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Section 1

Introduction

1.1 Motivation

Design of digital integrated circuits has become an increasingly complex process. More
functions get integrated into a single chip, yet the cycle time of electronic products and
technologies has become considerably shorter. It would be impossible to successfully de
chip of today’s complexity within the time-to-market constraints without extensive use of E
tools, which have become an integral part of the complex design flow. The efficiency of
tools and the reliability of the results for simulation, synthesis, timing analysis, and pow
analysis relies significantly on the quality of available information about the cells in the
technology library.

New challenges in the design flow, e.g. power analysis, arise as the traditional tools and 
flows hit their limits of capability in processing complex designs. As a result, new tools
emerge, and libraries are needed in order to make them work properly. Library creation
(generation) itself has become a very complex process and the choice or rejection of a
particular application (tool) is often constrained or dictated by the availability of a library
that application. The library constraint may prevent designers from choosing an applica
program which is best suited for meeting specific design challenges. Similar considerat
may inhibit the development and productization of such an application program altogeth
a result, competitiveness and innovation of the whole electronic industry may stagnate.

In order to remove these constraints, an industry-wide standard for library format, Adva
Library Format (ALF), is proposed. It enables the EDA industry to develop innovative prod
and the ASIC designers to chose the best product without library format constraints. Sin
ASIC vendors have to support a multitude of libraries according to the preferences of th
customers, a common standard library is expected to significantly reduce the library
development cycle and facilitate the deployment of new technologies sooner.

1.2 Goals

The basic goals of the proposed library standard are:

• simplicity - library creation process must be easy to understand and not become 
cumbersome process only known by a few experts.

• generality - tools of any level of sophistication must be able to retrieve necessary
information from the library.

• expandability - for early adoption and future enhancement possibilities
Version 1.0.9 Advanced Library Format (ALF) Reference Manual 1
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• flexibility - the choice of keeping information in one library or in separate libraries m
be in the hand of the user; it should not be dictated by the standard.

• efficiency - the complexity of the design information requires that the process of
retrieving information from the library does not become a bottleneck. The right tr
off between compactness and verbosity must be found.

• ease of implementation - backward compatibility with existing libraries must be
provided, and translation to the new library must be an easy task.

• conciseness - unambiguous description and accuracy of contents

• acceptance - preference for the new standard library over existing libraries.

1.3 Target Applications

The fundamental purpose of ALF is to serve as the primary database for all 3rd party
applications of ASIC cells. In other words, it is an elaborate and formalized version of th
databook.

In the early days, databooks provided all the information a designer needed for choosing
in a particular application: Logic symbols, schematics and truth table provided the funct
specification for simple cells. For more complex blocks, the name of the cell (e.g.
asynchronous ROM, synchronous 2-port RAM, 4-bit synchronous up-down counter) an
timing diagrams conveyed the functional information. The performance characteristics of
cell were provided by the loading characteristics, delay and timing constraints, and som
information about DC and AC power consumption. The designers chose the cell type acc
to the functionality, estimated the performance of the design, and eventually re-impleme
in an optimized way as necessary to meet performance constraints.

Design automation enabled tremendous progress in efficiency, productivity and the abil
deal with complexity, yet it did not change the fundamental requirements for ASIC desig
Therefore, ALF needs to provide models withfunctional information andperformance
information, primarily including timing and power. Signal integrity characteristics, such a
noise margin can also be included under performance category. Such information is typ
found in any databook for analog cells. At deep sub-micron levels digital cells behave s
to analog cells as electronic devices bound by physical laws and therefore not infinitely r
against noise.

Table 1-1 shows a list of applications used in ASIC design flow and their relationship to 
The boundary between supported and not supported applications can be defined by thephysical
information provided by ALF. Information needed for area and performance estimation 
2 Advanced Library Format (ALF) Reference Manual Version 1.0.9
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optimization, notably by synthesis tools, is provided by ALF. On the other hand, layout
information is only considered for front end application, such as RTL floorplanner.

