Section 5
Functional Modeling

This chapter specifies the functional modeling for synthesis, formal verification, and
simulation.

5.1 Combinational functions

This section defines the different types of combinational functions in ALF.

5.1.1 Combinational logic

Combinational logic can be described by continuous assignments of boolean Tialaes (
False to output variables as a function of boolean values of input variables. Such functions can
be expressed in either boolean expression format or statetable format.

Let us consider an arbitrary continuous assignment

z=fa ;.,.a n)
In a dynamic or simulation context, the left-hand side (LHS) varialdesvaluated whenever
there is a change in one of the right-hand side (RHS) variabls® storage of previous states
is needed for dynamic simulation of combinational logic.
5.1.2 Boolean operators on scalars

Table 5-1, Table 5-2,and Table 5-3 listunary, binary, and ternary boolean operators on scalars.

Table 5-1 : Unary boolean operators

Operator Description

I~ logical inversion

Table 5-2 : Binary boolean operators

Operator Description
&& & logical AND
[l . | logical OR
~N logic equivalence (XNOR)
N logic anti valence (XOR)

Version 1.9.0 Advanced Library Format (ALF) Reference Manual 29

Functional Modeling Combinational functions

Table 5-3 : Ternary operator

Operator Description

? boolean condition operator for construction of comb
national if-then-else clause

boolean else operator for construction of combinatiopal
if-then-else clause

Combinational if-then-else clauses are constructed as follows:

<cond1>? <valuel>: <cond2>? <value2>: <cond3>? <value3>: <default value>
If condl evaluates to booleafrue thenvaluel isthe result; else ifond2 evaluates to boolean

True thenvalue2 is the result; else Hond3 evaluates to booledfrue thenvalue3d is the
result; elsalefault_value is the result of this clause.
5.1.3 Boolean operators on words

Table 5-4 and Table 5-5 list unary and binary reduction operators on words (logic variables
with one or more bits). The result of an expression using these operators shall be a logic value.

Table 5-4 : Unary reduction operators

Operator Description
& AND all bits

~& NAND all bits
| OR all bits

~ NOR all bits
N XOR all bits
~N XNOR all bits

Table 5-5 : Binary reduction operators

Operator Description

== equality for case comparison

1= non-equality for case comparison

> greater
< smaller
>= greater or equal
<= smaller or equal

30 Advanced Library Format (ALF) Reference Manual Version 1.9.0

Combinational functions Functional Modeling

Table 5-6 and Table 5-7 list unary and binary bitwise operators. The result of an expression
using these operators shall be an array of bits.

Table 5-6 : Unary bitwise operators

Operator Description

~ bitwise inversion

Table 5-7 : Binary bitwise operators

Operator Description

& bitwise AND

| bitwise OR

N bitwise XOR
~N bitwise XNOR

The following arithmetic operators, listed in Table 5-8, are also defined for boolean operations
on words. The result of an expression using these operators shall be an extended array of bits.

Table 5-8 : Binary operators

Operator Description
<< shift left
>> shift right
+ addition

- subtraction

* multiplication
/ division
% modulo division

The arithmetic operations addition, subtraction, multiplication, and division shat&igned
if all the operands have the datatypesignedIf any of the operands have the datatype signed,
the operation shall b&gned See Table 6-23 for tRATATYPEdefinitions.

514 Operator priorities

The priority of binding operators to operands in boolean expressions shall be from strongest to
weakest in the following order:

1. unary boolean operatar,, & ~&, |, ~| ,~, ~*)
2. XNOR(~"), XOR(?), relational §, <, >=, <=, ==, 1=), shift <, >>)

3. AND(&, &&), NAND(~&), multiply (+), divide (), modulus ¢

Version 1.9.0 Advanced Library Format (ALF) Reference Manual 31

Functional Modeling Combinational functions

4. OR(|,|l), NOR(~|), add ¢), subtract)

5. ternary operator®(:)

5.1.5 Datatype mapping

Logical operations can be applied to scalars and words. For that purpose, the values of the
operands are reduced to a system of three logic values in the following way:

H has the logic value

L has the logic value

Wz, U have the logic valug

A word has the logic valug if the unary OR reduction of all bits resultsLin
A word has the logic valug if the unary OR reduction of all bits resultin
A word has the logic valug, if the unary OR reduction of all bits resultsxin

Case comparison operations can also be applied to scalars and words. For scalars, they are
defined in Table 5-9.

Table 5-9 : Case comparison operators

A B ==B | Al=B A>B A<B
1 1 1 0 0 0
1 H 0 1 X X
1 0 0 1 1 0
1 L 0 1 1 0
1 W, U, Z X 0 1 X 0
H 1 0 1 X X
H H 1 0 0 0
H 0 0 1 1 0
H L 0 1 1 0
H W, U, Z, X 0 1 X 0
0 1 0 1 0 1
0 H 0 1 0 1
0 0 1 0 0 0
0 L 0 1 X X
0 W, U, Z X 0 1 0 X
L 1 0 1 0 1
L H 0 1 0 1
L 0 0 1 X X
L L 1 0 0 0
L W, U, Z, X 0 1 0 X
X X 1 0 X X
X U X X X X
X 0O,1L,HLWZ]| O 1 X X

32 Advanced Library Format (ALF) Reference Manual Version 1.9.0

Combinational functions Functional Modeling

Table 5-9 : Case comparison operators, continued

A B ==B | Al=B A>B A<B
W wW 1 0 X X
w U X X X X
W 0,L,HLX Z | O 1 X X
Z Z 1 0 X X
z u X X X X

Z O0LHLXW]| O 1 X X
u 0,1,H,L, X X X X

XW, Z,U

For word operands, the operationand< are performed after reducing all bits to the 3-value
system first and then interpreting the resulting number according to the datatype of the
operands. For example, if datatypsiigned'b1111 is smaller tharboooo ; if datatype is
unsigned'n1111 is greater thamoooo . If two operands have the same vatue11 and a
different datatype, the unsignedi11 is greater than the signad111 .

The operations= and<= are defined in the following way:
(a>=b)===(a>b) || (@==b)
(a<=b)===(a<b) || (@==b)

5.1.6 Rules for combinational functions

If a boolean expression evaluafbsie the assigned output valuelisif a boolean expression
evaluates-alse the assigned output valuedslf the value of a boolean expression cannot be
determined, the assigned output valug.idssignment of values other thano, or X needs to
be specified explicitly.

For evaluation of the boolean expression, input vakieshall be treated asL . Input value
'bL shall be treated as0 . All other input values shall be treatedas.

Examples:
In equation form, these rules can be expressed as follows.
BEHAVIOR {
Z=A;
}
is equivalent to
BEHAVIOR {
Z=A7?'bl:bO;
}
More explicitly, this is also equivalent to

BEHAVIOR {
Z = (A=="b1 || A=="bH)? 'b1 : (A=="b0 || A=="bL)? 'b0 : 'bX;
}

Version 1.9.0 Advanced Library Format (ALF) Reference Manual 33

Functional Modeling Combinational functions

In table form, this can be expressed as follows:

STATETABLE {
A : Z;
? : (A);
}
which is equivalent to
STATETABLE {
A : Z;
0 : 0;
1 : 1;
}
More explicitly, this is also equivalent to
STATETABLE {
: Z;
0 0;
L 0;
1 1;
H 1;
X X;
W X;
Z X;
U X;
}
5.1.7 Concurrency in combinational functions

Multiple boolean assignments in combinational functions are understood to be concurrent. The
order in the functional description does not matter, as each boolean assignment describes a
piece of a logic circuit. This is illustrated in Figure 5-1.

BEHAVIOR {
Q1 =<1st_boolean_expression(D1..Di)> ;

Qn = <nth_boolean_expression(D1..Di)> ;

| -
1st boolean expression Q1
C)
® >< nth boolean expression) p QN
-

Figure 5-1: Concurrency for combinational logic

34 Advanced Library Format (ALF) Reference Manual Version 1.9.0

Sequential functions Functional Modeling

5.2 Sequential functions

This section defines the different types of sequential functions in ALF.

5.2.1 Level-sensitive sequential logic

In sequential logic, an output varialglecan also be a function of itself, i.e., of its previous
state. The sequential assignment has the form

zi=fa ... a N1 Z e z m

The RHS cannot be evaluated continuously, since a change in the LHS as a result of a RHS
evaluation shall trigger a new RHS evaluation repeatedly, unless the variables attain stable
values. Modeling capabilities of sequential logic with continuous assignments are restricted to
systems with oscillating or self-stabilizing behavior.

However, using the concept tifggering conditiongor the LHS enables everything which is
necessary for modelingvel-sensitivesequential logic. The expression of a triggered
assignment can look like this:

@gbj ... b KWz j=fla 1... a N Z e z m

The evaluation of is activated whenever thaggering functiong is True The evaluation of
is self-triggered, i.e. at each time when an argumegitbéinges its value. ¢fis a boolean
expression liké, we can model all types tdvel-sensitive sequential logic

During the time whe is True, the logic cell behaves exactly like combinational logic. During
the time wherg is False the logic cell holds its value. Hence, one memory element per state
bit is needed.

5.2.2 Edge-sensitive sequential logic

In order to modeédge-sensitive sequential logrotations for logical transitions and logical
states are needed.

If the triggering functiorg is sensitive to logical transitions rather than to logical states, the
functiong evaluates t@rueonly for an infinitely small time, exactly at the moment when the
transition happens. The sole purposg of to trigger an assignment to the output variable
through evaluation of the functidrexactly at this time.

Edge-sensitive logic requires storage of the previous output state and the input state (to detect
a transition). In fact, all implementations of edge-triggered flip-flops require at least two
storage elements. For instance, the most popular flip-flop architecture features a master latch
driving a slave latch.

Using transitions in the triggering function for value assignment, the functionality of a positive
edge triggered flip-flop can be described as follows in ALF:

@ (01 CP){Q =D}
which reads “at rising edge aP, assigm the value ob".

If the flip-flop also has an asynchronous direct clear pmj, the functional description
consists of either two concurrent statements or two statements ordered by priority, as shown in
Figure 5-2.

Version 1.9.0 Advanced Library Format (ALF) Reference Manual 35

Functional Modeling Sequential functions

/I concurrent style

@ (ICD){Q =03}

@ (01 CP && CD) {Q =D;}

I/ priority (if-then-else) style

@ (ICD){Q =0;}: (01 CP) {Q =D}

Figure 5-2: Model of a flip-flop with asynchronous clear in ALF

The following two examples show corresponding simulation models in Verilog and VHDL.

/I full simulation model

always @(negedge CD or posedge CP) begin
if('!CD)Q<=0;
else if (CP && !CP_last_value) Q <=D;
else Q <= 1'bx;
end
always @ (posedge CP or negedge CP) begin
if (CP===0 | CP===1'bx) CP_last_value <= CP ;
end

/I simplified simulation model for synthesis

always @(negedge CD or posedge CP) begin
if('!CD)Q<=0;
else Q <=D;

end

Figure 5-3: Model of a flip-flop with asynchronous clear in Verilog

36 Advanced Library Format (ALF) Reference Manual Version 1.9.0

Sequential functions Functional Modeling

/I full simulation model
process (CP, CD) begin
if (CD ="'0") then
Q<="05
elsif (CP'last_value ='0"and CP ="'1" and CP'event) then
Q<=D;
elsif (CP'last_value ='0" and CP ="'X'and CP'event) then
Q<="X;
elsif (CP'last_value ='X'and CP ='1' and CP'event) then
Q<="X;
end if;
end process;
Il simplified simulation model for synthesis
process (CP, CD) begin
if (CD ="'0") then
Q<='0,
elsif (CP ='1" and CP'event) then
Q<=D;
end if;
end process;

Figure 5-4: Model of a flip-flop with asynchronous clear in VHDL

The following differences in modeling style can be noticed: VHDL and Verilog provide the list
of sensitive signals at the beginning of phecess oralways block, respectively. The
information of level-or edge-sensitivity shall be inferredfbythen -else statements inside

the block. ALF shows the level-or-edge sensitivity as well as the priority directly in the
triggering expression. Verilog has another particularity: The sensitivity list indicates whether
at least one of the triggering signals is edge-sensitive by the uegedje or posedge .

However, it does not indicate which one, since either none or all signals shaléudge or
posedge qualifiers.

Furthermoreposedge is any transition witlo as initial stateor 1 as final state. A positive-edge
triggered flip-flop shall be inferred for synthesis, yet this flip-flop shall only work correctly if
both the initial state is andthe final state i9. Therefore, a simulation model for verification
needs to be more complex than the model in the synthesizeable RTL code.

In Verilog, the extra non-synthesizeable code needs to also reproduce the relevant previous
state of the clock signal, whereas VHDL has built-in suppottforalue of a signal.

5.2.3 Unary operators for vector expressions

A transition operation is defined using unary operators on a scalar net. The scalar constants (see
Figure 11-6) shall be used to indicate the start and end states of a transition on a scalar net.

bit bit /[apply transition from bit value to bit value

Version 1.9.0 Advanced Library Format (ALF) Reference Manual 37

Functional Modeling Sequential functions

For example,

01 is a transition frono to 1.

No whitespace shall be allowed between the two scalar constants. The transition operators
shown in Table 5-10 shall be considered legal.

Table 5-10 : Unary vector operators on bits

Operator Description

01 signal toggles frond to 1

10 signal toggles from to 0

00 signal remain®

11 signal remaingd

0? signal remain® or toggles fron® to arbitrary value

1? signal remaind or toggles fromd to arbitrary value

20 signal remain® or toggles from arbitrary value @

?1 signal remaind or toggles from arbitrary value fo

?? signal remains constant or toggles between arbitrary values
o* a number of arbitrary signal transitions, including possibility of]

constant value, with the initial val@e

1* a number of arbitrary signal transitions, including possibility of]
constant value, with the initial valde

% a number of arbitrary signal transitions, including possibility off
constant value, with arbitrary initial value

*0 a number of arbitrary signal transitions, including possibility of]
constant value, with the final valGe

*1 a number of arbitrary signal transitions, including possibility of]
constant value, with the final valde

*? a number of arbitrary signal transitions, including possibility off
constant value, with arbitrary final value

Unary operators for transitions can also appear iSTAEETABLE
Transition operators are also defined on words (and can appeastiarBTABLEas well):

' base word ' base word

In this context, the transition operator shall apply transition from first word value to second
word value.

For example,

'hA'h5 IS a transition of a 4-bit signal from1010 to'b0101 .
No whitespace shall be allowed betwéaseandword.

