
IEC TC93 WG3 meeting, October 24, 2002

ALF tutorial

Wolfgang Roethig
Chairman, IEEE P1603 (ALF) Workgroup
Senior Engineering Manager, NEC Electronics



October 24, 2002 www.eda.org/alf 2

Overview

• Motivation for ALF
• ALF support in the industry
• ALF standardization status
• ALF modeling concepts
• ALF modeling applications
• Conclusion and outlook
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Motivation for ALF
• Complexity of design flows and tools

• Multiple views for increasing number of tools
• Expensive library preparation

• Frequent version change of tool-specific libraries
• Advantages of standard library description

• Reduced cost
• Increased quality
• Resource and time saving for library creation and validation
• Facilitate tool interoperability
• Leverage 3rd party library sources
• Anticipate technology innovations  
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ALF support for EDA tools today

Tool class Provider

Behavioral Synthesis
RTL prototype
Power analysis
Simulation, ATPG
Physical synthesis
Layout
Static timing analysis
Signal integrity
Infrastructure, utilities

ASC
Tera Systems
Sequence
V-cube
Magma
Avant!, Magma
Sequence
Sequence, Magma
ASC, SynApps
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ALF support for libraries today

Category Provider

ASIC / ASSP

Fabless IP core

Characterization tool

Infineon, NEC, Philips

Agere, Intel, Motorola

ARM, Artisan, NurLogic, 
Virtual Silicon

LibTech, Silicon Metrics
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Emerging Design Environment

Hierarchical
layout

RTLRTL

Physical Synthesis
Timing, Power,
Signal Integrity
Optimization

Physical Synthesis
Timing, Power,
Signal Integrity
Optimization

Routing
Timing, Power,
Signal Integrity

Correctness 

Routing
Timing, Power,
Signal Integrity

Correctness 

Design PlanningDesign Planning

Timing
Crosstalk
Reliability
Manufacturability

Timing
Crosstalk
Reliability
Manufacturability

Power 
consumption
Power
distribution
Voltage drop

Power 
consumption
Power
distribution
Voltage drop

Analysis-driven
design environment

ALF

enabled by
common
library

Silicon
success
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Design flow with ALF

Simulation

ALF models
other models

HDL
models

Model
generator

Physical design
description

HDL design
description

Structural design
description

Design planning

Design implementation

Cell &
technology

library

Cell 
characterization

SPICE
models

Macro
models

Sub block
characterization

sub block
spec.

Macro
models

Block
characterization

Library
spec.
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ALF standardization status
• Started as OVI workgroup in 1996

• Initial members:
Avant!, Cadence, LSI Logic, Mentor Graphics, ViewLogic, VLSI

• Version 1.0 approved as OVI standard e/o 1997
• covers function, timing, power

• OVI successor organization Accellera endorsed ALF
• Version 2.0 approved as Accellera standard e/o 2000

• added signal integrity, interconnect analysis and layout

• IEEE P1603 workgroup started in 2001
• Today’s members:

ASC, Infineon, Magma, Mentor Graphics, Monterey, NEC, Philips, 
Sequence, Simplex, Sun Microsystems, Tera Systems

• IEEE P1603 ballot scheduled for 2H of 2002
• IEC standardization planned
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ALF scope defined in IEEE PAR

• ALF shall serve as the data specification of library 
elements for design applications used to implement 
integrated circuits. The range of abstraction shall 
include from the register-transfer level (RTL) to the 
physical implementation level. 

