
ALF
ntains
he
Incremental specification of ALF 2.0,
including physical library data

Author: Wolfgang Roethig

Purpose of this document

This document contains the proposed amendments and new features of ALF2.0, with
1.1 as baseline. The first part contains amendments to ALF 1.1. The second part co
new features related to function and performance modeling proposed for ALF 2.0. T
third part contains new features related to physical modeling proposed for ALF 2.0.

initial version reviewed Oct. 8, 1999

updated version reviewed Nov. 4, 1999

updated version reviewed Dec. 7, 1999

updated version staged Jan. 25, 2000

updated version staged Feb. 28, 2000

updated version staged April 3, 2000
April 3, 2000 1

 this

ow-
ts are
ay,
ere in
R
 pro-
odels
brar-
ce

ally
clara-

EC-

ll
1.0 Amendments to ALF 1.1

1.1 Incremental definitions for VECTOR

Status: proposal considered acceptable Oct.8. Supplementary proposal (see end of
chapter) acceptable.

Background:

In general, it is illegal to redeclare an ALF object (see ALF1.1, capter 3.7.1, rule 4). H
ever, there are objects which merely define the context for other objects. When objec
incrementally added to the library, it is natural to redeclare the context as well. In this w
new objects can be added at the end of the library instead of being inserted somewh
the middle within the already declared context. The classical example is the VECTO
object, which defines the context for timing and power models. In a characterization
cess, timing models are always there in the 1st revision of a library, whereas power m
are often added later. The new rule legalizes common practice within existing ALF li
ies and tools. It makes it easier to add characterization data incrementally, for instan
power data. It also facilitates conversion from and to legacy library formats.

Proposal:

Multiple instances of the same VECTOR shall be legal for the purpose of increment
adding children objects. The first instance of the VECTOR shall be interpreted as de
tion. All following instances shall be interpreted as supplemental definitions of the V
TOR. The rule of illegal redeclaration shall apply for the children objects within a
VECTOR.

Example:

// the following is legal
VECTOR (01 A -> 01 Z) {

DELAY = 1 { FROM { PIN = A; } TO { PIN = Z; } }
}
VECTOR (01 A -> 01 Z) {

ENERGY = 25 ;
}

// the following is illegal
VECTOR (01 A -> 01 Z) {

DELAY = 1 { FROM { PIN = A; } TO { PIN = Z; } }
}
VECTOR (01 A -> 01 Z) {

DELAY = 2 { FROM { PIN = A; } TO { PIN = Z; } }
}

Supplementary Proposal:

Supplemental definitions of PROPERTY, ATTRIBUTE, LIBRARY, SUBLIBRARY sha
be legal as well.
April 3, 2000 2

ee
re,

iled

d the

at

., the
1.2 Timing arcs in the context of VECTOR

Status: proposal considered acceptable Oct. 8

Background:

In ALF library practice, timing models appear always in the context of a VECTOR (s
ALF1.1, chapter 4.3). However, there is no normative rule to enforce this. Furthermo
there are no normative rule for the mandatory contents of avector_expression in the
context of which a particular timing model is used.

Proposal:

A timing model shall always appear in the context of a VECTOR. The following deta
rules shall apply.

Rule 1 shall apply for DELAY, RETAIN, SETUP, HOLD, RECOVERY, REMOVAL,
SKEW (see ALF 1.1, chapter 3.6.7.1).

These models describe timing arcs, i.e., timing measurements or timing constraints
between two transitions on two pins. The pins appear as annotations in the FROM an
TO field in the respective model (see ALF 1.1, chapter 3.6.8.1). Consequently, the
vector_expression in the context of which the model appears shall contain [exactly /

least]1 two expressions of the typevector_single_event (see ALF1.1, chapter 3.4.5)
with the FROM and TO pin, respectively, as operand. The sense of the timing arc, i.e
direction of the respective transition shall be identified by the respectiveedge_literal ,
i.e., the operator of the respectivevector_single_event . The temporal order of the
vector_single_event expressions within thevector_expression shall have the fol-
lowing implications on the measurement data:

from_ edge_literal from_ pin -> to_ edge_literal to_ pin
// The data are positive.

to_ edge_literal to_ pin -> from_ edge_literal from_ pin
// The data are negative.

from_ edge_literal from_ pin &> to_ edge_literal to_ pin
// The data are positive or zero.

to_ edge_literal to_ pin &> from_ edge_literal from_ pin
// The data are negative or zero.

from_ edge_literal from_ pin <-> to_ edge_literal to_ pin
// The data are positive or negative.

from_ edge_literal from_ pin <&> to_ edge_literal to_ pin
// The data are positive or negative or zero.

1. “exactly” applies for ALF 1.1, “at least” applies for ALF 2.0 by introduction of EDGE_NUMBER
April 3, 2000 3

d as

ion

be

in. The

s

rbi-
itive.

e pin

w-
 the

d

ter
Rule 2 shall apply for SLEWRATE (see ALF 1.1, chapter 3.6.7.1).

This model describes a measurement of transition time on one pin. The pin is define
annotation to the model. Consequently, thevector_expression in the context of which

the model appears shall contain [exactly / at least]1 one expression of the type
vector_single_event (see ALF1.1, chapter 3.4.5) with the pin as operand. The direct
of the transition shall be identified by theedge_literal , i.e., the operator of the
vector_single_event . The sense of measurement and hence the data shall always
positive.

Rule 3 shall apply for PULSEWIDTH, NOCHANGE (see ALF 1.1, chapter 3.6.7.1).

These models describe measurements between two subsequent transitions on one p
pin is defined as annotation to the model. Consequently, thevector_expression in the

context of which the model appears shall contain [exactly / at least]2 one pair of expres-
sions of the typevector_single_event (see ALF1.1, chapter 3.4.5) with the same pin a
operand. The direction of the transitions shall be identified by the respective
edge_literal , i.e., the operator of the respectivevector_single_event . They must be
different from each other, with the exception of “?!“ which may be used to specify an a
trary transition. The sense of measurement and hence the data shall always be pos

Rule 4 shall apply for PERIOD (see ALF 1.1, chapter 3.6.7.1).

This model describes a measurement of periodically occuring events on one pin. Th
is defined as annotation to the model. Consequently, thevector_expression in the con-
text of which the model appears shall contain a sequence of expressions of the type
vector_single_event (see ALF1.1, chapter 3.4.5) with the same pin as operand allo
ing to be repeated periodically, i.e. the final state must be equal to the initial state of
pin. The subsequent states of the pin shall be identified by the respectiveedge_literal ,
i.e., the operator of the respectivevector_single_event . The sense of measurement an
hence the data shall always be positive.

1.3 Normative distinction between “driver resistance” and “pin
resistance”

Status: proposal considered acceptable Oct.8

Background:

The semantic meaning of resistance is given in application notes (see ALF1.1, chap
4.13.2, 4.14.1, 4.14.3), not in normative chapter.

Proposal 1:

1. “exactly” applies for ALF 1.1, “at least” applies for ALF 2.0 by introduction of EDGE_NUMBER

2. “exactly” applies for ALF 1.1, “at least” applies for ALF 2.0 by introduction of EDGE_NUMBER
April 3, 2000 4

 The
r

inal of
all be

pin
e. The
The driver resistance of an output pin shall be a model in the context of a VECTOR.
PIN shall be an annotation to the model. In an electrically equivalent circuit, the drive
resistance is in series to an ideal voltage source issuing the output signal. One term
the driver resistance shall be connected to the voltage source. The other terminal sh
connected to the accessible output pin itself. See following figure.

Example:

VECTOR (01 A -> 01 Z) {
RESISTANCE = 800 {

UNIT = 1ohm;
PIN = Z;

}
}

Proposal 2:

A parasitic resistance on a pin shall be in the context of a PIN, in conjunction with a
capacitance. One terminal of the resistance shall be connected to the pin capacitanc
other terminal shall be connected to the accessible pin itself. See following figure.

Example:

PIN A {
DIRECTION = input;
RESISTANCE = 200 { UNIT = 1ohm; }
CAPACITANCE = 0.05 { UNIT = Picofarad; }

} // the Elmor time constant is 10 picoseconds

Vo
ut

(t
)

driver resistance

driver model
Vo

ut
(t

)id
ea

l
accessible pin

accessible pin

pin resistance

pin capacitance
April 3, 2000 5

.4,

ach
1.4 Complex binary vector operators with N operands

Status: Proposal considered acceptable Nov.4

Background:

Commutative complex binary vector operators are defined (see ALF 1.1, chapter 3.5
table 3-19). The commutativity rules are only defined for 2 operands. Definition for N
operands is necessary.

• Commutative “followed by”:

vect_expr1 <-> vect_expr2 ===
vect_expr1 -> vect_expr2 // vect_expr1 occurs first

| vect_expr2 -> vect_expr1 // vect_expr2 occurs first

• Commutative “followed by or simultaneously occuring”:

vect_expr1 <&> vect_expr2 ===
vect_expr1 -> vect_expr2 // vect_expr1 occurs first

| vect_expr2 -> vect_expr1 // vect_expr2 occurs first
| vect_expr1 && vect_expr2 // both occur simultaneously

Proposal:

A complex_vector_expression of the form
 vector_expression { <-> vector_expression }

shall be commutative for all operands. Thecomplex_vector_expression describes alter-
native event sequences in which the temporal order of each constituent
vector_expression is completely permutable, excluding simultaneous occurence of
each constituentvector_expression .

A complex_vector_expression of the form
 vector_expression { <&> vector_expression }

shall be commutative for all operands. Thecomplex_vector_expression describes alter-
native event sequences in which the temporal order of each constituent
vector_expression is completely permutable, including simultaneous occurence of e
constituentvector_expression .

Example:

01 A <-> 01 B <-> 01 C ===
01 A -> 01 B -> 01 C

| 01 B -> 01 C -> 01 A
| 01 C -> 01 A -> 01 B
| 01 C -> 01 B -> 01 A
| 01 B -> 01 A -> 01 C
| 01 A -> 01 C -> 01 B

01 A <&> 01 B <&> 01 C ===
01 A -> 01 B -> 01 C

| 01 B -> 01 C -> 01 A
April 3, 2000 6

per-

n

| 01 C -> 01 A -> 01 B
| 01 C -> 01 B -> 01 A
| 01 B -> 01 A -> 01 C
| 01 A -> 01 C -> 01 B
| 01 A && 01 B -> 01 C
| 01 A -> 01 B && 01 C
| 01 B && 01 C -> 01 A
| 01 B -> 01 C && 01 A
| 01 C && 01 A -> 01 B
| 01 C -> 01 A && 01 B
| 01 A && 01 B && 01 C

Note:

The following rule applies for boolean AND operation with 3 operands:

rule 1:
A & B & C === (A & B) & C | A & (B & C)

A corresponding rule also applies to the commutative followed-by operation with 3 o
ands.

rule 2:
01 A <-> 01 B <-> 01 C ===

(01 A <-> 01 B) <-> 01 C
| 01 A <-> (01 B <-> 01 C)

The alternative boolean expressions(A & B) & C andA & (B & C) in rule 1 are equiva-
lent. Therefore rule 1 can be reduced to the following:

rule 3:
A & B & C === (A & B) & C === (B & C) & A

A corresponding rule doesnot apply to complex vector operands, since each expressio
with associated operands generates only a subset of permutations:

(01 A <-> 01 B) <-> 01 C ===
((01 A <-> 01 B) -> 01 C)

| (01 C -> (01 A <-> 01 B)) ===
01 A -> 01 B -> 01 C

| 01 B -> 01 A -> 01 C
| 01 C -> 01 A -> 01 B
| 01 C -> 01 B -> 01 A

01 A <-> (01 B <-> 01 C) ===
(01 A -> (01 B <-> 01 C))

| ((01 B <-> 01 C) -> 01 A) ===
01 A -> 01 B -> 01 C

| 01 A -> 01 C -> 01 B
| 01 B -> 01 C -> 01 A
| 01 C -> 01 B -> 01 A
April 3, 2000 7

qual

-

mer
the

es.
tion
ity
ibed

 to

n
ction
1.5 Misc. amendments

Non-reserved character “#”

The character “#” is not mentioned in the lexical rules for ALF 1.1. The proposal is to
declare it as non-reserved character. This will allow its legal usage in identifiers on e
foot with alphanumeric characters, dollar “$” and underscore “_”.

o.k.

Signaltype

See ALF 1.1, chapter 3.6.3.3.

Statement of purpose:

The purpose of SIGNALTYPE is to classify the functionality of a pin. The currently
defined values apply for pins with PINTYPE=digital.

ALF 1.1, chapter 3.6.3.3 defines signaltypes for “flipflop or latch”, “multiplexor”, “mem
ory or register file”. Following addition should be made: Flipflop, latch, multiplexor,
memory, register file may be standalone cells or embedded in larger cells. In the for
case, the celltype is flipflop, latch, multiplexor, memory, respectively. In the latter case
celltype may be “block” or “core”.

o.k.

Celltype

See ALF 1.1, chapter 3.6.5.1.

Statement of purpose:

The purpose of CELLTYPE is to classify the functionality of cells into broad categori
This is useful for information purpose, for tools which do not need the exact specifica
of functionality, and for tools which can interpret the exact specification of functional
only for certain categories of cells. The exact specification of the functionality is descr
in the FUNCTION statement.

Celltype “PAD” should be phased out, since it does not fit the purpose. PAD belongs
PLACEMENT_TYPE (see chapter 2.10).

Celltype “SPECIAL” should be defined as “Cell can only be used in certain applicatio
contexts not describable by the FUNCTION statement. Examples: Busholders, prote
diodes, fillcells.”

Celltype “MEMORY” should be defined as “cell is a memory or a register file”.

o.k.
April 3, 2000 8

le-
ents,

 can
nt, i.e.

L,

apter
the

atibil-
Celltype “BLOCK” should be defined as “cell is a hierarchical block, i.e., a complex e
ment which can be represented as a netlist. All instances of the netlist are library elem
i.e. there is a CELL model for each of them in the library.”

STRUCTURE (see chapter 2) contains exclusively CELLs.

[Celltype BLOCK should migrate into PLACEMENT_TYPE]

Celltype “CORE” should be defined as “cell is a core, i.e., a complex element which
be represented as a netlist. At least one instance of the netlist is not a library eleme
there is no CELL model, but a PRIMITIVE model for that instance.”

STRUCTURE (see chapter 2) contains PRIMITIVEs and eventually CELLs.

[Celltype CORE should be replaced by celltypes classifying the function, such as PL
DSP, CPU ...]

Multiple non-scan cells

ALF 1.1, chapter 3.6.5.7 requires names for each NON_SCAN_CELL, e.g.

CELL scanff {
NON_SCAN_CELL u1 = ff1 { ... }
NON_SCAN_CELL u2 = ff2 { ... }

}

whereff1 , ff2 are the name of the non-scan equivalent cells foru1, andu2, are arbitrary
names with the sole purpose of satisfying the rule of illegal redeclaration.

The proposal is either to relax this rule in the same way as for VECTOR etc. (see ch
1.1 of this doc.) or to apply the multi_value_assignment concept, in order to get rid of
unnecessary names.

CELL scanff { // incremental definition of NON_SCAN_CELL
NON_SCAN_CELL = ff1 { ... }
NON_SCAN_CELL = ff2 { ... }

}

or

CELL scanff { // multi_value_assignment for NON_SCAN_CELL
NON_SCAN_CELL { ff1 { ... } ff2 { ... } }

}

Preference needs to be decided, based on practicality (ease of implementation, comp
ity with existing parser etc.)

Multi_value_assignment is the prefered concept.

Multi_value_assignment in PROPERTY
April 3, 2000 9

sign-

key-
Currently, a PROPERTY statement (see ALF 1.1, chapter 3.4.7) can only contain as
ments with single values.

property ::=

PROPERTY [identifier] { unnamed_assignments }

The following amendment is proposed:

property ::=

PROPERTY [identifier] { property_items }

property_items ::=
property_item { property_item }

property_item ::=
unnamed_assignment

| multi_value_assignment

Example:

PROPERTY {
my_param1 = value1;
my_param2 { val1 val2 val3 }
my_param3 = value4;

}

1.6 Items to be phased out for ALF 2.0

SCAN annotation container

see ALF 1.1, chapter 3.6.1.1.

Reason: not required for DFT, since all DFT items are already identified by dedicated
words.

Substitution: not required

o.k.

OFF_STATE annotation

see ALF 1.1, chapter 3.6.3.16.

Reason: purpose of OFF_STATE is not well-defined and basically unknown.

Substitution: not required

o.k.