38 Advanced Library Format (ALF) Reference Manual Version 1.9.0

Sequential functions Functional Modeling

The unary and binary operators for transition, listed in Table 5-11 and Table 5-12 respectively,
are defined on bits and words.

Table 5-11 : Unary vector operators on bits or words

Operator Description
?- no transition occurs
?? apply arbitrary transition, including possibility of constant valug¢
?! apply arbitrary transition, excluding possibility of constant value
?~ apply arbitrary transition with all bits toggling

5.24 Basic rules for sequential functions

A sequential function is described in equation form by a boolean assignment with a condition
specified by a boolean expression or a vector expression. If the condition evalua{ésue),

the boolean assignment is activated and the assigned output values follows the rules for
combinational functions. If the vector expression evaluategkalse), the output variables

hold their assigned value from the previous evaluation.

For evaluation of a condition, the value shall be treated asue the valuebL shall be
treated agalse All other values shall be treated as the unknown vakue

Example:
The following behavior statement

BEHAVIOR {
@ (B){z=A}
}
is equivalent to
BEHAVIOR {
@ (E=="bl || E=="bH) {Z = A}
}
The following statetable statement, describing the same logic function
STATETABLE {
E A : Z,
0 ? ; 2);
1 ? : (M)
}
is equivalent to
STATETABLE {
A Z,
0 ? (2);
L ? 2);
1 ? (A);
H ? (A);
}

Version 1.9.0 Advanced Library Format (ALF) Reference Manual 39

Functional Modeling Sequential functions

For edge-sensitive and higher-order event sensitive functions, transitions frorlorgball
be treated like transitions from or'bo , and transitions from or tbH shall be treated like
transitions from or t1 .

Not every transition can trigger the evaluation of a function. The set of vectors triggering the
evaluation of a function are calladtive vectorsFrom the set of active vectors, a set of

inactive vectorgan be derived, which shall clearly not trigger the evaluation of a function.
There are is also a set of ambiguous vectors, which can trigger the evaluation of the function.

The set of active vectors is the set of vectors for which both observed states before and after
the transition are known to be logically equivalent to the corresponding states defined in the
vector expression.

The set of inactive vectors is the set of vectors for which at least one of the observed states
before or after the transition is known to be not logically equivalent to the corresponding states
defined in the vector expression.

Example:

For the following sequential function
@O1CP){Z=A;}

the active vectors are

(b0'b1 CP)
(bO'bH CP)
(bL'b1 CP)
(bL'bH CP)

and the inactive vectors are

(b1'b0 CP)
(b1'bL CP)
(b1'bX CP)
(b1'bW CP)
(b1'bZ CP)
(bH'bO CP)
(bH'bL CP)
(bHbX CP)
(bH’bW CP)
(bHbZ CP)
(bX’b0 CP)
(bX’bL CP)
(bW’b0 CP)
(bW’bL CP)
(bZ’b0 CP)
(bZ’bL CP)
(bU’b0 CP)
(bU’bL CP)

40 Advanced Library Format (ALF) Reference Manual Version 1.9.0

Sequential functions Functional Modeling

and the ambiguous vectors are

(bO’bX CP)
(bO’bW CP)
(b0’bZ CP)
(bL’bX CP)
(bL'bW CP)
(bL’bZ CP)
(bX’b1 CP)
(bW'b1 CP)
(bZ'bl CP)
(bX’bH CP)
(bW’bH CP)
(bZ'bH CP)
(bX’bW CP)
(bX’bZ CP)
(bW’bX CP)
(bW'bZ CP)
(bZ'bX CP)
(bZ’bW CP)
(bU'bX CP)
(bUbW CP)
(bU'bZ CP)

For vectors using exclusively based literals, the set of active vectors is the vector itself, the set

of inactive vectors is any vector with at least one different literal, and the set of ambiguous
vectors is empty.

Therefore, ALF does not provide a default behavior for ambiguous vectors, since the behavior
for each vector can be explicitly defined in vectors using based literals.

5.2.5 Concurrency in sequential functions

The principle of concurrency applies also for edge-sensitive sequential functions, where the
triggering condition is described by a vector expression rather than a boolean expression. In
edge-sensitive logic, the target logic variable for the boolean assignment (LHS) can also be an
operand of the boolean expression defining the assigned value (RHS). Concurrency implies
that the RHS expressions are evaluated immediaiigrethe triggering edge, and the values

are assigned to the LHS variables immediaatigr the triggering edge. This is illustrated in
Figure 5-5.

Version 1.9.0 Advanced Library Format (ALF) Reference Manual 41

Functional Modeling Sequential functions

BEHAVIOR {
@ (<vector_expression(E1..Em)>) { El Em
Ql=

<1st_boolean_expression(D1..Di)>;

vector
expression

Qn =

<nth_boolean_expression(D1..Di)>; } }

1st boolean expression) d 9@ QL

A\ %;\v

nth boolean expression >_d q T_> Qn

)
=
)

Figure 5-5: Concurrency for edge-sensitive sequential logic

Statements with multiple concurrent conditions for boolean assignments can also be used in
sequential logic. In that case conflicting values can be assigned to the same logic variable. A
default conflict resolution is not provided for the following reasons:

» Conflict resolution might not be necessary, since the conflicting situation is prohibited by
specification.

» For different types of analysis (e.g., logic simulation), a different conflict resolution
behavior might be desirable, while the physical behavior of the circuit shall not change.
For instance, pessimistic conflict resolution always assignere accurate conflict reso-
lution first checks whether the values are conflicting. Different choices can be motivated
by a trade-off in analysis accuracy and runtime.

» If complete library control over analysis is desired, conflict resolution can be specified
explicitly.

Example:

BEHAVIOR {
@ (<condition_1>){Q = <value_1>;}
@ (<condition_2>){Q = <value_2>;}
}

Explicit pessimistic conflict resolution can be described as follows:
BEHAVIOR {
@ (<condition_1> && <condition_2>) { Q ='bX; }
@ (<condition_1> && ! <condition_2>) { Q = <value_1>; }
@ (<condition_2> && ! <condition_1>) { Q = <value_2>; }

42 Advanced Library Format (ALF) Reference Manual Version 1.9.0

Sequential functions Functional Modeling

Explicit accurate conflict resolution can be described as follows:

BEHAVIOR {
@ (<condition_1> && <condition_2>) {
Q = (<value_1>==<value_2>)? <value_1>: 'bX;
}
@ (<condition_1> && ! <condition_2>) { Q = <value_1>;}
@ (<condition_2> && ! <condition_1>) { Q = <value_2>;}
}
Since the conditions are now rendered mutually exclusive, equivalent descriptions with priority
statements can be used. They are more elegant than descriptions with concurrent statements.

BEHAVIOR {
@ (<condition_1> && <condition_2>) {
Q = <conflict_resolution_value>;
}

. (<condition_1>){ Q = <value_1>;}
. (<condition_2>) { Q = <value_2>;}
}
Given the various explicit description possibilities, the standard does not prescribe a default
behavior. The model developer has the freedom of incomplete specification.

5.2.6 Initial values for logic variables

Per definition, all logic variables in a behavioral description have the initial valinch
means “uninitialized”. This value cannot be assigned to a logic variable, yet it can be used in a
behavioral description in order to assign other valuesuladter initialization.

Example:
BEHAVIOR {
@(Ql=="bU){Q1l="b1;}
@(Q2=="bU){Q2="b0;}
/I followed by the rest of the behavioral description
}

A template can be used to make the intent more obvious, for example:
TEMPLATE VALUE_AFTER_INITIALIZATION {

@ (<logic_variable> == 'b U) { <logic_variable> = <initial_value>
3
}
BEHAVIOR {
VALUE_AFTER_INITIALIZATION (Q1 'b1")
VALUE_AFTER_INITIALIZATION (Q2 'b0")
/I followed by the rest of the behavioral description
}

Logic variables in a vector expression shall be declareuhss. It is possible to annotate initial
values directly to a pin. Such variables shall never take the valteerefore vector
expressions involving for such variables (see the previous example) are meaningless.

Example:

PIN Q1 { INITIAL_VALUE ="b1;}
PIN Q2 { INITIAL_VALUE ="b0; }

Version 1.9.0 Advanced Library Format (ALF) Reference Manual 43

Functional Modeling Higher-order sequential functions

5.3 Higher-order sequential functions

This section defines the different types of higher-order sequential functions in ALF.

5.3.1 Vector-sensitive sequential logic

Vector expressions can be used to model generalized higher order sequential logic; they are an
extension of the boolean expressions.eitor expressiodescribes sequences of logical

events or transitions in addition to static logical states. A vector expression represents a
description of a logical stimulus without timescale. It describes the order of occurrence of
events.

The -> operatoffollowed by gives a general capability of describing a sequence of events or
a vector. For example, consider the following vector expression:

01A->01B
which reads “rising edge oxis followed by rising edge o#i'.

A vector expression is evaluated by an event sequence detection function. Like a single event
or a transition, this function evaluat&sie only at an infinitely short time when the event
sequence is detected, as shown in Figure 5-6.

A

B —

w3

oolast % fo1A 01B| 10 A 01A|10B | 10AD1B

Ecevent

ICRS

§%2ndlastx X 0O1LA| 01B 10A | 01A|10B [I0A
event

g(A,B)= (01 A->01B) +

sequenc¢0l A -> 01 B) detected

Figure 5-6: Example of event sequence detection function

The event sequence detection mechanism can be described as a queue that sorts events
according to their order of arrival. The event sequence detection function evaluatas
exactly the time when a new event enters the queue and forms the required sequetie, i.e.,
sequence specified by the vector expressitnits preceding events.

44 Advanced Library Format (ALF) Reference Manual Version 1.9.0

Higher-order sequential functions Functional Modeling

A vector-sensitive sequential logic can be call8d1) order sequential logiovhereN is the
number of events to be stored in the queue. The implementat{dhHdf) order sequential logic
requiredN memory elements for the event queue and one memory element for the output itself.

A sequence of events can also be gated with static logical conditions. In the example,

(01 CP -> 10 CP) && CD

the pincbshall havestate 1 from some time before the rising edgecato some time after

the falling edge otP. The pincDhcan not go lowtate 0) after the rising edge afPand go

high again before the falling edge ©Pbecause this would insert events into the queue and the
sequence “rising edge a followed by falling edge ogP’ would not be detected.

The formal calculation rules for general vector expressions featuring both states and transitions
are detailed in Section 5.3.2 and Section 5.3.3.

The concept of vector expression supports functional modeling of devices featuring digital
communication protocols with arbitrary complexity.

5.3.2 Canonical binary operators for vector expressions

The following canonical binary operators are necessary to define sequences of transitions:

* vector_followed_by for completely specified sequence of events

» vector_and for simultaneous events

e vector_or for alternative events

* vector_followed_by for incompletely specified sequence of events

The symbols for the boolean operatorsAibandoRrare overloaded farector_and and

vector_or , respectively. The new symbols for thetor_followed_by operators are shown
in Table 5-12.

Table 5-12 : Canonical binary vector operators

LHS, RHS

Operator | Operands | commutative | Description

-> 2 vector no Left-hand side (LHS) transitiaa followed byRight-hand
expressions| side (RHS) transition, no transition can occur in-between

&&, & 2 vector yes LHSand RHS transitioroccur simultaneously
expressions

[, | 2 vector yes LHSor RHS transitioroccur alternatively

expressions|

~> 2 vector no Left-hand side (LHS) transitiaa followed byRight-hand
expressions| side (RHS) transition, other transitions can occur in-betwgen

Per definition, the>and ~> operators shall not be commutative, whereas.ghend]|
operators on events shall be commutative.

012&&01b===01b&&0la
0lal|01b===01b||0la

Version 1.9.0 Advanced Library Format (ALF) Reference Manual 45

Functional Modeling Higher-order sequential functions

The-> and-~> operators shall be freely associative.
0la->01b->01lc===(0la->01lb)->01lc===01a->(0Llb->01c)
0la~>01lb~>01c===(01la~>01b)~>01lc===01La-~>(@0L1b~>01c)

The&s& operator is defined for single events and for event sequences with the same number of

-> operators each.

(O1LAl. ->..01AN)& (01 B1..->...01 BN)

01A1&01Bl1..->..01AN&O1BN

The || operator reduces the set of edge operators (unary vector operators) to canonical and non-
canonical operators.

(?? a) === (?! a)||(?- a) //a does or does not change its value
Hence?? is non-canonical, since it can be defined by other operators.

If <valuel><value2> is an edge operator consisting of two based literall®1 andvalue2
andword is an expression which can take the vahiee1 orvalue2 , then the following
vector expressions are considered equivalent:

<valuel><value2> <word>
=== 10 (<word> == <valuel>) && 01 (<word> == <value2>)
=== 01 (<word> != <valuel>) && 01 (<word> == <value2>)
=== 10 (<word> == <valuel>) && 10 (<word> != <value2>)
=== 01 (<word> != <valuel>) && 10 (<word> != <value2>)

/I all expressions describe the same event:

/I <word> makes a transition from <valuel> to <value2>

Hence vector expressions with edge operators using based literals can be reduced to vector
expressions using only the edge operatorand10.

5.3.3 Complex binary operators for vector expressions

Table 5-13 defines the complex binary operators for vector operators.