• The language shall model behavior, timing, power, 
signal integrity, physical abstraction and physical 
implementation rules of library elements.
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ALF scope illustrated

Timing Power

Signal integrity

Electrical model

Simulation

Formal verification Design for test

Synthesis

Functional model

LayoutInterconnect

Hierarchical abstraction

Physical model
Unified ALF

library
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ALF data model
LIBRARY SUBLIBRARY

CELL

PIN

Functional domain

FUNCTION

PRIMITIVE

PIN

TEST

VECTOR

WIRE

NODEArithmetic model

Electrical domain

PORT

BLOCKAGE

Physical domain

PATTERN

Geometric model
Arithmetic model

LAYER
VIA

RULE
SITE

ANTENNA

REGION
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Example for CELL description
CELL myCell {

PIN in1 { DIRECTION = input; }
PIN in2 { DIRECTION = input; }
PIN out1 { DIRECTION = output; }
FUNCTION {

BEHAVIOR { out1 = !( in1 & in2 ); }
}
VECTOR (01 in1 -> 10 out1) {

DELAY { FROM { PIN = in1; } TO { PIN = out1; }
HEADER {

CAPACITANCE cload { PIN = out1; }
SLEWRATE trise { PIN = in1; }

} EQUATION { 0.3 + cload*(0.2 + 0.1*trise) }
}

} // put other models, e.g. ENERGY, NOISE etc.
}



October 24, 2002 www.eda.org/alf 13

ALF modeling concepts

• Modeling foundation concepts
• Arithmetic model concept

> Electrical and physical library data description
• VECTOR concept

> Stimulus for function, timing, electrical characterization

• Higher-level modeling concepts
• FUNCTION, TEST

> Canonical description of functional behavior
> Interface between tester algorithm and DUT

• TEMPLATE, GROUP
> Re-usable definitions
> Description of parametrizable IP blocks

Covered by 
this tutorial

Covered by 
other tutorial  
[CICC2001]
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Arithmetic model concept
• Purpose of arithmetic model

• Mathematical calculation of measurable quantities in library
• ALF supports rich set of predefined keywords

• Timing, analog and physical modeling
• ALF is highly self-descriptive

• Declaration of legal range or value set
• Declaration of customized keywords

• Description methods
• Lookup table
• Analytical model
• Calculation graph involving multiple models
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Predefined arithmetic models (1 of 2)

Timing

Analog

DELAY, RETAIN, SLEWRATE, SKEW, JITTER, 
SETUP, HOLD, RECOVERY, REMOVAL, 
PULSEWIDTH, PERIOD, ILLEGAL, NOCHANGE, 
THRESHOLD, NOISE, NOISE_MARGIN

VOLTAGE, CURRENT, TIME, FREQUENCY, 
CAPACITANCE, RESISTANCE, INDUCTANCE, 
ENERGY, POWER, FLUX, FLUENCE,
TEMPERATURE

Standard keywords for arithmetic model
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Predefined arithmetic models (2 of 2)

Physical

Misc.

LENGTH, WIDTH, HEIGHT, THICKNESS,
AREA, PERIMETER, SIZE, EXTENSION, 
DISTANCE, OVERLAP

PROCESS, DERATE_CASE, 
DRIVE_STRENGTH, SWITCHING_BITS, 
CONNECTIVITY

Standard keywords for arithmetic model (cont.)
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Global arithmetic model definitions

Declaration of legal value range

CAPACITANCE  { MIN = 0; }
TEMPERATURE { MIN = -273; }
VOLTAGE { MIN = -1000; MAX = 1000; }

Declaration of discrete legal value set

PROCESS { TABLE { best nominal worst } } 

Declaration of new keyword for arithmetic model

KEYWORD NEW_MODEL = arithmetic_model {
VALUETYPE = number ; }
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Arithmetic model with TABLE
Example for 3-D lookup table

CAPACITANCE {
HEADER {

TEMPERATURE { TABLE { 0 70 125 } }
VOLTAGE { TABLE { 0.5 1.5 } }
PROCESS { TABLE { best nominal worst } }

} TABLE {
9.8 10.0   9.9 10.2 12.0 11.5
8.5   8.9   8.8 9.5 10.0   9.7
7.8   8.1   7.9 8.7   9.3   8.9

} }

3rd point in 1st dimension
1st point in 2nd dimension
2nd point in 3rd dimensionPROCESS = nominal

VOLTAGE = 0.5
TEMPERATURE = 125CAPACITANCE = 8.8

applies for
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Arithmetic model with EQUATION
Example for 3-D analytical model

