Chapter 9

Unsupervised Learning

9.1 What is Unsupervised Learning?

Consider the various sets of points in a two-dimensional space illustrated
in Fig. 9.1. The first set (a) seems naturally partitionable into two classes,
while the second (b) seems difficult to partition at all, and the third (c) is
problematic. Unsupervised learning uses procedures that attempt to find
natural partitions of patterns. There are two stages:

e Form an R-way partition of a set = of unlabeled training patterns
(where the value of R, itself, may need to be induced from the pat-
terns). The partition separates = into R mutually exclusive and ex-
haustive subsets, =1, ..., g, called clusters.

e Design a classifier based on the labels assigned to the training patterns
by the partition.

We will explain shortly various methods for deciding how many clusters
there should be and for separating a set of patterns into that many clusters.
We can base some of these methods, and their motivation, on minimum-
description-length (MDL) principles. In that setting, we assume that we
want to encode a description of a set of points, =, into a message of mini-
mal length. One encoding involves a description of each point separately;
other, perhaps shorter, encodings might involve a description of clusters of
points together with how each point in a cluster can be described given
the cluster it belongs to. The specific techniques described in this chapter
do not explicitly make use of MDL principles, but the MDL method has

131

132 CHAPTER 9. UNSUPERVISED LEARNING

° ° N o °
° .o ° * ® °
[]
® o ° °
a) two clusters .
[] ° *
e o o *
o © °
o ° o °
[] [] ° °
o [] () ° ° [] ° 'Y
® o
[) Y .O °
o b) one cluster
® o’ °
c)?

Figure 9.1: Unlabeled Patterns

been applied with success. One of the MDL-based methods; Autoclass I1
[Cheeseman, et al., 1988] discovered a new classification of stars based on
the properties of infrared sources.

Another type of unsupervised learning involves finding hierarchies of
partitionings or clusters of clusters. A hierarchical partition is one in which
= 1s divided into mutually exclusive and exhaustive subsets, =;,...,Eg;
each set, Z;, (¢ = 1,..., R) is divided into mutually exclusive and exhaustive
subsets, and so on. We show an example of such a hierarchical partition
in Fig. 9.2. The hierarchical form is best displayed as a tree, as shown
in Fig. 9.3. The tip nodes of the tree can further be expanded into their
individual pattern elements. One application of such hierarchical partitions
is in organizing individuals into taxonomic hierarchies such as those used
in botany and zoology.

Introduction to Machine Learning ©1996 Nils J. Nilsson. All rights reserved.

9.2. CLUSTERING METHODS 133

Figure 9.2: A Hierarchy of Clusters

9.2 Clustering Methods

9.2.1 A Method Based on Euclidean Distance

Most of the unsupervised learning methods use a measure of similarity be-
tween patterns in order to group them into clusters. The simplest of these
involves defining a distance between patterns. For patterns whose features
are numeric, the distance measure can be ordinary Euclidean distance be-
tween two points in an n-dimensional space.

There is a simple, iterative clustering method based on distance. It
can be described as follows. Suppose we have R randomly chosen cluster
seekers, C1,...,Cp. These are points in an n-dimensional space that we
want to adjust so that they each move toward the center of one of the
clusters of patterns. We present the (unlabeled) patterns in the training

Introduction to Machine Learning ©1996 Nils J. Nilsson. All rights reserved.

134 CHAPTER 9. UNSUPERVISED LEARNING

11 12 31 TR =21 T2 =23

Figure 9.3: Displaying a Hierarchy as a Tree

set, =, to the algorithm one-by-one. For each pattern, X;, presented, we
find that cluster seeker, C;, that is closest to X; and move it closer to X;:

Cj — (1 — Ozj)Cj + OéjXZ'

where «; is a learning rate parameter for the j-th cluster seeker; it deter-
mines how far C; is moved toward X;.

