
CHAPTER 4

Coordinates and conditionals

We’ll take up here a number of drawing problems which require some elementary mathematics and a few new

PostScript techniques. These will require that we can interpret absolute location on a page no matter what
coordinate changes we have made, and therefore motivate a discussion of coordinate systems in PostScript.

At the end we will have, among other things, a complete set of procedures that will draw an arbitrary line
specified by its equation. This is not an extremely difficult problem, but is one of many whose solution will

require understanding how PostScript handles coordinate transformations.

1. Coordinates

The main purpose of PostScript is to draw something, to render it visible by making marks on a physical device

of some kind. Every PostScript interpreter is linked to a physical device—Ghostscript running on your computer

is linked to your monitor, and printers capable of turning PostScript code into an image possess an interpreter of
their own.

When you write a command like 0 0 moveto or 1 0 lineto that takes part in constructing a path, the PostScriptveto:rendered immediately:1veto:rendered immediately:1

interpreter immediately translates the coordinates in the command into coordinates more specifically tied to the

physical device, and then adds these coordinates and the command to a list of commands that will be applied to

make marks when the path is finally stroked or filled.

Thus a PostScript interpreter needs a way to translate the coordinates you write to those required by the physical

device—it has to transform the user’s coordinates to the ones relevant to the device, and it must store internally
some data necessary for this task.

In fact, PostScript deals internally—at least implicitly—with a total of three coordinate systems.

The first is the physical coordinate system. This system is the one naturally adapted to the physical device youcoordinates:physical:1

are working on. Here, even the location of the origin will depend on the device your pictures are being drawn in.
For example, on a computer running a version of the Windows operating system it is apparently always at the

lower left. But on a Unix machine it is frequently at the upper left, with the y coordinate reading down. The basic

units of length in the physical coordinate system are usually the width and the height of one pixel (one horizontal,pixel:1

the other vertical), which is the smallest mark that the physical device can deal with. On your computer screen

a pixel is typically 1/75 of an inch wide and high, while on a high quality laser printer it might be 1/1200 of an

inch on a side. This makes sense, because in the end every drawing merely colours certain pixels on your screen
or printer page.

The second is what I call the page coordinate system. This is the one you start up with, in which the origin is atcoordinates:page:1

the lower left of the page, but the unit of length is one Adobe point—equal to 1/72 of an inch—in each direction.

This might be thought of as a kind of ideal physical device.

The third is the system of user coordinates. These are the coordinates you are currently using to draw. Whencoordinates:user:1

PostScript starts up, page coordinates and user coordinates are the same, but certain operations such as scale,

translate, and rotate change the relationship between the two. For example, the sequence 72 72 scalecoordinate changes:1

makes the unit in user coordinates equal to an inch. If we then subsequently perform 4.25 5.5 translate,

the translation takes place in the new user coordinates, so the origin is shifted up and right by several inches.

Chapter 4. Coordinates and conditionals 2

This is the same as if we had done 306 396 translate before we scaled to inches, since 306 = 4.25 · 72 and
396 = 5.5 · 72.

At all times, PostScript maintains internally the data required to change from user to physical coordinates, and
implicitly the data required to change from user to page coordinates as well. The formula used to transform

coordinates from one system to another involves six numbers, and looks like this:

xphysical = axuser + cyuser + e

yphysical = bxuser + dyuser + f

PostScript stores these six numbers a, b, etc. in a data structure we shall see more of a bit later.

Coordinate changes like this are called affine coordinate transformations. An affine transformation is a com­transformations:affine:2

bination of a linear transformation with a shift of the origin. One good way to write the formula for an affinetransformations:linear:2

coordinate transformation is in terms of a matrix:

[x• y•] = [x y]

[

a b
c d

]

+ [e f] .

The 2 × 2 matrix is called the linear component of the coordinate transformation, and the vector added on is

called its translation component. The translation component records where the origin is transformed to, and the
linear component records how relative positions are transformed.

Affine transformations are characterized by the geometric property that they take lines to lines. They also have
the stronger property that they take parallel lines to parallel lines. Linear transformations have in addition the

property that they take the origin to itself. The following can be rigourously proven:

• An affine transformation of the plane takes lines to lines and parallel lines. Conversely, any transformation
of the plane with these properties is an affine transformation.

