40 MACHINE PERCEPTION

object. In such cases, it is convenient to parameterize the camera
transform by the measurable camera position and orientation parameter.
One such technique is described in [4].

3.4 SUMMARY

Analysis of simple scenes of polyhedra with limited occlusion was
described in this chapter. These techniques are strongly limited by
requiring a priori models of the specific objects that may be present in
the scene. In the next chapter we discuss the analysis of occluding
scenes without the knowledge of such models.
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COMPLEX SCENES OF POLYHEDRA

The scene analysis techniques of the last chapter, though general
in principle, are likely to be computationally inefficient as the scenes get
more complex. As the number of models grows and large parts of
objects are occluded by others, recognition by matching with specific
models becomes increasingly more difficult and expensive. A major
simplification occurs if the lines, vertices, and faces belonging to
different objects can be separated. Such segmentation is the major
subject of this chapter. After parts of complete objects have been
segmented, complex objects or structures can be described by
relationships of these parts. Structural descriptions are covered in the
later parts of this chapter.

4.1 SEGMENTATION OF POLYHEDRAL SCENES

Consider the picture shown in Fig. 4-1 (the polygonal regions
have been numbered for convenience). Most human observers would
agree that it consists of one rectangular block occluding another. Here,
we will be interested in techniques for separating the two objects,
without the knowledge of specific objects in the scene (they are only
constrained to be polyhedral). A simple technique that establishes
relationships between regions surrounding a vertex to accomplish
segmentation was devised by Guzman in 1968 [1, 2].
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Figure 4-1: A simple scene

Guzman enumerated classes of vertices shown in Fig. 4-2. The
type of a vertex is determined by the angular relationships between the
lines forming the vertex. Each vertex provides evidence of whether
regions surrounding it belong to the same body, as indicated by links
between regions shown in Fig. 4-2. An absence of a link between two
regions (as for a T-vertex) indicates that no connections between
surrounding regions can be inferred.

Figure 4-3 shows a graph constructed from Fig. 4-1, by
representing each region as a node and placing an arc between two
nodes as indicated by Fig. 4-2 and examining each vertex. All links to
the background (region 7), which is assumed to be known, are ignored.
This graph separates into two groups such that the nodes in each group
are linked to other nodes in that group by at least two links. One group
consists of nodes 1, 2, and 3, and the other of 4,5, and 6. These two
separate groups correspond to the two desired distinct bodies.

Guzman’s technique has been successfully applied to fairly
complex scenes, such as the one shown in Fig. 4-4. The basic method
is to construct a graph as above and group the nodes such that a node
in each group is connected to at least one other node in that group by
two or more links. In complex scenes this may result in some isolated
groups but also some groups connected to others by a single link. The
latter groups are merged if additional evidence of connection by a weak
link is available. A weak link is formed between two faces of an arrow
vertex, in addition to a strong link, if this vertex is also a leg vertex. A
leg vertex is an arrow vertex in which one of the sides bends to become
parallel to the stem or the center line of the arrow, three examples are
shown in Fig. 4-5. A group consisting of a single region and connected
to another group is merged into the latter.
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b) FORK or "Y" c) ARROW
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d)"T" e) MATCHED T's f) PEAK
g)"x" h) MULTI i) 'K"

Figure 4-2: Vertex types and links

Figure 4-3: Region connectivity graph for scene of Fig. 4-1
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(a)
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Figure 4-4: A "bridge" (from Guzman [2])

N

(b)

Figure 4-5: Three leg vertices

(c)
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This simple strategy is sufficient to segment the scene in Fig. 4-4
satisfactorily and is a powerful demonstration of how global object
characteristics can be inferred from rather local vertex characteristics.
This technique is, however, ad hoc—hence its performance is difficult
to predict and characterize. It is sensitive to certain accidental
alignments and performs poorly on objects with holes. Note that perfect
line drawings as input and complete absence of shadows are assumed.
The reader may be interested in devising useful linking rules for more
general scenes, such as the one shown in Fig. 4-6. An extension of
Guzman’s techniques for imperfect line drawings is given in [3].

Figure 4-6: Occluding curved objects

A formal study of polyhedral objects is presented next that
justifies many of the heuristic rules used in Guzman’s technique.