Refinements on this procedure make the cluster seekers move less far
as training proceeds. Suppose each cluster seeker, C;, has a mass, m;,
equal to the number of times that it has moved. As a cluster seeker’s mass
increases it moves less far towards a pattern. For example, we might set
a; = 1/(1+4m;) and use the above rule together with m; «— m; +1. With
this adjustment rule, a cluster seeker is always at the center of gravity
(sample mean) of the set of patterns toward which it has so far moved.
Intuitively, if a cluster seeker ever gets within some reasonably well clustered
set of patterns (and if that cluster seeker is the only one so located), it will
converge to the center of gravity of that cluster.

Once the cluster seekers have converged, the classifier implied by the
now-labeled patterns in = can be based on a Voronoi partitioning of the

Introduction to Machine Learning ©1996 Nils J. Nilsson. All rights reserved.

9.2. CLUSTERING METHODS 135

space (based on distances to the various cluster seekers). This kind of
classification, an example of which is shown in Fig. 9.4, can be implemented

by a linear machine. Georgy
Fedoseevich
Voronoi, was a
Russian
mathematician
who lived from
1868 to 1909.

Separating boundaries

Figure 9.4: Minimum-Distance Classification

When basing partitioning on distance, we seek clusters whose patterns
are as close together as possible. We can measure the badness, V', of a
cluster of patterns, {X;}, by computing its sample variance defined by:

V= (1/K)) (X — M)

7

where M is the sample mean of the cluster, which is defined to be:
M = (1/K)> X,

and K is the number of points in the cluster.

We would like to partition a set of patterns into clusters such that the
sum of the sample variances (badnesses) of these clusters is small. Of course
if we have one cluster for each pattern, the sample variances will all be zero,
so we must arrange that our measure of the badness of a partition must
increase with the number of clusters. In this way, we can seek a trade-off
between the variances of the clusters and the number of them in a way
somewhat similar to the principle of minimal description length discussed
earlier.

Introduction to Machine Learning ©1996 Nils J. Nilsson. All rights reserved.

136 CHAPTER 9. UNSUPERVISED LEARNING

Elaborations of our basic cluster-seeking procedure allow the number
of cluster seekers to vary depending on the distances between them and
depending on the sample variances of the clusters. For example, if the
distance, d;;, between two cluster seekers, C; and C;, ever falls below some
threshold ¢, then we can replace them both by a single cluster seeker placed
at their center of gravity (taking into account their respective masses). In
this way we can decrease the overall badness of a partition by reducing the
number of clusters for comparatively little penalty in increased variance.

On the other hand, if any of the cluster seekers, say C;, defines a cluster
whose sample variance is larger than some amount J, then we can place a
new cluster seeker, C;, at some random location somewhat adjacent to C;
and reset the masses of both C; and C; to zero. In this way the badness
of the partition might ultimately decrease by decreasing the total sample
variance with comparatively little penalty for the additional cluster seeker.
The values of the parameters ¢ and & are set depending on the relative
weights given to sample variances and numbers of clusters.

In distance-based methods, it is important to scale the components of
the pattern vectors. The variation of values along some dimensions of the
pattern vector may be much different than that of other dimensions. One
commonly used technique is to compute the standard deviation (i.e., the
square root of the variance) of each of the components over the entire train-
ing set and normalize the values of the components so that their adjusted
standard deviations are equal.

9.2.2 A Method Based on Probabilities

Suppose we have a partition of the training set, =, into R mutually exclu-
sive and exhaustive clusters, (1, ..., Cgr. We can decide to which of these
clusters some arbitrary pattern, X, should be assigned by selecting the Cj
for which the probability, p(C;|X), is largest, providing p(C;|X) is larger
than some fixed threshold, 6. As we saw earlier, we can use Bayes rule
and base our decision on maximizing p(X|C;)p(Ci). Assuming conditional
independence of the pattern components, x;, the quantity to be maximized
is:

S(X, Ci) = p(a1|Ci)p(w2|Ch) - - p(an|Ci)p(Ci)
The p(z;|C;) can be estimated from the sample statistics of the patterns in
the clusters and then used in the above expression. (Recall the linear form

that this formula took in the case of binary-valued components.)

