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PATTERN CLASSIFICATION
METHODS

The classical techniques of pattern recognition are concerned with
assigning a given pattern to one of the known, finite classes. These
techniques are surveyed briefly in this chapter and their possible
applications and limitations examined. The problem of perception
extends beyond that of classification; often it is necessary to generate
descriptions of a new pattern and analyze its similarities and differences
with other known patterns.

Before discussing different approaches, we need to study the
digital representation of an image.

2.1 DIGITAL REPRESENTATION OF AN IMAGE

An image may be thought of as a function giving the light
intensity at each point over a planar region. For operations by a digital
computer, we need to sample this function at discrete intervals and
quantize the intensity into discrete levels. The points at which the
image is sampled are known as picture elements, commonly abbreviated
as pixels. The intensity at each pixel is represented by an integer, say 0
for black and 255 for white, and is determined from the continuous
image by averaging over a small neighborhood around the pixel
location. It is common to use a square sampling grid with pixels equally
spaced along the two sides of the grid.
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The distance between grid points obviously affects the accuracy
with which the original image is represented, and it determines the fine
detail that can be resolved. (Of course, the resolution depends on the
imaging system as well.) For most images of interest—those that have
a bound on their spatial frequency—a certain sampling distance is
sufficient to reproduce the image perfectly according to the well-known
Shannon-Whittaker theorem in communication theory [1] (assuming no
quantization of intensity levels). In the remainder of the book we will
assume the input to be a digital image with a given resolution.

2.1.1 Connectivity in Digital Images

The geometry and topology of a digital plane differ from those of
a continuous domain in many important aspects. While horizontal and
vertical lines are easily represented on a square grid, straight lines at
many other angles can only be approximated by a staircaselike pattern
(see Fig. 2-1).
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Figure 2-1: Digital approximation of a line

The connectivity of patterns in a discrete representation is more
complex than for the continuous case. To determine connectivity, we
need to define the notion of adjacency of two points in a digitized plane.
In Fig. 2-2, either four pixels, A4 through D, or all eight pixels, A
through A, may be considered adjacent to the center pixel. The two
adjacencies are known as 4-adjacency and 8-adjacency, respectively. A
set of points forms a 4 (or 8) connected figure if there is a path between
any two points through 4 (or 8) adjacent points.

These definitions of connectedness can yield counterintuitive
results in some cases. In Fig. 2-3, the set of points with value 1 is
8-connected, but so are their "interior" and "exterior" backgrounds. On
the other hand, this set of points is not 4-connected, but neither are
interior and exterior backgrounds, and we have an unconnected curve
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Figure 2-2: Neighbors of a pixel P

Figure 2-3: Connectivity in digital plane

separating two regions in a plane,

If a hexagonal grid is used, instead of a square one, this anomaly
disappears. In a hexagonal grid, a point at the center of a hexagon is
considered to be connected to the six pixels at the corners of the
hexagon; see Fig. 2-4. However, hexagonal grids have not proved

popular, perhaps because of the complexity of the digitization (details of

the use of hexagonal grids may be found in [2]). It is interesting to
note that triangular grids are the only other symmetric and isotropic grid
that can be used to span a plane. A detailed treatment of digital
topology may be found in [3].
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Figure 2-4: A point Pand its hexagonal neighbors

2.2 TEMPLATE MATCHING

The most immediate method of classifying a pattern is to compare
it with stored models of known patterns and choose the best match. In
template matching, this comparison is performed directly on images.
Templates consist of images of known patterns, one from each class.
Each template is moved over a new image to find the best match. Let
F(i, j) represent the image and A(i, /) represent the template. For a
translation of the template by (x, y) a measure of the match between
the image and the template is given by

E(x, y) = 2 2IFG, j) — AG — x, j — Y 2-1)
i J

where the summation is over the overlapping regions of the image and
the translated template, ‘Matches at different values of (x, y) are
computed to search for a minimum value of E. The template giving the
lowest error, £, is taken to be the best classification for the input
pattern. Two simpler measures of match are the sum of absolute
differences and the sum of the maxima of the absolute differences,
instead of the sum of the squares of differences in Eq. (2-1) above.
Above measures require the patterns to be matched to have the
same intensity values. A measure known as normalized
cross-correlation is insensitive_to the absolute intensity andm"ﬂqe
contrast and is defined by o '
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SSAFG, ) - AG — x, ] — )}
ot ) = VISP, ) VI2A i —x,j — y)

with all summations over the same range as in Eq. (2-1) above. o
achieves a maximum value of 1 for an exact match.

