Chapter 7

Inductive Logic
Programming

There are many different representational forms for functions of input vari-
ables. So far, we have seen (Boolean) algebraic expressions, decision trees,
and neural networks, plus other computational mechanisms such as tech-
niques for computing nearest neighbors. Of course, the representation most
important in computer science is a computer program. For example, a Lisp
predicate of binary-valued inputs computes a Boolean function of those in-
puts. Similarly, a logic program (whose ordinary application is to compute
bindings for variables) can also be used simply to decide whether or not
a predicate has value True (T) or False (F). For example, the Boolean
exclusive-or (odd parity) function of two variables can be computed by the
following logic program:

Parity(x,y) :- True(x), — True(y)
:= True(y), — True(x)

We follow Prolog syntax (see, for example, [Mueller & Page, 1988]), except
that our convention is to write variables as strings beginning with lower-
case letters and predicates as strings beginning with upper-case letters. The
unary function “True” returns 7 if and only if the value of its argument is
T. (We now think of Boolean functions and arguments as having values of
T and F instead of 0 and 1.) Programs will be written in “typewriter”
font.

97

98 CHAPTER 7. INDUCTIVE LOGIC PROGRAMMING

In this chapter, we consider the matter of learning logic programs given
a set of variable values for which the logic program should return T' (the
positive instances) and a set of variable values for which it should return F
(the negative instances). The subspecialty of machine learning that deals
with learning logic programs is called inductive logic programming (ILP)
[Lavrac & Dzeroski, 1994]. As with any learning problem, this one can be
quite complex and intractably difficult unless we constrain it with biases of
some sort. In ILP, there are a variety of possible biases (called language bi-
ases). One might restrict the program to Horn clauses, not allow recursion,
not allow functions, and so on.

As an example of an ILP problem, suppose we are trying to induce a
function Nonstop(x,y), that is to have value T for pairs of cities connected
by a non-stop air flight and F for all other pairs of cities. We are given a
training set consisting of positive and negative examples. As positive ex-
amples, we might have (A,B), (A, A1), and some other pairs; as negative
examples, we might have (A1, A2), and some other pairs. In ILP, we usu-
ally have additional information about the examples, called “background
knowledge.” In our air-flight problem, the background information might
be such ground facts as Hub(A), Hub(B), Satellite(A1,4), plus others.
(Hub(4) is intended to mean that the city denoted by 4 is a hub city, and
Satellite(Al,4) is intended to mean that the city denoted by A1 i1s a
satellite of the city denoted by A.) From these training facts, we want to
induce a program Nonstop(x,y), written in terms of the background re-
lations Hub and Satellite, that has value T for all the positive instances
and has value F' for all the negative instances. Depending on the exact set
of examples, we might induce the program:

Nonstop(x,y) :- Hub(x), Hub(y)
:—- Satellite(x,y)

:—- Satellite(y,x)

which would have value T if both of the two cities were hub cities or if
one were a satellite of the other. As with other learning problems, we
want the induced program to generalize well; that is, if presented with
arguments not represented in the training set (but for which we have the
needed background knowledge), we would like the function to guess well.

Introduction to Machine Learning ©1996 Nils J. Nilsson. All rights reserved.

7.1. NOTATION AND DEFINITIONS 99
7.1 Notation and Definitions

In evaluating logic programs in ILP, we implicitly append the background
facts to the program and adopt the usual convention that a program has
value T for a set of inputs if and only if the program interpreter returns
T when actually running the program (with background facts appended)
on those inputs; otherwise it has value F'. Using the given background
facts, the program above would return 7" for input (A, A1), for example.
If a logic program, m, returns 7' for a set of arguments X, we say that
the program covers the arguments and write covers(mr, X). Following our
terminology introduced in connection with version spaces, we will say that
a program 1is sufficient if it covers all of the positive instances and that
it is necessary if it does not cover any of the negative instances. (That
i1s, a program implements a sufficient condition that a training instance
1s positive if 1t covers all of the positive training instances; it implements
a necessary condition if it covers none of the negative instances.) In the
noiseless case, we want to induce a program that is both sufficient and
necessary, in which case we will call it consistent. With imperfect (noisy)
training sets, we might relax this criterion and settle for a program that
covers all but some fraction of the positive instances while allowing it to
cover some fraction of the negative instances. We illustrate these definitions
schematically in Fig. 7.1.

