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Section 5

Functional Modeling

This chapter specifies the functional modeling for synthesis, formal verification, and
simulation.

5.1 Combinational functions

This section defines the different types of combinational functions in ALF.

5.1.1 Combinational logic

Combinational logic can be described by continuous assignments of boolean values (True or
False) to output variables as a function of boolean values of input variables. Such functions
be expressed in either boolean expression format or statetable format.

Let us consider an arbitrary continuous assignment

z = f(a 1 ..,.. a n)

In a dynamic or simulation context, the left-hand side (LHS) variablez is evaluated whenever
there is a change in one of the right-hand side (RHS) variablesai. No storage of previous states
is needed for dynamic simulation of combinational logic.

5.1.2 Boolean operators on scalars

Table 5-1, Table 5-2, and Table 5-3 list unary, binary, and ternary boolean operators on sc

Table 5-1 : Unary boolean operators

Operator Description

! , ~ logical inversion

Table 5-2 : Binary boolean operators

Operator Description

&&, & logical AND

|| , | logical OR

~^ logic equivalence (XNOR)

^ logic anti valence (XOR)
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Combinational if-then-else clauses are constructed as follows:

<cond1>? <value1>: <cond2>? <value2>: <cond3>? <value3>: <default_value>

If cond1 evaluates to booleanTrue, thenvalue1 is the result; else ifcond2 evaluates to boolean
True, thenvalue2  is the result; else ifcond3  evaluates to booleanTrue, thenvalue3  is the
result; elsedefault_value  is the result of this clause.

5.1.3 Boolean operators on words

Table 5-4 and Table 5-5 list unary and binary reduction operators on words (logic variab
with one or more bits). The result of an expression using these operators shall be a logic v

Table 5-3 : Ternary operator

Operator Description

 ? boolean condition operator for construction of combi-
national if-then-else clause

 : boolean else operator for construction of combinational
if-then-else clause

Table 5-4 : Unary reduction operators

Operator Description

& AND all bits

~& NAND all bits

| OR all bits

~| NOR all bits

^ XOR all bits

~^ XNOR all bits

Table 5-5 : Binary reduction operators

Operator Description

 == equality for case comparison

 != non-equality for case comparison

 > greater

 < smaller

 >= greater or equal

 <= smaller or equal
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Table 5-6 and Table 5-7 list unary and binary bitwise operators. The result of an expres
using these operators shall be an array of bits.

The following arithmetic operators, listed in Table 5-8, are also defined for boolean opera
on words. The result of an expression using these operators shall be an extended array

The arithmetic operations addition, subtraction, multiplication, and division shall beunsigned
if all the operands have the datatypeunsigned. If any of the operands have the datatype signe
the operation shall besigned. See Table 6-23 for theDATATYPE definitions.

5.1.4 Operator priorities

The priority of binding operators to operands in boolean expressions shall be from strong
weakest in the following order:

1. unary boolean operator (! , ~, &, ~&, | , ~| , ^ , ~^ )

2. XNOR(~^ ), XOR (^ ), relational (>, <, >=, <=, ==, != ), shift (<<, >>)

3. AND (&, &&), NAND (~&), multiply (* ), divide (/ ), modulus (%)

Table 5-6 : Unary bitwise operators

Operator Description

~ bitwise inversion

Table 5-7 : Binary bitwise operators

Operator Description

 & bitwise AND

 | bitwise OR

 ^ bitwise XOR

 ~^ bitwise XNOR

Table 5-8 : Binary operators

Operator Description

 << shift left

 >> shift right

 + addition

 - subtraction

 * multiplication

 / division

 % modulo division
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4. OR (|, || ), NOR (~| ), add (+), subtract (- )

5. ternary operators (?, : )

5.1.5 Datatype mapping

Logical operations can be applied to scalars and words. For that purpose, the values of
operands are reduced to a system of three logic values in the following way:

H has the logic value1
L has the logic value0
W, Z, U have the logic valueX
A word has the logic value1, if the unary OR reduction of all bits results in1

A word has the logic value0, if the unary OR reduction of all bits results in0

A word has the logic valueX, if the unary OR reduction of all bits results inX

Case comparison operations can also be applied to scalars and words. For scalars, the
defined in Table 5-9.

Table 5-9 : Case comparison operators

A B A==B A!=B A>B A<B

1 1 1 0 0 0

1 H 0 1 X X

1 0 0 1 1 0

1 L 0 1 1 0

1 W, U, Z, X 0 1 X 0

H 1 0 1 X X

H H 1 0 0 0

H 0 0 1 1 0

H L 0 1 1 0

H W, U, Z, X 0 1 X 0

0 1 0 1 0 1

0 H 0 1 0 1

0 0 1 0 0 0

0 L 0 1 X X

0 W, U, Z, X 0 1 0 X

L 1 0 1 0 1

L H 0 1 0 1

L 0 0 1 X X

L L 1 0 0 0

L W, U, Z, X 0 1 0 X

X X 1 0 X X

X U X X X X

X 0, 1, H, L, W, Z 0 1 X X
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For word operands, the operations> and< are performed after reducing all bits to the 3-valu
system first and then interpreting the resulting number according to the datatype of the
operands. For example, if datatype issigned, 'b1111  is smaller than'b0000 ; if datatype is
unsigned, 'b1111  is greater than'b0000 . If two operands have the same value'b1111  and a
different datatype, the unsigned'b1111  is greater than the signed'b1111 .

The operations>= and<= are defined in the following way:

(a >= b) === (a > b) || (a == b)

(a <= b) === (a < b) || (a == b)

5.1.6 Rules for combinational functions

If a boolean expression evaluatesTrue, the assigned output value is1. If a boolean expression
evaluatesFalse, the assigned output value is0. If the value of a boolean expression cannot b
determined, the assigned output value isX. Assignment of values other than1, 0, or X needs to
be specified explicitly.

For evaluation of the boolean expression, input value'bH  shall be treated as'b1 . Input value
'bL  shall be treated as'b0 . All other input values shall be treated as'bX .

Examples:

In equation form, these rules can be expressed as follows.

BEHAVIOR {
Z = A;

}

is equivalent to

BEHAVIOR {
Z = A ? ’b1 : ’b0;

}

More explicitly, this is also equivalent to

BEHAVIOR {
Z = (A==’b1 || A==’bH)? ’b1 : (A==’b0 || A==’bL)? ’b0 : ’bX;

}

W W 1 0 X X

W U X X X X

W 0, 1, H, L, X, Z 0 1 X X

Z Z 1 0 X X

Z U X X X X

Z 0, 1, H, L, X, W 0 1 X X

U 0, 1, H, L,
X,W, Z, U

X X X X

Table 5-9 : Case comparison operators, continued

A B A==B A!=B A>B A<B
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In table form, this can be expressed as follows:

STATETABLE {
A : Z;

? : (A);
}

which is equivalent to

STATETABLE {
A : Z;

0 : 0;
1 : 1;

}

More explicitly, this is also equivalent to

STATETABLE {
A : Z;

0 : 0;
L : 0;
1 : 1;
H : 1;
X : X;
W : X;
Z : X;
U : X;

}

5.1.7 Concurrency in combinational functions

Multiple boolean assignments in combinational functions are understood to be concurren
order in the functional description does not matter, as each boolean assignment describ
piece of a logic circuit. This is illustrated in Figure 5-1.

Figure 5-1: Concurrency for combinational logic

BEHAVIOR {
Q1 = <1st_boolean_expression(D1..Di)> ;
...
Qn = <nth_boolean_expression(D1..Di)> ;

}

Q1

Qn

D1 Di

nth boolean expression

1st boolean expression
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5.2 Sequential functions

This section defines the different types of sequential functions in ALF.

5.2.1 Level-sensitive sequential logic

In sequential logic, an output variablezj can also be a function of itself, i.e., of its previous
state. The sequential assignment has the form

zj  = f(a 1 ..,.. a n , z 1 ..,.. z m)

The RHS cannot be evaluated continuously, since a change in the LHS as a result of a
evaluation shall trigger a new RHS evaluation repeatedly, unless the variables attain st
values. Modeling capabilities of sequential logic with continuous assignments are restrict
systems with oscillating or self-stabilizing behavior.

However, using the concept oftriggering conditionsfor the LHS enables everything which is
necessary for modelinglevel-sensitive sequential logic. The expression of a triggered
assignment can look like this:

@ g(b 1 ..,.. b k) z j  = f(a 1 ..,.. a n , z 1 ..,.. z m)

The evaluation off is activated whenever thetriggering functiong is True. The evaluation ofg
is self-triggered, i.e. at each time when an argument ofg changes its value. Ifg is a boolean
expression likef, we can model all types oflevel-sensitive sequential logic.

During the time wheng is True, the logic cell behaves exactly like combinational logic. Durin
the time wheng is False, the logic cell holds its value. Hence, one memory element per s
bit is needed.

5.2.2 Edge-sensitive sequential logic

In order to modeledge-sensitive sequential logic, notations for logical transitions and logica
states are needed.

If the triggering functiong is sensitive to logical transitions rather than to logical states, th
functiong evaluates toTrueonly for an infinitely small time, exactly at the moment when th
transition happens. The sole purpose ofg is to trigger an assignment to the output variable
through evaluation of the functionf exactly at this time.

Edge-sensitive logic requires storage of the previous output state and the input state (to
a transition). In fact, all implementations of edge-triggered flip-flops require at least two
storage elements. For instance, the most popular flip-flop architecture features a maste
driving a slave latch.

Using transitions in the triggering function for value assignment, the functionality of a posi
edge triggered flip-flop can be described as follows in ALF:

@ (01 CP) {Q = D;}

which reads “at rising edge ofCP, assignQ the value ofD”.

If the flip-flop also has an asynchronous direct clear pin (CD), the functional description
consists of either two concurrent statements or two statements ordered by priority, as sho
Figure 5-2.
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Figure 5-2: Model of a flip-flop with asynchronous clear in ALF

The following two examples show corresponding simulation models in Verilog and VHD

Figure 5-3: Model of a flip-flop with asynchronous clear in Verilog

// concurrent style

@ (!CD) {Q = 0;}
@ (01 CP && CD) {Q = D;}

// priority (if-then-else) style

@ (!CD) {Q = 0;} : (01 CP) {Q = D;}

// full simulation model

always @(negedge CD or posedge CP) begin
if ( ! CD ) Q <= 0;
else if (CP && !CP_last_value) Q <= D;
else Q <= 1’bx;

end
always @ (posedge CP or negedge CP) begin

if (CP===0 | CP===1’bx) CP_last_value <= CP ;
end

// simplified simulation model for synthesis

always @(negedge CD or posedge CP) begin
if ( ! CD ) Q <= 0;
else Q <= D;

end
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Figure 5-4: Model of a flip-flop with asynchronous clear in VHDL

The following differences in modeling style can be noticed: VHDL and Verilog provide the
of sensitive signals at the beginning of theprocess  or always  block, respectively. The
information of level-or edge-sensitivity shall be inferred byif -then -else  statements inside
the block. ALF shows the level-or-edge sensitivity as well as the priority directly in the
triggering expression. Verilog has another particularity: The sensitivity list indicates whe
at least one of the triggering signals is edge-sensitive by the use ofnegedge  or posedge .
However, it does not indicate which one, since either none or all signals shall havenegedge or
posedge  qualifiers.

Furthermore,posedge is any transition with0 as initial stateor 1 as final state. A positive-edge
triggered flip-flop shall be inferred for synthesis, yet this flip-flop shall only work correctly
both the initial state is0 andthe final state is1. Therefore, a simulation model for verification
needs to be more complex than the model in the synthesizeable RTL code.

In Verilog, the extra non-synthesizeable code needs to also reproduce the relevant prev
state of the clock signal, whereas VHDL has built-in support forlast_value  of a signal.

5.2.3 Unary operators for vector expressions

A transition operation is defined using unary operators on a scalar net. The scalar constan
Figure 11-6) shall be used to indicate the start and end states of a transition on a scala

bit bit // apply transition from bit value to bit value

// full simulation model

process (CP, CD) begin
if (CD = '0') then

Q <= '0';
elsif (CP'last_value = '0' and CP = '1' and CP'event) then

Q <= D;
elsif (CP'last_value = '0' and CP = 'X' and CP'event) then

Q <= ’X’;
elsif (CP'last_value = 'X' and CP = '1' and CP'event) then

Q <= ’X’;
end if;

end process;

// simplified simulation model for synthesis

process (CP, CD) begin
if (CD = '0') then

Q <= '0';
elsif (CP = '1' and CP'event) then

Q <= D;
end if;

end process;
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For example,

01 is a transition from0 to 1.

No whitespace shall be allowed between the two scalar constants. The transition opera
shown in Table 5-10 shall be considered legal.

Unary operators for transitions can also appear in theSTATETABLE.

Transition operators are also defined on words (and can appear the inSTATETABLE as well):

' base word ' base word

In this context, the transition operator shall apply transition from first word value to seco
word value.

For example,

'hA'h5 is a transition of a 4-bit signal from'b1010  to 'b0101 .

No whitespace shall be allowed betweenbase andword.

Table 5-10 : Unary vector operators on bits

Operator Description

01 signal toggles from0 to 1

10 signal toggles from1 to 0

00 signal remains0

11 signal remains1

0? signal remains0 or toggles from0 to arbitrary value

1? signal remains1 or toggles from1 to arbitrary value

?0 signal remains0 or toggles from arbitrary value to0

?1 signal remains1 or toggles from arbitrary value to1

?? signal remains constant or toggles between arbitrary values

0* a number of arbitrary signal transitions, including possibility of
constant value, with the initial value0

1* a number of arbitrary signal transitions, including possibility of
constant value, with the initial value1

?* a number of arbitrary signal transitions, including possibility of
constant value, with arbitrary initial value

*0 a number of arbitrary signal transitions, including possibility of
constant value, with the final value0

*1 a number of arbitrary signal transitions, including possibility of
constant value, with the final value1

*? a number of arbitrary signal transitions, including possibility of
constant value, with arbitrary final value
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The unary and binary operators for transition, listed in Table 5-11 and Table 5-12 respect
are defined on bits and words.