Later on, we shall see also a third class of transformations of the plane called projective transformations (relatedormations:projective:2

to perspective viewing). These are not built into PostScript as affine transformations are.

I have said that PostScript uses six numbers to transform user coordinates to physical coordinates, and that these
six numbers change if you put in commands like scale, translate, and rotate. It might be useful to track how

things go as a program proceeds. In this example, I’ll assume that the physical coordinates are the same as page

coordinates. When PostScript starts up the user coordinates (x0, y0) are the same as page coordinates.

xpage = x0

ypage = y0 .

or

[xpage ypage] = [x0 y0]

[

1 0
0 1

]

.

If we perform 306 396 translate, we find ourselves with new coordinates (x1, y1). The page coordinates of the

new origin are (306, 396). The command sequence x y movetonow refers to the point which in page coordinates
is (x + 306, y + 396). We thus have

[x0 y0] = [x1 y1] + [306 396]

or

[xpage ypage] = [x1 y1]

[

1 0
0 1

]

+ [306 396] .

Chapter 4. Coordinates and conditionals 3

If we now perform 72 72 scale, we find ourselves with a new coordinate system (x2, y2). The origin doesn’t
change, but the command 1 1 movetomoves to the point which was (72, 72) a moment ago, and (72+306, 72+
396) before that.

[x1 y1] = [x2 y2]

[

72 0
0 72

]

or

[xpage ypage] = [x2 y2]

[

72 0
0 72

]

+ [306 396] .

If we now put in 90 rotate we have new coordinates (x3, y3). The command 1 1 moveto moves to the point
which was (−1, 1) a moment ago.

[x2 y2] = [x3 y3]

[

0 1
−1 0

]

or

[xpage ypage] = [x3 y3]

[

0 1
−1 0

] [

72 0
0 72

]

+ [306 396]

= [x3 y3]

[

0 72
−72 0

]

+ [306 396] .

The point is that coordinate changes accumulate. We’ll see later (in §5) more about how this works.

2. How PostScript stores coordinate transformations

The data determining an affine coordinate change

[x• y•] = [x y]

[

a b
c d

]

+ [e f]

are stored in PostScript in an array [a b c d e f] of length six, which it calls a matrix. (We’ll look at arraysarrays:PostScript:3matrix:in PostScript:3

in more detail in the next chapter, and we’ll see in a short while why the word ‘matrix’ is used.) PostScript has

several operators which allow you to find out what these arrays are, and to manipulate them.matrix:3currentmatrix:3

Command sequence Effect
matrix currentmatrix Puts the current transformation matrix on the stack

There are good reasons why this is a little more complicated than you might expect. The current transformationmatrix:current transformation:3

matrix or CTM holds data giving the current transformation from user to physical coordinates. Here the command

matrix puts an array [1 0 0 1 0 0] on the stack (the identity transformation), and currentmatrix stores the
current transformation matrix entries in this array. The way this works might seem a bit strange, but it restricts

us from manipulating the CTM too carelessly.

For example, we might try this at the beginning of a program and get

matrix currentmatrix ==

[1.33333 0 0 1.33333 0 0]

The difference between = and ==, which both pop and display the top of the stack, is that the second displays the=:3==:3

contents of arrays, which is what we want to do here, while = does not.

The output we get here depends strongly on what kind of machine we are working on. The one here was a laptop

running Windows 95. Windows 95 puts a coordinate system in every window with the origin at lower left, with
one unit of length equal to the width of a pixel. The origin is thus the same as that of the default PostScript

coordinate system, but the unit size might not match. In fact, we can read off from what we see here that on my

laptop that one Adobe point is 4/3 pixels wide.

Exercise 1. What is the screen resolution of this machine in DPI (dots per inch)?

As we perform various coordinate changes, the CTM will change drastically. But we can always recover what it

was at start­up by using the command defaultmatrix.defaultmatrix:3

Chapter 4. Coordinates and conditionals 4

matrix defaultmatrix Puts the original transformation matrix on the stack

The default matrix holds the transformation from page to physical coordinates. Thus at the start of a PostScript

program, the commands defaultmatrix and currentmatrixwill have the same effect.

