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SYSTEMS AND APPLICATIONS

Visual perception systems may be "general purpose" or tailored for
special tasks. A general-purpose system is expected to have capabilities
similar to the human visual system and handle a wide variety of scenes
under a variety of viewing conditions. Under normal viewing
conditions, humans may expect of certain objects to be present in the
scene, but our ability to perceive seems to be almost as good when we
are presented with a randomly chosen photograph. We are able to
generate high-quality descriptions of unfamiliar objects, such as pictures
of new planets, or photomicrographs of molecules. General-purpose
vision may be defined to have capabilities similar to human perception;
a more fundamental definition is difficult, owing to the inherent
ambiguity of the images.

Our understanding of the perceptual processes needed to achieve
general vision is poor, and the performance of the techniques discussed
in the previous chapters is low in comparison to human performance.
Fortunately, a great many applications of practical importance do not
require this generality, as the domain of objects is often small, and
significant knowledge of the scene is available a priori. Special-purpose
knowledge-based systems aim to maximize the utilization of such
knowledge.

In this chapter we examine some requirements for a
general-purpose system and describe some knowledge-based systems

with applications.
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10.1 GENERAL SYSTEMS

As visual information is inherently ambiguous, some knowledge
and assumptions are required for its interpretation. These assumptions
may occasionally lead to incorrect conclusions, but the human system’s
perfomance is amazingly accurate in almost all instances in our daily
experience. General-purpose and knowledge-based systems differ not
only in the range of objects they encounter, but also in the type of
knowledge they use. The systems attempting to be general tend to use
generic rather than specific knowledge. Generic knowledge includes
restrictions due to physical phenomena, such as surface reflectivity,
continuity, object coherence, and support requirements.  Specific
knowledge refers to the knowledge of particular objects likely to be
present in the scene, their properties, and the specific viewing
conditions. Also, the general systems tend to defer use of specific
knowledge, whereas the knowledge-based systems tend to utilize such
knowledge early in the processing hierarchy. A general-purpose system
needs at least the following abilities:

1. To perceive lightness and color of surfaces under a variety of
illumination conditions;

2. To detect significant changes in intensity and perform 2-D
segmentation into useful regions, even in the presence of
texture;

3. To infer 3-D structure of the surfaces of a scene from a variety
of monocular cues and also from a sequence of stereo or motion
images;

4. To organize the surfaces and regions into objects of interest;

5. To generate descriptions of objects and recognize them among a
potentially large class of objects; and,

6. To make nonvisual intelligent inferences about the scene based
on the visual processing.

The above processes may be considered to form a hierarchy of
abstraction levels. Two methods of data flow among these levels are
bottom-up and top-down. In bottom-up processing, the information flows
from one level to the next higher level without any influence from the
expectations of this higher level. In top-down control, the processing at
a lower level is specifically directed to satisfy an expectation or goal of a
hig_her level. At the highest level, the goal may be to verify if a certain
object is present in the scene. It seems that our ability to perceive
unexpected or unfamiliar scenes requires capabilities of bottom-up
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processing, to the level of meaningful object descriptions. However,
extensive communication between the various levels is needed, hence
the processing is not strictly bottom-up. Humans are capable of
top-down processing also, as indicated by our ability to see a suggested
object in an otherwise confusing scene (for example, a suggested
pattern in the clouds in the sky).

There are currently no systems even approaching the level of
general-purpose performance of the human system. However, the
desire for future generality leads to very different design strategies than
those for knowledge-based systems for specific tasks, as discussed
below.

10.2 KNOWLEDGE BASED SYSTEMS

Consider the typical office scene as shown in Fig. 10-1. A general
system might proceed by attempting to segment the image using edge
and/or region methods, possibly aided by range information to describe
the objects and surfaces by the chosen representations. It is likely that
the scene is too complex for resulting descriptions to be directly in
terms of the objects that we perceive. However, specific tasks can be
performed if scene knowledge is utilized judiciously. Consider the
sample task of locating the telephone on the table. We could search the
image for a region of known properties (known color and approximate
size). However, it may be more efficient to locate the table top first,
which is easily located if range data is available, and constrain the search
for the telephone to the table top.