5.2.4 Basic rules for sequential functions

A sequential function is described in equation form by a boolean assignment with a cond
specified by a boolean expression or a vector expression. If the condition evaluates to1 (True),
the boolean assignment is activated and the assigned output values follows the rules fo
combinational functions. If the vector expression evaluates to0 (False), the output variables
hold their assigned value from the previous evaluation.

For evaluation of a condition, the value'bH  shall be treated asTrue, the value'bL  shall be
treated asFalse. All other values shall be treated as the unknown value'bX .

Example:

The following behavior statement

BEHAVIOR {
@ (E) {Z = A;}

}

is equivalent to

BEHAVIOR {
@ (E==’b1 || E==’bH) {Z = A;}

}

The following statetable statement, describing the same logic function

STATETABLE {
E A : Z;

0 ? : (Z);
1 ? : (A);

}

is equivalent to

STATETABLE {
E A : Z;

0 ? : (Z);
L ? : (Z);
1 ? : (A);
H ? : (A);

}

Table 5-11 : Unary vector operators on bits or words

Operator Description

?- no transition occurs

?? apply arbitrary transition, including possibility of constant value

?! apply arbitrary transition, excluding possibility of constant value

?~ apply arbitrary transition with all bits toggling
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For edge-sensitive and higher-order event sensitive functions, transitions from or to'bL shall
be treated like transitions from or to'b0 , and transitions from or to'bH  shall be treated like
transitions from or to'b1 .

Not every transition can trigger the evaluation of a function. The set of vectors triggering
evaluation of a function are calledactive vectors. From the set of active vectors, a set of
inactive vectors can be derived, which shall clearly not trigger the evaluation of a function
There are is also a set of ambiguous vectors, which can trigger the evaluation of the fun

The set of active vectors is the set of vectors for which both observed states before and
the transition are known to be logically equivalent to the corresponding states defined in
vector expression.

The set of inactive vectors is the set of vectors for which at least one of the observed st
before or after the transition is known to be not logically equivalent to the corresponding s
defined in the vector expression.

Example:

For the following sequential function

@ (01 CP) { Z = A; }

the active vectors are

('b0'b1 CP)
('b0'bH CP)
('bL'b1 CP)
('bL'bH CP)

and the inactive vectors are

(’b1’b0 CP)
(’b1’bL CP)
(’b1’bX CP)
(’b1’bW CP)
(’b1’bZ CP)
(’bH’b0 CP)
(’bH’bL CP)
(’bH’bX CP)
(’bH’bW CP)
(’bH’bZ CP)
(’bX’b0 CP)
(’bX’bL CP)
(’bW’b0 CP)
(’bW’bL CP)
(’bZ’b0 CP)
(’bZ’bL CP)
(’bU’b0 CP)
(’bU’bL CP)
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and the ambiguous vectors are

(’b0’bX CP)
(’b0’bW CP)
(’b0’bZ CP)
(’bL’bX CP)
(’bL’bW CP)
(’bL’bZ CP)
(’bX’b1 CP)
(’bW’b1 CP)
(’bZ’b1 CP)
(’bX’bH CP)
(’bW’bH CP)
(’bZ’bH CP)
(’bX’bW CP)
(’bX’bZ CP)
(’bW’bX CP)
(’bW’bZ CP)
(’bZ’bX CP)
(’bZ’bW CP)
(’bU’bX CP)
(’bU’bW CP)
(’bU’bZ CP)

For vectors using exclusively based literals, the set of active vectors is the vector itself, th
of inactive vectors is any vector with at least one different literal, and the set of ambiguo
vectors is empty.

Therefore, ALF does not provide a default behavior for ambiguous vectors, since the beh
for each vector can be explicitly defined in vectors using based literals.

5.2.5 Concurrency in sequential functions

The principle of concurrency applies also for edge-sensitive sequential functions, where
triggering condition is described by a vector expression rather than a boolean expressio
edge-sensitive logic, the target logic variable for the boolean assignment (LHS) can also
operand of the boolean expression defining the assigned value (RHS). Concurrency im
that the RHS expressions are evaluated immediatelybeforethe triggering edge, and the value
are assigned to the LHS variables immediatelyafter the triggering edge. This is illustrated in
Figure 5-5.
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Figure 5-5: Concurrency for edge-sensitive sequential logic

Statements with multiple concurrent conditions for boolean assignments can also be us
sequential logic. In that case conflicting values can be assigned to the same logic varia
default conflict resolution is not provided for the following reasons:

• Conflict resolution might not be necessary, since the conflicting situation is prohibite
specification.

• For different types of analysis (e.g., logic simulation), a different conflict resolution
behavior might be desirable, while the physical behavior of the circuit shall not chan
For instance, pessimistic conflict resolution always assignsX, more accurate conflict reso
lution first checks whether the values are conflicting. Different choices can be motiva
by a trade-off in analysis accuracy and runtime.

• If complete library control over analysis is desired, conflict resolution can be specifie
explicitly.

Example:

BEHAVIOR {
@ ( <condition_1> ) { Q = <value_1>; }
@ ( <condition_2> ) { Q = <value_2>; }

}

Explicit pessimistic conflict resolution can be described as follows:

BEHAVIOR {
@ ( <condition_1> && <condition_2>  ) { Q = ’bX; }
@ ( <condition_1> && ! <condition_2>) { Q = <value_1>; }
@ ( <condition_2> && ! <condition_1>) { Q = <value_2>; }

}

BEHAVIOR {
@ ( <vector_expression(E1..Em)> ) {

Q1 =
<1st_boolean_expression(D1..Di)> ;

...
Qn =

<nth_boolean_expression(D1..Di)> ; } }

Q1

Qn

D1 Di

1st boolean expression

nth boolean expression

vector
expression

E1 Em

d q

d q
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Explicit accurate conflict resolution can be described as follows:

BEHAVIOR {
@ ( <condition_1> && <condition_2>  ) {

Q = (<value_1>==<value_2>)? <value_1> : ’bX;
}
@ ( <condition_1> && ! <condition_2>) { Q = <value_1>; }
@ ( <condition_2> && ! <condition_1>) { Q = <value_2>; }

}

Since the conditions are now rendered mutually exclusive, equivalent descriptions with pr
statements can be used. They are more elegant than descriptions with concurrent state

BEHAVIOR {
@ ( <condition_1> && <condition_2>  ) {

Q = <conflict_resolution_value>;
}
: ( <condition_1> ) { Q = <value_1>; }
: ( <condition_2> ) { Q = <value_2>; }

}

Given the various explicit description possibilities, the standard does not prescribe a de
behavior. The model developer has the freedom of incomplete specification.

5.2.6 Initial values for logic variables

Per definition, all logic variables in a behavioral description have the initial valueU which
means “uninitialized”. This value cannot be assigned to a logic variable, yet it can be use
behavioral description in order to assign other values thanU after initialization.

Example:

BEHAVIOR {
@ ( Q1 == ’bU ) { Q1 = ’b1 ; }
@ ( Q2 == ’bU ) { Q2 = ’b0 ; }
// followed by the rest of the behavioral description

}

A template can be used to make the intent more obvious, for example:

TEMPLATE VALUE_AFTER_INITIALIZATION {
@ ( <logic_variable> == ’b U ) { <logic_variable> = <initial_value>

; }
}
BEHAVIOR {

VALUE_AFTER_INITIALIZATION ( Q1 ’b1’ )
VALUE_AFTER_INITIALIZATION ( Q2 ’b0’ )
// followed by the rest of the behavioral description

}

Logic variables in a vector expression shall be declared asPINs. It is possible to annotate initial
values directly to a pin. Such variables shall never take the valueU. Therefore vector
expressions involvingU for such variables (see the previous example) are meaningless.

Example:

PIN Q1 { INITIAL_VALUE = ’b1 ; }
PIN Q2 { INITIAL_VALUE = ’b0 ; }
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5.3 Higher-order sequential functions

This section defines the different types of higher-order sequential functions in ALF.

5.3.1 Vector-sensitive sequential logic

Vector expressions can be used to model generalized higher order sequential logic; they
extension of the boolean expressions. Avector expression describes sequences of logical
events or transitions in addition to static logical states. A vector expression represents a
description of a logical stimulus without timescale. It describes the order of occurrence 
events.

The -> operator(followed by) gives a general capability of describing a sequence of events
a vector. For example, consider the following vector expression:

01 A -> 01 B

which reads “rising edge onA is followed by rising edge onB”.

A vector expression is evaluated by an event sequence detection function. Like a single
or a transition, this function evaluatesTrue only at an infinitely short time when the event
sequence is detected, as shown in Figure 5-6.

Figure 5-6: Example of event sequence detection function

The event sequence detection mechanism can be described as a queue that sorts even
according to their order of arrival. The event sequence detection function evaluatesTrue at
exactly the time when a new event enters the queue and forms the required sequence, ithe
sequence specified by the vector expression with its preceding events.

A
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A vector-sensitive sequential logic can be called(N+1) order sequential logic, whereN is the
number of events to be stored in the queue. The implementation of(N+1) order sequential logic
requiresN memory elements for the event queue and one memory element for the output

A sequence of events can also be gated with static logical conditions. In the example,

(01 CP -> 10 CP) && CD

the pinCDshall havestate 1 from some time before the rising edge atCP to some time after
the falling edge ofCP. The pinCDcan not go low (state 0 ) after the rising edge ofCPand go
high again before the falling edge ofCPbecause this would insert events into the queue and
sequence “rising edge onCP followed by falling edge onCP” would not be detected.

The formal calculation rules for general vector expressions featuring both states and trans
are detailed in Section 5.3.2 and Section 5.3.3.

The concept of vector expression supports functional modeling of devices featuring dig
communication protocols with arbitrary complexity.

5.3.2 Canonical binary operators for vector expressions

The following canonical binary operators are necessary to define sequences of transitio

• vector_followed_by  for completely specified sequence of events
• vector_and  for simultaneous events
• vector_or  for alternative events
• vector_followed_by  for incompletely specified sequence of events

The symbols for the boolean operators forAND andOR are overloaded forvector_and  and
vector_or , respectively. The new symbols for thevector_followed_by operators are shown
in Table 5-12.

Per definition, the-> and ~> operators shall not be commutative, whereas the&& and||

operators on events shall be commutative.

01 a && 01 b === 01 b && 01 a

01 a || 01 b === 01 b || 01 a

Table 5-12 : Canonical binary vector operators

Operator Operands
LHS, RHS
commutative Description

-> 2 vector
expressions

no Left-hand side (LHS) transitionis followed byRight-hand
side (RHS) transition, no transition can occur in-between

 &&, & 2 vector
expressions

yes LHSand RHS transitionoccur simultaneously

 ||, | 2 vector
expressions

yes LHSor RHS transitionoccur alternatively

~> 2 vector
expressions

no Left-hand side (LHS) transitionis followed byRight-hand
side (RHS) transition, other transitions can occur in-betwee
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The-> and~> operators shall be freely associative.

01 a -> 01 b -> 01 c === (01 a -> 01 b) -> 01 c === 01 a -> (01 b -> 01 c)

01 a ~> 01 b ~> 01 c === (01 a ~> 01 b) ~> 01 c === 01 a ~> (01 b ~> 01 c)

The&& operator is defined for single events and for event sequences with the same num
->  operators each.

(01 A1 .. -> ... 01 AN) & (01 B1 .. -> ... 01 BN)
===
01 A1 & 01 B1 ... -> ... 01 AN & 01 BN

The || operator reduces the set of edge operators (unary vector operators) to canonical a
canonical operators.

(?? a)  === (?! a)||(?- a)  //a does or does not change its value

Hence?? is non-canonical, since it can be defined by other operators.

If <value1><value2> is an edge operator consisting of two based literalsvalue1 andvalue2

andword  is an expression which can take the valuevalue1  or value2 , then the following
vector expressions are considered equivalent:

<value1><value2> <word>
=== 10 (<word> == <value1>) && 01 (<word> == <value2>)
=== 01 (<word> != <value1>) && 01 (<word> == <value2>)
=== 10 (<word> == <value1>) && 10 (<word> != <value2>)
=== 01 (<word> != <value1>) && 10 (<word> != <value2>)

// all expressions describe the same event:
// <word> makes a transition from <value1> to <value2>

Hence vector expressions with edge operators using based literals can be reduced to v
expressions using only the edge operators01 and10.

5.3.3 Complex binary operators for vector expressions

Table 5-13 defines the complex binary operators for vector operators.

The following expressions shall be considered equivalent:

(01 a <-> 01 b) === (01 a -> 01 b)||(01 b -> 01 a)

(01 a  &> 01 b) === (01 a -> 01 b)||(01 a && 01 b)

(01 a <&> 01 b) === (01 a -> 01 b)||(01 b -> 01 a)||(01 a && 01 b)

Table 5-13 : Complex binary vector operators

Operator Operands
LHS, RHS
commutative Description

<-> 2 vector
expressions

yes LHS transition follows or is followed by RHS transition

&> 2 vector
expressions

no LHS transitionis followed by or occurs simultaneously
with RHS transition

<&> 2 vector
expressions

yes LHS transitionfollows or is followed by or occurs simulta-
neously with RHS transition
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By their symmetric definition, the<->  and<&> operators are commutative.

01 a <-> 01 b === 01 b <-> 01 a

01 a <&> 01 b === 01 b <&> 01 a

The commutative complex binary vector operators are defined in Table 5-12. The comm
tivity rules are only defined for two operands:

• commutative “followed by”:

vect_expr1 <->  vect_expr2 ===
vect_expr1 ->  vect_expr2 // vect_expr1 occurs first

| vect_expr2 ->  vect_expr1 // vect_expr2 occurs first

• commutative “followed by or simultaneously occurring”:

vect_expr1 <&> vect_expr2 ===
vect_expr1 ->  vect_expr2 // vect_expr1 occurs first

| vect_expr2 ->  vect_expr1 // vect_expr2 occurs first
| vect_expr1 && vect_expr2 // both occur simultaneously

5.3.3.1 Extension to N operands

This section defines how to useN operands.

