Chapter 11

Delayed-Reinforcement
Learning

11.1 The General Problem

Imagine a robot that exists in an environment in which it can sense and
act. Suppose (as an extreme case) that it has no idea about the effects
of its actions. That is, it doesn’t know how acting will change its sensory
inputs. Along with its sensory inputs are “rewards,” which it occasionally
receives. How should it choose its actions so as to maximize its rewards
over the long run? To maximize rewards, it will need to be able to predict
how actions change inputs, and in particular, how actions lead to rewards.

We formalize the problem in the following way: The robot exists in an
environment consisting of a set, S, of states. We assume that the robot’s
sensory apparatus constructs an input vector, X, from the environment,
which informs the robot about which state the environment is in. For
the moment, we will assume that the mapping from states to vectors is
one-to-one, and, in fact, will use the notation X to refer to the state of
the environment as well as to the input vector. When presented with an
input vector, the robot decides which action from a set, A, of actions to
perform. Performing the action produces an effect on the environment—
moving it to a new state. The new state results in the robot perceiving
a new input vector, and the cycle repeats. We assume a discrete time
model; the input vector at time ¢t = ¢ 1s X;, the action taken at that time
1s a;, and the expected reward, r;, received at t = ¢ depends on the action
taken and on the state, that is r; = r(X;,a;). The learner’s goal is to

159

160 CHAPTER 11. DELAYED-REINFORCEMENT LEARNING

find a policy, 7(X), that maps input vectors to actions in such a way that
maximizes rewards accumulated over time. This type of learning is called
reinforcement learning. The learner must find the policy by trial and error;
it has no initial knowledge of the effects of its actions. The situation is as
shown in Fig. 11.1.

(state)
X
Learner (octon
r'.
(reward)I
Environment -
|

Figure 11.1: Reinforcement Learning

11.2 An Example

A “grid world,” such as the one shown in Fig. 11.2 is ofEleven used to
illustrate reinforcement learning. Tmagine a robot initially in cell (2,3). The
robot receives input vector (1, z2) telling it what cell it is in; it is capable
of four actions, n, e, s, w moving the robot one cell up, right, down, or left,
respectively. It is rewarded one negative unit whenever it bumps into the
wall or into the blocked cells. For example, if the input to the robot is (1,3),
and the robot chooses action w, the next input to the robot is still (1,3)
and it receives a reward of —1. If the robot lands in the cell marked G (for
goal), it receives a reward of +10. Let’s suppose that whenever the robot
lands in the goal cell and gets its reward, it is immediately transported out
to some random cell, and the quest for reward continues.

A policy for our robot 1s a specification of what action to take for every
one of its inputs, that is, for every one of the cells in the grid. For example,

Introduction to Machine Learning ©1996 Nils J. Nilsson. All rights reserved.

11.3. TEMPORAL DISCOUNTING AND OPTIMAL POLICIES 161

P NDNW OO O

1234567
Figure 11.2: A Grid World

a component of such a policy would be “when in cell (3,1), move right.”
An optimal policy 1s a policy that maximizes long-term reward. One way
of displaying a policy for our grid-world robot is by an arrow in each cell
indicating the direction the robot should move when in that cell. In Fig.
11.3, we show an optimal policy displayed in this manner. In this chapter we
will describe methods for learning optimal policies based on reward values
received by the learner.

11.3 Temporal Discounting and Optimal Poli-
cies

In delayed reinforcement learning, one often assumes that rewards in the
distant future are not as valuable as are more immediate rewards. This
preference can be accomodated by a temporal discount factor, 0 <~ < 1.
The present value of a reward, r;, occuring ¢ time units in the future, is
taken to be y'7;. Suppose we have a policy 7(X) that maps input vectors

into actions, and let r:(X) be the reward that will be received on the i-th
time step after one begins executing policy 7 starting in state X. Then the
total reward accumulated over all time steps by policy m beginning in state
X is:

T - i?TX
V) =3y
=0

Introduction to Machine Learning ©1996 Nils J. Nilsson. All rights reserved.

