Library Characterization and Modeling for 130nm and 90nm SoC Design

IEEE SoC Conference September 19, 2003 Wolfgang Roethig NEC Electronics America

Introduction

Model requirements for system on chip

Challenges in System on Chip

- Design complexity
 - Hierarchical design
 - IP cores and macros as building blocks
- Nanometer physics
 - Signal integrity
 - Manufacturability
- Combination of both
 - High performance requirements
 - High power consumption
 - Significant voltage drop

Accurate and efficient library modeling required

Library modeling domains

- Electrical performance modeling
 - Timing, Noise
 - Power, voltage drop
- Reliability
 - Electromigration, hot electron
- Manufacturability
 - Process antenna, Metal density
 - Design rules for sub-wavelength patterns

Library modeling formats

- .lib from Synopsys
 - Predominantly used in the industry, but does not cover all modeling domains
 - Many EDA vendors invent customized extensions or even new tool-specific library formats
- IEEE 1603-2003 Advanced Library Format (ALF)
 - Approved by IEEE on Sept. 11 2003
 - Supports all modeling domains
 - Will be sparingly used in this tutorial to explain new modeling concepts

Timing modeling

- Characterization conditions are idealized
 - Input waveform is linear ramp
 - Output load is lumped capacitance
 - PVT is constant
- Issues
 - Characterization for variable PVT
 - Need to consider non-linear waveform
 - Need to consider distributed load
 - Interdependency between cell timing and interconnect timing

Timing characterization

Delay (input to output) & Slew rate (output) = f (Slew rate (input), Load capacitance) @ constant PVT

Characterization with variable PVT

- Low effort
 - Calculate derating factors by sparse characterization for P, V, T as independent variables
- Medium effort
 - Characterize entire library for selected set of PVT conditions (e.g. best, normal, worst)
 - Apply derating factors at each condition
- High effort
 - Characterize entire library with P, V, T as independent dimensions

IEEE SoC conference 9/2003

Library modeling tutorial

Non-linear waveform

- Linear slew rate not accurate
- Driver resistance for realistic waveform

Distributed load

General R(L)C network is reduced in 2 steps

Interdependent cell/interconnect timing

Improvements for driver model

IEEE SoC conference 9/2003

Improvements for load model

IEEE SoC conference 9/2003

Characterization of improved models

- Chose driver model
 - Characterize independent parameters of driver model for each cell
 - Simplest example: driver resistance **Rdriver**
 - Characterize dependent parameters of driver model under capacitive load
 - Simplest example: virtual source ramp time deltaT
- Chose driving point load model
 - Characterize effective capacitance as function of driver model parameters and driving point load model parameters
 - Example: **Ceff** = f(**deltaT**, **Rdriver**, **pi-model** params)

Timing summary

- Enhancement of 2-dimensional delay, slew models
 - Existing dimensions: input slew, load capacitance
 New dimensions: Voltage, Temperature
- Enhancement of effective capacitance model
 - Generalized calculation scheme for Ceff
 - Cell-specific characterization of driver model parameters
 - Load model dependent on interconnect topology

Noise

- Noise calculation involves
 - Noise generation and propagation
 - Noise margin check
- Noise margin characterization
 - Functionally correct output for flops and latches
 - No noise amplification through combinatorial cells
- Noise propagation characterization
 - Similar to slew propagation in timing
 - Noise rejection data can be derived

Noise generation

- Noise sources
 - Capacitive coupling on interconnect or between cell pins
 - Inductive coupling
 - Resistive coupling through power/ground rail
- Noise calculation requires driver model of victim cell

Noise margin characterization

- Use input-to-output voltage transfer characteristic
- Noise margin is PVT-dependent

Noise margin check

- Noise margin checked at every cell input pin
 - Many potential violators
- Alternative:
 - Propagate noise through combinatorial cells
 - Noise magnitude diminishes
 - Check noise margin only for flip flops and latches

Noise propagation

- Noise waveform model parameters
 - Peak magnitude
 - Pulse width
- Characterization variables
 - Noise waveform parameters at output pin
 - Noise waveform input-to-output delay
- Characterization dimensions
 - Noise waveform parameters at input pin
 - (effective) load capacitance
 - -PVT

Noise rejection Intersect noise propagation curve with tolerated peak magnitude plane V peak (output) **Static** Voltage V peak (input) transfer curve **Noise rejection** curve **Tolerated** peak Pulse width (input)

Time window concept

- Time window definition
 - Temporal region where a signal can switch
 - Pessimistic model: interval between earliest and latest possible switching time during clock cycle
 - More accurate model: also include intermediate regions where switching is impossible
- Time window prerequisite for evaluation of
 - Cumulative noise of multiple aggressors
 - Crosstalk-induced delay
 - Concurrently activated timing arcs

Multiple aggressors for crosstalk

- Evaluate effect of each aggressor individually
- Cumulative waveform by superposition in time

