
CHAPTER 9

Recursion in PostScript

For various technical reasons, recursion in PostScript is a tricky business. It is possible, however, and in some

circumstances nearly indispensable. It is extremely useful to have some idea of how to deal with it, since
standard algorithms in the literature, for example those traversing lists of various kinds, are often laid out in

terms of recursion.

1. The perils of recursion

The factorial n! of a positive integer n is defined informally by the rule that it is the product of all positive integers

less than or equal to n. Thus 4! = 1 · 2 · 3 · 4 = 24. If we want to get a computer to calculate it, we follow these

rules: (1) if n = 1 then n! = 1; (2) if n > 1 then n! = n ·(n−1)!. This sort of formula, where a function is evaluated
directly by reduction to a simpler case, is called recursion. It could be argued that recursion encapsulates the

essence of mathematics—which trys to reduce every assertion either to an axiom or to one that has already been
proven, or in broad terms to reduce every problem to a simpler one that has already been solved.

At any rate, we can write a procedure in PostScript that follows these two last rules exactly:

/factorial { 1 dict begin

/n exch def

n 1 eq {

1

}{

n n 1 sub factorial mul

} ifelse

end } def

This code is correct and will run, but probably only if n is small. Why is that? The reason for failure is somewhat

technical. When you begin a dictionary in a procedure, that dictionary is put on top of a stack of dictionaries, and
when you end that dictionary it is taken off this stack. Unlike a few other stacks used by PostScript, the dictionary

stack is usually severely limited in size. If you call a procedure recursively which uses a local dictionary, the size

of the dictionary stack will build up with every call, quite possibly beyond the maximum size allowed. If this
occurs you will get a dictstackoverflow error message. So this procedure might very well work for smalls: dictstackoverflow:1

values of n but fail for large ones.

Therefore

• You should never introduce a dictionary to handle local variables in a recursive procedure exactly as you do
in others.

There is nothing wrong with using dictionaries in recursive procedures, but they shouldn’t remain open across the
recursive procedure calls. That is to say, you should begin and end the dictionary without making any recursive

calls in between. You might very well want to do this so as to do some complicated calculations before setting

up the recursion calls. We’ll see an example later on. The simplest rule to follow with recursive procedures in
PostScript is to use variables as little as possible, and to resort to stack manipulations instead. In effect, you should

use data on the stack to serve as a substitute for the execution stack PostScript doesn’t want you to use. The

Chapter 9. Recursion in PostScript 2

drawback, of course, is that such manipulations are very likely to make the procedure much less readable than it
should ideally be. The technique is usually painful and bugprone, and hence best avoided. Nonetheless, here is

a simple example—a correct recursive procedure to calculate n! correctly (except for problems with floating point

accuracy):

% args: a single positive integer n

% effect: returns n!

/factorial {

% stack: n

1 gt {

% stack: n > 1

% recall that n = n(n-1)!

dup 1 sub

% stack: n n-1

factorial

% stack: n (n-1)!

mul

} ifelse

% stack: n!

} def

The comments here trace what is on the stack, which is an especially good idea in programs where complicated
stack manipulations are made.

Of course this version of factorial is hardly efficient. It is simple enough to write a factorial routine that just

uses a for loop. But this version illustrates nicely the perils of recursion in PostScript.

Exercise 1. The gcd (greatest common divisor) of two nonnegative integers m and n is n if m = 0 or the gcd of
m and n mod m if m 6= 0. Construct a recursive procedure in PostScript to find it.

Overflow on the dictionary stack occurs in my current implementation only when the stack reaches a size of

about 500. So much of what I am saying here is silly in many situations. But there is another reason not to allow
the dictionary stack to grow large—when looking up the value of a variable, the PostScript interpreter looks

through all of the dictionaries on the stack, starting at the top, until it finds the variable’s name as a key. If the

name is inserted in one of the bottom dictionaries, a lot of searching has to be done. The efficiency of a recursive
procedure can thus be cut down dramatically as the recursion builds up.

2. Sorting

A common and extremely useful example of a procedure which uses recursion is a sorting routine called quick

sort. I am going to present it below without much explanation, but I shall make a few preliminary remarks.

