%

Advanced Library Format
for
ASIC Cells & Blocks

containing
Power, Timing, Functional and Physical Information
for
Synthesis, Analysis, Design Planning and Test

Version 1.0.10

March 1, 1999

Open Verilog International

Copyrighf@ 1996-1999 by Open Verilog International, Inc. All rights reserved.

No part of this work covered by the copyright hereon may be reproduced or used in any form or by any means --
- graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage and
retrieval systems --- without the prior written approval of Open Verilog International.

Additional copies of this manual may be purchased by contacting Open Verilog International at the address
shown below.

Notices

The information contained in this draft manual represents the definition of the Advanced Library Format (ALF)
as proposed by OVI (PS- TSC) as of March 1999. Open Verilog International makes no warranties whatsoever
with respect to the completeness, accuracy, or applicability of the information in this draft manual to a user’s
requirements. This format contains expandable definitions and is subject to change. It is suitable for learning
how to create Cell models that contain power, timing, functional and physical information for synthesis, analysis
and test, and as a vehicle for providing feedback to the standards committee. ALF should not be used for
production design and development.

Open Verilog International reserves the right to make changes to the ALF language and this manual at any time
without notice.

Open Verilog International does not endorse any particular simulator or other CAE tool that is based on the
Advanced Library Format.

Suggestions for improvements to the Advanced Library Format and/or to this manual are welcome. They should
be sent to the address below.

Information about Open Verilog International and membership enrollment can be obtained by inquiring at the
address below.

Published as: Advanced Library Format (ALF) Reference Manual
Version 1.0.10, March 1999.

Published by: Open Verilog International
15466 Los Gatos Blvd., #109071
Los Gatos, CA 95032

Phone: (408) 358-9510
Fax: (408) 358-3910

Printed in the United States of America.

Verilog® is a registered trademark of Cadence Design Systems, Inc.

ii Advanced Library Format (ALF) Reference Manual Version 1.0.10

The following individuals contributed to the creation, editing and review of this document.

Jay Abraham

Mike Andrews

Tim Ayres

Arun Balakrishnan
Tim Baldwin

John Beatty

Victor Berman

Dennis Brophy

Jose De Castro

Renlin Chang
Shir-Shen Chang, PhD
Sanjay Churiwala
Timothy Ehrler

Ted Elkind

Paul Foster

Vassilios Gerousis, PhD
Kevin Grotjohn

Mitch Heins

Eric Howard

Tim Jennings

Timothy Jordan

Archie Lachner

Tai Le

Johnson Chan Limqueco
Ta-Yung Liu
Saumendra Nath Mandal
Hamid Rahmanian
Wolfgang Roethig, PhD
Larry Rosenberg, PhD
Ambar Sarkar, PhD
ltzhak Shapira
Jin-Sheng Shyr

Sergei Sokolov

Peter Suaris

Toru Toyoda

Yatin Trivedi

Devadas Varma

David Wallace

Cary Wei

Frank Weiler

Jeff Wilson

Amir Zarkesh, PhD

Version 1.0.10

Silicon Integration Initiative

Mentor Graphics Co-Chairman

Synopsys - Viewlogic

NEC
Cadence - Ambit

IBM

VI/IEEE

Mentor Graphics / OVI / IEEE

LSI Logic

Cadence

Synopsys

Cadworx
VLSI Technology
Cadence
Avant!
Siemens / OVI
LSI Logic
Cadence - Ambit
Cadence
Motorola
Motorola
Mentor Graphics
Avant!
Cadence - Ambit
Avant!

Duet Technologies
Mentor Graphics
NEC Chairman
Cadence / VSIA
Synopsys - Viewlogic
Cadence
Toshiba
Sente
Mentor Graphics

NEC

Seva Technologies Technical Editor

Cadence - Ambit
Mentor Graphics - Exemplar
Fujitsu
Avant! / OVI
Mentor Graphics
TDT

Advanced Library Format (ALF) Reference Manual

iif

Revision history:

1st draft: 11/20/96
2nd draft: 12/20/96
3rd draft: 3/22/97
4th draft: 3/31/97
5th draft: 4/22/97
6th draft: 6/1/97
7th draft: 6/25/97
8th draft: 8/13/97
9th draft: 10/14/97
Version 1.0 11/14/97
Version 1.0.1 3/20/98
Version 1.0.2 4/8/98
Version 1.0.3 5/15/98
Version 1.0.4 5/31/98
Version 1.0.5 6/15/98
Version 1.0.6 9/20/98
Version 1.0.7 11/15/98
Version 1.0.8 1/12/99
Version 1.0.9 2/5/99
Version 1.0.10 2/19/99

iv Advanced Library Format (ALF) Reference Manual Version 1.0.10

3.1

3.2

Version 1.0.10

Table of Contents

1 Introduction.
1.1 Motivation
1.2 Goals
1.3 Target Applications
1.4 Conventions
1.5 Organization of this manual
2 Characterization and Modeling.
2.1 Basic Concepts
2.2 Functional Modeling
2.2.1 Combinational Logic
2.2.2 Level Sensitive Sequential Logic
2.2.3 Edge Sensitive Sequential Logic
2.2.4 Vector-Sensitive Sequential Logic
2.3 Performance Modeling for Characterization
2.3.1 Timing Modeling
2.3.2 Power Modeling
2.4 Physical modeling for synthesis and test
241 Cell modeling
2.4.2 Wire modeling
3 Library Format Specification

Object Model

3.1.1 Syntax conventions
3.1.2 Generic Objects

3.1.3 Library-specific objects
3.1.4 Arithmetic models
3.1.5 Functions

Lexical rules

3.2.1 Character set

3.2.2 Lexical tokens

3.2.3 Whitespace Characters
3.24 Reserved and Non-reserved Characters
3.25 Delimiters

3.2.6 Comments

3.2.7 Numbers

Advanced Library Format (ALF) Reference Manual

Vi

3.3

3.4

3.5

3.6

3.2.8

Bit Literals

3.2.9 Based Literals

3.2.10 Edge Literals

3.2.11 Quoted Strings

3.2.12 Identifiers

3.2.13 Rules against parser ambiguity
3.2.14 Cross-reference of lexical tokens
Keywords

3.3.1 Keywords for Objects

3.3.2 Keywords for Operators
3.3.3 Context-Sensitive Keywords
Syntax Rules

3.4.1 Assignments

3.4.2 Expressions

3.4.3 Instantiations

3.4.4 Literals

3.4.5 Operators

3.4.6 Auxiliary Objects

3.4.7 Generic Objects

348 CELL

3.49 LIBRARY

3.4.10 PIN

3.4.11 PRIMITIVE

3.4.12 SUBLIBRARY

3.4.13 VECTOR

3.4.14 WIRE

3.4.15 Arithmetic Model

3.4.16 FUNCTION

3.4.17 Cross-reference of BNF items
Operators

3.5.1 Arithmetic operators

3.5.2 Boolean operators on scalars
3.5.3 Boolean operators on words
3.5.4 Vector operators

3.5.5 Operators for sequential logic
3.5.6 Operator priorities

3.5.7 Datatype mapping
Context-sensitive keywords

3.6.1 Annotation Containers

3.6.2

Keywords for referencing objects used as annotation

Advanced Library Format (ALF) Reference Manual

37
38
39
39
40
41
41
42
42
43
43
43
43
44
45
45
47
48
49
50
51
51
51
52
52
52
53
54
55
58
59
59
60
61
65
66
66
67
68

70

Version 1.0.10

3.7

3.8

3.9

3.10

3.11
3.12

Version 1.0.10

3.6.3 Annotations for a PIN object 70
3.6.4 Annotations for a VECTOR object 75
3.6.5 Annotations for a CELL object 77
3.6.6 Attributes 81
3.6.7 Keywords for arithmetic models 82
3.6.8 Containers for arithmetic models 89
3.6.9 Keywords for arithmetic submodels 91
3.6.10 Annotations for arithmetic models 96
Library Organization 103
3.7.1 Scoping Rules 103
3.7.2 Use of multiple files 104
Referenceable objects 104
3.8.1 Referencing PRIMITIVEs or CELLs 105
3.8.2 Referencing PINs in FUNCTIONSs 106
3.8.3 Referencing PINs in VECTORs 108
3.8.4 Referencing multi-dimensional PINs 108
3.85 Referencing arithmetic models 110
Functional modeling styles and rules 112
3.9.1 Rules for combinational functions 112
3.9.2 Basic rules for sequential functions 113
3.9.3 Concurrency in combinational and sequential functions 115
3.9.4 Initial values for logic variables 118
Primitives 119
3.10.1 Concept of user-defined and predefined primitives 119
3.10.2 Predefined combinational primitives 120
3.10.3 Predefined tristate Primitives 124
3.10.4 Predefined multiplexor 126
3.10.5 Predefined flipflop 127
3.10.6 Predefined latch 128
Parameterizable Cells 130
Modeling with Vector Expressions 133
3.12.1 Eventreports 133
3.12.2 Event Sequences 135
3.12.3 Scope of event sequences 136
3.12.4 Alternative event sequences 137
3.12.5 Symbolic edge operators 138
3.12.6 Non-events 139
3.12.7 Compact and verbose event sequences 139
3.12.8 Unspecified simultaneous events within scope 140
3.12.9 Simultaneous event sequences 142

Advanced Library Format (ALF) Reference Manual

Vil

4

viii

3.12.10 Implicit local variables
3.12.11 Conditional event sequences
3.12.12 Alternative conditional event sequences
3.12.13 Change of scope within a vector expression
3.12.14 Sequences of conditional event sequences
3.12.15 Incompletely specified event sequences
3.12.16 Well-specified vector expressions
Applications
4.1 Truth Table vs Boolean Equation
411 NAND gate
4.1.2 Flipflop
4.2 Use of primitives
4.2.1 D-Flipflop with asynchronous clear
4.2.2 JK-flipflop
4.2.3 D-Flipflop with synchronous load and clear
4.2.4 D-Flipflop with input multiplexor
425 D-latch
42.6 SR-latch
427 JTAG BSR
4.2.8 Combinational Scan Cell
4.2.9 Scan Flipflop
4.2.10 Quad D-Flipflop
4.3 Templates and vector-specific models
4.3.1 Vector specific delay and power Tables
4.3.2 Use of TEMPLATE
4.3.3 Vector description styles for timing arcs
4.3.4 Vectors for delay, power and timing constraints
4.4 Combining tables and equations
44.1 Table vs equation
4.4.2 Cell with Multiple Output Pins
4.4.3 PVT Derating
4.5 Use of Annotations
45.1 Annotations for a PIN
4.5.2 Annotations for a timing arc
4.5.3 Creating Self-explaining Annotations
4.6 Providing fallback position for applications
4.6.1 Use of DEFAULT
4.7 Bus Modeling
4.7.1 Tristate Driver

Advanced Library Format (ALF) Reference Manual

Version 1.0.10

4.8

4.9

4.10

411

412

4.13

4.14

4.15

Version 1.0.10

4.7.2 Bus with multiple drivers 179
4.7.3 Busholder 180
Wire models 180
4.8.1 Basic Wire Model 180
4.8.2 Wire select model 181
Megacell Modeling 182
49.1 Expansion of Timing Arcs 182
49.2 Two-port memory 183
4.9.3 Three-port memory 186
4.9.4 Annotation for pins of a bus 186
4.9.5 Skew for simultaneously switching signals on a bus 187
Special cells 188
4.10.1 Pulse generator 188
4.10.2 VCO 188
Core Modeling 189
4.11.1 Digital Filter 189
Connectivity 191
4.12.1 External connections between pins of a cell 191
4.12.2 Allowed connections for classes of pins 192
Signal Integrity 194
4.13.1 I/V curves 194
4.13.2 Driver resistance 196
Resistance and Capacitance on a Pin 199
4.14.1 Self-Resistance and Capacitance on Input Pin 199
4.14.2 Pullup and Pulldown Resistance on Input Pin 199

4.14.3 Pin and Load Resistance and Capacitance on Output Pin 200

ALF/SDF cross reference 201
4.15.1 SDF delays 201
4.15.2 SDF timing constraints 206

4.15.3 SDF conditions and labels for delays and timing constraints214

Advanced Library Format (ALF) Reference Manual ix

Advanced Library Format (ALF) Reference Manual Version 1.0.10

Section 1

Introduction

1.1 Motivation

Design of digital integrated circuits has become an increasingly complex process. More
functions get integrated into a single chip, yet the cycle time of electronic products and
technologies has become considerably shorter. It would be impossible to successfully design a
chip of today’s complexity within the time-to-market constraints without extensive use of EDA
tools, which have become an integral part of the complex design flow. The efficiency of the
tools and the reliability of the results for simulation, synthesis, timing analysis, and power
analysis relies significantly on the quality of available information about the cells in the
technology library.

New challenges in the design flow, e.g. power analysis, arise as the traditional tools and design
flows hit their limits of capability in processing complex designs. As a result, new tools
emerge, and libraries are needed in order to make them work properly. Library creation
(generation) itself has become a very complex process and the choice or rejection of a
particular application (tool) is often constrained or dictated by the availability of a library for
that application. The library constraint may prevent designers from choosing an application
program which is best suited for meeting specific design challenges. Similar considerations
may inhibit the development and productization of such an application program altogether. As
a result, competitiveness and innovation of the whole electronic industry may stagnate.

In order to remove these constraints, an industry-wide standard for library format, Advanced
Library Format (ALF), is proposed. It enables the EDA industry to develop innovative products
and the ASIC designers to chose the best product without library format constraints. Since
ASIC vendors have to support a multitude of libraries according to the preferences of their
customers, a common standard library is expected to significantly reduce the library
development cycle and facilitate the deployment of new technologies sooner.

1.2 Goals

The basic goals of the proposed library standard are:

simplicity - library creation process must be easy to understand and not become a
cumbersome process only known by a few experts.

generality- tools of any level of sophistication must be able to retrieve necessary
information from the library.

expandability- for early adoption and future enhancement possibilities

Version 1.0.10 Advanced Library Format (ALF) Reference Manual 11

Introduction Target Applications

flexibility - the choice of keeping information in one library or in separate libraries must
be in the hand of the user; it should not be dictated by the standard.

efficiency- the complexity of the design information requires that the process of
retrieving information from the library does not become a bottleneck. The right trade-
off between compactness and verbosity must be found.

ease of implementaticrbackward compatibility with existing libraries must be
provided, and translation to the new library must be an easy task.

conciseness unambiguous description and accuracy of contents

acceptance preference for the new standard library over existing libraries.

1.3 Target Applications

The fundamental purpose of ALF is to serve as the primary database for all 3rd party
applications of ASIC cells. In other words, it is an elaborate and formalized version of the
databook.

In the early days, databooks provided all the information a designer needed for choosing a cell
in a particular application: Logic symbols, schematics and truth table provided the functional
specification for simple cells. For more complex blocks, the name of the cell (e.g.
asynchronous ROM, synchronous 2-port RAM, 4-bit synchronous up-down counter) and
timing diagrams conveyed the functional information. The performance characteristics of each
cell were provided by the loading characteristics, delay and timing constraints, and some
information about DC and AC power consumption. The designers chose the cell type according
to the functionality, estimated the performance of the design, and eventually re-implemented it
in an optimized way as necessary to meet performance constraints.

Design automation enabled tremendous progress in efficiency, productivity and the ability to
deal with complexity, yet it did not change the fundamental requirements for ASIC design.
Therefore, ALF needs to provide models withctionalinformation angerformance

information, primarily including timing and power. Signal integrity characteristics, such as
noise margin can also be included under performance category. Such information is typically
found in any databook for analog cells. At deep sub-micron levels digital cells behave similar
to analog cells as electronic devices bound by physical laws and therefore not infinitely robust
against noise.

Table 1-1 shows a list of applications used in ASIC design flow and their relationship to ALF.
The boundary between supported and not supported applications can be defingthsitae
information provided by ALF. Information needed for area and performance estimation and
optimization, notably by synthesis and design planning tools, is provided by ALF. On the other
hand, layout information is considered to be available in complementary libraries such as LEF.
Please note that ALF covdisrary data, whereadesigndata must be provided in other

formats.

12 Advanced Library Format (ALF) Reference Manual Version 1.0.10

Target Applications

Introduction

Table 1-1 Target applications and models supported by ALF

application functional model performance model physical model
timing analysis supported by ALF supported by ALF N/A

power analysis supported by ALF supported by ALF N/A

simulation derived from ALF N/A N/A

synthesis supported by ALF supported by ALF supported by ALF

scan insertion

supported by ALF

N/A

N/A

RTL design planning

supported by ALF

supported by ALF

planned for ALF

signal integrity

N/A

supported by ALF

N/A

layout

N/A

N/A

not supported by ALF

Historically, a functional model was virtually identical to a simulation model. A functional
gate-level model was used by the proprietary simulator of the ASIC company, and it was easy

to lump it together with a rudimentary timing model. Timing analysis was done through

dynamic functional simulation. However, with the advanced level of sophistication of both
functional simulation and timing analysis, this is no longer the case. The capabilities of the
functional simulators have evolved far beyond the gate-level, and timing analysis has been

decoupled from simulation.

The figure 1-1 shows how ALF provides information to various design tools.

Version 1.0.10

Advanced Library Format (ALF) Reference Manual

13

Introduction Target Applications

(D vendor-specific or commercial EDA tool o
. Cell characterization tool
(D commercial EDA tool

/ \
annotations ALF ’/ \‘ annotations
for scan test for synthesig
. | funcii | del universal universal) del
universal functional mode timing model power model wire models

/ \

CModeI compile) CTest vector generat@

. \

simulation models| Test vectors
Verilog & VHDL Verilog & VHDL

Y
\ / <T|m|ng anaIyS|s to@ C Power analysis@o

S|mulators
Verllog & VHDL

P Synthesis tool|*————
> . . -
>< Scan insertion to@

.

Figure 1-1: ALF and its target applications

The worldwide accepted standards for hardware description and simulation are VHDL and
Verilog. Both languages have a wide scope of describing the design at various levels of
abstraction: behavioral, functional, synthesizable RTL, gate level. There are many ways to
describe gate-level functions. The existing simulators are implemented in such a way that some
constructs are more efficient for simulation run time than others. Also, how the simulation
model handles timing constraints is a trade-off between efficiency and accuracy. Developing
efficient simulation models which are functionally reliable (i.e. pessimistic for detecting timing
constraint violation) is a major development effort for ASIC companies.

Hence, the use of a particular VHDL or Verilog simulation model as primary source of
functional description of a cell is not very practical. Moreover, the existence of two simulation
standards makes it difficult to pick one as a reference with respect to the other. The purpose of
a generic functional model is to serve as an absolute reference for all applications that require
functional information. Applications such as synthesis, which need functional information
merely for recognizing and choosing cell types, can use the generic functional model directly.
For other applications such as simulation and test, the generic functional model enables

14 Advanced Library Format (ALF) Reference Manual Version 1.0.10

Conventions Introduction

automated simulation model and test vector generation and verification, which has a
tremendous benefit for the ASIC industry.

With progress of technology, not only the cost constraints but also the set of physical
constraints under which the design will function or not have increased dramatically. Therefore
the requirements for detailed characterization and analysis of those constraints, especially
timing and power in deep submicron design, are much more sophisticated than it used to be.
Only a subset of the increasing amount of characterization data appears in today’s databooks.

ALF provides a generic format for all type of characterization data, without restriction to state-
of-the art timing models. Power models are the most immediate extension, and they have been
the starter and primary driver for ALF.

Detailed timing and power characterization needs to take into accoumbt®eeof operation

of the ASIC cell, which is related to the functionality. ALF introduces the concegictdr-

based modelingvhich is a generalization and a superset of today’s timing and power modeling
approaches. All existing timing and power analysis applications can retrieve the necessary
model information from ALF.

1.4 Conventions

The syntax for description of lexical and syntax rules uses following conventions.
n= definition of a syntax rule
| alternative definition
[item] an optional item

[iteml | item2 | ...]
optional item with alternatives

{item} optional item which can be repeated

{iteml | item2 | ... }
optional items with alternatives which can be repeated

item item in boldface font is taken verbatim
item item in italic is for explanation purpose only
The syntax for explanation of semantics of expressions uses the following conventions.
=== left side and right side expressions are equivalent
<item> a placeholder for an item in regular syntax
Feature enhancements proposed for ALF 1.1 are written in blue font.

1.5 Organization of this manual

This document presents the Advanced Library Format (ALF), a new standard library format
for ASIC cells, blocks and cores, containing power, timing, functional, and physical
information.

In the first chapter, motivation and goals of ALF are defined.

Version 1.0.10 Advanced Library Format (ALF) Reference Manual 15

Introduction Organization of this manual

The second chapter describes the underlying concepts for functional modeling, cell
characterization for timing and power, and additional modeling features for synthesis and test.

The third chapter is the Language Reference Manual (LRM).
The fourth chapter provides application notes.

16 Advanced Library Format (ALF) Reference Manual Version 1.0.10

Section 2
Characterization and Modeling

This chapter elaborates on the basics of cell modeling and characterization, which is the
primary source of library information.

2.1 Basic Concepts

The functional models within an ASIC library describe functions and algorithms of hardware
components, as opposed to synthesizable functions or algorithms. The functional modeling
language for the ASIC library is designed to make the description of existing hardware easy
and efficient. The scope here is different from a hardware description language (HDL) or a
programming language designed to specify functionality without other aspects of hardware
implementation.

Functional description provides boolean functions or truth tables, including state variables for
sequential logic. Boolean and arithmetic operators for scalars and vectors are also provided.
Combinational and sequential logic cells, macrocells (e.g. adders, multipliers, comparators),
and atomic megacells (e.g. memories) can be modeled with these capabilities.

Vectors describe the stimuli for characterization. This encompasses both the concept of timing
arcs and logical conditions. An exhaustive set of vectors can be generated from functional
information, although the complexity of the exhaustive set precludes it from practical usage.
The characterizer makes a choice of the relevant subset for characterization.

Power characterization is a superset of timing characterization using the same set and range of
characterization variables: load, input slew rate, skew between multiple switching inputs,
voltage, temperature. Characterization measurements, such as delay, output slew rate, average
current in time window, bounds of allowed skew for timing constraints, etc. can be described
as functions of the characterization variables, either by equations or using lookup tables. More
complicated calculation algorithms cannot be described explicitly in the library, but can be
referenced using templates.

A core is not an atomic megacell, since it can be split up into smaller components. Templates
provide the capability of defining and reusing blocks consisting of atomic constructs or of other
blocks. Thus a hierarchical description of the complete core can be created in a simple and
efficient way.

Abstraction is required for the characterization of megacells: vectors describe events on buses
rather than on scalar pins; number and range of switching pins within a bus become additional
characterization variables. Characterization measurements are expandable and can be
extrapolated from scalar pin to bus.

Version 1.0.10 Advanced Library Format (ALF) Reference Manual 17

Characterization and Modeling Functional Modeling

2.2 Functional Modeling

2.2.1 Combinational Logic

Combinational logic can be described by continuous assignments of boolean values (True,
False) to output variables as a function of boolean values of input variables. Such functions can
be expressed in either equation format or table fdrmat

Let us consider an arbitrary continuous assignment
z=fa ;.,.a n)

In a dynamic or simulation context, the left-hand side (LHS) variaislevaluated whenever
there is a change in one of the right-hand side (RHS) variabls storage of previous states
is needed for dynamic simulation of combinational logic.

2.2.2 Level Sensitive Sequential Logic

In sequential logic, an output variaklean also be a function of itself, i.e. of its previous state.
The sequential assignment has the form

zi =fla ;... a N Z e z m
The RHS cannot be evaluated continuously, since a change in the LHS as a result of a RHS
evaluation will trigger a new RHS evaluation repeatedly, unless the variables attain stable
values. Modeling capabilities of sequential logic with continuous assignments would be
restricted to systems with oscillating or self-stabilizing behavior.

However, if we introduce the concept of triggering conditions for the LHS, we have everything
we need for modelinigvel-sensitivesequential logic. The expression of a triggered assignment
can look like this:

@g9gbgq..,.b KWz j=fa 1.,..a n+Z 152 m

The evaluation of is activated whenever tlieggering functiong is true. The evaluation gf
is self-triggered, i.e. at each time when an argumetntbéinges its value. ¢f is a boolean
expression liké, we can model all types td#vel-sensitive sequential logic

During the time wheg is true, the logic cell behaves exactly like combinational logic. During
the time whemy is false, the logic cell holds its value. Hence one memory element per state bit
is needed.

2.2.3 Edge Sensitive Sequential Logic

In order to modeédge-sensitive sequential logwe need to introduce notations for logical
transitions in addition to logical states.

If the triggering functiory is sensitive to logical transitions rather than to logical states, the
functiong evaluates to true only for an infinitely small time, exactly at the moment when the

1. Rather than defining a new syntax for boolean equations, we are just adopting existing notations peo-
ple are familiar with. Those notations can already be found in the ANSI C standard, and they are
widely used in popular script languages such as PERL as well as in HDLs like VERILOG.

18 Advanced Library Format (ALF) Reference Manual Version 1.0.10

Functional Modeling Characterization and Modeling

transition happens. The sole purposg of to trigger an assignment to the output variable
through evaluation of the functidrexactly at this time.

Edge-sensitive logic requires storage of the previous output state and the input state (to detect
a transition). In fact, all implementations of edge-triggered flipflops require at least two storage
elements. For instance, the most popular flipflop architecture features a master latch driving a
slave latch.

Using transitions in the triggering function for value assignment, the functionality of a positive
edge triggered flipflop can be described as follows in ALF:

@ (01 CP){Q =D}
which reads “at rising edge of CP, assign Q the value of D”.

If the flipflop also has an asynchronous direct clear pin (CD), the functional description
consists of either two concurrent statements or two statements ordered by priority:

/I concurrent style

@ (ICD){Q =03}
@ (01 CP && CD) {Q = D}}

/I priority (if-then-else) style
@ (ICD){Q=0;}: (01 CP){Q = D3}

Figure 2-1: Model of a flipflop with asynchronous clear in ALF

The following two examples show corresponding simulation models in Verilog and VHDL.:

/I full simulation model

always @(negedge CD or posedge CP) begin
if (!CD)Q<=0;
else if (CP && !CP_last_value) Q <= D;
else Q <= 1'bx;
end
always @ (posedge CP or negedge CP) begin
if (CP===0 | CP===1'bx) CP_last_value <= CP ;
end

/I simplified simulation model for synthesis

always @(negedge CD or posedge CP) begin
if (!CD)Q<=0;
else Q <=D;

end

Figure 2-2: Model of a flipflop with asynchronous clear in Verilog

Version 1.0.10 Advanced Library Format (ALF) Reference Manual 19

Characterization and Modeling Functional Modeling

/I full simulation model

process (CP, CD) begin
if (CD ="'0") then
Q<="05
elsif (CP'last_value ='0"and CP ='1" and CP'event) then
Q<=D;
elsif (CP'last_value ='0" and CP ="'X'and CP'event) then
Q<="X;
elsif (CP'last_value ='X'and CP ='1' and CP'event) then
Q<="X;
end if;
end process;

/I simplified simulation model for synthesis

process (CP, CD) begin
if (CD ="'0") then
Q <=0}
elsif (CP ='1" and CP'event) then
Q<=D;
end if;
end process;

Figure 2-3: Model of a flipflop with asynchronous clear in VHDL

The following differences in modeling style can be noticed: VHDL and Verilog provide the list
of sensitive signals at the begin of fhecess oralways block, respectively. The information

of level-or edge-sensitivity must be inferred by if-then-else statements inside the block. ALF
shows the level-or-edge sensitivity as well as the priority directly in the triggering expression.
Verilog has another particularity: The sensitivity list indicates whether at least one of the
triggering signals is edge-sensitive, by the useg@ddge or posedge . However, it does not
indicate which one, since either none or all sighals mustrwgedge or posedge qualifiers.
Furthermoreposedge is any transition with O as initial staiel as final state. A positive-edge
triggered flipflop will be inferred for synthesis, yet this flipflop will only work correctly if both
the initial state is @ndthe final state is 1. Therefore a simulation model for verification must
be more complex than the model in the synthesizeable RTL code. In Verilog, the extra non-
synthesizeable code must also reproduce the relevant previous state of the clock signal,
whereas VHDL has built-in support fast_value of a signal.

Other aspects of simulation models include performance and tradeoff between accuracy and
runtime, timing annotation etc.

ALF provides a canonical, compact and highly self-explaining description airtheonal
specificationof a cell, from which simulation models for various applications can be derived.

20 Advanced Library Format (ALF) Reference Manual Version 1.0.10

Functional Modeling Characterization and Modeling

224 Vector-Sensitive Sequential Logic
In order to model generalized higher order sequential logic, the concept of vector expressions
is introduced, an extension of the boolean expressions.

A vector expression describes sequences of logical events or transitions in addition to static
logical states. A vector expression represents a description of a logical stimulus without
timescale. It describes the order of occurrence of events.

Using the -> operatdffollowed byoperator), we have a general capability of describing a
sequence of events or a vector. For example, consider the following vector expression:

01A->01B
which reads “rising edge on A is followed by rising edge on B”.

A vector expression is evaluated by an event sequence detection function. Like a single event
or a transition, this function evaluates true only at an infinitely short time when the event
sequence is detected.

A

B —

« 9

oolast x| o1A 01B| 10 A 0LA|10B | 10AD1B

Ecevent

SE

§%2ndlastx X 0LA| 01B 10A | 0O1A|10B 0 A
event

g(A,B)= (01 A->01B) +

sequenc€0l1 A -> 01 B) detected

Figure 2-4: Example of event sequence detection function

The event sequence detection mechanism can be described as a queue that sorts events
according to their order of arrival. The event sequence detection function evaluates true at
exactly the time when a new event enters the queue and forms the required seguémnee,
sequence specified by the vector expressitnits preceding events.

A vector-sensitive sequential logic can be ca{i¢ll) order sequential logiovhere N is the
number of events to be stored in the queue. The implementation of (N+1) order sequential logic
requires N memory elements for the event queue and 1 memory element for the output itself.

A sequence of events can also be gated with static logical conditions. For example,
(01 CP -> 10 CP) && CD

Version 1.0.10 Advanced Library Format (ALF) Reference Manual 21

Characterization and Modeling Performance Modeling for Characterization

the pin CD must have state 1 from some time before the rising edge at CP to some time after
the falling edge of CP. The pin CD can not go low (state 0) after the rising edge of CP and go
high again before the falling edge of CP because this would insert events into the queue, and
the sequence “rising edge on CP followed by falling edge on CP” would not be detected.

The formal calculation rules for general vector expressions featuring both states and transitions
will be introduced in Section 3.5.4.

The concept of vector expression supports functional modeling of devices featuring digital
communication protocols with arbitrary complexity.

2.3 Performance Modeling for Characterization

2.3.1 Timing Modeling

The timing models of cells consists of two typaéstay model$or combinational and

sequential cells, artdning constraint model®r sequential cells. Both types can be described
by timing arcs. A timing arc is a sequence of two events which can be described by a vector
expression “everglis followed by eveneZ'.

For example, a particular input to output delay of an inverting logic cell is identified by the
following timing arc:

01A->10Z
which reads “rising edge on input A is followed by falling edge on output Z”.

A setup constraint between data and clock input of a positive edge triggered flipflop is
identified by the following timing arc:

01D->01CP
which reads “rising edge on input D is followed by rising edge on input CP”.

A crucial part in ASIC cell development is to characterize a model which describes the
behavior of each timing arc with sufficient accuracy in order to guarantee correct functional
behavior under all required operational conditions.

A delay model usually needs two output variables:

intrinsic delay measured between a well-defined threshold value of the input signal and
a well-defined threshold value of the output signal

transition delay measured between two well-defined threshold values of the output
signal. Hence the transition delay is a fraction of the total output transition time, also
calledslew rateor edge rate

A timing constraint model needs just one output variable:

A timing constraint is theninimum or maximum allowed elapsed tioetween two
signals, measured between well-defined threshold values between those two signals.
This definition is similar to the intrinsic delay, except there is no input-output
relationship between the two signals. Both signals are usually inputs to the cell.

22 Advanced Library Format (ALF) Reference Manual Version 1.0.10

Performance Modeling for Characterization Characterization and Modeling

The actual values of transition times and load capacitances seen by each pin of a cell instance
are calculated by a delay predictor. Delay prediction can be separated into two tasks:

1. Acquisition of information on pin capacitance, extracted or estimated layout parasitics
for each net and fitting those into the load characterization model (lumped C, R, etc.)

2. Calculation of internal signal transition times based on the extracted internal load and
on load and transition times at the boundaries of the system.

Lookup tables provide a general modeling capability without precluding any level of accuracy.

Equations may feature polynomial expressions, exponentials and logarithms, and arbitrary
transcendent functions. For practical purpose, only the four basic arithmetic operations (+, -, *,
/) and exponentiation and logarithm will be supported for standard models.

Some models may require transcendent functions or complicated algorithms that cannot be
expressed directly in equations. Other models and algorithms may need protection from being
visible. In order to address needs that go beyond standard modeling features, a template-
reference scheme is proposed: Any model which is neither in table nor in equation format needs
to be a pointer to a customer-defined model which may reside outside the library.

Table 2-1 Modeling choices for cell characterization library

type of model features purpose
table discrete points, multidimensional direct storage of characterization data,
direct accuracy control through mesh
granularity
equation expressions with +, -, *, /, exponent,analytical model, well-suited for optimir
logarithm zation purpose, more compact than tahle,

also usable for arithmetic operations on
tabulated data (scale, add, subtract ..)

reference pointer to any type of model reuse of predefined model (which may
be table or equation), protection of use
defined model

—
1

Regardless of which type of model is chosen, there is a need to specify explicitly the meaning
of the variables and the units. The specification of variables and units can be made outside the
model and independent of the chosen model.

Since the set of variables should not be restrictive in order to allow any enhancements (e.g.
move from a lumped capacitance to an RC modehtext-sensitive keywordse proposed

(e.g. “load”, “slewrate”). The application parser need not know the meaning of the context-
sensitive keyword, except that it is used as a variable in a model and that it has some unit
attached to it, e.g. picofarad, nanosecond etc.

2.3.2 Power Modeling

A power model is an extension of the delay model for each timing arc using a third variable:

Version 1.0.10 Advanced Library Format (ALF) Reference Manual 23

Characterization and Modeling Performance Modeling for Characterization

scaled average currenteasured by integrating and scaling the total transient current
through the power supply of the cell for the specific timing arc or vector.

The current measurement can start anytime before the first event of the vector starts and
can end anytime after all transients of the vector have stabilized.

Variants of this model are scaled average power and energy, which are obtained by simple
scaling of average current measurements:

power = current * Vdd
energy = current * Vdd * integration time

The set of vectors causing power consumption within a cell is a superset of those vectors
causing the cell output to switch. While only the vectors with switching output are needed for
delay characterization, more vectors are needed for accurate power characterization.

For example, consider a flipflop, which consumes power at every edge of the clock, even if the
output does not switch. The vectors for delay and power characterization can be described as
follows:

01CP->010Q
01CP->100Q

The vectors for power characterization with only clock-switching can be described as follows:

01 CP && Q==D

10 CP && Q==D
The D input having the same value as the Q output is a necessary and sufficient condition that
the output will not switch at the rising edge of CP and that the value transferred to the master
latch at the falling edge of CP will be the same as already stored. Hence those two vectors
capture the actual power dissipation only within the clock buffers. Additional power vectors
can be defined to capture the power dissipation within the data buffers and the master latch etc.

For a 2-input AND gate with input pims B and output pirz aglitch is observed if the event
01 A is detected and then the evedB is detected before the input-to-output delay elapses.
It is possible to describe the glitch by a higher-order vector.

In dynamic simulation wittransport delay modehe glitch would appear as follows:
01A->10B->01Z->10Z

Simulation featurindransport delay mode with invalid-value-detectiwould exhibit the
glitch as follows?

01 A->10B ->'b0'bX Z -> 'bX'b0 Z
Simulation withinertial delay modevould suppress the output transitions:
(01A->10B) && !Z

The last expression can be used for each of the three simulation modeg, seakvays true
from beginning to end of the sequernae: ->10B , in particular at the time when the
sequencelA->10B is detected.

2. use based edge literals to avoid parser ambiguity.

24 Advanced Library Format (ALF) Reference Manual Version 1.0.10

Physical modeling for synthesis and test Characterization and Modeling

Each way of expressing vectors can be derived from the cell functionality. The different
examples for delay vectors (i.e. timing arcs), power vectors, and glitch vectors emphasize the
rich potential of modeling capabilities using vector expressions.

State-dependerstatic powelis also within the scope of vector-based power models. Static
power consumption is activated by a simulation model in the same way as level-sensitive logic
in functional modeling by a boolean expression, whetr@asient poweconsumption is

activated similar to edge-sensitive logic by a vector expression.

The advantages of adding power models within each delay vector and providing extra power
vectors are the following:

straightforward extension of delay characterization
capable of yielding the most detailed and accurate model on gate-level
each vector defines a comprehensive stimulus for power measurements

More abstract vector expressions are provided for power modeling of complex blocks, where
simplification is needed in order to deal with the complexity of characterization vectors.

2.4 Physical modeling for synthesis and test

24.1 Cell modeling

Physical modeling of cells requires annotating cell properties (e.g. area, height, width, aspect
ratio). The set of annotated properties give an application such as synthesis a choice to pick one
cell from a set of functionally equivalent cells, if one property is more desirable than another
one under given synthesis goals and constraints.

Cell pins can also have annotated properties, such as pin capacitance, voltage swing, switching
threshold etc.

Most of the modeling for test requirements are already fulfilled by the functional model.
Declaration of pins and their direction (input, output, bidirectional) is already a generic
requirement for cell modeling.

Scan insertion tools require specific annotations about cell and pin properties relevant for scan
test. They also require reference to equivalent non-scan cells. An equivalent non-scan cell is a
scan cell, when all scan specific hardware (e.g. multiplexor, scan clock) is removed.

The variables used in the functional model must have their counterpart in the pin declaration.
Only primary input pins can be primary inputs of functions, while primary output pins, internal
pins, or virtual pins can be primary or intermediate outputs of functions. Furthermore, test
vectors for fault coverage can be derived from the functional model in a formal way.

The remainder of the modeling for test requirements can be covered by annotations of cell
properties and cell pin properties. For instance, a cell can be labeled as a scan-flipflop, a pin
can be labeled as scan input or mode select pin.

Version 1.0.10 Advanced Library Format (ALF) Reference Manual 25

Characterization and Modeling Physical modeling for synthesis and test

24.2 Wire modeling

The purpose ofvire modelings to get good estimates jdirasitic resistancandcapacitance

as a function ofanout These estimates are technology specific, and they depend on metal
layer, sheet resistance, self capacitance per unit wirelength, fringe capacitance per unit
wirelength, via resistance for wires routed through multiple layers.

The wires can be characterized by types, similar to cells. For example,

/[wire with fanout < 5routed in metal 1, 2
WIRE small_wire {
ATTRIBUTE { metall metal2 }
LIMIT { FANOUT { MAX =5; }}
/*fill in data */
}
/I wire with 10 <fanout < 20routedinmetal 1, 2, 3, 4,5
WIRE big_wire {
ATTRIBUTE { metall metal2 metal3 metal4 metal5 }
LIMIT { FANOUT { MIN = 10; MAX = 20; } }
/*fill in data */

From a modeling standpoint, no particular language is required for performance modeling of
wires that would be different from performance modeling of cells. The fanout will be an input
variable, and capacitance and resistance would be output variables. The values can be
expressed either in tables or in equations. Usually first order equations (with slope and
intercept) are used for wire modeling.

26 Advanced Library Format (ALF) Reference Manual Version 1.0.10

Section 3
Library Format Specification

This section discusses the object model used by ALF and provides the syntax rules for all
objects. The syntax rules are provided in standard BNF form.

3.1 Object Model

A library consists of one or moodbjects Each object is defined by a keyword and an optional
name for the object and an optiomalueof the object.

A keyworddefines the type of the object. Section 3.1.2 and Section 3.1.3 define various types
of objects used in ALF and related keywords.

An optionalidentifier (also calledhamg following the keyword defines threame of the object
This name must be used while referencing an object inside other objects in the library. If an
object is not referenced by name, then the object need not be named.

A literal defines an optional value associated with the objecexfressiorcan be used when
the value of the object cannot be expressed as a literal.

An object may contain one or more objects. The containing object is cdiiechechical
object The contained objects are caltgdldren objectsThe children objects are defined and
referenced inside curly braces ({}) in the description of the hierarchical object. An object
without children is called aatomic object

Forward referencingf objects is not allowed. Therefore, all objects must be defined before
they can be instantiated. This allows library parsers to be one-pass parsers.

3.1.1 Syntax conventions

In order to make ALF easy to parse, we use syntax conventions which are followed by the
existing syntax rules (see Section 3.4) and should also be followed for future extensions of the
grammar.

The first token of the object is the object type identifier, followed by a name (mandatory or
optional, depending on object type), followed by (mandatory or optienahd value

assignment, followed by (mandatory or optional) children objects enclosed by curly braces.
Objects with more than one token (i.e. name and/or value) and without children are terminated
with ; .

Examples:

1. unnamed object without value assignment:
MY_OBJECT_TYPE

Version 1.0.10 Advanced Library Format (ALF) Reference Manual 27

Library Format Specification Object Model

or

MY_OBJECT_TYPE {
[ffill in children objects

}
2. unnamed object with value assignment:

MY_OBJECT_TYPE = my_object_value;
or

MY_OBJECT_TYPE = my_object_value {
[ffill in children objects
}

3. named object without value assignment:

MY_OBJECT_TYPE my_object_name;
or

MY_OBJECT_TYPE my_object_name {
[ffill in children objects

}
4. named object with value assignment:

MY_OBJECT_TYPE my_object_name = my_object_value;
or

MY_OBJECT_TYPE my_object_name = my_object_value {
[ffill in children objects

}
The objects in ALF are divided into four categorigeneric objectdibrary-specific objects
arithmetic modelsandfunctions

3.1.2 Generic Objects

A generic object can appear at every level in the library within any scope. The semantics of a
generic object must be understood by any ALF compiler if the generic object is within the
scope of application for that compiler.

The following objects shall be considered generic objects:

28 Advanced Library Format (ALF) Reference Manual Version 1.0.10

Object Model Library Format Specification

alias

constant \

include \,S‘ga\‘ o
class m generic object
attribute - >

template s>

|
property %
group
Figure 3-1: Generic objects

3.1.2.1 CONSTANT

A CONSTANTObject is a named object with value assignment and without children objects.
Value is a number.

Example:
CONSTANT vdd = 3.3;

3.1.2.2 ALIAS
An ALIASobject is a named object with value assignment and without children objects. Value
iS a string.
Example:
ALIAS RAMPTIME = SLEWRATE;

3.1.2.3 INCLUDE

An INCLUDE object is a named object without value assignment and without children. The
name is a quoted string containing the name of a file to be included.

Example:
INCLUDE “primitives.alf”;

Since the file name is a quoted string, any special symbols (like ~ or *) are allowed within the
filename. The interpretation of those (for file search path etc.) is up to the application.

3.1.2.4 CLASS

A CLASSobject is a named object with optional value assignments and children objects. The
name can be used by other objects to reference the class object.

Version 1.0.10 Advanced Library Format (ALF) Reference Manual 29

Library Format Specification Object Model

Example:
CLASS my_class{ ... }

MY_OBJECT_TYPE my_object {
CLASS =my_class;
} /I my_object belongs to my_class

3.1.25 ATTRIBUTE

An ATTRIBUTEobject is an unnamed object without value, but has children objects. The
attribute object shall be the child object of another object. The children of the attribute object
are unnamed objects which can have other unnamed objects as children objects. The purpose
of an attribute object is to provide free association of objects with attributes when there is no
special category available for the attributes.

Examples:

CELL rr_8x128 {
ATTRIBUTE {ROM ASYNCHRONOUS STATIC}

}

PIN read_write_select {
ATTRIBUTE {READ{POLARITY=low;} WRITE{POLARITY=high;}}

}

3.1.2.6 TEMPLATE

A TEMPLATEObject is a named object with one or more children objects. Any valid ALF
object can be a child object of a template object. An identifier enclosed betvaeds are
recognized aplaceholdersWhen a template object is used, each of its placeholders must be
referenced by order or by explicit name association.

Example:

TEMPLATE std_table {
CAPACITANCE {PIN=<pin1>; UNIT=pF; TABLE {0.02 0.04 0.08 0.16}}
SLEWRATE {PIN=<pin2>; UNIT=ns; TABLE {0.1 0.3 0.9}}

}
An instantiation of the above template object with explicit reference to placeholders by name:
std_table{pinl=out; pin2=in;}
An instantiation of the above template object with implicit reference to placeholders by order:
std_table{out in}

If a symbol within a placeholder appears more than once in the template definition, the order
for implicit reference is defined by the first appearance of the symbol. Explicit referencing
improves the readability and is the recommended usage.

A template instantiation can appear at any place within a hierarchical object, as long as the
template object contains the structure of valid objects inside. Hierarchical templates contain
other template objects.

30 Advanced Library Format (ALF) Reference Manual Version 1.0.10

Object Model Library Format Specification

3.1.2.7 PROPERTY

A PROPERTYobject is a named or an unnanathotation containerlt can be used at any
level in the library. It is used for arbitrary parameter-value assignment.

Example:

PROPERTY items {
parameterl=valuel,;
parameter2=value2;

3.1.2.8 GROUP

A GROUPOobject is a set of elements with commonality between them. Thus the common
characteristics can be defined once for the group instead of being repeated for each element.