Tenenbaum has described a system to perform such tasks [1].
The knowledge in his system consists of the properties of the objects,
such as color, size, and shape, and their relationships to other objects in
the scene, such as the table having to be on the floor and the telephone
on the table. The program operates in two phases, an acquisition and a
validation phase. Acquisition is based on attributes that are easy to
compute and are distinct. Other attributes and relations are used to
validate the initial hypotheses.

Garvey extended this approach to automatic generation of a plan
to locate objects, given the properties and the relations of the objects
[2]. These systems may be viewed since following top-down processing,
since each step of low-level processing is to satisfy a specific high-level
goal. Such processing is likely to pe useful if the scene has small
variations and if the properties of the objects and even their locations
are known approximately.

Bajcsy and Tavakoli have described a system to locate objects,
such as roads, rivers, and bridges, in aerial images using models of
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Figure 10-1: A typical office scene (from Tenenbaum [1])

these objects in a scene [3, 4]. Road models at the scene level are
inferred from more abstract properties (by the designers and not by the
program). A functional definition of a road is a path to allow for the
passage of certain vehicles, persons, or animals. From this follow
physical and geometrical properties requiring a road to be relatively
smooth and firm and to have bounded steepness, width, and curvature.
These requirements in turn define image properties such as roads being
narrow strips of bounded width and curvature and spectral properties of
materials such as concrete, asphalt, and rocks. Also, roads must be
connected to other roads or other cultural features. Similarly, a bridge
is defined to be over water, but connected to land masses on either
side. Note that such models are generic and not for a particular scene.
Nevatia and Price have described a system to locate specific
objects, such as airports in aerial images, by first locating larger and
easier to locate objects [5]. In the image of the San Francisco area,
shown in Fig. 1-9, the San Francisco International Airport can be
recognized more easily if it is known to be along the edge of the bay,
and south of the city of San Francisco. The city may in turn be located
by the bridges, which are distinct. This system uses an approximate
model of the scene, in the form of a rough map without precise distance

SYSTEMS AND APPLICATIONS 191

SAN FRANCISCO SCENE

Ocean

Golden Gate
Bridge

San Francisco Bay
(North)

Presideo

4 N D
Bay Bridge o oARLA

San Francisco Bay
(South)

San Franfisco
Air; t

. ICHEOR

CAKLANT

PARK ARCA

Figure 10-2: (a) A map of the San Francisco area and
(b) its graph representation



192 MACHINE PERCEPTION

information as shown in Fig. 10-2(a).  Figure 10-2(b) shows the
corresponding graph model used in the analysis. Segmentation of the
scene uses both region and edge segmentation and is basically
bottom-up, but it also employs some model information, such as the
maximum width of the roads and bridges, and the features to use for
segmentation of water areas. Figure 10-3 shows the segmented regions
and roadlike and bridgelike features, with labels associated by matching
with the map. Expected locations of the airports can now be estimated
from the known features and these locations examined in more detail

for verification.

Figure 10-3: Segmented scene with recognized elements

Freuder has proposed that vision systems should utilize knowledge
at the earliest levels of processing, even when a specific goal is not
specified [6]. Thus, if a region of constant intensity can be identified to
be a part of one or a few objects, this knowledge should be used to
guide further processing. The main difficulty here is that of
indexing—that is, of retrieving the set of likely objects based on their
low-level descriptions. Without contextual information, indexing
requires good high-level descriptions.

