Chapter 3

Using Version Spaces for
Learning

3.1 Version Spaces and Mistake Bounds

The first learning methods we present are based on the concepts of version
spaces and version graphs. These ideas are most clearly explained for the
case of Boolean function learning. Given an initial hypothesis set H (a
subset of all Boolean functions) and the values of f(X) for each X in a
training set, =, the version space 1s that subset of hypotheses, H,, that is
consistent with these values. A hypothesis, h, 1s consistent with the values
of X in = if and only if A(X) = f(X) for all X in 2. We say that the
hypotheses in H that are not consistent with the values in the training set
are ruled out by the training set.

We could imagine (conceptually only!) that we have devices for imple-
menting every function in . An incremental training procedure could then
be defined which presented each pattern in = to each of these functions and
then eliminated those functions whose values for that pattern did not agree
with its given value. At any stage of the process we would then have left
some subset of functions that are consistent with the patterns presented so
far; this subset is the version space for the patterns already presented. This
idea is illustrated in Fig. 3.1.

Consider the following procedure for classifying an arbitrary input pat-
tern, X: the pattern is put in the same class (0 or 1) as are the majority of
the outputs of the functions in the version space. During the learning pro-
cedure, if this majority is not equal to the value of the pattern presented,

29

30 CHAPTER 3. USING VERSION SPACES FOR LEARNING

A Subset, H, of all

/ Boolean Functions

Jrw L

Rule out hypotheses not
/consistent with training patterns

Hypotheses not ruled out
constitute the version space

K=1H|
Figure 3.1: Implementing the Version Space

we say a mistake is made, and we revise the version space accordingly—
eliminating all those (majority of the) functions voting incorrectly. Thus,
whenever a mistake is made, we rule out at least half of the functions re-
maining in the version space.

How many mistakes can such a procedure make? Obviously, we can
make no more than log,(|#|) mistakes, where |#| is the number of hy-
potheses in the original hypothesis set, #. (Note, though, that the number
of training patterns seen before this maximum number of mistakes is made
might be much greater.) This theoretical (and very impractical!) result
(due to [Littlestone, 1988]) is an example of a mistake bound—an impor-
tant concept in machine learning theory. It shows that there must exist a
learning procedure that makes no more mistakes than this upper bound.
Later, we’ll derive other mistake bounds.

As a special case, if our bias was to limit H to terms, we would make
no more than log,(3") = nlog,(3) = 1.585n mistakes before exhausting the

Introduction to Machine Learning ©1996 Nils J. Nilsson. All rights reserved.

3.2. VERSION GRAPHS 31

version space. This result means that if f were a term, we would make no
more than 1.585n mistakes before learning f, and otherwise we would make
no more than that number of mistakes before being able to decide that f
is not a term.

Even if we do not have sufficient training patterns to reduce the ver-
sion space to a single function, it may be that there are enough training
patterns to reduce the version space to a set of functions such that most
of them assign the same values to most of the patterns we will see hence-
forth. We could select one of the remaining functions at random and be
reasonably assured that it will generalize satisfactorily. We next discuss a
computationally more feasible method for representing the version space.

3.2 Version Graphs

Boolean functions can be ordered by generality. A Boolean function, fi, 1s
more general than a function, fa, (and fa is more specific than fi), if fy
has value 1 for all of the arguments for which f; has value 1, and f1 # f.
For example, x3 is more general than zsx3 but is not more general than
T3+ xo.

We can form a graph with the hypotheses, {h;}, in the version space
as nodes. A node in the graph, h;, has an arc directed to node, h;, if and
only if h; is more general than h;. We call such a graph a version graph.
In Fig. 3.2, we show an example of a version graph over a 3-dimensional
input space for hypotheses restricted to terms (with none of them yet ruled
out).

That function, denoted here by “1,” which has value 1 for all inputs,
corresponds to the node at the top of the graph. (It is more general than
any other term.) Similarly, the function “0,” is at the bottom of the graph.
Just below “1,” is a row of nodes corresponding to all terms having just
one literal, and just below them is a row of nodes corresponding to terms
having two literals, and so on. There are 3* = 27 functions altogether (the
function “0,” included in the graph, is technically not a term). To make
our portrayal of the graph less cluttered only some of the arcs are shown;
each node in the actual graph has an arc directed to all of the nodes above
it that are more general.

We use this same example to show how the version graph changes as
we consider a set of labeled samples in a training set, =. Suppose we
first consider the training pattern (1, 0, 1) with value 0. Some of the
functions in the version graph of Fig. 3.2 are inconsistent with this training
pattern. These ruled out nodes are no longer in the version graph and are

Introduction to Machine Learning ©1996 Nils J. Nilsson. All rights reserved.

