
ween
y
cted or

text
ance.
 by a
ic

hmetic
orm

ls. It
able

in
In
hout
Section 7

General Rules for Arithmetic Models

This chapter defines the general rules for arithmetic models.

7.1 Principles of arithmetic models

The purpose of arithmetic models is to specify calculatable mathematical relationships bet
objects representing physical quantities in the library. Arithmetic models are identified b
context-sensitive keywords, because the way how these quantities are measured, extra
interpreted depends on the context in which the objects are placed.

The quantity identified by the keyword CAPACITANCE may serve as example. In the con
of a PIN, it represents pin capacitance. In the context of a WIRE, it represents wire capacit
In the context of a RULE, it represents the calculation method for a capacitance formed
layout pattern described within the rule. The context-specific semantic of each arithmet
model are specified in dedicated chapters.

In certain cases, the context alone does not completely specify the semantics of an arit
model. Auxiliary definitions within the arithmetic model are needed, represented in the f
of annotations or annotation containers.

A simple example is the UNIT annotation, which is applicable for most arithmetic mode
specifies the unit in terms of which the arithmetic model data is represented. The applic
auxiliary objects for each arithmetic model are specified in dedicated chapters.

7.1.1 Global definitions for arithmetic models

In many cases, auxiliary definitions apply globally to all arithmetic models within a certa
context, for instance, the UNIT may apply for all CAPACITANCE objects within a library.
order to specify such global definitions, the arithmetic model construct may be used wit
data.

model_definition ::=

model_ keyword [identifier] { all_purpose_items }

This construct has the syntactical form of anannotation_container (see chapter ??).

7.1.2 Trivial Arithmetic Model

The simplest form of an arithmetic model contains just constant data.

trivial_model ::=

model_ keyword [identifier] = number ;
| model_ keyword [identifier] = number { all_purpose_items }

This construct has the syntactical form of anannotation (see chapter ??).
Version 1.1a Advanced Library Format (ALF) Reference Manual 151

General Rules for Arithmetic Models Principles of arithmetic models

ER
which
d not

 is

 table.

le
ed
7.1.3 Arithmetic Model with EQUATION

The arithmetic model data may be represented as an EQUATION. In this case, a HEAD
defines the arguments of the equation. It is also possible to use other arithmetic models,
are visible within the context of this arithmetic model, as arguments. Those arguments nee
appear in the HEADER.

equation_based_ model ::=

model_ keyword [identifier] {
[all_purpose_items]
[equation_based_ header]
equation

}

equation_based_ header ::=

HEADER { model_ keyword { model_ keyword } }
| HEADER { model_definition { model_definition } }

equation ::=

EQUATION { arithmetic_expression }

The syntax ofarithmetic_expression is explained in chapter 5.2.

7.1.4 Arithmetic Model with TABLE

The arithmetic model data may be represented as a lookup table. In this case, a TABLE
necessary for the data itself and for each argument.

table_based_ model ::=

model_ keyword [identifier] {
[all_purpose_items]
table_based_ header
table
[equation]

}

table_based_ header ::=

HEADER { table_model_definition { table_model_definition } }

table_model_definition ::=

model_ keyword [identifier] { all_purpose_items table }

table ::=

TABLE { symbol { symbol } }
| TABLE { number { number } }

Tables containing symbols are only for lookup of discrete datapoints. Tables containing
numbers are for calculation and eventually interpolation of datapoints. Themodel_ keyword

(see dedicated chapters) defines whether symbols or numbers are legal for a particular

The size of the table inside thetable_based_model must be the product of the size of the
tables inside thetable_header . In order to support interpolation, the numbers in each tab
inside thetable_header must be in strictly monotonic ascending order. Details are explain
in chapter 5.3.
152 Advanced Library Format (ALF) Reference Manual Version 1.1a

Principles of arithmetic models General Rules for Arithmetic Models

t

al

e
he

ithin
n the
Thetable_model_definition can also be used outside the context of atable_header , very
much like amodel_definition . In this case, themodel_definition supplies the same
information as thetable_model_definition , plus the additional information of a discrete se
of valid numbers applicable for the model.

For example, the WIDTH of a physical layout object may have only a discrete set of leg
values. Those can be specified using atable_model_definition .

However, the table in atable_model_definition outside a table_header shall not
substitute the tableinside thetable_header . The former is for definition of a legal set of
values, the latter is for definition of the table-lookup indices.