162 CHAPTER 11. DELAYED-REINFORCEMENT LEARNING

>

A4

>

BN WD U~
= VY>>V ¥
o PP 0 €
~ > > A€

}
>
A
A€
A€
RY
> >
>
2 3

~ |V V€€
o |V ¥

Figure 11.3: An Optimal Policy in the Grid World

One reason for using a temporal discount factor is so that the above sum
will be finite. An optimal policy is one that maximizes V™ (X) for all inputs,

X.

In general, we want to consider the case in which the rewards, r;, are
random variables and in which the effects of actions on environmental states
are random. In Markovian environments, for example, the probability that
action a in state X; will lead to state X; is given by a transition probability
p[X;1X;,a]. Then, we will want to maximize expected future reward and
would define V™ (X) as:

Vi(X)=E

- i (X))
E T
i=0]

In either case, we call V™ (X) the value of policy = for input X.

If the action prescribed by 7 taken in state X leads to state X’ (ran-
domly according to the transition probabilities), then we can write V7 (X)
in terms of V™ (X’) as follows:

V(X)) = r[X, 7(X)] + 7 Y XX, w(X)]VT(X)
X

where (in summary):

Introduction to Machine Learning ©1996 Nils J. Nilsson. All rights reserved.

11.3. TEMPORAL DISCOUNTING AND OPTIMAL POLICIES 163

~ = the discount factor,
V™(X) = the value of state X under policy ,

r[X, 7(X)] = the expected immediate reward received when we execute
the action prescribed by 7 in state X, and

p[X'|X, 7(X)] = the probability that the environment transitions to
state X’ when we execute the action prescribed by 7 in state X.

In other words, the value of state X under policy m is the expected value
of the immediate reward received when executing the action recommended
by 7 plus the average value (under) of all of the states accessible from X.

For an optimal policy, 7* (and no others!), we have the famous “opti-
mality equation:”

VX)) = max | (X, a) +v > p[X/[X, V™ (X)
X/

The theory of dynamic programming (DP) [Bellman, 1957, Ross, 1983]
assures us that there 1s at least one optimal policy, n*, that satisfies
this equation. DP also provides methods for calculating VT (X) and at
least one 7*, assuming that we know the average rewards and the tran-
sition probabilities. If we knew the transition probabilities, the average
rewards, and V”*(X) for all X and a, then it would be easy to imple-
ment an optimal policy. We would simply select that a that maximizes

r(X,a) +v > x p[X'|X, a]V™ (X’). That is,

77(X) = argmax | (X, a) + 7 Zp[X'|X, alV™ (X
X

But, of course, we are assuming that we do not know these average rewards
nor the transition probabilities, so we have to find a method that effectively
learns them.

If we had a model of actions, that is, if we knew for every state, X, and
action a, which state, X’ resulted, then we could use a method called value
teration to find an optimal policy. Value iteration works as follows: We
begin by assigning, randomly, an estimated value V(X) to every state, X.
On the é-th step of the process, suppose we are at state X; (that is, our input
on the i-th step is X;), and that the estimated value of state X; on the i-th
step 1s ‘Z(XZ) We then select that action a that maximizes the estimated
value of the predicted subsequent state. Suppose this subsequent state

Introduction to Machine Learning ©1996 Nils J. Nilsson. All rights reserved.

Discuss
synchronous
dynamic
programming,
asynchronous
dynamic
programming,
and policy
iteration.

164 CHAPTER 11. DELAYED-REINFORCEMENT LEARNING

having the highest estimated value is X}. Then we update the estimated
value, V;(X;), of state X; as follows:

Vi(X) = (L= e)Vie (X) + e |[ry + 4Vim1 (X))
if X =X,
= i—l(X)

otherwise.

We see that this adjustment moves the value of ‘Z(XZ) an increment
(depending on ¢;) closer to |r; +~Vi(X})|. Assuming that V;(X}) is a good
estimate for V;(X}), then this adjustment helps to make the two estimates
more consistent. Providing that 0 < ¢; < 1 and that we visit each state

infinitely often, this process of value iteration will converge to the optimal
values.

