Chapter 8

Computational Learning
Theory

In chapter one we posed the problem of guessing a function given a set of
sample inputs and their values. We gave some intuitive arguments to sup-
port the claim that after seeing only a small fraction of the possible inputs
(and their values) that we could guess almost correctly the values of most
subsequent inputs—if we knew that the function we were trying to guess
belonged to an appropriately restricted subset of functions. That is, a given
training set of sample patterns might be adequate to allow us to select a
function, consistent with the labeled samples, from among a restricted set
of hypotheses such that with high probability the function we select will
be approximately correct (small probability of error) on subsequent sam-
ples drawn at random according to the same distribution from which the
labeled samples were drawn. This insight led to the theory of probably ap-
proxzimately correct (PAC) learning—initially developed by Leslie Valiant
[Valiant, 1984]. We present here a brief description of the theory for the case
of Boolean functions. [Dietterich, 1990, Haussler, 1988, Haussler, 1990]
give nice surveys of the important results.

8.1 Notation and Assumptions for PAC
Learning Theory

We assume a training set = of n-dimensional vectors, X;,¢ =1,...,m, each
labeled (by 1 or 0) according to a target function, f, which is unknown to

117

Other

overviews?

Boldface
symbols need
to be smaller
when they are
subscripts in
math
environments.

118 CHAPTER 8. COMPUTATIONAL LEARNING THEORY

the learner. The probability of any given vector X being in =, or later being
presented to the learner, is P(X). The probability distribution, P, can be
arbitrary. (In the literature of PAC learning theory, the target function is
usually called the target concept and is denoted by ¢, but to be consistent
with our previous notation we will continue to denote it by f.) Our problem
is to guess a function, A(X), based on the labeled samples in Z. In PAC
theory such a guessed function is called the hypothesis. We assume that the
target function is some element of a set of functions, C. We also assume that
the hypothesis, A, is an element of a set, H, of hypotheses, which includes
the set, C, of target functions. A is called the hypothesis space.

In general, h won’t be identical to f, but we can strive to have the
value of h(X) = the value of f(X) for most X’s. That is, we want A to
be approrimately correct. To quantify this notion, we define the error of h,
€n, as the probability that an X drawn randomly according to P will be
misclassified:

en = > P(X)

Xon(X)z (X))

We say that h is approzimately (except for €) correct if e, < e, where ¢ is
the accuracy parameter.

Suppose we are able to find an A that classifies all m randomly drawn
training samples correctly; that is, A is consistent with this randomly se-
lected training set, =. If m 1s large enough, will such an h be approximately
correct (and for what value of £)7 On some training occasions, using m
randomly drawn training samples, such an A might turn out to be approx-
imately correct (for a given value of €), and on others it might not. We say
that h is probably (except for &) approximately correct (PAC) if the proba-
bility that it is approximately correct is greater than 1 —J, where § is the
confidence parameter. We shall show that if m is greater than some bound
whose value depends on ¢ and d, such an h is guaranteed to be probably
approximately correct.

In general, we say that a learning algorithm PAC-learns functions from
C in terms of H iff for every function fe C, it outputs a hypothesis he H,
such that with probability at least (1 —d), e5 < €. Such a hypothesis is
called probably (except for §) approzimately (except for) correct.

We want learning algorithms that are tractable, so we want an algorithm
that PAC-learns functions in polynomial time. This can only be done for
certain classes of functions. If there are a finite number of hypotheses in
a hypothesis set (as there are for many of the hypothesis sets we have
considered), we could always produce a consistent hypothesis from this

Introduction to Machine Learning ©1996 Nils J. Nilsson. All rights reserved.

8.2. PAC LEARNING 119

set by testing all of them against the training data. But if there are an
exponential number of hypotheses, that would take exponential time. We
seek training methods that produce consistent hypotheses in less time. The
time complexities for various hypothesis sets have been determined, and
these are summarized in a table to be presented later.

A class, C, is polynomually PAC learnable in terms of H provided there
exists a polynomial-time learning algorithm (polynomial in the number of
samples needed, m, in the dimension, n, in 1/¢, and in 1/6) that PAC-learns
functions in C in terms of A.