We can solve the equations

[x• y•] = [x y]

[

a b
c d

]

+ [e f]

for x and y in terms of x• and y•. The transformation taking x• and y• to x and y is the transformation inverse

to the original. Explicitly, from

P• = PA + v

we get

P = P•A
−1 − vA−1

so it is again an affine transformation. PostScript has an operator that calculates it. The composition of two affine
transformations is also an affine transformation that PostScript can calculate:invertmatrix:4concatmatrix:4

M matrix invertmatrix Puts the transformation matrix inverse to M on the stack
A B matrix concatmatrix Puts the product AB on the stack

Here, M , A, B, are transformation ‘matrices’—arrays of 6 numbers.

Thus, the following procedure returns the ‘matrix’ corresponding to the transformation from user to page coor­

dinates:

/user-to-page-matrix {

matrix currentmatrix

matrix defaultmatrix

matrix invertmatrix

matrix concatmatrix

} def

To see why, let C be the matrix transforming user coordinates to physical coordinates, which we can read off with
the command currentmatrix. Let D be the default matrix we get at start­up.

C

D
page

user

physical

The transformation from the current user coordinate system to the original one is therefore the matrix product
CD−1: C takes user coordinates to physical ones, and the inverse of D takes these back to page coordinates.

For most purposes, you will not need to use invertmatrix or concatmatrix. The transformation from user to
physical coordinates, and back again, can be carried out explicitly in PostScript with the commands transformtransform:4

and itransform. At any point in a program the sequence x y transformwill return the physical coordinates ofitransform:4

the point whose user coordinates are (x, y), and the sequence x y itransform will return the user coordinates
of the point whose physical coordinates are (x, y). If m is a matrix then

x y m transform

will transform (x, y) by m, and similarly for x y m itransform. Thus

x y transform matrix defaultmatrix itransform

Chapter 4. Coordinates and conditionals 5

will return the page coordinates of (x, y).

The operators transform and itransform are somewhat unusual among PostScript operators in that their effect

depends on the type of data on the stack when they are used. You, too, can define procedures that behave like
this, by using the type operator to see what kind of stuff is on the stack before acting.type:4

Exercise 2. Write a procedure page-to-user with two arguments x y which returns on the stack the user
coordinates of the point whose page coordinates are x y. And also user-to-page.

3. Picturing the coordinate system

In trying to understand how things work with coordinate changes, it might be helpful to show some pictures of

the two coordinate systems, the user’s and the page’s, in different circumstances. (Recall that the page coordinate

system is for a kind of imaginary physical device.)

The basic geometric property of an affine transformation is that it takes parallelograms to parallelograms, and so

does its inverse. Here are several pictures of how the process works. On the left in each figure is a sequence of
commands, and on the right is how the resulting coordinate grid lies over the page.

72 72 scale
4.25 5.5 translate

In this figure, the user unit is one inch, and a grid at that spacing is drawn at the right.

72 72 scale
4.25 5.5 translate
30 rotate

Chapter 4. Coordinates and conditionals 6

A line drawn in user coordinates is drawn on the page after rotation of 30◦ relative to what it was drawn as
before.

72 72 scale
4.25 5.5 translate
30 rotate
0.88 1.16 scale
-18 rotate

A combination of rotations and scales can have odd effects after a scale where the x­scale and the y­scale are
distinct. This is non­intuitive, but happens because after such a scale rotations take place in that skewed metric.

4. Moving into three dimensions

It turns out to be convenient, when working with affine transformations in two dimensions, to relate them to

linear transformations in three dimensions.

The basic idea is to associate to each point (x, y) in 2D the point (x, y, 1) in 3D. In other words, we are embedding

the two­dimensional (x, y) plane in three dimensions by shifting it up one unit in height. The main point is that
the affine 2D transformation

[x• y•] = [x y]

[

a b
c d

]

+ [e f]

can be rewritten in terms of the linear 3D transformation

[x• y• 1] = [x y 1]





a b 0
c d 0
e f 1



 .

You should check by explicit calculation to see that this is true. In other words, the special 3 × 3 matrices of the
form





a b 0
c d 0
e f 1





are essentially affine transformations in two dimensions, if we identify 2D vectors [x, y] with 3D vectors [x, y, 1]
obtained by tacking on 1 as last coordinate. This identifies the usual 2D plane, not with the plane z = 0, but with

z = 1. One advantage of this association is that if we perform two affine transformations successively

[x y] 7−→ [x1 y1] = [x y]

[

a b
c d

]

+ [e f]

[x1 y1] 7−→ [x2 y2] = [x1 y1]

[

a1 b1

c1 d1

]

+ [e1 f1]

Chapter 4. Coordinates and conditionals 7

then the composition of the two corresponds to the product of the two associate 3 × 3 matrices





a b 0
c d 0
e f 1









a1 b1 0
c1 d1 0
e1 f1 1



 .

