Section 6
Modeling for Test

6.1 Annotations and attributes for a CELL

This section defines varioELL annotations and attributes.

6.1.1 CELLTYPE annotation

CELLTYPEClassifies the functionality of cells into broad categories. This is useful for informa-
tion purpose, for tools which do not need the exact specification of functionality, and for tools
which can interpret the exact specification of functionality only for certain categories of cells.
The exact specification of the functionality is described irFthecTIONStatement.

CELLTYPE =string X
which can take the values shown in Table 6-1.

Table 6-1 : CELLTYPE annotations for a CELL object

Annotation string Description

buffer cell is a buffer, inverting or non-inverting

combinational cell is a combinational logic element

multiplexor cell is a multiplexor

flipflop cell is a flip-flop

latch cell is a latch

memory cell is a memory or a register file

block cell is a hierarchical block, i.e., a complex element which gan

be represented as a netlist. All instances of the netlist are
library elements, i.e., there iSGELL model for each of them
in the library.

core cell is a core, i.e., a complex element which can be repre
sented as a netlist. At least one instance of the netlist is not a
library element, i.e., there is i@ELL model, but @RIMI-
TIVE model for that instance.

special cell is a special element, which can only be used in certaip
application contexts not describable by BuNCTIONstate-
ment. Examples: busholders, protection diodes, and fillce|ls.

6.1.2 ATTRIBUTE within a CELL object

An ATTRIBUTE within aCELL classifies the functionality given BELLTYPEIn more detail.

Version 1.9.0 Advanced Library Format (ALF) Reference Manual 115

Modeling for Test

Annotations and attributes for a CELL

The attributes shown in Table 6-2 can be used witltiBLa with CELLTYPE=memory

Table 6-2 : Attributes within a CELL with CELLTYPE=memory

Attribute item Description

RAM Random Access Memory

ROM Read Only Memory

CAM Content Addressable Memory

static static memory (e.g., static RAM)
dynamic dynamic memory (e.g., dynamic RAM)
asynchronous asynchronous memory

synchronous synchronous memory

The attributes shown in Table 6-3 can be used witldaLa with CELLTYPE=block .

Table 6-3 : Attributes within a CELL with CELLTYPE=block

Attribute item

Description

counter

cell is a complex sequential cell going through a predefing

d

sequence of states in its normal operation mode where eg@ch

state represents an encoded control value.

shift_register

cell is a complex sequential cell going through a predefing
sequence of states in its normal operation mode, where €
subsequent state can be obtained from the previous one
shift operation. Each bit represents a data value.

d
ach
Dy a

adder

cell is an adder, i.e., a combinational element performing
addition of two operands.

subtractor

cellis a subtractor, i.e., a combinational element performin
subtraction of two operands.

multiplier

cell is a multiplier, i.e., a combinational element performing
multiplication of two operands.

comparator

cell is a comparator, i.e., a combinational element compatfi

the magnitude of two operands.

ALU

cell is an arithmetic logic unit, i.e., a combinational eleme
combining the functionality of adder, subtractor, comparaf
in a selectable way.

(fill in more)

The attributes shown in Table 6-4 can be used witldBLa with CELLTYPE=core.

Table 6-4 : Attributes within a CELL with CELLTYPE=core

Attribute item Description

PLL CELL is a phase-locked loop
DSP CELLis a digital signal processor
CPU CELLs a central processing unit
(fill in more)

116

Advanced Library Format (ALF) Reference Manual

Version 1.9.0

Annotations and attributes for a CELL Modeling for Test

The attributes shown in Table 6-5 can be used witliBLa with CELLTYPE=special

Table 6-5 : Attributes within a CELL with CELLTYPE=special

Attribute item Description

busholder CELL enables a tristate bus to hold its last value before al
drivers went into high-impedance state (detail BE&NCTION
statement)

clamp CELL connects a net to a constant value (logic value and dfive
strength seEUNCTIONstatement)

diode CELL is a diode (nd-UNCTIONstatement)

capacitor CELL s a capacitor (nEUNCTIONstatement)

resistor CELL s aresistor (n&UNCTIONstatement)

inductor dELL is aninductor (né-UNCTIONstatement)

fillcell CELL is merely used to fill unused space in layout FHONC-
TION statement)

6.1.3 SWAP_CLASS annotation

SWAP_CLASS =string X

The value is the name of a declar@d\ss Multi-value annotation can be used. Cells referring
to the same&LASScan be swapped for certain applications.

Cell-swapping is only allowed under the following conditions:

* theRESTRICT_CLASSannotation (see Section 6.1.4) authorizes usage of the cell

» the cells to be swapped are compatible from an application standpoint (functional compat-
ibility for synthesis and physical compatibility for layout)

6.1.4 RESTRICT_CLASS annotation

RESTRICT_CLASS =string ;

The value is the name of a declar@d\ss Multi-value annotation can be used. Cells referring
to a particular class can be used in design tools identified by the value. The restricted
annotations are shown in Table 6-6.

Table 6-6 : Predefined values for RESTRICT_CLASS

Annotation string Description

synthesis use restricted to logic synthesis

scan use restricted to scan synthesis

datapath use restricted to datapath synthesis
clock use restricted to clock tree synthesis
layout use restricted to layout, i.e., place & route

Version 1.9.0 Advanced Library Format (ALF) Reference Manual 117

Modeling for Test Annotations and attributes for a CELL

User-defined values are also possible. If a cell has no or only unknown values for
RESTRICT_CLASS the application tool shall not modify any instantiation of that cell in the
design. However, the cell shall still be considered for analysis.

Example 1:

CLASS foo;

CLASS bar;

CELL c1 {
SWAP_CLASS = foo;
RESTRICT_CLASS = synthesis;

}
CELL c2{

SWAP_CLASS = foo;
RESTRICT_CLASS { synthesis scan bar }

}
Suppose cellsl andc2 are compatible from an application standpoint; cell@ndc2 can be
used for synthesis, where they can be swapped which each othet2 Calh be also used for
scan insertion and for the user-defined applicaiion

Example 2:

A combination ofSWAP_CLAS®&NJRESTRICT_CLASScan be used to emulate the concept of
“logically equivalent cells” and “electrically equivalent cells”. A synthesis tool needs to know
about “logically equivalent cells” for swapping. A layout tool needs to know about “electrically
equivalent cells” for swapping.

CLASS all_nand2 { RESTRICT_CLASS { synthesis } }
CLASS all_high_power_nand2 { RESTRICT_CLASS { layout } }
CLASS all_low_power_nand2 { RESTRICT_CLASS { layout } }

CELL my_low_power_nand? {
SWAP_CLASS { all_nand? all_low_power_nand? }

}
CELL my_high_power_nand?2 {

SWAP_CLASS { all_nand2 all_high_power_nand? }
}

CELL another_low_power_nand? {
SWAP_CLASS { all_low_power_nand2 }

}
CELL another_high_power_nand?2 {

SWAP_CLASS { all_high_power_nand2? }
}
all_nand2 encompasses a set of logically equivalent cells.
all_high_power_nand?2 encompasses a set of electrically equivalent cells.
all_low_power_nand2 encompasses another set of electrically equivalent cells.

The synthesis tool can swap_low_power_nand2 with my_high_power_nand2 . The layout
tool can swapny_low_power_nand2 Wwith another_low_power_nand2 and
my_high_power_nand2 with another_high_power_nand?2

118 Advanced Library Format (ALF) Reference Manual Version 1.9.0

NON_SCAN_CELL statement Modeling for Test

6.1.5 SCAN_TYPE annotation

SCAN_TYPE =string X
which can take the values shown in Table 6-7.

Table 6-7 : SCAN_TYPE annotations for a CELL object

Annotation string Description

muxscan a multiplexor for normal data and scan data

clocked a special scan clock

Issd combination between flip-flop and latch with special clocking
(level sensitive scan design)

control_0 combinational scan cell, controlling pin shall®& scan mode

control_1 combinational scan cell, controlling pin shallb& scan mode

6.1.6 SCAN_USAGE annotation

SCAN_USAGE =string :
which can take the values shown in Table 6-8.