CAPACITANCE {
HEADER {

TEMPERATURE Ta { /* no table */ }
VOLTAGE Vc { /* no table */ }
PROCESS { /* no table */ }

} EQUATION {
(PROCESS==best)? ( 10.0 + 0.01*(Vc + 0.2*Ta) ) :
(PROCESS==nominal)? ( 9.8 + 0.02*(Vc + 0.1*Ta) ) :
(PROCESS==worst)? ( 9.5 + 0.025*(Vc + 0.15*Ta) ) :
-1

} }
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Arithmetic model with reference
Example for calculation graph

TEMPERATURE temp1 {
HEADER { NEW_MODEL { TABLE { … } } } 
TABLE { … } }

CAPACITANCE {
HEADER {

TEMPERATURE { MODEL=temp1; TABLE { … }  }
VOLTAGE { TABLE { … } }
PROCESS { TABLE { … } }

} TABLE { … } }

Primary input data

Primary input data

Primary input data

Data for NEW_MODEL

calculate TEMPERATURE

Data for PROCESSData for VOLTAGE

calculate CAPACITANCE
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VECTOR concept

• Purpose of Vector
• Describe stimulus for electrical characterization
• Describe functional waveform
• Describe trigger for sequential behavior

• Description methods
• Boolean expression for static state
• Vector expression for temporal behavior
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Single-Event Vector Expressions
Vector expressionTiming diagram for a signal A

(01 A)

(0? A)

(?1 A)

(?! A)

(0* A)
(*1 A)

(?* A)

(*? A)
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Dual-Event Vector Expressions

Vector expressionTiming diagram for two signals A and B

(01 A -> 01 B)A
B

(01 A ~> 01 B)A
B

(01 A -> 10 A)A
B

A
B

(01 A ~> 10 A)

?
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Conditional Vector Expressions

Vector expressionTiming diagram for two signals A and B

(01 A & 01 B)

(01 A & B)

A
B

A
B == 1

Logical condition

Simultaneous switching
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Alternative Vector Expressions
Vector expressionTiming diagram for two signals A and B

(01 A <-> 01 B)

(01 A <&> 01 B)

A
B

A
B or or

or

A
B ?

?or (01 A | 01 B)

A
B or (01 A &> 01 B)
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ALF Modeling applications
• Timing modeling

• Cell delay, timing waveforms
• Interconnect analysis, parasitics

• Power modeling
• Power consumption
• Voltage drop

• Signal integrity
• Noise

• Reliability
• Electromigration

• Manufacturability
• Antenna
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Timing modeling
• ALF supports DELAY and SLEWRATE with 

THRESHOLD definition per timing arc
• Optimal THRESHOLD can be chosen for characterization
• Library data matches SPICE characterization data 

• ALF supports driver RESISTANCE
• Accurate waveform at driver output
• Accurate calculation of effective capacitance
• Better accuracy for cell and interconnect delay

• ALF supports standard timing checks
• SETUP, HOLD, RECOVERY, REMOVAL, SKEW
• MIN, MAX LIMIT for PULSEWIDTH, PERIOD
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DELAY
• Timing arc specification in VECTOR
• PIN and THRESHOLD definition in FROM, TO
• THRESHOLD per library, per pin, or per arc 

DELAY

THRESHOLD

THRESHOLD

VECTOR ( 01 in1 -> 10 out1 ) {
DELAY {

FROM { PIN=in1; THRESHOLD = 0.5; }
TO { PIN=out1; THRESHOLD = 0.4; }

} }

rising edge falling edge 

in1

out1
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SLEWRATE
• Timing arc specification in VECTOR
• THRESHOLD definition in FROM, TO
• THRESHOLD per library or per arc 

SLEWRATE

THRESHOLD
THRESHOLD

out1

in1

VECTOR ( 01 in1 -> 10 out1 ) {
SLEWRATE { PIN = out1;