As defined above, template matching achieves pattern
classification invariant to translation, but not to rotation, scale (size), or
perspective changes. Template matching with different scales and
orientations is computationally expensive. To account for variations
within a class, the template may be stretched and deformed to fit a
pattern with a measure related to the amount of deformation [4].
Limited changes in perspective may be accommodated by using a
number of templates with different perspective views.

It is sometimes useful to represent a template as consisting of
smaller subtemplates with specified spatial relationships. Matching of
subtemplates can then be independent of each other, and a further
measure of the spatial relationships in the input pattern is used to
evaluate the whole match. In one approach, the subtemplates were
considered to be attached by springs, and extension or compression of
these springs was used as a measure of a global match [5]. This
technique allows different weights to be assigned to different spatial
relationships and allows some flexibility within a pattern class.
However, the basic limitations of sensitivity to changes in scale and
perspective remain.

In summary, template-matching techniques are useful for
applications where the number of classes and the variability within a
class are small. A prime example of successful application is for
recognition of printed, fixed-font alphabetic characters in commercially
available optical character reader (OCR) devices.

(2-2)

2.3 PATTERN CLASSIFICATION IN FEATURE SPACE

An alternative to template matching, which proceeds at the image
level, is to abstract some measurements or features from the pattern
and classify it based on these measurements. This paradigm is illustrated
schematically in Fig. 2-5 and allows the separation of the recognition
problem into two more or less independent parts.

The measured features may be considered to span an
n-dimensional feature space, and different regions of this space
correspond to different pattern classes. A hypothetical example for two
features is shown in Fig. 2-6. The power of this paradigm is strongly

PATTERN CLASSIFICATION METHODS 17

Input ___ | Feature

S ification 3= Qutput
Signal Extraction Classification Outpu

Figure 2-5: Block diagram for pattern-classification approach

dependent on the availability of features that are invariant to the

expected changes in the input patterns. The choice of features is
problem dependent. However, the classification methods can be
independent of the problem domain and need not be restricted to
pictorial inputs.
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Figure 2-6: Three classes separated in feature space /|-f

Elegant theories have been developed for classification that
minimize the probability of false classification based on known (or
assumed) a priori probabilities of occurrence of certain patterns and
conditional probabilities of their occurrence given a feature vector. A
simple technique is to assign a given point in feature space to the same
class as that of its nearest (closest) neighbor in this space. This simple
method has an error rate no worse than twice that of an optimal
method. A major concern of the pattern-classification methods is with
the simplicity of the classification rule, and a particular favorite is
classification by dividing the feature space into linearly separable
regions—that is, by hyperplanes in the feature space (straight lines in a
plane). These classification methods are not described in detail here;
several comprehensive textbooks on the subject exist [6-8]. A
particular pattern classification machine, the perceptron, is discussed in
some detail below.



2.4 PERCEPTRONS

A frequently suggested and attractive organization for pattern
classification is that the analysis of an input pattern must proceed in
stages. At each stage, computations are performed on local areas only,
and global relations are derived from combinations of the local
computations, in a presumed analogy with the human visual system. A
specific scheme is as shown in Fig. 2-7. In the figure ¢'s are arbitrarily
complex functions limited to operating on a local neighborhood and Q
is a decision function based on the results of computations of various
¢ /s (the neighborhoods of ¢ /s may overlap).

