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SHAPE ANALYSIS
AND RECOGNITION

Scenes of interest rarely contain solely polyhedral objects. The
motive in studying the problems of the blocks world was to better
understand some aspects of the perceptual process. The main problems
encountered were of the low-level processes to obtain object
boundaries, segmentation of scenes containing multiple occluding
objects, recognition of objects under the changes of scale, rotation,
perspective, and varying amounts of occlusion, and descriptions of
object assemblies. We now examine the generalization of these
processes for nonpolyhedral objects, concentrating on the problems of
shape analysis and recognition based on these descriptions.

Boundary-extraction techniques of polyhedral objects generalize to
other objects, provided that the surfaces of objects are still
homogeneous and shading of the surfaces due to curvature is not
strong. These techniques must now be more local, as boundaries are
not necessarily straight. If the objects or the background are textured,
boundary extraction becomes a complex problem (for polyhedral objects
as well). These low level processes will be discussed in detail in the
succeeding chapters. For now, we assume that perfect boundaries,
corresponding to discontinuities in the object surfaces or their slopes,
are available.

Segmentation techniques for polyhedral objects were based on
effective utilization of the knowledge of constraints placed on the
images by the nature of the objects and the image-formation process.

61



0 MACHINE PERCEPTION

Huffman-Clowes-Waltz techniques used generic knowledge common tq
trihedral objects, whereas Roberts’ technique required knowledge of
specific potential objects in a scene (the segmentation being performeq
simply by recognition). Huffman has generalized his line-labeling
theories to apply to arbitrary polyhedral objects and also to objects of
zero-Gaussian-curvature surfaces [1]. Chien and Chang have attempted
to generate a catalog of vertex types for scenes of simple curved objects
such as circular cylinders and cones [2]. However, no similar
segmentation techniques have been developed for more general objects.

Scene segmentation is greatly simplified if three-dimensional
positions of points on the visible surfaces of the objects are available,
Such information, sometimes known as two-and-a-half dimensional data
can be obtained from multiple views of a scene, as in stereo vision:
artificial range measuring devices, and to a certain extent from
examination of the variations in surface brightness. These techniques
are discussed in Chapter 9. Availability of such information is assumed
in some of the techniques described in this chapter.

For most of the remainder of this chapter we assume that perfect
object boundaries are available, and that the objects have been
segmented or are to be segmented by recognition (that is, knowledge of
specific objects is available). 3-D information of the visible surfaces will
be assumed where indicated. In this chapter we will concentrate on
descriptions of the shape properties of an object and their recognition,
based solely on these shape descriptions. 2-D shape analysis is also
included for completeness.

5.1 REPRESENTATION OF COMPLEX SHAPES

‘ A good shape representation should allow recognition from partial
views of an object, and small changes in object shape should cause only
small changes in the shape description. Representation of articulation of
parts of an object should be convenient, and the representation should
allow_a comparison of differences and similarities of two objects rather
than just simple classification. The latter property is important if the
mgchme must deal with new objects that are similar to previously seen
pbjects. An encounter with a purple, five-legged "cow" should result in
just such a description of differences and not simply an answer that this
object is unknown.

The above requirements are largely satisfied if the complex objects
are rep{esented by segmentation into simpler parts and the
mterr_elatlonships of these parts. As example, a human shape could be
described to consist of various limbs such as head, arms, body and legs,
and the manner in which they are connected to each other. Each limb
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may again be described in more detail in a similar fashion —for example,
the arms consisting of an upperarm, forearm, and a hand, and the hand
in turn being made of a palm and the fingers, and so on. It is
sometimes useful to view such descriptions as comprising a graph
structure with the parts being the nodes of the graph and relations
between the parts being the arcs of this graph. The relations may be of
part/whole and connectivity or the more complex relations such as
similarities of some parts, for example, left and right arms, or
similarities of groups of parts such as bilateral symmetry of a human
shape. Such descriptions are also called relational descriptions or structural
descriptions.

Recognition is by matching of two relational descriptions. Partial
views of an object generate description graphs that are subgraphs of
complete object descriptions and can be accommodated in the matching
process. The variations of an object, such as extra parts or articulation
of parts, are described naturally.

Such descriptions should be contrasted with representations based
on properties of the complete surfaces, such as a Fourier series or
moments expansion of a surface. Changes caused by partial views in
such descriptions are not easily described, nor do they allow a useful
comparison of similarities and differences between two objects.
However, they are easily computed and are useful for applications where
the above considerations are not important.

In the following, various representations, both segmented and
otherwise, are discussed for line, area, and volume shapes.