Table 6-8 : SCAN_USAGE annotations for a CELL object

Annotation string Description

input primary input in a chain of cells

output primary output in a chain of cells

hold holds intermediate value in the scan chain

6.2 NON_SCAN_CELL statement

non_scan_cell ::=

NON_SCAN_CELL {non_scan_ cell_instantiations }

non_scan_ cell_instantiations ::=
non_scan_ cell_instantiation { non_scan_ cell_instantiation }

non_scan_ cell_instantiation ::=
cell _identifier { pin_assignments }
| primitive _identifier { pin_assignments }

In case of a single non-scan cell, the following syntax shall also be valid:

NON_SCAN_CELL =n0n_scan_ cell_instantiation
Is it necessary to allow this for backward compatibility with ALF 1.17?

This statement shall define non-scan cell equivalency to the scan cell in which this annotation
is contained. A cell instantiation form is used to reference the library cell that defines the non-
scan functionality of the current cell. If no such cell is available or defined, or if an explicit

Version 1.9.0 Advanced Library Format (ALF) Reference Manual 119

Modeling for Test STRUCTURE statement

reference to such a cell is not desired, then a primitive instantiation form can reference a
primitive, either ALF- or user- defined, for such use. In either case, constant values can appear
on either the left-hand side or right-hand side of the pin connectivity relationships. A constant
on the left-hand side defines the value the scan cell pins (appearing on the right-hand side) shall
have in order for the primitive to perform with the same functionality as does the instantiated
reference. A statement containing multiple non-scan cells shall indicate a choice between
alternative non-scan cells.

Example:
CELL my_flip-flop {
PIN g { DIRECTION=o0utput; }
PINd { DIRECTION=input; }

PINclk {DIRECTION=input; }
PIN clear { DIRECTION=input; polarity=low; }
/I followed by function, vectors etc.

}

CELL my_other_flip-flop {
/I declare the pins
/I followed by function, vectors etc.

}

CELL my_scan_flip-flop {
PIN data_out { DIRECTION=output; }
PIN data_in { DIRECTION=input; }
PIN clock { DIRECTION=input; }
PIN scan_in { DIRECTION=input; }
PIN scan_sel { DIRECTION=input; }
NON_SCAN_CELL {
my_flip-flop {
g = data_out;
d = data_in;
clk = clock;
clear = 'b1; /I scan cell has no clear
'b0 = scan_in; /I non-scan cell has no scan_in
'b0 = scan_sel; // non-scan cell has no scan_sel
}
my_other_flip-flop {
/l put in the pin assignments
}
}

/I followed by function, vectors etc.

6.3 STRUCTURE statement

An optionalSTRUCTURBtatement shall be legal in the context ¢flaNCTION The purpose of
the STRUCTURItatement is to describe the structure of a complex cell composed of atomic
cells, for example 1/O buffers, LSSD flip-flops, or clock trees.

The syntax for theUNCTIONstatement shall be augmented as follows:

120 Advanced Library Format (ALF) Reference Manual Version 1.9.0

STRUCTURE statement Modeling for Test

function ::=
FUNCTION] identifier] { [all_purpose_items] [primitives]
[behavior] [structure] [statetables] }
| function_ template_instantiation
structure ::=

STRUCTURE {named_cell_instantiations }

named_cell_instantiations ::=
named_cell_instantiation { named_cell_instantiation }

named_cell_instantiation ::=
cell_ identifier instance_ identifier { logic_values }
| cell_ identifier instance_ identifier { pin_instantiations }

The STRUCTURBtatement shall describe a netlist of components insidesthe TheSTRU-
CUREstatement shall not be a substitute forgBBAVIORStatement. If # UNCTIONcontains
only aSTRUCTURBtatement and reEHAVIORstatement, a behavior description for that par-
ticular cell shall be meaningless (e.g., fillcells, diodes, vias, or analog cells).

Timing and power models shall be provided fordigeL, if such models are meaningful.
Application tools are not expected to use function, timing, or power models from the instanti-
ated components as a substitute of a missing function, timing, or power model at the top-level.
However, tools performing characterization, construction, or verification of a top-level model
shall use the models of the instantiated components for this purpose.

Test synthesis applications can use the structural information in order to define a one-to-many
mapping for scan cell replacement, such as where a single flip-flop is replaced by a pair of
master/slave latches. A macro cell can be defined whose structure is a netlist containing the
master and slave latch and this shall contaimthie SCAN_CEL&annotation to define which
sequential cells it is replacing. No timing model is required for this macro cell, since it should
be treated as a transparent hierarchy level in the design netlist after test synthesis.

Notes:

1. Everyinstance_ identifier within aSTRUCTURBtatement shall be different from
each other.

2. TheSTRUCTURBtatement provides a directive to the application (e.g., synthesis and
DFT) as to how theELL is implemented. AELL referenced in
named_cell_instantiation can be replaced by anotregLL within the same
SWAP_CLAS®INdRESTRICT_CLASS(recognized by the application).

3. Thecell identifier within aSTRUCTURBtatement can refer to actual cells as well
as to primitives. The usage of primitives is recommended in fault modeling for DFT.

4. BEHAVIORstatements also provide the possibility of instantiating primitives. However,
those instantiations are for modeling purposes only; they do not necessarily match a
physical structure. ThEeTRUCTURBtatement always matches a physical structure.

Version 1.9.0 Advanced Library Format (ALF) Reference Manual 121

Modeling for Test

Example 1:

iobuffer = pre buffer + main buffer

CELL my_main_driver {

}

DRIVERTYPE = slotdriver ;
BUFFERTYPE = output ;

PIN i { DIRECTION = input; }

PIN o { DIRECTION = output; }
FUNCTION { BEHAVIOR {0 =1i;}}

CELL my_pre_driver {

}

DRIVERTYPE = predriver ;
BUFFERTYPE = output ;

PIN i { DIRECTION = input; }

PIN o { DIRECTION = output; }
FUNCTION { BEHAVIOR {0 =1i;}}

CELL my_buffer {

}

DRIVERTYPE = both ;
BUFFERTYPE = output ;
PIN A { DIRECTION = input; }
PIN Z { DIRECTION = output; }
PIN Y { VIEW = physical; }
FUNCTION {
BEHAVIOR{Z=A:}
STRUCTURE {
my_pre_driver pre { AY }/ pin by order
my_main_driver main { i=Y; 0=Z; }// pin by name

Example 2:

122

Advanced Library Format (ALF) Reference Manual

STRUCTURE statement

Version 1.9.0

STRUCTURE statement Modeling for Test

Issd flip-flop = latch + flip-flop + mux

CELL my_latch {
RESTRICT_CLASS { synthesis scan }
PIN enable { DIRECTION = input; }
PINd {DIRECTION = input; }
PINd {DIRECTION = output; }
FUNCTION { BEHAVIOR {

@ (enable){qg=d;}

o}

}

CELL my_flip-flop {
RESTRICT_CLASS { synthesis scan }
PIN clock { DIRECTION = input; }
PINd {DIRECTION = input; }
PINg {DIRECTION = output; }
FUNCTION { BEHAVIOR {

@ (Olclock){g=d;}

o}

}

CELL my_mux {
RESTRICT_CLASS { synthesis scan }
PIN dout { DIRECTION = output; }
PIN din0 {DIRECTION = input; }
PIN din1 {DIRECTION = input; }
PIN select { DIRECTION = input; }
FUNCTION { BEHAVIOR {

dout = select ? dinl : din0 ;

b}

}

CELL my_lssd_flip-flop {
RESTRICT_CLASS {scan }
CELLTYPE = block;
SCAN_TYPE = Issd;
PIN clock { DIRECTION = input; }
PIN master_clock { DIRECTION = input; }
PIN slave_clock {DIRECTION = input; }
PIN scan_data { DIRECTION = input; }
PIN din { DIRECTION = input; }
PIN dout { DIRECTION = output; }
PIN scan_master {VIEW = physical; }
PIN scan_slave {VIEW = physical; }
PIN d_internal { VIEW = physical; }
FUNCTION { BEHAVIOR {
@ (master_clock) {
scan_data_master = scan_data ;
}

@ (slave_clock & ! clock) {
dout = scan_data_master ;
}: (01 clock) {
dout = din ;
ol

