
CS 373 Non-Lecture C: String Matching Fall 2002

C String Matching

C.1 Brute Force

The basic object that we’re going to talk about for the next two lectures is a string, which is really
just an array. The elements of the array come from a set Σ called the alphabet ; the elements
themselves are called characters. Common examples are ASCII text, where each character is an
seven-bit integer1, strands of DNA, where the alphabet is the set of nucleotides {A,C,G, T}, or
proteins, where the alphabet is the set of 22 amino acids.

The problem we want to solve is the following. Given two strings, a text T [1 .. n] and a pattern

P [1 ..m], find the first substring of the text that is the same as the pattern. (It would be easy
to extend our algorithms to find all matching substrings, but we will resist.) A substring is just
a contiguous subarray. For any shift s, let Ts denote the substring T [s .. s + m − 1]. So more
formally, we want to find the smallest shift s such that Ts = P , or report that there is no match.
For example, if the text is the string ‘AMANAPLANACATACANALPANAMA’2 and the pattern is ‘CAN’, then
the output should be 15. If the pattern is ‘SPAM’, then the answer should be ‘none’. In most cases
the pattern is much smaller than the text; to make this concrete, I’ll assume that m < n/2.

Here’s the ‘obvious’ brute force algorithm, but with one immediate improvement. The inner
while loop compares the substring Ts with P . If the two strings are not equal, this loop stops at
the first character mismatch.

AlmostBruteForce(T [1 .. n], P [1 ..m]):

for s← 1 to n−m + 1
equal ← true
i← 1
while equal and i ≤ m

if T [s + i− 1] 6= P [i]
equal ← false

else
i← i + 1

if equal
return s

return ‘none’

In the worst case, the running time of this algorithm is O((n − m)m) = O(nm), and we can

1Yes, seven. Most computer systems use some sort of 8-bit character set, but there’s no universally accepted
standard. Java supposedly uses the Unicode character set, which has variable-length characters and therefore doesn’t
really fit into our framework. Just think, someday you’ll be able to write ‘¶ = ℵ[∞++]/f;’ in your Java code! Joy!

2Dan Hoey (or rather, his computer program) found the following 540-word palindrome in 1984. We have better
online dictionaries now, so I’m sure you could do better.

A man, a plan, a caret, a ban, a myriad, a sum, a lac, a liar, a hoop, a pint, a catalpa, a gas, an oil, a bird, a yell, a vat, a caw,

a pax, a wag, a tax, a nay, a ram, a cap, a yam, a gay, a tsar, a wall, a car, a luger, a ward, a bin, a woman, a vassal, a wolf, a

tuna, a nit, a pall, a fret, a watt, a bay, a daub, a tan, a cab, a datum, a gall, a hat, a fag, a zap, a say, a jaw, a lay, a wet, a

gallop, a tug, a trot, a trap, a tram, a torr, a caper, a top, a tonk, a toll, a ball, a fair, a sax, a minim, a tenor, a bass, a passer,

a capital, a rut, an amen, a ted, a cabal, a tang, a sun, an ass, a maw, a sag, a jam, a dam, a sub, a salt, an axon, a sail, an ad,

a wadi, a radian, a room, a rood, a rip, a tad, a pariah, a revel, a reel, a reed, a pool, a plug, a pin, a peek, a parabola, a dog, a

pat, a cud, a nu, a fan, a pal, a rum, a nod, an eta, a lag, an eel, a batik, a mug, a mot, a nap, a maxim, a mood, a leek, a grub,

a gob, a gel, a drab, a citadel, a total, a cedar, a tap, a gag, a rat, a manor, a bar, a gal, a cola, a pap, a yaw, a tab, a raj, a gab,

a nag, a pagan, a bag, a jar, a bat, a way, a papa, a local, a gar, a baron, a mat, a rag, a gap, a tar, a decal, a tot, a led, a tic, a

bard, a leg, a bog, a burg, a keel, a doom, a mix, a map, an atom, a gum, a kit, a baleen, a gala, a ten, a don, a mural, a pan, a

faun, a ducat, a pagoda, a lob, a rap, a keep, a nip, a gulp, a loop, a deer, a leer, a lever, a hair, a pad, a tapir, a door, a moor,