FROM { THRESHOLD = 0.6; }
TO { THRESHOLD = 0.3; }

} }
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Driver RESISTANCE (1 of 2)
• Linear SLEWRATE not accurate
• Driver RESISTANCE for realistic waveform
• Driver model for calculation of effective capacitance

SLEWRATE

THRESHOLD

THRESHOLD

idealized waveform

virtual source
waveform

real waveform 

Driver model

virtual
source

RESISTANCE
effective 
capacitance

out1
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Driver RESISTANCE (2 of 2)
• Driver RESISTANCE can be associated with 

one specific timing arc or multiple timing arcs 

VECTOR ( 01 in1 -> 10 out1 ) {
DELAY { … }
SLEWRATE { … }
RESISTANCE { PIN = out1; }

}

RESISTANCE applies
for this arc involving
in1 and out1

RESISTANCE applies
for all arcs involving
out1

VECTOR ( 10 out1 ) {
RESISTANCE { PIN = out1; }

}
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Timing accuracy
• ALF enables more accurate delay calculation
• Better correlation with SPICE

Delay correlation with .lib
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Error criterion
Average
Std deviation
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.lib
+   3.9 %
+/- 5.0 %

17.4 %

ALF
+   0.5 %
+/- 2.2 %

11.1 %
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Interconnect modeling

• ALF support distributed load
• Characterize cell delay with R,C load
• More accurate than lumped capacitance

• ALF supports boundary parasitics
• Describe boundary parasitics as R, C
• Can include coupling capacitance between pins
• More accurate than lumped pin capacitance
• Also in conjunction with “donut” model for complex block

• ALF supports interconnect analysis 
• Interconnect delay calculation
• Interconnect noise calculation
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Distributed load
WIRE pi_load {

NODE n1 { NODETYPE=interconnect; }
NODE gnd { NODETYPE=ground; }
RESISTANCE R1 { NODE { n1 n2 } }
CAPACITANCE C1 { NODE { n1 gnd } }
CAPACITANCE C2 { NODE { n2 gnd } }

}

R1
n2n1

gndgnd

C1 C2

Wire 
declaration

DELAY { FROM { PIN=pin1; } TO { PIN=pin0; } 
pi_load w1 { n1 = pin0; }
HEADER {

CAPACITANCE c_near { MODEL = w1.C1; }
CAPACITANCE c_far { MODEL = w1.C2; }
RESISTANCE r_wire { MODEL = w1.R1; }

} EQUATION { … } }

Wire 
instantiation
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Boundary parasitics
CELL myCell { … }

myBlock

myPin

myCell

u1

pin1
p2

p1

R1

Cell 
declaration

CELL 
instantiation

CELL myBlock {
PIN myPin {

PORT p1 { CONNECT_TYPE=external; }
PORT p2 { CONNECT_TYPE=internal; } 

}
FUNCTION { STRUCTURE {

myCell u1 { pin1 = myPin.p2; }
} }

WIRE boundary {
RESISTANCE R1 {

node { myPin.p1 myPin.p2 } }
} }

Parasitics description
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Interconnect delay calculation
WIRE lumpedRLC {

NODE n0 { NODETYPE = source; }
NODE n1 { NODETYPE = driver; }
VOLTAGE V0 { NODE { n0 gnd } }
RESISTANCE R0 { NODE { n0 n1 } }
RESISTANCE R1 { NODE { n1 n3 } }
INDUCTANCE L1 { NODE { n2 n3 } }
CAPACITANCE C1 { NODE { n1 gnd } }
CAPACITANCE C2 { NODE { n2 gnd } }
DELAY { FROM { PIN=n1; } TO { PIN=n2; }  … }

}

Identification
of driver model

R1

n2n1

gndgnd

C1 C2
L1V0 R0

n0

gnd

n3

DELAY = 
f ( R0, R1, L1, C1, C2 )
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Interconnect noise calculation
WIRE lumpedRLC {