Ty is a necessary program

A positive instance
covered by T, and T3

T, is a sufficient program

Tz is a consistent program

Figure 7.1: Sufficient, Necessary, and Consistent Programs

As in version spaces, if a program is sufficient but not necessary it can be

Introduction to Machine Learning ©1996 Nils J. Nilsson. All rights reserved.

100 CHAPTER 7. INDUCTIVE LOGIC PROGRAMMING

made to cover fewer examples by specializingit. Conversely, if it is necessary
but not sufficient, it can be made to cover more examples by generalizing
it. Suppose we are attempting to induce a logic program to compute the
relation p. The most general logic program, which is certainly sufficient,
is the one that has value 7" for all inputs, namely a single clause with an
empty body, [p :=], which is called a fact in Prolog. The most special
logic program, which is certainly necessary, is the one that has value F' for
allinputs, namely [p := F]. Two of the many different ways to search for
a consistent logic program are: 1) start with [p :-] and specialize until
the program is consistent, or 2) start with [p := F] and generalize until
the program is consistent. We will be discussing a method that starts with
[p :=], specializes until the program is necessary (but might no longer be
sufficient), then reachieves sufficiency in stages by generalizing—ensuring
within each stage that the program remains necessary (by specializing).

7.2 A Generic ILP Algorithm

Since the primary operators in our search for a consistent program are
specialization and generalization, we must next discuss those operations.
There are three major ways in which a logic program might be generalized:

1. Replace some terms in a program clause by variables. (Readers fa-
miliar with substitutions in the predicate calculus will note that this
process is the inverse of substitution.)

2. Remove literals from the body of a clause.

3. Add a clause to the program

Analogously, there are three ways in which a logic program might be spe-
cialized:

1. Replace some variables in a program clause by terms (a substitution).
2. Add literals to the body of a clause.

3. Remove a clause from the program

We will be presenting an ILP learning method that adds clauses to a pro-
gram when generalizing and that adds literals to the body of a clause when
specializing. When we add a clause, we will always add the clause [p :-]

Introduction to Machine Learning ©1996 Nils J. Nilsson. All rights reserved.

7.2. A GENERIC ILP ALGORITHM 101

and then specialize it by adding literals to the body. Thus, we need only
describe the process for adding literals.

Clauses can be partially ordered by the specialization relation. In gen-
eral, clause ¢; is more special than clause ¢o if ¢o = ¢1. A special case,
which is what we use here, is that a clause ¢ is more special than a clause
¢y 1f the set of literals in the body of ¢s is a subset of those in ¢;. This
ordering relation can be used in a structure of partially ordered clauses,
called the refinement graph, that is similar to a version space. Clause ¢ is
an immediate successor of clause ¢y in this graph if and only if clause ¢;
can be obtained from clause ¢s by adding a literal to the body of ¢5. A
refinement graph then tells us the ways in which we can specialize a clause
by adding a literal to it.

Of course there are unlimited possible literals we might add to the body
of a clause. Practical ILP systems restrict the literals in various ways.
Typical allowed additions are:

1. Literals used in the background knowledge.

2. Literals whose arguments are a subset of those in the head of the
clause.

3. Literals that introduce a new distinct variable different from those 1n
the head of the clause.

4. A literal that equates a variable in the head of the clause with another
such variable or with a term mentioned in the background knowledge.
(This possibility is equivalent to forming a specialization by making
a substitution.)

5. A literal that is the same (except for its arguments) as that in the
head of the clause. (This possibility admits recursive programs, which
are disallowed in some systems.)

