all functions f(n), and many useful recur-
rences don’t look like (1) at all. Fortunately, there’s a general technique to solve most divide-and-
conquer recurrences, even if they don’t have this form. This technique is used to prove the Master
Theorem, so if you remember this technique, you can forget the Master Theorem entirely (which
is what I did). Throw off your chains!

I’ll illustrate the technique using the generic recurrence (1). We start by drawing a recursion

tree. The root of the recursion tree is a box containing the value f(n), it has a children, each
of which is the root of a recursion tree for T (n/b). Equivalently, a recursion tree is a complete
a-ary tree where each node at depth i contains the value aif(n/bi). The recursion stops when we
get to the base case(s) of the recurrence. Since we’re looking for asymptotic bounds, it turns out
not to matter much what we use for the base case; for purposes of illustration, I’ll assume that
T (1) = f(1).

a

f(n/b)

f(n/b)2 f(n/b)2 f(n/b)2f(n/b)2

f(n)

a
f(n/b) f(n/b) f(n/b)

f(n/b)3

f()1

f(n)

a f(n/b)

a f(n/b)2 2

a f(n/b)33

a f(1)L

A recursion tree for the recurrence T (n) = aT (n/b) + f(n)

Now T (n) is just the sum of all values stored in the tree. Assuming that each level of the tree
is full, we have

T (n) = f(n) + a f(n/b) + a2 f(n/b2) + · · ·+ ai f(n/bi) + · · ·+ aL f(n/bL)

where L is the depth of the recursion tree. We easily see that L = logb n, since n/bL = 1. Since
f(1) = Θ(1), the last non-zero term in the summation is Θ(aL) = Θ(alogb n) = Θ(nlogb a).

Now we can easily state and prove the Master Theorem, in a slightly different form than it’s
usually stated.

The Master Theorem. The recurrence T (n) = aT (n/b) + f(n) can be solved as follows.
� If a f(n/b) = κ f(n) for some constant κ < 1, then T (n) = Θ(f(n)).
� If a f(n/b) = K f(n) for some constant K > 1, then T (n) = Θ(nlogb a).
� If a f(n/b) = f(n), then T (n) = Θ(f(n) logb n).

Proof: If f(n) is a constant factor larger than a f(b/n), then by induction, the sum is a descending
geometric series. The sum of any geometric series is a constant times its largest term. In this case,
the largest term is the first term f(n).

If f(n) is a constant factor smaller than a f(b/n), then by induction, the sum is an ascending
geometric series. The sum of any geometric series is a constant times its largest term. In this case,
this is the last term, which by our earlier argument is Θ(nlogb a).

11

CS 373 Notes on Solving Recurrence Relations

Finally, if a f(b/n) = f(n), then by induction, each of the L + 1 terms in the summation is
equal to f(n). �

Here are a few canonical examples of the Master Theorem in action:

� Randomized selection: T (n) = T (3n/4) + n

Here a f(n/b) = 3n/4 is smaller than f(n) = n by a factor of 4/3, so T (n) = Θ(n)

� Karatsuba’s multiplication algorithm: T (n) = 3T (n/2) + n

Here a f(n/b) = 3n/2 is bigger than f(n) = n by a factor of 3/2, so T (n) = Θ(nlog2 3)

� Mergesort: T (n) = 2T (n/2) + n

Here a f(n/b) = f(n), so T (n) = Θ(n log n)

� T (n) = 4T (n/2) + n lg n

In this case, we have a f(n/b) = 2n lg n−2n, which is not quite twice f(n) = n lg n. However,
for sufficiently large n (which is all we care about with asymptotic bounds) we have 2f(n) >
af(n/b) > 1.9f(n). Since the level sums are bounded both above and below by ascending

geometric series, the solution is T (n) = Θ(nlog2 4) = Θ(n2) . (This trick will not work in the

second or third cases of the Master Theorem!)

Using the same recursion-tree technique, we can also solve recurrences where the Master The-
orem doesn’t apply.

� T (n) = 2T (n/2) + n/ lg n

We can’t apply the Master Theorem here, because a f(n/b) = n/(lg n − 1) isn’t equal to
f(n) = n/ lg n, but the difference isn’t a constant factor. So we need to compute each of the
level sums and compute their total in some other way. It’s not hard to see that the sum of
all the nodes in the ith level is n/(lg n− i). In particular, this means the depth of the tree is
at most lg n− 1.