5.2 LINE DESCRIPTIONS

Descriptions of curves are important for special objects such as the
characters of an alphabet, and also for objects in three-dimensional
scenes such as roads in an aerial photograph.  Further, shape
descriptions of three-dimensional objects are sometimes reduced to
"skeleton" line structures, as described in Sections 5.3 and 5.4.

5.2.1 Storage of Lines

A line is most easily described by an ordered list of the
coordinates of the successive points along it. A significant savings in
storage can be obtained if only the coordinates of the starting point and
incremental changes for the successive points are stored. A popular
technique due to H. Freeman [3], known as chain coding, operates by
assigning an integer code to each of the eight neighbors of a pixel as
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shown in Fig. 5-1. An arbitrary curve is described by a starting point
and the code corresponding to each successive point on the curve. The
chain code of the line shown in Fig. 5-2, for example, is 0, 1, 2, 2, 3, 2,

30 e?2 o]
4e oP @0
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Figure 5-1: Chain codes of the eight neighbors of a pixel
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Figure 5-2: A chain-coded curve

Similarities of two curves with chain codes of a = (a], Ay v a,,)
andb = (b, b,, ..., b,) can be defined by

Cab =

S =

2 a-b (5-1)
i=1

where a;- b; = cos (angle (a) — angle (b)), where angle («) stands for
the angle denoted by code «. This measure is useful only if the two
curves are of the same scale, length, and orientation but may have
different starting positions. Similarity of two curves of different length
can be measured by "sliding" one curve with respect to another and
choosing the maximum value of the above similarity measure—that is,
picking the maximum value of C,,() for all values of j where
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> a by (5-2)
i=1

ol

Cab(j) =

where k is the length of the smaller curve.

5.2.2 Line Approximations

Compact and structured descriptions of a curve are obtained by
approximating it by expansion in an orthogonal series of functions or by
piecewise segments of simpler curves. Approximation by piecewise
linear segments is common, and splines, which are piecewise
polynomials with continuity conditions defined at the junctions, are a
generalization.

A very simple and effective technique for piecewise linear
segment approximation is that of iterative end-point fitting, which operates
by connecting the end points of a given curve by a straight line and
searching for the point on the curve that is farthest from this line. If
this distance is unacceptably large, the curve is segmented in two at the
point of the maximum excursion and the process iterated for the two
segments, as shown in Fig. 5-3. To apply this technique to closed
curves, an initial segmentation into two parts, usually derived arbitrarily,
is needed. Implementation of piecewise linear approximations is
described in [4-7]. Details of spline approximations may be found in

81.

Figure 5-3: Iterative end-point fit

The above technique does not always produce segmentation points
or corners that correspond to the human perception. For our
perception, the most natural points of segmentation seem to be the
points of maximum curvature. To be useful, computation of curvature
in a digital curve requires differencing and averaging over a range. A
comparative survey of corner-finding methods is given in [9].
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Qualitative descriptions of a curve can be generated in terms of itg
segmentation, by using the number of corners and inflection points, and
descriptions of the simpler segments such as being straight or circular.,

5.2.3 Analytical Line Shape Measures

The coefficients associated with an analytical approximation of a
curve can be used as shape features. Curves of different shape will
have different coefficients. However, variations with scale, rotation,
and occlusion may alter the coefficients in complex ways. Hence, such
measures are useful only if the number of curves and the expected
variations in them are small.

A plane curve is generally a multivalued function of two variables
[for example, Ax, ») =0]. Analytical approximation of a curve is
simplified by transformation to a related single-valued function. One
such transformation is a new function @ (s), defined to be the rotation of
the tangent at a point on a curve with the arclength, s, in comparison to
the tangent at the starting point, as shown in Fig. 5-4. (An arbitrary
starting point may be chosen for a closed curve.) Note that 6(0) = 0
and (L) = —2m, for a closed curve, where L is the arclength of the
curve. A modified function given by Zahn and Roskies [10] is defined

as follows: w4
q why

o' (1) = e(»li’—)+ ¢ (5-3)

27

where ¢is in range [0, 2] and related to sby r = 2#/L) s

8'(#) is invariant to translation, rotation, and scaling of the curve.
Analytic shape measures can now be obtained by approximating this
function; a common approach is to expand in a Fourier series and use
the lower-order coefficients (for example, see [10]). Curvature of the
curve, K(s), provides an alternative transformation. However, this
function is ill-behaved for curves with corners.

Another transformation for a closed curve is a function o (s),
defined to be the angle made by line joining a point on the curve with
its centroid, where s is the arclength as before (see Fig. 5-5). This
transformation is convenient to use only if the resulting ¢(s) is
single-valued.