NODE n0  { NODETYPE = source; }
NODE n1  { NODETYPE = driver; }
NODE n2  { NODETYPE = receiver; }
VOLTAGE V0 { NODE { n0 gnd } }
CAPACITANCE C1 { NODE { n0 n1 } }
RESISTANCE R1 { NODE { n1 gnd } }
RESISTANCE R2 { NODE { n1 n2 } }
CAPACITANCE C2 { NODE { n2 gnd } }
NOISE { PIN=n2; … }

}

Aggressor

NOISE = f ( V0, C1, R1, R2, C2 )

R2

n2n1

gndgnd

C1 C2V0 R1

n0

gnd

Victim
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Timing closure flow

Physical Synthesis

Clock tree synthesis Integrated
Delay calculation &
Static timing analysisRouting &

Timing optimization

Sign-off 
Delay calculation &
Static timing analysis Same timing models

ALF

o.k.

with ALF

Physical Synthesis

Clock tree synthesis

Delay calculation

Routing

Timing optimization

SDF

Static Timing analysis

o.k.?

without ALF

yes

no
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Power modeling

• ALF supports VECTOR-specific ENERGY & POWER
• Most flexible modeling approach
• Allows tradeoff between VECTOR set and accuracy

• ALF is complemented by Global Activity File (GAF)
• GAF annotates design-specific VECTOR activity
• GAF is an emerging industry standard

• ALF supports multiple voltage domains
• Association between power supply pin and power rail system
• Association between energy and power rail system

• ALF supports transient voltage drop analysis
• Can describe pre-characterized current waveforms
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ENERGY and POWER

• ENERGY associated with transient VECTOR
• POWER associated with static VECTOR

VECTOR ( ( 01 in1 -> 10 out1) && ( ! in2 ) ) {
ENERGY { … }

}

VECTOR ( ! in1 && ! in2 ) {
POWER { … }

} Static power

Transient energy 

Event sequence Logical condition

Logical condition
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Power analysis flow (1 of 2)
• For each cell instance in design:

• Calculate ENERGY or POWER for each VECTOR
• Get frequency or probability or each VECTOR

• Global Activity File (GAF) contains instance-
specific frequency or probability for VECTOR
• More accurate than frequency and probability per net
• Logical correlations are preserved
• Exact power results in conjunction with ALF library

GAF

equency(VECTOR)

TOR)
ALF

ENERGY(VECTOR) * fr

POWER(VECTOR) * probability(VEC

Σ
All transient vectors

Σ
All static vectors

Total power   =

+
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Power analysis flow (2 of 2)

IEEE std

Accellera std, IEEE WG

Proposed Accellera WG

Power rail analysis

Power calculator

Power per instanceSPEF

ALF

GAF

Activity
generator

or

ALF

GAF

Probabilistic
simulator

or

ALF

GAF

Simulator

Activity
extractor

VCD

ALF

netlist

testbench

SDF

Verilog or VHDL
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Multiple voltage domains (1 of 2)
• Define a CLASS for a power supply system
• Define another CLASS for a power rail
• Power rail refers to power supply system

CLASS supply1 { USAGE = SUPPLY_CLASS; }
CLASS supply2 { USAGE = SUPPLY_CLASS; }

CLASS vdd1 { SUPPLY_CLASS = supply1; 
SUPPLYTYPE = power; VOLTAGE = 1.5; }

CLASS vdd2 { SUPPLY_CLASS = supply2;
SUPPLYTYPE = power; VOLTAGE = 1.0; }

CLASS vss { SUPPLY_CLASS { supply1 supply2 } 
SUPPLYTYPE = ground; }

Common ground
for both supplies
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Multiple voltage domains (2 of 2)
• Power/ground pin is connected to power rail 
• Signal pin refers to power supply system
• Energy consumption refers to power supply system

CELL LevelShifter {
PIN vdd_15 { CONNECT_CLASS = vdd1 ; }
PIN vdd_10 { CONNECT_CLASS = vdd2 ; }
PIN vss { CONNECT_CLASS = vss ; }
PIN in { DIRECTION=input; SUPPLY_CLASS=supply2; }
PIN out { DIRECTION=output; SUPPLY_CLASS=supply1; }
VECTOR (?! in -> ?! out ) {

