Chapter 5

Statistical Learning

5.1 Using Statistical Decision Theory

5.1.1 Background and General Method

Suppose the pattern vector, X, is a random variable whose probability dis-
tribution for category 1 is different than it is for category 2. (The treatment
given here can easily be generalized to R-category problems.) Specifically,
suppose we have the two probability distributions (perhaps probability den-
sity functions), p(X | 1) and p(X | 2). Given a pattern, X, we want to use
statistical techniques to determine its category—that 1s, to determine from
which distribution it was drawn. These techniques are based on the idea of
minimizing the expected value of a quantity similar to the error function
we used in deriving the weight-changing rules for backprop.

In developing a decision method, it is necessary to know the relative
seriousness of the two kinds of mistakes that might be made. (We might
decide that a pattern really in category 1 is in category 2, and vice versa.)
We describe this information by a loss function, A(7 | j), for i,j = 1,2.
A(7 ] J) represents the loss incurred when we decide a pattern is in category
i when really it is in category j. We assume here that A(1 | 1) and A(2 | 2)
are both 0. For any given pattern, X, we want to decide its category in
such a way that minimizes the expected value of this loss.

Given a pattern, X, if we decide category i, the expected value of the
loss will be:

Lx (1) =A@ | Dp(1 | X) +A( [ 2)p(2 | X)
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70 CHAPTER 5. STATISTICAL LEARNING

where p(j | X) is the probability that given a pattern X, its category is
j. Our decision rule will be to decide that X belongs to category 1 if
Lx (1) < Lx(2), and to decide on category 2 otherwise.

We can use Bayes’ Rule to get expressions for p(j | X) in terms of
p(X | j), which we assume to be known (or estimatible):

(X | j)r(y)

p(i [ X) = (X)

where p(j) is the (a priori) probability of category j (one category may be
much more probable than the other); and p(X) is the (a priori) probability
of pattern X being the pattern we are asked to classify. Performing the
substitutions given by Bayes’ Rule, our decision rule becomes:

Decide category 1 iff:

p(X | 1)p(1) p(X ] 2)p(2)
MBS G A 25
p(X | 1)p(1) p(X ] 2)p(2)
AR ST A 1D

Using the fact that A(¢ | /) = 0, and noticing that p(X) is common to both
expressions, we obtain,

Decide category 1 iff:

AL 2)p(X [ 2)p(2) < A2 [ Dp(X [ 1)p(1)

If A(1]2) = A(2 | 1) and if p(1) = p(2), then the decision becomes

particularly simple:

Decide category 1 iff:

p(X|2) <p(X|1)
Since p(X | j) is called the likelihood of j with respect to X, this sim-
ple decision rule implements what is called a mazimum-likelihood decision.
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More generally, if we define k(i | j) as A(¢ | 7)p(j), then our decision rule is
simply,

Decide categoryl iff:
k(1]2)p(X]2) < k(2 [1)p(X [ 1)

In any case, we need to compare the (perhaps weighted) quantities p(X | )
for ¢ = 1 and 2. The exact decision rule depends on the the probability
distributions assumed. We will treat two interesting distributions.

5.1.2 Gaussian (or Normal) Distributions

The multivariate (n-dimensional) Gaussian distribution is given by the
probability density function:

1 _(X_M)’E‘1 (X-M)
(271.)71/2|2|1/26 ’

p(X) =

where n is the dimension of the column vector X, the column vector M 1s
called the mean vector, (X — M) is the transpose of the vector (X —M), ¥
is the covariance matriz of the distribution (an n x n symmetric, positive
definite matrix), X1 is the inverse of the covariance matrix, and | 2| is the
determinant of the covariance matrix.

The mean vector, M, with components (mq,...,m,), is the expected
value of X (using this distribution); that is, M = F[X]. The components
of the covariance matrix are given by:

of; = El(wi — my)(z; — my)]

2

In particular, o;; is called the variance of ;.

Although the formula appears complex, an intuitive idea for Gaussian
distributions can be given when n = 2. We show a two-dimensional Gaus-
sian distribution in Fig. 5.1. A three-dimensional plot of the distribution is
shown at the top of the figure, and contours of equal probability are shown
at the bottom. In this case, the covariance matrix, X, is such that the
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elliptical contours of equal probability are skewed. If the covariance ma-
trix were diagonal, that 1s if all off-diagonal terms were 0, then the major
axes of the elliptical contours would be aligned with the coordinate axes.
In general the principal axes are given by the eigenvectors of X. In any
case, the equi-probability contours are all centered on the mean vector, M,
which in our figure happens to be at the origin. In general, the formula
in the exponent in the Gaussian distribution 1s a positive definite quadratic
form (that is, its value is always positive); thus equi-probability contours
are hyper-ellipsoids in n-dimensional space.