32 CHAPTER 3. USING VERSION SPACES FOR LEARNING

Version Graph for Terms

(none yet ruled out) X2

0

(for simplicity, only some arcs in the graph are shown)

Figure 3.2: A Version Graph for Terms

shown shaded in Fig. 3.3. We also show there the three-dimensional cube
representation in which the vertex (1, 0, 1) has value 0.

In a version graph, there are always a set of hypotheses that are max-
imally general and a set of hypotheses that are maximally specific. These
are called the general boundary set (gbs) and the specific boundary set (sbs),
respectively. In Fig. 3.4, we have the version graph as it exists after learn-
ing that (1,0,1) has value 0 and (1, 0, 0) has value 1. The gbs and sbs are
shown.

Boundary sets are important because they provide an alternative to
representing the entire version space explicitly, which would be impractical.
Given only the boundary sets, it is possible to determine whether or not
any hypothesis (in the prescribed class of Boolean functions we are using)

Introduction to Machine Learning ©1996 Nils J. Nilsson. All rights reserved.

3.2. VERSION GRAPHS 33

1,0, 1 has
value 0

X2

New Version Graph \

(only some arcs in the graph are shown)

Figure 3.3: The Version Graph Upon Seeing (1, 0, 1)

1s a member or not of the version space. This determination is possible
because of the fact that any member of the version space (that is not a
member of one of the boundary sets) is more specific than some member
of the general boundary set and is more general than some member of the
specific boundary set.

If we limit our Boolean functions that can be in the version space to
terms, it is a simple matter to determine maximally general and maximally
specific functions (assuming that there is some term that is in the version
space). A maximally specific one corresponds to a subface of minimal
dimension that contains all the members of the training set labelled by a 1
and no members labelled by a 0. A maximally general one corresponds to a
subface of mazimal dimension that contains all the members of the training

Introduction to Machine Learning ©1996 Nils J. Nilsson. All rights reserved.

34 CHAPTER 3. USING VERSION SPACES FOR LEARNING

X3
1,0, 1 has
value 0
1,0, 0 has X2
value 1
1 X1
more specific than gbs, O general boundary set

more general than shs

OOOOOOOOO
X1X2

(@) (@) (@) o @)

<~ specific boundary set (sbs)

@
0
Figure 3.4: The Version Graph Upon Seeing (1, 0, 1) and (1, 0, 0)

set labelled by a 1 and no members labelled by a 0. Looking at Fig. 3.4,
we see that the subface of minimal dimension that contains (1, 0, 0) but
does not contain (1, 0, 1) is just the vertex (1, 0, 0) itself—corresponding
to the function z1Z3 T3. The subface of maximal dimension that contains
(1, 0, 0) but does not contain (1, 0, 1) is the bottom face of the cube—
corresponding to the function 3. In Figs. 3.2 through 3.4 the sbs is always
singular. Version spaces for terms always have singular specific boundary
sets. Asseen in Fig. 3.3, however, the ghs of a version space for terms need
not be singular.

3.3 Learning as Search of a Version Space

[To be written. Relate to term learning algorithm presented in Chapter
Two. Also discuss best-first search methods. See Pat Langley’s example

Introduction to Machine Learning ©1996 Nils J. Nilsson. All rights reserved.

3.4. THE CANDIDATE ELIMINATION METHOD 35

using “pseudo-cells” of how to generate and eliminate hypotheses.]

Selecting a hypothesis from the version space can be thought of as a
search problem. One can start with a very general function and special-
ize it through various specialization operators until one finds a function
that is consistent (or adequately so) with a set of training patterns. Such
procedures are usually called top-down methods. Or, one can start with
a very special function and generalize it—resulting in bottom-up methods.
We shall see instances of both styles of learning in this book.

3.4 The Candidate Elimination Method

The candidate elimination method, is an incremental method for computing
the boundary sets. Quoting from [Hirsh, 1994, page 6]:

“The candidate-elimination algorithm manipulates the boundary-
set representation of a version space to create boundary sets that
represent a new version space consistent with all the previous
instances plus the new one. For a positive exmple the algo-
rithm generalizes the elements of the [sbs] as little as possible
so that they cover the new instance yet remain consistent with
past data, and removes those elements of the [ghs] that do not
cover the new instance. For a negative instance the algorithm
specializes elements of the [ghs] so that they no longer cover
the new instance yet remain consistent with past data, and re-
moves from the [sbs] those elements that mistakenly cover the
new, negative instance.”