We can illustrate these possibilities using our air-flight example. We
start with the program [Nonstop(x,y) :-]. The literals used in the
background knowledge are Hub and Satellite. Thus the literals that we
might consider adding are:

Hub(x)
Hub(y)
Hub(z)
Satellite(x,y)

Introduction to Machine Learning ©1996 Nils J. Nilsson. All rights reserved.

102 CHAPTER 7. INDUCTIVE LOGIC PROGRAMMING

Satellite(y,x)
Satellite(x,z)
Satellite(z,y)
(x =y)

(If recursive programs are allowed, we could also add the literals
Nonstop(x,z) and Nonstop(z,y).) These possibilities are among those il-
lustrated in the refinement graph shown in Fig. 7.2. Whatever restrictions
on additional literals are imposed, they are all syntactic ones from which
the successors in the refinement graph are easily computed. ILP programs
that follow the approach we are discussing (of specializing clauses by adding
a literal) thus have well defined methods of computing the possible literals
to add to a clause.

Nonst op(x,y) :-

Nonst op(x,y) :-
Hub(x)

Nonst op(x,y) :-
Satellite(x,yV)

/\ Nonst op(x,y) :-

Nonst op(x,y) :- Hub(x), Hub(y)

Figure 7.2: Part of a Refinement Graph

Now we are ready to write down a simple generic algorithm for inducing
a logic program, 7 for inducing a relation p. We are given a training set,
= of argument sets some known to be in the relation p and some not in

Introduction to Machine Learning ©1996 Nils J. Nilsson. All rights reserved.

7.3. AN EXAMPLE 103

p; =1 are the positive instances, and =~ are the negative instances. The
algorithm has an outer loop in which it successively adds clauses to make
m more and more sufficient. It has an inner loop for constructing a clause,
¢, that is more and more necessary and in which it refers only to a subset,
Ecur, of the training instances. (The positive instances in Ze,, will be
denoted by =% ., and the negative ones by =7, ..) The algorithm is also
given background relations and the means for adding literals to a clause.
It uses a logic program interpreter to compute whether or not the program
it is inducing covers training instances. The algorithm can be written as

follows:

Generic ILP Algorithm
(Adapted from [Lavrac¢ & Dzeroski, 1994, p. 60].)

Initialize =.,, := =.
Initialize 7 := empty set of clauses.
repeat [The outer loop works to make 7 sufficient.]
Initialize ¢ := p : — .
repeat [The inner loop makes ¢ necessary.]
Select a literal { to add to e. [This is a nondeterministic choice point.]
Assign ¢ := ¢, l.
until ¢ is necessary. [That is, until ¢ covers no negative instances in Z.y,.]
Assign 7 := 7, c. [We add the clause ¢ to the program.]
Assign Ecyp := Eeyr — (the positive instances in Z¢, covered by).
until 7 is sufficient.

(The termination tests for the inner and outer loops can be relaxed as
appropriate for the case of noisy instances.)

7.3 An Example

We illustrate how the algorithm works by returning to our example of airline
flights. Consider the portion of an airline route map, shown in Fig. 7.3.
Cities A, B, and C are “hub” cities, and we know that there are nonstop
flights between all hub cities (even those not shown on this portion of the
route map). The other cities are “satellites” of one of the hubs, and we know
that there are nonstop flights between each satellite city and its hub. The
learning program is given a set of positive instances, ZT, of pairs of cities
between which there are nonstop flights and a set of negative instances, =7,

Introduction to Machine Learning ©1996 Nils J. Nilsson. All rights reserved.