A complex_vector_expression  of the form

vector_expression { <->  vector_expression }

shall be commutative for all operands. Thecomplex_vector_expression  describes
alternative event sequences in which the temporal order of each constituent
vector_expression  is completely permutable, excluding simultaneous occurrence of ea
constituentvector_expression .

A complex_vector_expression  of the form

vector_expression { <&> vector_expression }

shall be commutative for all operands. Thecomplex_vector_expression  describes
alternative event sequences in which the temporal order of each constituent
vector_expression  is completely permutable, including simultaneous occurrence of eac
constituentvector_expression .

Example:

01 A <-> 01 B <-> 01 C ===
01 A -> 01 B -> 01 C

| 01 B -> 01 C -> 01 A
| 01 C -> 01 A -> 01 B
| 01 C -> 01 B -> 01 A
| 01 B -> 01 A -> 01 C
| 01 A -> 01 C -> 01 B
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01 A <&> 01 B <&> 01 C ===
01 A -> 01 B -> 01 C

| 01 B -> 01 C -> 01 A
| 01 C -> 01 A -> 01 B
| 01 C -> 01 B -> 01 A
| 01 B -> 01 A -> 01 C
| 01 A -> 01 C -> 01 B
| 01 A && 01 B -> 01 C
| 01 A -> 01 B && 01 C
| 01 B && 01 C -> 01 A
| 01 B -> 01 C && 01 A
| 01 C && 01 A -> 01 B
| 01 C -> 01 A && 01 B
| 01 A && 01 B && 01 C

5.3.3.2 Boolean rules

The following rule applies for a booleanAND operation with three operands:

rule 1:
A & B & C === (A & B) & C | A & (B & C)

A corresponding rule also applies to the commutative followed-by operation with three o
ands:

rule 2:
01 A <-> 01 B <-> 01 C ===

(01 A <-> 01 B) <-> 01 C
| 01 A <-> (01 B <-> 01 C)

The alternative boolean expressions(A & B) & C  andA & (B & C)  in rule 1 are equivalent.
Therefore, rule 1 can be reduced to the following:

rule 3:
A & B & C === (A & B) & C === (B & C) & A

A corresponding rule doesnot apply to complex vector operands, since each expression w
associated operands generates only a subset of permutations:

(01 A <-> 01 B) <-> 01 C ===
((01 A <-> 01 B) -> 01 C)

| (01 C -> (01 A <-> 01 B)) ===
01 A -> 01 B -> 01 C

| 01 B -> 01 A -> 01 C
| 01 C -> 01 A -> 01 B
| 01 C -> 01 B -> 01 A

The permutations

01 A -> 01 C -> 01 B
01 B -> 01 C -> 01 A
48 Advanced Library Format (ALF) Reference Manual Version 1.9.0



Higher-order sequential functions Functional Modeling

-14.
uses.

ssion
uence
mpose
are missing.

01 A <-> (01 B <-> 01 C) ===
(01 A -> (01 B <-> 01 C))

| ((01 B <-> 01 C) -> 01 A) ===
01 A -> 01 B -> 01 C

| 01 A -> 01 C -> 01 B
| 01 B -> 01 C -> 01 A
| 01 C -> 01 B -> 01 A

The permutations

| 01 B -> 01 A -> 01 C
| 01 C -> 01 A -> 01 B

are missing.

5.3.4 Operators for conditional vector expressions

The definitions of the&&, ?, and: operators are also overloaded to describe aconditional vector
expression (involving boolean expressions and vector expressions), as shown in Table 5
The clauses are boolean expressions; while vector expressions are subject to those cla

An example for conditional vector expression using&& is given below:

(01 a && !b) // a rises while b==0

The order of the operands in a conditional vector expression using&& shall not matter.

<vector_exp> && <boolean_exp> === <boolean_exp> && <vector_exp>

The&&operator is still commutative in this case, although one operand is a boolean expre
defining a static state, the other operand is a vector expression defining an event or a seq
of events. However, since the operands are distinguishable per se, it is not necessary to i
a particular order of the operands.

Table 5-14 : Operators for conditional vector expressions

Operator Operands
LHS, RHS
commutative Description

&&, & 1 vector
expression,
1 boolean
expression

yes boolean expression (LHS or RHS) isTruewhile sequence
of transitions, defined by vector expression (RHS or LHS)
occurs

 ? 1 vector
expression,
1 boolean
expression

no boolean condition operator for construction of if-then-else
clause involving vector expressions

 : 1 vector
expression,
1 boolean
expression

no boolean else operator for construction of  if-then-else
clause involving vector expressions
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An example for conditional vector expression using? and:  is given below.

!b ? 01 a : c ? 10 b : 01 d
===
!b & 01 a | !(!b) & c & 10 b | !(!b) & !c & 01 d

This example shows how a conditional vector expression using ternary operators can b
expressed with alternative conditional vector expressions.

A conditional vector expression can be reduced to a non-conditional vector expression in
cases (see Section 5.4.11).

Every binary vector operator can be applied to a conditional vector expression.

5.3.5 Operators for sequential logic

Table 5-15 defines the complex binary operators for vector operators.

Sequential assignments are constructed as follows:

@ ( <trigger1> ) { <action1> } : ( <trigger2> ) { <action2> } :
  ( <trigger3> ) { <action3> }

If trigger1 event is detected, thenaction1 is performed; else iftrigger2 event is detected,
thenaction2 is performed; else iftrigger3 event is detected, thenaction3 is performed as
a result of this clause.

5.3.6 Operator priorities

The priority of binding operators to operands in non-conditional vector expressions sha
from strongest to weakest in the following order:

1. unary vector operators (edge literals)

2. complex binary vector operators (<-> , &>, <&>)

3. vectorAND (&, &&)

4. vector_followed_by operators (-> , ~>)

5. vectorOR (| , || )

Table 5-15 : Operators for sequential logic

Operator Description

 @ sequentialif  operator, followed by a boolean logic expression (for
level-sensitive assignment) or by a vector expression (for edge-sen-
sitive assignment)

 : sequentialelse if  operator, followed by a boolean logic expres-
sion (for level-sensitive assignment) or by a vector expression (for
edge-sensitive assignment) with lower priority
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5.3.7 Using PINs in VECTORs

A VECTOR defines state, transition, or sequence of transitions of pins that are controllabl
observable for characterization.

Within aCELL, the set ofPINs withSCOPE=behavior or SCOPE=measureor SCOPE=both is the
default set of variables in the event queue for vector expressions relevant forBEHAVIOR or
VECTOR statements or both, respectively.

For detection of a sequence of transitions it is necessary to observe the set of variables
event queue. For instance, if the set of pins consists ofA, B, C, D, the vector expression

 (01 A -> 01 B)

implies no transition onA, B, C, D occurs between the transitions01 A  and01 B .

The default set of pins applies only for vector expressions without conditions. The conditi
eventANDoperator limits the set of variables in the event queue. In this case, only the sta
the condition and the variables appearing in the vector expression are observed.

Example:

(01 A -> 01 B) && (C | D)

No transition onA, B occurs between01 A and01 B, and(C | D) needs to stayTruein-between
01 A and01 B as well. However,CandDcan change their values as long as(C | D) is satisfied.

5.4 Modeling with vector expressions

Vector expressions provide a formal language to describe digital waveforms. This capa
can be used for functional specification, for timing and power characterization, and for tim
and power analysis.

In particular, vector expressions add value by addressing the following modeling issues

• Functional specification: complex sequential functionality, e.g., bus protocols.
• Timing analysis: complex timing arcs and timing constraints involving more than two s

nals.
• Power analysis: temporal and spatial correlation between events relevant for power c

sumption.
• Circuit characterization and test: specification of characterization and/or test vectors fo

particular timing, power, fault, or other measurements within a circuit.

Like boolean expressions, vector expressions provide the means for describing the
functionality of digital circuits in various contexts without being self-sufficient. Vector
expressions enrich this functional description capability by adding a “dynamic” dimensio
the otherwise “static” boolean expressions.

The following subsections explain the semantics of vector expressions step-by-step. The
expression concept is explained using terminology from simulation event reports. Howe
the application of vector expressions is not restricted to post-processing event reports.

Some application tools (e.g., power analysis tools) can actually evaluate vector express
during post-processing of event reports from simulation. Other application tools, especi
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simulation model generators, need to respect the causality between the triggering even
the actions to be triggered. While it is semantically impossible to describe cause and effe
the same vector expression for the purpose of functional modeling, both cause and effe
appear in a vector expression used for a timing arc description.

ALF does not make assumption about the physical nature of the event report. Vector
expressions can be applied to an actual event report written in a file, to an internal event q
within a simulator, or to a hypothetical event report which is merely a mathematical con

5.4.1 Event reports

This section describes the terminology of event reports from simulation, which is used t
explain the concept of ALF vector expressions. The intent of ALF vector expressions is n
replace existing event report formats. Non-pertinent details of event report formats are n
described here.

Simulation events (e.g., from Verilog or VHDL) can be reported in a value change dump
(VCD) file, which has the following general form:

<time1>
<variableA> <stateU>
<variableB> <stateV>
...

<time2>
<variableC> <stateW>
<variableD> <stateX>
...

<time3> ...

The set of variables for which simulation events are reported, i.e., thescopeof the event report
needs to be defined beforehand. Each variable also has a definition for theset of states it can
take. For instance, there can be binary variables, 16-bit integer variables, 1-bit variable
drive-strength information, etc. Furthermore, the initial state of each variable shall be de
as well. In an ALF context, the termssignalandvariableare used interchangeably. In VHDL,
the corresponding term issignal. In Verilog, there is no single corresponding term. Allinput ,
output , wire , andreg  variables in Verilog correspond to asignal  in VHDL.

The time values<time1> , <time2> , <time3> , etc. shall be in increasing order. The order in
which simultaneous events are reported does not matter. The number of time points an
number of simultaneous events at a certain time point are unlimited.

In the physical world, each event or change of state of a variable takes a certain amount o
A variable cannot change its state more than once at a given point in time. However, in
simulation, this time can be smaller than the resolution of the time scale or even zero (0).
Therefore, a variable can change its state more than once at a given point in simulation
Those events are, strictly speaking, not simultaneous. They occur in a certain order, sep
by an infinitely small delta-time. Multiple simultaneous events of the same variable are 
reported in the VCD. Only the final state of each variable is reported.
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A VCD file is the most compact format that allows reconstruction of entire waveforms fo
given set of variables. A more verbose form is the test pattern format.

<TIME>  <variableA> <variableB> <variableC> <variableD>
<time1> <stateU>    <stateV>    ...         ...
<time2> <stateU>    <stateV>    <stateW>    <stateX>
<time3> ...         ...         ...         ...

The test pattern format reports the state of each variable at every point in time, regardle
whether the state has changed or not. Previous and following states are immediately ava
in the previous and next row, respectively. This makes the test pattern format more rea
than the VCD and well-suited for taking a snapshot of events in a time window.

An example of an event report in VCD format:

// initial values
A 0 B 1 C 1 D X E 1
// event dump
109 A 1 D 0
258 B 0
573 C 0
586 A 0
643 A 1
788 A 0 B 1 C 1
915 A 1
1062 E 0
1395 B 0 C 0
1640 A 0 D 1
// end of event dump

An example of an event report in test pattern format:

time A B C D E
0 0 1 1 X 1
109 1 1 1 0 1
258 1 0 1 0 1
573 1 0 0 0 1
586 0 0 0 0 1
643 1 0 0 0 1
788 0 1 1 0 1
915 1 1 1 0 1
1062 1 1 1 0 0
1395 1 0 0 0 0
1640 0 0 0 1 0

Both VCD and test pattern formats represent the same amount of information and can b
translated into each other.

5.4.2 Event sequences

For specification of a functional waveform (e.g., the write cycle of a memory), it is not pract
to use an event report format, such as a VCD or test pattern format. In such waveforms,
is no absolute time. And the relative time, for example, the setup time between address c
and write enable change, can vary from one instance to the other.
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The main purpose ofvector_expressions  is waveform specification capability. The
following operators can be used:

• vector_unary  (also callededge operator or unary vector operator)
The edge operator is a prefix to a variable in a vector expression. It contains a pair o
states, the first being the previous state, the second being the new state. Edge operat
describe a change of state or no change of state.

• vector_and  (also calledsimultaneous event operator)
This operator uses the overloaded symbol& or && interchangeably. The& operator is the
separator between simultaneously occurring events

• vector_followed_by  (also calledfollowed-by operator)
The “immediately followed-by operator” using the symbol-> is treated first. The-> oper-
ator is the separator between consecutively occurring events.

These operators are necessary and sufficient to describe the following subset of
vector_expressions :

• vector_single_event

A change of state in a single variable, for example:
01 A

• vector_event

A simultaneous change of state in one or more variables, for example:
01 A & 10 B

• vector_event_sequence

Subsequently occurring changes of state in one or more variables, for example:
01 A & 10 B -> 10 A

Thevector_and  operator has a higher binding priority than thevector_followed_by

operator.

We can now express the pattern of the sample event report in avector_event_sequence

expression:

01 A & X0 D -> 10 B -> 10 C -> 10 A -> 01 A
-> 10 A & 01 B & 01 C -> 01 A -> 10 E -> 10 B & 10 C -> 10 A & 01 D

We can define thelength of avector_event_sequence  expression as the number of
subsequent events described in thevector_event_sequence  expression. The length is equa
to the number of->  operators plus one (1).

Although the vector expression format contains an inherent redundancy, since the old st
each variable is always the same as the new state of the same variable in a previous eve
more human-readable, especially for waveform description. On the other hand, it is mo
compact than the test pattern format. For short event sequences, it is even more compa
the VCD, since it eliminates the declaration of initial values. To be accurate, for variables
exactly one event the vector expression is more compact than the VCD. For variables w
more than one event the VCD is more compact than the vector expression. In summary
vector expression format offers readability similar to the test pattern format and compac
close to the VCD format.
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5.4.3 Scope and content of event sequences

Thescopeapplicable to a vector expression defines the set of variables in the event report
contentof a vector expression is the set of variables that appear in the vector expression
The content of a vector expression shall be a subset of variables within scope.