Example:

GROUP time_measurements = {DELAY SLEWRATE SKEW JITTER}
Thus the statement

time_measurements { UNIT = ns; }
replaces the following statements:

DELAY {UNIT =ns; }

SLEWRATE {UNIT =ns;}
SKEW {UNIT =ns; }
JITTER {UNIT =ns; }

3.1.3 Library-specific objects

The library-specific objects define their nature and their relationship to each other by
containment rules. For example, a library may contain a cell, but a cell may not contain a
library. However, both the library object and the cell object may contain any generic object. A
generic object defined at the library level makes it visible inside the scope of that library,
defining it on the cell level makes it visible inside the scope of that cell and its children objects.

3.14 Arithmetic models

An arithmetic model is an object that describes characterization data, or more abstract,
measurable relationships between physical quantities. The modeling language allows tabulated
data as well as linear and non-linear equations. The equations consists of arithmetic
expressions, for which the IEEE standards have been adopted.

3.15 Functions

A function is an object that describes the functional specification of a digital circuit (or a digital
model of an analog or a mixed-signal circuit) in a canonical form. The modeling language
allows behavioral models as well as statetables and structural models with primitives. The
behavioral models contain boolean expressions, for which the IEEE standards have been
adopted. Since boolean expressions are insufficient to describe sequential logic, ALF
introduces new operators and symbols that can be used in conjunction with boolean operators

Version 1.0.10 Advanced Library Format (ALF) Reference Manual 31

Library Format Specification Object Model

and symbols. Expressions that use both the IEEE operators and the new operators, are called
vector expressions.

The following figures describe the four types of objects and their relationships with each other.

library specific object -contains
arithmetic mode| contain generic object

function contains

Figure 3-2: Library-specific objects

arithmetic model

contains (\ contains
%
headef ©

contains ™ table equation

Figure 3-3: Arithmetic model

L contains I
VeCtoof, orimitive <-2m2rs— function
/)/t Q Q
X (0) > O/)
\/)\9 | /)@/))00% \\
contains statetable

vector exyression<«——— behavior

Figure 3-4: Function

Note that a function can contain a primitive and a primitive can contain a function. See figure
3-7 and syntax descriptions in Section 3.4.11 and Section 3.4.16.

32 Advanced Library Format (ALF) Reference Manual Version 1.0.10

Object Model Library Format Specification

library > annotation container
arithmetic mod -“ contais

sublibrary "
cell ‘t’:“ contains
wire ”‘0

vector 'l contain \/

function I annotation

primitive >

Figure 3-5: Annotations

library <
sublibrary ~_isa
cell Sa
wire 'Sa\‘ library specific
pin is a - object
vector /
|
annotation container— is
annotation '
primitive

Figure 3-6: Library-specific objects

Version 1.0.10 Advanced Library Format (ALF) Reference Manual 33

Library Format Specification Lexical rules

// library

=
s
c
3
blib = "
sublibrary £ =
/ ©
=
©
F={ - IS
& € o
s £ contains \
° 8/ cell ——> wire
— . wn
o 5 pin £
n |n c c
c €. I A o)
S I8 S vector °
g 5 8 s RN
vv £ 2 o b
.. 38 < |8 B
primitive \\;* fEE
. . (&) (SN &]
arithmetic modek

Figure 3-7: Library objects and their relationships

Note that a function can contain a primitive and a primitive can contain a function. See figure
3-7 and syntax descriptions in Section 3.4.11 and Section 3.4.16.

3.2 Lexical rules

3.21 Character set

Each graphic character corresponds to a unique code of the 1ISO eight-bit coded character set
[ISO 8859-1 : 1987(E)], and is represented (visually) by a graphical symbol.

34 Advanced Library Format (ALF) Reference Manual Version 1.0.10

Lexical rules Library Format Specification

3.2.2 Lexical tokens

The ALF source text files shall be a stream of lexical tokens. Each lexical token is either a
delimiter, acommentabit literal, abased literal anedge litera)] anumber aquoted stringor
anidentifier.

3.2.3 Whitespace Characters

The following characters shall be considendtdtespace characters

Character ASCII code (hex)
space 20

vertical tab 0B

horizontal tab 09

line feed (new line) OA

carriage return oD

form feed oC

Figure 3-8: List of whitespace characters

Comments are also considered white space (see Section 3.2.6).

A whitespace character shall be ignored except when it separates other lexical tokens or when
it appears in a quoted string.

3.24 Reserved and Non-reserved Characters

The ASCII character set shall be divided in three categories - whitespace (Section 3.2.3),
reserved characters, and non-reserved characters. The reserved characters are symbols that
make up punctuation marks and operators. The non-reserved characters shall be used for
creating identifiers and numbers.

reserved_character ::=
&l [1 Mo~ o+ -1 L % ? N = <] >
)T LrIr L@

nonreserved_character ::=

letter | digit | 1 $
letter ::=
al bl c| dj el f| gl hy i| j| k| I'| m
| n| ol pl q| r| s| t| u|l v|] w| X| y| z
| Al Bl C| DI EI FI G H | J] K| LI M
| NI O P Q R| S| T| Ul VI W X| Y| Z

digit ::=
0| 1] 2| 3 4 | 5 6 | 7| 8 | 9

escape_character ::=
\

Version 1.0.10 Advanced Library Format (ALF) Reference Manual 35

Library Format Specification Lexical rules

any_character ::=
reserved_character
| nonreserved_character
| escape_character
| whitespace

Figure 3-9: Reserved and non-reserved characters

ALF shall treat uppercase and lowercase characters as the same characters. In other words,
ALF is acase-insensitive language

3.25 Delimiters

A delimiteris either a reserved character or one of the following compound operators, each
composed of two or three adjacent reserved characters:

delimiter ::=
reserved_character
| &&| ~&| [| ~| | ~N| = =] ™| >=| <=
| 2V ?2~| ?-| ??| > | <>| &| <&| >>| <<

Figure 3-10: Tokens that make up delimiters

Each special character in a single character delimiter list shall be a single delimiter unless this
character is used as a character in a compound operator or as a character in a quoted string.

3.2.6 Comments

ALF has two forms to introduce comments.
A single-line commerghall start with the two characters and end with a new line.

A block commenrghall start with* and end withy . Comments shall not be nested. The single-
line comment token shall not have any special meaning in a block comment.

comment ::=
single_line_comment
| block_comment

Figure 3-11: Single-line and block comments

3.2.7 Numbers

Constant numbers can be specified as integer or real.
Theintegeris a decimal integer constant.

sign = + | -

36 Advanced Library Format (ALF) Reference Manual Version 1.0.10

Lexical rules Library Format Specification

unsigned ::= digit { __ | digit}
integer ::= [sign] unsigned

non_negative_number ::=

unsigned [. unsigned]
| unsigned [. unsigned] E [sign] unsigned
number ::=

[sign] non_negative_number
Figure 3-12: Integer and real numbers

3.2.8 Bit Literals

A bit literal shall represent a single bit constant.
bit_literal ::=
numeric_bit_literal
| alphabetic_bit_literal
| dont_care_literal
| random_literal
numeric_bit_literal ::= 0] 1
alphabetic_bit_literal ::=
X| Z| L] H| U W
| x| z| 1] h] u|] w

dont_care_literal ::= ?

random_literal ::= *

Table 3-1 : Single bit constants

Literal Description

0 value is logic zero

1 value is logic one

Xor X value is unknown

Lor | value is logic zero with weak drive strength
Hor h value is logic one with weak drive strength
Wor w value is unknown with weak drive strength
Zor z value is high-impedance

Uor u value is uninitialized

? value is any of the above, yet stable

* value may randomly change

Version 1.0.10 Advanced Library Format (ALF) Reference Manual 37

Library Format Specification Lexical rules

3.2.9 Based Literals

A based literals a constant expressed in a form that specifies the base explicitly. The base can
be specified irbinary, octal, decimalor hexadecimaformat.

based_literal ::=
binary _base { __ | binary_digit }
| octal_base { __| octal_digit }
| decimal_base { __ | digit }
| hex_base { __ | hex_digit }

binary_base ::=
IB | Ib

octal_base ::=
IO | Io

decimal_base ::=
ID | Id

hex_base ::=
IH | Ih

binary_digit ::=
bit_literal

octal_digit ::=
binary_digit | 2| 3| 4| 5| 6| 7

hex_digit ::=
octal_digit | 8] 91 Al Bl C| Dl El F| a] b] c| d| e] f

Figure 3-13: Based constants

The underscorg) shall be legal anywhere in the number except as the first character, and this
character is ignored. This feature can be used to break up long numbers for readability
purposes. No white space shall be allowed between base and digit token in a based literal.

When an alphabetic bit literal is used as an octal digit, it shall represent 3 repeated bits with the
same literal. When an alphabetic bit literal is used as a hex digit, it shall represent 4 repeated
bits with the same literal.

For example,
'02xwO0u is same as 'b010_xxx_www_000_uuu
'hLux IS same as 'bLLLL_uuuu_XXXx

38 Advanced Library Format (ALF) Reference Manual Version 1.0.10

Lexical rules

3.2.10 Edge Literals

An edge literalshall be constructed by two bit literals or two based literals. It shall describe the
transition of a signal from one discrete value to another. No white space shall be allowed within
(between) the two literals. An underscore shall be allowed.

edge_literal ::=

bit_edge_literal
| word_edge_literal
| symbolic_edge_literal

bit_edge_literal ::=

bit_literal bit_literal

word_edge_literal :

based_literal

symbolic_edge_literal::

22 | 7~

based_literal

A 2

Library Format Specification

Figure 3-14: Edge literals

3.211 Quoted Strings

Thequoted stringshall be a sequence of zero or more characters enclosed between two
guotation marks'() and contained on a single line. Charaetsrape codegre used inside the
string literal to represent some common special characters. The characters that may follow the
backslash\j and their meanings are listed below in Table 3-2.

guoted_string ::=

{any_character }

Figure 3-15: A quoted string

Table 3-2 : Special characters in quoted strings

Symbol ASCII Code Meaning
(octal)
\g 007 alert/bell
\h 010 backspace
\t 011 horizontal tab
\n 012 new line
\v 013 vertical tab
\f 014 form feed
\r 015 carriage return
\" 042 double quotation mark

Version 1.0.10

Advanced Library Format (ALF) Reference Manual

39

Library Format Specification Lexical rules

Table 3-2 : Special characters in quoted strings

\\ 134 backslash
\ddd 3-digit octal value of ASCII characte

A non-quoted string can not contain any reserved character. Therefore, when referencing file
names (which typically contain a period character), use of a quoted string is necessary.

3.2.12 Identifiers

Identifiersare used in ALF as names of objects, reserved words and context-sensitive
keywords. An identifier shall be any sequence of letters, digits, undersgaaad dollar sign

($) character. If an identifier is constructed from one or more non-reserved characters, it is
callednon-escaped identifieA digit shall not be allowed as first character of a non-escaped
identifier.

nonescaped_identifier ::=
nonreserved_character { nonreserved_character }

A sequence of characters starting withrestape_character is called arescaped identifier
The purpose of the escaped identifier is to legalize the useigif a as first character of an
identifier, the use afeserved_character anywhere in an identifier or to prevent the
misinterpretation of an identifier as a keyword. The escape character shall be followed by at
least one non-white space character to form an escaped identifier.The escaped identifier shall
contain all characters up to first white space character.

escaped_identifier ::=
escape_character escaped_characters

escaped_characters ::=
escaped_character { escaped_character }

escaped_character ::=
nonreserved_character

| reserved_character

| escape_character
A placeholder identifieshall be a non-escaped identifier between the less-than chasicter (
and the greater-than charactey. (No whitespace or delimiters are allowed between the non-
escaped identifier and the placeholder characteasd>). The placeholder identifier is used
in template objects as a formal parameter, which is replaced by the actual parameter in template
instantiation.

placeholder_identifier ::=
< nonescaped_identifier >

Identifiers are treated in a case-insensitive way. They may be used in the definition of objects
and in reference to already defined objects. A parser should preserve the case of an identifier
in the definition of an object, since a downstream application may be case-sensitive.

40 Advanced Library Format (ALF) Reference Manual Version 1.0.10

Lexical rules Library Format Specification

3.2.13

Rules against parser ambiguity

The following rules shall apply when resolving ambiguity in parsing ALF source:

In a context where bothit_literal andidentifier are legal syntax items,
nonescaped_identifier shall take priority ovedlphabetic_bit_literal
In a context where bottt_literal andnumber are legal syntax itemsymber shall

take priority ovemhumeric_bit_literal

In a context where bo#uge_literal andidentifier are legal syntax items,
identifier shall take priority ovelit_edge_literal

In a context where bottige_literal andnumber are legal syntax itemsymber shall
take priority ovemit_edge_literal

In such contextased_literal shall be used instead lof literal

3.2.14

Cross-reference of lexical tokens

Table 3-3 : Cross-reference of lexical tokens

Lexical toekn Section
alphabetic_bit_literal 3.2.8
any_character 3.24
based_literal 3.2.9
binary_base 3.2.9
binary_digit 3.2.9
bit_edge_literal 3.2.10
bit_literal 3.2.8
block_comment 3.2.6
comment 3.2.6
decimal_base 3.2.9
delimiter 3.25
digit 3.24
dont_care_literal 3.2.8
edge_literal 3.2.10
escape_character 3.24
escaped_identifier 3.2.12
hex_base 3.2.9
hex_digit 3.2.9
integer 3.2.7
nonescaped_identifier 3.2.12
non_negative_number 3.2.7

Version 1.0.10 Advanced Library Format (ALF) Reference Manual 41

Library Format Specification Keywords

Table 3-3 : Cross-reference of lexical tokens

Lexical toekn Section
nonreserved_character 3.24
number 3.2.7
numeric_bit_literal 3.2.8
octal_base 3.2.9
octal_digit 3.2.9
placeholder_identifier 3.2.12
quoted_string 3.2.11
reserved_character 3.24
sign 3.2.7
single_line_comment 3.2.6
symbolic_edge_literal 3.2.10
unsigned 3.2.7
whitespace 3.2.3
word_edge_literal 3.2.10

3.3 Keywords

Keywords are case-insensitive non-escaped identifiers. For clarity, this document uses
uppercase letters for keywords and lowercase letters elsewhere, unless otherwise mentioned.

Keywords are reserved for use as object identifiers, not for general symbols. To use an
identifier that conflicts with the list of keywords, use the escape character, e.g. to declare a pin
that is calledPIN, use the form:

PIN\PIN {..}

A keyword can either beraserved keywor¢also callechard keywor(l or acontext-sensitive
keyword(also callecsoft keywor)l The hard keywords have fixed meaning, and must be
understood by any parser of ALF. The soft keywords may be understood only by specific
applications. For example, a parser for a timing analysis application can ignore objects which
contain power related information described using soft keywords.

3.3.1 Keywords for Objects
The following keywords are used to identify object types:

ALIAS ATTRIBUTE BEHAVIOR CELL

CLASS CONSTANT EQUATION FUNCTION
GROUP HEADER INCLUDE LIBRARY
PIN PRIMITIVE PROPERTY STATETABLE
SUBLIBRARY TABLE TEMPLATE VECTOR
WIRE

Figure 3-16: Keywords for objects

42 Advanced Library Format (ALF) Reference Manual Version 1.0.10

Syntax Rules Library Format Specification

3.3.2 Keywords for Operators

The following keywords are used for built-in arithmetic functions:

ABS absolute value

EXP natural exponential function
LOG natural logarithm

MIN minimum

MAX maximum

Figure 3-17: Keywords for built-in arithmetic functions

3.3.3 Context-Sensitive Keywords

In order to address the need of extensible modeling, ALF provides a predefinepiggiocof
context-sensitive keywords. Additional private context-sensitive keywords can be introduced
as long as they do not have the same name as any existing public keyword.

The public context-sensitive keywords and their semantic meaning is defined in Section 3.6.
This set can be extended to include private context-sensitive keywords.

3.4 Syntax Rules

The formal syntax of ALF language is described using Backus-Naur Form (BNF).

3.4.1 Assignments

unnamed_assignment_base ::=
context_sensitive_keyword = value

unnamed_assignment ;=
unnamed_assignment_base ;

unnamed_assignments ::=
unnamed_assignment { unnamed_assignment }

named_assignment_base ::=
context_sensitive_keyword identifier = value

named_assignment ::=
named_assignment_base ;

named_assignments ::=
named_assignment { named_assignment }

assignment_base ::=
named_assignment_base
| unnamed_assignment_base
multi_value_assignment ::=

identifier { values }

Version 1.0.10 Advanced Library Format (ALF) Reference Manual 43

Library Format Specification

assignment ::=
named_assignment
| unnamed_assignment
| multi_value_assignment

pin_assignment ::=

pin_ identifier [index] = pin_ identifier [index] ;
| pin_ identifier [index] = logic_constant ;
| logic_constant = pin_ identifier [index] ;

pin_assignments ::=
pin_assignment { pin_assignment }

arithmetic_assignment ::=

identifier = arithmetic_expression ;
3.4.2 Expressions
arithmetic_expression ::=
(' arithmetic_expression)
| number

| [arithmetic_unary] identifier
| arithmetic_expression arithmetic_binary
arithmetic_expression
|arithmetic_function_operator
(arithmetic_expression { , arithmetic_expression }

boolean_expression ::=
(boolean_expression)

| logic_constant

| logic_variable

| boolean_unary boolean_expression

| boolean_expression boolean_binary boolean_expression

| boolean_expression
boolean_cond boolean_expression boolean_else
{ boolean_expression boolean_cond boolean_else }
boolean_expression

vector_single_event ::=
[(] vector_unary boolean_expression [)1

vector_event ::=
[(1{vector_event vector_and } vector_single_event [
[(1{vector_single_event vector_and } vector_event |
| vector_event vector_and vector_event

vector_event_sequence ::=
[(]{vector_event_sequence vector_followed_by} vector_event [
|[(]{vector_event vector_followed_by} vector_event_sequence [
| vector_event_sequence vector_followed_by vector_event_sequence

44 Advanced Library Format (ALF) Reference Manual

Syntax Rules

Version 1.0.10

Syntax Rules Library Format Specification

vector_complex_event ::=
[(K{vector_complex_event vector_binary} vector_event_sequence[

|[(J{vector_event_sequence vector_binary} vector_complex_event[)]
| vector_complex_event vector_binary vector_complex_event

vector_conditional_event ::=

[(]vector_expression [)] vector_boolean_and boolean_expression
| boolean_expression vector_boolean_and | (] vector_expression [)1
| boolean_expression
boolean_cond [('] vector_expression [)] boolean_else
{ boolean_cond | (] vector_expression [)] boolean_else }
[(] vector_expression [)1

vector_expression ::=
[(]{vector_expression vector_binary} vector_complex_event [
[(]{vector_complex_event vector_binary} vector_expression [
|[(J{vector_expression vector_binary} vector_conditional_event]

|[(J{vector_conditional_event vector_binary} vector_expression|)]
| vector_expression vector_binary vector_expression

3.4.3 Instantiations

cell_instantiation ::=
cell _identifier { logic_values }
| cell _identifier { pin_assignments }

primitive_instantiation ::=

primitive _identifier [identifier] { logic_values }
| primitive _identifier [identifier] { logic_assignments }
| primitive _identifier [identifier] { pin_assignments }

template_instantiation ::=

template identifier ;

| template_ identifier [= static] { values }

| template_ identifier [= static] { all_purpose_items }

| template_ identifier = dynamic{ values }

| template_ identifier = dynamic{ dynamic_instantiation_items }

dynamic_instantiation_items ::=
dynamic_instantiation_item { dynamic_instantiation_item }

dynamic_instantiation_item ::=
all_purpose_item

| arithmetic_model
| arithmetic_assignment

3.4.4 Literals

context_sensitive_keyword ::=
nonescaped_identifier

Version 1.0.10 Advanced Library Format (ALF) Reference Manual 45

Library Format Specification

46

edge_literal ::=
bit_edge_literal
| word_edge_literal
| symbolic_edge_literal

edge_literals::=
edge_literal { edge_literal }

identifier ::=
nonescaped_identifier
| escaped_identifier
| placeholder_identifier

identifiers ::=
identifier { identifier }

index ::=
[unsigned]
| [unsigned : unsigned]
| [identifier]
| [identifier . identifier]
logic_value ::=

logic_constant
| logic_variable

logic_values ::=
logic_value { logic_value }

logic_constant ::=
bit_literal
| based_literal

logic_constants::=
logic_constant { logic_constant }

statetable value ::=
logic_constant
| edge_literal
| ([!]logic_variable)

statetable_values ::=
statetable_value { statetable_value }

logic_variable ::=
pin_ identifier [index]

logic_variables ::=
logic_variable { logic_variable }

numbers ::=
number { number }

Advanced Library Format (ALF) Reference Manual

Syntax Rules

Version 1.0.10

Syntax Rules Library Format Specification

string ::=
guoted_string
| identifier

value ::=
number
| string
| logic_value

values ::=
value { value }

3.4.5 Operators

arithmetic_unary ::=
+| -

arithmetic_binary ::=
- KL %

arithmetic_function_operator ::=
abs

| exp

| log

| min

| max

boolean_unary ::=
P~ & ~& |1~ 1~ "

boolean_and ::=
& | &&

boolean_or ::=

boolean_logic_compare ::=
N | ~N

boolean_case _compare ::=
1= | == >= | <= | > | <

boolean_arithmetic ::=
+ 0 -1 1 1] % >] <<

boolean_binary ::=
boolean_and
| boolean_or
| boolean_logic_compare
| boolean_case_compare
| boolean_arithmetic

Version 1.0.10 Advanced Library Format (ALF) Reference Manual 47

Library Format Specification Syntax Rules

boolean_cond ::=
?

boolean_else ::=

vector_unary ::=
edge_literal

vector_and ::=
& | &&

vector_or ::=

vector_followed_hy ::=
> ~>

vector_binary ::=
vector_and
| vector_or
| vector_followed_by
| <->
| &>
| <&>

vector_boolean_and ::=
&| &&

vector_if ::=

@

vector_else_if ::=
See Section 3.5 for semantics of operators.

3.4.6 Auxiliary Objects

all_purpose_item ::=
annotation
| annotation_container
| generic_object
| template_instantiation
| cell_instantiation

all_purpose_items ::=
all_purpose_item { all_purpose_item }

annotation ::=

assignment
| assignment_base { all_purpose_items }

48 Advanced Library Format (ALF) Reference Manual Version 1.0.10

Syntax Rules Library Format Specification

annotation_container ::=
context_sensitive_keyword { all_purpose_items }

generic_object ::=
alias

| attribute

| constant

| class

| group

| include

| property

| template

library_specific_object ::=

annotation

| annotation_container

| cell

| function

| library

| pin

| primitive

| sublibrary

| vector

| wire

source_text ::=

ALF_REVISION version_ string library

3.4.7 Generic Objects

alias ::=

ALIAS identifier = identifier :
attribute ::=

ATTRIBUTE { attribute_items }

attribute_item ::=
identifier [{ unnamed_assignments }]

attribute_items ::=
attribute_item { attribute_item }

class::=
CLASS identifier :
| CLASSidentifier { class_items }

class_item ::=
all_purpose_item
| logic_assignment
| vector_assignment

Version 1.0.10 Advanced Library Format (ALF) Reference Manual 49

Library Format Specification

3.4.8

50

class_items ::=
class_item { class_item }

constant ::=
CONSTANT identifier

| CONSTANTdentifier

GROUPgroup_ identifier
| GROUPgroup_ identifier
| GROUPgroup_ identifier
| GROUPgroup_ identifier
| GROUPgroup_ identifier
| GROUPgroup_ identifier

include ::=
INCLUDE quoted_string

property ::=
PROPERTY [identifier]

template_item ::=

all_purpose_item

| library_specific_object

| arithmetic_model

| header

| table

| equation

| behavior_item

template_items ::=

= number

= logic_constant ;

{ identifiers }

{ numbers }

{ edge._literals }

{ logic_constants }
{ logic_variables }
{ integer : integer

}

{ unnamed_assignments

template_item { template_item }

template ::=
TEMPLATE template

CELL

cell ::=
CELL cell_ identifier
| CELL cell_ identifier

| cell_ template_instantiation

cell_item ::=
all_purpose_item

| pin
| primitive
| function
| arithmetic_model
| vector
| wire

Advanced Library Format (ALF) Reference Manual

identifier

{ cell_items

{ template_items

}

}

Syntax Rules

Version 1.0.10

Syntax Rules

cell_items ::=
cell_item {cell_item}

3.4.9 LIBRARY

library ::=
LIBRARY library identifier
| LIBRARY library identifier
| flibrary_ template_instantiation

libraries ::=
library { library }

library_item ::=
all_purpose_item
| arithmetic_model
| cell
| primitive
| wire

library_items ::=
library_item { library_item }

3.4.10 PIN

pin ::=
PIN [index] pin_ identifier
PIN [index] pin_ identifier
| pin_ template_instantiation

pins ::=
pin { pin }

pin_item ::=
all_purpose_item
| arithmetic_model

pin_items ::=
pin_item { pin_item }

3.4.11 PRIMITIVE

primitive ::=
PRIMITIVE primitive_ identifier
| PRIMITIVE primitive_ identifier
| primitive_ template_instantiation

primitives ::=
primitive { primitive }

primitive_item ::=
all_purpose_item

Version 1.0.10

Advanced Library Format (ALF) Reference Manual

Library Format Specification

{ library_items [sublibraries]

{ pin_items

{ primitive_items

51

Library Format Specification

| pin
| function

primitive_items ::=
primitive_item { primitive_item }

3.4.12 SUBLIBRARY

sublibrary ::=

SUBLIBRARY library_identifier { library_items

| SUBLIBRARY library_identifier ;
| sublibrary template_instantiation

sublibraries ::=
sublibrary { sublibrary }

3.4.13 VECTOR

vector ::=
VECTOR (vector_expression) { vector_items

VECTOR (boolean_expression) { vector_items

|
| VECTOR (vector_expression)
| VECTOR (boolean_expression) ;
| vector_ template_instantiation
vector_item ::=
all_purpose_item
| arithmetic_model
| logic_assignment
| vector_assignment

vector_items ::=
vector_item { vector_item }

vector_assignment ::=
context_sensitive_keyword = (vector_expression

3.4.14 WIRE

wire =
WIRE wire_ identifier { wire_items }
| WIRE wire_ identifier :
| wire_ template_instantiation
wire_item ::=

all_purpose_item
| arithmetic_model

wire_items ::=
wire_item { wire_item }

52 Advanced Library Format (ALF) Reference Manual

Syntax Rules

Version 1.0.10

Syntax Rules Library Format Specification

3.4.15 Arithmetic Model

arithmetic_model ::=
context_sensitive_keyword [identifier]
{ [all_purpose_items] [header] body }
| context_sensitive_keyword [identifier]
=value ;
| context_sensitive_keyword [identifier]
=value { all_purpose_items }
| context_sensitive_keyword [identifier]
{ arithmetic_submodels }
| arithmetic_model template_instantiation

arithmetic_models ::=
arithmetic_model { arithmetic_model }

arithmetic_model_container ::=
context_sensitive_keyword { arithmetic_models }

arithmetic_submodel ::=
context_sensitive_keyword
{ [all_purpose_items] [header] body }
| context_sensitive_keyword
=value ;
| context_sensitive_keyword
=value { all_purpose_items }
| context_sensitive_keyword
{ arithmetic_submodels }
| arithmetic_submodel template_instantiation

arithmetic_submodels ::=
arithmetic_submodel { arithmetic_submodel }

header ::=
HEADER { all_purpose_items] arithmetic_models }
| header_ template_instantiation
body ::=
table
| equation

| table equation

table ::=
TABLE ({ table_items }
| table_ template_instantiation

table_item ::=
number
| identifier
table_items :;:=
table_item { table_item }

Version 1.0.10 Advanced Library Format (ALF) Reference Manual

Library Format Specification Syntax Rules

equation ::=
EQUATION {arithmetic_expression }
| equation_ template_instantiation

3.4.16 FUNCTION

function ::=
FUNCTION identifier]
{ [all_purpose_items] [primitives] behavior } }
{ [all_purpose_items] [primitives] [behavior] statetables } }

function_ template_instantiation

statetable ::=
STATETABLE [identifier] { statetable_header statetable_body }

statetables ::=
statetable { statetable }

statetable_body ::=
statetable_values . statetable values ;
{ statetable_values . statetable_values ;)

statetable_header ::=

logic_variables . logic_variables ;
behavior ::=
BEHAVIOR identifier] { behavior_items }

behavior_item ::=
logic_assignment
| sequential_logic_statement
| primitive_instantiation

behavior_items ::=
behavior_item { behavior_item }

logic_assignment ::=
identifier [index] = boolean_expression ;

logic_assignments ::=
logic_assignment { logic_assignment }

sequential_logic_statement ::=

vector_if (vector_expression | boolean_expression)
{ logic_assignments }
{ vector_else_if (vector_expression | boolean_expression)
{ logic_assignments 1}

54 Advanced Library Format (ALF) Reference Manual Version 1.0.10

Syntax Rules Library Format Specification

3.4.17 Cross-reference of BNF items

Note: A BNF item with singular name is defined in the same section as the BNF item with the
plural name. A plural item name implies one or more items with the corresponding singular
name.

Table 3-4 : Cross-reference of BNF items with short semantic explanation

BNF item Section Short semantic explanation

alias 3.4.7 statement defining an alias

all_purpose_item(s) 3.4.6 item(s) that can appear inside any hierarchical objqct

annotation 3.4.6 parameter-value assignment inside an object, may be
nested

annotation_container 3.4.6 unnamed object containing annotations

arithmetic_assignment 3.4.1 statement assigning an arithmetic expression to a yariable

arithmetic_binary 3.45 arithmetic operator requiring two operands

arithmetic_expression 3.4.2 expression involving arithmetic operations

arithmetic_function_operator 3.45 arithmetic operator prefixing a list of arguments

arithmetic_model(s) 3.4.15 statement(s) for description of characterization datg
using single numbers, tables or equations

arithmetic_model_container 3.4.15 unnamed object containing arithmetic models

arithmetic_submodel(s) 3.4.15 statement(s) inside an arithmetic model statement for cat-
egorizing the characterization data

arithmetic_unary 3.4.5 arithmetic operator requireing one operand

assignment 3.4.1 terminated statement for single value assignment t¢ an
object

assignment_base 34.1 unterminated statement for single value assignmeift to an
object

attribute 3.4.7 statement associating attributes to an object

attribute_item(s) 3.4.7 item(s) inside an attribute statement

behavior 3.4.16 statement describing the logic function of a digital dir-
cuit in a behavioral language

behavior_item(s) 3.4.16 item(s) inside a behavior statement

body 3.4.15 table or equation defining characterization data for gn
arithmetic model

boolean_and 3.45 boolean AND operator

boolean_arithmetic 3.4.5 operator for boolean arithmetic

boolean_binary 3.4.5 boolean operator requiring two operands

boolean_case _compare 3.45 binary boolean operator for magnitude comparisop

boolean_cond 3.45 boolean postfix operator evaluating the preceeding|bool-
ean expression (if-clause)

boolean_else 3.4.5 boolean infix operator separating if-and else-clausgs

boolean_expression 3.4.2 expression involving boolean operations

boolean_logic_compare 3.45 binary boolean operator for logic comparison

Version 1.0.10 Advanced Library Format (ALF) Reference Manual 55

Library Format Specification

Syntax Rules

Table 3-4 : Cross-reference of BNF items with short semantic explanation

BNF item Section Short semantic explanation

boolean_or 3.45 boolean OR operator

boolean_unary 3.45 boolean operator requiring one operand

cell(s) 3.4.8 statement(s) describing the entire model of a digital pr
analog circuit

cell_item(s) 3.4.8 item(s) inside a cell statement

cell_instantiation 3.4.3 statement inside a cell, describing a reference to arjother
cell with pin-to-pin correspondence

class 3.4.7 statement describing a class for the use of referenc¢ and
inheritance by other objets

class_item(s) 3.4.6 item(s) inside a class statement, which will be inhetited
by any object refering to the class

constant 3.4.7 statement defining a numeric constant

context_sensitive_keyword 3.4.4 identifier of an object for which the semantic meanjng is
established by its context

dynamic_instantiation_item(s) 3.4.3 item(s) inside a dynamic instantiation of a template

edge_literal(s) 3.4.4 symbol(s) describing a transition between two statefp

equation 3.4.15 statement inside arithmetic model containing an arith-
metic expression for the calculation of characterization
data

function 3.4.16 statement describing the logic function of a circuit in|a
canonical way, using behavior and/or statetable statefnent

generic_object 3.4.6 statement with the sole purpose of being used by other
objects

group 3.4.7 statement allowing expansion of one object to multigle
objects

header 3.4.15 statement inside arithmetic model containing a list df
parameters of the arithmetic model

identifier(s) 3.4.4 literal(s) defining a keyword or a name or a string vajue

include 3.4.7 statement defining the inclusion of a file

index 3.4.4 symbol defining an integer or a range of integers for [the
use as indices

library (libraries) 3.4.9 statement(s) describing the entire contents of a librgry

library_item(s) 3.4.9 item(s) inside a library statement

library specific_object 3.4.6 statement describing an object which is part of the ljbrary

logic_assignment(s) 34.1 statement(s) assigning a logic expression to a logi¢ vari-
able

logic_value(s) 3.4.4 variable(s) or constant logic value(s)

logic_constant(s) 3.4.4 constant logic value(s)

logic_variable(s) 344 variable(s) containing a logic value

multi_value_assignment 34.1 statement for assignment of multiple values to an gbject

Advanced Library Format (ALF) Reference Manual

Version 1.0.10

Syntax Rules

Library Format Specification

Table 3-4 : Cross-reference of BNF items with short semantic explanation

acterization of a circuit

BNF item Section Short semantic explanation

named_assignment 3.4.1 terminated statement for single value assignment {o a
named object

named_assignment_base 34.1 unterminated statement for single value assignmént to a
named object

number(s) 3.4.4 integer or floating point number(s)

pin(s) 3.4.10 statement(s) describing a pin inside a cell

pin_item(s) 3.4.10 item(s) inside a pin statement

pin_assignment(s) 34.1 statement(s) defining a correspondence between two pins
or between a pin and a contant logic value

primitive(s) 3.4.11 statement(s) describing a technology-independent cgll

primitive_instantiation 343 statement inside a behavior statement for logi functfon
description by reference to a primitive

primitive_item(s) 34.11 item(s) inside a primitive statement

property 3.4.7 statement describing private properties without stanglard-
ized semantics

sequential_logic_statement 341 statement inside a behavior statement for logic fuiction
description with storage elements

source_text 3.4.6 contents of a self-sufficient file in ALF

statetable(s) 3.4.16 statement(s) describing the logic function o a digita] cir-
cuit in table format

statetable_body 3.4.16 list of values inside a statetable

statetable_header 3.4.16 list of variables inside a statetable

statetable_value(s) 3.4.4 literal(s) inside a statetable

string 3.4.4 identifier consisting of a restricted set of characters ¢r
quoted string containing arbitrary characters

sublibrary (sublibraries) 3.4.12 statement(s) describing the contents of a sub-librafy
inside a library

table 3.4.15 statement inside arithmetic model containing a list 0
characterization data

table_item(s) 3.4.15 item(s) inside a table statement

template 3.4.7 statement defining an object with placeholders

template_instantiation 3.4.3 statement refering to a template and filling the placghold-
ers

template_item(s) 3.4.7 statement(s) inside a template statement

unnamed_assignment(s) 34.1 terminated statement(s) for single value assignment to an
unnamed object

unnamed_assignment_base 3.4.1 unterminated statement for single value assignmgnt to an
unnamed object

value(s) 3.4.4 number(s) or string(s) or logic value(s)

vector(s) 3.4.13 statement(s) describing event sequence and data fdr char-

Version 1.0.10

Advanced Library Format (ALF) Reference Manual

57

Library Format Specification Operators

Table 3-4 : Cross-reference of BNF items with short semantic explanation

BNF item Section Short semantic explanation

vector_and 3.4.5 operator used for description of simultaneous eventp or
simultaneous event sequences

vector_binary 3.45 operator requiring two operands used for descriptiop of
event sequences

vector_boolean_and 345 operator used for description of event sequences With
condition, one operand is an expression describing a
complex event, other operand is a boolean expresssipn

vector_complex_event 3.4.2 expression describing complex event sequences without
condition

vector_conditional_event 3.4.2 expression describing complex event sequences wjith
condition

vector_event_sequence 3.4.2 expression describing one event sequence

vector_expression 3.4.2 expression describing complex event sequences

vector_else_if 3.4.5 operator indicating a lower-priority logic state or evgnt
sequence

vector_followed_by 3.4.5 operator used for description of subsequent events

vector_if 3.45 operator indicating a top-priority logic state or event
seqguence

vector_item(s) 3.4.13 item(s) inside a vector statement

vector_event 3.4.2 expression describing one single event or multiple gimul-
taneous events

vector_or 3.45 operator used for description of alternative event
sequences

vector_single_event 3.4.2 expression describing one single event

vector_unary 3.45 operator requiring one operand used for description of
event sequences

wire(s) 3.4.14 statement(s) describing a wireload model

wire_item(s) 3.4.14 item(s) insidea wire statement

3.5 Operators
The operators are divided into four groups:
- Arithmetic operators
- Boolean operators on scalars, i.e. single bits
- Boolean operators on words, i.e. arrays of bits

- Vector operators

58 Advanced Library Format (ALF) Reference Manual Version 1.0.10

Operators Library Format Specification

3.5.1 Arithmetic operators
Table 3-5, Table 3-6, and Table 3-7 list unary, binary and function arithmetic operators.

Table 3-5 : Unary arithmetic operators

Operator Description

+ positive sign (for integer or number)

- negative sign (for integer or number)

Table 3-6 : Binary arithmetic operators

Operator Description

+ addition (integer or number)

- subtraction (integer or number)

* multiplication (integer or number)

/ division (integer or number)

** exponentiation (integer or number)
) modulo division (integer or number)

Table 3-7 : Function arithmetic operators

Operator Description

LOG natural logarithm (argument is + integer or numbgr)
EXP natural exponential (argument is integer or numbar)
ABS absolute value (argument is integer or number)
MIN minimum (all arguments are integer or number)
MAX maximum (all arguments are integer or number)

Function operators with one argument (suclb@sexp andabs) or multiple arguments (such
asmin andmax) must have the arguments within parenthesispéngL.2,-4.3,0.8)

3.5.2 Boolean operators on scalars

Table 3-8, Table 3-9 and Table 3-10 list unary, binary and ternary boolean operators on scalars.

Table 3-8 : Unary boolean operators

Operator Description

1~ logical inversion

Version 1.0.10 Advanced Library Format (ALF) Reference Manual 59

Library Format Specification Operators

Table 3-9 : Binary boolean operators

Operator Description
&8& & logical AND
[l | logical OR
~N logic equivalence (XNOR)
N logic antivalence (XOR)

Table 3-10 : Ternary operator

Operator Description

? boolean condition operator for construction of comb
national if-then-else clause

boolean else operator for construction of combinational
if-then-else clause

Combinational if-then-else clauses are constructed as follows:

<cond1>? <valuel>: <cond2>? <value2>: <cond3>? <value3>: <default_value>

If condl evaluates to booleamruUEthenvaluel is the result, else tbnd2 evaluates to boolean
TRUEthenvalue2 is the result, else dond3 evaluates to booleaiRUEthenvalue3 is the
result, elselefault_value is the result of this clause.

3.5.3 Boolean operators on words

Table 3-11 and Table 3-12 list unary and binary reduction operators on words (logic variables
with one or more bits). The result of an expression using these operators shall be a logic value.

Table 3-11 : Unary reduction operators

Operator Description
& AND all bits

~& NAND all bits
| OR all bits

~ NOR all bits
N XOR all bits
~N XNOR all bits

Table 3-12 : Binary reduction operators

Operator Description

== equality for case comparison

1= non-equality for case comparison

> greater

< smaller

60 Advanced Library Format (ALF) Reference Manual Version 1.0.10

Operators

Table 3-12 : Binary reduction operators

Library Format Specification

Operator Description
>= greater or equal
<= smaller or equal

Table 3-13 and Table 3-14 list unary and binary bitwise operators. The result of an expression
using these operators shall be an array of bits.

Table 3-13 : Unary bitwise operators

Operator

Description

bitwise inversion

Table 3-14 : Binary bitwise operators

Operator

Description

bitwise AND

bitwise OR

bitwise XOR

bitwise XNOR

The following arithmetic operators, listed in Table 3-15, are also defined for boolean
operations on words. The result of an expression using these operators shall be an extended

array of bits.

Table 3-15 : Binary operators

Operator Description

<< shift left

>> shift right

+ addition

- subtraction

* multiplication

/ division

% modulo division

The arithmetic operations addition, subtraction, multiplication, and division shatisigned
if all the operands have the datatypsignedIf any of the operands have the datatype signed,
the operation shall b&gned See Table 3.6.3.13 for DATATYPE definition.

3.54

Vector operators

A transition operation is defined using unary operators on a scalar net. The scalar constants (see
figure 3-13) shall be used to indicate the start and end states of a transition on a scalar net.

Version 1.0.10

Advanced Library Format (ALF) Reference Manual 61

Library Format Specification Operators

bit bit Il apply transition from bit value to bit value
For example,
01 is a transition frono to 1.

No whitespace shall be allowed between the two scalar constants. The transition operators
shown in Table 3-16 shall be considered legal:

Table 3-16 : Unary vector operators on bits

Unary operators for transitions can also appe8rATETABLE

Operator Description

01 signal toggles from O to 1

10 signal toggles from 1 to O

00 signal remains 0

11 signal remains 1

0? signal remains 0 or toggles fromO to arbitrary value

1? signal remains 1 or toggles from 1 to arbitrary value

?0 signal remains 0 or toggles from arbitrary value to O

?1 signal remains 1 or toggles from arbitrary value to 1

?? signal remains constant or toggles between arbitrary values

0* a number of arbitrary signal transitions, including possilil-
ity of constant value, with the initial value 0

1* a number of arbitrary signal transitions, including possiljil-
ity of constant value, with the initial value 1

* a number of arbitrary signal transitions, including possitjil-
ity of constant value, with arbitrary initial value

*0 a number of arbitrary signal transitions, including possilil-
ity of constant value, with the final value 0

*1 a number of arbitrary signal transitions, including possiljil-
ity of constant value, with the final value 1

*? a number of arbitrary signal transitions, including possitil-
ity of constant value, with arbitrary final value

Transition operators are also defined on words (can appsaniETABLEas well):

' base word

' base word

In this context, the transition operator shall apply transition from first word value to second

word value.
For example,

'hA'h5 IS a transition of a 4-bit signal from1010 to'b0101 .
No whitespace shall be allowed betwéaseandword.

62

Advanced Library Format (ALF) Reference Manual

Version 1.0.10

Operators Library Format Specification

The unary and binary operators for transition, listed in Table 3-17 and Table 3-18 respectively,
are defined on bits and words:

Table 3-17 : Unary vector operators on bits or words

Operator Description

?- no transition occurs

?? apply arbitrary transition, including possibility of constant valug
?! apply arbitrary transition, excluding possibility of constant value
?~ apply arbitrary transition with all bits toggling

The following canonical binary operators are necessary to define sequences of transitions:

» sequential event AND for completely specified sequence of events

» simultaneous event AND

» alternative event OR

» sequential event AND for incompletely specified sequence of events

The symbols for the boolean operators for AND, OR, are overloaded for simultaneous event
AND, alternative event OR, respectively. New symbols are introduced for the followed-by
operators.

Table 3-18 : Canonical Binary vector operators

LHS, RHS
Operator | Operands commutative | Description
-> 2 vector no Left-hand side (LHS) transitias followed byRight-hand
expressions side (RHS) transition, no other transition may occur in-
between
&& or & 2 vector yes LHSand RHS transitioroccur simultaneously
expressions
| or | 2 vector yes LHSor RHS transitioroccur alternatively
expressions
~> 2 vector no Left-hand side (LHS) transitias followed byRight-hand
expressions side (RHS) transition, other transitions may occur in-
between

Per definition, the> , ~> operators shall not be commutative, whereas the &&, || operators on
events shall be commutative.

01a&&01b===01b&&01la
0la||0lb===01b]l0la

The->, ~> operators shall be freely associative.
0la->01b->0lc===(01a->01b)->01lc===01a->(01b->01c)
0la~>01b~>01c===(01a~>01b)~>01c===01a~>(01b~>01c)

Version 1.0.10 Advanced Library Format (ALF) Reference Manual 63

Library Format Specification Operators

The&s& operator is defined for single events and for event sequences with the same number of
-> operators each.

(O1LAl. ->..01AN)& (01 B1..->...01 BN)

01A1&01Bl1..->..01AN&O1BN

The || operator allows to reduce the set of edge operators (unary vector operators) to canonical
and non-canonical operators.

(?? a) === (?! a)||(?- &) //a does or does not change its value
Hence?? is non-canonical, since it can be defined by other operators.

If <valuel><value2> is an edge operator consisting of two based litesalsl andvalue2
andword is an expression which can take the vahige1 orvalue2 , then the following
vector expressions are considered equivalent:

<valuel><value2> <word>
=== 10 (<word> == <valuel>) && 01 (<word> == <value2>)
=== 01 (<word> != <valuel>) && 01 (<word> == <value2>)
=== 10 (<word> == <valuel>) && 10 (<word> != <value2>)
=== 01 (<word> != <valuel>) && 10 (<word> != <value2>)

/I all expressions describe the same event:

/I <word> makes a transition from <valuel> to <value2>

Hence vector expressions with edge operators using based literals can be reduced to vector
expressions using only the edge operators 01, 10.