an aid, a raid, a wad, an alias, an ox, an atlas, a bus, a madam, a jag, a saw, a mass, an anus, a gnat, a lab, a cadet, an em, a

natural, a tip, a caress, a pass, a baronet, a minimax, a sari, a fall, a ballot, a knot, a pot, a rep, a carrot, a mart, a part, a tort,

a gut, a poll, a gateway, a law, a jay, a sap, a zag, a fat, a hall, a gamut, a dab, a can, a tabu, a day, a batt, a waterfall, a patina,

a nut, a flow, a lass, a van, a mow, a nib, a draw, a regular, a call, a war, a stay, a gam, a yap, a cam, a ray, an ax, a tag, a wax,

a paw, a cat, a valley, a drib, a lion, a saga, a plat, a catnip, a pooh, a rail, a calamus, a dairyman, a bater, a canal—Panama!

1

CS 373 Non-Lecture C: String Matching Fall 2002

actually achieve this running time by searching for the pattern AAA...AAAB with m − 1 A’s, in a
text consisting of n A’s.

In practice, though, breaking out of the inner loop at the first mismatch makes this algorithm
quite practical. We can wave our hands at this by assuming that the text and pattern are both
random. Then on average, we perform a constant number of comparisons at each position i, so
the total expected number of comparisons is O(n). Of course, neither English nor DNA is really
random, so this is only a heuristic argument.

C.2 Strings as Numbers

For the rest of the lecture, let’s assume that the alphabet consists of the numbers 0 through 9, so
we can interpret any array of characters as either a string or a decimal number. In particular, let
p be the numerical value of the pattern P , and for any shift s, let ts be the numerical value of Ts:

p =

m
∑

i=1

10m−i · P [i] ts =

m
∑

i=1

10m−i · T [s + i− 1]

For example, if T = 31415926535897932384626433832795028841971 and m = 4, then t17 = 2384.
Clearly we can rephrase our problem as follows: Find the smallest s, if any, such that p = ts.

We can compute p in O(m) arithmetic operations, without having to explicitly compute powers of
ten, using Horner’s rule:

p = P [m] + 10
(

P [m− 1] + 10
(

P [m− 2] + · · · + 10
(

P [2] + 10 · P [1]
)

· · ·
))

We could also compute any ts in O(m) operations using Horner’s rule, but this leads to essentially
the same brute-force algorithm as before. But once we know ts, we can actually compute ts+1 in
constant time just by doing a little arithmetic — subtract off the most significant digit T [s] ·10m−1,
shift everything up by one digit, and add the new least significant digit T [r + m]:

ts+1 = 10
(

ts − 10m−1 · T [s]
)

+ T [s + m]

To make this fast, we need to precompute the constant 10m−1. (And we know how to do that
quickly. Right?) So it seems that we can solve the string matching problem in O(n) worst-case
time using the following algorithm:

NumberSearch(T [1 .. n], P [1 ..m]):

σ ← 10m−1

p← 0
t1 ← 0
for i← 1 to m

p← 10 · p + P [i]
t1 ← 10 · t1 + T [i]

for s← 1 to n−m + 1
if p = ts

return s
ts+1 ← 10 ·

(

ts − σ · T [s]
)

+ T [s + m]

return ‘none’

Unfortunately, the most we can say is that the number of arithmetic operations is O(n). These
operations act on numbers with up to m digits. Since we want to handle arbitrarily long patterns,
we can’t assume that each operation takes only constant time!

2

CS 373 Non-Lecture C: String Matching Fall 2002

C.3 Karp-Rabin Fingerprinting

To make this algorithm efficient, we will make one simple change, discovered by Richard Karp and
Michael Rabin in 1981:

Perform all arithmetic modulo some prime number q.