If all table data are numbers, thetable_based_model may also have an optional equation. Th
equation is to be used when the argument data are out of interpolation range. Without t
equation, extrapolation shall be applied for data out of range.

7.1.5 Complex Arithmetic Model

A complex arithmetic model can be constructed by defining a nested arithmetic model w
another arithmetic model. The data of the inner arithmetic model is calculated first. The
result is applied for calculation of the data of the outer arithmetic model.

complex_model ::=

model_ keyword [identifier] {
[all_purpose_items]

HEADER { model { model } }
equation

}
| model_ keyword {

all_purpose_items

HEADER { header_model { header_model } }
table
[equation]

}

header_model ::=
model_definition

| table_model_definition
| equation_based_model
| table_based_model
| header_table_model

header_table_model ::=

model_ keyword [identifier] {
all_purpose_items

HEADER { symbol { symbol } }
TABLE { number { number } }

}

If any header_model is eithermodel_definition or table_model_definition , then the
complex_model reduces to the previously definedequation_based_model and
table_based_model , respectively. In order to support a table in thegeneral_model , any
Version 1.1a Advanced Library Format (ALF) Reference Manual 153

General Rules for Arithmetic Models Arithmetic expressions

le,
rocess
the

ific
ntext

cted
header_model must be eithertable_model_definition or table_based_model , and the
numbers in each table inside eachheader_model must be strictly monotonically increasing.

Theheader_table_model construct allows to associate symbols with numbers. For examp
process corners may be defined as discrete symbols, and they may be associated with p
derating factors. The numbers can be used in equations and for interpolation, whereas
symbols cannot.

7.1.6 Containers for arithmetic models and submodels

Containers for arithmetic models are for the purpose of supplementing the context-spec
semantics of the arithmetic model. Therefore arithmetic models may be placed in the co
of arithmetic model containers, using the following construct.

model_container ::=

model_container_ keyword {
[all_purpose_items]
model_container_contents { model_container_contents }

}

model_container_contents ::=
model_container

| trivial_model

| complex_model

There is a dedicated set ofmodel_container_ keywords . In addition,model_ keywords can
also be used asmodel_container_ keywords , and dedicatedsubmodel_ keywords can be used
asmodel_ keywords . The number of levels in nested arithmetic model containers is restri
by the set of allowed combinations betweenmodel_container_ keywords , model_ keywords

andsubmodel_ keywords . This is specified in chapter 7.5.

7.2 Arithmetic expressions

Arithmetic expressions define the contents of an EQUATION. Variables used in the
EQUATION are theidentifiers of theheader_model , if present, or else the
model_ keywords of theheader_model .

7.2.1 Syntax of arithmetic expressions

The syntax of arithmetic expressions shall be defined as follows:

arithmetic_expression ::=

(arithmetic_expression)
| number
| [arithmetic_unary] identifier
| arithmetic_expression arithmetic_binary arithmetic_expression
| arithmetic_function_operator

(arithmetic_expression { , arithmetic_expression })

| boolean_expression ? arithmetic_expression :
{ boolean_expression ? arithmetic_expression : }
arithmetic_expression
154 Advanced Library Format (ALF) Reference Manual Version 1.1a

Arithmetic expressions General Rules for Arithmetic Models

gest
Examples:

1.24

- Vdd

C1 + C2

MAX (3.5*C , -Vdd/2 , 0.0)

(C > 10) ? Vdd**2 : 1/2*Vdd - 0.5*C

7.2.2 Arithmetic operators

Table 7-1, Table 7-2, and Table 7-3 list unary, binary and function arithmetic operators.

Function operators with one argument (such aslog , exp andabs) or multiple arguments (such
asmin andmax) must have the arguments within parenthesis, e.g. min(1.2,-4.3,0.8) .

7.2.3 Operator priorities

The priority of binding operators to operands in arithmetic expressions shall be from stron
to weakest in the following order:

Table 7-1 : Unary arithmetic operators

Operator Description

+ positive sign (for integer or number)

- negative sign (for integer or number)

Table 7-2 : Binary arithmetic operators

Operator Description

+ addition (integer or number)

- subtraction (integer or number)

* multiplication (integer or number)

/ division (integer or number)

** exponentiation (integer or number)

% modulo division (integer or number)

Table 7-3 : Function arithmetic operators

Operator Description

LOG natural logarithm (argument is + integer or number)

EXP natural exponential (argument is integer or number)

ABS absolute value (argument is integer or number)

MIN minimum (all arguments are integer or number)

MAX maximum (all arguments are integer or number)
Version 1.1a Advanced Library Format (ALF) Reference Manual 155

General Rules for Arithmetic Models Construction of arithmetic models

lated.
1. unary arithmetic operator (+, -)

2. exponentiation (**)

3. multiplication (*), division (/), modulo division (%)

4. addition (+), subtraction (-)

7.3 Construction of arithmetic models

Input variables, also calledarguments of arithmetic models, appear in theHEADERof the model.
In the simplest case, theHEADER is just a list of arguments, each being a context-sensitive
keyword. The model itself is also defined with a context-sensitive keyword.