T (n) =

lg n−1
∑

i=0

n

lg n− i
=

lg n
∑

j=1

n

j
= nHlg n = Θ(n lg lg n)

� Randomized quicksort: T (n) = T (3n/4) + T (n/4) + n

In this case, nodes in the same level of the recursion tree have different values. This makes
the tree lopsided; different leaves are at different levels. However, it’s not to hard to see that
the nodes in any complete level (i.e., above any of the leaves) sum to n, so this is like the
last case of the Master Theorem, and that every leaf has depth between log4 n and log4/3 n.
To derive an upper bound, we overestimate T (n) by ignoring the base cases and extending
the tree downward to the level of the deepest leaf. Similarly, to derive a lower bound, we
overestimate T (n) by counting only nodes in the tree up to the level of the shallowest leaf.
These observations give us the upper and lower bounds n log4 n ≤ T (n) ≤ n log4/3 n. Since

these bound differ by only a constant factor, we have T (n) = Θ(n log n) .

12

CS 373 Notes on Solving Recurrence Relations

� Deterministic selection: T (n) = T (n/5) + T (7n/10) + n

Again, we have a lopsided recursion tree. If we look only at complete levels of the tree, we
find that the level sums form a descending geometric series T (n) = n+9n/10+81n/100+ · · · ,
so this is like the first case of the master theorem. We can get an upper bound by ignoring
the base cases entirely and growing the tree out to infinity, and we can get a lower bound by
only counting nodes in complete levels. Either way, the geometric series is dominated by its

largest term, so T (n) = Θ(n) .

� T (n) =
√

n · T (
√

n) + n

In this case, we have a complete recursion tree, but the degree of the nodes is no longer
constant, so we have to be a bit more careful. It’s not hard to see that the nodes in any
level sum to n, so this is like the third Master case. The depth L satisfies the identity
n2−L

= 2 (we can’t get all the way down to 1 by taking square roots), so L = lg lg n and

T (n) = Θ(n lg lg n) .

� T (n) = 2
√

n · T (
√

n) + n

We still have at most lg lg n levels, but now the nodes in level i sum to 2in. We have an
increasing geometric series of level sums, like the second Master case, so T (n) is dominated

by the sum over the deepest level: T (n) = Θ(2lg lg nn) = Θ(n log n)

� T (n) = 4
√

n · T (
√

n) + n

Now the nodes in level i sum to 4in. Again, we have an increasing geometric series, like the

second Master case, so we only care about the leaves: T (n) = Θ(4lg lg nn) = Θ(n log2 n) Ick!

5 Transforming Recurrences

5.1 An analysis of mergesort: domain transformation

Previously we gave the recurrence for mergesort as T (n) = 2T (n/2) +n, and obtained the solution
T (n) = Θ(n log n) using the Master Theorem (or the recursion tree method if you, like me, can’t
remember the Master Theorem). This is fine is n is a power of two, but for other values values of
n, this recurrence is incorrect. When n is odd, then the recurrence calls for us to sort a fractional
number of elements! Worse yet, if n is not a power of two, we will never reach the base case
T (1) = 0.

To get a recurrence that’s valid for all integers n, we need to carefully add ceilings and floors:

T (n) = T (dn/2e) + T (bn/2c) + n.

We have almost no hope of getting an exact solution here; the floors and ceilings will eventually
kill us. So instead, let’s just try to get a tight asymptotic upper bound for T (n) using a technique
called domain transformation. A domain transformation rewrites a function T (n) with a difficult
recurrence as a nested function S(f(n)), where f(n) is a simple function and S() has an easier
recurrence.

First we overestimate the time bound, once by pretending that the two subproblem sizes are
equal, and again to eliminate the ceiling:

T (n) ≤ 2T
(

dn/2e
)

+ n ≤ 2T (n/2 + 1) + n.

13

CS 373 Notes on Solving Recurrence Relations

Now we define a new function S(n) = T (n + α), where α is a unknown constant, chosen so that
S(n) satisfies the Master-ready recurrence S(n) ≤ 2S(n/2) + O(n). To figure out the correct value
of α, we compare two versions of the recurrence for the function T (n + α):

S(n) ≤ 2S(n/2) + O(n) =⇒ T (n + α) ≤ 2T (n/2 + α) + O(n)

T (n) ≤ 2T (n/2 + 1) + n =⇒ T (n + α) ≤ 2T ((n + α)/2 + 1) + n + α

For these two recurrences to be equal, we need n/2 + α = (n + α)/2 + 1, which implies that α = 2.
The Master Theorem now tells us that S(n) = O(n log n), so

T (n) = S(n− 2) = O((n− 2) log(n− 2)) = O(n log n).

