
CS 373 Non-Lecture I: Adversaries Fall 2002

It is possible that the operator could be hit by an asteroid and your $20 could fall off

his cardboard box and land on the ground, and while you were picking it up, $5 could

blow into your hand. You therefore could win $5 by a simple twist of fate.

— Penn Jillette, explaining how to win at Three-Card Monte (1999)

I Adversary Arguments

I.1 Three-Card Monte

Until Times Square was turned into TimesSquareLand by Mayor Guiliani, you could often find
dealers stealing tourists’ money using a game called ‘Three Card Monte’ or ‘Spot the Lady’. The
dealer has three cards, say the Queen of Hearts and the two and three of clubs. The dealer shuffles
the cards face down on a table (usually slowly enough that you can follow the Queen), and then
asks the tourist to bet on which card is the Queen. In principle, the tourist’s odds of winning are
at least one in three.

In practice, however, the tourist never wins, because the dealer cheats. There are actually four

cards; before he even starts shuffling the cards, the dealer palms the queen or sticks it up his sleeve.
No matter what card the tourist bets on, the dealer turns over a black card. If the tourist gives
up, the dealer slides the queen under one of the cards and turns it over, showing the tourist ‘where
the queen was all along’. If the dealer is really good, the tourist won’t see the dealer changing the
cards and will think maybe the queen was there all along and he just wasn’t smart enough to figure
that out.1 As long as the dealer doesn’t reveal all the black cards at once, the tourist has no way
to prove that the dealer cheated!

I.2 n-Card Monte

Now let’s consider a similar game, but with an algorithm acting as the tourist and with bits instead
of cards. Suppose we have an array of n bits and we want to determine if any of them is a 1.
Obviously we can figure this out by just looking at every bit, but can we do better? Is there maybe
some complicated tricky algorithm to answer the question “Any ones?” without looking at every
bit? Well, of course not, but how do we prove it?

The simplest proof technique is called an adversary argument. The idea is that an all-powerful
malicious adversary (the dealer) pretends to choose an input for the algorithm (the tourist). When
the algorithm wants looks at a bit (a card), the adversary sets that bit to whatever value will make
the algorithm do the most work. If the algorithm does not look at enough bits before terminating,
then there will be several different inputs, each consistent with the bits already seen, the should
result in different outputs. Whatever the algorithm outputs, the adversary can ‘reveal’ an input
that is has all the examined bits but contradicts the algorithm’s output, and then claim that that
was the input that he was using all along. Since the only information the algorithm has is the set
of bits it examined, the algorithm cannot distinguish between a malicious adversary and an honest
user who actually chooses an input in advance and answers all queries truthfully.

For the n-card monte problem, the adversary originally pretends that the input array is all
zeros—whenever the algorithm looks at a bit, it sees a 0. Now suppose the algorithms stops before
looking at all three bits. If the algorithm says ‘No, there’s no 1,’ the adversary changes one of the
unexamined bits to a 1 and shows the algorithm that it’s wrong. If the algorithm says ‘Yes, there’s
a 1,’ the adversary reveals the array of zeros and again proves the algorithm wrong. Either way,
the algorithm cannot tell that the adversary has cheated.

1He’s right about the second part!

1

CS 373 Non-Lecture I: Adversaries Fall 2002

It is important to notice that the adversary makes absolutely no assumptions about the algo-
rithm. The adversary strategy can’t depend on some predetermined order of examining bits, and
it doesn’t care about anything the algorithm might or might not do when it’s not looking at bits.
Any algorithm that doesn’t examine every bit falls victim to the adversary.

I.3 Finding Patterns in Bit Strings

Let’s make the problem a little more complicated. Suppose we’re given an array of n bits and we
want to know if it contains the substring 01, a zero followed immediately by a one. Can we answer
this question without looking at every bit?