We choose q so that the value 10q fits into a standard integer variable, so that we don’t need any
fancy long-integer data types. The values (p mod q) and (ts mod q) are called the fingerprints of P
and Ts, respectively. We can now compute (p mod q) and (t1 mod q) in O(m) time using Horner’s
rule ‘mod q’

p mod q = P [m] +
(

· · ·+
(

10 ·
(

P [2] +
(

10 · P [1] mod q
)

mod q
)

mod q
)

· · ·
))

mod q

and similarly, given (ts mod q), we can compute (ts+1 mod q) in constant time.

ts+1 mod q =
(

10 ·
(

ts −
((

10m−1 mod q
)

· T [s] mod q
)

mod q
)

mod q
)

+ T [s + m] mod q

Again, we have to precompute the value (10m−1 mod q) to make this fast.
If (p mod q) 6= (ts mod q), then certainly P 6= Ts. However, if (p mod q) = (ts mod q), we can’t

tell whether P = Ts or not. All we know for sure is that p and ts differ by some integer multiple of
q. If P 6= Ts in this case, we say there is a false match at shift s. To test for a false match, we simply
do a brute-force string comparison. (In the algorithm below, p̃ = p mod q and t̃s = ts mod q.)

KarpRabin(T [1 .. n], P [1 ..m]:

choose a small prime q
σ ← 10m−1 mod q
p̃← 0
t̃1 ← 0
for i← 1 to m

p̃← (10 · p̃ mod q) + P [i] mod q
t̃1 ← (10 · t̃1 mod q) + T [i] mod q

for s← 1 to n−m + 1
if p̃ = t̃s

if P = Ts 〈〈brute-force O(m)-time comparison〉〉
return s

t̃s+1 ←
(

10 ·
(

t̃s −
(

σ · T [s] mod q
)

mod q
)

mod q
)

+ T [s + m] mod q

return ‘none’

The running time of this algorithm is O(n + Fm), where F is the number of false matches.
Intuitively, we expect the fingerprints ts to jump around between 0 and q − 1 more or less at

random, so the ‘probability’ of a false match ‘ought’ to be 1/q. This intuition implies that F = n/q
‘on average’, which gives us an ‘expected’ running time of O(n + nm/q). If we always choose
q ≥ m, this simplifies to O(n). But of course all this intuitive talk of probabilities is just frantic
meaningless handwaving, since we haven’t actually done anything random yet.

C.4 Random Prime Number Facts

The real power of the Karp-Rabin algorithm is that by choosing the modulus q randomly, we can
actually formalize this intuition! The first line of KarpRabin should really read as follows:

3

CS 373 Non-Lecture C: String Matching Fall 2002

Let q be a random prime number less than nm2 log(nm2).

For any positive integer u, let π(u) denote the number of prime numbers less than u. There are
π(nm2 log nm2) possible values for q, each with the same probability of being chosen.

Our analysis needs two results from number theory. I won’t even try to prove the first one, but
the second one is quite easy.

Lemma 1 (The Prime Number Theorem). π(u) = Θ(u/ log u).

Lemma 2. Any integer x has at most blg xc distinct prime divisors.

Proof: If x has k distinct prime divisors, then x ≥ 2k, since every prime number is bigger
than 1. �

Let’s assume that there are no true matches, so p 6= ts for all s. (That’s the worst case for the
algorithm anyway.) Let’s define a strange variable X as follows:

X =

n−m+1
∏

s=1

|p− ts| .

Notice that by our assumption, X can’t be zero.
Now suppose we have false match at shift s. Then p mod q = ts mod q, so p − ts is an integer

multiple of q, and this implies that X is also an integer multiple of q. In other words, if there is a
false match, then q must one of the prime divisors of X.

Since p < 10m and ts < 10m, we must have X < 10nm. Thus, by the second lemma, X has
O(mn) prime divisors. Since we chose q randomly from a set of π(nm2 log(nm2)) = Ω(nm2) prime
numbers, the probability that q divides X is at most

O(nm)

Ω(nm2)
= O

(

1

m

)

.

We have just proven the following amazing fact.

The probability of getting a false match is O(1/m).

Recall that the running time of KarpRabin is O(n + mF), where F is the number of false
matches. By using the really loose upper bound E[F] ≤ Pr[F > 0] · n, we can conclude that the
expected number of false matches is O(n/m). Thus, the expected running time of the KarpRabin

algorithm is O(n).

C.5 Random Prime Number?

Actually choosing a random prime number is not particularly easy. The best method known is
to repeatedly generate a random integer and test to see if it’s prime. In practice, it’s enough to
choose a random probable prime. You can read about probable primes in the textbook Randomized

Algorithms by Rajeev Motwani and Prabhakar Raghavan (Cambridge, 1995).

4