104 CHAPTER 7. INDUCTIVE LOGIC PROGRAMMING

of pairs of cities between which there are not nonstop flights. =% contains
just the pairs:

{< A B> <A C><BC><BA><CA><C, B>,
<AAl > <A A2 > < ALLA> < A2)A> < B,Bl >, < B,B2>,
< Bl,B><B2,B><C (Cl><C (02> <Cl,C><(C2,C>}

For our example, we will assume that =~ contains all those pairs of cities
shown in Fig. 7.3 that are not in =% (a type of closed-world assumption).
These are:

{< A, Bl > <A B2> <A Cl> <A C2> < B,Cl> < B, (2>,
< B,Al > < B,A2> < (C Al > < (C,A2>,<(C,Bl >, <C B2 >,

<BlLLA> <B2A><Cl,A><(C2,A><(C1,B><(C2,B>,
<Al B> < A2, B> < Al,C > < A2,C >,< B1,C >,< B2,C >}

There may be other cities not shown on this map, so the training set does
not necessarily exhaust all the cities.

Bl B2

A2 C2

Figure 7.3: Part of an Airline Route Map

Introduction to Machine Learning ©1996 Nils J. Nilsson. All rights reserved.

7.3. AN EXAMPLE 105

We want the learning program to induce a program for computing the
value of the relation Nonstop. The training set, =, can be thought of as a
partial description of this relation in extensional form—it explicitly names
some pairs in the relation and some pairs not in the relation. We desire to
learn the Nonstop relation as a logic program in terms of the background
relations, Hub and Satellite, which are also given in extensional form.
Doing so will give us a more compact, wntensional, description of the rela-
tion, and this description could well generalize usefully to other cities not
mentioned in the map.

We assume the learning program has the following extensional defini-
tions of the relations Hub and Satellite:

Hub

{<A> <C>}

All other cities mentioned in the map are assumed not in the relation Hub.
We will use the notation Hub(x) to express that the city named « is in the
relation Hub.

Satellite

{< Al,A, > < A2, A> < Bl,B> < B2 B> <(Cl,C><C2C >}

All other pairs of cities mentioned in the map are not in the relation
Satellite. We will use the notation Satellite(x,y) to express that the
pair < z,y > is in the relation Satellite.

Knowing that the predicate Nonstop is a two-place predicate, the inner
loop of our algorithm initializes the first clause to Nonstop(x,y) :-
This clause is not necessary because it covers all the negative examples
(since it covers all examples). So we must add a literal to its (empty) body.
Suppose (selecting a literal from the refinement graph) the algorithm adds
Hub(x). The following positive instances in = are covered by Nonstop(x,y)
1= Hub(x):

Introduction to Machine Learning ©1996 Nils J. Nilsson. All rights reserved.

106 CHAPTER 7. INDUCTIVE LOGIC PROGRAMMING

{< A B> <A C><BC><BA><CA><C, B>,
<A Al > <A A2> < B,Bl > <B B2><C,Cl><C C2>}

To compute this covering, we interpret the logic program Nonstop(x,y) :-
Hub(x) for all pairs of cities in =, using the pairs given in the background
relation Hub as ground facts. The following negative instances are also
covered:

{< A, Bl > <A B2> <A Cl> <A C2> <C/Al> <C, A2 >,
<C,Bl> <C,B2> < B /Al > <B,A2> < B,Cl> < B,C2>}

Thus, the clause 1s not yet necessary and another literal must be added.
Suppose we next add Hub(y). The following positive instances are covered
by Nonstop(x,y) :- Hub(x), Hub(y):

{<A B> <A C><BC><BA><CA><C B>}

There are no longer any negative instances in = covered so the clause
Nonstop(x,y) :- Hub(x), Hub(y) is necessary, and we can terminate the
first pass through the inner loop.

But the program, m, consisting of just this clause is not sufficient. These
positive instances are not covered by the clause:

{<AAl > < A A2 > < ALLA >, < A2, A >, < B, Bl >,< B, B2 >,
< Bl,B><B2,B><C (Cl><C (02> <Cl,C><(C2,C>}

The positive instances that were covered by Nonstop(x,y) :- Hub(x),
Hub(y) are removed from = to form the =y, to be used in the next pass
through the inner loop. =, consists of all the negative instances in = plus
the positive instances (listed above) that are not yet covered. In order to
attempt to cover them, the inner loop creates another clause ¢, initially set
to Nonstop(x,y) :- . This clause covers all the negative instances, and
so we must add literals to make it necessary. Suppose we add the literal
Satellite(x,y). The clause Nonstop(x,y) :- Satellite(x,y) covers
no negative instances, so it is necessary. It does cover the following positive
Instances in E.qp:

Introduction to Machine Learning ©1996 Nils J. Nilsson. All rights reserved.