4.2 CLASSIFICATION OF LINES

Figure 4-7 shows three line drawings that seem to represent
"impossible objects" in the sense that they cannot be the image of any
solid polyhedral object, yet they are constructed of seemingly
permissible and ordinary line and vertex structures. Actually, the object
of Fig. 4-7(b) is possible, the other two are not. Huffman and Clowes,
independently, studied the problem of describing lines and vertices such
that whether a line drawing represents a solid object may be determined
algorithmically [4-5]. Their classification scheme also provides a method
for scene segmentation.

In this analysis, it is assumed that the objects are solid, and are
viewed from a general position, defined to be one where a small change
in viewing angle does not cause lines and vertices to appear or
disappear—that is, there are no accidental alignments. Under these
conditions, a line in a picture corresponds to an edge in an object
formed by an intersection of two faces. This edge must be one of the
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c)

Figure 4-7: Three impossible-looking "objects"

following four types: a convex edge where the two faces recede away
from the edge from the viewer’s vantage point, a concave edge where
the faces are toward the viewer, an obscuring edge where only one face
is visible and the visible face is to the right of the edge and, finally, an
obscuring edge where the visible face is to the left of the edge. Figure
4-8 shows an object with its edges labeled, where a "+" represents a
convex edge, "—" a concave edge, and arrows the obscuring edges with
the visible face to the right of the directed line.

-I\+
ARVEA
+

+ Y
.17

Figure 4-8: An object with labeled edges

Now, consider the vertices formed by the intersection of the faces
of a polyhedron. Let the objects be restricted to be trihedral; that is,
each vertex is formed by intersection of exactly three faces. If objects
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are viewed from a general position, defined to be such that the vertex
and the line formations do not change with small changes in the viewing
angle, then only arrow, fork, L, and T types of vertices can occur.

The major observation of the Huffman-Clowes discovery is that
the lines at different vertices are not allowed to have all combinatorially
possible labels, but are constrained to be one of the configurations
shown in Fig. 4-9. These configurations can be derived by considering
the three planes forming a vertex to divide space into octants. Now the
solid object may fill one or more of these octants. However, strictly
speaking, the objects filling an even number of octants do not form
trihedral vertices. Typical object vertices with 1, 3, 5, and 7 octants
filled are shown in Fig. 4-10. The possible visible vertex configurations
are derived by viewing the four different types of vertices from all eight
octants (each view does not necessarily give a distinct configuration).

VAV VAY AV
NN NA N Y
N

Figure 4-9: Allowed junction labels

Figure 4-10: Four types of vertices with numbers indicating
the number of filled octants (after Huffman [4])
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' A necessary condition for a line drawing to represent a possible
_object then is that its lines be labeled so that the vertices are labelled a
in Eig. 4-9. 1t is clear that the label of a line cannot change betweer?
vertices. ‘For some objects, multiple labelings are possible; such objects
are gmblguous. The labeling for the object shown in Fig. 4-8 is
consistent and hence it may be possible. However, no consistent
labelings can be found for the line drawing in Fig. 4-11 and it cannot
represent a possible solid object (to prove this, note that the lines on
the .outer boundary must be labeled as obscuring edges). These
consnste.nt' labeling_fequirements are, however, only the necessary and
ggﬁ(ﬁ%ﬁ{ conditions. (The sufficient conditions are described in

inconsistent

Figure 4-11: An object with no consistent labels

‘ For a scene consisting of multiple objects, the line labels provide a
ftrz}'xghtforlyvevl'rd segmentation; all regions connected by a line having :1
t:lat?él aFi— 4lall;elu;g 'myst belqng to the same body (for example, try
10 jabel rgfes-' .Gt 1s’m}erestmg to see that this theory supports the
pearistic vertilcr(las iﬁzrgan: segmentation scheme. The center line of
e a0 ertices in ig. 4-9 has the label of "+4" or "=" only. This
m surrounding regions actually intersect and must

ong tq the same body. Similarly, two of the three fork
co_nﬁguratxons support Guzman’s linking rules, but the existence of a
third .conﬁguratlon is a possible source of errors (in L Guzmzm’;
experiments, arrows were found to be more reliable than forks). The
]rii%uxcraenn;e?t P?f twq links in Guzman’s programs is also justiﬁ‘eci, as a
lnkine \(l)idgngggoenltbsolt?bzln 3:‘tween vertices and must produce a similar

