IEC TC93 WG3 meeting, October 24, 2002

ALF tutorial

Wolfgang Roethig Chairman, IEEE P1603 (ALF) Workgroup Senior Engineering Manager, NEC Electronics

Overview

- Motivation for ALF
- ALF support in the industry
- ALF standardization status
- ALF modeling concepts
- ALF modeling applications
- Conclusion and outlook

Motivation for ALF

- Complexity of design flows and tools
 - Multiple views for increasing number of tools
- Expensive library preparation
 - Frequent version change of tool-specific libraries
- Advantages of standard library description
 - Reduced cost
 - Increased quality
 - Resource and time saving for library creation and validation
 - Facilitate tool interoperability
 - Leverage 3rd party library sources
 - Anticipate technology innovations

ALF support for EDA tools today

Tool class	Provider	
Behavioral Synthesis	ASC	
RTL prototype	Tera Systems	
Power analysis	Sequence	
Simulation, ATPG	V-cube	
Physical synthesis	Magma	
Layout	Avant!, Magma	
Static timing analysis	Sequence	
Signal integrity	Sequence, Magma	
Infrastructure, utilities	ASC, SynApps	

ALF support for libraries today

Category	Provider
ASIC / ASSP	Infineon, NEC, Philips
	Agere, Intel, Motorola
Fabless IP core	ARM, Artisan, NurLogic, Virtual Silicon
Characterization tool	LibTech, Silicon Metrics

Emerging Design Environment

Design flow with ALF

ALF standardization status

- Started as OVI workgroup in 1996
 - Initial members: Avant!, Cadence, LSI Logic, Mentor Graphics, ViewLogic, VLSI
- Version 1.0 approved as OVI standard e/o 1997
 - covers function, timing, power
- OVI successor organization Accellera endorsed ALF
- Version 2.0 approved as Accellera standard e/o 2000
 - added signal integrity, interconnect analysis and layout
- IEEE P1603 workgroup started in 2001
 - Today's members: ASC, Infineon, Magma, Mentor Graphics, Monterey, NEC, Philips, Sequence, Simplex, Sun Microsystems, Tera Systems
- IEEE P1603 ballot scheduled for 2H of 2002
 - IEC standardization planned

ALF scope defined in IEEE PAR

- ALF shall serve as the data specification of library elements for design applications used to implement integrated circuits. The range of abstraction shall include from the register-transfer level (RTL) to the physical implementation level.
- The language shall model behavior, timing, power, signal integrity, physical abstraction and physical implementation rules of library elements.

ALF scope illustrated

October 24, 2002

www.eda.org/alf

Example for CELL description

```
CELL myCell {
   PIN in1 { DIRECTION = input;
   PIN in2 { DIRECTION = input;
   PIN out1 { DIRECTION = output; }
   FUNCTION {
      BEHAVIOR { out1 = !( in1 & in2 ); }
   }
   VECTOR (01 in1 -> 10 out1) {
      DELAY { FROM { PIN = in1; } TO { PIN = out1; }
         HEADER {
            CAPACITANCE cload { PIN = out1; }
            SLEWRATE trise { PIN = in1; }
         EQUATION \{ 0.3 + cload*(0.2 + 0.1*trise) \}
      }
   // put other models, e.g. ENERGY, NOISE etc.
```


ALF modeling concepts

- Modeling foundation concepts
 - Arithmetic model concept
 - > Electrical and physical library data description
 - VECTOR concept
 - > Stimulus for function, timing, electrical characterization
- Higher-level modeling concepts
 - FUNCTION, TEST
 - > Canonical description of functional behavior
 - > Interface between tester algorithm and DUT
 - TEMPLATE, GROUP
 - > Re-usable definitions
 - > Description of parametrizable IP blocks

Covered by other tutorial [CICC2001]