Let me first explain what just about any sorting routine will do. It will have one argument, an array of items
which can be ranked relative to each other—for example an array of numbers. The routine will rearrange the

items in the array in ascending order, from smallest up. For example

[4 3 2 1] quicksort

will rearrange the items in the array to make it equal to [1 2 3 4]. You might think that this isn’t a very
mathematical activity, and that a mathematician would have no serious interest in such a routine, especially in

PostScript where you are only interested in drawing stuff. That is not at all correct. A good sorting routine should
be part of the tool kit of every mathematical illustrator. For example, we shall see a bit later on a procedure that
constructs the convex hull of a given finite collection of points, and which depends upon a sorting routine in a

highly nontrivial way. Sorting routines can also play a role in 3D drawing, where objects must be drawn from

back to front.

Chapter 9. Recursion in PostScript 3

As any introduction to programming will tell you, there are lots of ways to sort items in an array. They vary
enormously in efficiency. One very simple one is called the bubble sort, because it pushes big items up to the

top end of the array as though they were bubbles. It makes several scans of the array, each time bubbling up the

largest item. For example, on the first pass it moves the largest item to the end, on the second it moves the second
largest item to the place next to the end, and so on.

Here is PostScript code for a bubble sort.

% args: array a of numbers

% effect: sorts the array in order

/bubblesort { 4 dict begin

/a exch def

/n a length 1 sub def

n 0 gt {

% at this point only the n+1 items in the bottom of a remain to be sorted

% the largest item in that block is to be moved up into position n

n {

0 1 n 1 sub {

/i exch def

a i get a i 1 add get gt {

% if a[i] > a[i+1] swap a[i] and a[i+1]

a i 1 add

a i get

a i a i 1 add get

% set new a[i] = old a[i+1]

put

% set new a[i+1] = old a[i]

put

} if

} for

/n n 1 sub def

} repeat

} if

end } def

For example, if we sort [5 4 3 2 1 0] in this way, we get successively in each bubble:

[4 3 2 1 0 5]

[3 2 1 0 4 5]

[2 1 0 3 4 5]

[1 0 2 3 4 5]

[0 1 2 3 4 5]

[0 1 2 3 4 5]

Bubble sorting is very easy to put into correct PostScript code. But it is pretty inefficient if the size n of the array is

large. On the first bubbling pass it makes n− 1 comparisons, on the second n− 2, etc. This makes approximately
n(n − 1)/2 comparisons in all, so the time it takes is proportional to the square of n.

We can do much better. The sorting routine which is generally fastest of all is called quick sort. One of the
things that makes it unusual is that it tries a divide and conquer approach, basically splitting the array into halves

and then calling itself recursively on each half. Its running time is nearly always proportional to n log n, a great

improvement over bubblesort.

Quick sort has three components. The principal routine is quicksort itself, with only the array as an argument.

It calls a routine subsort which has as argument not only the array but also two indices L < R picking out a
range inside the array to sort. For the call in quicksort these are 0 and n− 1. But subsort calls itself recursively

Chapter 9. Recursion in PostScript 4

with smaller ranges. It also calls a third routine partition which does the real swapping. This procedure has
four arguments—the array a, a lower index L and an upper index R, and an integer x. It moves items in the [L, R]
range of the array around so the left half [L, i] is made up of items less than or equal to x, the right half [j, R] of

items greater than or equal to x. It then returns the pair i and j on the stack. I hide the details. of partition, but
here is the pseudocode for subsort:

subsort(a, L, R) {

x := a[(L+R)/2];

[i, j] = partition(a, L, R, x);

if (L < j) subsort(a, L, j);

if (i < R) subsort(a, i, R);

}

and here in PostScript is the whole package:

% args: a L R x

% effect: effects a partition into two pieces [L j] [i R]

% leaves i j on stack

/partition { 1 dict begin

... end } def

% args: a L R

% effect: sorts a[L .. R]

/subsort {

1 dict begin

/R exch def

/L exch def

/a exch def

% x = a[(L+R)/2]

