
a-
ools
ells.
Section 6

Modeling for Test

6.1 Annotations and attributes for a CELL

This section defines variousCELL annotations and attributes.

6.1.1 CELLTYPE annotation

CELLTYPEclassifies the functionality of cells into broad categories. This is useful for inform
tion purpose, for tools which do not need the exact specification of functionality, and for t
which can interpret the exact specification of functionality only for certain categories of c
The exact specification of the functionality is described in theFUNCTION statement.

CELLTYPE = string ;

which can take the values shown in Table 6-1.

6.1.2 ATTRIBUTE within a CELL object

An ATTRIBUTE within aCELL classifies the functionality given byCELLTYPE in more detail.

Table 6-1 : CELLTYPE annotations for a CELL object

Annotation string Description

buffer cell is a buffer, inverting or non-inverting

combinational cell is a combinational logic element

multiplexor cell is a multiplexor

flipflop cell is a flip-flop

latch cell is a latch

memory cell is a memory or a register file

block cell is a hierarchical block, i.e., a complex element which can
be represented as a netlist. All instances of the netlist are
library elements, i.e., there is aCELL model for each of them
in the library.

core cell is a core, i.e., a complex element which can be repre-
sented as a netlist. At least one instance of the netlist is not a
library element, i.e., there is noCELL model, but aPRIMI-
TIVE model for that instance.

special cell is a special element, which can only be used in certain
application contexts not describable by theFUNCTION state-
ment. Examples: busholders, protection diodes, and fillcells.
Version 1.9.0 Advanced Library Format (ALF) Reference Manual 115

Modeling for Test Annotations and attributes for a CELL
The attributes shown in Table 6-2 can be used within aCELL with CELLTYPE=memory.

The attributes shown in Table 6-3 can be used within aCELL with CELLTYPE=block .

The attributes shown in Table 6-4 can be used within aCELL with CELLTYPE=core .

Table 6-2 : Attributes within a CELL with CELLTYPE=memory

Attribute item Description

RAM Random Access Memory

ROM Read Only Memory

CAM Content Addressable Memory

static static memory (e.g., static RAM)

dynamic dynamic memory (e.g., dynamic RAM)

asynchronous asynchronous memory

synchronous synchronous memory

Table 6-3 : Attributes within a CELL with CELLTYPE=block

Attribute item Description

counter cell is a complex sequential cell going through a predefined
sequence of states in its normal operation mode where each
state represents an encoded control value.

shift_register cell is a complex sequential cell going through a predefined
sequence of states in its normal operation mode, where each
subsequent state can be obtained from the previous one by a
shift operation. Each bit represents a data value.

adder cell is an adder, i.e., a combinational element performing an
addition of two operands.

subtractor cell is a subtractor, i.e., a combinational element performing a
subtraction of two operands.

multiplier cell is a multiplier, i.e., a combinational element performing a
multiplication of two operands.

comparator cell is a comparator, i.e., a combinational element comparing
the magnitude of two operands.

ALU cell is an arithmetic logic unit, i.e., a combinational element
combining the functionality of adder, subtractor, comparator
in a selectable way.

(fill in more)

Table 6-4 : Attributes within a CELL with CELLTYPE=core

Attribute item Description

PLL CELL is a phase-locked loop

DSP CELL is a digital signal processor

CPU CELL is a central processing unit

(fill in more)
116 Advanced Library Format (ALF) Reference Manual Version 1.9.0

Annotations and attributes for a CELL Modeling for Test

g

pat-

g

The attributes shown in Table 6-5 can be used within aCELL with CELLTYPE=special .

6.1.3 SWAP_CLASS annotation

SWAP_CLASS = string ;

The value is the name of a declaredCLASS. Multi-value annotation can be used. Cells referrin
to the sameCLASS can be swapped for certain applications.

Cell-swapping is only allowed under the following conditions:

• theRESTRICT_CLASS annotation (see Section 6.1.4) authorizes usage of the cell
• the cells to be swapped are compatible from an application standpoint (functional com

ibility for synthesis and physical compatibility for layout)

6.1.4 RESTRICT_CLASS annotation

RESTRICT_CLASS = string ;

The value is the name of a declaredCLASS. Multi-value annotation can be used. Cells referrin
to a particular class can be used in design tools identified by the value. The restricted
annotations are shown in Table 6-6.

Table 6-5 : Attributes within a CELL with CELLTYPE=special

Attribute item Description

busholder CELL enables a tristate bus to hold its last value before all
drivers went into high-impedance state (detail seeFUNCTION
statement)

clamp CELL connects a net to a constant value (logic value and drive
strength seeFUNCTION statement)

diode CELL is a diode (noFUNCTION statement)

capacitor CELL is a capacitor (noFUNCTION statement)

resistor CELL is a resistor (noFUNCTION statement)

inductor CELL is an inductor (noFUNCTION statement)

fillcell CELL is merely used to fill unused space in layout (noFUNC-
TION statement)

Table 6-6 : Predefined values for RESTRICT_CLASS

Annotation string Description

synthesis use restricted to logic synthesis

scan use restricted to scan synthesis

datapath use restricted to datapath synthesis

clock use restricted to clock tree synthesis

layout use restricted to layout, i.e., place & route
Version 1.9.0 Advanced Library Format (ALF) Reference Manual 117

Modeling for Test Annotations and attributes for a CELL

ow
lly
User-defined values are also possible. If a cell has no or only unknown values for
RESTRICT_CLASS, the application tool shall not modify any instantiation of that cell in the
design. However, the cell shall still be considered for analysis.

Example 1:

CLASS foo;
CLASS bar;
CELL c1 {

SWAP_CLASS = foo;
RESTRICT_CLASS = synthesis;

}
CELL c2 {

SWAP_CLASS = foo;
RESTRICT_CLASS { synthesis scan bar }

}

Suppose cellsc1 andc2 are compatible from an application standpoint; cellsc1 andc2 can be
used for synthesis, where they can be swapped which each other. Cellc2 can be also used for
scan insertion and for the user-defined applicationbar .

Example 2:

A combination ofSWAP_CLASS andRESTRICT_CLASS can be used to emulate the concept of
“logically equivalent cells” and “electrically equivalent cells”. A synthesis tool needs to kn
about “logically equivalent cells” for swapping. A layout tool needs to know about “electrica
equivalent cells” for swapping.

CLASS all_nand2 { RESTRICT_CLASS { synthesis } }
CLASS all_high_power_nand2 { RESTRICT_CLASS { layout } }
CLASS all_low_power_nand2 { RESTRICT_CLASS { layout } }

CELL my_low_power_nand2 {
SWAP_CLASS { all_nand2 all_low_power_nand2 }

}
CELL my_high_power_nand2 {

SWAP_CLASS { all_nand2 all_high_power_nand2 }
}
CELL another_low_power_nand2 {

SWAP_CLASS { all_low_power_nand2 }
}
CELL another_high_power_nand2 {

SWAP_CLASS { all_high_power_nand2 }
}

all_nand2 encompasses a set of logically equivalent cells.
all_high_power_nand2 encompasses a set of electrically equivalent cells.
all_low_power_nand2 encompasses another set of electrically equivalent cells.

The synthesis tool can swapmy_low_power_nand2 with my_high_power_nand2 . The layout
tool can swapmy_low_power_nand2 with another_low_power_nand2 and
my_high_power_nand2 with another_high_power_nand2 .
118 Advanced Library Format (ALF) Reference Manual Version 1.9.0

NON_SCAN_CELL statement Modeling for Test

ation
non-
it
6.1.5 SCAN_TYPE annotation

SCAN_TYPE = string ;

which can take the values shown in Table 6-7.

6.1.6 SCAN_USAGE annotation

SCAN_USAGE = string ;

which can take the values shown in Table 6-8.

6.2 NON_SCAN_CELL statement

non_scan_cell ::=

NON_SCAN_CELL {non_scan_ cell_instantiations }

non_scan_ cell_instantiations ::=
non_scan_ cell_instantiation { non_scan_ cell_instantiation }

non_scan_ cell_instantiation ::=

cell _identifier { pin_assignments }
| primitive _identifier { pin_assignments }

In case of a single non-scan cell, the following syntax shall also be valid:

NON_SCAN_CELL =non_scan_ cell_instantiation

Is it necessary to allow this for backward compatibility with ALF 1.1?

