Chapter 4

Neural Networks

In chapter two we defined several important subsets of Boolean functions.
Suppose we decide to use one of these subsets as a hypothesis set for su-
pervised function learning. We next have the question of how best to im-
plement the function as a device that gives the outputs prescribed by the
function for arbitrary inputs. In this chapter we describe how networks of
non-linear elements can be used to implement various input-output func-
tions and how they can be trained using supervised learning methods.

Networks of non-linear elements, interconnected through adjustable
weights, play a prominent role in machine learning. They are called neural
networks because the non-linear elements have as their inputs a weighted
sum of the outputs of other elements—much like networks of biological
neurons do. These networks commonly use the threshold element which
we encountered in chapter two in our study of linearly separable Boolean
functions. We begin our treatment of neural nets by studying this thresh-
old element and how it can be used in the simplest of all networks, namely
ones composed of a single threshold element.

4.1 Threshold Logic Units

4.1.1 Definitions and Geometry

Linearly separable (threshold) functions are implemented in a straightfor-
ward way by summing the weighted inputs and comparing this sum to a
threshold value as shown in Fig. 4.1. This structure we call a thresh-
old logic unit (TLU). Tts output is 1 or 0 depending on whether or not

39

40 CHAPTER 4. NEURAL NETWORKS

the weighted sum of its inputs is greater than or equal to a threshold
value, #. Tt has also been called an Adaline (for adaptive linear element)
[Widrow, 1962, Widrow & Lehr, 1990], an LTU (linear threshold unit), a
perceptron, and a neuron. (Although the word “perceptron” is often used
nowadays to refer to a single TLU, Rosenblatt originally defined it as a
class of networks of threshold elements [Rosenblatt, 1958].)

threshold weight

n+l

f = thresh(Z w; x;, 0)
i=1

Figure 4.1: A Threshold Logic Unit (TLU)

The n-dimensional feature or input vector is denoted by X =
(21,...,2n). When we want to distinguish among different feature vec-
tors, we will attach subscripts, such as X;. The components of X can be
any real-valued numbers, but we often specialize to the binary numbers 0
and 1. The weights of a TLU are represented by an n-dimensional weight
vector, W = (w1, ..., wy). Its components are real-valued numbers (but we
sometimes specialize to integers). The TLU has output 1if > ;| x;w; > 6;
otherwise 1t has output 0. The weighted sum that is calculated by the
TLU can be simply represented as a vector dot product, XeW. (If the
pattern and weight vectors are thought of as “column” vectors, this dot
product is then sometimes written as X!W, where the “row” vector X! is
the transpose of X.) Often, the threshold, #, of the TLU is fixed at 0; in
that case, arbitrary thresholds are achieved by using (n + 1)-dimensional
“augmented” vectors, Y, and V, whose first n components are the same
as those of X and W, respectively. The (n + 1)-st component, #,41, of
the augmented feature vector, Y, always has value 1; the (n 4+ 1)-st compo-
nent, wp41, of the augmented weight vector, V, is set equal to the negative
of the desired threshold value. (When we want to emphasize the use of

Introduction to Machine Learning ©1996 Nils J. Nilsson. All rights reserved.

4.1. THRESHOLD LOGIC UNITS 41

augmented vectors, we’ll use the Y,V notation; however when the context
of the discussion makes it clear about what sort of vectors we are talking
about, we’ll lapse back into the more familiar X, W notation.) In the Y,V
notation, the TLU has an output of 1 if YeV > 0. Otherwise, the output
1s 0.

We can give an intuitively useful geometric description of a TLU. A
TLU divides the input space by a hyperplane as sketched in Fig. 4.2. The
hyperplane is the boundary between patterns for which XeW + w, 1 > 0
and patterns for which XeW + w,411 < 0. Thus, the equation of the
hyperplane itself is XeW 4w, 11 = 0. The unit vector that is normal to the

hyperplane isn = %, where |[W| = y/(w? + ...+ w2) is the length of the

vector W. (The normal form of the hyperplane equation is Xon—l—% =0.))

Wn41

The distance from the hyperplane to the origin is Wi and the distance

from an arbitrary point, X, to the hyperplane is % When the

distance from the hyperplane to the origin is negative (that is, when wy, 41 <
0), then the origin is on the negative side of the hyperplane (that is, the
side for which XeW + w41 < 0).

Adjusting the weight vector, W changes the orientation of the hyper-
plane; adjusting wy41 changes the position of the hyperplane (relative to
the origin). Thus, training of a TLU can be achieved by adjusting the val-
ues of the weights. In this way the hyperplane can be moved so that the
TLU implements different (linearly separable) functions of the input.

4.1.2 Special Cases of Linearly Separable Functions
Terms

Any term of size k can be implemented by a TLU with a weight from each
of those inputs corresponding to variables occurring in the term. A weight
of 4+1 is used from an input corresponding to a positive literal, and a weight
of —1 is used from an input corresponding to a negative literal. (Literals
not mentioned in the term have weights of zero—that is, no connection at
all—from their inputs.) The threshold, 6, is set equal to k, — 1/2, where
k, is the number of positive literals in the term. Such a TLU implements
a hyperplane boundary that is parallel to a subface of dimension (n — k)
of the unit hypercube. We show a three-dimensional example in Fig. 4.3.
Thus, linearly separable functions are a superset of terms.

Introduction to Machine Learning ©1996 Nils J. Nilsson. All rights reserved.