This makes the rule for calculating the composition of affine transformations relatively easy to remember.

There are other advantages to moving 2D points into 3D. A big one involves calculating the effect of coordinate

changes on the equations of lines. For example, the line x+y−100 = 0 is visible in the default coordinate systemlines:equations of:7

as a line that crosses the screen at lower left from (0, 100) to (100, 0). If we then 100 50 translate we will be

operating in a new coordinate system where the new origin is at the point that used to be (100, 50). The line that

was formerly x + y − 100 = 0 will have a new equation in the new coordinates.

(0, 100)

(100, 0)

(-100, 50)

(0, -50)

The line itself is something that doesn’t change—in practical terms it’s that same collection of pixels at the lower
left—but its representation by an equation will change. What is the new equation? We have

x• = x − 100, y• = y − 50

so
x + y − 100 = (x• + 100) + (y• + 50)− 100 = x• + y• − 50 .

Now let’s look at the general case. The equation of the line

Ax + By + C = 0

can be expressed purely in terms of matrix multiplication as

[x y 1]





A
B
C



 = 0 .

This makes it simple to answer the following question:

• Suppose we perform an affine coordinate change

[x y] 7−→ [x• y•] = [x y]

[

a b
c d

]

+ [e f] .

If the equation of a line in (x, y) coordinates is Ax + By + C = 0, what is it in terms of (x•, y•) coordinates?

For example, if we choose new coordinates to be the old ones rotated by 90◦, then the old x­axis becomes the new

y­axis, and vice­versa.

Chapter 4. Coordinates and conditionals 8

How to answer the question? The equation we start with is

[x y 1]





A
B
C



 = 0 .

We have

[x• y• 1] = [x y 1]





a b 0
c d 0
e f 1



 , [x y 1] = [x• y• 1]





a b 0
c d 0
e f 1





−1

therefore

Ax + By + C = [x y 1]





A
B
C





= [x• y• 1]





a b 0
c d 0
e f 1





−1 



A
B
C





= [x• y• 1•]





A•

B•

C•





= A•x• + B•y• + C•

if




A•

B•

C•



 =





a b 0
c d 0
e f 1





−1 



A
B
C



 .

To summarize:

• If we change coordinates according to the formula

[x• y• 1] = [x y 1]





a b 0
c d 0
e f 1





then the line Ax + By + C = 0 is the same as the line A•x• + B•y• + C• = 0, where





A•

B•

C•



 =





a b 0
c d 0
e f 1





−1 



A
B
C



 .

To go with this result, it is useful to know that

[

A 0
v 1

]

−1

=

[

A−1 0
−vA−1 1

]

as you can check by multiplying. Here A is a 2 × 2 matrix and v a row vector. It is also useful to know that

[

a c
b d

]

−1

=

[

d/∆ −c/∆
−b/∆ a/∆

]

, ∆ = ad − bc .

Chapter 4. Coordinates and conditionals 9

Here is a PostScript procedure which has two arguments, a ‘matrix’ M and and array of three numbers A, B, and
C , which returns on the stack the array of three numbers A•, B•, C• which go in the equation for the transform

under M of the line Ax + By + C = 0. The procedure starts by removing its components. It begins this with

a short command sequence aload pop which spills out the array onto the stack, in order. (The operator aloadaload:8

puts the array itself on the stack as well, and pop gets rid of it.)get:8

/transform-line { 1 dict begin

aload pop

/C exch def

/B exch def

/A exch def

/M exch def

/Minv M matrix invertmatrix def

[

A Minv 0 get mul B Minv 1 get mul add

A Minv 2 get mul B Minv 3 get mul add

A Minv 4 get mul B Minv 5 get mul add C add

]

end } def

This is the first time arrays have been dealt with directly in this book. In order to understand this program, you
should know thatarrays:indexing:9ys:recovering items in:9

(1) the items in a PostScript array are indexed starting with 0;
(2) if A is an array in PostScript, then A i get returns the i­th element of A.

