Chapter 12

Explanation-Based
Learning

12.1 Deductive Learning

In the learning methods studied so far, typically the training set does not
exhaust the version space. Using logical terminology, we could say that
the classifier’s output does not logically follow from the training set. In
this sense, these methods are inductive. In logic, a deductive system is one
whose conclusions logically follow from a set of input facts, if the system is
sound.!

To contrast inductive with deductive systems in a logical setting, sup-
pose we have a set of facts (the training set) that includes the following
formulas:

{Round(0bj1), Round(Obj2), Round(Obj3), Round(Obj4),
Ball(Obj1), Ball(Obj2), Ball(Obj3), Ball(Obj4)}

A learning system that forms the conclusion (Va)[Ball(z) O Round(z)]
is inductive. This conclusion may be useful (if there are no facts of the
form Ball(c) A = Round(c)), but it does not logically follow from the facts.
On the other hand, if we had the facts Green(Obj5) and Green(Obj5) D

ILogical reasoning systems that are not sound, for example those using non-monotonic
reasoning, themselves might produce inductive conclusions that do not logically follow
from the input facts.

175

176 CHAPTER 12. EXPLANATION-BASED LEARNING

Round(Obj5), then we could logically conclude Round(Ob45). Making this
conclusion and saving it is an instance of deductive learning—a topic we
study in this chapter.

Suppose that some logical proposition, ¢, logically follows from some
set of facts, A. Under what circumstances might we say that the process
of deducing ¢ from A results in our learning ¢7 In a sense, we implicitly
knew ¢ all along, since it was inherent in knowing A. Yet, ¢ might not be
obvious given A, and the deduction process to establish ¢ might have been
arduous. Rather than have to deduce ¢ again, we might want to save it,
perhaps along with its deduction, in case it is needed later. Shouldn’t that
process count as learning? Dietterich [Dietterich, 1990] has called this type
of learning speed-up learning.

Strictly speaking, speed-up learning does not result in a system being
able to make decisions that, in principle, could not have been made before
the learning took place. Speed-up learning simply makes it possible to make
those decisions more efficiently. But, in practice, this type of learning might
make possible certain decisions that might otherwise have been infeasible.

To take an extreme case, a chess player can be said to learn chess even
though optimal play is inherent in the rules of chess. On the surface, there
seems to be no real difference between the experience-based hypotheses
that a chess player makes about what constitutes good play and the kind
of learning we have been studying so far.

As another example, suppose we are given some theorems about geom-
etry and are asked to prove that the sum of the angles of a right triangle
i1s 180 degrees. Let us further suppose that the proof we constructed did
not depend on the given triangle being a right triangle; in that case we
can learn a more general fact. The learning technique that we are going to
study next is related to this example. It is called explanation-based learning
(EBL). EBL can be thought of as a process in which implicit knowledge is
converted into ezplicit knowledge.

In EBL, we specialize parts of a domain theory to explain a particular
example, then we generalize the explanation to produce another element of

the domain theory that will be useful on similar examples. This process is
illustrated in Fig. 12.1.

12.2 Domain Theories
Two types of information were present in the inductive methods we have
studied: the information inherent in the training samples and the infor-

mation about the domain that is implied by the “bias” (for example, the

Introduction to Machine Learning ©1996 Nils J. Nilsson. All rights reserved.

12.2. DOMAIN THEORIES 177

Domain
Theory

specialize

Prove: X is P

Complex Proof
v Process

Explanation
(Proof)

generalize

A New Domain Rule:
Things "like" X are P

Y is like X > Trivial Proof

Yis P

Figure 12.1: The EBL Process

hypothesis set from which we choose functions). The learning methods are
successful only if the hypothesis set is appropriate for the problem. Typi-
cally, the smaller the hypothesis set (that is, the more a priori information
we have about the function being sought), the less dependent we are on
information being supplied by a training set (that is, fewer samples). A
priori information about a problem can be expressed in several ways. The
methods we have studied so far restrict the hypotheses in a rather direct
way. A less direct method involves making assertions in a logical language
about the property we are trying to learn. A set of such assertions is usually
called a “domain theory.”