42 CHAPTER 4. NEURAL NETWORKS

Equations of hyperplane:

>0

XW+wpiq
on this side

Origin

n= —

i
Unit vector normal
to hyperplane

Figure 4.2: TLU Geometry

Clauses

The negation of a clause is a term. For example, the negation of the clause
f =21+ 22+ x3 is the term T = 71 T3 ¥3. A hyperplane can be used to
implement this term. If we “invert” the hyperplane, 1t will implement the
clause instead. Inverting a hyperplane is done by multiplying all of the TLU
weights—even w,+1—by —1. This process simply changes the orientation
of the hyperplane—Aflipping it around by 180 degrees and thus changing its
“positive side.” Therefore, linearly separable functions are also a superset
of clauses. We show an example in Fig. 4.4.

4.1.3 Error-Correction Training of a TLU

There are several procedures that have been proposed for adjusting the
weights of a TLU. We present next a family of incremental training proce-
dures with parameter c. These methods make adjustments to the weight
vector only when the TLU being trained makes an error on a training pat-
tern; they are called error-correction procedures. We use augmented feature
and weight vectors in describing them.

Introduction to Machine Learning ©1996 Nils J. Nilsson. All rights reserved.

4.1. THRESHOLD LOGIC UNITS 43

B f= X1 X2

X1

Equation of plane is:

X1 +x2-3/2=0

Figure 4.3: Implementing a Term

1. We start with a finite training set, =, of vectors, Y; , and their binary

labels.

2. Compose an infinite training sequence, X, of vectors from = and their
labels such that each member of = occurs infinitely often in X. Set
the initial weight values of an TLU to arbitrary values.

3. Repeat forever:

Present the next vector, Y;, in ¥ to the TLU and note its response.

(a) If the TLU responds correctly, make no change in the weight
vector.

(b) If Y; is supposed to produce an output of 0 and produces an
output of 1 instead, modify the weight vector as follows:

V%V—CiYi

where ¢; 1s a positive real number called the learning rate pa-
rameter (whose value is differerent in different instances of this
family of procedures and may depend on).

Note that after this adjustment the new dot product will be
(V—¢,Y;)eY; = VoY, —¢;Y;eY;, which is smaller than it was
before the weight adjustment.

Introduction to Machine Learning ©1996 Nils J. Nilsson. All rights reserved.

44 CHAPTER 4. NEURAL NETWORKS

f:xl+x2+x3

x3, T=X1XoX3

X1 Equation of plane is:
X1 +x2+x3-1/2=0

Figure 4.4: Implementing a Clause

(c) Tf Y, is supposed to produce an output of 1 and produces an
output of 0 instead, modify the weight vector as follows:

VV+gY;

In this case, the new dot product will be (V + ¢;Y;)eY; =
VoY, + ¢;Y;oY,;, which is larger than it was before the weight
adjustment.

Note that all three of these cases can be combined in the following
rule:

V—V+ Cz(dz — fz)Yz

where d; is the desired response (1 or 0) for Y; , and f; is the actual
response (1 or 0) for Y;.]

Note also that because the weight vector V now includes the w41
threshold component, the threshold of the TLU is also changed by
these adjustments.

We identify two versions of this procedure:

1) In the fired-increment procedure, the learning rate parameter, ¢;, is
the same fixed, positive constant for all 2. Depending on the value of this
constant, the weight adjustment may or may not correct the response to
an erroneously classified feature vector.

Introduction to Machine Learning ©1996 Nils J. Nilsson. All rights reserved.

4.1. THRESHOLD LOGIC UNITS 45

2) In the fractional-correction procedure, the parameter ¢; is set to
.o

/\W, where V is the weight vector before it 1s changed. Note that
't

if A = 0, no correction takes place at all. If A = 1, the correction is just

sufficient to make Y;oV =0. If A > 1, the error will be corrected.

It can be proved that if there is some weight vector, V, that produces a
correct output for all of the feature vectors in =, then after a finite number
of feature vector presentations, the fixed-increment procedure will find such
a weight vector and thus make no more weight changes. The same result
holds for the fractional-correction procedure if 1 < A < 2.

For additional background, proofs, and examples of error-correction pro-
cedures, see [Nilsson, 1990].

4.1.4 Weight Space

We can give an intuitive idea about how these procedures work by con-
sidering what happens to the augmented weight vector in “weight space”
as corrections are made. We use augmented vectors in our discussion here
so that the threshold function compares the dot product, Y;eV against
a threshold of 0. A particular weight vector, V, then corresponds to a
point in (n 4+ 1)-dimensional weight space. Now, for any pattern vector,
Y, consider the locus of all points in weight space corresponding to weight
vectors yielding Y;oV = 0. This locus is a hyperplane passing through the
origin of the (n+ 1)-dimensional space. Each pattern vector will have such
a hyperplane corresponding to it. Weight points in one of the half-spaces
defined by this hyperplane will cause the corresponding pattern to yield a
dot product less than 0, and weight points in the other half-space will cause
the corresponding pattern to yield a dot product greater than 0.

We show a schematic representation of such a weight space in Fig. 4.5.
There are four pattern hyperplanes, 1, 2, 3, 4 | corresponding to patterns
Y., Ys, Y3, Yy, respectively, and we indicate by an arrow the half-space
for each in which weight vectors give dot products greater than 0. Suppose
we wanted weight values that would give positive responses for patterns Yy,
Y3, and Y4, and a negative response for pattern Yo. The weight point, V,
indicated in the figure is one such set of weight values.

The question of whether or not there exists a weight vector that gives
desired responses for a given set of patterns can be given a geometric inter-
pretation. To do so involves reversing the “polarity” of those hyperplanes
corresponding to patterns for which a negative response is desired. If we
do that for our example above, we get the weight space diagram shown in

Fig. 4.6.