This statement shall define non-scan cell equivalency to the scan cell in which this annot
is contained. A cell instantiation form is used to reference the library cell that defines the
scan functionality of the current cell. If no such cell is available or defined, or if an explic

Table 6-7 : SCAN_TYPE annotations for a CELL object

Annotation string Description

muxscan a multiplexor for normal data and scan data

clocked a special scan clock

lssd combination between flip-flop and latch with special clocking
(level sensitive scan design)

control_0 combinational scan cell, controlling pin shall be0 in scan mode

control_1 combinational scan cell, controlling pin shall be1 in scan mode

Table 6-8 : SCAN_USAGE annotations for a CELL object

Annotation string Description

input primary input in a chain of cells

output primary output in a chain of cells

hold holds intermediate value in the scan chain
Version 1.9.0 Advanced Library Format (ALF) Reference Manual 119

Modeling for Test STRUCTURE statement

a
ppear
tant
) shall
iated
en

ic
reference to such a cell is not desired, then a primitive instantiation form can reference
primitive, either ALF- or user- defined, for such use. In either case, constant values can a
on either the left-hand side or right-hand side of the pin connectivity relationships. A cons
on the left-hand side defines the value the scan cell pins (appearing on the right-hand side
have in order for the primitive to perform with the same functionality as does the instant
reference. A statement containing multiple non-scan cells shall indicate a choice betwe
alternative non-scan cells.

Example:

CELL my_flip-flop {
PIN q { DIRECTION=output; }
PIN d { DIRECTION=input; }
PIN clk { DIRECTION=input; }
PIN clear { DIRECTION=input; polarity=low; }
// followed by function, vectors etc.

}

CELL my_other_flip-flop {
// declare the pins
// followed by function, vectors etc.

}

CELL my_scan_flip-flop {
PIN data_out { DIRECTION=output; }
PIN data_in { DIRECTION=input; }
PIN clock { DIRECTION=input; }
PIN scan_in { DIRECTION=input; }
PIN scan_sel { DIRECTION=input; }
NON_SCAN_CELL {

my_flip-flop {
q = data_out;
d = data_in;
clk = clock;
clear = 'b1; // scan cell has no clear
'b0 = scan_in; // non-scan cell has no scan_in
'b0 = scan_sel; // non-scan cell has no scan_sel

}
my_other_flip-flop {
// put in the pin assignments
}

}

// followed by function, vectors etc.
}

6.3 STRUCTURE statement

An optionalSTRUCTUREstatement shall be legal in the context of aFUNCTION. The purpose of
theSTRUCTURE statement is to describe the structure of a complex cell composed of atom
cells, for example I/O buffers, LSSD flip-flops, or clock trees.

The syntax for theFUNCTION statement shall be augmented as follows:
120 Advanced Library Format (ALF) Reference Manual Version 1.9.0

STRUCTURE statement Modeling for Test

r-

tanti-
level.
odel

many
r of
g the

uld

nd

ll
T.

er,
ch a
function ::=

FUNCTION[identifier] { [all_purpose_items] [primitives]

[behavior] [structure] [statetables] }
| function_ template_instantiation

structure ::=

STRUCTURE { named_cell_instantiations }

named_cell_instantiations ::=
named_cell_instantiation { named_cell_instantiation }

named_cell_instantiation ::=

cell_ identifier instance_ identifier { logic_values }
| cell_ identifier instance_ identifier { pin_instantiations }

TheSTRUCTURE statement shall describe a netlist of components inside theCELL. TheSTRU-

CURE statement shall not be a substitute for theBEHAVIOR statement. If aFUNCTION contains
only aSTRUCTURE statement and noBEHAVIOR statement, a behavior description for that pa
ticular cell shall be meaningless (e.g., fillcells, diodes, vias, or analog cells).

Timing and power models shall be provided for theCELL, if such models are meaningful.
Application tools are not expected to use function, timing, or power models from the ins
ated components as a substitute of a missing function, timing, or power model at the top-
However, tools performing characterization, construction, or verification of a top-level m
shall use the models of the instantiated components for this purpose.

Test synthesis applications can use the structural information in order to define a one-to-
mapping for scan cell replacement, such as where a single flip-flop is replaced by a pai
master/slave latches. A macro cell can be defined whose structure is a netlist containin
master and slave latch and this shall contain theNON_SCAN_CELL annotation to define which
sequential cells it is replacing. No timing model is required for this macro cell, since it sho
be treated as a transparent hierarchy level in the design netlist after test synthesis.

Notes:

1. Everyinstance_ identifier within aSTRUCTURE statement shall be different from
each other.

2. TheSTRUCTURE statement provides a directive to the application (e.g., synthesis a
DFT) as to how theCELL is implemented. ACELL referenced in
named_cell_instantiation can be replaced by anotherCELL within the same
SWAP_CLASS andRESTRICT_CLASS (recognized by the application).

3. Thecell_ identifier within aSTRUCTURE statement can refer to actual cells as we
as to primitives. The usage of primitives is recommended in fault modeling for DF

4. BEHAVIORstatements also provide the possibility of instantiating primitives. Howev
those instantiations are for modeling purposes only; they do not necessarily mat
physical structure. TheSTRUCTURE statement always matches a physical structure.
Version 1.9.0 Advanced Library Format (ALF) Reference Manual 121

Modeling for Test STRUCTURE statement
Example 1:

iobuffer = pre buffer + main buffer

CELL my_main_driver {
DRIVERTYPE = slotdriver ;
BUFFERTYPE = output ;
PIN i { DIRECTION = input; }
PIN o { DIRECTION = output; }
FUNCTION { BEHAVIOR { o = i ; } }

}

CELL my_pre_driver {
DRIVERTYPE = predriver ;
BUFFERTYPE = output ;
PIN i { DIRECTION = input; }
PIN o { DIRECTION = output; }
FUNCTION { BEHAVIOR { o = i ; } }

}

CELL my_buffer {
DRIVERTYPE = both ;
BUFFERTYPE = output ;
PIN A { DIRECTION = input; }
PIN Z { DIRECTION = output; }
PIN Y { VIEW = physical; }
FUNCTION {

BEHAVIOR { Z = A ; }
STRUCTURE {

my_pre_driver pre { A Y }// pin by order
my_main_driver main { i=Y; o=Z; }// pin by name

}
}

}

Example 2:
122 Advanced Library Format (ALF) Reference Manual Version 1.9.0

STRUCTURE statement Modeling for Test
lssd flip-flop = latch + flip-flop + mux

CELL my_latch {
RESTRICT_CLASS { synthesis scan }
PIN enable { DIRECTION = input; }
PIN d { DIRECTION = input; }
PIN d { DIRECTION = output; }
FUNCTION { BEHAVIOR {

@ (enable) { q = d ; }
} }

}

CELL my_flip-flop {
RESTRICT_CLASS { synthesis scan }
PIN clock { DIRECTION = input; }
PIN d { DIRECTION = input; }
PIN q { DIRECTION = output; }
FUNCTION { BEHAVIOR {

@ (01 clock) { q = d ; }
} }

}

CELL my_mux {
RESTRICT_CLASS { synthesis scan }
PIN dout { DIRECTION = output; }
PIN din0 { DIRECTION = input; }
PIN din1 { DIRECTION = input; }
PIN select { DIRECTION = input; }
FUNCTION { BEHAVIOR {

dout = select ? din1 : din0 ;
} }

}

CELL my_lssd_flip-flop {
RESTRICT_CLASS { scan }
CELLTYPE = block;
SCAN_TYPE = lssd;
PIN clock { DIRECTION = input; }
PIN master_clock { DIRECTION = input; }
PIN slave_clock { DIRECTION = input; }
PIN scan_data { DIRECTION = input; }
PIN din { DIRECTION = input; }
PIN dout { DIRECTION = output; }
PIN scan_master { VIEW = physical; }
PIN scan_slave { VIEW = physical; }
PIN d_internal { VIEW = physical; }
FUNCTION { BEHAVIOR {

@ (master_clock) {
scan_data_master = scan_data ;

}
@ (slave_clock & ! clock) {

dout = scan_data_master ;
} : (01 clock) {

dout = din ;
} }
STRUCTURE {
Version 1.9.0 Advanced Library Format (ALF) Reference Manual 123