A system called ACRONYM having many modules of general
utility has been developed at Stanford University [7]. This system has
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abilities for top-down predictive processing and also for bottom-up
descriptions. At the top level, object models are described as 3-D
volumes in an object graph. The modeling system is quite general and
allows generic as well as specific objects to be described. For a given
model geometric reasoning techniques are used to predict feature which
will be invariantly observable; that is, features which are visible over a
range of viewing conditions. A prediction graph is generated whose
nodes are predictions of image features and the arcs specify relations
which must hold between them. A picture graph is generated from the
image which describes the features in that image. Generation of picture
graph may be guided by inputs from the prediction graph. Interpretation
of the scene and recognition of objects takes place by matching between
the prediction and the picture graphs. Much of this system is
implemented in form of rules and is extensible. ACRONYM has been
applied to tasks of complex object recognition; a typical example is
recognition of a commercial aircraft parked at an airport terminal, in an
aerial image. For this application, the prediction and picture graphs are
essentially in terms of "ribbons" which are two-dimensional projections
of three-dimensional generalized cones. The major performance
limitations of the system are because of the weaknesses of the lower
level description modules.

Another system intended for a broad range of scenes, called
VISIONS, is described in [8]. The systems referred to here are not the
only knowledge-based systems that have been designed, but they
suggest the range of tasks that have been approached.

10.3 APPLICATIONS

Potential application areas of a general purpose machine vision
system are vast. However, current application tasks must be carefully
chosen to match with the current capabilities of machine techniques.
The successful applications tend to be for specific and well defined
tasks, within a limited domain of objects, and with adequate a priori
knowledge. Because of the large and increasing number of application
tasks, only the major areas of applications and some typical tasks are
described below.



10.3.1 Industrial Applications

A major area of industrial applications is the visual inspection of
manufactured parts. The inspection tasks can range from detection of
major flaws such as missing parts to detection of small defects,
misalignments, size measurement, subtle color changes, and so on. For
humans, these tasks tend to be dull, and their repetitiveness leads to
decreased performance.

Successful  practical —applications require fast  processing,
inexpensive hardware, and high reliability. To simplify the
image-analysis problems, lighting may be controlled to give
high-contrast images. Back lighting or fluorescent conveyor belts may
enable thresholding to provide satisfactory segmentation.  Special
lighting may also be required to make visible some defects, such as
cracks in a glass seal [9].

Major successes have been achieved in the inspection of electronic
printed circuit boards (PCBs) and integrated circuits (ICs). A direct
approach is to compare the images of the patterns to stored images of
defect-free patterns on a pixel by pixel basis. However, difficulties are
caused by the variability of the images, alignment errors, changes in
size, and so on. Another approach is to examine small neighborhoods,
such as 5-by-5 or 7-by-7 binary windows, and classify the patterns as
defective or not [9]. Ejiri and others developed an interesting system to
detect small defects, defined to be patterns with widths less than the
board conductors. These defects appear as thin blobs of extra or
missing metal [10]. A region of the image is first expanded and then
shrunk by the same amount. This removes convex blobs of a certain
size. The processed pattern is then compared with the original to detect
the convex defects. Concave defects are detected by first shrinking and
then expanding.

Baird describes a system developed at General Motors for
orienting IC chips correctly before they are bonded [11]. The
orientation is basically determined by a histogram of edges detected in
the image. Other systems for orienting IC chips are described in [12,
13]. Some of these systems are reported to be in large scale production
use.

Agin has described laboratory experiments at detection of flaws in
castings such as missing or incorrectly dimensioned holes, and
inspection of other industrial objects [14]. The orientation of the parts
is constrained so that the perspective variations are avoided.

Another important area of applications is in materials handling.
Here, the parts are usually in a heap or a bin with other similar or
different parts. A part needs to be identified and grasped by a
mechanical manipulator at the appropriate points. Partial success has
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been obtained, if the possible orientation of the parts can be restricted,
and they are unoccluded or else occluded in small areas only [15] (a
typical scene is shown in Fig. 1-7).

Visual feedback for automated assembly is made difficult by the
complexity and cluttered nature of the scenes. Some simplification can
be obtained by marking objects by patches of specific shape or color (for
example, see [12, 16]). Use of more elaborate markings is limited by
visibility and space requirements. We can also take advantage of the
slow and predictable variations in the scene for incremental analysis (see
(17D).

More examples of industrial applications may be found in [18, 19].