• PINs with the annotationSCOPE = BEHAVIOR are applicable variables for vector expres-
sions within the context ofBEHAVIOR.

• PINs with the annotationSCOPE = MEASUREare applicable variables for vector expression
within the context ofVECTOR.

• PINs with the annotationSCOPE = BOTHare applicable variables for all vector expression

A vector_event_sequence  expression is an event pattern without time, containing only t
variables within its own content. This event pattern is evaluated against the event repor
containing all variables within scope. The vector expression isTrue when the event pattern
matches the event report.

Example:

time A B C D E // scope is A, B, C, D, E
0 0 1 1 X 1
109 1 1 1 0 1
258 1 0 1 0 1
573 1 0 0 0 1
586 0 0 0 0 1
643 1 0 0 0 1
788 0 1 1 0 1
915 1 1 1 0 1
1062 1 1 1 0 0
1395 1 0 0 0 0
1640 0 0 0 1 0

Consider the following vector expressions in the context of the sample event report:

01 A //(1)  content is A

//event pattern expressed by (1):
// A
// 0
// 1

(1)  is True at time 109, time 643, and time 915.

10 B -> 10 C //(2)  content is B, C

//event pattern expressed by (2):
// B C
// 1 1
// 0 1
// 0 0

(2)  is True at time 573.
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10 A -> 01 A //(3)  content is A

//event pattern expressed by (3):
// A
// 1
// 0
// 1

(3)  is True at time 643 and time 915.

01 D //(4)  content is D

//event pattern expressed by (4):
// D
// 0
// 1

(4)  is True at time 1640.

01 A -> 10 C //(5)  content is A, C

//event pattern expressed by (5):
// A C
// 0 1
// 1 1
// 1 0

(5)  is not beTrue at any time, since the event pattern expressed by(5)  does not match the
event report at any time.

5.4.4 Alternative event sequences

The following operator can be used to describe alternative events:

vector_or , also calledevent-or operator or alternative-event operator, using the over-
loaded symbol| or || interchangeably. The| operator is the separator between alternati
events or alternative event sequences.

In analogy to boolean operators,| has a lower binding priority than& and-> . Parentheses can
be used to change the binding priority.

Example:

(01 A -> 01 B) | 10 C === 01 A -> 01 B | 10 C
01 A -> (01 B | 10 C) === 01 A -> 01 B | 01 A -> 10 C

Consider the following vector expressions in the context of the sample event report:

01 A | 10 C //(6)

//event pattern expressed by (6):
// A
// 0
// 1

//alternative event pattern expressed by (6):
// C
// 1
// 0

(6)  is True at time 109, time 573, time 643, time 915, and time 1395.
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10 B -> 10 C | 10 A -> 01 A //(7)

//event pattern expressed by (7):
// B C
// 1 1
// 0 1
// 0 0

//alternative event pattern expressed by (7):
// A
// 1
// 0
// 1

(7)  is True at time 573, time 643, and time 915.

01 D | 10 B -> 10 C //(8)

//event pattern expressed by (8):
// D
// 0
// 1

//alternative event pattern expressed by (8):
// B C
// 1 1
// 0 1
// 0 0

(8)  is True at time 573 and time 1640.

10 B -> 10 C | 10 A //(9)

//event pattern expressed by (9):
// B C
// 1 1
// 0 1
// 0 0

//alternative event pattern expressed by (9):
// A
// 1
// 0

(9)  is True at time 573, time 586, time 788, and time 1640.

The following operators provide a more compact description of certain alternative event
sequences:

• &> events occur simultaneously or follow each other in the order RHS after LHS
• <->  a LHS event followed by a RHS event or a RHS event followed by a LHS event
• <&> events occur simultaneously or follow each other in arbitrary order

Example:

01 A &> 01 C === 01 A & 01 C | 01 A -> 01 C
01 A <-> 01 C === 01 A -> 01 C | 01 C -> 01 A
01 A <&> 01 C === 01 A <-> 01 C | 01 A & 01 C

The binding priority of these operators is higher than of& and-> .
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5.4.5 Symbolic edge operators

Alternative events of the same variable can be described in a even more compact way th
the use of edge operators with symbolic states. The symbol? stands for “any state”.

• edge operator with? as the previous state:
transition from any state to the defined new state

• edge operator with? as the next state:
transition from the defined previous state to any state.

Both edge operators include the possibility no transition occurred at all, i.e., the previou
the next state are the same. This situation can be explicitly described with the following
operator:

edge operator with next state = previous state, also callednon-event operator
The operand stays in the state defined by the operator.

The following symbolic edge operators also can be used:

• ?-  no transition on the operand
• ?!  transition from any state to any state different from the previous state
• ?? transition from any state to any state or no transition on the operand
• ?~ transition from any state to its bitwise complementary state

Example: LetA be a logic variable with the possible states1, 0, andX.

?0 A === 00 A | 10 A | X0 A
?1 A === 01 A | 11 A | X1 A
?X A === 0X A | 1X A | XX A
0? A === 00 A | 01 A | 0X A
1? A === 10 A | 11 A | 1X A
X? A === X0 A | X1 A | XX A
?! A === 01 A | 0X A | 10 A | 1X A | X0 A | X1 A
?~ A === 01 A | 10 A | XX A
?? A === 00 A | 01 A | 0X A | 10 A | 11 A | 1X A | X0 A | X1 A | XX A
?- A === 00 A | 11 A | XX A

For variables with more possible states (e.g., logic states with different drive strength an
multiple bits) the explicit description of alternative events is quite verbose. Therefore the
symbolic edge operators are useful for a more compact description.

This completes the set ofvector_binary  operators necessary for the description of a subs
of vector_expressions  calledvector_complex_event  expressions. Allvector_binary

operators have twovector_complex_event  expressions as operands. The set of
vector_event_sequence  expressions is a subset ofvector_complex_event  expressions.
Everyvector_complex_event  expression can be expressed in terms of alternative
vector_event_sequence  expressions. The latter could be calledminterms, in analogy to
boolean algebra.
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5.4.6 Non-events

A vector_single_event expression involving a non-event operator is called anon-event. A
rigorous definition is required forvector_complex_event expressions containing non-events
Consider the following example of a flip-flop with clock inputCLK and data outputQ.

01 CLK -> 01 Q // (i)
01 CLK -> 00 Q // (ii)

The vector expression(i)  describes the situation where the output switches from0 to 1 after
the rising edge of the clock. The vector expression(ii)  describes the situation where the
output remains at0 after the rising edge of the clock.

How is it possible to decide whether(i) or (ii) is True, without knowing the delay between
CLK andQ? The only way is to wait until any event occurs after the rising edge ofCLK. If the
event is not onQ and the state ofQ is 0 during that event, then(ii)  is True.

Hence, a non-event isTrueevery time when another event happens and the state of the vari
involved in the non-event satisfies the edge operator of the non-event.

Example:

time A B C D E
0 0 1 1 X 1
109 1 1 1 0 1
258 1 0 1 0 1
573 1 0 0 0 1
586 0 0 0 0 1
643 1 0 0 0 1
788 0 1 1 0 1
915 1 1 1 0 1
1062 1 1 1 0 0
1395 1 0 0 0 0
1640 0 0 0 1 0

The test pattern format represents an event, for example01 A , in no different way than a non
event, for example11 E. This non-event isTrueat times 109, 258, 573, 586, 643, 788, and 91
in short, every time when an event happens whileE is constant1.

5.4.7 Compact and verbose event sequences

A vector_event_sequence expression in a compact form can be transformed into a verb
form by padding up everyvector_event  expression with non-events. The next state of ea
variable within avector_event  expression shall be equal to the previous state of the sam
variable in the subsequentvector_event  expression.

Example:

01 A -> 10B === 01 A & 11 B -> 11 A & 10 B
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A vector expression for a complete event report in compact form resembles the VCD, wh
the verbose form looks like the test pattern.

// compact form
01 A & X0 D -> 10 B -> 10 C -> 10 A -> 01 A
-> 10 A & 01 B & 01 C -> 01 A -> 10 E
-> 10 B & 10 C -> 10 A & 01 D
===
// verbose form
?0 A & ?1 B & ?1 C & ?X D & ?1 E->
01 A & 11 B & 11 C & X0 D & 11 E->
11 A & 10 B & 11 C & 00 D & 11 E->
11 A & 00 B & 10 C & 00 D & 11 E->
10 A & 00 B & 00 C & 00 D & 11 E->
01 A & 00 B & 00 C & 00 D & 11 E->
10 A & 01 B & 01 C & 00 D & 11 E->
01 A & 11 B & 11 C & 00 D & 11 E->
11 A & 11 B & 11 C & 00 D & 10 E->
11 A & 10 B & 10 C & 00 D & 00 E->
10 A & 00 B & 00 C & 01 D & 00 E

The transformation rule needs to be slightly modified in case the compact form contains
vector_event expression consisting only of non-events. By definition, the non-event isTrue
only if a real event happens simultaneously with the non-event. Padding up avector_event

expression consisting of non-events with other non-events make this impossible. Rathe
vector_event  expression needs to be padded up with unspecified events, using the??

operator. Eventually, unspecified events can be further transformed into partly specified
events, if a former or future state of the involved variable is known.

Example:

01 A -> 00 B
=== 01 A & 00 B -> ?? A & 00 B

In the first transformation step, the unspecified event?? A  is introduced.

01 A & 00 B -> ?? A & 00 B
=== 01 A & 00 B -> 1? A & 00 B

In the second step, this event becomes partly specified.?? A  is bound to be1? A  due to the
previous event onA.

5.4.8 Unspecified simultaneous events within scope

Variables which are within the scope of the vector expression yet do not appear in the v
expression, can be used to pad up the vector expression with unspecified events as we
is equivalent to omitting them from the vector expression.

Example:

01 A -> 10 B // let us assume a scope containing A, B, C, D, E
===
01 A & 10 B & ?? C & ?? D & ?? E -> 11 A & 10 B & ?? C & ?? D & ?? E
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This definition allows unspecified events to occursimultaneously with specified events or
specified non-events. However, it disallows unspecified events to occurin-between specified
events or specified non-events.

At first sight, this distinction seems to be arbitrary. Why not disallow unspecified events
altogether? Yet there are several reasons why this definition is practical.

If a vector expression disallows simultaneously occurring unspecified events, the applic
tool has the burden not only to match the pattern of specified events with the event repo
also to check whether the other variables remain constant. Therefore, it is better to speci
extra pattern matching constraint explicitly in the vector expression by using the?-  operator.

There are many cases where it actually does not matter whether simultaneously occurr
unspecified events are allowed or disallowed:

• Case 1: Simultaneous events are impossible by design of the flip-flop. For instance, i
flip-flop it is impossible for a triggering clock edge01 CK  and a switch of the data outpu
? Q to occur at the same time. Therefore, such events can not appear in the event rep
makes no difference whether01 CK & ?- Q , 01 CK & ?? Q , or 01 CK is specified. The
only occurring event pattern is01 CK & ?- Q and this pattern can be reliably detected b
specifying01 CK .

• Case 2: Simultaneous events are prohibited by design. For instance, in a flip-flop with
positive setup time and positive hold time, the triggering clock edge01 CK and a switch of
the data input?! D is a timing violation. A timing checker tool needs the violating patte
specified explicitly, i.e.,01 CK & ?! D . In this context, it makes sense to specify the no
violating pattern also explicitly, i.e.,01 CK & ?- D . The pattern01 CK  by itself is not
applicable.

• Case 3: Simultaneous events do not occur in correct design. For instance, power ana
of the event01 CK  needs no specification of?! D  or ?- D . In the analysis of an event
report with timing violations, the power analysis is less accurate anyway. In the analys
the event report for the design without timing violation, the only occurring event patter

01 CK & ?- D  and this pattern can be reliably detected by specifying01 CK .1

• Case 4: The effects of simultaneous events are not modeled accurately. This is the ca
static timing analysis and also to some degree in dynamic timing simulation. For insta
a NAND gate can have the inputsA andB and the outputZ. The event sequence exercising
the timing arc01 A -> 10 Z can only happen ifB is constant1. No event onB can happen
in-between01 A  and10 Z.  Likewise, the timing arc01 B -> 10 Z  can only happen ifA
is constant1 and no event happens in-between01 B  and10 Z . The timing arc with simul-
taneously switching inputs is commonly ignored. A tool encountering the scenario01 A &

01 B -> 10 Z has no choice other than treating it arbitrarily as01 A -> 10 Z or as01 B

-> 10 Z .
• Case 5: The effects of simultaneous events are modeled accurately. Here it makes se

specify all scenarios explicitly, e.g.,01 A & ?- B -> 10 Z , 01 A &?! B -> 10 Z , ?- A

1. The power analysis tool relates to a timing constraint checker in a similar way as a parasitic extraction tool
relates to a DRC tool. If the layout has DRC violations, for instance shorts between nets, the parasitic extractio
tool shall report inaccurate wire capacitance for those nets. After final layout, the DRC violations shall be gon
and the wire capacitance shall be accurate.
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& 01 B -> 10 Z , etc., whereas the patterns01 A -> 10 Z  and01 B -> 10 Z  by them-
selves apply only for less accurate analysis (seeCase 4).

There is also a formal argument why unspecified events on a vector expression need to
allowed rather than disallowed. Consider the following vector expressions within the scop
two variables A and B.

01 A // (i)
01 B // (ii)
01 A & 01 B // (iii)

The natural interpretation here is(iii)  === (i)  & (ii) . This interpretation is only possible
by allowing simultaneously occurring unspecified events.