Arithmetic model concept

- Purpose of arithmetic model
 - Mathematical calculation of measurable quantities in library
- ALF supports rich set of predefined keywords
 - Timing, analog and physical modeling
- ALF is highly self-descriptive
 - Declaration of legal range or value set
 - Declaration of customized keywords
- Description methods
 - Lookup table
 - Analytical model
 - Calculation graph involving multiple models

Predefined arithmetic models (1 of 2)

Standard keywords for arithmetic model

Timing	DELAY, RETAIN, SLEWRATE, SKEW, JITTER, SETUP, HOLD, RECOVERY, REMOVAL, PULSEWIDTH, PERIOD, ILLEGAL, NOCHANGE, THRESHOLD, NOISE, NOISE_MARGIN
Analog	VOLTAGE, CURRENT, TIME, FREQUENCY, CAPACITANCE, RESISTANCE, INDUCTANCE, ENERGY, POWER, FLUX, FLUENCE, TEMPERATURE

Predefined arithmetic models (2 of 2)

Standard keywords for arithmetic model (cont.)		
Physical	LENGTH, WIDTH, HEIGHT, THICKNESS, AREA, PERIMETER, SIZE, EXTENSION, DISTANCE, OVERLAP	
Misc.	PROCESS, DERATE_CASE, DRIVE_STRENGTH, SWITCHING_BITS, CONNECTIVITY	

Global arithmetic model definitions

Declaration of legal value range

CAPACITANCE { MIN = 0; } TEMPERATURE { MIN = -273; } VOLTAGE { MIN = -1000; MAX = 1000; }

Declaration of discrete legal value set

PROCESS { TABLE { best nominal worst } }

Declaration of new keyword for arithmetic model

KEYWORD NEW_MODEL = arithmetic_model {
 VALUETYPE = number ; }

Arithmetic model with TABLE Example for 3-D lookup table CAPACITANCE { HEADER { TEMPERATURE { TABLE { 0 70 125 } } VOLTAGE { TABLE { **0.5** 1.5 } } PROCESS { TABLE { best nominal worst } } } TABLE { 9.8 10.0 9.9 10.2 12.0 11.5 8.5 8.9 **8.8** 9.5 10.0 9.7 7.8 8.1 7.9 8.7 9.3 8.9 3rd point in 1st dimension CAPACITANCE = 8.8TEMPERATURE = **125** applies for 1st point in 2nd dimension **VOLTAGE = 0.5** 2nd point in 3rd dimension PROCESS = nominal

Arithmetic model with EQUATION

Example for 3-D analytical model

```
CAPACITANCE {
   HEADER {
      TEMPERATURE Ta { /* no table */ }
      VOLTAGE Vc { /* no table */ }
      PROCESS { /* no table */ }
   } EQUATION {
      (PROCESS==best)? (10.0 + 0.01*(Vc + 0.2*Ta)):
      (PROCESS==nominal)? (9.8 + 0.02*(Vc + 0.1*Ta)):
      (PROCESS==worst)? (9.5 + 0.025*(Vc + 0.15*Ta)):
      -1
```


Arithmetic model with reference Example for calculation graph TEMPERATURE temp1 { HEADER { NEW_MODEL { TABLE { ... } } } TABLE { ... } } Primary input data CAPACITANCE { HEADER { TEMPERATURE { MODEL=temp1; TABLE { ... } } VOLTAGE { TABLE { ... } } Primary input data PROCESS { TABLE { ... } } Primary input data } TABLE { ... } } Data for NEW MODEL Data for PROCESS Data for VOLTAGE calculate TEMPERATURE calculate CAPACITANCE

October 24, 2002

www.eda.org/alf

VECTOR concept

- Purpose of Vector
 - Describe stimulus for electrical characterization
 - Describe functional waveform
 - Describe trigger for sequential behavior
- Description methods
 - Boolean expression for static state
 - Vector expression for temporal behavior