10.3.2 Photo Interpretation and Change Detection

Images taken from airplanes or orbiting satellites provide a rich
source of information for monitoring changes on the surface of the
earth. The applications include surveying crops, forests, pollution, and
other natural resources, military surveillance and monitoring of new
construction of roads and other man-made structures, and automatic
mapping from the images. Manual analysis of aerial images is not only
tedious and labor intensive, but also the large volume of data
transmitted to earth causes a major communications bottleneck that
could be eliminated by on-board processing.

Image analysis of aerial scenes is more complex than analysis of
industrial scenes, owing to the presence of fine texture and a variety of
objects in a single scene, and the requirements of high resolution for
observing the fine details. However, the scenes are largely
two-dimensional with little occlusion, even though the effects of
shadows and presence of mountainous terrain can be significant.
Generally, unguided segmentation of aerial images is error prone.
Some regions—for example, uniform water areas such as lakes— can be
extracted easily and reliably.

A simple processing approach, commonly used for crop
identification, is classification of each pixel by its multispectral properties
(the sensors may include infrared, radar, and so on in addition to the
visual sensors). This approach suffers from its ignoring of the context
that helps in distinguishing between ambiguous cases. Other
applications have concentrated on the development of specific
techniques for the extraction of specific features, such as roads and
railroads [20].

Some photo interpretation tasks are extremely labor intensive and
tedious; for example, making maps from aerial images involves manual
tracing of small features with high accuracy. For such applications,
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partial automation with interactive human control would still result in
large savings. Some instances of interaction are: correcting machine
errors, pointing to certain examples (such as, a central area of a region
is to be extracted and its properties used to extract the larger region),
and following a road if its intensity profile is initially traced interactively.
Descriptions of some implementations are given in [20-22].

Change detection requires comparison of two regions, taken at
two different times, and possibly with different sun angles and weather
conditions, different viewing angles, and maybe even different sensors.
Changes can be detected by simple grey-level correlation of the two
images if the changes caused by these factors are small [23]. For larger
changes, matching at the symbolic level, by first extracting features such
as uniform regions and roads, has been more successful [24]. Again,
the main limitation is in computing adequate symbolic descriptions for
complex scenes. Change detection may also be aided by the use of a
previous map of the scene.

10.3.3 Guidance, Navigation, and Scene Registration

A major use of vision by humans and animals is for navigating in
the surrounding environment, avoiding obstacles, and reaching desired
locations. Much of the current automatic navigation of machines, such
as commercial aircraft, is by the use of special navigation sensors, such
as radar, located along the desired route. Some applications—for
example, exploration of distant planets —require navigation without
modification of the environment and with little or no human
intervention, and without a priori knowledge of the terrain.

For surface vehicles, a major concern is to avoid obstacles and
hazards in the path of a moving vehicle. For space applications, the
obstacles are rocks, craters, loose surface materials, and the like.
Experimental studies for a lunar rover have been conducted at the Jet
Propulsion Laboratories. Moravec constructed a vehicle that navigated
in simple indoor and outdoor scenes and avoided obstacles perceived by
a stereo vision system [25]. Roving vehicles in urban environments
have a more complex task, owing to the large variety of the objects in
the scene and other moving objects. Specially prepared roadways may
be of help here.

Following a chosen trajectory is of major concern for airborne
vehicles. Here, a "map" of the trajectory and surrounds is available,
either in symbolic form or as a sequence of images along the path.
Because of the variability in the images under different flight conditions,
simple grey level correlation is unlikely to be effective. More success
has been obtained by correlating the terrain elevation profiles.
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Processes using matching of features extracted from a perceived image
with features extracted from stored images are likely to be more
tolerant to changes in images. One implementation for matching scenes
having different scale and some perspective changes, taken from
possibly different sensors, with different seasonal and viewing
conditions, using lines extracted from the two scenes is described in
[26]. Surveys of various approaches may be found in [27].

A human pilot, flying under visual guidance, navigates by locating
specific, distinguished features on the earth and relating them to the
map symbols. Some of the above mentioned techniques can also be
used for such image-to-map correspondence (for example, see [5, 24,
26]). Another interesting iterative technique is described in [28]. Here,
selected features in a map, with 3-D data, are projected onto the image,
using an estimate of the camera position. These projected points are
matched to the closest similar points in boundaries extracted from the
image. The new matches now define a new camera transform, and the
process is repeated until the projected points and the matched points are
within an acceptable range.