Allowing simultaneously occurring unspecified events, the vector expressions(i)  and(ii) ,
respectively, are interpreted as follows:

01 A & ?? B // (i’)
?? A & 01 B // (ii’)

Disallowing simultaneously occurring unspecified events, the vector expressions(i)  and
(ii) , respectively, are interpreted as follows:

01 A & ?- B // (i’’)
?- A & 01 B // (ii’’)

The vector expressions(i’)  and(ii’)  are compatible with(iii) , whereas(i’’)  and
(ii’’)  are not.

5.4.9 Simultaneous event sequences

The semantic meaning of the “simultaneous event operator” can be extended to describ
simultaneously occurringevent sequences, by using the following definition:

(01 A#1 .. -> ... 01 A#N) & (01 B#1 .. -> ... 01 B#N)
=== 01 A#1 & 01 B#1 ... -> ... 01 A#N & 01 B#N

This definition is analogous to scalar multiplication of vectors with the same number of indi
The number of indices corresponds to the number ofvector_event expressions separated by
-> operators. If the number of-> in both vector expressions is not the same, the shorter vec
expression can be left-extended with unspecified events, using the?? operator, in order to align
both vector expressions.

Example:

(01 A -> 01 B -> 01 C) & (01 D -> 01 E)
=== (01 A -> 01 B -> 01 C) & (?? D -> 01 D -> 01 E)
=== 01 A & ?? D -> 01 B & 01 D -> 01 C & 01 E
=== 01 A -> 01 B & 01 D -> 01 C & 01 E
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The easiest way to understand the meaning of “simultaneous event sequences” is to co
the event report in test pattern format. If eachvector_event_sequence  expression matches
the event report in the same time window, then the event sequences happen simultane

time A B C D E
0 0 1 1 X 1
109 1 1 1 0 1
258 1 0 1 0 1
573 1 0 0 0 1
586 0 0 0 0 1
643 1 0 0 0 1
788 0 1 1 0 1
915 1 1 1 0 1
1062 1 1 1 0 0
1395 1 0 0 0 0
1640 0 0 0 1 0

Example:

01 A -> 10 B === 01 A & 11 B -> 11 A & 10 B // (10a)

// event pattern expressed by (10a):
// A B
// 0 1
// 1 1
// 1 0

X0 D -> 00 D // (10b)

// event pattern expressed by (10b):
// D
// X
// 0
// 0

(01 A -> 10 B) & (X0 D -> 00 D) // (10) === (10a)&(10b)

Both (10a)  and(10b)  areTrue at time 258. Therefore(10)  is True at time 258.

10 C
=== ?? C -> ?? C -> 10 C
=== ?? C -> ?1 C -> 10 C // (11a)

// event pattern expressed by (11a):
// C
// ?
// ?
// 1
// 0

(11a)  is left-extended to match the length of the following(11b) .

01 A -> 00 D -> 11 E ===
   01 A & 00 D & ?? E
-> ?? A & 00 D & ?? E
-> ?? A & ?? D & 11 E
===
   01 A & 00 D & ?? E
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-> 1? A & 00 D & ?1 E
-> ?? A & 0? D & 11 E // (11b)

// event pattern expressed by (11b):
// A D E
// 0 0 ?
// 1 0 ?
// ? 0 1
// ? ? 1

(11b)  contains explicitly specified non-events. The non-event00 D  calls for the unspecified
events?? A and?? E. The non-event00 E calls for the unspecified events?? A and?? D. By
propagating well-specified previous and next states to subsequent events, some unspe
events become partly specified.

10 C & (01 A -> 00 D -> 11 E) // (11) === (11a)&(11b)

(11a)  is True at time 573 and time 1395.(11b)  is True at time 573 and time 915. Therefore
(11)  is True at time 573.

5.4.10 Implicit local variables

Until now, vector expressions are evaluated against an event report containing all varia
within the scope of a cell. It is practical for the application to work with only one event rep
per cell or, at most, two event reports if the set of variables forBEHAVIOR (scope=behavior )
andVECTOR (scope=measure ) is different. However, for complex cells and megacells, it is
sometimes necessary to change the scope of event observation, depending on operation
Different modes can require a different set of variables to be observed in different event re

The following definition allows toextend the scope of a vector expression locally:

Edge operators apply not only to variables, but also to boolean expressions involving
variables. Those boolean expressions representimplicit local variables that are visible
only within the vector expression where they appear.

Suppose the local variables(A & B) , (A | B)  are inserted into the event report:

time A B C D E A&B A|B
0 0 1 1 X 1 0 1
109 1 1 1 0 1 1 1
258 1 0 1 0 1 0 1
573 1 0 0 0 1 0 1
586 0 0 0 0 1 0 0
643 1 0 0 0 1 0 1
788 0 1 1 0 1 0 1
915 1 1 1 0 1 1 1
1062 1 1 1 0 0 1 1
1395 1 0 0 0 0 0 1
1640 0 0 0 1 0 0 0
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01 (A & B) // (12)

// event pattern expressed by (12):
// A&B
// 0
// 1

(12)  is True at time 109 and time 915.

10 (A | B) // (13)

// event pattern expressed by (13):
// A|B
// 1
// 0

(13)  is True at time 586 and time 1640.

01 (A & B) -> 10 B // (14)

// event pattern expressed by (14):
// B A&B
// 1 0
// 1 1
// 0 1

(14)  is True at time 258.

10 ( A & B) & 10 B -> 10 C // (15)

// event pattern expressed by (15):
// B C A&B
// 1 1 1
// 0 1 0
// 0 0 0

(15)  is True at time 573.

10 (A & B) -> 10 (A | B) // (16)

// event pattern expressed by (16):
// A&B A|B
// 1 1
// 0 1
// 0 0

(16)  is True at time 1640.

5.4.11 Conditional event sequences

The following definitionrestricts the scope of a vector expression locally:

vector_boolean_and , also calledconditional event operator
This operator is defined between a vector expression and a boolean expression, us
overloaded symbol& or &&. The scope of the vector expression is restricted to the variab
and eventual implicit local variables appearing within that vector expression. The boo
expression shall beTrue during the entire vector expression. The boolean expression 

called theExistence Condition of the vector expression.2
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Vector expressions using thevector_boolean_and  operator are called
vector_conditional_event  expressions. Scope and contents of such expressions are
identical, as opposed to non-conditionalvector_complex_event  expressions, where the
content is a subset of the scope.

Example:

(10 (A & B) -> 10 (A | B)) & !D // (17)

// event pattern expressed by (17):
// A&B A|B
// 1 1
// 0 1
// 0 0

// event report without C, E:
time A B D A&B A|B
0 0 1 X 0 1
109 1 1 0 1 1
258 1 0 0 0 1
586 0 0 0 0 0
643 1 0 0 0 1
788 0 1 0 0 1
915 1 1 0 1 1
1062 1 1 0 1 1
1395 1 0 0 0 1
1640 0 0 1 0 0

(17) contains the samevector_complex_event expression as(16) . However, although(16)

is notTrueat time 586,(17) is Trueat time 586, since the scope of observation is narrowed
A, B, A&B, andA|B  by the existence condition!D , which is staticallyTrue while the specified
event sequence is observed.

Within, and only within, the narrowed scope of thevector_conditional_event expression,
(17)  can be considered equivalent to the following:

(10 (A & B) -> 10 (A | B)) & !D
===
(10 (A & B) -> 10 (A | B)) & (11 (!D) -> 11 (!D))
===
10 (A & B) & 11 (!D) -> 10 (A | B) & 11 (!D)

The transformation consists of the following steps:

1. Transform the boolean condition into a non-event.
For example,!D  becomes11 (!D) .

2. Left-extend thevector_single_event expression containing the non-event in order
match the length of thevector_complex_event  expression.

2. An Existence Condition can also appear as annotation to aVECTORobject instead of appearing in the
vector expression. This enables recognition of existence conditions by application tools which can
not evaluate vector expressions (e.g., static timing analysis tools). However, for tools that can eval
ate vector expressions, there is no difference between existence condition as a co-factor in the vec
expression or as an annotation.
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For example,11 (!D)  becomes11 (!D) -> 11 (!D)  to match the length of
10 (A & B) -> 10 (A | B) .

3. Apply scalar multiplication rule for simultaneously occurring event sequences.

Thus, avector_conditional_event  expression can be transformed into an equivalent
vector_complex_event  expression, but the change of scope needs to be kept in mind. A
operator which can express the change of scope in the vector expression language is def
Section 5.4.13. This can make the transformation more rigorous.

Regardless of scope, the transformation fromvector_conditional_event  expression to
vector_complex_event  expression also provides the means of detecting ill-specified
vector_conditional_event  expressions.

Example:

(10 A -> 01 B -> 01 A) & A
===
10 A & 11 A -> 01 B & 11 A -> 01 A & 11 A

The first expression10 A & 11 A  and the third expression01 A & 11 A  within the
vector_complex_event  expression are contradictory. Hence, the
vector_conditional_event  expression can never beTrue.

5.4.12 Alternative conditional event sequences

All vector_binary  operators, in particular thevector_or  operator, can be applied to
vector_conditional_event  expressions as well as tovector_complex_event  expressions.

Consider again the event report:

time A B C D E
0 0 1 1 X 1
109 1 1 1 0 1
258 1 0 1 0 1
573 1 0 0 0 1
586 0 0 0 0 1
643 1 0 0 0 1
788 0 1 1 0 1
915 1 1 1 0 1
1062 1 1 1 0 0
1395 1 0 0 0 0
1640 0 0 0 1 0

Concurrent alternativevector_conditional_event  expressions can be paraphrased in the
following way:

IF <boolean_expression 1> THEN <vector_expression 1>

OR IF <boolean_expression 2> THEN <vector_expression 2>

... OR IF <boolean_expression N> THEN <vector_expression N>

The conditions can beTruewithin overlapping time windows and yhus the vector expressio
are evaluated concurrently. Thevector_boolean_and  operator andvector_or  operator
describe such vector expressions.
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C&(01 A -> 10 B) | !D&(10 B -> 10 A) | E&(10 B -> 10 C) // (18)

// Event pattern expressed by (18):
// A B C
// 0 1 1
// 1 1 1
// 1 0 1

(18)  is True at time 258 because ofC & (01 A -> 10 B) .

// Alternative event pattern expressed by (18):
// A B D
// 1 1 0
// 1 0 0
// 0 0 0

(18)  is alsoTrue at time 586 because of!D & (10 B -> 10 A) .

// Alternative event pattern expressed by (18):
// B C E
// 1 1 1
// 0 1 1
// 0 0 1

(18)  is alsoTrue at time 573 because ofE & (10 B -> 10 C) .

Prioritized alternativevector_conditional_event  expressions can be paraphrased in the
following way:

IF <boolean_expression 1> THEN <vector_expression 1>

ELSE IF <boolean_expression 2> THEN <vector_expression 2>

... ELSE IF <boolean_expression N> THEN <vector_expression N>

(optional) ELSE <vector_expression default >

Only the vector expression with the highest priorityTrue condition is evaluated. The
vector_boolean_cond  operator andvector_boolean_else  operator are used in ALF to
describe such vector expressions.

Example:

C? (01 A -> 10 B): !D? (10 B -> 10 A): E? (10 B -> 10 C) // (19)

The prioritized alternativevector_conditional_event  expression can be transformed into
concurrent alternativevector_conditional_event  expression as shown:

C ? (01 A -> 10 B) : !D ? (10 B -> 10 A) : E ? (10 B -> 10 C)
===
C & (01 A -> 10 B)
| !C & !D & (10 B -> 10 A)
| !C & !(!D) & E & (10 B -> 10 C)

(19) is Trueat time 258 because ofC & (01 A -> 10 B) , but not at time 586 because of highe
priority C while !D & (10 B -> 10 A) , nor at time 573 because of higher priority!D  while
E & (10 B -> 10 C) .
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5.4.13 Change of scope within a vector expression

Conditions on vector expressions redefine the scope of vector expressions locally. The
following definition can be used to change the scope even within a part of a vector expres
For this purpose, the symbolic state* can be used, which means “don’t care about events”. T
is different from the symbolic state? which means “don’t care about state”. When the state
a variable is* , arbitrary events occurring on that variable are disregarded.

• Edge operator with*  as next state:
The variable to which the operator applies is no longer within the scope of the vecto
expression.

• Edge operator with*  as previous state:
The variable to which the edge operator applies is now within the scope of the vecto
expression.

As opposed to?, *  stands for an infinite variety of possibilities.

Example:

Let A be a logic variable with the possible states1, 0, andX.

*0 A ===
00 A | 10 A | X0 A
| 00 A -> 00 A | 10 A -> 00 A | X0 A -> 00 A
| 01 A -> 10 A | 11 A -> 10 A | X1 A -> 10 A
| 0X A -> X0 A | 1X A -> X0 A | XX A -> X0 A
| 00 A -> 00 A -> 00 A | ...

0* A ===
00 A | 01 A | 0X A
| 00 A -> 00 A | 00 A -> 01 A | 00 A -> 0X A
| 01 A -> 10 A | 01 A -> 11 A | 01 A -> 1X A
| 0X A -> X0 A | 0X A -> X1 A | 0X A -> XX A
| 00 A -> 00 A -> 00 A | ...

A vector expression with an infinite variety of possible event sequences cannot be direc
matched with an event report. However, there are feasible ways to implement event seq
detection involving* . In principle, there is a “static” and “dynamic” way. The following part
of the vector expression are separated by* sub-sequences of events.

• “Static” event sequence detection with* :
The event report with all variables can be maintained, but certain variables are maske
the purpose of detection of certain sub-sequences.