SCAN_USAGE annotation
April 3, 2000 10

ed
d as
, sup-

d.
ared.

ut
see ALF 1.1, chapter 3.6.5.6.

[Currently not in DFT requirement, to be decided.]

ENABLE_PIN annotation

see ALF 1.1, chapter 3.6.3.9.

Currently not in DFT requirement. The ENABLE_PIN annotation provides a very limit
capability to describe a relationship between two pins, which is normally not describe
an annotation for a pin. Relationships between pins can be described using VECTOR
plemented by new features in ALF 2.0. (see chapter 2.5 of this document).

Also, the ENABLE_PIN can make a reference to a pin which may not yet be declare
This clashes with the general rule: an object shall not be referenced before it is decl

Substitution:

For cells withCELLTYPE = buffer | combinational | latch | flipflop the follow-
ing rule applies:

For a PIN withSIGNALTYPE = data andDIRECTION = output | both , the PIN with
SIGNALTYPE = out_enable is the enable-pin.

For a PIN withSIGNALTYPE = scan_data andDIRECTION = output | both , the PIN
with SIGNALTYPE = scan_out_enable is the enable-pin.

For cells withCELLTYPE = memory the following rule applies:

For a PIN withSIGNALTYPE = data andDIRECTION = output | both , the PIN with
SIGNALTYPE = read_enable is the enable-pin.

For a PIN withSIGNALTYPE = test_data andDIRECTION = output | both , the PIN
with SIGNALTYPE = test_read_enable is the enable-pin.

Port-specific enable-pins in multiport memories must have the sameSIGNAL_CLASSas the
related output pin (see chapter 2.6).

POLARITY for OUTPUT signal

see ALF 1.1, chapter 3.6.3.8, table 3-35.

Reason: Not required by any tool today. Applies to very few signals in a library (e.g.
inverted and non-inverted output of flipflop). Different semantics than polarity for inp
signal, therefore potentially confusing.

Substitution:

The output polarity applies only for cells withCELLTYPE = latch | flipflop .
It describes the relationship between two pins.
Both pins haveSIGNALTYPE = data | scan_data .
April 3, 2000 11

ugh
utput

nce.
One PIN hasDIRECTION = output , the other PIN hasDIRECTION = input .
The BEHAVIOR statement contains an assignment in the following form:

output_pin_ identifier = boolean_expression ;

Theboolean_expression contains at least one sub-expression of the following form.

[! | ~] input_pin_ identifier

The systematic presence or absence of the inversion-operator[! | ~] in each sub-expres-
sion involvinginput_pin_ identifier defines the polarity as inverted or non-inverted.

Examples:

BEHAVIOR {
@ (01 clk) {

Q = D ; // non-inverted
QN = ! D ; // inverted

}
}

BEHAVIOR {
@ (01 clk) {

Q = (! sync_reset) & D ; // non-inverted
Q_scan = scan_enb ? D_scan : Q_scan ; // non-inverted

}
}

The polarity relationship between input and output may also be indirectly defined thro
the relationship between two outputs, provided a polarity relationship between one o
and one input is defined as well:

output_pin_ identifier = [! | ~] other_output_pin_ identifier;

Examples:

BEHAVIOR {
@ (01 clk) {

Q = D ; // non-inverted
}
QN = ! Q ; // inverted

}

BEHAVIOR {
@ (01 clk) {

QN = ! D ; // inverted
}
Q = ! QN ; // non-inverted

}

Whenprimitive_instantiation statements are used, the inverting or non-inverting
output can be directly identified by the pin mapping between the model and the insta
April 3, 2000 12

E

ATTRIBUTE READ, WRITE, TIE with POLARITY

see ALF 1.1, chapter 3.6.6.2, table 3-48.

Reason: Not a very concise modeling style . Also, this is the only case where
ATTRIBUTE contains non-atomic objects. By removing this special case, ATTRIBUT
will contain only atomic objects, which simplifies the datamodel.

Substitution: see chapter 2.5 of this document.

PRIMITIVE definition in FUNCTION

see ALF 1.1, chapter 3.4.16

Current BNF:

function ::=

FUNCTION [identifier] {
[all_purpose_items]
[primitives]
function_description

}

function_description ::=
behavior

| [behavior] statetables

Proposed change:

function ::=

FUNCTION [identifier] {
[all_purpose_items]
function_description

}

function_description ::=
behavior

| [behavior] statetables

Reason: PRIMITIVE definitions must contain a FUNCTION statement themselves.
Therefore, the possibility of having PRIMITIVE inside FUNCTION and FUNCTION
inside PRIMITIVE bears the potential risk of circular reference in the datamodel.

Substitution: use PRIMITIVE definitions inside the CELL which contains the FUNC-
TION.

o.k.
April 3, 2000 13

 the
1.7 Use of STATETABLE for ROM initialization

The STATETABLE statement (see ALF 1.1, chapter 3.4.16) can be used to describe
contents of a ROM, as far as this content is fixed in the library.

The following example may be included in an application note.

Example:

CELL my_rom {
CELLTYPE = memory;
ATTRIBUTE { rom asynchronous }
PIN[1:2] addr { DIRECTION = input; SIGNALTYPE = address; }
PIN[7:0] dout { DIRECTION = output; SIGNALTYPE = data; }
PIN[7:0] mem[1:4] { DIRECTION=none; VIEW=none; SIGNALTYPE=data; }
FUNCTION {

BEHAVIOR { dout = mem[addr]; }
STATETABLE {

addr : mem ;
‘h0 : ‘h5 ;
‘h1 : ‘hA ;
‘h2 : ‘h5 ;
‘h3 : ‘hA ;

}
}

}

For flexibility, a separate included file may be used:

CELL my_rom {
CELLTYPE = memory;
ATTRIBUTE { rom asynchronous }
PIN[1:3] addr { DIRECTION = input; SIGNALTYPE = address; }
PIN[7:0] dout { DIRECTION = output; SIGNALTYPE = data; }
PIN[7:0] mem[1:4] { DIRECTION=none; VIEW=none; SIGNALTYPE=data; }
FUNCTION {

BEHAVIOR { dout = mem[addr]; }
INCLUDE “rom_initialization_file.alf”
}

}
}

Contents of the included file “rom_initialization_file.alf“:

STATETABLE {
addr : mem ;
‘h0 : ‘h5 ;
‘h1 : ‘hA ;
‘h2 : ‘h5 ;
‘h3 : ‘hA ;

}

o.k.
April 3, 2000 14

 addi-

he
ways
e an

 for
2.0 New features for ALF 2.0

2.1 EDGE_NUMBER for timing arc

Status: Proposal considered acceptable Oct. 8

New examples added Jan.6

Background:

A VECTOR may contain more than onevector_single_event on a particular pin. In
this case, a timing arc is not completely specified by the pin annotation(s) alone. An
tional specification is necessary.

Proposal:

The EDGE_NUMBER annotation within the context of a timing model shall specify t
edge for which the timing measurement applies. Exactly one PIN annotation shall al
appear in the same context as the EDGE_NUMBER. The EDGE_NUMBER shall hav
unsigned value pointing to exactly one of subsequentvector_single_event expressions
applicable to the referenced pin. The EDGE_NUMBER shall be counted individually
each pin which appears in the VECTOR, starting with zero.

Example 1: Pulse-generator

in

out

DELAY d1

DELAY d2

in

out

DELAY d1

DELAY d2

time

edge_number = 0 edge_number = 1

edge_number = 0
April 3, 2000 15

VECTOR (01 in -> 01 out -> 10 out) {
DELAY d1 {

FROM { PIN = in; }
TO { PIN = out; edge_number = 0; }

}
DELAY d2 {

FROM { PIN = in; }
TO { PIN = out; edge_number = 1; }

}
}

Example 2: DRAM timing diagram

VECTOR(?! addr ->01 RAS ->10 RAS ->?! addr ->01 CAS ->10 CAS ->?! addr){
SETUP s1 {

FROM { PIN = addr; edge_number = 0; }
TO { PIN = RAS; edge_number = 0; }

}
HOLD h1 {

FROM { PIN = RAS; edge_number = 1; }
TO { PIN = addr; edge_number = 1; }

}
SETUP s2 {

FROM { PIN = addr; edge_number = 1; }
TO { PIN = CAS; edge_number = 0; }

}
HOLD h2 {

FROM { PIN = CAS; edge_number = 1; }
TO { PIN = addr; edge_number = 2; }

}
}

RAS

CAS

addr

SETUP s1 HOLD h1
SETUP s2 HOLD h2

edge_number = 0 edge_number = 1

edge_number = 0 edge_number = 1

edge_number = 0 edge_number = 1 edge_number = 2
April 3, 2000 16

,

 of

e
N
n-
ells,

ean-
m
odel
n of
se.

e-to-
ced
etlist
nno-
be
el in
Supplementary proposal:

Default value for EDGE_NUMBER in both the FROM and TO field of DELAY, RETAIN
SETUP, HOLD, RECOVERY, REMOVAL, SKEW shall be 0.

Default value for EDGE_NUMBER in SLEWRATE shall be 0.

Default value for EDGE_NUMBER in the FROM field of PULSEWIDTH, NOCHANGE
shall be 0.

Default value for EDGE_NUMBER in the TO field of PULSEWIDTH, NOCHANGE
shall be 1.

Default value for EDGE_NUMBER in PERIOD is not required.

2.2 STRUCTURE statement

Proposal reviewed Oct. 8, amended proposal considered acceptable Nov. 4

Background:

The purpose of this proposal is to describe the structure of a complex cell composed
atomic cells, for example I/O buffers, LSSD flipflops, clock trees.

Proposal:

An optional STRUCTURE statement shall be legal in the context of FUNCTION. The
STRUCTURE statement shall describe a netlist of components inside the CELL. Th
STRUCURE statement shall not substitute the BEHAVIOR statement. If a FUNCTIO
contains only a STRUCTURE statement and no BEHAVIOR statement, it shall be co
cluded that a behavior description for that particular cell is meaningless (example: fillc
diodes, vias, analog cells ...).

Also, timing and power models shall be provided for the CELL, if such models are m
ingful. Application tools are not expected to use function, timing or power models fro
the instantiated components as a substitute of a missing function, timing or power m
at the top level. However, tools performing characterization, construction or verificatio
a top-level model shall use the models of the instantiated components for this purpo

Test synthesis applications may use the structural information in order to define a on
many mapping for scan cell replacement, such as where a single flip-flop will be repla
by a pair of master/slave latches. A macro cell can be defined whose structure is a n
containing the master and slave latch, and this will contain the NON_SCAN_CELL a
tation to define which sequential cells it is the replacement for. No timing model will
required for this macro cell, since it should be treated as a transparent hierarchy lev
the design netlist after test synthesis.
April 3, 2000 17

ed as

DFT)

SS

ell

er,
physi-
The syntax for FUNCTION statement (see ALF1.1, chapter 3.4.16) shall be augment
follows:

function ::=

FUNCTION [identifier] { [all_purpose_items] [primitives]

[behavior] [structure] [statetables] }
| function_ template_instantiation

structure ::=

STRUCTURE { named_cell_instantiations }

named_cell_instantiations ::=
named_cell_instantiation { named_cell_instantiation }

named_cell_instantiation ::=

cell_ identifier instance_ identifier { logic_values }
| cell_ identifier instance_ identifier { pin_instantiations }

Notes:

Every instance_ identifier within a STRUCTURE statement must be different from
each other.

The STRUCTURE statement provides a directive to the application (e.g. synthesis,
how the CELL is implemented. A CELL referenced innamed_cell_instantiation may
be replaced by another CELL within the same SWAP_CLASS and RESTRICT_CLA
recognized by the application.

Thecell_ identifier within a STRUCTURE statement may refer to actual cells as w
as to primitives. The usage of primitives is recommended in fault modeling for DFT.

BEHAVIOR statements also provide the possibility of instantiating primitives. Howev
those instantiations are for modeling purpose only, they do not necessarily match a
cal structure. The STRUCTURE statement always matches a physical structure.

Example 1:

iobuffer = pre buffer + main buffer

CELL my_main_driver {
DRIVERTYPE = slotdriver ;
BUFFERTYPE = output ;
PIN i { DIRECTION = input; }
PIN o { DIRECTION = output; }
FUNCTION { BEHAVIOR { o = i ; } }

}

CELL my_pre_driver {
DRIVERTYPE = predriver ;
BUFFERTYPE = output ;
PIN i { DIRECTION = input; }
PIN o { DIRECTION = output; }
April 3, 2000 18

FUNCTION { BEHAVIOR { o = i ; } }
}

CELL my_buffer {
DRIVERTYPE = both ;
BUFFERTYPE = output ;
PIN A { DIRECTION = input; }
PIN Z { DIRECTION = output; }
PIN Y { VIEW = physical; }
FUNCTION {

BEHAVIOR { Z = A ; }
STRUCTURE {

my_pre_driver pre { A Y }// pin by order
my_main_driver main { i=Y; o=Z; }// pin by name

}
}

}

Example 2:

lssd flipflop = latch + flipflop + mux

CELL my_latch {
RESTRICT_CLASS { synthesis scan }
PIN enable { DIRECTION = input; }
PIN d { DIRECTION = input; }
PIN d { DIRECTION = output; }
FUNCTION { BEHAVIOR {

@ (enable) { q = d ; }
} }

}

CELL my_flipflop {
RESTRICT_CLASS { synthesis scan }
PIN clock { DIRECTION = input; }
PIN d { DIRECTION = input; }
PIN q { DIRECTION = output; }
FUNCTION { BEHAVIOR {

@ (01 clock) { q = d ; }
} }

}

CELL my_mux {
RESTRICT_CLASS { synthesis scan }
PIN dout { DIRECTION = output; }
PIN din0 { DIRECTION = input; }
PIN din1 { DIRECTION = input; }
PIN select { DIRECTION = input; }
FUNCTION { BEHAVIOR {

dout = select ? din1 : din0 ;
} }

}

CELL my_lssd_flipflop {
RESTRICT_CLASS { scan }
April 3, 2000 19

CELLTYPE = block;
SCAN_TYPE = lssd;
PIN clock { DIRECTION = input; }
PIN master_clock { DIRECTION = input; }
PIN slave_clock { DIRECTION = input; }
PIN scan_data { DIRECTION = input; }
PIN din { DIRECTION = input; }
PIN dout { DIRECTION = output; }
PIN scan_master { VIEW = physical; }
PIN scan_slave { VIEW = physical; }
PIN d_internal { VIEW = physical; }
FUNCTION { BEHAVIOR {

@ (master_clock) {
scan_data_master = scan_data ;

}
@ (slave_clock & ! clock) {

dout = scan_data_master ;
} : (01 clock) {

dout = din ;
} }
STRUCTURE {

my_latch U0 {
enable = master_clock;
din = scan_data;
dout = scan_data_master;

}
my_flipflop U1 {

clock = clock;
d = din;
q = d_internal;

}
my_mux U2 {

select = slave_clock;
din1 = scan_data_master;
din0 = dout;
dout = scan_data_slave;

}
my_mux U3 {

select = clock;
din1 = d_internal;
din0 = scan_data_slave;
dout = dout;

} }
}
NON_SCAN_CELL = my_flipflop {

clock = clock;
d = din;
q = dout;
'b0 = slave_clock;

}
}

Example 3:
April 3, 2000 20

clock tree = chains of clock buffers

CELL my_root_buffer {
RESTRICT_CLASS { clock }
PIN i0 { DIRECTION = input; }
PIN o0 { DIRECTION = output; }
FUNCTION { BEHAVIOR { o0 = i0 ; } }

}

CELL my_level1_buffer {
RESTRICT_CLASS { clock }
PIN i1 { DIRECTION = input; }
PIN o1 { DIRECTION = output; }
FUNCTION { BEHAVIOR { o1 = i1 ; } }

}

CELL my_level2_buffer {
RESTRICT_CLASS { clock }
PIN i2 { DIRECTION = input; }
PIN o2 { DIRECTION = output; }
FUNCTION { BEHAVIOR { o2 = i2 ; } }

}

CELL my_level3_buffer {
RESTRICT_CLASS { clock }
PIN i3 { DIRECTION = input; }
PIN o3 { DIRECTION = output; }
FUNCTION { BEHAVIOR { o3 = i3 ; } }

}

CELL my_tree_from_level2 {
RESTRICT_CLASS { clock }
PIN in { DIRECTION = input; }
PIN out { DIRECTION = output; }
PIN[1:2] level3 { DIRECTION = output; }
FUNCTION {

BEHAVIOR { out = in ; }
STRUCTURE {

my_level2_buffer U1 { i2=in; o2=out; }
my_level3_buffer U2 { i3=out; o3=level3[1]; }
my_level3_buffer U3 { i3=out; o3=level3[2]; }

}
}

}

CELL my_tree_from_level1 {
RESTRICT_CLASS { clock }
PIN in { DIRECTION = input; }
PIN out { DIRECTION = output; }
PIN[1:4] level2 { DIRECTION = output; }
FUNCTION {

BEHAVIOR { out = in ; }
STRUCTURE {

my_level1_buffer U1 { i1=in; o1=out; }
my_tree_from_level2 U2 { i2=out; o2=level2[1]; }
April 3, 2000 21

my_tree_from_level2 U3 { i2=out; o2=level2[2]; }
my_tree_from_level2 U4 { i2=out; o2=level2[3]; }
my_tree_from_level2 U5 { i2=out; o2=level2[4]; }

}
}

}

CELL my_tree_from_root {
RESTRICT_CLASS { clock }
PIN in { DIRECTION = input; }
PIN out { DIRECTION = output; }
PIN[1:4] level1 { DIRECTION = output; }
FUNCTION {

BEHAVIOR { out = in ; }
STRUCTURE {

my_root_buffer U1 { i0=in; o0=out; }
my_tree_from_level1 U2 { i1=o; o1=level1[1]; }
my_tree_from_level1 U3 { i1=o; o1=level1[2]; }
my_tree_from_level1 U4 { i1=o; o1=level1[3]; }
my_tree_from_level1 U5 { i1=o; o1=level1[4]; }

}
}

}

Example 4:

Multiplexor, showing the conceptional difference between BEHAVIOR and STRUC-
TURE.