10.3.4 Medical Applications

Many medical diagnostic procedures use images—for example,
chest and other x-rays, microscope photographs of blood cells, acoustic
images of various organs, and three-dimensional "images" of organs
obtained by computer tomography. Highly trained medical personnel
are required for interpretation of such images, and shortage of such
people is a deterrent to a more widespread use of these techniques.

Medical images have some significant characteristics. These
images frequently use illumination that penetrates the objects; that is,
the object surfaces are not opaque. The defects to be detected may be
small and subtle, sometimes characterized by smooth changes in the
grey levels only (as for bone structures). Also, the allowed margin of
error is small, owing to the potentially serious consequences of an
incorrect diagnosis. However, significant a priori information is
available in many cases from human anatomy, and viewing conditions
can be controlled.

Analysis of chest x-rays has received considerable attention. A
method for the diagnosis of pneumoconiosis (coal miner’s disease) by
an analysis of the texture of dark blobs in the x-rays is described in
[29]. Other x-ray analysis techniques are described in [30-31]. For
chest x-rays, it is useful to be able to first isolate ribs and other bone
structures, as certain types of tumors do not occur there. However, the
ribs are typically of low contrast and only partially visible (see Fig. 1-8).
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Knowledge of the approximate shape and relative locations of the ribs
has been used for their detection [32-34].

Analysis of blood-cell images and human chromosomes for
genetic defects has also been popular. In some cases, as for
chromosome analysis, new biochemical techniques can simplify or
replace visual techniques.

Use of computers to obtain three-dimensional data of brain and
other organs, by use of multiple two-dimensional views, has been hailed
as a major advance in the diagnostic procedures. Much of this work has
concentrated on rapid and accurate reconstruction of the
three-dimensional data from the two-dimensional views, rather than the
automatic analysis of the resulting 3-D data.

The area of medical applications has grown so that several
symposia are entirely devoted to them. A good source of current
progress is the proceedings of these symposia (for example, see [35]).

10.3.5 Hardware Requirements

The large computational requirements of visual processing are a
constraint on the range of practical applications. The resolution of the
images is limited to far less than that of human vision or the optical
resolution of an average camera. The complexity of the processing
algorithms must be limited to meet response time requirements. The
more sophisticated algorithms take several minutes (or hours) to run on
modern large computers (executing 1 to 5 million operations per
second). The continuing increase in the speed of generral-purpose
computers, with simultaneous reduction in cost and size, will be helpful
in the future. However, it is unlikely that complex high-resolution
visual processing will be feasible by using sequential, general-purpose
machines alone.

Fortunately, the structure of visual processing is suited to parallel
implementation. Much of the processing time is taken for simple,
low-level processes, such as convolution for edge detection and
histograms for region threshold selection. Usually at the higher levels
of processing the amount of data to be processed decreases dramatically,
hence the processing time decreases even though the operations on
each data are more complex. The lower-level processing is usually
simple, uses information from small neighborhoods only, and hence can
be easily implemented using parallel processors. Some efforts at
developing parallel machines for visual processing are described in [36,
371.

Simplicity of the lower-level processes also allows for their
implementation in special-purpose hardware. Algorithms such as edge
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detection, histogramming, and thresholding have been implemented on
single chips using CCD (charge coupled devices) technology and operate
at or near TV frame rates [38-40]. The deployment of the VLSI (very
large scale integrated circuits) technology should have a major impact on
the complexity of algorithms that can be implemented in a few IC chips
[38, 41-42].