11.4 (-Learning

Watkins [Watkins, 1989] has proposed a technique that he calls incremental
dynamic programming. Let a;m stand for the policy that chooses action a
once, and thereafter chooses actions according to policy w. We define:

Q" (X, a) =V¥T(X)
Then the optimal value from state X is given by:
v (X) = max Q" (X, a)

This equation holds only for an optimal policy, 7*. The optimal policy is
given by:

7 (X) = argmax Q™ (X, a)

Note that if an action a makes Q7 (X, a) larger than V7 (X), then we can
improve 7 by changing it so that n(X) = a. Making such a change is the
basis for a powerful learning rule that we shall describe shortly.

Introduction to Machine Learning ©1996 Nils J. Nilsson. All rights reserved.

11.4. Q-LEARNING 165

Suppose action a in state X leads to state X’. Then using the definitions
of @) and V| it is easy to show that:

Q" (X, a) = r(X,a) + yE[V"(X)]

where r(X, a) is the average value of the immediate reward received when
we execute action a in state X. For an optimal policy (and no others), we
have another version of the optimality equation in terms of () values:

Q”* (X,a) = max {T(X, a)+yFE {Q”* (X', a)H

for all actions, a, and states, X. Now, if we had the optimal @ values (for all
a and X), then we could implement an optimal policy simply by selecting
that action that maximized r(X, a) + 'yE[Q”* (x/, a)].

That is,

7 (X) = arg max {T(X, a)+yFE {Q”* (X', a)H

Watkins’ proposal amounts to a TD(0) method of learning the @ values.
We quote (with minor notational changes) from [Watkins & Dayan, 1992,
page 281]:

“In @-Learning, the agent’s experience consists of a sequence of
distinct stages or episodes. In the -th episode, the agent:

e observes its current state X,

e selects [using the method described below] and performs
an action a;,

e observes the subsequent state X/,
e receives an immediate reward r;, and

e adjusts its ();_1 values using a learning factor ¢;, according
to:

Qi(X,a) = (1 —¢:)Qi-1(X, a) + e;[ri +yVie1(X})]
if X = X; and a = ay,
= Qi—l(Xa Cl)
otherwise,

Introduction to Machine Learning ©1996 Nils J. Nilsson. All rights reserved.

166 CHAPTER 11. DELAYED-REINFORCEMENT LEARNING

where
Viiy(X') = max [Qi—1(X',0)]

is the best the agent thinks it can do from state X'.
The initial @ values, Qo(X,a), for all states and actions
are assumed given.”

Using the current @ values, Q;(X, a), the agent always selects that ac-
tion that maximizes Q;(X, a). Note that only the @ value corresponding
to the state just exited and the action just taken is adjusted. And that
Q) value is adjusted so that it is closer (by an amount determined by ¢;)
to the sum of the immediate reward plus the discounted maximum (over
all actions) of the @ values of the state just entered. If we imagine the
@) values to be predictions of ultimate (infinite horizon) total reward, then
the learning procedure described above is exactly a TD(0) method of learn-
ing how to predict these @ values. @) learning strengthens the usual TD
methods, however, because TD (applied to reinforcement problems using
value iteration) requires a one-step lookahead, using a model of the effects
of actions, whereas @) learning does not.

A convenient notation (proposed by [Schwartz, 1993]) for representing
the change in @ value is:

Q(X,a) L r+yV(X')

where Q(X, a) is the new @ value for input X and action a, r is the imme-
diate reward when action a is taken in response to input X, V(X’) is the
maximum (over all actions) of the @) value of the state next reached when
action a 1s taken from state X, and 3 is the fraction of the way toward
which the new @ value, Q(X, a), is adjusted to equal r + vV (X').

Watkins and Dayan [Watkins & Dayan, 1992] prove that, under certain
conditions, the @) values computed by this learning procedure converge to
optimal ones (that is, to ones on which an optimal policy can be based).