The model can be in equation form. All arguments of the equation must be in theHEADER. The
ALF parser should issue an error if theEQUATIONuses an argument not defined in theHEADER.
A warning should be issued if theHEADER contains arguments not used in theEQUATION.

Example:

DELAY {
...
HEADER {

CAPACITANCE {...}
SLEWRATE {...}

}
EQUATION {

0.01 + 0.3*SLEWRATE + (0.6 + 0.1*SLEWRATE)*CAPACITANCE
}

}

If the model uses aTABLE, then each argument in theHEADER also needs a table in order to
define the format. The order of arguments decides how the index to each entry is calcu
The first argument is the innermost index, the following arguments are outer indices.

DELAY {
HEADER {

CAPACITANCE {
TABLE {0.03 0.06 0.12 0.24}

}
SLEWRATE {

TABLE {0.1 0.3 0.9}
}

}
TABLE {

0.07 0.10 0.14 0.22
0.09 0.13 0.19 0.30
0.10 0.15 0.25 0.41

}
}

156 Advanced Library Format (ALF) Reference Manual Version 1.1a

Annotations for arithmetic models General Rules for Arithmetic Models

.

nd
ade

med

y,
.

t of

antic

 have
tic

he
The first argumentCAPACITANCEhas 4 entries. The second argumentSLEWRATEhas 3 entries.
HenceDELAY has 4*3=12 entries. For readability, comments may be inserted in the table

TABLE {
//capacitance:0.03 0.06 0.12 0.24
// ------------------- slewrate:

 0.07 0.10 0.14 0.22 // 0.1
 0.09 0.13 0.19 0.30 // 0.3
 0.10 0.15 0.25 0.41 // 0.9

}

Comments have no significance for the ALF parser, nor has the arrangement in rows a
columns. Only the order of values is important for index calculation. The table can be m
more compact by removing new lines.

TABLE { 0.07 0.10 0.14 0.22 0.09 0.13 0.19 0.30 0.10 0.15 0.25 0.41 }

For readability, the models and arguments can also have names, i.e. object IDs. For na
objects, the name is used for referencing, rather than the keyword.

DELAY rise_out{
...
HEADER {

CAPACITANCE c_out {...}
SLEWRATE fall_in {...}

}
EQUATION {

0.01 + 0.3 * fall_in + (0.6 + 0.1* fall_in) * c_out
}

}

The arguments of an arithmetic model can be arithmetic models themselves. In this wa
combinations ofTABLE- andEQUATION-based models can be used, for instance, in derating

Analogous withFUNCTION, bothEQUATION andTABLE representation of an arithmetic model
are allowed. TheEQUATIONis intended to be used when the values of the arguments fall ou
range, i.e. to avoid extrapolation.

7.4 Annotations for arithmetic models

Annotations and annotation containers described in this chapter are relevant for the sem
interpretation of arithmetic models and their arguments.

Example: DELAY=f(CAPACITANCE).
DELAY is the arithmetic model, CAPACITANCE is the argument.

Arguments of arithmetic models have the form of annotation containers. They may also
the form of arithmetic models themselves, in which case they represent nested arithme
models.

7.4.1 DEFAULT annotation

Thedefault annotation allows use of the default value instead of the arithmetic model, if t
arithmetic model is beyond the scope of the application tool.
Version 1.1a Advanced Library Format (ALF) Reference Manual 157

General Rules for Arithmetic Models Annotations for arithmetic models

from
the

e of
ase
DEFAULT = number ;

Restrictions may apply for the allowed type ofnumber . For instance, if the arithmetic model
allows onlynon_negative_number , then the default is restricted tonon_negative_number .

7.4.2 UNIT annotation

Theunit annotation associates units with the value computed by the arithmetic model.

UNIT = string | non_negative_number ;

A unit specified by astring can take the following values (* indicates wildcard):

Arithmetic models are context-sensitive, i.e. the units for their values can be determined
the context. IfUNIT annotation for such a context does not exist, default units are applied to
value (Section 7.6.2).

