Chapter 10

Temporal-Difference
Learning

10.1 Temporal Patterns and Prediction Prob-
lems

In this chapter, we consider problems in which we wish to learn to pre-
dict the future value of some quantity, say z, from an n-dimensional input
pattern, X. In many of these problems, the patterns occur in temporal
sequence, X1, Xo, . . ., Xy, X341, ..., X, and are generated by a dynam-
ical process. The components of X; are features whose values are available
at time, ¢ = ¢. We distinguish two kinds of prediction problems. In one,
we desire to predict the value of z at time ¢ = ¢ + 1 based on input X; for
every i. For example, we might wish to predict some aspects of tomorrow’s
weather based on a set of measurements made today. In the other kind
of prediction problem, we desire to make a sequence of predictions about
the value of z at some fized time, say ¢ = m + 1, based on each of the X,
t = 1,...,m. For example, we might wish to make a series of predictions
about some aspect of the weather on next New Year’s Day, based on mea-
surements taken every day before New Year’s. Sutton [Sutton, 1988] has
called this latter problem, multi-step prediction, and that is the problem we
consider here. In multi-step prediction, we might expect that the prediction
accuracy should get better and better as ¢ increases toward m.

145



146 CHAPTER 10. TEMPORAL-DIFFERENCE LEARNING

10.2 Supervised and Temporal-Difference Meth-
ods

A training method that naturally suggests itself is to use the actual value of
z at time m+ 1 (once it is known) in a supervised learning procedure using
a sequence of training patterns, {X, X, ..., X;, Xj41, ..., Xy }. That
is, we seek to learn a function, f, such that f(X;) is as close as possible
to z for each 7. Typically, we would need a training set, =, consisting of
several such sequences. We will show that a method that is better than
supervised learning for some important problems is to base learning on the
difference between f(X;41) and f(X;) rather than on the difference between
z and f(X;). Such methods involve what is called temporal-difference (TD)
learning.

We assume that our prediction, f(X), depends on a vector of modifiable
weights, W. To make that dependence explicit, we write f(X, W). For
supervised learning, we consider procedures of the following type: For each
X;, the prediction f(X;, W) is computed and compared to z, and the
learning rule (whatever it is) computes the change, (AW;), to be made
to W. Then, taking into account the weight changes for each pattern in a
sequence all at once after having made all of the predictions with the old
weight vector, we change W as follows:

m
W — W+ (AW);
i=1
Whenever we are attempting to minimize the squared error between

z and f(X;, W) by gradient descent, the weight-changing rule for each
pattern 1s:

afi
oW

(AW)Z = C(Z — fz)

where ¢ is a learning rate parameter, f; is our prediction of z, f(X;, W),
at time ¢ = ¢, and (,%{/— 18, by definition, the vector of partial derivatives
fi ey 9f; ey 91 ) in which the w; are the individual components of
dwq dw dw
af

W. (The expression W is sometimes written Vyy fi.) The reader will

recall that we used an equivalent expression for (AW); in deriving the
backpropagation formulas used in training multi-layer neural networks.

The Widrow-Hoff rule results when f(X, W) = X ¢ W. Then:
(AW)Z = C(Z — fz)Xz

Introduction to Machine Learning ©1996 Nils J. Nilsson. All rights reserved.



10.2. SUPERVISED AND TEMPORAL-DIFFERENCE METHODS 147

An interesting form for (AW); can be developed if we note that
(2= fi) =D (frg1 — F)

k=i

where we define fi,41 = z. Substituting in our formula for (AW); yields:

afi

(AW)Z = C(Z — fz) a“?fv

= Caa‘j;/— Z(fk+1 — i)
k=1

In this form, instead of using the difference between a prediction and the
value of z, we use the differences between successive predictions—thus the
phrase temporal-difference (TD) learning.