Figure 5.1: The Two-Dimensional Gaussian Distribution

Suppose we now assume that the two classes of pattern vectors that we
want to distinguish are each distributed according to a Gaussian distribu-
tion but with different means and covariance matrices. That is, one class
tends to have patterns clustered around one point in the n-dimensional
space, and the other class tends to have patterns clustered around another
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5.1. USING STATISTICAL DECISION THEORY 73

point. We show a two-dimensional instance of this problem in Fig. 5.2.
(In that figure, we have plotted the sum of the two distributions.) What
decision rule should we use to separate patterns into the two appropriate
categories?

p(X, X,)

Figure 5.2: The Sum of Two Gaussian Distributions

Substituting the Gaussian distributions into our maximum likelithood
formula yields:

Decide category 1 iff:

L (XML B (XM
(27T)n/2|22|1/2

is less than or equal to
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L (XML BT (X-M)
(27T)n/2|21|1/2

where the category 1 patterns are distributed with mean and covariance
M, and 3, respectively, and the category 2 patterns are distributed with
mean and covariance My and Xs.

The result of the comparison isn’t changed if we compare logarithms
instead. After some manipulation, our decision rule is then:

Decide category 1 iff:

(X —M)'ETHX -M)) < (X —M,)'2;H (X —M,) + B

where B, a constant bias term, incorporates the logarithms of the fractions
preceding the exponential, etc.

When the quadratic forms are multiplied out and represented in terms
of the components #;, the decision rule involves a quadric surface (a hy-
perquadric) in n-dimensional space. The exact shape and position of this
hyperquadric is determined by the means and the covariance matrices. The
surface separates the space into two parts, one of which contains points that
will be assigned to category 1 and the other contains points that will be
assigned to category 2.

It is interesting to look at a special case of this surface. If the co-
variance matrices for each category are identical and diagonal, with all
o;; equal to each other, then the contours of equal probability for each of
the two distributions are hyperspherical. The quadric forms then become

(1/]ZN(X — M;)H (X — M;), and the decision rule is:

Decide category 1 iff:
(X — M) (X - M) < (X - M)"(X — Ms)

Multiplying out yields:
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XoeX —2XoeM; + MieM; <« XX —2XeM> + M>eM->

or finally,

Decide category 1 iff:

XeM; > XeM; + Constant
or
Xe(M; — M;) > Constant

where the constant depends on the lengths of the mean vectors.

We see that the optimal decision surface in this special case is a hyper-
plane. In fact, the hyperplane is perpendicular to the line joining the two
means. The weights in a TLU implementation are equal to the difference
in the mean vectors.

If the parameters (M;, X;) of the probability distributions of the cate-
gories are not known, there are various techniques for estimating them, and
then using those estimates in the decision rule. For example, if there are suf-
ficient training patterns, one can use sample means and sample covariance
matrices. (Caution: the sample covariance matrix will be singular if the
training patterns happen to lie on a subspace of the whole n-dimensional
space—as they certainly will, for example, if the number of training pat-
terns is less than n.)

5.1.3 Conditionally Independent Binary Components

Suppose the vector X is a random variable having binary (0,1) components.
We continue to denote the two probability distributions by p(X | 1) and
p(X | 2). Further suppose that the components of these vectors are con-
ditionally independent given the category. By conditional independence in
this case, we mean that the formulas for the distribution can be expanded
as follows:

p(X | i) = ples | i)p(ez | 1) plaa | 1)

fori=1,2
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Recall the minimum-average-loss decision rule,

Decide category 1 iff:

AL 2)p(X [ 2)p(2) < A2 [ Dp(X [ 1)p(1)

Assuming conditional independence of the components and that A(1 | 2) =
A(2 | 1), we obtain,

Decide category 1 iff:

p(Dp(zy | Dp(xa | 1) - -plen | 1) > pler | 2)p(x2 | 2) - plea | 2)p(2)

or 1iff:

