
CHAPTER 3

Variables and procedures

At this point, I have explained how to draw only the simplest figures. In particular, I have given no hint of how

to use the real programming capability of PostScript.

Before beginning to look at more complex features of the language, place this principle firmly in your mind:debugging:1

• To get good results from PostScript, first get a simple picture up on the screen that comes somewhere close
to what you want, and then refine it and add to it until it is exactly what you want.

It is the secret to efficient PostScript programming, because once you have a picture—any picture—you can
often visualize your errors. Another suggestion is that since debugging large chunks of PostScript all at once is

extremely painful, you want to keep small the scope of your errors. Yet another thing to keep in mind as you
develop programs is flexibility. Ask yourself frequently if you might reuse in another drawing what you are

doing in this one. We shall see how to take advantage of reusable code in an efficient way.

The basic technique of this chapter will be to see how one PostScript program evolves according to this process.

Technically, the main ingredients we are going to add to our tool kit are variables and procedures.variables:1

1. Variables in PostScript

The following program draws a square one inch on a side roughly in the middle of a page.

%!

72 72 scale

4.25 5.5 translate

1 72 div setlinewidth

newpath

0 0 moveto

1 0 rlineto

0 1 rlineto

-1 0 rlineto

closepath

stroke

showpage

It is extremely simple, and frankly not very interesting.

Among other things, it is not very flexible. Suppose you wanted to change the size of the square? You would

have to replace each occurrence of “1” with the new size. This is awkward—you might miss an occurrence, at
least if your program were more complicated. It would be better to introduce a variable s to control the length ofvariables:1

the side of the square.



Chapter 3. Variables and procedures 2

Variables in PostScript can be just about any sequence of letters and symbols. They are defined and assignedvariables:definition:1les:assigning values to:1

values in statements like thisdef:1

/s 1 def

which sets the variable s to be 1. The /s here is the name of the variable s. We can’t write s 1 def because thenles:names versus values:2

the value of s would go on the stack and its name lost track of, whereas what we want to do is associate the new
value 1 with the letter s.

• After a variable is defined in your program, any occurrence of that variable will be replaced by the last value
assigned to it.

We shall see later that this is not quite true in certain local environments.

If you attempt to use the name of a variable that has not been defined, you will get an error message aboutundefined:2

/undefined in ...

Using a variable for the side of the square, the new program would look like this (I include only the interesting

parts from now on):

/s 1 def

newpath

0 0 moveto

s 0 rlineto

0 s rlineto

s neg 0 rlineto

closepath

stroke

I recall that the command neg replaces anything on the top of the stack by its negative. This code is indeed a bit

more flexible than the original, because if you want to draw a square of different size you would have to change
only the first line.

Technical remark. Definition and assignment in PostScript look the same, and differ only in technical ways. In
order to understand how this works, it is helpful to know how PostScript keeps track of the values of variables.

It stores them in a dictionary, which is a collection of of names and the values assigned to them. There may bedictionary:PostScript:2

several dictionaries currently in use at any given point in a program; they are kept in the dictionary stack. Whenstack:dictionary:2

a variable is defined, its name and value are registered in the top dictionary, replacing any value it has had before.

When the variable is encountered in a program, all the dictionaries in use are searched until its value is found,
starting at the top of the dictionary stack.

2. Procedures in PostScript

Suppose you wanted to draw two squares, one of them at (0, 0) and the other at (0,−1) (that is to say, just below

the first). Most straightforward:



Chapter 3. Variables and procedures 3

%!

72 72 scale

4.25 5.5 translate

1 72 div setlinewidth

newpath

0 0 moveto

s 0 rlineto

0 s rlineto

s neg 0 rlineto

closepath

stroke

0 -1 translate

newpath

0 0 moveto

s 0 rlineto

0 s rlineto

s neg 0 rlineto

closepath

stroke

showpage

The program just repeats the part of the program which actually draws the square, of course. Recall that
translate shifts the origin of the user’s coordinate system in the current units.

Repeating the code to draw the two squares is somewhat inefficient—this technique will lead to a lot of text
pasting and turns out to be very prone to error. It is both more efficient and safer to use a PostScript procedureprocedures:3

to repeat the code for you. A procedure in PostScript is an extremely simple thing.