It turns out that if n is odd, we don’t have to look at all the bits. First we look the bits in
every even position: B[2], B[4], . . . , B[n − 1]. If we see B[i] = 0 and B[j] = 1 for any i < j, then
we know the pattern 01 is in there somewhere—starting at the last 0 before B[j]—so we can stop
without looking at any more bits. If we see only 1s followed by 0s, we don’t have to look at the
bit between the last 0 and the first 1. If every even bit is a 0, we don’t have to look at B[1], and if
every even bit is a 1, we don’t have to look at B[n]. In the worst case, our algorithm looks at only
n− 1 of the n bits.

But what if n is even? In that case, we can use the following adversary strategy to show that
any algorithm does have to look at every bit. The adversary is going to produce an input of the
form 11 . . . 100 . . . 0. The adversary maintains two indices ` and r and pretends that everything to
the left of ` is a 1 and everything to the right of r is a 0. Initially ` = 0 and r = n + 1.

1111112222220000
↑ ↑
` r

What the adversary is thinking; 2 represents an unknown bit.

The adversary maintains the invariant that r− `, the length of the intermediate portion of the
array, is even. When the algorithm looks at a bit between ` and r, the adversary chooses whichever
value preserves the parity of the intermediate chunk of the array, and then moves either ` or r.
Specifically, here’s what the adversary does right before the the algorithm examines the bit B[i].
(Note that I’m specifying the adversary strategy as an algorithm!)

Hide01(i):

if i ≤ `
B[i]← 1

else if i ≥ r
B[i]← 0

else if i− ` is even
B[i]← 0
r ← i

else
B[i]← 1
`← i

It’s fairly easy to prove that this strategy forces the algorithm to examine every bit. If the
algorithm doesn’t look at every bit to the right of r, the adversary could replace some unexamined
bit with a 1. Similarly, if the algorithm doesn’t look at every bit to the left of `, the adversary
could replace some unexamined bit with a zero. Finally, if there are any unexamined bits between
` and r, there must be at least two such bits (since r− ` is always even) and the adversary can put
a 01 in the gap.

2

CS 373 Non-Lecture I: Adversaries Fall 2002

In general, we say that a bit pattern is evasive if we have to look at every bit to decide if a
string of n bits contains the pattern. So the pattern 1 is evasive for all n, and the pattern 01 is
evasive if and only if n is even. It turns out that the only patterns that are evasive for all values
of n are the one-bit patterns 0 and 1.

I.4 Evasive Graph Properties

Another class of problems for which adversary arguments give good lower bounds is graph problems
where the graph is represented by an adjacency matrix, rather than an adjacency list. Recall that
the adjacency matrix of an undirected n-vertex graph G = (V,E) is an n × n matrix A, where
A[i, j] =

[
(i, j) ∈ E

]
. We are interested in deciding whether an undirected graph has or does not

have a certain property. For example, is the input graph connected? Acyclic? Planar? Complete?
A tree? We call a graph property evasive if we have to look look at all

(n
2

)
entries in the adjacency

matrix to decide whether a graph has that property.
An obvious example of an evasive graph property is emptiness: Does the graph have any edges

at all? We can show that emptiness is evasive using the following simple adversary strategy. The
adversary maintains two graphs E and G. E is just the empty graph with n vertices. Initially G
is the complete graph on n vertices. Whenever the algorithm asks about an edge, the adversary
removes that edge from G (unless it’s already gone) and answers ‘no’. If the algorithm terminates
without examining every edge, then G is not empty. Since both G and E are consistent with all
the adversary’s answers, the algorithm must give the wrong answer for one of the two graphs.

I.5 Connectedness Is Evasive

Now let me give a more complicated example, connectedness. Once again, the adversary maintains
two graphs, Y and M (‘yes’ and ‘maybe’). Y contains all the edges that the algorithm knows are
definitely in the input graph. M contains all the edges that the algorithm thinks might be in the
input graph, or in other words, all the edges of Y plus all the unexamined edges. Initially, Y is
empty and M is complete.

Here’s the strategy that adversary follows when the adversary asks whether eh input graph
contains the edge e. I’ll assume that whenever an algorithm examines an edge, it’s in M but not
in Y ; in other words, algorithms never ask about the same edge more than once.