7.4. INDUCING RECURSIVE PROGRAMS 107
{< Al,A> < A2, A> < Bl,B><B2,B><Cl,C><(C2C>}

These instances are removed from =, for the next pass through the inner
loop. The program now contains two clauses:

Nonstop(x,y) :- Hub(x), Hub(y)
:—- Satellite(x,y)

This program is not yet sufficient since it does not cover the following
positive instances:

{< A, Al > <A A2 > < B,Bl > < B B2><C Cl><CC2>}

During the next pass through the inner loop, we add the clause
Nonstop(x,y) :- Satellite(y,x). This clause is necessary, and since
the program containing all three clauses is now sufficient, the procedure
terminates with:

Nonstop(x,y) :- Hub(x), Hub(y)
:—- Satellite(x,y)
:—- Satellite(y,x)

Since each clause is necessary, and the whole program is sufficient, the
program is also consistent with all instances of the training set. Note that
this program can be applied (perhaps with good generalization) to other
cities besides those in our partial map—so long as we can evaluate the
relations Hub and Satellite for these other cities. In the next section, we
show how the technique can be extended to use recursion on the relation
we are inducing. With that extension, the method can be used to induce
more general logic programs.

7.4 Inducing Recursive Programs

To induce a recursive program, we allow the addition of a literal having the
same predicate letter as that in the head of the clause. Various mechanisms
must be used to ensure that such a program will terminate; one such is to
make sure that the new literal has different variables than those in the

Introduction to Machine Learning ©1996 Nils J. Nilsson. All rights reserved.

108 CHAPTER 7. INDUCTIVE LOGIC PROGRAMMING

head literal. The process is best illustrated with another example. Our
example continues the one using the airline map, but we make the map
somewhat simpler in order to reduce the size of the extensional relations
used. Consider the map shown in Fig. 7.4. Again, B and C are hub cities,
B1 and B2 are satellites of B, (1 and C2 are satellites of C. We have
introduced two new cities, B3 and C3. No flights exist between these cities
and any other cities—perhaps there are only bus routes as shown by the
grey lines in the map.

B3

Bl
B2

C1

C3
Cc2

Figure 7.4: Another Airline Route Map

We now seek to learn a program for Canfly(x,y) that covers only those
pairs of cities that can be reached by one or more nonstop flights. The
relation Canfly is satisfied by the following pairs of postive instances:

{< B1,B>,< B1,B2>,< B1,C >,< B1,C1 >,< B1,C2 >,
< B,Bl >,< B2, Bl >, < C,Bl> < (Cl,Bl> < (C2 Bl >,
< B2,B>,<B2,C> < B2C1> < B2,C2> < B, B2 >,
<C,B2>,<(C1,B2>,<(C2,B2>,<B,C><B,C1>,
<B,C2><C,B><Cl,B><C2,B><C,Cl1>,
<C,02>,<C1,C><C2,C><C1,02>,<C2,C1l>}

Introduction to Machine Learning ©1996 Nils J. Nilsson. All rights reserved.

7.4. INDUCING RECURSIVE PROGRAMS 109

Using a closed-world assumption on our map, we take the negative instances
of Canfly to be:

{< B3,B2>,< B3,B>,< B3,Bl >, < B3,C >,< B3,C1 >,
< B3,C2>,<B3,C3>,<B2,B3 > < B,B3>,< Bl,B3 >,
<, B3>,<(C1,B3> < (C2,B3>,<(C3 B3> < (3, B2>,
<(C3,B><(C3,Bl><(C3,C><C3,C1><C3,02>,

< B2,03>,<B,C3><B1,C3><C,C3><C1,C3>,

< (C2,C3 >}

We will induce Canfly(x,y) using the extensionally defined background
relation Nonstop given earlier (modified as required for our reduced airline
map) and Canfly itself (recursively).

