What do you suppose happens when the vectors are in opposite directions, such as (1, 0)T and (-1, 0)T ?

A good answer might be:

The magnitude of the dot product is negative.


Range of the Dot Product of Two Unit Vectors

Here is a sampling of bu and the dot product with au  = (1.0, 0)T for various angles.

Angle b Result Angle b Result
000° (1.000, 0.000)T 1.000 195° (-0.966, -0.259)T -0.966
015° (0.966, 0.259)T 0.966 105° (-0.259, 0.966)T -0.259
030° (0.866, 0.500)T 0.866 210° (-0.866, -0.500)T -0.866
045° (0.707, 0.707)T 0.707 225° (-0.707, -0.707)T -0.707
060° (0.500, 0.866)T 0.500 240° (-0.500, -0.866)T -0.500
075° (0.259, 0.966)T 0.259 255° (-0.259, -0.966)T -0.259
090° (0.000, 1.000)T 0.000 270° ( 0.000, -1.000)T 0.000
120° (-0.500, 0.866)T -0.500 285° (0.259, -0.966)T 0.259
135° (-0.707, 0.707)T -0.707 300° (0.500, -0.866)T 0.500
150° (-0.866, 0.500)T -0.866 315° (0.707, -0.707)T 0.707
175° (-0.966, 0.259)T -0.966 330° (0.866, -0.500)T 0.866
180° (-1.000, 0.000)T -1.000 345° (0.966, -0.259)T 0.966

The bu in each case is the unit vector represented by (cos θ, sin θ )T .

QUESTION 6:

What do you imagine is the range of values for the dot product of two unit vectors, au · bu  ?