4.2.1 Inclusion of Shadows

Waltz [6,7] extended the types of line labels by includi rack
ind s(/;ac?ow edges, as shown in Fig. 4-12. The crack eyclgesC :?emr%m‘rrlgc/i\
dy E along them and shadow edges by an arrow across them, with the

arg region toward the arrowhead. Waltz also differentiated between
1spubclasses of some types of lines. For example, a concave edge may be
bordn_mf:d by two faces b;longing to the same body or to two different
odies. The latter case is further distinguished by whichever of the two
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objects, if any, supports the other. Further distinctions are added by
including illumination information for the regions on two sides of a
label. A region is either illuminated, or in the shadow of another object
or another face of the same body. With such distinctions, 59 separate
line labels were enumerated.

Shodow edge
Concove edge
Convex edqge
Obscuring edge
Crack edge

P

Figure 4-12: An object with cracks and shadows (from Waltz [7])

Again, not all combinationally possible sets of line labels at a
vertex are physically possible. As a simple example, a shadow edge
cannot occur at a type 1 vertex (the object occupying one octant). Waltz
enumerated several thousand physically possible configurations for
different types of wvertices, including some caused by accidental
alignments (such as K and multi). This number is a very small fraction
of the combinationally possible labelings, which number in the tens of
millions.

With this expanded set, certain types of vertices may have labels
numbering in the hundreds, and finding a consistent set of labels for a
complex line drawing might seem to be a computationally hopeless task.
However, surprisingly, a simple algorithm described below has been
found to converge remarkably rapidly.

Consider three vertices 4, B, and C as shown in Fig. 4-13, which
are part of a larger line drawing. Three sets S, Sp, and S¢ of possible
line configurations may be initially assigned to the three respective
vertices. However, the line 4B, must have the same label at the
vertices 4 and B and hence those labels in S, and Sp which do not
assign a common label to the line in between them may be deleted from
further consideration. The same procedure is now applied to the line
BC and sets Sgand S If any labels are deleted from the set Spin this
process, then more labels from S, may now become ineligible. This
process propagates to all connected vertices, considering one pair of
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Figure 4-13: Part of a line drawing showing three vertices

vertices at a time.

In the example of Fig. 4-13, three labels can be assigned to each
of the vertices 4 and C, and six labels to the vertex B without
considering consistency with their neighbors. However, the labels of

vertex A eliminate the possibility of line 48 being occluding, and only -

two labels at vertex B can be retained, one with line A8 being marked
"+" with an arrow pointing from C to B, the other with line 48 being
"—" and an arrow pointing from B to C However, only the latter is
consistent with allowed labels of C. This comparison results in a unique
label for both vertices B and C. This in turn also forces a unique label
on vertex A, requiring AB to be "—".

It was found that the above simple algorithm applied iteratively to
all vertices in a line drawing converged very fast, the number of
possible labels decreased rapidly, and a unique labeling for lines was
obtained in non-ambiguous figures. Thus, pairwise consistency of
vertices results in global scene consistency. This agrees with our
intuitive notion that a vertex does not affect the scene content very far
away from it. Waltz’s algorithm was successful in correctly labeling
scenes of the complexity shown in Fig. 4-14. This labeling algorithm is
also called relaxation labeling.

Labeling constraints for nonsolid objects such as wire frame
objects, and objects with walls that are arbitrarily thin, have also been
derived [8-10]. However, all such analysis assumes that the given line
drawings are perfect and contain no missing or extra lines. Such line
drawings are extremely difficult, if not impossible, to obtain even from
pictures of carefully prepared, simple, homogeneous-surfaced objects.
The practical utility of these procedures, even for polyhedral objects,
has thus been limited. A very different technique for imperfect line
drawings, using properties of a group of lines and vertices of specific
objects known to be present in the scene, is described in [11].
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Figure 4-14: A complex scene (from Waltz [7])

4.3 GEOMETRICAL CONSTRAINTS FOR POSSIBLE
OBJECTS

The Huffman-Clowes labels provide a way of verifying if a given
line drawing is physically realizable. However, they provide only a
necessary condition. The line drawing in Fig. 4-15 can be labeled
consistently but is still not realizable as a trihedral object, as the three
lines AB, CD, and EF do not meet in a point. We need to place some
geometrical constraint on the line drawings, in addition to the syntactic
constraints. The use of dual graphs for this purpose was suggested by
Huffman [4] and further developed by Mackworth [12].