Complex binary vector operators are also defined. Vector expressions using those operators
can be decomposed into vector expressions using only canonical operators.

Table 3-19 : Complex Binary vector operators

LHS, RHS

Operator | Operands commutative | Description

<> 2 vector yes LHS transition follows or is followed by RHS transition
expressions

&> 2 vector no LHS transitioris followed by or occurs simultaneously
expressions with RHS transition

<&> 2 vector yes LHS transitioriollows or is followed by or occurs simulta-
expressions neouslywith RHS transition

&& or & 1 vector yes boolean expression (LHS or RHS) is true while sequefce
expression, of transitions, defined by vector expression (RHS or LHS)
1 boolean occurs
expression

The following expressions shall be considered equivalent:
(0la<->01b)===(01a->01b)||(01Lb->01a)
(01 a &> 01 b) === (01 a -> 01 b)||(01 a && 01 b)
(01 a <&> 01 b) === (01 a -> 01 b)||(01 b -> 01 a)||(01 a && 01 b)

64 Advanced Library Format (ALF) Reference Manual Version 1.0.10

Operators Library Format Specification

By their symetric definition, the <->, <&> operators are commutative.
0la<->01b===01b<->0la
0la<&>01b===01b<&>0la

The definition of the && operator is also overloaded to descrit@nditional vector
expressior(conditional event AND), involving a boolean expression and a vector expression.

Example:

(01 a && 'b) I a rises whileb==0
The order of the operands in a conditional vector expression shall not matter.
<vector_exp> && <boolean_exp> === <boolean_exp> && <vector_exp>

The && operator is still commutative in this case, although one operand is a boolean
expression defining a static state, the other operand is a vector expression defining an event or
a sequence of events. However, since the operands are distinguishable per se, itis not necessary
to impose a particular order of the operands.

A conditional vector expression can be reduced to a canonical vector expression in the
following way, provided the vector expression contains no incompatible events with the
boolean expression:

<vector_exp> && <boolean_exp>

1 <boolean_exp> -> <vector_exp> & 11 <boolean_exp> -> 1 <boolean_exp>
Every binary vector operator may be applied to a conditional vector expression.

3.55 Operators for sequential logic

Table 3-20 : Operators for sequential logic

Operator Description

@ vector if operator, followed by a boolean logic expression (for Igvel-
sensitive assignment) or by a vector expression (for edge-sensitive
assignment)

vector elsif operator, followed by a boolean logic expression (foy
level-sensitive assignment) or by a vector expression (for edge{sen-
sitive assignment) with lower priority

Sequential assignments are constructed as follows:

@ (<triggerl>) { <action1>} : (<trigger2>) { <action2>}:
(<trigger3>) { <action3>}

If triggerl event is detected thention1 is performed, else ifigger2 event is detected
thenaction2 is performed, else ifigger3 event is detected thention3 is performed as a
result of this clause.

Version 1.0.10 Advanced Library Format (ALF) Reference Manual 65

Library Format Specification Operators

3.5.6 Operator priorities

The priority of binding operators to operands shall be from strongest to weakest in the
following order:

1. unary vector operators (edge literals)

2. binary vector operators>(, <->, &>, <&>, ~>)

3. unary arithmetic operator,(-) and unary boolean operator ¢, & ~&, |, ~| ,», ~*)
4. XNOR(~"), XOR("), relational §, <, >=, <=, ==,1=), exponentiation*f) ,

shift (<<, >>)
5. AND(&, &8), NAND(~&), multiplication ¢), division (), modulo division ¢
6. OR(,|l), NOR(~|), addition), subtraction)

The priority applies also to the overloaded boolean operators in vector expressions.

Operators with equal priority are evaluated strictly in order of occurrence from left to right. The
parenthesi§) shall be used for changing the priority of binding operators to operands.

3.5.7 Datatype mapping

Logical operations can be applied to scalars and words. For that purpose, the values of the
operands are reduced to a system of 3 logic values in the following way:

H has the logic value

L has the logic value

Wz, U have the logic valug

A word has the logic valug, if the unary OR reduction of all bits resultstin
A word has the logic value, if the unary OR reduction of all bits resultin
A word has the logic value if the unary OR reduction of all bits resultsxin

Case comparison operations can also be applied to scalars and words. For scalars, they are
defined in the following way:

Table 3-21 : Case comparison operators

A B ==B | Al=B A>B A<B
1 1 1 0 0 0
1 H 0 1 X X
1 0 0 1 1 0
1 L 0 1 1 0
1 W, U, Z X 0 1 X 0
H 1 0 1 X X
H H 1 0 0 0
H 0 0 1 1 0
H L 0 1 1 0

66 Advanced Library Format (ALF) Reference Manual Version 1.0.10

Context-sensitive keywords Library Format Specification

Table 3-21 : Case comparison operators

w

Al=B

>
v
w

X O Rr|Olr|PIR plrRlolkr|lk|lk

0,1,HLWZ
wW

U
0,1,HLXZ
y4
U
0,1,HLX W

01 1! H! Ll
XW, Z,U

x| ol

x| ol

=Y

CNNNgggxxxl—l—l—l—l—oooooI:D
> —
><o><|—‘o><l—‘o><'—‘o'—‘OoOoO|—\OOO)”>
Xl | XX | x| X|X| x| X|X|o|@|x|o|o|o|*x|o|o|o|x
><><><><><><><><><><><OX|—\|—\><onHo§

For word operands, the operaticnand< are performed after reducing all bits to the 3-value
system first, and then interpreting the resulting number according to the datatype of the
operands. For example, if datatypsigned'b1111 is smaller tharboooo ; if datatype is
unsigned'b1111 is greater thamoooo . If two operands have the same vatue11 and a
different datatype, the unsignedi11 is greater than the signed111 .

The operations= and<= are defined in the following way:
(a>=b)===(a>b) || (@==b)
(a<=b)===(a<b)|l (@==b)

3.6 Context-sensitive keywords

The context-sensitive keywords permit legal extensions to ALF syntax. An ALF parser shall
either accept or ignore when an unknown keyword or annotation is encountered. The purpose
of context-sensitive keywords is to have a vocabulary of keywords with already well-defined
semantic meaning. That means, an ALF compiler for an application must understand those

Version 1.0.10 Advanced Library Format (ALF) Reference Manual 67

Library Format Specification Context-sensitive keywords

keywords needed (used) by the application. For example, a compiler that needs SLEWRATE
must understand the keywasdeWRATEN not expect a keywoRAMPTIME
3.6.1 Annotation Containers

Any object with children objects may contain annotations. In addition, the following objects
are defined only for the purposewinamed annotation containers

Table 3-22 : Unnamed annotation containers

Objects Description

SCAN contains information relevant to design for test
VIOLATION contains items relevant to timing violations
INFORMATION contains purely informational items

3.6.1.1 Scan container

A SCAN container may be used inside a CELL or a PIN object and may contain annotations
which are allowed inside a CELL (Section 3.6.5) or a PIN object (Section 3.6.3) for limiting
the scope of those annotations.

Example:
PIN clkl { signaltype = master_clock; SCAN {signaltype = slave_clock;}}

PIN clk2 { SCAN {signaltype = master_clock;} }

In normal modeclkl is master clockglk2 is unused. In scan modsk?2 is master clock,
clkl is slave clock.

3.6.1.2 VIOLATION container

A VIOLATION container may be inside a SETUP, HOLD, RECOVERY, REMOVAL,
PULSEWIDTH, PERIOD, or NOCHANGE object. It may contain the BEHAVIOR object
(Section 3.4.16), since the behavior in case of timing constraint violation cannot be described
in the FUNCTION. It may also contain the following annotations:

Table 3-23 : Violation annotation container

Keyword Value type Description

MESSAGE_TYPE string specifies the type of the message. It can bejone
of information ,warning , error

MESSAGE string specifies the message itself.

68 Advanced Library Format (ALF) Reference Manual Version 1.0.10

Context-sensitive keywords Library Format Specification

Example:

VECTOR (01 d <&> 01 cp) {
SETUP {
VIOLATION {
MESSAGE_TYPE = error;
MESSAGE = “setup violation 01 d <&> 01 cp*;
BEHAVIOR {q = 'bx;}

3.6.1.3 INFORMATION container

An INFORMATION container may be inside a LIBRARY, SUBLIBRARY, CELL, or WIRE
object. It may also be in PRIMITIVE objects inside a LIBRARY or SUBLIBRARY, but not in
the locally defined primitives inside cells or functions. It may contain the following
annotations:

Table 3-24 : Information annotation container

Keyword Value type Description Examples
VERSION string version of the object containing | “v1r3_2"
this INFORMATION block “1.3.2"
TITLE string titte or comment related this obje¢t “0.2u StdCell Library”

“2-input NAND, 4x drive”
“3-layer metal, best case,
wireload model”

PRODUCT string product related to the object “vsc1083”
“vsm10rs111”
“0.2u technology family”
AUTHOR string originator or modifier of the objecf “user@system.com”

“Imn N. Gineer”
“An ASIC Vendor, Inc.”

DATETIME string date/time stamp related to the “Wed Aug 19 08:13:01
object MST 1998”
“July 4, 1998"
Example:

LIBRARY major_ASIC_vendor {
INFORMATION {
version = “v2.1.0";
title = “0.35 standard cell”;
product = p35sc;
author = “Major Asic Vendor, Inc.”;
datetime = “Wed Jul 23 13:50:12 MST 19977,

Version 1.0.10 Advanced Library Format (ALF) Reference Manual 69

Library Format Specification Context-sensitive keywords

3.6.2 Keywords for referencing objects used as annotation

The following object references may be used as annotations:

Table 3-25 : Object references as annotation

Keyword Value type Description

CELL string reference to a declared CELL object
PRIMITIVE string reference to a declared PRIMITIVE object
PIN string reference to a declared PIN object
CLASS string reference to a declared CLASS object

The syntax is as follows:
object keyword = string ;

3.6.3 Annotations for a PIN object

A PIN object may contain the following annotations:

3.6.3.1 VIEW annotation

VIEW = string ;
annotates the view where the pin appears, which can take the following values:

Table 3-26 : VIEW annotations for a PIN object

Annotation string Description

functional pin appears in functional netlist

physical pin appears in physical netlist

both (default) pin appears in both functional and physical netlist
none pin does not appear in netlist

3.6.3.2 PINTYPE annotation

PINTYPE = string ;
annotates the type of the pin, which can take the following values:

Table 3-27 : PINTYPE annotations for a PIN object

Annotation string Description

digital (default) digital signal pin

analog analog signal pin

supply power supply or ground pin

70 Advanced Library Format (ALF) Reference Manual Version 1.0.10

Context-sensitive keywords Library Format Specification

3.6.3.3 SIGNALTYPE annotation

SIGNALTYPE = string;
annotates the type of the signal connected to the pin, which can take the following values:

3.6.34

DRIVETYPE = string ;
annotates the drive type for the pin, which can take the following values:

Table 3-28 : SIGNALTYPE annotations for a PIN object

Annotation string

Description

data (default)

general data signal

scan_data scan data signal

control general control signal

select select signal of a multiplexor
enable enable signal

out_enable output enable signal

scan_enable

scan enable signal

scan_out_enable

scan output enable signal

clear clear signal of a flipflop or latch

set set signal of a flipflop or latch

write write signal for memory, register file
read read signal for memory, register file
clock clock signal of a flipflop or latch
scan_clock scan clock signal of a flipflop or latch

master_clock

master clock signal of a flipflop or latch

slave_clock

slave clock signal of a flipflop or latch

address

address signal of a memory

DRIVETYPE annotation

Table 3-29 : DRIVETYPE annotations for a PIN object

Annotation string Description

cmos (default) standard cmos signal

nmos nmos or pseudo nmos signal

pmos pmos or pseudo pmos signal

nMos_pass nmos passgate signal

pmos_pass pmos passgate signal

cmos_pass cmos passgate signal, i.e. full transmission gate
ttl TTL signal

open_drain open drain signal

open_source open source signal

Version 1.0.10

Advanced Library Format (ALF) Reference Manual

71

Library Format Specification Context-sensitive keywords

3.6.3.5 DIRECTION annotation

DIRECTION = string ;
annotates the direction of the pin, which can take the following values:

Table 3-30 : DIRECTION annotations for a PIN object

Annotation string Description

input input pin

output output pin

both bidirectional pin

none no direction can be assigned to the pin

3.6.3.6 SCOPE annotation

SCOPE = string ;
annotates modeling scope of a pin, which can take the following values:

Table 3-31 : SCOPE annotations for a PIN object

Annotation string Description

behavior Pin is used for modeling functional behavior. Events on the
pin are monitored for vector expressions in BEHAVIOR state-
ment

measure Measurements related to the pin can be described,

e.g. timing or power characterization. Events on the pin afe
monitored for vector expressions in VECTOR statements

both (default) Pin is used for functional behavior as well as for charactgriza-
tion measurements

none no model, only pin exists

3.6.3.7 ACTION annotation

ACTION = string ;
annotates action of the signal, which can take the following values:

Table 3-32 : ACTION annotations for a PIN object

Annotation string Description
synchronous signal acts in synchronous way
asynchronous signal acts in asynchronous way

3.6.3.8 POLARITY annotation

POLARITY = string ;
annotates the polarity of the pin signal.

72 Advanced Library Format (ALF) Reference Manual Version 1.0.10

Context-sensitive keywords Library Format Specification

The polarity of an input pin (i.@IRECTION =input;) can take the following values:

Table 3-33 : POLARITY (input) annotations for a PIN object

Annotation string Description

high signal active high or to be driven high
low signal active low or to be driven low
rising_edge signal sensitive to rising edge
falling_edge signal sensitive to falling edge
double_edge signal sensitive to any edge

The polarity of an output pin (i.©IRECTION = output;) can take the following values:

Table 3-34 : POLARITY (output) annotations for a PIN object

Annotation string Description

inverted polarity change between input and output
non_inverted no polarity change between input and output
both polarity may change or not (e.g. XOR) (default)
none polarity has no meaning(e.g. analog signal)

3.6.3.9 ENABLE_PIN annotation

ENABLE_PIN = string ;
references an output enable pin (i.e. a pin IGNALTYPE = out_enable;).

3.6.3.10 PULL annotation

PULL = string ;
which can take the following values:

Table 3-35 : PULL annotations for a PIN object

Annotation string Description

up pullup device connected to pin

down pulldown device connected to pin

both pullup and pulldown device connected to pin
none (default) no pull device

3.6.3.11 ORIENTATION annotation
ORIENTATION = string ;

Version 1.0.10 Advanced Library Format (ALF) Reference Manual 73

Library Format Specification

Context-sensitive keywords

which can take the following pin orientation values:

Table 3-36 : ORIENTATION annotations for a PIN object

Annotation string Description

left pin is on the left side
right pin is on the right side
top pin is at the top
bottom pin is at the bottom

3.6.3.12 CONNECT_CLASS annotation

CONNECT_CLASS= identifier ;
annotates a declared class object for connectivity determination.

3.6.3.13 DATATYPE annotation
DATATYPE= string ;

is only relevant for bus pins, which can take the following values:

Table 3-37 : DATATYPE annotations for a PIN object

Annotation string

Description

signed

result of arithmetic operation is signed 2's complement

unsigned

result of arithmetic operation is unsigned

3.6.3.14 SCAN_POSITION annotation
SCAN_POSITION = unsigned ;
annotates position in scan chain.

3.6.3.15 STUCK annotation
STUCK = string ;
which can be

Table 3-38 : STUCK annotations for a PIN object

Annotation string Description

stuck at 0 pin can have stuck-at-0 fault

stuck_at 1 pin can have stuck-at-1 fault

both (default) pin can have both stuck-at-0 and stuck-at-1 faults
none pin can not have stuck-at faults

3.6.3.16 OFF_STATE annotation

OFF_STATE = string ;

74

Advanced Library Format (ALF) Reference Manual

Version 1.0.10

Context-sensitive keywords Library Format Specification

which can be

Table 3-39 : OFF_STATE annotations for a PIN object

Annotation string Description
inverted pin is inverted when in off state
non_inverted pin is not inverted when in off state

3.6.3.17 INITIAL_VALUE annotation
INITIAL_VALUE = logic_constant ;
which must be compatible with the buswidth aad'ATYPEOf the signal.

3.64 Annotations for a VECTOR object

A VECTORDbject may contain the following annotations:

3.64.1 LABEL annotation

LABEL = string ;
to be used to ensure SDF matching with conditional delays across Verilog, VITAL etc.

3.6.4.2 EXISTENCE_CONDITION

EXISTENCE_CONDITION = boolean_expression ;

For false-path analysis tools, the existence condition shall be used to eliminate the vector from
further analysis if and only if the existence condition evaluates to “false”. For applications other
than false-path analysis, the existence condition shall be treated as if the boolean expression
was a cofactor to the vector itself. Default existence condition is “true”.

Example:

VECTOR (01a->01z & (c|!d)){
EXISTENCE_CONDITION = Iscan_select;
DELAY { FROM { PIN=a; } TO { PIN=z; } /* data */ }
}
VECTOR (01a->01z & (lc|d)){
EXISTENCE_CONDITION = Iscan_select;
DELAY { FROM { PIN=a; } TO { PIN=z; } /* data */ }
}
Each vector contains state-dependent delay for the same timing &@arlfselect

evaluates "true", both vectors are eliminated from timing analysis.

3.6.4.3 EXISTENCE_CLASS

EXISTENCE_CLASS = string ;

Reference to the same existence class by multiple vectors has the following effects:

Version 1.0.10 Advanced Library Format (ALF) Reference Manual 75

Library Format Specification Context-sensitive keywords

» A common mode of operation is established between those vectors, which can be used for
selective analysis, for instance mode-dependent timing analysis. Name of the mode is the
name of the class.

* A common existence condition is inherited from that existence class, if there is one.
Example:

CLASS non_scan_mode {
EXISTENCE_CONDITION = Iscan_select;

}
VECTOR (01a->01z & (c|!d)){

EXISTENCE_CLASS = non_scan_mode,;
DELAY { FROM { PIN=a; } TO { PIN=z; } /* data */ }

}
VECTOR (01a->01z & ('c|d)){

EXISTENCE_CLASS = non_scan_mode,;
DELAY { FROM { PIN=a; } TO { PIN=z; } /* data */ }
}
Each vector contains state-dependent delay for the same timing arc. If the mode
"non_scan_mode " is turned off or if fscan_select " evaluates "true", both vectors are
eliminated from timing analysis.

3.6.44 CHARACTERIZATION_CONDITION

CHARACTERIZATION_CONDITION = boolean_expression ;

For characterization tools, the characterization condition shall be treated as if the boolean
expression was a cofactor to the vector itself. For all other applications, the characterization
condition shall be disregarded. Default characterization condition is “true”.

Example:

VECTOR (01a->01z & (c|'d)){
CHARACTERIZATION_CONDITION = ¢ & !d;
DELAY { FROM { PIN=a; } TO { PIN=z; } /* data */ }
}
The delay value for the timing arc applies for any of the following conditions
(c&!'d)or(cé&d)or(c&'!d),since they all satisfye(!d).
However, the only condition chosen for delay characterizatiargisd().

3.6.45 CHARACTERIZATION_VECTOR

CHARACTERIZATION_VECTOR = (vector_expression) ;

The characterization vector is provided for the case that the vector expression cannot be con-
structed using the vector and a boolean cofactor. The use of the characterization vector is
restricted to characterization tools in the same way as the use of the characterization condi-
tion. Either a characterization condition or a characterization vector may be provided, but not
both. If none is provided, the vector itself will be used by the characterization tool.

76 Advanced Library Format (ALF) Reference Manual Version 1.0.10

Context-sensitive keywords Library Format Specification

Example:

VECTOR (01 A -> 01 Z) {
CHARACTERIZATION_VECTOR = ((01 A & 10 inv_A) -> (01 Z & 10 inv_2));

}
Analysis tools see the signals''and 'z". The signalsiv_A " and 'inv_z " are visible to the
characterization tool only.

3.6.4.6 CHARACTERIZATION_CLASS
CHARACTERIZATION_CLASS = string ;

Reference to the same characterization class by multiple vectors has the following effects:

» A commonality is established between those vectors, which can be used for selective char-
acterization in a way defined by the library characterizer, for instance to share the charac-
terization task between different teams or jobs or tools ...

* A common characterization condition or characterization vector is inherited from that char-
acterization class, if there is one.

3.6.5 Annotations for a CELL object

A CELL object may contain the following annotations:

3.65.1 CELLTYPE annotation

CELLTYPE = string ;
which can take the following values:

Table 3-40 : CELLTYPE annotations for a CELL object

Annotation string Description

buffer cell is a buffer
combinational cell is a combinational logic element
multiplexor cell is a multiplexor
flipflop cell is a flip-flop

latch cell is a latch

memory cell is a memory element
block cell is a block

core cell is a core element
pad cell is a pad

special cell is a special element

3.6.5.2 BUFFERTYPE annotation

BUFFERTYPE = string ;

Version 1.0.10 Advanced Library Format (ALF) Reference Manual 77

Library Format Specification Context-sensitive keywords

which can take the following values:

Table 3-41 : BUFFERTYPE annotations for a CELL object

Annotation string Description

input cell is an input buffer

output cell is an output buffer

inout cell is an inout (bidirectional) buffer
internal cell is an internal buffer

3.6.5.3 DRIVERTYPE annotation

DRIVERTYPE = string ;
which can take the following values:

Table 3-42 : DRIVERTYPE annotations for a CELL object

Annotation string Description

predriver cell is a predriver

slotdriver cell is a slotdriver

both cell is both a predriver and a slot driver

3.6.54 PARALLEL_DRIVE annotation
PARALLEL_DRIVE= unsigned ;
which specifies the number of parallel drivers.

3.6.5.5 SCAN_TYPE annotation
SCAN_TYPE=string ;
which can take the following values:

Table 3-43 : SCAN_TYPE annotations for a CELL object

Annotation string Description

muxscan There is a multiplexer for normal data and scan data

clocked There is a special scan clock

Issd combination between flipflop and latch with special clocking
(level sensitive scan design)

control_0 combinational scan cell, controlling pin must be 0 in scan mode

control_1 combinational scan cell, controlling pin must be 1 in scan mode

3.6.5.6 SCAN_USAGE annotation
SCAN_USAGE string ;

78 Advanced Library Format (ALF) Reference Manual Version 1.0.10

Context-sensitive keywords Library Format Specification

which can take the following values:

Table 3-44 : SCAN_USAGE annotations for a CELL object

Annotation string Description

input primary input in a chain of cells

output primary output in a chain of cells

hold holds intermediate value in the scan chain

3.6.5.7 NON_SCAN_CELL annotation

NON_SCAN_CELL [identifier] cell_identifier { pin_assignments }
NON_SCAN_CELL [identifier] = primitive_identifier { pin_assignments }

This annotation shall define non-scan cell equivalency to the scan cell in which this annotation
is contained. A cell instantiation form (Section 3.4.3) is used to reference the library cell which
defines the non-scan functionality of the current cell. If no such cell is available or defined, or
if an explicit reference to such a cell is not desired, then a primitive instantiation form (Section
3.4.3) may reference a primitive, either ALF- or user- defined, for such use. In either case,
constant values may appear on either the left-hand side or right-hand side of the pin
connectivity relationships. A constant on the left-hand side defines the value the scan cell pins
(appearing on the right-hand side) must have in order for the primitive to perform with the same
functionality as does the instantiated reference. Multiple non-scan cells may be referenced
within the same scope by giving a name to each one.

Example:
CELL my_flipflop {
PIN q { DIRECTION=output; }
PIN d { DIRECTION=input; }

PINclk { DIRECTION=input; }
PIN clear { DIRECTION=input; polarity=low; }
/I followed by function, vectors etc.

}

CELL my_other_flipflop {
/I declare the pins
/I followed by function, vectors etc.

}

CELL my_scan_flipflop {

PIN data_out { DIRECTION=output; }

PIN data_in { DIRECTION=input; }

PIN clock { DIRECTION=input; }

PIN scan_in { DIRECTION=input; }

PIN scan_sel { DIRECTION=input; }

NON_SCAN_CELL first_choice = my_flipflop {
g = data_out;
d = data_in;
clk = clock;

Version 1.0.10 Advanced Library Format (ALF) Reference Manual 79

Library Format Specification Context-sensitive keywords

clear ='b1; I/l scan cell has no clear
'b0 =scan_in; /I non-scan cell has no scan_in
'b0 = scan_sel; /I non-scan cell has no scan_sel

}
NON_SCAN_CELL second_choice = my_other_flipflop {

/[put in the pin assignments
}

/I followed by function, vectors etc.

3.6.5.8 SWAP_CLASS annotation
SWAP_CLASES- string ;

The value is the name of a declared CLASS. Multi-value annotation may be used. Cells
refering to the same CLASS may be swapped for certain applications.

Cell-swapping is only allowed under the following conditions:

 The RESTRICT_CLASS annotation (see next) authorizes usage of the cell
* The cells to be swappped are compatible from an application standpoint (functional com-
patibility for synthesis, physical compatibility for layout)

3.6.5.9 RESTRICT_CLASS annotation
RESTRICT_CLASS= string ;

The value is the name of a declared CLASS. Multi-value annotation may be used. Cells
refering to a particular class may be used in design tools identified by the value.

Table 3-45 : Predefined values for RESTRICT_CLASSt

Annotation string Description

synthesis use restricted to logic synthesis
scan use restricted to scan insertion
datapath use restricted to datapath synthesis
clock use restricted to clock tree synthesis

User-defined values are also possible. If a cell has no or only unknown values for
RESTRICT_CLASS, the application tool may not modify any instantiation of that cell in the
design. However, the cell must still be considered for analysis.

80 Advanced Library Format (ALF) Reference Manual Version 1.0.10

Context-sensitive keywords Library Format Specification

Example:

CLASS foo;

CLASS bar;

CELL c1{
SWAP_CLASS =foo;
RESTRICT_CLASS = synthesis;

}
CELL c2 {
SWAP_CLASS = foo;
RESTRICT_CLASS { synthesis scan bar }
}

Supposed that the cells c1 and c2 are compatible from an application standpoint, the cells c1
and c2 can be used for synthesis, where they may be swapped which each other. The cell c2
can be also used for scan insertion and for the user-defined application “bar”.

3.6.6 Attributes

Identifiers inSIdAATTRIBUTE can be used to add information which does not fit into the
annotation scheme. The syntax for specifying ATTRIBUTE is

ATTRIBUTE { attribute_items }
whereattribute_items is a list of predefined or user-defined attributes.

3.6.6.1 ATTRIBUTE within a PIN object
The following attributes can be used within a PIN object:

Table 3-46 : Attributes within a PIN object

Attribute item Description

SCHMITT Schmitt trigger signal
TRISTATE tristate signal

XTAL crystal/oscillator signal
PAD pad going off-chip

The following attributes within a PIN object can also he@eARITY annotation:

Table 3-47 : Attributes with POLARITY annotation

Attribute item Description

TIE signal that needs to be tied to a fixed value
READ read enable mode

WRITE write enable mode

Version 1.0.10 Advanced Library Format (ALF) Reference Manual 81

Library Format Specification Context-sensitive keywords

Example:
PIN rw {
ATTRIBUTE {
WRITE { POLARITY = high; }
READ { POLARITY =low ;}
}
}

3.6.6.2 ATTRIBUTE within a CELL object
The following attributes can be used within a CELL object:

Table 3-48 : Attributes within a CELL object

Attribute item Description

RAM Random Access Memory

ROM Read Only Memory

CAM Content Addressable Memory

static static device (e.g. static CMOS, static RAM)

dynamic dynamic device (e.g. dynamic CMOS, dynamic RAM)
asynchronous asynchronous operation

synchronous synchronous operation

3.6.6.3 ATTRIBUTE within a LIBRARY object
There are no attributes with predefined meaning specified yet.

3.6.7 Keywords for arithmetic models

The following keywords shall identify arithmetic model objects insidBRARY, a

SUBLIBRARY, aCELL, aWIREOr avECTORDbject, i.e. output variables of an arithmetic model.
Inside an arithmetic model object, the same keywords identify arguments, i.e. input variables
to the arithmetic model. This gives virtually unlimited choice of combination of variables for
characterization. The keywords for arithmetic models can also be used

» for simple annotations
e as annotation container

The annotations or annotation containers identified by keywords for arithmetic models can be
interpreted aseducedarithmetic models, since they don't contain a header or a body, whereas
full arithmetic models always contain a header and a body (table or equation).

All the keywords for arithmetic models are considered context-sensitive keywords. In the
following sections, these arithmetic models are described along with the type of the value they
can have. If the quantity associated with the arithmetic model is a measurement, default units
and base units are also noted. The default units are applied when the unit is not specified.

82 Advanced Library Format (ALF) Reference Manual Version 1.0.10

Context-sensitive keywords Library Format Specification

3.6.7.1 Models for interpolateable tables and equations

The following tables list the keywords that identify arithmetic models which can be used as
interpolateable table indices and/or as equations.

Table 3-49 : Timing measurements

Base Default
Keyword Value type Units Units Description
DELAY number Second| n (nano) | time between two threshold crossings
within two consecutive events on two ping
RETAIN number Second| n (nano) | time during which an output pin will retaim
its value after an event on the related inpyt
pin. RETAIN appears always in conjunction
with DELAY for the same two pins.
SLEWRATE non-negative | Second | n (nano) | time between two threshold crossings
number within one event on one pin

Table 3-50 : Timing constraints

Base Default
Keyword Value type Units Units Description

HOLD number Second| n (nano) | minimum time limit for hold between two
threshold crossings within two consecutive
events on two pins

NOCHANGE optionaf non- | Second | n (nano) | minimum time limit between two threshold
negative num- crossings within two arbitrary consecutive
ber events on one pin, in conjunction with
SETUP and HOLD

PERIOD non-negative | Second | n (nano) | minimum time limit betweentwo identical
number events within a sequence of periodical
events on one pin

PULSEWIDTH | number Second| n (nano) | minimum time limit between two threshold
crossings within two consecutive and conp-
plementary events on one pin

RECOVERY number Second| n (nano) | minimum time limit for recovery between
two threshold crossings within two consequ-
tive events on two pins

REMOVAL number Second| n (nano) | minimum time limit for removal between
two threshold crossings within two consequ-
tive events on two pins

SETUP number Second| n (nano) | minimum time limit for setup between tw¢
threshold crossings within two consecutive
events on two pins

SKEW number Second| n (nano) | absolute value is maximum time limit
between two threshold crossings within two
consecutive events on two pins, the sign
indicates positive or negative direction

Version 1.0.10 Advanced Library Format (ALF) Reference Manual 83

Library Format Specification Context-sensitive keywords

a. The associated SETUP and HOLD measurements provide data. NOCHANGE itself need not provide

data
Table 3-51 : Analog measurements
Keyword Value type Base Units Default Units| Description
CURRENT number Ampere m (milli) electrical current
ENERGY number Joule p (pico) electrical energy
FREQUENCY non-negative | Hz meg (mega) frequency
number
JITTER non-negative | Second n (nano) uncertainty of arrival
number time
POWER number Watt u (micro) electrical power
TEMPERATURE number oCelsius 1 (unit) temperature
TIME number Second 1 (unit) time point for wave}
form modeling, time
span for average,
RMS, peak modeling
VOLTAGE number Volt 1 (unit) voltage
FLUX non-negative | Coloumb per | 1 (unit) amount of hot elec-
number Square Meter trons in units of elec-
trical charge per gate
oxide area
FLUENCE non-negative | Second times| 1 (unit) integral of FLUX
number Coloumb per over time
Square Meter
Table 3-52 : Electrical components
Default
Keyword Value type Base Units Units Description
CAPACITANCE | non-negative | Farad p (pico) pin, wire, load, or net capacitance
number
INDUCTANCE non-negative | Henry n (nano) | pin, wire, load, or net resistance
number
RESISTANCE non-negative | Ohm K (kilo) pin, wire, load, or net resistance
number

84 Advanced Library Format (ALF) Reference Manual Version 1.0.10

Context-sensitive keywords Library Format Specification

Table 3-53 : Layout data

Base Default

Keyword Value type Units Units Description

AREA non-negative numbey Squargp (pico) | area in square microns (pico = miero
Meter

DISTANCE | number Meter u (micro] distance between two points in microns

HEIGHT non-negative numbe Meter u (micrp) x-or y- dimension of a placeable object

(e.g. cell, block)

X-, ¥-, or z- dimension of a routable object
(e.g. wire) measured in orthogonal directipn
to the route

LENGTH non-negative numbe Meter u (micrp) x-, y-, or z- dimension of a routable object
(e.g. wire) measured in parallel direction o
the route

WIDTH non-negative numbe Meter u (micrp) x-or y- dimension of a placeable object

(e.g. cell, block)

X-, ¥-, or z- dimension of a routable object
(e.g. wire) measured in orthogonal directipn
to the route

Table 3-54 : Abstract measurements

Base Default
Keyword Value type Units Units Description
DRIVE_STRENGTH | non-negative | None 1 (unit) | drive strength of a pin, abstract measyre
number for (drive resistance)
SIZE non-negative | None 1 (unit) | abstract cost function for actual or est|-
number mated area of a cell or a block

Version 1.0.10 Advanced Library Format (ALF) Reference Manual 85

Library Format Specification Context-sensitive keywords

Table 3-55 : Normalized measurements

Base Default
Keyword Value type Units Units Description
THRESHOLD non-negative Normalized | 1 (unit) | Fraction of signal voltage swing, specily-
number signal volt- ing a reference point for timing measure-
between 0 and 1 age swing ment data.

The threshold is the voltage for which the
timing measurement is taken.

NOISE_MARGIN | non-negative Normalized | 1 (unit) | Fraction of signal voltage swing, specity-
number signal volt- ing the noise margin.

between 0 and 1 age swing The noise margin is a deviation of the
actual voltage from the expected voltage
for a specified signal level

Table 3-56 : Discrete measurements

Base Default

Keyword Value type Units Units Description

SWITCHING_BITS | non-negative | None 1 number of switching bits on a bus
number

FANOUT non-negative | None 1 number of receivers connected to a net
number

FANIN non-negative | None 1 number of drivers connected to a net
number

CONNECTIONS non-negative [None 1 number of pins connected to a net, where
number CONNECTIONS FANIN+FANOUT

Actual values for discrete measurements are always integer numbers, however, estimated
values may be non-integer numbers (e.g. average fanout of a net =2.4).

3.6.7.2 Models for non-interpolateable tables

The following keywords identify arithmetic models which can only be used as
non-interpolateable tables. The values in the table may not be used in equations.

The following table describes connectivity data:

Table 3-57 : Connectivity data

Annotation string Value type Description

CONNECTIVITY boolean literal connectivity function

DRIVER string argument of connectivity function
RECEIVER string argument of connectivity function

86 Advanced Library Format (ALF) Reference Manual Version 1.0.10

Context-sensitive keywords Library Format Specification

The connectivity function specifies the allowed and disallowed connections amongst drivers or
receivers in 1-dimensional tables, or between drivers and receivers in 2-dimensional tables. A
CONNECTIVITYODbject requires @ONNECT_RUL&nnotation (3.6.7.4). The boolean literals in

the table have the following meaning:

Table 3-58 : Boolean literals in non-interpolateable tables

Boolean literal Description

1 CONNECT_RULi& true

0 CONNECT_RULE false

? CONNECT_RULE don't care

The arguments of the connectivity functions are tables of strings, which refer to user-definable
classes. Pins which are subject to a particd@NNECT _RULEefer to the relevant class via
a CONNECT_CLASannotation (see section 3.6.3.12).

Example:

CLASS power;
CLASS ground;
CONNECTIVITY {
CONNECT_RULE = must_short;
HEADER {
RECEIVER r1 { TABLE { power ground }}
RECEIVER r2 { TABLE { power ground }}

}
TABLE{1001}

}

All pins of thepower andground class must be connected amongst themselvesobert and
ground class must not be shorted together.

3.6.7.3 Models for non-interpolateable tables and equations

The following keywords identify arithmetic models which may be used directly as non-
interpolateable tables and indirectly as equations. The use of those models as equations
requires that a non-interpolateable table establishes a relationship between a symbolic
identifier and a number.

The following table describes process data:

Table 3-59 : Process data

Annotation string Value type Description
DERATE_CASE string derating case coefficient
PROCESS string process derating coefficient

The following identifiers can be used as predefined processes:
2n?p process definition with transistor strength

Version 1.0.10 Advanced Library Format (ALF) Reference Manual 87

Library Format Specification Context-sensitive keywords

where? can be

s strong
w weak

The possible process name combinations are

Table 3-60 : Predefined process names

Process name Description

snsp strong NMOS, strong PMOS
snwp strong NMOS, weak PMOS
wnsp weak NMOS, strong PMOS
wnwp weak NMOS, weak PMOS

The following identifiers can be used as predefined derating cases:

nom nominal case

bc? prefix for best case

wc? prefix for worst case
where? can be

com suffix for commercial case

ind suffix for industrial case

mil suffix for military case

The possible derating case combinations are

Table 3-61 : Predefined derating cases

Derating case Description
bccom best case commercial
bcind best case industrial
bemil best case military
wccom worst case commercial
wecind worst case military
wemil worst case military
Example:

» Direct use 0PROCESSN a non-interpolateable table:

DELAY {
UNIT = ns;
HEADER {
PROCESS { TABLE { nom snsp wnwp } }

}
TABLE {0.40.30.6}

}
The delay is 0.4 ns for nominal process, 0.3 nsrigy, 0.6 ns fofwnwp.

88 Advanced Library Format (ALF) Reference Manual Version 1.0.10

Context-sensitive keywords Library Format Specification

* Indirect use o0PROCESSN an equation:

DELAY {
UNIT = ns;
HEADER {
PROCESS { HEADER { nom snsp wnwp } TABLE {0.0 -0.25 0.5} }

}
EQUATION { (1 + PROCESS)*0.4 }

}
The equation uses the derating factors 0.0 for nominal, -0.2bsfor 0.5 for wnwp.

3.6.8 Containers for arithmetic models

The following keywords are defined for objects which may contain arithmetic models

Table 3-62 : Unnamed annotation containers

Objects Description

FROM contains start point of timing measurement or timing constraint

TO contains end point of measurement or timing constraint

LIMIT containsarithmetic models folimit values

EARLY contains arithmetic models for timing measurements relevant for early signal
arrival time

LATE contains arithmetic models for timing measurements relevant for late signgl
arrival time

3.6.8.1 FROM and TO container

A FROM container and a TO container shall be used inside timing measurements and timing
constraints. They shall contain PIN annotations for the purpose of defining the timing arc. In
addition, both containers may contain arithmetic models for THRESHOLD.

Example:

DELAY {
FROM {PIN = data_in; THRESHOLD { RISE = 0.4; FALL = 0.6} }
TO {PIN = data_out; THRESHOLD = 0.5;}

}
The delay is measured from piaa_in to pindata_out . The threshold fodata_in is 0.4
for rising signal and 0.6 for falling signal. The thresholditas_out is 0.5, which applies for
both rising and falling signal.

If the timing measurements or timing constraints, respectively, apply for two pins, the FROM,
TO containers shall each contain the PIN annotation. These annotations shall define the sense
of measurement.

<model_keyword> {
FROM { PIN = <pin_name> ; }
TO { PIN = <pin_name> ; }
[* data */

Version 1.0.10 Advanced Library Format (ALF) Reference Manual 89

Library Format Specification Context-sensitive keywords

Otherwise, if the timing measurements or timing constraints, respectively, apply only for one
pin, the same PIN annotation may be repeated in both containers or the PIN annotation may be
outside the FROM, TO container.

<model_keyword> {
PIN = <pin_name> ;
/* data */

}

If thresholds are needed for exact definition of the model data, the FROM, TO containers shall
each contaian arithmetic modeébr THRESHOLD.

<model_keyword> {
FROM { THRESHOLD /*data*/ }
TO { THRESHOLD /*data*/ }
[* data */
}
An arithmetic modefor THRESHOLD outside a FROM or TO container shall only have a
semantic meaning, if said annotation or arithmetic model contains a PIN annotation itself and
this PIN annotation matches a PIN annotation in a FROM or TO container.

Example:

DELAY {
FROM {
PIN = pinZ;
THRESHOLD /*data*/
}
TO{
PIN = pin2;
}
HEADER {
THRESHOLD {
PIN = pin2;
TABLE { <numbers>}

}
TABLE { <numbers>}

}
Note: The data of the THRESHOLD at pinl is calculated independently of DELAY, whereas
DELAY is calucated as a function of THRESHOLD at pin2.

3.6.8.2 LIMIT container

A LIMIT container may be used inside a library-specific object (Section 3.4.6). It shall contain
arithmetic models identified OyIIN and/or MAX.

Example:

PIN data_in {
LIMIT {
SLEWRATE { UNIT = ns; MIN = 0.05; MAX = 5.0;}

}

90 Advanced Library Format (ALF) Reference Manual Version 1.0.10

Context-sensitive keywords Library Format Specification

The minimum slewrate allowed at piata_in is 0.05 ns, the maximum is 5.0 ns.

PIN data_in {
LIMIT {
SLEWRATE {
UNIT = ns;
MAX {
HEADER { FREQUENCY { UNIT=megahz;} }
EQUATION { 250 / FREQUENCY }

}
}

The maximum allowed slewrate is frequency-dependent, e.g. the value is 0.25ns for 1GHz.

3.6.8.3 EARLY and LATE container

The EARLY and LATE containers define the boundaries of timing measurements in one sin-
gle analysis. Only applicable to DELAY and SLEWRATE. Both of them must appear in both
containers.

The quadruple

EARLY {
DELAY { FROM {..} TO { ...} /* data */ }
SLEWRATE { /* data */ }

LATE {
DELAY { FROM {..} TO { ...} /* data */ }
SLEWRATE { /* data */ }

is used to calculate the envelope of the timing waveform at the TO point of a delay arc with
respect to the timing waveform at the FROM point of a delay arc.

The EARLY DELAY is of course a smaller number (or a set of smaller numbers) than the
LATE DELAY. However, the EARLY SLEWRATE is not necessarily smaller than the LATE
SLEWRATE, since the SLEWRATE of the EARLY signal may be larger than the SLE-
WRATE of the LATE signal.

3.6.9 Keywords for arithmetic submodels

Arithmetic submodels are for the purpose of distinguishing different measurement conditions
for the same model. The root of an arithmetic model may contain nested arithmetic submodels.
The header of an arithmetic model may contain nested arithmetic models, but not arithmetic
submodels.

3.6.9.1 MIN/TYP/MAX
MIN, TYP, MAX provide 3 distinct sets of data
<model_keyword> { MIN /*data*/ TYP /*data*/ MAX /[*data*/ }

Version 1.0.10 Advanced Library Format (ALF) Reference Manual 91

Library Format Specification Context-sensitive keywords

as opposed to a single set of data
<model_keyword> /*data*/
The set of valid keywords for <model_keyword> is defined in section 3.6.7.1.

The MIN, TYP, MAX represent a statistical distribution of data without specifying or implying

a particular cause of the distribution. If process corners or derate cases are not modeled
explicitly, MIN, TYP, MAX can be used for representing the distribution of data across
processes or derate cases. If process corners or delay cases are modeled explicitly, MIN, TYP,
MAX can be used for representing the distribution of data within each process corner or derate
case.

Note: The arithmetic model root containing MIN, TYP, MAX must not contain HEADER or
TABLE or EQUATION. Instead, the MIN, TYP, MAX models may contain HEADER or
TABLE or EQUATION.

<model_keyword> {
MIN {
HEADER{ <model_keyword> /*data*/ .. <model_keyword> /*data*/ }
TABLE /* or equation */ { <numbers> }
}
TYP{
HEADER{ <model_keyword> /*data*/ .. <model_keyword> /*data*/ }
TABLE /* or equation */ { <numbers> }
}
MAX {
HEADER{ <model_keyword> /*data*/ .. <model_keyword> /*data*/ }
TABLE /* or equation */ { <numbers> }
}
}

MIN, TYP, MAX can also be single numbers. In this case, they have the same syntax as
annotations within the arithmetic model.

<model_keyword> {
MIN = <number> ;
TYP = <number> ;
MAX = <number> ;

}
Within the scope of a LIMIT container, MIN and MAX contain the data for a lower or upper
limit, respectively. There must be at least one limit, lower or upper, in each model, but not
necessarily both, as shown in the example below.

LIMIT {
<model_keyword1> { MIN /*data*/ } // lower limit
<model_keyword2> { MAX /*data*/ }// upper limit
<model_keyword3> { MIN /*data*/ MAX /[*data*/ }//lower and upper limit

92 Advanced Library Format (ALF) Reference Manual Version 1.0.10

Context-sensitive keywords Library Format Specification

Note: The arithmetic model root inside LIMIT must not contain HEADER or TABLE or
EQUATION. Instead, the MIN or MAX models may contain HEADER or TABLE or
EQUATION.

LIMIT {
<model_keyword> {
MIN {
HEADER{ <model_keyword> /*data*/ ..}
TABLE { <numbers> } /* or equation */
}
MAX {
HEADER{ <model_keyword> /*data*/ ..}
TABLE { <numbers> } /* or equation */
}
}
}
MIN, MAX inside arithmetic model root inside LIMIT can also be single numbers.
LIMIT {

<model_keyword> {
MIN = <number> ;
MAX = <number> ;

}
}

MIN, MAX inside a model inside a HEADER define the validity limits of the data. The model
inside the HEADER may contain TABLE or EQUATION. It may also contain HEADER,
which represents a nested arithmetic model.

If MIN, MAX is not defined and the data is in a TABLE, the boundaries of the data in the
TABLE shall be considered as validity limits.