Single-Event Vector Expressions

Timing diagram for a signal A	Vector expression
	(01 A)
	(0? A)
	(?1 A)
	(?! A)
	(0* A)
	(*1 A)
	(?* A)
<u> </u>	(*? A)

Dual-Event Vector Expressions

Conditional Vector Expressions

Alternative Vector Expressions

ALF Modeling applications

- Timing modeling
 - Cell delay, timing waveforms
 - Interconnect analysis, parasitics
- Power modeling
 - Power consumption
 - Voltage drop
- Signal integrity
 - Noise
- Reliability
 - Electromigration
- Manufacturability
 - Antenna

Timing modeling

- ALF supports DELAY and SLEWRATE with THRESHOLD definition per timing arc
 - Optimal THRESHOLD can be chosen for characterization
 - Library data matches SPICE characterization data
- ALF supports driver RESISTANCE
 - Accurate waveform at driver output
 - Accurate calculation of effective capacitance
 - Better accuracy for cell and interconnect delay
- ALF supports standard timing checks
 - SETUP, HOLD, RECOVERY, REMOVAL, SKEW
 - MIN, MAX LIMIT for PULSEWIDTH, PERIOD

DELAY

- Timing arc specification in VECTOR
- PIN and THRESHOLD definition in FROM, TO
- THRESHOLD per library, per pin, or per arc

SLEWRATE

- Timing arc specification in VECTOR
- THRESHOLD definition in FROM, TO
- THRESHOLD per library or per arc

Driver RESISTANCE (1 of 2)

- Linear SLEWRATE not accurate
- Driver RESISTANCE for realistic waveform
- Driver model for calculation of effective capacitance

Driver RESISTANCE (2 of 2)

• Driver RESISTANCE can be associated with one specific timing arc or multiple timing arcs

```
RESISTANCE applies
VECTOR (01 in1 -> 10 out1) {
                                         for this arc involving
      DELAY { ... }
                                         in1 and out1
      SLEWRATE { ... }
      RESISTANCE { PIN = out1; }
                                           RESISTANCE applies
VECTOR (10 out1) {
                                           for all arcs involving
                                           out1
       RESISTANCE { PIN = out1; }
```


Timing accuracy

- ALF enables more accurate delay calculation
- Better correlation with SPICE

www.eda.org/alf

Interconnect modeling

- ALF support distributed load
 - Characterize cell delay with R,C load
 - More accurate than lumped capacitance
- ALF supports boundary parasitics
 - Describe boundary parasitics as R, C
 - Can include coupling capacitance between pins
 - More accurate than lumped pin capacitance
 - Also in conjunction with "donut" model for complex block
- ALF supports interconnect analysis
 - Interconnect delay calculation
 - Interconnect noise calculation

Distributed load

Boundary parasitics

Interconnect delay calculation WIRE lumpedRLC { Identification NODE n0 { NODETYPE = source; } of driver model NODE n1 { NODETYPE = driver; } VOLTAGE V0 { NODE { n0 gnd } } RESISTANCE R0 { NODE { n0 n1 } } RESISTANCE R1 { NODE { n1 n3 } } DELAY = INDUCTANCE L1 { NODE { n2 n3 } } f (R0, R1, L1, C1, C2) CAPACITANCE C1 { NODE { n1 gnd } } CAPACITANCE C2 { NODE { n2 gnd } } DELAY { FROM { PIN=n1; } TO { PIN=n2; } ... } n3 n2 n0n1 **R**0 **R1** 11 **V0** C1gnd and and

October 24, 2002

www.eda.org/alf

36
Interconnect noise calculation

WIRE lumpedRLC { NODE n0 { NODETYPE = source; } NODE n1 { NODETYPE = driver; } NODE n2 { NODETYPE = receiver; } VOLTAGE V0 { NODE { n0 gnd } } CAPACITANCE C1 { NODE { n0 n1 } } RESISTANCE R1 { NODE { n1 gnd } } RESISTANCE R2 { NODE { n1 n2 } } CAPACITANCE C2 { NODE { n2 gnd } } NOISE { PIN=n2; ... }