Table 5-13 : Complex binary vector operators

LHS, RHS

Operator | Operands commutative | Description

<-> 2 vector yes LHS transition follows or is followed by RHS transition
expressions

&> 2 vector no LHS transitioris followed by or occurs simultaneously
expressions with RHS transition

<&> 2 vector yes LHS transitiorfollows or is followed by or occurs simultg-
expressions neouslywith RHS transition

The following expressions shall be considered equivalent:
(0la<->01b)===(01a->01b)||(01Lb->01a)
(01 a &> 01 b) === (01 a -> 01 b)||(01 a && 01 b)
(01 a <&> 01 b) === (01 a -> 01 b)||(01 b -> 01 a)||(01 a && 01 b)

46 Advanced Library Format (ALF) Reference Manual Version 1.9.0

Higher-order sequential functions Functional Modeling

By their symmetric definition, the-> and<&> operators are commutative.
0la<->01b===01b<->0la
0la<&> 0lb===01b<&>01la

The commutative complex binary vector operators are defined in Table 5-12. The commuta-
tivity rules are only defined for two operands:

» commutative “followed by”:

vect_exprl <-> vect expr2 ===
vect_exprl -> vect_expr2 // vect_exprl occurs first
| vect_expr2 -> vect_exprl // vect_expr2 occurs first

« commutative “followed by or simultaneously occurring”:

vect_exprl <&>vect expr2 ===
vect_exprl -> vect_expr2 // vect_exprl occurs first
| vect_expr2 -> vect_exprl // vect_expr2 occurs first
| vect _exprl &&vect_expr2 // both occur simultaneously

5.3.3.1 Extension to N operands
This section defines how to uskoperands.

A complex_vector_expression of the form
vector_expression { <-> vector_expression }

shall be commutative for all operands. Theplex_vector_expression describes

alternative event sequences in which the temporal order of each constituent
vector_expression is completely permutable, excluding simultaneous occurrence of each
constituentector_expression

A complex_vector_expression of the form
vector_expression { <&> vector_expression }

shall be commutative for all operands. Theplex_vector_expression describes
alternative event sequences in which the temporal order of each constituent
vector_expression is completely permutable, including simultaneous occurrence of each
constituentector_expression

Example:

01A<>01B<->01C===
0Ol1A->01B->01C

| 01B->01C->01A

| 01C->01A->01B

| 01C->01B->01A

| 01B->01A->01C

| 01A->01C->01B

Version 1.9.0 Advanced Library Format (ALF) Reference Manual 47

Functional Modeling Higher-order sequential functions

01 A<&>01B<&>01C-===
0Ol1A->01B->01C
| 01B->01C->01A
| 01C->01A->01B
| 01C->01B->01A
| 01B->01A->01C
| 01A->01C->01B
| 01A&&01B->01C
| 01A->01B&&01C
| 01B&&01C->01A
| 01B->01C&&01A
| 01C&&%01A->01B
| 01C->01A&&01B
| 01A&&%01B&&01C

5.3.3.2 Boolean rules
The following rule applies for a booleanDoperation with three operands:

rule 1:
A&B&C==(A&B)&C|A&B&C)

A corresponding rule also applies to the commutative followed-by operation with three oper-
ands:

rule 2:
01A<>01B<->01C-===
(0O1A<>01B)<->01C
| 01A<->(01B<->01C)

The alternative boolean expressiogns.B)& C andA& (B &C) inrule 1 are equivalent.
Therefore, rule 1 can be reduced to the following:

rule 3:
A&B&C===(A&B)&C===(B&C)&A

A corresponding rule doemt apply to complex vector operands, since each expression with
associated operands generates only a subset of permutations:

(0O1A<->01B)<->01C===
(01 A<->01B)->01C)

| (01C->(01A<->01B)) ===
01lA->01B->01C

| 01B->01A->01C

| 01C->01A->01B

| 01C->01B->01A

The permutations

0l1A->01C->01B
01B->01C->01A

48 Advanced Library Format (ALF) Reference Manual Version 1.9.0

Higher-order sequential functions Functional Modeling

are missing.

01A<>(01B<>01C)===
(01A->(01B<->010Q))

| ((01B<->01C)->01A)===
01A->01B->01C
01A->01C->01B
01B->01C->01A
01C->01B->01A

|
|
|
The permutations

| 01B->01A->01C
| 01C->01A->01B

are missing.

534 Operators for conditional vector expressions

The definitions of th&g&, ?, and: operators are also overloaded to describeralitional vector
expressior(involving boolean expressions and vector expressions), as shown in Table 5-14.
The clauses are boolean expressions; while vector expressions are subject to those clauses.

Table 5-14 : Operators for conditional vector expressions

LHS, RHS
Operator | Operands commutative | Description
&& & | 1vector yes boolean expression (LHS or RHS)Tsuewhile sequence

expression, of transitions, defined by vector expression (RHS or LHS)
1 boolean occurs
expression

? 1 vector no boolean condition operator for construction of if-then-else
expression, clause involving vector expressions
1 boolean
expression
1 vector no boolean else operator for construction of if-then-else
expression, clause involving vector expressions
1 boolean
expression

An example for conditional vector expression usigs given below:
(01 a && 'b) I a rises whileb==0
The order of the operands in a conditional vector expression &ssitall not matter.

<vector_exp> && <boolean_exp> === <boolean_exp> && <vector_exp>

The&s& operator is still commutative in this case, although one operand is a boolean expression
defining a static state, the other operand is a vector expression defining an event or a sequence
of events. However, since the operands are distinguishable per se, itis not necessary to impose
a particular order of the operands.

Version 1.9.0 Advanced Library Format (ALF) Reference Manual 49

Functional Modeling Higher-order sequential functions

An example for conditional vector expression usirand: is given below.
Ib?01a:c?10b:01d

Ib&0la|!('b)&c&10b|!('b) &!c&01d
This example shows how a conditional vector expression using ternary operators can be
expressed with alternative conditional vector expressions.

A conditional vector expression can be reduced to a non-conditional vector expression in some
cases (see Section 5.4.11).

Every binary vector operator can be applied to a conditional vector expression.

5.3.5 Operators for sequential logic

Table 5-15 defines the complex binary operators for vector operators.

Table 5-15 : Operators for sequential logic

Operator Description

@ sequentialf operator, followed by a boolean logic expression (for
level-sensitive assignment) or by a vector expression (for edge{sen-
sitive assignment)

sequentiaklse if operator, followed by a boolean logic exprep-
sion (for level-sensitive assignment) or by a vector expression (for
edge-sensitive assignment) with lower priority

Sequential assignments are constructed as follows:

@ (<triggerl>) { <actionl>} : (<trigger2>) { <action2> } :
(<trigger3>) { <action3>}

If triggerl eventis detected, thewtion1 is performed; else ifigger2 eventis detected,
thenaction2 is performed; else ifrigger3 event is detected, themtion3 is performed as
a result of this clause.

5.3.6 Operator priorities

The priority of binding operators to operands in non-conditional vector expressions shall be
from strongest to weakest in the following order:

unary vector operators (edge literals)

complex binary vector operatoksx, &>, <&>)

1

2

3. VecCtorAND(&, &&)
4. vector_followed_by operators-(, ~>)
5

vectoror(| , ||)

50 Advanced Library Format (ALF) Reference Manual Version 1.9.0

Modeling with vector expressions Functional Modeling

5.3.7 Using PINs in VECTORs

A VECTORIJefines state, transition, or sequence of transitions of pins that are controllable and
observable for characterization.

Within aCELL, the set oPINS with SCOPE=behavior Oor SCOPE=measure Or SCOPE=both is the
default set of variables in the event queue for vector expressions relevisetiAsORor
VECTORStatements or both, respectively.

For detection of a sequence of transitions it is necessary to observe the set of variables in the
event queue. For instance, if the set of pins consig{sBt, D, the vector expression
(01 A -> 01 B)
implies no transition oA, B, C, D occurs between the transitiadisA andol B .
The default set of pins applies only for vector expressions without conditions. The conditional

eventANDoperator limits the set of variables in the event queue. In this case, only the state of
the condition and the variables appearing in the vector expression are observed.

Example:
(01 A ->01B) && (C | D)

No transition orn, Boccurs betweem A andol B, and(C | D) needs to stayruein-between
01 Aando1 B as well. Howeverc andD can change their values as long@g D) is satisfied.

5.4 Modeling with vector expressions

Vector expressions provide a formal language to describe digital waveforms. This capability
can be used for functional specification, for timing and power characterization, and for timing
and power analysis.

In particular, vector expressions add value by addressing the following modeling issues:

* Functional specificationcomplex sequential functionality, e.g., bus protocols.

* Timing analysiscomplex timing arcs and timing constraints involving more than two sig-
nals.

» Power analysistemporal and spatial correlation between events relevant for power con-
sumption.

» Circuit characterization and tesspecification of characterization and/or test vectors for
particular timing, power, fault, or other measurements within a circuit.

Like boolean expressions, vector expressions provide the means for describing the
functionality of digital circuits in various contexts without being self-sufficient. Vector
expressions enrich this functional description capability by adding a “dynamic” dimension to
the otherwise “static” boolean expressions.

The following subsections explain the semantics of vector expressions step-by-step. The vector
expression concept is explained using terminology from simulation event reports. However,
the application of vector expressions is not restricted to post-processing event reports.

Some application tools (e.g., power analysis tools) can actually evaluate vector expressions
during post-processing of event reports from simulation. Other application tools, especially

Version 1.9.0 Advanced Library Format (ALF) Reference Manual 51

Functional Modeling Modeling with vector expressions

simulation model generators, need to respect the causality between the triggering events and
the actions to be triggered. While it is semantically impossible to describe cause and effect in
the same vector expression for the purpose of functional modeling, both cause and effect can
appear in a vector expression used for a timing arc description.

ALF does not make assumption about the physical nature of the event report. Vector
expressions can be applied to an actual event report written in a file, to an internal event queue
within a simulator, or to a hypothetical event report which is merely a mathematical concept.

5.4.1 Event reports

This section describes the terminology of event reports from simulation, which is used to
explain the concept of ALF vector expressions. The intent of ALF vector expressions is not to
replaceexisting event report formats. Non-pertinent details of event report formats are not
described here.

Simulation events (e.g., from Verilog or VHDL) can be reported in a value change dump
(VCD) file, which has the following general form:

<timel>
<variableA> <stateU>
<variableB> <stateV>

<time2>
<variableC> <stateW>
<variableD> <stateX>

<time3> ...

The set of variables for which simulation events are reported, i.escthgeof the event report
needs to be defined beforehand. Each variable also has a definitiondet tfiestated can

take. For instance, there can be binary variables, 16-bit integer variables, 1-bit variables with
drive-strength information, etc. Furthermore, the initial state of each variable shall be defined
as well. In an ALF context, the ternsggnalandvariableare used interchangeably. In VHDL,

the corresponding term ggnal In Verilog, there is no single corresponding term. iAblut

output , wire , andreg variables in Verilog correspond taignal in VHDL.

The time valuestimel> , <time2> , <time3> , etc. shall be in increasing order. The order in
which simultaneous events are reported does not matter. The number of time points and the
number of simultaneous events at a certain time point are unlimited.

In the physical world, each event or change of state of a variable takes a certain amount of time.
A variable cannot change its state more than once at a given point in time. However, in
simulation, this time can be smaller than the resolution of the time scale or ever).zero (
Therefore, a variable can change its state more than once at a given point in simulation time.
Those events are, strictly speaking, not simultaneous. They occur in a certain order, separated
by an infinitely small delta-time. Multiple simultaneous events of the same variable are not
reported in the VCD. Only the final state of each variable is reported.

52 Advanced Library Format (ALF) Reference Manual Version 1.9.0

Modeling with vector expressions Functional Modeling

A VCD file is the most compact format that allows reconstruction of entire waveforms for a
given set of variables. A more verbose form is the test pattern format.

<TIME> <variableA> <variableB> <variableC> <variableD>
<timel> <stateU> <stateV>

<time2> <stateU> <stateV> <stateW> <stateX>
<time3> ...

The test pattern format reports the state of each variable at every point in time, regardless of
whether the state has changed or not. Previous and following states are immediately available
in the previous and next row, respectively. This makes the test pattern format more readable
than the VCD and well-suited for taking a snapshot of events in a time window.

An example of an event report in VCD format:

[/l initial values

AO B1 c1 D X E1l
/I event dump

109 A1l DO

258 BO
573 CO
586 AOQ
643 Al
788 AOQ B1 Cl1
915 A1l
1062 EO

1395 BO CO
1640 A0 D1
/I end of event dump

An example of an event report in test pattern format:

time A B C D E
0 0 1 1 X 1
109 1 1 1 0 1
258 1 0 1 0 1
573 1 0 0 0 1
586 0 0 0 0 1
643 1 0 0 0 1
788 0 1 1 0 1
915 1 1 1 0 1
1062 1 1 1 0 0
1395 1 0 0 0 0
1640 O 0 0 1 0

Both VCD and test pattern formats represent the same amount of information and can be
translated into each other.

5.4.2 Event sequences

For specification of a functional waveform (e.g., the write cycle of amemory), itis not practical

to use an event report format, such as a VCD or test pattern format. In such waveforms, there
is no absolute time. And the relative time, for example, the setup time between address change
and write enable change, can vary from one instance to the other.

Version 1.9.0 Advanced Library Format (ALF) Reference Manual 53

Functional Modeling Modeling with vector expressions

The main purpose okctor_expressions is waveform specification capability. The
following operators can be used:

» vector_unary (also callededge operatoor unary vector operatqr

The edge operator is a prefix to a variable in a vector expression. It contains a pair of
states, the first being the previous state, the second being the new state. Edge operators can
describe a change of state or no change of state.

* vector_and (also callecsimultaneous event operajor
This operator uses the overloaded syngbot && interchangeably. The operator is the
separator between simultaneously occurring events

* vector_followed_by (also calledollowed-by operatgr
The “immediately followed-by operator” using the symbselis treated first. The> oper-
ator is the separator between consecutively occurring events.

These operators are necessary and sufficient to describe the following subset of
vector_expressions

* vector_single_event
A change of state in a single variable, for example:
01A
d vector_event
A simultaneous change of state in one or more variables, for example:
01A&10B
d vector_event_sequence

Subsequently occurring changes of state in one or more variables, for example:
01A&10B->10A

Thevector_and operator has a higher binding priority thanibeor_followed_by
operator.

We can now express the pattern of the sample event reparéderaevent_sequence
expression:

0O1A&X0D->10B->10C->10A->01A
>10A&01B&01C->01A->10E->10B&10C->10A&01D
We can define thkengthof avector_event_sequence expression as the number of
subsequent events described invéxgor_event_sequence expression. The length is equal
to the number of> operators plus ona);

Although the vector expression format contains an inherent redundancy, since the old state of
each variable is always the same as the new state of the same variable in a previous event, itis
more human-readable, especially for waveform description. On the other hand, it is more
compact than the test pattern format. For short event sequences, it is even more compact than
the VCD, since it eliminates the declaration of initial values. To be accurate, for variables with
exactly one event the vector expression is more compact than the VCD. For variables with
more than one event the VCD is more compact than the vector expression. In summary, the
vector expression format offers readability similar to the test pattern format and compactness
close to the VCD format.

54 Advanced Library Format (ALF) Reference Manual Version 1.9.0

Modeling with vector expressions Functional Modeling

543 Scope and content of event sequences

Thescopeapplicable to a vector expression defines the set of variables in the event report. The
contentof a vector expression is the set of variables that appear in the vector expression itself.
The content of a vector expression shall be a subset of variables within scope.