A curve can also be represented parametrically by two equations
of the form x = fA, y = g and the two functions approximated
directly. Again arclength s is a suitable parameter.
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Figure 5-4: Arc length and rotation of the tangent of a curve

X
S
_L 1\0:}' .
Srw\
Nedoed \

X

Figure 5-5: Polar transformation of a closed curve

5.3 AREA DESCRIPTIONS

The shape of a plane figure can, of course, be described by its
enclosing boundary using the methods of the previous section. This
section covers the techniques of describing a figure using the points in
its interior and not just on the boundary. Such descriptions are likely to
be more robust, as small changes in area can cause rather large changes
in the boundary (imagine a jagged boundary rather than a smooth one).

5.3.1 Simple Shape Measures

Rough measures of the shape of a plane figure can be obtained
simply from its area and perimeter. Area/ (perimeter)? is a measure
invariant with the size, position, and orientation of a figure. This
measure is maximum for a circle and becomes smaller for elongated
shapes. However, this ratio is not necessarily different for two different
shapes (the reader may try to construct examples). A better measure

for elongation is the ratio of major to minor axes of the minimal
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bounding rectangle of a figure, defined to be a rectangle completely
“enclosing the figure but not itself enclosed in any other such rectangle
(see Fig. 5-6).

Figure 5-6: Minimum bounding rectangle

An improved approximation to the figure shape is by its convex
hull, defined to be the minimal convex figure enclosing the given figure,
The original figure is now described by the shape of the convex hull and
by the number and the shapes of the concavilies or the concave
deficiencies in the figure (see Fig. 5-7). Qualitative shape measures can
also be based on the topology of the figure and include the number of
connected components and holes.

Convex hull

Figure 5-7: Convex hull of a figure

The simple shape measures described here can be expected to
differentiate only among a small number of widely different shapes and
do not account for the changes caused by perspective and occlusion, if
the figure is a projection of a 3-D object.

5.3.2 Analytical Measures

As in the case of line descriptions, the coefficients obtained by
expansion or approximation of a figure in terms of some basis
functions, such as, 2-D Fourier series, may be used as analytical shape
measures. For some basis functions, it is possible to combine the
coefficients to obtain invariance to scale, position, and rotation (but not
to perspective or occlusion changes). These methods have been
extensively applied to recognition in limited domains, mainly character
recognition of the English alphabet. Use of approximations by moments
is considered in detail below.

The pgth order moment of given figure, R, is defined to be

Mpg = 2 ¥y (5-4)

x,YER

where (x, y) is a point in or on the boundary of R. The zero order
moment, my,, is simply the number of points in the figure (that is, the
area) and my, and my, give the position of the centroid. The moments
can be made invariant to position of the figure by translating the origin
to the centroid and defining new coefficients as

Ppg = 22 (x — XP(y — ) (5-5)

x,yER

Whel’e -.;CT == ml()/f'n()o and jh= mOl/moo. Note that /.Llo = }LOl = 0 and
M 1» K> @and wog are the usual moments of inertia.
Invariance to scale can be obtained by using

[ _______...p:Eﬁ_._.__.
Kpg = ple o+ 1 (5-6)

Invariance to rotation can be obtained by rotating the coordinate axes
by an angle 8, where

2
tan 20 = —hu (5-7)
K20 — Po2

A set of functions of the second- and third-order moments,
invariant to rotation and reflection, are given below (from [11]). (The
last M; is invariant to reflection in magnitude only.)
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M, = (R0 + po2)
M; = (uzo — po2)* + 4p?y,

M3 = (3o — 3p12)* + Gpar — pos)?

pee
My = (R3o + m12)® + (B2 + Poa)® . {‘6\‘ (5-8)
Ms = (p3o — 3%12@*mﬁﬂso + pi2)? = 3(par + pos)?
+ BGurar = poa)(Bar + Po3) * [Bllao + p12)* = (B2 + pos)?]
Ms = (p2o = po2)l(ao + B12)* — (M1 + pros)?]

+ dpn(pso + p)(2r + pos)
M; = (Gpa — poa)(Rao + Bi2) * [(Wao + pi2)® = 3(ua + Ros)?]

= (3o = 3p)(Bar + Hos) - [Blpao + m12)® — (o + pos)?l

Dudani et al. used these moment functions for the recognition of
different aircraft shapes [12]. The perspective changes were
accommodated by storing the seven moment values for each separate
view every few degrees apart.