• A procedure in PostScript is just any sequence of commands, enclosed in brackets {. . .}.

You can assign procedures to variables just as you can assign any other kind of data. When you insert this

variable in your program, it is replaced by the sequence of commands inside the brackets. In other words, using
a procedure in PostScript to draw squares proceeds in two steps:

(1) Define a procedure, called say draw-square, in the following way:

/draw-square {

newpath

0 0 moveto

s 0 rlineto

0 s rlineto

s neg 0 rlineto

closepath

stroke

} def

At any point in a program after this definition, whenever the expression draw-square occurs, PostScript will
simply substitute the lines in between the curly brackets { and }. The effect of calling a procedure in PostScript

is always this sort of straightforward substitution.

(2) Call the procedure when it is needed. In this case, the new commands on the page will include the above

definition, and also this:



Chapter 3. Variables and procedures 4

draw-square

0 -1 translate

draw-square

Of course if we have done things correctly, the page looks the same as before. But we can now change it easily by

mixing several translations and calls to draw-square like this:procedures:4

draw-square

-1 -1 translate

draw-square

1 -1 translate

draw-square

3. Keeping track of where you are

In the lines of PostScript above, you can easily forget exactly where you are with all those translations. What you

might do is translate back again after each translation and drawing operation to restore the original coordinates.

But this would become complicated later on in your work, when you will perform several changes of coordinates
and it will be difficult to figure out how to invert them. Instead, you can get PostScript to do the work of

remembering where you are. It has a pair of commands that help you do the job easily: gsave saves the currentgsave:4

coordinate system somewhere (together with a few other things like the current line width) and grestorebringsgrestore:4

back the coordinate system you saved with your last gsave.

• The commands gsave and grestore must be used in pairs!

In this scheme we could write

draw-square

gsave

-1 -1 translate

draw-square

grestore

1 -1 translate

draw-square

and get something quite different.

To be a bit more precise, gsave saves the current graphics state and grestore brings it back. The graphics state
holds data about coordinates, line widths, the way lines are joined together, the current color, and more—in effect

everything that you can change easily to affect how things are drawn. You might recall that we saw gsave and
grestore earlier, where we used them to set up successive pages correctly, enclosing each page in a pair of gsave

and grestore.



Chapter 3. Variables and procedures 5

Incidentally, it is usually—but not always—a bad (very bad) idea to change anything in the graphics state in the
middle of drawing a path. Effects of this bad practice are often unintuitive, and therefore unexpected. There

are definite exceptions to this rule, but one must be careful. The problem is to know what parts of the graphic

state take effect in various commands. The principal exceptions use translate and rotate to build paths
conveniently. For example, the following sequence builds a square.

1 0 moveto 90 rotate

1 0 lineto 90 rotate

1 0 lineto 90 rotate

1 0 lineto 90 rotate

1 0 lineto

The commands rotate etc. change the coordinate system in a figure, and the drawing commands lineto etc.
use the coordinate system current when they are applied to build a path in physical coordinates.es:when they take effect:5

4. Passing arguments to procedures

The definition of the procedure draw-square has a variable s in it. The variable s is not defined in the procedure
itself, but must be defined before the procedure is used. This is awkward—if you want to draw squares of

different sizes, you have to redefine s each time you want to use a new size.

For example, if we want two squares of different sizes, we write the code on the left below:

/s 1 def

draw-square

/s 2 def

draw-square

Let me repeat here: If you want to assign a new value to a variable you have to define it over again, using the
name of the variable, which begins with /.