STRUCTURE {

Version 1.9.0 Advanced Library Format (ALF) Reference Manual 123

Modeling for Test

my_latch UO {
enable = master_clock;
din =scan_data;
dout =scan_data_master;

}
my_flip-flop U1 {
clock = clock;

d =din;
g =d_internal;
}
my_mux U2 {
select = slave_clock;
dinl =scan_data_master;
din0 = dout;
dout =scan_data_slave;
}
my_mux U3 {
select = clock;
dinl =d_internal,
din0 =scan_data_slave;
dout = dout;
b}
}
NON_SCAN_CELL = my_flip-flop {
clock = clock;
d =din;
g =dout;
'b0 = slave_clock;
}
}
Example 3:

clock tree = chains of clock buffers

CELL my_root_buffer {
RESTRICT_CLASS { clock }
PIN i0 { DIRECTION = input; }
PIN 00 { DIRECTION = output; }
FUNCTION { BEHAVIOR {00 =i0; } }

}

CELL my_levell_buffer {
RESTRICT_CLASS { clock }
PIN i1 { DIRECTION = input; }
PIN o1 { DIRECTION = output; }
FUNCTION { BEHAVIOR {01 =1i1;}}

124 Advanced Library Format (ALF) Reference Manual

STRUCTURE statement

Version 1.9.0

STRUCTURE statement Modeling for Test

CELL my_level2_buffer {
RESTRICT_CLASS { clock }
PIN i2 { DIRECTION = input; }
PIN 02 { DIRECTION = output; }
FUNCTION { BEHAVIOR {02 =i2;}}

}

CELL my_level3_buffer {
RESTRICT_CLASS { clock }
PIN i3 { DIRECTION = input; }
PIN 03 { DIRECTION = output; }
FUNCTION { BEHAVIOR {03 =i3;}}

}

CELL my_tree_from_level2 {
RESTRICT_CLASS { clock }
PIN in { DIRECTION = input; }
PIN out { DIRECTION = output; }
PIN[1:2] level3 { DIRECTION = output; }
FUNCTION {
BEHAVIOR {out=1in;}
STRUCTURE {
my_level2_buffer U1l { i2=in; 02=out; }
my_level3_buffer U2 { i3=out; 03=level3[1]; }
my_level3_buffer U3 { i3=out; 03=level3[2]; }

}

CELL my_tree_from_levell {
RESTRICT_CLASS { clock }
PIN in { DIRECTION = input; }
PIN out { DIRECTION = output; }
PIN[1:4] level2 { DIRECTION = output; }
FUNCTION {
BEHAVIOR {out=1in;}
STRUCTURE {
my_levell_buffer Ul {i1=in; ol=out; }
my_tree_from_level2 U2 { i2=out; 02=level2[1]; }
my_tree_from_level2 U3 {i2=out; 02=level2[2]; }
my_tree_from_level2 U4 {i2=out; 02=level2[3]; }
my_tree_from_level2 U5 {i2=out; 02=level2[4]; }

}

CELL my_tree_from_root {

RESTRICT_CLASS { clock }
PIN in { DIRECTION = input; }
PIN out { DIRECTION = output; }
PIN[1:4] levell { DIRECTION = output; }
FUNCTION {

BEHAVIOR {out =in;}

STRUCTURE {

my_root_buffer U1 { i0=in; o0=out; }

Version 1.9.0 Advanced Library Format (ALF) Reference Manual 125

Modeling for Test Annotations and attributes for a PIN

my_tree_from_levell U2 {i1=0; ol=levell[1]; }
my_tree_from_levell U3 {i1=0; ol=levell[2]; }
my_tree_from_levell U4 {i1=0; ol=levell[3]; }
my_tree_from_levell U5 {i1=0; ol=levell[4]; }

}
Example 4:

Multiplexor, showing the conceptional difference between BEHAVIOR and STRUCTURE.

CELL my_multiplexor {
PIN a { DIRECTION = input; }
PIN b { DIRECTION = input; }
PIN s { DIRECTION = input; }
PIN y { DIRECTION = output; }

FUNCTION {
BEHAVIOR {
/l's_a and s_b are virtual internal nodes
ALF_AND {out=s_a;in[0] =!s;in[1l]=a;}
ALF_AND {out =s_b;in[0] = s;in[1] =b;}

ALF_OR {out=y;in[0]=s_a;in[l]=s_b;}

}
STRUCTURE {

/I sbar, sel_a, sel_b are physical internal nodes
ALF_NOT {out=sbar;in=s;}
ALF_NAND { out = sel_a; in[0] = sbar; in[1] = a; }
ALF_NAND {out =sel_b;in[0] = s; in[1]=b;}
ALF_NAND { out =y; in[0] = sel_a; in[1] = sel_b; }

6.4 Annotations and attributes for a PIN

This section defines vario®N annotations and attributes.

6.4.1 VIEW annotation

VIEW = string :
annotates the view where the pin appears, which can take the values shown in Table 6-9.

Table 6-9 : VIEW annotations for a PIN object

Annotation string Description

functional pin appears in functional netlist

physical pin appears in physical netlist

both (default) pin appears in both functional and physical netlist
none pin does not appear in netlist

126 Advanced Library Format (ALF) Reference Manual Version 1.9.0

Annotations and attributes for a PIN Modeling for Test

6.4.2 PINTYPE annotation

PINTYPE = string X
annotates the type of the pin, which can take the values shown in Table 6-10.

Table 6-10 : PINTYPE annotations for a PIN object

Annotation string Description

digital (default) digital signal pin

analog analog signal pin

supply power supply or ground pin

6.4.3 DIRECTION annotation

DIRECTION = string X
annotates the direction of the pin, which can take the values shown in Table 6-11.

Table 6-11 : DIRECTION annotations for a PIN object

Annotation string Description

input input pin

output output pin

both bidirectional pin

none no direction can be assigned to the pin

Table 6-12 gives a more detailed semantic interpretation for UISRECTION in combination
with PINTYPE.

Table 6-12 : DIRECTION in combination with PINTYPE

DIRECTION PINTYPE=digital PINTYPE=analog PINTYPE=supply
input pin receives a digital signal pin receives an analog sigpnal pin is a power sink
output pin drives a digital signal pin drives an analog signeﬁl pin is a power source
both pin drives or receives a digit pin drives or receives an pin is both power sink
tal signal, depending on thg analog signal, depending op and source
operation mode the operation mode
none pin represents either an pin represents either an pin represents either an
internal digital signal with | internal analog signal with | internal power pin with
no external connection or g no external connection or a no external connection o
feed through feed through a feed through

Examples:
. The power and ground pins of regular cells shall ILaRECTION=input .

- Alevel converter cell shall have a power supply pin \RIRECTION=input and
another power supply pin WithhRECTION=output .

Version 1.9.0 Advanced Library Format (ALF) Reference Manual 127

Modeling for Test Annotations and attributes for a PIN

- Alevel converter can have separate ground pins on the input and output side or a
common ground pin WitDIRECTION=both .

. The power and ground pins of a feed through cell shall bEREECTION=none.

6.4.4 SIGNALTYPE annotation

SIGNALTYPECclassifies the functionality of a pin. The currently defined values apply for pins
with PINTYPE=DIGITAL .

Conceptually, a pin witRINTYPE = ANALOG can also have SIGNALTYPEannotation. How-
ever, no values are currently defined.

SIGNALTYPE = string :
annotates the type of the signal connected to the pin.
The fundamentadIGNALTYPEVvalues are defined in Table 6-13.

Table 6-13 : Fundamental SIGNALTYPE annotations for a PIN object

Annotation string Description

data (default) general data signal, i.e., a signal that carries information tp be
transmitted, received, or subjected to logic operations within
the CELL.

address address signal of a memory, i.e., an encoded signal, usuglly a
bus or part of a bus, driving an address decoder within thg
CELL

control general control signal, i.e., an encoded signal that control
least two modes of operation of t6&LL, eventually in con-
junction with other signals. The signal value is allowed to
change during real-time circuit operation.

v)
QD
—

select select signal of a multiplexor, i.e., a decoded or encoded $ig-
nal that selects the data path of a multiplexor or de-multi-
plexor within theCELL. Each selected signal has the samg
SIGNALTYPE

enable general enable signal, i.e., a decoded signal which enableg¢ and
disables a set of operational modes of@teLL, eventually in
conjunction with other signals. The signal value is expectedl to
change during real-time circuit operation.

tie the signal needs to be tied to a fixed value statically in ordey to
define a fixed or programmable mode of operation of the
CELL, eventually in conjunction with other signals. The sig-
nal value is not allowed to change during real-time circuit
operation.

clear clear signal of a flip-flop or latch, i.e., a signal that control$
the storage of the valiewithin the CELL.