Example:

TIME { UNIT = ns; }
FREQUENCY { UNIT = gigahz; }

If the unit is a string, then only the first character (respectively the first 3 characters in cas
MEG) is interpreted. The reminder of the string can be used to define base units. Metric b
units are assumed, but not verified, in ALF.

There is no semantic difference between

unit = 1sec;

and

unit = 1volt;

Therefore, if the unit is specified as

unit = meg;

Table 7-4 : UNIT annotation

Annotation string Description

f* or F* equivalent to1E-15

p* or P* equivalent to1E-12

n* or N* equivalent to1E-9

u* or U* equivalent to1E-6

m* or M* equivalent to1E-3

1* equivalent to1E+0

k* or K* equivalent to1E+3

meg* or MEG*a

a. or uppercase/lowercase combination

equivalent to1E+6

g* or G* equivalent to1E+9
158 Advanced Library Format (ALF) Reference Manual Version 1.1a

Annotations for arithmetic models General Rules for Arithmetic Models

nce,
not

ion

nation

ame.

hresh-

s for
d to be

.

the interpretation is1E+6. However, for

unit = 1meg;

the interpretation is1 and not1E+6.

Units in a non-metric system can only be specified with numbers, not with strings. For insta
if the intent is to specify inch instead of meter as base unit, the following specification will
meet the intent:

unit = 1inch;

since the interpretation is1 and meters are assumed.

The correct way of specifying inch instead of meter is

unit = 25.4E-3;

since 1 inch is (approximately) 25.4 millimeters.

7.4.3 CALCULATION annotation

An arithmetic model in the context of a VECTOR may have the CALCULATION annotat
defined as follows:

calculation_ annotation ::=

CALCULATION = calculation_ identifier ;

calculation_ identifier ::=

absolute
| incremental

It shall specify whether the data of the model are to be used by themselves or in combi
with other data. Default isabsolute .

The incremental data from one VECTOR shall be added toabsolute data from
another VECTOR under the following conditions:

• The model definitions are compatible, i.e. measurement specifications must be the s
Units are allowed to be different.
Example: slewrate measurements at the same pin, same switching direction, same t
old values.

• The model definitions for common arguments are compatible, i.e. same range of value
table-based models, measurement specifications must be the same. Units are allowe
different.
Example: same values for derate_case, same threshold definitions for input slewrate

• The vector definitions are compatible, i.e. thevector_or_boolean_expression of the
VECTOR containingincremental data must match the
vector_or_boolean_expression of the VECTOR containingabsolute data, by
removing all variables appearing exclusively in the former expression.

Example:
Version 1.1a Advanced Library Format (ALF) Reference Manual 159

General Rules for Arithmetic Models Annotations for arithmetic models

s the
 A

 a

.

lation
data
VECTOR (01 A -> 01 Z) {
DELAY {

CALCULATION = absolute;
FROM { PIN = A; } TO { PIN = Z; }
HEADER {

CAPACITANCE load { PIN = Z; }
SLEWRATE slew { PIN = A; }

}
EQUATION { 0.5 + 0.3*slew + 1.2*load }

}
}
VECTOR (01 A &> 01 B &> 01 Z) {

DELAY {
CALCULATION = incremental;
FROM { PIN = A; } TO { PIN = Z; }
HEADER {

SLEWRATE slew_A { PIN = A; }
SLEWRATE slew_B { PIN = B; }
DELAY delay_A_B { FROM { PIN = A; } TO { PIN = B; } }

}
EQUATION {- 0.1 + (0.05+0.002*slew_A*slew_B)*delay_A_B) }

}
}

Both models describe the rise-to-rise delay from A to Z. The second delay model describe
incremental delay (here negative), when the input B switches in a time window between
and Z.

7.4.4 INTERPOLATION annotation

An argument of a table-based arithmetic model, i.e., a model in the HEADER containing
TABLE statement, may have the INTERPOLATION annotation defined as follows:

interpolation_ annotation ::=

INTERPOLATION = interpolation_ identifier ;

interpolation_ identifier ::=

fit
| floor
| ceiling

It shall specify, the interpolation scheme for values in-between the values of the TABLE

• fit
The data points in the table are supposed to be part of a smooth curve. Linear interpo
or other algorithms, e.g. cubic spline, polynominal regression, may be used to fit the
points into the curbe.