Introduction to Machine Learning ©1996 Nils J. Nilsson. All rights reserved.

See

[Maass & Turdn, 1994]
for a

hyperplane-

finding

procedure that

makes no more

than

O(n?logn)

mistakes.

46 CHAPTER 4. NEURAL NETWORKS

Figure 4.5: Weight Space

If a weight vector exists that correctly classifies a set of patterns, then
the half-spaces defined by the correct responses for these patterns will have
a non-empty intersection, called the solution region. The solution region
will be a “hyper-wedge” region whose vertex 1s at the origin of weight space
and whose cross-section increases with increasing distance from the origin.
This region is shown shaded in Fig. 4.6. (The boxed numbers show, for
later purposes, the number of errors made by weight vectors in each of the
regions.) The fixed-increment error-correction procedure changes a weight
vector by moving it normal to any pattern hyperplane for which that weight
vector gives an incorrect response. Suppose in our example that we present
the patterns in the sequence Y1, Ys, Y3, Y4, and start the process with a
weight point V1, as shown in Fig. 4.7. Starting at V1, we see that it gives
an incorrect response for pattern Yy, so we move V; to V5 in a direction
normal to plane 1. (That is what adding Y; to V; does.) Y2 gives an
incorrect response for pattern Yo, and so on. Ultimately, the responses
are only incorrect for planes bounding the solution region. Some of the
subsequent corrections may overshoot the solution region, but eventually
we work our way out far enough in the solution region that corrections (for
a fixed increment size) take us within it. The proofs for convergence of the
fixed-increment rule make this intuitive argument precise.

4.1.5 The Widrow-Hoff Procedure

The Widrow-Hoff procedure (also called the LMS or the delta procedure)
attempts to find weights that minimize a squared-error function between the

Introduction to Machine Learning ©1996 Nils J. Nilsson. All rights reserved.

4.1. THRESHOLD LOGIC UNITS 47

Figure 4.6: Solution Region in Weight Space

pattern labels and the dot product computed by a TLU. For this purpose,
the pattern labels are assumed to be either +1 or —1 (instead of 1 or 0).
The squared error for a pattern, X;, with label d; (for desired output) is:

n+1

g = (dz — Z l‘ijw]’)z
j=1

where x;; is the j-th component of X;. The total squared error (over all
patterns in a training set, =, containing m patterns) is then:

m n+1

e= (di— Z zijw;)’

i=1

We want to choose the weights w; to minimize this squared error. One
way to find such a set of weights is to start with an arbitrary weight vector
and move it along the negative gradient of ¢ as a function of the weights.
Since ¢ is quadratic in the w;, we know that it has a global minimum, and
thus this steepest descent procedure is guaranteed to find the minimum.
Each component of the gradient is the partial derivative of ¢ with respect
to one of the weights. One problem with taking the partial derivative of ¢
is that € depends on all the input vectors in =. Often, it is preferable to use
an incremental procedure in which we try the TLU on just one element, X;,

Introduction to Machine Learning ©1996 Nils J. Nilsson. All rights reserved.

48 CHAPTER 4. NEURAL NETWORKS

Figure 4.7: Moving Into the Solution Region

of = at a time, compute the gradient of the single-pattern squared error,
¢;, make the appropriate adjustment to the weights, and then try another
member of Z. Of course, the results of the incremental version can only
approximate those of the batch one, but the approximation is usually quite
effective. We will be describing the incremental version here.

The j-th component of the gradient of the single-pattern error is:

1
362' s

P, = 2di - Y wijwj)i
J j=1

An adjustment in the direction of the negative gradient would then change
each weight as follows:

wj +— wi + ¢;(di — fi)wij
where f; = Z;L;l z;;w;, and ¢; governs the size of the adjustment. The en-
tire weight vector (in augmented, or V| notation) is thus adjusted according
to the following rule:

V—V+ei(di - fi)Y;

where, as before, Y; 1s the ¢-th augmented pattern vector.

Introduction to Machine Learning ©1996 Nils J. Nilsson. All rights reserved.

4.1. THRESHOLD LOGIC UNITS 49

The Widrow-Hoff procedure makes adjustments to the weight vector
whenever the dot product itself, Y,oV, does not equal the specified desired
target value, d; (which is either 1 or —1). The learning-rate factor, ¢;,
might decrease with time toward 0 to achieve asymptotic convergence. The
Widrow-Hoff formula for changing the weight vector has the same form as
the standard fixed-increment error-correction formula. The only difference
is that f; is the thresholded response of the TLU in the error-correction
case while it is the dot product itself for the Widrow-Hoff procedure.

Finding weight values that give the desired dot products corresponds
to solving a set of linear equalities, and the Widrow-Hoff procedure can
be interpreted as a descent procedure that attempts to minimize the
mean-squared-error between the actual and desired values of the dot
product. (For more on Widrow-Hoff and other related procedures, see

[Duda & Hart, 1973, pp. 151ff].)

4.1.6 Training a TLU on Non-Linearly-Separable Train-

ing Sets

When the training set is not linearly separable (perhaps because of noise
or perhaps inherently), it may still be desired to find a “best” separating
hyperplane. Typically, the error-correction procedures will not do well on
non-linearly-separable training sets because they will continue to attempt
to correct inevitable errors, and the hyperplane will never settle into an
acceptable place.