HideConnectedness(e):

if M \ {e} is connected
remove (i, j) from M
return 0

else
add e to Y
return 1

Notice that Y and M are both consistent with the adversary’s answers. The adversary strategy
maintains a few other simple invariants.

• Y is a subgraph of M .

• M is connected.

• If M has a cycle, none of its edges are in Y . If M has a cycle, then deleting any edge
in that cycle leaves M connected.

3

CS 373 Non-Lecture I: Adversaries Fall 2002

• Y is acyclic. Obvious from the previous invariant.

• If Y 6= M , then Y is disconnected. The only connected acyclic graph is a tree. Suppose
Y is a tree and some edge e is in M but not Y . Then there is a cycle in M that contains e,
all of whose other edges are in Y . This is impossible.

Now, if an algorithm terminates before examining all
(n
2

)
edges, then there is an edge in M that

is not in Y . Since the algorithm cannot distinguish between M and Y , even though M is connected
and Y is not, the algorithm cannot possibly give the correct output for both graphs. Thus, in order
to be correct, any algorithm must examine every edge—Connectedness is evasive!

I.6 An Evasive Conjecture

A graph property is nontrivial is there is at least one graph with the property and at least one
graph without the property. (The only trivial properties are ‘Yes’ and ‘No’.) A graph property
is monotone if it is closed under taking subgraphs — if G has the property, then any subgraph
of G has the property. For example, emptiness, planarity, acyclicity, and non-connectedness are
monotone. The properties of being a tree and of having a vertex of degree 3 are not monotone.

Conjecture 1 (Aanderraa, Karp, and Rosenberg). Every nontrivial monotone property of

n-vertex graphs is evasive.

The Aanderraa-Karp-Rosenberg conjecture has been proven when n = pe for some prime p and
positive integer exponent e—the proof uses some interesting results from algebraic topology2—but
it is still open for other values of n.’

Incidentally, this was really the point of the ‘scorpion’ practice homework problem. ’Scorprion-
hood’ is an example of a nontrivial graph property that is not evasive, since there is an algorithm to
identify scorpions by examining only O(n) of their edges. However, this property is not monotone—
a subgraph of a scorpion is not necessarily a scorpion.

I.7 Finding the Minimum and Maximum

Last time, we saw an adversary argument that finding the largest element of an unsorted set of n
numbers requires at least n − 1 comparisons. Let’s consider the complexity of finding the largest
and smallest elements. More formally:

Given a sequence X = 〈x1, x2, . . . , xn〉 of n distinct numbers, find indices i and j such
that xi = minX and xj = max X.

How many comparisons do we need to solve this problem? An upper bound of 2n − 3 is easy:
find the minimum in n − 1 comparisons, and then find the maximum of everything else in n − 2
comparisons. Similarly, a lower bound of n− 1 is easy, since any algorithm that finds the min and
the max certainly finds the max.

We can improve both the upper and the lower bound to d3n/2e − 2. The upper bound is
established by the following algorithm. Compare all bn/2c consecutive pairs of elements x2i−1 and
x2i, and put the smaller element into a set S and the larger element into a set L. if n is odd, put

2Let ∆ be a contractible simplicial complex whose automorphism group Aut(∆) is vertex-transitive, and let Γ be
a vertex-transitive subgroup of Aut(∆). Suppose there are normal subgroups Γ1 � Γ2 � Γ such that |Γ1| = pα for
some prime p and integer α, |Γ/Γ2| = qβ for some prime q and integer β, and Γ2/Γ1 is cyclic. Then ∆ is a simplex.

No, this will not be on the final exam.

4

CS 373 Non-Lecture I: Adversaries Fall 2002

xn into both L and S. Then find the smallest element of S and the largest element of L. The total
number of comparisons is at most

⌊n

2

⌋

︸︷︷︸

build S and L

+
⌈n

2

⌉

− 1
︸ ︷︷ ︸

compute minS

+
⌈n

2

⌉

− 1
︸ ︷︷ ︸

compute max L

=

⌈
3n

2

⌉

− 2.