Note: The MIN and MAX numbers qualify the data of the arithmetic model in the HEADER,
they do not represent the data itself.

<model_keyword> {
HEADER {
<model_keyword> {
MIN = <number> ; // minimum value for valid extrapolation
MAX = <number> ; // maximum value for valid extrapolation
TABLE { <numbers> } // data for inter-and extrapolation

}
}
TABLE { <numbers>}

3.6.9.2 RISE/FALL and HIGH/LOW

RISE, FALL contain data for transient measurements. HIGH, LOW contain data for static
measurements.

<model_keyword> { RISE /*data*/ FALL /*data*/ }
<model_keyword> {HIGH /*data*/ LOW /*data*/ }

Version 1.0.10 Advanced Library Format (ALF) Reference Manual 93

Library Format Specification Context-sensitive keywords

It is generally not required that both RISE and FALL or both HIGH and LOW, respectively,
appear in the arithmetic model root.

HIGH and LOW qualify states with the logic value 1 and O, respectively. RISE and FALL
qualify transitions between states with initial logic value 0 and 1, respectively and final value
1 and 0, respectively. For other states and their mapping to logic values, see Section 3.5.7. If
the arithmetic model is within the scope of a vector which describes the logic values without
ambiguity, the use of RISE, FALL, HIGH, LOW is not necessary.

Example:

VECTOR (?!'A->10B){
SLEWRATE { PIN = A; RISE = 3.1; FALL = 2.8; }
}

Alternative description:

VECTOR (01 A -> 10 B) {
SLEWRATE =3.1{PIN=A;}

}
VECTOR (10 A -> 10 B) {

SLEWRATE = 2.8 {PIN=A; }
}
Note: For states that cannot be mapped to logic 1 or 0, RISE, FALL, HIGH, LOW cannot be
used. The use of VECTOR with unambiguous description of the relevant states is mandatory
in such cases.

The arithmetic model root containing RISE, FALL or HIGH, LOW must not contain MIN,
TYP, MAX, HEADER, TABLE or EQUATION. Instead, the RISE, FALL or HIGH, LOW
models may contain HEADER, TABLE, EQUATION.

<model_keyword> {
<RISE or FALL or HIGH or LOW> {
HEADER{ <model_keyword> /*data*/ ..}
TABLE { <numbers> } /* or equation */

}
}

Alternatively, the RISE, FALL or HIGH, LOW models may contain MIN, TYP, MAX which
may contain HEADER, TABLE, EQUATION themselves.
<model_keyword> {
<RISE or FALL or HIGH or LOW> {
MIN /*data*/

TYP /*data*/
MAX /*data*/

}
Alternatively, the RISE, FALLor HIGH, LOW models may be single numbers.

<model_keyword> {
<RISE or FALL or HIGH or LOW> = number ;

}
Semantic meaning for RISE and FALL is provided for the following measurements:

 DELAY, RETAIN:

94 Advanced Library Format (ALF) Reference Manual Version 1.0.10

Context-sensitive keywords Library Format Specification

RISE, FALL is the switching direction on the PIN specified in the TO field.

If the TO field does not exist (a special case for port delay), RISE, FALL is the switching
direction on the PIN specified in the FROM field.

« CAPACITANCE, RESISTANCE, INDUCTANCE, CURRENT, ENERGY, POWER,
SLEWRATE, THRESHOLD:

RISE, FALL is the switching direction on the PIN. Either the PIN is specified as annotation
inside the model, or the model is inside a PIN.

Semantic meaning for HIGH and LOW is provided for the following measurements:

« CAPACITANCE, RESISTANCE, INDUCTANCE, CURRENT, ENERGY, POWER,
VOLTAGE, NOISE_MARGIN:

HIGH, LOW is the state on the PIN. Either the PIN is specified as annotation inside the model,
or the model is inside a PIN.

The arithmetic model root containing RISE, FALL or HIGH, LOW may be inside a LIMIT
container with the following rule: A model containing RISE, FALL or HIGH, LOW must not
contain MIN or MAX. Instead, the RISE, FALL or HIGH, LOW model must contain MIN or
MAX.

LIMIT {
<model_keyword> {
<RISE or FALL or HIGH or LOW> { MIN /*data*/ MAX /*data*/ }

}
}

The arithmetic model root containing RISE, FALL may be inside EARLY, LATE containers
with the following rules:

If only RISE appears in one model, only RISE must appear in all models.
If only FALL appears in one model, only FALL must appear in all models.
If both RISE and FALL appear in one model, both RISE and FALL must appear in all models.

EARLY {
DELAY { RISE /*data*/ FALL /*data*/ }
SLEWRATE { RISE /*data*/ FALL /*data*/ }

}
LATE {

DELAY { RISE /*data*/ FALL /*data*/ }
SLEWRATE { RISE /*data*/ FALL /*data*/ }

}

Semantic meaning for RISE and FALL is provided for the following LIMIT specifications,
EARLY or LATE measurements:

* DELAY, RETAIN:
RISE, FALL is the switching direction on the PIN specified in the TO field.

Only if the TO field does not exist (a special case for port delay), RISE, FALL is the switching
direction on the PIN specified in the FROM field (since the switching direction of the
unspecified PIN in the TO field will be the same).

* SLEWRATE:

Version 1.0.10 Advanced Library Format (ALF) Reference Manual 95

Library Format Specification Context-sensitive keywords

RISE, FALL is the switching direction on the PIN. Either the PIN is specified as annotation
inside the model, or the model is inside a PIN.

Semantic meaning for HIGH and LOW is provided for the following LIMIT specifications:
» CURRENT, ENERGY, POWER, VOLTAGE

HIGH, LOW is the state on the PIN. Either the PIN is specified as annotation inside the model,
or the model is inside a PIN.

3.6.10 Annotations for arithmetic models

Annotations and annotation containers described in this chapter are relevant for the semantic
interpretation of arithmetic models and their arguments (e.g. DELAY=f(CAPACITANCE).
Arguments of arithmetic models have the form of annotation containers. They may also have
the form of arithmetic models themselves, in whih case they represent nested arithmetic
models.

3.6.10.1 DEFAULT annotation

Thedefault annotatiorallows use of the default value instead of the arithmetic model, if the
arithmetic model is beyond the scope of the application tool.

DEFAULT= number ;

Restrictions may apply for the allowed typenoinber . For instance, if the arithmetic model
allows onlynon_negative_number , then the default is restrictedrion_negative_number

3.6.10.2 UNIT annotation
Theunit annotationassociates units with the value computed by the arithmetic model.

UNIT = string | non_negative_number ;

A unit specified by atring can take the following value$ {ndicates wildcard):

Table 3-63 : UNIT annotation

Annotation string Description

f* or F* equivalent talE-15
p* or P* equivalent tale-12
n* or N* equivalent talE-9
u* or U* equivalent talE-6
m* or M* equivalent talE-3
1* equivalent talE+0
k* or K* equivalent talE+3
meg* or MEG#? equivalent talE+6
g* or G* equivalent talE+9

a. or uppercase/lowercase combination

96 Advanced Library Format (ALF) Reference Manual Version 1.0.10

Context-sensitive keywords Library Format Specification

Arithmetic models are context-sensitive, i.e. the units for their values can be determined from
the context. IUNIT annotation for such a context does not exist, default units are applied to the
value (Section 3.6.9.2).

Example:

TIME { UNIT = ns; }
FREQUENCY { UNIT = gigahz; }

If the unit is a string, then only the first character (respectively the first 3 characters in case of
MEG is interpreted. The reminder of the string can be used to define base units. Metric base
units are assumed, but not verified, in ALF.

There is no semantic difference between
unit = 1sec;

and
unit = 1volt;

Therefore, if the unit is specified as
unit = meg;

the interpretation isE+6. However, for
unit = 1meg;

the interpretation i$ and notLE+6.

Units in a non-metric system can only be specified with numbers, not with strings. For instance,
if the intent is to specify inch instead of meter as base unit, the following specification will not
meet the intent:

unit = linch;
since the interpretation isand meters are assumed.
The correct way of specifying inch instead of meter is
unit = 26E-3;
since 1 inch is 26 millimeters.

3.6.10.3 CONNECT_RULE annotation

Theconnect_rule annotatiomay be only inside a CONNECTIVITY object. It specifies
connectivity requirement.

CONNECT_RULEstring ;
which can take the following values:

Table 3-64 : CONNECT_RULE annotation

Annotation string Description

must_short short connection required
can_short short connection allowed
cannot_short short connection disallowed

Version 1.0.10 Advanced Library Format (ALF) Reference Manual 97

Library Format Specification Context-sensitive keywords

3.6.10.4 PIN annotation

The use of PIN annotation in arithmetic models other than timing measurements and timing
constraints is defined here.

If the PIN annotation appears inside an arithmetic model within the scope of a HEADER or a
LIMIT, the physcical quantity identified by the model keywor@pgpliedto the PIN.

Otherwise, if the PIN annotation appears inside an arithmetic model root which is not within
the scope of a LIMIT, the physical quantity identified by the model keywoné&suredt the

PIN.

Example:

/I intrinsic capacitance of pinl
CAPACITANCE {
PIN = pin1;
[*data*/
}
/I maximum allowed capacitance on a net connected to pin2
LIMIT {
CAPACITANCE {
PIN = pin2;
MAX /*data*/

}

/I delay measured as function of capacitance on a net connected to pin3
DELAY {
HEADER {
CAPACITANCE {
PIN = pin3;

}
}
[*data*/
}
If the arithmetic model is within the scope of a PIN object, a PIN annotation is illegal according
to the visibility rules of ALF, since a PIN cannot be visible inside another PIN, with the

following exception: The PIN outside the arithmetic model is a bus, and the PIN annotation
inside the arithmetic model refers to a bit of the bus.

Example:

PIN [1:2] bus_pin {
/I intrinsic capacitance of bus_pin[1]
CAPACITANCE {
PIN = bus_pin[1];
[*data*/

/I maximum allowed capacitance on a net connected to bus_pin[2]

98 Advanced Library Format (ALF) Reference Manual Version 1.0.10

Context-sensitive keywords Library Format Specification

LIMIT {

CAPACITANCE {
PIN = bus_pin[2];
[*data*/

}

}

}

If an arithmetic model root appears within the scope of a LIMIT inside a PIN, the physcical
guantity identified by the model keywordappliedto the PIN. Otherwise, if an arithmetic
model root appears directly inside a PIN, the physical quantity identified by the model keyword
is measuredat the PIN.

Example:

PIN scalar_pin {
/I intrinsic capacitance of scalar_pin
CAPACITANCE {
[*data*/
}
/I maximum allowed capacitance on a net connected to scalar_pin
LIMIT {
CAPACITANCE {
[*data*/
}
}
}

An arithmetic model inside a bus or an arithmetic model with a PIN annotation refering to a
bus shall apply to the entire bus, not to each individual scalar pin of the bus.

Example:

PIN [1:10] large_bus {
CAPACITANCE = 1 { unit = pf; }

}
The total pin capacitance lafge_bus is 1 pf, not 10 pf. The capacitance of individual scalar
pinslarge_bus[1] .. large_bus[10] is not defined.

3.6.10.5 MEASUREMENT, TIME and FREQUENCY annotations

Artihmetic models describing analog measurements (see Table 3-51) can have a
MEASUREMENT annotation.This annotation indicates the type of measurement used for the
computation in arithmetic model.

MEASUREMENTstring ;
The string can take the following values:

Table 3-65 : MEASUREMENT annotation

Annotation string Description
transient measurement is a transient value
static measurement is a static value

Version 1.0.10 Advanced Library Format (ALF) Reference Manual 99

Library Format Specification Context-sensitive keywords

Table 3-65 : MEASUREMENT annotation

Annotation string Description

average measurement is an average value
rms measurement is an root mean square value
peak measurement is a peak value

In this contexteither TIME or FREQUENCY can also be used as annotations.
The semantics are defined as follows:

Table 3-66 : Semantic interprestion of MEASUREMENT, TIME or FREQUENCY annotation

MEASUREMENT Semantic meaning of TIME Semantic meaning of FREQUENCY

annotation annotation annotation

transient integration of analog measurement ig integration of analog measurement ig
done during that time window repeated with that frequency

static N/A N/A

average average value is measured over that| average value measurement is repeated
time window with that frequency

rms root-mean-square value is measured roor-mean-square measurement is
over that time window repeated with that frequency

peak peak value occurs during that time wineobservation of peak value is repeate
dow with that frequency

In all applicable cases, the interpretation FREQUENCY = 1/ TIME is valid.

The values foraverage measurements and foms measurements scale linearily with
FREQUENCY and 1/ TIME, respectivelljortransient ~measurements and fagak
measurements, the TIME or FREQUENCY annotations are purely informational. The values
do not scale with TIME or FREQUENCY.

Mathematical definitions:

(t=T) (t=T)

transient dE(t) average J' E(t)dt
(t=0) =0
T
static E = constant
rms t=T)
[E(t)%dt
peak max(| E 9|) CsgnE(t) o<t<T (ﬂ)_l_—
Examples:

transient measurement of ENERGY

static measurement of VOLTAGE, CURRENT, POWER
average measurement of POWER, CURRENT

rms measurement of POWER, CURRENT

100 Advanced Library Format (ALF) Reference Manual Version 1.0.10

Context-sensitive keywords

Library Format Specification

peak measurement of VOLTAGE, CURRENT, POWER

3.6.10.6 TIME and FREQUENCY for waveform description
BothFREQUENCYand TIME can also be used in the HEADER of arithmetic models. In
particular, TIME in the HEADER describes waveforms of analog measurements. The initial
and final values of the measurement, respectively, apply to the time before the first
measurement and after the last measurement, respectively.

The semantics are defined as follows:

Table 3-67 : Semantic interprestion of TIME for waveform description

MEASUREMENT Semantic meaning of TIME in

annotation HEADER Use of FREQUENCY

transient piece-wise linear waveform of instan{ allowed in HEADER or as annotation),
taneous value over time boundary restrictions apply (see beloj)

static N/A allowed in HEADER only, no restric-

tion

average incremental average value, measurefl allowed in HEADER or as annotationf
from the previous time point to the boundary restrictions apply
actual time point

rms incremental rms value, measured fromallowed in HEADER or as annotationf
the previous time point to the actual | boundary restrictions apply
time point

peak peak value encounterd between the | allowed in HEADER or as annotation|,
previous time point and the actual timleboundary restrictions apply
point

In the context of analog measurement versus TIME description, FREQUENCY may still be
used either as complementary argument in the HEADER or as annotation. The interpretation
FREQUENCY =1/ TIME iswotvalid. Instead, the following boundary restrictions are

imposed in order to make the waveforms repeatable:

* The initial value and the final value of a transient measurement must be the same.

* The initial values of average, rms, or peak measurements, i.e. the values thbeapply
the first time index apply also as vahiter the last time index.

* The overall time window between the first and the last measurement must be bound by
1/ FREQUENCY

These restrictions make sure that there is a physical interpretation of measurements as a
function of TIME and FREQUENCY.

Examples:

transient waveformaverage ,rms, peak of CURRENT vs. TIME, VOLTAGE vs.
TIME. Resonance effects (parasitic oscillators) may influence the measurement results in
a certain FREQUENCY range.

static measurement of POWER vs. FREQUENCY. FREQUENCY of a voltage-con-
trolled oscillator is statically controlled by a DC voltage. Measurement could also be

Version 1.0.10 Advanced Library Format (ALF) Reference Manual 101

Library Format Specification

Context-sensitive keywords

expressed as power versus control voltage, but the control voltage may not be observable
in simulation, whereas the frequency of the oscillating output signal is observable.

The following figure illustrates transient, average, rms, and peak waveforms for a repeatable

analog signal.

Figure 3-18: lllustration of Waveforms

E(T>)

I
I
I
I
E(T,)

MEASUREMENT=transient

I
I
E(To) | T,
—— O E(bt
| T, =71 [| |
| T, Ty | | MEASUREMENT=average
ID E(t)dt T D.IE()dt I
2
Ti— %I Ir 1T,
0
E(t)dt
| | Ty- T3 |I
— | | I_'
| | T | | |
I 1 dI I I
| T%_HDJ'E(I) i, T |
| Ty | DI E(t) 24t | MEASUREMENT=rms
i 1s—To
| 7, | |
I | | T
I I d
| T4 T3|DIE(t) t
I (I
I I
, maxED) |
1 T,<t<Ty |
| | MEASUREMENT=peak
I I I
I I I
| | ma)(E(i[)
I I I I I
I I I I I
| | | | | »
B L T2 1 T JTa TIME
FREQUENCY = T,

102

Advanced Library Format (ALF) Reference Manual

Version 1.0.10

Library Organization Library Format Specification

3.7 Library Organization

3.7.1 Scoping Rules

The following scope rules shall apply to all library objects and its usage.
Rule 1: An object shall be defined before it is referenced.

Rule 2: An ALF object shall be known (referenceable) inside the parent object, inside all
objects defined after that object within the same parent object, and inside all the children of
those objects.

Rule 3: An object definition with only a keyword but without an object identifier implies that
the content of this definition will be applied to all objects identified by this keyword at the
current scope and the underlying levels of hierarchy.

Example:
LIBRARY my_library {
CAPACITANCE {UNIT = pF;} /I default capacitance units for all
/I cells in my_library
CELL cell1 {

CAPACITANCE {UNIT =fF;} /I capacitance units specific to celll
PIN A {CAPACITANCE = 10.5;}

}
CELL cell2 {

PIN A {CAPACITANCE = 0.010;} // default capacitance units
}

}
The capacitance of pmofcelll is10.5fF . The capacitance of pmofcell2 i$0.010 pF

Rule 4: An object shall not be defined again at the same level of scope A definition of an object
is considered duplicate, if both keyword and object identifier are identical.

Example:
It is illegal to write the following:
LIBRARY my_library {
CAPACITANCE {UNIT = fF;}

CELL cell1 {
pin A {CAPACITANCE = 10.5;}

}
CAPACITANCE {UNIT = pF;} Il duplicate definition

CELL cell2 {
pin A {CAPACITANCE = 0.010;}

}
}

There are three possible ways capacitance units can be set to fF for some of the cells in the
library and pF for other cells in the same library:

Version 1.0.10 Advanced Library Format (ALF) Reference Manual 103

Library Format Specification Referenceable objects

1. put each set of cells in a different sublibrary,

2. define templates for the different units and reference them appropriately, or

3. define the units locally inside each cell.

3.7.2 Use of multiple files

Sometimes it is inconvenient or impractical to include all of the data for a technology library
in a single file. ThenCLUDE keyword is used to compose a library from multiple files.

An INCLUDE statement may be used within any context, but any included file shall contain at
least a valid object definition to be considered a legal ALF file. It shall begin with a keyword,
otherwise it may be ignored by a generic parser.

In general the effect of using tCLUDE statement is to be considered equivalent to inserting
the contents of the included file at that point in the parent file.

For example, a top-level ALF library file may contain only the following statements, where
each file contains appropriate data to make up the entire library.

LIBRARY mylib {
INCLUDE “libdata.alf”;
INCLUDE “templates.alf”;
INCLUDE “cells.alf";
INCLUDE “wiremodels.alf”;

}

A complete ALF library definition must begin with thBBRARY keyword. A list of cell
definitions shall not be considered a full, legal ALF library database.

3.8 Referenceable objects

General referenceable objects within the scope of visibility BiveLATEandGROUPLibrary-
specific referenceable objects @i, PRIMITIVE and arithmetic model. The figure 3-19
shows relationships between these objects and where they can be referenced.

104 Advanced Library Format (ALF) Reference Manual Version 1.0.10

Referenceable objects Library Format Specification

template —teferenceable by, template instantiation
group —referenceable by 45 jnstantiation

function

— ————» annotation container

arithmetic mode| —referenceable by, 4rithmetic model

B function
primitive referenceable by, cgl|

— ——» annotation container

pin

Figure 3-19: Referencing rules for ALF objects

The TEMPLATEandGROURDbjects are referenceable only by their respective instantiation. The
TEMPLATEdefinitions may contain instantiation of previously defined templates, which allows
construction of reusable objects.

The arithmetic models can be referenced by other arithmetic models, if they are contained
within each other. This allows hierarchical modeling and a mix of table and equation based
models.

ThePIN objects are referenced witlHINCTIONandvECTORObjects and within any annotation
container inside the san@&LL object.

ThePRIMITIVE s are referenceable byaLL in order to define pins and functionality or within
aFUNCTIONto define functionality only or within an annotation container, 0a\N

3.8.1 Referencing PRIMITIVEs or CELLs

A PRIMITIVE referenced in @€ELL may replace the complete setrofi andFUNCTION
definition. PINs may be declared before the reference teERITIVE , in order to provide
supplementary annotations that cannot be inherited fromriveTIVE . However, thecELL
must be pin-compatible with tlRRIMITIVE .

If the PRIMITIVE or aCELL is referenced in an annotation container suctcasj only the
subset oPINs used in the non-scan cell must be compatible witRithe of the cell.

The pin names can be referenced by order or by name. In the latter case, the LHS is the pin
name of the referenc&®RIMITIVE orCELL (e.g. the non-scan cell), the RHS is the pin name of
the actual cell. A constant logic value can also appear at the LHS or RHS, indicating that a pin
needs to be tied to a constant value. If this information is already specified in an annotation

Version 1.0.10 Advanced Library Format (ALF) Reference Manual 105

Library Format Specification Referenceable objects

inside thePIN object itself, referencing between a pin name and a constant value is not
necessary.

PRIMITIVE S can also be instantiated insgfeHAVIOR

3.8.2 Referencing PINs in FUNCTIONs

Inside aCELL object, thePIN objects with th@INTYPE digital ~ define variables faFUNCTION
objects inside the san@ELL. A primary input variablenside aFUNCTIONmust be declared as
aPIN with DIRECTION=input Orboth (SINCEDIRECTION=both is a bidirectional pin).

However, it is not required that all declared pins are used in the function. Output variables
inside aFUNCTIONNneed not be declared pins, since they are implicitly declared when they
appear at the left-hand side (LHS) of an assignment.

Example:

CELL my_cell {
PIN A {DIRECTION = input;}
PIN B {DIRECTION = input;}
PIN C {DIRECTION = output;}
FUNCTION {
BEHAVIOR {
D=A&&B;
C=1D;

}
}
c andD are output variables that need not be declared prior to use. After implicit declaration,
Dis reused as an input variabfeandB are primary input variables.

InsideBEHAVIOR variables which appear at the LHS of an assignment conditionally controlled
by a vector expression, as opposed to an unconditional continuous assignment, will hold their
values, when the vector expression evaluates . Those variables are considered to have
latch-type behavior.

Examples:

BEHAVIOR {
@(G)Y{
Q =D; /' both Q and QN have latch-type behavior
QN =ID;

}

BEHAVIOR {
@(GX
Q =D; /l only Q has latch-type behavior

}
QN =1Q;
}
The functional description can be supplemented $yAaETABLE the first row of which
contains the arguments that are object IDs of deckaresl The arguments appear in two
fields, first is input, second is output. The fields are separated by cQlarhé rows are

106 Advanced Library Format (ALF) Reference Manual Version 1.0.10

Referenceable objects Library Format Specification

separated by, §. The arguments may appear in both fields, iffines have attribute

direction=output or direction=both . If direction=output , then the argument has latch-
type behavior. The argument on the input field is considered previous state, and the argument
on the output field is considered the next statéirdétion=both , then the argument on the

input field applies for input direction, and the argument on the output field applies for output
direction of the bidirectionaIN.

Example:

CELL ff_sd{
PIN g {DIRECTION=output;}
PIN d {DIRECTION=input;}
PIN cp {DIRECTION=input;
SIGNALTYPE=clock;
POLARITY=rising_edge;}
PIN cd {DIRECTION=input; SIGNALTYPE=clear; POLARITY=low;}
PIN sd {DIRECTION=input; SIGNALTYPE=set; POLARITY=low;}

FUNCTION {
BEHAVIOR {
\ @(cd) {g =0} :('sd) {q = 1.} :(01 cp) {q = d;}
STATETABLE {
cdsdcpd q:q;
0? ??27?2 ?2:0;
10 ?2?27? ?2:1;
111?72 0:0;
11 ?20? 1:1;
111?72 0:0;
11 ?20? 1:1;
11 0172 2 :(d)
}
}

}

If the output variable with latch-type behavior depends only on the previous state of itself as
opposed to the previous state of other output variables with latch-type behavior, it is not
necessary to use that output variable in the input field. This allows a more compact form of the
STATETABLE

Example:

STATETABLE {
cdsd cp d :q;
07? ?2?27?:0;
10 ??27?:1;
11 1?7 ? (q)
11 2?0 ? :(q);
11 01 ? :(d)

}

A generic ALF parser must make the following semantic checks:

Are all variables of @uNCTIONdeclared either by declarationrmas names or through
assignment?

Version 1.0.10 Advanced Library Format (ALF) Reference Manual 107

Library Format Specification Referenceable objects

Does thesTATETABLEexclusively contain declargdNs?

Is the format of the TATETABLE i.e. the number of elements in each field of each row,
consistent?

Are the values consistently either state or transition digits?
Is the number of digits in eadABLE entry compatible with the signal bus width?

A more sophisticated checker for complete verification for logical consistenayuofGrioN
given in both equation and tabular representation is out of scope for a generic ALF parser,
which checks only syntax and compliance to semantic rules. However, formal verification
algorithms can be implemented in special-purpose ALF analyzers or model generators/
compilers.

3.8.3 Referencing PINs in VECTORSs

A VECTORIefines state, transition, or sequence of transitions of pins which are controllable and
observable for characterization.

Within aCELL, the set oPINS withSCOPE=behavior 0Or SCOPE=measure Or SCOPE=both iS the
defaultset of variables in the event queue for vector expressions relevagHioviORor
VECTORStatements or both, respectively.

For detection of a sequence of transitions it is necessary to observe the set of variables in the
event queue. For instance, if the set of pins consigtset, D, the vector expression

(01 A->01B)
implies, that no transition ox B, C, D occurs between the transitiodisA ando1B .

The default set of pins applies only for vector expressions without conditions. The conditional
event AND operator limits the set of variables in the event queue. In this case, only the state of
the condition and the variables appearing in the vector expression are observed.

Example:

(01 A ->01 B) && (C | D)

No transition om, B occurs betweeol A ando1 B, and(C | D) must stay true in-between
01 A ando1B as well. However¢ andD may change their values as long@$sbD) is
satisfied.

3.84 Referencing multi-dimensional PINs
A group of pins of a cell can be logically considered together by declaring a PIN with a range.
A pin can be declared with one dimension or two dimensions. For example,

PIN A; Il declares a scalar pin A
PIN[1:8] A1l; /I declares pin Al with bits numbered 1 through 8
PIN [1:8] A2[1:4]; [/ declares pin A2 with two dimensions

When a pin is declared with one dimension, the left number in the range shall specify the most
significant bit number and the right number shall specify the least significant bit number. If the

108 Advanced Library Format (ALF) Reference Manual Version 1.0.10

Referenceable objects Library Format Specification

pin is declared with two dimensions, the second dimension shall specify the index of the first
and the last rows of the two-dimension pin object.

A PIN object can be referenced in one of the four forms:

1. Individual bit - pin name shall be followed by an index of the bit

2. Contiguous group of bits - pin name shall be followed by the contiguous range of bits.
The most significant and least significant bit numbers shall follow the same relationship
as given in the declaration.

3. Entire PIN object - Only pin name shall be used. It shall be illegal to reference entire
two-dimension pin object in any operation.

4. One row of a PIN object - For a two-dimension pin object, name of the pin shall be
followed by the row index of that pin. It shall be illegal to reference either individual
bit or a group of bits of a two-dimension pin object directly in an operation.

When a PIN object is referenced on the left-hand side of an assignment, the result of the right-
hand side expression is copied from the least significant bit towards the most significant bit. If
the right-hand side value has lesser number of bits than the referenced PIN object in an
assignment, the right-hand side value shall be zero-extended to fill the remaining bits of the
referenced PIN object. If the right-hand side value has more bits than the referenced PIN object
in an assignment, the right-hand side value shall be truncated to the size of the referenced PIN

object.
Example:

pin [1:8] AL,
pin [1:8] A2[1:32] ;

A1[8] ='b0;
Al[1:6] ='075; [/l'is equivalentto A1[1:6] ='b111 101
Al[1:5] ='075; [/l'is equivalentto A1[1:5] ='b11 101,
/I left most bit is truncated
A2[18] ='h5; /l'is equivalent to A2[18] = 'b0000_0101
/I entire row 18 of A2 is assigned a value.

The two-dimension PIN objects shall be referenced with the row index. It shall be illegal to
directly reference an individual bit or a contiguous group of bits of a two-dimension PIN
object. It shall be illegal to reference the entire PIN object as a two-dimension PIN object.

Version 1.0.10 Advanced Library Format (ALF) Reference Manual 109

Library Format Specification Referenceable objects

Example:

pin [1:8] A2[1:32] ;
pin [1:8] B1 ;
pin C;
/' legal references and assignments

A2[10] ='h45; /[assign 'h45 to row 10 of A2 ('b0100_0101)
Bl =A2[10]; /I copies whole row A2[10] to B1
C =B1[3]; Il c="b0

/I lllegal references and assignments
/I B1[3] =AZ2[10][3]; illegal reference to bit 3 of A2[10]
A2 =B1,; illegal reference to entire A2

It shall be legal to use identifiers as index, but expressions shall not be permitted as index.

Example
pin [4:1] ADDR,;
ADDR ='d 10;
A2[ADDR] ='h45; /I assign 'h45 to row 10 of A2 ('b0100_0101)
/l A2[ADDR+1] = 'h45 ; illegal
3.8.5 Referencing arithmetic models

Input variables, also calledguments of arithmetic modetgppear in theEADEROf the model.
In the simplest case, tiHMEADERS just a list of arguments, each being a context-sensitive
keyword. The model itself is also defined with a context-sensitive keyword.

The model can be in equation form. All arguments of the equation must bedieatheR The
ALF parser should issue an error if BHIRUATIONUSES an argument not defined in HEADER
A warning should be issued if tiE=ADERCONtains arguments not used in HEUATION

Example:
DELAY {
HEADER {
CAPACITANCE {...}
SLEWRATE {...}
}
EQUATION {
0.01 + 0.3*SLEWRATE + (0.6 + 0.1*SLEWRATE)*CAPACITANCE
}
}

110 Advanced Library Format (ALF) Reference Manual Version 1.0.10

Referenceable objects Library Format Specification

If the model uses BABLE, then each argument in tHEADERalso needs a table in order to
define the format. The order of arguments decides how the index to each entry is calculated.
The first argument is the innermost index, the following arguments are outer indices.

DELAY {
HEADER {
CAPACITANCE {
TABLE {0.03 0.06 0.12 0.24}
}
SLEWRATE {
TABLE {0.1 0.3 0.9}
}
}
TABLE {
0.07 0.10 0.14 0.22
0.09 0.13 0.19 0.30
0.10 0.15 0.25 0.41

}

The first argumenbad has 4 entries. The second argummaniptime has 3 entries. Hence
DELAYhas 4*3=12 entries. For readability, comments may be inserted in the table.

TABLE {
/[capacitance:0.03 0.06 0.12 0.24
I e slewrate:

0.070.100.140.22//0.1
0.090.130.190.30//0.3
0.100.150.250.41//0.9

}
Comments have no significance for the ALF parser, nor has the arrangement in rows and
columns. Only the order of values is important for index calculation. The table can be made
more compact by removing newlines.

TABLE { 0.07 0.10 0.14 0.22 0.09 0.13 0.19 0.30 0.10 0.150.250.41 }

For readability, the models and arguments can also have names, i.e. object IDs. For named
objects, the name is used for referencing, rather than the keyword.

DELAY rise_out{

HEADER {
CAPACITANCE c_out {...}
SLEWRATE fall_in{...}
}
EQUATION {
0.01 + 0.3 *fall_in + (0.6 + 0.1* fall_in) * c_out
}
}

The arguments of an arithmetic model can be arithmetic models themselves. In this way,
combinations of ABLE- andEQUATIONbased models can be used, for instance, in derating.

Version 1.0.10 Advanced Library Format (ALF) Reference Manual 111

Library Format Specification Functional modeling styles and rules

Coherent witlFUNCTION bothEQUATIONandTABLE representation of an arithmetic model are
allowed. TheEQUATIONIs intended to be used when the values of the arguments fall out of
range, i.e. to avoid extrapolation. This is especially used in wire models.

3.9 Functional modeling styles and rules

ALF allows the following functional modeling styles: equation based, table-based, and
primitive based. Both equation- and table-based functions are canonical and specify exactly the
same functionality. Each primitive must be definable in either of the canonical modeling styles.

Since ALF supports both combinational and sequential functional specification using the 8-
value logic system, an exhaustive behavioral description of all scenarios, which is needed for
a simulation model, would be very cumbersome and defeat the purpose of a simple, easy-to-
use language. Hence the following rules shall apply for compilation of the ALF description into
a full simulation model. These rules cover all cases where the functional description is not
explicit. All of these rules can be overruled by explicit specification of the behavior.

391 Rules for combinational functions

If a boolean expression evaluatese , the assigned output valuetisf a boolean expression
evaluategalse , the assigned output valueidf the value of a boolean expression cannot be
determined, the assigned output value i8ssignment of values other thajo, or X must be
specified explicitly.

For evaluation of the boolean expression, input valishhll be treated asi’binput value 'b
shall be treated aso'bAll other input values shall be treated as 'b

Examples:
In equation form, these rules can be expressed as follows.

BEHAVIOR {
Z=A;
}
is equivalent to
BEHAVIOR {
Z=A?"bl:'bO;
}
More explicitly, this is also equivalent to
BEHAVIOR {
Z = (A=="b1 || A=="bH)? 'b1 : (A=="b0 || A=="bL)? 'b0 : ’bX;
}
In table form, this can be expressed as follows:

STATETABLE
A . Z
? 0 (A

112 Advanced Library Format (ALF) Reference Manual Version 1.0.10

Functional modeling styles and rules Library Format Specification

which is equivalent to

STATETABLE
A . Z
0O : O
1 . 1

}
More explicitly, this is also equivalent to

STATETABLE
L Z;

}

3.9.2 Basic rules for sequential functions

A sequential function is described in equation form by a boolean assignment with a condition
specified by a boolean expression or a vector expression. If the condition evaludtes t,

the boolean assignment is activated and the assigned output values follows the rules for
combinational functions. If the vector expression evaluategfttse), the output variables

hold their assigned value from the previous evaluation.

For evaluation of a condition, the value %hall be treated asie , the value 'b shall be
treated agalse . All other values shall be treated as the unknown value 'b

Example:
The following behavior statement

BEHAVIOR {
@ (B){z=A}

is equivalent to

BEHAVIOR {
@ (E=='bl || E=='bH) {Z = A}
}

The following statetable statement, describing the same logic function

STATETABLE {
E A : Z
0o 2 : (2
1 2?2 : (A)

Version 1.0.10 Advanced Library Format (ALF) Reference Manual 113

Library Format Specification Functional modeling styles and rules

is equivalent to

STATETABLE {

A Z
2);
2);
(A);
(A);

TR, OMm

?
?
?
?

}
For edge-sensitive and higher-order event sensitive functions, transitions fromLosttallb
be treated like transitions from or t®@,land transitions from or tortshall be treated like
transitions from or to ‘b

Not every transition may trigger the evaluation of a function. The set of vectors triggering the
evaluation of a function are calledtive vectorsFrom the set of active vectors, a set of

inactive vectorgan be derived, which will clearly not trigger the evaluation of a function.
There are is also a set of ambiguous vectors, which may or may not trigger the evaluation of
the function.

The set of active vectors is the set of vectors for which both observed states before and after
the transition are known to be logically equivalent to the corresponding states defined in the
vector expression.

The set of inactive vectors is the set of vectors for which at least one of the observed states
before or after the tranition is known to be not logically equivalent to the corresponding states
defined in the vector expression.

Example:

For the following sequential function
@ (01CP){Z=A}}

the active vectors are

(bO'b1 CP)
(bO'bH CP)
(bL'bl CP)
(bL'bH CP)

and the inactive vectors are

(b1'b0 CP)
(b1’bL CP)
(b1’bX CP)
(b1'bW CP)
(b1'bZ CP)
(bH'bO CP)
(bH'bL CP)
(bH'bX CP)
(bH'bW CP)
(bH'bZ CP)
(bX’b0 CP)
(bX’bL CP)

114 Advanced Library Format (ALF) Reference Manual Version 1.0.10

Functional modeling styles and rules Library Format Specification

(bW’b0 CP)
(bW’bL CP)
(bZ’b0 CP)
(bZ'bL CP)
(bU'b0 CP)
(bU'bL CP)

and the ambiguous vectors are

(bO’bX CP)
(bO’bW CP)
(bO’bZ CP)
(bL’bX CP)
(bL’bW CP)
(bL’bZ CP)
(bX'b1 CP)
(bWb1 CP)
(bZ'b1 CP)
(bX’bH CP)
(bWbH CP)
(bZ'bH CP)
(bX’bW CP)
(bX'bZ CP)
(bWbX CP)
(bW'bZ CP)
(bZ'bX CP)
(bZ'bW CP)
(bU'bX CP)
(bUbW CP)
(bUbZ CP)

For vectors using exclusively based literals, the set of active vectors is the vector itself, the set
of inactive vectors is any vector with at least one different literal, the set of ambiguous vectors
is empty.

Therefore ALF does not provide a default behavior for ambiguous vectors, since the behavior
for each vector may be explicitely defined in vectors using based literals.
3.9.3 Concurrency in combinational and sequential functions

Multiple boolean assignments in combinational functions are understood to be concurrent. The
order in the functional description does not matter, as each boolean assignment describes a
piece of a logic circuit. This is illustrated below.

Version 1.0.10 Advanced Library Format (ALF) Reference Manual 115

Library Format Specification Functional modeling styles and rules

BEHAVIOR {
Q1 = <1st_boolean_expression(D1..Di)> ;

Qn = <nth_boolean_expression(D1..Di)> ;

. -
1st boolean expression) p Q1
»C

® , :(nth boolean expression >_> Qn

Figure 3-20: Concurrency for combinational logic

In level-sensitive sequential logic, one condition may trigger more than one boolean
assignment, which are also understood to be concurrent. This is illustrated below.

BEHAVIOR {
@ (<boolean_expression(E1..Em)>) { El Em
Q1 = <1st_boolean_expression(D1..Di)> ;

boolean
expression

Qn = <nth_boolean_expression(D1..Di)> ;

}
}
I
false
> 1st boolean expression QL
. —
® > nth boolean ex i on
pression)
o« '
D1 Di

Figure 3-21: Concurrency for level-sensitive sequential logic

The principle of concurrency applies also for edge-sensitive sequential functions, where the
triggering condition is described by a vector expression rather than a boolean expression. In
edge-sensitive logic, the target logic variable for the boolean assignment (LHS) may also be an
operand of the boolean expression defining the assigned value (RHS). Concurrency implies
that the RHS expressions are evaluated immedibagdtyrethe triggering edge, and the values

are assigned to the LHS variables immediad#tigr the triggering edge. This is illustrated

below.

116 Advanced Library Format (ALF) Reference Manual Version 1.0.10

Functional modeling styles and rules Library Format Specification

BEHAVIOR {
@ (<vector_expression(E1..Em)>) {
Q1 = <1st_boolean_expression(D1..Di)> ;

El Em

vector

Qn = <nth_boolean_expression(D1..Di)> ; expression
}
}
| -
»(1st boolean expression >_d a1 —@» Q1
>
—
® ® :< nth boolean expression >_d a . Qn
[|
D1 D , >

Figure 3-22: Concurrency for edge-sensitive sequential logic

Statements with multiple concurrent conditions for boolean assignments may also be used in
sequential logic. In that case conflicting values may be assigned to the same logic variable. A
default conflict resolution is not provided for the following reasons:

» Conflict resolution may not be necessary, since the conflicting situation is prohibited by
specification.

» For different types of analysis (e.g. logic simulation), a different conflict resolution behav-
ior may be desireable, while the physical behavior of the circuit will not change. For
instance, pessimistic conflict resolution would always assign "X", more accurate conflict
resolution would first check whether the values are conflicting. Different choices may be
motivated by a tradeoff in analysis acccuracy and runtime.

» If complete library control over analysis is desired, conflict resolution can be specified
explicitely.

Example:

BEHAVIOR {
@ (<condition_1>){Q =<value_1>;}
@ (<condition_2>){ Q = <value_2>;}
}

Explicit pessimistic conflict resolution can be described as follows:
BEHAVIOR {
@ (<condition_1> && <condition_2>) { Q ='bX; }

@ (<condition_1> && ! <condition_2>) { Q = <value_1>;}
@ (<condition_2> && ! <condition_1>) { Q = <value_2>;}

Version 1.0.10 Advanced Library Format (ALF) Reference Manual 117

Library Format Specification Functional modeling styles and rules

Explicit accurate conflict resolution can be described as follows:

BEHAVIOR {
@ (<condition_1> && <condition_2>) {
Q = (<value_1>==<value_2>)? <value_1>: 'bX;
}
@ (<condition_1> && ! <condition_2>) { Q = <value_1>;}
@ (<condition_2> && ! <condition_1>) { Q = <value_2>;}
}
Since the conditions are now rendered mutually exclusive, equivalent descriptions with priority
statements can be used. They are more elegant than descriptions with concurrent statements.

BEHAVIOR {
@ (<condition_1> && <condition_2>) {
Q = <conflict_resolution_value>;
}

. (<condition_1>){ Q = <value_1>;}
. (<condition_2>) { Q = <value_2>;}
}
Given the various explicit description possibilities, the standard does not prescribe a default
behavior. The model developper has the freedom of incomplete specification.

3.94 Initial values for logic variables

Per definition, all logic variables in a behavioral description have the initial value "U" which
means "uninitialized". This value cannot be assigned to a logic variable, yet it can be used in a
behavioral description in order to assign other values than "U" after initialization.

Example:

BEHAVIOR {
@(QLl=="bU){Ql="b1;}
@(Q2=="bU){Q2="b0;}
/I followed by the rest of the behavioral description

}
A template can be used to make the intent more obvious, for example:

TEMPLATE VALUE_AFTER_INITIALIZATION {
@ (<logic_variable>=="bU) {<logic_variable> = <initial_value> ;}

}
BEHAVIOR {
VALUE_AFTER_INITIALIZATION (Q1 'b1")
VALUE_AFTER_INITIALIZATION (Q2 'b0")
/I followed by the rest of the behavioral description
}

Logic variables in a vector expression must be declared as PINs. It is possible to annotate initial
values directly to a pin. Such variables will never take the value "U". Therefore vector
expressions involving "U" for such variables (see previous example) will be meaningless.

Example:

PIN Q1 { INITIAL_VALUE ="b1;}
PIN Q2 { INITIAL_VALUE ="b0 ; }

118 Advanced Library Format (ALF) Reference Manual Version 1.0.10

Primitives Library Format Specification

3.10 Primitives

3.10.1 Concept of user-defined and predefined primitives

Primitives are described in ALF syntax. Primitives are generic cells containing PIN and
FUNCTION objects only, i.e. no characterization data. The primitives are used for structural
functional modeling.

Example:

PRIMITIVE MY_PRIMITIVE {
PINx{...}
PINy{...}
PINz{..}
FUNCTION{ ... }

}

CELL MY_CELL{
PINa{...}
PINb{...}
PINc{..}
FUNCTION {

BEHAVIOR { MY_PRIMITIVE { x=a; y=b; z=c; } }

}

}
Extensible primitives, i.e. primitives with variable number of pins can be modeled with
TEMPLATE.
Example:

TEMPLATE EXTENSIBLE_PRIMITIVE{
PRIMITIVE <primitive_name> {
PIN [0:<max_index>] pin_name { ... }

}

/l instantiation of the template creates a primitive
EXTENSIBLE_PRIMITIVE {
primitive_name = MY_EXTENSIBLE_PRIMITIVE;
max_index = 2;

}
The set of statements above is equivalent to the following statement:

PRIMITIVE MY_EXTENSIBLE_PRIMITIVE {
PIN [0:2] pin_name { ... }

Version 1.0.10 Advanced Library Format (ALF) Reference Manual 119

Library Format Specification Primitives

The primitive can be used as shown in the following example:

CELL MY_MEGACELL {
PINa{...}
PINb{...}
PINc{...}
FUNCTION {
BEHAVIOR {
/I reference to the primitive
MY_EXTENSIBLE_PRIMITIVE {
pin_name[0] = a;
pin_name[1] = b;
pin_name[2] = c;

}
Primitives can be freely defined by the user. For convenience, ALF provides a set of predefined
primitives with the reserved prefaLF_ in their name, which cannot be used by user-defined
primitives.

For all PINs of predefined primitives, the following annotations are defined per default:

VIEW = functional;
SCOPE = behavioral;

For predefined extensible primitives a placeholder may be directly in the PRIMITIVE
definition:
PRIMITIVE ALF_EXTENSIBLE_PRIMITIVE {
PIN [0:<max_index>] pin_name { ...}

}
This is equivalent to the following more verbose set of statements:

TEMPLATE EXTENSIBLE_PRIMITIVE{
PRIMITIVE <primitive_name> {
PIN [0:<max_index>] pin_name { ...}

}

EXTENSIBLE_PRIMITIVE {
primitive_name = ALF_EXTENSIBLE_PRIMITIVE;
max_index = <max_index>;

}

3.10.2 Predefined combinational primitives

3.10.2.1 One input, multiple output primitives
There are two combinational primitives with one input pin and multiple output pins:

ALF_BUF, ALF_NOT

120 Advanced Library Format (ALF) Reference Manual Version 1.0.10

Primitives Library Format Specification

A GROUP statement is used to define the behavior of all output pins in one statement.