Issues with multiple aggressors

- Driver resistance is non-linear
 - Need good linear approximation
 - Otherwise, superposition principle does not work
- Interdependency between time windows and crosstalk-induced delay
 - Need iterative calculation
 - Initial assumption: all signals with coupling are subjected to crosstalk-induced delay
 - Calculate time windows with this assumption
 - Eliminate crosstalk for signals with non-overlapping time window
 - Narrow down time windows in subsequent iteration

Concurrently activated timing arcs

- Time windows on critical paths do overlap
 - Multiple timing arcs at cell inputs activated simultaneously
 - Significant delay change compared to single timing arc

Issues with multi-input timing arcs

- Effect is not trivial to model
 - Effect is non-linear
 - Depends on logic function of cell
 - Requires more cell characterization
 - Additional dimension: time between adjacent input signal transitions
- Requires enhancement of timing analysis
 - Extension of timing arc concept to ALF vector
 - ALF vector specifies stimulus for which the effect is characterized

Multi-input timing characterization

Noise summary

- New characterization variables for noise
 - Noise margin
 - Noise propagation
 - Noise rejection can be derived from noise propagation
- Timing and noise analysis inseparable
 - Need time windows to calculate cumulative noise and effects of noise on timing
 - Time window concept offers opportunity for multiinput timing arc modeling

Power

- Static power
 - Dependent on the logic state of the circuit
 - PVT is a characterization dimension
- Transient energy
 - Dependent on the logic operation of the circuit
 - Characterized for same dimensions as timing and noise
 - Can be divided into internal and external energy
 - External energy is the exact product of load capacitance (not effective capacitance) and supply voltage
 - Internal energy depends on input waveform and load model, in a similar way as timing and noise

ALF vector concept for power

- Vector represents characterization stimulus
- Vector occurrence is monitored during analysis

Power analysis

- For each cell instance in design:
 - Calculate ENERGY or POWER for each VECTOR
 - Get frequency or probability or each VECTOR
- Global Activity File (GAF) contains instancespecific frequency or probability for VECTOR
 - More accurate than frequency and probability per net
 - Logical correlations are preserved
 - Exact power results in conjunction with ALF library

Power analysis flow

Voltage drop

- Cause of voltage drop
 - Current consumption of cells
 - RLC parasitics of power supply network
- Effect of voltage drop
 - Change in timing and noise waveforms
 - Change in setup, hold, noise margin
- Cell characterization requirements
 - Supply current waveform for logic operation
 - Self-decoupling capacitance

Modeling of transient voltage drop

- Transient current sources associated with cell
 - Temporal granularity: current for each ALF vector
 - Spatial granularity: current for each supply port

Current waveform description in ALF


```
VECTOR ( 01 WriteEnb -> 01 Din -> 10 WriteEnb ) {
    CURRENT { PIN = Vdd.port1; MEASUREMENT = transient;
        HEADER {
            TIME { FROM { PIN=WriteEnb; EDGE_NUMBER=0; }
            TABLE { 0.0 0.5 1.0 1.5 2.0 }
            Time scale relative to
            event in VECTOR
        }
    }
}
```

Library modeling tutorial

Voltage-drop based timing

- Need voltage drop during window of influence
- Window of influence is bound by time windows for input and output signals of cell instance

Interconnect analysis with voltage drop

- Supply voltage difference between driver output pin and receiver input pin
 - Reference for slew rate measurement changes
 - Signal appears to be faster or slower

Power and voltage drop summary

- Vector concept pertinent for power calculation
 - Characterization variables and dimensions for each power vector similar as for timing
 - No specific library characterization required for static voltage drop
- Transient voltage drop requires extensive library characterization and modeling
 - Transient current waveforms for each vector
 - Driver/receiver characterization for different signal voltage levels due to voltage drop
 - Time window concept pertinent for timing calculation with transient voltage drop

Reliability

- Electromigration
 - Process rules for electromigration
 - Interconnect analysis for electromigration
- Transistor performance degradation
 - Hot electron effect (NMOS)
 - Thermal instability (PMOS)
- Abstract cell modeling for reliability

Electromigration illustration

- Excessive current density leads to metal displacement
- Contacts or wire segments can break

Process rules for electromigration

- Current density limits for each layer
 - Average current for time-variant unidirectional current flow
 - Absolute average current for time-variant bi-directional current flow
 - RMS current for joule heating of wire
 - Peak current against fuse breaking
- Current limits can be frequency-dependent
 - Low frequency: little or no self-healing effect
 - High frequency: self-healing effect

Interconnect analysis for electromigration

- Current through each physical object needs to be evaluated
 - Physical objects are vias and routing segments
- Need to preserve correspondence between electrical parasitics and physical objects
- Signal electromigration
 - Extension to interconnect timing analysis
- Power electromigration
 - Extension to voltage drop analysis

Hot Electron effect

Hot electron effect occurs only when NMOS transistor switches "on"

output

high flux zone

input

Cell characterization for reliability

- Put current meters on all sensitive structures within cell
 - Find set of stimuli (I.e. ALF vectors) that expose each structure to stress
- For each vector
 - Measure the stress (e.g. current, flux etc.) for variable characterization dimensions (input slew, output load etc.)
 - Calculate repetition frequency of stimulus for which the stress equals the limit