Q) —YES/No

Figure 2-7: A perceptron

To be more specific, let each ¢, be a predicate function (that is,
with a value of one or zero). Let the decision function, €2, have value
one (yes, true) if a weighted sum of the inputs, ¢, exceeds a certain
threshold and zero (no, false), otherwise. That is,

Q

Il

1, if 2 cx,-d), >
= (0, otherwise

A machine using such a decision function is called a perceptron and was
proposed by Rosenblatt [9]. The thresholding element was believed to
be similar to the simpler models of neurons in animal brains. It has
been further suggested that such machines are capable of "learning," by
adjustments of the weights in accordance with the output of the
machine in response to known input patterns.

As a simple example, consider the problem of recognizing
whether the input pattern is a rectangle of any size located at an
arbitrary position, with one of the axes bein  horizontal (see Fig. 2-8).

Let us define four predicate functions b6, D)y 4G ), ¢5(, J), and
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Figure 2-8: A rectangle in an image

¢4(i, J), each using three pixels in the input pattern. For these
functions to be true, pixel (i, /) must have a value of 1 and neighbors
must have values as specified below:

¢ (i, /) requires the south and east neighbors—that is, pixels
(i+1, j) and (i, j+1)—to have value 0,

¢,(i, /) requires south and west neighbors to be 0, N

¢5(i, /) requires north and west neighbors to be 0, and b

¢4(i, ) requires north and east neighbors to be 0. o

These functions essentially detect the presence of a certain type of
corner in the input pattern. In Fig. 2-8, ¢ has value 1 at corner 4, ¢,
at corner B, ¢4 at corner C, and ¢,4 at corner D. The presence of the
desired rectangle is indicated if and only if

201 + 2by + Ty + Dby < 4 (2-3)

(verification for the general case is left to the reader).

For many years it was believed that perceptrons were general
classifiers capable of learning to discriminate between arbitrary sets of
patterns by proper choice of as (and perhaps ¢ 's), and much effort
was devoted to discovering efficient learning algorithms [10]. However,
Minsky and Papert, in a classic book [11], demonstrated that the
discrimination ability of these machines is extremely limited.

Before results on the power of perceptrons can be established,
some restrictions must be placed on the feature detecting functions, the
¢/s. We allow the functions to be arbitrarily complex predicate
functions, but restrict the range of inputs in the following two ways:

1. Each ¢, is allowed to operate in a neighborhood enclosed within
a circle of a certain diameter. Machines with this restriction will
be called diameter limited perceptrons.

2. Bach ¢; may use at most only a limited number of points, say k,
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selected from anywhere in the input pattern. Machines with this
restriction will be called order limited (of order k) perceptrons.

Clearly, if the order or the diameter of a perceptron ?s a.llo.wed. to
be large enough to include all points in the input pattern, d‘lscnmmatlon
between any two patterns is possible (as each ¢, is arbitrarily complex).
Such machines will be said to be not of finite diameter (or order). The
interesting results are about the capabilities of finite order or finite
diameter perceptrons. Some of the principal results of Minsky and
Papert’s work are stated below.

1. Finite-order and finite-diameter perceptrons can be devised to
discriminate rectangles from other figures. Circles can be
discriminated by order-limited perceptrons (of order four) but
not by diameter-limited perceptrons. However, figures
embedded in other figures cannot be so discriminated by any
finite-order or finite-diameter perceptrons. For example, such
machines cannot be devised to correctly answer that a rectangle
is contained in Fig. 2-9(a) or (b).

2. If invariance to any group of transformations is desired, patterns
must be discriminable by area alone.

3. If invariance to any topological transformation is desired, the
patterns must be discriminable by their Euler number (number
of connected components - number of holes).

4. A perceptron of order three can discriminate between convex
and concave patterns.

5. A finite-order or finite-diameter perceptron cannot be
constructed to discriminate between connected or disconnected
patterns, such as in Fig. 2-10, where one of the patterns is
connected, the other is not. (In this example, the connectedness
property is difficult to perceive for humans as well, but the
perceptrons also fail for simpler examples.)