The output pins are indexed starting vathf 0 is the only index used, the index can be omitted
when referencing the output pin, eogt refers toout[0]

PRIMITIVE ALF_BUF {
GROUP index {0:<max_index>}
PIN[O:<max_index>] out {
DIRECTION = output ;

}
PIN in {
DIRECTION = input ;
}
FUNCTION {
BEHAVIOR {
out[index] = in;
}
}

Figure 3-23: Primitive model of ALF_BUF

PRIMITIVE ALF_NOT {
GROUP index {0:<max_index>}
PIN[0:<max_index>] out {
DIRECTION = output ;

}

PIN in {
DIRECTION = input ;

}

FUNCTION {
BEHAVIOR {

out[index] = lin;

}

}

Figure 3-24: Primitive model of ALF_NOT

3.10.2.2 One output, multiple input primitives
There are six combinational primitives with one output pin and multiple input pins:
ALF_AND, ALF_NAND, ALF_OR, ALF_NOR, ALF_XOR, ALF_XNOR

Version 1.0.10 Advanced Library Format (ALF) Reference Manual 121

Library Format Specification

Primitives

The input pins are indexed starting withf o is the only index used, the index can be omitted

when referencing the input pin, eig. refers tan[0]

PRIMITIVE ALF_AND {
PIN out {
DIRECTION = output;
}

PIN[O:<max_index>] in {
DIRECTION = input;

}
FUNCTION {
BEHAVIOR {
out=∈
}
}

Figure 3-25: Primitive model of ALF_AND

PRIMITIVE ALF_NAND {
PIN out {
DIRECTION = output;
}
PIN[0:<max_index>] in {
DIRECTION = input;

}
FUNCTION {
BEHAVIOR {
out=~∈
}
}

Figure 3-26: Primitive model of ALF_NAND

PRIMITIVE ALF_OR {
PIN out {
DIRECTION = output;
}
PIN[O:<max_index>] in {
DIRECTION = input;

}
FUNCTION {
BEHAVIOR {
out = |in;
}
}

Figure 3-27: Primitive model of ALF_OR

122 Advanced Library Format (ALF) Reference Manual

Version 1.0.10

Primitives Library Format Specification

PRIMITIVE ALF_NOR {
PIN out {
DIRECTION = output;
}
PIN[O:<max_index>] in {
DIRECTION = input;

}
FUNCTION {
BEHAVIOR {
out = ~| in;
}
}

Figure 3-28: Primitive model of ALF_NOR

PRIMITIVE ALF_XOR {
PIN out {
DIRECTION = output;
}

PIN[O:<max_index>] in {
DIRECTION = input;

}
FUNCTION {
BEHAVIOR {
out = "in;
}
}

Figure 3-29: Primitive model of ALF_XOR

PRIMITIVE ALF_XNOR {
PIN out {
DIRECTION = output;
}
PIN[O:<max_index>] in {
DIRECTION = input;

}
FUNCTION {
BEHAVIOR {
out = ~"in;
}
}

Figure 3-30: Primitive model of ALF_XNOR

Version 1.0.10 Advanced Library Format (ALF) Reference Manual 123

Library Format Specification

3.10.3 Predefined tristate Primitives

There are four tristate primitives:

ALF_BUFIF1, ALF_BUFIFO, ALF_NOTIF1, ALF_NOTIFO

PRIMITIVE ALF_BUFIF1 {
PIN out {
DIRECTION = output;
ENABLE_PIN = enable;
ATTRIBUTE {TRISTATE}

}
PINin {
DIRECTION = input;
}
PIN enable {
DIRECTION = input;
SIGNALTYPE = out_enable;
}
FUNCTION {
BEHAVIOR {
out = (enable)? in : 'bZ;
}
STATETABLE {
enable in : out;
0 ?:Z
1 2 :(in);
}
}

Figure 3-31: Primitive model of ALF_BUFIF1

PRIMITIVE ALF_BUFIFO {
PIN out {
DIRECTION = output;
ENABLE_PIN = enable;
ATTRIBUTE {TRISTATE}

}
PINin {
DIRECTION = input;
}
PIN enable {
DIRECTION = input;
SIGNALTYPE = out_enable;
}
FUNCTION {

BEHAVIOR {
out = (lenable)? in : 'bZ;

}

124 Advanced Library Format (ALF) Reference Manual

Primitives

Version 1.0.10

Primitives Library Format Specification

STATETABLE {
enable in : out;
1 ?:z
0 2 :(in);

}

Figure 3-32: Primitive model of ALF_BUFIFO

PRIMITIVE ALF_NOTIF1 {
PIN out {
DIRECTION = output;
ENABLE_PIN = enable;
ATTRIBUTE {TRISTATE}

}
PIN in {
DIRECTION = input;
}
PIN enable {
DIRECTION = input;
SIGNALTYPE = out_enable;
}
FUNCTION {
BEHAVIOR {
out = (enable)? lin : 'bZ;
}
STATETABLE {
enable in : out;
0 ?:z
1 2 :(lin);
}
}

Figure 3-33: Primitive model of ALF_NOTIF1

PRIMITIVE ALF_NOTIFO {
PIN out {
DIRECTION = output;
ENABLE_PIN = enable;
ATTRIBUTE {TRISTATE}

}
PIN in {
DIRECTION = input;
}
PIN enable {
DIRECTION = input;
SIGNALTYPE = out_enable;
}
FUNCTION {

Version 1.0.10 Advanced Library Format (ALF) Reference Manual 125

Library Format Specification Primitives

BEHAVIOR {
out = ('enable)? lin : 'bZ;
}
STATETABLE {
enable in : out;
1 ?:z
0 72 :(lin);
}

Figure 3-34: Primitive model of ALF_NOTIFO

3.104 Predefined multiplexor

The predefined multiplexor has a known output value if either the select signal and the selected
data inputs are known or both data inputs have the same known value while the select signal is
unknown.

PRIMITIVE ALF_MUX {
PIN Q {
DIRECTION = output;
SIGNALTYPE = data;

}
PIN[1:0] D {
DIRECTION = input;
SIGNALTYPE = data;
}
PIN S {
DIRECTION = input;
SIGNALTYPE = select;
}
FUNCTION {
BEHAVIOR {
Q = (S| (d[0] ~*d[1]))? d[1] : d[O];
STATETABLE {
D[O]D[1] S : Q;
? ? 0 :(D[O]);
? ? 1 :(D[1);
0O 0 ?:0;
1 1 ?:1;
}
}

Figure 3-35: Primitive model of ALF_MUX

126 Advanced Library Format (ALF) Reference Manual Version 1.0.10

Primitives Library Format Specification

3.10.5 Predefined flipflop

A dual-rail output D-flipflop with asynchronous set and clear pins is a generic edge-sensitive
sequential device. Simpler flipflops can be modeled using this primitive by setting input pins
to appropriate constant values. More complex flipflops can be modeled by adding
combinational logic around the primitive.

A particularity of this model is the use of the last two @NSONFLICTandQN_CONFLICT
which are virtual pins. They specify the stat®aindQNin the eventLEARandSET become
active simultaneously.

PRIMITIVE ALF_FLIPFLOP {

PINQ {
DIRECTION = output;
SIGNALTYPE = data;
POLARITY =non_inverted,;

}

PINQN {
DIRECTION = output;
SIGNALTYPE = data;
POLARITY =inverted,;

}

PIND {
DIRECTION = input;
SIGNALTYPE = data;

}

PIN CLOCK {
DIRECTION = input;
SIGNALTYPE = clock;
POLARITY =rising_edge;

}

PIN CLEAR {
DIRECTION = input;
SIGNALTYPE = clear;
POLARITY = high;
ACTION = asynchronous;

}

PIN SET {
DIRECTION = input;
SIGNALTYPE = set;
POLARITY = high;
ACTION = asynchronous;

}

PIN Q_CONFLICT {
DIRECTION = input;
VIEW =none;

}

PIN QN_CONFLICT {
DIRECTION = input;
VIEW =none;

}

FUNCTION {
ALIAS QX = Q_CONFLICT;
ALIAS QNX = QN_CONFLICT;

Version 1.0.10 Advanced Library Format (ALF) Reference Manual 127

Library Format Specification Primitives

BEHAVIOR {
@ (CLEAR && SET) {
Q =QX
QN = QNX;
}
: (CLEAR) {
Q =0
ON=1;
}
: (SET){
Q=1
QN =0;
}
: (01 CLOCK) { /I edge-sensitive behavior
Q =D;
QN =1D;
}
}
STATETABLE {
D CLOCK CLEAR SET QX ONX: Q ON;
?27??2 1 : (QX) (QNX);
s 1 0;
s .0 1;
1? 1 (Q) (QN);
?0 1 (Q) (QN);
01 (D) (ID);

=

ESEECREN LS BES BEN]

?
?
?
?
?
?

SRS EENEENEEN]
oNoNeoN e
[oNoNoNely]

Figure 3-36: Primitive model of ALF_FLIPFLOP

3.10.6 Predefined latch

The dual-rail D-latch with set and clear pins has the same functionality as the flipflop, except
the level-sensitive clocke{ABLEpin) instead of the edge-sensitive clock.

PRIMITIVE ALF_LATCH {
PINQ {
DIRECTION = output;
SIGNALTYPE = data;
POLARITY =non_inverted;

}
PINON {
DIRECTION = output;
SIGNALTYPE = data,
POLARITY =inverted,
}
PIND {
DIRECTION = input;
SIGNALTYPE = data;
}
PIN ENABLE {

128 Advanced Library Format (ALF) Reference Manual Version 1.0.10

Primitives Library Format Specification

DIRECTION = input;
SIGNALTYPE = clock;
POLARITY = high;

}

PIN CLEAR {
DIRECTION = input;
SIGNALTYPE = clear;
POLARITY = high;
ACTION = asynchronous;

}

PIN SET {
DIRECTION = input;
SIGNALTYPE = set;
POLARITY = high;
ACTION = asynchronous;

}

PIN Q_CONFLICT {
DIRECTION = input;
VIEW = none;

}

PIN QN_CONFLICT {
DIRECTION = input;
VIEW = none;

}

FUNCTION {
ALIAS QX = Q_CONFLICT;
ALIAS QNX = QN_CONFLICT;

BEHAVIOR {
@ (CLEAR && SET) {
Q =QX;
QN = QNX;
}
: (CLEAR) {
Q =0;
ON=1;
}
: (SET){
Q=1
QN =0;
}
: (ENABLE) { /I level-sensitive behavior
Q =D;
QN = ID;
}
}
STATETABLE {

D ENABLE CLEAR SETQX QNX: Q ON;
22 1 1?2 2 :(QX) (QNX);

Version 1.0.10 Advanced Library Format (ALF) Reference Manual 129

Library Format Specification Parameterizable Cells

22 0 1?22 :1 0;
22 1 07?2 :0 1;

?70 0 07?72 :(Q) (QN);
21 0 0 ? ? :(D) (ID);

Figure 3-37: Primitive model of ALF_LATCH

3.11 Parameterizable Cells

The concept of describing primitives with variable bus size shall be extended to parameteriz-
able cells. Dynamic template instantiations are introduced for that purpose.

Template definitions may incorporate any type of object. Placeholders in the template defini-
tion are the equivalent of parameters. Hence the definition of parametrizable cells is already
supported within the support of general template definitions.

In astatic template instantiatignwvhich is identified by the name of the templatel by the
optional value assignmestttic , placeholders are replaced by fixed values or by complex
objects containing fixed values. Non-referenced placeholders will stay in place and eventually
result in semantically unrecognizeable objects, which cannot be processed by downstream
applications. Such unrecognizable objects shall be disreagarded.

In adynamic template instantiatipwhich is identified by the name of the template and by the
mandatory value assignmetyhamic , some placeholders may not be replaced. Those place-
holders are application parameters. The template definition may already contain certain rela-
tionships between parameters (e.g. arithmetic model and its arguments in the header).
Therefore the template instantiation determines, which parameters need application values in
order to calculate values for other parameters.

Going one step further, even the relationship between parameters may be defined in the
dynamic template instantiation rather than in the template definition. In this case, the identifi-
ers inside the placeholders become variables for arithmetic assignments. This definition of
variables shall only be recognized within the context of the dynamic template instantiation.

Arithmetic assignments provide a shorter syntax for equation-based arithmetic models where
only placeholder-parameters are involved.

paraml = 1.5 + 0.4 * param2 ** 3 - 2.7 / param3

is equivalent to

param1 {
HEADER { param2 param3 }
EQUATION { 1.5 + 0.4 * param2 ** 3 - 2.7 / param3 }

130 Advanced Library Format (ALF) Reference Manual Version 1.0.10

Parameterizable Cells Library Format Specification

For table-based models or for models where the arguments have children objects attached to
them, the verbose syntax with HEADER must be used.

Example:

TEMPLATE adder {
CELL <cellname> {
PIN [<bitwidth>: 1] A { DIRECTION = input; }
PIN [<bitwidth>: 1] B { DIRECTION = input; }
PIN Cin { DIRECTION = input; }
PIN [<bitwidth>: 1] S { DIRECTION = output; }
PIN Cout { DIRECTION = output; }

FUNCTION {
BEHAVIOR {
S=A+B + Cin;
Cout = (A + B + Cin >= (‘b1 << (<bitwidth> - 1)));
}
}

AREA = <areavalue>;
VECTOR (?! Cin -> ?! Cout) {

DELAY {
HEADER {
CAPACITANCE {PIN = Cout; }
SLEWRATE {PIN = Cin; }
}

EQUATION { <D0O> + <D1>*CAPACITANCE + <D2>*SLEWRATE }

}
The template is used for instantiation of a hardmacro:

adder { /* a hardmacro */
cellname = ripple_carry_adder_16_bit;
bitwidth = 16;
areavalue = 500;
/I DO, D1, D2 are undefined. DELAY cannot be calculated.

}
The static instantiation of the hardmacro is equivalent to the following static object:

CELL ripple_carry_adder_16_bit {
PIN[16:1]A{DIRECTION = input; }
PIN[16:1]B{DIRECTION = input; }
PIN Cin { DIRECTION = input; }
PIN[16:1]S { DIRECTION = output; }
PIN Cout { DIRECTION = output; }

FUNCTION {
BEHAVIOR {
S=A+B+Cin;
Cout = (A + B + Cin >="b1000000000000000);

Version 1.0.10 Advanced Library Format (ALF) Reference Manual 131

Library Format Specification Parameterizable Cells

}
AREA =500 ;
VECTOR (?! Cin -> ?! Cout) {
/I’ DELAY{
Il HEADER {
Il CAPACITANCE {PIN = Cout; }
Il SLEWRATE {PIN = Cin; }
Il }
Il EQUATION { <D0> + <D1>*CAPACITANCE + <D2>*SLEWRATE }
oy
}
}

Now the template is used for instantiation of a softmacro:

adder = dynamic { /* a softmacro */
cellname = ripple_carry_adder_N_ bit;
areavalue = 20 + 30 * bitwidth;
}
DO {
HEADER { AREA { TABLE{102030}}}
TABLE { 15.6 34.350.7 }
}
D1 =0.29;
D2 =0.08;
}

The dynamic instantiation of the softmacro results in an object for which certain data depend
on the runtime-values of the placeholder-parameters, as indicatalicifmelow. The

calculation method for such data, however, can be compiled statically (e.g. the equation for
AREA as a function of bitwidth, the lookup table for DO as a function of AREA).

CELL ripple_carry_adder_N_bit {
PIN[bitwidth :1]A{DIRECTION = input; }
PIN[bitwidth :1]B{DIRECTION = input; }
PIN Cin { DIRECTION = input; }
PIN[bitwidth :1]S { DIRECTION = output; }
PIN Cout { DIRECTION = output; }

FUNCTION {
BEHAVIOR {
S=A+B + Cin;
Cout=(A+ B + Cin>= (‘b1 << (bitwidth - 1)));
}

}

AREA = 20 + 30 * bitwidth ;

VECTOR (?! Cin -> ?! Cout) {
DELAY {

HEADER {
CAPACITANCE {PIN = Cout; }

132 Advanced Library Format (ALF) Reference Manual Version 1.0.10

Modeling with Vector Expressions Library Format Specification

SLEWRATE {PIN = Cin; }

Do {
HEADER { AREA { TABLE {1020 30 } } }
TABLE { 15.6 34.3 50.7 }

}
}

EQUATION { DO+ 0.29*CAPACITANCE + 0.08*SLEWRATE }

3.12 Modeling with Vector Expressions

Vector expressions provide a formal language to describe digital waveforms. This capability
can be used for functional specification, timing and power characterization and analysis.

Like boolean expressions, vector expressions provide means for description of functionality of
digital circuits in various contexts without being self-sufficient. Vector expressions enrich this
functional description capability by adding a “dynamic” dimension to the otherwise “static”
boolean expressions. In particular, vector expressions add value by addressing the following
modeling issues:

* Functional specification: complex sequential functionality, for example bus protocols.

* Timing analysis: complex timing arcs and timing constraints involving more than two sig-
nals.

» Power analysis: temporal and spatial correlation between events relevant for power con-
sumption.

» Circuit characterization and test: specification of characterization and/or test vectors for
particular timing, power, fault or other measurements within a circuit.

The following subsections explain the semantics of vector expressions step by step.The vector
expression concept is introduced using terminology from simulation. This is because the basic
ideas can be best expressed this way. However, the application of vector expressions is not
restricted to simulation.

3.12.1 Event reports

This section describes the principles of event reports from simulation, which will be used as an
instrument to explain the context of ALF vector expressions. The intent of ALF vector
expressions is not t@placeexisting event report formats but eventually t@ppliedto event
reports. Non-pertinent details of event report formats are not described here.

Version 1.0.10 Advanced Library Format (ALF) Reference Manual 133

Library Format Specification Modeling with Vector Expressions

Simulation events (e.g. from Verilog or VHDL) can be reported in a value change dump (VCD)
file, which has the following general form:

<timel>
<variableA> <stateU>
<variableB> <stateV>

<time2>
<variableC> <stateW>
<variableD> <stateX>

<time3> ...

The set of variables for which simulation events are reported, i.scaopeof the event report

need to be defined upfront. Each variable also has a definition feetloé states can take.

For instance, there may be binary variables, 16-bit integer variables, 1-bit variables with drive-
strength information etc. Furthermore, the initial state of each variable must be defined as well.
In an ALF context, we may use the term “signal” and “variable” interchangably. In VHDL, the
corresponding term is “signal”. In Verilog, there is no single corresponding term. All “input”,

“output”, “wire”, “reg” variables in Verilog correspond to “signal” in VHDL.

The time valuestimel> |, <time2> , <time3> etc. must be in increasing order. The order
in which simultaneous events are reported does not matter. The number of time points and the
number of simultaneous events at a certain time point is unlimited.

In the physical world, each event or change of state of a variable takes a certain amount of time.
A variable cannot change its state more than once at a given point in time. However, in
simulation, this time may be sometimes smaller than the resolution of the time scale. Therefore
a variable may change its state more than once at a given point in simulation time. Those events
are, strictly speaking, not simultaneous. They occur in a certain order, seperated by an infinitely
small delta-time. Multiple simultaneous events of the same variable are not reported in the
VCD. Only the final state of each variable is reported.

A VCD file is the most compact format that allows reconstruction of entire waveforms for a
given set of variables. A more verbose form is the test pattern format.

<TIME> <variableA> <variableB> <variableC> <variableD>
<timel> <stateU> <stateV>

<time2> <stateU> <stateV> <stateW> <stateX>
<time3> ...

The test pattern format reports the state of eachv ariable at every point in time, regardless
whether the state has changed or not. Previous and following states are immediately available

in the previous and next row, respectively. This makes the test pattern format more readable
than the VCD and well-suited for taking a snapshot of events in a time window.

Example of an event report in VCD format:

/I initial values

AO B1 C1 DX E1
/I event dump

109 A1l DO

258 BO
573 CO
586 AOQ

134 Advanced Library Format (ALF) Reference Manual Version 1.0.10

Modeling with Vector Expressions Library Format Specification

643 Al
788 A0 B1 Ci1
915 A1l
1062 EO

1395 BO CO
1640 A0 D1
/I end of event dump

Example of an event report in test pattern format:

tme A B C
0

109
258
573
586
643
788
915
1062
1395
1640

Both VCD and test pattern format represent the same amount of information and can be
translated into each other.

ORPrPFPRPRORFRORRERO
OCOR PP OO0OOOR R
OCORRPLPRPROOORR R
POOOOODOOOO XU
COoOOoORrRPRRLRRLRERE M

3.12.2 Event Sequences

For specification of a functional waveform, for example the write cycle of a memory, it is not
practical to use an event report format, such as VCD or test pattern format . In such waveforms,
there is no absolute time, and the relative time, for example the setup time between address
change and write enable change, may be a variable rather than a constant.

The main purpose @kctor_expressions is waveform specification capability. The
following operators are introduced:

* vector_unary , also called “edge operator” or “unary vector operator”
The edge operator is a prefix to a variable in a vector expression. It contains a pair of
states, the first being the previous state, the second being the new state of the variable.
First we consider only the set of edge operators with different previous and new state,
there are (N-1)*N possibilities in a system of N possible states. Later we shall explain also
edge operators without change of state.

* vector_followed_by , also called “followed-by operator”. First we consider only the
“immediately followed-by operator” using the symbol “->".
The “->” operator is the separator between consecutively occuring events.

* vector_and , also called “simultaneous event operator”. This operator uses the overloaded
symbol “&” or “&&” interchangeably.
The “&” operator is the separator between simultaneously occuring events

These operators are necessary and sufficient to describe the following subset of
vector_expressions

* vector_single_event
A change of state in a single variable, for example

Version 1.0.10 Advanced Library Format (ALF) Reference Manual 135

Library Format Specification Modeling with Vector Expressions

01 A

d vector_event
A simultaneous change of state in one or more variables, for example
01A&10B

d vector_event_sequence

Subsequently occuring changes of state in one or more variables, for example
01A&10B->10A

We can now express the pattern of the sample event reporédteraevent_sequence
expression:

0lA&X0D->10B->10C->10A->01A

->10A&01B&01C->01A->10E->10B&10C->10A&01D
Although the vector expression format contains an inherent redundancy, since the old state of
each variable is always the same as the new state of the same variable in a previous event, it is
more human-readable, especially for waveform description. On the other hand, it is more
compact than the test pattern format. For short event sequences, it is even more compact than
the VCD, since it eliminates the declaration of initial values. To be accurate, for variables with
exactly one event the vector expression is more compact than the VCD. For variables with
more than one event the VCD is more compact than the vector expression.In summary, the
vector expression format offers readability similar to the test pattern format and compactness
close to the VCD format.

Again, the intent is not to propose another event report format but to specifiy a pattern of events
which may be detected within an event report.

3.12.3 Scope of event sequences

The scope of an ALF vector expression defines the set of variables in an event report to which
the vector expression is applicable.

* PINs with the annotatioSCOPE = BEHAVIORare applicable variables for vector
expressions within the context of BEHAVIOR.

* PINs with the annotatioBCOPE = MEASUREare applicable variables for vector expres-
sions within the context of VECTOR.

* PINs with the annotatioBCOPE = BOTHare applicable variables for all vector expres-
sions.

It is not necessary that all variables within the scope of a vector expression appear in the vector
expression itself.

136 Advanced Library Format (ALF) Reference Manual Version 1.0.10

Modeling with Vector Expressions Library Format Specification

Example:

time A
0
109
258
573
586
643
788
915
1062
1395
1640

Consider the following vector expressions:

01 A 1)
10B->10C)
10 A ->01 A ®)
01D (4)
01A->10C (5)

(1) will be true at time 109, at time 643 and at time 915. (2) will be true at time 573. (3) will be
true at time 643 and at time 915. (4) will be true at time 1640. (5) will not be true at any time.

OFRPPFPRORORRRERO
OO0ORBRPPOOCOORRL®
OCORRFRPROOORRERROD
POOOOOOOO0OOXU
OCOORRERPREPREPREE M

3.12.4 Alternative event sequences

The following operator is introduced to describe alternative events:

* vector_or , also called “event-or operator” or “alternative-event operator”, using the over-

loaded symbol “|” or “||” interchangeably.
The “|” operator is the seperator between alternative events or alternative event sequences.

In analogy to boolean operators, “|” has a lower binding priority than “&” and “->”, whereas
“&” and “->" have the same binding priority. Parentheses can be used to change the binding

priority.
Example:

(OLA->01B)|10C===01A->01B|10C
01A->(01B|10C)===01A->01B|01A->10C

Consider the following vector expressions in the context of the sample VCD:

01A|10C (6)
10B->10C|10A->01A (7)
01D|10B->10C (8)
10B->10C|10A 9)

(6) will be true at time 109, at time 573, at time 643, at time 915 and at time 1395. (7) will be
true at time573, at time 643 and at time 915. (8) will be true at time 573 and at time 1640. (9)
will be true at time 573, at time 586, at time 788 and at time 1640.

The following operators are introduced for a more compact description of certain alternative
event sequences:

» “&>" events occur simultaneously or follow each other in the order RHS after LHS

Version 1.0.10 Advanced Library Format (ALF) Reference Manual 137

Library Format Specification Modeling with Vector Expressions

» “<->" LHS event followed by RHS event or RHS event followed by LHS event
e “<?>" events occur simultaneously or follow each other in arbitrary order

Example:
01A&>01C === 01A&01C|01A->01C
01A<>01C === (01A->01C|01C->01A
01A<&>01C === 01A<>01C|01A&01C

The binding priority of these operators is higher than of “&” and “->".

3.12.5 Symbolic edge operators

Introducing edge operators with symbolic states, alternative events of the same variable can be
described in a even more compact way. The symbol “?” stands for “any state”.

* edge operator with “?” as previous state:
transition from any state to the defined new state
* edge operator with “?” as next state:
transition from the defined previous state to any state.

Both edge operators include the possibility that no transition occured at all, i.e., the previous
and the next state are the same. This situation can be explicitely described with the following
operator:

» edge operator with next state = previous state, also called “non-event operator”
a transition occurs, but not on the operand. The operand stays in the state defined by the
operator.

The following symbolic edge operators are also introduced:

o “?I” transition from any state to any state different from the previous state
e “?~"transition from any state to its bitwise complementary state
o "??” transition from any state to any state or no transition on the operand
* “?-"no transition on the operand
Example: Let “A” be a logic variable with the possible states “1”, “0”, “X".
20A===00A|10A| X0 A
?21A===01A|11A|X1A
2XA===0XA|[1XA|XXA
0? A===00A|01A|OXA
1?7A===10A|11A|1XA
X? A=== X0 A|X1A|XXA
21A===01A|0XA|10A|1XA|X0OA|X1A
?~A===01A|10A| XX A
??2A===00A|01LA|OXA|10A|11A|1XA|XOA|XLA|XXA
?2-A===00A |11 A|XXA
For variables with more possible states (e.g. logic states with different drive strength, multiple
bits) the explicit description of alternative events would be quite verbose. Therefore the
symbolic edge operators are useful for a more compact description.

So far we have introduced the setafior_binary operators necessary for the description of
a subset ofector_expressions calledvector_complex_event expressions. All
vector_binary ~ operators have tw@ctor_complex_event expressions as operands. The set

138 Advanced Library Format (ALF) Reference Manual Version 1.0.10

Modeling with Vector Expressions Library Format Specification

of vector_event_sequence expressions is a subsetvettor_complex_event expressions.
Everyvector_complex_event expression can be expressed in terms of alternative
vector_event_sequence expressions. The latter could be called “minterms”, in analogy to
boolean algebra.

3.12.6 Non-events

Let us call avector_single_event expression involving a non-event operatapa-eventA
rigorous definition is required feector_complex_event expressions containing non-events.

In fact, no non-event can be found in a VCD, because the non-event operator explicitely says
that no event happens on the operand. Let us consider the following example of a flipflop with
clock input CLK and data output Q.

01 CLK->01Q (i)

01 CLK -> 00 Q (i)
The vector expression (i) describes the situation that the output switches from 0 to 1 after the
rising edge of the clock. The vector expression (ii) describes the same situation except that the
output does stay 0 after the rising edge of the clock.

How is it possible to decide whether (i) or (ii) is true, without knowing the delay between CLK
and Q? The only way is to wait until any event occurs after the rising edge of CLK. If the event
is not on Q and the state of Q is 0 during that event, then (ii) is true.

Hence a non-event is true every time when another event happens and the state of the variable
involved in the non-event satisfies the edge operator of the non-event.

Example:

time A
0
109
258
573
586
643
788
915
1062
1395
1640

The test pattern format represents an event, for exaplé ““, in no different way than a
non-event, for examplell E “. This non-event is true at time 109, 258, 573, 586, 643 788,
915, in short every time when an event happens while E is constant 1.

OFRPRFRPRPRORORERRERO
OCOrRRPRROOCOOR D
OCORRPRRPROOCORRRLD
POOODOOOOO0OO XU
OCOoOORrRRERREPERERE LM

3.12.7 Compact and verbose event sequences

A vector_event_sequence expression in a compact form can be transformed into a verbose
form by padding up everexctor_event expression with non-events. The next state of each
variable within avector_event expression must be equal to the previous state of the same
variable in the subsequerictor_event expression.

Version 1.0.10 Advanced Library Format (ALF) Reference Manual 139

Library Format Specification Modeling with Vector Expressions

Example:
01A->10B===01A&11B->11A&10B

A vector expression for a complete event report in compact form resembles the VCD, whereas
the verbose form looks like the test pattern.

/I compact form
?LE->01A&X0D->10B->10C->10A->01A
->10A&01B&01C->01A->10E
->10B&10C->10A&01D

/I verbose form
20A&?1B&?1C&?XD&?1E->
01A&11B&11C&X0OD&11E->
11A&10B&11C&00D & 11 E->
11A&00B&10C&00D & 11 E->
10A&00B&0O0OC&0O0D & 11E->
01A&00B&00C&0O0D &11E->
10A&01B&01C&0O0D&11E->
01A&11B&11C&00D&11E->
11A&11B&11C&00D & 10 E->
11A&10B&10C&00D & 00 E->
10A&00B&0O0OC&01ID&O0OE

The transformation rule must be slightly modified in case the compact form contains a
vector_event expression consisting only of non-events. By definition, the non-event is true
only if a real event happens simultaneously with the non-event. Paddingdipr sevent

expression consisting of non-events with other non-events makes this impossible. Rather, this
vector_event expression should be padded up with unspecified events, using the “?7?”
operator. Eventually, unspecified events can be further transformed into partly specified
events, if a former or future state of the involved variable is known.

Example:

01A->00B===01A&00B->??A&00B

===01A&00B->1?A&00B
In the first transformation step, the unspecified event “?? A” is introduced. In the second step,
this event becomes partly specified. “?? A” is bound to be “1? A” due to the previous event on
A.

3.12.8 Unspecified simultaneous events within scope

Variables which are within the scope of the vector expression yet do not appear in the vector
expression can be used to pad up the vector expression with unspecified events as well. This is
equivalent to omitting them from the vector expression.

Example:

01 A->10B /Iletus assume a scope containing A, B, C, D, E

0lA&10B&??C&??D&??E->11A&10B&??C&??D&??E

140 Advanced Library Format (ALF) Reference Manual Version 1.0.10

Modeling with Vector Expressions Library Format Specification

This definition allows unspecified events to ocsumultaneouslyvith specified events or
specified non-events. However, it disallows unspecified events to iocbatweerspecified
events or specified non-events.

At first sight, this distinction seems to be arbitrary. Why not disallow unspecified events
altogether? Yet there are several reasons why this definition is practical:

If a vector expression disallows simultaneously occuring unspecified events, the application

tool has the burden not only to match the pattern of specified events with the event report but
also to check whether the other variables remain constant. Therefore it is better to specify this
extra patttern matching constraint explicitely in the vector expression, using the “?-" operator.

There are many cases where it actually does not matter whether simultaneously occuring
unspecified events are allowed or disallowed:

» Case 1: Simultaneous events are impossible by design. For instance, in a flipflop it is
impossible that a triggering clock edge “01 CK” and a switch of the data output “?! Q”
happen at the same time. Therefore such events will not be in the event report. It makes no
difference whether to specify “01 CK & ?- Q" or “01 CK & ?? Q“ or “01 CK*. The only
occuring event pattern will be “01 CK & ?- Q”, and this pattern can be reliably detected by
specifying “01 CK".

» Case 2: Simultaneous events are prohibited by design. For instance, in a flipflop with pos-
itive setup time and positive hold time, the triggering clock edge “01 CK” and a switch of
the data input “?! D” is a timing violation. A timing checker tool needs the violating pat-
tern specified explicitely, i.e. “01 CK & ?! D”. In this context it makes sense to specify the
non-violating pattern also explicitely, i.e. “01 CK & ?- D”. The pattern “01 CK” by itself
is not applicable.

» Case 3: Simultaneous events do not occur in correct design. For instance, power analysis
of the event “01 CK” needs no specification of “?! D” or “?- D”. In the analysis of an event
report with timing violations, the power analysis will be less accurate anyway. In the anal-
ysis of the event report for the design without timing violation, the only occuring event
pattelrn will be “01 CK & ?- D”, and this pattern can be reliably detected by specifying “01
CK".

» Case 4: The effects of simultaneous events are not modeled accurately. This is the case in
static timing analysis and also to some degree in dynamic timing simulation.
For instance, a NAND gate may have the inputs A and B and the output Z. The event
sequence exercising the timing arc “01 A -> 10 Z” can only happen if B is constant 1. No
event on B can happen in-between “01 A” and “10 Z".
Likewise, the timing arc “01 B -> 10 Z” can only happen if A is constant 1 and no event
happens in-between “01 B” and “10 Z".
The timing arc with simultaneously switching inputs is commonly ignored. A tool
encountering the scenario “01 A & 01 B -> 10 Z” has no choice other than treating it arbi-
trarily as “01 A->10Z2"or as “01 B ->10 Z".

» Case 5: The effects of simultaneous events are modeled accurately. Here it makes sense to

1. The power analysis tool related to a timing constraint checker in a similar way as a parasitic extraction tool
relates to a DRC tool. If the layout has DRC violations, for instance shorts between nets, the parasitic extraction
tool will report inaccurate wire capacitance for those nets. After final layout, the DRC violations will be gone
and the wire capacitance will be accurate.

Version 1.0.10 Advanced Library Format (ALF) Reference Manual 141

Library Format Specification Modeling with Vector Expressions

specify all scenarios expliciely, ie.

“01A&?-B->102Z2",“01 A&?'B->102","“?- A&01B->10 Z"etc., whereas the pat-
terns “01 A ->10 Z” and “01 B -> 10 Z” by themselves apply only for less accurate analy-
sis (see case 4).

There is also a formal argument why unspecified events on a vector expression should be
allowed rather than disallowed. Let us consider the following vector expressions within in the
scope of two variables A and B.

01A (i)

01B (i)

01 A &O01B (i
One would naturally interpret (iii) === (i) & (ii). This interpretation is only possible by
allowing simultaneously occuring unspecified events.

Allowing simultaneously occuring unspecified events, the vector expressions (i) and (ii),
respectively, are interpreted as follows:

01 A & ?? B()

22 A & 01 B(ii)
Disallowing simultaneously occuring unspecified events, the vector expressions (i) and (ii),
respectively, are interpreted as follows:

01 A & ?- B(i")

?- A & 01 B(ii”)
The vector expressions (i') and (ii") are compatible with (iii) whereas (i) and (ii”") are not.

3.12.9 Simultaneous event sequences

The semantic meaning of the “simultaneous event operator” can be extended to describe
simultaneously occuringvent sequencely introducing the following definition:

(01 A#1 ..-> ... 01 A#N) & (01 B#1 .. -> ... 01 B#N)

=== 01 A#1 & 01 B#1 ... -> ... 01 A#N & 01 B#N
This definition is analogous to scalar multiplication of vectors with the same number of indices.
The number of indices corresponds to the numbescddr_event — expressions separated by
“->” operators. If the number of “->” in both vector expressions is not the same, the shorter
vector expression can be left-extended with unspecified events, using the “??” operator, in
order to align both vector expressions.

Example:

(01 A->01B->01C)& (01D ->01E)
===(01A->01B->01C) & (?? D ->01 D -> 01 E)
===01A&??D->01B&01D->01C&O1E
===01A->01B&01D->01C&0LE

142 Advanced Library Format (ALF) Reference Manual Version 1.0.10

Modeling with Vector Expressions Library Format Specification

The easiest way to understand the meaning of “simultaneous event sequences” is to consider
the event report in test pattern format. If eastior_event_sequence expression matches
the event report in the same time window, then the event sequences happen simultaneously.

tme A B C D E
0 01 1 X 1
109 1 1 1 0 1
258 1 0 1 0 1
573 1 0 0 0 1
586 0 0 0 0 1
643 1 0 0 0 1
788 0 1 1 0 1
915 1 1 1 0 1
1062 1 1 1 0 O
1395 1 0 0 0 O
1640 0 0 0 1 O
Example:
01A->10B===01A&11B->11A&10B (10a)
X0D->00D (10b)
(01 A->10B) & (X0 D -> 00 D) (10) === (10a) & (10b)
Both (10a) and (10b) are true at time 258. Therefore (10) is true at time 258.
10 C ===
??2C->??C->10C ===
?7?2C->?1C->10C (11a)
01A->00D->11E ===
01A&00D&??E
>??A&00D&??E
>??A&??D&I11E
01A&00D&??E
>1?A&00D&?1E
>??A&0?D&I11E (11b)
10C & (0L A->00D -> 11 E) (11) === (11a) & (11b)

(11a) is left-extended to match the length of (11b). (11b) contains explicitly specified non-
events. The non-event “00 D” calls for the unspecified events “?? A” and “?? E”. The non-event
“00 E” calls for the unspecified events “?? A” and “?? D”. By propagating well-specified
previous and next states to subsequent events, some unspecified events become partly
specified.

(11a) is true at time 573 and at time 1395. (11b) is true at time 573 and at time 915. Therefore
(11) is true at time 573.

3.12.10 Implicit local variables

Until now, vector expressions are evaluated against a complete event report containing all
variables within the scope of a cell. This is useful for small cells, since only one event report
with the history of the longest vector expression needs to be established per cell. At most there
could be two event queues, if the set of variables for BEHAVIOR (scope=behavior) and

Version 1.0.10 Advanced Library Format (ALF) Reference Manual 143

Library Format Specification Modeling with Vector Expressions

VECTOR (scope=measure) was different. For complex cells and megacells, it is necessary to
change the scope of event observation, dependent on operation modes. Different modes may
require a different set of variables to be observed in different event reports.

The following definition allows t@xtendthe scope of a vector expression locally:

» Edge operators apply not only to variables but also to boolean expressions involving those
variables. Those boolean expressions reprasgticit local variableswhich are visible
only within the vector expression where they appear.

Let us insert the local variablés & B) , (A | B) into the event report:

tme A B C D E A&B A|B
0 0 1 1 X 1 0 1
109 1 1 1 0 1 1 1
258 1 0 1 0 1 0 1
573 1 0 0 0 1 0 1
586 0 0 0 0 1 0 0
643 1 0 0 0 1 0 1
788 0 1 1 0 1 0 1
915 1 1 1 0 1 1 1
1062 1 1 1 0 O 1 1
1395 1 0 0 0 O 0 1
1640 0 0 0 1 O 0 0
Example:
01 (A &B) (12)
10 (A | B) (13)
01(A&B)->10B (14)
10(A&B)&10B->10C (15)
10 (A&B)->10 (A|B) (16)

(12) is true at time 109 and at time 915. (13) is true at time 586 and at time 1640. (14) is true
at time 258. (15) is true at time 573. (16) is true at time 1640.

3.12.11 Conditional event sequences

The following definition allows teestrictthe scope of a vector expression locally:

» vector_boolean_and , also called “conditional event operator”
This operator is defined between a vector expression and a boolean expression, using the
overloaded symbol “&” or “&&”. The scope of the vector expression is restricted to the
variables and eventual implicit local variables appearing within that vector expression.
The boolean expression must be true during the entire vector expression. The boolean
expression is calleBxistence Conditionf the vector expression.

» \ector expressions using the conditional event operator are called
vector_conditional_event expressions.

1. An Existence Condition may also appear as annotation to a VECTOR object instead of appearing in
the vector expression. The purpose is to enable recognition of existence conditions by application
tools which can not evaluate vector expressions (e.g. static timing analysis tools). However, for tools
which can evaluate vector expressions, there is no difference between existence condition as a co-
factor in the vector expression or as annotation.

144 Advanced Library Format (ALF) Reference Manual Version 1.0.10

Modeling with Vector Expressions Library Format Specification

Example:

(10(A&B)->10(A|B) &!D (17)
(17) contains the same vector expression as (16). However, although (16) is not true at time
587, (17) is true at time 586, since the scope of observation is narrowéd‘s’,'“ (A&B) “,

“(A|B) *“ by the existence conditionD “, which is statically true while the specified event
sequence is observed.

Within and only within the narrowed scope of tleetor_conditional_event expression,
(17) can be considered equivalent to the following:
(10 (A&B)->10(A|B)) &!D

(10 (A & B) -> 10 (A | B)) & (11 (ID) -> 11 ('D))

10 (A & B) & 11 (ID) -> 10 (A | B) & 11 (ID)
The transformation consists of the following steps:

» Step 1: transform the boolean condition into a non-event.

For example, “ID” becomes “11 (!D)”
o Step 2: left-extend theector_single_event expression containing the non-event in

order to match the length of thector_complex_event expression.

For example, “11 (ID)” becomes “11 (!D) -> 11 (ID)" because of

“10 (A&B) -> 10 (A|B)"
» Step 3: apply scalar multiplication rule for simultaneously occuring event sequences.
Thus avector_conditional_event expression can be transformed into an equivalent
vector_complex_event expression, but the change of scope must be kept in mind. In the
sequel an operator will be introduced which will allow to express the change of scope in the
vector expression language. This will make the transformation more rigorous.

Regardless of scope, the transformation frentor_conditional_event expression to
vector_complex_event expression also provides means of detecting ill-specified
vector_conditional_event expressions.

Example:
(10A->01B->01A)&A

10A&11A->01B&11A->01A&11A
The first expressiomd A& 11 A " and the third expressionf'A& 11 A " within the

vector_complex_event expression are contradictory.
Hence thevector_conditional_event expression can never be true.
3.12.12 Alternative conditional event sequences

All vector_binary ~ operators, in particular thector_or operator, can be applied to
vector_conditional_event expressions as well aswector_complex_event expressions.

Version 1.0.10 Advanced Library Format (ALF) Reference Manual 145

Library Format Specification Modeling with Vector Expressions

Consider again the event report:

tme A B C
0
109
258
573
586
643
788
915
1062
1395
1640
Concurrent alternativeector_conditional_event expressions can be paraphrased in the

following way:

IF <boolean_expressign THEN <vector_expressigh
OR IF <boolean_expressign THEN <vector_expressign
... OR IF <boolean_expressjgn THEN <vector_expressigp

The conditions may be true within overlapping time windows and hence the vector expressions
are evaluated concurrently. Tietor_boolean_and operator andector_or operator are
used in ALF to describe such vector expressions.

Example:
C&(01A->10B)|'D&(10B->10A)|E&(10B->10C) (18)

(18) is true at time 258 because af& (01 A -> 10 B)

at time 586 because ab‘& (10 B -> 10 A) ,
at time 573 because of & (10 B -> 10 C) “

Prioritized alternativeector_conditional_event expressions can be paraphrased in the
following way:

IF <boolean_expressign THEN <vector_expressigh

ELSE IF <boolean_expressgnTHEN <vector_expressigh

... ELSE IF <boolean_expressjgpn THEN <vector_expressiqp»

(optional) ELSE <vector_expressi,i©

Only the vector expression with the highest priority true condition is evaluated. The
boolean_cond oOperator an@loolean_else operator are used in ALF to escribe such vector
expressions.

OFRPFPRORFRORERERRERO
OOrRRLPRRLROOOOR R
OOrRRLRRLROOORR R
POOOOOOOOO XU
QOO RRPRREPRPREPE LM

Example:
C?(01A->10B):'D?(10B->10A):E?(10B->10C) (19)
The prioritized alternative vector_conditional_event expression can be transformed into
concurrent alternative vector_conditional_event expression as shown:
C?(01A->10B):!D?(10B->10A):E? (10 B -> 10 C)

C & (01 A ->10 B)
|IC & !D & (10 B -> 10 A)
| IC & !(ID) & E & (10 B -> 10 C)

146 Advanced Library Format (ALF) Reference Manual Version 1.0.10

Modeling with Vector Expressions Library Format Specification

(19) is true at time 258 because af& (01 A -> 10 B)
but not at time 586 because of higher priority While “I!D & (10 B -> 10 A)
nor at time 573 because of higher priority “while “E & (10 B -> 10 C)

3.12.13 Change of scope within a vector expression

Conditions on vector expressions redefine the scope of vector expressions locally. The
following definition allows to change the scope even within a part of a vector expression. For
this purpose, the symbolic state “*” is introduced, which means “don’t care about events”. This
is different from the symbolic state “?” which means “don’t care about state”. When state of
a variable is “*”, arbitrary events may occur on that variable which are all disregarded.

* edge operator with “*” as next state.
The variable to which the operator applies is no longer within the scope of the vector
expression from now on.

* edge operator with “*” as previous state.
The variable to which the edge operator applies is within the scope of the vector expres-
sion from now on.