D

Figure 4-15: An "impossible" pyramid



4.3.1 Gradient Spaces and Dual Graphs

A convenient representation of the orientations of the surfaces of
an object is needed for expressing the necessary constraints for these
surfaces to belong to a possible object. The orientation of a plane
defined by the equation

ax + by +cz+d=20 4-1)

is given by the direction numbers (a, 4, ¢) of its normal. However, a
more useful representation can be derived by rewriting Bq. (4-1) as

—z = (E)x + (1—)) + a
=\z P LA (4-2)
assuming c is not 0. Now let G, and G, be defined as below:
dz a
G, =—= —= -
ox c (+3)
and
0z b
G == ; (4-4)

G, and G, are the gradients of the z components of the points in the
plane in the x and y directions, respectively. (Gx., G;) may be viewed as
a two-dimen§ional gradient space, the orientation of each plane in the (x,
¥, 2) space is uniquely represented by a point in the gradient space
(except when ¢ is 0). A point at the origin of the gradient space
represents a plane parallel to the (x, y) plane and a point on one of the
axes of the gradient space represents a tilt of this plane along the x or
the y axes.

Most of the useful properties of the gradient space derive from a
dual relation between the (x, y, z) space and a dual (u, v, w) space.
These relationships are described as background in the next two
paragraphs, and they may be skipped without loss of continuity.

A dual of the plane given by Eq. (4-1) in the (u, v, w) space is
defined to be the point (g, b, ¢). The dual of a point (d, e, A in the (x,
¥, 2) space is defined to be the plane du + ev + Sw+1=0in the (4
v w) space. A straight line in the (x, y, 2) space can be viewed as the
1_nter_sect10n of a number of planes containing this line. The dual of this
lm_e in the (4, v, w) space is another straight line, passing through the
points that are the duals of the planes determining the straight line in
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the (x, y, z) space. ,

A picture of a solid object is a projection from three-dimensional
space onto a picture plane. In the following we restrict the projection to
be orthographic. (Orthographic projection is equivalent to a perspective
projection with the viewing point at an infinite distance. For object sizes
much smaller than the viewing distances, the two projections are very
similar.) An interesting correspondence exists between the picture and
the projection of the dual space onto a specially chosen plane called the
gradient plane, or the gradient space. We state, without proof, these
relations between the lines and points in a picture with their dual
representations in the gradient space.

A plane (polygon) in the picture plane corresponds to a point in
the gradient space (Gy,Gy). The location of this point in gradient space
is determined by the gradient of the plane in the three-dimensional
space along the X and Y axes, respectively, the picture projection being
along the Z axis. A line in the picture plane corresponds to a line in the
gradient space such that the two lines are perpendicular to each other
(assuming that the axes of the two spaces are aligned).

An example of a vertex with three lines and three faces
surrounding it is shown in Fig. 4-16(a), and its dual is shown in
Fig. 4-16(b). The dual of the plane A4 is an arbitrarily chosen point A4'.
B' dual of B, must line on a line 4'B'normal to line 1. For line 1 to be
convex, A'B’'must be in the same orientation along line 1' as 4 and B
are across line 1—that is, left to right in this example (conversely for a
concave edge). Length of line A B' determines the precise relative
orientations of the planes 4 and B and cannot be determined from the
line drawing. However, once 4’ and B’ have been chosen, C' the dual
of the plane C, is uniquely determined as it must lie on line 2' through
B normal to 2 and line 3’ through A4 normal to line 3. Note that for a
consistent dual to exist, all three edges must be either all convex or all
concave; the convex case being shown in Fig. 4-16 (the size of the
triangle 4'B'C' can, under certain conditions, be determined by using
the intensity values of the three faces. See Section 9.3 and [13] for
more details.)