Initial work on PAC assumed H = C, but it was later shown that some
functions cannot be polynomially PAC-learned under such an assumption
(assuming P # NP)—but can be polynomially PAC-learned if % is a strict
superset of C! Also our definition does not specify the distribution, P, from
which patterns are drawn nor does it say anything about the properties of
the learning algorithm. Since C and H do not have to be identical, we have
the further restrictive definition:

A properly PAC-learnable class i1s a class C for which there exists an
algorithm that polynomially PAC-learns functions from € in terms of C.

8.2 PAC Learning

8.2.1 The Fundamental Theorem

Suppose our learning algorithm selects some h randomly from among those
that are consistent with the values of f on the m training patterns. The
probability that the error of this randomly selected h is greater than some
g, with h consistent with the values of f(X) for m instances of X (drawn
according to arbitrary P), is less than or equal to [H|e~*™, where |H] is
the number of hypotheses in %. We state this result as a theorem [Blumer,

et al., 1987]:

Theorem 8.1 (Blumer, et al.) Let % be any set of hypotheses, Z be a
set of m > 1 training examples drawn ndependently according to some
distribution P, f be any classification function in H, and ¢ > 0. Then, the
probability that there exists a hypothesis h consistent with f for the members
of 2 but with error greater than € is at most |H|e ™.

Proof:

Consider the set of all hypotheses, {hy, ho, ..., hi,..., hs}, in H, where
S = |H]|. The error for h; is ¢5,= the probability that h; will classify a pat-
tern in error (that is, differently than f would classify it). The probability

Introduction to Machine Learning ©1996 Nils J. Nilsson. All rights reserved.

120 CHAPTER 8. COMPUTATIONAL LEARNING THEORY

that h; will classify a pattern correctly is (1 —¢p,). A subset, Hp, of H will
have error greater than . We will call the hypotheses in this subset bad.
The probability that any particular one of these bad hypotheses, say hp,
would classify a pattern correctly is (1—¢p,). Since £, > &, the probability
that hy (or any other bad hypothesis) would classify a pattern correctly is
less than (1 —¢). The probability that it would classify all m independently
drawn patterns correctly is then less than (1 —&)™.

That is,
problhy, classifies all m patterns correctly |hy € Hp] < (1 —¢)™.

prob[some h ¢ Hp classifies all m patterns correctly]
= D.h, ¢ 1y Droblhy classifies all m patterns correctly |hy € Hp]
< K(1—&)™, where K = |Hp|.

That is,
prob[there is a bad hypothesis that classifies all m patterns correctly]
< K(1—g)™.

Since K < [H| and (1 — &)™ < e ™, we have:
prob[there is a bad hypothesis that classifies all m patterns correctly]

= prob[there is a hypothesis with error > ¢ and that classifies all m
patterns correctly] < |H|e=™.

O

A corollary of this theorem is:

Corollary 8.2 Given m > (1/¢)(In|H|+In(1/6)) independent samples,
the probability that there exists a hypothesis in ‘H that is consistent with f
on these samples and has error greater than ¢ is at most 4.

Proof: We are to find a bound on m that guarantees that

prob[there is a hypothesis with error > ¢ and that classifies all m pat-
terns correctly] < §. Thus, using the result of the theorem, we must show
that |H|e~¢™ < §. Taking the natural logarithm of both sides yields:

In|#|—em <lInd
or

Introduction to Machine Learning ©1996 Nils J. Nilsson. All rights reserved.

8.2. PAC LEARNING 121

m > (1/2)(In [} + In(1/5))

O

This corollary is important for two reasons. First it clearly states that
we can select any hypothesis consistent with the m samples and be assured
that with probability (1 — d) its error will be less than €. Also, it shows
that in order for m to increase no more than polynomially with n, [#]| can
be no larger than 20(n") No class larger than that can be guaranteed to
be properly PAC learnable.

Here is a possible point of confusion: The bound given in the corollary is
an upper bound on the value of m needed to guarantee polynomial probably
approximately correct learning. Values of m greater than that bound are
sufficient (but might not be necessary). We will present a lower (necessary)
bound later in the chapter.