• “Dynamic” event sequence detection with* :
The event report shall contain the set of variables necessary for detection of a relevan
sequence. When such a sub-sequence is detected, the set of variables in the event 
shall change until the next sub-sequence is detected, etc.
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01 A -> 1* B -> 10 C // (20)

// Event pattern expressed by (20):
// A B C
// 0 1 1
// 1 1 1
// 1 * 1
// 1 * 0

// pattern for 1st sub-sequence:
// A B C
// 0 1 1
// 1 1 1
// 1 * 1

// pattern for 2nd sub-sequence:
// A B C
// 1 * 1
// 1 * 0

The event report with masking relevant for(20) :

time A B C D E
0 0 1 1 X 1
109 1 1 1 0 1
258 1 * 1 0 1 // detection of 1st sub-sequence
573 1 * 0 0 1 // detection of 2nd sub-sequence
586 0 0 0 0 1
643 1 0 0 0 1
788 0 1 1 0 1
915 1 1 1 0 1
1062 1 * 1 0 0 // detection of 1st sub-sequence
1395 1 * 0 0 0 // detection of 2nd sub-sequence
1640 0 0 0 1 0

(20)  is True at time 573 and time 1395. The first sub-sequence01 A -> 1* B  is detected at
time 258, since * maps to any state. From time 258 onwards,B is masked. The second sub-
sequence10 C is detected at time 573. From time 573 onwards,B is unmasked. The first sub-
sequence is detected again at time 1062. The second sub-sequence is detected again 
1395.

01 A & 1* E -> 10 C // (21)

// Event pattern expressed by (21):
// A C E
// 0 1 1
// 1 1 *
// 1 0 *

// pattern for 1st sub-sequence:
// A C E
// 0 1 1
// 1 1 *
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// pattern for 2nd sub-sequence:
// A C E
// 1 1 *
// 1 0 *

The event report with masking relevant for(21) :

time A B C D E
0 0 1 1 X 1
109 1 1 1 0 * // detection of 1st sub-sequence
258 1 0 1 0 * // abortion of detection process
573 1 0 0 0 1
586 0 0 0 0 1
643 1 0 0 0 1
788 0 1 1 0 1
915 1 1 1 0 * // detection of 1st sub-sequence
1062 1 1 1 0 * // disregard event out of scope
1395 1 0 0 0 0 // detection of 2nd sub-sequence
1640 0 0 0 1 0

(21) isTrue at time1395. The first sub-sequence01 A & 1* E  is detected at time 109. From
time 109 onwards,E is masked. The event onB at time 258 aborts continuation of the detectio
process and triggers restart from the beginning. The first sub-sequence is detected again
915. From time 915 onwards,E is masked. The event at time 1062 is therefore out of scop
The second sub-sequence10 C  is detected at time 1395.

01 A -> *1 B -> 10 B & 10 C // (22)

// Event pattern expressed by (22):
// A B C
// 0 * 1
// 1 * 1
// 1 1 1
// 1 0 0

// pattern for 1st sub-sequence:
// A B C
// 0 * 1
// 1 * 1

// pattern for 2nd sub-sequence:
// A B C
// 1 * 1
// 1 1 1
// 1 0 0
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The event report with masking relevant for(22) :

time A B C D E
0 0 1 1 X 1
109 1 1 1 0 1 // detection of 1st sub-sequence
258 1 0 1 0 1 // abort
573 1 * 0 0 1
586 0 * 0 0 1
643 1 * 0 0 1
788 0 * 1 0 1
915 1 * 1 0 1 // detection of 1st sub-sequence
1062 1 1 1 0 0 // continue
1395 1 0 0 0 0 // detection of 2nd sub-sequence
1640 0 0 0 1 0

(22) is Trueat time 1395. The first sub-sequence01 A is detected at time 109. Therefore,B is
unmasked. SinceB=0 at time 258, the attempt to detect the second sub-sequence is aborte
the detection process restarts from the beginning. The first sub-sequence01 A is detected again
at time 109. The second sub-sequence*1 B -> 10 B & 10 C  is detected at time 1395.

01 A -> 1? A & 0* B & 1* E -> 10 C // (23)

// Event pattern expressed by (23):
// A B C E
// 0 0 1 1
// 1 0 1 1
// 1 * 1 *
// 1 * 0 *

// pattern for 1st sub-sequence:
// A B C E
// 0 0 1 1
// 1 0 1 1
// ? * 1 *

// pattern for 2nd sub-sequence:
// A B C E
// ? * 1 *
// ? * 0 *

The event report with masking relevant for (23):

time A B C D E
0 0 1 1 X 1
109 1 1 1 0 1
258 1 0 1 0 1
573 1 0 0 0 1
586 0 0 0 0 1
643 1 0 0 0 1
788 0 * 1 0 * // detection of 1st sub-sequence
915 1 * 1 0 * // abort
1062 1 1 1 0 0
1395 1 0 0 0 0
1640 0 0 0 1 0

(23) is notTrueat any time. The first sub-sequence is detected at time 788. The event at
915 does not match the expected second sub-sequence.
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5.4.14 Sequences of conditional event sequences

The symbol*  can be used to describe the scope of a vector expression directly in the ve
expression language. This is particularly useful for sequences ofvector_conditional_event

expressions.

In reusing(17)  as example:

(10 (A & B) -> 10 (A | B)) & !D

the scope of the sample event report contains contain the variablesA, B, C, D, andE. The
vector_conditional_event expression(17) contains only the variablesA, B, andD and the
implicit local variablesA&B andA|B . Therefore, the global variablesC andE are out of scope
within (17) . The implicit local variablesA&B andA|B  are in scope within, and only within,
(17) .

Now consider asequenceof vector_conditional_event expressions, where variables mov
in and out of scope. With the following formalism, it is possible to transform such a seque
into an equivalentvector_complex_event expression, allowing for a change of scope withi
eachvector_conditional_event  expression.

<vector_conditional_event#1> .. -> .. <vector_conditional_event#N>

where

<vector_conditional_event#i>
=== <vector_complex_event#i> & <boolean_expression#i>// 1 < i < N

The principle is to decompose eachvector_conditional_event expression into a sequence
of three vector expressionsprefix, kernel, andpostfixand then to reassemble the decompos
expressions.

<vector_conditional_event#i>
=== <prefix#i> -> <kernel#i> -> <postfix#i>// 1 < i < N

1. Define the prefix for eachvector_conditional_event  expression.
Theprefix is avector_event  expression defining all implicit local variables.

Example:

*? (A&B) & *? (A|B)

2. Define the kernel for eachvector_conditional_event  expression.
Thekernel is thevector_complex_event  expression equivalent to the
vector_conditional_event  expression.

<vector_complex_event#i> & <boolean_expression#i>
=== <vector_complex_event#i>
& (11 <boolean_expression#i> ..->.. 11 <boolean_expression#i>)

The kernel can consist of one or several alternativevector_event_sequence expressions.
Within eachvector_event_sequence  expression, the same set of global variables are
pulled out of scope at the firstvector_event  expression and pushed back in scope at t
lastvector_event  expression.
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Example:

?* C & ?* E // global variables out of scope
& 10 (A & B) & 11 (!D) -> 10 (A | B) & 11 (!D)
& *? C & *? E // global variables back in scope

3. Define the postfix for eachvector_conditional_event  expression.
Thepostfix is avector_event  expression removing all implicit local variables.

Example:

?* (A&B) & ?* (A|B)

4. Join the subsequentvector_complex_event  expressions with thevector_and

operator between prefix#i+1and kernel#i and also between postfix#i and kernel#

.. <vector_conditional_event#i> -> <vector_conditional_event#i+1>
..

=== .. <prefix#i>
-> <postfix#i-1> & <kernel#i> & <prefix#i+1>
-> <postfix#i> & <kernel#i+1> & <prefix#i+2>
-> <postfix#i+1> ..

The complete example:

(10 (A & B) -> 10 (A | B)) & !D
===
*? (A&B) & *? (A|B)
-> ?* C & ?* E
& 10 (A & B) & 11 (!D) -> 10 (A | B) & 11 (!D)
& *? C & *? E
-> ?* (A&B) & ?* (A|B)

Note: The in-and-out-of-scope definitions for global variables are within the kernel, whe
the in-and-out-of-scope definitions for global variables are within the prefix and
postfix. In this way, the resultingvector_complex_event  expression contains the
same uninterrupted sequence of events as the original sequence of
vector_conditional_event  expressions.

5.4.15 Incompletely specified event sequences

So far the vector expression language has provided support forcompletely specified event
sequences and also the capability to put variables temporarily in and out of scope for eve
observation. As opposed to changing the scope of event observation,incompletely specified
event sequencesrequire continuous observation of all variables while allowing the occurren
of intermediate events between the specified events. The following operator can be use
that purpose:

vector_followed_by , also calledfollowed-by operator, using the symbol~>.
The~> operator is the separator between consecutively occurring events, with possi
unspecified events in-between.

Detection of event sequences involving~> requires detection of the sub-sequence before~>,
setting a flag, detection of the sub-sequence after~>, and clearing the flag.
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This can be illustrated with a sample event report:

time A B C D E
0 0 1 1 X 1
109 1 1 1 0 1 // 01 A detected, set flag
258 1 0 1 0 1
573 1 0 0 0 1 // 10 C detected, clear flag
586 0 0 0 0 1
643 1 0 0 0 1 // 01 A detected, set flag
788 0 1 1 0 1
915 1 1 1 0 1 // 01 A detected again
1062 1 1 1 0 0
1395 1 0 0 0 0 // 10 C detected, clear flag
1640 0 0 0 1 0

Example:

01 A ~> 10 C // (24)
// as opposed to previous example (5):01 A -> 10 C

(24) is Trueat time 573 because of01 A at time 109 and10 C at time 573. It isTrueagain at
time 1395 because of01 A at time 643 and10 C at 1395. On the other hand,(5) is neverTrue
because there are always events in-between01 A  and10 C .

Vector expressions consisting ofvector_event  expressions separated by->  or by~> are
calledvector_event_sequence expressions, using the same syntax rules for the two differ
vector_followed_by  operators. Consequently, all vector expressions involving
vector_event_sequence  expressions andvector_binary  operators are called
vector_complex_event  expressions.

However, only a subset of the semantic transformation rules can be applied to vector
expressions containing~>.

Associative rule applies for both->  and~>.

(01 A ~> 01 B) ~> 01 C === 01 A ~> (01 C ~> 01 B ~> 01 C)

(01 A -> 01 B) -> 01 C === 01 A -> (01 C -> 01 B -> 01 C)

(01 A ~> 01 B) -> 01 C === 01 A ~> (01 C ~> 01 B -> 01 C)

(01 A -> 01 B) ~> 01 C === 01 A -> (01 C -> 01 B ~> 01 C)

Distributive rule applies for both->  and~>.

(01 A | 01 B) -> 01 C === 01 A ~> 01 C | 01 B -> 01 C

(01 A | 01 B) ~> 01 C === 01 A ~> 01 C | 01 B ~> 01 C

(01 A | 01 B) -> 01 C === 01 A ~> 01 C | 01 B -> 01 C

Scalar multiplication rule applies only for-> . The transformation involving~> is more
complicated.

(01 A -> 01 B) & (01 C -> 01 D)
=== (01 A & 01 C) -> (01 B & 01 D)

(01 A ~> 01 B) & (01 C -> 01 D)
=== (01 A & 01 C) -> (01 B & 01 D)
|    01 A ~> 01 C -> (01 B & 01 D)
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(01 A ~> 01 B) & (01 C ~> 01 D)
=== (01 A & 01 C) ~> (01 B & 01 D)
|    01 A ~> 01 C ~> (01 B & 01 D)
|    01 C ~> 01 A ~> (01 B & 01 D)

Transformation ofvector_conditional_event  expressions intovector_complex_event

expressions applies only for-> .

(01 A -> 01 B) & C
=== 01 A & 11 C -> 01 B & 11 C

(01 A ~> 01 B) & C
 ===  01 A & 11 C ~> 01 B & 11 C

Since the~> operator allows intermediate events, there is no way to express the continu
True conditionC.

5.4.16 How to determine well-specified vector expressions

By defining semantics for

alternativevector_event_sequence  expressions

and establishing calculation rules for

transformingvector_complex_event  expressions into alternative
vector_event_sequence  expressions

and for

transforming alternativevector_conditional_event  expressions into alternative
vector_complex_event  expressions,

semantics are now defined for all vector expressions.

The calculation rules also provide means to determine whether a vector expression is w
specified or ill-specified. An ill-specified vector expression is contradictory in itself and c
therefore never beTrue.

Once a vector expression is reduced to a set of alternativevector_event_sequence

expressions, two criteria define whether a vector expression is well-defined or not.

• Compatibility between subsequent events on the same variable:
The next state of earlier event shall be compatible with previous state of later event.
check applies only if no~> operator is found between the events.

• Compatibility between simultaneous events on the same variable:
Both the previous and next state of both events shall be compatible. Such events co
monly occur as intermediate calculation results within vector expression transformat

The following compatibility rules apply:

• ? is compatible with any other state. If the other state is* , the resulting state is?. Other-
wise, the resulting state is the other state.

• *  is compatible with any other state. The resulting state is the other state.
• Any other state is only compatible with itself.
76 Advanced Library Format (ALF) Reference Manual Version 1.9.0



Variable declarations Functional Modeling

les
y

tion,

lled
eir
Examples:

01 A -> 01 B -> 10 A

The next state of01 A  is compatible with the previous state of10 A .

0X A -> 01 B -> 10 A

The next state of0X A  is not compatible with the previous state of10 A .

0X A ~> 01 B -> 10 A

Compatibility check does not apply, since intermediate events are allowed.

01 A & 10 A

Both the previous and next state ofA are contradictory; this results in an impossible event.

?1 A & 1? A

Both previous and next state ofA are compatible; this results in the non-event11 A .

5.5 Variable declarations

Inside aCELLobject, thePIN objects with thePINTYPE digital define variables forFUNCTION

objects inside the sameCELL. A primary input variableinside aFUNCTIONshall be declared as
a PIN  with DIRECTION=input  or both  (sinceDIRECTION=both  is a bidirectional pin).
However, it is not required that all declared pins are used in the function. Output variab
inside aFUNCTION need not be declared pins, since they are implicitly declared when the
appear at the left-hand side (LHS) of an assignment.