* PINs with the annotatioBCOPE = BEHAVIOR are applicable variables for vector expres-
sions within the context &EHAVIOR

* PINs with the annotatioBCOPE = MEASUREe applicable variables for vector expressions
within the context o/ECTOR
* PINs with the annotatioBCOPE = BOTHare applicable variables for all vector expressions.

A vector_event_sequence expression is an event pattern without time, containing only the
variables within its own content. This event pattern is evaluated against the event report
containing all variables within scope. The vector expressidruswhen the event pattern
matches the event report.

Example:
time A B C D E I/l scopeisA,B,C,D, E
0 0 1 1 X 1
109 1 1 1 0 1
258 1 0 1 0 1
573 1 0 0 0 1
586 0 0 0 0 1
643 1 0 0 0 1
788 0 1 1 0 1
915 1 1 1 0 1
1062 1 1 1 0 0
1395 1 0 0 0 0
1640 O 0 0 1 0
Consider the following vector expressions in the context of the sample event report:
01 A /l[(1) contentis A
/levent pattern expressed by (1):
1 A
1 0

I 1
(1) isTrueat time 109, time 643, and time 915.

10B->10C /I(2) contentis B, C
/levent pattern expressed by (2):

1 B C

1 1 1

1 0 1

1 0 0

(2) isTrueattime 573.

Version 1.9.0 Advanced Library Format (ALF) Reference Manual 55

Functional Modeling

Modeling with vector expressions

10A->01A /I(3) contentis A
/levent pattern expressed by (3):
1 A
1 1
1 0
1 1
(3) isTrueat time 643 and time 915.
01D /[(4) contentis D
/levent pattern expressed by (4):
I D
I 0
I 1
(4) isTrueat time 1640.
0OlA->10C /[(5) contentis A, C
/levent pattern expressed by (5):
I A C
I 0 1
I 1 1
I 1 0

(5) is not beTrueat any time, since the event pattern expresses) bgoes not match the
event report at any time.

544 Alternative event sequences

The following operator can be used to describe alternative events:

vector_or , also callecgevent-or operatoor alternative-event operatpusing the over-
loaded symbal or|| interchangeably. Theoperator is the separator between alternative
events or alternative event sequences.

In analogy to boolean operatorshas a lower binding priority thagaand-> . Parentheses can
be used to change the binding priority.

Example:

(OLA->01B)|10C===01A->01B|10C
01A->(01B|10C)===01A->01B|01A->10C

Consider the following vector expressions in the context of the sample event report:
01A|10C 11(6)

/levent pattern expressed by (6):

1
1
1

A
0
1

/lalternative event pattern expressed by (6):

1
1
1

Cc
1
0

(6) isTrueat time 109, time 573, time 643, time 915, and time 1395.

56

Advanced Library Format (ALF) Reference Manual Version 1.9.0

Modeling with vector expressions

(7)

(8)

(9)

10B->10C|10A->01A 1(7)
/levent pattern expressed by (7):

1 B C

1 1 1

1 0 1

1 0 0

/[alternative event pattern expressed by (7):
1 A
1 1
1 0
1 1

is Trueat time 573, time 643, and time 915.
01D|10B->10C 11(8)

/levent pattern expressed by (8):
I D
I 0
I 1

/[alternative event pattern expressed by (8):

I B C
I 1 1
I 0 1
I 0 0
is Trueat time 573 and time 1640.
10B->10C|10A 11(9)
/levent pattern expressed by (9):
I B C
I 1 1
I 0 1
I 0 0
/[alternative event pattern expressed by (9):
I A

I 1
I 0

is True at time 573, time 586, time 788, and time 1640.

Functional Modeling

The following operators provide a more compact description of certain alternative event
sequences:
&> events occur simultaneously or follow each other in the order RHS after LHS
<-> a LHS event followed by a RHS event or a RHS event followed by a LHS event
<&> events occur simultaneously or follow each other in arbitrary order

Example:
01A&>01C === 01A&01C|01A->01C
01A<>01C === (01A->01C|01C->01A
01A<&>01C === 01A<>01C|01A&01C

The binding priority of these operators is higher thaa afid-> .

Version 1.9.0

Advanced Library Format (ALF) Reference Manual

57

Functional Modeling Modeling with vector expressions

5.4.5 Symbolic edge operators

Alternative events of the same variable can be described in a even more compact way through
the use of edge operators with symbolic states. The syngiahds for “any state”.

* edge operator with as the previous state:
transition from any state to the defined new state

» edge operator with as the next state:
transition from the defined previous state to any state.

Both edge operators include the possibility no transition occurred at all, i.e., the previous and
the next state are the same. This situation can be explicitly described with the following
operator:

edge operator with next state = previous state, also calleeédvent operator
The operand stays in the state defined by the operator.

The following symbolic edge operators also can be used:

e ?- no transition on the operand
e 2! transition from any state to any state different from the previous state
» 2?7 transition from any state to any state or no transition on the operand

e 2~ transition from any state to its bitwise complementary state
Example: Let be a logic variable with the possible states, andX.

?20A===00A|10A| X0 A

?1A===01A|11A|X1A

2XA===0XA|1XA|XXA

0? A===00A|01A|OXA

1?7 A===10A|11A|1XA

X? A===XO0A|X1A|XXA

21A===01A|0XA|10A|1XA|X0OA|XLA

?~A===01A|10A| XX A

2?2 A===00A|01LA|OXA|10A|11A|1XA|XOA|XLA|XXA

?2-A===00A|11A|XXA
For variables with more possible states (e.g., logic states with different drive strength and
multiple bits) the explicit description of alternative events is quite verbose. Therefore the
symbolic edge operators are useful for a more compact description.

This completes the set adctor_binary operators necessary for the description of a subset
of vector_expressions calledvector_complex_event expressions. ANector_binary

operators have twactor_complex_event expressions as operands. The set of
vector_event_sequence expressions is a subsetvettor_complex_event expressions.
Everyvector_complex_event expression can be expressed in terms of alternative
vector_event_sequence expressions. The latter could be caltiditerms in analogy to
boolean algebra.

58 Advanced Library Format (ALF) Reference Manual Version 1.9.0

Modeling with vector expressions Functional Modeling

5.4.6 Non-events

A vector_single_event expression involving a non-event operator is callewda-eventA
rigorous definition is required fafector_complex_event ~ expressions containing non-events.
Consider the following example of a flip-flop with clock inmuK and data outpug.
01CLK->01Q 7/ (i)
01 CLK -> 00 Q 11 (i)
The vector expressiain describes the situation where the output switches éroon after

the rising edge of the clock. The vector expresgipn describes the situation where the
output remains at after the rising edge of the clock.

How is it possible to decide wheth@gy or (i) is True without knowing the delay between
CLK and@? The only way is to wait until any event occurs after the rising edgexoff the
event is not o and the state ajis 0 during that event, theii) is True

Hence, a non-event ®ueevery time when another event happens and the state of the variable
involved in the non-event satisfies the edge operator of the non-event.

Example:

time A B C D E
0 0 1 1 X 1
109 1 1 1 0 1
258 1 0 1 0 1
573 1 0 0 0 1
586 0 0 0 0 1
643 1 0 0 0 1
788 0 1 1 0 1
915 1 1 1 0 1
1062 1 1 1 0 0
1395 1 0 0 0 0
1640 O 0 0 1 0

The test pattern format represents an event, for example in no different way than a non-
event, for examplel E. This non-eventiSrueat times 109, 258, 573, 586, 643, 788, and 915;
in short, every time when an event happens whiteconstant.

54.7 Compact and verbose event sequences

A vector_event_sequence expression in a compact form can be transformed into a verbose
form by padding up evergector_event expression with non-events. The next state of each
variable within avector_event expression shall be equal to the previous state of the same
variable in the subsequerictor_event expression.

Example:
01A->10B===01A&11B->11A&10B

Version 1.9.0 Advanced Library Format (ALF) Reference Manual 59

Functional Modeling Modeling with vector expressions

A vector expression for a complete event report in compact form resembles the VCD, whereas
the verbose form looks like the test pattern.

/I compact form
01A&X0D->10B->10C->10A->01 A
->10A&01B&01C->01A->10E
->10B&10C->10A&01D

/I verbose form

?20A&?1B&?1C&?XD&?1E->

01A&11B&11C&X0D&11E->

11A&10B&11C&00D & 11 E->

11A&00B&10C&00D & 11 E->

10A&00B&00C&0O0D & 11 E->

01A&00B&00C&0O0D & 11 E->

10A&01B&01C&00D & 11 E->

01A&11B&11C&00D & 11 E->

11A&11B&11C&00D & 10 E->

11A&10B&10C&00D & 00 E->

10A&00B&00C&01D&00E
The transformation rule needs to be slightly modified in case the compact form contains a
vector_event expression consisting only of non-events. By definition, the non-evamues
only if a real event happens simultaneously with the non-event. Paddingdipr sevent
expression consisting of non-events with other non-events make this impossible. Rather, this
vector_event expression needs to be padded up with unspecified events, ustg the
operator. Eventually, unspecified events can be further transformed into partly specified
events, if a former or future state of the involved variable is known.

Example:

01A->00B
===01A&00B->??A&00B

In the first transformation step, the unspecified evemt is introduced.

01A&00B->??A&00B
===01A&00B->1?A&00B

In the second step, this event becomes partly specified.is bound to be? A due to the
previous event oA.

5.4.8 Unspecified simultaneous events within scope

Variables which are within the scope of the vector expression yet do not appear in the vector
expression, can be used to pad up the vector expression with unspecified events as well. This
is equivalent to omitting them from the vector expression.

Example:
01 A->10B //letus assume a scope containing A, B, C, D, E

01A&10B&??C&??D&??E->11A&10B&??7C&??D&7??E

60 Advanced Library Format (ALF) Reference Manual Version 1.9.0

Modeling with vector expressions Functional Modeling

This definition allows unspecified events to ocsumultaneouslyvith specified events or
specified non-events. However, it disallows unspecified events to iocbatweerspecified
events or specified non-events.

At first sight, this distinction seems to be arbitrary. Why not disallow unspecified events
altogether? Yet there are several reasons why this definition is practical.

If a vector expression disallows simultaneously occurring unspecified events, the application

tool has the burden not only to match the pattern of specified events with the event report but
also to check whether the other variables remain constant. Therefore, it is better to specify this
extra pattern matching constraint explicitly in the vector expression by using tperator.

There are many cases where it actually does not matter whether simultaneously occurring
unspecified events are allowed or disallowed:

» Case 1Simultaneous events are impossible by design of the flip-flop. For instance, in a
flip-flop it is impossible for a triggering clock edgeck and a switch of the data output
? Qto occur at the same time. Therefore, such events can not appear in the event report. It
makes no difference wheth&rCK & >-Q ,01CK&??Q , 0rol CK is specified. The
only occurring event pattern & CK & ?- Q and this pattern can be reliably detected by
specifyingo1 CK.

» Case 2 Simultaneous events are prohibited by design. For instance, in a flip-flop with a
positive setup time and positive hold time, the triggering clock edgek and a switch of
the data input! D is a timing violation. A timing checker tool needs the violating pattern
specified explicitly, i.e.901 CK & ?!' D . In this context, it makes sense to specify the non-
violating pattern also explicitly, i.e01 CK & ?-D . The pattero1 CK by itself is not
applicable.

» Case 3 Simultaneous events do not occur in correct design. For instance, power analysis
of the evenbl CK needs no specification @D or?-D . In the analysis of an event
report with timing violations, the power analysis is less accurate anyway. In the analysis of
the event report for the design without timing violation, the only occurring event pattern is

01CK&?-D and this pattern can be reliably detected by specifyirax .1

» Case 4 The effects of simultaneous events are not modeled accurately. This is the case in
static timing analysis and also to some degree in dynamic timing simulation. For instance,
aNANDgate can have the inputandB and the output. The event sequence exercising
the timing ar@w1 A -> 10 z can only happen i is constant.. No event orB can happen
in-betweern1 A and10z. Likewise, the timing aro1B->10z can only happen &
is constant. and no event happens in-betw@em and10 z . The timing arc with simul-
taneously switching inputs is commonly ignored. A tool encountering the scenanos.

01 B -> 10 Z has no choice other than treating it arbitrarilyoasAa -> 10 z or asol B
->10Z

» Case 5The effects of simultaneous events are modeled accurately. Here it makes sense to
specify all scenarios explicitly, e.@1 A & ?- B > 10 Z ,01 A &?!' B > 10 Z ,?- A

1. The power analysis tool relates to a timing constraint checker in a similar way as a parasitic extraction tool
relates to a DRC tool. If the layout has DRC violations, for instance shorts between nets, the parasitic extraction
tool shall report inaccurate wire capacitance for those nets. After final layout, the DRC violations shall be gone
and the wire capacitance shall be accurate.

Version 1.9.0 Advanced Library Format (ALF) Reference Manual 61

Functional Modeling Modeling with vector expressions

&01B->10z , etc., whereas the pattelgisaA->10z andolB->10z by them-
selves apply only for less accurate analysis Gaese 4.

There is also a formal argument why unspecified events on a vector expression need to be
allowed rather than disallowed. Consider the following vector expressions within the scope of
two variables A and B.

01 A 0
01B 11 (ii)
01A&01B 11 (iii)

The natural interpretation here(i§ ===() & (i) . This interpretation is only possible

by allowing simultaneously occurring unspecified events.

Allowing simultaneously occurring unspecified events, the vector expregsioasd(i)
respectively, are interpreted as follows:

01A&??B G

?7?A&01B 11 (ii")
Disallowing simultaneously occurring unspecified events, the vector expresgsioasd
(i) , respectively, are interpreted as follows:

01A&?-B 1 (")

?-A&01B 1 (i)
The vector expressioniy and(i) are compatible witkii) , whereagi’) and
(i”) are not.

5.4.9 Simultaneous event sequences

The semantic meaning of the “simultaneous event operator” can be extended to describe
simultaneously occurringvent sequencely using the following definition:

(01 A#1 .. -> ... 01 A#N) & (01 B#1 .. -> ... 01 B#N)

=== 01 A#1 & 01 B#1 ... -> ... 01 A#N & 01 B#N
This definition is analogous to scalar multiplication of vectors with the same number of indices.
The number of indices corresponds to the numbeeabr_event expressions separated by
-> operators. If the number ef in both vector expressions is not the same, the shorter vector
expression can be left-extended with unspecified events, using thgerator, in order to align
both vector expressions.