/x a L R add 2 idiv get def

a L R x partition

/j exch def

/i exch def

% put recursion arguments on the stack

% as well as the arguments for the tests

a L j

j L gt

a i R

i R lt

% close dictionary

end

{ subsort }{

% get rid of unused arguments

pop pop pop

} ifelse

{ subsort }{ pop pop pop } ifelse

} def

% args: a

% effect: sorts the numerical array a

% and leaves a copy on the stack

/quicksort { 4 dict begin

/a exch def

Chapter 9. Recursion in PostScript 5

/n a length 1 sub def

n 0 gt {

a 0 n subsort

} if

a

} def

The important thing here is to notice how the recursive routine subsort manages the dictionary and stack in

a coordinated way. The most interesting thing in the way it does that is how the arguments for the recursion
are put on the stack before it is even known if the calls will be made, and removed if not used. The procedure

partition, on the other hand, does not call itself and is therefore allowed to use a local dictionary in the usual

way.

This will give you an idea of what goes on, but the working version of the quicksort routine has an extra feature.

We will be interested in sorting arrays of things other than numbers in a moment. Rather than design a different
sort routine for each kind of array, we add to this one an argument /comp, the name of a comparison test replacing

lt for numbers. For numbers themselves, we would define

/comp { lt } def

and then write

/comp [5 4 3 2 1 0] quicksort

This is an extremely valuable modification.

To get an idea of how much faster quicksort is than bubblesort, if n = 1, 000 then n(n − 1)/2 = 495, 000
while n logn is about 7, 000. Of course each loop in quicksort is more complicated. In actual runs, quicksort

takes 0.07 seconds to sort 1, 000 items, while bubblesort takes 0.79 seconds on the same array. The quicksort
is definitely fast enough to include in drawing programs without noticeable penalty.

Exercise 2. Use recursion to draw the following picture, with an optional parameter to determine the depth of
the recursion:

Notice that even the line widths get smaller further out along the branches. If you are a mathematician, you
might like to know that this is the BruhatTits building of SL2(Q2). If you are not a mathematician, you can think
of it as one nonmathematician of my acquaintance called it, “chicken wire on growth hormones.”

Chapter 9. Recursion in PostScript 6

3. Convex hulls

Mostly to convince you that sorting is not an empty exercise, but also to give you a procedure you might find

very useful, I shall describe here a well known and relatively efficient way to find the convex hull of a finite set of
points in the plane. It will have a single argument, an array of points, which we may as well take to be arrays [x

y]. It will return an array made up of a subset of the given set of points, listed so that traversing them in order
will go clockwise around the convex hull of the point set. The output, in other words, consists of the extreme

members of the original set, those which are in some sense on its outside. Finding the outside points, and in the

correct order, is not exactly a difficult task, but before you start the discussion you might think of how you would
do it yourself. Extra complications are caused by possible errors in the way PostScript handles floating point

numbers.

P0

P1

P2

P3

The algorithm to be described is not in fact terribly complicated, but certain aspects of it might not seem so well
motivated without a few preliminary remarks. First of all, what does sorting have to do with the problem? The

following picture illustrates that points of the original data set furthest to the left and furthest to the right will be

part of the output.

But finding these points will involve sorting the original point set according to values of the x coordinate. We

have to be a bit more careful in fact. It might very well be the case that several points in the set have the same x
coordinate, so there might not be a unique point furthest left or right. We will therefore be more particular: we
say that (x0, y0) is less than the point (x1, y1) if x0 < x1 (the first point is further left) or x0 = x1 but y0 < y1 (in

case they have equal x coordinates, the one on the bottom will be called smaller). When we sort the data, this

is the ranking procedure we use. It is still true that the largest and smallest points in the set must be part of the
output.

In fact, sorting the original points is one of two key steps in the procedure. We may in effect assume that the
original set of points is an array in which the points are listed so that points which are ‘smaller’ in the sense

described above come first. This immediately reduces the difficulty of the problem somewhat, since we can take

Chapter 9. Recursion in PostScript 7

the first point of the (sorted) input to be the first point in the output. In the following figure the points are linearly
ordered along a polygon ‘from left to right’ in the slightly generalized sense.

Another idea is that we shall do a lefttoright scan of the input, producing eventually all the points in the output

which lie along the top of the convex hull. Then we shall do a right to left scan which produces the bottom.
Again, the preliminary sorting guarantees that the last point in the array will end the top construction and begin

the bottom one.