128 Advanced Library Format (ALF) Reference Manual Version 1.9.0

Annotations and attributes for a PIN

Modeling for Test

Table 6-13 : Fundamental SIGNALTYPE annotations for a PIN object, continued

Annotation string

Description

that triggers data storage within tG&LL.

set set signal of a flip-flop or latch, i.e., a signal that controls the
storage of the valug within the CELL.
clock clock signal of a flip-flop or latch, i.e., a timing-critical signa

"Flipflop", "latch”, "multiplexor",

and "memory" can be standalone cells or embedded in
larger cells. In the former case, the celltyp#igop , latch , multiplexor , andmemory,
respectively. In the latter case, the celltypeldsk or core .

Composite values f@IGNALTYPEshall be constructed using one or more prefixes in
combination with certain fundamental values, separated by the undergodnar@cter, as
shown in the subsequent tables. The scheme for this is shown in Figure 6-1.

-
> > address
> load
» out » >
> test > zl >
> control
_>
> read > enable
> bist
- > write - q
— > ata
|
scan

p-Master > clock
> slave

Figure 6-1: Construction scheme for composite SIGNALTYPE values

Table 6-14 : Composite SIGNALTYPE annotations based on DATA

Annotation string Description

scan_data data signal for scan mode
test_data data signal for test mode
bist_data data signal irBIST mode

Version 1.9.0 Advanced Library Format (ALF) Reference Manual 129

Modeling for Test

130

Annotations and attributes for a PIN

Table 6-15 : Composite SIGNALTYPE annotations based on ADDRESS

Annotation string

Description

test_address

address signal for test mode

bist_address

address signal f@IST mode

Table 6-16 : Composite SIGNALTYPE annotations based on CONTROL

Annotation string

Description

load_control

control signal for switching between
load mode and normal mode

scan_control

control signal for switching between

scan mode and normal mode

test_control

—

control signal for switching between teg
mode and normal mode

bist_control

control signal for switching between
BIST mode and normal mode

read_write_control

control signal for switching between
read and write operation

test_read_write_control

control signal for switching between
read and write operation in test mode

bist_read_write_control

control signal for switching between
read and write operation BIST mode

Table 6-17 : Composite SIGNALTYPE annotations based on ENABLE

Annotation string

Description

load_enable signal enables load operation in a counter or a shift register
out_enable signal enables the output stage of an arbitrary cell
scan_enable signal enables scan mode of a flip-flop or latch only

scan_out_enable

signal enables the output of a flip-flop or latch in scan mode o

nly

test_enable

signal enables test mode only

bist_enable

signal enableBIST mode only

test_out_enable

signal enables the output stage in test mode only

bist_out_enable

signal enables the output stagdisT mode only

read_enable

signal enables the read operation of a memory

write_enable

signal enables the write operation of a memory

test_read_enable

signal enables the read operation in test mode only

test_write_enable

signal enables the write operation in test mode only

Advanced Library Format (ALF) Reference Manual

Version 1.

9.0

Annotations and attributes for a PIN

Table 6-17 : Composite SIGNALTYPE annotations based on ENABLE,

Modeling for Test

continued

Annotation string

Description

bist read_enable

signal enables the read operatioBIST mode only

bist_write_enable

signal enables the write operatiorBIST mode only

Table 6-18 : Composite SIGNALTYPE annotations based on CLOCK

Annotation string

Description

scan_clock

signal is clock of a flip-flop or latch in scan mode

master_clock

signal is master clock of a flip-flop or latch

slave_clock

signal is slave clock of a flip-flop or latch

scan_master_clock

signal is master clock of a flip-flop or latch in scan mode

scan_slave_clock

signal is slave clock of a flip-flop or latch in scan mode

read_clock

clock signal triggers the read operation in a synchronous mem

pry

write_clock

clock signal triggers the write operation in a synchronous mem

ory

read_write_clock

clock signal triggers both read and write operation in a synchron
memory

ous

test_clock

signal is clock in test mode

test_read_clock

clock signal triggers the read operation in a synchronous memo
test mode

yin

test_write_clock

clock signal triggers the write operation in a synchronous mem
in test mode

ory

test_read_write_clock

clock signal triggers both read and write operation in a synchron
memory in test mode

Ous

bist_clock

signal is clock iBIST mode

bist_read_clock

clock signal triggers the read operation in a synchronous memo
BIST mode

yin

bist_write_clock

clock signal triggers the write operation in a synchronous mem
in BIST mode

ory

bist_read_write_clock

clock signal triggers both read and write operation in a synchron

ous

memory inBIST mode

6.4.5

ACTION annotation

ACTION = string ;
annotates action of the signal, which can take the values shown in Table 6-19.

Version 1.9.0

Advanced Library Format (ALF) Reference Manual

131

Modeling for Test Annotations and attributes for a PIN

Table 6-19 : ACTION annotations for a PIN object

Annotation string Description
synchronous signal acts in synchronous way, i.e., self-triggered
asynchronous signal acts in asynchronous way, i.e., triggered by a signg|

with SIGNALTYPE CLOCKor a compositSIGNALTYPE
with postfix_CLOCK

TheACTION annotation applies only to pins with certaiGNALTYPEvalues, as shown in
tTable 6-20. The rule applies also to any comp@GaIALTYPEValues based on the
fundamental values.

Table 6-20 : POLARITY applicable in conjunction with fundamental SIGNALTYPE values

fundamental SIGNALTYPE applicable ACTION

data N/A

address N/A

control synchronous or asynchronous

select N/A

enable synchronous or asynchronous

tie N/A

clear synchronous or asynchronous

set synchronous or asynchronous

clock N/A, but the presence &IGNALTYPE=clock conditions
the validity of ACTION=synchronous for other signals

6.4.6 POLARITY annotation

POLARITY = string :
annotates the polarity of the pin signal.

The polarity of an input pin (i.eDIRECTION = input;) can take the values shown in Table 6-
21.

Table 6-21 : POLARITY annotations for a PIN

Annotation string Description

high signal active high or to be driven high
low signal active low or to be driven low
rising_edge signal sensitive to rising edge
falling_edge signal sensitive to falling edge
double_edge signal sensitive to any edge

132 Advanced Library Format (ALF) Reference Manual Version 1.9.0

Annotations and attributes for a PIN Modeling for Test

ThePOLARITY annotation applies only to pins with certgiGNALTYPEvalues, as shown
iTable 6-22. The rule applies also to any comp@&itaALTYPEvalues based on the
fundamental values.

Table 6-22 : POLARITY applicable in conjunction with fundamental SIGNALTYPE values

fundamental SIGNALTYPE applicable POLARITY value

data N/A

address N/A

control mode-specifihiigh orlow for composite signaltype

select N/A

enable Mandatoryhigh orlow

tie Optionalhigh orlow

clear Mandatoryhigh orlow

set Mandatoryhigh orlow

clock Mandatoryhigh , low, rising_edge , falling_edge , or
double_edge , can be mode-specific for composite signaltype.

Signals with composite signaltype®de CLOCKcan have a single polarity or mode-specific
polarities.

Example:

PIN rw {
SIGNALTYPE = READ_WRITE_CONTROL;
POLARITY { READ=high; WRITE=low; }

}

PIN rwc {
SIGNALTYPE = READ_WRITE_CLOCK;
POLARITY { READ=rising_edge; WRITE=falling_edge; }

6.4.7 DATATYPE annotation

DATATYPE =string
annotates the datatype of the pin, which can take the values shown in Table 6-23.

Table 6-23 : DATATYPE annotations for a PIN object

Annotation string

Description

signed

result of arithmetic operation is signed 2's complement

unsigned

result of arithmetic operation is unsigned

DATATYPHES only relevant for bus pins.