For the lower bound, we use an adversary argument. The adversary marks each element +
if it might be the maximum element, and − if it might be the minimum element. Initially, the
adversary puts both marks + and − on every element. If the algorithm compares two double-
marked elements, then the adversary declares one smaller, removes the + mark from the smaller
element, and removes the − mark from the larger one. In every other case, the adversary can
answer so that at most one mark needs to be removed. For example, if the algorithm compares a
double marked element against one labeled −, the adversary says the one labeled − is smaller and
removes the − mark from the other. If the algorithm compares to +’s, the adversary must unmark
one of the two.

Initially, there are 2n marks. At the end, in order to be correct, exactly one item must be marked
+ and exactly one other must be marked −, since the adversary can make any + the maximum
and any − the minimum. Thus, the algorithm must force the adversary to remove 2n− 2 marks.
At most bn/2c comparisons remove two marks; every other comparison removes at most one mark.
Thus, the adversary strategy forces any algorithm to perform at least 2n− 2−bn/2c = d3n/2e − 2
comparisons.

I.8 Finding the Median

Finally, let’s consider the median problem: Given an unsorted array X of n numbers, find its n/2th
largest entry. (I’ll assume that n is even to eliminate pesky floors and ceilings.) More formally:

Given a sequence 〈x1, x2, . . . , xn〉 of n distinct numbers, find the index m such that xm

is the n/2th largest element in the sequence.

To prove a lower bound for this problem, we can use a combination of information theory and
two adversary arguments. We use one adversary argument to prove the following simple lemma:

Lemma 1. Any comparison tree that correctly finds the median element also identifies the elements

smaller than the median and larger than the median.

Proof: Suppose we reach a leaf of a decision tree that chooses the median element xm, and there
is still some element xi that isn’t known to be larger or smaller than xm. In other words, we cannot
decide based on the comparisons that we’ve already performed whether xi < xm or xi > xm. Then
in particular no element is known to lie between xi and xm. This means that there must be an
input that is consistent with the comparisons we’ve performed, in which xi and xm are adjacent
in sorted order. But then we can swap xi and xm, without changing the result of any comparison,
and obtain a different consistent input in which xi is the median, not xm. Our decision tree gives
the wrong answer for this ‘swapped’ input. �

This lemma lets us rephrase the median-finding problem yet again.

Given a sequence X = 〈x1, x2, . . . , xn〉 of n distinct numbers, find the indices of its
n/2− 1 largest elements L and its n/2th largest element xm.

5

CS 373 Non-Lecture I: Adversaries Fall 2002

Now suppose a ‘little birdie’ tells us the set L of elements larger than the median. This information
fixes the outcomes of certain comparisons — any item in L is bigger than any element not in L
— and so we can ‘prune’ those comparisons from the comparison tree. The pruned tree finds the
largest element of X \L (the median of X), and thus must have depth at least n/2− 1. In fact, an
adversary argument similar to last lecture’s implies that every leaf in the pruned tree must have
depth at least n/2− 1, so the pruned tree has at least 2n/2−1 leaves.

There are
(n
n/2−1

)
≈ 2n/

√

n/2 possible choices for the set L. Every leaf in the original compar-

ison tree is also a leaf in exactly one of the
(n
n/2−1

)
pruned trees, so the original comparison tree

must have at least
(n
n/2−1

)
2n/2−1 ≈ 23n/2/

√

n/2 leaves. Thus, any comparison tree that finds the
median must have depth at least

⌈
n

2
− 1 + lg

(
n

n/2− 1

)⌉

=
3n

2
−O(log n).

A more complicated adversary argument (also involving pruning the tree with little birdies) im-
proves this lower bound to 2n− o(n).

A similar argument implies that at least n−k +
⌈

lg
(n
k−1

)⌉

comparisons are required to find the

kth largest element in an n-element set.

6