Introduction to Machine Learning ©1996 Nils J. Nilsson. All rights reserved.

9.2. CLUSTERING METHODS 137

We call S(X, C;) the similarity of X to a cluster, C;, of patterns. Thus,
we assign X to the cluster to which it is most similar, providing the simi-
larity is larger than §.

Just as before, we can define the sample mean of a cluster, C;, to be:
M; = (1/K;) Y X
Xje [oN

where K; is the number of patterns in C;.

We can base an iterative clustering algorithm on this measure of simi-
larity [Mahadevan & Connell, 1992]. Tt can be described as follows:

1. Begin with a set of unlabeled patterns = and an empty list, L, of
clusters.

2. For the next pattern, X, in =, compute S(X, C;) for each cluster, C;.
(Initially, these similarities are all zero.) Suppose the largest of these
similarities is S(X, Ciay)-

(a) Tf S(X, Craz) > 4, assign X to Chyap. That is,

Cmax — Cmax U {X}

Update the sample statistics p(21|Cmaz), P(22|Cmaz), - - - P(2n|Cinaz)

and p(Cpqyp) to take the new pattern into account. Go to 3.

(b) If S(X, Cinaz) < 6, create a new cluster, Cyepy = {X} and add
Crew to L. Go to 3.

3. Merge any existing clusters, C; and C; if (M; — 1\/Ij)2 < . Compute
new Sample statistics p($1|Cmerge)ap($2|cmerge)a cee ap($n|cmerge)a
and p(Cmerge) for the merged cluster, Cpyepge = Ci U Cj.

4. If the sample statistics of the clusters have not changed during an
entire iteration through =, then terminate with the clusters in L;
otherwise go to 2.

The value of the parameter § controls the number of clusters. If ¢ is
high, there will be a large number of clusters with few patterns in each
cluster. For small values of 4§, there will be a small number of clusters
with many patterns in each cluster. Similarly, the larger the value of ¢, the
smaller the number clusters that will be found.

Designing a classifier based on the patterns labeled by the partitioning is
straightforward. We assign any pattern, X, to that category that maximizes

S(X, C).

Introduction to Machine Learning ©1996 Nils J. Nilsson. All rights reserved.

Mention
“k-means and
CEMY
methods.

138 CHAPTER 9. UNSUPERVISED LEARNING
9.3 Hierarchical Clustering Methods

9.3.1 A Method Based on Euclidean Distance

Suppose we have a set, =, of unlabeled training patterns. We can form
a hierarchical classification of the patterns in = by a simple agglomerative
method. (The description of this algorithm is based on an unpublished
manuscript by Pat Langley.) Our description here gives the general idea;
we leave it to the reader to generate a precise algorithm.

We first compute the Euclidean distance between all pairs of patterns
in E. (Again, appropriate scaling of the dimensions is assumed.) Suppose
the smallest distance is between patterns X; and X;. We collect X; and
X; into a cluster, C, eliminate X; and X; from = and replace them by a
cluster vector, C, equal to the average of X; and X;. Next we compute the
Euclidean distance again between all pairs of points in Z. If the smallest
distance is between pairs of patterns, we form a new cluster, C', as before
and replace the pair of patterns in = by their average. If the shortest
distance is between a pattern, X;, and a cluster vector, C; (representing a
cluster, C;), we form a new cluster, C', consisting of the union of C; and
{X;}. In this case, we replace C; and X; in = by their (appropriately
weighted) average and continue. If the shortest distance is between two
cluster vectors, C; and C;, we form a new cluster, C, consisting of the union
of Cj and C;. In this case, we replace C; and C; by their (appropriately
weighted) average and continue. Since we reduce the number of points in
= by one each time, we ultimately terminate with a tree of clusters rooted
in the cluster containing all of the points in the original training set.