6.4.8 INITIAL_VALUE annotation
INITIAL_VALUE = logic_constant ;
Version 1.9.0 Advanced Library Format (ALF) Reference Manual 133

Modeling for Test Annotations and attributes for a PIN

shall be compatible with the buswidth amwirATYPEOf the signal.

INITIAL_VALUE is used for a downstream behavioral simulation model, as far as the simulator

(e.g., a VITAL-compliant simulator) supports the notion of initial value.

6.4.9 BUFFERTYPE annotation

BUFFERTYPE =string :
can take the values shown in Table 6-24.

Table 6-24 : BUFFERTYPE annotations for a CELL object

Annotation string Description

input cell is an input buffer

output cell is an output buffer

inout cell is an inout (bidirectional) buffer
internal cell is an internal buffer

6.4.10 DRIVERTYPE annotation

DRIVERTYPE =string X
can take the values shown in Table 6-25.

Table 6-25 : DRIVERTYPE annotations for a CELL object

Annotation string Description

predriver cell is a predriver

slotdriver cell is a slotdriver

both cell is both a predriver and a slot driver

6.4.11 PARALLEL_DRIVE annotation

PARALLEL_DRIVE = unsigned ;
specifies the number of parallel drivers.

6.4.12 SCAN_POSITION annotation

SCAN_POSITION = unsigned ;
annotates the position of the pin in scan chain, startingowith

6.4.13 STUCK annotation
STUCK = string X

134 Advanced Library Format (ALF) Reference Manual

Version 1.9.0

Annotations and attributes for a PIN Modeling for Test

annotates the stuck-at fault model as shown in Table 6-26.

Table 6-26 : STUCK annotations for a PIN object

Annotation string Description

stuck at 0 pin can have stuck-at-0 fault

stuck_at 1 pin can have stuck-at-1 fault

both (default) pin can have both stuck-at-0 and stuck-at-1 faults
none pin can not have stuck-at faults

6.4.14 SUPPLYTYPE

A PIN with PINTYPE = SUPPLY shall have sUPPLYTYPENNotation.

supplytype assignment ::=
SUPPLYTYPE = supplytype_ identifier ;

supplytype_identifier ::=
power

| ground

| bias

6.4.15 SIGNAL_CLASS

The following new keyword for class reference shall be defined:

SIGNAL_CLASS

aPIN referring to the sam&GNAL_CLASSbelong to the same logic port.

For example, theDDRESSWRITE_ENABLEandDATApiIn of a logic port of a memory have
the sameIGNAL_CLASS

SIGNAL_CLASSapplies to @IN with PINTYPE=DIGITAL |ANALOG

SIGNAL_CLASSIs orthogonal tGSIGNALTYPE

Example:

CLASS portA;
CLASS portB;
CELL my_memory {

PIN[1:4] addrA { DIRECTION = input;
SIGNALTYPE = address;
SIGNAL_CLASS = portA;

}

PIN[7:0] dataA { DIRECTION = output;
SIGNALTYPE = data;
SIGNAL_CLASS = portA;

}

PIN[1:4] addrB { DIRECTION = input;
SIGNALTYPE = address;
SIGNAL_CLASS = portB;

}

PIN[7:0] dataB { DIRECTION = input;
SIGNALTYPE = data;

Version 1.9.0 Advanced Library Format (ALF) Reference Manual 135

Modeling for Test Annotations and attributes for a PIN

SIGNAL_CLASS = portB;

}
PIN weB { DIRECTION = input;

SIGNALTYPE = write_enable;
SIGNAL_CLASS = portB;

Note: The combination (JIGNAL_CLASSandSIGNALTYPEidentifies the port typecLASS
portA represents a read port, since it consistsroNavith SIGNALTYPE = address
and aPIN with SIGNALTYPE = data andDIRECTION = output . CLASS portB
represents a write port, since it consists piNawith SIGNALTYPE = address , aPIN
with SIGNALTYPE = data andDIRECTION =input , and aIN with SIGNALTYPE =
write_enable

6.4.16 SUPPLY_CLASS

The following new keyword for class reference shall be defined:

SUPPLY_CLASS

aPIN referring to the sam&uPPLY_CLAS<elongs to the same power terminal.
For example, digitatDDand digitalvss have the sam8UPPLY_CLASS
SIGNAL_CLASSapplies to @IN with PINTYPE=SUPPLY

SUPPLY_CLASdSs orthogonal tGsUPPLYTYPE

Example:

CELL my_core {
PIN vdd_dig { SUPPLYTYPE = power; SUPPLY_CLASS = digital; }
PIN vss_dig { SUPPLYTYPE = ground; SUPPLY_CLASS = digital; }
PIN vdd_ana { SUPPLYTYPE = power; SUPPLY_CLASS = analog; }
PIN vss_ana { SUPPLYTYPE = ground; SUPPLY_CLASS = analog; }

}
6.4.17 Driver CELL and PIN specification

The keywordsCELL andPIN can be used as references to existing objects to define a driver
cell and pin in a macro, i.e., a cell witELLTYPE=block .

Example:

/I this is a standard ASIC cell
CELL my_inv {
CELLTYPE = buffer;
PIN in { DIRECTION = input; }
PIN out { DIRECTION = output; }
}

/I this is a macro, synthesized from standard ASIC cells
CELL my_macro {

136 Advanced Library Format (ALF) Reference Manual Version 1.9.0

Annotations and attributes for a PIN Modeling for Test

CELLTYPE = block;
PIN my_output {

DIRECTION = output;

CELL =my_inv { PIN = out; }
}

/* fill in other pins and stuff */

6.4.18 ATTRIBUTE for PIN objects

The attributes shown in Table 6-27 can be used witkin abject.

Table 6-27 : Attributes within a PIN object

Attribute item Description

SCHMITT Schmitt trigger signal
TRISTATE tristate signal

XTAL crystal/oscillator signal
PAD pad going off-chip

The attributes shown in Table 6-28 are only applicable for pins within cells with
CELLTYPE=memoryand certain values $iGNALTYPE

Table 6-28 : Attributes for pins of a memory

Attribute item SIGNALTYPE |Description

ROW_ADDRESS_STROBE clock samples the row address of the memory
COLUMN_ADDRESS_STROBE clock samples the column address of the memory
ROW address selects an addressable row of the memory
COLUMN address selects an addressable column of the memory
BANK address selects an addressable bank of the memory

The attributes shown in Table 6-29 are only applicable for pins representing double-rail
signals.

Table 6-29 : Attributes for pins representing double-rail signals

Attribute item Description

INVERTED represents the inverted value within a pair of signgls
carrying complementary values

NON_INVERTED represents the non-inverted value within a pair of
signals carrying complementary values

DIFFERENTIAL signal is part of a differential pair, i.e., both the
inverted and non-inverted values are always
required for physical implementation

The following restrictions apply for double-rail signals:

. ThePINTYPE, SIGNALTYPE andDIRECTION of both pins shall be the same.

Version 1.9.0 Advanced Library Format (ALF) Reference Manual 137

Modeling for Test Definitions for bus pins

OnePIN shall have the attribut®VERTED, the otheNON_INVERTED
Either both pins or no pins shall have the attrilDIFEERENTIAL.

POLARITY, if applicable, shall be complementary as follows:
HIGH is paired withLow
RISING_EDGEIS paired WithFALLING_EDGE
DOUBLE_EDGHKs paired withDOUBLE_EDGE
6.5 Definitions for bus pins

This section defines how to specify bus pins and group pins.

6.5.1 RANGE for bus pins
A one-dimensional bus pin can contaiRANGEstatement, defined as follows:

range ::=
RANGE { unsigned : unsigned }

TheRANGEstatement applies only if the range of valid indices is contiguous. The range is lim-
ited by the width of the bus. The possible range for a N-bit wide bus is betwvaad2. The
possible range of values shall also be the default range.

Example:

A 4-bit wide bus has the following possible range of indices: 0, 1, 2, 3,4,5,6, 7, 8,9, 10, 11,
12, 13, 14, 15.

RANGE {3:13} specifies the indices 1, 2, 14, and15 are invalid.