ENERGY = 0.8 { SUPPLY_CLASS=supply1; }
ENERGY = 0.3 { SUPPLY_CLASS=supply2; }

} }
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Transient voltage drop analysis (1 of 2)
• Transient current sources associated with cell

• Temporal granularity: current per VECTOR
• Spatial granularity: current per PIN or per PIN.PORT

Power grid
Vdd.port1 Vdd.port2

WriteEnable

DataIn Complex 
RAM cell

Parasitic R, (L,) C

I(Vdd.port2)I(Vdd.port1)

Behavioral current sources
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Transient voltage drop analysis (2 of 2)
WriteEnable

DataIn

Time0.0 0.5 1.0 1.5 2.0
x

x
x

x x
I (Vdd.port1)

VECTOR ( 01 WriteEnable -> 01 DataIn -> 10 WriteEnable ) {
CURRENT { PIN = Vdd.port1; MEASUREMENT = transient;

HEADER {
TIME { FROM { PIN=WriteEnable; EDGE_NUMBER=0; }

TABLE { 0.0 0.5 1.0 1.5 2.0 }
} }  TABLE { 0.0 0.4 0.5 0.2 0.0 }

} }

Time scale relative to
event in VECTOR
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Advanced technology modeling
• ALF supports signal integrity

• Static NOISE MARGIN
• Event-sensitive NOISE MARGIN
• Transient NOISE MARGIN
• NOISE propagation

• ALF supports reliability
• Signal and power electromigration
• LIMIT for VECTOR-specific FREQUENCY

• ALF supports manufacturability
• ANTENNA rules for technology
• Artwork abstraction for hierarchical ANTENNA check
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Static NOISE MARGIN
• Static NOISE MARGIN in context of a PIN
• Can be specified as LOW and HIGH
• NOISE MARGIN is normalized to voltage swing

Voltage swing

High noise margin

Low noise margin

CELL FlipFlop {
PIN clk {DIRECTION = input; SIGNALTYPE = clock;

NOISE_MARGIN { LOW=0.4; HIGH=0.3; } }
PIN Din { DIRECTION = input; SIGNALTYPE = data; }
PIN Dout { DIRECTION = output; SIGNALTYPE = data; }

}
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Event-sensitive NOISE MARGIN
• Event-sensitive NOISE MARGIN in context of a VECTOR
• Event is described in VECTOR
• Example: noise on data pin during triggering clock edge

NOISE MARGIN

Sensitizing event

Din

clk

VECTOR ( 0* Din -> 01 clk -> *0 Din ) {
NOISE_MARGIN  = 0.4 { PIN = Din; } 

}
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Transient NOISE MARGIN
• Transient NOISE MARGIN in context of a VECTOR
• Depends on PULSEWIDTH of noise waveform

VECTOR ( ( 0* clk -> *0 clk ) && ( Din != Dout ) ) {
NOISE_MARGIN { PIN = clk;

HEADER {
PULSEWIDTH { PIN=clk; TABLE { … } } }

TABLE { … } } }

PULSEWIDTH

NOISE MARGIN

static noise margin

NOISE

PULSEWIDTH

Noise event Logical condition
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NOISE propagation
• NOISE at output pin depends on NOISE at input pin
• NOISE propagation arc in context of VECTOR

NOISE

PULSEWIDTH

NOISE

PULSEWIDTH

DELAY

in1

out1

VECTOR ( 0* in1 -> *0 in1 <&> 1* out1 -> *1 out1 ) {
NOISE { PIN = out1;

HEADER {
NOISE { PIN = in1; TABLE { … } }
PULSEWIDTH { PIN = in1; TABLE { … } }
CAPACITANCE { PIN = out1; TABLE { … } } 

} TABLE { … } } }
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Electromigration (EM) illustration
• Excessive current density leads to metal displacement
• Contacts or wire segments can break

discharge 
current

short-circuit 
current

contact can 
break HERE

charge 
current

short-circuit 
current

contact can 
break HERE
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EM rules for technology (1 of 2)
• LIMIT for CURRENT described in context of LAYER
• Average measurement for DC (power route)
• Absolute average measurement for AC (signal route)
• Peak and RMS measurement also supported