8.2.2 Examples
Terms

Let H be the set of terms (conjunctions of literals). Then, |H| = 3", and

m > (1/¢)(In(3") + In(1/4))

> (1/e)(1.1n + In(1/6))

Note that the bound on m increases only polynomially with n, 1/e, and
1/6.

For n = 50, ¢ = 0.01 and § = 0.01, m > 5,961 guarantees PAC learn-
ability.

In order to show that terms are properly PAC learnable, we additionally
have to show that one can find in time polynomial in m and n a hypothesis
h consistent with a set of m patterns labeled by the value of a term. The

following procedure for finding such a consistent hypothesis requires O(nm)
steps (adapted from [Dietterich, 1990, page 268]):

We are given a training sequence, =, of m examples. Find the first
pattern, say Xy, in that list that is labeled with a 1. Initialize a Boolean
function, A, to the conjunction of the n literals corresponding to the values

Introduction to Machine Learning ©1996 Nils J. Nilsson. All rights reserved.

Change this
paragraph if
this algorithm
was presented
in Chapter
Three.

Linear
programming
is polynomial.

122 CHAPTER 8. COMPUTATIONAL LEARNING THEORY

of the n components of X;. (Components with value 1 will have corre-
sponding positive literals; components with value 0 will have corresponding
negative literals.) If there are no patterns labeled by a 1, we exit with the
null concept (h = 0 for all patterns). Then, for each additional pattern, X,
that is labeled with a 1, we delete from A any Boolean variables appearing
in X; with a sign different from their sign in h. After processing all the
patterns labeled with a 1, we check all of the patterns labeled with a 0 to
make sure that none of them is assigned value 1 by h. If, at any stage of
the algorithm, any patterns labeled with a 0 are assigned a 1 by A, then
there exists no term that consistently classifies the patterns in =, and we
exit with failure. Otherwise, we exit with h.

As an example, consider the following patterns; all labeled with a 1

(from [Dietterich, 1990]):
(0,1,1,0)
(1,1,1,0)
(1,1,0,0)
After processing the first pattern, we have h = Zyz,x3T4; after processing

the second pattern, we have h = xox37%; finally, after the third pattern, we
have h = z-%3.

Linearly Separable Functions

Let A be the set of all linearly separable functions. Then, |H| < 2”2, and
m > (1/e)(n*In 2+ In(1/4))

Again, note that the bound on m increases only polynomially with n, 1/¢,

and 1/4.

For n = 50, ¢ = 0.01 and 6 = 0.01, m > 173,748 guarantees PAC
learnability.

To show that linearly separable functions are properly PAC learnable,
we would have additionally to show that one can find in time polynomial in
m and n a hypothesis h consistent with a set of m labeled linearly separable
patterns.

8.2.3 Some Properly PAC-Learnable Classes

Some properly PAC-learnable classes of functions are given in the following
table. (Adapted from [Dietterich, 1990, pages 262 and 268] which also

gives references to proofs of some of the time complexities.)

Introduction to Machine Learning ©1996 Nils J. Nilsson. All rights reserved.

8.2. PAC LEARNING 123

| H | || | Time Complexity | P. Learnable? |
terms 3" polynomial yes
k-term DNF 20(kn) NP-hard no
(k disjunctive terms)
k-DNF 20(n*) polynomial yes
(a disjunction of k-sized terms)
k-CNF 20(n®) polynomial yes
(a conjunction of k-sized clauses)
k-DL 20(n*klgn) polynomial yes
(decision lists with k-sized terms)
lin. sep. 20(n”) polynomial yes
lin. sep. with (0,1) weights ? NP-hard no
k-2NN ? NP-hard no
DNF 22" polynomial no

(all Boolean functions)

(Members of the class k-2NN are two-layer, feedforward neural networks
with exactly & hidden units and one output unit.)

Summary: In order to show that a class of functions is Properly PAC-
Learnable :

1. Show that there is an algorithm that produces a consistent hypothesis
on m n-dimensional samples in time polynomial in m and n.

2. Show that the sample size, m, needed to ensure PAC learnability is
polynomial (or better) in (1/¢), (1/6), and n by showing that In [#]
is polynomial or better in the number of dimensions.