Cell characterization for reliability

IEEE SoC conference 9/2003

Library modeling tutorial

Reliability summary

- Reliability must be insured throughout
 - Inside cells
 - On signal interconnect
 - On power rails
- Reliability rules can be pre-characterized and transformed into abstract models for cells and macro cells
 - Frequency limits associated with ALF vectors
 - This covers electromigration, hot electron and any other frequency-dependent stress

Manufacturability

- Process antenna rules
- Metal density rules
- Design rules for sub-wavelength patterns
- Abstract cell model for manufacturability analysis

Process antenna rules

- Transistor collects charge during etching of metal structures
- Cumulative effect can destroy the transistor
- Likelihood of destruction
 - Proportional to area and perimeter of structures being etched (aggressor)
 - Inverse proportional to size of transistor being exposed (victim)
 - Limit against destruction often expressed as ratio between aggressor and victim area

Process antenna illustration

Antenna rule evaluation

- Account for manufacturing order
- Count only top-down connections
- Combine poly areas connected top-down

When metal1 is fabricated: check a1'/a0' = 50/20 and a1''/a0''=70/30

When metal2 is fabricated: check a2/(a0'+a0'') = 120/(20+30)

Antenna model abstraction for cell

- Antenna checker must look inside cell

 Pins of the cell are accessible for connection
- Abstraction of artwork required
 - Geometry of accessible structure must be exposed
 - Geometry of internal artwork can be reduced to connectivity and area of artwork structures

Example: Describe full geometry of p1 Specify area of p2, p3, p4 Connection between p2, p3, p4 Connection between p1, p2

Metal density rules

- Definition of metal density
 - Total area within a region on a layer = A
 - Sum of all subregions covered with metal = M
 - Metal density = M divided by A
 - Regions can be small (local metal density) or large (global metal density)
- Rule for minimum metal density
 - If not satisfied, metal has to be added
- Rule for maximum metal density
 - If not satisfied, metal has to be removed
- Reason for metal density rules
 - "Hills" and "valleys" on layer surface evenly distributed
 - Eliminate risk of scraping off metal during planarization

Density model abstraction for cell

- Calculate density for each layer within the bounding region of a cell
 - Represent density of each layer and total area of bounding region in library model of the cell
- Metal density can then be evaluated in larger context

Example: Cell bounding box area = 100 Density of metal1 within cell = 0.5 5 cells are placed in a region with area = 1000 Density of metal1 within region = 5*0.5*100/1000 = 0.25

Design rules for sub-wavelength patterns

- Lithography has limited resolution
 - Geometry size smaller than the wavelength
 - Optical low-pass filter
 - Structures become "dull" or disappear
 - Structures may "flow" into each other
 - Countermeasure: optical proximity correction (OPC)
- Interference of fractioned waves
 - Structures subjected to destructive interference can not be produced on silicon
 - Countermeasure: phase shift mask

Illustration of OPC

IEEE SoC conference 9/2003

Library modeling tutorial

Consequences of OPC and phase shift

- Limitations of mask enhancements
 - Works only for limited set of patterns
 - Works only in limited context
- Rules required to describe the legal range of geometries within their context
 - Codependent min/max length of a geometry
 - Width-dependent distance between geometries

Physical abstraction summary

- Hierarchical physical design
 - Cell layout is created by custom design tool
 - Cell layout is abstracted to a physical model
 - Chip layout is created by assembly of standard cells and interconnect
- Abstract physical model must preserve enough information to evaluate
 - Process antenna rules
 - Metal density rules
 - Pattern-and context-dependent rules for spacing, width, length, overhang etc.

Summary

- Modeling domains are inter-related
 - Accurate timing calculation requires characterization effort for noise, power, voltage drop
- Abstraction is a pertinent concept in all modeling domains
 - Required for SoC design
 - The ALF vector concept is key for electrical characterization and abstract model creation

EDA industry situation

Domain	Library support			EDA tool readiness
Timing with PVT	.li	b	ALF	Production
Driver/load model	Tool-spe	Tool-specific ALF		Production, Research
Noise	ALF	lib ot	her	Production
Multi-input timing	ALF			Research
Power	ALF	ALF .lib		Mainstream
Static voltage drop	N/A			Mainstream
Transient voltage drop	Tool-spe	cific	ALF	Emerging production
Reliability	ALF	lib ot	her	Production
Manufacturability	LEF of	her .lib	ALF	Production, continuous change

What's next

- Library harmonization and interoperability
 - Formal cross-reference between .lib and ALF
 - Reduce library fragmentation
 - Facilitate more streamlined development of new libraries
 - Facilitate development of next-generation EDA tools with support for better library modeling
- This project is supported by *accellera* Successful incubator for future IEEE standards

References

http://www.eda.org/alf

http://www.accellera.org

Thank you

IEEE SoC conference 9/2003

Library modeling tutorial