Modeling for Test STRUCTURE statement
my_latch U0 {
enable = master_clock;
din = scan_data;
dout = scan_data_master;

}
my_flip-flop U1 {

clock = clock;
d = din;
q = d_internal;

}
my_mux U2 {

select = slave_clock;
din1 = scan_data_master;
din0 = dout;
dout = scan_data_slave;

}
my_mux U3 {

select = clock;
din1 = d_internal;
din0 = scan_data_slave;
dout = dout;

} }
}
NON_SCAN_CELL = my_flip-flop {

clock = clock;
d = din;
q = dout;
'b0 = slave_clock;

}
}

Example 3:

clock tree = chains of clock buffers

CELL my_root_buffer {
RESTRICT_CLASS { clock }
PIN i0 { DIRECTION = input; }
PIN o0 { DIRECTION = output; }
FUNCTION { BEHAVIOR { o0 = i0 ; } }

}

CELL my_level1_buffer {
RESTRICT_CLASS { clock }
PIN i1 { DIRECTION = input; }
PIN o1 { DIRECTION = output; }
FUNCTION { BEHAVIOR { o1 = i1 ; } }

}

124 Advanced Library Format (ALF) Reference Manual Version 1.9.0

STRUCTURE statement Modeling for Test
CELL my_level2_buffer {
RESTRICT_CLASS { clock }
PIN i2 { DIRECTION = input; }
PIN o2 { DIRECTION = output; }
FUNCTION { BEHAVIOR { o2 = i2 ; } }

}

CELL my_level3_buffer {
RESTRICT_CLASS { clock }
PIN i3 { DIRECTION = input; }
PIN o3 { DIRECTION = output; }
FUNCTION { BEHAVIOR { o3 = i3 ; } }

}

CELL my_tree_from_level2 {
RESTRICT_CLASS { clock }
PIN in { DIRECTION = input; }
PIN out { DIRECTION = output; }
PIN[1:2] level3 { DIRECTION = output; }
FUNCTION {

BEHAVIOR { out = in ; }
STRUCTURE {

my_level2_buffer U1 { i2=in; o2=out; }
my_level3_buffer U2 { i3=out; o3=level3[1]; }
my_level3_buffer U3 { i3=out; o3=level3[2]; }

}
}

}

CELL my_tree_from_level1 {
RESTRICT_CLASS { clock }
PIN in { DIRECTION = input; }
PIN out { DIRECTION = output; }
PIN[1:4] level2 { DIRECTION = output; }
FUNCTION {

BEHAVIOR { out = in ; }
STRUCTURE {

my_level1_buffer U1 { i1=in; o1=out; }
my_tree_from_level2 U2 { i2=out; o2=level2[1]; }
my_tree_from_level2 U3 { i2=out; o2=level2[2]; }
my_tree_from_level2 U4 { i2=out; o2=level2[3]; }
my_tree_from_level2 U5 { i2=out; o2=level2[4]; }

}
}

}

CELL my_tree_from_root {
RESTRICT_CLASS { clock }
PIN in { DIRECTION = input; }
PIN out { DIRECTION = output; }
PIN[1:4] level1 { DIRECTION = output; }
FUNCTION {

BEHAVIOR { out = in ; }
STRUCTURE {

my_root_buffer U1 { i0=in; o0=out; }
Version 1.9.0 Advanced Library Format (ALF) Reference Manual 125

Modeling for Test Annotations and attributes for a PIN

E.

-9.
my_tree_from_level1 U2 { i1=o; o1=level1[1]; }
my_tree_from_level1 U3 { i1=o; o1=level1[2]; }
my_tree_from_level1 U4 { i1=o; o1=level1[3]; }
my_tree_from_level1 U5 { i1=o; o1=level1[4]; }

}
}

}

Example 4:

Multiplexor, showing the conceptional difference between BEHAVIOR and STRUCTUR

CELL my_multiplexor {
PIN a { DIRECTION = input; }
PIN b { DIRECTION = input; }
PIN s { DIRECTION = input; }
PIN y { DIRECTION = output; }
FUNCTION {

BEHAVIOR {
// s_a and s_b are virtual internal nodes

ALF_AND { out = s_a; in[0] = !s; in[1] = a; }
ALF_AND { out = s_b; in[0] = s; in[1] = b; }
ALF_OR { out = y; in[0] = s_a; in[1] = s_b; }

}
STRUCTURE {

// sbar, sel_a, sel_b are physical internal nodes
ALF_NOT { out = sbar; in = s; }
ALF_NAND { out = sel_a; in[0] = sbar; in[1] = a; }
ALF_NAND { out = sel_b; in[0] = s; in[1] = b; }
ALF_NAND { out = y; in[0] = sel_a; in[1] = sel_b; }

}
}

}

6.4 Annotations and attributes for a PIN

This section defines variousPIN annotations and attributes.

6.4.1 VIEW annotation

VIEW = string ;

annotates the view where the pin appears, which can take the values shown in Table 6

Table 6-9 : VIEW annotations for a PIN object

Annotation string Description

functional pin appears in functional netlist

physical pin appears in physical netlist

both (default) pin appears in both functional and physical netlist

none pin does not appear in netlist
126 Advanced Library Format (ALF) Reference Manual Version 1.9.0

Annotations and attributes for a PIN Modeling for Test
6.4.2 PINTYPE annotation

PINTYPE = string ;

annotates the type of the pin, which can take the values shown in Table 6-10.

6.4.3 DIRECTION annotation

DIRECTION = string ;

annotates the direction of the pin, which can take the values shown in Table 6-11.

Table 6-12 gives a more detailed semantic interpretation for usingDIRECTION in combination
with PINTYPE.

Examples:

• The power and ground pins of regular cells shall haveDIRECTION=input .

• A level converter cell shall have a power supply pin withDIRECTION=input and
another power supply pin withDIRECTION=output .

Table 6-10 : PINTYPE annotations for a PIN object

Annotation string Description

digital (default) digital signal pin

analog analog signal pin

supply power supply or ground pin

Table 6-11 : DIRECTION annotations for a PIN object

Annotation string Description

input input pin

output output pin

both bidirectional pin

none no direction can be assigned to the pin

Table 6-12 : DIRECTION in combination with PINTYPE

DIRECTION PINTYPE=digital PINTYPE=analog PINTYPE=supply

input pin receives a digital signal pin receives an analog signal pin is a power sink

output pin drives a digital signal pin drives an analog signal pin is a power source

both pin drives or receives a digi-
tal signal, depending on the
operation mode

pin drives or receives an
analog signal, depending on
the operation mode

pin is both power sink
and source

none pin represents either an
internal digital signal with
no external connection or a
feed through

pin represents either an
internal analog signal with
no external connection or a
feed through

pin represents either an
internal power pin with
no external connection or
a feed through
Version 1.9.0 Advanced Library Format (ALF) Reference Manual 127

Modeling for Test Annotations and attributes for a PIN

a

ns
• A level converter can have separate ground pins on the input and output side or
common ground pin withDIRECTION=both .

• The power and ground pins of a feed through cell shall haveDIRECTION=none.

6.4.4 SIGNALTYPE annotation

SIGNALTYPE classifies the functionality of a pin. The currently defined values apply for pi
with PINTYPE=DIGITAL .

Conceptually, a pin withPINTYPE = ANALOG can also have aSIGNALTYPE annotation. How-
ever, no values are currently defined.

SIGNALTYPE = string ;

annotates the type of the signal connected to the pin.

The fundamentalSIGNALTYPE values are defined in Table 6-13.

Table 6-13 : Fundamental SIGNALTYPE annotations for a PIN object

Annotation string Description

data (default) general data signal, i.e., a signal that carries information to be
transmitted, received, or subjected to logic operations within
theCELL.

address address signal of a memory, i.e., an encoded signal, usually a
bus or part of a bus, driving an address decoder within the
CELL.

control general control signal, i.e., an encoded signal that controls at
least two modes of operation of theCELL, eventually in con-
junction with other signals. The signal value is allowed to
change during real-time circuit operation.

select select signal of a multiplexor, i.e., a decoded or encoded sig-
nal that selects the data path of a multiplexor or de-multi-
plexor within theCELL. Each selected signal has the same
SIGNALTYPE.

enable general enable signal, i.e., a decoded signal which enables and
disables a set of operational modes of theCELL, eventually in
conjunction with other signals. The signal value is expected to
change during real-time circuit operation.

tie the signal needs to be tied to a fixed value statically in order to
define a fixed or programmable mode of operation of the
CELL, eventually in conjunction with other signals. The sig-
nal value is not allowed to change during real-time circuit
operation.

clear clear signal of a flip-flop or latch, i.e., a signal that controls
the storage of the value0 within theCELL.
128 Advanced Library Format (ALF) Reference Manual Version 1.9.0

Annotations and attributes for a PIN Modeling for Test
"Flipflop", "latch", "multiplexor", and "memory" can be standalone cells or embedded in
larger cells. In the former case, the celltype isflipflop , latch , multiplexor , andmemory,
respectively. In the latter case, the celltype isblock or core .