10.4 SUMMARY AND FUTURE

This chapter has outlined the state of the art in applications of
machine perception techniques and the range of the tasks to which they
are applied. Successful applications have been where the tasks are well
defined and the domain is restricted. The simplicity of the algorithms
currently used, in comparison to the known techniques, and the rapid
advances in the hardware technology of general-purpose computers and
special-purpose devices assures evolutionary progress in the use of
machines to perform more and more complex tasks. The science fiction
fantasy (or fears) of "super-human" robots replacing and outperforming
humans in complex perceptual tasks remains far from reality.
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ACRONYM, 191,193
Adjacency, 4- or 8-, 13
Albedo image, 177
Anti-parallel lines, 123
Applications, 193-199
aerial images, 195-196
change detection, 196
guidance and navigation,
196-197
industrial, 194-195
medical, 197-198
photo-interpretation, 195-196
scene registration, 195-197
Arc consistency, 82
Area shape measures, 67-72
analytical measures, 69-70
medial axis transform, 70-72
moment measures, 69-70
simple measures, 67-68
Area-to-perimeter ratio, 67
Artificial intelligence,
relation to, 2

INDEX

Assembly of objects,
polyhedral, 55-58
Aspect ratio, 180

Bar mask, 108-109
Blum transform, 70-72
Border following (see
Contour following)
Bottom-up processing, 188
Boundary detection (see
Line detection)
Boundary following (see
Contour following)
Brightness (see aiso Lightness):
constancy, 91, 96-98
local measurements, 92
simultaneous contrast, 91, 96-97

Camera calibration, 39-40
Camera model, 39
Camera transform, 39
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CCD chips, 199
Chain code, 63-65
Change detection, 196
Characteristic dimension, 179
Character representation, 2-3
Charge coupled devices, 199
Chromaticity components, 94
Classifiers, 16-17
Clowes labels (see Huffman-
Clowes labels)
Clustering for segmentation, 135
Color:
constancy, 91, 97-98
edges, 123-124
perceived attributes, 93-95
primaries, 93
triangle, 94-95
Complex objects:
polyhedral, 41-60
general, shape representation,
62-63
Concave deficiency, 68
Concave edge, 46
Cones:
generalized, 73-79
in human vision, 92
Connectivity, in digital
geometry, 13
Contour:
analysis for shape, 181-182
filling, 120-123
following, 138
subjective, 122
tracing, 138
Convex edge, 46
Convex hull, 68
Co-occurrence matrices, 146-148,
150

edge, 150
generalized, 148
grey-level, 146-148
Coordinates, transformation of,
34-37
Correlation coefficient, 15

MACHINE PERCEPTION

Correspondence for stereo, 159-165
coarse-to-fine, 162
feature-based, 160
global, 163-165
multiple views, 161-162
search techniques, 161-162

Crack edge, 49

Cross-correlation:
for stereo matching, 161-162
in template matching, 15-16

Curve detection (see

Line detection)

Curve fitting (see Line

fitting)

Depth measurement:
active ranging, 167-170
monocular, 173-182
stereo, 159-165

Differentiation for edge

detection, 101-103

Digital picture, 12

Dual graphs, 51-54

Edge co-occurrence, 150
Edge detection, 100-116, 123-124
color, 123-124
by edge fiting, 103-105
by enhancement and
differencing, 101-103
examples, 112-116
statistical method, 111
by template matching, 105-111
threshold selection, 111-112
Edge detectors:
Hueckel, 103-105
Kirsch, 105-106
Laplacian-Gaussian, 110-111
Marr-Hildreth, 110-111
McLeod, 106
Nevatia-Babu, 106-108
Prewitt, 102, 105-106
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Roberts, 26-27
Sobel, 102-103
Edge masks, 105-111
Eye (see Human visual system)

False contours (see Subjective
contours)
Feature space in pattern
classification, 16-17
Feedback, for boundary
detection, 120-122
Fourier texture measures, 145-146
Fovea, in human eye, 92