Now for a new idea. It is awkward to have to assign a value to s every time we want to draw a square. It would
be much better if we could just type something like 2 draw-square to do the job. This in fact possible, by doing

a bit of stack manipulation inside the procedure itself. Let’s see—we want to type 2 draw-square and draw a

square of side 2. This means that the procedure should have access to the item that’s put on the stack just before
it’s called, and assign its value to a variable. This requires a trick. Normally we assign a value to a variable byguments:passing to procedures:5

putting the name of the variable on the stack, then the new value, then calling def, like this: /s 2 def. In order
to assign a value to the variable s inside the procedure, we must somehow get the name /s on the stack below
the value on the stack when the procedure is called. The way to do this is to put /s on the stack after the new

value and then call exch. The command exch exchanges the top two items on the stack. Therefore 2 /s exch

makes the stack /s 2, and then 2 /s exch def has exactly the same effect as /s 2 def. Thus the lines

/draw-square {

/s exch def

newpath

0 0 moveto



Chapter 3. Variables and procedures 6

s 0 rlineto

0 s rlineto

s neg 0 rlineto

closepath

stroke

} def

2 draw-square

do exactly what we want—the side of the square is picked up off the stack, assigned to the variable s, and then

used for drawing. The important point is that the procedure itself now handles the assignment of a value to s,

and all we do is pass the value of s to the procedure as an argument to it by putting it on the stack before theargument:6

procedure is called. If you know how programming language compilers work, you will recognize this as what

programming languages do to pass arguments, but behind the scenes. The difference is that PostScript does it in

the open, and effectively forces you to do a bit more work yourself.guments:passing to procedures:6

If you wanted to draw rectangles with different width and height, you would pass two arguments in a similar

way:

/draw-rectangle {

/h exch def

/w exch def

newpath

0 0 moveto

w 0 rlineto

0 h rlineto

w neg 0 rlineto

closepath

stroke

} def

2 3 draw-rectangle

draws a rectangle of width 2 and height 3. Notice that the stuff on the stack is removed in the order opposite to

that in which you placed it there.

• In PostScript the arguments of a procedure are data that go on the stack before the procedure is called.

By the way, it seems to me that one of PostScript’s principal mistakes in design is the order of the arguments to
def. There would be several advantages to having the command work like 2 /s def rather than the way it does.

For one thing, reading the arguments of procedures would be more sensible. For another, programmers would

be encouraged to make programs more readable. Very often you want to make a very long calculation and then
assign the result to a variable. The most common way to do this is to make the calculation and then pick the result

off the stack just as above, with ... exch def. So here, too, programs would benefit from the change. And

they would be more readable, because the name of the variable would be close to where it is used. The program
would be more local in a sense. Locality is one important feature of happy programming.

5. Procedures as functions

A procedure can be a function. That is to say, it can accept some kind of input, calculate something depending on

the input, and pass back or return the results of the calculation. There are of course several built in functions in

PostScript, for example the mathematical functions neg, add etc. The way these work is that you put arguments

on the stack, call the function, and then next get the return value (or values) on the stack. For example, thereturn value:6

sequence 30 sin in your program, when the program is executed, puts 30 on the stack (the argument), calls the
sin procedure, and leaves 0.5 on the stack (the return value). Some others, like atan have two arguments. I

repeat:



Chapter 3. Variables and procedures 7

• The return value of a procedure is what it leaves on the stack.

It can in fact leave lots of stuff on the stack, and can have several return values.

There is only a formal difference between functions and procedures.

Example. We will make up a procedure hypotenuse that has two arguments and returns the square root of the

sum of their squares. In fact, we shall see two versions of this. The first will use variables, the second will do all
of its work directly with the stack. Both are used in the same way: 3 4 hypotenuse will leave a 5 on the stack.

Here is the first, using variables.

/hypotenuse {

/b exch def

/a exch def

a dup mul b dup mul add sqrt

} def

This is reasonably easy to read and understand. There is a problem with it we shall deal with later. The second

version is not so readable:

/hypotenuse {

dup mul

exch

dup mul

add sqrt

} def

This is more efficient than the first—PostScript is generally very efficient when operating directly with stuff on
the stack (as opposed to using variables). Still, the cost in terms of readability here is high enough that my general

advice is to imitate the first one of these styles, rather than the second. If you do want to be more efficient, it is a

good idea to add lots of comments, so as to trace what’s on the stack.