Example:

(O1LA->01B->01C) & (01D -> 01 E)
===(01A->01B->01C) & (?? D ->01 D -> 01 E)
===01A&??D->01B&01D->01C&O1E
===01A->01B&01D->01C&O0LE

62 Advanced Library Format (ALF) Reference Manual Version 1.9.0

Modeling with vector expressions Functional Modeling

The easiest way to understand the meaning of “simultaneous event sequences” is to consider
the event report in test pattern format. If eastior_event_sequence expression matches
the event report in the same time window, then the event sequences happen simultaneously.

time A B C D E

0 0 1 1 X 1

109 1 1 1 0 1

258 1 0 1 0 1

573 1 0 0 0 1

586 0 0 0 0 1

643 1 0 0 0 1

788 0 1 1 0 1

915 1 1 1 0 1

1062 1 1 1 0 0

1395 1 0 0 0 0

1640 O 0 0 1 0
Example:

01lA->10B===01A&11B->11A&10B // (10a)

/I event pattern expressed by (10a):

I A B

I 0 1

I 1 1

I 1 0

X0D->00D // (10b)

/I event pattern expressed by (10b):

I D

1 X

1 0

1 0

(01 A->10B) & (X0 D ->00 D) // (10) === (10a)&(10b)
Both (10a) and(10b) areTrueat time 258. Therefor@o) is Trueat time 258.

10C

==??C->??C->10C

==??C->?1C->10C /I (11a)

/I event pattern expressed by (11a):

I C

I ?

I ?

I 1

I 0

(11a) is left-extended to match the length of the followint) .

0lA->00D->11E ===
01A&00D&??E

>??A&00D&7??E

>?2?7A&??D&11E

01A&00D&??E

Version 1.9.0 Advanced Library Format (ALF) Reference Manual 63

Functional Modeling Modeling with vector expressions

>1?A&00D&7?1E
>??A&0?D&I11E Il (11b)

/I event pattern expressed by (11b):
1 D E

1 0 ?
1 0 ?
1 0 1
1 ? 1

(11b) contains explicitly specified non-events. The non-evemt calls for the unspecified
events?? A and?? E. The non-evento E calls for the unspecified everts A and?? D. By
propagating well-specified previous and next states to subsequent events, some unspecified
events become partly specified.

VWVk O >

10 C & (01 A -> 00 D -> 11 E) /I (11) === (11a)&(11b)

(11a) isTrueattime 573 and time 1398.41b) isTrueat time 573 and time 915. Therefore,
(11) isTrueat time 573.

5.4.10 Implicit local variables

Until now, vector expressions are evaluated against an event report containing all variables
within the scope of a cell. It is practical for the application to work with only one event report

per cell or, at most, two event reports if the set of variableasianVvIOR(scope=behavior)
andVECTORscope=measure) is different. However, for complex cells and megacells, it is
sometimes necessary to change the scope of event observation, depending on operation modes.
Different modes can require a different set of variables to be observed in different event reports.

The following definition allows t@xtendthe scope of a vector expression locally:

Edge operators apply not only to variables, but also to boolean expressions involving those
variables. Those boolean expressions represgaticit local variablesthat are visible
only within the vector expression where they appear.

Suppose the local variablés & B) ,(A|B) are inserted into the event report:

time A B C D E A&B A|B
0 0 1 1 X 1 0 1
109 1 1 1 0 1 1 1
258 1 0 1 0 1 0 1
573 1 0 0 0 1 0 1
586 0 0 0 0 1 0 0
643 1 0 0 0 1 0 1
788 0 1 1 0 1 0 1
915 1 1 1 0 1 1 1
1062 1 1 1 0 0 1 1
1395 1 0 0 0 0 0 1
1640 O 0 0 1 0 0 0

64 Advanced Library Format (ALF) Reference Manual Version 1.9.0

Modeling with vector expressions Functional Modeling

Example:
01 (A &B) 11(12)

I/l event pattern expressed by (12):
1 A&B

1 0

1 1

(12) isTrueat time 109 and time 915.
10 (A | B) I (13)

I/l event pattern expressed by (13):
1 A|B

1 1

1 0

(13) isTrueat time 586 and time 1640.

01(A&B)->10B Il (14)
[/l event pattern expressed by (14):
1 B A&B
1 1 0
1 1 1
1 0 1
(14) is Trueat time 258.
10 (A&B)&10B->10C I (15)
/I event pattern expressed by (15):
1 B C A&B
1 1 1 1
1 0 1 0
1 0 0 0
(15) is Trueat time 573.
10(A&B)->10(A|B) 11 (16)

/l event pattern expressed by (16):
1 A&B A|B

I 1 1
I 0 1
I 0 0

(16) is Trueat time 1640.

5.4.11 Conditional event sequences

The following definitionrestrictsthe scope of a vector expression locally:

vector_boolean_and , also callecconditional event operator

This operator is defined between a vector expression and a boolean expression, using the
overloaded symbd or && The scope of the vector expression is restricted to the variables
and eventual implicit local variables appearing within that vector expression. The boolean
expression shall b&ueduring the entire vector expression. The boolean expression is

called theExistence Conditioof the vector expressicﬁﬁ.

Version 1.9.0 Advanced Library Format (ALF) Reference Manual 65

Functional Modeling Modeling with vector expressions

Vector expressions using thector_boolean_and operator are called
vector_conditional_event expressions. Scope and contents of such expressions are
identical, as opposed to non-conditiomadtor_complex_event expressions, where the
content is a subset of the scope.

Example:
(10(A&B)->10 (A|B)) &!D 11 (17)

/I event pattern expressed by (17):
" A&B AB

1 1 1

1 0 1

1 0 0

/I event report without C, E:
time A
0 0
109 1
258 1
586 O
643 1
0
1
1
1

A&B AB

788

915

1062
1395
1640 O

(17) contains the samector_complex_event expression ag6) . However, althouglue)

is notTrueat time 586(17) is Trueat time 586, since the scope of observation is narrowed to
A, B, A&B andA|B by the existence conditidD , which is staticallyTrue while the specified
event sequence is observed.

D
X
0
0
0
0
0
0
0
0

oopl—‘l—‘OOOl—‘Hw
OO0ORrPFPOOOORr o
ORrRpRRFRPRFRPPFPORRER

1

Within, and only within, the narrowed scope of thetor_conditional_event expression,
(17) can be considered equivalent to the following:
(10 (A&B)->10(A|B)) &!D

(10 (A & B) -> 10 (A | B)) & (11 (D) -> 11 (D))

10 (A & B) & 11 (ID) -> 10 (A | B) & 11 (ID)
The transformation consists of the following steps:

1. Transform the boolean condition into a non-event.
For example!D becomed1 (D)

2. Left-extend theector_single_event expression containing the non-eventin order to
match the length of thector_complex_event expression.

2. An Existence Condition can also appear as annotatioW &I ORvbject instead of appearing in the
vector expression. This enables recognition of existence conditions by application tools which can
not evaluate vector expressions (e.g., static timing analysis tools). However, for tools that can evalu-
ate vector expressions, there is no difference between existence condition as a co-factor in the vector
expression or as an annotation.

66 Advanced Library Format (ALF) Reference Manual Version 1.9.0

Modeling with vector expressions Functional Modeling

For examplel1 (D) becomedi (D) -> 11 (D) to match the length of
10 (A & B) -> 10 (A | B)

3. Apply scalar multiplication rule for simultaneously occurring event sequences.

Thus, avector_conditional_event expression can be transformed into an equivalent
vector_complex_event expression, but the change of scope needs to be kept in mind. An
operator which can express the change of scope in the vector expression language is defined in
Section 5.4.13. This can make the transformation more rigorous.

Regardless of scope, the transformation ftettor_conditional_event expression to
vector_complex_event expression also provides the means of detecting ill-specified
vector_conditional_event expressions.

Example:

(10A->01B->01A)&A

10A&11A>01B&11A->01A&11A

The first expressiomo A& 11 A and the third expressian A& 11 A within the
vector_complex_event expression are contradictory. Hence, the
vector_conditional_event expression can never beue

5.4.12 Alternative conditional event sequences

All vector_binary ~ operators, in particular theector_or operator, can be applied to
vector_conditional_event expressions as well aswvector_complex_event expressions.

Consider again the event report:

time A B C D E

0 0 1 1 X 1

109 1 1 1 0 1

258 1 0 1 0 1

573 1 0 0 0 1

586 0 0 0 0 1

643 1 0 0 0 1

788 0 1 1 0 1

915 1 1 1 0 1

1062 1 1 1 0 0

1395 1 0 0 0 0

1640 O 0 0 1 0
Concurrent alternativeector_conditional_event expressions can be paraphrased in the
following way:

IF <boolean_expression 1> THEN <vector_expression 1>

OR IF <boolean_expression »> THEN <vector_expression 5>

... OR IF <boolean_expression n> THEN <vector_expression N

The conditions can b&uewithin overlapping time windows and yhus the vector expressions
are evaluated concurrently. Thetor_boolean_and operator andector_or operator
describe such vector expressions.

Version 1.9.0 Advanced Library Format (ALF) Reference Manual 67

Functional Modeling Modeling with vector expressions

Example:
C&(01A->10B)|!D&(10B ->10A) | E&(10B -> 10 C) 11 (18)
[/l Event pattern expressed by (18):
1 A B C
1 0 1 1
1 1 1 1
1 1 0 1

(18) isTrueat time 258 because of& (01 A -> 10 B)

/I Alternative event pattern expressed by (18):

1 A B D
1 1 1 0
1 1 0 0
1 0 0 0

(18) is alsoTrueat time 586 because of & (10 B -> 10 A)

/I Alternative event pattern expressed by (18):

1 B C E
1 1 1 1
1 0 1 1
1 0 0 1
(18) is alsoTrueat time 573 because Bf& (10 B -> 10 C)
Prioritized alternativeector_conditional_event expressions can be paraphrased in the
following way:
IF <boolean_expression 1> THEN <vector_expression 1>
ELSE IF <boolean_expression »> THEN <vector_expression 5>
... ELSE IF <boolean_expression n> THEN <vector_expression N
(optional) ELSE <vector_expression default >

Only the vector expression with the highest priofitye condition is evaluated. The
vector_boolean_cond operator andector_boolean_else operator are used in ALF to
describe such vector expressions.

Example:

C? (0L A->10B): 'D? (10 B->10 A): E? (10 B -> 10 C) 11 (19)
The prioritized alternativeector_conditional_event expression can be transformed into
concurrent alternativeector_conditional_event expression as shown:

C?(L1A->10B):!D?(10B->10A):E? (10 B -> 10 C)

C & (01 A->10B)

|!IC&!D&(10B->10A)

|!IC&!('D) & E & (10 B ->10C)
(19) isTrueattime 258 because af& (01 A -> 10 B) , butnot attime 586 because of higher
priority C while D & (10 B -> 10 A) , hor at time 573 because of higher prioritywhile
E&(10B->10C)

68 Advanced Library Format (ALF) Reference Manual Version 1.9.0

Modeling with vector expressions Functional Modeling

5.4.13 Change of scope within a vector expression

Conditions on vector expressions redefine the scope of vector expressions locally. The
following definition can be used to change the scope even within a part of a vector expression.
For this purpose, the symbolic statean be used, which means “don’t care about events”. This

is different from the symbolic statewhich means “don’t care about state”. When the state of

a variable ig, arbitrary events occurring on that variable are disregarded.

» Edge operator with as next state:
The variable to which the operator applies is no longer within the scope of the vector
expression.

» Edge operator with as previous state:
The variable to which the edge operator applies is now within the scope of the vector
expression.

As opposed ta, * stands for an infinite variety of possibilities.
Example:
Let A be a logic variable with the possible states, andx.

*0 A ===

O0A|10A|X0A

|00OA->00A|10A->00A|X0A->00A

|0LA->10A|11A->10A|X1A->10A

|OXA->X0OA|1XA->X0A|XXA->X0A

|00A->00A->00A] ...

0* A ===

00 A|0LA|OXA

|00A->00A|00A->01A|00A->0XA

|0LA->10A|01A->11A|01A->1XA

|OXA->X0OA|O0XA->X1LA|0XA->XXA

|00A->00A->00A] ...
A vector expression with an infinite variety of possible event sequences cannot be directly
matched with an event report. However, there are feasible ways to implement event sequence
detection involving . In principle, there is a “static” and “dynamic” way. The following parts
of the vector expression are separated byb-sequences events.

» “Static” event sequence detection with
The event report with all variables can be maintained, but certain variables are masked for
the purpose of detection of certain sub-sequences.

* “Dynamic” event sequence detection with
The event report shall contain the set of variables necessary for detection of a relevant sub-
sequence. When such a sub-sequence is detected, the set of variables in the event report
shall change until the next sub-sequence is detected, etc.