An example of how this method aggregates a set of two dimensional
patterns is shown in Fig. 9.5. The numbers associated with each clus-
ter indicate the order in which they were formed. These clusters can be
organized hierarchically in a binary tree with cluster 9 as root, clusters 7
and 8 as the two descendants of the root, and so on. A ternary tree could
be formed instead if one searches for the three points in = whose triangle
defined by those patterns has minimal area.

9.3.2 A Method Based on Probabilities

A probabilistic quality measure for partitions

We can develop a measure of the goodness of a partitioning based on how
accurately we can guess a pattern given only what partition it is in. Suppose
we are given a partitioning of = into R classes, (1, ..., Cg. As before, we

Introduction to Machine Learning ©1996 Nils J. Nilsson. All rights reserved.

9.3. HIERARCHICAL CLUSTERING METHODS 139

Figure 9.5: Agglommerative Clustering

can compute the sample statistics p(#;|C)) which give probability values for
each component given the class assigned to it by the partitioning. Suppose
each component x; of X can take on the values v;;, where the index j steps
over the domain of that component. We use the notation p;(v;;|Cx) =
probability(z; = v;;|Ck).

Suppose we use the following probabilistic guessing rule about the values
of the components of a vector X given only that it is in class k. Guess that
#; = v;; with probability p;(v;;|Cx). Then, the probability that we guess
the i-th component correctly is:

Z probability(guess is v;;)p; (vi;|C) = Z [ps (vi; |C'k
J

The average number of (the n) components whose values are guessed cor-

rectly by this method is then given by the sum of these probabilities over
all of the components of X:

ZZ [pi (vi; |C)]°

Introduction to Machine Learning ©1996 Nils J. Nilsson. All rights reserved.

140 CHAPTER 9. UNSUPERVISED LEARNING

Given our partitioning into R classes, the goodness measure, G, of this
partitioning is the average of the above expression over all classes:

G=> p(Ck) Z Z [pi(viCr))”

where p(Cy) is the probability that a pattern is in class Cy. In order to
penalize this measure for having a large number of classes, we divide it by
R to get an overall “quality” measure of a partitioning:

Z = (1/R))_p(Cr) Z Z [pi(wi;1CL))”

We give an example of the use of this measure for a trivially simple
clustering of the four three-dimensional patterns shown in Fig. 9.6. There
are several different partitionings. Let’s evaluate Z values for the following
ones: Py = {a,b,c,d}, P» = {{a,b},{c,d}}, Ps = {{a,c},{b,d}}, and
Py = {{a},{b},{c},{d}}. The first, Py, puts all of the patterns into a
single cluster. The sample probabilities p;(v;; = 1) and p;(v;o = 0) are all
equal to 1/2 for each of the three components. Summing over the values of
the components (0 and 1) gives (1/2)% + (1/2)? = 1/2. Summing over the
three components gives 3/2. Averaging over all of the clusters (there is just
one) also gives 3/2. Finally, dividing by the number of clusters produces
the final 7 value of this partition, Z(Py) = 3/2.

The second partition, Ps, gives the following sample probabilities:

p1(vi = 1]C1) =1
pz(vzl = 1|01) = 1/2

pa(var = 1|1Ch) =1

Summing over the values of the components (0 and 1) gives (1)? + (0)? = 1
for component 1, (1/2)?+(1/2)? = 1/2 for component 2, and (1)2+(0)? =1
for component 3. Summing over the three components gives 2 1/2 for class
1. A similar calculation also gives 2 1/2 for class 2. Averaging over the
two clusters also gives 2 1/2. Finally, dividing by the number of clusters
produces the final Z value of this partition, Z(P;) = 1 1/4, not quite as
high as Z(Py).

Similar calculations yield Z(Ps) = 1 and Z(P4) = 3/4, so this method
of evaluating partitions would favor placing all patterns in a single cluster.

Introduction to Machine Learning ©1996 Nils J. Nilsson. All rights reserved.

