A good answer might be:

120.654 degrees


The Answer Worked Out

In tedious detail:

  1. The two vectors are:
    p  =  ( -2, 4, 3)T
    q  =  ( 3, 1, -4)T
  2. The lengths are:
    |p|2  =  ( -2, 4, 3)T · ( -2, 4, 3)T  =  4 + 16 + 9  =  29
    |q|2  =  ( 3, 1, -4)T · ( 3, 1, -4)T  =  9 + 1 + 16  =  26
  3. The normalized vectors are:
    pu  =  (-2, 4, 3)T/ 29
    qu  =  (3, 1, -4)T/ 26
  4. The dot product is:
    pu · qu  =  (-2, 4, 3)·(3, 1, -4)T/ (29 26)
      =   (-6 + 4 - 12)/(29 26)   =  -14/(29 26)  =  -0.50985
  5. The angle is:
    cos θ   =  -0.50985
    θ  =  arc cos( -0.50985)  =  120.654°

Looks about correct.

QUESTION 10:

What is the cosine of the angle between these unit vectors:

s  =  (1, 0, 1)T/2
t  =  (1, 1, 1)T/3