Version 1.9.0 Advanced Library Format (ALF) Reference Manual 69

Functional Modeling Modeling with vector expressions

Examples:
01lA->1*B->10C /1 (20)
/I Event pattern expressed by (20):
1 A B C
1 0 1 1
1 1 1 1
1 1 * 1
1 1 * 0
/Il pattern for 1st sub-sequence:
1 A B C
1 0 1 1
1 1 1 1
1 1 * 1
/I pattern for 2nd sub-sequence:
1 A B C
1 1 * 1
1 1 * 0
The event report with masking relevant (z0) :
time A B C D E
0 0 1 1 X 1
109 1 1 1 0 1
258 1 * 1 0 1 /I detection of 1st sub-sequence
573 1 * 0 0 1 /Il detection of 2nd sub-sequence
586 O 0 0 0 1
643 1 0 0 0 1
788 0 1 1 0 1
915 1 1 1 0 1
1062 1 * 1 0 0 /[detection of 1st sub-sequence
1395 1 * 0 0 0 /[detection of 2nd sub-sequence
1640 O 0 0 1 0

(20) isTrueat time 573 and time 1395. The first sub-sequencee-> 1* B is detected at
time 258, since * maps to any state. From time 258 onwaiidsnasked. The second sub-
sequencd0 Cis detected at time 573. From time 573 onwaglis, unmasked. The first sub-

sequence is detected again at time 1062. The second sub-sequence is detected again at time

1395.
0lA&1*E->10C I (21)
[/l Event pattern expressed by (21):
1 A C E
1 0 1 1
1 1 1 *
1 1 0 *
/l pattern for 1st sub-sequence:
1 A C E
1 0 1 1
1 1 1 *

70 Advanced Library Format (ALF) Reference Manual Version 1.9.0

Modeling with vector expressions Functional Modeling

/Il pattern for 2nd sub-sequence:
1 A C E

1 1 1 *

1 1 0 *

The event report with masking relevant ¢ar) :

time C
0
109
258
573
586
643
788
915
1062
1395
1640

(21) isTrueat timel1395. The first sub-sequeneer & 1*E is detected at time 109. From

time 109 onwards; is masked. The event aat time 258 aborts continuation of the detection
process and triggers restart from the beginning. The first sub-sequence is detected again at time
915. From time 915 onwardsjs masked. The event at time 1062 is therefore out of scope.
The second sub-sequerniceC is detected at time 1395.

w
O
m

/I detection of 1st sub-sequence
/l abortion of detection process

/I detection of 1st sub-sequence
/[disregard event out of scope
/[detection of 2nd sub-sequence

oOrRrpPRPPOFRPORPRRFPRFPO>
OO0ORPFPPOOOOR R
OO0ORrRPPFRPPFPOOORPRF R
P OOOOOOOOO X
OO0 * PP REPPEP ¥ X%,

0lA->*1B->10B&10C 11 (22)
/I Event pattern expressed by (22):
I A B C

I 0 * 1

I 1 * 1

I 1 1 1

I 1 0 0

/Il pattern for 1st sub-sequence:

I A B C

I 0 * 1

I 1 * 1

/I pattern for 2nd sub-sequence:

I A B C

I 1 * 1

I 1 1 1

I 1 0 0

Version 1.9.0 Advanced Library Format (ALF) Reference Manual 71

Functional Modeling Modeling with vector expressions

The event report with masking relevant (ex) :
C E

o]
O

time
0
109
258
573
586
643
788
915
1062
1395
1640 0

(22) isTrueat time 1395. The first sub-sequertie A is detected at time 109. Thereforas
unmasked. Since=0 at time 258, the attempt to detect the second sub-sequence is aborted and
the detection process restarts from the beginning. The first sub-sequeacedetected again

/I detection of 1st sub-sequence
/I abort

/I detection of 1st sub-sequence
/I continue

1
1
1
1
1
1
1
1

0

0 /I detection of 2nd sub-sequence

oORrRPPFPOFRPOFRPRFPRFPO>
OCOR * * % % *OR |
HOOOOOOOOOX

1
1
1
0
0
0
1
1
1
0
0

at time 109. The second sub-sequenae->10B & 10 C is detected at time 1395.
01A->1?7A&0*B&1*E->10C 11 (23)
/I Event pattern expressed by (23):

I A B C E
I 0 0 1 1
I 1 0 1 1
I 1 * 1 *
I 1 * 0 *
/Il pattern for 1st sub-sequence:
I A B C E
I 0 0 1 1
I 1 0 1 1
I ? * 1 *
/I pattern for 2nd sub-sequence:
I A B C E
I ? * 1 *
I ? * 0 *

The event report with masking relevant for (23):
time A B C D E
0 0 1 1 X 1
109 1 1 1 0 1
258 1 0 1 0 1
573 1 0 0 0 1
586 0 0 0 0 1
643 1 0 0 0 1

788 O * 1 0 * 1 detection of 1st sub-sequence
915 1 * 1 0 * 1 abort

1062 1 1 1 0 0

1395 1 0 0 0 0

1640 O 0 0 1 0

(23) is notTrueat any time. The first sub-sequence is detected at time 788. The event at time
915 does not match the expected second sub-sequence.

72 Advanced Library Format (ALF) Reference Manual Version 1.9.0

Modeling with vector expressions Functional Modeling

5.4.14 Sequences of conditional event sequences

The symbok can be used to describe the scope of a vector expression directly in the vector
expression language. This is particularly useful for sequencestof_conditional_event
expressions.

In reusing(17) as example:

(10(A&B)->10(A|B)) &!D
the scope of the sample event report contains contain the vasab)&s D, andE. The
vector_conditional_event expressiorgl7) contains only the variables B, andD and the
implicit local variablesa&B andA|B . Therefore, the global variablesande are out of scope

within (17) . The implicit local variables&BandA|B are in scope within, and only within,
a7 .

Now consider aequencef vector_conditional_event expressions, where variables move

in and out of scope. With the following formalism, it is possible to transform such a sequence
into an equivalentector_complex_event expression, allowing for a change of scope within
eachvector_conditional_event expression.

<vector_conditional_event#1> .. -> .. <vector_conditional_event#N>

where
<vector_conditional_event#i>
=== <vector_complex_event#i> & <boolean_expression#i>// 1 <i <N
The principle is to decompose eagdttor_conditional_event expression into a sequence

of three vector expressiopsefix, kerne| andpostfixand then to reassemble the decomposed
expressions.

<vector_conditional_event#i>
=== <prefix#i> -> <kernel#i> -> <postfix#i>// 1 <i <N

1. Define the prefix for eackector_conditional_event expression.
Theprefixis avector_event expression defining all implicit local variables.
Example:

*? (A&B) & *? (A|B)

2. Define the kernel for eaclactor_conditional_event expression.
Thekernelis thevector_complex_event expression equivalent to the
vector_conditional_event expression.

<vector_complex_event#i> & <boolean_expression#i>

=== <vector_complex_event#i>

& (11 <boolean_expression#i> ..->.. 11 <boolean_expression#i>)
The kernel can consist of one or several alternaigeer_event_sequence expressions.
Within eachvector_event_sequence expression, the same set of global variables are
pulled out of scope at the firgictor_event expression and pushed back in scope at the
lastvector_event expression.

Version 1.9.0 Advanced Library Format (ALF) Reference Manual 73

Functional Modeling Modeling with vector expressions

Example:
P*C&?*E /l global variables out of scope
& 10 (A &B) & 11 (ID) -> 10 (A | B) & 11 ('D)
&*? C&*?E /I global variables back in scope
3. Define the postfix for eackector_conditional_event expression.

The postfixis avector_event — expression removing all implicit local variables.

Example:
?2* (A&B) & ?* (A|B)

4. Join the subsequewictor_complex_event expressions with thector_and
operator between prefix#i+land kernel#i and also between postfix#i and kernel#i+1.

.. <vector_conditional_event#i> -> <vector_conditional_event#i+1>

=== .. <prefix#i>
-> <postfix#i-1> & <kernel#i> & <prefix#i+1>
-> <postfix#i> & <kernel#i+1> & <prefix#i+2>
-> <postfix#i+1> ..

The complete example:
(10(A&B)->10(A|B))&!D

*2 (A&B) & *? (A|B)

>7*C&™E

& 10 (A &B) & 11 (D) -> 10 (A | B) & 11 ('D)
&*? C&*?E

-> 2% (A&B) & ?* (A|B)

Note: The in-and-out-of-scope definitions for global variables are within the kernel, whereas
the in-and-out-of-scope definitions for global variables are within the prefix and
postfix. In this way, the resultingctor_complex_event expression contains the
same uninterrupted sequence of events as the original sequence of
vector_conditional_event expressions.

5.4.15 Incompletely specified event sequences

So far the vector expression language has provided suppodrfpietely specified event
sequenceand also the capability to put variables temporarily in and out of scope for event
observation. As opposed to changing the scope of event obserratanpletely specified

event sequencesquire continuous observation of all variables while allowing the occurrence
of intermediate events between the specified events. The following operator can be used for
that purpose:

vector_followed_by , also calledollowed-by operatqrusing the symbaoi>.
The~> operator is the separator between consecutively occurring events, with possible
unspecified events in-between.

Detection of event sequences involvirgrequires detection of the sub-sequence befere
setting a flag, detection of the sub-sequence afteaind clearing the flag.

74 Advanced Library Format (ALF) Reference Manual Version 1.9.0

Modeling with vector expressions Functional Modeling

This can be illustrated with a sample event report:

time A C
0
109
258
573
586

0
1
1
1
0
643 1
0
1
1
1
0

W)
m

//01 A detected, set flag
//10C detected, clear flag

//01 A detected, set flag
788

915

1062
1395
1640

Example:

01A~>10C I (24)

/I as opposed to previous example (5):01 A->10C
(24) isTrueattime 573 because of A attime 109 ando C at time 573. ItisTrueagain at
time 1395 because ofi A attime 643 ando C at 1395. On the other han@) is neverTrue
because there are always events in-between andio C .

//01 A detected again

/110 C detected, clear flag

OOHHHOOOOHHUJ
OO PRPPFRPPFPOOORLR R
P OOOOOOO0OO0OO X
cocookFRRFPRFPRPRFPRPRL

Vector expressions consistingwettor_event — expressions separated-byor by~> are
calledvector_event_sequence expressions, using the same syntax rules for the two different
vector_followed_by operators. Consequently, all vector expressions involving
vector_event_sequence expressions angkctor_binary ~ operators are called
vector_complex_event expressions.

However, only a subset of the semantic transformation rules can be applied to vector
expressions containing.

Associative rule applies for both and~>.
(01LA~>01B)~>01C===01A~>(01C~>01B~>01C)
(0LA->01B)->01C===01A->(01C->01B->01C)
(01LA~>01B)->01C===01A~>(01C~>01B->01C)
(01LA->01B)~>01C===01A->(01C->01B~>01C)

Distributive rule applies for botly and-~>.
(0LA|01B)->01C===01A~>01C|01B->01C
(0LA|01B)~>01C===01A~>01C|01B~>01C
(0LA|01B)->01C===01A~>01C|01B->01C

Scalar multiplication rule applies only fer. The transformation involving> is more
complicated.

(01 A->01B)& (01 C->01D)

=== (01 A& 01 C)-> (01 B & 01 D)

(01 A ~> 01 B) & (01 C -> 01 D)
=== (01 A& 01 C) -> (01 B & 01 D)
| 01A~>01C->(01B &01D)

Version 1.9.0 Advanced Library Format (ALF) Reference Manual 75

Functional Modeling Modeling with vector expressions

(01 A ~> 01 B) & (01 C ~> 01 D)
=== (01 A & 01 C) ~> (01 B & 01 D)
| 01A~>01C~>(01B &01D)
| 01C~>01A~>(01B&O01D)

Transformation ofiector_conditional_event expressions inteector_complex_event
expressions applies only for.

(0LA->01B)&C
===01A&11C->01B&11C

(0LA~>01B)&C
=== 01A&11C~>01B&11C

Since the-> operator allows intermediate events, there is no way to express the continuously
True conditioncC.

5.4.16 How to determine well-specified vector expressions

By defining semantics for
alternativevector_event_sequence expressions
and establishing calculation rules for
transformingvector_complex_event expressions into alternative
vector_event_sequence expressions
and for
transforming alternativeector_conditional_event expressions into alternative
vector_complex_event expressions,
semantics are now defined for all vector expressions.
The calculation rules also provide means to determine whether a vector expression is well-

specified or ill-specified. An ill-specified vector expression is contradictory in itself and can
therefore never bérue

Once a vector expression is reduced to a set of alternatiee event_sequence
expressions, two criteria define whether a vector expression is well-defined or not.

» Compatibility between subsequent events on the same variable:
The next state of earlier event shall be compatible with previous state of later event. This
check applies only if ne> operator is found between the events.

* Compatibility between simultaneous events on the same variable:
Both the previous and next state of both events shall be compatible. Such events com-
monly occur as intermediate calculation results within vector expression transformation.

The following compatibility rules apply:

* 2 is compatible with any other state. If the other statetise resulting state s Other-
wise, the resulting state is the other state.

* * is compatible with any other state. The resulting state is the other state.

* Any other state is only compatible with itself.

76 Advanced Library Format (ALF) Reference Manual Version 1.9.0

Variable declarations Functional Modeling

Examples:
01A->01B->10A

The next state af1 A is compatible with the previous state10fA .
OXA->01B->10A

The next state aiX A is not compatible with the previous statetof .
OXA~>01B->10A

Compatibility check does not apply, since intermediate events are allowed.
01A&10A

Both the previous and next stateacdre contradictory; this results in an impossible event.
?21A&1? A

Both previous and next statedfre compatible; this results in the non-evans .

5.5 Variable declarations

Inside aCELL object, thePIN objects with thePINTYPE digital ~ define variables foFUNCTION
objects inside the san@ELL. A primary input variableinside aFUNCTIONshall be declared as
aPIN with DIRECTION=input Orboth (SiNCEDIRECTION=both is a bidirectional pin).

However, it is not required that all declared pins are used in the function. Output variables
inside aFUNCTIONNneed not be declared pins, since they are implicitly declared when they
appear at the left-hand side (LHS) of an assignment.

Example:

CELL my_cell {
PIN A {DIRECTION = input;}
PIN B {DIRECTION = input;}
PIN C {DIRECTION = output;}

FUNCTION {
BEHAVIOR {
D=A&&B;
C=1D;

}
}

candD are output variables that need not be declared prior to use. After implicit declaration,
Dis reused as an input variabdeandB are primary input variables.

5.5.1 BEHAVIOR

InsideBEHAVIOR variables that appear at the LHS of an assignment conditionally controlled
by a vector expression, as opposed to an unconditional continuous assignment, hold their
values, when the vector expression evalusdse Those variables are considered to have
latch-type behavior.

Version 1.9.0 Advanced Library Format (ALF) Reference Manual 77

Functional Modeling Variable declarations

Examples:
BEHAVIOR {
@(G)
Q =D; // both Q and QN have latch-type behavior
ON = D;
}
}
BEHAVIOR {
@(G)
Q = D; [/l only Q has latch-type behavior
}
QN =1Q;
}

5.5.2 STATETABLE

The functional description can be supplemented $yAaETABLE the first row of which
contains the arguments that are object IDs of the deckaresl The arguments appear in two
fields, the first is input and the second is output. The fields are separated. Gjha rows are
separated by a The arguments can appear in both fields iffines have attribute

direction=output or direction=both . If direction=output , then the argument has latch-
type behavior. The argument on the input field is considered previous state and the argument
on the output field is considered the next stateirdétion=both , then the argument on the

input field applies for input direction and the argument on the output field applies for output
direction of the bidirectionatiN .