In the case where non-contiguous indices are valid, for example 1, 2, 3,5, 6, 7, 9, 10, 11, 13,
14, 15, therANGEstatement does not apply.

6.5.2 Scalar pins inside a bus
A PIN declared as a bus shall contain the optipinainstantiation statement, defined as
follows:

pin_instantiation ::=
pin_ identifier [index] {
pin_items
}

whereindex andpin_items are defined in Section 13.5 and Section 13.11, respectively.

A pin_instantiation statement can also refer to a part of the bus.

138 Advanced Library Format (ALF) Reference Manual Version 1.9.0

Definitions for bus pins Modeling for Test

Annotations within the scope of tireN or a higher-levepin_instantiation shall be inher-
ited by a lower-levepin_instantiation (see Section 6.4), as long as their values are appli-
cable for both the bus and each scalar pin within the bus. ValuagwfINITIAL_VALUE , and
arithmetic models such @»PACITANCEshall not be inherited, since a particular value cannot
apply at the same time to the bus and to its scalar pins.

Example:

PIN [1:4] my_address {

DIRECTION = input;

SIGNALTYPE = address;

VIEW = functional;

CAPACITANCE = 0.07;

my_address [1:2] { ATTRIBUTE { ROW } CAPACITANCE = 0.03; }
my_address[1] { VIEW = physical; CAPACITANCE = 0.01; }
my_address[2] { VIEW = physical; CAPACITANCE = 0.02; }
my_address [3:4] { ATTRIBUTE { COLUMN } CAPACITANCE = 0.04; }
my_address[3] { VIEW = physical; CAPACITANCE = 0.02; }
my_address[4] { VIEW = physical; CAPACITANCE = 0.02; }

}
6.5.3 PIN_GROUP statement
A pin group shall be defined as follows:

pin_group ::=
PIN_GROUR index] pin_group_ identifier {
pin_items

MEMBERS {pins }
}

wherepin_items is defined in Section 13.11.

The pins in thevEMBERS$eld shall refer to previously defined pins. The range of the index, if
defined, shall match the number and range of pins insvwBERSeld.

Annotations within the scope of tlheN contained in th&lEMBERSeld shall be inherited by
thePIN_GROUPas long as their values are applicable for both the pin and the pin group. Values
of VIEW, INITIAL_VALUE , and arithmetic models such@sPACITANCEshall not be inherited,
since a particular value cannot apply at the same time to the pin and the pin group.

A pin group withviEw=functional ~ shall be treated like a bus pin in the functional netlist. It
shall appear in the netlist in place of the first defined pin withimenseR$eld.

Version 1.9.0 Advanced Library Format (ALF) Reference Manual 139

Modeling for Test Annotations for other objects

Example 1:
PIN my_address_1 {DIRECTION = input; VIEW = physical; CAPACITANCE = 0.01;}
PIN my_address_2 {DIRECTION = input; VIEW = physical; CAPACITANCE = 0.02;}
PIN my_address_3 {DIRECTION = input; VIEW = physical; CAPACITANCE = 0.02;}
PIN my_address_4 {DIRECTION = input; VIEW = physical; CAPACITANCE = 0.02;}

PIN_GROUP [1:2] my_address_1 2 {
ATTRIBUTE { ROW }
CAPACITANCE = 0.03;
MEMBERS { my_address_1 my_address_2 }
}
PIN_GROUP [1:2] my_address_3_4 {
ATTRIBUTE { COLUMN }
CAPACITANCE = 0.03;
MEMBERS { my_address_3 my_address_4}
}
PIN_GROUP [1:4] my_address {
VIEW = functional;
CAPACITANCE = 0.07;
MEMBERS { my_address_1 my_address_2 my_address_3 my_address_4 }

}
Pairs of complementary pins, differential pins in particular, are special cases of pin groups.

Example 2:

CELL my_flip-flop {
PIN CLK { DIRECTION=input; SIGNALTYPE=clock; POLARITY=rising_edge; }
PIN D { DIRECTION=input; SIGNALTYPE=data; }
PIN Q { DIRECTION=output; SIGNALTYPE=data; ATTRIBUTE { NON_INVERTED } }
PIN Qbar { DIRECTION=output; SIGNALTYPE=data; ATTRIBUTE { INVERTED } }
PIN_GROUP [0:1] Q_double_rail { RANGE {1: 2} MEMBERS { Q Qbar }}

}

The pinsQandQbar are complementary. Their valid set of data compriges=="d1 and
'b10==="d2 . The value%®00==="d0 andbll==="d3 are invalid.

CELL my_differential_buffer {
PIN DIN { DIRECTION=input; ATTRIBUTE { DIFFERENTIAL NON_INVERTED } }
PIN DINN { DIRECTION=input; ATTRIBUTE { DIFFERENTIAL INVERTED } }
PIN DOUT { DIRECTION=output; ATTRIBUTE { DIFFERENTIAL NON_INVERTED } }
PIN DOUTN { DIRECTION=output; ATTRIBUTE { DIFFERENTIAL INVERTED } }
PIN_GROUP [0:1] DI{ RANGE {1: 2 } MEMBERS { DIN DINN }}
PIN_GROUP [0:1] DO { RANGE {1: 2 } MEMBERS { DOUT DOUTN }}

}

The pinsDIN andDINN represent a pair of differential input pins. The pa®TandDOUTN
represent a pair of differential output pins.

6.6 Annotations for other objects

This section defines the annotationsdoanssandvECTOR

140 Advanced Library Format (ALF) Reference Manual Version 1.9.0

Annotations for other objects Modeling for Test

6.6.1 PURPOSE for CLASS

A CLASSIs a generic object which can be referenced inside another object. An object referenc-
ing a class inherits all children object of that class. In addition to this general reference, the
usage of the keywordLASSIn conjunction with a predefined prefix (e QQNNECT_CLASS
SWAP_CLASSRESTRICT_CLASS EXISTENCE_CLASS Or CHARACTERIZATION_CLASBalso car-

ries a specific semantic meaning in the context of its usage. Note the keyword <poefiss

is used for referencing a class, whereas the definition of the class always uses the keyword
CLASS Thus a class can have multiple purposes. With the growing number of usage models of
the class concept, it is useful to include the purpose definition in the class itself in order to
make it easier for specific tools to identify the classes of relevance for that tool.

A CLASSObject can contain theURPOSENNotation, which can take one or multiple values. A
VECTORentitled to inherit theURPOSENNOotation from theLASScan also contain theuR-
POSEannotation as follows.

vector_purpose_ assignment ::=
PURPOSE { purpose_ identifier { purpose_ identifier } }

vector_purpose _identifier :: =
bist
| test
| timing
| power
| integrity

6.6.2 OPERATION for VECTOR

TheOPERATIONstatement inside @ECTORshall be used to indicate the combined definition of
signal values or signal changes for certain operations which are not entirely controlled by a
single signal.

operation_ assignment :;=
OPERATION = operation_ identifier ;

An OPERATIONwithin the context of ECTORNdicates certain a function of a cell, such as a
memory write, or change to some state, such as test mode. Many functions are not controlled
by a single pin and are therefore not able to be defined by the sissaf TYPEalone. The
VECTORshall describe the complete operation, including the sequence of events on input and
expected output signals, such that one operation can be followed seamlessly by the next.

Version 1.9.0 Advanced Library Format (ALF) Reference Manual 141

Modeling for Test Annotations for other objects

For a cell withCELLTYPE=memory the following values shall be predefined:
operation_ identifier ::=
read
| write
| read_modify write
| write_through
| start
| end
| refresh
| load
| iddq
Their definitions are:

read read operation at one address

write: write operation at one address

read_modify_writeread followed by write of different value at same address

start first operation required in a particular mode

end last operation required in a particular mode

refresh operation required to maintain the contents of the memory without modifying it
load: operation for loading control registers

iddg: operation for supply current measurements in quiescent state

The EXISTENCE_CLASS(see Section 9.2.3) within the context ofecTORshall be used to
identify which operations can be combined in the same noERATIONS orthogonal to
EXISTENCE_CLASS TheEXISTENCE_CLASSstatement is only necessary, if there is more than
one mode of operation.