CELL my_multiplexor {
PIN a { DIRECTION = input; }
PIN b { DIRECTION = input; }
PIN s { DIRECTION = input; }
PIN y { DIRECTION = output; }
FUNCTION {

BEHAVIOR {
// s_a and s_b are virtual internal nodes

ALF_AND { out = s_a; in[0] = !s; in[1] = a; }
ALF_AND { out = s_b; in[0] = s; in[1] = b; }
ALF_OR { out = y; in[0] = s_a; in[1] = s_b; }

}
STRUCTURE {

// sbar, sel_a, sel_b are physical internal nodes
ALF_NOT { out = sbar; in = s; }
ALF_NAND { out = sel_a; in[0] = sbar; in[1] = a; }
ALF_NAND { out = sel_b; in[0] = s; in[1] = b; }
ALF_NAND { out = y; in[0] = sel_a; in[1] = sel_b; }

}
}

}

April 3, 2000 22

e of a

d as

t, the

or

t.
ext of

of a
ay be
ay
C

cribe
from a
epre-
2.3 Hierarchical identifier “.”

Status: new proposal Jan. 2000. Replaces and generalizes the proposal in “referenc
declared PORT inside a declared PIN” in chapter 3.1 of this document.

Proposal:

The lexical rules for identifier (see ALF spec. 1.1, chapter 3.2.12) shall be augmente
follows:

hierarchical_identifier ::=

identifier . { identifier . } identifier

with no whitepace in-between.

The dot shall take precedence over the escape_character. In order to escape the do
escape_character must be placed directly in front of the dot.

Examples:

\id1.id2 Only id1 is escaped.

id1\.id2 Only the dot is escaped.

id1.\id2 Only id2 is escaped.

o.k.

2.4 NODE statement in the context of WIRE

Status: Proposal reviewed Nov. 4, usage of WIRE keyword to be discussed, named
unnamed CAPACITANCE, RESITANCE to be discussed, acceptable otherwise.

Jan. 2000: Separated from PORT statement in the context of PIN, which is for layou
Proposal has been modified to support interconnect delay models. PORT in the cont
WIRE renamed to NODE.

Background:

For complex cells, especially in hierarchical design, modeling the electrical properties
pin as a lumped C or RC (see this document, chapter 1.3) may not suffice. A PIN m
modeled as several electrical NODEs, and a considerable amount of routing wire m
exist between the NODEs. Therefore a description capability of distributed RC or RL
components between the NODEs is needed.

Note, that SPEF (see IEEE 1481 specification) is not the most appropriate way to des
such components. The purpose of SPEF is to describe RLC components extracted
design, not components which are part of a cell in the library. Moreover, SPEF can r
April 3, 2000 23

s arith-

EE

in

o a
h is
g

nnec-

, of

 the

n

sent those components only as single numbers, whereas ALF may describe them a
metic models of temperature, process etc.

Also it is desireable that ALF can be used as a self-sufficient source to OLA (see IE
1481 specification). OLA has a callgetPinAdmittance, which returns a RLC network.
Therefore the equivalent description capability of an RLC network should also exist
ALF.

The most natural way for ALF is to put the arithmetic models for RLC components int
WIRE object inside a CELL object. This is in tune with the semantics of WIRE, whic
a container of arithmetic models such as RESISTANCE and CAPACITANCE. Nothin
precludes those models from being a description ofexactRC values as opposed tostatisti-
cal RC values in the context of a wireload model. The exact RC values must have co
tivity information in order to be meaningful.

Proposal:

A WIRE statement may contain a NODE statement of the following form:

node ::=

NODEnode_ identifier [= node_purpose_ identifier] ;

node_purpose_ identifier ::=

ground
| power
| driver
| receiver

A NODE shall be visible inside the WIRE only. The purpose ofground is to define an
ideal ground for electrical modeling. The purpose ofpower is to define an ideal power
supply for electrical modeling. The signal voltages for logic high and low, respectively
ideal drivers shall be identical to the voltage level ofpower andground , respectively.
The purpose ofdriver andreceiver is to define a driver or a receiver for electrical
modeling, respectively. An internal node withoutnode_purpose_ identifier must only
be declared, if measurements are made with respect to this node. Internal nodes for
purpose of describing a netlist of parasitics only need not be declared.

CAPACITANCE, RESISTANCE, INDUCTANCE statements inside WIRE may contai
the followingmulti_value_assignment (see ALF1.1, chapter 3.4.1):

two_node_ multi_value_assignment ::=

NODE { node_ identifier node_ identifier }

wherenode_ identifier is one of the following:

a simpleidentifier , refering to a declared PIN of the CELL.

a hierarchical_identifier , refering to a declared PORT of a PIN of the CELL

a simpleidentifier , refering to a declared PORT of the WIRE.
April 3, 2000 24

y

 to

ment

in

rib-

renti-

the
l for
the
ay
a simpleidentifier , not refering to a declared object. Can be used for connectivit
inside the WIRE only.

The purpose is to define the CAPACITANCE, RESISTANCE, INDUCTANCE objects
be connected components rather than statistical models.

Note:

Both PIN assignments (e.g.PIN=A;) and NODE assignments (e.g.NODE { A B })
may refer to PINs or PORTs.
The fundamental semantic difference between a PIN assignment and a NODE assign
is the following: The PIN assignment within an object defines that the object isappliedor
measuredat the PIN or PORT. (e.g. DELAY, SLEWRATE). The NODE assignment with
an object defines that the object is fundamentallyconnectedwith the PIN or PORT, in the
same way as an object inside a PIN is also fundamentally connected with the PIN.
Therefore, the CAPACITANCE with NODE assignment is a more detailed way of desc
ing a CAPACITANCE of a PIN, whereas a CAPACITANCE with PIN assignment
describes a load capacitance, which is applied externally to the pin. See also the diffe
ation between pin resistance and driver resistance, chapter 1.3 of this document.

Description of boundary parasitics for a CELL

In the context of a WIRE inside a CELL, values or arithmetic models may be given for
connected components. If a refered PIN contains also a value or an arithmetic mode
CAPACITANCE or RESISTANCE, the latter shall be considered as a reduced form of
former. A CAPACITANCE inside a PIN is not to be added or combined in any other w
with the CAPACITANCE in the WIRE. Either the components for the PIN or the con-
nected components for the WIRE shall be used in a mutually exclusive way.

Example:

CELL my_cell {
PIN A {

CAPACITANCE = 4.8;
RESISTANCE = 37.9;
PORT p1 { VIEW = physical; }
PORT p2 { VIEW = none; }

}
PIN B {

CAPACITANCE = 2.6;
PORT { VIEW = physical; }

}
WIRE my_boundary_parasitics {

NODE gnd = ground;
CAPACITANCE = 1.3 { NODE { A.p1 gnd } }
CAPACITANCE = 2.8 { NODE { A.p2 gnd } }
RESISTANCE = 65 { NODE { A.p1 A.p2 } }
CAPACITANCE = 0.7 { NODE { A.p1 B } }
CAPACITANCE = 1.9 { NODE { B gnd } }

}
}

April 3, 2000 25

be
e the
of the

ent
ion).
Description of interconnect DELAY models

In the context of a VECTOR inside a WIRE, models for DELAY and SLEWRATE may
described. The PIN assignments in these models shall refer to declared NODEs insid
WIRE. Connected components with NODE assignments may be used as arguments
models.

Example:

WIRE simple_interconnect_interconnect_model {
NODE a = driver;
NODE z = receiver;
NODE gnd = ground;
VECTOR ((01 a -> 01 z) | (10 a -> 10 z)) {

DELAY { // analytical delay model
FROM { PIN = a; }
TO { PIN = z; }
CALCULATION = absolute;
HEADER {

RESISTANCE r1 { NODE { a b} }
CAPACITANCE c1 { NODE { b gnd } }
RESISTANCE r2 { NODE { b z} }
CAPACITANCE c2 { NODE { z gnd} }

}
EQUATION { r1*(c1+c2) + r2*c2 }

}
SLEWRATE { // slewrate degradation table

PIN = z;
CALCULATION = absolute;
HEADER {

SLEWRATE { PIN = a; TABLE {/* data */} }
RESISTANCE { NODE { a z } TABLE {/* data */} }
CAPACITANCE { NODE { z gnd } TABLE {/* data */} }

}
TABLE { /* fill in data */ }

}
}

}

The DELAY and SLEWRATE models apply both for rise and fall. Both models repres
absolute numbers (see chapter 2.10 of this document for the CALCULATION annotat

Description of interconnect noise models

In the context of a VECTOR inside a WIRE, models for noise VOLTAGE may be
described as well as models for DELAY and SLEWRATE related to noise.

WIRE interconnect_model_with_coupling {
NODE aggressor_source = driver;
NODE victim_source = driver;
NODE aggressor_sink = receiver;
NODE victim_sink = receiver;
NODE vdd = power;
April 3, 2000 26

le.
s-
 the
f the
 sig-
-
on).

w
xam-

o a
NODE gnd = ground;
VECTOR (01 aggressor_sink && ?- victim_sink) {

VOLTAGE { MEASUREMENT = peak; PIN = victim_sink;
CALCULATION = incremental;
HEADER {

SLEWRATE tra { PIN = aggressor_sink; }
CAPACITANCE cc { NODE {aggressor_sink victim_sink}}
CAPACITANCE cv { NODE {victim_sink gnd }}
RESISTANCE rv { NODE {victim_source victim_sink}}
VOLTAGE va { NODE {vdd gnd} }
}

EQUATION { (1-EXP(-tra/(rv*cv)))*va*rv*cc/tra }
}

}
VECTOR (

(01 aggressor_source <&> 01 victim_source)
 -> 01 aggressor_sink -> 01 victim_sink

) {
DELAY { FROM { PIN = victim_source; } TO { PIN = victim_sink; }

CALCULATION = incremental;
HEADER {

SLEWRATE tra { PIN = aggressor_sink; }
SLEWRATE trv { PIN = victim_source; }
CAPACITANCE cc { NODE {aggressor_sink victim_sink}}
RESISTANCE rv { NODE {victim_source victim_sink}}

}
EQUATION { (1-EXP(-tra/(rv*cv)))*rv*cc*trv/tra }

}
}

}

The VOLTAGE model applies for rising aggressor signal while the victim signal is stab
The DELAY model applies for rising victim signal simultaneous with or followed by ri
ing aggressor signal at the coupling point. Note that the VECTOR implicitely defines
time window of interaction between aggresssor and victim: Interaction occurs only, i
aggressor signal at the coupling point intervenes during the propagation of the victim
nal from its source to the coupling point. Both VOLTAGE and DELAY represent incre
mental numbers (see chapter 2.10 of this document for the CALCULATION annotati

2.5 SIGNALTYPE, OPERATION, SUPPLYTYPE

Background:

The definition of SIGNALTYPE does not follow a coherent strategy. On one hand, ne
signaltypes for PINs are proposed in order to enumerate all possible functionality, (e
ples: SIGNALTYPE=SCAN_ENABLE, SIGNALTYPE=SCAN_OUT_ENABLE), on the
other hand, construction of complex functionality by assigning multiple signaltypes t
PIN is proposed (examples: SIGNALTYPE { READ CLOCK}, SIGNALTYPE { READ
WRITE}).
April 3, 2000 27

t of

d by

able

 and

d to

ith

ing-

.
e a
ith
PIN.

r de-

oder
Therefore systematic way of defining SIGNALTYPEs is proposed, consisting of a se
fundamental signaltypes and prefixes for special signaltypes, with minimal change in
existing definitions.

The OPERATION statement is introduced to define operations which are not controlle
a single pin.

The SUPPLYTYPE statement is introduced as an analogon to SIGNALTYPE, applic
to power/ground pins.

Proposal for SIGNALTYPE:

A pin with PINTYPE = DIGITAL shall have a SIGNALTYPE annotation. The values
shall consist of a set of fundamental values and composite values involving prefixes
infixes.

The following fundamental values for SIGNALTYPE shall be defined:

• DATA (supported in ALF 1.1)
no POLARITY annotation
Definition: a signal that carries information to be transmitted, received, or subjecte
logic operations within the CELL.

o.k.

• CONTROL (supported in ALF 1.1)
no single POLARITY annotation, mode-specific polarity (see below) or VECTOR w
OPERATION annotation is applicable.
Definition: an encoded signal that controls at least two modes of operation of the
CELL, eventually in conjunction with other signals. The signal value is allowed to
change during real-time circuit operation, however, the signal is not necessarily tim
critical.

• TIE (new for ALF 2.0, replaces the ATTRIBUTE { TIE } from ALF 1.1)
POLARITY = HIGH | LOW or VECTOR with OPERATION annotation is applicable
Definition: a signal that needs to be tied to a fixed value statically in order to defin
fixed or programmable mode of operation of the CELL, eventually in conjunction w
other signals. In the fixed mode, the POLARITY defines the required state of the
The signal value is not allowed to change during real-time circuit operation.

• SELECT (supported in ALF 1.1)
no POLARITY annotation, VECTOR with OPERATION annotation is applicable.
Definition: a decoded or encoded signal that selects the data path of a multiplexor o
multiplexor within the CELL. Each selected signal has the same SIGNALTYPE.

• ADDRESS (supported in ALF 1.1)
no POLARITY annotation
Definition: an encoded signal, usually a bus or part of a bus, driving an address dec
within the CELL.
April 3, 2000 28

es of
e

s-

led

 in
r.
o.k.

• CLOCK (supported in ALF 1.1)
POLARITY = HIGH | LOW | RISING_EDGE | FALLING_EDGE | DOUBLE_EDGE
or mode-specific polarity (mandatory)
Definition: a timing-critical signal that triggers data storage within the CELL.

• ENABLE (supported in ALF 1.1)
POLARITY = HIGH | LOW (mandatory)
Definition: a decoded signal which enables and disables a set of operational mod
the CELL, eventually in conjunction with other signals. The POLARITY defines th
state of the PIN when the set is enabled.
POLARITY=HIGH means: set is exclusively enabled when signal is high, set is di
abled while no other set is enabled when signal is low.
POLARITY=LOW means: set is exclusively enabled when signal is low, set is disab
while no other set is enabled when signal is high.
The signal value is expected to change during real-time circuit operation.

• SET (supported in ALF 1.1)
POLARITY = HIGH | LOW (mandatory)
Definition: a signal that controls the storage of the value “1” within the CELL.

o.k.

• CLEAR (supported in ALF 1.1)
POLARITY = HIGH | LOW (mandatory)
Definition: a signal that controls the storage of the value “0” within the CELL.

o.k.

The PINs with SIGNALTYPE=CONTROL | ENABLE | SET | CLEAR shall have
ACTION annotation (supported in ALF 1.1).

ACTION = ASYNCHRONOUS, if self-triggered
ACTION = SYNCHRONOUS, if triggered by a CLOCK signal.