Several methods have been proposed to deal with this case. First, we
might use the Widrow-Hoff procedure, which (although it will not converge
to zero error on non-linearly separable problems) will give us a weight vec-
tor that minimizes the mean-squared-error. A mean-squared-error criterion
often gives unsatisfactory results, however, because it prefers many small
errors to a few large ones. As an alternative, error correction with a con-
tinuous decrease toward zero of the value of the learning rate constant, ¢,
will result in ever decreasing changes to the hyperplane. Duda [Duda, 1966]
has suggested keeping track of the average value of the weight vector dur-
ing error correction and using this average to give a separating hyperplane
that performs reasonably well on non-linearly-separable problems. Gal-
lant [Gallant, 1986] proposed what he called the “pocket algorithm.” As
described in [Hertz, Krogh, & Palmer, 1991, p. 160]:

the pocket algorithm . . . consists simply in storing
(or “putting in your pocket”) the set of weights which has had
the longest unmodified run of successes so far. The algorithm
1s stopped after some chosen time ¢ . . .

Introduction to Machine Learning ©1996 Nils J. Nilsson. All rights reserved.

Examples of
training curves
for TLU’s;
performance on
training set;
performance on
test set;
cumulative
number of
corrections.

50 CHAPTER 4. NEURAL NETWORKS

After stopping, the weights in the pocket are used as a set that should give
a small number of errors on the training set. Error-correction proceeds as

Also see usual with the ordinary set of weights.

methods

proposed by

[John, 1995] . .

and by 4.2 Linear Machines

[Marchand & Golea, 1993].

Thg latter is

Cla‘tlmecfi to " The natural generalization of a (two-category) TLU to an R-category clas-
ou errorm 5]

podlzet sifier is the structure, shown in Fig. 4.8, called a linear machine. Here,
algorithm. to use more familiar notation, the Ws and X are meant to be augmented

vectors (with an (n+1)-st component). Such a structure is also sometimes
called a “competitive” net or a “winner-take-all” net. The output of the
linear machine is one of the numbers, {1,... R}, corresponding to which
dot product is largest. Note that when R = 2, the linear machine reduces
to a TLU with weight vector W = (W, — W3).

ARGMAX [—>

Figure 4.8: A Linear Machine

The diagram in Fig. 4.9 shows the character of the regions in a 2-
dimensional space created by a linear machine for R = 5. In n dimensions,
every pair of regions is either separated by a section of a hyperplane or is
non-adjacent.

To train a linear machine, there is a straightforward generalization of
the 2-category error-correction rule. Assemble the patterns in the training
set into a sequence as before.

1. If the machine classifies a pattern correctly, no change is made to any
of the weight vectors.

2. If the machine mistakenly classifies a category u pattern, X;, in cat-
egory v (u # v), then:

W, — W, +¢X;

Introduction to Machine Learning ©1996 Nils J. Nilsson. All rights reserved.

4.3. NETWORKS OF TLUS 51

R2

In this region:
XWy 2 X'W, fori#4a

Figure 4.9: Regions For a Linear Machine

and
WU — WU — CiXi
and all other weight vectors are not changed.

This correction increases the value of the u-th dot product and decreases
the value of the v-th dot product. Just as in the 2-category fixed increment
procedure, this procedure is guaranteed to terminate, for constant ¢;, if
there exists weight vectors that make correct separations of the training
set. Note that when R = 2, this procedure reduces to the ordinary TLU
error-correction procedure. A proof that this procedure terminates is given

in [Nilsson, 1990, pp. 88-90] and in [Duda & Hart, 1973, pp. 174-177].

4.3 Networks of TLUs

4.3.1 Motivation and Examples
Layered Networks

To classify correctly all of the patterns in non-linearly-separable training
sets requires separating surfaces more complex than hyperplanes. One way

Introduction to Machine Learning ©1996 Nils J. Nilsson. All rights reserved.

52 CHAPTER 4. NEURAL NETWORKS

to achieve more complex surfaces is with networks of TLUs. Consider, for
example, the 2-dimensional, even parity function, f = xy29 + Z1 T3. No
single line through the 2-dimensional square can separate the vertices (1,1)
and (0,0) from the vertices (1,0) and (0,1)—the function is not linearly sep-
arable and thus cannot be implemented by a single TLU. But, the network
of three TLUs shown in Fig. 4.10 does implement this function. In the
figure, we show the weight values along input lines to each TLU and the
threshold value inside the circle representing the TLU.

Figure 4.10: A Network for the Even Parity Function

The function implemented by a network of TLUs depends on its topol-
ogy as well as on the weights of the individual TLUs. Feedforward networks
have no cycles; in a feedforward network no TLU’s input depends (through
zero or more intermediate TLUs) on that TLU’s output. (Networks that
are not feedforward are called recurrent networks). If the TLUs of a feedfor-
ward network are arranged in layers, with the elements of layer j receiving
inputs only from TLUs in layer j — 1, then we say that the network is a
layered, feedforward network. The network shown in Fig. 4.10 is a layered,
feedforward network having two layers (of weights). (Some people count the
layers of TLUs and include the inputs as a layer also; they would call this
network a three-layer network.) In general, a feedforward, layered network
has the structure shown in Fig. 4.11. All of the TLUs except the “output”
units are called hidden units (they are “hidden” from the output).

Implementing DNF Functions by Two-Layer Networks

We have already defined k-term DNF functions—they are DNF functions
having k terms. A k-term DNF function can be implemented by a two-layer
network with & units in the hidden layer—to implement the k terms—and
one output unit to implement the disjunction of these terms. Since any
Boolean function has a DNF form, any Boolean function can be imple-
mented by some two-layer network of TLUs. As an example, consider the

Introduction to Machine Learning ©1996 Nils J. Nilsson. All rights reserved.