Example:

CELL my_cell {
PIN A {DIRECTION = input;}
PIN B {DIRECTION = input;}
PIN C {DIRECTION = output;}
FUNCTION {

BEHAVIOR {
D = A && B;
C = !D;

}
}

}

C andD are output variables that need not be declared prior to use. After implicit declara
D is reused as an input variable.A andB are primary input variables.

5.5.1 BEHAVIOR

InsideBEHAVIOR, variables that appear at the LHS of an assignment conditionally contro
by a vector expression, as opposed to an unconditional continuous assignment, hold th
values, when the vector expression evaluatesFalse. Those variables are considered to have
latch-type behavior.
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BEHAVIOR {
@(G){

Q = D;  // both Q and QN have latch-type behavior
QN = !D;

}
}

BEHAVIOR {
@(G){

Q = D;  // only Q has latch-type behavior
}
QN = !Q;

}

5.5.2 STATETABLE

The functional description can be supplemented by aSTATETABLE, the first row of which
contains the arguments that are object IDs of the declaredPINs. The arguments appear in two
fields, the first is input and the second is output. The fields are separated by a: . The rows are
separated by a; . The arguments can appear in both fields if thePINs have attribute
direction=output or direction=both . If direction=output , then the argument has latch
type behavior. The argument on the input field is considered previous state and the arg
on the output field is considered the next state. Ifdirection=both , then the argument on the
input field applies for input direction and the argument on the output field applies for ou
direction of the bidirectionalPIN .

Example:

CELL ff_sd {
PIN  q {DIRECTION=output;}
PIN  d {DIRECTION=input;}
PIN cp {DIRECTION=input;

  SIGNALTYPE=clock;
  POLARITY=rising_edge;}

PIN cd {DIRECTION=input; SIGNALTYPE=clear; POLARITY=low;}
PIN sd {DIRECTION=input; SIGNALTYPE=set; POLARITY=low;}
FUNCTION {

BEHAVIOR {
@(!cd) {q = 0;} :(!sd) {q = 1;} :(01 cp) {q = d;}

}
STATETABLE {

cd sd  cp  d   q  : q ;
0  ?   ??  ?   ?  : 0 ;
1  0   ??  ?   ?  : 1 ;
1  1   1?  ?   0  : 0 ;
1  1   ?0  ?   1  : 1 ;
1  1   1?  ?   0  : 0 ;
1  1   ?0  ?   1  : 1 ;
1  1   01  ?   ?  :(d);

}
}

}
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If the output variable with latch-type behavior depends only on the previous state of itse
opposed to the previous state of other output variables with latch-type behavior, it is no
necessary to use that output variable in the input field. This allows a more compact form o
STATETABLE.

Example:

STATETABLE {
cd sd  cp  d  : q ;
0  ?   ??  ?  : 0 ;
1  0   ??  ?  : 1 ;
1  1   1?  ?  :(q);
1  1   ?0  ?  :(q);
1  1   01  ?  :(d);

}

A generic ALF parser shall make the following semantic checks:

• Are all variables of aFUNCTIONdeclared either by declaration asPIN names or through
assignment?

• Does theSTATETABLE exclusively contain declaredPINs?

• Is the format of theSTATETABLE, i.e., the number of elements in each field of each row
consistent?

• Are the values consistently either state or transition digits?

• Is the number of digits in eachTABLE entry compatible with the signal bus width?

A more sophisticated checker for complete verification of logical consistency of aFUNCTION

given in both equation and tabular representation is out of scope for a generic ALF pars
which checks only syntax and compliance to semantic rules. However, formal verificatio
algorithms can be implemented in special-purpose ALF analyzers or model generators/
compilers.

5.5.3 Multi-dimensional variables

A group of pins of a cell can be logically considered together by declaring aPIN with a range.
A pin can be declared with one dimension or two dimensions. For example,

PIN A ; // declares a scalar pin A
PIN [1:8] A1 ; // declares pin A1 with bits numbered 1

// through 8
PIN [1:8] A2[1:4] ;// declares pin A2 with two dimensions

When a pin is declared with one dimension, the left number in the range shall specify the
significant bit number and the right number shall specify the least significant bit number. I
pin is declared with two dimensions, the second dimension shall specify the index of the
and the last rows of the two-dimension pin object.

A PIN  object can be referenced in one of the four forms:
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• Individual bit - the pin name shall be followed by an index of the bit.

• Contiguous group of bits - the pin name shall be followed by the contiguous rang
bits. The most significant and least significant bit numbers shall follow the same
relationship as given in the declaration.

• EntirePIN  object - only the pin name shall be used. It shall be illegal to reference
entire two-dimension pin object in any operation.

• One row of aPIN object - for a two-dimension pin object, the name of the pin shall
followed by the row index of that pin. It shall be illegal to reference the individual
or a group of bits of a two-dimension pin object directly in an operation.

When aPIN object is referenced on the left-hand side of an assignment, the result of the
hand side expression is copied from the least significant bit towards the most significant b
the right-hand side value has lesser number of bits than the referencedPIN  object in an
assignment, the right-hand side value shall be zero-extended to fill the remaining bits o
referencedPIN object. If the right-hand side value has more bits than the referencedPIN object
in an assignment, the right-hand side value shall be truncated to the size of the referencePIN

object.

Example:

pin [1:8] A1;
pin [1:8] A2[1:32] ;

A1[8]   = 'b0 ;
A1[1:6] = 'o75 ; // is equivalent to A1[1:6] = 'b111_101
A1[1:5] = 'o75 ; // is equivalent to A1[1:5] = 'b11_101,

// left most bit is truncated
A2[18]  = 'h5 ; // is equivalent to A2[18] = 'b0000_0101

// entire row 18 of A2 is assigned a value.

Two-dimensionPIN objects shall be referenced with the row index. It shall be illegal to direc
reference an individual bit or a contiguous group of bits of a two-dimensionPIN object. It shall
be illegal to reference the entirePIN  object as a two-dimensionPIN  object.

Example:

pin [1:8] A2[1:32] ;
pin [1:8] B1 ;
pin C ;

// legal references and assignments

A2[10]  = 'h45 ; // assign 'h45 to row 10 of A2  ('b0100_0101)
B1      = A2[10] ; // copies whole row A2[10] to B1
C       = B1[3] ; // c = 'b0

// Illegal references and assignments
// B1[3]   = A2[10][3] ;illegal reference to bit 3 of A2[10]
// A2      = B1 ; illegal reference to entire A2

It shall be legal to use identifiers as an index, but expressions shall not be permitted.
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pin [4:1] ADDR;

ADDR       = 'd 10;
A2[ADDR]   = 'h45 ; // assign 'h45 to row 10 of A2  ('b0100_0101)

// A2[ADDR+1] = 'h45 ; illegal

5.5.4 ROM initialization

TheSTATETABLE statement can be used to describe the contents of a ROM, as far as thi
tent is fixed in the library.

Example:

CELL my_rom {
CELLTYPE = memory;
ATTRIBUTE { rom asynchronous }
PIN[1:2] addr { DIRECTION = input; SIGNALTYPE = address; }
PIN[7:0] dout { DIRECTION = output; SIGNALTYPE = data; }
PIN[7:0] mem[1:4] { DIRECTION=none; VIEW=none; SIGNALTYPE=data; }
FUNCTION {

BEHAVIOR { dout = mem[addr]; }
STATETABLE {

addr: mem ;
‘h0: ‘h5 ;
‘h1: ‘hA ;
‘h2: ‘h5 ;
‘h3: ‘hA ;

}
}

}

For flexibility, a separate included file can be used:

CELL my_rom {
CELLTYPE = memory;
ATTRIBUTE { rom asynchronous }
PIN[1:3] addr { DIRECTION = input; SIGNALTYPE = address; }
PIN[7:0] dout { DIRECTION = output; SIGNALTYPE = data; }
PIN[7:0] mem[1:4] { DIRECTION=none; VIEW=none; SIGNALTYPE=data; }
FUNCTION {

BEHAVIOR { dout = mem[addr]; }
INCLUDE “rom_initialization_file.alf”
}

}
}
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The contents of the included filerom_initialization_file.alf  are:

STATETABLE {
addr: mem ;
‘h0: ‘h5 ;
‘h1: ‘hA ;
‘h2: ‘h5 ;
‘h3: ‘hA ;

}

5.6 Predefined models

This section defines the use of predefined models in ALF.

5.6.1 Usage of PRIMITIVEs

A PRIMITIVE  referenced in aCELL can replace the complete set ofPIN  andFUNCTION

definition.PINs can be declared before the reference to thePRIMITIVE , in order to provide
supplementary annotations that cannot be inherited from thePRIMITIVE . However, theCELL

shall be pin-compatible with thePRIMITIVE .

If the PRIMITIVE  or aCELL is referenced in an annotation container such asSCAN, only the
subset ofPINs used in the non-scan cell shall be compatible with thePINs of the cell.

The pin names can be referenced by order or by name. In the latter case, the LHS is th
name of the referencedPRIMITIVE  or CELL (e.g., the non-scan cell), the RHS is the pin nam
of the actual cell. A constant logic value can also appear at the LHS or RHS, indicating 
needs to be tied to a constant value. If this information is already specified in an annota
inside thePIN  object itself, referencing between a pin name and a constant value is not
necessary.

PRIMITIVE s can also be instantiated insideBEHAVIOR.

5.6.2 Concept of user-defined and predefined primitives

Primitives are described in ALF syntax. Primitives are generic cells containingPIN  and
FUNCTION objects only, i.e., no characterization data. The primitives are used for struc
functional modeling.

Example:

PRIMITIVE MY_PRIMITIVE {
PIN x { ... }
PIN y { ... }
PIN z { ... }
FUNCTION { ... }

}
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CELL MY_CELL {
PIN a { ... }
PIN b { ... }
PIN c { ... }
FUNCTION {

BEHAVIOR { MY_PRIMITIVE { x=a; y=b; z=c; } }
}
...

}

 Extensible primitives, i.e., primitives with variable number of pins can be modeled usin
TEMPLATE.

Example:

TEMPLATE EXTENSIBLE_PRIMITIVE{
PRIMITIVE <primitive_name> {

PIN [0:<max_index>] pin_name {  ... }
...

}
}

// instantiation of the template creates a primitive
EXTENSIBLE_PRIMITIVE {

primitive_name = MY_EXTENSIBLE_PRIMITIVE;
max_index = 2;

}

The set of statements above is equivalent to the following statement:

PRIMITIVE MY_EXTENSIBLE_PRIMITIVE {
PIN [0:2] pin_name {  ... }

...
}

The primitive can be used as shown in the following example:

CELL MY_MEGACELL {
PIN a { ... }
PIN b { ... }
PIN c { ... }
FUNCTION {

BEHAVIOR {
// reference to the primitive
MY_EXTENSIBLE_PRIMITIVE {

pin_name[0] = a;
pin_name[1] = b;
pin_name[2] = c;

}
}

}
...

}

Primitives can be freely defined by the user. For convenience, ALF provides a set of prede
primitives with the reserved prefixALF_ in their name, which cannot be used by user-defin
primitives.
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For allPINs of predefined primitives, the following annotations are defined by default:

VIEW = functional;
SCOPE = behavioral;

For predefined extensible primitives, a placeholder can be directly in thePRIMITIVE definition:

PRIMITIVE ALF_EXTENSIBLE_PRIMITIVE {
PIN [0:<max_index>] pin_name {  ... }

...
}

This is equivalent to the following more verbose set of statements:

TEMPLATE EXTENSIBLE_PRIMITIVE{
PRIMITIVE <primitive_name> {

PIN [0:<max_index>] pin_name {  ... }
...

}
}

EXTENSIBLE_PRIMITIVE {
primitive_name = ALF_EXTENSIBLE_PRIMITIVE;
max_index = <max_index>;

}

5.6.3 Predefined combinational primitives

This section defines the use of predefined combinational primitives.

5.6.3.1 One input, multiple output primitives

There are two combinational primitives with one input pin and multiple output pins:

ALF_BUF andALF_NOT

A GROUP statement is used to define the behavior of all output pins in one statement.

The output pins are indexed starting with0. If 0 is the only index used, the index can be omitte
when referencing the output pin, e.g.,out  refers toout[0] .

PRIMITIVE ALF_BUF {
GROUP index {0:<max_index>}
PIN[0:<max_index>] out {

DIRECTION = output ;
}
PIN in {

DIRECTION = input ;
}
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FUNCTION {
BEHAVIOR {

out[index] = in;
}

}
}

Figure 5-7: Primitive model of ALF_BUF

PRIMITIVE ALF_NOT {
GROUP index {0:<max_index>}
PIN[0:<max_index>] out {

DIRECTION = output ;
}
PIN in {

DIRECTION = input ;
}
FUNCTION {

BEHAVIOR {
out[index] = !in;

}
}

}

Figure 5-8: Primitive model of ALF_NOT

5.6.3.2 One output, multiple input primitives

There are six combinational primitives with one output pin and multiple input pins:

ALF_AND, ALF_NAND, ALF_OR, ALF_NOR, ALF_XOR, andALF_XNOR

The input pins are indexed starting with0. If 0 is the only index used, the index can be omitte
when referencing the input pin, e.g.,in  refers toin[0] .