Composite values for SIGNALTYPE shall be constructed using one or more prefixes
combination with the fundamental values, separated by the underscore “_” characte
April 3, 2000 29

me

e

site
-

FIGURE 1. Construction scheme for composite SIGNALTYPE values

The following prefixes and infixes shall be defined:

• prefix or infix OUT (supported in ALF 1.1)
The target of control for the signal is a PIN with DIRECTION=OUTPUT | BOTH
within the CELL. Combinable with signaltypes CONTROL, ENABLE.

OUT_CONTROL: controls visibility of data at an output or bidirectional pin.

OUT_ENABLE: enables visibility of data at an output or bidirectional pin.

Note: OUT_DATA is not supported, since this would be redundant with SIGNAL-
TYPE=DATA and DIRECTION=OUTPUT.

• prefix or infix MASTER, SLAVE (supported in ALF 1.1)
Combinable with signaltype CLOCK.

MASTER_CLOCK: the signal is a master clock within a master-slave clocking sche
within the CELL

SLAVE_CLOCK: the signal is a slave clock within a master-slave clocking schem
within the CELL

• prefix or infix READ, WRITE (new for ALF 2.0, replaces SIGNALTYPE = READ |
WRITE from ALF 1.1
Qualifies the signal to be relevant for a read or write operation, respectively.
Combinable with each other. Combinable with signaltypes CONTROL, CLOCK,
ENABLE. Not combinable with prefix OUTor SCAN.

READ_CONTROL, WRITE_CONTROL, READ_WRITE_CONTROL:
controls read operation, write operation or both, respectively.

READ_ENABLE, WRITE_ENABLE, READ_WRITE_ENABLE:
enables read operation, write operation or both, respectively.

READ_CLOCK, WRITE_CLOCK, READ_WRITE_CLOCK:
clock for read operation, write operation or both, respectively.

• prefix SCAN (supported in ALF 1.1)
Qualifies the signal to be relevant for scan. Combinable with fundamental or compo
signaltypes involving DATA, CONTROL, ENABLE, CLOCK. Exception: Not combin
able with READ, WRITE.

data

address

clock

control

enableread

write

master

slave

out
test

scan

bist
April 3, 2000 30

nda-
,

o

SCAN_DATA: data for scan mode

SCAN_CONTROL: signal controls the scan mode

SCAN_OUT_CONTROL: signal controls the scan output

SCAN_ENABLE: signal enables the scan mode

SCAN_OUT_ENABLE: signal enables the scan output

SCAN_CLOCK: clock for scan mode

SCAN_MASTER_CLOCK, SCAN_SLAVE_CLOCK:
master or slave clock, respectively, for scan mode.

• prefix TEST, BIST (new for ALF 2.0)
Qualifies the signal to be relevant for test or bist, respectively. Combinable with fu
mental or composite signaltypes involving DATA, CONTROL, ADDRESS, CLOCK
ENABLE. Not combinable with each other. Not combinable with SCAN.

TEST_DATA: data signal for test mode

TEST_CONTROL: control signal for test mode

TEST_OUT_CONTROL: output control signal for test mode

TEST_READ_CONTROL, TEST_WRITE_CONTROL,
TEST_READ_WRITE_CONTROL:
control signal for read, write, or both, respectively, in test mode

TEST_ADDRESS: address signal for test mode

TEST_CLOCK: clock signal for test mode

TEST_MASTER_CLOCK, TEST_SLAVE_CLOCK:
master or slave clock signal, respectively, for test mode

TEST_READ_CLOCK, TEST_WRITE_CLOCK, TEST_READ_WRITE_CLOCK:
clock signal for read, write, or both, respectively, in test mode

TEST_ENABLE: enable signal for test mode

TEST_OUT_ENABLE: output enable signal for test mode

TEST_READ_ENABLE, TEST_WRITE_ENABLE,
TEST_READ_WRITE_ENABLE:
enable signal for read, write, or both, respectively, in test mode

• prefix BIST (new for ALF 2.0)
Qualifies the signal to be relevant for build-in-self-test. Combinable with the same
composite or fundamental signaltypes as “TEST”. Prefix “TEST”, “SCAN”, “BIST”
are mutually exclusive.

A pin with PINTYPE = ANALOG may also have SIGNALTYPE annotation. However, n
values are currently defined.

Proposal for mode-specific POLARITY:
April 3, 2000 31

.

ed
irely

as
t con-
PE

 of
d

Signals with composite signaltypesmode_CONTROL may have mode-specific polarities
Signals with composite signaltypesmode_CLOCK may have a single polarity or mode-
specific polarities.

Example:

PIN rw {
SIGNALTYPE = READ_WRITE_CONTROL;
POLARITY { READ=high; WRITE=low; }

}

PIN rwc {
SIGNALTYPE = READ_WRITE_CLOCK;
POLARITY { READ=rising_edge; WRITE=falling_edge; }

}

Proposal for OPERATION:

The OPERATION statement inside a VECTOR shall be used to indicate the combin
definition of signal values or signal changes for certain operations which are not ent
controlled by a single signal.

operation_ assignment ::=

OPERATION = operation_ identifier ;

OPERATION within the context of VECTOR indicates certain a function of a cell, such
a memory write, or change to some state, such as test mode. Many functions are no
trolled by a single pin and are therefore not able to be defined by the use of SIGNALTY
alone. The VECTOR shall describe the complete operation, including the sequence
events on input and expected output signals, such that one operation can be followe
seamlessly by the next.

For a cell with CELLTYPE=memory, the following values shall be predefined:

operation_ identifier ::=

read
| write
| read_modify_write
| write_through
| start
| end
| refresh
| load
| iddq

• read: read operation at one address

• write: write operation at one address

• read_modify_write: read followed by write of different value at same address

• start: first operation required in a particular mode
April 3, 2000 32

ng it

R

-

r

• end: last operation required in a particular mode

• refresh: operation required to maintain the contents of the memory without modifi

• load: operation for loading control registers

• iddq: operation for supply current measurements in quiescent state

The EXISTENCE_CLASS (see ALF 1.1, chapter 3.6.4.3) within the context of VECTO
shall be used to identify which operations can be combined in the same mode.
OPERATION is orthogonal to EXISTENCE_CLASS. The EXISTENCE_CLASS state
ment is only necessary, if there is more than one mode of operation.

Example:

CLASS normal_mode { PURPOSE = test; }
CLASS fast_page_mode { PURPOSE = test; }
VECTOR (! WE && (

?! addr -> 01 RAS -> 10 RAS ->
?! addr -> 01 CAS -> X? dout -> 10 CAS -> ?X dout

)) {
OPERATION = read; EXISTENCE_CLASS = normal_mode;

}
VECTOR (WE && (

?! addr -> 01 RAS -> 10 RAS ->
?! addr -> ?? din -> 01 CAS -> 10 CAS

)) {
OPERATION = write; EXISTENCE_CLASS = normal_mode;

}
VECTOR (! WE && (?! addr -> 01 CAS -> X? dout -> 10 CAS -> ?X dout)) {

OPERATION = read; EXISTENCE_CLASS = fast_page_mode;
}
VECTOR (WE && (?! addr -> ?? din -> 01 CAS -> 10 CAS)) {

OPERATION = write; EXISTENCE_CLASS = fast_page_mode;
}
VECTOR (?! addr -> 01 RAS -> 10 RAS) {

OPERATION = start; EXISTENCE_CLASS = fast_page_mode;
}

Note: The complete description of a “read” operation also contains the behavior afte
“read” is disabled.

Example:

VECTOR (01 read_enb -> X? dout -> 10 read_enb -> ?X dout) {
OPERATION = read; // output goes to X in read-off

}

VECTOR (01 read_enb -> ?? dout -> 10 read_enb -> ?- dout) {
OPERATION = read; // output holds is value in read-off

}

Proposal for SUPPLYTYPE:
April 3, 2000 33

t ref-
fer-

ext
ss,
ay
pt, it
 for

tiple
y

A PIN with PINTYPE = SUPPLY shall have a SUPPLYTYPE annotation.

supplytype_ assignment ::=

SUPPLYTYPE = supplytype_ identifier ;

supplytype_ identifier ::=

power
| ground
| bias

o.k.

2.6 New usage models for CLASS

Background:

A CLASS is a generic object which can be referenced inside another object. An objec
erencing a class inherits all children object of that class. In addition to this general re
ence, the usage of the keyword CLASS in conjunction with a predefined prefix (e.g.
CONNECT_CLASS, SWAP_CLASS, RESTRICT_CLASS, EXISTENCE_CLASS,
CHARACTERIZATION_CLASS) also carries a specific semantic meaning in the cont
of its usage. Note that the keyword <prefix>_CLASS is used for reference of the cla
whereas the definition of the class always uses the keyword CLASS. Thus a class m
have multiple purposes. With the growing number of usage models of the class conce
is useful to include the purpose definition in the class itself in order to make it easier
specific tools to identify the classes of relevance for that tool.

Proposal for PURPOSE:

A CLASS object may contain the PURPOSE annotation, which can take one or mul
values. A VECTOR entitled to inherit the PURPOSE annotation from the CLASS ma
also contain the PURPOSE annotation.

vector_purpose_ assignment ::=

PURPOSE { purpose_ identifier { purpose_ identifier } }

vector_purpose_ identifier :: =

bist
| test
| timing
| power
| integrity

Proposal for SIGNAL_CLASS:

The following new keyword for class reference shall be defined:
April 3, 2000 34

e.
• SIGNAL_CLASS
PIN refering to the same SIGNAL_CLASS belong to the same logic port.
For example the ADDRESS, WRITE_ENABLE and DATA pin of a logic port of a
memory have the same SIGNAL_CLASS.
SIGNAL_CLASS applies to a PIN with PINTYPE=DIGITAL | ANALOG.
SIGNAL_CLASS is orthogonal to SIGNALTYPE.

Example:

CLASS portA;
CLASS portB;
CELL my_memory {

PIN[1:4] addrA { DIRECTION = input;
SIGNALTYPE = address;
SIGNAL_CLASS = portA;

}
PIN[7:0] dataA { DIRECTION = output;

SIGNALTYPE = data;
SIGNAL_CLASS = portA;

}
PIN[1:4] addrB { DIRECTION = input;

SIGNALTYPE = address;
SIGNAL_CLASS = portB;

}
PIN[7:0] dataB { DIRECTION = input;

SIGNALTYPE = data;
SIGNAL_CLASS = portB;

}
PIN weB { DIRECTION = input;

SIGNALTYPE = write_enable;
SIGNAL_CLASS = portB;

}
}

Note: The combination of SIGNAL_CLASS and SIGNALTYPE identifies the port typ
CLASS portA represents a read port, since it consists of a PIN with SIGNALTYPE =
address and a PIN with SIGNALTYPE = data and DIRECTION = output.
CLASS portB represents a write port, since it consists of a PIN with SIGNALTYPE =
address, a PIN with SIGNALTYPE = data and DIRECTION = input, and a PIN with
SIGNALTYPE = write_enable.

Proposal for SUPPLY_CLASS:

The following new keyword for class reference shall be defined:

• SUPPLY_CLASS
PIN refering to the same SUPPLY_CLASS belong to the same power terminal.
For example, digital VDD and digital VSS have the same SUPPLY_CLASS.
SIGNAL_CLASS applies to a PIN with PINTYPE=SUPPLY.
SUPPLY_CLASS is orthogonal to SUPPLYTYPE.

Example:
April 3, 2000 35

latter
proper-
no-

t

d as

ly.

tate-

lar pin

calar
CELL my_core {
PIN vdd_dig { SUPPLYTYPE = power; SUPPLY_CLASS = digital; }
PIN vss_dig { SUPPLYTYPE = ground; SUPPLY_CLASS = digital; }
PIN vdd_ana { SUPPLYTYPE = power; SUPPLY_CLASS = analog; }
PIN vss_ana { SUPPLYTYPE = ground; SUPPLY_CLASS = analog; }

}

o.k.

2.7 Scalar pins inside bus

Background:

A pin may be defined as a scalar pin or as an array in order to represent a bus. In the
case, all pin properties apply to the bus. There is also the necessity to describe pin
ties which apply only to a subrange of pins within the bus. The existing capability of an
tations applicable to scalar pins within the bus (see ALF 1.1, chapter 4.9.4) does no
address all requirements.

Proposal:

A PIN delared as a bus shall contain the optional pin_instantiation statement, define
follows:

pin_instantiation ::=

pin_ identifier [index] {
pin_items

}

whereindex , pin_items are defined in ALF 1.1, chapter 3.4.4 and 3.4.10, respective

A pin_instantiation statement refering to a bus may also contain a pin_instantiation s
ment refering to a part of the bus.

Annotations and arithmetic models within the scope of the PIN or a higher-level
pin_instantiation (see ALF 1.1, chapter 3.6.3) shall be inherited by a lower-level
pin_instantiation, as long as their values are applicable for both the bus and each sca
within the bus. The values of VIEW, INITIAL_VALUE, CAPACITANCE shall not be
inherited, since a particular value cannot apply at the same time to the bus and to its s
pins.

Example:

PIN [1:4] my_address {
DIRECTION = input;
SIGNALTYPE = address;
VIEW = functional;
CAPACITANCE = 0.07;
my_address [1:2] {

CAPACITANCE = 0.03;
April 3, 2000 36

fined
a

must
my_address[1] { VIEW = physical; CAPACITANCE = 0.01; }
my_address[2] { VIEW = physical; CAPACITANCE = 0.01; }

}
my_address [3:4] {

CAPACITANCE = 0.04;
my_address[3] { VIEW = physical; CAPACITANCE = 0.02; }
my_address[4] { VIEW = physical; CAPACITANCE = 0.02; }

}
}

2.8 BITMAP statement

The mapping from logical to physical address and data space of a memory shall be de
within the BITMAP statement. The BITMAP statement shall be within the context of
CELL.

The following example serves as reference for subsequent examples:

CELL my_memory {
PIN[3:0] addr { DIRECTION=input; SIGNALTYPE=address; }
PIN[3:0] Din { DIRECTION=input; SIGNALTYPE=data; }
PIN[3:0] Dout { DIRECTION=output; SIGNALTYPE=data; }
PIN write_enb { DIRECTION=input; SIGNALTYPE=write_enable;

POLARITY=high; ACTION=asynchronous;
}
PIN[3:0] bits[0:15] { DIRECTION=none; VIEW=none; SCOPE=behavior; }
FUNCTION {

BEHAVIOR {
Dout = bits[addr];
@ (write_enb) { bits[addr] = Din; }

}
}
BITMAP { /* see following examples */ }

}

A one-dimensional array withSIGNALTYPE=address (here:PIN[3:0] addr) shall be rec-
ognized as address pin to be mapped.

A two-dimensional array (here:PIN[3:0] bits[0:15]) shall be recognized as a memory
array to be mapped. The first index specifies the number of bits per word. The range
match with the range of data pins (herePIN[3:0] Din andPIN[3:0] Dout). The second
index specifies the number of words.

The bitmap statement shall have the following form:

bitmap ::=

BITMAP {
{ address_ identifier index = row_column_ boolean_expression ; }

DATA { { memory_identifier 1st_ index } }
}

April 3, 2000 37

. The
its per

e of
Theaddress_ identifier is the name of the address pin.
Therow_column_ boolean_expression involves exclusively the following
logic_variables :

ROW index

COLUMN index

These variables shall contain the index of the physical row and column, respectively
number of rows and columns is related to the number of address locations and data b
word as follows:

number of rows * number of columns = number of address locations * number of data bits

where

number of rows <= 2**(1 + max (row index) - min (row index))
number of columns <= 2**(1 + max (column index) - min (column index))
number of address locations = number of data words
number of data words <= 2**(1 + max (address index) - min (address index))
number of data bits = 1 + max (data index) - min (data index)

The index of the physical row and column, respectively, shall represent the binary cod
the actual physical row and column, respectively, in ascending order, starting with 0.

Example:

4 rows are represented in the variable ROW[1:0]
row number 3 has COLUMN[1:0] == ‘b11

16 columns are represented in the variable COLUMN[3:0]
column number 5 has COLUMN[3:0] == ‘b0101

Thememory_identifier is the name of the memory array.
The1st_ index of memory_identifier indicates the number of data bits.