Suppose, for example, that we wanted to classify people according to
whether or not they were good credit risks. We might represent a person

Introduction to Machine Learning ©1996 Nils J. Nilsson. All rights reserved.

178 CHAPTER 12. EXPLANATION-BASED LEARNING

by a set of properties (income, marital status, type of employment, etc.),
assemble such data about people who are known to be good and bad credit
risks and train a classifier to make decisions. Or, we might go to a loan
officer of a bank, ask him or her what sorts of things s/he looks for in
making a decision about a loan, encode this knowledge into a set of rules
for an expert system, and then use the expert system to make decisions.
The knowledge used by the loan officer might have originated as a set
of “policies” (the domain theory), but perhaps the application of these
policies were specialized and made more efficient through experience with
the special cases of loans made in his or her district.

12.3 An Example

To make our discussion more concrete, let’s consider the following fanciful
example. We want to find a way to classify robots as “robust” or not. The
attributes that we use to represent a robot might include some that are
relevant to this decision and some that are not.

Suppose we have a domain theory of logical sentences that taken to-
gether, help to define whether or not a robot can be classified as robust.
(The same domain theory may be useful for several other purposes also,
but among other things, it describes the concept “robust.”)

In this example, let’s suppose that our domain theory includes the sen-
tences:

Fizes(u,u) D Robust(u)
(An individual that can fix itself is robust.)

Sees(x,y) A Habile(x) D Fixes(z,y)

(A habile individual that can see another entity can fix that entity.)

Robot(w) D Sees(w, w)

(All robots can see themselves.)

R2D2(x) D Habile(x)

(R2D2-class individuals are habile.)
C3PO(z) D Habile(x)

Introduction to Machine Learning ©1996 Nils J. Nilsson. All rights reserved.

12.3. AN EXAMPLE 179

(C3PO-class individuals are habile.)

(By convention, variables are assumed to be universally quantified.) We
could use theorem-proving methods operating on this domain theory to
conclude whether certain robots are robust. These methods might be com-
putationally quite expensive because extensive search may have to be per-
formed to derive a conclusion. But after having found a proof for some
particular robot, we might be able to derive some new sentence whose use
allows a much faster conclusion.

We next show how such a new rule might be derived in this example.
Suppose we are given a number of facts about Numb, such as:

Robot(Numb)

R2D2(Numb)
Age(Numb,5)
Manufacturer(Numb, GR)

We are also told that Robust(Nwumb) is true, but we nevertheless attempt
to find a proof of that assertion using these facts about Numb and the
domain theory. The facts about Numb correspond to the features that we
might use to represent Numb. In this example, not all of them are relevant
to a decision about Robust(Numb). The relevant ones are those used or
needed in proving Robust(Numb) using the domain theory. The proof tree
in Fig. 12.2 is one that a typical theorem-proving system might produce.

In the language of EBL, this proof is an exzplanation for the fact
Robust(Numb). We see from this explanation that the only facts about
Numb that were used were Robot(Numb) and R2D2(Nwumb). In fact, we
could construct the following rule from this explanation:

Robot(Numb) A R2D2(Nwmb) D Robust(Numb)

The explanation has allowed us to prune some attributes about Numb that
are irrelevant (at least for deciding Robust(Nwumb)). This type of pruning is
the first sense in which an explanation is used to generalize the classification
problem. ([DeJong & Mooney, 1986] call this aspect of explanation-based

Introduction to Machine Learning ©1996 Nils J. Nilsson. All rights reserved.

180 CHAPTER 12. EXPLANATION-BASED LEARNING

Robust(Num5)

Fixes(u, u) => Robust(u)

Fixes(Num5, Numb5)

Sees(x,y) & Habile(x)
=> Fixes(x,y)

Sees(Num5,Num5) Habile(Num5)

R2D2(x)
=> Habile(x)

Robot(w)
=> Sees(w,w)

Figure 12.2: A Proof Tree

learning feature elimination.) But the rule we extracted from the expla-
nation applies only to Numb. There might be little value in learning that
rule since it is so specific. Can it be generalized so that it can be applied
to other individuals as well?