The method wuses the following definitions (adapted from
[Genesereth & Nilsson, 1987]):

e a hypothesis is called sufficient if and only if it has value 1 for all
training samples labeled by a 1,

e a hypothesis is called necessary if and only if it has value 0 for all
training samples labeled by a 0.

Here is how to think about these definitions: A hypothesis implements a
sufficient condition that a training sample has value 1 if the hypothesis has
value 1 for all of the positive instances; a hypothesis implements a necessary
condition that a training sample has value 1 if the hypothesis has value 0 for
all of the negative instances. A hypothesis is consistent with the training

Introduction to Machine Learning ©1996 Nils J. Nilsson. All rights reserved.

Compare this
view of
top-down
versus
bottom-up
with the
divide-and-
conguer and
the covering
(or AQ)
methods of
decision-tree
induction.

36 CHAPTER 3. USING VERSION SPACES FOR LEARNING

set (and thus is in the version space) if and only if it is both sufficient and
necessary.

We start (before receiving any members of the training set) with the
function “0” as the singleton element of the specific boundary set and with
the function “1” as the singleton element of the general boundary set. Upon
receiving a new labeled input vector, the boundary sets are changed as
follows:

1. If the new vector is labelled with a 1:

The new general boundary set is obtained from the previous one by
excluding any elements in it that are not sufficient. (That is, we
exclude any elements that have value 0 for the new vector.)

The new specific boundary set 1s obtained from the previous one by
replacing each element, h;, in 1t by all of its least generalizations.

The hypothesis h, is a least generalization of h if and only if: a) h is
more specific than hy, b) hy is sufficient, ¢) no function (including k)
that is more specific than h, is sufficient, and d) hg is more specific
than some member of the new general boundary set. It might be that
hg = h. Also, least generalizations of two different functions in the
specific boundary set may be identical.

2. If the new vector 1s labelled with a 0:

The new specific boundary set 1s obtained from the previous one by
excluding any elements in it that are not necessary. (That is, we
exclude any elements that have value 1 for the new vector.)

The new general boundary set is obtained from the previous one by
replacing each element, h;, in it by all of its least specializations.

The hypothesis h; is a least specialization of h if and only if: a) & is
more general than hg, b) h; is necessary, c) no function (including k)
that is more general than h, is necessary, and d) h; is more general
than some member of the new specific boundary set. Again, it might
be that hs = h, and least specializations of two different functions in
the general boundary set may be identical.

As an example, suppose we present the vectors in the following order:

vector label
(1,0, 1) 0
(1,0, 0) 1
(1,1, 1) 0
(0,0, 1) 0

Introduction to Machine Learning ©1996 Nils J. Nilsson. All rights reserved.

3.5. BIBLIOGRAPHICAL AND HISTORICAL REMARKS 37

We start with general boundary set, “1”, and specific boundary set,
“0.” After seeing the first sample, (1, 0, 1), labeled with a 0, the specific
boundary set stays at “0” (it is necessary), and we change the general
boundary set to {Z1,29,Z3}. Each of the functions, 7, x2, and T3, are
least specializations of “1” (they are necessary, “1” is not, they are more
general than “0”, and there are no functions that are more general than
they and also necessary).

Then, after seeing (1, 0, 0), labeled with a 1, the general boundary set
changes to {Z3} (because Z1 and zs are not sufficient), and the specific
boundary set is changed to {#1Z7 Tz}. This single function is a least gen-
eralization of “0” (it is sufficient, “0” is more specific than it, no function
(including “0”) that is more specific than it is sufficient, and it is more
specific than some member of the general boundary set.

When we see (1, 1, 1), labeled with a 0, we do not change the specific
boundary set because its function is still necessary. We do not change the
general boundary set either because Z3 is still necessary.

Finally, when we see (0, 0, 1), labeled with a 0, we do not change the
specific boundary set because its function is still necessary. We do not
change the general boundary set either because T3 is still necessary.

3.5 Bibliographical and Historical Remarks

The concept of version spaces and their role in learning was first investigated
by Tom Mitchell [Mitchell, 1982]. Although these ideas are not used in
practical machine learning procedures, they do provide insight into the
nature of hypothesis selection. In order to accomodate noisy data, version
spaces have been generalized by [Hirsh, 1994] to allow hypotheses that are
not necessarily consistent with the training set.

Introduction to Machine Learning ©1996 Nils J. Nilsson. All rights reserved.

Maybe I'll put
in an example
of a version
graph for
non-Boolean
functions.

More to be
added.

38 CHAPTER 3. USING VERSION SPACES FOR LEARNING

Introduction to Machine Learning ©1996 Nils J. Nilsson. All rights reserved.