Example 1:

CLASS normal_mode { PURPOSE = test; }
CLASS fast_page_mode { PURPOSE = test; }
VECTOR (! WE && (
?!'addr -> 01 RAS -> 10 RAS >
?! addr -> 01 CAS -> X? dout -> 10 CAS -> ?X dout
) A
OPERATION = read; EXISTENCE_CLASS = normal_mode;
}
VECTOR (WE && (
?laddr -> 01 RAS -> 10 RAS ->
?! addr -> ?? din -> 01 CAS -> 10 CAS
) A
OPERATION = write; EXISTENCE_CLASS = normal_mode;

}
VECTOR (! WE && (?! addr -> 01 CAS -> X? dout -> 10 CAS -> ?X dout)) {

142 Advanced Library Format (ALF) Reference Manual Version 1.9.0

ILLEGAL statement for VECTOR Modeling for Test

OPERATION = read; EXISTENCE_CLASS = fast_page_mode;
}
VECTOR (WE && (?! addr -> ?? din -> 01 CAS -> 10 CAS)) {
OPERATION = write; EXISTENCE_CLASS = fast_page_mode;
}
VECTOR (?! addr -> 01 RAS -> 10 RAS) {
OPERATION = start; EXISTENCE_CLASS = fast_page_mode;

}
Note: The complete description of a “read” operation also contains the behavior after “read”
is disabled.
Example 2:

VECTOR (01 read_enb -> X? dout -> 10 read_enb -> ?X dout) {
OPERATION = read; // output goes to X in read-off

}

VECTOR (01 read_enb -> ?? dout -> 10 read_enb -> ?- dout) {
OPERATION = read; // output holds is value in read-off

}

6.7 ILLEGAL statement for VECTOR

For complex cells, especially multi-port memories, it is useful to define the behavior as a con-
sequence of illegal operations, for example when several ports try to access the same address.

A VECTORstatement shall contain the optionaEGAL statement, defined as follows:

illegal ::=
ILLEGAL [identifier] { illegal_items }
illegal_items ::=
illegal_item { illegal_item }
illegal_item ::=
all_purpose_item
| violation

whereall_purpose_item andviolation are defined in Section 13.7 and Section 8.1,
respectively.

Thevector_expression within thevVECTORstatement describes a state or a sequence of
events which define an illegal operation. NMeLATION statement describes the consequence
of such an illegal operation.

Version 1.9.0 Advanced Library Format (ALF) Reference Manual 143

Modeling for Test TEST statement

Example 1:

VECTOR ((addr_A == addr_B) && write_enable_A && write_enable B) {
ILLEGAL write_A_ write_B {
VIOLATION {
MESSAGE = “write conflict between port A and B“;
MESSAGE_TYPE = error;
BEHAVIOR { data[addrA] = ‘bxxxxxxxx; }

}
}
Note: An illegal operation can be legalized by UsWESSAGE_TYPE=INFORMATIOD
MESSAGE_TYPE=WARNING

This statement can also be used to define the behavior when an address is out of range. Some-
times the address space is not continuous, i.e., it can contain holes in the middle. In this case,
aMIN or MAXvalue for legal addresses would not be sufficient. On the other hand, a
boolean_expression can always exactly describe the legal and illegal address space.

Example 2:

VECTOR ((addr > ‘h3) && write_enb) {
ILLEGAL {
VIOLATION {
MESSAGE = “write address out of range®;
MESSAGE_TYPE = error;
BEHAVIOR { data[addr] = ‘bxxxxxxxx; }

6.8 TEST statement

A CELL can contain aesT statement, which is defined as follows:

test ::=
TEST { behavior }

The purpose is to describe the interface between an externally applied test algorithm and the
CELL. Thebehavior statement within th&EST statement uses the same syntax aseine-

ior statement within thEUNCTIONStatement. However, the set of used variables is different.
Both theTEST and therUNCTION statement shall be self-contained, complete and comple-
mentary to each other.

6.9 Physical bitmap for memory BIST

This section defines the physical bitmap for memory BIST. This is a particular case of the
usage of the TEST statement.

144 Advanced Library Format (ALF) Reference Manual Version 1.9.0

Physical bitmap for memory BIST Modeling for Test

6.9.1 Definition of concepts
The physical architecture of a memory can be described by the following parameters:

BANK index A memory can be arranged in one or several banks, each of which constitutes a
two-dimensional array of rows and columns

ROW indexA row of memory cells within one bank shares the same row decoder line.

COLUMN index A column of memory cells within one bank shares the same data bit line
and, if applicable, the same sense amplifier.

BANK index

.
&

ROW index A(\Q’ one ROW!
)

Figure 6-2: Illustration of a physical memory architecture, arranged in banks, rows, columns

The physical memory architecture is not evident from the functional description and the pins
involved in the functional description of the memory. Those pins are called logical pins, e.g.,
logical address and logical data.

A memory BIST tool needs to know which logical address and data corresponds to a physical
row, column, or bank in order to write certain bit patterns into the memory and read expected
bit patterns from the memory. Also, the tool needs to know whether the physical data in a spe-
cific location is inverted or not with respect to the corresponding logical data.

Version 1.9.0 Advanced Library Format (ALF) Reference Manual 145

Modeling for Test Physical bitmap for memory BIST

ﬂ\lgorithm \ [Wrapper \ logical

. dd
. . physical row / ainsress
write physical data || , P Memory
to row, column, bank hysical colum circuit
. logical

hysical bank data input under test
read physical data pIns
from row, column, bank™® physical data

logical

dat tput
N 2N J pins

Figure 6-3: lllustration of the memory BIST concept

A mapper between physical rows, columns, banks, data and logical addresses, and data pins
shall be part of the library description of a memory cell.

The physical row, column, and bank indices can be modeled as virtual inputs to the memory
circuit. The data to be written to a physical memory location can also be modeled as a virtual
input. The data to be read from a physical memory location can be modeled as a virtual out-
put. Since every data that is written for the purpose of test also needs to be read, the data can
be modeled as a virtual bidirectional pin. A virtual pin is a pin witBw=none, i.e., the pin is

not visible in any netlist.

6.9.2 Definitions of pin ATTRIBUTE values for memory BIST

The special piRTTRIBUTE values shown in Table 6-30 shall be defined for memory BIST.

Table 6-30 : PIN attributes for memory BIST

Attribute item Description
ROW_INDEX

pin is a bus with a contiguous range of values,
indicating a physical row of a memory

COLUMN_INDEX o . .
- pin is a bus with a contiguous range of values,

indicating a physical column of a memory

BANK_INDEX o . :

- pin is a bus with a contiguous range of values,

indicating a physical bank of a memory
DATA_INDEX I . .

- pin is a bus with a contiguous range of values,
indicating the bit position within a data bus of a
memory

DATA_VALUE

pin represents a value stored in a physical mempry
location

146 Advanced Library Format (ALF) Reference Manual Version 1.9.0

Physical bitmap for memory BIST Modeling for Test

These attributes apply to the pins of the BIST wrapper around the memory rather than to the
pins of the memory itself.

TheBEHAVIORstatement withirrEST shall involve the variables declaredrais s with
ATTRIBUTE ROW_INDEXCOLUMN_INDEXBANK_INDEX DATA_INDEX, Or DATA_VALUE

6.9.3 Explanatory example

One-dimensional arrays WihGNALTYPE=address (here:PIN[3:0] addr) shall be recog-
nized as address pins to be mapped, involving other one-dimensional arrapg WrBUTE
{ ROW_INDEX }(here:PIN[1:0] row)andATTRIBUTE { COLUMN_INDEX }here:PIN[3:0]
col). This memory has only one bank. Therefore, no one-dimensional arrapWitiBUTE
{ BANK_INDEX} exists here.

One-dimensional arrays WithGNALTYPE=data (here:PIN[3:0] Din andPIN[3:0] Dout)

shall be recognized as data pins to be mapped, involving other one-dimensional arrays with
ATTRIBUTE { DATA_INDEX } (here:PIN[1:0] dat) and scalar pins WitRTTRIBUTE {
DATA_VALUE } (here:PIN bit).