Examination of the proof shows that the same proof structure, using
the same sentences from the domain theory, could be used independently
of whether we are talking about Numb or some other individual. We can
generalize the proof by a process that replaces constants in the tip nodes
of the proof tree with variables and works upward—using unification to
constrain the values of variables as needed to obtain a proof.

In this example, we replace Robot(Numb) by Robot(r) and R2D2(Numb)
by R2D2(s) and redo the proof—using the explanation proof as a template.
Note that we use different values for the two different occurrences of Numb
at the tip nodes. Doing so sometimes results in more general, but never-
theless valid rules. We now apply the rules used in the proof in the forward
direction, keeping track of the substitutions imposed by the most general

Introduction to Machine Learning ©1996 Nils J. Nilsson. All rights reserved.

12.3. AN EXAMPLE 181

unifiers used in the proof. (Note that we always substitute terms that are
already in the tree for variables in rules.) This process results in the gener-
alized proof tree shown in Fig. 12.3. Note that the occurrence of Sees(r, r)
as a node in the tree forces the unification of x with y in the domain rule,
Sees(x,y) A Habile(y) D Fizes(z,y). The substitutions are then applied
to the variables in the tip nodes and the root node to yield the general rule:

Robot(r) A R2D2(r) D Robust(r).

(Robust(r))

Fixes(u, u) => Robust(u)
{riu}

Fixes(r, r)

Sees(x,y) & Habile(x)
=> Fixes(x,y)

{rix, rly, ris}

Habile(s)

Sees(r,r)

{s/x} | R2D2(%)

(i} Robot(w) => Habile(x)

=> Sees(w,w)

(Robot(r)) R2D2(s)

becomes R2D2(r) after
applying {r/s}

Figure 12.3: A Generalized Proof Tree

This rule is the end result of EBL for this example. The process
by which Numb in this example was generalized to a variable is what
[DeJong & Mooney, 1986] call identity elimination (the precise identity of
Numb turned out to be irrelevant). (The generalization process described
in this example is based on that of [DeJong & Mooney, 1986] and dif-
fers from that of [Mitchell, et al., 1986]. Tt is also similar to that used

Introduction to Machine Learning ©1996 Nils J. Nilsson. All rights reserved.

182 CHAPTER 12. EXPLANATION-BASED LEARNING

in [Fikes, et al., 1972].) Clearly, under certain assumptions, this general
rule is more easily used to conclude Robust about an individual than the
original proof process was.

It is important to note that we could have derived the general rule from
the domain theory without using the example. (In the literature, doing so is
called static analysis [Etzioni, 1991].) In fact, the example told us nothing
new other than what it told us about Numb. The sole role of the example
in this instance of EBL was to provide a template for a proof to help guide
the generalization process. Basing the generalization process on examples
helps to insure that we learn rules matched to the distribution of problems
that occur.

There are a number of qualifications and elaborations about EBL that
need to be mentioned.

12.4 Evaluable Predicates

The domain theory includes a number of predicates other than the one
occuring in the formula we are trying to prove and other than those that
might customarily be used to describe an individual. One might note, for
example, that if we used Habile(Numb) to describe Num5, the proof would
have been shorter. Why didn’t we? The situation is analogous to that of
using a data base augmented by logical rules. In the latter application, the
formulas in the actual data base are “extensional,” and those in the logical
rules are “intensional.” This usage reflects the fact that the predicates in
the data base part are defined by their extension—we explicitly list all the
tuples sastisfying a relation. The logical rules serve to connect the data base
predicates with higher level abstractions that are described (if not defined)
by the rules. We typically cannot look up the truth values of formulas
containing these intensional predicates; they have to be derived using the
rules and the database.

The EBL process assumes something similar. The domain theory is use-
ful for connecting formulas that we might want to prove with those whose
truth values can be “looked up” or otherwise evaluated. In the EBL lit-
erature, such formulas satisfy what is called the operationality criterion.
Perhaps another analogy might be to neural networks. The evaluable pred-
icates correspond to the components of the input pattern vector; the pred-
icates in the domain theory correspond to the hidden units. Finding the
new rule corresponds to finding a simpler expression for the formula to be
proved in terms only of the evaluable predicates.