We define n*(X, a) as the index (episode number) of the i-th time that
action a is tried in state X. Then, we have:

Theorem 11.1 (Watkins and Dayan) For Markov problems with states
{X} and actions {a}, and given bounded rewards |r,| < R, learning rates

0<¢c, <1, and

Introduction to Machine Learning ©1996 Nils J. Nilsson. All rights reserved.

11.5. DISCUSSION, LIMITATIONS, AND EXTENSIONS OF Q-LEARNING167

ican,a) = %0 i [an<x,a)r < o0

i=0 1=0

for all X and a, then
Qn(X,a) = Qr(X,a) as n = oo, for all X and a, with probability 1, where
Qr (X, a) corresponds to the Q) values of an optimal policy.

Again, we quote from [Watkins & Dayan, 1992, page 281]:

“The most important condition implicit in the convergence the-
orem ... 1s that the sequence of episodes that forms the basis
of learning must include an infinite number of episodes for each
starting state and action. This may be considered a strong con-
dition on the way states and actions are selected—however, un-
der the stochastic conditions of the theorem, no method could be
guaranteed to find an optimal policy under weaker conditions.
Note, however, that the episodes need not form a continuous
sequence—that is the X’ of one episode need not be the X of
the next episode.”

The relationships among @) learning, dynamic programming, and control
are very well described in [Barto, Bradtke, & Singh, 1994]. @ learning is
best thought of as a stochastic approximation method for calculating the
@ values. Although the definition of the optimal ¢ values for any state
depends recursively on expected values of the @) values for subsequent states
(and on the expected values of rewards), no expected values are explicitly
computed by the procedure. Instead, these values are approximated by
iterative sampling using the actual stochastic mechanism that produces
successor states.

11.5 Discussion, Limitations, and Exten-
sions of Q-Learning

11.5.1 An Illustrative Example

The Q-learning procedure requires that we maintain a table of Q(X,a)
values for all state-action pairs. In the grid world that we described earlier,
such a table would not be excessively large. We might start with random
entries in the table; a portion of such an intial table might be as follows:

Introduction to Machine Learning ©1996 Nils J. Nilsson. All rights reserved.

168 CHAPTER 11. DELAYED-REINFORCEMENT LEARNING

| X | a | Q(X,a) | (X, a) |
(2,3) | w 7 0
2.3) | n 1 0
(2,3) | e 3 0
(2,3) | s 6 0
13 [w]| 4 1
(1,3) | n 5 0
(13) [« 7 0
13) | s 1 0

Suppose the robot is in cell (2,3). The maximum @ value occurs for a = w,
so the robot moves west to cell (1,3)—receiving no immediate reward. The
maximum @ value in cell (1,3) is 5, and the learning mechanism attempts
to make the value of Q((2,3),w) closer to the discounted value of 5 plus
the immediate reward (which was 0 in this case). With a learning rate
parameter ¢ = 0.5 and v = 0.9, the @ value of Q((2,3), w) is adjusted from
7 to 5.75. No other changes are made to the table at this episode. The
reader might try this learning procedure on the grid world with a simple
computer program. Notice that an optimal policy might not be discovered
if some cells are not visited nor some actions not tried frequently enough.

The learning problem faced by the agent is to associate specific actions
with specific input patterns. @ learning gradually reinforces those actions
that contribute to positive rewards by increasing the associated @) values.
Typically, as in this example, rewards occur somewhat after the actions
that lead to them—hence the phrase delayed-reinforcement learning. One
can imagine that better and better approximations to the optimal @) values
gradually propagate back from states producing rewards toward all of the
other states that the agent frequently visits. With random @ values to
begin, the agent’s actions amount to a random walk through its space of
states. Only when this random walk happens to stumble into rewarding
states does) learning begin to produce @) values that are useful, and, even
then, the @ values have to work their way outward from these rewarding
states. The general problem of associating rewards with state-action pairs
1s called the temporal credit assignment problem—how should credit for a
reward be apportioned to the actions leading up to 1t7) learning is, to date,
the most successful technique for temporal credit assignment, although a
related method, called the bucket brigade algorithm, has been proposed by
[Holland, 1986].

Learning problems similar to that faced by the agent in our grid world

Introduction to Machine Learning ©1996 Nils J. Nilsson. All rights reserved.