/hypotenuse { % a b

dup mul % a b*b

exch % b*b a

dup mul % b*b a*a

add % b*b+a*a

sqrt % the square root of the sum is left on the stack

} def

6. Local variables

There is another problem lurking in our present definition of draw-square, and that of variable name conflicts.variables:local:7ariables:name conflicts:7

If you have a large program with lots of different figures being drawn in various orders, you might very well

have several places where you use w and h with different meanings. This can cause a lot of trouble. The way
around this is a technique in PostScript that I suggest you use without trying to understand too much about it in

detail. We want the variables we use in a procedure to be local to that procedure, so that assignments we make

to them inside that procedure don’t affect other variables with the same name outside the procedure. To do this
we add some lines to the procedure:begin:7end:7dict:7

/draw-rectangle { 2 dict begin

/h exch def

/w exch def

newpath

0 0 moveto

w 0 rlineto

0 h rlineto



Chapter 3. Variables and procedures 8

w neg 0 rlineto

0 h neg rlineto

closepath

stroke

end } def

2 3 draw-rectangle

There are exactly two new lines, in fact, one at either end of the procedure. The line 2 dict begin sets up a
local variable mechanism, and end restores the original environment. The 2 is in the statement because we are

defining 2 local variables.

• You should set up a local variable mechanism in all procedures in which you make variable definitions.

One tricky thing to be aware of is that all variables defined within this pair will be local variables, so that it is
impossible to change the value of global variables within them. It is not usually a good idea to redefine global
variables within a procedure, anyway. It is only slightly too strong to say that you should never assign a value to

a global variable inside a PostScript procedure. Again: begin and end have to come in pairs. If they don’t, the

effect will be that a certain block of space in the computer will fill up. You might get away with it for a while,
but unless you are careful sooner or later some awful error is bound to occur. Another good rule to follow is

that if you change coordinates inside a procedure, say in order to build a path, you should restore the original
coordinates before it exits—unless the explicit purpose of the procedure is to change coordinates. The general

principle is that

• Procedures should have as few side effects as possible, and those side effects should always be explicit.

Another thing to keep in mind is that while local variables are indispensable in procedures, they can in fact be

useful anywhere in a program where you want to avoid name conflicts. Encapsulating a segment of code with 1

dict begin ... end is often a great way to handle variables safely.

Dictionaries are expensive to set up, in the programmer’s sense. They are costly in time. Sometimes, in critical
places, it is definitely worthwhile not to introduce any variables at all in a procedure and rely entirely on stack

manipulations alone. Or at least use them sparingly. The first of the two procedures

/h1 {

dup mul exch dup mul add sqrt

} def

/h2 { 2 dict begin

/y exch def

/x exch def

x x mul y y mul add sqrt

end } def

takes noticeably less time than the second: 10, 000, 000 calls on the first take about 5 seconds on my machine,
versus about 35 seconds for the second. Recall that to run PostScript programs with no display, as is often useful,

you can use Ghostscript in commandline mode as gsnd.

At any rate, don’t worry too much about exactly what you have to do to set up local variables. Just copy the

pattern without thinking about it. The 2 in 2 dict begin could have been 3 or 4 or 20. In the earliest version
of PostScript, it had to be at least as large as the number of variables you are about to define, but in more recent

versions a dictionary will expand to whatever size is needed. So even a 1 would be acceptable. In most of my

code I am very sloppy about this.variables:local:8



Chapter 3. Variables and procedures 9

7. A final improvement

I want to mention here a subtle but valuable point about procedures. It is only rarely a good idea in PostScript to

do any actual drawing inside a procedure. This is part of the general principle that the side effects of procedures
ought to be severely restricted. Instead, it is usually a good idea to use procedures to build paths without drawing

them. Furthermore, it is always a good idea to tell in a comment what you have to do to use a procedure, and
what its effect is. Thus

% Builds a rectangular path with

% first corner at origin.

% On stack at entry: width height

/rectangle { 2 dict begin

/h exch def

/w exch def

0 0 moveto

w 0 rlineto

0 h rlineto

w neg 0 rlineto

0 h neg rlineto

closepath

end } def

newpath

2 3 rectangle

stroke

is the preferable way to use a procedure to draw rectangles. This way you can fill them or clip them as well as

stroke them. (We shall meet clipping later.) You can also link paths together to make more complicated paths.