As opposed to “?”, “*” stand for an infinite variety of possibilies.
Example:
Let “A” be a logic variable with the possible states “1”, “0”, “X".

*0 A ===

O0A|10A|X0A

|O0OA->00A|10A->00A|X0A->00A

|01LA->10A|11A->10A|X1A->10A

|OXA->X0OA|1XA->X0A|XXA->X0A

|00A->00A->00A] ...

0* A ===

00 A|0LA|OXA

|O0A->00A|00A->01A|00A->0XA

|0LA->10A|01A->11A|01A->1XA

|OXA->X0OA|O0XA->X1LA|0XA->XXA

|00A->00A->00A] ...
A vector expression with an infinite variety of possible event sequences cannot be directly
matched with an event report. However, there are feasable ways to implement event sequence
detection involving “*”. In principle there is a “static” and “dynamic” way. Let us name the
parts of the vector expression spearated bysUfi-sequencesf events.

» “Static” event sequence detection with “*":
The event report with all variables may be maintained, but certain variables will be
masked for the purpose of detection of certain sub-sequences.

* “Dynamic” event sequence detection with “*”:
The event report will contain the set of variables necessary for detection of a relevant sub-
sequence. When such a sub-sequence is detected, the set of variables in the event report
will change until the next sub-sequence is detected etc.

Version 1.0.10 Advanced Library Format (ALF) Reference Manual 147

Library Format Specification Modeling with Vector Expressions

Let us again use the event report for illustration of the following examples.

tme A B C
0

109
258
573
586
643
788
915
1062
1395
1640

Examples:
01A->1*B->10C (20)
(20) is true at time 573. The first sub-sequer@eA ->1*B “is detected at time 258.

From time 258 onwards, B is masked. The second sub-sequdéh€e™is detected at time
573.

01A&1*E->10C (21)
(21) is true at time1395. The first sub-sequence “01 A & 1* E* is detected at time 109. From
time 109 onwards, E is masked. The event on B at time 258 aborts continuation of the detection
process and triggers restart from the beginning. The first sub-sequence is detected again at time
915. From time 915 onwards, E is masked. The second sub-sequence “10 C* is detected at time
1395.

01A->*1B->10C (22)
(22) is true at time 1395. The first sub-sequence “01 A“ is detected at time 109. The event on
C at time 573 does not satisfy the second subsequence, since B=0. Therefore the detection

process restarts from the beginning. The first sub-sequence “01 A* is detected again at time
109. The second sub-sequence “*1 B -> 10 C" is detected at time 1395.

01A->0*B&1*E->10C (23)
(23) is not true at any time. The event “01 A" is detected at time 109. The event on B at time
258 does not satisfy the first sub-sequence “01 A -> 0* B & 1* E“. Therefore the detection
process restarts from the beginning. The event “01 A” is detected again at time 915. The event
on E at time 1062 does also not satisfy the first sub-sequence. The event “01 A* does not occur
again.

D
X
0
0
0
0
0
0
0
0
0
1

OFRPRPRPRPRORORRREO
OORRPFRPROOOOR Rk
OORRLPRFRPROOORE R
COORRRRPREPRERRE LM

3.12.14 Sequences of conditional event sequences

The introduction of the symbol “*” allows to describe the scope of a vector expression directly
in the vector expression language. This is particulary useful for sequences of
vector_conditional_event expressions.

Let us reuse (17) as example:
(10(A&B)->10(A|B))&!D

148 Advanced Library Format (ALF) Reference Manual Version 1.0.10

Modeling with Vector Expressions Library Format Specification

The scope the sample event report contains contain the variables A, B, C, D, E. The
vector_conditional_event expression (17) contains only the variables A, B, D and the
implicit local variables A&B, A|B. Therefore the global variables C, E are out of scope within
(17). The implicit local variables A&B, A|B are in scope within and only within (17).

Now let us consider sequencef vector_conditional_event expressions, where variables
move in and out of scope. With the following formalism it is possible to transform such a
sequence into an equivalemttor_complex_event expression, allowing for a change of

scope within eactector_conditional_event expression.
<vector_conditional_event#1> .. -> .. <vector_conditional_event#N>
where
<vector_conditional_event#i>
=== <vector_complex_event#i> & <boolean_expression#i>// 1 <i <N
The principle is to decompose eaehtor_conditional_event expression into a sequence

of three vector expressiopsefix, kerne| andpostfixand then to reassemble the decomposed
expressions.

<vector_conditional_event#i>
=== <prefix#i> -> <kernel#i> -> <postfix#i>// 1 <i <N
» Step 1. Define the prefix for eagdttor_conditional_event expression.
Theprefixis avector_event expression introducing all implicit local variables.
Example:
*? (A&B) & *? (A|B)

» Step 2: Define the kernel for eagfttor_conditional_event expression.
Thekernelis thevector_complex_event expression equivalent to the
vector_conditional_event expression.

<vector_complex_event#i> & <boolean_expression#i>

=== <vector_complex_event#i>

& (11 <boolean_expression#i> ..->.. 11 <boolean_expression#i>)
The kernel may consist of one or several alternativer_event_sequence expressions.
Within eachvector_event_sequence expression, the same set of global variables are pulled
out of scope at the firstctor_event expression and pushed back in scope at the last
vector_event expression.

Example:

?* C & ?* E // global variables out of scope
& 10 (A&B)&11('D)->10(A|B) & 11 (D)
& *? C & *? E// global variables back in scope

» Step 3: Define the postfix for eaadttor_conditional_event expression.
Thepostfixis avector_event expression removing all implicit local variables.

Example:
?* (A&B) & ?* (A|B)

Version 1.0.10 Advanced Library Format (ALF) Reference Manual 149

Library Format Specification Modeling with Vector Expressions

» Step 4: join the subsequesrttor_complex_event expressions with thector_and
operator between prefix#i+1land kernel#i and also between postfix#i and kernel#i+1.

.. <vector_conditional_event#i> -> <vector_conditional_event#i+1> ..
===.. <prefix#i>

-> <postfix#i-1> & <kernel#i> & <prefix#i+1>

-> <postfix#i> & <kernel#i+1> & <prefix#i+2>

-> <postfix#i+1> ..

Example:
(10(A&B)->10(A|B) &!D

*? (A&B) & *? (A|B)

>?*C&?*E

& 10 (A &B) & 11 (ID) -> 10 (A | B) & 11 ('D)

&*? C&*?E

-> ?* (A&B) & ?* (A|B)
Note that the in-and-out-of-scope definitions for global variables are within the kernel, whereas
the in-and-out-of-scope definitions for global variables are within prefix and postfix. In this
way, the resultingector_complex_event expression contains the same uninterrupted
sequence of events as the original sequeneecof_conditional_event expressions.

3.12.15 Incompletely specified event sequences

So far the vector expression language has provided suppodnipletely specified event
sequenceand also the capability to put variables temporarily in and out of scope for event
observation. As opposed to changing the scope of event obserirat@npletely specified

event sequencesquire continuous observation of all variables while allowing the occurence
of intermediate events between the specified events. The following operator is introduced for
that purpose:

* vector_followed_by , also called “followed-by operator” using the symbol “~>
The “~>" operator is the separator between consecutively occuring events with possible
unspecified events in-between.

Detection of event sequences involving “~>" requires detection of the sub-sequence before
“~>" setting a flag, detection of the sub-sequence after “~>" and clearing the flag.

This can be illustrated with our sample event report:

tme A B C
0

109
258
573
586
643
788
915
1062
1395
1640

/I 01 A detected, set flag
/110 C detected, clear flag
/I 01 A detected, set flag
/I 01 A detected again

/110 C detected, clear flag

ORPrPFRPRPRORFRORRERERO
OCOR PR OO0OOOR
OCORRLPRPROOORR R
POOOOOOOOO XU
COoOOoORrRPRRLRREPERE M

150 Advanced Library Format (ALF) Reference Manual Version 1.0.10

Modeling with Vector Expressions Library Format Specification

Example:

01A~>10C (24)
/I as opposed to:01 A->10C (5)

(24) is true at time 573 because of “01 A” at time 109 and “10 C” at time 573. It is true again
at time 1395 because of “01 A” at time 643 and “10 C” at 1395. On the other hand, (5) is never
true because there are always events in-between “01 A” and “10 C”.

Vector expressions consistingwettor_event — expressions separated by “->”" or by “~>" are
calledvector_event_sequence expressions, using the same syntax rules for the two different
vector_followed_by operators. Consequently, all vector expressions involving
vector_event_sequence expressions angkctor_binary ~ operators are called
vector_complex_event expressions.

However, only a subset of the semantic transformation rules can be applied to vector
expressions containing “~>".

Associative rule applies for both “->" and “~>".
(01A~>01B)~>01C===01A~>(01C~>01B~>01C)
(01LA->01B)->01C===01A->(01C->01B->01C)
(01A~>01B)->01C===01A~>(01C~>01B->01C)
(01A->01B)~>01C===01A->(01C->01B~>01C)

Distributive rule applies for for both “->” and “~>".
(01A|01B)->01C===01A~>01C|01B->01C
(0LA|01B)~>01C===01A~>01C|01B~>01C
(01A|01B)->01C===01A~>01C|01B->01C

Scalar multiplication rule applies only for “->". The transformation involving “~>" is more

complicated.

(01 A->01B) & (01 C -> 01 D)
=== (01 A& 01 C) -> (01 B & 01 D)

(01 A~>01B)& (01 C->01D)

=== (01 A& 01 C) -> (01 B & 01 D)

| 01A~>01C->(01B&01D)

(01 A~>01B)& (01 C~>01D)

=== (01 A& 01 C)~> (01 B & 01 D)

| 01A~>01C~>(01B&01D)

| 01C~>01A~>(01B&O01D)
Transformation ofector_conditional_event expressions int@ector_complex_event
expressions applies only for “->".

(0OLA->01B)&C
===01A&11C->01B&11C

(0OLA~>01B)&C
=== 01A&11C~>01B&11C

Since the “~>" operator allows intermediate events, there is no way to express the continuosly
true condition “C”.

Version 1.0.10 Advanced Library Format (ALF) Reference Manual 151

Library Format Specification Modeling with Vector Expressions

3.12.16 Well-specified vector expressions
By defining semantics for

q alternativevector_event_sequence expressions
and establishing calculation rules for

q transformingvector_complex_event expressions into alternative
vector_event_sequence expressions

and for
q transforming alternativeector_conditional_event expressions into alternative
vector_complex_event expressions,
semantics are now defined for all vector expressions.

As we have seen foector_conditional_event expressions, the calculation rules also
proide means to determine whether a vector expression is well-specified or ill-specified. An ill-
specified vector expression is contradictory in itself and can therefore never be true.

Once a vector expression is reduced to a set of alternatiee event_sequence
expressions, two criteria define whether a vector expression is well-defined or not.

» Compatibility between subsequent events on the same variable:
Next state of earlier event must be compatible with previous state of laterTgvient.
check applies only if no “~>" operator is found between the events.
* Compatibility between simultaneous events on the same variable:
Both previous and next state of both events must be compatible. Such events commonly
occur as intermediate calculation results within vector expression transformation.

The following compatibility rules apply:

« “?”is compatible with any other state. If the other state is “*”, the resulting state is “?”.
Otherwise, the resulting state is the other state.

e s compatible with any other state. Resulting state is the other state.

* Any other state is only compatible with itself.

Examples:
01A->01B->10A

The next state of “O1 A” is compatible with the previous state of “10 A”
OXA->01B->10A

The next state of “OX A” is not compatible with the previous state of “10 A”
OXA~>01B->10A

Compatibility check does not apply, since intermediate events are allowed.
01A&10A

Both previous and next state of “A” are contradictory and result in an impossible event.
?21A&1? A

Both previous and next state of “A” are compatible and result in the non-event “11 A”.

152 Advanced Library Format (ALF) Reference Manual Version 1.0.10

Section 4
Applications

This section shows various examples of library elements modeled using ALF.

4.1 Truth Table vs Boolean Equation

A combinational logic cell and a sequential logic cell are shown below using two different
constructs - truth table and boolean equation.

4.1.1 NAND gate

A 2-input NAND gate library cell can be modeled as shown belowFUReTIONof the cell
can be modeled either aSBATETABLEOr asBEHAVIORUSING a boolean equation.

Modeling a NAND gate using truth table:

CELL ND2 { /* 2 input NAND gate */
PIN a {DIRECTION=input;}
PIN b {DIRECTION=input;}
PIN z {DIRECTION=output;}

FUNCTION {
STATETABLE {
ab:z;
0?2:1;
17?:(b);

}
)

Modeling a NAND gate using boolean expression:

CELL ND2 { /* 2 input NAND gate */
PIN a {DIRECTION=input;}
PIN b {DIRECTION=input;}
PIN z {DIRECTION=output;}

FUNCTION {
BEHAVIOR {
z=1(a&&h);
}

Version 1.0.10 Advanced Library Format (ALF) Reference Manual 153

Applications Use of primitives

4.1.2 Flipflop

A flipflop with asynchronous set and clear signals is shown below using truth table.

CELL FLIPFLOP {
PIN CLEAR {DIRECTION=input; SIGNALTYPE=clear; POLARITY=low;}
PIN SET {DIRECTION=input; SIGNALTYPE=set; POLARITY=low;}
PIN CLOCK {DIRECTION=input; SIGNALTYPE=clock; POLARITY=rising_edge;}
PIN D {DIRECTION=input;}
PIN Q {DIRECTION=output;}

FUNCTION {
...[* One of the descriptions below go here */
}
}
STATETABLE {
CLEARSETCLOCK DQ:Q;
0 ? ?? ?7?:0;
1 0 ?? ??:1
1 1 01 ?7?:(d);
1 1 1? ?7?:(q);
1 1 ?0 ?7?:(q);
}
Modeling a flipflop with asynchronous set and clear using boolean expression:
BEHAVIOR {

@(ICLEAR) {Q = 0;} : (!SET) {Q = 1;} : (01 CLOCK) {Q = D}}
}

4.2 Use of primitives

The functionality of a cell can be described using instances of other cells.

421 D-Flipflop with asynchronous clear

CELL d_flipflop_clr {
PIN cd {DIRECTION=input; SIGNALTYPE=clear; POLARITY=low;}
PIN cp {DIRECTION=input; SIGNALTYPE=clock; POLARITY=rising_edge;}
PIN d {DIRECTION=input;}
PIN q {DIRECTION=output;}
FUNCTION {
...[* One of the descriptions below go here */
}
}

Explicit description does not use instances of other cells defined in the library:

BEHAVIOR {
@(01 cp && cd) {q =d;}
@(lcd) {q = 0;}

154 Advanced Library Format (ALF) Reference Manual Version 1.0.10

Use of primitives Applications

Use of primitives permit derivation of new cells from other cells. Below, a D-Flipflop with
asynchronous clear is derived from a predefimegd FLIPFLOP with asynchronous set and
clear (see Section 4.1.2):

BEHAVIOR {
ALF_FLIPFLOP {CLOCK=cp; D=d; Q=q; SET="00; CLEAR=!cd;}
}

4.2.2 JK-flipflop

This example shows three ways of modeling a JK-Flipflop.

CELL jk_flipflop {
PIN cp {DIRECTION=input; SIGNALTYPE=clock; POLARITY=rising_edge;}
PIN j {DIRECTION=input;}
PIN k {DIRECTION=input;}
PIN g {DIRECTION=output;}

FUNCTION {
...[* One of the descriptions below go here */
}
}
Explicit description:
BEHAVIOR {
d=
(j&& k) ?0:
(j&&'K)?1:
(j&&k)?1(q):
(j && k) ? (q) :
'bx ;
@(01cp){g=dj}
}
Use of primitives (using predefinedF_mMuXxandALF_FLIPFLOP):
BEHAVIOR {
ALF_MUX {Q=d DO=j D1=!k SELECT=q}
ALF_FLIPFLOP {CLOCK=cp D=d Q=q SET='b0 CLEAR='b0}
}
Use of a hybrid form (boolean expressions within primitive instantiation):
BEHAVIOR {
ALF_FLIPFLOP {CLOCK=cp; D=q ? k : j; Q=q; SET="b0; CLEAR='b0;}
}
Use of truth table:
STATETABLE {
cpjka:(q);
01007?:(q);
01017?:0;
01107?:1;
01117?:(q);
1?7?27?27?:(9);
?20?7?27?:(0);
}

Version 1.0.10 Advanced Library Format (ALF) Reference Manual 155

Applications Use of primitives

4.2.3 D-Flipflop with synchronous load and clear

This example shows two different models of a synchronous D-Flipflop.

CELL d_flipflop_Id_clr{
PIN cs {DIRECTION=input; SIGNALTYPE=clear;
POLARITY=low; ACTION=synchronous;}
PIN Is {DIRECTION=input;}
PIN cp {DIRECTION=input; SIGNALTYPE=clock; POLARITY=rising_edge;}
PIN d {DIRECTION=input;}
PIN q {DIRECTION=output;}
FUNCTION{ ... }

}
Explicit description:
BEHAVIOR {
di=(s)?d:q;
d2 =d1 && cs;
@(01 cp) {q =d2}
}
Use of primitives:
BEHAVIOR {
ALF_MUX {Q=d1; DO=q; D1=d; SELECT=Is;}/* Connection by pin name */
ALF_AND {d2 d1 cs} [* Connection by pin order */
ALF_FLIPFLOP {CLOCK=cp; D=d2; Q=q; SET='b0; CLEAR="bO; }
}

4.2.4 D-Flipflop with input multiplexor

This example shows three different modeling styles for a D-flipflop with input multiplexor,
asynchronous set and asynchronous clear:

CELL d_flipflop_mux_set_clr {
PIN sel {DIRECTION=input;}
PIN sd {DIRECTION=input; SIGNALTYPE=set; POLARITY=low;}
PIN cd {DIRECTION=input; SIGNALTYPE=clear; POLARITY=low;}
PIN cp {DIRECTION=input; SIGNALTYPE=clock; POLARITY=rising_edge;}
PIN d1 {DIRECTION=input;}
PIN d2 {DIRECTION=input;}
PIN g {DIRECTION=o0utput;}
FUNCTION{ ...}

}
Explicit description:
BEHAVIOR {
@('cd) {q = 0}

@('sd && cd) {g = 1;}
@(01 cp && cd && sd) {q = (sel)? d1: d2;}

156 Advanced Library Format (ALF) Reference Manual Version 1.0.10

Use of primitives Applications

More efficient description can be created using if-then-else style:

BEHAVIOR {
@(lcd) {q = 0}
((Isd) {g =1}
(01 cp){g = (sel)? d1: d2;}
}
Use of primitive:
BEHAVIOR {
ALF_FLIPFLOP {CLOCK=cp D=((sel)? d1: d2) Q=q SET=!sd CLEAR=!cd}
}

Note that the use @fLF_MuUXxprimitive is eliminated by using an assignment expression to D
input iNALF_FLIPFLOP instance.

425 D-latch

This example shows a level-sensitive cell in two different styles.

CELL d_latch {
PIN g {DIRECTION=input; SIGNALTYPE=clock; POLARITY=high;}
PIN d {DIRECTION=input;}
PIN q {DIRECTION=output;}
FUNCTION{ ... }

}
Explicit description:

BEHAVIOR {
\ @(9){q=d3}

Use of primitive:

BEHAVIOR {
ALF_LATCH {ENABLE=g; D=d; Q=q; SET='b0; CLEAR='00;}
}

4.2.6 SR-latch

The example below shows how some of the input pins can be left unconnected if they represent
don’t care situation.

CELL sr_latch {
PIN sn {DIRECTION=input; SIGNALTYPE=set; POLARITY=low;}
PIN rn {DIRECTION=input; SIGNALTYPE=clear; POLARITY=low;}
PIN q {DIRECTION = output;}
PIN gn {DIRECTION = output;}
FUNCTION{ ... }

}
Explicit description:

BEHAVIOR {
@ ('sn) {g ="'bl; gn =!rn;}
@ ('r) {an ='b1; g =!sn}

Version 1.0.10 Advanced Library Format (ALF) Reference Manual 157

Applications Use of primitives

Use of primitive:

BEHAVIOR {
ALF_LATCH {ENABLE='b0; Q=q; SET=Isn; CLEAR=!rn;}
}

SinceENABLEpIn is always set to, the connection abpin is irrelevant. Even is considered
'bX or'bz , the behavior will not change.

4.2.7 JTAG BSR

The following example shows a JTAG BSR cell with built-in scan chain.

CELL F10_18{
PIN SysOut {DIRECTION = output;}
PIN TDO {DIRECTION = output; SIGNALTYPE = scan_data;}
PIN Sysin {DIRECTION = input;}
PIN TDI {DIRECTION = input; SIGNALTYPE = scan_data;}
PIN Shift {DIRECTION = input; SIGNALTYPE = scan_enable;}
PIN Clk {DIRECTION = input; POLARITY = rising_edge;
SIGNALTYPE = master_clock;}
PIN Update {DIRECTION = input; POLARITY = rising_edge;
SIGNALTYPE = slave_clock;}
PIN Mode {DIRECTION = input; SIGNALTYPE = select;}
PIN STATEO { // This state is on the scan chain
SCAN_POSITION = 1; DIRECTION = output; VIEW = none;}
PIN STATEL {// NOT on scan chain (just update latch)
DIRECTION = output; VIEW = none;}
FUNCTION {
BEHAVIOR {
@ (01 CIk) {STATEO = Shift ? TDI : SysIn;}
@ (01 Update) {STATE1 = STATEO;}
TDO = STATEQ;
SysOut = Mode ? STATEL : Sysin;

}

428 Combinational Scan Cell

The following example shows a combinational scan cell with a reused primitive.

LIBRARY major_ASIC_vendor {
INFORMATION {
version =v2.1.0;
title = “0.35 standard cell”;
product = p35sc;
author = “Major Asic Vendor, Inc.”;
datetime = “Wed Jul 23 13:50:12 MST 19977,

}

CELL ND3A {
INFORMATION {
version = v6.0;
titte = “3 input nand”;

158 Advanced Library Format (ALF) Reference Manual Version 1.0.10

Use of primitives Applications

product = p35sc_lib;

author = “Joe Cell Designer”;

datetime = “Tue Apr 1 01:39:47 PST 19977,
}
PIN Z {DIRECTION=output;}
PIN A {DIRECTION=input;}
PIN B {DIRECTION=input;}
PIN C {DIRECTION=input;}
FUNCTION {

BEHAVIOR {

ALF_NAND {Z AB C}

}
}
/*fill in timing and power data for ND3A cell */

}

CELL ND3B {

PIN Z {DIRECTION=output;}
PIN A {DIRECTION=input;}
PIN B {DIRECTION=input;}
PIN C {DIRECTION=input;}
FUNCTION {

BEHAVIOR {

ALF_NAND {Z AB C}

}
}
/*fill in timing and power data for ND3B cell */

}

CELL SCAN_ND4 {
PIN Z {DIRECTION=output;}
PIN A {DIRECTION=input;}
PIN B {DIRECTION=input;}
PIN C {DIRECTION=input;}
PIN D {DIRECTION=input; SIGNALTYPE=scan_enable;}

SCAN_TYPE = control_0;
NON_SCAN_CELL = ALF_NAND {Z AB C}
FUNCTION {
BEHAVIOR {
Z=1(A &&B && C && D);
}

Version 1.0.10 Advanced Library Format (ALF) Reference Manual 159

Applications Use of primitives

4.2.9 Scan Flipflop

The following example shows a scan flipflop using the gemeRCFLIPFLOP primitive.
LIBRARY major_ASIC_vendor {

CELL F614 {

PIN HO1 {DIRECTION = input; SIGNALTYPE = data;}
PIN HO2 {DIRECTION = input; SIGNALTYPE = clock;}
PIN HO3 {DIRECTION = input; SIGNALTYPE = clear; POLARITY = high;}
PIN HO4 {DIRECTION = input; SIGNALTYPE = set; POLARITY = high;}
PIN NO1 {DIRECTION = output;

SCAN {SIGNALTYPE = data; POLARITY = non_inverted;}}
PIN NO2 {DIRECTION = output; POLARITY = inverted;}
FUNCTION {

BEHAVIOR {
ALF_FLIPFLOP {
D=H01; CLOCK=H02; CLEAR=H03; SET=H04;
Q=N01; QN=NO02; Q_CONFLICT='bX; QN_CONFLICT="bX;

}

CELL S000 {
PIN HO1 {DIRECTION = input; SIGNALTYPE = scan_data;}
PIN HO2 {DIRECTION = input; SIGNALTYPE = clock;
OFFSTATE = non_inverted;}
PIN HO3 {DIRECTION = input; SIGNALTYPE = scan_enable;
POLARITY = low;}
PIN HO4 (DIRECTION = input; SIGNALTYPE = set; POLARITY = high;}
PIN HO5 {DIRECTION = input; SIGNALTYPE = clear; POLARITY = high;}
PIN HO6 {DIRECTION = input; SIGNALTYPE = data;}
PIN NO1 {DIRECTION = output; SIGNALTYPE = data;
POLARITY = non_inverted;}
PIN NO2 {DIRECTION = output; POLARITY = inverted;}
FUNCTION{

BEHAVIOR{ // flipflop_d is an implicitely defined internal pin
ALF_MUX {Q=flipflop_d; DO=H06; D1=H01; SELECT=HO03;}
ALF_FLIPFLOP {

D=flipflop_d; CLOCK=H02; CLEAR=HO05; SET=H04;
Q=N01; QN=NO02; Q_CONFLICT='bX; QN_CONFLICT="bX;

}
}
SCAN_TYPE = muxscan,;
NON_SCAN_CELL =ALF_FLIPFLOP {D=H06; CLOCK=H02; CLEAR=HO05; SET=H04;
Q=NO01; QN=NO02; Q_CONFLICT="bX;
QN_CONFLICT="bX; 'b0=H03; 'b0=H01;}
} /1 HO3 and HO1 have no corresponding pin in ALF_FLIPFLOP

160 Advanced Library Format (ALF) Reference Manual Version 1.0.10

Use of primitives Applications

4.2.10 Quad D-Flipflop

The following example shows a quad D-Flipflop with and without built-in scan chain.

LIBRARY major_ASIC_vendor {
PRIMITIVE FFX4 {

PIN CK { DIRECTION = input; }

PIN DO { DIRECTION = input; }

PIN D1 { DIRECTION = input; }

PIN D2 { DIRECTION = input; }

PIN D3 { DIRECTION = input; }

PIN QO { DIRECTION = output; }

PIN Q1 { DIRECTION = output; }

PIN Q2 { DIRECTION = output; }

PIN Q3 { DIRECTION = output; }

FUNCTION {

BEHAVIOR {

ALF_FLIPFLOP {Q=Q0; D=D0; CLOCK=CK; SET='b0; CLEAR='b0;}
ALF_FLIPFLOP {Q=Q1; D=D1; CLOCK=CK; SET='b0; CLEAR='b0;}
ALF_FLIPFLOP {Q=Q2; D=D2; CLOCK=CK; SET='b0; CLEAR='b0;}
ALF_FLIPFLOP {Q=Q3; D=D3; CLOCK=CK; SET='b0; CLEAR='b0;}

}
}
CELL SCAN_FFX4 {
PIN OUTO {DIRECTION = output;}
PIN OUT1 {DIRECTION = output;}
PIN OUT2 {DIRECTION = output;}
PIN OUT3 {DIRECTION = output;}
PIN SO {DIRECTION = output; SIGNALTYPE = scan_data;}
PIN INO {DIRECTION = input; SIGNALTYPE = data;}
PIN IN1 {DIRECTION = input; SIGNALTYPE = data;}
PIN IN2 {DIRECTION = input; SIGNALTYPE = data;}
PIN IN3 {DIRECTION = input; SIGNALTYPE = data;}
PIN CLK {DIRECTION = input; SIGNALTYPE = clock;}
PIN SI {DIRECTION = input; SIGNALTYPE = scan_data;}
PIN SE {DIRECTION = input; SIGNALTYPE = scan_enable;}
PIN STATEO {SCAN_POSITION = 1; DIRECTION = output; VIEW = none;}
PIN STATE1 {SCAN_POSITION = 2; DIRECTION = output; VIEW = none;}
PIN STATE2 {SCAN_POSITION = 3; DIRECTION = output; VIEW = none;}
PIN STATE3 {SCAN_POSITION = 4; DIRECTION = output; VIEW = none;}
FUNCTION {
BEHAVIOR {
OUTO = STATEOQ; OUT1 = STATEL; OUT2 = STATE2; OUT3 = STATES;
SO = ISTATES;
@(01 CLK) {
STATEO = SE ? !SI : INO;
STATEL = SE ? ISTATEO : IN1;
STATE2 = SE ? ISTATEL : IN2;
STATE3 = SE ? ISTATE2 : IN3;

Version 1.0.10 Advanced Library Format (ALF) Reference Manual 161

Applications Templates and vector-specific models

}
}
SCAN_TYPE = muxscan;
NON_SCAN_CELL = FFX4 {CLK INO IN1 IN2 IN3 OUTO OUT1 OUT2 OUT3}

} // this example shows referencing by order

4.3 Templates and vector-specific models

43.1 Vector specific delay and power Tables

In this example, the use of vector specific models for input-to-output delay, output slewrate,
and switching energy is shown.

CELL nand2 {
PIN a {DIRECTION = input; CAPACITANCE = 0.02 {UNIT = pF;}}
PIN b {DIRECTION = input; CAPACITANCE = 0.02 {UNIT = pF;}}
PIN z {DIRECTION = output;}
FUNCTION {
BEHAVIOR {z = /(a && b); }

}
VECTOR (10 a -> 01 z){ /* Vector specific characterization */
DELAY {
UNIT = ns;

FROM {PIN = a; THRESHOLD = 0.4;}
TO {PIN = z; THRESHOLD = 0.6;}
HEADER {
CAPACITANCE {
PIN = z; UNIT = pF;
TABLE {0.01 0.02 0.04 0.08 0.16}

}
SLEWRATE {
PIN = a; UNIT = ns;
FROM {THRESHOLD = 0.5;}
TO {THRESHOLD =0.3;}
TABLE {0.1 0.3 0.9}
}
}
TABLE {
0.10.20.40.81.6
0.20.30.5091.7
0.4050.71.11.9
}
}
SLEWRATE {

PIN = z; UNIT = ns;
FROM {THRESHOLD = 0.3;}
TO {THRESHOLD = 0.5;}
HEADER ({
CAPACITANCE {
PIN = z; UNIT = pF;
TABLE {0.01 0.02 0.04 0.08 0.16}

162 Advanced Library Format (ALF) Reference Manual Version 1.0.10

Templates and vector-specific models Applications

}
SLEWRATE {

PIN = a; UNIT = ns;
FROM {THRESHOLD = 0.5;}
TO {THRESHOLD =0.3;}
TABLE {0.1 0.3 0.9}
}
}
TABLE {
0.10.20.40.81.6
0.10.20.40.81.6
0.2040.61.01.8
}
}
ENERGY {
UNIT = pJ;
HEADER ({
CAPACITANCE {
PIN = z; UNIT = pF;
TABLE {0.01 0.02 0.04 0.08 0.16}
}
SLEWRATE {
PIN = a; UNIT = ns;
FROM {THRESHOLD = 0.5;}
TO {THRESHOLD =0.3;}
TABLE {0.1 0.3 0.9}
}
}
TABLE {
0.21 0.32 0.64 0.98 1.96

0.22 0.33 0.650.99 1.97
0.310.420.74 1.08 2.06

}

}

VECTOR (01 a -> 10 z){
DELAY {...}
SLEWRATE{ ... }
ENERGY { ...}

}

VECTOR (10 b -> 01 z){
DELAY {...}
SLEWRATE{ ... }
ENERGY { ...}

}

VECTOR (01 b -> 10 z){
DELAY {...}
SLEWRATE{ ... }
ENERGY { ...}

Version 1.0.10 Advanced Library Format (ALF) Reference Manual 163

Applications Templates and vector-specific models

4.3.2 Use of TEMPLATE

Notice that the header for the delay, ramptime, and energy models was the same in the example
above. Therefore creating a template definition can eliminate duplicate information, reduce the
possibility of inadvertent errors, and make the models compact. For example, a header template
can be created as shown below:

TEMPLATE std_header_2d {
HEADER {
CAPACITANCE {
PIN = <out_pin>; UNIT = pF;
TABLE {0.01 0.02 0.04 0.08 0.16}

}

SLEWRATE {
PIN = <in_pin>; UNIT = ns;
FROM {THRESHOLD {RISE = 0.3; FALL =0.5;} }
TO {THRESHOLD {RISE = 0.5; FALL =0.3;} }
TABLE {0.1 0.3 0.9}

}

}

The use of EMPLATEeliminates the repetition of header information by rewriting the previous
example (only the first vector) as shown below.

DELAY {
UNIT = ns;
THRESHOLD {RISE=0.4; FALL=0.6;}
FROM {PIN = a;}
TO {PIN = z;}
std_header_2d { [* Template is used */
in_pin = a;
out_pin = z;
}
TABLE {
0.10.20.40.81.6
0.20.305091.7
0405071119
}
}
SLEWRATE {
PIN = z; UNIT = ns;
FROM {THRESHOLD {RISE = 0.3; FALL = 0.5;} }
TO {THRESHOLD {RISE = 0.5; FALL = 0.3;} }
std_header_2d { [* Template is used */
in_pin = a;
out_pin = z;
}
TABLE {
0.10.20.40.81.6
0.10.20.40.81.6
0204061018
}
}
ENERGY {
UNIT = pJ,;

164 Advanced Library Format (ALF) Reference Manual Version 1.0.10

Templates and vector-specific models Applications

std_header_2d { [* Template is used */
in_pin = a;
out_pin = z;
}
TABLE {
0.21 0.32 0.64 0.98 1.96
0.22 0.33 0.65 0.99 1.97
0.310.42 0.74 1.08 2.06

}
Note that the entire characterization model for Ciabhd2 is the same for each vector (i.e.
pair of input and output pins), so further efficiency can be achieved by defining the
characterization model itself as a template. This template definition uses the instantiation of the
previously defined header template.

TEMPLATE std_char_2d {
DELAY {
UNIT = ns;
THRESHOLD {RISE=0.4; FALL=0.6;}
FROM {PIN = <in_pin>; }
TO {PIN = <out_pin>; }
std_header_2d {
in_pin = <input_pin>;
out_pin = <output_pin>;
}
TABLE <delay_data>
}
SLEWRATE {
PIN = <out_pin>; UNIT = ns;
FROM {THRESHOLD {RISE = 0.3; FALL = 0.5;} }
TO {THRESHOLD {RISE = 0.5; FALL =0.3;} }
std_header_2d {
in_pin = <input_pin>;
out_pin = <output_pin>;
}
TABLE <slewrate_data>
}
ENERGY {
UNIT = pJ;
std_header_2d {
in_pin = <input_pin>;
out_pin = <output_pin>;
}
TABLE <energy_data>

Version 1.0.10 Advanced Library Format (ALF) Reference Manual 165

Applications Templates and vector-specific models

Now only the delay, slewrate and energy models contain specific data that is different for each
vector. All repetitive information is in the template definition. The characterization model can
be rewritten compactly as shown below:

std_char_2d {

in_pin = a;

out_pin = z;

delay_data {
0.10.20.40.81.6
0203050917
04050.71.119

}

slewrate_data {
0.10.20.40.81.6
0.10.20.40.81.6
0204061018

}

energy_data {
0.21 0.32 0.64 0.98 1.96
0.22 0.33 0.65 0.99 1.97
0.310.42 0.74 1.08 2.06

}

4.3.3 Vector description styles for timing arcs

In previous examples, the vectors were specified as timing arcs. This is not ambiguous, since
the sequence of transitions can only happen under one test condition.

VECTOR (10 a -> 01 z){
std_char_ 2d{...}
}

VECTOR (01 a -> 10 z){
std_char_ 2d{...}
}

VECTOR (10 b -> 01 z){
std_char_ 2d{...}
}

VECTOR (01 b -> 10 z){
std_char_ 2d{...}
}

166 Advanced Library Format (ALF) Reference Manual Version 1.0.10

Templates and vector-specific models Applications

An alternate way of describing the above vectors is to specify the input transition and the state
of the other input(s) which control the output transition.

VECTOR (10 a && b){
std_char_ 2d{...}

}

VECTOR (01 a && b){
std_char_ 2d{...}

}

VECTOR (10 b && a){
std_char 2d{...}

}

VECTOR (01 b && a){
std_char_2d{...}

}
A redundant yet safe way of vector description is to specify both output transition and input
state(s) together with the input transition.

VECTOR (10 a -> 01 z && b){
std_char_2d {...}

}
VECTOR (01 a -> 10 z && b){

std_char_2d {...}

}
VECTOR (10 b -> 01 z && a){

std_char_2d {...}

}
VECTOR (01 b -> 10 z && a){

std_char_2d {...}
}
In the non-redundant specification, either the input state or the output transition can be derived
from the functional description.

4.3.4 Vectors for delay, power and timing constraints

A D-Flipflop model without the set and clear signals is shown below. This model has vectors
for specific purpose - some for delay and power, some for power only (output is not switching),
and some for timing constraints. However, each vector has the same structure, although the
input variables change. The vectors for delay and power model require 2-dimensional tables
with load capacitance and input ramptime as variables, the vectors for power model require
1-dimensional tables with input ramptime as variable, and the vectors for time constraints
require 2-dimensional tables with ramptime on two inputs as variables.

CELL d_flipflop {
PIN cp {DIRECTION = input;}
PIN d {DIRECTION = input;}
PIN q {DIRECTION = output;}
FUNCTION {
BEHAVIOR { @01 cp){g=d;}}
}
VECTOR (01 cp->01q){
/*fill in arithmetic models for delay and power */

Version 1.0.10 Advanced Library Format (ALF) Reference Manual 167

Applications Templates and vector-specific models

}
VECTOR (01 cp -> 10) {

/* fill in arithmetic models for delay and power */
}
VECTOR (01 cp && d==q) {

[* fill in arithmetic model for power */
}
VECTOR (10 cp && d ==q) {

[* fill in arithmetic model for power */
}
VECTOR (10 cp && d = q) {

[* fill in arithmetic model for power */
}
VECTOR (01 d && lcp) {

[* fill in arithmetic model for power */
}
VECTOR (10 d && lcp) {

[* fill in arithmetic model for power */
}
VECTOR (01 d && cp) {

/* fill in arithmetic model for power */
}
VECTOR (10 d && cp) {

/* fill in arithmetic model for power */

}
VECTOR (01 d <&> 01 cp)
SETUP {
/*fill in arithmetic model for setup time constraint */
VIOLATION {
BEHAVIOR {qg = 'bx;}
MESSAGE_TYPE = error,
MESSAGE = “setup violation 01 d <-> 01 cp*;
}
}
HOLD {
/*fill in arithmetic model for hold time constraint */
VIOLATION {
BEHAVIOR {qg = 'bx;}
MESSAGE_TYPE = error,
MESSAGE = "hold violation 01 d <-> 01 cp*;
}
}
VECTOR (10 d <&> 01 cp)
SETUP {
/*fill in arithmetic model for setup time constraint */
VIOLATION {
BEHAVIOR {qg = 'bx;}
MESSAGE_TYPE = error,
MESSAGE = “setup violation 10 d <-> 01 cp*;
}
}
HOLD {
/*fill in arithmetic model for hold time constraint */
VIOLATION {

168 Advanced Library Format (ALF) Reference Manual

Version 1.0.10

Combining tables and equations Applications

BEHAVIOR {qg = 'bx;}
MESSAGE_TYPE = error,
MESSAGE = “hold violation 10 d <-> 01 cp*;

4.4 Combining tables and equations

4.4.1 Table vs equation
The following examples show the usagaaBLE andEQUATIONIN the model.
Example with table:

CURRENT {
PIN = VDD;
UNIT = mA,;
TIME = 30 {UNIT = ns;}
MEASUREMENT = average,;
HEADER ({
CAPACITANCE {
PIN = z; UNIT = pF;
TABLE {0.02 0.04 0.08 0.16}
}
SLEWRATE {
PIN = a; UNIT = ns;
TABLE {0.1 0.3 0.9}
}
}
TABLE {
0.0011 0.0021 0.0041 0.0081
0.0013 0.0023 0.0043 0.0083
0.0019 0.0029 0.0049 0.0089

}
Equivalent example with equation:

CURRENT {
PIN = VDD; UNIT = mA,;
TIME = 30 {UNIT = ns;}
MEASUREMENT = average,;
HEADER ({
CAPACITANCE {PIN = z; UNIT = pF;}
SLEWRATE {PIN = a; UNIT = ns;}
}
EQUATION { 0.05*CAPACITANCE + 0.001*SLEWRATE }
}

If the model uses aPQUATION then each argument must appear irHB&DER If the model
uses aABLE, then theHEADERmMuSt contain aABLE for each argument. The number of values

Version 1.0.10 Advanced Library Format (ALF) Reference Manual 169

Applications Combining tables and equations

in the main table and the indexing scheme is defined by the order and the number of values in
each table inside the header.

4.4.2 Cell with Multiple Output Pins

The following example shows how to use combinations of tables and equations for efficient
modeling of energy consumption of a cell with two (buffered) outputs. When two outputs are
switching, triggered by the same input, the dynamic energy consumption depends on ramptime
of the input signal and load capacitance on each output.

Instead of creating a 3-dimensional table, two 2-dimensional tables are used, varying the load
capacitance at one output and keeping zero load at the other output. The equation calculates the
energy for both outputs switching by adding the values from each table together for the
applicable load capacitance and by subtracting a corresponding correction term. The result is
exact for cells with buffered outputs.

As shown in the example below, an arithmetic model must be a named object, if several objects
of the same type occur within the same scope E8lERGY. For named objects, the equation
uses the object name instead of the object type.

VECTOR (01 ci-> (01 co<->105s) & a){

ENERGY {
UNIT = pJ;
HEADER {
ENERGY energy_co { /l named object
UNIT = pJ;
HEADER {
CAPACITANCE {
PIN = co; UNIT = pF;
TABLE{...}
}
SLEWRATE {
PIN = ci; UNIT = ns;
TABLE{...}
}
}
TABLE{...}
}
ENERGY energy_s{ / named object
UNIT = pJ;
HEADER {
CAPACITANCE {
PIN =s; UNIT = pF;
TABLE{...}
}
SLEWRATE {
PIN = ci; UNIT = ns;
TABLE{...}
}
}
TABLE{...}

}
ENERGY energy_noload { /l named object

170 Advanced Library Format (ALF) Reference Manual Version 1.0.10

Combining tables and equations Applications

UNIT = pJ;
HEADER {
SLEWRATE {
PIN = ci; UNIT = ns;
TABLE{...}
}
}
TABLE{...}

}

}
EQUATION { energy_co + energy_s - energy_noload }

}

4.4.3 PVT Derating

Combinations of tables and equations can also be used for derating with respect to voltage and
temperature, since those variables would add more dimensions to a purely table-based model.

In this example, theELAYobjects must be named, since there is both a nominal and a derated
DELAY.

DELAY rise_out{
HEADER {
PROCESS {
HEADER {nom snsp snwp wnsp wnwp}
TABLE {0.0-0.1 -0.2 +0.3 +0.2}

}
VOLTAGE {//fill in any annotations
}
TEMPERATURE {//fill in any annotations
}
DELAY nom_rise_out {
HEADER {
CAPACITANCE {
TABLE {0.03 0.06 0.12 0.24}
}
SLEWRATE {
TABLE {0.1 0.3 0.9}
}
}
TABLE {
0.07 0.10 0.14 0.22
0.09 0.130.19 0.30
0.100.150.25 0.41
}
}

Version 1.0.10 Advanced Library Format (ALF) Reference Manual 171

Applications Combining tables and equations

EQUATION {
nom_rise_out
* (1 + PROCESS)
* (1 + (TEMPERATURE - 25)*0.001)
* (1 + (VOLTAGE - 3.3)*(-0.3))

}

TheHEADERN theprocess 0bject contains exclusively named varialgtesn, snsp...) ,
similar to the truth table of =UNCTIONthat contains only pin names. ThereforethBLE is
expected to have as many entries asitrERTheTABLE insidenom_rise_out must follow
the format defined by eacglBLEInside the declarationsiobhd andramptime . Other declared
object in theHEADERwvoOUId be ignored for theaBLE format, if they do not haveTaBLEinside
themselves.

For convenience, the derating equation can be defined as a template for future reuse.

TEMPLATE std_derating {
EQUATION {
<variable>
*(1+<Kp>)
* (1 + (TEMPERATURE - 25)*<Kt>)
* (1 + (VOLTAGE - 3.3)*<Kv>)

}
Instantiation of the template in the model:

DELAY rise_out{
HEADER ({
PROCESS {
HEADER {nom snsp snwp wnsp wnwp}
TABLE {0.0 -0.1 -0.2 +0.3 +0.2}
}
VOLTAGE{ ... }
TEMPERATURE { ... }
DELAY nom_rise_out {
HEADER ({
CAPACITANCE {TABLE{ ... }}
SLEWRATE {TABLE {... }}
}
TABLE{...}
}
std_derating {
variable = nom_rise_out ;
Kp = PROCESS ;
Kt =0.001;
Kv=-0.3;

}
It is possible to assign explicit values to the predefined process and derating case identifiers.