NOISE = f (V0, C1, R1, R2, C2)

Aggressor

Victim

Timing closure flow

without ALF

with ALF

Power modeling

- ALF supports VECTOR-specific ENERGY & POWER
 - Most flexible modeling approach
 - Allows tradeoff between VECTOR set and accuracy
- ALF is complemented by Global Activity File (GAF)
 - GAF annotates design-specific VECTOR activity
 - GAF is an emerging industry standard
- ALF supports multiple voltage domains
 - Association between power supply pin and power rail system
 - Association between energy and power rail system
- ALF supports transient voltage drop analysis
 - Can describe pre-characterized current waveforms

ENERGY and POWER

- ENERGY associated with transient VECTOR
- POWER associated with static VECTOR

Power analysis flow (1 of 2)

- For each cell instance in design:
 - Calculate ENERGY or POWER for each VECTOR
 - Get frequency or probability or each VECTOR
- Global Activity File (GAF) contains instancespecific frequency or probability for VECTOR
 - More accurate than frequency and probability per net
 - Logical correlations are preserved
 - Exact power results in conjunction with ALF library

Power analysis flow (2 of 2)

Multiple voltage domains (1 of 2)

- Define a CLASS for a power supply system
- Define another CLASS for a power rail
- Power rail refers to power supply system

CLASS **supply1** { USAGE = SUPPLY_CLASS; } CLASS **supply2** { USAGE = SUPPLY_CLASS; }

```
CLASS vdd1 { SUPPLY_CLASS = supply1;

SUPPLYTYPE = power; VOLTAGE = 1.5; }

CLASS vdd2 { SUPPLY_CLASS = supply2;

SUPPLYTYPE = power; VOLTAGE = 1.0; }

CLASS vss { SUPPLY_CLASS { supply1 supply2 }

SUPPLYTYPE = ground; }

Common ground
```


October 24, 2002

for both supplies

Multiple voltage domains (2 of 2)

- Power/ground pin is connected to power rail
- Signal pin refers to power supply system
- Energy consumption refers to power supply system

```
CELL LevelShifter {
    PIN vdd_15 { CONNECT_CLASS = vdd1 ; }
    PIN vdd_10 { CONNECT_CLASS = vdd2 ; }
    PIN vss { CONNECT_CLASS = vss ; }
    PIN in { DIRECTION=input; SUPPLY_CLASS=supply2; }
    PIN out { DIRECTION=output; SUPPLY_CLASS=supply1; }
    VECTOR (?! in -> ?! out ) {
        ENERGY = 0.8 { SUPPLY_CLASS=supply1; }
        ENERGY = 0.3 { SUPPLY_CLASS=supply2; }
```


Transient voltage drop analysis (1 of 2)

- Transient current sources associated with cell
 - Temporal granularity: current per VECTOR
 - Spatial granularity: current per PIN or per PIN.PORT

Transient voltage drop analysis (2 of 2)

VECTOR (01 WriteEnable -> 01 DataIn -> 10 WriteEnable) {
 CURRENT { PIN = Vdd.port1; MEASUREMENT = transient;
 HEADER {
 TIME { FROM { PIN=WriteEnable; EDGE_NUMBER=0; }
 TABLE { 0.0 0.5 1.0 1.5 2.0 }
 Time scale relative to
 event in VECTOR

Advanced technology modeling

• ALF supports signal integrity

- Static NOISE MARGIN
- Event-sensitive NOISE MARGIN
- Transient NOISE MARGIN
- NOISE propagation
- ALF supports reliability
 - Signal and power electromigration
 - LIMIT for VECTOR-specific FREQUENCY
- ALF supports manufacturability
 - ANTENNA rules for technology
 - Artwork abstraction for hierarchical ANTENNA check