Composite values forSIGNALTYPE shall be constructed using one or more prefixes in
combination with certain fundamental values, separated by the underscore (_) character, as
shown in the subsequent tables. The scheme for this is shown in Figure 6-1.

Figure 6-1: Construction scheme for composite SIGNALTYPE values

set set signal of a flip-flop or latch, i.e., a signal that controls the
storage of the value1 within theCELL.

clock clock signal of a flip-flop or latch, i.e., a timing-critical signal
that triggers data storage within theCELL.

Table 6-14 : Composite SIGNALTYPE annotations based on DATA

Annotation string Description

scan_data data signal for scan mode

test_data data signal for test mode

bist_data data signal inBIST mode

Table 6-13 : Fundamental SIGNALTYPE annotations for a PIN object, continued

Annotation string Description

data

address

clock

control

enableread

write

master

slave

out
test

scan

bist

load
Version 1.9.0 Advanced Library Format (ALF) Reference Manual 129

Modeling for Test Annotations and attributes for a PIN
Table 6-15 : Composite SIGNALTYPE annotations based on ADDRESS

Annotation string Description

test_address address signal for test mode

bist_address address signal forBIST mode

Table 6-16 : Composite SIGNALTYPE annotations based on CONTROL

Annotation string Description

load_control control signal for switching between
load mode and normal mode

scan_control control signal for switching between
scan mode and normal mode

test_control control signal for switching between test
mode and normal mode

bist_control control signal for switching between
BIST mode and normal mode

read_write_control control signal for switching between
read and write operation

test_read_write_control control signal for switching between
read and write operation in test mode

bist_read_write_control control signal for switching between
read and write operation inBIST mode

Table 6-17 : Composite SIGNALTYPE annotations based on ENABLE

Annotation string Description

load_enable signal enables load operation in a counter or a shift register

out_enable signal enables the output stage of an arbitrary cell

scan_enable signal enables scan mode of a flip-flop or latch only

scan_out_enable signal enables the output of a flip-flop or latch in scan mode only

test_enable signal enables test mode only

bist_enable signal enablesBIST mode only

test_out_enable signal enables the output stage in test mode only

bist_out_enable signal enables the output stage inBIST mode only

read_enable signal enables the read operation of a memory

write_enable signal enables the write operation of a memory

test_read_enable signal enables the read operation in test mode only

test_write_enable signal enables the write operation in test mode only
130 Advanced Library Format (ALF) Reference Manual Version 1.9.0

Annotations and attributes for a PIN Modeling for Test
:

6.4.5 ACTION annotation

ACTION = string ;

annotates action of the signal, which can take the values shown in Table 6-19.

bist_read_enable signal enables the read operation inBIST mode only

bist_write_enable signal enables the write operation inBIST mode only

Table 6-18 : Composite SIGNALTYPE annotations based on CLOCK

Annotation string Description

scan_clock signal is clock of a flip-flop or latch in scan mode

master_clock signal is master clock of a flip-flop or latch

slave_clock signal is slave clock of a flip-flop or latch

scan_master_clock signal is master clock of a flip-flop or latch in scan mode

scan_slave_clock signal is slave clock of a flip-flop or latch in scan mode

read_clock clock signal triggers the read operation in a synchronous memory

write_clock clock signal triggers the write operation in a synchronous memory

read_write_clock clock signal triggers both read and write operation in a synchronous
memory

test_clock signal is clock in test mode

test_read_clock clock signal triggers the read operation in a synchronous memory in
test mode

test_write_clock clock signal triggers the write operation in a synchronous memory
in test mode

test_read_write_clock clock signal triggers both read and write operation in a synchronous
memory in test mode

bist_clock signal is clock inBIST mode

bist_read_clock clock signal triggers the read operation in a synchronous memory in
BIST mode

bist_write_clock clock signal triggers the write operation in a synchronous memory
in BIST mode

bist_read_write_clock clock signal triggers both read and write operation in a synchronous
memory inBIST mode

Table 6-17 : Composite SIGNALTYPE annotations based on ENABLE, continued

Annotation string Description
Version 1.9.0 Advanced Library Format (ALF) Reference Manual 131

Modeling for Test Annotations and attributes for a PIN

-

TheACTION annotation applies only to pins with certainSIGNALTYPE values, as shown in
tTable 6-20. The rule applies also to any compositeSIGNALTYPE values based on the
fundamental values.

6.4.6 POLARITY annotation

POLARITY = string ;

annotates the polarity of the pin signal.

The polarity of an input pin (i.e.,DIRECTION = input;) can take the values shown in Table 6
21.

Table 6-19 : ACTION annotations for a PIN object

Annotation string Description

synchronous signal acts in synchronous way, i.e., self-triggered

asynchronous signal acts in asynchronous way, i.e., triggered by a signal
with SIGNALTYPE CLOCK or a compositeSIGNALTYPE
with postfix_CLOCK.

Table 6-20 : POLARITY applicable in conjunction with fundamental SIGNALTYPE values

fundamental SIGNALTYPE applicable ACTION

data N/A

address N/A

control synchronous or asynchronous

select N/A

enable synchronous or asynchronous

tie N/A

clear synchronous or asynchronous

set synchronous or asynchronous

clock N/A, but the presence ofSIGNALTYPE=clock conditions
the validity ofACTION=synchronous for other signals

Table 6-21 : POLARITY annotations for a PIN

Annotation string Description

high signal active high or to be driven high

low signal active low or to be driven low

rising_edge signal sensitive to rising edge

falling_edge signal sensitive to falling edge

double_edge signal sensitive to any edge
132 Advanced Library Format (ALF) Reference Manual Version 1.9.0

Annotations and attributes for a PIN Modeling for Test
ThePOLARITY annotation applies only to pins with certainSIGNALTYPE values, as shown
iTable 6-22. The rule applies also to any compositeSIGNALTYPE values based on the
fundamental values.

Signals with composite signaltypesmode_CLOCK can have a single polarity or mode-specific
polarities.

Example:

PIN rw {
SIGNALTYPE = READ_WRITE_CONTROL;
POLARITY { READ=high; WRITE=low; }

}

PIN rwc {
SIGNALTYPE = READ_WRITE_CLOCK;
POLARITY { READ=rising_edge; WRITE=falling_edge; }

}

6.4.7 DATATYPE annotation

DATATYPE =string ;

annotates the datatype of the pin, which can take the values shown in Table 6-23.

DATATYPE is only relevant for bus pins.

6.4.8 INITIAL_VALUE annotation

INITIAL_VALUE = logic_constant ;

Table 6-22 : POLARITY applicable in conjunction with fundamental SIGNALTYPE values

fundamental SIGNALTYPE applicable POLARITY value

data N/A

address N/A

control mode-specifichigh or low for composite signaltype

select N/A

enable Mandatoryhigh or low

tie Optionalhigh or low

clear Mandatoryhigh or low

set Mandatoryhigh or low

clock Mandatoryhigh , low , rising_edge , falling_edge , or
double_edge , can be mode-specific for composite signaltype.

Table 6-23 : DATATYPE annotations for a PIN object

Annotation string Description

signed result of arithmetic operation is signed 2’s complement

unsigned result of arithmetic operation is unsigned
Version 1.9.0 Advanced Library Format (ALF) Reference Manual 133

Modeling for Test Annotations and attributes for a PIN

lator
shall be compatible with the buswidth andDATATYPE of the signal.

INITIAL_VALUE is used for a downstream behavioral simulation model, as far as the simu
(e.g., a VITAL-compliant simulator) supports the notion of initial value.

6.4.9 BUFFERTYPE annotation

BUFFERTYPE = string ;

can take the values shown in Table 6-24.