Generalized cones, 73-79
computation, 75-79
definition, 73
Generalized co-occurrence
matrices, 148
General position, definition, 45
Geometric transformations, 34-37
Goal-directed systems (see
Knowledge-based systems)
Gradient space:
definition, 52
use for polyhedral scenes, 52-54
use in shape-from-shading,
174-176
Grammars, formal, 21
Grammatical pattern
classification, 21-22
Graph matching, 80-82
Graph-theoretic methods,
for line detection, 118-119
Grey-level dependency matrix (see
Co-occurrence matrices,
grey-level)
Grid coding, 168
Grouping regions, of polyhedra
(see Guzman’s method)
Guidance for autonomous
vehicles, 196-197
Guzman’s method, 41-45
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Hardware requirements, 198-199
Heterarchical systems,
for boundary detection,
120-121
Hexagonal grid, 14-15
Homogeneous coordinates, 32-34
Hough transform, 116-118
Hue, 93
Hueckel edge detector, 103-105
Huffman-Clowes labels, 45-48
Human visual system, 92

Illusions (see Visual
phenomena)
Image analysis, definition, 8
Image processing, 10
Image segmentation (see
Segmentation of images)
Image-to-map correspondence, 197
Image understanding, 10
Impossible objects:
conditions for, 48, 51-53
examples of, 45-46
Indexing into model database,
85-86
Industrial applications, 194-195
Integrated circuit inspection, 194
Intrinsic scene characteristics, 182
Isomorphism, of graphs, 80
Iterative endpoint fitting, 65

Kirsch edge detector, 105-106
Knowledge-based systems, 187,
189-193

Labeling (see Relaxation,
Line labels)
Laplacian-Gaussian edge masks,
110-111
Lateral inhibition, 95-97
Learning:
perceptron parameters, 19
structural descriptions, 58-59
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Lightness:
computation, 95-98
definition, 91

Line approximation, 65-66

Line classification, 45-50

Line detection, 116-123

(see also Edge detection)
graph-theoretic methods,
118-119

heterarchy, 120-121
Hough transform, 116-118
planning, 121
projections, 119
subjective contours, 122

Line fitting, 116

Line following, 138

Line labels, 45-46

Line shape measures, 63-67
analytical measures, 66-67
by approximation, 65-66
chain coding, 63-65

Line types, 45-46

Linking of edges, 118-119

Mach bands, 95-96
Map making, 195-196
Marr-Hildreth edge detetor,
110-111
Matching (see Model matching,
Template matching)
Maximal cliques, 81-82
McLeod edge detector, 106
Medial axis transform, 70-72
Medical applications, 197-198
Minimal spanning tree, 118
Mobile robots, 196-197
Model fitting, 37-39
Model matching:
general:
graph, 80-82
multi-level, 85-86
relaxation labeling, 82-84
for polyhedra:
geometrical, 29, 37-39

topological, 28
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Model transformations, 30-37
geometric, 34-37
use of homogeneous
coordinates, 32-34
perspective, 31
Moments as shape descriptors,
69-70
Mondrian surfaces, 97
Monitoring of resources, 2
Monocular determination of three-
dimensional surfaces,
173-182
contour analysis, 181-182
shading, 173-177
texture gradients, 177-181
Motion, 165-167
correspondence for, 166
detection of, 165-166
optical flow, 167
Multiple size masks for edge
detection, 106-108

Navigation for autonomous
vehicles, 196-197
Nearest-neighbor classifier, 17
Near-miss in learning, 58-59
Nevatia-Babu edge detector,

106-108
Non-linear line detector, 109
Non-maxima suppression, 108

Object recognition (see
Model matching, Pattern
classification methods)
Obscurring edge, 46
Ohlander segmentor, 130-135
Optical axis, 31
Optical character reader, 16
Optical flow, 167

Parallel implementations, 198

INDEX

Path consistency, 83
Pattern classification:
feature space methods, 16-17
perceptrons, 18-21
syntactical methods, 21-22
template matching, 15-16
Pattern recognition (see
Pattern classification)
Perceptrons, 18-21
capabilities of, 20
diameter-limited, 19
learning, 19
limitations of, 20
order-limited, 19
Perspective transformation, 31-34
Photometric stereo, 176-177
Photo-interpretation, 195-196
Picture tree, 136
Pixel, definition of, 12
Planning:
for edge detection, 121
for object location, 189
for region segmentation, 135
Polygons, approved 28-29
Polyhedra, analysis of, 24-60
Primal sketch, 116
Primary colors, 93