4.3. NETWORKS OF TLUS 53

O OO |TO—

output units
hidden units

Figure 4.11: A Layered, Feedforward Network

function f = #1295+ x2T3+ x17T3. The form of the network that implements
this function is shown in Fig. 4.12. (We leave it to the reader to calculate
appropriate values of weights and thresholds.) The 3-cube representation
of the function is shown in Fig. 4.13. The network of Fig. 4.12 can be

designed so that each hidden unit implements one of the planar boundaries
shown in Fig. 4.13.

TLUs

¥

disjunction
of terms
conjunctions
of literals
(terms)

Figure 4.12: A Two-Layer Network

To train a two-layer network that implements a k-termm DNF function,
we first note that the output unit implements a disjunction, so the weights
in the final layer are fixed. The weights in the first layer (except for the
“threshold weights”) can all have values of 1, —1, or 0. Later, we will

Introduction to Machine Learning ©1996 Nils J. Nilsson. All rights reserved.

Discuss
half-space
intersections,
half-space
unions,
NP-hardness of
optimal
versions,
single-side-
error-
hypeplane
methods,
relation to
“AQ” methods.

Add diagrams
showing the
non-linear
transformation
performed by a
layered
network.

54 CHAPTER 4. NEURAL NETWORKS

T=X1Xp * XoX3 + X1X3

X3

Figure 4.13: Three Planes Implemented by the Hidden Units

present a training procedure for this first layer of weights.

Important Comment About Layered Networks

Adding additional layers cannot compensate for an inadequate first layer of
TLUs. The first layer of TLUs partitions the feature space so that no two
differently labeled vectors are in the same region (that is, so that no two
such vectors yield the same set of outputs of the first-layer units). If the
first layer does not partition the feature space in this way, then regardless
of what subsequent layers do, the final outputs will not be consistent with
the labeled training set.

4.3.2 Madalines

Two-Category Networks

An interesting example of a layered, feedforward network is the two-layer
one which has an odd number of hidden units, and a “vote-taking” TLU
as the output unit. Such a network was called a “Madaline” (for many
adalines by Widrow. Typically, the response of the vote taking unit is
defined to be the response of the majority of the hidden units, although

Introduction to Machine Learning ©1996 Nils J. Nilsson. All rights reserved.

4.3. NETWORKS OF TLUS 55

other output logics are possible. Ridgway [Ridgway, 1962] proposed the
following error-correction rule for adjusting the weights of the hidden units
of a Madaline:

e If the Madaline correctly classifies a pattern, X;, no corrections are
made to any of the hidden units’ weight vectors,

e If the Madaline incorrectly classifies a pattern, X;, then determine
the minimum number of hidden units whose responses need to be
changed (from 0 to 1 or from 1 to 0—depending on the type of error)
in order that the Madaline would correctly classify X;. Suppose that
minimum number is k;. Of those hidden units voting incorrectly,
change the weight vectors of those k; of them whose dot products are
closest to 0 by using the error correction rule:

W — W + Cz(dz — fz)Xz

where d; is the desired response of the hidden unit (0 or 1) and f;
is the actual response (0 or 1). (We assume augmented vectors here
even though we are using X, W notation.)

That is, we perform error-correction on just enough hidden units to
correct the vote to a majority voting correctly, and we change those that
are easiest to change. There are example problems in which even though
a set of weight values exists for a given Madaline structure such that it
could classify all members of a training set correctly, this procedure will
fail to find them. Nevertheless, the procedure works effectively in most
experiments with it.

We leave it to the reader to think about how this training procedure
could be modified if the output TLU implemented an or function (or an
and function).

R-Category Madalines and Error-Correcting Output Codes

If there are k hidden units (£ > 1) in a two-layer network, their responses
correspond to vertices of a k-dimensional hypercube. The ordinary two-
category Madaline identifies two special points in this space, namely the
vertex consisting of k& 1’s and the vertex consisting of k£ 0’s. The Madaline’s
response is 1 if the point in “hidden-unit-space” is closer to the all 1’s vertex
than it is to the all 0’s vertex. We could design an R-category Madaline by
identifying R vertices in hidden-unit space and then classifying a pattern

Introduction to Machine Learning ©1996 Nils J. Nilsson. All rights reserved.

56 CHAPTER 4. NEURAL NETWORKS

according to which of these vertices the hidden-unit response is closest to.
A machine using that idea was implemented in the early 1960s at SRI
[Brain, et al., 1962]. Tt used the fact that the 2P so-called mazimal-length
shift-register sequences [Peterson, 1961, pp. 147ff] in a (2P — 1)-dimensional
Boolean space are mutually equidistant (for any integer p). For similar,
more recent work see [Dietterich & Bakiri, 1991].

4.3.3 Piecewise Linear Machines

A two-category training set is linearly separable if there exists a threshold
function that correctly classifies all members of the training set. Similarly,
we can say that an R-category training set is linearly separable if there
exists a linear machine that correctly classifies all members of the training
set. When an R-category problem is not linearly separable, we need a more
powerful classifier. A candidate is a structure called a piecewise linear
(PWL) machine illustrated in Fig. 4.14.

Y

MAX

ARG 5
MAX

MAX [—>

Figure 4.14: A Piecewise Linear Machine
The PWL machine groups its weighted summing units into R banks
corresponding to the R categories. An input vector X is assigned to that

category corresponding to the bank with the largest weighted sum. We can

Introduction to Machine Learning ©1996 Nils J. Nilsson. All rights reserved.