PRIMITIVE ALF_AND {
PIN out {

DIRECTION = output;
}
PIN[0:<max_index>] in {

DIRECTION = input;
}
FUNCTION {

BEHAVIOR {
out = & in;

}
}

}

Figure 5-9: Primitive model of ALF_AND
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PRIMITIVE ALF_NAND {
PIN out {

DIRECTION = output;
}
PIN[0:<max_index>] in {

DIRECTION = input;
}
FUNCTION {

BEHAVIOR {
out = ~& in;

}
}

}

Figure 5-10: Primitive model of ALF_NAND

PRIMITIVE ALF_OR {
PIN out {

DIRECTION = output;
}
PIN[0:<max_index>] in {

DIRECTION = input;
}
FUNCTION {

BEHAVIOR {
out = | in;

}
}

}

Figure 5-11: Primitive model of ALF_OR

PRIMITIVE ALF_NOR {
PIN out {

DIRECTION = output;
}
PIN[0:<max_index>] in {

DIRECTION = input;
}
FUNCTION {

BEHAVIOR {
out = ~| in;

}
}

}

Figure 5-12: Primitive model of ALF_NOR
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PRIMITIVE ALF_XOR {
PIN out {

DIRECTION = output;
}
PIN[0:<max_index>] in {

DIRECTION = input;
}
FUNCTION {

BEHAVIOR {
out = ^in;

}
}

}

Figure 5-13: Primitive model of ALF_XOR

PRIMITIVE ALF_XNOR {
PIN out {

DIRECTION = output;
}
PIN[0:<max_index>] in {

DIRECTION = input;
}
FUNCTION {

BEHAVIOR {
out = ~^in;

}
}

}

Figure 5-14: Primitive model of ALF_XNOR

5.6.4 Predefined tristate primitives

There are four tristate primitives:

ALF_BUFIF1 , ALF_BUFIF0 , ALF_NOTIF1, andALF_NOTIF0

PRIMITIVE ALF_BUFIF1 {
PIN out {

DIRECTION  = output;
ENABLE_PIN = enable;
ATTRIBUTE {TRISTATE}

}
PIN in  {

DIRECTION  = input;
}
PIN enable {

DIRECTION  = input;
SIGNALTYPE = out_enable;

}
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FUNCTION {
BEHAVIOR {

out = (enable)? in : 'bZ;
}
STATETABLE {

enable in : out;
 0     ?  : Z;
 1     ?  : (in);

}
}

}

Figure 5-15: Primitive model of ALF_BUFIF1

PRIMITIVE ALF_BUFIF0 {
PIN out {

DIRECTION  = output;
ENABLE_PIN = enable;
ATTRIBUTE {TRISTATE}

}
PIN in  {

DIRECTION  = input;
}
PIN enable {

DIRECTION  = input;
SIGNALTYPE = out_enable;

}
FUNCTION {

BEHAVIOR {
out = (!enable)? in : 'bZ;

}
STATETABLE {

enable in : out;
 1     ?  : Z;
 0     ?  : (in);

}
}

}

Figure 5-16: Primitive model of ALF_BUFIF0

PRIMITIVE ALF_NOTIF1 {
PIN out {

DIRECTION  = output;
ENABLE_PIN = enable;
ATTRIBUTE {TRISTATE}

}
PIN in  {

DIRECTION  = input;
}
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PIN enable {
DIRECTION  = input;
SIGNALTYPE = out_enable;

}
FUNCTION {

BEHAVIOR {
out = (enable)? !in : 'bZ;

}
STATETABLE {

enable in : out;
 0     ?  : Z;
 1     ?  : (!in);

}
}

}

Figure 5-17: Primitive model of ALF_NOTIF1

PRIMITIVE ALF_NOTIF0 {
PIN out {

DIRECTION  = output;
ENABLE_PIN = enable;
ATTRIBUTE {TRISTATE}

}
PIN in  {

DIRECTION  = input;
}
PIN enable {

DIRECTION  = input;
SIGNALTYPE = out_enable;

}
FUNCTION {

BEHAVIOR {
out = (!enable)? !in : 'bZ;

}
STATETABLE {

enable in : out;
 1     ?  : Z;
 0     ?  : (!in);

}
}

}

Figure 5-18: Primitive model of ALF_NOTIF0
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5.6.5 Predefined multiplexor

The predefined multiplexor has a known output value if either the select signal and the sel
data inputs are known or both data inputs have the same known value while the select sig
unknown.

PRIMITIVE ALF_MUX {
PIN Q  {

DIRECTION  = output;
SIGNALTYPE = data;

}
PIN[1:0] D  {

DIRECTION  = input;
SIGNALTYPE = data;

}
PIN S  {

DIRECTION  = input;
SIGNALTYPE = select;

}
FUNCTION {

BEHAVIOR {
Q = (S || (d[0] ~^ d[1]) )? d[1] : d[0];

}
STATETABLE {

D[0] D[1] S  : Q ;
?    ?    0  : (D[0]);
?    ?    1  : (D[1]);
0    0    ?  : 0;
1    1    ?  : 1;

}
}

}

Figure 5-19: Primitive model of ALF_MUX

5.6.6 Predefined flip-flop

A dual-rail output D-flip-flop with asynchronous set and clear pins is a generic edge-sens
sequential device. Simpler flip-flops can be modeled using this primitive by setting input
to appropriate constant values. More complex flip-flops can be modeled by adding
combinational logic around the primitive.

A particularity of this model is the use of the last two pinsQ_CONFLICT andQN_CONFLICT,
which are virtual pins. They specify the state ofQ andQN in the eventCLEAR andSET become
active simultaneously.

PRIMITIVE ALF_FLIPFLOP {
PIN Q     {

DIRECTION  = output;
SIGNALTYPE = data;
POLARITY   = non_inverted;

}
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PIN QN    {
DIRECTION  = output;
SIGNALTYPE = data;
POLARITY   = inverted;

}
PIN D     {

DIRECTION  = input;
SIGNALTYPE = data;

}
PIN CLOCK {

DIRECTION  = input;
SIGNALTYPE = clock;
POLARITY   = rising_edge;

}
PIN CLEAR {

DIRECTION  = input;
SIGNALTYPE = clear;
POLARITY   = high;
ACTION     = asynchronous;

}
PIN SET   {

DIRECTION  = input;
SIGNALTYPE = set;
POLARITY   = high;
ACTION     = asynchronous;

}
PIN Q_CONFLICT   {

DIRECTION  = input;
VIEW       = none;

}
PIN QN_CONFLICT  {

DIRECTION  = input;
VIEW       = none;

}
FUNCTION {

ALIAS QX  = Q_CONFLICT;
ALIAS QNX = QN_CONFLICT;
BEHAVIOR {

@ (CLEAR && SET) {
Q  = QX;
QN = QNX;

}
: (CLEAR) {

Q  = 0;
QN = 1;

}
: (SET) {

Q  = 1;
QN = 0;

}
: (01 CLOCK) { // edge-sensitive behavior

Q  = D;
QN = !D;

}
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STATETABLE {

D CLOCK CLEAR SET QX  QNX :  Q    QN ;
?  ??    1     1  ?   ?   : (QX) (QNX);
?  ??    0     1  ?   ?   :  1    0 ;
?  ??    1     0  ?   ?   :  0    1 ;
?  1?    0     0  ?   ?   : (Q)  (QN) ;
?  ?0    0     0  ?   ?   : (Q)  (QN) ;
?  01    0     0  ?   ?   : (D)  (!D) ;

}
}

}

Figure 5-20: Primitive model of ALF_FLIPFLOP

5.6.7 Predefined latch

The dual-rail D-latch with set and clear pins has the same functionality as the flip-flop, ex
the level-sensitive clock (ENABLE pin) is used instead of the edge-sensitive clock.

PRIMITIVE ALF_LATCH {
PIN Q     {

DIRECTION  = output;
SIGNALTYPE = data;
POLARITY   = non_inverted;

}
PIN QN    {

DIRECTION  = output;
SIGNALTYPE = data;
POLARITY   = inverted;

}
PIN D     {

DIRECTION  = input;
SIGNALTYPE = data;

}
PIN ENABLE {

DIRECTION  = input;
SIGNALTYPE = clock;
POLARITY   = high;

}
PIN CLEAR {

DIRECTION  = input;
SIGNALTYPE = clear;
POLARITY   = high;
ACTION     = asynchronous;

}
PIN SET   {

DIRECTION  = input;
SIGNALTYPE = set;
POLARITY   = high;
ACTION     = asynchronous;

}
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PIN Q_CONFLICT   {
DIRECTION = input;
VIEW      = none;

}
PIN QN_CONFLICT  {

DIRECTION = input;
VIEW      = none;

}
FUNCTION {

ALIAS QX  = Q_CONFLICT;
ALIAS QNX = QN_CONFLICT;
BEHAVIOR {

@ (CLEAR && SET) {
Q  = QX;
QN = QNX;

}
: (CLEAR) {

Q  = 0;
QN = 1;

}
: (SET) {

Q  = 1;
QN = 0;

}
: (ENABLE) { // level-sensitive behavior

Q  = D;
QN = !D;

}
}
STATETABLE {

D  ENABLE CLEAR SET QX  QNX :  Q    QN ;
?  ?      1     1   ?   ?   : (QX) (QNX);
?  ?      0     1   ?   ?   :  1    0 ;
?  ?      1     0   ?   ?   :  0    1 ;
?  0      0     0   ?   ?   : (Q)  (QN) ;
?  1      0     0   ?   ?   : (D)  (!D) ;

}
}

}

Figure 5-21: Primitive model of ALF_LATCH

5.6.8 Parameterizeable cells

The concept of describing primitives with variable bus size shall be extended to paramet
able cells. Dynamic template instantiations can be used for that purpose.

Template definitions can incorporate any type of object. Placeholders in the template de
tion are the equivalent of parameters. Hence, the definition of parameterizeable cells is a
supported within the support of general template definitions.
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In astatic template instantiation, which is identified by the name of the template and by th
optional value assignmentstatic , placeholders are replaced by fixed values or by comple
objects containing fixed values. Non-referenced placeholders stay in place and eventua
result in semantically unrecognizable objects, which cannot be processed by downstrea
applications. Such unrecognizable objects shall be disregarded.

In adynamic template instantiation, which is identified by the name of the template and by th
mandatory value assignmentdynamic , some placeholders can not be replaced. Those plac
holders are application parameters. The template definition can already contain certain
tionships between parameters (e.g., arithmetic model and its arguments in the header).
Therefore the template instantiation determines which parameters need application valu
order to calculate values for other parameters.

Going one step further, even the relationship between parameters can be defined in the
dynamic template instantiation rather than in the template definition. In this case, the id
ers inside the placeholders become variables for arithmetic assignments. This definition
variables shall only be recognized within the context of the dynamic template instantiati

Arithmetic assignments provide a shorter syntax for equation-based arithmetic models 
only placeholder-parameters are involved.

param1 = 1.5 + 0.4 * param2 ** 3 - 2.7 / param3

is equivalent to

param1 {
HEADER { param2 param3 }
EQUATION { 1.5 + 0.4 * param2 ** 3 - 2.7 / param3 }

}

For table-based models or for models where the arguments have children objects attac
them, the verbose syntax withHEADER needs to be used.

Example:

TEMPLATE adder {
CELL <cellname> {

PIN [ <bitwidth> : 1 ] A { DIRECTION = input; }
PIN [ <bitwidth> : 1 ] B { DIRECTION = input; }
PIN Cin { DIRECTION = input; }
PIN [ <bitwidth> : 1 ] S { DIRECTION = output; }
PIN Cout { DIRECTION = output; }

FUNCTION {
BEHAVIOR {

S = A + B + Cin;
Cout = (A + B + Cin >= (‘b1 << (<bitwidth> - 1)));

}
}
AREA = <areavalue>;
VECTOR (?! Cin -> ?! Cout) {
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DELAY {
HEADER {

CAPACITANCE {PIN = Cout; }
SLEWRATE {PIN = Cin; }

}
EQUATION { <D0> + <D1>*CAPACITANCE + <D2>*SLEWRATE }

}
}

}
}

The template is used for instantiation of a hard macro:

adder { /* a hard macro */
cellname = ripple_carry_adder_16_bit;
bitwidth = 16;
areavalue = 500;
// D0, D1, D2 are undefined. DELAY cannot be calculated.

}

The static instantiation of the hard macro is equivalent to the following static object:

CELL ripple_carry_adder_16_bit {
PIN [ 16 : 1 ] A { DIRECTION = input; }
PIN [ 16 : 1 ] B { DIRECTION = input; }
PIN Cin { DIRECTION = input; }
PIN [ 16 : 1 ] S { DIRECTION = output; }
PIN Cout { DIRECTION = output; }

FUNCTION {
BEHAVIOR {

S = A + B + Cin;
Cout = (A + B + Cin >= ’b1000000000000000);

}
}

AREA = 500 ;

VECTOR (?! Cin -> ?! Cout) {
// DELAY {
// HEADER {
// CAPACITANCE {PIN = Cout; }
// SLEWRATE {PIN = Cin; }
// }
// EQUATION { <D0> + <D1>*CAPACITANCE + <D2>*SLEWRATE }
// }

}
}
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Now the template is used for instantiation of a soft macro:

adder = dynamic { /* a soft macro */
cellname = ripple_carry_adder_N_bit;
areavalue = 20 + 30 * bitwidth;
}
D0 {

HEADER { AREA { TABLE { 10 20 30 } } }
TABLE { 15.6 34.3 50.7 }

}
D1 = 0.29;
D2 = 0.08;

}

The dynamic instantiation of the soft macro results in an object for which certain data de
on the runtime-values of the placeholder-parameters, as indicated initalic below. The
calculation method for such data, however, can be compiled statically (e.g., the equatio
AREA is a function of bitwidth and the lookup table forD0 is a function ofAREA).

CELL ripple_carry_adder_N_bit {
PIN [ bitwidth  : 1 ] A { DIRECTION = input; }
PIN [ bitwidth  : 1 ] B { DIRECTION = input; }
PIN Cin { DIRECTION = input; }
PIN [ bitwidth  : 1 ] S { DIRECTION = output; }
PIN Cout { DIRECTION = output; }

FUNCTION {
BEHAVIOR {

S = A + B + Cin;
Cout = (A + B + Cin >= (‘b1 << (bitwidth - 1)) );

}
}

AREA = 20 + 30 * bitwidth  ;

VECTOR (?! Cin -> ?! Cout) {
DELAY {

HEADER {
CAPACITANCE {PIN = Cout; }
SLEWRATE {PIN = Cin; }
D0 {

HEADER { AREA { TABLE { 10 20 30 } } }
TABLE { 15.6 34.3 50.7 }

}
}
EQUATION { D0 + 0.29*CAPACITANCE + 0.08*SLEWRATE }

}
}

}
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