• floor
The value to the left in the table, i.e., the smaller value is used.
160 Advanced Library Format (ALF) Reference Manual Version 1.1a

Containers for arithmetic models General Rules for Arithmetic Models

ay
• ceiling
The value to the right in the table, i.e., the larger value is used.

Default isfit . Note that for multi-dimensional tables, different interpolation schemes m
be used for each dimension.

Example:

my_model {
HEADER {

dimension1 { INTERPOLATION = fit; TABLE { 1 2 4 8 }
dimension2 { INTERPOLATION = floor; TABLE { 10 100 }
dimension3 { INTERPOLATION = ceiling; TABLE { 10 100 }

}
TABLE {

1 7 3 5
10 20 60 40
50 30 20 100
0.8 0.4 0.2 0.9

}
}

Consider the following values:

dimension1 = 6
=> following subtable is chosen:

3 5 // interpolation between 3 and 5
60 40 // or between 60 and 40
20 100 // or between 20 and 100
0.2 0.9 // or between 0.2 and 0.9

dimension2 = 50
=> following subtable is picked:

3 5 // interpolation between 3 and 5
20 100 // or between 20 and 100

dimension3 = 50
=> following subtable is picked:

20 100 // interpolation between 20 and 100

7.5 Containers for arithmetic models

The following keywords are defined for objects that may contain arithmetic models

Table 7-5 : Unnamed containers for arithmetic models

Objects Description

FROM contains start point of timing measurement or timing constraint

TO contains end point of measurement or timing constraint

LIMIT contains arithmetic models for limit values
Version 1.1a Advanced Library Format (ALF) Reference Manual 161

General Rules for Arithmetic Models Arithmetic submodels

ly

Hz.

tions
dels.
etic
The LIMIT container is for general use. The FROM, TO, EARLY, LATE containers are on
for use within the context of timing models (see chapter ??).

7.5.1 LIMIT container

A LIMIT container shall contain arithmetic models. The arithmetic models shall contain
submodels identified by MIN and/or MAX.

Example:

PIN data_in {
LIMIT {

SLEWRATE { UNIT = ns; MIN = 0.05; MAX = 5.0;}
}

}

The minimum slewrate allowed at pindata_in is 0.05 ns, the maximum is 5.0 ns.

PIN data_in {
LIMIT {

SLEWRATE {
UNIT = ns;
MAX {

HEADER { FREQUENCY { UNIT=megahz;} }
EQUATION { 250 / FREQUENCY }

}
}

}
}

The maximum allowed slewrate is frequency-dependent, e.g. the value is 0.25ns for 1G

7.6 Arithmetic submodels

Arithmetic submodels are for the purpose of distinguishing different measurement condi
for the same model. The root of an arithmetic model may contain nested arithmetic submo
The header of an arithmetic model may contain nested arithmetic models, but not arithm
submodels.

EARLY contains arithmetic models for timing measurements relevant for early signal
arrival time

LATE contains arithmetic models for timing measurements relevant for late signal
arrival time

Table 7-5 : Unnamed containers for arithmetic models

Objects Description
162 Advanced Library Format (ALF) Reference Manual Version 1.1a

Arithmetic submodels General Rules for Arithmetic Models

ling.

ing.

trical

or
een
The following arithmetic submodels are generally applicable.

The following arithmetic submodels are only applicable in the context of electrical mode

The following arithmetic submodels are only applicable in the context of physical model

The semantics of the restricted submodels will be explained in the relevant sections of elec
and physical modeling, respectively.

7.6.1 Semantics of MIN / TYP / MAX

MIN, TYP, MAX indicate that the data of the arithmetic model represent minimal, typical,
maximal values within a statistical distribution. No correlation is assumed or implied betw
MIN data, TYP data, or MAX data accross different arithmetic models.

Table 7-6 : Generally applicable arithmetic submodels

Objects Description

MIN For measured or calculated data:
the data represents the minimal value / set of values within a statistical distribution

For data within LIMIT container
the data represents the lower limit value / set of values

TYP For measured or calculated data:
the data represents the typical value / set of values within a statistical distribution

MAX For measured or calculated data:
the data represents the maximal value / set of values within a statistical distribution

For data within LIMIT container
the data represents the lower limit value / set of values

DEFAULT For measured or calculated data:
the data represents the default value / set of values to be used per default

Table 7-7 : Submodels restricted to electrical modeling

Objects Description

HIGH applicable for electrical data measured at a logic "high" state of a pin

LOW applicable for electrical data measured at a logic "low" state of a pin

RISE applicable for electrical data measured during a logic "low" to "high" transition
of a pin