Introduction to Machine Learning ©1996 Nils J. Nilsson. All rights reserved.

12.5. MORE GENERAL PROOFS 183

12.5 More General Proofs

Examining the domain theory for our example reveals that an alternative
rule might have been: Robot(u) A C3PO(u) D Robust(u). Such a rule
might have resulted if we were given {C3PO(Numb), Robot(Numb), ...}
and proved Robust(Num6). After considering these two examples (Numb
and Num6), the question arises, do we want to generalize the two rules to
something like: Robot(u) A[C3PO(u)V R2D2(u)] D Robust(u)? Doing so is
an example of what [DeJong & Mooney, 1986] call structural generalization
(via disjunctive augmentation).

Adding disjunctions for every alternative proof can soon become cum-
bersome and destroy any efficiency advantage of EBL. In our example,
the efficiency might be retrieved if there were another evaluable predicate,
say, Bionic(u) such that the domain theory also contained R2D2(x) D
Bionic(z) and C3PO(x) D Bionic(x). After seeing a number of sim-
ilar examples, we might be willing to induce the formula Bionic(u) D
[C3PO(u) V R2D2(u)] in which case the rule with the disjunction could
be replaced with Robot(u) A Bionic(u) D Robust(u).

12.6 Utility of EBL

It is well known in theorem proving that the complexity of finding a proof
depends both on the number of formulas in the domain theory and on the
depth of the shortest proof. Adding a new rule decreases the depth of the
shortest proof but it also increases the number of formulas in the domain
theory. In realistic applications, the added rules will be relevant for some
tasks and not for others. Thus, i1t is unclear whether the overall utility of
the new rules will turn out to be positive. EBL methods have been applied
in several settings, usually with positive utility. (See [Minton, 1990] for an
analysis).

12.7 Applications

There have been several applications of EBL methods. We mention two
here, namely the formation of macro-operators in automatic plan generation
and learning how to control search.

Introduction to Machine Learning ©1996 Nils J. Nilsson. All rights reserved.

184 CHAPTER 12. EXPLANATION-BASED LEARNING

12.7.1 Macro-Operators in Planning

In automatic planning systems, efficiency can sometimes be enhanced by
chaining together a sequence of operators into macro-operators. We show
an example of a process for creating macro-operators based on techniques
explored by [Fikes, et al., 1972].

Referring to Fig. 12.4, consider the problem of finding a plan for a
robot in room R1 to fetch a box, Bl, by going to an adjacent room, R2,
and pushing it back to R1. The goal for the robot is IN ROOM (B1, R1),

and the facts that are true in the initial state are listed in the figure.

[R1 R2
D1
l]
- B1
b2 R3
Initial State:

INROOM(ROBOT, R1)
INROOM(B1,R2)
CONNECTS(D1,R1,R2)
CONNECTS(D1,R2,R1)

Figure 12.4: Initial State of a Robot Problem

We will construct the plan from a set of STRIPS operators that include:

GOTHRU(d, r1,72)
Preconditions: TN ROOM (ROBOT,r1),CONNECTS(d,r1,r2)
Delete list: IN ROOM (ROBOT,r1)
Add list: INROOM (ROBOT, r2)

Introduction to Machine Learning ©1996 Nils J. Nilsson. All rights reserved.

12.7. APPLICATIONS 185

PUSHTHRU(b, d, 1, 2)
Preconditions: IN ROOM (ROBOT,r1),CONNECTS(d,r1,72),INROOM (b,r1)
Delete list: IN ROOM(ROBOT, r1),INROOM (b,r1)
Add list: INROOM (ROBOT,r2), INROOM (b, 12)

A backward-reasoning STRIPS system might produce the plan shown
in Fig. 12.5. We show there the main goal and the subgoals along a solution
path. (The conditions in each subgoal that are true in the initial state are
shown underlined.) The preconditions for this plan, true in the initial state,
are:

INROOM (ROBOT, R1)