As before, we start with the empty program and proceed to the inner
loop to construct a clause that 1s necessary. Suppose that the inner loop
adds the background literal Nonstop(x,y). The clause Canfly(x,y) :-
Nonstop(x,y) is necessary; it covers no negative instances. But it is not
sufficient because it does not cover the following positive instances:

{< B1,B2>,< B1,C >,< B1,C1 >,< B1,C2 >,< B2, Bl >,
<C,Bl><(C1,Bl > <(C2,Bl > < B2,C> < B2,C1 >,
< B2,C2>,<(C,B2>,<(C1,B2>,< (2 B2>,< B,C1>,
<B,C2><Cl,B><C2,B><Cl1,C2><C2,C1>}

Thus, we must add another clause to the program. In the inner loop, we first
create the clause Canfly(x,y) :- Nonstop(x,z) which introduces the new
variable z. We digress briefly to describe how a program containing a clause
with unbound variables in its body is interpreted. Suppose we try to inter-
pret it for the positive instance Canfly(B1,B2). The interpreter attempts
to establish Nonstop(B1,z) for some z. Since Nonstop(B1, B), for exam-
ple, is a background fact, the interpreter returns 7—which means that the
instance < B1, B2 > is covered. Suppose now, we attempt to interpret the
clause for the negative instance Canfly(B3,B). The interpreter attempts to
establish Nonstop(B3,z) for some z. There are no background facts that
match, so the clause does not cover < B3, B >. Using the interpreter, we
see that the clause Canfly(x,y) :- Nonstop(x,z) covers all of the pos-
itive instances not already covered by the first clause, but it also covers
many negative instances such as < B2, B3 >, and < B, B3 >. So the inner

Introduction to Machine Learning ©1996 Nils J. Nilsson. All rights reserved.

110 CHAPTER 7. INDUCTIVE LOGIC PROGRAMMING

loop must add another literal. This time, suppose it adds Canfly(y,z)
to yield the clause Canfly(x,y) :- Nonstop(x,z), Canfly(y,z). This
clause is necessary; no negative instances are covered. The program is now
sufficient and consistent; 1t 1s:

Canfly(x,y) :- Nonstop(x,y)
:— Nonstop(x,z), Canfly(y,z)

7.5 Choosing Literals to Add

One of the first practical ILP systems was Quinlan’s FOIL [Quinlan, 1990].
A major problem involves deciding how to select a literal to add in the
inner loop (from among the literals that are allowed). In FOIL, Quinlan
suggested that candidate literals can be compared using an information-
like measure—similar to the measures used in inducing decision trees. A
measure that gives the same comparison as does Quinlan’s is based on the
amount by which adding a literal increases the odds that an instance drawn
at random from those covered by the new clause is a positive instance
beyond what these odds were before adding the literal.

Let p be an estimate of the probability that an instance drawn at ran-
dom from those covered by a clause before adding the literal is a posi-
tive instance. That is, p =(number of positive instances covered by the
clause)/(total number of instances covered by the clause). Tt is convenient
to express this probability in “odds form.” The odds, o, that a covered in-
stance is positive is defined to be o = p/(1 — p). Expressing the probability
in terms of the odds, we obtain p = o/(1 + o).

After selecting a literal, !, to add to a clause, some of the instances
previously covered are still covered; some of these are positive and some are
negative. Let p; denote the probability that an instance drawn at random
from the instances covered by the new clause (with ! added) is positive.
The odds will be denoted by o;. We want to select a literal, I, that gives
maximal increase in these odds. That is, if we define A\; = o;/0, we want a
literal that gives a high value of A;. Specializing the clause in such a way
that it fails to cover many of the negative instances previously covered but
still covers most of the positive instances previously covered will result in
a high value of A;. (It turns out that the value of Quinlan’s information
theoretic measure increases monotonically with A;, so we could just as well
use the latter instead.)