The geometrical condition for an object to be physically realizable
is simple—it should be possible to construct a consistent dual for the
object in the picture. This is both a necessary and a sufficient condition.
For example, consider the object in Fig. 4-17(a). It appears, to us, to
be a tetrahedron with two obscured faces. For simplicity, we will
construct a dual in the gradient space assuming that the background
plane, A, is also one of the hidden surfaces.

Duals of the planes 4, B, and C are given by A4, B, and C;
forming a triangle as in Fig. 4-16. The position and the size of the
triangle can not be fixed. Also, we are assuming that edges 1 and 4 are
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Figure 4-17: An object and its dual graph

concave and 3 is convex (one of the few possible and consistent
interpretations). This interpretation implies that edges 2 and 5 must be
occluding. It is interesting to determine if the occluded planes for these
two edges could be the same! For this, the dual of the hidden plane,
say D, must lie at the intersection of line B'D'normal to line 2 and line
C'D' normal to line 5. Additionally, line 4'D’ must be normal to line
ad, as the plane D must also intersect the plane 4 along line ad, as is
the case for this example. (A dual for the interpretation where A4 is a
background plane and another plane F is another hidden surface of the
tetrahedron is easily constructed replacing A" with £'in Fig, 4-17 and a
new A' as an isolated point.)

This ability to impose constraints on invisible surfaces is quite
remarkable. Mackworth has implemented a computer program to
hypothesize the hidden surfaces, where possible by using reasoning such
as given above [12]. The reader may find it instructive to verify that a
consistent dual can not be constructed for the pyramid of Fig. 4-15 by
assuming just one hidden plane intersecting line AE (but can be by
using two hidden planes in the back).

SR

4.4 DESCRIPTIONS OF OBJECT ASSEMBLIES

A description of a given scene is a major objective of the
machine-perception process. A description of a scene should include
the number and the type of objects in it and their relationships to each
other. As an example, the scene of Fig. 4-18 may be described as
consisting of three rectangular parallelepiped blocks (bricks), with the
block A supported by the blocks B and C, and with the block B to the
left of block C. Each block may in turn be described in terms of its
components, such as its faces.

| | 1y

Figure 4-18: An arch

Such descriptions can be conveniently represented as a graph
structure, with the objects (or components) being nodes of the graph
and relationships between them being arcs of the graph. The graph
representation of the above description of the scene in Fig. 4-18 is
shown in Fig. 4-19. Such descriptions are useful for recognition of object
assemblies.

supported-by

Figure 4-19: A simple graph description of the arch of Fig. 4-18
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4.4.1 Computation of Descriptions

Computation of descriptions that require inference of relationships
among objects is difficult. Relationships such as support are easy for us
to infer, but difficult to give algorithms for. Techniques for inferring
such relationships are not well developed and are, in general, heuristic
in nature. A few such techniques were suggested by Winston [14, 15]
and are discussed below. In the following, it is assumed that the
individual objects of a scene have been separaled by one of the
previously described schemes.

Support. To infer that an object A is supported by another object
B, object 4 must obscure some part of B. Also, assuming a normal
viewing position, B will usually appear to be below 4. Winston suggests
that if the "bottom lines" of an obscuring object form an arrow vertex
and share regions with the obscured object, then it may be inferred that
the latter object supports the former (see Fig. 4-20). (This is easily
extended to X or K vertices.) The bottom lines are those belonging to
the lower vertices of the interior lines.

Figure 4-20: Evidence for support relation

Note that gravity and stability of objects have not been explicitly
used, and the above algorithm is likely to lead to occasional errors. It is
likely that these concepts play an important part in our inference of
support relationships. However, they are difficult to compute from
two-dimensional images.

Left and Right. Figure 4-21 shows various examples of two
blocks in a scene. Some of the examples clearly depict a left-right
relationship, while the others may appear to be front-behind relations.
Based on these examples, we may define an object 4 to be to the left of
A if the center of area of A4 is left of the leftmost point of B and the
rightmost point of A is left of the rightmost point of B. The definition
for 4 to be right of B is similar. (This definition is not necessarily
symmetric; that is, 4 may be left of B, but B not right of 4.) For
ambiguous cases, such as in Fig. 4-21, it may be desirable to generate
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Figure 4-21: Left-right relations (after Winston [15])

more than one alternative description.