As hinted earlier, sometimes enlarging the class of hypotheses makes
learning easier. For example, the table above shows that k-CNF is PAC
learnable, but k-term-DNF is not. And yet, k-term-DNF is a subclass of
k-CNF! So, even if the target function were in k-term-DNF, one would be
able to find a hypothesis in k-CNF that is probably approximately correct
for the target function. Similarly, linearly separable functions implemented
by TLUs whose weight values are restricted to 0 and 1 are not properly
PAC learnable, whereas unrestricted linearly separable functions are. It
is possible that enlarging the space of hypotheses makes finding one that
is consistent with the training examples easier. An interesting question
is whether or not the class of functions in £-2NN is polynomially PAC

Introduction to Machine Learning ©1996 Nils J. Nilsson. All rights reserved.

124 CHAPTER 8. COMPUTATIONAL LEARNING THEORY

learnable if the hypotheses are drawn from A'-2NN with &' > k. (At the
time of writing, this matter is still undecided.)

Although PAC learning theory is a powerful analytic tool, it (like com-
plexity theory) deals mainly with worst-case results. The fact that the class
of two-layer, feedforward neural networks is not polynomially PAC learn-
able 1s more an attack on the theory than it is on the networks, which have
had many successful applications. As [Baum, 1994, page 416-17] says: “
... humans are capable of learning in the natural world. Therefore, a proof
within some model of learning that learning is not feasible is an indictment
of the model. We should examine the model to see what constraints can be
relaxed and made more realistic.”

8.3 The Vapnik-Chervonenkis Dimension

8.3.1 Linear Dichotomies

Consider a set, H, of functions, and a set, =, of (unlabeled) patterns. One
measure of the expressive power of a set of hypotheses, relative to =, is its
ability to make arbitrary classifications of the patterns in E.! If there are m
patterns in =, there are 2™ different ways to divide these patterns into two
disjoint and exhaustive subsets. We say there are 2™ different dichotomies
of =. If 2 were to include all of the 2" Boolean patterns, for example, there
are 22" ways to dichotomize them, and (of course) the set of all possible
Boolean functions dichotomizes them in all of these ways. But a subset, #,
of the Boolean functions might not be able to dichotomize an arbitrary set,
=, of m Boolean patterns in all 2™ ways. In general (that is, even in the
non-Boolean case), we say that if a subset, #, of functions can dichotomize
a set, =, of m patterns in all 2™ ways, then H shatters =.

—_

As an example, consider a set = of m patterns in the n-dimensional
space, R™. (That is, the n components of these patterns are real numbers.)
We define a linear dichotomy as one implemented by an (n — 1)-dimensional
hyperplane in the n-dimensional space. How many linear dichotomies of m
patterns in n dimensions are there? For example, as shown in Fig. 8.1,
there are 14 dichotomies of four points in two dimensions (each separating
line yields two dichotomies depending on whether the points on one side
of the line are classified as 1 or 0). (Note that even though there are an
infinite number of hyperplanes, there are, nevertheless, only a finite number

LAnd, of course, if a hypothesis drawn from a set that could make arbitrary classifi-
cations of a set of training patterns, there is little likelihood that such a hypothesis will
generalize well beyond the training set.

Introduction to Machine Learning ©1996 Nils J. Nilsson. All rights reserved.

8.3. THE VAPNIK-CHERVONENKIS DIMENSION 125

of ways in which hyperplanes can dichotomize a finite number of patterns.
Small movements of a hyperplane typically do not change the classifications
of any patterns.)

14 dichotomies of 4 points in 2 dimensions

Figure 8.1: Dichotomizing Points in Two Dimensions

The number of dichotomies achievable by hyperplanes depends on how
the patterns are disposed. For the maximum number of linear dichotomies,
the points must be in what is called general position. For m > n, we
say that a set of m points is in general position in an n-dimensional space
if and only if no subset of (n + 1) points lies on an (n — 1)-dimensional
hyperplane. When m < n, a set of m points is in general position if no
(m — 2)-dimensional hyperplane contains the set. Thus, for example, a set
of m > 4 points is in general position in a three-dimensional space if no
four of them lie on a (two-dimensional) plane. We will denote the number
of linear dichotomies of m points in general position in an n-dimensional
space by the expression Iz (m, n).