4.3. NETWORKS OF TLUS 57

use an error-correction training algorithm similar to that used for a linear
machine. If a pattern is classified incorrectly, we subtract (a constant times)
the pattern vector from the weight vector producing the largest dot product
(it was incorrectly the largest) and add (a constant times) the pattern
vector to that weight vector in the correct bank of weight vectors whose dot
product is locally largest in that bank. (Again, we use augmented vectors
here.) Unfortunately, there are example training sets that are separable by
a given PWL machine structure but for which this error-correction training
method fails to find a solution. The method does appear to work well in
some situations [Duda & Fossum, 1966], although [Nilsson, 1965, page 89]
observed that “it is probably not a very effective method for training PWL
machines having more than three [weight vectors] in each bank.”

4.3.4 Cascade Networks

Another interesting class of feedforward networks is that in which all of the
TLUs are ordered and each TLU receives inputs from all of the pattern
components and from all TLUs lower in the ordering. Such a network is
called a cascade network. An example is shown in Fig. 4.15 in which the
TLUs are labeled by the linearly separable functions (of their inputs) that
they implement. Each TLU in the network implements a set of 2% parallel
hyperplanes, where k& is the number of TLUs from which it receives inputs.
(Each of the k preceding TLUs can have an output of 1 or 0; that’s 2*
different combinations—resulting in 2% different positions for the parallel
hyperplanes.) We show a 3-dimensional sketch for a network of two TLUs
in Fig. 4.16. The reader might consider how the n-dimensional parity
function might be implemented by a cascade network having log, n TLUs.

Cascade networks might be trained by first training Ly to do as good a
job as possible at separating all the training patterns (perhaps by using the
pocket algorithm, for example), then training Ls (including the weight from
L1 to Ls) also to do as good a job as possible at separating all the training
patterns, and so on until the resulting network classifies the patterns in the
training set satisfactorily.

Introduction to Machine Learning ©1996 Nils J. Nilsson. All rights reserved.

Also mention

the “cascade-

correlation”

method of

[Fahlman & Lebiere, 1990].

58 CHAPTER 4. NEURAL NETWORKS

output
L3

Figure 4.15: A Cascade Network

Figure 4.16: Planes Implemented by a Cascade Network with Two TLUs

4.4 Training Feedforward Networks by Back-
propagation

4.4.1 Notation

The general problem of training a network of TLUs is difficult. Consider,
for example, the layered, feedforward network of Fig. 4.11. If such a net-
work makes an error on a pattern, there are usually several different ways
in which the error can be corrected. It is difficult to assign “blame” for
the error to any particular TLU in the network. Intuitively, one looks for
weight-adjusting procedures that move the network in the correct direc-
tion (relative to the error) by making minimal changes. In this spirit, the
Widrow-Hoff method of gradient descent has been generalized to deal with
multilayer networks.

Introduction to Machine Learning ©1996 Nils J. Nilsson. All rights reserved.

4.4. TRAINING FEEDFORWARD NETWORKS BY BACKPROPAGATIONK9

In explaining this generalization, we use Fig. 4.17 to introduce some
notation. This network has only one output unit, but, of course, it is
possible to have several TLUs in the output layer—each implementing a
different function. Each of the layers of TLUs will have outputs that we take
to be the components of vectors, just as the input features are components
of an input vector. The j-th layer of TLUs (1 < j < k) will have as their
outputs the vector X). The input feature vector is denoted by X(%) and
the final output (of the k-th layer TLU) is f. Each TLU in each layer has
a weight vector (connecting it to its inputs) and a threshold; the é-th TLU
in the j-th layer has a weight vector denoted by WZ(]). (We will assume
that the “threshold weight” is the last component of the associated weight
vector; we might have used V notation instead to include this threshold
component, but we have chosen here to use the familiar X, W notation,
assuming that these vectors are “augmented” as appropriate.) We denote
the weighted sum input to the i-th threshold unit in the j-th layer by 52(»‘7)
(That is, sW = X(J_l)oVVi(j).) The number of TLUs in the j-th layer is
()

7

given by m;. The vector W’/ has components wl(‘i) forl =1, mg_1y+1.

First Layer j-th Layer (k-1)-th Layer k-th Layer

Figure 4.17: A k-layer Network

Introduction to Machine Learning ©1996 Nils J. Nilsson. All rights reserved.

60 CHAPTER 4. NEURAL NETWORKS

4.4.2 The Backpropagation Method

A gradient descent method, similar to that used in the Widrow Hoff method,
has been proposed by various authors for training a multi-layer, feedforward
network. As before, we define an error function on the final output of the
network and we adjust each weight in the network so as to minimize the
error. If we have a desired response, d;, for the i-th input vector, X;, in the
training set, =, we can compute the squared error over the entire training
set to be:

e= Y (di—fi)

X,EE

where f; is the actual response of the network for input X;. To do gradient
descent on this squared error, we adjust each weight in the network by
an amount proportional to the negative of the partial derivative of ¢ with
respect to that weight. Again, we use a single-pattern error function so
that we can use an incremental weight adjustment procedure. The squared
error for a single input vector, X, evoking an output of f when the desired
output is d is:

c= (- gy

It is convenient to take the partial derivatives of ¢ with respect to the
various weights in groups corresponding to the weight vectors. We define
a partial derivative of a quantity ¢, say, with respect to a weight vector,
WZ(]), thus:

0 det | 09 09 d¢
WO |5 gD 5a)

mji_1+1,4

())

where w;;’ is the I-th component of W7/, This vector partial derivative of
¢ 1is called the gradient of ¢ with respect to W and is sometimes denoted

Since ¢’s dependence on Wl(j)
chain rule to write:

is entirely through 52(»‘7), we can use the

o 9e 057
oWl 959 ow)

Introduction to Machine Learning ©1996 Nils J. Nilsson. All rights reserved.