6.4.10 DRIVERTYPE annotation

DRIVERTYPE = string ;

can take the values shown in Table 6-25.

6.4.11 PARALLEL_DRIVE annotation

PARALLEL_DRIVE = unsigned ;

specifies the number of parallel drivers.

6.4.12 SCAN_POSITION annotation

SCAN_POSITION = unsigned ;

annotates the position of the pin in scan chain, starting with0.

6.4.13 STUCK annotation

STUCK = string ;

Table 6-24 : BUFFERTYPE annotations for a CELL object

Annotation string Description

input cell is an input buffer

output cell is an output buffer

inout cell is an inout (bidirectional) buffer

internal cell is an internal buffer

Table 6-25 : DRIVERTYPE annotations for a CELL object

Annotation string Description

predriver cell is a predriver

slotdriver cell is a slotdriver

both cell is both a predriver and a slot driver
134 Advanced Library Format (ALF) Reference Manual Version 1.9.0

Annotations and attributes for a PIN Modeling for Test
annotates the stuck-at fault model as shown in Table 6-26.

6.4.14 SUPPLYTYPE

A PIN with PINTYPE = SUPPLY shall have aSUPPLYTYPE annotation.

supplytype_ assignment ::=

SUPPLYTYPE = supplytype_ identifier ;

supplytype_ identifier ::=

power
| ground
| bias

6.4.15 SIGNAL_CLASS

The following new keyword for class reference shall be defined:

SIGNAL_CLASS
a PIN referring to the sameSIGNAL_CLASS belong to the same logic port.
For example, theADDRESS, WRITE_ENABLE, andDATApin of a logic port of a memory have
the sameSIGNAL_CLASS.
SIGNAL_CLASS applies to aPIN with PINTYPE=DIGITAL | ANALOG.
SIGNAL_CLASS is orthogonal toSIGNALTYPE.

Example:

CLASS portA;
CLASS portB;
CELL my_memory {

PIN[1:4] addrA { DIRECTION = input;
SIGNALTYPE = address;
SIGNAL_CLASS = portA;

}
PIN[7:0] dataA { DIRECTION = output;

SIGNALTYPE = data;
SIGNAL_CLASS = portA;

}
PIN[1:4] addrB { DIRECTION = input;

SIGNALTYPE = address;
SIGNAL_CLASS = portB;

}
PIN[7:0] dataB { DIRECTION = input;

SIGNALTYPE = data;

Table 6-26 : STUCK annotations for a PIN object

Annotation string Description

stuck_at_0 pin can have stuck-at-0 fault

stuck_at_1 pin can have stuck-at-1 fault

both (default) pin can have both stuck-at-0 and stuck-at-1 faults

none pin can not have stuck-at faults
Version 1.9.0 Advanced Library Format (ALF) Reference Manual 135

Modeling for Test Annotations and attributes for a PIN

er
SIGNAL_CLASS = portB;
}
PIN weB { DIRECTION = input;

SIGNALTYPE = write_enable;
SIGNAL_CLASS = portB;

}
}

Note: The combination ofSIGNAL_CLASS andSIGNALTYPE identifies the port type.CLASS

portA represents a read port, since it consists of aPIN with SIGNALTYPE = address

and aPIN with SIGNALTYPE = data andDIRECTION = output . CLASS portB

represents a write port, since it consists of aPIN with SIGNALTYPE = address , aPIN

with SIGNALTYPE = data andDIRECTION = input , and aPIN with SIGNALTYPE =

write_enable .

6.4.16 SUPPLY_CLASS

The following new keyword for class reference shall be defined:

SUPPLY_CLASS
a PIN referring to the sameSUPPLY_CLASS belongs to the same power terminal.
For example, digitalVDD and digitalVSS have the sameSUPPLY_CLASS.
SIGNAL_CLASS applies to aPIN with PINTYPE=SUPPLY.
SUPPLY_CLASS is orthogonal toSUPPLYTYPE.

Example:

CELL my_core {
PIN vdd_dig { SUPPLYTYPE = power; SUPPLY_CLASS = digital; }
PIN vss_dig { SUPPLYTYPE = ground; SUPPLY_CLASS = digital; }
PIN vdd_ana { SUPPLYTYPE = power; SUPPLY_CLASS = analog; }
PIN vss_ana { SUPPLYTYPE = ground; SUPPLY_CLASS = analog; }

}

6.4.17 Driver CELL and PIN specification

The keywordsCELL andPIN can be used as references to existing objects to define a driv
cell and pin in a macro, i.e., a cell withCELLTYPE=block .

Example:

// this is a standard ASIC cell
CELL my_inv {

CELLTYPE = buffer;
PIN in { DIRECTION = input; }
PIN out { DIRECTION = output; }

}

// this is a macro, synthesized from standard ASIC cells
CELL my_macro {
136 Advanced Library Format (ALF) Reference Manual Version 1.9.0

Annotations and attributes for a PIN Modeling for Test
CELLTYPE = block;
PIN my_output {

DIRECTION = output;
CELL = my_inv { PIN = out; }

}
/* fill in other pins and stuff */

}

6.4.18 ATTRIBUTE for PIN objects

The attributes shown in Table 6-27 can be used within aPIN object.

The attributes shown in Table 6-28 are only applicable for pins within cells with
CELLTYPE=memory and certain values ofSIGNALTYPE.

The attributes shown in Table 6-29 are only applicable for pins representing double-rail
signals.

The following restrictions apply for double-rail signals:

• ThePINTYPE, SIGNALTYPE, andDIRECTION of both pins shall be the same.

Table 6-27 : Attributes within a PIN object

Attribute item Description

SCHMITT Schmitt trigger signal

TRISTATE tristate signal

XTAL crystal/oscillator signal

PAD pad going off-chip

Table 6-28 : Attributes for pins of a memory

Attribute item SIGNALTYPE Description

ROW_ADDRESS_STROBE clock samples the row address of the memory

COLUMN_ADDRESS_STROBE clock samples the column address of the memory

ROW address selects an addressable row of the memory

COLUMN address selects an addressable column of the memory

BANK address selects an addressable bank of the memory

Table 6-29 : Attributes for pins representing double-rail signals

Attribute item Description

INVERTED represents the inverted value within a pair of signals
carrying complementary values

NON_INVERTED represents the non-inverted value within a pair of
signals carrying complementary values

DIFFERENTIAL signal is part of a differential pair, i.e., both the
inverted and non-inverted values are always
required for physical implementation
Version 1.9.0 Advanced Library Format (ALF) Reference Manual 137

Modeling for Test Definitions for bus pins

lim-

11,

1, 13,
• OnePIN shall have the attributeINVERTED, the otherNON_INVERTED.

• Either both pins or no pins shall have the attributeDIFFERENTIAL.

• POLARITY, if applicable, shall be complementary as follows:
HIGH is paired withLOW

RISING_EDGE is paired withFALLING_EDGE

DOUBLE_EDGE is paired withDOUBLE_EDGE

6.5 Definitions for bus pins

This section defines how to specify bus pins and group pins.

6.5.1 RANGE for bus pins

A one-dimensional bus pin can contain aRANGE statement, defined as follows:

range ::=

RANGE { unsigned : unsigned }

TheRANGEstatement applies only if the range of valid indices is contiguous. The range is
ited by the width of the bus. The possible range for a N-bit wide bus is between0 and2N. The
possible range of values shall also be the default range.

Example:

A 4-bit wide bus has the following possible range of indices: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
12, 13, 14, 15.

RANGE { 3 : 13 } specifies the indices0, 1, 2, 14, and15 are invalid.

In the case where non-contiguous indices are valid, for example 1, 2, 3, 5, 6, 7, 9, 10, 1
14, 15, theRANGE statement does not apply.

6.5.2 Scalar pins inside a bus

A PIN declared as a bus shall contain the optionalpin_instantiation statement, defined as
follows:

pin_instantiation ::=

pin_ identifier [index] {
pin_items

}

whereindex andpin_items are defined in Section 13.5 and Section 13.11, respectively.