Exercise 3. If we set
x• = x + 3, y• = y − 2

what is the equation in (x•, y•) of the line x + y = 1?

Exercise 4. If we set
x• = −y + 3, y• = x − 2

what is the equation in (x•, y•) of the line x + y = 1?

Exercise 5. If we set
x• = x − y + 1, y• = x + y − 1

what is the equation in (x•, y•) of the line x + y = 1?

5. How coordinate changes are made

Let’s look more closely at how PostScript makes coordinate changes.

Suppose we are working with a coordinate system (x•, y•). After a scale change

2 3 scale

we’ll have new coordinates (x, y). What is the relationship between new and old? One unit along the x­axis in
the new system spans two in the old, and one along the y­axis spans three of the old. In other words

x• = 2x

y• = 3y

or

[x• y•] = [x y]

[

2 0
0 3

]

Chapter 4. Coordinates and conditionals 10

or

[x• y• 1] = [x y 1]





2 0 0
0 3 0
0 0 1



 .

If T• is the original CTM then
[x• y• 1] T• = [xphysical yphysical 1]

and for the new coordinates we have

[x y 1]





2 0 0
0 3 0
0 0 1



T• = [xphysical yphysical 1]

so that the new CTM is

T =





2 0 0
0 3 0
0 0 1



T• .

This is the general pattern. To each of the basic coordinate­changing commands in PostScript corresponds a 3× 3
matrix, according to the transformation from new coordinates to old ones:

a b scale





a 0 0
0 b 0
0 0 1





x rotate





cosx sin x 0
− sin x cosx 0

0 0 1





a b translate





1 0 0
0 1 0
a b 1





The effect of applying one of these commands is to multiply the current transformation matrix on the left by the
appropriate matrix.

You can perform such a matrix multiplication explicitly in PostScript. The command sequence

[a b c d e f] concat

has the effect of multiplying the CTM on the left by





a b 0
c d 0
e f 1



 .

You will rarely want to do this. Normally a combination of rotations, scales, and translations will suffice. In fact,

every affine transformation can be expressed as such a combination, although it is not quite trivial to find it.

Exercise 6. After operations

72 72 scale

4 5 translate

30 rotate

what is the user­to­page coordinate transformation matrix?

Chapter 4. Coordinates and conditionals 11

Exercise 7. Any 2 × 2 matrix A may be expressed as

A = R1

[

s
t

]

R2

where R1 and R2 are rotation matrices. How to find these factors? Write

tA A = tR2
tS tR1R1SR2

= R−1
2 S2R2

since R−1 = tR for a rotation matrix R. and tS = S. This means that the diagonal entries of S2 are the eigenvalues
of the symmetric matrix tA A and that the rows of R2 are its eigenvectors. In order to find S from S2 the signs of
square roots must be chosen. Describe how to do this, and then how to find R1. Find this factorization for the
shear

[

1 1
1

]

.

Then write a PostScript program that combines rotations and scales to draw a sheared unit circle around the
origin. What shape do you get? Why?

6. Drawing infinite lines: conditionals in PostScript

We have seen that a line can be described by an equationlines:drawing:11lines:equations of:11

Ax + By + C = 0 .

Recall that the geometrical meaning of the constants A and B is that the direction (A, B) is perpendicular to the
line, as long as the coordinate system is an orthogonal one, where the x and y units are the same and their axes

perpendicular.

The problem we now want to take up is this:

• We want to make up a procedure with a single argument, an array of three coordinates [A B C], whose effect
is to draw the part of the line Ax + By + C = 0 visible on the page.

I recall that an argument for a PostScript procedure is an item put onto the stack just before the procedure itself is

called. I recall also that generally the best way to use procedures in PostScript to make figures is to use them to
build paths, not to do any of the actual drawing. Thus the procedure we are to design, which I will call mkline,

will be used like this

newpath

[1 1 1] mkline

stroke

if we want to draw the visible part of the line x + y + 1 = 0.