4.4. TRAINING FEEDFORWARD NETWORKS BY BACKPROPAGATIONG61

5s@

Because 55” = X(J_l)oVVi(j), WO = X U= Substituting yields:
Oe __ Oe X(]_l)
oW gsld
Note that % ==2(d-{) 62{;). Thus,
0 ~ = —2(d — f)a_fx(j—l)
oWl st

K3 K3

The quantity (d— f) % plays an important role in our calculations; we

shall denote it by 52(‘7). Each of the 52(‘7)’8 tells us how sensitive the squared
error of the network output is to changes in the input to each threshold
function. Since we will be changing weight vectors in directions along their

negative gradient, our fundamental rule for weight changes throughout the
network will be:

WZ(J') “ WZ(J') + ng)(gl(j)x(j—l)
Z(»j) is the learning rate constant for this weight vector. (Usually, the
learning rate constants for all weight vectors in the network are the same.)
We see that this rule is quite similar to that used in the error correction

procedure for a single TLU. A weight vector is changed by the addition of
a constant times its vector of (unweighted) inputs.

where ¢

Now, we must turn our attention to the calculation of the (52(‘7)

the definition, we have:

’s. Using

af
9s')

K3

5 = (d=)

We have a problem, however, in attempting to carry out the partial deriva-
tives of f with respect to the s’s. The network output, f, is not continuously
differentiable with respect to the s’s because of the presence of the thresh-
old functions. Most small changes in these sums do not change f at all,
and when f does change, it changes abruptly from 1 to 0 or vice versa.

A way around this difficulty was proposed by Werbos [Werbos, 1974]
and (perhaps independently) pursued by several other researchers, for ex-
ample [Rumelhart, Hinton, & Williams, 1986]. The trick involves replacing

Introduction to Machine Learning ©1996 Nils J. Nilsson. All rights reserved.

62 CHAPTER 4. NEURAL NETWORKS

all the threshold functions by differentiable functions called sigmoids.! The
output of a sigmoid function, superimposed on that of a threshold function,
is shown in Fig. 4.18. Usually, the sigmoid function used is f(s) =
where s is the input and f is the output.

1
14e—s >

f(s)

threshold function

1
0.2 \
0.6 sigmoid

f(s)=1/[1+e 5]

Figure 4.18: A Sigmoid Function

We show the network containing sigmoid units in place of TLUs in Fig.
4.19. The output of the i-th sigmoid unit in the j-th layer is denoted by
F9. (That is, f9) = —L)

RO

+e

4.4.3 Computing Weight Changes in the Final Layer

We first calculate 6%) in order to compute the weight change for the final
sigmoid unit:

I[Russell & Norvig 1995, page 595] attributes the use of this idea to
[Bryson & Ho 1969].

Introduction to Machine Learning ©1996 Nils J. Nilsson. All rights reserved.

4.4. TRAINING FEEDFORWARD NETWORKS BY BACKPROPAGATIONG63

First Layer j-th Layer (k-1)-th Layer k-th Layer
x () / x(k-1)

m4 sigmoids m; sigmoids M(k-1) sigmoids

Figure 4.19: A Network with Sigmoid Units

afk)

3 = (4= S0
S

Given the sigmoid function that we are using, namely f(s) =
have that % = f(1 = f). Substituting gives us:

1
14+e—s> we

s — (d— f(k))f(k)(l _ f(k))

Rewriting our general rule for weight vector changes, the weight vector
in the final layer is changed according to the rule:

W Wk 4 05k x(E=1)

where 6(%) = (d — fR)) FR) (1 — fR))
It is interesting to compare backpropagation to the error-correction rule

and to the Widrow-Hoff rule. The backpropagation weight adjustment for
the single element in the final layer can be written as:

W W+ e(d— f)f(1 - /)X

Introduction to Machine Learning ©1996 Nils J. Nilsson. All rights reserved.

64 CHAPTER 4. NEURAL NETWORKS
Written in the same format, the error-correction rule is:

W — W +¢(d- /)X
and the Widrow-Hoff rule is:

W — W +¢(d- /)X

The only difference (except for the fact that f is not thresholded in Widrow-
Hoff) is the f(1 — f) term due to the presence of the sigmoid function.
With the sigmoid function, f(1 — f) can vary in value from 0 to 1. When
fis 0, f(1 — f) is also 0; when f is 1, f(1 — f) is 0; f(1 — f) obtains
its maximum value of 1/4 when f is 1/2 (that is, when the input to the
sigmoid is 0). The sigmoid function can be thought of as implementing a
“fuzzy” hyperplane. For a pattern far away from this fuzzy hyperplane,
F(1 = f) has value close to 0, and the backpropagation rule makes little
or no change to the weight values regardless of the desired output. (Small
changes in the weights will have little effect on the output for inputs far
from the hyperplane.) Weight changes are only made within the region of
“fuzz” surrounding the hyperplane, and these changes are in the direction of
correcting the error, just as in the error-correction and Widrow-Hoff rules.

4.4.4 Computing Changes to the Weights in Interme-
diate Layers

Using our expression for the d’s, we can similarly compute how to change
each of the weight vectors in the network. Recall:

G _ g 0f
62’ _(d f)as(])

K3

Again we use a chain rule. The final output, f, depends on s\) through

7

each of the summed inputs to the sigmoids in the (j 4+ 1)-th layer. So:

G — g n 9

62’ —(d f)as(])
Cdp| gsiith af s af asutl
=@=J) asi) gs) e asItD 950 T st ggl)

Introduction to Machine Learning ©1996 Nils J. Nilsson. All rights reserved.