Introduction to Machine Learning ©1996 Nils J. Nilsson. All rights reserved.

7.6. RELATIONSHIPS BETWEEN ILP AND DECISION TREE INDUCTIONI111

Besides finding a literal with a high value of);, Quinlan’s FOIL system
also restricts the choice to literals that:

a) contain at least one variable that has already been used,

b) place further restrictions on the variables if the literal selected has
the same predicate letter as the literal being induced (in order to prevent
infinite recursion), and

c) survive a pruning test based on the values of A; for those literals
selected so far.

We refer the reader to Quinlan’s paper for further discussion of these points.
Quinlan also discusses post-processing pruning methods and presents ex-
perimental results of the method applied to learning recursive relations on
lists, on learning rules for chess endgames and for the card game Eleu-
sis, and for some other standard tasks mentioned in the machine learning
literature.

The reader should also refer to [Pazzani & Kibler, 1992,
Lavra¢ & Dzeroski, 1994, Muggleton, 1991, Muggleton, 1992].

7.6 Relationships Between ILP and Deci-
sion Tree Induction

The generic ILP algorithm can also be understood as a type of decision tree
induction. Recall the problem of inducing decision trees when the values of
attributes are categorical. When splitting on a single variable, the split at
each node involves asking to which of several mutually exclusive and exhaus-
tive subsets the value of a variable belongs. For example, if a node tested
the variable «;, and if «; could have values drawn from {A, B,C, D E F},
then one possible split (among many) might be according to whether the
value of #; had as value one of {4, B,C'} or one of {D, E, F'}.

It is also possible to make a multi-variate split—testing the values of
two or more variables at a time. With categorical variables, an n-variable
split would be based on which of several n-ary relations the values of the
variables satisfied. For example, if a node tested the variables z; and z;,
and if z; and x; both could have values drawn from {4, B,C, D, E, F'}, then
one possible binary split (among many) might be according to whether or
not < z;,x; > satisfied the relation {< A,C >,< C,D >}. (Note that
our subset method of forming single-variable splits could equivalently have
been framed using 1-ary relations—which are usually called properties.)

In this framework, the ILP problem is as follows: We are given a training
set, =, of positively and negatively labeled patterns whose components are

Introduction to Machine Learning ©1996 Nils J. Nilsson. All rights reserved.

Discuss
preprocessing,
postprocessing,
bottom-up
methods, and
LINUS.

112 CHAPTER 7. INDUCTIVE LOGIC PROGRAMMING

drawn from a set of variables {«,y, z,...}. The positively labeled patterns
in = form an extensional definition of a relation, R. We are also given back-
ground relations, Ry, ..., R, on various subsets of these variables. (That
is, we are given sets of tuples that are in these relations.) We desire to
construct an intensional definition of R in terms of the R, ..., Rg, such
that all of the positively labeled patterns in = are satisfied by R and none
of the negatively labeled patterns are. The intensional definition will be
in terms of a logic program in which the relation R is the head of a set of
clauses whose bodies involve the background relations.

The generic ILP algorithm can be understood as decision tree induction,
where each node of the decision tree is itself a sub-decision tree, and each
sub-decision tree consists of nodes that make binary splits on several vari-
ables using the background relations, R;. Thus we will speak of a top-level
decision tree and various sub-decision trees. (Actually, our decision trees
will be decision lists—a special case of decision trees, but we will refer to
them as trees in our discussions.)