5.3.3 A Medial Axis Transform

An intuitive description of area shape is by a curve in the "middle"
of the figure and the varying width of the figure along this curve. Blum
formalized this notion by defining a medial axis transform [13]. The
transform is most easily explained by imagining the given figure to
consist of flammable grass and a fire started at its perimeter. Those
points in the interior at which two fire fronts meet and extinguish each
other are the desired points of a medial axis (see Fig. 5-8). The time of
fire extinction, for a given velocity, gives the "width" or the distance
from the axis of the figure at that point. From such an axis and
distance function, the original figure can be reconstructed accurately.

Two equivalent and precise definitions for the transform are as
follows:

1. The points on the medial axis are the centers of the maximal
circular neighborhoods totally contained in the figure—that is,
those neighborhoods not entirely contained within any other
circular neighborhood. The radii of the circles give the distance
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Figure 5-8: Medial axes by Blum transform

function. In Fig. 5-9, the points 4 and B are centers of such
neighborhoods, but not the points C and D.

2. For each point x in the interior of the figure, let a quench
function, ¢, be defined to be

q(x, B) = min(d(x, y)), yin B

where y is another point on the boundary B, and 4 is the
Euclidean distance between x and y. Each point x in the interior
for which g(x, B) is nonsingular (that is, two points on the
boundary are at equal minimum distance from x) belongs to the
medial axis, and the quench function is also the desired distance
function.

Figure 5-9: Maximal circular neighborhoods

Blum’s medial axis transform gives intuitively agreeable
descriptions for smooth objects but suffers from some deficiencies. The
axes for a rectangle, for example, are as shown in Fig. 5-10, rather than
a single line along the major axis. Even more serious is the effect of
small changes in the boundary on the derived descriptions, as shown by
the axes of a rectangle with a small notch in Fig. 5-11. These problems
can be partially alleviatedby removing those points along the axis where
the speed of quenching is high—that is, the points with large values of
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Figure 5-10: Medial axes of a rectangle

Figure 5-11: Medial axes of a rectangle with a notch
(after Agin [23])

As/Aq, where s is the distance along the axis.  Computational
algorithms for the Blum medial axis transform and its modifications
may be found in [14-16]. Another medial-axis-like representation using
generalized cones that avoids these problems, and which also applies to
3-D objects, is described in Section 5.4,

If the figure is subject to changes caused by occlusion and the
representation is to meet the other requirements of Section 5.1, it
should be described by segmentation into simpler shapes. One criterion
is to segment into parts that are convex. Another technique of
segmentation into simple generalized cones is described in the next

sec[tior]q. Other descriptions based on detecting symmetry may be found
in [17].

5.4 DESCRIPTIONS OF 3-D OBJECTS

Shape description of 3-D objects, may be in terms of their exterior
surfaces or the volume enclosed by these surfaces. (Holes can be
described as negative volumes.) Volume descriptions are likely to be
more robust, as relatively large surface changes, such as a nick or a
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fold, may result only in small changes in volume and the perceived__\
shape. For certain objects, however, primarily those constructed of thin
sheetlike material, such as clothing or pressed metal objects, surface
descriptions may be more natural.

An additional difficulty with 3-D object descriptions is that the
3-D surfaces or volumes need to be inferred from a 2-D image. If the
3-D positions of the visible surfaces are available, partial surface
descriptions can be derived directly, but volume descriptions still require
inferences about the invisible surfaces.

Surface description, given 3-D positions, can be viewed as a
problem of approximation and segmentation by simpler surfaces, such
as planes or multi-dimensional splines. A method using surface
patches, called Coons surfaces, is given in [18]. Surface descriptions are
common for computer graphics applications, and details may be found
in [19, 20]. Volume descriptions, given 3-D positions of a/l surface
points, could proceed by analogous volume approximation techniques,
say by polyhedra. We will concentrate on the problem of volume
descriptions from a 2-D image, with or without the 3-D positions of the
visible points, as it is most common in normal perception.

5.4.1 Generalized Cones

A generalized cone is a volume generated by sweeping an arbitrarily
shaped planar figure, called a cross section, along an arbitrary 3-D space
curve called the axis. The axis passes through the centroids of the cross
sections and is normal to them. The size and the shape of the cross
section may change along the axis, as-specified by a cross section
function. These cones may be viewed as a generalization of regular,
right circular cones which are generated by sweeping a circular cross
section along a straight line axis, the cross section function being a
linear scale change. Generalized cones were introduced by Binford [21].

While a single generalized cone can describe an arbitrary volume,
complex shapes are more naturally described by segmentation into a
number of simpler generalized cones. For example, the screwdriver
shown in Fig. 5-12 is described by four generalized cones, one
corresponding to the blade with a varying rectangular cross section, a
stem with constant circular cross section and the handle consisting of
two generalized cones, as shown. Criteria for simplicity of a generalized
cone may be no abrupt change in the size or shape of the cross section,
or in the direction of its axis. Techniques for segmentation are
discussed later.