4.4. TRAINING FEEDFORWARD NETWORKS BY BACKPROPAGATIONG65

m 1 m
A of as,” Al 35l

Z(d f)]+1 Z 5J+1

=1
. as(j+1) .
It remains to compute the (’;T,S' To do that we first write:
s

s§]+1) —xW .Wl(j-l'l)

+
Z J+1
l/

And then, since the weights do not depend on the s’s:

Now, we note that

. mj+1 (G+1 m;+1 .

asl(]+1) B |: fy l/l i| B Z w(]-l—l) aflgj)

352(»‘7) B 352(»‘7) B et vt 852(»‘7)
sy o) f(j)(l _

(]) = 0 unless v = ¢, in which case asr = I

fﬁf)). Therefore:

35(j+1) .
al = wl({-l-l)fl()(1 _ fZ(J))
S5

We use this result in our expression for (52(‘7) to give:

mjt1

62(]) — fZ(J)(l _ fz(])) Z 6l(j+1)wl({+1)

=1

The above equation is recursive in the ¢’s. (It is interesting to note that
this expression is independent of the error function; the error function ex-

plicitly affects only the computation of 5(’“).) Having computed the 5£j+1)’s

(4)>

for layer j + 1, we can use this equation to compute the §;”’’s. The base
case is) which we have already computed:

8 = (d — fR) pB) (1 —)

Introduction to Machine Learning ©1996 Nils J. Nilsson. All rights reserved.

Add additional
intuitive
explanation.

66 CHAPTER 4. NEURAL NETWORKS

We use this expression for the §’s in our generic weight changing rule,
namely:

W(j) « W(j) + C(j)éfj)x(j—l)

Although this rule appears complex, it can be simply implemented
by “backpropagating” the ¢’s through the weights in order to adjust the
amount by which X vectors are added to or subtracted from weight vectors
(thus, the name backprop for this algorithm).

4.4.5 Variations on Backprop

[To be written: problem of local minima, simulated annealing, momem-
tum (Plaut, et al., 1986, see [Hertz, Krogh, & Palmer, 1991]), quickprop,
regularization methods]

Simulated Annealing

To apply simulated annealing, the value of the learning rate constant is
gradually decreased with time. If we fall early into an error-function valley
that is not very deep (a local minimum), it typically will neither be very
broad, and soon a subsequent large correction will jostle us out of it. It
is less likely that we will move out of deep valleys, and at the end of the
process (with very small values of the learning rate constant), we descend
to its deepest point. The process gets its name by analogy with annealing
in metallurgy, in which a material’s temperature is gradually decreased
allowing its crystalline structure to reach a minimal energy state.

4.4.6 An Application: Steering a Van

A neural network system called ALVINN (Autonomous Land Vehicle in
a Neural Network) has been trained to steer a Chevy van successfully
on ordinary roads and highways at speeds of 55 mph [Pomerleau, 1991,
Pomerleau, 1993]. The input to the network is derived from a low-resolution
(30 x 32) television image. The TV camera is mounted on the van and looks
at the road straight ahead. This image is sampled and produces a stream

of 960-dimensional input vectors to the neural network. The network is
shown in Fig. 4.20.

The network has five hidden units in its first layer and 30 output units
in the second layer; all are sigmoid units. The output units are arranged in

Introduction to Machine Learning ©1996 Nils J. Nilsson. All rights reserved.

4.4. TRAINING FEEDFORWARD NETWGORKS BY BACKPROPAGATION6T

sharp left
)) centroid
960 inputs of outputs
30 x 32 retina steers
O vehicle
O straight ahead

5 hidden
units connected
to all 960 inputs

00: 00

sharp right

30 output units
connected to all
hidden units

Figure 4.20: The ALVINN Network

a linear order and control the van’s steering angle. If a unit near the top of
the array of output units has a higher output than most of the other units,
the van is steered to the left; if a unit near the bottom of the array has a
high output, the van is steered to the right. The “centroid” of the responses
of all of the output units is computed, and the van’s steering angle is set
at a corresponding value between hard left and hard right.

The system is trained by a modified on-line training regime. A driver
drives the van, and his actual steering angles are taken as the correct labels
for the corresponding inputs. The network is trained incrementally by
backprop to produce the driver-specified steering angles in response to each
visual pattern as it occurs in real time while driving.

This simple procedure has been augmented to avoid two potential prob-
lems. First, since the driver is usually driving well, the network would never
get any experience with far-from-center vehicle positions and/or incorrect
vehicle orientations. Also, on long, straight stretches of road, the network
would be trained for a long time only to produce straight-ahead steering
angles; this training would swamp out earlier training to follow a curved
road. We wouldn’t want to try to avoid these problems by instructing the
driver to drive erratically occasionally, because the system would learn to

Introduction to Machine Learning ©1996 Nils J. Nilsson. All rights reserved.

To be written,;
discuss

68 CHAPTER 4. NEURAL NETWORKS

mimic this erratic behavior.

Instead, each original image is shifted and rotated in software to create
14 additional images in which the vehicle appears to be situated differently
relative to the road. Using a model that tells the system what steering angle
ought to be used for each of these shifted images, given the driver-specified
steering angle for the original image, the system constructs an additional
14 labeled training patterns to add to those encountered during ordinary
driver training.

4.5 Synergies Between Neural Network and
Knowledge-Based Methods

niegenerating: 4,6 Bibliographical and Historical Remarks

procedures
(such as

[Towell & Shavlik, 1992])

and how
expert-
provided rules
can aid neural
net training
and vice-versa

[Towell, Shavlik, & Noordweier, 1990].

To be added.

Introduction to Machine Learning ©1996 Nils J. Nilsson. All rights reserved.