Example 1

ph
ys

ic
al

 r
ow

‘h0

‘h1

‘h2

‘h3

physical column

D[0] D[1] D[2] D[3] D[0] D[1] D[2] D[3] D[0] D[1] D[2] D[3] D[0] D[1] D[2] D[3]

D[0] D[1] D[2] D[3] D[0] D[1] D[2] D[3] D[0] D[1] D[2] D[3] D[0] D[1] D[2] D[3]

D[0] D[1] D[2] D[3] D[0] D[1] D[2] D[3] D[0] D[1] D[2] D[3] D[0] D[1] D[2] D[3]

D[0] D[1] D[2] D[3] D[0] D[1] D[2] D[3] D[0] D[1] D[2] D[3] D[0] D[1] D[2] D[3]

‘h0 ‘h1 ‘h2 ‘h3 ‘h4 ‘h5 ‘h6 ‘h7 ‘h8 ‘h9 ‘hA ‘hB ‘hC ‘hD ‘hE ‘hF

00

01

10

11

00 00 00 00 01 01 01 01 10 10 10 10 11 11 11 11addr[3:2]

ad
dr

[1
:0

]

April 3, 2000 38

BITMAP {
addr[1:0] = ROW[1:0];
addr[3:2] = COLUMN[3:2];
DATA { bits[0:3] bits[0:3] bits[0:3] bits[0:3] }

}

Example 2

BITMAP {
addr[1:0] = ROW[1:0];
addr[3:2] = COLUMN[1:0];
DATA {

bits[0] bits[0] bits[0] bits[0]
bits[1] bits[1] bits[1] bits[1]
bits[2] bits[2] bits[2] bits[2]
bits[3] bits[3] bits[3] bits[3]

}
}

Example 3

ph
ys

ic
al

 r
ow

‘h0

‘h1

‘h2

‘h3

physical column

D[0] D[0] D[0] D[0] D[1] D[1] D[1] D[1] D[2] D[2] D[2] D[2] D[3] D[3] D[3] D[3]

D[0] D[0] D[0] D[0] D[1] D[1] D[1] D[1] D[2] D[2] D[2] D[2] D[3] D[3] D[3] D[3]

D[0] D[0] D[0] D[0] D[1] D[1] D[1] D[1] D[2] D[2] D[2] D[2] D[3] D[3] D[3] D[3]

 D[0] D[0] D[0] D[0] D[1] D[1] D[1] D[1] D[2] D[2] D[2] D[2] D[3] D[3] D[3] D[3]

‘h0 ‘h1 ‘h2 ‘h3 ‘h4 ‘h5 ‘h6 ‘h7 ‘h8 ‘h9 ‘hA ‘hB ‘hC ‘hD ‘hE ‘hF

00

01

10

11

00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11addr[3:2]

ad
dr

[1
:0

]

ph
ys

ic
al

 r
ow

‘h0

‘h1

‘h2

‘h3

physical column

D[0] D[0] D[1] D[1] D[0] D[0] D[1] D[1] !D[2]!D[2] !D[3]!D[3] D[2] D[2] D[3] D[3]

D[0] D[0] D[1] D[1] D[0] D[0] D[1] D[1] !D[2]!D[2] !D[3]!D[3] D[2] D[2] D[3] D[3]

D[0] D[0] D[1] D[1] !D[0]!D[0] !D[1]!D[1] D[2] D[2] D[3] D[3] D[2] D[2] D[3] D[3]

 D[0] D[0] D[1] D[1] !D[0]!D[0] !D[1]!D[1] D[2] D[2] D[3] D[3] D[2] D[2] D[3] D[3]

‘h0 ‘h1 ‘h2 ‘h3 ‘h4 ‘h5 ‘h6 ‘h7 ‘h8 ‘h9 ‘hA ‘hB ‘hC ‘hD ‘hE ‘hF

00

10

11

01

00 01 11 10 11 10 00 01 00 01 11 10 11 10 00 01addr[3:2]

ad
dr

[1
:0

]

April 3, 2000 39

as a
 same

ows:

2,

ce of
onse-
BITMAP {
addr[0] = ROW[1];
addr[1] = ROW[0] ^ ROW[1];
addr[2] = COLUMN[0] ^ COLUMN[1] ^ COLUMN[2];
addr[3] = COLUMN[2] ^ COLUMN[3];
DATA {

bits[0] bits[0] bits[1] bits[1]
bits[0]^ ROW[1] bits[0]^ ROW[1] bits[1]^ ROW[1] bits[1]^ ROW[1]
bits[2]^~ROW[1] bits[2]^~ROW[1] bits[3]^~ROW[1] bits[3]^~ROW[1]
bits[2] bits[2] bits[3] bits[3]

}
}

2.9 ILLEGAL statement inside VECTOR

Background:

For complex cells, especially multi-port memories, it is useful to define the behavior
consequence of illegal operations, for example when several ports try to access the
address.

Proposal:

A VECTOR statement shall contain the optional ILLEGAL statement, defined as foll

illegal ::=

ILLEGAL [identifier] { illegal_items }

illegal_items ::= illegal_item { illegal_item }

illegal_item ::=
all_purpose_item

| violation

whereall_purpose_item , violation are defined in ALF 1.1, chapter 3.4.6 and 3.6.1.
respectively.

The vector_expression within the VECTOR statement describes a state or a sequen
events which define an illegal operation. The VIOLATION statement describes the c
quence of such an illegal operation.

Example:

VECTOR ((addr_A == addr_B) && write_enable_A && write_enable_B) {
ILLEGAL write_A_write_B {

VIOLATION {
MESSAGE = “write conflict between port A and B“;
MESSAGE_TYPE = error;
BEHAVIOR { data[addrA] = ‘bxxxxxxxx; }

}
}

}

April 3, 2000 40

N

nge.
in the
On

gal

rtain
ser of
ax of
such

ed by
Note: An illegal operation can be legalized by using MESSAGE_TYPE=INFORMATIO
or MESSAGE_TYPE=WARNING.

This statement can also be used to define the behavior when an address is out of ra
Note that sometimes the address space is not continguous, i.e., it may contain holes
middle. In that case, a MIN or MAX value for leagal addresses would not be sufficient.
the other hand, a boolean_expression can always exactly describe the legal and ille
address space.

Example:

VECTOR ((addr > ‘h3) && write_enb) {
ILLEGAL {

VIOLATION {
MESSAGE = “write address out of range“;
MESSAGE_TYPE = error;
BEHAVIOR { data[addr] = ‘bxxxxxxxx; }

}
}

}

2.10 KEYWORD statement

Background:

The ALF language allows to introduce customized context-sensitive keywords for ce
purposes. While the semantics of these custom keywords can only be known by the u
such keywords, every ALF parser should have the capability to check the correct synt
objects involving custom keywords. This cannot be achieved without a declaration of
custom keywords.

Proposal:

The category of Generic Objects (see ALF 1.1, chapter 3.4.6, 3.4.7) shall be augment
the KEYWORD statement. The KEYWORD statement shall be defined as follows:

generic_object ::=
// set of current definitions in ALF 1.1, chapter 3.4.6
| keyword_statement

keyword_statement ::=

KEYWORD context_sensitive_keyword = syntax_item_ identifier ;

The following syntax items use context sensitive keywords in ALF 1.1:

syntax_item_ identifier ::=

annotation
| annotation_container
| arithmetic_model
| arithmetic_submodel
April 3, 2000 41

r, the
in this

shall
lay-

e
ol
| arithmetic_model_container
| vector_assignment

Example:

KEYWORD my_arithmetic_model = arithmetic_model;
KEYWORD my_annotation_for_capacitance = annotation;
KEYWORD my_annotation_for_resistance = annotation;
my_arithmetic_model {

HEADER {
CAPACITANCE { my_annotation_for_capacitance = foo; }
RESITANCE { my_annotation_for_resistance = bar; }

}
EQUATION { 10*CAPACITANCE + 0.5*RESISTANCE }

}

It shall be illegal to redefine an already predefined ALF keyword.

Example:

KEYWORD vector = arithmetic_model; // illegal

2.11 Misc. new statements

Some of the proposed statements in this chapter are closely related to layout. Howeve
statements must be also recognized by certain non-layout tools. Therefore they are
chapter rather than in chapter 3.

New value for RESTRICT_CLASS statement

The set of predefined values for RESTRICT_CLASS (see ALF 1.1, chapter 3.6.5.9)
be augmented by “layout”. Cells with this RESTRICT_CLASS value may be used by
out tools, i.e. place & route tools.

Example:

A combination of SWAP_CLASS and RESTRICT_CLASS can be used to emulate th
concept of “logically equivalent cells” and “electrically equivalent cells”. A synthesis to
must know about “logically equivalent cells” for swapping. A layout tool must know
about “electrically equivalent cells” for swapping.

CLASS all_nand2 { RESTRICT_CLASS { synthesis } }
CLASS all_high_power_nand2 { RESTRICT_CLASS { layout } }
CLASS all_low_power_nand2 { RESTRICT_CLASS { layout } }

CELL my_low_power_nand2 {
SWAP_CLASS { all_nand2 all_low_power_nand2 }

}
CELL my_high_power_nand2 {

SWAP_CLASS { all_nand2 all_high_power_nand2 }
}

April 3, 2000 42

.
t

CELL another_low_power_nand2 {
SWAP_CLASS { all_low_power_nand2 }

}
CELL another_high_power_nand2 {

SWAP_CLASS { all_high_power_nand2 }
}

The CLASSall_nand2 encompasses a set of logically equivalent cells.
The CLASSall_high_power_nand2 encompasses a set of electrically equivalent cells
The CLASSall_low_power_nand2 encompasses another set of electrically equivalen
cells.

The synthesis tool may swapmy_low_power_nand2 with my_high_power_nand2 .
The layout tool may swapmy_low_power_nand2 with another_low_power_nand2 and
my_high_power_nand2 with another_high_power_nand2 .

PLACEMENT_TYPE statement

A CELL may contain the following PLACEMENT_TYPE statement:

placement_type_ assignment ::=

PLACEMENT_TYPE =placement_type_ identifier ;

placement_type_ identifier ::=

pad
| core
| ring
| block
| connector

• pad: I/O pad, to be placed in the I/O rows

• core: regular macro, to be placed in the core rows

• block: hierarchical block with regular power structure

• ring: macro with built-in power structure

• connector: macro at the end of core rows connecting with power

ROUTING_TYPE statement

A PIN may contain the following ROUTING_TYPE statement:

routing_type_ assignment ::=

ROUTING_TYPE = routing_type_ identifier ;

routing_type_ identifier ::=

regular
| abutment
| ring
| feedthrough
April 3, 2000 43

ing

ta-

bina-

e

e

alues

ate.
• regular: connection by regular routing

• abutment: connection by abutment, no routing

• ring: pin forms a ring around the block with connection allowed to any point of the r

• feedthrough: both ends of the pin align and can be used for connection

CALCULATION statement for arithmetic model

An arithmetic model in the context of a VECTOR may have the CALCULATION anno
tion defined as follows:

calculation_ annotation ::=

CALCULATION = calculation_ identifier ;

calculation_ identifier ::=

absolute
| incremental

It shall specify whether the data of the model are to be used by themselves or in com
tion with other data. Default isabsolute .

The incremental data from one VECTOR shall be added toabsolute data from
another VECTOR under the following conditions:

• The model definitions are compatible, i.e. measurement specifications must be th
same. Units are allowed to be different.
Example: slewrate measurements at the same pin, same switching direction, sam
threshold values.

• The model definitions for common arguments are compatible, i.e. same range of v
for table-based models, measurement specifications must be the same. Units are
allowed to be different.
Example: same values for derate_case, same threshold definitions for input slewr

• The vector definitions are compatible, i.e. thevector_or_boolean_expression of the
VECTOR containingincremental data must match the
vector_or_boolean_expression of the VECTOR containingabsolute data, by
removing all variables appearing exclusively in the former expression.

Example:

VECTOR (01 A -> 01 Z) {
DELAY {

CALCULATION = absolute;
FROM { PIN = A; } TO { PIN = Z; }
HEADER {

CAPACITANCE load { PIN = Z; }
SLEWRATE slew { PIN = A; }

}
EQUATION { 0.5 + 0.3*slew + 1.2*load }

}

April 3, 2000 44

 win-

ng a

LE.

rpola-
o fit
}
VECTOR (01 A &> 01 B &> 01 Z) {

DELAY {
CALCULATION = incremental;
FROM { PIN = A; } TO { PIN = Z; }
HEADER {

SLEWRATE slew_A { PIN = A; }
SLEWRATE slew_B { PIN = B; }
DELAY delay_A_B { FROM { PIN = A; } TO { PIN = B; } }

}
EQUATION {- 0.1 + (0.05+0.002*slew_A*slew_B)*delay_A_B) }

}
}

Both models describe the rise-to-rise delay from A to Z. The second delay model
describes the incremental delay (here negative), when the input B switches in a time
dow between A and Z.

INTERPOLATION statement for arithmetic model

An argument of a table-based arithmetic model, i.e., a model in the HEADER containi
TABLE statement, may have the INTERPOLATION annotation defined as follows:

interpolation_ annotation ::=

INTERPOLATION = interpolation_ identifier ;

interpolation_ identifier ::=

fit
| floor
| ceiling

It shall specify, the interpolation scheme for values in-between the values of the TAB

• fit
The data points in the table are supposed to be part of a smooth curve. Linear inte
tion or other algorithms, e.g. cubic spline, polynominal regression, may be used t
the data points into the curbe.

• floor
The value to the left in the table, i.e., the smaller value is used.

• ceiling
The value to the right in the table, i.e., the larger value is used.

Default isfit . Note that for multi-dimensional tables, different interpolation schemes
may be used for each dimension.

Example:

my_model {
HEADER {

dimension1 { INTERPOLATION = fit; TABLE { 1 2 4 8 }
dimension2 { INTERPOLATION = floor; TABLE { 10 100 }
April 3, 2000 45

er

mon
dimension3 { INTERPOLATION = ceiling; TABLE { 10 100 }
}
TABLE {

1 7 3 5
10 20 60 40
50 30 20 100
0.8 0.4 0.2 0.9

}
}

Consider the following values:

dimension1 = 6
=> following subtable is chosen:

3 5 // interpolation between 3 and 5
60 40 // or between 60 and 40
20 100 // or between 20 and 100
0.2 0.9 // or between 0.2 and 0.9

dimension2 = 50
=> following subtable is picked:

3 5 // interpolation between 3 and 5
20 100 // or between 20 and 100

dimension3 = 50
=> following subtable is picked:

20 100 // interpolation between 20 and 100

DIRECTION for power and ground pins

The DIRECTION annotation for PINs withPINTYPE=supply shall have the following
semantic meaning:

DIRECTION=input applies for a pin which is a power supply sink (default).

DIRECTION=output applies for a pin which is a power supply source.

DIRECTION=both applies for a pin that can be both source and sink.

DIRECTION=none applies for a pin without connection to source or sink.

Examples:

The power and ground pins of regular cells will have DIRECTION=input.

A level converter cell will have a power supply pin with DIRECTION=input and anoth
power supply pin with DIRECTION=output.

A level converter may have separate ground pins on the input and output side or a com
ground pin with DIRECTION=both.

The power and ground pins of a feedthrough cell will have DIRECTION=none.

Usage of DEFAULT as qualifier for arithmetic submodel
April 3, 2000 46

r
 the

1,

sed.

g at

void

pin
Arithmetic submodels may have the qualifiers MIN, TYP, MAX (see ALF 1.1, chapte
3.6.9.1). For cases where the application tool cannot decide which qualifier applies,
DEFAULT annotation may point to the applicable qualifier.

Example:

PIN my_pin {
CAPACITANCE {

MIN { HEADER { ... } TABLE { ... } }
TYP { HEADER { ... } TABLE { ... } }
MAX { HEADER { ... } TABLE { ... } }
DEFAULT = TYP;

}
}

Arithmetic submodels may have the qualifiers RISE, FALL, HIGH, LOW (see ALF 1.
chapter 3.6.9.2). For cases where the application tool cannot decide which qualifier
applies, a supplementary arithmetic submodel with the qualifier DEFAULT may be u

Example:

PIN my_pin {
CAPACITANCE {

RISE { HEADER { ... } TABLE { ... } }
FALL { HEADER { ... } TABLE { ... } }
DEFAULT { HEADER { ... } TABLE { ... } }

}
}

Rename ORIENTATION into SIDE

ALF 1.1 chapter 3.6.3.11 contains the ORIENTATION annotation for a pin, specifyin
which side of the rectangular cell the pin is located:

ORIENTATION = right | left | top | bottom.

We propose to rename ORIENTATION to SIDE to be consistent with PDEF and to a
confusion with the usage of the word “orientation” in layout.

ROW and COLUMN annotation for PIN

We propose the following annotation for a pin in order to indicate the location of the
within a placement row or column:

row_ assignment ::=

ROW = unsigned ;

column_ assignment ::=

COLUMN = unsigned ;

whererow_ assignment applies for pins withSIDE = right | left and
column_ assignment applies for pins withSIDE = top | bottom .
April 3, 2000 47

n be
For bus pins,row_ assignment andcolumn_ assignment shall have the form of
multi_value_assignments.

row_ multi_value_assignment ::=

ROW { unsigned { unsigned } }

column_ multi_value_assignment ::=

COLUMN { unsigned { unsigned } }

Driver CELL and PIN specification for a macro

The keywords CELL and PIN used as reference to existing objects (see ALF 3.6.2) ca
used to define driver cell and pin in a macro.