Example:
CELL ff_sd {
PIN g {DIRECTION=output;}
PIN d {DIRECTION=input;}
PIN cp {DIRECTION=input;
SIGNALTYPE=clock;
POLARITY=rising_edge;}
PIN cd {DIRECTION=input; SIGNALTYPE=clear; POLARITY=low;}
PIN sd {DIRECTION=input; SIGNALTYPE=set; POLARITY=low;}
FUNCTION {
BEHAVIOR {
\ @('cd) {q = 0;} :(!sd) {g = 1;} :(01 cp) {q = d;}
STATETABLE {
cdsdcpd q:q;
0?2 ??27?2 ?:0;
10 ??27? ?2:1;
111?772 0:0;
11 ?207? 1:1;
111?772 0:0;
11 ?207? 1:1;
11 0172 ?:d)
}
}
}

78 Advanced Library Format (ALF) Reference Manual Version 1.9.0

Variable declarations Functional Modeling

If the output variable with latch-type behavior depends only on the previous state of itself, as
opposed to the previous state of other output variables with latch-type behavior, it is not
necessary to use that output variable in the input field. This allows a more compact form of the
STATETABLE

Example:

STATETABLE {
cdsd cp d :q;
07?2 ?2? :0;
0 7?7 01
1 1?2 (a);
1 20 ? «(a);
1 01 ? :(d)

N N N N N

1
1
1
1
}

A generic ALF parser shall make the following semantic checks:

Are all variables of & UNCTIONdeclared either by declarationrisl names or through
assignment?

Does thesTATETABLEexclusively contain declargdNs?

Is the format of theSTATETABLE i.e., the number of elements in each field of each row,
consistent?

Are the values consistently either state or transition digits?
Is the number of digits in eadiABLE entry compatible with the signal bus width?

A more sophisticated checker for complete verification of logical consistencyud{GrioN
given in both equation and tabular representation is out of scope for a generic ALF parser,
which checks only syntax and compliance to semantic rules. However, formal verification
algorithms can be implemented in special-purpose ALF analyzers or model generators/
compilers.

553 Multi-dimensional variables

A group of pins of a cell can be logically considered together by declarimg avith a range.
A pin can be declared with one dimension or two dimensions. For example,

PIN A; I/ declares a scalar pin A

PIN [1:8] Al; [/l declares pin Al with bits numbered 1
/I through 8

PIN [1:8] A2[1:4] ;/l declares pin A2 with two dimensions

When a pin is declared with one dimension, the left number in the range shall specify the most
significant bit number and the right number shall specify the least significant bit number. If the
pin is declared with two dimensions, the second dimension shall specify the index of the first
and the last rows of the two-dimension pin object.

A PIN object can be referenced in one of the four forms:

Version 1.9.0 Advanced Library Format (ALF) Reference Manual 79

Functional Modeling Variable declarations

Individual bit - the pin name shall be followed by an index of the bit.

Contiguous group of bits - the pin name shall be followed by the contiguous range of
bits. The most significant and least significant bit numbers shall follow the same
relationship as given in the declaration.

EntirePIN object - only the pin name shall be used. It shall be illegal to reference the
entire two-dimension pin object in any operation.

One row of aPIN object - for a two-dimension pin object, the name of the pin shall be
followed by the row index of that pin. It shall be illegal to reference the individual bit
or a group of bits of a two-dimension pin object directly in an operation.

When aPIN object is referenced on the left-hand side of an assignment, the result of the right-
hand side expression is copied from the least significant bit towards the most significant bit. If
the right-hand side value has lesser number of bits than the refereraggject in an
assignment, the right-hand side value shall be zero-extended to fill the remaining bits of the
referencedIN object. If the right-hand side value has more bits than the referenmesbject

in an assignment, the right-hand side value shall be truncated to the size of the referanced
object.

Example:
pin [1:8] A1,
pin [1:8] A2[1:32] ;
A1[8] ='b0;
Al[1:6] ='075; /l'is equivalent to A1[1:6] ='b111_ 101
Al[1:5] ='075; /l'is equivalent to A1[1:5] ='b11 101,
/I left most bit is truncated
A2[18] ='h5; /'is equivalent to A2[18] = 'b0000_0101

/I entire row 18 of A2 is assigned a value.

Two-dimensiorPIN objects shall be referenced with the row index. It shall be illegal to directly
reference an individual bit or a contiguous group of bits of a two-dimer®iombject. It shall
be illegal to reference the entieN object as a two-dimensianN object.

Example:

pin [1:8] A2[1:32] ;
pin [1:8] B1 ;
pin C;
/I legal references and assignments
A2[10] ='h45; // assign 'h45 to row 10 of A2 ('b0100_0101)

Bl =A2[10]; /I copies whole row A2[10] to B1
C =B1[3]; Il ¢ ='b0

/I lllegal references and assignments
/I B1[3] = A2[10][3] ;illegal reference to bit 3 of A2[10]
/A2 =B1,; illegal reference to entire A2

It shall be legal to use identifiers as an index, but expressions shall not be permitted.

80 Advanced Library Format (ALF) Reference Manual Version 1.9.0

Variable declarations Functional Modeling

Example:
pin [4:1] ADDR,;
ADDR ='d 10;
A2[ADDR] ='h45; Il assign 'h45 to row 10 of A2 ('b0100_0101)

/l A2[ADDR+1] ='h45; illegal

554 ROM initialization

The STATETABLEStatement can be used to describe the contents of a ROM, as far as this con-
tent is fixed in the library.

Example:

CELL my_rom {
CELLTYPE = memory;
ATTRIBUTE { rom asynchronous }
PIN[1:2] addr { DIRECTION = input; SIGNALTYPE = address; }
PIN[7:0] dout { DIRECTION = output; SIGNALTYPE = data; }
PIN[7:0] mem[1:4] { DIRECTION=none; VIEW=none; SIGNALTYPE=data,; }
FUNCTION {
BEHAVIOR { dout = mem[addr]; }
STATETABLE {

addr: mem ;
‘h0: ‘h5;
‘hl: ‘hA;
‘h2: ‘h5;
‘h3: ‘hA;

}

For flexibility, a separate included file can be used:

CELL my_rom {
CELLTYPE = memory;,
ATTRIBUTE { rom asynchronous }
PIN[1:3] addr { DIRECTION = input; SIGNALTYPE = address; }
PIN[7:0] dout { DIRECTION = output; SIGNALTYPE = data; }
PIN[7:0] mem[1:4] { DIRECTION=none; VIEW=none; SIGNALTYPE=data; }
FUNCTION {
BEHAVIOR { dout = mem[addr]; }
INCLUDE “rom_initialization_file.alf”

}

Version 1.9.0 Advanced Library Format (ALF) Reference Manual 81

Functional Modeling Predefined models

The contents of the included fil@n_initialization_file.alf are:
STATETABLE {
addr: mem ;
‘h0: ‘h5;
‘hl: ‘hA;
‘h2: ‘h5;
‘h3: ‘hA;

5.6 Predefined models

This section defines the use of predefined models in ALF.

5.6.1 Usage of PRIMITIVEs

A PRIMITIVE referenced in @€ELL can replace the complete sePodf andFUNCTION
definition. PINs can be declared before the reference teRnITIVE , in order to provide
supplementary annotations that cannot be inherited fromrRiveTIVE . However, thecELL
shall be pin-compatible with trRRIMITIVE .

If the PRIMITIVE or aCELL is referenced in an annotation container suctcasj only the
subset oPINs used in the non-scan cell shall be compatible witiriting of the cell.

The pin names can be referenced by order or by name. In the latter case, the LHS is the pin
name of the referenc@&RIMITIVE or CELL (e.g., the non-scan cell), the RHS is the pin name

of the actual cell. A constant logic value can also appear at the LHS or RHS, indicating a pin
needs to be tied to a constant value. If this information is already specified in an annotation
inside thePIN object itself, referencing between a pin name and a constant value is not
necessary.

PRIMITIVE s can also be instantiated ins&EHAVIOR

5.6.2 Concept of user-defined and predefined primitives

Primitives are described in ALF syntax. Primitives are generic cells cont&mnirand
FUNCTION objects only, i.e., no characterization data. The primitives are used for structural
functional modeling.

Example:
PRIMITIVE MY_PRIMITIVE {
PINX{...}
PINy{...}
PINz{..}

FUNCTION{ ... }

82 Advanced Library Format (ALF) Reference Manual Version 1.9.0

Predefined models Functional Modeling

CELL MY_CELL {

PINa{..}
PINb{..}
PINc{..}
FUNCTION {

BEHAVIOR { MY_PRIMITIVE { x=a; y=b; z=c; } }
}

}
Extensible primitives, i.e., primitives with variable number of pins can be modeled using a
TEMPLATE

Example:

TEMPLATE EXTENSIBLE_PRIMITIVE{
PRIMITIVE <primitive_name> {
PIN [0:<max_index>] pin_name { ...}

}

/l instantiation of the template creates a primitive
EXTENSIBLE_PRIMITIVE {
primitive_name = MY_EXTENSIBLE_PRIMITIVE;
max_index = 2;
}
The set of statements above is equivalent to the following statement:

PRIMITIVE MY_EXTENSIBLE_PRIMITIVE {
PIN [0:2] pin_name { ...}

}
The primitive can be used as shown in the following example:

CELL MY_MEGACELL {

PINa{..}
PINb{..}
PINc{...}
FUNCTION {
BEHAVIOR {
/I reference to the primitive
MY_EXTENSIBLE_PRIMITIVE {
pin_name[0] = a;
pin_name[1] = b;
pin_name[2] = c;
}
}

}
Primitives can be freely defined by the user. For convenience, ALF provides a set of predefined
primitives with the reserved prefaLF_ in their name, which cannot be used by user-defined
primitives.

Version 1.9.0 Advanced Library Format (ALF) Reference Manual 83

Functional Modeling Predefined models

For allPINs of predefined primitives, the following annotations are defined by default:

VIEW = functional;
SCOPE = behavioral,;

For predefined extensible primitives, a placeholder can be directly PRTIVE definition:
PRIMITIVE ALF_EXTENSIBLE_PRIMITIVE {
PIN [0:<max_index>] pin_name { ...}

}
This is equivalent to the following more verbose set of statements:

TEMPLATE EXTENSIBLE_PRIMITIVE{
PRIMITIVE <primitive_name> {
PIN [0:<max_index>] pin_name { ...}

}

EXTENSIBLE_PRIMITIVE {
primitive_name = ALF_EXTENSIBLE_PRIMITIVE;
max_index = <max_index>;

}

5.6.3 Predefined combinational primitives

This section defines the use of predefined combinational primitives.

5.6.3.1 One input, multiple output primitives

There are two combinational primitives with one input pin and multiple output pins:
ALF_BUFandALF_NOT

A GROUP statement is used to define the behavior of all output pins in one statement.

The output pins are indexed starting withf 0 is the only index used, the index can be omitted
when referencing the output pin, eaut, refers toout[0]
PRIMITIVE ALF_BUF {
GROUP index {0:<max_index>}

PIN[O:<max_index>] out {
DIRECTION = output ;
}

PIN in {
DIRECTION = input ;
}

84 Advanced Library Format (ALF) Reference Manual Version 1.9.0

Predefined models Functional Modeling

FUNCTION {
BEHAVIOR {
out[index] = in;
}
}

Figure 5-7: Primitive model of ALF_BUF

PRIMITIVE ALF_NOT {
GROUP index {0:<max_index>}
PIN[O:<max_index>] out {
DIRECTION = output ;
}

PIN in {
DIRECTION = input ;
}

FUNCTION {
BEHAVIOR {
out[index] = lin;
}

Figure 5-8: Primitive model of ALF_NOT

5.6.3.2 One output, multiple input primitives
There are six combinational primitives with one output pin and multiple input pins:
ALF_AND ALF_NAND ALF_OR ALF_NOR ALF_XOR andALF_XNOR

The input pins are indexed starting withif 0 is the only index used, the index can be omitted
when referencing the input pin, e.g.,refers tan[0]

PRIMITIVE ALF_AND {
PIN out {
DIRECTION = output;
}

PIN[O:<max_index>] in {
DIRECTION = input;

}
FUNCTION {
BEHAVIOR {
out=_∈
}
}

Figure 5-9: Primitive model of ALF_AND

Version 1.9.0 Advanced Library Format (ALF) Reference Manual 85

Functional Modeling

PRIMITIVE ALF_NAND {
PIN out {
DIRECTION = output;
}
PIN[O:<max_index>] in {
DIRECTION = input;

}
FUNCTION {
BEHAVIOR {
out=~∈
}
}

Figure 5-10: Primitive model of ALF_NAND

PRIMITIVE ALF_OR {
PIN out {
DIRECTION = output;
}

PIN[O:<max_index>] in {
DIRECTION = input;

}
FUNCTION {
BEHAVIOR {
out=|in;
}
}

Figure 5-11: Primitive model of ALF_OR

PRIMITIVE ALF_NOR {
PIN out {
DIRECTION = output;
}
PIN[0:<max_index>] in {
DIRECTION = input;

}
FUNCTION {
BEHAVIOR {
out = ~| in;
}
}

Figure 5-12: Primitive model of ALF_NOR

86 Advanced Library Format (ALF) Reference Manual

Predefined models

Version 1.9.0

Predefined models

PRIMITIVE ALF_XOR {
PIN out {
DIRECTION = output;
}
PIN[O:<max_index>] in {
DIRECTION = input;

}
FUNCTION {
BEHAVIOR {
out = in;
}
}

Figure 5-13: Primitive model of ALF_XOR

PRIMITIVE ALF_XNOR {
PIN out {
DIRECTION = output;
}

PIN[O:<max_index>] in {
DIRECTION = input;

}
FUNCTION {
BEHAVIOR {
out = ~Nin;
}
}
}
Figure 5-14: Primitive model of ALF_XNOR
5.6.4 Predefined tristate primitives

There are four tristate primitives:
ALF_BUFIF1, ALF_BUFIFO, ALF_NOTIF1, andALF_NOTIFO

PRIMITIVE ALF_BUFIF1 {
PIN out {
DIRECTION = output;
ENABLE_PIN = enable;
ATTRIBUTE {TRISTATE}

}
PINin {
DIRECTION = input;
}
PIN enable {
DIRECTION = input;
SIGNALTYPE = out_enable;
}

Version 1.9.0 Advanced Library Format (ALF) Reference Manual

Functional Modeling

87

Functional Modeling

FUNCTION {
BEHAVIOR {
out = (enable)? in : 'bZ;
}
STATETABLE {
enable in : out;
0 ?:Z
1 7 :(in);
}
}

Figure 5-15: Primitive model of ALF_BUFIF1

PRIMITIVE ALF_BUFIFO {
PIN out {
DIRECTION = output;
ENABLE_PIN = enable;
ATTRIBUTE {TRISTATE}

}
PIN in {
DIRECTION = input;
}
PIN enable {
DIRECTION = input;
SIGNALTYPE = out_enable;
}
FUNCTION {
BEHAVIOR {
out = (lenable)? in : 'bZ;
}
STATETABLE {
enable in : out;
1 ?:z
0 ? :(n)
}
}

Figure 5-16: Primitive model of ALF_BUFIFO

PRIMITIVE ALF_NOTIF1 {

PIN out {
DIRECTION = output;
ENABLE_PIN = enable;
ATTRIBUTE {TRISTATE}

}

PIN in {
DIRECTION = input;

}

88 Advanced Library Format (ALF) Reference Manual

Predefined models

Version 1.9.0

Predefined models

PIN enable {
DIRECTION = input;
SIGNALTYPE = out_enable;

}
FUNCTION {
BEHAVIOR {
out = (enable)? lin : 'bZ,
}
STATETABLE {
enable in : out;
0 ?:Z
1 7 :(lin);
}
}

Figure 5-17: Primitive model of ALF_NOTIF1

PRIMITIVE ALF_NOTIFO {
PIN out {
DIRECTION = output;
ENABLE_PIN = enable;
ATTRIBUTE {TRISTATE}

}
PIN in {
DIRECTION = input;
}
PIN enable {
DIRECTION = input;
SIGNALTYPE = out_enable;
}
FUNCTION {
BEHAVIOR {
out = (lenable)? lin : 'bZ;
}
STATETABLE {
enable in : out;
1 ?:z
0 2 :(lin)
}
}

Figure 5-18: Primitive model of ALF_NOTIFO

Version 1.9.0 Advanced Library Format (ALF) Reference Manual

Functional Modeling

89

Functional Modeling Predefined models

5.6.5 Predefined multiplexor

The predefined multiplexor has a known output value if either the select signal and the selected
data inputs are known or both data inputs have the same known value while the select signal is
unknown.