Generalized cones give simple descriptions for many natural
shapes, such as, animals and tree trunks and also manufactured objects.
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Figure 5-12: Generalized cone representation of a screwdriver
(from Agin [23])

Manufacturing processes of extrusion and turning have natural
correspondences to generalized cones. Fastening of parts is like cutting
and pasting of generalized cones. Generalized cones are not well suited
to descriptions of non-elongated objects, such as, spheres which have no
preferred axis, or objects of arbitrarily deformed surfaces enclosing little
volume.

Simplified generalized cone descriptions still retain many of the
important shape properties. Simply a "stick figure" composed of cone
axes is adequate for gross shape recognition, without any knowledge of
the cross sections along it. For example, humans have little difficulty
recognizing the shapes of the figure shown as a stick figure in Fig. 5-13,
More subtle distinctions, say between animals of similar skeletonal
shape, may require detailed knowledge of the cross sections. The cross
sections themselves may be represented by 2-D generalized cones; here
the axis is a curve in a plane and the cross sections simply straight-line
segments normal to the axis.

Figure 5-13: A stick figure

The structure of the axes offers some invariance to perspective
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changes. The relative lengths of the axes change, and not all of the
parts of an object are always visible, but the connectivity of axes
remains largely unchanged, except for widely different views, such as a
horse viewed from the side, from the front, or the top. In such cases,
multiple models for an object need to be stored, but the number of
such views is small.

Marr argues that a generalized cone interpretation may be implicit
in our normal perception of 2-D line drawings [22]. Two reasonable
assumptions in perceiving 2-D contours as 3-D objects are that the
contiguous positions of contours arise from contiguous parts of the
viewed surfaces (that is, there are no invisible occluding edges) and that
the convexities and concavities correspond to real properties of the
viewed surfaces. These two assumptions are shown to be equivalent to
assuming the viewed surfaces to be generalized cones with fixed-shape
cross sections.

The axis and cross-section representation of generalized cones has
similarities with Blum’s medial axis transform, for 2-D figures.
However, the 3-D generalization of the Blum transform, requiring axes
to consist of centers of maximal spherical neighborhoods, yields axes
that are surfaces rather than curves. Also, small boundary irregularities,
have only small effects on generalized cone representations; for
example, the notch in the rectangle of Fig. 5-11 causes only a small dip
in the generalized cone axis and a small local change in the cross-section
width.

First implementations of the generalized cone representation were
by Agin and Binford [23, 24], and Nevatia and Binford [25, 26]. Marr
and Nishihara also discuss their use as general shape descriptors [27].
Hollerbach used them to describe pottery patterns for anthropological
descriptions [28], and Soroka has applied them to biological cell
descriptions [29].

5.4.2 Computation of Generalized Cones

The generalized cone representation is not a transform
representation, and many alternative descriptions are possible for the
same input. We need to choose one or more preferred descriptions
among the alternatives. A unique choice is not necessary, and a small
number of multiple descriptions may be carried to higher levels for
recognition. Some alternative techniques of computing generalized cone
descriptions are given below.

Fitting surface data. Optimal generalized cones can be fitted,
given 3-D positions of visible surface, and restrictions on the axis and
the cross section shapes. A simple iterative solution is possible for cross
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sections of known shape. Consider a straight circular cylinder. Initially,
the orientations of the axes and the cross sections are unknown,
Choosing an arbitrary orientation, elliptical cross sections can be fitteq
to the visible surface. An axis passing through the centroid of thege
cross sections is not necessarily normal to them. New cross sections can
now be constructed normal to the derived axis and the process repeated
until only small changes are observed. For straight, circular cylinders
and cones the process converges rapidly. Convergence for arbitrary
shapes is unclear. This technique was used by Agin and Binford,
assuming cross sections could be approximated by ellipses [24].

Using object boundaries. 2-D cones can be computed from the
object boundaries. If the 2-D contours are the projection of a 3-D
object, the computed cones are the projections of the desired 3-D cones,
A brief description of a technique developed by Nevatia and Binford ig
given below; details may be found in [25, 26]. (Another technique
using concavities in the boundary is given in [27].)

In the Nevatia-Binford technique; local cones with straight axes
are computed first; these cones are then extended by allowing smooth
curving of the axes, and preferred cones are chosen among the various
alternatives. Structured descriptions are generated from the properties
of the computed cones and their connectivity.