Example:

// this is a standard ASIC cell
CELL my_inv {

PIN in { DIRECTION = input; }
PIN out { DIRECTION = output; }

}

// this is a macro, synthesized from standard ASIC cells
CELL my_macro {

PIN my_output {
DIRECTION = output;
CELL = my_inv { PIN = out; }

}
/* fill in other pins and stuff */

}

April 3, 2000 48

ing.

s in
LF

-

3.0 Physical modeling in ALF 2.0

Overview of new statements

The following table summarizes the proposed statements in ALF for physical model

Arithmetic models in the context of layout

The following tables summarize the semantic meanings of arithmetic model keyword
the context of layout. Unless otherwise noted, the keywords are already defined in A
1.1, chapter 3.6.7.1. The meaning of the keywords in this context is also given.

TABLE 1. New statements in ALF describing physical objects

Statement Scope Comment

LAYER LIBRARY,
SUBLIBRARY

Description of a plane provided for physical objects consist
ing of electrically conducting material

VIA LIBRARY,
SUBLIBRARY

Description of a physical object for electrical connection
between layers

SITE LIBRARY,
SUBLIBRARY

Placement grid for a class of physically placeable objects

BLOCKAGE CELL Physical object on a layer, forming an obstruction against
placing or routing other objects

PORT PIN Physical object on a layer, providing electrical connections
to a pin

PATTERN VIA, RULE Physical object on a layer, described for the purpose of
defining relationships with other physical objects

RULE LIBRARY,
SUBLIBRARY,
CELL, PIN

Set of rules defining calculatable relationships between
physical objects

ANTENNA LIBRARY,
SUBLIBRARY,
CELL

Set of rules defining restrictions for physical size of electri-
cally connected objects for the purpose of manufacturing

ARTWORK VIA, CELL Reference to an imported object from GDS2

ARRAY LIBRARY,
SUBLIBRARY

Description of a regular grid for placement, global and
detailed routing

geometric
model

BLOCKAGE, PORT,
PATTERN

Description of the geometric form of a physical object

REPEAT physical object Algorithm to replicate a physical object in a regular way

SHIFT physical object Specification to shift a physical object in x/y direction

FLIP physical object Specification to flip a physical object around an axis

ROTATE physical object Specification to rotate a physical object around an axis

BETWEEN CONNECTIVITY,
DISTANCE

Reference to objects with a relation to each other
April 3, 2000 49

TABLE 2. Semantic meaning of SIZE

context meaning

CELL abstract measure for size of the cell, cost function for design implementation

WIRE - as a model (TABLE or EQUATION):
abstract measure for the size of the wire itself
- as argument of a model (HEADER):
abstract measure for size of the block for which the wireload model applies,
can be calculated by combining the size of all cells and all wires in the block

ANTENNA abstract measure for size of the antenna for which the antenna rule applies

TABLE 3. Semantic meaning of WIDTH

context meaning

CELL, SITE horizontal distance between cell or site boundaries, respectively

WIRE - as argument of a model (HEADER):
horizontal distance between block boundaries for which wireload model applies

LAYER,
ANTENNA

width of a wire, orthogonal to routing direction

TABLE 4. Semantic meaning of HEIGHT

context meaning

CELL, SITE vertical distance between cell or site boundaries, respectively

WIRE - as argument of a model (HEADER):
vertical distance between block boundaries for which wireload model applies

LAYER distance from top of ground plane to bottom of wire

TABLE 5. Semantic meaning of LENGTH

context meaning

WIRE estimated routing length of a wire in a wireload model

LAYER,
ANTENNA

actual routing length of a wire in layout
April 3, 2000 50

TABLE 6. Semantic meaning of AREA

context meaning

CELL physical area of the cell, product of width and height of a rectangular cell

WIRE - as a model (TABLE or EQUATION):
physical area of the wire itself
- as argument of a model (HEADER):
physical area of the block for which wireload model applies,
product of width and height of rectangular block

LAYER, VIA,
ANTENNA

physical area of a placeable or routable object, measured in the x-y plane

TABLE 7. Semantic meaning of PERIMETER (new keyword)

context meaning

CELL perimeter of the cell, twice the sum of height and width for rectangular cell

WIRE - as a model (TABLE or EQUATION):
perimeter the wire itself
- as argument of a model (HEADER):
perimeter of the block for which wireload model applies,
 twice the sum of height and width for rectangular block

LAYER, VIA,
ANTENNA

perimeter of a placeable or routable object, measured in the x-y plane

TABLE 8. Semantic meaning of DISTANCE

context meaning

RULE distance between objects for which the rule applies

TABLE 9. Semantic meaning of THICKNESS (new keyword)

context meaning

LAYER,
ANTENNA

distance between top and bottom of a physical object, orthogonal to the x-y plane

TABLE 10. Semantic meaning of OVERHANG (new keyword)

context meaning

RULE distancefrom the outer border of an objectto the outer border of another object
inside the first one
April 3, 2000 51

here

ay
be

n the

ject
3.1 PORT Statement

Status: Proposal considered acceptable Nov. 4

Jan. 2000: This chapter defines PORT statement in the context of PIN.

Background:

The reason for this proposal is the necessity of describing electrical models of cells w
a logical PIN maps to one ore more physical PORTs. The electrical models for pin
CAPACITANCE, RESISTANCE etc. may not suffice for such cells. Also, timing arcs m
be defined from or to a PORT rather than from or to a PIN. Therefore a PORT shall
considered as connection point for electrical components and timing arcs.

Proposal:

The PORT statement shall be defined as follows:

port ::=

PORT port_ identifier ;
| PORT [port_ identifier] {

[all_purpose_items]
[geometric_models]
[geometric_transformations]

}

A numerical digit may be used as first character inport_ identifier . In this case the
number must be preceeded by the escape character (see ALF 1.1, chapter 3.2.12) i
declaration of the PORT.

See this document chapter 3.2 for the definition ofgeometric_models .

See this document chapter 3.3 for the definition ofgeometric_transformations .

Specificall_purpose_items for PORT areport_view_ annotation ,
layer_ annotation .

VIEW annotation inside a PORT

TABLE 11. Semantic meaning of EXTENSION (new keyword)

context meaning

LAYER, VIA,
RULE,
geometric
model

distance between the border of the original object and the border of the same ob
after enlargement
April 3, 2000 52

.1)

t a

nts
A subset of values for the VIEW annotation inside a PIN (see ALF 1.1, chapter 3.6.3
shall be applicable for a PORT as well.

port_view_ annotation ::=

VIEW = port_view_ identifier ;

port_view_ identifier ::=

physical
| none

VIEW=physical shall qualify the PORT as a real port with the possibility to connec
routing wire to it.

VIEW=none shall qualify the PORT as a virtual port for modeling purpose only.

LAYER annotation inside a PORT

The layer_ annotation may appear inside a PORT (see this document, chapter 3.2).

Declaration of a PORT inside PIN

The syntax forpin_item (see ALF1.1, chapter 3.4.10) shall be augmented as follows:

pin_item ::=
all_purpose_item

| arithmetic_model
| port

A pin may have either no PORT statement or an arbitrary number of PORT stateme
with port_ identifier or exactly one PORT statement withoutport_ identifier .

FEEDTHROUGH annotation inside PIN

Thepin_feedthrough_ annotation shall be used inside a PIN to indicate whether
PORTs inside a PIN are electrically connected.

pin_feedthrough_ annotation ::=

FEEDTHROUGH[identifier] { port_ identifiers }

Eachport_ identifier must be a declared PORT withVIEW=physical .

Example:

PIN A {
PORT P1 { VIEW=physical; }
PORT P2 { VIEW=physical; }
PORT P3 { VIEW=physical; }
FEEDTHROUGH { P1 P2 }

}

The router has the following choices:
April 3, 2000 53

nter-

in the

 and
ion

. For
. A ref-
d:
connect to P1 only

connect to P2 only

connect to P3 only

connect to P1 from one point and to P2 from another point, since P1 and P2 are i
nally shorted.

CONNECTIVITY rules for PORTs and PINs

Connect rules may apply for ports or pins. They are constructed in the same way as
context of RULE statements (see chapter 3.7).

Example:

PIN B {
PORT Q1 { VIEW=physical; }
PORT Q2 { VIEW=physical; }
PORT Q3 { VIEW=physical; }
CONNECTIVITY {

CONNECT_RULE = can_short;
BETWEEN { Q1 Q3 }

}
CONNECTIVITY {

CONNECT_RULE = cannot_short;
BETWEEN { Q1 Q2 }

}
CONNECTIVITY {

CONNECT_RULE = cannot_short;
BETWEEN { Q2 Q3 }

}
}
CONNECTIVITY {

CONNECT_RULE = must_short;
BETWEEN { A B }

}

The router can make external connections between Q1 and Q3, but not between Q1
Q2 or between Q2 and Q3, respectively. The router must make an external connect
between any port of pin B and any port of pin A.

ROUTING_TYPE inside PORT

A PORT may inherit the ROUTING_TYPE from its PIN, or it may have its own
ROUTING_TYPE annotation.

Reference of a declared PORT in a PIN annotation

In the context of timing modeling, a PORT may have the semantic meaning of a PIN
examples, PORTs may be used as FROM and/or TO points of delay measurements
erence by ahierarchical_identifier (see chapter 2.3 of this document) may be use
April 3, 2000 54

Example:

CELL my_cell {
PIN A {

DIRECTION = input;
PORT p1;
PORT p2;

}
PIN Z {

DIRECTION = output;
}
VECTOR (01 A -> 01 Z) {

DELAY {
FROM { PIN = A.p1; }
TO { PIN = Z; }

}
DELAY {

FROM { PIN = A.p2; }
TO { PIN = Z; }

}
}

}

3.2 Geometric Model Statement

Status: reviewed Dec. 7, modified February 2000

Proposal:

The geometric model statement shall be defined as follows:

geometric_model ::=

geometric_model_ identifier [geometric_model_name_ identifier] {
all_purpose_items
coordinates

}
| geometric_model_ template_instantiation

geometric_models ::= geometric_model { geometric_model }

geometric_model_ identifier ::=

DOT
| POLYLINE
| RING
| POLYGON

coordinates ::=

COORDINATES { x_ number y_ number { x_ number y_ number } }

A point is a pair ofx_ number andy_ number .

A DOT is 1 point.
April 3, 2000 55

con-

t is

ue
mov-
pec-

me
A POLYLINE is defined by N>1 connected points, forming an open object.

A RING is defined by N>1 connected points, forming a closed object, i.e. last point is
nected with first point. The object occupies the edges of the enclosed space.

A POLYGONis defined by N>1 connected points, forming a closed object, i.e. last poin
connected with first point. The object occupies the entire enclosed space.

See this document chapter 3.3 for the definition of therepeat statement.

Thepoint_to_point_ annotation applies forPOLYLINE, RING, POLYGON.
It specifies how the connections between points is made. Default is straight. The val
straight defines a straight connection. The value rectilinear specifies a connection by
ing in x-direction first and then moving in y-direction. This enables a non-redundant s
ification of rectilinear objects using N/2 points instead of N points.

point_to_point_ annotation ::=

POINT_TO_POINT = point_to_point_ identifier ;

point_to_point_ identifier ::=

straight
| rectilinear

Example:

POLYGON {
POINT_TO_POINT = straight;
COORDINATES { -1 5 3 5 3 8 -1 8 }

}

POLYGON {
POINT_TO_POINT = rectilinear;
COORDINATES { -1 5 3 8 }

}

Both objects describe the same rectangle.

Use of TEMPLATE to construct special geometric models

The TEMPLATE contruct (see ALF 1.1, chapter 3.1.2.6) can be used to predefine so
commonly used objects.

TEMPLATE RECTANGLE {
POLYGON {

POINT_TO_POINT = rectilinear;
COORDINATES { <left> <bottom> <right> <top> }

}
}

TEMPLATE LINE {
POLYLINE {

POINT_TO_POINT = straight;
April 3, 2000 56

ysi-
COORDINATES { <x_start> <y_start> <x_end> <y_end> }
}

}

TEMPLATE HORIZONTAL_LINE {
POLYLINE {

POINT_TO_POINT = straight;
COORDINATES { <left> <y> <right> <y> }

}
}

TEMPLATE VERTICAL_LINE {
POLYLINE {

POINT_TO_POINT = straight;
COORDINATES { <x> <bottom> <x> <top> }

}
}

// same rectangle as in previous example
RECTANGLE {left = -1; bottom = 5; right = 3; top = 8; }
//or
RECTANGLE {-1 5 3 8 }

// diagonals through the rectangle
LINE {x_start = -1; y_start = 5; x_end = 3; y_end = 8; }
LINE {x_start = 3; y_start = 5; x_end = -1; y_end = 8; }
//or
LINE { -1 5 3 8 }
LINE { 3 5 -1 8 }

// lines bounding the rectangle
HORIZONTAL_LINE { y = 5; left = -1; right = 3; }
HORIZONTAL_LINE { y = 8; left = -1; right = 3; }
VERTICAL_LINE { x = -1; bottom = 5; top = 8; }
VERTICAL_LINE { x = 3; bottom = 5; top = 8; }
//or
HORIZONTAL_LINE { 5 -1 3 }
HORIZONTAL_LINE { 8 -1 3 }
VERTICAL_LINE { -1 5 8 }
VERTICAL_LINE { 3 5 8 }

Context of geometric model statements

A geometric_model describes the form of a physical object, it does not describe a ph
cal object itself. Thegeometric_model must be in the context of a physical object.

The following keywords for physical objects shall be introduced:

• PORT (see chapter 3.1)

• BLOCKAGE (see chapter 3.5)

• PATTERN (see chapter 3.6)
April 3, 2000 57

ve

at

ner

he
lly, a
Physical objects may containgeometric_model statements, geometric transformation
statements (see chapter 3.3) as well asall_purpose_items (see ALF 1.1, chapter 3.4.6).

New keywords forall_purpose_items are defined as follows:

The layer_ annotation defines the layer where the object resides. The layer must ha
been declared before.

layer_ annotation ::=

LAYER = layer_ identifier ;

Theextension_ annotation specifies the value by which the drawn object is extended
all sides.

extension_ annotation ::=

EXTENSION = non_negative_number ;

Default value ofextension_ annotation is 0.

Example:

PATTERN {
LAYER = metal1;
EXTENSION = 1;
DOT { COORDINATES { 5 10 } }

}

This object is effectively a square with lower left corner (x=4,y=9) and upper right cor
(x=6,y=11).

3.3 Statements for geometric transformation

Status: statements individually reviewed Dec. 7. SHIFT, ROTATE, FLIP, REPEAT are
now regrouped in one chapter.

SHIFT statement

The SHIFT statement defines the horizontal and vertical offset measured between t
coordinates of the geometric model and the actual placement of the object. Eventua
layout tool may only support integer numbers.

shift_ annotation_container ::=

SHIFT { horizontal_or_vertical_ annotations }

horizontal_or_vertical_ annotations ::=
horizontal_ annotation

| vertical_ annotation
| horizontal_ annotation vertical_ annotation

horizontal_ annotation ::= HORIZONTAL = number ;
April 3, 2000 58

tate-

odel
ayout

ing
icates
o

ct in
o

, the
a rule
vertical_ annotation ::= VERTICAL = number ;

If only one annotation is given, the default value for the other one is 0. If the SHIFT s
ment is not given, both values default to 0.

ROTATE statement

Therotate_ annotation statement defines the angle of rotation in degrees measured
between the orientation of the object described by the coordinates of the geometric m
and the actual placement of the object in mathematical positive sense. Eventually, a l
tool may only support angles which are multiple of 90 degrees. Default is 0.

rotate_ annotation ::=

ROTATE = number ;

The object shall rotate around its origin.

FLIP statement

The flip_ annotation specifies a transformation of the specified coordinates by flipp
the object around an axis specified by a number between 0 and 90. The number ind
the flipping direction. The axis is orthogonal to the flipping direction. The axis shall g
through the origin of the object.

flip_ annotation ::=

FLIP = number ;

Example:

FLIP = 0 means flip in horizontal direction, axis is vertical.
FLIP = 90 means flip in vertical direction, axis is horizontal.