FALL applicable for electrical data measured during a logic "high" to "low" transition
of a pin

Table 7-8 : Submodels restricted to electrical modeling

Objects Description

HORIZONTAL applicable for layout measurements in horizontal direction

VERTICAL applicable for layout measurements in vertical direction
Version 1.1a Advanced Library Format (ALF) Reference Manual 163

General Rules for Arithmetic Models Arithmetic submodels

er
ot

del

s.
ntary

ent a

ed sub-
point
Example:

DELAY {
FROM { PIN=A; } TO { PIN=Z; }
MIN = 0.34; TYP = 0.38; MAX = 0.45;

}
POWER {

MEASUREMENT = average; FREQUENCY = 1e6;
MIN = 1.2; TYP = 1.4; MAX = 1.5;

}

The MIN value for DELAY may or may not simultaneously apply with the MIN value for
POWER. Typically, the case with smaller delay is also the case with larger power
consumption.

Within the scope of a LIMIT container, MIN and MAX contain the data for a lower or upp
limit, respectively. There must be at least one limit, lower or upper, in each model, but n
necessarily both, as shown in the example below.

MIN, MAX inside a model inside a HEADER define the validity range of the data. The mo
inside the HEADER may contain TABLE or EQUATION. It may also contain HEADER,
which represents a nested arithmetic model.

If MIN, MAX is not defined and the data is in a TABLE, the boundaries of the data in the
TABLE shall be considered as validity limits.

7.6.2 Semantics of DEFAULT

Arithmetic submodels may be identified by MIN, TYP, MAX or context-restricted keyword
For cases where the application tool cannot decide which qualifier applies, a suppleme
arithmetic submodel with the qualifier DEFAULT may be used.

Example:

PIN my_pin {
CAPACITANCE {

MIN { HEADER { ... } TABLE { ... } }
TYP { HEADER { ... } TABLE { ... } }
MAX { HEADER { ... } TABLE { ... } }
DEFAULT { HEADER { ... } TABLE { ... } }

}
}

Note: The DEFAULT model may also degenerate to a single value and therefore repres
trivial arithmetic model.

In certain cases, there is no supplementary submodel. Instead, one of the already defin
models is to be used per default. For this case, the DEFAULT annotation may be used to
to the applicable keyword.

Example:
164 Advanced Library Format (ALF) Reference Manual Version 1.1a

Arithmetic submodels General Rules for Arithmetic Models

the
ic
PIN my_pin {
CAPACITANCE {

MIN { HEADER { ... } TABLE { ... } }
TYP { HEADER { ... } TABLE { ... } }
MAX { HEADER { ... } TABLE { ... } }
DEFAULT = TYP;

}
}

The trivial arithmetic model construct with DEFAULT may also be used for an argument in
context of the HEADER of an arithmetic model. This enables evaluation of the arithmet
model in case the data of the argument can not be supplied by the application tool.

Example:

PIN my_pin {
CAPACITANCE {

HEADER { TEMPERATURE { DEFAULT=50; TABLE { 0 50 100 } } }
TABLE { 0.05 0.07 0.10 } }

}
}

The DEFAULT value of CAPACITANCE is 0.07.
Version 1.1a Advanced Library Format (ALF) Reference Manual 165

General Rules for Arithmetic Models Arithmetic submodels
166 Advanced Library Format (ALF) Reference Manual Version 1.1a

	General Rules for Arithmetic Models
	7.1 Principles of arithmetic models
	7.1.1 Global definitions for arithmetic models
	7.1.2 Trivial Arithmetic Model
	7.1.3 Arithmetic Model with EQUATION
	7.1.4 Arithmetic Model with TABLE
	7.1.5 Complex Arithmetic Model
	7.1.6 Containers for arithmetic models and submodels

	7.2 Arithmetic expressions
	7.2.1 Syntax of arithmetic expressions
	7.2.2 Arithmetic operators
	7.2.3 Operator priorities

	7.3 Construction of arithmetic models
	7.4 Annotations for arithmetic models
	7.4.1 DEFAULT annotation
	7.4.2 UNIT annotation
	7.4.3 CALCULATION annotation
	7.4.4 INTERPOLATION annotation

	7.5 Containers for arithmetic models
	7.5.1 LIMIT container

	7.6 Arithmetic submodels
	7.6.1 Semantics of MIN / TYP / MAX
	7.6.2 Semantics of DEFAULT