A pin_instantiation statement can also refer to a part of the bus.
138 Advanced Library Format (ALF) Reference Manual Version 1.9.0

Definitions for bus pins Modeling for Test

pli-

ot

if

lues

 It
Annotations within the scope of thePIN or a higher-levelpin_instantiation shall be inher-
ited by a lower-levelpin_instantiation (see Section 6.4), as long as their values are ap
cable for both the bus and each scalar pin within the bus. Values ofVIEW, INITIAL_VALUE , and
arithmetic models such asCAPACITANCEshall not be inherited, since a particular value cann
apply at the same time to the bus and to its scalar pins.

Example:

PIN [1:4] my_address {
DIRECTION = input;
SIGNALTYPE = address;
VIEW = functional;
CAPACITANCE = 0.07;
my_address [1:2] { ATTRIBUTE { ROW } CAPACITANCE = 0.03; }

my_address[1] { VIEW = physical; CAPACITANCE = 0.01; }
my_address[2] { VIEW = physical; CAPACITANCE = 0.02; }
my_address [3:4] { ATTRIBUTE { COLUMN } CAPACITANCE = 0.04; }
my_address[3] { VIEW = physical; CAPACITANCE = 0.02; }
my_address[4] { VIEW = physical; CAPACITANCE = 0.02; }

}
}

6.5.3 PIN_GROUP statement

A pin group shall be defined as follows:

pin_group ::=

PIN_GROUP [index] pin_group_ identifier {
pin_items

MEMBERS { pins }
}

wherepin_items is defined in Section 13.11.

The pins in theMEMBERSfield shall refer to previously defined pins. The range of the index,
defined, shall match the number and range of pins in theMEMBERS field.

Annotations within the scope of thePIN contained in theMEMBERS field shall be inherited by
thePIN_GROUP, as long as their values are applicable for both the pin and the pin group. Va
of VIEW, INITIAL_VALUE , and arithmetic models such asCAPACITANCE shall not be inherited,
since a particular value cannot apply at the same time to the pin and the pin group.

A pin group withVIEW=functional shall be treated like a bus pin in the functional netlist.
shall appear in the netlist in place of the first defined pin within theMEMBERS field.
Version 1.9.0 Advanced Library Format (ALF) Reference Manual 139

Modeling for Test Annotations for other objects

ps.
Example 1:

PIN my_address_1 {DIRECTION = input; VIEW = physical; CAPACITANCE = 0.01;}
PIN my_address_2 {DIRECTION = input; VIEW = physical; CAPACITANCE = 0.02;}
PIN my_address_3 {DIRECTION = input; VIEW = physical; CAPACITANCE = 0.02;}
PIN my_address_4 {DIRECTION = input; VIEW = physical; CAPACITANCE = 0.02;}
PIN_GROUP [1:2] my_address_1_2 {

ATTRIBUTE { ROW }
CAPACITANCE = 0.03;
MEMBERS { my_address_1 my_address_2 }

}
PIN_GROUP [1:2] my_address_3_4 {

ATTRIBUTE { COLUMN }
CAPACITANCE = 0.03;
MEMBERS { my_address_3 my_address_4 }

}
PIN_GROUP [1:4] my_address {

VIEW = functional;
CAPACITANCE = 0.07;
MEMBERS { my_address_1 my_address_2 my_address_3 my_address_4 }

}

Pairs of complementary pins, differential pins in particular, are special cases of pin grou

Example 2:

CELL my_flip-flop {
PIN CLK { DIRECTION=input; SIGNALTYPE=clock; POLARITY=rising_edge; }
PIN D { DIRECTION=input; SIGNALTYPE=data; }
PIN Q { DIRECTION=output; SIGNALTYPE=data; ATTRIBUTE { NON_INVERTED } }
PIN Qbar { DIRECTION=output; SIGNALTYPE=data; ATTRIBUTE { INVERTED } }
PIN_GROUP [0:1] Q_double_rail { RANGE { 1 : 2 } MEMBERS { Q Qbar } }

}

The pinsQ andQbar are complementary. Their valid set of data comprises’b01===’d1 and
’b10===’d2 . The values’b00===’d0 and’b11===’d3 are invalid.

CELL my_differential_buffer {
PIN DIN { DIRECTION=input; ATTRIBUTE { DIFFERENTIAL NON_INVERTED } }
PIN DINN { DIRECTION=input; ATTRIBUTE { DIFFERENTIAL INVERTED } }
PIN DOUT { DIRECTION=output; ATTRIBUTE { DIFFERENTIAL NON_INVERTED } }
PIN DOUTN { DIRECTION=output; ATTRIBUTE { DIFFERENTIAL INVERTED } }
PIN_GROUP [0:1] DI { RANGE { 1 : 2 } MEMBERS { DIN DINN } }
PIN_GROUP [0:1] DO { RANGE { 1 : 2 } MEMBERS { DOUT DOUTN } }

}

The pinsDIN andDINN represent a pair of differential input pins. The pinsDOUT andDOUTN

represent a pair of differential output pins.

6.6 Annotations for other objects

This section defines the annotations forCLASS andVECTOR.
140 Advanced Library Format (ALF) Reference Manual Version 1.9.0

Annotations for other objects Modeling for Test

renc-
 the

ord
els of
 to

A

f
y a

 a
trolled

t and
xt.
6.6.1 PURPOSE for CLASS

A CLASSis a generic object which can be referenced inside another object. An object refe
ing a class inherits all children object of that class. In addition to this general reference,
usage of the keywordCLASS in conjunction with a predefined prefix (e.g.,CONNECT_CLASS,
SWAP_CLASS, RESTRICT_CLASS, EXISTENCE_CLASS, or CHARACTERIZATION_CLASS) also car-
ries a specific semantic meaning in the context of its usage. Note the keyword <prefix>_CLASS

is used for referencing a class, whereas the definition of the class always uses the keyw
CLASS. Thus a class can have multiple purposes. With the growing number of usage mod
the class concept, it is useful to include the purpose definition in the class itself in order
make it easier for specific tools to identify the classes of relevance for that tool.

A CLASSobject can contain thePURPOSEannotation, which can take one or multiple values.
VECTOR entitled to inherit thePURPOSE annotation from theCLASS can also contain thePUR-

POSE annotation as follows.

vector_purpose_ assignment ::=

PURPOSE { purpose_ identifier { purpose_ identifier } }

vector_purpose_ identifier :: =

bist
| test
| timing
| power
| integrity

6.6.2 OPERATION for VECTOR

TheOPERATIONstatement inside aVECTORshall be used to indicate the combined definition o
signal values or signal changes for certain operations which are not entirely controlled b
single signal.

operation_ assignment ::=

OPERATION = operation_ identifier ;

An OPERATION within the context of aVECTOR indicates certain a function of a cell, such as
memory write, or change to some state, such as test mode. Many functions are not con
by a single pin and are therefore not able to be defined by the use ofSIGNALTYPE alone. The
VECTOR shall describe the complete operation, including the sequence of events on inpu
expected output signals, such that one operation can be followed seamlessly by the ne
Version 1.9.0 Advanced Library Format (ALF) Reference Manual 141

Modeling for Test Annotations for other objects

g it

n

For a cell withCELLTYPE=memory, the following values shall be predefined:

operation_ identifier ::=

read
| write
| read_modify_write
| write_through
| start
| end
| refresh
| load
| iddq

Their definitions are:

• read: read operation at one address

• write: write operation at one address

• read_modify_write: read followed by write of different value at same address

• start: first operation required in a particular mode

• end: last operation required in a particular mode

• refresh: operation required to maintain the contents of the memory without modifyin

• load: operation for loading control registers

• iddq: operation for supply current measurements in quiescent state

TheEXISTENCE_CLASS (see Section 9.2.3) within the context of aVECTOR shall be used to
identify which operations can be combined in the same mode.OPERATION is orthogonal to
EXISTENCE_CLASS. TheEXISTENCE_CLASS statement is only necessary, if there is more tha
one mode of operation.