9.3. HIERARCHICAL CLUSTERING METHODS 141

X3

X1

Figure 9.6: Patterns in 3-Dimensional Space

An iterative method for hierarchical clustering

Evaluating all partitionings of m patterns and then selecting the best would
be computationally intractable. The following iterative method is based on
a hierarchical clustering procedure called COBWEB [Fisher, 1987]. The
procedure grows a tree each node of which is labeled by a set of patterns.
At the end of the process, the root node contains all of the patterns in
=Z. The successors of the root node will contain mutually exclusive and
exhaustive subsets of =. In general, the successors of a node, 5, are labeled
by mutually exclusive and exhaustive subsets of the pattern set labelling
node 7. The tips of the tree will contain singleton sets. The method uses 7
values to place patterns at the various nodes; sample statistics are used to
update the Z values whenever a pattern is placed at a node. The algorithm
1s as follows:

1. We start with a tree whose root node contains all of the patterns in
= and a single empty successor node. We arrange that at all times
during the process every non-empty node in the tree has (besides any
other successors) exactly one empty successor.

2. Select a pattern X; in Z (if there are no more patterns to select,
terminate).

Introduction to Machine Learning ©1996 Nils J. Nilsson. All rights reserved.

142 CHAPTER 9. UNSUPERVISED LEARNING

3. Set p to the root node.

4. For each of the successors of y (including the empty successor!), cal-
culate the best host for X;. A best host is determined by tentatively
placing X; in one of the successors and calculating the resulting 7
value for each one of these ways of accomodating X;. The best host
corresponds to the assignment with the highest Z value.

5. If the best host is an empty node, n, we place X; in 7, generate an
empty successor node of 7, generate an empty sibling node of 5, and
go to 2.

6. If the best host is a non-empty, singleton (tip) node, 7, we place X, in
7, create one successor node of 5 containing the singleton pattern that
was 1n 7, create another successor node of 7 containing X;, create an
empty successor node of 7, create empty successor nodes of the new
non-empty successors of 1, and go to 2.

7. If the best host is a non-empty, non-singleton node, 7, we place X; in
7, set p to n, and go to 4.

This process 1s rather sensitive to the order in which patterns are pre-
sented. To make the final classification tree less order dependent, the COB-
WEB procedure incorporates node merging and splitting.

Node merging;:

It may happen that two nodes having the same parent could be merged
with an overall increase in the quality of the resulting classification per-
formed by the successors of that parent. Rather than try all pairs to merge,
a good heuristic 1s to attempt to merge the two best hosts. When such a
merging improves the Z value, a new node containing the union of the pat-
terns in the merged nodes replaces the merged nodes, and the two nodes
that were merged are installed as successors of the new node.

Node splitting:
A heuristic for node splitting is to consider replacing the best host
among a group of siblings by that host’s successors. This operation is

performed only if it increases the Z value of the classification performed by
a group of siblings.

Example results from COBWEB

We mention two experiments with COBWEB. In the first, the program
attempted to find two categories (we will call them Class I and Class 2) of

Introduction to Machine Learning ©1996 Nils J. Nilsson. All rights reserved.

9.4. BIBLIOGRAPHICAL AND HISTORICAL REMARKS 143

United States Senators based on their votes (yes or no) on six issues. After
the clusters were established, the majority vote in each class was computed.
These are shown in the table below.

| Issue | Class 1 | Class 2 |
Toxic Waste yes no
Budget Cuts yes no
SDI Reduction no yes
Contra Aid yes no
Line-Ttem Veto yes no
MX Production yes no

In the second experiment, the program attempted to classify soybean
diseases based on various characteristics. COBWEB grouped the diseases
in the taxonomy shown in Fig. 9.7.

No
soybean
diseases

Np
Diaporthe
Stem Canker

N
Charcoal
Rot

N3
Phytophthora
Rot

N3p
Rhizoctonia
Rot

Figure 9.7: Taxonomy Induced for Soybean Diseases

9.4 Bibliographical and Historical Remarks

To be added.

Introduction to Machine Learning ©1996 Nils J. Nilsson. All rights reserved.

144 CHAPTER 9. UNSUPERVISED LEARNING

Introduction to Machine Learning ©1996 Nils J. Nilsson. All rights reserved.