In broad outline, the method for inducing an intensional version of the
relation R is illustrated by considering the decision tree shown in Fig. 7.5.
In this diagram, the patterns in = are first filtered through the decision
tree in top-level node 1. The background relation R; is satisfied by some
of these patterns; these are filtered to the right (to relation Rz), and the
rest are filtered to the left (more on what happens to these later). Right-
going patterns are filtered through a sequence of relational tests until only
positively labeled patterns satisfy the last relation—in this case R3. That is,
the subset of patterns satisfying all the relations, R;, Rs, and Rz contains
only positive instances from =. (We might say that this combination of
tests is necessary. They correspond to the clause created in the first pass
through the inner loop of the generic ILP algorithm.) Let us call the subset
of patterns satisfying these relations, =Z; these satisfy Node 1 at the top
level. All other patterns, that is {E — 21} = 2, are filtered to the left by
Node 1.

=5 1s then filtered by top-level Node 2 in much the same manner, so that
Node 2 is satisfied only by the positively labeled samples in =5. We continue
filtering through top-level nodes until only the negatively labeled patterns
fail to satisfy a top node. In our example, =4 contains only negatively
labeled patterns and the union of =; and Zj3 contains all the positively
labeled patterns. The relation, R, that distinguishes positive from negative
patterns in = is then given in terms of the following logic program:

R :- R1, R2, R3
:— R4, R5

Introduction to Machine Learning ©1996 Nils J. Nilsson. All rights reserved.

7.6. RELATIONSHIPS BETWEEN ILP AND DECISION TREE INDUCTIONI113

(only positive
instances
satisfy all three
tests)

(only positivel
instances satisfy
these two tests)

- _- - (only negative
=4~ =27 =3 instances)

Figure 7.5: A Decision Tree for ILP

If we apply this sort of decision-tree induction procedure to the problem
of generating a logic program for the relation Nonstop (refer to Fig. 7.3),
we obtain the decision tree shown in Fig. 7.6. The logic program resulting
from this decision tree is the same as that produced by the generic ILP
algorithm.

In setting up the problem, the training set, = can be expressed as a
set of 2-dimensional vectors with components x and y. The values of these
components range over the cities {A, B, C, Al, A2, B1, B2,C1,(2} except
(for simplicity) we do not allow patterns in which # and y have the same
value. As before, the relation, Nonstop, contains the following pairs of
cities, which are the positive instances:

{< A B> <A C><BC><BA><CA><C, B>,

<AAl > <A A2 > < ALLA> < A2)A> < B,Bl >, < B,B2>,
< Bl,B><B2,B><C (Cl><C (02> <Cl,C><(C2,C>}

Introduction to Machine Learning ©1996 Nils J. Nilsson. All rights reserved.

To be added.

114 CHAPTER 7. INDUCTIVE LOGIC PROGRAMMING

All other pairs of cities named in the map of Fig. 7.3 (using the closed
world assumption) are not in the relation Nonstop and thus are negative
instances.

Because the values of and y are categorical, decision-tree induction
would be a very difficult task—involving as it does the need to invent rela-
tions on # and y to be used as tests. But with the background relations, R;
(in this case Hub and Satellite), the problem is made much easier. We
select these relations in the same way that we select literals; from among
the available tests, we make a selection based on which leads to the largest
value of Ag,.

7.7 Bibliographical and Historical Remarks

Introduction to Machine Learning ©1996 Nils J. Nilsson. All rights reserved.

7.7. BIBLIOGRAPHICAL AND HISTORICAL REMARKS 115

Node 1 i =

(top level)

{<A,B>, <A,C>,
Node 2

<B,C>, <B,A>,
(top level) <C,A>, <C,B>}

(Only positive instances)

{<Al,A>, <A2,A>, <B1,B>,
<B2,B>, <C1,C>, <C2,C>}

(Only positive instances)

Node 3
(top level)

Satellite(y,x)

{<AA1>, <A A2><B,B1>,
<B,B2>, <C,C1>, <C,C2>}

(Only positive instances)
{Only negative instances}

Figure 7.6: A Decision Tree for the Airline Route Problem

Introduction to Machine Learning ©1996 Nils J. Nilsson. All rights reserved.

116 CHAPTER 7. INDUCTIVE LOGIC PROGRAMMING

Introduction to Machine Learning ©1996 Nils J. Nilsson. All rights reserved.