172 Advanced Library Format (ALF) Reference Manual Version 1.0.10

Combining tables and equations Applications

Example:

PROCESS snsp = 0.9;
PROCESS wnwp = 1.1;

TEMPERATURE nom = 25;
VOLTAGE nom = 3.3;

TEMPERATURE bccom = 0;
VOLTAGE bccom = 3.5;

TEMPERATURE wcmil = 125;
VOLTAGE wcmil = 2.8;

It is also possible to express voltage, temperature and delay with the derating case as an
independent variable:

VOLTAGE {
HEADER {nom bccom wcmil}
TABLE {3.3 3.5 2.8}
}
TEMPERATURE {
HEADER {nom bccom wcmil}
TABLE {25 0 125}
}
DELAY {
HEADER {
DERATE_CASE {
HEADER {nom bccom wcmil}
TABLE {0 -0.0835 0.265}
}
PROCESS
HEADER {nom snsp snwp wnsp wnwp}
TABLE {0.0-0.1 -0.2 +0.3 +0.2}

}
DELAY nom_rise_out{ ... }

}
EQUATION {
nom_rise_out
* (1 + PROCESS)
* (1 + DERATE_CASE)
}
Yet another possibility is a completely tabulated model, where the process and derating

identifiers can be directly used as table items.

DELAY {
HEADER {
DERATE_CASE {
TABLE {nom bccom wcmil}
}
PROCESS
TABLE {nom snsp snwp wnsp wnwp}
}
TABLE {
/l 3*5 = 15 values

}

Version 1.0.10 Advanced Library Format (ALF) Reference Manual 173

Applications Use of Annotations

4.5 Use of Annotations

45.1 Annotations for a PIN

Direct annotation:

PIN data_in {DIRECTION = input; THRESHOLD = 0.35; CAPACITANCE = 0.010;}
Using annotation containers:

PIN data_in {
DIRECTION = input;
THRESHOLD = 0.35;
CAPACITANCE = 0.010; {
UNIT = pF; MEASUREMENT = average;
MIN = 0.009; TYP = 0.010; MAX = 0.012;
}
LIMIT {
SLEWRATE {MAX=3.0; UNIT=ns;}
VOLTAGE {MAX=3.5; MIN=-0.2;}

}

The input pindata_in has a non-linear capacitance which was characterized using an average
measurement (as opposed to RMS or peak measurements). Different measurements yield
average capacitances between 0.009 pF and 0.012 pF, typical average capacitance is 0.010 pF.
The slewrate applied to the pin must not exceed 3.0 ns. The voltage swing must not exceed the
lower bound of -0.2 V and the upper bound of 3.5 volt.

CAPACITANCE {UNIT = pF;}

PIN data_out {
DIRECTION = output; CAPACITANCE = 0.002;
LIMIT {CAPACITANCE {MAX = 0.96;} }

}

The output pin data_out has a capacitance of 0.002 pF. The maximum load capacitance that
may be applied to the pin is 0.96 pF.

4.5.2 Annotations for a timing arc

Specifications for a particular timing arc references specific pins:

DELAY {
UNIT = ns;
FROM {PIN = data_in; THRESHOLD = 0.4;}
TO {PIN = data_out; THRESHOLD = 0.6;}
}
SLEWRATE {
PIN = data_out; UNIT = ns;
FROM {THRESHOLD =0.3;}
TO {THRESHOLD =0.5;}

174 Advanced Library Format (ALF) Reference Manual Version 1.0.10

Providing fallback position for applications Applications

Specifications for a generic timing arc does not reference specific pins, but values for both
switching directions must be defined):

DELAY {
UNIT = ns;
THRESHOLD {RISE=0.4; FALL=0.6;}
}
SLEWRATE {
UNIT = ns;
FROM {THRESHOLD {RISE=0.3; FALL=0.5;}}
TO {THRESHOLD {RISE=0.5; FALL=0.3;}}
}

45.3 Creating Self-explaining Annotations

The self-explaining annotations can be created UENMPLATE
Example: number of connections allowed for each pin

TEMPLATE must_connect {
LIMIT {CONNECTION {MIN = 1;}}

}
TEMPLATE can_float {

LIMIT {CONNECTION {MIN = 0;}}
}
TEMPLATE no_connection {

LIMIT {CONNECTION {MAX = 0;}}
}
CELL a_flipflop {

PIN q {must_connect DIRECTION=output;}

PIN gn {can_float DIRECTION=output;}
PIN qgi {no_connection DIRECTION=output;}

4.6 Providing fallback position for applications

4.6.1 Use of DEFAULT

ALF’s modeling capabilities address the needs for all types of applications. However, ALF
should also work for applications that use only a subset of information. In order to make the
subset of information controllable, modeling capability Vii#FAULTis provided. The
information provided byEFAULTcan be strictly ignored by applications that understand the
full information.

A particular application may not be able to use 3-dimensional tables, or it may not understand
certain modelsDEFAULTvalues can be provided for each model.

Version 1.0.10 Advanced Library Format (ALF) Reference Manual 175

Applications Providing fallback position for applications

Example:
DELAY {
HEADER {
SLEWRATE {
PIN = a; UNIT = 1e-9;
TABLE {0.5 1.0 1.5}
DEFAULT =1.0;
}
CAPACITANCE {
PIN = z; UNIT = 1e-12;
TABLE {0.1 0.2 0.3 0.4}
DEFAULT =0.1;
}
VOLTAGE {
PIN = vdd; UNIT = 1;
TABLE {3.0 3.3 3.6}
DEFAULT = 3.3;
}
}
TABLE {
/I arrangement of whitespaces and comments
/I is only for readability
/I parser sees just a sequence of 3x4x3=36 numbers
/I[slewrate 0.5 1.0 1.5 capacitance voltage
1/ + +
020811 /01 3.0
041012 /0.2
071214 /03
091518 /04
010712 /01 3.3
030913 /0.2
061115 //03
081317 /04
010610 /01 3.6
020811 /0.2
041013 /03
071216 /04
}
}

An application that does not understam. TAGE will extract the following information from
this example:

DELAY {
HEADER ({
SLEWRATE {
PIN = a; UNIT = 1le-9;
TABLE {0.5 1.0 1.5}
}
CAPACITANCE {

PIN = z; UNIT = 1e-12;

176 Advanced Library Format (ALF) Reference Manual Version 1.0.10

Bus Modeling

Applications
TABLE {0.1 0.2 0.3 0.4}
}
}
TABLE {
/l[slewrate 0.51.01.5 capacitance voltage
I/ + +
0.10.71.2 /0.1 3.3
030913 110.2
061115 /10.3
081317 110.4
}
}
An application that does not understandwRATEwWill extract only the following information:
DELAY {
HEADER {
CAPACITANCE {
UNIT = 1e-12;
PIN = z;
TABLE {0.1 0.2 0.3 0.4}
}
}
TABLE {
/I[slewrate 1.0 capacitance voltage
I/ -t +
0.7 /01 3.3
09 /0.2
11 /03
1.3 //04
}
}

4.7 Bus Modeling

47.1 Tristate Driver

Bus drivers are usually tristate buffers, which have straightforward functional models. If both
input signal and enable signal have well-defined logic states, the output is drivien'bo ,
or'bz , otherwise it is driven tx .

CELL tristate_buffer {
PIN a {DIRECTION = input; SIGNALTYPE = data;}
PIN e {DIRECTION = input; SIGNALTYPE = out_enable;}
PIN z {DIRECTION = output; SIGNALTYPE = data;
SIGNALDRIVE = tristate; ENABLE_PIN = ¢;}
FUNCTION {
BEHAVIOR {
zZ=

Version 1.0.10 Advanced Library Format (ALF) Reference Manual 177

Applications Bus Modeling

(e &a)?'bl:

(e &'a) ? 'b0:

(‘e) ? 'bz:
'bx;

}
}

A different model can be used for transmission-gate type of buffers, which also passes the high
impedance state from input to output.

BEHAVIOR {
Z=
(e)?a:
('e) ? 'bz:
'bx;
}
}

In order to model bus contention, the drive strength information of tristate buffers is needed.
This is easily achieved by annotation of a pin property, using a context-sensitive keyword.

CELL tristate_buffer {
PIN z {DIRECTION = output; DRIVE_STRENGTH = 4;}

}

The pin-propertypRIVE_STRENGTHan take an arbitrary positive integer or a real number. In
general, greater values override smaller values, ano®naE_STRENGTH=0s equivalent to

BEHAVIOR {z='bz}.

ALF does not assume a particular set of legal drive strengths. The scale and granularity is left
to the discretion of the ASIC vendor (user).

Modeling of state-dependent drive strength is achieved by annotating drive strength within a
vector rather than within a pin. The following example shows a bufferswitiy-0 and
weak-1 drive.

CELL tristate_buffer {
PIN z {DIRECTION = output;}

VECTOR (z==0) {
DRIVE_STRENGTH = 4; {PIN = z;}
}
VECTOR (z==1) {
DRIVE_STRENGTH = 2; {PIN = z;}
}
}

The bus itself is not described by an ALF model, since the bus is a design construct rather than
a library cell. A simulation model (Verilog or VHDL) would handle the bus contention.
However, since buses can also be embedded within a core cell, the functional model of the core
would need a functional model of that bus as well.

178 Advanced Library Format (ALF) Reference Manual Version 1.0.10

Bus Modeling Applications

4.7.2 Bus with multiple drivers

The following example shows a bus with 3 drivers of equal strength. The output is the resolved
value of the bus.

CELL bus3 {

PIN z1 {DIRECTION = input;}

PIN z2 {DIRECTION = input;}

PIN z3 {DIRECTION = input;}

PIN z {DIRECTION = output;}

FUNCTION {

BEHAVIOR {
Z=
((z2=="bz || z2==21) && z3=="bz)? z1:
((z3=="bz || z3==22) && z1=="bz)? z2:
((z1=="bz || z1==23) && 7z2=="bz)? z3:
(z1=="bl && z2=="b1 && z3=="b1)? 'bl:
(z1=="b0 && z2=="b0 && z3=="b0)? 'bO:
'bx;

}

The following example shows a bus with two drivers of equal strength and one driver with
weaker strength (e.g. a busholder).

CELL bus2s1w {
PIN z_strongl {DIRECTION = input;}
PIN z_strong2 {DIRECTION = input;}
PIN z_weak {DIRECTION = input;}

PIN z {DIRECTION = output;}
FUNCTION {
BEHAVIOR {

Z=
(z_strongl=="b1 && z_strong2=="b1)? 'b1:
(z_strong1=="b0 && z_strong2=="b0)? 'b0:
(z_strongl=="bz && z_strong2=="bz)? z_weak:

'bx;

Version 1.0.10 Advanced Library Format (ALF) Reference Manual 179

Applications Wire models

4.7.3 Busholder

A busholdeitis a cell that retains the previous value of a tristate bus, when all drivers go to high
impedance. This device has only one external pin, which is bidirectional. The input to this
bidirectional pin is the resolved value of the bus.

CELL busholder {
PIN a {DIRECTION = both;}
PIN z {DIRECTION = output; VIEW = none;}
FUNCTION {
BEHAVIOR {
a=lz
@(a==0){z=1}
@(a==1){z=0}
@(a=="bx) {z = 'bx;}

}
}

In order to understand the functionality of a bidirectional pin, we split the pin conceptually into
an input pin and an output pin as shown below.

CELL busholder_explicit {
PIN a_in {DIRECTION = input;}
PIN a_out {DIRECTION = output;}
PIN z {DIRECTION = output; VIEW = none;}
FUNCTION {
BEHAVIOR {
a_out =z,
@(a_in==0) {z =1}
@(a_in==1) {z =03}
@(a_in=="bx) {z = 'bx;}

}
}
The function of this device is well definedaifout==a_in for all cases wherg inl='bz . In
the case ad_in=="bz,a_out can take any value. This is a general modeling rule for functions
with bidirectional pins.

4.8 Wire models

48.1 Basic Wire Model

This example shows two wire models, using tables and equations. The equation is used outside
the defined table range. If no equation was defined, the table would be extrapolated.

WIRE small_wire {
CAPACITANCE {
UNIT = pF;
HEADER {
CONNECTIONS {
TABLE {2 345}
}

180 Advanced Library Format (ALF) Reference Manual Version 1.0.10

Wire models Applications

}
TABLE {0.05 0.09 0.13 0.17}

EQUATION {CONNECTIONS * 0.04 - 0.03}

}
RESISTANCE {

UNIT = mOHM;
HEADER {

CONNECTIONS {

TABLE {2 3 4 5}

}
}
TABLE {7.5 10.0 12.5 15.0}
EQUATION {CONNECTIONS * 2.5 + 2.5}

}

WIRE large_wire {
CAPACITANCE {
UNIT = pF;
HEADER {
CONNECTIONS {
TABLE {2 3 4}
}
}
TABLE {0.10 0.16 0.22}
EQUATION {CONNECTIONS * 0.06 - 0.2}

}
RESISTANCE {

UNIT = mOhm;
HEADER {
CONNECTIONS {
TABLE {2 3 4}

}
}
TABLE {10.0 12.5 15.0}
EQUATION {CONNECTIONS * 2.5 + 5.0}

}

4.8.2 Wire select model

Since a library may contain multiple wire models, it is necessary to specify which model should
be selected for an application. The annotations inside each wire model can be used for this
purpose.

WIRE small_wire {
LIMIT {AREA {UNIT=1e-6; MAX=25;}}

}

WIRE large_wire {
LIMIT {AREA {UNIT=1e-6; MIN=25; MAX=100;}}

Version 1.0.10 Advanced Library Format (ALF) Reference Manual 181

Applications Megacell Modeling

If the area covering the routing space is smaller than Zsthesmall_wire model will be
chosen. If the area covering the routing space is between2&nthi00mr, thelarge_wire
model is chosen. The unit for area is 1fnm

More annotations using thusAGekeyword can be introduced in order to enable customized
wire model selection.

4.9 Megacell Modeling

49.1 Expansion of Timing Arcs

GROURan be used for sets of numbers or for a continuous range of numbers. This can be useful
for defining timing arcs between all bits of two vectors. For example,

GROUP adr_bits {1 2 3}
GROUP data_bits {1 2}
VECTOR (01 adr[adr_bits] -> 01 dout[data_bits]) { ... }

replaces the following statements:

VECTOR (01 adr[1] -> 01 dout[1]) { ...
VECTOR (01 adr[2] -> 01 dout[1]) { ...
VECTOR (01 adr[3] -> 01 dout[1]) { ...
VECTOR (01 adr[1] -> 01 dout[2]) { ...
VECTOR (01 adr[2] -> 01 dout[2]) { ...
VECTOR (01 adr[3] -> 01 dout[2]) { ...

e e o e

The following example shows bit-wise expansion of two vectors:

GROUP data_bits {1 2}
VECTOR (01 din[data_bits] -> 01 dout[data_bits]) { ... }

This replaces the following statements:

VECTOR (01 din[1] -> 01 dout[1]) { ... }
VECTOR (01 din[2] -> 01 dout[2]) { ... }

Example for bytewise (or sub-word wise) expansion:

GROUP low_byte {1 2}

GROUP high_byte {3 4}

VECTOR (01 we[0] -> 01 din[low_byte]) { ... }
VECTOR (01 we[1] -> 01 din[high_byte]) { ... }

This replaces the following statements:

VECTOR (01 we[0] -> 01 din[1]) { ... }
VECTOR (01 we[0] -> 01 din[2]) { ... }
VECTOR (01 we[1] -> 01 din[3]){... }
VECTOR (01 we[1] -> 01 din[4]) { ... }

182 Advanced Library Format (ALF) Reference Manual Version 1.0.10

Megacell Modeling Applications

4.9.2 Two-port memory

The memory model example below shows the use of abstract transition operators on words in
various vectors. Note the simplicity of the functional description of this two-port asynchronous
memory. This example also contains some vectors with distinction between events on row and
column address lines.

CELL async_1write_1read_ram {
GROUP caol {1:0}
GROUP row {4:2}
GROUP all {row col}
GROUP byte{7:0}
GROUP * {0:31}
PIN enable_write {DIRECTION = input}
PIN [4:0] adr_write {DIRECTION = input}
PIN [4:0] adr_read {DIRECTION = input}
PIN [7:0] data_write {DIRECTION = input}
PIN [7:0] data_read {DIRECTION = output}
PIN [7:0] data_store [0:31] {DIRECTION = output VIEW = none}
FUNCTION {
BEHAVIOR {
data_read = data_store[adr_read];
@(enable_write) {data_store[adr_write] = data_write;}
}
}
VECTOR
(?! adr_read[col] -> ?? data_read[byte]) {
/* fill in arithmetic models for delay and power */
}

VECTOR
(?! adr_read[row] -> ?? data_read[byte]) {

/*fill in arithmetic models for delay and power */
}

VECTOR

((?'adr_read[col] && ?'adr_read[row]) -> ??data_read[byte]){
/*fill in arithmetic models for delay and power */
}

VECTOR (01 enable_write -> ?? data_read[byte]) {
/*fill in arithmetic models for delay and power */
}

VECTOR (?! data_write[byte] -> ?? data_read[byte]) {
/*fill in arithmetic models for delay and power */
}

VECTOR (?! adr_write[col]) {
/* fill in arithmetic models for power */
}

VECTOR (?! adr_write[row]) {
/* fill in arithmetic models for power */
}

VECTOR (?! adr_write[row] && ?! adr_write[col]) {
/* fill in arithmetic models for power */
}

VECTOR (01 enable_write) {
/* fill in arithmetic models for power */

Version 1.0.10 Advanced Library Format (ALF) Reference Manual 183

Applications

}
VECTOR (10 enable_write) {

/* fill in arithmetic models for power */

}
VECTOR (?! data_write[byte] && !enable_write) {

/* fill in arithmetic models for power */

}
VECTOR (?! data_write[byte] && enable_write) {

/* fill in arithmetic models for power */

}
}
VECTOR (?! adr_write[all] <-> 01 enable_write) {
SETUP {
VIOLATION {

BEHAVIOR { data_store[*] = "bxxxxxxxx; }
MESSAGE_TYPE = error,
MESSAGE =
"setup violation: changing ‘adr_write' ->rising ‘enable_write', memory -
> X"
}
FROM { pin = adr_write; }
TO { pin = enable_write; }
/*fill in header, table or equation */

}

}

VECTOR (10 enable_write <-> ?! adr_write[all]) {
HOLD {

VIOLATION {
BEHAVIOR { data_store[*] = "bxxxxxxxx; }
MESSAGE_TYPE = error,
MESSAGE =
"hold violation: falling 'enable_write' -> changing 'adr_write', memory -
> X"
}
FROM { pin = enable_write; }
TO { pin = adr_write; }
/* fill in header, table or equation */

}

}

VECTOR (?! data_write[byte] <-> 10 enable_write) {
SETUP {

VIOLATION {
BEHAVIOR { data_store[adr_write] = 'DXXXXXXXX; }
MESSAGE_TYPE = error,
MESSAGE =
"setup violation: changing 'data_write' -> falling ‘enable_write’,
memory[adr_write] -> 'X";
}
FROM { pin = data_write; }
TO { pin = enable_write; }
/*fill in header, table or equation */
}
HOLD {
VIOLATION {

184 Advanced Library Format (ALF) Reference Manual

Megacell Modeling

Version 1.0.10

Megacell Modeling Applications

BEHAVIOR { data_store[adr_write] = 'DXXXXXXXX; }
MESSAGE_TYPE = error,
MESSAGE =
"hold violation: falling ‘'enable_write' -> changing ‘data_write’,
memory[adr_write] -> 'X";
}
FROM { pin = enable_write; }
TO { pin = data_write; }
/*fill in header, table or equation */
}
}
VECTOR (01 enable_write -> 10 enable_write) {
PULSEWIDTH {
VIOLATION {
MESSAGE_TYPE = error,
MESSAGE = "pulsewidth violation: high ‘enable_write™;
}
PIN = enable_write;
/*fill in header, table or equation */
}
}
VECTOR (10 enable_write -> 01 enable_write) {
PULSEWIDTH {
VIOLATION {
MESSAGE_TYPE = error,
MESSAGE = "pulsewidth violation: low 'enable_write™;
}
PIN = enable_write;
/*fill in header, table or equation */

}

The energy consumption for each operation depends on the number of switching bits of the bus.
Therefore, the model for power inside a particular vector may look like this:

VECTOR (?! data_write && enable_write) {
ENERGY {
UNIT = pJ;
HEADER {switching_bits {PIN = data_write;}}
EQUATION {1.3 * switching_bits}

}

The rule that the address on a write port must not change during write enable high can be
incorporated easily in the functional model. A pessimistic model assumes that the whole
memory content will become unknown, if such an illegal address change occurs.

BEHAVIOR {
data_read = data_store[adr_read];
@(enable_write) {data_store[adr_write] = data_write;}
@(!?adr_write && enable_write)
{data_store[*] = 'hxxxxxxxx;}

Version 1.0.10 Advanced Library Format (ALF) Reference Manual 185

Applications Megacell Modeling

4.9.3 Three-port memory

Functional models of more complex memories are also straightforward. The conflicts of
writing to one memory location simultaneously from different ports can be modeled in a
pessimistic way as follows:

CELL async_2write_1read_ram {
PIN enb_writel {DIRECTION = input;}
PIN enb_write2 {DIRECTION = input;}
PIN [4:0] adr_writel {DIRECTION = input;}
PIN [4:0] adr_write2 {DIRECTION = input;}
PIN [4:0] adr_read {DIRECTION = input;}
PIN [7:0] data_writel {DIRECTION = input;}
PIN [7:0] data_write2 {DIRECTION = input;}
PIN [7:0] data_read {DIRECTION = output;}
PIN [7:0] data_store [0:31] {DIRECTION = output; VIEW = none;}
FUNCTION {
BEHAVIOR {
data_read = data_store[adr_read];
@(enb_writel && lenb_write2)
{data_store[adr_writel] = data_writel;}
@(enb_write2 && lenb_writel)
{data_store[adr_write2] = data_write2;}
@(enb_writel && enb_write2 && adr_writel!=adr_write2) {
data_store[adr_writel] = data_writel;
data_store[adr_write2] = data_write2;
}
@(enb_writel && enb_write2 && adr_writel==adr_write2) {
data_store[adr_writel] =
(data_writel==data_write2)? data_write1:8'bx;
data_store[adr_write2]
(data_write2==data_write1)? data_write2:8'bx;

}
49.4 Annotation for pins of a bus
Annotations of numeric values to a bus apply to the total bus, not to each individual pin.

Example:

PIN [1:4] my_bus_pin{
CAPACITANCE =0.04 ;
}

The total bus pin capacitance is 0.4, the capacitance values on each individual pin are not
defined.

186 Advanced Library Format (ALF) Reference Manual Version 1.0.10

Megacell Modeling Applications

The individual pin capacitance can be defined as follows:

PIN [1:4] my_bus_pin {
CAPACITANCE c1 = 0.01 { PIN = my_bus_pin[1]; }
CAPACITANCE c2 = 0.01 { PIN = my_bus_pin[2]; }
CAPACITANCE c3 = 0.01 { PIN = my_bus_pin[3]; }
CAPACITANCE c4 = 0.01 { PIN = my_bus_pin[4]; }

}

495 Skew for simultaneously switching signals on a bus

Vectors with simultaneously switching bits on a bus may contain a specification of the allowed
skew in order to be still considered as simultaneously switching bits.

Example:

PIN [1:3] address;
VECTOR (?! address)
SKEW {
PIN = address;
/*fill in data */

}

SKEW applied to a bus pin is the maximal allowed time window between the earliest and lat-
est edge within simultaneously switching signals of a bus.

The multiple value annotation feature allows the definition of a group of pins equivalent to a
bus for SKEW modeling in the following way:

PIN A;

PIN [1:4] B;

VECTOR (?! A && ?! B)
SKEW { PIN { A B[2:3] } }

}

SKEW applies to the group of pins A, B[2], B[3]. Note that the following is semantically dif-
ferent, since this would result in expansion of each object where the group is instantiated:

PIN A;
PIN [1:4] B;
GROUP my_group { A B[2] B[3] }
VECTOR (?! my_group)
SKEW { PIN = my_group; }
}

Version 1.0.10 Advanced Library Format (ALF) Reference Manual 187

Applications Special cells

The expansion yields the following:

PIN A;
PIN [1:4] B;
VECTOR (?! A)
SKEW {PIN=A;}
}
VECTOR (?! B[2])
SKEW { PIN = B[2] ; }
}
VECTOR (?! B[3])
SKEW { PIN = B[3] ; }
}

See Section 4.15.2.7 for definition of SKEW for scalar pins.

4.10 Special cells

4.10.1 Pulse generator
The following cell generates a one-shot pulse of 1 ns duration when enable goes high.

CELL one_shot {
PIN enable {DIRECTION = input;}
PIN g {DIRECTION = output;}

FUNCTION {
BEHAVIOR {
@(01 enable) {g=1;}
} @(q) {q=0}
}

VECTOR (01 g -> 10 q) {
DELAY = 1.0 {UNIT = ns;}
}
}

4.10.2 VCO
The following cell is a voltage controlled oscillator with 50% duty cycle and enable.

CELL vco{
PIN enable {DIRECTION = input; PINTYPE = digital;}
PIN v_in {DIRECTION = input; PINTYPE = analog;}
PIN q {DIRECTION = output; PINTYPE = digital;}
FUNCTION {
BEHAVIOR {

@('enable) {q =0;}

@('g && enable) {g=1;}

@(g && enable) {q =0;}

}

}

TEMPLATE voltage controlled_delay {
DELAY {

188 Advanced Library Format (ALF) Reference Manual Version 1.0.10

Core Modeling Applications

UNIT = ns;
HEADER ({
voltage {
PIN = v_in;
TABLE {0.51.01.52.0 2.5 3.0}
}
}
TABLE {10.00 5.00 3.33 2.50 2.00 1.67}
}
}
VECTOR (01 q->10q)
voltage_controlled_delay

}
VECTOR (10 g -> 01 q)

voltage_controlled_delay

}
}

The template shown above can also be written as an equation to map voltage to frequency:
TEMPLATE voltage_controlled_delay {
DELAY {
UNIT = ns;
HEADER {voltage {PIN = v_in;}}
EQUATION {5.0 / voltage}

4.11 Core Modeling

411.1 Digital Filter

This example illustrates the potential of ALF for modeling complex blocks. It shows a digital
filter performing the following operation

dout(t) = state(t) + b1 * state(t-1) + b2 * state(t-2)

state(t) = din(t) - al * state(t-1) - a2 * state(t-2)
This second order infinite impulse response (IIR) filter is implemented with a single multiplier
and a single adder/subtractor in a way that adwewv is produced every 4 clock cycles. The
variable coefficiental, a2, b1, andb2 are stored in a dual port RAM.

The model uses templates for the functional blocks of a 2-bit counter used as controller for
memory access and I/O operation, a RAM for coefficient storage, and the filter itself. In the top
module they are instantiated as a structural netlist.

Version 1.0.10 Advanced Library Format (ALF) Reference Manual 189

Applications Core Modeling

The use of templates is more general than the use of primitives, since not all basic blocks of the
core may be supported as primitives.

LIBRARY core_lib {
TEMPLATE CNT2 {
BEHAVIOR {
@ ('<cd>) {<cnt>=2'b0;}
: (01 <cp>) {<cnt> = <start> ? 2'b0 : <cnt> + 1;}

}
TEMPLATE RAM16X4 {
BEHAVIOR {
<dout> = <dmem>[<r_adr>];
@ (<we>) {<dmem>[<w_adr>] = <din>;}
}
}
TEMPLATE 1IR2 {
BEHAVIOR {
sum =
(<cntrl>=='d0)? <din> - product :
(<cntrl>=='d1)? accu - product :
(<cntrl>=='d2)? accu + product :
(<cntrl>=='d3)? accu + product;
@ (!<cd>) {
product = 16'b0;
accu = 16'b0;
}
: (01 <cp>)
product =
(<cntrl>=='d0)? coeff * state2 :
(<cntri>=='d1)? coeff * statel :
(<cntrl>=='d2)? coeff * state2 :
(<cntrl>=='d3)? coeff * statel :
16'bX;
accu = sum;
}
@ (!<cd>) {
<dout> = 16'b0;
statel = 16'b0;
state2 = 16'b0;
}
: (01 <cp> && <cntrlI>=="d0){
state2 = statel,
statel = accu;
<dout> = accu;
}
}
}

CELL digital_filter {
PIN [15:0] data_out {DIRECTION = output}

190 Advanced Library Format (ALF) Reference Manual Version 1.0.10

Connectivity Applications

PIN [15:0] data_in {DIRECTION = input}
PIN [1:0] index_coeff {DIRECTION = input}
PIN write_coeff {DIRECTION = input}
PIN [15:0] coeff_in {DIRECTION = input}
PIN [15:0] coeff_out {DIRECTION = output VIEW = none}
PIN [15:0] coeff_array [1:4] {DIRECTION = output VIEW = none}
PIN data_strobe {DIRECTION = input}
PIN [1:0] count {DIRECTION = output VIEW = none}
PIN clock {DIRECTION = input}
PIN reset {DIRECTION = input}
FUNCTION {
IIR2 { din=data_in; dout=data_out; coeff=coeff_out;
cp=clock; cd=reset; cntrl = count;}
CNT2{ start=data_strobe; cnt=count; ck=clock; cd=reset;}
RAM16X4{ we=write_coeff; din=coeff_in; dout=coeff_out;
dmem=coeff_array; r_adr=count; w_adr=index_coeff;}

4.12 Connectivity

Connectivity information may be specified within the definition of the ALF language format

as described below. A connectivity object always contains a rule specifying the type of
connections (e.g. must short, can short, cannot short) and a table. If no header is given, then the
table contains the pins or pin classes subject to the connectivity rule. If a header is given, then
the table contains the values of the connectivity function between arguments in the header.
There must be a table inside each connectivity argument, containing the pins or pin classes
subject to the connectivity rule. Valid argumentszre/ER and/orRECEIVER Valid values

are the boolean digitg 1, and?. The valuel implies the connection rule is true, the vatue

implies the connection rule is false, the vadueplies don’t care situation with the connection

rule.

412.1 External connections between pins of a cell

The following example shows how to specify required and disallowed interconnections
external to a cell.

CELL pll{

PIN vdd_ana {PINTYPE=supply;}

PIN vdd_dig {PINTYPE=supply;}

PIN vss_ana {PINTYPE=supply;}

PIN vss_dig {PINTYPE=supply;}

CONNECTIVITY common_ground {
CONNECT_RULE = must_short;
TABLE {vss_ana vss_dig}

CONNECTIVITY separate_supply {
CONNECT_RULE = cannot_short;
TABLE {vdd_ana vdd_dig}

Version 1.0.10 Advanced Library Format (ALF) Reference Manual 191

Applications Connectivity

4.12.2 Allowed connections for classes of pins

The following example defines allowable pin interconnections. The constants for the desired
connectivity classes, the grouping of these classes, and the allowable class connectivity table
are first defined at the library level. The non-zero values within the matrix specify allowable
connectivity of indexed classes. The connectivity classes for pins are then specified with the
pin annotation sections.

LIBRARY example_library {

CLASS default_class;
CLASS clock_class;
CLASS enable_class;
CLASS reset_class;
CLASS tristate_class;

TEMPLATE drivers {
default_class
clock_class
enable_class
reset_class
tristate_class

}

TEMPLATE receivers {
default_class
clock_class
enable_class
reset _class

}

CONNECTIVITY driver_to_driver {
CONNECT_RULE = can_short;
HEADER {

DRIVER {TABLE {drivers}}

}

TABLE {// def clk enb rst tri
00001

}

}
CONNECTIVITY receiver_to_receiver {

CONNECT_RULE = can_short;
HEADER {
RECEIVER {TABLE {receivers}}
}
TABLE {// def clk enb rst
1111
}

}

CONNECTIVITY driver_to_receiver {
CONNECT_RULE = can_short;
HEADER {

DRIVER {TABLE {drivers}}
RECEIVER {TABLE {receivers}}

192 Advanced Library Format (ALF) Reference Manual Version 1.0.10

Connectivity Applications

TABLE {// def clk enb rst tri // driver/receiver
1 1 1 1 O /I def
0 1 0 0 0 /lclk
0 0 1 0 0 /lenb
0 0O O 1 0 /lrst

}

The above table specifies allowed connectivity from each class to itself, as well as from each
class tadefault_class except for theristate_class class which may only connect to

itself. Note also that while any class may connedétault_class , thedefault_class may

only connect to itself.

Once the library level connectivity is defined, connection class specifications are defined for
each pin within cells. The default integer value forc¢hessannotation i®, which
corresponds to the constant declaration valueefault_class

CELL d_flipflop_clr {
PIN cd {PINTYPE = input; SIGNALTYPE = clear;
POLARITY = low; CONNECT_CLASS =reset_class;}
PIN cp {PINTYPE = input; SIGNALTYPE = clock;
POLARITY =rising_edge; CONNECT_CLASS = clock_class;}
PIN d {PINTYPE = input;}
PIN g {PINTYPE = output; CONNECT_CLASS = default_class;}
}
CELL d_latch {
PIN g {PINTYPE = input; SIGNALTYPE = enable;
POLARITY = high; CONNECT_CLASS = enable_class;}
PIN d {PINTYPE = input; CONNECT_CLASS = default_class;}
PIN q {PINTYPE = output; CONNECT_CLASS = default_class;}

}

CELL tristate_buffer {
PIN a {PINTYPE = input;}
PIN enable {PINTYPE = input; CONNECT_CLASS = enable_class;}
PIN z {PINTYPE = output; CONNECT_CLASS = tristate_class;}

}
Net-specific connectivity, as opposed to the pin-specific connectivity as shown above, is also
possible within the syntax of the language, sinceAssis not restricted to pins. Specific
applications may assign all pins of a specific type as well as nets like power and ground rails
to a defined class. This class may be used within the connectivity tables to allow or disallow
certain connectivity.

Version 1.0.10 Advanced Library Format (ALF) Reference Manual 193

Applications Signal Integrity

For example, ifddrail_class ~ was defined as a net-specific connectivity class, then a specific
pin may be disallowed from connecting to any net invtlieail_class connectivity class.

CLASS vddrail_class

CELL inverter {
PIN in_pin {PINTYPE = input; SIGNALTYPE = clear;
POLARITY = low; CONNECT_CLASS = reset_class;}
CONNECTIVITY dont_tie {
CONNECT_RULE = cannot_short;
TABLE {in_pin vddrail_class}

4.13 Signal Integrity

4.13.1 I/V curves

I/V curves describe the driven or drawn current at a pin as a function of the voltage at one or
several pins. The following example describes the output current of a buffer as a function of
the input and output voltage with a 2-dimensional lookup table.

CELL simple_buffer {
PIN z { DIRECTION = output; }
PIN a { DIRECTION = input; }
/[current @ z dependent on voltage @ z and @ a

CURRENT {

PIN = z;

UNIT = ma;

HEADER ({

VOLTAGE vout {
PIN = z;
TABLE {0.00.51.01.52.02.53.0}
}
VOLTAGE vin {
PIN = a;
TABLE {0.0 1.0 2.0 3.0}
}

}

TABLE {
5.05.04.84.23.21.60.0
25150.2-0.4-1.8-2.7-3.5
1.20.1-1.3-1.9-25-3.8-4.6
0.0-2.0-3.8-4.7-5,5-6.2-6.3

}

/I fill in function, vector and other stuff

194 Advanced Library Format (ALF) Reference Manual Version 1.0.10

Signal Integrity Applications

An equation can also be used instead of a lookup table, for example:

CURRENT {
PIN=z
UNIT =ma
HEADER ({
VOLTAGE vout {
PIN=z
}
VOLTAGE vin {
PIN = a;
}
}
EQUATION {

(1 - exp(6.3 - 2.4*vout))*exp(0.9 - 0.3*vin)
- (1 - exp(3.2*vout))*exp(0.3*vin)

}

A buffer may have programmable drive strength controlled by the state of additional input pins.
State-dependent I/V curves can be described by vector-spgedRREN™Models.

CELL programmable_drive_strength_buffer {
PIN z { DIRECTION = output; }
PIN a { DIRECTION = input; }
/I control pins for drive strength
PIN p1 { DIRECTION = input; }
PIN p2 { DIRECTION = input; }
VECTOR (!pl && 'p2) {
CURRENT {
/I fill in the mode

}
}
VECTOR (pl && p2){
CURRENT {
[/ fill in the mode
}
}
VECTOR (pl && 'p2) {
CURRENT {
[/ fill in the mode
}
}
VECTOR (pl && p2){
CURRENT {
[/ fill in the mode
}
}

}
Note that it is also possible to describe other analog cell characteristics, state-dependent or
state-independent, for instance voltage versus voltage, frequency versus voltage, current versus
temperature etc. in the same way.

Version 1.0.10 Advanced Library Format (ALF) Reference Manual 195

Applications Signal Integrity

4.13.2 Driver resistance

Driver resistance is used to model the transient behavior of signals especially for crosstalk. The
drivers are modeled by voltage sources and driver resistances, as illustrated below:

real driver

~—~

interconnec
circuitry

interconnect
circuitry

Vin(t)
Vout(t)

Figure 4-1: Modeling driver resistance

The purpose is to use linear circuit theory for the analysis of multiple drivers interacting with
coupled RC-interconnect networks. In reality, the drivers have non-linear resistance. The linear
resistance is a model of the non-linear resistance with the best-fitting linear resistance.
Therefore the driver resistance is state-dependent and eventually also load-and slewrate
dependent, since for different states and different ranges of load and slewrates the best-fitting
value for driver resistance is different.

The following example shows a buffer featuring different driver resistance values for static low
and high states, and tables of slewrate and load-dependent transient driver resistance values for
rise and fall transitions.

cell simple_buffer {
PIN z { DIRECTION = output; }
PIN a { DIRECTION = input; }
/I state-dependent static driver resistance
VECTOR (!2) {
RESISTANCE = 0.7k { PIN = z; }
}
VECTOR (z) {
RESISTANCE = 1.2k { PIN = z; }

/I slew & load dependent transient driver resistance
VECTOR (01 a->01z) {
RESISTANCE {
PIN = z;
UNIT = kohm;
HEADER {
CAPACITANCE {
PIN = z;
UNIT = pfarad;
TABLE{0.1 0.4 1.6}

196 Advanced Library Format (ALF) Reference Manual Version 1.0.10

Signal Integrity Applications

}
SLEWRATE {
PIN = a;
UNIT = nsec;
TABLE { 0.5 1.5}
}

TABLE{1.4 1.3 1.3 1.6 1.4 1.3}
}
}
VECTOR (10 a -> 10 2) {
RESISTANCE {

PIN = z;
UNIT = kohm;
HEADER ({
CAPACITANCE {
PIN = z;
UNIT = pfarad;
TABLE{0.1 0.4 16}
}
SLEWRATE {
PIN = a;
UNIT = nsec;
TABLE { 0.5 1.5}
}

TABLE{0.9 0.8 0.8 1.1 0.9 0.8}

}

The transient driver resistance can also be state-dependent, for example in the case of a buffer
with programmable drive-strength.

CELL programmable_drive_strength_buffer {

PIN z { DIRECTION = output; }

PIN a { DIRECTION = input; }

/Il control pins for drive strength

PIN p1 { DIRECTION = input; }

PIN p2 { DIRECTION = input; }

/I state-dependent static driver resistance

VECTOR (!1z && !pl && !p2) {
RESISTANCE = 0.7k { PIN = z; }

}

VECTOR (!1z && !pl && p2) {
RESISTANCE = 0.6k { PIN = z;}

}

VECTOR (!1z && pl && !p2) {
RESISTANCE = 0.5k { PIN = z; }

}

VECTOR (!1z && pl && !p2) {
RESISTANCE = 0.4k { PIN=z; }

}

VECTOR (z && !pl && 'p2) {
RESISTANCE = 1.2k { PIN=z;}

}
VECTOR (z && !p1 && p2) {

Version 1.0.10 Advanced Library Format (ALF) Reference Manual 197

Applications Signal Integrity

RESISTANCE = 1.0k { PIN = z; }
}
VECTOR (z && pl && !p2) {
RESISTANCE = 0.8k { PIN = z; }
}
VECTOR (z && pl && p2){
RESISTANCE = 0.6k { PIN = z; }

/I slew & load and state dependent transient driver resistance
VECTOR (01 a->01 z && 'pl && 'p2) {
RESISTANCE {
/I fill in the model
}
VECTOR (01 a->01z && 'pl && p2){
RESISTANCE {
/I fill in the model
}
VECTOR (01 a->01z && pl && 'p2){
RESISTANCE {
/I fill in the model
}
VECTOR (01 a->01z && pl && p2){
RESISTANCE {
/I fill in the model
}
VECTOR (10 a-> 10 z && 'pl && 'p2) {
RESISTANCE {
/I fill in the model
}
VECTOR (10 a-> 10 z && 'pl && p2){
RESISTANCE {
/I fill in the model
}
VECTOR (10 a-> 10z && pl && 'p2) {
RESISTANCE {
/I fill in the model
}
VECTOR (10 a-> 10z && pl && p2){
RESISTANCE {
/I fill in the model

}

The model for transient driver resistance has the same form as a slewrate and load dependent
model for delay. Voltage, process, and temperature dependent driver resistance can also be
modeled in the same way as voltage, process, and temperature-dependent delay.

198 Advanced Library Format (ALF) Reference Manual Version 1.0.10

Resistance and Capacitance on a Pin Applications

4.14 Resistance and Capacitance on a Pin

4.14.1 Self-Resistance and Capacitance on Input Pin

A pin resistance is a resistance inside a PIN object.

PIN <pin_identifier> {
DIRECTION = input;
RESISTANCE = <resistance_number>;
CAPACITANCE = <capacitance_number>;

}
The pin resistance is in series with the pin capacitance, as shown in figure 4-2:

pin resistance

input pin ~ pin capacitance

Figure 4-2: Resistance and capacitance on a pin

4.14.2 Pullup and Pulldown Resistance on Input Pin

A pullup or pulldown resistance or a combination of both on an input pin can be described as
follows:

PIN <pin_identifier> {
DIRECTION = input;
PULL = < up | down | both > {
VOLTAGE = <voltage_number>;
RESISTANCE = <resistance_number>;

}
The pullup/pulldown resistance is in series with a clamp voltage, as shown in figure 4-3:

pullup or pulldown resistance

input pin clamp voltage

Figure 4-3: Pullup or pulldown resistance

Version 1.0.10 Advanced Library Format (ALF) Reference Manual 199

Applications Resistance and Capacitance on a Pin

In the case of a pullup/pulldown combination, the resistance and voltage represent the
Thevenin equivalent resistance and voltage, respectively, as shown in figure 4-4:

pullup equivalent resistance
resistance R =R1*R0O/ (R1 + RO)
R1 Thevenin
Equivalent
. .
input pin pulldown Input pin
resistance
RO
VO equivalent voltage

V = (VI*RO + VO*R1) / (R1 + RO)

Figure 4-4: Thevenin equivalent resistance

4.14.3 Pin and Load Resistance and Capacitance on Output Pin

The driver resistance (see 4.13.2) can also be represented as pin capacitance of an output pin,
in case there is no state dependency.
PIN <pin_identifier> {
DIRECTION = output;
CAPACITANCE = <capacitance_number>;
RESISTANCE {

RISE = <rise_resistance_number>;
FALL = <rise_resistance_number>;

}
}

Please note the distinction of capacitance and resistance of the pin itself and capacitance and
resistance applied as load to the pin in the following schematic. The load capacitance and
resistance would be specified in a characterization vector (see Section 4.3).

See the following schematic for driver signal, pin and load resistance and capacitance:

pin resistance . load resistance
output pin
ATS
driver signa _____pincapacitance ____ load capacitance
(rise or fall)

Figure 4-5: Resistance and capacitance on output pin

200 Advanced Library Format (ALF) Reference Manual Version 1.0.10

ALF/SDF cross reference Applications

4.15 ALF/SDF cross reference

This section provides a cross reference between the representation of timing data in ALF and
SDF. In general, ALF is used as a characterization library, which is the input to a delay
calculator, whereas SDF is the output from a delay calculator. Therefore ALF typically
contains tables or equations (i.e. arithmetic models) for timing data whereas SDF contains a
discrete set of data in fixed format. However, in an ALF representation of timing shells for
cores, which are typically represented in SDF today, the ALF library would contain the same
data as the SDF.

The specification of the stimulus for a particular timing measurement (i.e. the timing diagram)
is pertinent to both ALF and SDF. In ALF, timing diagrams are directly described in the vector
expression language, and the timing measurements are always specified in relation to a
particular timing vector. In SDF, timing diagrams are partly described in the language and
partly implied by the keyword for timing measurements. Therefore SDF needs a larger set of
keywords than ALF for the same description capability.

4.15.1 SDF delays

4.15.1.1 SDF DELAY for IOPATH and INTERCONNECT

DELAY is a measurement of the time needed for a signal to travel from one port to another
port. In ALF, delay measurements are described in a uniform language, independent of whether
A and Z are the input and output port of the same cell, respectively, or A and Z are the driver
and receiver connected to the same net, or A and Z are both outputs of a cell. Therefore the SDF
keywords IOPATH and INTERCONNECT have no counterpart in ALF.

VECTOR (01 A -> 01 Z) {
DELAY {
FROM {PIN = A;}
TO {PIN = Z}}
/* fill in data */

A |

A |
|
: delay |

Figure 4-6: Measurement of SDF IOPATH or INTERCONNECT delay

The ALF VECTOR describes the sequence of events shown in figure 4-6
rising edge at A followed by rising edge at Z

Version 1.0.10 Advanced Library Format (ALF) Reference Manual 201

Applications ALF/SDF cross reference

The FROM and TO pin annotations define the sense of measurement for DELAY.

As opposed to SDF where input ports of an IOPATH may have an edge specification and
output ports may not, the vector expression language in ALF always contains the specification
of the edge:

rising edge = “01”, falling edge = “10”, any edge = “?!".