Note: Since the data buses are 4-bits wide, the data index is 2-bits wide, since 2=log2(4).
Base Example:

CELL my_memory {
PIN[3:0] addr { DIRECTION=input; SIGNALTYPE=address; }
PIN[3:0] Din { DIRECTION=input; SIGNALTYPE=data; }
PIN[3:0] Dout { DIRECTION=output; SIGNALTYPE=data, }
PIN[3:0] bits[0:15] { DIRECTION=none; VIEW=none; SCOPE=behavior; }
PIN write_enb { DIRECTION=input; SIGNALTYPE=write_enable;
POLARITY=high; ACTION=asynchronous;

}
PIN[1:0] dat { ATTRIBUTE { DATA_INDEX } DIRECTION=none; VIEW=none; }
PIN bit { ATTRIBUTE { DATA_VALUE } DIRECTION=both; VIEW=none; }
PIN[1:0] row {

ATTRIBUTE { ROW_INDEX } RANGE {0: 3}

DIRECTION=input; VIEW=none;

}
PIN[3:0] col {
ATTRIBUTE { COLUMN_INDEX } RANGE {0: 15}
DIRECTION=input; VIEW=none;
}
FUNCTION {
BEHAVIOR {
Dout = bits[addr];
@ (write_enb) { bits[addr] = Din; }
b}

[*different physical architectures are shown in the following examples*/

}
Example 1

Version 1.9.0 Advanced Library Format (ALF) Reference Manual 147

Modeling for Test Physical bitmap for memory BIST

addr[3:2] 00 00 00 00 01 01 01 01 10 10 10 10 11 11 11 11

physical column o 1 h2 3 ha h5 6 *h7 h8 h9 hA ‘hB hC ‘hD *hE ‘hF

00 ‘ho D[0] D[1] D[2] D[3] D[0o] D[1] D[2] D[3] D[0] D[1] D[2] D[3] D[0] D[1] D[2] D3]
01 ‘h1 D[0] D[1] D[2] D[3] D[0] D[1] D[2] D[3] D[0] D[1] D[2] D[3] D[0] D[1] D[2] DI[3]
10 ‘h2 D[0] D[1] D[2] D[3] D[0] D[1] D[2] D[3] D[0] D[1] D[2] D[3] D[0] D[1] D[2] DI[3]
11 ‘h3 D[0] D[1] D[2] D[3] D[0] D[1] D[2] D[3] D[0] D[1] D[2] D[3] D[0] D[1] D[2] DI[3]
o 32
i, e
s 8
© 2
e
o
TEST{
BEHAVIOR {

/l map row and column index to logical address
addr[1:0] = row[1:0];
addr[3:2] = col[3:2];

/l map column index to logical data index
dat[1:0] = col[1:0];

/I map physical data to input and output data
Din[dat] = bit;
bit = Dout[dat];

}
Example 2

148 Advanced Library Format (ALF) Reference Manual Version 1.9.0

Physical bitmap for memory BIST

Modeling for Test
addr[3;2] 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11
physical column o 1 h2 3 *ha h5 e 7 *h8 h9 hA hB *hC D *hE ‘hF
00 ‘h0 D[0] D[0] D[0] D[O] D[1] D[1] D[1] D[1] D[2] D[2] D[2] D[2] D[3] D[3] D[3] D[3]
01 ‘h1 D[0] D[0] D[0] D[0] D[1] D[1] D[1] D[1] D[2] D[2] D[2] D[2] D[3] D[3] D[3] D[3]
10 ‘h2 D[0] D[0] D[o] D[] D[1] D[1] D[1] D[1] D[2] D[2] D[2] D[2] D[3] D[3] D[3] D[3]
11 ‘h3 D[0] D[0] DI0] D[O] D[1] D[1] D[1] D[1] D[2] D[2] D[2] D[2] D[3] D[3] D[3] D[3]
o 2
o 2
>
=
o
TEST {
BEHAVIOR {

/l map row and column index to logical address
addr[1:0] = row[1:0];
addr[3:2] = col[1:0];

/l map column index to logical data index
dat[1:0] = col[3:2];

/I map physical data to input and output data
Din[dat] = bit;
bit = Dout[dat];

Version 1.9.0 Advanced Library Format (ALF) Reference Manual 149

Modeling for Test Physical bitmap for memory BIST

Example 3

addr[3:2] 00 01 11 10 11 10 00 01 00 01 11 10

physical column o 1 h2 3 *ha hs e 7 *h8 *ho hA hB *hC D *hE 'hF

00 ‘ho D[0]D[0] D[1]D[1] D[O]D[0] D[] D[1] !D[2]'D[2] D[2

]'D[] D[2]

10 ‘h1 D[0] D[O] D[1] D[1] D[O] D[0] D[1]D[1] !D[2]'D[2] D[2] D[2]

11 ‘h2 D[0] D[0] D[1] D[1] D[0]'D[0] ID[1]'D[1] D[2] D[2] D[2] D[2]

01 ‘h3 D[0] D[O] D[1] D[1] ID[0]'D[0] ID[1]!D[1] D[2] D[2] D[2] D[2]
o =
a2
= =
5 8
s g
£
o
TEST{

BEHAVIOR {

/l map row and column index to logical address
addr[0] = row[1];
addr[1] = row[0] ™ row[1]
addr[2] = col[0] ~ col[1] ~ col[2];
addr[3] = col[2] » col[3];
/l map column index to logical data index
dat[0] = col[1];
dat[1] = col[3];
/I map physical data to input and output data
Din[dat]=bit"(row[1]&col[2]&!col[3] | row[1]&!col[2]&col[3]);
bit=Dout[dat]*(row[1]&col[2]&!col[3] | row[1]&!col[2]&col[3]);

Notes:

1. This enables the description of a complete bitmap of a memory in a compact way.

2. TheRANGHeature is notrestricted to BIST. It can be used to describe a valid contiguous
range on any bus. This alleviats the need for interpretrBECAORNIth ILLEGAL
statement to get the valid range. However Mib@TORwith ILLEGAL statement is still
necessary to describe the behavior of a device when illegal values are driven on a bus.

3. TheTEST statement witlBEHAVIORallows for generalization from memory BIST to
any test vector generation requirement, e.g., logic BIST. The only necessary additions
would be othePIN ATTRIBUTES describing particular features to be recognized by the
test vector generation algorithm for the target test algorithm.

150 Advanced Library Format (ALF) Reference Manual Version 1.9.0

	Modeling for Test
	6.1 Annotations and attributes for a CELL
	6.1.1 CELLTYPE annotation
	6.1.2 ATTRIBUTE within a CELL object
	6.1.3 SWAP_CLASS annotation
	6.1.4 RESTRICT_CLASS annotation
	6.1.5 SCAN_TYPE annotation
	6.1.6 SCAN_USAGE annotation

	6.2 NON_SCAN_CELL statement
	6.3 STRUCTURE statement
	6.4 Annotations and attributes for a PIN
	6.4.1 VIEW annotation
	6.4.2 PINTYPE annotation
	6.4.3 DIRECTION annotation
	6.4.4 SIGNALTYPE annotation
	6.4.5 ACTION annotation
	6.4.6 POLARITY annotation
	6.4.7 DATATYPE annotation
	6.4.8 INITIAL_VALUE annotation
	6.4.9 BUFFERTYPE annotation
	6.4.10 DRIVERTYPE annotation
	6.4.11 PARALLEL_DRIVE annotation
	6.4.12 SCAN_POSITION annotation
	6.4.13 STUCK annotation
	6.4.14 SUPPLYTYPE
	6.4.15 SIGNAL_CLASS
	6.4.16 SUPPLY_CLASS
	6.4.17 Driver CELL and PIN specification
	6.4.18 ATTRIBUTE for PIN objects

	6.5 Definitions for bus pins
	6.5.1 RANGE for bus pins
	6.5.2 Scalar pins inside a bus
	6.5.3 PIN_GROUP statement

	6.6 Annotations for other objects
	6.6.1 PURPOSE for CLASS
	6.6.2 OPERATION for VECTOR

	6.7 ILLEGAL statement for VECTOR
	6.8 TEST statement
	6.9 Physical bitmap for memory BIST
	6.9.1 Definition of concepts
	6.9.2 Definitions of pin ATTRIBUTE values for memory BIST
	6.9.3 Explanatory example