CONNECTS(D1, R1, R2)
CONNECTS(D1, R2, R1)

INROOM (B1, R2)

Saving this specific plan, valid only for the specific constants it mentions,
would not be as useful as would be saving a more general one. We first
generalize these preconditions by substituting variables for constants. We
then follow the structure of the specific plan to produce the generalized
plan shown in Fig. 12.6 that achieves INROOM (b1, r4). Note that the
generalized plan does not require pushing the box back to the place where
the robot started. The preconditions for the generalized plan are:

INROOM (ROBOT, 1)

CONNECTS(d1,r1,72)
CONNECTS(d2,r2,14)

INROOM (b, r4)

Another related technique that chains together sequences of oper-
ators to form more general ones is the chunking mechanism in Soar

[Laird, et al., 1986].

Introduction to Machine Learning ©1996 Nils J. Nilsson. All rights reserved.

186

INROOM(B1,R1)

CHAPTER 12. EXPLANATION-BASED LEARNING

PUSHTHRU(B1,d,r1,R1)

INROOM(ROBOT, r1),

CONNECTS(d, r1, R1),
INROOM(B1, r1)

{R2/r1,
D1/d}

INROOM(ROBOT, R2),

INROOM(B1. R2)

GOTHRU(d2, 13, R2)

{R1/r3, D1/d2}

INROOM(ROBOT, r3),

CONNECTS(d2, 13, R2),
CONNECTS(D1. R2. R1),

INROOM(B1. R2

INROOM(ROBOT, R1),

CONNECTS(DL, R1, R?),
CONNECTS(D1, R2, R1)
INROOM(B1, R2)

| R1 R2
D1
[=
B1
D2

PLAN:

GOTHRU(D1,R1,R2)
PUSHTHRU(B1,D1,R2,R1)

Figure 12.5: A Plan for the Robot Problem

12.7.2 Learning Search Control Knowledge

Besides their use in creating macro-operators, EBL methods can be used to
improve the efficiency of planning in another way also. In his system called
PRODIGY, Minton proposed using EBL to learn effective ways to control
search [Minton, 1988]. PRODIGY is a STRIPS-like system that solves
planning problems in the blocks-world, in a simple mobile robot world, and
in job-shop scheduling. PRODIGY has a domain theory involving both the
domain of the problem and a simple (meta) theory about planning. Its
meta theory includes statements about whether a control choice about a
subgoal to work on, an operator to apply, etc. either succeeds or fails. After
producing a plan, it analyzes its successful and its unsuccessful choices and
attempts to explain them in terms of its domain theory. Using an EBL-like
process, 1t is able to produce useful control rules such as:

Introduction to Machine Learning ©1996 Nils J. Nilsson. All rights reserved.

R3

12.8. BIBLIOGRAPHICAL AND HISTORICAL REMARKS 187

INROOM(b1,r4)

PUSHTHRU(b1,d2,r2,14)

INROOM(ROBOT, r2),
CONNECTS(d1, r1, 12),
CONNECTS(d2, r2, r4),
INROOM(b1, r4)

GOTHRU(d1, 11, 12)

INROOM(ROBOT, r1),
CONNECTS(d1, 11, 12),
CONNECTS(d2, 12, r4),
INROOM(b1, rd)

Figure 12.6: A Generalized Plan

IF (AND (CURRENT — NODE node)

(CANDIDATE — GOAL node (ON x y))
(CANDIDATE — GOAL node (ON y z)))
THEN (PREFER GOAL (ON y z) TO (ON x y))

PRODIGY keeps statistics on how often these learned rules are used, their
savings (in time to find plans), and their cost of application. Tt saves
only the rules whose utility, thus measured, is judged to be high. Minton
[Minton, 1990] has shown that there is an overall advantage of using these
rules (as against not having any rules and as against hand-coded search
control rules).

12.8 Bibliographical and Historical Remarks

Introduction to Machine Learning ©1996 Nils J. Nilsson. All rights reserved.

To be added.

188 CHAPTER 12. EXPLANATION-BASED LEARNING

Introduction to Machine Learning ©1996 Nils J. Nilsson. All rights reserved.