In the case when f(X, W) = X ¢ W, the temporal difference form of
the Widrow-Hoff rule is:

m

(AW); = eXi > (frq1 — fr)

k=i

One reason for writing (AW); in temporal-difference form is to permit
an interesting generalization as follows:

(AW); = 5L S A0y — g

k=i

where 0 < A < 1. Here, the A term gives exponentially decreasing weight
to differences later in time than ¢ = 2. When A = 1, we have the same
rule with which we began—weighting all differences equally, but as A — 0,
we weight only the (fit1 — f;) difference. With the A term, the method is
called TD(A).

It is interesting to compare the two extreme cases:

For TD(0):

afi

(AW); = c(fix1 — fi) W

Introduction to Machine Learning ©1996 Nils J. Nilsson. All rights reserved.



148 CHAPTER 10. TEMPORAL-DIFFERENCE LEARNING

For TD(1):

31’2

(AW)i = c(z = fi) 5

Both extremes can be handled by the same learning mechanism; only the
error term is different. In TD(0), the error is the difference between succes-
sive predictions, and in TD(1), the error is the difference between the finally
revealed value of z and the prediction. Intermediate values of A take into
account differently weighted differences between future pairs of successive
predictions.

Only TD(1) can be considered a pure supervised learning procedure,
sensitive to the final value of z provided by the teacher. For A < 1, we have
various degrees of unsupervised learning, in which the prediction function
strives to make each prediction more like successive ones (whatever they
might be). We shall soon see that these unsupervised procedures result
in better learning than do the supervised ones for an important class of
problems.

10.3 Incremental Computation of the (AW);

We can rewrite our formula for (AW);, namely

(AW); = e ZAk N fosr — Io)

to allow a type of incremental computation. First we write the expression
for the weight change rule that takes into account all of the (AW),:

m m

3 7 g
W— W+an\j;v D AT (firr = i)
i=1 k=1

Interchanging the order of the summations yields:

k

W%W-i-ZCZ/\k D fogr — fk)

k=1 1i=1

31’2

W e = L gy

Introduction to Machine Learning ©1996 Nils J. Nilsson. All rights reserved.



10.3. INCREMENTAL COMPUTATION OF THE (AW); 149

Interchanging the indices k and i finally yields:

W%W-l-ic(fﬁl fi) ZAZ ") af’“

i=1
If, as earlier, we want to use an expression of the form W +— W +
S (AW);, we see that we can write:

(AW); = c(fi1 — £ ZAZ o Ol

Now, if we let e; = 22:1 /\(i_k);fk , we can develop a computationally
efficient recurrence equation for e; 11 as follows:

i+1
3fk
eip1 = Z A (i+1-k)

afl-l-l i+1—k) afk
ZA W

_ i
= ow A

Rewriting (AW); in these terms, we obtain:

(AW); = c(fit1 — fi)es

where:
L _oh
YT ow
0
e = 3\17:\2/' + ey
etc.

Quoting Sutton [Sutton, 1988, page 15] (about a different equation, but the
quote applies equally well to this one):

“...this equation can be computed incrementally, because each
(AW); depends only on a pair of successive predictions and
on the [weighted] sum of all past values for 666"/.. This saves
substantially on memory, because it is no longer necessary to
individually remember all past values of 6‘% 7

Introduction to Machine Learning ©1996 Nils J. Nilsson. All rights reserved.



150 CHAPTER 10. TEMPORAL-DIFFERENCE LEARNING

10.4 An Experiment with TD Methods

TD prediction methods [especially TD(0)] are well suited to situations in
which the patterns are generated by a dynamic process. In that case, se-
quences of temporally presented patterns contain important information
that is ignored by a conventional supervised method such as the Widrow-
Hoff rule. Sutton [Sutton, 1988, page 19] gives an interesting example in-
volving a random walk, which we repeat here. In Fig. 10.1, sequences of
vectors, X, are generated as follows: We start with vector Xp; the next
vector in the sequence is equally likely to be one of the adjacent vectors in
the diagram. If the next vector is X¢ (or Xg), the next one after that is
equally likely to be one of the vectors adjacent to X¢ (or Xg). When Xp
1s in the sequence, 1t is equally likely that the sequence terminates with
z = 0 or that the next vector is X . Similarly, when X g is in the sequence,
it 1s equally likely that the sequence terminates with z = 1 or that the next
vector 18 Xg. Thus the sequences are random, but they always start with
Xp. Some sample sequences are shown in the figure. This random walk is
an example of a Markov process; transitions from state ¢ to state j occur
with probabilities that depend only on ¢ and j.