One reason this is not quite a trivial problem is that we are certainly not able to draw the entire infinite line. There

is essentially only one way to draw parts of a line in PostScript, and that is to use moveto and lineto to draw

a segment of the line, given two points on it. Therefore, the mathematical problem we are looking at is this: If
we are given A, B, and C , how can we find two points P and Q with the property that the line segment between
them contains all the visible part of the line Ax + By + C = 0? We do not have to worry about whether or not

the segment PQ coincides exactly with the visible part; PostScript will handle naturally the problem of ignoring
the parts that are not visible. Of course the visible part of the line will exit the page usually at two points, and

if we want to do a really professional job, we can at least think about the more refined problem of finding them.
But we’ll postpone this approach for now.

Chapter 4. Coordinates and conditionals 12

Here is the rough idea of our approach: (1) look first at the case where the coordinates system is the initial page
coordinate system; (2) reduce the general case to that one.

Suppose for the moment that we are working with page coordinates, with the origin at lower right and units are
points. In these circumstances, we shall divide the problem into two cases: (a) that where the line is ‘essentially’

horizontal; (b) that where it is ‘essentially’ vertical. We could in fact divide the cases into truly vertical (where

B = 0) and the rest, but for technical reasons, having B near 0 is almost as bad as having it actually equal to
0. Instead, we want to classify lines as ‘essentially horizontal’ and ‘essentially vertical’. In this scheme, we shall

consider a line essentially horizontal if its slope lies between −1 and 1, and otherwise essentially vertical. In
other words, we think of it as essentially horizontal if it is more horizontal than vertical. Recalling that if a line

has equation Ax + By + C = 0 then the direction (A, B) is perpendicular to that line, we have the criterion:

• The line Ax + By + C = 0 will be considered ‘essentially horizontal’ if |A| ≤ |B|, otherwise ‘essentially
vertical’.

Recall that our coordinate system is in points. The left hand side of the page is therefore at xleft = 0, the right one
at xright = 72 · 8.5 = 612. The point is that an essentially horizontal line is guaranteed to intercept both of the
lines x = xleft and x = xright. Why? Since A and B cannot both be 0 and |A| ≤ |B| for a horizontal line, we must

have B 6= 0 as well. Therefore we can solve to get y = (−C − Ax)/B, where we choose x to be in turn xleft and
xright. In this case, we shall choose for P and Q these intercepts. It may happen that P or Q is not on the edge

of the page, and it may even happen that the line segment PQ is totally invisible, but this doesn’t matter. What
does matter is that the segment PQ is guaranteed to contain all of the visible part of the line.

P

Q

[A, B]
Ax + By + C = 0

Similarly, an essentially vertical line must intercept the lines across the top and bottom of the page, and in this

case P and Q shall be these intercepts.

So: we must design a procedure in PostScript that does one thing for essentially horizontal lines, another for

essentially vertical ones. We need to use a test together with a conditional in our procedure.

A test is a command sequence in PostScript which returns one of the boolean values true or false on the stack.data:in PostScript:12true:12false:12

There are several that we will find useful: le, lt, ge, gt, eq, ne which stand for ≤, <, ≥, >, =, and 6=. They aregt:12ge:12lt:12le:12eq:12ne:12

used backwards, of course. For example, the command sequence

a b lt

will put true on the stack if a < b, otherwise false.

Here is a sample from a Ghostscript session:gt:12

Chapter 4. Coordinates and conditionals 13

1 2 gt =

false

2 1 gt =

true

A conditional is a command sequence that does one thing in some circumstances, something else in others. Theconditionals:13

most commonly used form of a conditional is this:

boolean

{ ... }

{ ... }

ifelse

That is to say, we include a few commands to perform a test of some kind, following the test with two procedures

and the command ifelse. If the result of the test is true, the first procedure is performed, otherwise the second.ifelse:13

Recall that a procedure in PostScript is any sequence of commands, entered on the stack surrounded by { and }.

A slightly simpler form is also possible:

boolean

{ ... }

if

This performs the procedure if the boolean is true, and otherwise does nothing.

To apply if or ifelse, normally you apply a test of some kind. You can combine tests with and, not, or.if:13and:13not:13or:13

We now have just about everything we need to write the procedure mkline. Actually, for reasons that will become

clear in a moment we make up a procedure called segment-page that instead of building the line returns (i.e.
leaves on the stack) the two endpoints P and Q, as a pair of arrays of two numbers. We need to recall that x abs

returns the absolute value of x.