What is it exactly that we are going to do as we move right? At any moment we shall be looking at a new point in

the input array. It will either have the largest xvalue among all the points looked at so far, or it will at least have

the largest yvalue among those which have the largest xvalue. In either event, let its xvalue be xr . Then we
shall try to construct the top half of the convex hull of the set of all input points with xvalue at most xr . Certainly

the current point P we are looking at will be among these. But as we add it, we might very well render invalid a

few of the points on the list we have already constructed. We therefore go backwards among those, deleting from
the list the ones which lie distinctly inside the top hull of the whole list. A point Pk will be one of those precisely

when the polygon Pk−1PkP has an upward bend, so that the polygon Pk−1PkP is below the segment Pk−1P .
So we go backwards, throwing away those in such a bend, until we reach a triple where the bend is to the right.

Then we move on to the next point to the right. The following figures show the progression across the top in a

particular example, including the ‘left turns’ that are eliminated as we go along:

Chapter 9. Recursion in PostScript 8

I reproduce below the principal routine for finding the convex hull. It uses routines comp for sorting, vsub which
subtracts two vectors, dot to calculate the dot product of two vectors, and vperp which rotates the difference of

two vectors counterclockwise by 90◦. The routine /comp tests whether (x0, y0) < (x1, y1). All these are defined

internally in hull.inc.

% args: an array of points C

% effect: returns the array of points on the boundary of

% the convex hull of C, in clockwise order

/hull { 16 dict begin

/C exch def

% sort the array

/comp C quicksort

/n C length def

% Q circles around to the start

% make it a big empty array

/Q n 1 add array def

Q 0 C 0 get put

Q 1 C 1 get put

/i 2 def

/k 2 def

% i is next point in C to be looked at

% k is next point in Q to be added

% [Q[0] Q[1] ...]

% scan the points to make the top hull

n 2 sub {

% P is the current point at right

/P C i get def

/i i 1 add def

{

% if k = 1 then just add P

k 2 lt { exit } if

% now k is 2 or more

% look at Q[k-2] Q[k-1] P: a left turn (or in a line)?

% yes if (P - Q[k-1])*(Q[k-1] - Q[k-2])perp >= 0

P Q k 1 sub get vsub

Q k 1 sub get Q k 2 sub get vperp

dot 0 lt {

% not a left turn

exit

} if

% it is a left turn; we must replace Q[k-1]

/k k 1 sub def

} loop

Q k P put

/k k 1 add def

} repeat

% done with top half

% K is where the right hand point is

/K k 1 sub def

/i n 2 sub def

Q k C i get put

Chapter 9. Recursion in PostScript 9

/i i 1 sub def

/k k 1 add def

n 2 sub {

% P is the current point at right

/P C i get def

/i i 1 sub def

{

% in this pass k is always 2 or more

k K 2 add lt { exit } if

% look at Q[k-2] Q[k-1] P: a left turn (or in a line)?

% yes if (P - Q[k-1])*(Q[k-1] - Q[k-2])perp >= 0

P Q k 1 sub get vsub

Q k 1 sub get Q k 2 sub get vperp

dot 0 lt {

% not a left turn

exit

} if

/k k 1 sub def

} loop

Q k P put

/k k 1 add def

} repeat

% strip Q down to [Q[0] Q[1] ... Q[k-2]]

% excluding the doubled initial point

[0 1 k 2 sub {

Q exch get

} for]

end } def

Code

Procedures discussed here are found in sort.inc and hull.inc.

References

1. M. de Berg, M. van Creveld, M. Overmars, and O. Schwarzkopf, Computational Geometry algorithms and

applications, Springer, 1997. The convex hull algorithm is taken from Chapter 1 of this book. Like many books
on the subject of computational geometry, the routines it explains are often more beautiful than practical. Among

them, however, are a few useful gems. And the illustrations are, rarely for books on computer graphics, absolutely

first rate.

2. R. Sedgewick, Algorithms, AddisonWesley. There are several editions of this, setting out code in various

programming languages. The latest one (2003) uses Java. Chapter Five has a nice discussion of recursion and
tree structures, while Chapters Six and Seven are about sorting.