The local cones are computed simply by choosing various
directions (say eight equally spaced directions) and examining if any
parts of the boundary fit the requirements of the generalized cones.
These requirements are that the chosen axis direction pass through
midpoints of the cross sections, defined by lines perpendicular to the
axis, and that the width of the cross sections be continuous.
Figure 5-14 shows an object and the local cone axes in eight directions
(note that the object is rotated for the eight views).

These local cones are then extended by extrapolating the axes of
the local cones and constructing new cross sections. The midpoint of
the new cross section defines a new point on the axis (see Fig. 5-15).
This process allows the axis to curve smoothly. Extension of cones
terminates by defined criteria of axis and cross-section continuity.

This process may result in the same parts of an object being
described by more than one cone. Preferred descriptions are selected by
choosing elongated and cylindrical descriptions over less elongated and
more conical descriptions.

Figure 5-16 shows the cones computed from the boundary of a
doll using the above technique (from [26]). Note that one of the legs is
segmented into two cones (P35 and P6), which are merged at this level
to generate an alternative description.

The segmented generalized cones, representing parts or pieces of
an object, and their connectivity relations constitute structured
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Figure 5-14: Axes of local cones in eight directions for a doll

(from Nevatia [26])
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Figure 5-15: Extension of a local cone

Figure 5-16: Selected cones in a doll

descriptions of the object. This description may be viewed as a graph
with joints as nodes and pieces as arcs or vice versa. Figure 5-17 shows
the graph corresponding to the segmentation of Fig. 5-16 (assuming PS
and P6 were merged).

The structured descriptions also include summary descriptions of
the parts and their joints. The part descriptions may include the
approximate axis shape, the length of axis to average cross-section width
ratio, and approximation of the cross-section function. Joints are
characterized by the parts connected to them and the interrelationships
of these parts. Some joint types are shown schematically in Fig. 5-18.
Additional descriptions may include properties relating to the whole
Structure - for example, bilateral symmetry and the axis of this
symmetry. Recognition of objects from such descriptions is described in
the next section.
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Figure 5-17: Graph representation of the doll axes
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Figure 5-18: Some types of joints: (a) T, (b) fprk, (c) neck,
(d) elbow, (e) cross-section-conserving
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5.5 RECOGNITION OF OBJECTS

Objects, or structures consisting of several objects, can be
recognized by comparing their descriptions with the descriptions of
models stored in a memory. The models may be acquired by storing
machine descriptions of them from a previous encounter, by a directed
learning sequence of a number of views, as in Winston’s method of
Section 4.4.2, or they may be simply supplied by a human operator.,

If object descriptions are just a list of properties—that is, a feature
vector—recognition can use standard mathematical pattern-recognition
techniques (as in Chapter 2).  For structured descriptions, more
elaborate matching techniques are required. Additionally, it is
undesirable to match a description with each stored model in a large
memory, and indexing to select a suitable subclass without complete
matching is needed.

5.5.1 Graph Matching -

Structured descriptions may be viewed as graphs (or networks).
We are interested in evaluating the similarity of two graphs. Some
measures of similarity are introduced below.

Let a graph G: <N, P, R> be defined to consist of a set of
nodes N (representing parts of an object), a set of properties P of these
nodes, and a set of relations R between the nodes. Given two graphs
G: <N, P, R> and G": <N', P', R'>, nodes » in N and » in N' are
said to form an assignment if and only if P(n), property of node n, is
similar to P (r'), property of node ', by a given similarity measure.
Two assignments (ny, n,") and (n,, n,) are said to be compatible if r(ny,
ny) = rin, ny), for all relations r in R and r'in R’ (relations are
assumed to be binary).

The two graphs G and G’ are said to be isomorphic if there exists a
one-to-one assignment of nodes in G and G’ such that all assignments
are mutually compatible. [We also require P(rn) = P(#') if (n, #') is an
assignment]. G and G’ are said to be subisomorphic if a subgraph of G
is isomorphic to a subgraph of G'.

Graph isomorphism could be determined by an exhaustive search
of all assignments and a test of their mutual compatibilities. Subgraph
isomorphism could be determined by computing the isomorphism of all
subgraphs. A more efficient technique is given in [30]. (Note that the
graph-isomorphism problem belongs to the computational complexity
class of NP-complete problems.)

For application to object recognition the isomorphism or
sub-isomorphism measures are likely to be too stringent, as errors are
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made at the various levels of the decription processes. Some
applications of these techniques to object recognition are given in [31].

A less stringent measure is that of determining maximal cliques.
From the two graphs to be matched, let us define a new graph, called
the match graph, such that the nodes of the match graph c.onsist of an
assignment of a pair of nodes from G and G', and an arc exists between
two nodes of the match graph if the two corresponding assignments are
compatible. A clique (of the graphs G and G') is a totally connected
subgraph of the match graph. A clique is maximal if it is not included in
any other clique.