% [A B C] on stack

/segment-page { 1 dict begin

aload pop

/C exch def

/B exch def

/A exch def

A abs B abs le

{

/xleft 0 def

/xright 612 def

/yleft C A xleft mul add B div neg def

% y = -C - Ax / B

/yright ... def

[xleft yleft]

[xright yright]

}{

...

} ifelse

end } def

I have left a few blank spots—on purpose.

Exercise 8. Fill in the ... to get a working procedure. Demonstrate it with a few samples.

Chapter 4. Coordinates and conditionals 14

Exercise 9. Show how to use this procedure in a program that draws the line 113x + 141y − 300 in page
coordinates.

Now we cease to assume that we are dealing with page coordinates. We would like to make up a similar
procedure that works no matter what the user coordinates are. So we are looking for a procedure with a single

array argument [A B C] that builds in the current coordinate system, no matter what it may be, a line segment

including all of line that’s visible on a page. This takes place in three stages: (1) We find the equation of the line
in page coordinates; (2) we apply segment-page to find points containing the segment we want to draw, in page

coordinates; (3) we transform these points back into user coordinates.

Here is the final routine we want:

% [A B C] on stack

/mkline { 1 dict begin

aload pop

/C exch def

/B exch def

/A exch def

% T = page to user matrix

/T

matrix defaultmatrix

matrix currentmatrix

matrix invertmatrix

matrix concatmatrix

def

% get line in page coordinates

[

A T 0 get mul

B T 1 get mul add

A T 2 get mul

B T 3 get mul add

T 4 get A mul

T 5 get B mul add

C add

]

% find P, Q

segment-page

% build the line

aload pop T transform moveto

aload pop T transform lineto

end } def

Exercise 10. Finish the unfinished procedures you need, and assemble all the pieces into a pair of procedures
that will include this main procedure. Exhibit some examples of how things work.

Chapter 4. Coordinates and conditionals 15

7. Another way to draw lines

There is another way to solve the problem posed in this chapter, and that is to find exactly where the line enters

and exits the page. This reduces to the following problem: Suppose (x0, y0) and (x1, y1) are the lower left and
upper right corners of a rectangle, and Ax + By + C = 0 the equation of a line. How can you find the points
where the line intersects the boundary of the rectangle?

There are many possibilities, of course—the line could intersect in 0, 1, or 2 points, and in the course of solving

the problem you must decide which. We’ll deal with a related problem in a more organized fashion later on when
we look at the Hodgman­Sutherland algorithm, but the problem here, although somewhat related, is simpler.Hodgman­Sutherland algorithm:14

We want to define a procedure with three arguments—(x0, y0), (x1, y1) (corners of the rectangle) and [A, B, C]—
that returns an array of 0, 1, or 2 points of intersection. Details will be left as an exercise, but I want to explain
here some of the features of the procedure that will be applicable in other situations, too.

Let’s look at an explicit example to see how things are going to go. Suppose we ask whether the line f(x, y) =
2x + 3y − 1 = 0 intersects the frame of the unit square, that tand if so where it intersects. The thing to keep

in mind here is he computer is, of course, blind. It can’t see anything, so how is it going to figure out where

intersections occur? The fundamental criterion is this: if P and Q are two points on either side of the line, then
f(P) and f(Q) will have different signs. In other words, we evaluate f(x, y) at each of the corners of the square,

and if we find sides where the signs at the ends are different, we have an intersection. Here is what happens in
this case:

f(0, 0) = −1 f(1, 0) = 1

f(0, 1) = 2 f(1, 1) = 4

There are two sides where the sign of f(x) is different at the end points. At the bottom the range is −1 to 1, and

will be 0 at the midpoint. At the left the range is −1 to 2, which tells us that the intersection point is 1/3 of the

way from bottom to top.

What happens in the procedure? Start at one corner, say the lower left, and then ‘walk around’ the sides of the

rectangle, checking to see if the line Ax + BY + C intersects that side. There are a few subtle points to be taken
into account.

One subtle thing is to be careful exactly what a side is. As we walk around the sides, we traverse them in a
particular direction—the sides are oriented segments. It turns out to be best to define a side of the rectangle to

include its endpoint but exclude its beginning. Thus a side looks like this, metaphorically:

Before I start with details, let’s think about the possibilities. (1) There could of course be no point of intersection

at all. (2) There could be a single intersection, which could be either be (a) in the middle or (b) at the endpoint.