LAYER metal1 {
LIMIT {

CURRENT i_dc { MAX { … } 
MEASUREMENT = average; }

CURRENT i_ac { MAX { … } 
MEASUREMENT = absolute_average; }

CURRENT i_peak { MAX { … } 
MEASUREMENT = peak; }

} }

for power route

for signal route



October 24, 2002 www.eda.org/alf 54

EM rules for technology (2 of 2)
• Current limit can be temperature-dependent
• Current limit can be width-dependent for routing layer
• Current limit can be area-dependent for cut layer

LIMIT {
CURRENT i_dc { 

MAX {
HEADER {

WIDTH { TABLE { … } }
TEMPERATURE { TABLE { … } }

}
TABLE { … }

} } }
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EM rules for interconnect
• Models for peak and RMS current can be precharacterized
• Simple example: 1st order interconnect model

virtual
source RESISTANCE R1 CAPACITANCE C1

NODE n1NODE n0

NODE gnd

CAPACITANCE C1 { NODE { n1 gnd } }
RESISTANCE R1 { NODE { n0 n1 } }
CURRENT { COMPONENT = R1 ; MEASUREMENT = peak;

HEADER {
RESISTANCE { MODEL = R1; }
CAPACITANCE { MODEL = C1; }
SLEWRATE { PIN = n0; }

} TABLE { … } }
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EM rules for cells (1 of 2)
• Idea: Identify paths inside cell subjected to EM
• Define orthogonal VECTOR set for activating all paths
• Abstract EM rule into LIMIT for VECTOR FREQUENCY

pin2

pin1

pin0

4

5

1

3 2

VECTOR (01 pin0) 
{ /* path 1 */ }

VECTOR (01 pin1 -> 10 pin0)
{ /* path 2 */ }

VECTOR (10 pin2) 
{ /* path 4 */ }

VECTOR (10 pin2 -> 10 pin0)
{ /* path 3 */ }

VECTOR (01 pin2) 
{ /* path 5 */ }
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EM rules for cells (2 of 2)
• Actual current = f (load CAPACITANCE, FREQUENCY)
• Maximum allowed current = f (TEMPERATURE)
• Maximum allowed FREQUENCY 

= f (load CAPACITANCE, SLEWRATE, TEMPERATURE)

VECTOR (01 pin1 -> 10 pin0) {
LIMIT { FREQUENCY { MAX {

HEADER {
SLEWRATE { PIN=pin1; TABLE { … } }
CAPACITANCE { PIN=pin0; TABLE { … } }
TEMPERATURE { TABLE { … } }

} TABLE { … }
} } } }
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EM summary
• ALF supports comprehensive technology EM rules

• ALF supports models for signal current calculation
• Calculated current must be checked against EM rules

• ALF supports abstract models for cell EM rules
• LIMIT for VECTOR-specific FREQUENCY
• Can be dependent on SLEWRATE, load CAPACITANCE, 

TEMPERATURE
• Can incorporate other lifetime-impacting effects,

such as Hot Carrier, Thermal Instability
• Modeling approach scalable to complex cores

• VECTOR paradigm same as for power analysis
• Global Activity File (GAF) also usable in EM flow
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ANTENNA illustration
• Transistor collects charge during etching of metal structures
• Cumulative effect can destroy the transistor

Photo res.

Diffusion
Gate oxide
Polysilicon
Via 1
Metal 1
Via 2
Metal 2
Via 3
Metal 3

Transistor 

Plasma

Plasma

Plasma
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ANTENNA rules for technology (1 of 2)
• Prerequistite for ANTENNA rule description:

• Each LAYER must be declared in LIBRARY
• Order of LAYER declaration must be manufacturing order
• Declaration from bottom to top

LIBRARY myTechnology {
LAYER diffusion { LAYERTYPE=reserved; }
LAYER poly { LAYERTYPE=reserved; }
LAYER cut0 { LAYERTYPE=cut; }
LAYER metal1 { LAYERTYPE=routing; }
LAYER cut1 { LAYERTYPE=cut; }
LAYER metal2 { LAYERTYPE=routing; }
// etc.