Figures 5-19(a) and (b) show two graphs to be matched. Three
types of nodes are present, those marked with light circles, dark circles,
and a square. Only like nodes can be matched. The two graphs are
quite similar and would be isomorphic if nodes B and D were of the
light circles type rather than the rectangle type. However, the pnly
isomorphic connected subgraphs are the isolated nodes. Maximal
cligues can help find larger compatible matching sub-str‘uctures.
Figure 5-20 shows the matching graph for the two graphs of Fig. 5-19.
Two cliques are present, one with the match ((4, 1), (C, 3), (E, 5))
and the other ((4, 5), (C, 3), (£, 1)).

2 3 4 B C D
-O
1 5 A E
(a) (b)
Figure 5-19: Two graphs to be matched
(A,5)
A1)
( (C,2)
(&1 (c,4)

Figure 5-20: Match graph for Fig. 5-19 graphs



. MACHINE PERCEPTION

A simple procedure to find maximal cliques is given below (from
[32]). A function clique (X, Y) generates the set of all cliques that
include nodes in clique X and are included in the set Y. Cliques (0, N),
N being the set of all nodes, will find all cliques. It is defined as:

cligues (X, ¥) := Ifno node in ¥ — X is connected

7
to all elements of X

PO N

sphecd desk W then X} X7 ¢
o VY T T"”Ja i else cliques (X U {}, ¥) U cliques (X, ¥ — {y})
4o ged cet where y is such a node

— A\
C(g»:.t.;«. ?Jl/)go w..\\ AT

iu ‘7\’ C]

#"" " A clique of a minimum size k can be found by stopping the
recursion if the size of X plus the number of nodes in Y-X connected to
reduce k by one until some cliques are found.

In a worst case, the maximal-clique computation can be expensive,
and the number of maximal cliques can be as large as (n/2)"2, n being
the number of nodes. The maximal-clique technique can be modified

to include nonbinary relationships, by defining a modified compatibility
criterion.

5.5.2 Relaxation Labeling

A labeling problem can be defined to be assignment of a set of
labels to a set of nodes (or units) such that the label assignments are
consistent according to given constraints. Such labeling has many
applications and includes the problem of graph matching (the labels are
now nodes of the other graph). ‘

Let N be the set of nodes to be labeled and L be the set of
allowed labels. To each node n; we wish to assign a set of labels L,
such that L; is a subset of L, and the labels are consistent according to
the given constraints. For unambiguous cases, each set L, contains one
element only. Simplest constraints are wnary, restricting the labels that
may be assigned to a certain node, without consideration of the other
nodes in the network. Binary constraints specify relations between
labels of a pair of nodes. A set of labels L, for node n; may be said to
be consistent with a set of labels L, for node n, if each label in L, is
consistent with at least one label in ﬁj and vice versa. Such consistency
is called arc consistency. '

In general, the constraints are n-ary, and arc consistency may not
result in global consistency. Figure 5-21 shows an example (from [32]),
where the unary constraints are that each node be labeled red or green,
and that adjacent nodes be of a different color, For each assignment of
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red or green to one node, we can assign a consistent label to the
neighboring nodes, but we can not satisfy the global constraint
simultaneously at the three nodes.

2 {red, green}

1 3
{red, green} {red, green}

Figure 5-21: An arc-consistent but globally inconsistent labeling

A more powerful constraint is that of path corysistency. Two nodes
n.and n, with labels /, and / are path inconsis}ent, if there exists a path
in the rietwork from n; to n, such that there is no set of labels, one for
each node along the path, t'ﬁat is simultaneously consistent (in a binary
way) with the labels /, and [, at the two ends. Note that the network of
Fig. 5-21 is not path consistent. Pstns

However, path consistency also does not ‘guarantee ‘global
consistency. The problem of global consisten.cy is computathnally
expensive (NP-complete), though efficient solutlpns may be achieved
for some networks. In the following we w1.ll consider only arc
consistency, as it is often helpful in reducing the ‘number of
alternatives; more complex labeling methods may be fqund in [3.3-36]..

Rosenfeld, Hummel, and Zucker have described an l.teranve
relaxation scheme for computing arc-consistent labels [37]. Initially, all
labels satisfying unary constraints are assigned to each node. At any
iteration of the algorithm, those labels of a node that are not arc
consistent with the other nodes are removed. Note that removal of
some labels may create new inconsistencies that are'removed gt th.ef
next iteration. It can be shown to converge to a _conswtent labelmg, i
one exists. It is a generalization of the Waltz labeling rpethod described
in Chapter 4 and can be implemented as a parallel algorithm. .