Typical Sequences:

XpXcXpXeXg 1
XpXCXBXCXpXEXpXEXE 1
XpXeXpXcXg O

Figure 10.1: A Markov Process

Given a set of sequences generated by this process as a training set, we
want to be able to predict the value of z for each X in a test sequence. We

Introduction to Machine Learning ©1996 Nils J. Nilsson. All rights reserved.



10.4. AN EXPERIMENT WITH TD METHODS 151

assume that the learning system does not know the transition probabilities.

For his experiments with this process, Sutton used a linear predictor,
that is f(X, W) = X ¢ W. The learning problem is to find a weight vector,
W, that minimizes the mean-squared error between z and the predicted
value of z. Given the five different values that X can take on, we have the
following predictions: f(Xp) = w1, f(X¢) = wa, f(Xp) = ws, f(Xg) =
wy, f(Xp) = ws, where w; is the i-th component of the weight vector.
(Note that the values of the predictions are not limited to 1 or 0—even
though z can only have one of those values—because we are minimizing
mean-squared error.) After training, these predictions will be compared
with the optimal ones—given the transition probabilities.

The experimental setup was as follows: ten random sequences were
generated using the transition probabilities. Fach of these sequences was
presented in turn to a TD(A) method for various values of A\. Weight
vector increments, (AW);, were computed after each pattern presentation
but no weight changes were made until all ten sequences were presented.
The weight vector increments were summed after all ten sequences were
presented, and this sum was used to change the weight vector to be used
for the next pass through the ten sequences. This process was repeated
over and over (using the same training sequences) until (quoting Sutton)
“the procedure no longer produced any significant changes in the weight
vector. For small ¢, the weight vector always converged in this way, and
always to the same final value [for 100 different training sets of ten random
sequences], independent of its initial value.” (Even though, for fixed, small
¢, the weight vector always converged to the same vector, it might converge
to a somewhat different vector for different values of ¢.)

After convergence, the predictions made by the final weight vector are
compared with the optimal predictions made using the transition probabil-
ities. These optimal predictions are simply p(z = 1|X). We can compute
these probabilities to be 1/6, 1/3, 1/2, 2/3, and 5/6 for Xg, X¢, Xp,
X g, XF, respectively. The root-mean-squared differences between the best
learned predictions (over all ¢) and these optimal ones are plotted in Fig.
10.2 for seven different values of A. (For each data point, the standard error
is approximately o = 0.01.)

Notice that the Widrow-Hoff procedure does not perform as well as
other versions of TD(A) for A < 1! Quoting [Sutton, 1988, page 21]:

“This result contradicts conventional wisdom. It is well known
that, under repeated presentations, the Widrow-Hoff procedure
minimizes the RMS error between its predictions and the ac-
tual outcomes in the training set ([Widrow & Stearns, 1985]).

Introduction to Machine Learning ©1996 Nils J. Nilsson. All rights reserved.



152

CHAPTER 10. TEMPORAL-DIFFERENCE LEARNING

Error using
best c

Widrow-Hoff
™ >

0.20 —

0.18 —
0.16 —
0.14 — TD(0)

0.12 —

0.10 —

0.0 0.1 0.3 0.5 07 09 1.0

(Adapted from Sutton, p. 20, 1988)

Figure 10.2: Prediction Errors for TD(A)

How can it be that this optimal method peformed worse than
all the TD methods for A < 17 The answer is that the Widrow-
Hoff procedure only minimizes error on the training set; it does
not necessarily minimize error for future experience. [Later] we
prove that in fact it is linear TD(0) that converges to what
can be considered the optimal estimates for matching future
experience—those consistent with the maximume-likelihood es-
timate of the underlying Markov process.”