11.5. DISCUSSION, LIMITATIONS, AND EXTENSIONS OF Q-LEARNING169

have been thoroughly studied by Sutton who has proposed an architecture,
called DYNA, for solving them [Sutton, 1990]. DYNA combines reinforce-
ment learning with planning. Sutton characterizes planning as learning
in a simulated world that models the world that the agent inhabits. The
agent’s model of the world is obtained by @ learning in its actual world,
and planning is accomplished by @ learning in its model of the world.

We should note that the learning problem faced by our grid-world robot
could be modified to have several places in the grid that give positive re-
wards. This possibility presents an interesting way to generalize the clas-
sical notion of a “goal” in Al planning systems—even in those that do no
learning. Instead of representing a goal as a condition to be achieved, we
represent a “goal structure” as a set of rewards to be given for achiev-
ing various conditions. Then, the generalized “goal” becomes maximizing
discounted future reward instead of simply achieving some particular con-
dition. This generalization can be made to encompass so-called goals of
maintenance and goals of avoidance. The example presented above in-
cluded avoiding bumping into the grid-world boundary. A goal of mainte-
nance, of a particular state, could be expressed in terms of a reward that
was earned whenever the agent was in that state and performed an action
that transitioned back to that state in one step.

11.5.2 Using Random Actions

When the next pattern presentation in a sequence of patterns is the one
caused by the agent’s own action in response to the last pattern, we have
what is called an on-line learning method. In Watkins and Dayan’s ter-
minology, in on-line learning the episodes form a continous sequence. As
already mentioned, the convergence theorem for () learning does not require
on-line learning; indeed, special precautions must be taken to ensure that
on-line learning meets the conditions of the theorem. If on-line learning
discovers some good paths to rewards, the agent may fixate on these and
never discover a policy that leads to a possibly greater long-term reward.
In reinforcement learning phraseology, this problem is referred to as the
problem of exploitation (of already learned behavior) versus ezploration (of
possibly better behavior).

One way to force exploration is to perform occasional random actions
(instead of that single action prescribed by the current @ values). TFor
example, in the grid-world problem, one could imagine selecting an action
randomly according to a probability distribution over the actions (n,e, s,
and w). This distribution, in turn, could depend on the @ values. For
example, we might first find that action prescribed by the @ values and

Introduction to Machine Learning ©1996 Nils J. Nilsson. All rights reserved.

170 CHAPTER 11. DELAYED-REINFORCEMENT LEARNING

then choose that action with probability 1/2, choose the two orthogonal
actions with probability 3/16 each, and choose the opposite action with
probability 1/8. This policy might be modified by “simulated annealing”
which would gradually increase the probability of the action prescribed by
the @ values more and more as time goes on. This strategy would favor
exploration at the beginning of learning and exploitation later.

Other methods, also, have been proposed for dealing with exploration,
including making unvisited states intrinsically rewarding and using an “in-
terval estimate,” which is related to the uncertainty in the estimate of a
state’s value [Kaelbling, 1993].

11.5.3 Generalizing Over Inputs

For large problems it would be impractical to maintain a table like that used
in our grid-world example. Various researchers have suggested mechanisms
for computing) values, given pattern inputs and actions. One method
that suggests itself is to use a neural network. For example, consider the
simple linear machine shown in Fig. 11.4.

trainable weights

R dot product units

Figure 11.4: A Net that Computes ¢ Values

Introduction to Machine Learning ©1996 Nils J. Nilsson. All rights reserved.

11.5. DISCUSSION, LIMITATIONS, AND EXTENSIONS OF Q-LEARNING171

Such a neural net could be used by an agent that has R actions to select
from. The @ values (as a function of the input pattern X and the action
a;) are computed as dot products of weight vectors (one for each action)
and the input vector. Weight adjustments are made according to a TD(0)
procedure to bring the @) value for the action last selected closer to the sum
of the immediate reward (if any) and the (discounted) maximum @ value
for the next input pattern.