4.15.1.2 SDF PATHPULSE
PATHPULSE in SDF defines the smallest pulse that may appear at a port in form of

1. afull-swing pulse

2. apulseto X.

The equivalent model in ALF uses two vectors in conjunction with the keyword
PULSEWIDTH.!

The ALF keywords are of more general use than the SDF PATHPULSE keyword, which is just
for one specific use.

VECTOR (01 Z -> 10) {
PULSEWIDTH {
PIN = Z;
/* fill in data */

| |
Z NN
! pulsewidth !

Figure 4-7: Measurement of SDF PATHPULSE full-swing

The ALF VECTOR above describes the sequence of events
rising edge at Z followed by falling edge at Z
The smallest possible full-swing pulse applies at pin Z.

VECTOR ('b0'bX Z -> 'bX'b0 Z) {
PULSEWIDTH {
PIN = Z;
/*fill in data */

1. The same keyword PULSEWIDTH is also used for a timing constraint in ALF. The semantic mean-
ing in both usage cases is consistent: PULSEWIDTH = smallest possible pulse at output or smallest
allowed pulse at input. Therefore the usage of the same keyword is justified.

202 Advanced Library Format (ALF) Reference Manual Version 1.0.10

ALF/SDF cross reference Applications

| |
Z IXOXOXXXXX XXX
el

' pulsewidth '

Figure 4-8: Measurement of SDF PATHPULSE to X

This ALF VECTOR describes the sequence of events

rising edge at Z from 0 to X followed by falling edge at Z from X to 0.
The smallest possible pulse to “X” applies at pin Z.

VECTOR (01 A->10B ->01 Z -> 10 2) {
PULSEWIDTH {
PIN = Z;
/* fill in data */

z AN

! pulsewidth !

Figure 4-9: Measurement of SDF PATHPULSE with triggering inputs

This ALF VECTOR describes the sequence of events as shown in figure 4-9

rising edge at A followed by falling edge at B followed by rising edge at Z followed by fall-
ing edge at Z

This is a detailed specification of the pulse itself at pin Z as well as of the triggering input
signals A and B.

4.15.1.3 SDF RETAIN delays

RETAIN delay in SDF is a measurement for the time for which an output signal will retain its
value after a change at a related input signal occurs. It appears always in conjunction with a
IOPATH delay, which is the time for which an output will stabilize after changing its value.

Version 1.0.10 Advanced Library Format (ALF) Reference Manual 203

Applications ALF/SDF cross reference

RETAIN is mainly used for asynchronous memories, where decoder glitches may appear at the
data output port.

VECTOR (01 A -> 2! 2) {

RETAIN {
FROM {PIN = A;}
TO {PIN = Z;}
/* fill in data */

}

DELAY {
FROM {PIN = A;}
TO {PIN = Z;}
/* fill in data */

A [[
/ retain - |

delay | »!

| |
>'F<xxxxxx}>'<

| |

Figure 4-10: RETAIN and IOPATH delay

The ALF VECTOR describes the sequence of events shown in figure 4-10
rising edge at A followed by any edge at Z

The intermediate events at Z, occuring eventually between retain and delay time, are not
specified.

4.15.1.4 SDF PORT delays

PORT delay in SDF is a delay measurement with unspecified start point, since the start point
is going to be established by a connection to a driver in the design and not in the library.

VECTOR (01 A) {
DELAY {
TO {PIN = A}
/*fill in data */

204 Advanced Library Format (ALF) Reference Manual Version 1.0.10

ALF/SDF cross reference Applications

| delay |

Figure 4-11: SDF PORT delay

This ALF VECTOR describes the event figure 4-11
rising edge at A.

The absence of a FROM pin defines the absence of a start point, which corresponds to the exact
meaning of PORT in SDF.

ALF also has the capability of describing a delay measurement with unspecified end point.

VECTOR (01 2) {
DELAY {
FROM {PIN = Z;}
/*fill in data */
}
}
Hence ALF provides the description capability for both a delay from unspecified driver to
specified receiver and a delay from specified driver to unspecified receiver.

4.15.1.5 SDF DEVICE delays

DEVICE delay in SDF is a delay that applies from all input ports of a device to one specific
output port or to all output ports by default.

The ALF vector expression language has no notion of “all input ports of a device”. ALF has a
more general capability of declaring groups of pins and define delays from group to group or
from group to pin or from pin to group.

GROUP any _input{ AB}
GROUP any output{Y Z}
VECTOR (01 any_input -> 01 any_output) {
DELAY {
FROM {PIN = any_input;}
TO {PIN = any_output;}
/*fill in data */
}
}

The ALF VECTOR above describes the event
rising edge at any_input (i.e. A or B) followed by rising edge at any_output (i.e. Y or Z)

Version 1.0.10 Advanced Library Format (ALF) Reference Manual 205

Applications ALF/SDF cross reference

This construct is equivalent to the following four vectors:
VECTOR (01 A -> 01 Y){

DELAY {
FROM {PIN = A}
TO {PIN=Y;}
/* fill in data */
}
}
VECTOR (01 B ->01Y){
DELAY {
FROM {PIN = B;}
TO {PIN=Y;}
/* same data */
}
}
VECTOR (01 A ->01 2){
DELAY {
FROM {PIN = A}
TO {PIN = Z;}
/* same data */
}
}
VECTOR (01 B -> 01 Z2) {
DELAY {
FROM {PIN = B;}
TO {PIN = Z;}
/* same data */
}
}

4.15.2 SDF timing constraints

4.15.2.1 SDF SETUP

SETUP in SDF is the minimal time required for a data signal to arrive before the sampling edge
of a clock signal in order to be sampled correctly.

VECTOR (2! din -> 01 clk) {

SETUP {
FROM {PIN = din;}
TO {PIN = clk;}
/*fill in data */

}

206 Advanced Library Format (ALF) Reference Manual Version 1.0.10

ALF/SDF cross reference Applications

din >|<

I setup |
|

clk

Figure 4-12: Measurement of SDF SETUP

The ALF VECTOR describes the sequence of events as shown in figure 4-12
any edge at din followed by rising edge at clk.

The FROM and TO pin annotations define the sense of measurement for SETUP. Since setup
time is measured in positive sense from data to clock, din is the data pin, and clk is the clock

pin.

4.15.2.2 SDF HOLD

HOLD in SDF is the minimal non-negative time required for a data signal to stay at its value
after the sampling edge of a clock signal in order to be sampled correctly.

VECTOR (01 clk -> ?! din) {
HOLD {
FROM {PIN = clk;}
TO {PIN = din;}
/*fill in data */

din i >|<

clk)I/ !

Figure 4-13: Measurement of SDF HOLD

The ALF VECTOR describes the sequence of events as shown in figure 4-13
rising edge at clk followed by any edge at din.

The FROM and TO pin annotations define the sense of measurement for HOLD. Since hold
time is measured in positive sense from clock to data, clk is the clock pin, and din is the data

pin.

Version 1.0.10 Advanced Library Format (ALF) Reference Manual 207

Applications ALF/SDF cross reference

4.15.2.3 SDF SETUPHOLD

SETUPHOLD in SDF is a combination of SETUP and HOLD. In this combination, either
SETUP or HOLD may be a negative value, but the sum of both values, which represents the
minimal pulsewidth of the data in order to be sampled correctly, must be non-negative. The
time from the leading data edge to the sampling clock edge is SETUP. The time from the
sampling clock edge to the trailing data edge is HOLD.

VECTOR // for SETUPHOLD
(?'din->01clk->?'din //setup & hold both positive
| O01clk->?!din->?!din //negative setup, positive hold
| ?!din->?!din->01clk //positive setup, negative hold

)

SETUP {
FROM {PIN = din;
TO {PIN = clk;}
/* fill in data */

}

HOLD {
FROM {PIN = clk;}
TO {PIN =din;}

/*fill in data */

| | |
din)|< minimal data pulse)|<

| > >
: setup | hold !

clk |

Figure 4-14: Measurement of SDF SETUPHOLD

The ALF VECTOR describes the alternative sequences of events as shown in figure 4-14

any edge at din followed by rising edge at clk followed by any edge at din
or rising edge at clk followed by any edge at din followed by any edge at din
or any edge at din followed by any edge at din followed by rising edge at clk.

The FROM and TO pin annotations define the sense of measurement for SETUP and HOLD,
respectively, in the same way as if they were specified in separate vectors.

208 Advanced Library Format (ALF) Reference Manual Version 1.0.10

ALF/SDF cross reference Applications

4.15.2.4 SDF RECOVERY

RECOVERY in SDF is the minimal time required for a higher priority asynchronous control
signal to be released before a lower priority clock signal in order to allow the clock to be in
control.

VECTOR (01 clearbar -> 01 clk) {
RECOVERY {
FROM {PIN = clearbar;}
TO {PIN = clk;}

clearbar / I
I I

| recovery,

clk

Figure 4-15: Measurement of SDF RECOVERY

The ALF VECTOR describes the sequence of events as shown in figure 4-15
rising edge at clearbar followed by rising edge at clk

The FROM and TO pin annotations define the sense of measurement for RECOVERY. Since
recovery time is measured in positive sense from the higher priority asynchronous control
signal to the lower priority clock, clearbar is the asynchronous control pin, and clk is the clock

pin.

4.15.2.5 SDF REMOVAL

REMOVAL in SDF is the minimal time required for a higher priority asynchronous control
signal to stay active after a lower priority clock signal in order to keep overriding the clock.
VECTOR (01 clk -> 01 clearbar) {
REMOVAL {
FROM {PIN = clk;}
TO {PIN = clearbar;}

Version 1.0.10 Advanced Library Format (ALF) Reference Manual 209

Applications ALF/SDF cross reference

clearbar [[
| A
I removal |

clk /l(:

Figure 4-16: Measurement of SDF REMOVAL

The ALF VECTOR describes the sequence of events as shown in figure 4-16
rising edge at clk followed by rising edge at clearbar

The FROM and TO pin annotations define the sense of measurement for REMOVAL. Since
removal time is measured in positive sense from the lower priority clock to the higher priority
asynchronous control signal, clk is the clock pin, and clearbar is the asynchronous control pin.

4.152.6 SDF RECREM

RECREM in SDF is a combination of RECOVERY and REMOVAL. In this combination
either RECOVERY or REMOVAL may be negative, but the sum of both must be non-
negative. The sum of RECOVERY and REMOVAL represents the width of the “forbidden
zone” for the phase between the higher priority and the lower priority signal. The boundary to
the left is RECOVERY, the boundary to the right is REMOVAL.

In a characterization vector for RECREM, either the REVOVERY or the REMOVAL effect
can be observed, depending on the phase relationship between the signals. This is different
from SETUPHOLD where the effects of both SETUP and HOLD can be observed in the same
characterization vector.

VECTOR // for RECREM
(01 clearbar -> 01 clk// pos. recovery or neg. removal
| 01clk->01 clearbar// neg. recovery or pos. removal
){
RECOVERY{
FROM {PIN = clearbar;}
TO {PIN = clk;}
/* fill in data */
}
REMOVAL {
FROM {PIN = clk;}
TO {PIN = clearbar;}
/* fill in data */

210 Advanced Library Format (ALF) Reference Manual Version 1.0.10

ALF/SDF cross reference Applications

clearbar /'(forbidden zone /

| removal |

| recovery, |

T

clk | / |
| |

Figure 4-17: Measurement of SDF RECREM

The ALF VECTOR describes the alternative sequences of events as shown in figure 4-17

rising edge at clearbar followed by rising edge at clk
or rising edge at clk followed by rising edge at clearbar

The FROM and TO pin annotations define the sense of measurement for RECOVERY and
REMOVAL, respectively, in the same way as if they were specified in separate vectors.

4.15.2.7 SDF SKEW

SKEW in SDF is maximum allowed difference in arrival time between signals. The allowed
region for the phase between signals is bound by zero to the left and SKEW to the right for
positive SKEW or by SKEW to the left and zero to the right for negative SKEW.

VECTOR (01 clkl <&> 01 clk2) {// pos. or neg. or zero skew
SKEW {
FROM {PIN = clk1;}
TO {PIN = clk2;}
/* fill in data */

clkl

[
| skew (if positive value)
I

clk2

I
/éllowed zon
I

skew (if negative value)

clk2 %Iowed zoneJ,/

Figure 4-18: Measurement of SDF SKEW

Version 1.0.10 Advanced Library Format (ALF) Reference Manual 211

Applications ALF/SDF cross reference

The ALF VECTOR describes the alternative sequences of events as shown in figure 4-18

rising edge at clkl followed by rising edge at clk2
or rising edge at clk2 followed by rising edge at clkl
or rising edge at clk2 simultaneously with rising edge at clk1

This is the most general case, where the skew may be positive, negative or zero across the
characterization space. The FROM and TO pin annotations define the sense of measurement
for SKEW.

4.15.2.8 SDF WIDTH

VECTOR (01 clk -> 10 clk) {// high pulse
PULSEWIDTH {
PIN = clk;
/*fill in data */
}
}

This ALF vector describe the sequence of events as shown in figure 4-19
rising edge at clk followed by falling edge at.clk
The pulsewidth applies to the positive phase of the signal clk.

VECTOR (10 clk -> 01 clk) {// low pulse
PULSEWIDTH {
PIN = clk;
/*fill in data */
}
}

This ALF vector describe the sequence of events
falling edge at clk followed by rising edge at.clk
The pulsewidth applies to the negative phase of the signal clk.

clk

> |

i pulsewidth |

pulsewidth

Figure 4-19: Measurement of SDF WIDTH

VECTOR (01 clk -> 10 clk | 10 clk -> 01 clk) {// high or low pulse
PULSEWIDTH {
PIN = clk;
/*fill in data */
}
}

This ALF vectors describes the alternative sequences of events as shown in figure 4-20

212 Advanced Library Format (ALF) Reference Manual Version 1.0.10

ALF/SDF cross reference Applications

rising edge at clk followed by falling edge at clk
or falling edge at clk followed by rising edge at.clk

The pulsewidth applies to both phases of the signal clk.

4.15.2.9 SDF PERIOD
VECTOR (01 clk -> 10 clk -> 01 clk) {

PERIOD {
PIN = clk;
/*fill in data */
}
}
clk

period

|
I
-
|
Figure 4-20: Measurement of SDF PERIOD

This ALF vectors describes the sequence of events as shown in figure 4-21
rising edge at clk followed by falling edge at clk followed by rising edge .at clk
Thus the period is measured between.two consecutive rising edges at the signal clk.

4.15.2.10 SDF NOCHANGE

VECTOR (?! addr -> 10 write -> 01 write -> ?! addr) {
SETUP {
FROM {PIN = addr;}
TO {PIN = write;}
/*fill in data */
HOLD {
FROM {PIN = write;}
TO {PIN = addr;}
/*fill in data */ }
NOCHANGE {
PIN = addr;
/*fill in optional data */

Version 1.0.10 Advanced Library Format (ALF) Reference Manual 213

Applications ALF/SDF cross reference

nochange

| |
I I
I I
addr >|< |
| setup I

write : \|\ /j/

hold

X

Figure 4-21: Detection of SDF NOCHANGE

This ALF vector describes the sequence of events as shown in figure 4-21

any edge at addr followed by falling edge at write followed by rising edge at write fol-
lowed by any edge at addr

The SETUP time is measured from the first edge at addr to the first edge at write. The HOLD
time is measured from the second edge at write to the second edge at addr. The signal addr may
not change between the start time of the setup measurement until the end time of the hold
measurement. ALF allows to specify an additional measurement between the first and second
edge of the signal subject to NOCHANGE. However, this additional measurement could not

be directly translated into SDF and would be for characterization and future purpose only.

4.15.3 SDF conditions and labels for delays and timing constraints

Conditions for IOPATH timing arcs in SDF apply to the entire timing arc. The condition is
evaluated during the event on the “from” port (i.e. an input pin), and the event on the “to” port
(i.e. an output pin) is scheduled consequently.

Conditions for timing constraints in SDF can be defined individually for each port. The
condition associated with tis¢art pointof the timing constraint (i.e. data for SETUP, clock for
HOLD etc.) is calledtamp conditionThe condition associated with ted poiniof the timing
constraint (i.e. clock for SETUP, data for HOLD) is caldée@ck condition

The use of SETUPHOLD instead of individual SETUP and HOLD or RECREM instead of
individual RECOVERY and REMOVAL in SDF imposes restrictions in the definition of
conditions. Whereas the use of 2 individual timing constraints allows the definition of 4
conditions (2 stamp, 2 check), the use of 1 combined timing constraint allows only the
definition of 2 conditions (1 stamp, 1 check).

The ALF vector expression language allows to specify conditions during the sequence of
events in a more general way than SDF.

Some more examples in ALF:

214 Advanced Library Format (ALF) Reference Manual Version 1.0.10

ALF/SDF cross reference Applications

C don'’t care don't care

Figure 4-22: Condition during sequence of two events

VECTOR (C & (01 A->01B))
alternative specification options:
VECTOR (?1C->01A->01B->1?C)// verbose
VECTOR (?1C->01 A->01B)// C must be true before start
VECTOR (01 A->01B->1? C)// C must be true until the end
This ALF vector describes the sequence of events as shown in figure 4-22

rising edge at A is followed by rising edge at B, C is true before rising edge of A until after
rising edge of B

Either of the pseudo-events (?1 C, 1? C) at the boundary can be omitted, since either one of
them is sufficient to specify that the condition C must be true during the entire event sequence.

C don'’t care don'’t care

Figure 4-23: Condition during leading event

VECTOR ((C&01A)->01B)
alternative specification options:
VECTOR (?1C->01A->1?C->01B)
VECTOR (01 A->1?C->01B)
This ALF vector describes the sequence of events as shown in figure 4-23

Version 1.0.10 Advanced Library Format (ALF) Reference Manual 215

Applications ALF/SDF cross reference

rising edge at A is followed by rising edge at B, C is true before rising edge of A until after
rising edge of A

A

C don'’t care don'’t care

Figure 4-24: Condition during trailing event

VECTOR (01 A->(C &01B))
alternative syntax:
VECTOR (01 A->?1C->01B->1?C)
This ALF vector describes the sequence of events as shown in figure 4-24

rising edge at A is followed by rising edge at B, C is true before rising edge of B until after
rising edge of B

SETUPHOLD with SCOND (stamp condition) and CCOND (check condition) in SDF can be
described in ALF in the following way:

216 Advanced Library Format (ALF) Reference Manual Version 1.0.10

ALF/SDF cross reference Applications

| | |
din >|< minimal data pulse)|<

| ! !
: setup | hold !

clk I

scond don’t care ?for setup ?for hold don't care

ccond don't care don't care

?for setup ? for hold

Figure 4-25: SETUPHOLD with SCOND and CCOND

VECTOR (?! din -> ?1 ccond -> 01 clk -> 1? scond -> ?! din) {

SETUP {
FROM {PIN = din;
TO {PIN = clk;}
/*fill in data */
}
HOLD {
FROM {PIN = clk;}
TO {PIN = din;}
/*fill in data */
}
}
A more verbose specification of the vector looks as follows:
VECTOR (

?1 scond // scond must be true at the beginning
-> ?ldin // din toggles
-> ?1 ccond // last chance for ccond to become true
-> 01clk //rising edge at clk
-> 17? scond // scond gets a break
-> ?ldin // din toggles
-> 1? ccond // ccond gets a break at last

The optional condition label in SDF has its counterpart in ALF (see 3.6.4.1). As in SDF, the
use and interpretation of this label is defined by the application tool and not by the standard.

Version 1.0.10 Advanced Library Format (ALF) Reference Manual 217

Applications ALF/SDF cross reference

218 Advanced Library Format (ALF) Reference Manual Version 1.0.10

Index

Symbols CONNECTIONS 86
(N+1) order sequential logic 21 CONNECTIVITY 86
-> operator 21 CURRENT 84
2- 39 DELAY 83
2139 DERATE_CASE 87
27 39 DISTANCE 85
2~ 139 DRIVE_STRENGTH 85, 86
@ 19 DRIVER 86
ENERGY 84
Numerics FANIN 86
2-dimensional tables 167 FANOUT 86
3-dimensional table 170, 175 FREQUENCY 84
HEIGHT 85
A HOLD 83
ABS 59 JITTER 84
abs 47 LENGTH 85
abstract transition operators 183 NOCHANGE 83
active vectors 114 PERIOD 83
ALF_AND 121, 122, 156 POWER 84
ALF_BUF 120, 121 PROCESS 87
ALF _BUFIFO0 124 PULSEWIDTH 83
ALF_BUFIF1 124 RECEIVER 86
ALF_FLIPFLOP 127, 154 RECOVERY 83
ALF LATCH 128 REMOVAL 83
ALF_MUX 126, 155 RESISTANCE 84
ALF_NAND 121, 122 SETUP 83
ALF_NAND2 153 SKEW 83
ALF_NOR 121, 123 SLEWRATE 83
ALF_NOT 120, 121 SWITCHING_BITS 86
ALF_NOTIFO 124, 125 TEMPERATURE 84
ALF_NOTIF1 124, 125 THRESHOLD 86
ALF _OR 121, 122 TIME 84
ALF_XNOR 121, 123 VOLTAGE 84
ALF_XOR 121, 123 WIDTH 85
ALIAS 29 arithmetic models 96
alias 49 average 100
all_purpose_items 48 can_short 97
alphabetic_bit_literal 37 cannot_short 97
annotated properties 25 CONNECT_RULE 97
annotation 48 DEFAULT 96
arithmetic model tables FALL 94
AREA 85 MAX 92
CAPACITANCE 84 MEASUREMENT 99

Version 1.0.10 Advanced Library Format (ALF) Reference Manual Index-219

MIN 92
must_short 97
peak 100
RISE 94
rms 100
static 99
transient 99
TYP 92
UNIT 96

CELL 77
BUFFERTYPE 77
CELLTYPE 77
DRIVERTYPE 78
NON_SCAN_CELL 79
PARALLEL_DRIVE 78
SCAN_TYPE 78
SCAN_USAGE 78

cell buffertype
inout 78
input 78
internal 78
output 78

cell celltype
block 77
buffer 77
combinational 77
core 77
flipflop 77
latch 77
memory 77
multiplexor 77
pad 77
special 77

cell drivertype
both 78
predriver 78
slotdriver 78

cell scan_type
clocked 78
control_0 78
control_1 78
Issd 78
muxscan 78

cell scan_usage
hold 79
input 79

output 79

default 96

from 89

information 68
AUTHOR 69
DATETIME 69
PRODUCT 69
TITLE 69
VERSION 69

limit 89

object reference
cell 70
pin 70
primitive 70

PIN
ACTION 72
CONNECT_CLASS 74
DATATYPE 74
DIRECTION 72
DRIVETYPE 71
ENABLE_PIN 73
OFF_STATE 74
ORIENTATION 73
POLARITY 72
PULL 73
SCAN_POSITION 74
SCOPE 72
SIGNALTYPE 71
STUCK 74
VIEW 70

pin
PINTYPE 70

pin action
asynchronous 72
synchronous 72

pin datatype
signed 74
unsigned 74

pin direction
both 72
input 72
none 72
output 72

pin drivetype
cmos 71
cmos_pass 71

Index-220 Advanced Library Format (ALF) Reference Manual Version 1.0.10

nmos 71
nmos_pass 71
open_drain 71
open_source 71
pmos 71
pmos_pass 71
ttl 71
pin off_state
inverted 75
non_inverted 75
pin orientation
bottom 74
left 74
right 74
top 74
pin pintype
analog 70
digital 70
supply 70
pin polarity
both 73
double_edge 73
falling_edge 73
high 73
inverted 73
low 73
non_inverted 73
none 73
rising_edge 73
pin pull
both 73
down 73
none 73
up 73
pin scope
behavior 72
both 72
measure 72
none 72
pin signaltype
clear 71
clock 71
control 71
data 71
enable 71
master_clock 71

Version 1.0.10

out_enable 71
read 71
scan_clock 71
scan_data 71
scan_enable 71
scan_out_enable 71
select 71
set 71
slave clock 71
write 71
pin stuck
both 74
none 74
stuck_at 074
stuck_at_ 174
pin view
both 70
functional 70
none 70
physical 70
scan 68
to 89
unnamed 68
VECTOR 75
LABEL 75, 76, 77
violation 68
MESSAGE 68
MESSAGE_TYPE 68
annotation container 31, 68, 89
annotation_container 49
annotations 174
PIN 174
pin 192
self-explaining 175
timing arc 174
anotation
object reference
class 70
any_character 36
arithmetic models 28
arithmetic operations 23
arithmetic operators
binary 59
function 59
unary 59
arithmetic_binary_operator 47

Advanced Library Format (ALF) Reference Manual Index-221

arithmetic_expression 44
arithmetic_function_operator 47

arithmetic_model 53

reduction 60
vector 63, 64
binary_base 38

arithmetic_model_template_instantiation 53 binary_digit 38

arithmetic_unary_operator 47

assignment_base 43

async_2write_lread_ram 186

atomic megacell 17
atomic object 27
ATTRIBUTE 30, 81
attribute 49
CELL 82
cell
asynchronous 82
CAM 82
dynamic 82
RAM 82
ROM 82
static 82
synchronous 82
LIBRARY 82
PIN 81
pin
PAD 81
SCHMITT 81
TRISTATE 81
XTAL 81
pin polarity
READ 81
TIE 81
WRITE 81
attribute_items 49
average 169

B

based literal 38
based _literal 38
BEHAVIOR 153
behavior 54
behavior_body 54
bidirectional pin 180
binary 38
Binary operators
arithmetic 59
bitwise 61
boolean, scalars 60

Index-222

Advanced Library Format (ALF) Reference Manual

bit 37
bit_edge_literal 39
bit_literal 37
Bitwise operators

binary 61

unary 61
block comment 36
bodies 53
Boolean Equatio 153
boolean functions 17
boolean operators

binary 60

unary 59
boolean_and_operator 47
boolean_arithmetic_operator 47
boolean_binary operator 47
boolean_case compare_operator 47
boolean_condition_operator 48
boolean_else_operator 48
boolean_expression 44, 52
boolean_logic_compare_operator 47
boolean_or_operator 47
boolean_unary operator 47
both 180
bus contention 178
bus modeling 177
bus with multiple drivers 179
busholder 179

C

can_float 175
CAPACITANCE 162, 180
case-insensitive langauge 36
cell 50
cell modeling 25
cell_identifier 45, 50
cell_instantiation 45
cell_items 51
cell_template_instantiation 50
characterization 15, 17
power 17, 24
timing 17

Version 1.0.10

characterization model 166
Characterization Modeling 22
characterization variables 17
children object 27
CLASS 29, 192
class 49

connectivity 192
combinational logic 18
combinational primitives 120
combinational scan cell 158
combinational_assignments 54
comment 35

block 36

long 36

short 36

single-line 36
comments

nested 36
compound operators 36
CONNECT_RULE 192
CONNECTION 175
connections

allowed 192

disallowed 191

external 191
CONNECTIVITY 192
connectivity 191

class 192

net-specific 193

pin-specific 193
connectivity class 192
CONSTANT 29
constant 50
constant numbers 36
constraints

delay 167

power 167

timing 167
context_sensitive_keyword 45
context-sensitive keyword 42, 178
context-sensitive keywords 23
core 17
core cell 178
core modeling 189

Version 1.0.10

D

d_flipflop_clr 154
d_flipflop_Id_clr 156
d_flipflop_mux_set_clr 156
d_latch 157
decimal 38
decimal_base 38
deep submicron 15
DEFAULT 175, 176
default annotation 96
delay mode
inertial 24
invalid-value-detection 24
transport 24
delay models 22
delay predictor 23
delimiter 35, 36
derating 171
derating equation 172
digit 38
digital filter 189
digital_filter 190
DRIVE_STRENGTH 178
DRIVER 192

E

edge literal 39
edge rate 22
edge_literal 39
edge_literals 46
edge-sensitive sequential logic 18
elapsed time 22
ENERGY 170
energy 24
equation 54
equation_template_instantiation 54
escape codes 39
escape_character 35
escaped identifier 40
escaped_identifier 40
event sequence detection 21
EXP 59
exp 47
expansion

bit-wise 182

bytewise 182

Advanced Library Format (ALF) Reference Manual Index-223

expansion of vectors 182
exponentiation 23

extensible primitives 119
external connections 191

F

fanout 26
Flipflop 127
flipflop 154
forward referencing 27
fringe capacitance 26
FUNCTION 153
function 54
exponentiation 23
logarithm 23
Function operators
arithmetic 59
function_template_instantiation 54
functional model 14
functional modeling 18
functional models 17
functions 28

G

generic objects 28
generic_object 49
glitch 24

GROUP 31, 182
group 50
group_identifier 50

H

hard keyword 42

hardware description language 17
HDL 17

header 53
header_template_instantiation 53
hex_base 38

hex_digit 38

hexadecimal 38

hierarchical object 27

|

identifier 27, 35
Identifiers 40
identifiers 46

Index-224 Advanced Library Format (ALF) Reference Manual

inactive vectors 114

INCLUDE 29, 104

include 50

index 46

inertial delay mode 24

infinite impulse response filter 189
INFORMATION 158

integer 36, 37

internal load 23

intrinsic delay 22

J
JK-flipflop 155
JTAG BSR cell 158

K

keyword 27

Keywords
context-sensitive 43
generic objects 42
operators 43

keywords
context-sensitive 23

L

Latch 128

layout parasitics 23
level-sensitive cell 157
level-sensitive sequential logic 18
libraries 51

LIBRARY 158

library 27

Library creation 11
library_identifier 52
library_items 51
library_specific_object 49
library template_instantiation 51
library-specific objects 28
LIMIT 175

literal 27, 35

load characterization model 23
LOG 59

log 47

logarithm 23

logic_literals 46

logic_values 46

Version 1.0.10

logic_variables 46

M

macrocells 17
MAX 59
max 47
MEASUREMENT 169
megacell modeling 182
megacells 17
metal layer 26
MIN 59
min 47
mode of operation 15
modeling
bus 177
cell 25
characterization 22
cores 189
functional 18
megacell 182
physical 25
power 23
synthesis 25
test 25
timing 22
wire 26
wireload 180
multiplexor 126
must_connect 175
muxscan 160

N

named_assignment 43
named_assignment_base 43
NAND gate 153

nested comments 36
no_connection 175
non_negative_number 37
NON_SCAN_CELL 159
non-escaped identifier 40
nonescaped_identifier 40
nonreserved_character 35
non-scan cells 25

Number 36

number 37

numbers 46

numeric_bit_literal 37

O

objects 27, 50
octal 38
octal_base 38
octal_digit 38
one_shot 188
one-pass parser 27
operation mode 15
operator
> 21
followed by 21
operators
arithmetic 59
boolean, scalars 59
boolean, words 60
signed 61
unsigned 61
output ramptime 162

P

parasitic capacitance 26
parasitic resistance 26
physical modeling 25
pin_assignments 44
pin_identifier 51
pin_items 51
pin_template_instantiation 51
pins 51

placeholder identifier 40
placeholder_identifier 40
placeholders 30
POLARITY 160

power 24

Power characterization 17
power characterization 24
power constraint 15
power dissipation 24
Power model 15

power modeling 23

predefined derating cases 88, 100, 101

bccom 88
bcind 88
bcmil 88
wccom 88

Version 1.0.10 Advanced Library Format (ALF) Reference Manual

wcind 88
wcmil 88
predefined process names 88
snsp 88
snwp 88
wnsp 88
wnwp 88
primitive 154
primitive_identifier 45, 51
primitive_instantiation 45
primitive_items 52
primitive_template_instantiation 51
primitives 51
private keywords 43
PROCESS 171
PROPERTY 31
property 50
public keywords 43
pulse generator 188
PVT Derating 171

Q

Q_CONFLICT 127
QN_CONFLICT 127
quad D-Flipflop 161
guoted string 35, 39
quoted_string 39

R

RAM16X4 191
real 36
Reduction operators
binary 60
unary 60
reserved keyword 42
reserved_character 35
RESISTANCE 181
RTL 14

S

scaled average current 24
scaled average power 24
scan cell

combinational 158
scan chai 158
Scan Flipflop 160

Index-226 Advanced Library Format (ALF) Reference Manual

Scan insertion 25
scan test 25
scan_data 160
scan_enable 160
SCAN_FFX4 161
SCAN_ND4 159
SCAN_TYPE 159
self capacitanc 26
self-explaining annotations 175
sequential logic
edge-sensitive 18
level-sensitive 18
N+1 order 21
vector-sensitive 21
sequential_assignment 54
sheet resistance 26
sign 36
signed operators 61
simulation model 15
single-line comment 36
slew rate 22
SLEWRATE 162, 177
soft keyword 42
source_text 49
sr_latch 157
state-dependent drive strength 178
STATETABLE 153
statetable 54
statetable_body 54
static power 25
std_derating 172
std_header_2d 164
string 47
sublibraries 52
sublibrary_template_instantiation 52
switching energy 162
symbolic_edge_literal 39

T
TABLE 162

table 53

table_items 53
table_template_instantiation 53
TEMPERATURE 171
TEMPLATE 30, 164

template 50, 162

Version 1.0.10

template definition 164
template_identifier 50
template_instantiation 45
template-reference scheme 23
Ternary operator 60
Three-port Memory 186
timing arc 174
timing characterization 17
timing constraint model 22
timing constraint models 22
timing constraints 15, 167
timing modeling 22
timing models 15
transcendent functions 23
transient power 25
transition delay 22
transmission-gate 178
transport delay mode 24
invalid-value-detection 24
triggering conditions 18
triggering function 18
tristate driver 177
tristate primitives 124
tristate_buffer 177
Truth Table 153
truth table 17
Two-port memory 183

U

Unary operator
bitwise 61

Unary operators
arithmetic 59
boolean, scalar 59
reduction 60

Unary vector operators 62

unnamed annotation containers 68

unnamed_assignment 43

unnamed_assignment_base 43

unnamed_assignments 43
unsigned 37
unsigned operators 61

V

VCO 188
VECTOR 162

vector 52
vector expression 21
Vector operators

binary 63, 64

unary, bits 62

unary, words 63
vector_binary_operator 48
vector_elsif _operator 48
vector_expression 45, 52
vector_if_operator 48
vector_items 52
vector_template_instantiation 52
vector_unary_operator 48
vector-based modeling 15
Vector-Sensitive Sequential Logic 21
vector-specific model 162
Verilog 14, 19
VHDL 14, 19
via resistance 26
VIOLATION 168
virtual pins 25, 127
VOLTAGE 171, 176
voltage_controlled_delay 189

W

whitespace 36

whitespace characters 35
wildcard_literal 37

wire 52

wire modeling 26

wire select model 181
wire_identifier 52

wire_items 52
wire_template_instantiation 52
word_edge_literal 39

Version 1.0.10 Advanced Library Format (ALF) Reference Manual Index-227

Index-228 Advanced Library Format (ALF) Reference Manual Version 1.0.10

	Introduction
	1.1 Motivation
	1.2 Goals
	1.3 Target Applications
	1.4 Conventions
	1.5 Organization of this manual

	Characterization and Modeling
	2.1 Basic Concepts
	2.2 Functional Modeling
	2.2.1 Combinational Logic
	2.2.2 Level Sensitive Sequential Logic
	2.2.3 Edge Sensitive Sequential Logic
	2.2.4 Vector-Sensitive Sequential Logic

	2.3 Performance Modeling for Characterization
	2.3.1 Timing Modeling
	2.3.2 Power Modeling

	2.4 Physical modeling for synthesis and test
	2.4.1 Cell modeling
	2.4.2 Wire modeling

	Library Format Specification
	3.1 Object Model
	3.1.1 Syntax conventions
	3.1.2 Generic Objects
	3.1.2.1 CONSTANT
	3.1.2.2 ALIAS
	3.1.2.3 INCLUDE
	3.1.2.4 CLASS
	3.1.2.5 ATTRIBUTE
	3.1.2.6 TEMPLATE
	3.1.2.7 PROPERTY
	3.1.2.8 GROUP

	3.1.3 Library-specific objects
	3.1.4 Arithmetic models
	3.1.5 Functions

	3.2 Lexical rules
	3.2.1 Character set
	3.2.2 Lexical tokens
	3.2.3 Whitespace Characters
	3.2.4 Reserved and Non-reserved Characters
	3.2.5 Delimiters
	3.2.6 Comments
	3.2.7 Numbers
	3.2.8 Bit Literals
	3.2.9 Based Literals
	3.2.10 Edge Literals
	3.2.11 Quoted Strings
	3.2.12 Identifiers
	3.2.13 Rules against parser ambiguity
	3.2.14 Cross-reference of lexical tokens

	3.3 Keywords
	3.3.1 Keywords for Objects
	3.3.2 Keywords for Operators
	3.3.3 Context-Sensitive Keywords

	3.4 Syntax Rules
	3.4.1 Assignments
	3.4.2 Expressions
	3.4.3 Instantiations
	3.4.4 Literals
	3.4.5 Operators
	3.4.6 Auxiliary Objects
	3.4.7 Generic Objects
	3.4.8 CELL
	3.4.9 LIBRARY
	3.4.10 PIN
	3.4.11 PRIMITIVE
	3.4.12 SUBLIBRARY
	3.4.13 VECTOR
	3.4.14 WIRE
	3.4.15 Arithmetic Model
	3.4.16 FUNCTION
	3.4.17 Cross-reference of BNF items

	3.5 Operators
	3.5.1 Arithmetic operators
	3.5.2 Boolean operators on scalars
	3.5.3 Boolean operators on words
	3.5.4 Vector operators
	3.5.5 Operators for sequential logic
	3.5.6 Operator priorities
	3.5.7 Datatype mapping

	3.6 Context-sensitive keywords
	3.6.1 Annotation Containers
	3.6.1.1 Scan container
	3.6.1.2 VIOLATION container
	3.6.1.3 INFORMATION container

	3.6.2 Keywords for referencing objects used as ann...
	3.6.3 Annotations for a PIN object
	3.6.3.1 VIEW annotation
	3.6.3.2 PINTYPE annotation
	3.6.3.3 SIGNALTYPE annotation
	3.6.3.4 DRIVETYPE annotation
	3.6.3.5 DIRECTION annotation
	3.6.3.6 SCOPE annotation
	3.6.3.7 ACTION annotation
	3.6.3.8 POLARITY annotation
	3.6.3.9 ENABLE_PIN annotation
	3.6.3.10 PULL annotation
	3.6.3.11 ORIENTATION annotation
	3.6.3.12 CONNECT_CLASS annotation
	3.6.3.13 DATATYPE annotation
	3.6.3.14 SCAN_POSITION annotation
	3.6.3.15 STUCK annotation
	3.6.3.16 OFF_STATE annotation
	3.6.3.17 INITIAL_VALUE annotation

	3.6.4 Annotations for a VECTOR object
	3.6.4.1 LABEL annotation
	3.6.4.2 EXISTENCE_CONDITION
	3.6.4.3 EXISTENCE_CLASS
	3.6.4.4 CHARACTERIZATION_CONDITION
	3.6.4.5 CHARACTERIZATION_VECTOR
	3.6.4.6 CHARACTERIZATION_CLASS

	3.6.5 Annotations for a CELL object
	3.6.5.1 CELLTYPE annotation
	3.6.5.2 BUFFERTYPE annotation
	3.6.5.3 DRIVERTYPE annotation
	3.6.5.4 PARALLEL_DRIVE annotation
	3.6.5.5 SCAN_TYPE annotation
	3.6.5.6 SCAN_USAGE annotation
	3.6.5.7 NON_SCAN_CELL annotation
	3.6.5.8 SWAP_CLASS annotation
	3.6.5.9 RESTRICT_CLASS annotation

	3.6.6 Attributes
	3.6.6.1 ATTRIBUTE within a PIN object
	3.6.6.2 ATTRIBUTE within a CELL object
	3.6.6.3 ATTRIBUTE within a LIBRARY object

	3.6.7 Keywords for arithmetic models
	3.6.7.1 Models for interpolateable tables and equa...
	3.6.7.2 Models for non-interpolateable tables
	3.6.7.3 Models for non-interpolateable tables and ...

	3.6.8 Containers for arithmetic models
	3.6.8.1 FROM and TO container
	3.6.8.2 LIMIT container
	3.6.8.3 EARLY and LATE container

	3.6.9 Keywords for arithmetic submodels
	3.6.9.1 MIN/TYP/MAX
	3.6.9.2 RISE/FALL and HIGH/LOW

	3.6.10 Annotations for arithmetic models
	3.6.10.1 DEFAULT annotation
	3.6.10.2 UNIT annotation
	3.6.10.3 CONNECT_RULE annotation
	3.6.10.4 PIN annotation
	3.6.10.5 MEASUREMENT, TIME and FREQUENCY annotatio...
	3.6.10.6 TIME and FREQUENCY for waveform descripti...

	3.7 Library Organization
	3.7.1 Scoping Rules
	3.7.2 Use of multiple files

	3.8 Referenceable objects
	3.8.1 Referencing PRIMITIVEs or CELLs
	3.8.2 Referencing PINs in FUNCTIONs
	3.8.3 Referencing PINs in VECTORs
	3.8.4 Referencing multi-dimensional PINs
	3.8.5 Referencing arithmetic models

	3.9 Functional modeling styles and rules
	3.9.1 Rules for combinational functions
	3.9.2 Basic rules for sequential functions
	3.9.3 Concurrency in combinational and sequential ...
	3.9.4 Initial values for logic variables

	3.10 Primitives
	3.10.1 Concept of user-defined and predefined prim...
	3.10.2 Predefined combinational primitives
	3.10.2.1 One input, multiple output primitives
	3.10.2.2 One output, multiple input primitives

	3.10.3 Predefined tristate Primitives
	3.10.4 Predefined multiplexor
	3.10.5 Predefined flipflop
	3.10.6 Predefined latch

	3.11 Parameterizable Cells
	3.12 Modeling with Vector Expressions
	3.12.1 Event reports
	3.12.2 Event Sequences
	3.12.3 Scope of event sequences
	3.12.4 Alternative event sequences
	3.12.5 Symbolic edge operators
	3.12.6 Non-events
	3.12.7 Compact and verbose event sequences
	3.12.8 Unspecified simultaneous events within scop...
	3.12.9 Simultaneous event sequences
	3.12.10 Implicit local variables
	3.12.11 Conditional event sequences
	3.12.12 Alternative conditional event sequences
	3.12.13 Change of scope within a vector expression...
	3.12.14 Sequences of conditional event sequences
	3.12.15 Incompletely specified event sequences
	3.12.16 Well-specified vector expressions

	Applications
	4.1 Truth Table vs Boolean Equation
	4.1.1 NAND gate
	4.1.2 Flipflop

	4.2 Use of primitives
	4.2.1 D-Flipflop with asynchronous clear
	4.2.2 JK-flipflop
	4.2.3 D-Flipflop with synchronous load and clear
	4.2.4 D-Flipflop with input multiplexor
	4.2.5 D-latch
	4.2.6 SR-latch
	4.2.7 JTAG BSR
	4.2.8 Combinational Scan Cell
	4.2.9 Scan Flipflop
	4.2.10 Quad D-Flipflop

	4.3 Templates and vector-specific models
	4.3.1 Vector specific delay and power Tables
	4.3.2 Use of TEMPLATE
	4.3.3 Vector description styles for timing arcs
	4.3.4 Vectors for delay, power and timing constrai...

	4.4 Combining tables and equations
	4.4.1 Table vs equation
	4.4.2 Cell with Multiple Output Pins
	4.4.3 PVT Derating

	4.5 Use of Annotations
	4.5.1 Annotations for a PIN
	4.5.2 Annotations for a timing arc
	4.5.3 Creating Self-explaining Annotations

	4.6 Providing fallback position for applications
	4.6.1 Use of DEFAULT

	4.7 Bus Modeling
	4.7.1 Tristate Driver
	4.7.2 Bus with multiple drivers
	4.7.3 Busholder

	4.8 Wire models
	4.8.1 Basic Wire Model
	4.8.2 Wire select model

	4.9 Megacell Modeling
	4.9.1 Expansion of Timing Arcs
	4.9.2 Two-port memory
	4.9.3 Three-port memory
	4.9.4 Annotation for pins of a bus
	4.9.5 Skew for simultaneously switching signals on...

	4.10 Special cells
	4.10.1 Pulse generator
	4.10.2 VCO

	4.11 Core Modeling
	4.11.1 Digital Filter

	4.12 Connectivity
	4.12.1 External connections between pins of a cell...
	4.12.2 Allowed connections for classes of pins

	4.13 Signal Integrity
	4.13.1 I/V curves
	4.13.2 Driver resistance

	4.14 Resistance and Capacitance on a Pin
	4.14.1 Self-Resistance and Capacitance on Input Pi...
	4.14.2 Pullup and Pulldown Resistance on Input Pin...
	4.14.3 Pin and Load Resistance and Capacitance on ...

	4.15 ALF/SDF cross reference
	4.15.1 SDF delays
	4.15.1.1 SDF DELAY for IOPATH and INTERCONNECT
	4.15.1.2 SDF PATHPULSE
	4.15.1.3 SDF RETAIN delays
	4.15.1.4 SDF PORT delays
	4.15.1.5 SDF DEVICE delays

	4.15.2 SDF timing constraints
	4.15.2.1 SDF SETUP
	4.15.2.2 SDF HOLD
	4.15.2.3 SDF SETUPHOLD
	4.15.2.4 SDF RECOVERY
	4.15.2.5 SDF REMOVAL
	4.15.2.6 SDF RECREM
	4.15.2.7 SDF SKEW
	4.15.2.8 SDF WIDTH
	4.15.2.9 SDF PERIOD
	4.15.2.10 SDF NOCHANGE

	4.15.3 SDF conditions and labels for delays and ti...