Rosenfeld, Hummel, and Zucker have alsg dfescrlbed a
probabilistic or stochastic version of the relaxat.ioq labeling, in an effort
to account for the variations that are common In 1mgge descriptions. A
weight or probability is associated with each label assngned to gach n}t))de.
The compatibility between the labels of two ngdes is also ng%r.ll't y Etl“
range of values. At each iteration of the alg_ornthm, th_e.;?roba i 11 yt }?e
each assignment is updated, based on their compatibility wit



" MACHINE PERCEPTION

neighboring assignments. Generally, the probability of a label should be
increased if other high-probability labels are highly compatible with it,
Let P/(k) be the probability of label /, being assigned to node #, at the
tth iteration, such that

2 Pk =1

k

(5-9)

These probabilities may be updated based on labels of other nodes by
the following expression (according to [38]):

PiRIL + gi(k)]
S{Pik) - (1 + gk}

k

Pk =

(5-10)

where ¢/(k) gives the correction to the assignment probability and the
denominator guarantees that the new probabilities still sum to one.
q/(k) is defined by

90 = 2 3 ik, K) - PO (5-11)
2 412

dii is a weight to determine the effect of node j on node /. r,./.(k, K)isa
measure of compatibility between the nodes i and j having labels k and
K, respectively. Statistical correlation between the two labels has been
suggested as one appropriate measure.

Hopefully, in an unambiguous case, the various assignment
probabilities will converge to a value of 1 or 0. However, the
convergence of this process is not guaranteed for the probabilistic case,
as it was for the discrete case. Performance of the algorithm is likely to
be highly dependent on the choices of the weights and the compatibility
measures.

Experiments with different compatibility measures and updating
functions are given in [37, 38]. An approach, that seeks to maximize a
certain function, and thus is converging by definition, is described in
[39]; an application to labeling of aerial images is given in [40].
Another approach to using nonbinary weights for relaxation may be
found in [41].

5.5.3 Multilevel Matching

Graph-matching and scene-labeling techniques discussed above are
general. However, they do not provide satisfactory descriptions of
similarities and differences. Use of numerical weights, combining
unrelated features, such as , color and size, may be meaningless. An
alternative is multilevel matching. Here, the result of matching two
descriptions is itself a description of their similarities and differences, as,
for example, in Winston’s learning program (Chapter 4). Of course,
eventually a decision for recognition must be made, but the results of
matching can now be examined with more context; for example, the
particular model may have associated information as to the relative
importance of color and size. If matching with two models yields similar
differences, the scene may now be reexamined to find specific finer
details. Marr has argued that deferrng of decisions, by carrying along
additional information, until more contextual information is available is
an important organization rule for visual processes; he has called this
the "principle of least commitment" [42].

Nevatia and Binford [25, 26] used such an approach for
recognizing objects by matching generalized cone descriptions, as in
Section 5.4.1. The matching was facilitated by marking the wide pieces
(the body and the head) as being distinguished and matching them to
other distinguished pieces only. Alternative matches of parts, each
consistent with the connectivity relations, produces a difference
description. Some matches are clearly inferior to others, such as those
containing more pieces in the observed object than the model, and are
discarded.

In some cases two models (for example, a doll and a horse) may
have similar connectivity. In such cases the models may be
distinguished by properties of individual parts. In general, a more
detailed analysis may be required, such as looking at the limb
extremities in the above example.

When the number of models is large, matching with each model is
prohibitive, and indexing into memory to retrieve only a small number
of likely models is required. Indexing may be by use of context, such

as the knowledge of observer location and expected objects in the

environment. However, humans are able to quickly perceive objects
out of context as well, as in a collage of unrelated objects, and indexing
in such cases seems to be based solely on object descriptions.

An indexing procedure must accommodate the usual changes in
object descriptions due to different viewing conditions and also the
variability caused by the description processes themselves. Indexing is
largely ignored, as most systems usually deal with a small number of
objects only. An indexing procedure using the properties of
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distinguished pieces in a generalize cone description is described in [25,
26]. Variability in the descriptions is accommodated by indexing with
the observed descriptors as well as by perturbing these descriptions
according to expected changes.

5.6 SUMMARY

In this chapter we have considered analysis of nonpolyhedral
objects and concentrated mostly on shape analysis. The described
techniques should be adequate for a wide range of applications, if the
number of objects is small and perfect boundaries are available.
However, as will be seen in the next few chapters, perfect boundaries
are difficult to extract from a single image of a 3-D scene, and the
description mechanisms need to be modified to work with imperfect
data. Some examples of systems that operate on real data are given in
Chapter 10.
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