}
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ANTENNA rules for technology (2 of 2)
• Charge density depends on ratio between metal and transistor
• The greater the metal area and the smaller the transistor area, 

the greater the damage
• Diffusion alleviates antenna problem by diverting charge

ANTENNA cumulative_area {
SIZE s1 { CALCULATION = incremental;

HEADER {
AREA a1 { LAYER = metal1; }
AREA a0 { LAYER = poly; }
CONNECTIVITY { BETWEEN { metal1 diffusion } }

} EQUATION { CONNECTIVITY? 0.5*a1/a0 : a1/a0 } }
// put calculation for other layers here
LIMIT { SIZE { MAX = 1000; } } }
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ANTENNA rule evaluation
• Antenna rule checker must account for manufacturing order
• Count only top-down connections
• Combine poly areas connected top-down

AREA a2 = 120
metal2

AREA a1’’ = 70AREA a1’ = 50metal1

poly

AREA a0’ = 20 AREA a0’’ = 30

When metal1 is fabricated: check a1’/a0’ = 50/20 and a1’’/a0’’=70/30
When metal2 is fabricated: check a2/(a0’+a0’’) = 120/(20+30)
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ANTENNA model for cell pin
• Antenna checker must 

look inside cell
• Abstraction of artwork 

required

PIN pin1 {
PATTERN p1 { LAYER=metal1; AREA=30; }
PATTERN p2 { LAYER=metal2; AREA=40; }
PATTERN p3 { LAYER=metal1; AREA=25; }
PATTERN p4 { LAYER=poly; AREA=20; }
CONNECTIVITY=1 { CONNNECT_TYPE=physical;

BETWEEN { p2 p3 p4 } }
CONNECTIVITY=1 { CONNNECT_TYPE=physical; 

BETWEEN { p1 p2 } }
PORT port1 { PATTERN = p1; } }

accessible
from outside

p1

p2

p3

p4

inside cell
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ANTENNA summary

• ALF supports ANTENNA technology rules
• Layer-specific and cumulative rules
• Partially cumulative rules (air gap layer)
• Diffusion layer involved in rule

• ALF supports hierarchical ANTENNA model
• Abstract artwork model for cell pin
• Sufficient detail for accurate antenna check
• Does not reveal artwork geometry
• Suitable for IP modeling 
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Conclusion and outlook
• ALF provides comprehensive modeling support

• Timing with sign-off accuracy
• Power from RTL to layout level
• Signal integrity, reliability, manufacturability

• ALF is already deployed in the industry
• Production-proven EDA tools
• ASIC vendor libraries
• Commercial library and IP providers

• ALF is a truly open standard
• Vendor neutral
• Forward looking
• Recognized by IEEE and IEC 
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ALF resources available to the Industry

• ALF tutorial at CICC 2001
• ALF paper at DATE 2002 Designers’ Forum
• ALF specification documents

Available for download at
http://www.eda.org/alf

• Free ALF parser from Alternative Systems Concepts

Available for download at
http://www.ascinc.com
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ALF deployment in the industry

I/F to Milkyway DB

Donation of free ALF parser

I/F to Volcano DB

Native lib for timing, power, SI tools

Native lib for RTL prototyping tool 

Lib support from major ASIC vendors

Sponsoring organization
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ALF covers superset of any 
other library combination

System

Silicon 

OLA

OLA

Timing macromodel
Power macromodel
Signal integrity macromodel
Abstract physical model
Interconnect analysis model
Cell timing
Cell power
Cell signal integrity
Layout
Reliability 
Manufacturability

.lef

.lef

STAMP

.lib

ALF
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