Static NOISE MARGIN

- Static NOISE MARGIN in context of a PIN
- Can be specified as LOW and HIGH
- NOISE MARGIN is normalized to voltage swing

CELL FlipFlop { PIN clk {DIRECTION = input; SIGNALTYPE = clock; **NOISE_MARGIN** { **LOW**=0.4; **HIGH**=0.3; } } PIN Din { DIRECTION = input; SIGNALTYPE = data; } PIN Dout { DIRECTION = output; SIGNALTYPE = data; }

Event-sensitive NOISE MARGIN

- Event-sensitive NOISE MARGIN in context of a VECTOR
- Event is described in VECTOR
- Example: noise on data pin during triggering clock edge

Transient NOISE MARGIN

- Transient NOISE MARGIN in context of a VECTOR
- Depends on PULSEWIDTH of noise waveform

NOISE propagation

- NOISE at output pin depends on NOISE at input pin
- NOISE propagation arc in context of VECTOR

VECTOR (0* in1 -> *0 in1 <&> 1* out1 -> *1 out1) { NOISE { PIN = out1; HEADER { NOISE { PIN = in1; TABLE { ... } } PULSEWIDTH { PIN = in1; TABLE { ... } } CAPACITANCE { PIN = out1; TABLE { ... } } } TABLE { ... } }

Electromigration (EM) illustration

- Excessive current density leads to metal displacement
- Contacts or wire segments can break

EM rules for technology (1 of 2)

- LIMIT for CURRENT described in context of LAYER
- Average measurement for DC (power route)
- Absolute average measurement for AC (signal route)
- Peak and RMS measurement also supported

```
LAYER metal1 {

LIMIT {

for power route 

for signal route 

for signal route 

MEASUREMENT = average; }

CURRENT i_ac { MAX { ... }

MEASUREMENT = absolute_average; }

CURRENT i_peak { MAX { ... }

MEASUREMENT = peak; }
```


EM rules for technology (2 of 2)

- Current limit can be temperature-dependent
- Current limit can be width-dependent for routing layer
- Current limit can be area-dependent for cut layer

EM rules for interconnect

- Models for peak and RMS current can be precharacterized
- Simple example: 1st order interconnect model

CAPACITANCE C1 { NODE { n1 gnd } } RESISTANCE R1 { NODE { n0 n1 } } CURRENT { COMPONENT = R1 ; MEASUREMENT = peak; HEADER { RESISTANCE { MODEL = R1; } CAPACITANCE { MODEL = C1; } SLEWRATE { PIN = n0; } TABLE { ... } }

October 24, 2002

EM rules for cells (1 of 2)

- Idea: Identify paths inside cell subjected to EM
- Define orthogonal VECTOR set for activating all paths
- Abstract EM rule into LIMIT for VECTOR FREQUENCY

VECTOR (01 pin0) { /* path 1 */ } VECTOR (01 pin1 -> 10 pin0) { /* path 2 */ } VECTOR (10 pin2 -> 10 pin0) { /* path 3 */ } VECTOR (10 pin2) { /* path 4 */ } VECTOR (01 pin2) { /* path 5 */ }

EM rules for cells (2 of 2)

- Actual current = f (load CAPACITANCE, FREQUENCY)
- Maximum allowed current = f (TEMPERATURE)
- Maximum allowed FREQUENCY
 = f (load CAPACITANCE, SLEWRATE, TEMPERATURE)

```
VECTOR (01 pin1 -> 10 pin0) {

LIMIT { FREQUENCY { MAX {

HEADER {

SLEWRATE { PIN=pin1; TABLE { ... } }

CAPACITANCE { PIN=pin0; TABLE { ... } }

TEMPERATURE { TABLE { ... } }
```