O

() (b)

Figure 2-9: The rectangle as a component in two patterns

The above results are largely negative and somewhat surprising in
that simple global properties such as connectedness cannot be inferred
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(a) ®

Figure 2-10: An uncoannected figure

from local properties by a perceptron. Multilevel perceptrons, utilizing
more than one level of composition of local features, have also been
proposed. However, no important experimental results or theoretical
analyses of such machines have been reported. (Results of preliminary
analysis for machines slightly more general than those analyzed by
Minsky and Papert also seem to be negative [12].)

2.5 SYNTACTICAL APPROACHES

In the pattern-classification approaches of the previous two
sections, the measured features were interpreted to span a feature space
and relations between features were not considered. An alternative
approach is to divide a pattern into primitive subpatterns and use the
relations between subpatterns (or their features). For example, it is
convenient to represent a triangle as three straight lines (primitives)
connected at their end points. Such approaches are said to use
syntactical or structural relations of a pattern.

Syntactical approaches were first applied to the parsing of sentences
in programming and natural languages. These sentences may be viewed
as one-dimensional patterns with words as subpatterns. For
programming languages, the allowed relations of adjacency or
concatenation of words of certain classes are defined by formal rules,
known as formal grammars. However, attempts to find similar rules for
natural language sentences have not been very successful, and it is
widely recognized that the rules of grammar are dependent also on the
meaning or the semantics of the words, and not just on their positions in
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the sentence. . o ’
Use of formal grammars to specify patterns in two and three

dimensions is more complex, as the relationships be}wee{l Sub,p'd}:tei‘gs
are not completely specified by aQJacency. In one f:Llr‘ly aptﬁ)ro?c , the
primitive subpatterns were restricted to be vectors }vlw @ glvin
orientation, and the only allowed relations betwe_en t‘em'lwelzif, y
attachments at their beginnings or ends [13]. I'TW?-dIHJFIXSlOll‘}{ pll v‘erfns'
were represented by a predefined cgntral axis ﬁv?c,tog. , L}'t?bd sl
patterns formed by combining vfectorts_m tlhe::; 1\;&;}: can be specified by
imilar to those used for string languages. ‘
gramrrll?;f‘osrltr&lll;ely, the term syntactical apprgach is Qiter} used} f(?r
techniques that restrict the range of syntactl.cu.l felzlllol{lb t}o tl'1tc;se
specified by a formal grammar, a more appropriate ter“m [‘orlne‘ a e?
would be grammatical pattern recognition. If the class of patterns fol
interest can be specified by a formal grammar, mzmy‘ g'o\jvir u
techniques of formal language parsing.become a‘pph‘cablle. " This ‘115 elen
achieved with some success for restricted apphcatxong, 5031"3@‘ e)f‘uT\lp ?s
are character recognition [14], bubble chamber particle tmge‘ a‘na y;ls
[13], and chromosome analysis [15].  However, the sgxrrhl or
grammars describing large classes of natural patterns has not yet been
1. ‘ .
e Sécrf;isl&;tical pattern recognition is not d‘iscusse.d in the 1'et?1zllncler
of this book; a thorough treatment may be found in [!6], ’I'.{o?v'cver',
nongrammatical structural relationships b_etwe‘en pgrts ()1‘;3ul\)t\5:1 ns'l‘llre wa
key method used in the techniques descnb.ed in this boc)‘l\. ¢ will ‘L‘lse
the term "structural' rather than "syntactical' in the hope of avoiding
confusion with the grammatical methods.

2.6 SUMMARY

This chapter has provided a brief overview of mathem_a'tical
pattern recognition (also called classical ot statistical pattern 1'ccognltx9n)
techniques. Although the proposed paradigmﬁure of great gcngrqllty,
their applications to pictorial pattern regogmt:on have been limited,
owing to difficulties of defining suitable features (or gramma‘rs). Tl?e
view taken in this book is that such techniques may play a usptul role in
some parts of a complete system, but they d_o not prqvxde all the
capabilities required for machine perception, particularly for
three-dimensional scenes. . i

The descriptive approach is developed in the remumder' of the
book. A good understanding of many issues can be obtained by
studying first the simpler problems of perception of polyhedral scenes.

(13]

(14]
[15]
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