~—

ples | Dp(es |1) . op(ea [1) | p(2)

plz1 | 2)p(e2 | 2)...p(xn | 2) — p(1)
or iff:
e |1) | ples | 1) P D p1)
8 @ 1) T ) T T 12 T 2

Let us define values of the components of the distribution for specific values
of their arguments, z; :

plei=1|1)=p;
plei=0]1)=1-p;
P(l‘z’21|2):qz'
plzi=0]2)=1-g

Now, we note that since z; can only assume the values of 1 or 0:

plxi | 1) pi (1—pi)
log———= =z;log — + (1 — z;) lo
B (e [7) gy, T mm)les
pi(l —q) (1—p)
= z; log + log
¢i(1 —p;) (1—q)
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Substituting these expressions into our decision rule yields:

Decide category 1 iff:

~ o opill—g) |+ o (1—pi) o p(1)
2 milos 2 o g+ los gy 20

We see that we can achieve this decision with a TLU with weight values as
follows:

pi(l—q)
w; = log ———¢
8 ¢ (1 —p;)

fori=1,...,n,and

p(1) ~, (=)
Wpt1 = log ——— + log
" 1—p(1) ; (1—a)
If we do not know the p;, ¢; and p(1), we can use a sample of labeled training
patterns to estimate these parameters.

5.2 Learning Belief Networks

To be added.

5.3 Nearest-Neighbor Methods

Another class of methods can be related to the statistical ones. These are
called nearest-neighbor methods or, sometimes, memory-based methods. (A
collection of papers on this subject is in [Dasarathy, 1991].) Given a training
set = of m labeled patterns, a nearest-neighbor procedure decides that some
new pattern, X, belongs to the same category as do its closest neighbors
in =. More precisely, a k-nearest-neighbor method assigns a new pattern,
X, to that category to which the plurality of its & closest neighbors belong.
Using relatively large values of k decreases the chance that the decision
will be unduly influenced by a noisy training pattern close to X. But large
values of k also reduce the acuity of the method. The k-nearest-neighbor
method can be thought of as estimating the values of the probabilities of
the classes given X. Of course the denser are the points around X, and the
larger the value of &, the better the estimate.
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The distance metric used in nearest-neighbor methods (for numer-
ical attributes) can be simple Euclidean distance. That is, the dis-
tance between two patterns (11, %12,...,21n) and (Za21, %22, ...,22,) 1S

\/2?21(x1j — 29;)%. This distance measure is often modified by scaling

the features so that the spread of attribute values along each dimension is
approximately the same. In that case, the distance between the two vectors

would be \/2?21 a?(xlj — x9;)?, where a; is the scale factor for dimension
J.
An example of a nearest-neighbor decision problem is shown in Fig. 5.3.

In the figure the class of a training pattern is indicated by the number next
to it.

class of training pattern training pattern
3
3, 3
2. 2 3 2 2
-2 .
2. "2
3 1
3 1. 1
1 3 1

X (a pattern to be classified)
k=8
four patterns of category 1
two patterns of category 2
two patterns of category 3

plurality are in category 1, so
decide X is in category 1

Figure 5.3: An 8-Nearest-Neighbor Decision

Nearest-neighbor methods are memory intensive because a large num-
ber of training patterns must be stored to achieve good generaliza-
tion. Since memory cost is now reasonably low, the method and its
derivatives have seen several practical applications. (See, for example,
[Moore, 1992, Moore, et al., 1994]. Also, the distance calculations required
to find nearest neighbors can often be efficiently computed by kd-tree meth-
ods [Friedman, et al., 1977].

A theorem by Cover and Hart [Cover & Hart, 1967] relates the perfor-
mance of the 1-nearest-neighbor method to the performance of a minimum-
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probability-of-error classifier. As mentioned earlier, the minimum-
probability-of-error classifier would assign a new pattern X to that category
that maximized p(i)p(X | é), where p(¢) is the a priori probability of cate-
gory i, and p(X | ©) is the probability (or probability density function) of X
given that X belongs to category ¢, for categories ¢ = 1,..., R. Suppose the
probability of error in classifying patterns of such a minimum-probability-
of-error classifier is €. The Cover-Hart theorem states that under very
mild conditions (having to do with the smoothness of probability density
functions) the probability of error, €,,, of a 1-nearest-neighbor classifier is

bounded by:

R
<epn <el2- <2
e<¢ _6( ER_l) €

where R is the number of categories. Also see
[Aha, 1991].

5.4 Bibliographical and Historical Remarks

To be added.
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