If the optimum @ values for the problem (whatever they might be)
are more complex than those that can be computed by a linear machine, a
layered neural network might be used. Sigmoid units in the final layer would
compute () values in the range 0 to 1. The TD(0) method for updating @
values would then have to be combined with a multi-layer weight-changing
rule, such as backpropagation.

Networks of this sort are able to aggregate different input vectors into
regions for which the same action should be performed. This kind of aggre-
gation is an example of what has been called structural credit assignment.
Combining TD(A) and backpropagation is a method for dealing with both
the temporal and the structural credit assignment problems.

Interesting examples of delayed-reinforcement training of simulated and
actual robots requiring structural credit assignment have been reported by

[Lin, 1992, Mahadevan & Connell, 1992].

11.5.4 Partially Observable States

So far, we have identified the input vector, X, with the actual state of the
environment. When the input vector results from an agent’s perceptual
apparatus (as we assume it does), there is no reason to suppose that it
uniquely identifies the environmental state. Because of inevitable percep-
tual limitations, several different environmental states might give rise to
the same input vector. This phenomenon has been referred to as percep-
tual aliasing. With perceptual aliasing, we can no longer guarantee that
@ learning will result in even useful action policies, let alone optimal ones.
Several researchers have attempted to deal with this problem using a va-
riety of methods including attempting to model “hidden” states by using
internal memory [Lin, 1993]. That is, if some aspect of the environment
cannot be sensed currently, perhaps it was sensed once and can be remem-
bered by the agent. When such is the case, we no longer have a Markov
problem; that is, the next X vector, given any action, may depend on a
sequence of previous ones rather than just the immediately preceding one.
It might be possible to reinstate a Markov framework (over the X’s) if X

Introduction to Machine Learning ©1996 Nils J. Nilsson. All rights reserved.

172 CHAPTER 11. DELAYED-REINFORCEMENT LEARNING

includes not only current sensory precepts but information from the agent’s
memory.

11.5.5 Scaling Problems

Several difficulties have so far prohibited wide application of reinforcement
learning to large problems. (The TD-gammon program, mentioned in the
last chapter, is probably unique in terms of success on a high-dimensional
problem.) We have already touched on some difficulties; these and others
are summarized below with references to attempts to overcome them.

1. Exploration versus exploitation.

e use random actions
e favor states not visited recently
e separate the learning phase from the use phase

e employ a teacher to guide exploration
2. Slow time to convergence

e combine learning with prior knowledge; use estimates of () values
(rather than random values) initially

e use a hierarchy of actions; learn primitive actions first and freeze
the useful sequences into macros and then learn how to use the
macros

e employ a teacher; use graded “lessons” —starting near the re-
wards and then backing away, and use examples of good behavior

[Lin, 1992]
e use more efficient computations; e.g. do several updates per
episode [Moore & Atkeson, 1993]

3. Large state spaces

e use hand-coded features
e use neural networks

e use nearest-neighbor methods [Moore, 1990]

4. Temporal discounting problems. Using small v can make the learner
too greedy for present rewards and indifferent to the future; but using
large v slows down learning.

Introduction to Machine Learning ©1996 Nils J. Nilsson. All rights reserved.

11.6. BIBLIOGRAPHICAL AND HISTORICAL REMARKS 173

¢ use alearning method based on average rewards [Schwartz, 1993]

5. No “transfer” of learning . What is learned depends on the reward
structure; if the rewards change, learning has to start over.

e Separate the learning into two parts: learn an “action model”
which predicts how actions change states (and is constant over
all problems), and then learn the “values” of states by reinforce-
ment learning for each different set of rewards. Sometimes the
reinforcement learning part can be replaced by a “planner” that
uses the action model to produce plans to achieve goals.

Also see other articles in the special issue on reinforcement learning:

Machine Learning, 8, May, 1992.

11.6 Bibliographical and Historical Remarks

Introduction to Machine Learning ©1996 Nils J. Nilsson. All rights reserved.

To be added.

174 CHAPTER 11. DELAYED-REINFORCEMENT LEARNING

Introduction to Machine Learning ©1996 Nils J. Nilsson. All rights reserved.