Groups of objects. A set of objects form a group if they are
similar in some respects and share common relationships with others.
In Fig. 4-22, blocks A4, B, and C can be considered to belong to a group,
as they are similar and are supported similarly. The latter relationship
can be inferred from the chain of supported-by pointers. As another
example, the four legs of a four-legged table may be considered to
belong to a group. Here, the four legs must be similar, and they share
the same relationship with the table top, namely that of supporting it.

Figure 4-22: Example for a similarity relation

The relationships described above are only a subset of the
relations used, by humans, and the description algorithms are far from
being adequate. However, such descriptions are still useful for



s MACHINE PERCEPTION

recognizing object assemblies. An interesting application to learning of
structures was demonstrated by Winston and is described next,

4.4.2 Learning of Structural Descriptions

Suppose that a program is capable of generating the description
shown in Fig. 4-19 from the scene of Fig. 4-18. If this program is next
shown the scene in Fig. 4-23, it will generate a description similar to
that of Fig. 4-19, with an additional link between nodes B and C
indicating that they touch. A simple program that compared two graph
descriptions  would  discover this  similarity and  difference
(graph-matching techniques are discussed later in Chapter 5). If now
the program is told that Fig. 4-23 is not acceptable as an arch, its
concept of arch can be modified to contain the information that the
supporting blocks B and C must not touch.

Figure 4-23: Almost an arch

The concept of an arch can be further elaborated by showing
examples of other near-miss arch scenes—for example, the block A4 not
being supported by the other two. On the contrary, if the top block is a
pyramid and the structure is still called an arch, then the constraints on
this object can be relaxed.

This type of concept learning should be distinguished from
parameter learning in classical pattern recognition techniques, where
only the weights of a decision function are modified. The learning
described” here resuits from a careful choice of near-miss sample
sequences. It may be easier to teach a machine in this way than by
reprogramming, but such learning is far from the usual notion of
discovery with little or no help from a teacher.

4.5 SUMMARY

This chapter concludes our treatment of the analysis of scenes of
polyhedra. In the analysis of the previous two chapters we assumed that
the input to the programs was a perfect line drawing. Such line
drawings are rarely available, and the techniques required for the
analysis of imperfect or incomplete line drawings may need to be very
different from those discussed previously. The described techniques
are, thus, for the analysis of line drawings rather than for the analysis of
polyhedral scenes. Also, the techniques are specific to polyhedra and
may not extend to a more general class of objects.

Nonetheless, some useful lessons can be learned from the study
of these techniques. The problem of three-dimensional scene analysis
has proved to be much more difficult than anticipated and seems to
require a deep understanding of the problem domain. It seems that
general techniques that ignore the semantics of scenes are inadequate,
even for simple scenes. The more knowledge one can incorporate in a
program, the better is the performance (for example, Waltz’s program
can analyze more complex scenes than Guzman’s). Finally, the
description of scenes seems to require extensive knowledge of physical
principles to adequately infer simple relations such as support and
stability.
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SHAPE ANALYSIS
AND RECOGNITION

Scenes of interest rarely contain solely polyhedral objects. The
motive in studying the problems of the blocks world was to better
understand some aspects of the perceptual process. The main problems
encountered were of the low-level processes to obtain object
boundaries, segmentation of scenes containing multiple occluding
objects, recognition of objects under the changes of scale, rotation,
perspective, and varying amounts of occlusion, and descriptions of
object assemblies. We now examine the generalization of these
processes for nonpolyhedral objects, concentrating on the problems of
shape analysis and recognition based on these descriptions.

Boundary-extraction techniques of polyhedral objects generalize to
other objects, provided that the surfaces of objects are still
homogeneous and shading of the surfaces due to curvature is not
strong. These techniques must now be more local, as boundaries are
not necessarily straight. If the objects or the background are textured,
boundary extraction becomes a complex problem (for polyhedral objects
as well). These low level processes will be discussed in detail in the
succeeding chapters. For now, we assume that perfect boundaries,
corresponding to discontinuities in the object surfaces or their slopes,
are available.

Segmentation techniques for polyhedral objects were based on
effective utilization of the knowledge of constraints placed on the
images by the nature of the objects and the image-formation process.
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