PRIMITIVE ALF_MUX {
PIN Q {
DIRECTION = output;
SIGNALTYPE = data,
}
PIN[1:0] D {
DIRECTION = input;
SIGNALTYPE = data,
}
PINS {
DIRECTION = input;
SIGNALTYPE = select;
}
FUNCTION {
BEHAVIOR {
} Q= (S| (d[0] ~* d[1]))? d[1] : d[O];
STATETABLE {
D[O]D[1] S : Q;
? - (D[O]);
- (DI1]);
1 0;
01

o

= O VN

2 2 1
00 2
11 2

Figure 5-19: Primitive model of ALF_MUX

5.6.6 Predefined flip-flop

A dual-rail output D-flip-flop with asynchronous set and clear pins is a generic edge-sensitive
sequential device. Simpler flip-flops can be modeled using this primitive by setting input pins
to appropriate constant values. More complex flip-flops can be modeled by adding
combinational logic around the primitive.

A particularity of this model is the use of the last two @NSONFLICTandQN_CONFLICT
which are virtual pins. They specify the stat&@ndQNin the evenCLEARaNdSET become
active simultaneously.

PRIMITIVE ALF_FLIPFLOP {
PINQ {
DIRECTION = output;
SIGNALTYPE = data;
POLARITY =non_inverted;

90 Advanced Library Format (ALF) Reference Manual Version 1.9.0

Predefined models

PINON {
DIRECTION = output;
SIGNALTYPE = data;
POLARITY =inverted,;

}

PIND {
DIRECTION = input;
SIGNALTYPE = data;

}

PIN CLOCK {
DIRECTION = input;
SIGNALTYPE = clock;
POLARITY =rising_edge;

}

PIN CLEAR {
DIRECTION = input;
SIGNALTYPE = clear;
POLARITY = high;
ACTION = asynchronous;

}

PIN SET {
DIRECTION = input;
SIGNALTYPE = set;
POLARITY = high;
ACTION = asynchronous;

}

PIN Q_CONFLICT {
DIRECTION = input;
VIEW = none;

}

PIN QN_CONFLICT {
DIRECTION = input;

VIEW = none;
}
FUNCTION {
ALIAS QX = Q_CONFLICT;
ALIAS QNX = QN_CONFLICT;
BEHAVIOR {
@ (CLEAR && SET) {
Q =QX
QN = QNX;
}
: (CLEAR) {
Q =0;
ON=1;
}
:(SET) {
Q=1
QN =0;
}
: (01 CLOCK) {
Q =D;
QN =1D;
}
Version 1.9.0

/I edge-sensitive behavior

Advanced Library Format (ALF) Reference Manual

Functional Modeling

91

Functional Modeling Predefined models

}
STATETABLE {
D CLOCK CLEAR SETQX QNX: Q ON;
222 1 17 2 :(QX)(QNX);
292 0 1?2 2 :1 0;
292 1 0?2 :0 1;
21?2 0 07? ? :(Q) (QN);
220 0 072 ? :(Q) (QN);
201 0 07? ? :(D) (D);
}

Figure 5-20: Primitive model of ALF_FLIPFLOP

5.6.7 Predefined latch

The dual-rail D-latch with set and clear pins has the same functionality as the flip-flop, except
the level-sensitive clocke(NABLEpIn) is used instead of the edge-sensitive clock.

PRIMITIVE ALF_LATCH {
PINQ {
DIRECTION = output;
SIGNALTYPE = data;
POLARITY =non_inverted;

}

PINQN {
DIRECTION = output;
SIGNALTYPE = data;
POLARITY =inverted;

}

PIND {
DIRECTION = input;
SIGNALTYPE = data;

}

PIN ENABLE {
DIRECTION = input;
SIGNALTYPE = clock;
POLARITY = high;

}

PIN CLEAR {
DIRECTION = input;
SIGNALTYPE = clear;
POLARITY = high;
ACTION = asynchronous;

}

PIN SET {
DIRECTION = input;
SIGNALTYPE = set;
POLARITY = high;
ACTION = asynchronous;

}

92 Advanced Library Format (ALF) Reference Manual Version 1.9.0

Predefined models Functional Modeling

PIN Q_CONFLICT {
DIRECTION = input;
VIEW = none;

}

PIN QN_CONFLICT {
DIRECTION = input;
VIEW = none;

}
FUNCTION {
ALIAS QX = Q_CONFLICT;
ALIAS QNX = QN_CONFLICT;
BEHAVIOR {
@ (CLEAR && SET) {
Q =QX;
QN = QNX;
}
: (CLEAR) {
Q =0
ON=1;
}
:(SET) {
Q=1
QN =0;
}
: (ENABLE) { /I level-sensitive behavior
Q =D;
QN = ID;
}
}
STATETABLE {
D ENABLE CLEAR SET QX QNX: Q ON;
27?2 1 1 2?2 ? :(QX)(QNX);
?? 0 1?2 7?2 :1 0;
? 7 1 0?2 .0 1,
70 0 0?72 :(Q (QN);
21 0 0 ? ? :(D) (ID);
}
}
}
Figure 5-21: Primitive model of ALF_LATCH
5.6.8 Parameterizeable cells

The concept of describing primitives with variable bus size shall be extended to parameterize-
able cells. Dynamic template instantiations can be used for that purpose.

Template definitions can incorporate any type of object. Placeholders in the template defini-
tion are the equivalent of parameters. Hence, the definition of parameterizeable cells is already
supported within the support of general template definitions.

Version 1.9.0 Advanced Library Format (ALF) Reference Manual 93

Functional Modeling Predefined models

In astatic template instantiatigrwhich is identified by the name of the template and by the
optional value assignmesthtic , placeholders are replaced by fixed values or by complex
objects containing fixed values. Non-referenced placeholders stay in place and eventually
result in semantically unrecognizable objects, which cannot be processed by downstream
applications. Such unrecognizable objects shall be disregarded.

In adynamic template instantiatiowhich is identified by the name of the template and by the
mandatory value assignmedyhamic , some placeholders can not be replaced. Those place-
holders are application parameters. The template definition can already contain certain rela-
tionships between parameters (e.g., arithmetic model and its arguments in the header).
Therefore the template instantiation determines which parameters need application values in
order to calculate values for other parameters.

Going one step further, even the relationship between parameters can be defined in the
dynamic template instantiation rather than in the template definition. In this case, the identifi-
ers inside the placeholders become variables for arithmetic assignments. This definition of
variables shall only be recognized within the context of the dynamic template instantiation.

Arithmetic assignments provide a shorter syntax for equation-based arithmetic models where
only placeholder-parameters are involved.

paraml = 1.5+ 0.4 * param2 ** 3 - 2.7 / param3

is equivalent to

paraml {
HEADER { param2 param3 }
EQUATION { 1.5 + 0.4 * param2 ** 3 - 2.7 / param3 }

}

For table-based models or for models where the arguments have children objects attached to
them, the verbose syntax wilEADERNeeds to be used.

Example:

TEMPLATE adder {
CELL <cellname> {
PIN [<bitwidth>: 1] A { DIRECTION = input; }
PIN [<bitwidth>: 1] B { DIRECTION = input; }
PIN Cin { DIRECTION = input; }
PIN [<bitwidth>:1]S { DIRECTION = output; }
PIN Cout { DIRECTION = output; }

FUNCTION {
BEHAVIOR {
S=A+B +Cin;
Cout = (A + B + Cin >= (‘b1 << (<bhitwidth> - 1)));
}
}
AREA = <areavalue>;
VECTOR (?! Cin -> ?! Cout) {

94 Advanced Library Format (ALF) Reference Manual Version 1.9.0

Predefined models Functional Modeling

}

DELAY {
HEADER {
CAPACITANCE {PIN = Cout; }
SLEWRATE {PIN = Cin; }

}
EQUATION { <D0> + <D1>*CAPACITANCE + <D2>*SLEWRATE }

The template is used for instantiation of a hard macro:

adder { /* a hard macro */

}

cellname = ripple_carry_adder_16_bit;

bitwidth = 16;

areavalue = 500;

/I DO, D1, D2 are undefined. DELAY cannot be calculated.

The static instantiation of the hard macro is equivalent to the following static object:

CELL ripple_carry_adder_16_bit {

1

PIN[16 : 1] A{DIRECTION = input; }
PIN[16:1]B{ DIRECTION = input; }
PIN Cin { DIRECTION = input; }
PIN[16 : 1]S{ DIRECTION = output; }
PIN Cout { DIRECTION = output; }

FUNCTION {
BEHAVIOR {
S=A+B+Cin;
Cout = (A + B + Cin >="1000000000000000);

}

AREA =500 ;

VECTOR (?! Cin -> ?! Cout) {
DELAY {
HEADER {
CAPACITANCE {PIN = Cout; }
SLEWRATE {PIN = Cin; }

}
EQUATION { <D0> + <D1>*CAPACITANCE + <D2>*SLEWRATE }

Version 1.9.0 Advanced Library Format (ALF) Reference Manual 95

Functional Modeling

Now the template is used for instantiation of a soft macro:

adder = dynamic { /* a soft macro */

}

cellname = ripple_carry_adder_N_ bit;

areavalue = 20 + 30 * bitwidth;

}

DO {
HEADER { AREA { TABLE {102030}}}
TABLE { 15.6 34.3 50.7 }

}

D1 =0.29;

D2 =0.08;

Predefined models

The dynamic instantiation of the soft macro results in an object for which certain data depend
on the runtime-values of the placeholder-parameters, as indicatalicifelow. The

calculation method for such data, however, can be compiled statically (e.g., the equation for
AREAIs a function of bitwidth and the lookup table Baris a function oRAREA.

CELL ripple_carry_adder_N_bit {

96

PIN[bitwidth :1]A{DIRECTION = input; }
PIN[bitwidth :1]1B{DIRECTION = input; }
PIN Cin { DIRECTION = input; }

PIN[bitwidth :1]S{DIRECTION = output; }
PIN Cout { DIRECTION = output; }

FUNCTION {
BEHAVIOR {
S=A+B+Cin;
Cout=(A+B +Cin>= (‘b1 << (bitwidth - 1))
}
}

AREA = 20 + 30 * bitwidth ;

VECTOR (?! Cin -> ?! Cout) {
DELAY {
HEADER {

CAPACITANCE {PIN = Cout; }

SLEWRATE {PIN = Cin; }

DO {
HEADER { AREA { TABLE { 102030 } } }
TABLE { 15.6 34.3 50.7 }

}
}

EQUATION { DO+ 0.29*CAPACITANCE + 0.08*SLEWRATE }

Advanced Library Format (ALF) Reference Manual

Version 1.9.0

	Functional Modeling
	5.1 Combinational functions
	5.1.1 Combinational logic
	5.1.2 Boolean operators on scalars
	5.1.3 Boolean operators on words
	5.1.4 Operator priorities
	5.1.5 Datatype mapping
	5.1.6 Rules for combinational functions
	5.1.7 Concurrency in combinational functions

	5.2 Sequential functions
	5.2.1 Level-sensitive sequential logic
	5.2.2 Edge-sensitive sequential logic
	5.2.3 Unary operators for vector expressions
	5.2.4 Basic rules for sequential functions
	5.2.5 Concurrency in sequential functions
	5.2.6 Initial values for logic variables

	5.3 Higher-order sequential functions
	5.3.1 Vector-sensitive sequential logic
	5.3.2 Canonical binary operators for vector expressions
	5.3.3 Complex binary operators for vector expressions
	5.3.3.1 Extension to N operands
	5.3.3.2 Boolean rules

	5.3.4 Operators for conditional vector expressions
	5.3.5 Operators for sequential logic
	5.3.6 Operator priorities
	5.3.7 Using PINs in VECTORs

	5.4 Modeling with vector expressions
	5.4.1 Event reports
	5.4.2 Event sequences
	5.4.3 Scope and content of event sequences
	5.4.4 Alternative event sequences
	5.4.5 Symbolic edge operators
	5.4.6 Non-events
	5.4.7 Compact and verbose event sequences
	5.4.8 Unspecified simultaneous events within scope
	5.4.9 Simultaneous event sequences
	5.4.10 Implicit local variables
	5.4.11 Conditional event sequences
	5.4.12 Alternative conditional event sequences
	5.4.13 Change of scope within a vector expression
	5.4.14 Sequences of conditional event sequences
	5.4.15 Incompletely specified event sequences
	5.4.16 How to determine well-specified vector expressions

	5.5 Variable declarations
	5.5.1 BEHAVIOR
	5.5.2 STATETABLE
	5.5.3 Multi-dimensional variables
	5.5.4 ROM initialization

	5.6 Predefined models
	5.6.1 Usage of PRIMITIVEs
	5.6.2 Concept of user-defined and predefined primitives
	5.6.3 Predefined combinational primitives
	5.6.3.1 One input, multiple output primitives
	5.6.3.2 One output, multiple input primitives

	5.6.4 Predefined tristate primitives
	5.6.5 Predefined multiplexor
	5.6.6 Predefined flip-flop
	5.6.7 Predefined latch
	5.6.8 Parameterizeable cells