10.5 Theoretical Results

It is possible to analyze the performance of the linear-prediction TD(A)
methods on Markov processes. We state some theorems here without proof.

Theorem 10.1 (Sutton, page 24, 1988) For any absorbing Markouv chain,

and for any linearly independent set of observation vectors {X;} for the
non-terminal states, there exists an € > 0 such that for all positive ¢ < ¢
and for any initial weight vector, the predictions of linear TD(0) (with

Introduction to Machine Learning ©1996 Nils J. Nilsson. All rights reserved.



10.6. INTRA-SEQUENCE WEIGHT UPDATING 153

weight updates after each sequence) converge in expected value to the opti-
mal (mazimum likelihood) predictions of the true process.

Even though the expected values of the predictions converge, the pre-
dictions themselves do not converge but vary around their expected values
depending on their most recent experience. Sutton conjectures that if ¢ is
made to approach 0 as training progresses, the variance of the predictions
will approach 0 also.

Dayan [Dayan, 1992] has extended the result of Theorem 9.1 to TD())
for arbitrary A between 0 and 1. (Also see [Dayan & Sejnowski, 1994].)

10.6 Intra-Sequence Weight Updating

Our standard weight updating rule for TD(A) methods is:

W%W-l-ic(fﬁl fi) ZAZ ") af’“

i=1

where the weight update occurs after an entire sequence is observed. To
make the method truly incremental (in analogy with weight updating rules
for neural nets), it would be desirable to change the weight vector after
every pattern presentation. The obvious extension is:

3
Wb — W, +c(fisi — ) ZAZ 0 ol

where f;y1 18 computed before making the weight change; that is, fiy1 =
F(Xit1, W;). But that would make f; = f(X;, W;_1), and such a rule
would make the prediction difference, namely (f;+1 — f;), sensitive both to
changes in X and changes in W and could lead to instabilities. Instead, we
modify the rule so that, for every pair of predictions, fi11 = f(Xiy1, Wi)
and f; = f(X;, W;). This version of the rule has been used in practice with
excellent results.

For TD(0) and linear predictors, the rule is:

Wiy =W+ c(fir1 — )Xy
The rule is implemented as follows:

Introduction to Machine Learning ©1996 Nils J. Nilsson. All rights reserved.



154 CHAPTER 10. TEMPORAL-DIFFERENCE LEARNING

1. Initialize the weight vector, W, arbitrarily.
2. Fori=1,...,m, do:

(a) fie— X, oW
(We compute f; anew each time through rather than use the
value of f;11 the previous time through.)

(b) fiy1 — Xip1 o W

(c) ditr < fiy1 = fi

(d) W W+e di+1Xi
(If f; were computed again with this changed weight vector, its
value would be closer to f;;1 as desired.)

The linear TD(0) method can be regarded as a technique for training a
very simple network consisting of a single dot product unit (and no thresh-
old or sigmoid function). TD methods can also be used in combination
with backpropagation to train neural networks. For TD(0) we change the
network weights according to the expression:

afi
Wit1 = Wi+e(fiz1 — fz’)@—‘j;v

The only change that must be made to the standard backpropagation
weight-changing rule is that the difference term between the desired output
and the output of the unit in the final (k-th) layer, namely (d — f()),
must be replaced by a difference term between successive outputs, (fiy1 —
fi). This change has a direct effect only on the expression for §() which
becomes:

s — Q(f/(k) _ f(k))f(k)(l _ f(k))

where f/%) and f*) are two successive outputs of the network.

The weight changing rule for the i-th weight vector in the j-th layer of
weights has the same form as before, namely:

Wz(j) - Wz(j) +C§£j)x(j—1)

where the (52(‘7) are given recursively by:
mjt1
s — f»(j)(l _ f(])) Z 5l(j+1)w(j+1)

il
=1

Introduction to Machine Learning ©1996 Nils J. Nilsson. All rights reserved.