Example 1:

CLASS normal_mode { PURPOSE = test; }
CLASS fast_page_mode { PURPOSE = test; }
VECTOR (! WE && (

?! addr -> 01 RAS -> 10 RAS ->
?! addr -> 01 CAS -> X? dout -> 10 CAS -> ?X dout

)) {
OPERATION = read; EXISTENCE_CLASS = normal_mode;

}
VECTOR (WE && (

?! addr -> 01 RAS -> 10 RAS ->
?! addr -> ?? din -> 01 CAS -> 10 CAS

)) {
OPERATION = write; EXISTENCE_CLASS = normal_mode;

}
VECTOR (! WE && (?! addr -> 01 CAS -> X? dout -> 10 CAS -> ?X dout)) {
142 Advanced Library Format (ALF) Reference Manual Version 1.9.0

ILLEGAL statement for VECTOR Modeling for Test

ead”

con-
ddress.

ce
OPERATION = read; EXISTENCE_CLASS = fast_page_mode;
}
VECTOR (WE && (?! addr -> ?? din -> 01 CAS -> 10 CAS)) {

OPERATION = write; EXISTENCE_CLASS = fast_page_mode;
}
VECTOR (?! addr -> 01 RAS -> 10 RAS) {

OPERATION = start; EXISTENCE_CLASS = fast_page_mode;
}

Note: The complete description of a “read” operation also contains the behavior after “r
is disabled.

Example 2:

VECTOR (01 read_enb -> X? dout -> 10 read_enb -> ?X dout) {
OPERATION = read; // output goes to X in read-off

}

VECTOR (01 read_enb -> ?? dout -> 10 read_enb -> ?- dout) {
OPERATION = read; // output holds is value in read-off

}

6.7 ILLEGAL statement for VECTOR

For complex cells, especially multi-port memories, it is useful to define the behavior as a
sequence of illegal operations, for example when several ports try to access the same a

A VECTOR statement shall contain the optionalILLEGAL statement, defined as follows:

illegal ::=

ILLEGAL [identifier] { illegal_items }

illegal_items ::=
illegal_item { illegal_item }

illegal_item ::=
all_purpose_item

| violation

whereall_purpose_item andviolation are defined in Section 13.7 and Section 8.1,
respectively.

Thevector_expression within theVECTOR statement describes a state or a sequence of
events which define an illegal operation. TheVIOLATION statement describes the consequen
of such an illegal operation.
Version 1.9.0 Advanced Library Format (ALF) Reference Manual 143

Modeling for Test TEST statement

. Some-
s case,

d the

nt.
-

e

Example 1:

VECTOR ((addr_A == addr_B) && write_enable_A && write_enable_B) {
ILLEGAL write_A_write_B {

VIOLATION {
MESSAGE = “write conflict between port A and B“;
MESSAGE_TYPE = error;
BEHAVIOR { data[addrA] = ‘bxxxxxxxx; }

}
}

}

Note: An illegal operation can be legalized by usingMESSAGE_TYPE=INFORMATION or
MESSAGE_TYPE=WARNING.

This statement can also be used to define the behavior when an address is out of range
times the address space is not continuous, i.e., it can contain holes in the middle. In thi
a MIN or MAX value for legal addresses would not be sufficient. On the other hand, a
boolean_expression can always exactly describe the legal and illegal address space.

Example 2:

VECTOR ((addr > ‘h3) && write_enb) {
ILLEGAL {

VIOLATION {
MESSAGE = “write address out of range“;
MESSAGE_TYPE = error;
BEHAVIOR { data[addr] = ‘bxxxxxxxx; }

}
}

}

6.8 TEST statement

A CELL can contain aTEST statement, which is defined as follows:

test ::=

TEST { behavior }

The purpose is to describe the interface between an externally applied test algorithm an
CELL. Thebehavior statement within theTEST statement uses the same syntax as thebehav-

ior statement within theFUNCTION statement. However, the set of used variables is differe
Both theTEST and theFUNCTION statement shall be self-contained, complete and comple
mentary to each other.

6.9 Physical bitmap for memory BIST

This section defines the physical bitmap for memory BIST. This is a particular case of th
usage of the TEST statement.
144 Advanced Library Format (ALF) Reference Manual Version 1.9.0

Physical bitmap for memory BIST Modeling for Test

tes a

e

 pins
e.g.,

sical
ected
spe-
6.9.1 Definition of concepts

The physical architecture of a memory can be described by the following parameters:

BANK index: A memory can be arranged in one or several banks, each of which constitu
two-dimensional array of rows and columns

ROW index: A row of memory cells within one bank shares the same row decoder line.

COLUMN index: A column of memory cells within one bank shares the same data bit lin
and, if applicable, the same sense amplifier.

Figure 6-2: Illustration of a physical memory architecture, arranged in banks, rows, columns

The physical memory architecture is not evident from the functional description and the
involved in the functional description of the memory. Those pins are called logical pins,
logical address and logical data.

A memory BIST tool needs to know which logical address and data corresponds to a phy
row, column, or bank in order to write certain bit patterns into the memory and read exp
bit patterns from the memory. Also, the tool needs to know whether the physical data in a
cific location is inverted or not with respect to the corresponding logical data.

COLUMN index

ROW index

BANK index

on
e

C
O

LU
M

N

on
e

BANK

one ROW
Version 1.9.0 Advanced Library Format (ALF) Reference Manual 145

Modeling for Test Physical bitmap for memory BIST

a pins

mory
irtual

l out-
ta can

.

Figure 6-3: Illustration of the memory BIST concept

A mapper between physical rows, columns, banks, data and logical addresses, and dat
shall be part of the library description of a memory cell.

The physical row, column, and bank indices can be modeled as virtual inputs to the me
circuit. The data to be written to a physical memory location can also be modeled as a v
input. The data to be read from a physical memory location can be modeled as a virtua
put. Since every data that is written for the purpose of test also needs to be read, the da
be modeled as a virtual bidirectional pin. A virtual pin is a pin withVIEW=none, i.e., the pin is
not visible in any netlist.

6.9.2 Definitions of pin ATTRIBUTE values for memory BIST

The special pinATTRIBUTE values shown in Table 6-30 shall be defined for memory BIST

Table 6-30 : PIN attributes for memory BIST

Attribute item Description

ROW_INDEX
pin is a bus with a contiguous range of values,
indicating a physical row of a memory

COLUMN_INDEX
pin is a bus with a contiguous range of values,
indicating a physical column of a memory

BANK_INDEX
pin is a bus with a contiguous range of values,
indicating a physical bank of a memory

DATA_INDEX
pin is a bus with a contiguous range of values,
indicating the bit position within a data bus of a
memory

DATA_VALUE
pin represents a value stored in a physical memory
location

WrapperAlgorithm

logical

Memory
physical row

physical column

physical data

physical bank

logical
address
pins

data input
pins

logical
data output
pins

circuit
write physical data
to row, column, bank

read physical data
from row, column, bank

under test
146 Advanced Library Format (ALF) Reference Manual Version 1.9.0

Physical bitmap for memory BIST Modeling for Test

o the

 with

(4).
These attributes apply to the pins of the BIST wrapper around the memory rather than t
pins of the memory itself.

TheBEHAVIOR statement withinTEST shall involve the variables declared asPINs with
ATTRIBUTE ROW_INDEX, COLUMN_INDEX, BANK_INDEX, DATA_INDEX, or DATA_VALUE.

6.9.3 Explanatory example

One-dimensional arrays withSIGNALTYPE=address (here:PIN[3:0] addr) shall be recog-
nized as address pins to be mapped, involving other one-dimensional arrays withATTRIBUTE

{ ROW_INDEX } (here:PIN[1:0] row) andATTRIBUTE { COLUMN_INDEX }(here:PIN[3:0]

col). This memory has only one bank. Therefore, no one-dimensional array withATTRIBUTE

{ BANK_INDEX } exists here.

One-dimensional arrays withSIGNALTYPE=data (here:PIN[3:0] Din andPIN[3:0] Dout)
shall be recognized as data pins to be mapped, involving other one-dimensional arrays
ATTRIBUTE { DATA_INDEX } (here:PIN[1:0] dat) and scalar pins withATTRIBUTE {

DATA_VALUE } (here:PIN bit).