EM summary

- ALF supports comprehensive technology EM rules
 - ALF supports models for signal current calculation
 - Calculated current must be checked against EM rules
- ALF supports abstract models for cell EM rules
 - LIMIT for VECTOR-specific FREQUENCY
 - Can be dependent on SLEWRATE, load CAPACITANCE, TEMPERATURE
 - Can incorporate other lifetime-impacting effects, such as Hot Carrier, Thermal Instability
- Modeling approach scalable to complex cores
 - VECTOR paradigm same as for power analysis
 - Global Activity File (GAF) also usable in EM flow

ANTENNA illustration

- Transistor collects charge during etching of metal structures
- Cumulative effect can destroy the transistor

ANTENNA rules for technology (1 of 2)

- Prerequistite for ANTENNA rule description:
 - Each LAYER must be declared in LIBRARY
 - Order of LAYER declaration must be manufacturing order
 - Declaration from bottom to top

LIBRARY myTechnology { LAYER diffusion { LAYERTYPE=reserved; } LAYER poly { LAYERTYPE=reserved; } LAYER cut0 { LAYERTYPE=cut; } LAYER metal1 { LAYERTYPE=routing; } LAYER cut1 { LAYERTYPE=cut; } LAYER metal2 { LAYERTYPE=routing; } // etc.

ANTENNA rules for technology (2 of 2)

- Charge density depends on ratio between metal and transistor
- The greater the metal area and the smaller the transistor area, the greater the damage
- Diffusion alleviates antenna problem by diverting charge

```
ANTENNA cumulative_area {

SIZE s1 { CALCULATION = incremental;

HEADER {

AREA a1 { LAYER = metal1; }

AREA a0 { LAYER = poly; }

CONNECTIVITY { BETWEEN { metal1 diffusion } }

} EQUATION { CONNECTIVITY? 0.5*a1/a0 : a1/a0 } }

// put calculation for other layers here

LIMIT { SIZE { MAX = 1000; } } }
```


ANTENNA rule evaluation

- Antenna rule checker must account for manufacturing order
- Count only top-down connections
- Combine poly areas connected top-down

When metal1 is fabricated: check a1'/a0' = 50/20 and a1''/a0'' = 70/30When metal2 is fabricated: check a2/(a0'+a0'') = 120/(20+30)

ANTENNA model for cell pin

- Antenna checker must look inside cell
- Abstraction of artwork
 required

PIN pin1 { PATTERN p1 { LAYER=metal1; AREA=30; } PATTERN p2 { LAYER=metal2; AREA=40; } PATTERN p3 { LAYER=metal1; AREA=25; } PATTERN p4 { LAYER=poly; AREA=20; } CONNECTIVITY=1 { CONNNECT TYPE=physical; BETWEEN { p2 p3 p4 } } CONNECTIVITY=1 { CONNNECT TYPE=physical; BETWEEN { p1 p2 } } PORT port1 { PATTERN = p1; } }

ANTENNA summary

- ALF supports ANTENNA technology rules
 - Layer-specific and cumulative rules
 - Partially cumulative rules (air gap layer)
 - Diffusion layer involved in rule
- ALF supports hierarchical ANTENNA model
 - Abstract artwork model for cell pin
 - Sufficient detail for accurate antenna check
 - Does not reveal artwork geometry
 - Suitable for IP modeling

Conclusion and outlook

- ALF provides comprehensive modeling support
 - Timing with sign-off accuracy
 - Power from RTL to layout level
 - Signal integrity, reliability, manufacturability
- ALF is already deployed in the industry
 - Production-proven EDA tools
 - ASIC vendor libraries
 - Commercial library and IP providers
- ALF is a truly open standard
 - Vendor neutral
 - Forward looking
 - Recognized by IEEE and IEC

ALF resources available to the Industry

- ALF tutorial at CICC 2001
- ALF paper at DATE 2002 Designers' Forum
- ALF specification documents

Available for download at http://www.eda.org/alf

• Free ALF parser from Alternative Systems Concepts

Available for download at http://www.ascinc.com

October 24, 2002

ALF deployment in the industry

ALF covers superset of any other library combination