It is not too difficult to verify that:

HL(m,n)ZQZC(m—l,i) for m > n,and
i=0

=27 for m <n

Introduction to Machine Learning ©1996 Nils J. Nilsson. All rights reserved.

Include the
derivation.

126 CHAPTER 8. COMPUTATIONAL LEARNING THEORY

m—1)!

where C'(m — 1,¢) is the binomial coefficient e

The table below shows some values for IIg (m, n).

m n

(no. of patterns) (dimension)
2 3 4 5
2 2 2 2
4 4 4 4
8 8 8 8
16 16
22 30 32 32
32 52 62 64
14 44 84 114 126
16 58 128 198 240

=] =
[\DOOOCRHRI\D)—k
—
S
e
(=]

O ~I| O O | I N —

Note that the class of linear dichotomies shatters the m patterns if m <
n + 1. The bold-face entries in the table correspond to the highest values
of m for which linear dichotomies shatter m patterns in n dimensions.

8.3.2 Capacity

Let P pn = MLQ%Z = the probability that a randomly selected dichotomy
(out of the 2™ possible dichotomies of m patterns in n dimensions) will be
linearly separable. In Fig. 8.2 we plot Py(,41), versus A and n, where
A=m/(n+1).

Note that for large n (say n > 30) how quickly P, , falls from 1 to
0 as m goes above 2(n + 1). For m < 2(n + 1), any dichotomy of the
m points is almost certainly linearly separable. But for m > 2(n + 1), a
randomly selected dichotomy of the m points is almost certainly not linearly
separable. For this reason m = 2(n + 1) is called the capacity of a TLU
[Cover, 1965]. Unless the number of training patterns exceeds the capacity,
the fact that a TLU separates those training patterns according to their
labels means nothing in terms of how well that TLU will generalize to new
patterns. There is nothing special about a separation found for m < 2(n+1)
patterns—almost any dichotomy of those patterns would have been linearly
separable. To make sure that the separation found is forced by the training
set and thus generalizes well, it has to be the case that there are very few
linearly separable functions that would separate the m training patterns.

Introduction to Machine Learning ©1996 Nils J. Nilsson. All rights reserved.

8.3. THE VAPNIK-CHERVONENKIS DIMENSION 127

PAx(n + 1), n

Figure 8.2: Probability that a Random Dichotomy is Linearly Separable

Analogous results about the generalizing abilities of neural networks
have been developed by [Baum & Haussler, 1989] and given intuitive and
experimental justification in [Baum, 1994, page 438]:

“The results seemed to indicate the following heuristic rule
holds. If M examples [can be correctly classified by] a net with
W weights (for M >> W), the net will make a fraction £ of
errors on new examples chosen from the same [uniform] distri-
bution where ¢ = W/M.”

8.3.3 A More General Capacity Result

Corollary 7.2 gave us an expression for the number of training patterns
sufficient to guarantee a required level of generalization—assuming that
the function we were guessing was a function belonging to a class of known
and finite cardinality. The capacity result just presented applies to linearly
separable functions for non-binary patterns. We can extend these ideas to
general dichotomies of non-binary patterns.

In general, let us denote the maximum number of dichotomies of any set
of m n-dimensional patterns by hypotheses in H as I13(m, n). The number
of dichotomies will, of course, depend on the disposition of the m points

Introduction to Machine Learning ©1996 Nils J. Nilsson. All rights reserved.

128 CHAPTER 8. COMPUTATIONAL LEARNING THEORY

in the n-dimensional space; we take Ty (m, n) to be the maximum over all
possible arrangements of the m points. (In the case of the class of linearly
separable functions, the maximum number is achieved when the m points
are in general position.) For each class, H, there will be some maximum
value of m for which Tly (m,n) = 2™, that is, for which K shatters the m
patterns. This maximum number is called the Vapnik-Chervonenkis (VC)
dimension and is denoted by VCdim(#) [Vapnik & Chervonenkis, 1971].