REPEAT statement

The REPEAT statement shall be defined as follows:

repeat ::=

REPEAT [= unsigned] {
shift_ annotation_container
[repeat]

}

The purpose of the REPEAT statement is to describe the replication of a physical obje
a regular way, for example SITE (see chapter 3.8). The REPEAT statement may als
appear within ageometric_model .

Theunsigned number defines the total number of replications. The number 1 means
object appears just once. If this number is not given, the REPEAT statement defines
for an arbitrary number of replications.
April 3, 2000 59

nce

mes

ple
REPEAT statements can also be nested.

Examples:

The following example replicates an object 3 times along the horizontal axis in a dista
of 7 units.

REPEAT = 3 {
SHIFT { HORIZONTAL = 7; }

}

The following example replicates an object 5 times along a 45-degree axis.

REPEAT = 5 {
SHIFT { HORIZONTAL = 4; VERTICAL = 4; }

}

The following example replicates an object 2 times along the horizontal axis and 4 ti
along the vertical axis.

REPEAT = 2 {
SHIFT { HORIZONTAL = 5; }
REPEAT = 4 {

SHIFT { VERTICAL = 6; }
}

}

Note: The order of nested REPEAT statements does not matter. The following exam
gives the same result as the previous example.

REPEAT = 4 {
SHIFT { VERTICAL = 6; }
REPEAT = 2 {

SHIFT { HORIZONTAL = 5; }
}

}

Summary of geometric transformations

geometric_transformations ::=
geometric_transformation { geometric_transformation }

geometric_transformation ::=
shift_ annotation_container

| rotate_ annotation
| flip_ annotation
| repeat

Rules and restrictions:

• A physical object may contain ageometric_transformation statement of any kind,
but no more than one of a specific kind.
April 3, 2000 60

.,
on
.

.7
• Thegeometric_transformation statements shall apply to allgeometric_models

within the context of the object.

• Thegeometric_transformation statements shall refer to the origin of the object, i.e
the point with coordinates { 0 0 }. Therefore the result of a combined transformati
will be independent of the order in which each individual transformation is applied

FIGURE 2. Illustration of FLIP, ROTATE, SHIFT

3.4 LAYER Statement

Status: proposal modified February 2000

Proposal:

The LAYER statement shall be defined as follows:

layer ::= LAYER identifier { layer_items }

layer_items ::= layer_item { layer_item }

layer_item ::=
all_purpose_item

| arithmetic_model
| arithmetic_model_container

The syntax and semantics ofall_purpose_item , arithmetic_model_container and
arithmetic_model are already defined in ALF1.1.

Specific items applicable for LAYER are listed in the following table.

TABLE 12. Items for LAYER description

item applies for layer usable ALF statement comment

purpose all PURPOSE = <identifier> ; see this doc., chapter 3.4

property routing, cut, master PROPERTY { ... } see ALF 1.1, chapter 3.1.2

SHIFTROTATEFLIP

legend: origin of the object
April 3, 2000 61

be

s,
 fol-

.1
Note: Rules involving relationships between objects within one or several layers will
described in the RULE statement (chapter 3.6).

The purpose of the LAYER shall be defined by the following statement:

layer_purpose_ assignment ::=

PURPOSE = layer_purpose_ identifier ;

layer_purpose_ identifier ::=

routing
| cut
| master

LAYER statements must be in sequential order defined by the manufacturing proces
starting with the substrate in the following sequence: One or multiple master layers,
lowed by alternating cut and routing layers.

ThePREFERENCE statement for LAYER shall have the following form:

routing_preference_ annotation_container ::=

PREFERENCE { routing_preference_ annotations }

routing_preference_ annotations ::=
routing_preference_ annotation { routing_preference_ annotation }

routing_preference_ annotation ::=

routing_preference_ identifier = non_negative_number ;

routing_preference_ identifier ::=

HORIZONTAL
| VERTICAL

current density
limit

routing, cut LIMIT { CURRENT
{ ... MAX { ... } }

see ALF 1.1, chapters
3.6.7.1, 3.6.8.2, 3.6.9.1,
3.6.10.5 and example

resistance routing, cut RESISTANCE { ... } see ALF 1.1, chapter 3.6.7
and example

capacitance routing CAPACITANCE {... } see ALF 1.1, chapter 3.6.7.1
and example

default width or
minimum width

routing WIDTH { DEFAULT =
<number>; }

see ALF 1.1, chapters
3.6.7.1, 3.6.10.1
and example

default wire
extension

routing EXTENSION { DEFAULT
= <number>; }

see this doc., chapter 3.0
and example

height routing, cut, master HEIGHT = <number>; see this doc., chapter 3.0

thickness routing, cut, master THICKNESS = <number>; see this doc., chapter 3.0

prefered routing
direction

routing PREFERENCE see this doc., chapter 3.4

TABLE 12. Items for LAYER description

item applies for layer usable ALF statement comment
April 3, 2000 62

ight-

are
The purpose is to give a weighting factor for the preferered routing direction. The we
ing factors on each routing layer shall add up to 1.

Example:

This example contains default width (syntax isall_purpose_item), resistance, capaci-
tance, current limits (syntax isarithmetic_model) for arbitrary wires in a routing layer.
Since width and thickness are arguments of the models, special wires and fat wires
also taken into account.

LAYER metal1 {
PURPOSE = routing;
PREFERENCE { HORIZONTAL = 0.75; VERTICAL = 0.25; }
WIDTH { DEFAULT = 0.4; MIN = 0.39; TYP = 0.40; MAX = 0.41; }
THICKNESS { DEFAULT = 0.2; MIN = 0.19; TYP = 0.20; MAX = 0.21; }
EXTENSION { DEFAULT = 0; }
RESISTANCE {

HEADER { LENGTH WIDTH THICKNESS TEMPERATURE }
EQUATION {

0.5*(LENGTH/(WIDTH*THICKNESS))
(1.0+0.01(TEMPERATURE-25))

}
}
CAPACITANCE {

HEADER { AREA PERIMETER }
EQUATION { 0.48*AREA + 0.13*PERIMETER*THICKNESS }

}
LIMIT {

CURRENT ac_limit_for_avg {
UNIT = mAmp ;
MEASUREMENT = average ;
HEADER {

WIDTH { UNIT = uM; TABLE { 0.4 0.8 } }
FREQUENCY { UNIT = megHz; { 1 100 } }
THICKNESS { UNIT = uM; TABLE { 0.2 0.4 } }

}
TABLE {

2.0e-6 4.0e-6 1.5e-6 3.0e-6
4.0e-6 8.0e-6 3.0e-6 6.0e-6

}
}
CURRENT ac_limit_for_rms {

UNIT = mAmp ;
MEASUREMENT = rms ;
HEADER {

WIDTH { UNIT = uM; TABLE { 0.4 0.8 } }
FREQUENCY { UNIT = megHz; { 1 100 } }
THICKNESS { UNIT = uM; TABLE { 0.2 0.4 } }

}
TABLE {

4.0e-6 7.0e-6 4.5e-6 7.5e-6
8.0e-6 14.0e-6 9.0e-6 15.0e-6

}

April 3, 2000 63

}
CURRENT ac_limit_for_peak {

UNIT = mAmp ;
MEASUREMENT = peak ;
HEADER {

WIDTH { UNIT = uM; TABLE { 0.4 0.8 } }
FREQUENCY { UNIT = megHz; { 1 100 } }
THICKNESS { UNIT = uM; TABLE { 0.2 0.4 } }

}
TABLE {

6.0e-6 10.0e-6 5.9e-6 9.9e-6
12.0e-6 20.0e-6 11.8e-6 19.8e-6

}
}
CURRENT dc_limit {

UNIT = mAmp ;
MEASUREMENT = static ;
HEADER {

WIDTH { UNIT = uM; TABLE { 0.4 0.8 } }
THICKNESS { UNIT = uM; TABLE { 0.2 0.4 } }

}
TABLE { 2.0e-6 4.0e-6 4.0e-6 8.0e-6 }

}
}

}

3.5 BLOCKAGE Statement

Status: proposal modified February 2000

Proposal:

The BLOCKAGE statement shall be defined as follows:

blockage ::=

BLOCKAGE [identifier] {
[all_purpose_items]
[geometric_models]
[geometric_transformations]

}

See chapter 3.2 for applicableall_purpose_items .

Example:

CELL my_cell {
BLOCKAGE {

LAYER = metal1;
RECTANGLE { -1 5 3 8 }
RECTANGLE { 6 12 3 8 }

}
BLOCKAGE {

LAYER = metal2;
April 3, 2000 64

ring

d

ts the
 The
er
RECTANGLE { -1 5 3 8 }
}

}

The BLOCKAGE consists of two rectangles covering metal1 and one rectangle cove
metal2.

3.6 PATTERN and VIA Statement

Status: proposal modified February 2000

Proposal for PATTERN statement

The PATTERN statement shall be defined as follows:

pattern ::=

PATTERN [identifier] {
[all purpose_items]
[geometric_models]
[geometric_transformations]

}

A specialall_purpose_item for PATTERN is the following:

shape_ assignment ::=

SHAPE = shape_ identifier ;

shape_ identifier ::=

line
| tee
| cross
| jog
| corner
| end

SHAPE applies only for PATTERN in a routing layer. Default isline .

Line and jog represent routing segments, which can have an individual LENGTH an
WIDTH. LENGTH between routing segments is defined as common run length. DIS-
TANCE between routing segments is measured orthogonal to routing direction.

Tee, cross, corner represent intersections between routing segments. End represen
end of a routing segment. Therefore they have points rather than lines as reference.
points can have an EXTENSION. DISTANCE between points can be measured eith
straight or HORIZONTAL and VERTICAL.
April 3, 2000 65

 adja-

l-
See the following illustration:

See chapter 3.2 for other applicableall_purpose_items .

Proposal for VIA statement

The VIA statement shall be defined as follows:

via ::=

VIA [identifier] { via_items }

via_items ::= via_item { via_item }

via_item ::=
all_purpose_item

| pattern
| arithmetic_model

The VIA statement must contain at least 3 patterns, refering to the cut layer and two
cent routing layers. Stacked vias may contain more than 3 patterns.

Specificall_purpose_items andarithmetic_models for VIA are listed in the follow-
ing table.

The USAGE annotation for VIA shall have one of the following mutually exclusive va
ues.

usage_ annotation ::=

USAGE = usage_ identifier ;

TABLE 13. Items for VIA description

item usable ALF statement comment

property PROPERTY see ALF 1.1, chapter 3.1.2.7

resistance RESISTANCE see ALF 1.1, chapter 3.6.7.1

GDS2 reference ARTWORK see this document, chapter 3.10
and example

usage USAGE see this document, chapter 3.6
and example

line

tee

cross

jog

corner

end
April 3, 2000 66

for a
usage_ identifier ::=

default
| non_default
| top_of_stack

Example:

VIA via_with_two_contacts_in_x_direction {
ARTWORK = GDS2_name_of_my_via {

SHIFT { HORIZONTAL = -2; VERTICAL = -3; }
ROTATE = 180;

}
PATTERN via_contacts {

LAYER = cut_1_2 ;
RECTANGLE { 1 1 3 3 }
REPEAT = 2 {

SHIFT{ HORIZONTAL = 4; }
REPEAT = 1 {

SHIFT { VERTICAL = 4; }
} } }
PATTERN lower_metal {

LAYER = metal_1 ;
RECTANGLE { 0 0 8 4 }

}
PATTERN upper_metal {

LAYER = metal_2 ;
RECTANGLE { 0 0 8 4 }

}
}

A template (see ALF 1.1, chapter 3.1.2.6) can be used to define a construction rule
via.

TEMPLATE my_via_rule
VIA <via_rule_name> {

PATTERN via_contacts {
LAYER = cut_1_2 ;
RECTANGLE { 1 1 3 3 }
REPEAT = <x_repeat> {

SHIFT{ HORIZONTAL = 4; }
REPEAT = <y_repeat> {

SHIFT { VERTICAL = 4; }
} } }
PATTERN lower_metal {

LAYER = metal_1 ;
RECTANGLE { 0 0 <x_cover> <y_cover> }

}
PATTERN upper_metal {

LAYER = metal_2 ;
RECTANGLE { 0 0 <x_cover> <y_cover> }

}
}

}

April 3, 2000 67

t

reate

ween
.

A static instance of the TEMPLATE can be used to create the same via as in the firs
example (except for the reference to GDS2):

my_via_rule {
via_rule_name = via_with_two_contacts_in_x_direction;
x_cover = 8;
y_cover = 4;
x_repeat = 2;
y_repeat = 1;

}

A dynamic instance of the TEMPLATE (see ALF 1.1, chapter 3.11) can be used to c
a via rule.

my_via_rule = dynamic {
via_rule_name = via_with_NxM_contacts;
x_cover = 8;
y_cover = 4;
x_repeat {

HEADER { x_cover { TABLE { 4 8 12 16 } } }
TABLE { 1 2 3 4 }

}
y_repeat {

HEADER { y_cover { TABLE { 4 8 12 16 } } }
TABLE { 1 2 3 4 }

}
}

Instead of defining fixed values for the placeholders, mathematical relationships bet
the placeholders are defined which allow to generate a via rule for any set of values

3.7 RULE Statement

Status: proposal modified February 2000

Proposal:

The RULE statement shall be defined as follows:

rule ::=

RULE [identifier] { rule_items }

rule_items ::= rule_item { rule_item }

rule_item ::=
pattern

| all_purpose_item
| arithmetic_model
April 3, 2000 68

n-

struct
ee
I-
hap-
are
Specificall_purpose_items for RULE are listed in the following table.

The CONNECTIVITY statement shall contain the CONNECT_RULE statement in co
junction with the BETWEEN statement.

between_ multi_value_assignment ::=

BETWEEN { pattern_ identifiers }

Rules for spacing and overlap, respectively, shall be expressed using the LIMIT con
with DISTANCE and OVERHANG, respectively, as keyword for arithmetic models (s
ALF spec. 1.1, chapter 3.6.8.2 and 3.6.9.1). The keywords HORIZONTAL and VERT
CAL shall be introduced as qualifiers for arithmetic submodels (see ALF spec. 1.1, c
ter 3.6.9) in order to distinguish rules for different routing directions. If these qualifiers
not used, the rule shall apply in any routing direction.

Example:

RULE width_and_length_dependent_spacing {
PATTERN segment1 { LAYER = metal_1; SHAPE = line; }
PATTERN segment2 { LAYER = metal_1; SHAPE = line; }
CONNECTIVITY {

CONNECT_RULE = cannot_short;
BETWEEN { segment1 segment2 }

}
LIMIT {

DISTANCE { BETWEEN { segment1 segment2 }
MIN {

HEADER {
WIDTH w1 {

PATTERN = segment1;
/* TABLE, if applicable */

}
WIDTH w2 {

PATTERN = segment2;
/* TABLE, if applicable */

}
LENGTH common_run {

BETWEEN { segment1 segment2 }
/* TABLE, if applicable */

}
}
/* EQUATION or TABLE */

TABLE 14. Items for RULE description

item usable ALF statement comment

rule is for same net
or different nets

CONNECTIVITY see ALF 1.1, chapter 3.6.10.3
and this chapter

spacing rule LIMIT { DISTANCE ... } see this document, chapter 3.0
and example

overhang rule LIMIT { OVERHANG ... } see this document, chapter 3.0
and example
April 3, 2000 69

}
MAX { /* some technology have MAX spacing rules */ }

}
}

}

Spacing rules dependent on routing direction can be expressed as follows:

LIMIT {
DISTANCE { BETWEEN { segment1 segment2 }

HORIZONTAL {
MIN { /* HEADER, EQUATION or TABLE */ }

}
VERTICAL {

MIN { /* HEADER, EQUATION or TABLE */ }
}

}
}

End-of-line rules can be expressed as follows:

RULE lonely_via {
PATTERN via_lower { LAYER = metal_1; SHAPE = line; }
PATTERN via_cut { LAYER = cut_1_2; }
PATTERN via_upper { LAYER = metal_2; SHAPE = end; }
PATTERN adjacent { LAYER = metal_2; SHAPE = line; }
CONNECTIVITY {

CONNECT_RULE = must_short;
BETWEEN { via_lower via_cut via_upper }

}
CONNECTIVITY {

CONNECT_RULE = cannot_short;
BETWEEN { via_upper adjacent }

}
LIMIT {

OVERHANG {
BETWEEN { via_cut via_upper }
MIN {

HEADER {
DISTANCE {

BETWEEN { via_cut adjacent }
/* TABLE, if applicable */

}
}
/* TABLE or EQUATION */

}
}

}
}

Overhang rules dependent on routing direction can be expressed as follows:

LIMIT {
OVERHANG { BETWEEN { via_cut via_upper }
April 3, 2000 70

HORIZONTAL {
MIN { /* HEADER, EQUATION or TABLE */ }

}
VERTICAL {

MIN { /* HEADER, EQUATION or TABLE */ }
}

}
}

Rules for redundant vias can be expressed as follows:

RULE constraint_for_redundant_vias {
PATTERN via_lower { LAYER = metal_1; }
PATTERN via_cut { LAYER = cut_1_2; }
PATTERN via_upper { LAYER = metal_2; }
CONNECTIVITY {

CONNECT_RULE = must_short;
BETWEEN { via_lower via_cut via_upper }

}
LIMIT {

WIDTH {
PATTERN = via_cut;
MIN = 3; MAX = 5;

}
DISTANCE {

BETWEEN { via_cut }
MIN = 1; MAX = 2;

}
OVERHANG {

BETWEEN { via_lower via_cut }
MIN = 2; MAX = 4;

}
OVERHANG {

BETWEEN { via_upper via_cut }
MIN = 2; MAX = 4;

}
}

}

Extraction rules can be expressed as follows:

RULE parallel_lines_same_layer {
PATTERN segment1 { LAYER = metal_1; SHAPE = line; }
PATTERN segment2 { LAYER = metal_1; SHAPE = line; }
CAPACITANCE {

BETWEEN { segment1 segment2 }
HEADER {

DISTANCE {
BETWEEN { segment1 segment2 }
/* TABLE, if applicable */

}
LENGTH {

BETWEEN { segment1 segment2 }
/* TABLE, if applicable */
April 3, 2000 71

en

en

a

}
}
/* EQUATION or TABLE */

}
}

3.8 SITE Statement

Status: proposal reviewed December 1999, modified March 2000

Proposal:

The SITE statement shall be defined as follows:

site ::=

SITE site_ identifier { all_purpose_items }

Specificall_purpose_items for SITE aresymmetry_ annotation_container ,
width_ annotation , height_ annotation .