Printed circuit board inspection, 194
Prewitt edge detector, 102, 105-106

Projection for line detection, 119
Psychology, relation to, 9
Pyramids, 121-122, 136

Quad-trees, 136-137
Quench function, 71

Range measurement, active,
167-170
LIDAR, 170
by triangulation, 167-168
Range segmentation, 170-173
detection of surfaces, 172-173
jump boundaries, 171
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Receptors, in human retina, 92
Recognition (see Model matching,
Pattern classifiction)
Recursive segmentation, 130-135

Reflectance maps, 174-177
Reflectivity function, 173
Region growing, 136-137
Region segmentation
(see Segmentation of images)
Region tracing, 138
Registration of scenes, 195-197
Relational descriptions,
definition of, 63
Relaxation:
for curve detection, 120
discrete labeling, 50, 82-83
probabilistic labeling, 83-84
Retina, human, 92
Retinex theory, 97
Road detection, 123, 189-190
Road following, 196
Roberts’ method, 24-39
edge and line detection, 26-28
model matching, 28-30, 37-39
Rods in human retina, 92

Sampiing of images, 12
Saturation, 93
Segmentaion comparison, edges
versus regions, 139-141
Segmentation of images, 129-138,
152-153
by clustering, 135
using range, 170-173
region growing, 136-137
region splitting, 129-135
semantically guided, 137
split-and-merge, 136-137
using texture, 152-153
Segmentation of polyhedral
scenes, 41-51
Guzman method, 41-45
Huffman-Clowes labels, 45-48
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Waltz method, 49-51
Self-guided vehicles, 2
Shading, shape from, 173-177
Shadow edge, 49
Shadows, in polyhedral scenes,

49-51

Shape descriptions of:

areas, 69-72

complex objects, 62-63

lines, 63-67

three-dimensional objects, 72-79
Shape from shading, 173-177
Simultaneous contrast, 91, 96-97
Skeleton of a figure (see Medial

axis transform, Generalized

cones)
Skew symmetry, 181-182
Slant of a surface, 179
Sobel edge detector, 102-103
Spanning tree, minimal, 118
$plit-and-merge method, 136-137
Statistical edge detection, 111
Statistical texture analysis, 144-148
energy measures, 144-145
first-order measures, 144
Fourier measures, 145-146
second-order measures, 146-148
time-series analysis, 148
whitening transform, 148
Stereo, 159-165, 176-177
correspondence search, 161-162
global correspondence, 163-165
photometric, 176-177
Stick figure, 74
Structural descriptions,
concepts, 21,63
Structural texture descriptions,
149-151
edge co-occurrence, 150
relative vectors, 150
Subjective contours, 122
Superslice, 140-141
Syntactical pattern classification,
21-22
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Systems, 187-193
general, 188-189
knowledge-based, 187, 189-193

Tele-operator systems, 2
Template matching:
for edge detection, 105-111
for object recognition, 15-16
Texture analysis, 141-153
comparison of features, 151-152
segmentation, 152-153
statistical measures, 144-148
structural descriptions, 149-151
Texture, definition of, 90
Texture energy measure, 144-145
Texture gradients, 177-181
characteristic dimension, 179
foreshortening, 178
scaling, 177
Texture property, normalized, 180
Texture segmentation, 152-153
Thinning, 108
Three-dimensional shape
descriptions, 72-79
Thresholding:
for edge detection, 111-112
for region segmentation,
129-130
Tilt of a surface, 179
Top-down processing, 188-189
Topological property, 28-29, 68
Triangulation:
in stereo, 159
ranging, 167-168
Two-and-a-half dimensions,
definition of, 62

Vertices, types of, 42-43

Visual inspection, 194

Visual phenomena:
Mach bands, 95-96
perceived lengths, 4-5
simultaneous contrast, 91, 96-97
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INDEX

Volume descriptions (see Three-
dimensional shape
descriptions)

Waltz labeling algorithm, 49-51
Whitening transform, 148

X-ray analysis, 5, 197-198
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