10.7. AN EXAMPLE APPLICATION: TD-GAMMON 155

and wl({-l_l) is the I-th component of the i-th weight vector in the (5 + 1)-th
layer of weights. Of course, here also it is assumed that f/(*) and f*) are
computed using the same weights and then the weights are changed. In the
next section we shall see an interesting example of this application of TD
learning.

10.7 An Example Application: TD-gammon

A program called TD-gammon [Tesauro, 1992] learns to play backgammon
by training a neural network via temporal-difference methods. The struc-
ture of the neural net, and its coding is as shown in Fig. 10.3. The network
is trained to minimize the error between actual payoff and estimated payoff,
where the actual payoff is defined to be dy = p1 +2p2 —p3 — 2pa4, and the p;
are the actual probabilities of the various outcomes as defined in the figure.

TD-gammon learned by using the network to select that move that
results in the best predicted payoff. That is, at any stage of the game some
finite set of moves is possible and these lead to the set, {X}, of new board
positions. Each member of this set is evaluated by the network, and the
one with the largest predicted payoff is selected if it is white’s move (and
the smallest if it is black’s). The move is made, and the network weights
are adjusted to make the predicted payoff from the original position closer
to that of the resulting position.

The weight adjustment procedure combines temporal-difference (TD(A))
learning with backpropagation. If d; is the network’s estimate of the payoff
at time ¢ (before a move is made), and dy41 is the estimate at time ¢ + 1
(after a move is made), the weight adjustment rule is:

\ 0

t
AWt = C(dt+1 — dt) Z At_
k=1 aw

where W, is a vector of all weights in the network at time ¢, and ;{% is the
gradient of dj in this weight space. (For a layered, feedforward network,
such as that of TD-gammon, the weight changes for the weight vectors in
each layer can be expressed in the usual manner.)

To make the special cases clear, recall that for TD(0), the network would
be trained so that, for all £, its output, d;, for input X; tended toward its
expected output, diqq, for input X;y;,. For TD(1), the network would be
trained so that, for all ¢, its output, d;, for input X; tended toward the
expected final payoff, d;, given that input. The latter case is the same as
the Widrow-Hoff rule.

Introduction to Machine Learning ©1996 Nils J. Nilsson. All rights reserved.



To be added.

156 CHAPTER 10. TEMPORAL-DIFFERENCE LEARNING

After about 200,000 games the following results were obtained. TD-
gammon (with 40 hidden units, A = 0.7, and ¢ = 0.1) won 66.2% of 10,000
games against SUN Microsystems Gammontool and 55% of 10,000 games
against a neural network trained using expert moves. Commenting on
a later version of TD-gammon, incorporating special features as inputs,
Tesauro said: “It appears to be the strongest program ever seen by this
author.”

10.8 Bibliographical and Historical Remarks

Introduction to Machine Learning ©1996 Nils J. Nilsson. All rights reserved.



10.8. BIBLIOGRAPHICAL AND HISTORICAL REMARKS 157

estimated payoff:
d=p1+2p2—p3—2p4

2
no. of white O

oncell 1 3 O

estimated probabilities:

pq = pr(white wins)

p» = pr(white gammons)
o—-
2x24 = pr(black wins)

cells o O&)

P4 = pr(black gammons)

I
O00O0O0

— O
O
0 O
O 4 output units
no. on bar, O
off board, O
and who
moves O O
O
o up to 40 hidden units
198 inputs

hidden and output units are sigmoids
learning rate: c = 0.1; initial weights chosen
randomly between —0.5 and +0.5.

Figure 10.3: The TD-gammon Network

Introduction to Machine Learning ©1996 Nils J. Nilsson. All rights reserved.



158 CHAPTER 10. TEMPORAL-DIFFERENCE LEARNING

Introduction to Machine Learning ©1996 Nils J. Nilsson. All rights reserved.