Thesymetry_ annotation_container is optional. If not specified, the SITE is consid-
ered asymetric. Thesymetry_ annotation_container contains
multi_flip_ annotation or multi_rotate_ annotation or both.

symmetry_ annotation_container ::=

SYMMETRY {
[multi_flip_ annotation]
[multi_rotate_ annotation]

}

Themulti_flip_ annotation specifies whether the object preserves its symmetry wh
flipped around an axis specified by one or multiple numbers modulo 180.

multi_flip_ annotation ::=

FLIP { number { number } }

Themulti_rotate_ annotation specifies whether the object preserves its symetry wh
rotate around an axis specified by one or several numbers modulo 360.

multi_rotate_ annotation ::=

ROTATE { number { number } }

A SITE may have more than one SYMMETRY statement, each of which describing
legal combination of FLIP and ROTATE operations.

Thewidth_ annotation andheight_ annotation (see this document, chapter 3.0) are
mandatory.

Example:
April 3, 2000 72

ore
d

SITE my_site {
WIDTH = 100 ;
HEIGHT = 100 ;
SYMMETRY { FLIP { 0 90 } ROTATE { 90 } }

}

The following site orientations are legal in this example:

• normal orientation (no flip, no rotate), also called “north”

• horizontal flip, also called “flip north”

• vertical flip, also called “flip south”

• 90 degrees rotation, also called “west”

• horizontal flip combined with 90 degrees rotation, resulting in so-called “flip east”

• vertical flip combined with 90 degrees rotation, resulting in so-called “flip west”

Reference of a SITE by a CELL

A CELL may point to one or more legal placement SITEs and also contain one or m
SYMMETRY statements. The intersection between the SYMMETRY of the CELL an
the SYMMETRY of the refered SITE shall define the set of valid orientations of the
CELL.

Example:

CELL my_cell {
SITE { my_site /* fill in other sites, if applicable */ }
SYMMETRY { ROTATE { 90 180 270 } }

}

The following cell orientations are legal in this example:

• normal orientation (no flip, no rotate), also called “north”

• rotate 90 degrees, also called “west”

• rotate 180 degrees, also called “south”

• rotate 270 degrees, also called “east”

Given the legal orientations of the site in the previous example,my_cell can be placed at
my_site with orientation “north” or “west”.

3.9 ANTENNA Statement

Status: proposal modified March 2000

Proposal:

The ANTENNA statement shall be defined as follows:
April 3, 2000 73

NA
related
rea. It
ction
H,
ent

this

lly to
-
d up

ugh
xist in
antenna ::=

ANTENNA[antenna_ identifier] { antenna_items }

antenna_items ::= antenna_item { antenna_item }

antenna_item ::=
all_purpose_item

| arithmetic_model
| arithmetic_model_container

The syntax and semantics ofall_purpose_item , arithmetic_model_container and
arithmetic_model are already defined in ALF1.1.

Specific items applicable for ANTENNA are in the following table.

The use of the keyword SIZE (see ALF 1.1, chapter 3.6.7.1) in the context of ANTEN
is proposed to represent an abstract, dimensionless model of the antenna size. It is
to the area of the net which forms the antenna, but it is not necessary a measure of a
can be a measure of area ratio as well. However, the arguments of the calculation fun
for antenna SIZE must be measureable data, such as AREA, PERIMETER, LENGT
THICKNESS, WIDTH, HEIGHT of metal segments connected to the net. The argum
also need an annotation defining the applicable LAYER for the metal segments.

A process technology may have more than one antenna rule calculation method. In
case, theantenna_ identifier is mandatory for each rule.

Antenna rules apply for routing and cut layers connected to polysilicon and eventua
diffusion. The CONNECT_RULE statement in conjunction with the BETWEEN state
ment shall be used to specify the connected layers. Connectivity shall only be checke
to the highest layer appearing in the CONNECT_RULE statement. Connectivity thro
higher layers shall not be taken into account, since such connectivity does not yet e
the state of manufacturing process when the antenna effect occurs.

Layer-specific antenna rules

TABLE 15. Items for ANTENNA description

item usable ALF statement scope comment

maximum allowed
antenna size

LIMIT { SIZE {
MAX { ... } } }

LIBRARY,
SUBLIBRARY
CELL, PIN

see ALF 1.1, chapters 3.6.7.1,
3.6.8.2, 3.6.9.1, 3.6.10.5
and example

calculation method
for antenna size

SIZE { HEADER
{ ... } TABLE { ...}
or
SIZE [id] { HEADER {
... } EQUATION { ...}

LIBRARY,
SUBLIBRARY

see ALF 1.1, chapter 3.6.7.1
and example

argument values for
antenna size calcu-
lation

argument = value ;
or
argument = value { ... }

CELL, PIN see ALF 1.1, chapter 3.4.1
and example
April 3, 2000 74

del

en-

del
Antenna rules may be checked individually for each layer. In this case, the SIZE mo
contains only 2 or 3 arguments: AREA of the layer or perimeter (calculated from
LENGTH and WIDTH) of the layer causing the antenna effect, area of polysilicon, ev
tually area of diffusion.

Example:

ANTENNA individual_m1 {
LIMIT { SIZE { MAX = 1000; } }
SIZE {

CONNECTIVITY {
CONNECT_RULE = must_short; BETWEEN { metal1 poly }

}
CONNECTIVITY {

CONNECT_RULE = cannot_short; BETWEEN { metal1 diffusion }
}
HEADER {

AREA a1 { LAYER = metal1; }
AREA a0 { LAYER = poly; }

}
EQUATION { a1 / a0 }

}
ANTENNA individual_m2 {

LIMIT { SIZE { MAX = 1000; } }
SIZE {

CONNECTIVITY {
CONNECT_RULE = must_short; BETWEEN { metal2 poly }

}
CONNECTIVITY {

CONNECT_RULE = cannot_short; BETWEEN { metal2 diffusion }
}
HEADER {

AREA a2 { LAYER = metal2; }
AREA a0 { LAYER = poly; }

}
EQUATION { a2 / a0 }

}
}

All-layer antenna rules

Antenna rules may also be checked globally for all layers. In that case, the SIZE mo
contains area or perimeter of all layers as additional arguments.

Example:

ANTENNA global_m2_m1 {
LIMIT { SIZE { MAX = 2000; } }
SIZE {

CONNECTIVITY {
CONNECT_RULE = must_short;
BETWEEN { metal2 metal1 poly }

}

April 3, 2000 75

, the
n the
CONNECTIVITY {
CONNECT_RULE = cannot_short;
BETWEEN { metal2 diffusion }

}
HEADER {

AREA a2 { LAYER = metal1; }
AREA a1 { LAYER = metal1; }
AREA a0 { LAYER = poly; }

}
EQUATION { (a2 + a1) / a0 }

}
}

Accumulative antenna rules

Antenna rules may also be checked by accumulating the individual effect. In that case
SIZE model can be represented as a nested arithmetic model, each of which contai
model of the individual effect.

Example:

ANTENNA accumulate_m2_m1 {
LIMIT { SIZE { MAX = 3000; } }
SIZE {

HEADER {
SIZE ratio1 {

CONNECTIVITY {
CONNECT_RULE = must_short;
BETWEEN { metal1 poly }

}
CONNECTIVITY {

CONNECT_RULE = cannot_short;
BETWEEN { metal1 diffusion }

}
HEADER {

AREA a1 { LAYER = metal1; }
AREA a0 { LAYER = poly; }

}
EQUATION { a1 / a0 }

}
SIZE ratio2 {

CONNECTIVITY {
CONNECT_RULE = must_short;
BETWEEN { metal2 poly }

}
CONNECTIVITY {

CONNECT_RULE = cannot_short;
BETWEEN { metal2 diffusion }

}
HEADER {

AREA a2 { LAYER = metal2; }
AREA a0 { LAYER = poly; }

}
EQUATION { a2 / a0 }
April 3, 2000 76

epre-
e area

:

 more
}
}
EQUATION { ratio1 + ratio2 }

}
}

Note that the arguments a0 in ratio1 and ratio2 may are not the same. In ratio1, a0 r
sents the area of polysilicon connected to metal1 in a net. In ratio2, a0 represents th
of polysilicon connected to metal2 in a net, where the connection can be established
through more than one subnet in metal1.

Illustration

Consider the following structure:

Checking this structure against the rules in the examples yields the following results

individual_m1:
1000 > A5 / (A1+A2)
1000 > A6 / A3
1000 > A7 / A4

individual_m2:
1000 > (A8+A9) / (A1+A2+A3+A4)

global_m2_m1:
2000 > (A8+A9+A5+A6+A7) / (A1+A2+A3+A4)

accumulate_m2_m1:
3000 > (A8+A9) / (A1+A2+A3+A4) + A5 / (A1+A2)
3000 > (A8+A9) / (A1+A2+A3+A4) + A6 / A3
3000 > (A8+A9) / (A1+A2+A3+A4) + A7 / A4

A PIN of a CELL must contain information supplying values for the arguments of the
antenna rule calculation function, e.g. AREA. These arguments shall refer to one or
ANTENNA rules using amulti_value_assignment .

Poly

Metal1

Metal2

A2A1

A5

A8 A9

A6 A7

A3 A4
April 3, 2000 77

orig-

s
ll in

e of
nta-
antenna_ multi_value_assignment ::=

ANTENNA { antenna_ identifier { antenna_ identifier } }

Example:

CELL cell1 {
PIN pin1 {

AREA poly_area = 1.5 {
LAYER = poly;
ANTENNA { individual_m1 individual_via1 }

}
AREA m1_area = 1.0 {

LAYER = metal1;
ANTENNA { individual_m1 }

}
AREA via1_area = 0.5 {

LAYER = via1;
ANTENNA { individual_via1 }

}
}

}
}

The areapoly_area is used in the rulesindividual_m1 andindividual_via1 .
The aream1_area is used in the ruleindividual_m1 only.
The areavia1_area is used in the ruleindividual_via1 only.

3.10 ARTWORK Statement

Status: proposal reviewed December 1999

Proposal:

The ARTWORK statement shall be defined as follows:

artwork ::=

ARTWORK =artwork_ identifier {
[shift_ annotation_container]
[rotate_ annotation]
{ pin_assignments }

}

The ARTWORK statement creates a reference between the cell in the library and the
inal cell imported from a physical layout database (e.g. GDS2).

Theshift_ annotation_container statement (see this document, chapter 3.3) define
the (x,y) offset measured between the origin of the original cell and the origin of the ce
this library. Eventually, a layout tool may only support integer numbers.

Therotate_ annotation statement (see this document, chapter 3.3) defines the angl
rotation in degrees measured between the orientation of the original cell and the orie
April 3, 2000 78

ay

cell in

s

tion of the cell in this library in mathematical positive sense. Eventually, a layout tool m
only support angles which are multiple of 90 degrees.

The imported cell may have pins with different names. The LHS of thepin_assignments

describes the pinnames of the original cell, the RHS describes the pinnames of the
this library. Syntax forpin_assignments see ALF1.1, chapter 3.4.3.

Example:

CELL my_cell {
PIN A { /* fill in pin items */ }
PIN Z { /* fill in pin items */ }
ARTWORK = \GDS2$!@#$ {

SHIFT { HORIZONTAL = 0; VERTICAL = 0; }
ROTATE = 0;
\GDS2$!@#$A = A;
\GDS2$!@#$B = B;

}
}

3.11 ARRAY Statement

Status: proposal reviewed December 1999

Proposal modified March 2000

Proposal:

The ARRAY statement shall be defined as follows:

array ::=

ARRAY identifier { all_purpose_items repeat }

Each array shall have a PURPOSE assignment.

array_purpose_ assignment ::=

PURPOSE = array_purpose_ identifier ;

array_purpose_ identifier :: =

floorplan
| placement
| global
| routing

An array with purposefloorplan or placement shall have a reference to a SITE, a
shift_ annotation_container , rotate_ annotation , flip_ annotation to define the
location and oritentation of the SITE in the context of the array.

An array with purposerouting shall have a reference to one or more routing LAYER
and ashift_ annotation_container to define the location of the starting point.
April 3, 2000 79

An array with purposeglobal shall have ashift_ annotation_container to define the
location of the starting point.

Examples:

ARRAY grid_for_my_site {
PURPOSE = placement;
SITE = my_site;
SHIFT { HORIZONTAL = 50; VERTICAL = 50; }
REPEAT = 7 {

SHIFT { HORIZONTAL = 100; }
REPEAT = 5 {

SHIFT { VERTICAL = 5; }
}

}
}

ARRAY grid_for_detailed_routing {
PURPOSE = routing;
LAYER { metal1 metal2 metal3 }
SHIFT { HORIZONTAL = 100; VERTICAL = 50; }
REPEAT = 7 {

my_site

he
ig

ht
=

10
0 width=100

1

2

3

4

5

2 3 4 5 6 7

horizontal route

vertical route
April 3, 2000 80

SHIFT { VERTICAL = 100; }
REPEAT = 8 {

SHIFT { HORIZONTAL = 100; }
}

}
}

ARRAY grid_for_global_routing {
PURPOSE = global;
SHIFT { HORIZONTAL = 100; VERTICAL = 100; }
REPEAT = 3 {

SHIFT { VERTICAL = 150; }
REPEAT = 4 {

SHIFT { HORIZONTAL = 100; }
}

}
}

April 3, 2000 81

	1.0 Amendments to ALF 1.1
	1.1 Incremental definitions for VECTOR
	1.2 Timing arcs in the context of VECTOR
	1.3 Normative distinction between “driver resistance” and “pin resistance”
	1.4 Complex binary vector operators with N operands
	1.5 Misc. amendments
	1.6 Items to be phased out for ALF 2.0
	1.7 Use of STATETABLE for ROM initialization

	2.0 New features for ALF 2.0
	2.1 EDGE_NUMBER for timing arc
	2.2 STRUCTURE statement
	2.3 Hierarchical identifier “.”
	2.4 NODE statement in the context of WIRE
	2.5 SIGNALTYPE, OPERATION, SUPPLYTYPE
	2.6 New usage models for CLASS
	2.7 Scalar pins inside bus
	2.8 BITMAP statement
	2.9 ILLEGAL statement inside VECTOR
	2.10 KEYWORD statement
	2.11 Misc. new statements

	3.0 Physical modeling in ALF 2.0
	3.1 PORT Statement
	3.2 Geometric Model Statement
	3.3 Statements for geometric transformation
	3.4 LAYER Statement
	3.5 BLOCKAGE Statement
	3.6 PATTERN and VIA Statement
	3.7 RULE Statement
	3.8 SITE Statement
	3.9 ANTENNA Statement
	3.10 ARTWORK Statement
	3.11 ARRAY Statement