We saw that for the class of linear dichotomies, VCdim(Linear) = (n+
1). As another example, let us calculate the VC dimension of the hypothesis
space of single intervals on the real line—used to classify points on the real
line. We show an example of how points on the line might be dichotomized
by a single interval in Fig. 8.3. The set = could be, for example, {0.5, 2.5,
- 2.3, 3.14}, and one of the hypotheses in our set would be [1, 4.5]. This
hypothesis would label the points 2.5 and 3.14 with a 1 and the points - 2.3
and 0.5 with a 0. This set of hypotheses (single intervals on the real line)
can arbitrarily classify any two points. But no single interval can classify
three points such that the outer two are classified as 1 and the inner one as
0. Therefore the VC dimension of single intervals on the real line is 2. As
soon as we have many more than 2 training patterns on the real line and
provided we know that the classification function we are trying to guess is
a single interval, then we begin to have good generalization.

@ ==

Figure 8.3: Dichotomizing Points by an Interval

The VC dimension 1s a useful measure of the expressive power of a
hypothesis set. Since any dichotomy of VCdim(#) or fewer patterns in
general position in n dimensions can be achieved by some hypothesis in
H, we must have many more than VCdim(#) patterns in the training set
in order that a hypothesis consistent with the training set is sufficiently
constrained to imply good generalization. Qur examples have shown that
the concept of VC dimension is not restricted to Boolean functions.

Introduction to Machine Learning ©1996 Nils J. Nilsson. All rights reserved.

8.4. VC DIMENSION AND PAC LEARNING 129

8.3.4 Some Facts and Speculations About the VC Di-
mension

o If there are a finite number, |#|, of hypotheses in H, then:
VCdim(#) < log(|#|)

e The VC dimension of terms in n dimensions 1s n.

e Suppose we generalize our example that used a hypothesis set of single
intervals on the real line. Now let us consider an n-dimensional feature
space and tests of the form L; < z; < H;. We allow only one such
test per dimension. A hypothesis space consisting of conjunctions of
these tests (called axis-parallel hyper-rectangles) has VC dimension

bounded by:
n < VCdim < 2n

e As we have already seen, TLUs with n inputs have a VC dimension
of n+ 1.

e [Baum, 1994, page 438] gives experimental evidence for the proposi-
tion that “ ... multilayer [neural] nets have a VC dimension roughly
equal to their total number of [adjustable] weights.”

8.4 VC Dimension and PAC Learning

There are two theorems that connect the idea of VC dimension with PAC
learning [Blumer, et al., 1990]. We state these here without proof.

Theorem 8.3 (Blumer, et al.) A hypothesis space H is PAC learnable iff
it has finite VC dimension.

Theorem 8.4 A set of hypotheses, H, s properly PAC learnable if:

1. m > (1/e)max[41g(2/§), 8 VCdim lg(13/¢)], and

2. 1f there is an algorithm that outputs a hypothesis h ¢ H consistent
with the training set in polynomial (in m and n) time.

The second of these two theorems improves the bound on the number
of training patterns needed for linearly separable functions to one that is
linear in n. In our previous example of how many training patterns were
needed to ensure PAC learnability of a linearly separable function if n = 50,

Introduction to Machine Learning ©1996 Nils J. Nilsson. All rights reserved.

To be added.

130 CHAPTER 8. COMPUTATIONAL LEARNING THEORY

¢ = 0.01, and § = 0.01, we obtained m > 173,748. Using the Blumer, et
al. result we would get m > 52, 756.

As another example of the second theorem, let us take H to be the
set of closed intervals on the real line. The VC dimension is 2 (as shown
previously). With n = 50, ¢ = 0.01, and § = 0.01, m > 16,551 ensures
PAC learnability.

There is also a theorem that gives a lower (necessary) bound on the num-
ber of training patterns required for PAC learning [Ehrenfeucht, et al., 1988]:

Theorem 8.5 Any PAC learning algorithm must examine at least
Q(1/e1g(1/9) + VCdim(H)) training patterns.

The difference between the lower and upper bounds is

O(log(1/e)VCdim(H) /).

8.5 Bibliographical and Historical Remarks

Introduction to Machine Learning ©1996 Nils J. Nilsson. All rights reserved.