A similar argument gives a matching lower bound T (n) = Ω(n log n). So T (n) = Θ(n log n) after

all, just as though we had ignored the floors and ceilings from the beginning!
Domain transformations are useful for removing floors, ceilings, and lower order terms from the

arguments of any recurrence that otherwise looks like it ought to fit either the Master Theorem or
the recursion tree method. But now that we know this, we don’t need to bother grinding through
the actual gory details!

5.2 A less trivial example

There is a data structure in computational geometry called ham-sandwich trees, where the cost
of doing a certain search operation obeys the recurrence T (n) = T (n/2) + T (n/4) + 1. This
doesn’t fit the Master theorem, because the two subproblems have different sizes, and using the
recursion tree method only gives us the loose bounds

√
n � T (n) � n.

Domain transformations save the day. If we define the new function t(k) = T (2k), we have a
new recurrence

t(k) = t(k − 1) + t(k − 2) + 1

which should immediately remind you of Fibonacci numbers. Sure enough, after a bit of work, the
annihilator method gives us the solution t(k) = Θ(φk), where φ = (1 +

√
5)/2 is the golden ratio.

This implies that

T (n) = t(lg n) = Θ(φlg n) = Θ(nlg φ) ≈ Θ(n0.69424).

It’s possible to solve this recurrence without domain transformations and annihilators—in fact,
the inventors of ham-sandwich trees did so—but it’s much more difficult.

5.3 Secondary recurrences

Consider the recurrence T (n) = 2T (n

3
− 1) + n with the base case T (1) = 1. We already know

how to use domain transformations to get the tight asymptotic bound T (n) = Θ(n), but how would
we we obtain an exact solution?

First we need to figure out how the parameter n changes as we get deeper and deeper into the
recurrence. For this we use a secondary recurrence. We define a sequence ni so that

T (ni) = 2T (ni−1) + ni,

So ni is the argument of T () when we are i recursion steps away from the base case n0 = 1. The
original recurrence gives us the following secondary recurrence for ni:

ni−1 =
ni

3
− 1 =⇒ ni = 3ni−3 + 3.

14

CS 373 Notes on Solving Recurrence Relations

The annihilator for this recurrence is (E − 1)(E − 3), so the generic solution is ni = α3i + β.
Plugging in the base cases n0 = 1 and n1 = 6, we get the exact solution

ni =
5

2
· 3i − 3

2
.

Notice that our original function T (n) is only well-defined if n = ni for some integer i ≥ 0.
Now to solve the original recurrence, we do a range transformation. If we set ti = T (ni), we

have the recurrence ti = 2ti−1 + 5
2
·3i− 3

2
, which by now we can solve using the annihilator method.

The annihilator of the recurrence is (E−2)(E−3)(E−1), so the generic solution is α ′3i +β′2i +γ′.
Plugging in the base cases t0 = 1, t1 = 8, t2 = 37, we get the exact solution

ti =
15

2
· 3i − 8 · 2i +

3

2

Finally, we need to substitute to get a solution for the original recurrence in terms of n, by
inverting the solution of the secondary recurrence. If n = ni = 5

2
·3i− 3

2
, then (after a little algebra)

we have

i = log3

(

2

5
n +

3

5

)

.

Substituting this into the expression for ti, we get our exact, closed-form solution.

T (n) =
15

2
· 3i − 8 · 2i +

3

2

=
15

2
· 3(2

5
n+ 3

5
) − 8 · 2log3(2

5
n+ 3

5
) +

3

2

=
15

2

(

2

5
n +

3

5

)

− 8 ·
(

2

5
n +

3

5

)log3 2

+
3

2

= 3n− 8 ·
(

2

5
n +

3

5

)log3 2

+ 6

Isn’t that special? Now you know why we stick to asymptotic bounds for most recurrences.

6 References

Methods for solving recurrences by annihilators, domain transformations, and secondary recurrences
are nicely outlined in G. Lueker, Some Techniques for Solving Recurrences, ACM Computing

Surveys 12(4):419-436, 1980. The master theorem is presented in sections 4.3 and 4.4 of CLR.
Sections 1–3 and 5 of this handout were written by Ed Reingold and Ari Trachtenberg and

substantially revised by Jeff Erickson. Section 4 is entirely Jeff’s fault.

15