(3) The whole side could be part of the line.

Chapter 4. Coordinates and conditionals 16

P Q

How can we distinguish these cases? Basically, by checking the sign of Ax + By + C at the two ends of the side.
Let

FP = AxP + ByP + C, FQ = AxQ + ByQ + C .

Here is a complete logical breakdown:

• If FP < 0 and FQ > 0, there is a single interior point of intersection.

• Same conclusion if FP > 0 and FQ < 0.
• If FP < 0 and FQ = 0 then the endpoint Q is a point of intersection.

• Similarly if FP > 0 and FQ = 0.

• If FP = 0 and FQ = 0 the side is contained in the line.
• In all other cases there is no intersection.

One question is how to deal with the case where the side is contained in the line. It turns out that there is one best
thing to do, and that is to treat it exactly the same as other cases where Q is on the line. This will work because

on the previous side the point P will be counted, and the procedure will return both P and Q, which is quite

reasonable.

The breakdown can be summarized: (1) if FP FQ < 0 then there is an interior point; (2) if FQ = 0 then Q is the

point of intersection; (3) otherwise, there is no intersection.

Another problem is mathematical. In the case of an interior point of intersection, how is it calculated? The

function Ax + By + C is equal to FP at P , 0 at the intersection point, and FQ at Q. Therefore the intersection is
t = FP /(FP − FQ) of the way from P to Q, and we interpolate to get it as (1 − t)P + tQ.

I can say some more about what the procedure does. After defining some variables, it puts a [down on the stack,
then looks at each side in turn. If there is a point of intersection (x, y) it puts it on the stack as an array of two

points. Otherwise it does nothing. As the procedure exits it puts] on the stack. What’s returned on the stack will

be thus of the form [], [[. .]], or [[. .][. .]]. I can offer one hint, too, for efficiency—start off with P
equal to the corner point, and calculate FP immediately. When you have looked at a side, define the new values

of P and FP to be the current values of Q and FQ and go on to the next side.

Exercise 11. Define the procedure in detail. Write it so that it will handle any convex closed polygon, that is to
say one that bulges out, so that the intersection of a line with it is always either empty, a single point, two points,
or a whole side.

8. Clipping

It might be that we don’t want to draw all of the visible line, but want to allow some margins on our page. Weclipping:16

could modify the procedure very easily to do this, by changing the definitions of xleft etc., but this is inelegant,
since it would require putting in a new procedure for every different type of margin. There is a more flexible

way. There is a third command in the same family as stroke and fill, called clip. It, too, is applied to a path

just constructed. Its effect is to restrict drawing to the interior of the path. Thusclip:16

newpath

72 72 moveto

540 72 lineto

540 720 lineto

Chapter 4. Coordinates and conditionals 17

72 720 lineto

closepath

clip

creates margins of size 1′′ on an 8.5′′ × 11′′ page in page coordinates. If you want to restrict drawing for a while

and then abandon the restriction, you can enclose the relevant stuff inside gsave and grestore. The command

clip is like fill in that it will automatically close a path before clipping to it, but as with fill it is not a good
habit to rely on this. This is another example of the idea that programs should reflect concepts: if what you really

have in mind is a closed path, close it yourself. The default closure may not be what you intend.

9. Order counts

This seems like a good place to recall that the order in which a sequence of coordinate changes takes places is

important. Sometimes this is a useful feature, sometimes just a nuisance.

I have said before that non­uniform scaling (i.e. scaling by different factors on the different axes) can have peculiar

effects. This is particularly so when applying rotations. It is very important in what order rotating and scaling

occur, if the scaling is not uniform.

Here is what happens for each of these sequences:

30 rotate

1 1.5 scale

newpath

0.5 square

stroke

1 1.5 scale

30 rotate

newpath

0.5 square

stroke

The point to keep in mind is something I have said before—after a coordinate change is made, all further

coordinate changes take place with respect to that new system. Rotation always preserves the curve x2 + y2 = 1.
But if x and y are scaled by different factors, a circle will become an ellipse, and rotation takes place around this
ellipse instead of around a true circle. We can see what happens by doing it in stages:

Chapter 4. Coordinates and conditionals 18

10. Code

The code to draw lines can be found in lines.inc.