Note: Since the data buses are 4-bits wide, the data index is 2-bits wide, since 2=log2

Base Example:

CELL my_memory {
PIN[3:0] addr { DIRECTION=input; SIGNALTYPE=address; }
PIN[3:0] Din { DIRECTION=input; SIGNALTYPE=data; }
PIN[3:0] Dout { DIRECTION=output; SIGNALTYPE=data; }
PIN[3:0] bits[0:15] { DIRECTION=none; VIEW=none; SCOPE=behavior; }
PIN write_enb { DIRECTION=input; SIGNALTYPE=write_enable;

POLARITY=high; ACTION=asynchronous;
}
PIN[1:0] dat { ATTRIBUTE { DATA_INDEX } DIRECTION=none; VIEW=none; }
PIN bit { ATTRIBUTE { DATA_VALUE } DIRECTION=both; VIEW=none; }
PIN[1:0] row {

ATTRIBUTE { ROW_INDEX } RANGE { 0: 3 }
DIRECTION=input; VIEW=none;

}
PIN[3:0] col {

ATTRIBUTE { COLUMN_INDEX } RANGE { 0 : 15 }
DIRECTION=input; VIEW=none;

}
FUNCTION {

BEHAVIOR {
Dout = bits[addr];
@ (write_enb) { bits[addr] = Din; }

} }
/*different physical architectures are shown in the following examples*/
}

Example 1
Version 1.9.0 Advanced Library Format (ALF) Reference Manual 147

Modeling for Test Physical bitmap for memory BIST
TEST {
BEHAVIOR {

// map row and column index to logical address
addr[1:0] = row[1:0];
addr[3:2] = col[3:2];

// map column index to logical data index
dat[1:0] = col[1:0];

// map physical data to input and output data
Din[dat] = bit;
bit = Dout[dat];

}
}

Example 2

ph
ys

ic
al

 r
ow

‘h0

‘h1

‘h2

‘h3

physical column

D[0] D[1] D[2] D[3] D[0] D[1] D[2] D[3] D[0] D[1] D[2] D[3] D[0] D[1] D[2] D[3]

D[0] D[1] D[2] D[3] D[0] D[1] D[2] D[3] D[0] D[1] D[2] D[3] D[0] D[1] D[2] D[3]

D[0] D[1] D[2] D[3] D[0] D[1] D[2] D[3] D[0] D[1] D[2] D[3] D[0] D[1] D[2] D[3]

D[0] D[1] D[2] D[3] D[0] D[1] D[2] D[3] D[0] D[1] D[2] D[3] D[0] D[1] D[2] D[3]

‘h0 ‘h1 ‘h2 ‘h3 ‘h4 ‘h5 ‘h6 ‘h7 ‘h8 ‘h9 ‘hA ‘hB ‘hC ‘hD ‘hE ‘hF

00

01

10

11

00 00 00 00 01 01 01 01 10 10 10 10 11 11 11 11addr[3:2]
ad

dr
[1

:0
]

148 Advanced Library Format (ALF) Reference Manual Version 1.9.0

Physical bitmap for memory BIST Modeling for Test
TEST {
BEHAVIOR {

// map row and column index to logical address
addr[1:0] = row[1:0];
addr[3:2] = col[1:0];

// map column index to logical data index
dat[1:0] = col[3:2];

// map physical data to input and output data
Din[dat] = bit;
bit = Dout[dat];

}
}

ph
ys

ic
al

 r
ow

‘h0

‘h1

‘h2

‘h3

physical column

D[0] D[0] D[0] D[0] D[1] D[1] D[1] D[1] D[2] D[2] D[2] D[2] D[3] D[3] D[3] D[3]

D[0] D[0] D[0] D[0] D[1] D[1] D[1] D[1] D[2] D[2] D[2] D[2] D[3] D[3] D[3] D[3]

D[0] D[0] D[0] D[0] D[1] D[1] D[1] D[1] D[2] D[2] D[2] D[2] D[3] D[3] D[3] D[3]

 D[0] D[0] D[0] D[0] D[1] D[1] D[1] D[1] D[2] D[2] D[2] D[2] D[3] D[3] D[3] D[3]

‘h0 ‘h1 ‘h2 ‘h3 ‘h4 ‘h5 ‘h6 ‘h7 ‘h8 ‘h9 ‘hA ‘hB ‘hC ‘hD ‘hE ‘hF

00

01

10

11

00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11addr[3:2]
ad

dr
[1

:0
]

Version 1.9.0 Advanced Library Format (ALF) Reference Manual 149

Modeling for Test Physical bitmap for memory BIST

y.

ous

 a bus.

tions
he
Example 3

TEST {
BEHAVIOR {

// map row and column index to logical address
addr[0] = row[1];
addr[1] = row[0] ^ row[1]
addr[2] = col[0] ^ col[1] ^ col[2];
addr[3] = col[2] ^ col[3];

// map column index to logical data index
dat[0] = col[1];
dat[1] = col[3];

// map physical data to input and output data
Din[dat]=bit^(row[1]&col[2]&!col[3] | !row[1]&!col[2]&col[3]);
bit=Dout[dat]^(row[1]&col[2]&!col[3] | !row[1]&!col[2]&col[3]);

}
}

Notes:

1. This enables the description of a complete bitmap of a memory in a compact wa

2. TheRANGEfeature is not restricted to BIST. It can be used to describe a valid contigu
range on any bus. This alleviats the need for interpreting aVECTOR with ILLEGAL

statement to get the valid range. However, theVECTOR with ILLEGAL statement is still
necessary to describe the behavior of a device when illegal values are driven on

3. TheTEST statement withBEHAVIOR allows for generalization from memory BIST to
any test vector generation requirement, e.g., logic BIST. The only necessary addi
would be otherPIN ATTRIBUTEs describing particular features to be recognized by t
test vector generation algorithm for the target test algorithm.

ph
ys

ic
al

 r
ow

‘h0

‘h1

‘h2

‘h3

physical column

D[0] D[0] D[1] D[1] D[0] D[0] D[1] D[1] !D[2]!D[2] !D[3]!D[3] D[2] D[2] D[3] D[3]

D[0] D[0] D[1] D[1] D[0] D[0] D[1] D[1] !D[2]!D[2] !D[3]!D[3] D[2] D[2] D[3] D[3]

D[0] D[0] D[1] D[1] !D[0]!D[0] !D[1]!D[1] D[2] D[2] D[3] D[3] D[2] D[2] D[3] D[3]

 D[0] D[0] D[1] D[1] !D[0]!D[0] !D[1]!D[1] D[2] D[2] D[3] D[3] D[2] D[2] D[3] D[3]

‘h0 ‘h1 ‘h2 ‘h3 ‘h4 ‘h5 ‘h6 ‘h7 ‘h8 ‘h9 ‘hA ‘hB ‘hC ‘hD ‘hE ‘hF

00

10

11

01

00 01 11 10 11 10 00 01 00 01 11 10 11 10 00 01addr[3:2]

ad
dr

[1
:0

]

150 Advanced Library Format (ALF) Reference Manual Version 1.9.0

	Modeling for Test
	6.1 Annotations and attributes for a CELL
	6.1.1 CELLTYPE annotation
	6.1.2 ATTRIBUTE within a CELL object
	6.1.3 SWAP_CLASS annotation
	6.1.4 RESTRICT_CLASS annotation
	6.1.5 SCAN_TYPE annotation
	6.1.6 SCAN_USAGE annotation

	6.2 NON_SCAN_CELL statement
	6.3 STRUCTURE statement
	6.4 Annotations and attributes for a PIN
	6.4.1 VIEW annotation
	6.4.2 PINTYPE annotation
	6.4.3 DIRECTION annotation
	6.4.4 SIGNALTYPE annotation
	6.4.5 ACTION annotation
	6.4.6 POLARITY annotation
	6.4.7 DATATYPE annotation
	6.4.8 INITIAL_VALUE annotation
	6.4.9 BUFFERTYPE annotation
	6.4.10 DRIVERTYPE annotation
	6.4.11 PARALLEL_DRIVE annotation
	6.4.12 SCAN_POSITION annotation
	6.4.13 STUCK annotation
	6.4.14 SUPPLYTYPE
	6.4.15 SIGNAL_CLASS
	6.4.16 SUPPLY_CLASS
	6.4.17 Driver CELL and PIN specification
	6.4.18 ATTRIBUTE for PIN objects

	6.5 Definitions for bus pins
	6.5.1 RANGE for bus pins
	6.5.2 Scalar pins inside a bus
	6.5.3 PIN_GROUP statement

	6.6 Annotations for other objects
	6.6.1 PURPOSE for CLASS
	6.6.2 OPERATION for VECTOR

	6.7 ILLEGAL statement for VECTOR
	6.8 TEST statement
	6.9 Physical bitmap for memory BIST
	6.9.1 Definition of concepts
	6.9.2 Definitions of pin ATTRIBUTE values for memory BIST
	6.9.3 Explanatory example