Historically, a functional model was virtually identical to a simulation model. A functiona
gate-level model was used by the proprietary simulator of the ASIC company, and it was
to lump it together with a rudimentary timing model. Timing analysis was done through
dynamic functional simulation. However, with the advanced level of sophistication of bo
functional simulation and timing analysis, this is no longer the case. The capabilities of 
functional simulators have evolved far beyond the gate-level, and timing analysis has b
decoupled from simulation.

The figure 1-1 shows how ALF provides information to various design tools.

Table 1-1  Target applications and models supported by ALF

application functional model performance model physical model

timing analysis supported by ALF supported by ALF N/A

power analysis supported by ALF supported by ALF N/A

simulation derived from ALF derived from ALF N/A

synthesis supported by ALF supported by ALF supported by ALF

scan insertion supported by ALF N/A N/A

RTL floorplanner N/A N/A planned for ALF

signal integrity N/A supported by ALF N/A

layout N/A N/A not supported by ALF
Version 1.0.9 Advanced Library Format (ALF) Reference Manual 3
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Figure 1-1: ALF and its target applications

The worldwide accepted standards for hardware description and simulation are VHDL a
Verilog. Both languages have a wide scope of describing the design at various levels o
abstraction: behavioral, functional, synthesizable RTL, gate level. There are many ways
describe gate-level functions. The existing simulators are implemented in such a way tha
constructs are more efficient for simulation run time than others. Also, how the simulatio
model handles timing constraints is a trade-off between efficiency and accuracy. Develo
efficient simulation models which are functionally reliable (i.e. pessimistic for detecting tim
constraint violation) is a major development effort for ASIC companies.

Hence, the use of a particular VHDL or Verilog simulation model as primary source of
functional description of a cell is not very practical. Moreover, the existence of two simula
standards makes it difficult to pick one as a reference with respect to the other. The purp
a generic functional model is to serve as an absolute reference for all applications that r
functional information. Applications such as synthesis, which need functional informatio
merely for recognizing and choosing cell types, can use the generic functional model dir
For other applications such as simulation and test, the generic functional model enable

Cell characterization tool

ALF

generic functional model

simulation models

Timing analysis tool Power analysis tool

Test vector generatorModel compiler

Verilog & VHDL
Test vectors
Verilog & VHDL

simulators
Verilog & VHDL

Synthesis tool

generic generic

annotations
for synthesis

annotations
for scan test

wire modelstiming model power model

Scan insertion tool

vendor-specific or commercial EDA tool

commercial EDA tool
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automated simulation model and test vector generation and verification, which has a
tremendous benefit for the ASIC industry.

With progress of technology, not only the cost constraints but also the set of physical
constraints under which the design will function or not have increased dramatically. Ther
the requirements for detailed characterization and analysis of those constraints, especi
timing and power in deep submicron design, are much more sophisticated than it used 
Only a subset of the increasing amount of characterization data appears in today’s data

ALF provides a generic format for all type of characterization data, without restriction to s
of-the art timing models. Power models are the most immediate extension, and they hav
the starter and primary driver for ALF.

Detailed timing and power characterization needs to take into account themode of operation
of the ASIC cell, which is related to the functionality. ALF introduces the concept ofvector-
based modeling, which is a generalization and a superset of today’s timing and power mod
approaches. All existing timing and power analysis applications can retrieve the necess
model information from ALF.

1.4 Conventions

The syntax for description of lexical and syntax rules uses following conventions.

::= definition of a syntax rule

| alternative definition

[item] an optional item

[item1 | item2 | ... ]
optional item with alternatives

{item} optional item which can be repeated

{item1 | item2 | ... }
optional items with alternatives which can be repeated

item item in boldface font is taken verbatim

item item in italic is for explanation purpose only

The syntax for explanation of semantics of expressions uses the following conventions.

=== left side and right side expressions are equivalent

<item> a placeholder for an item in regular syntax

Feature enhancements proposed for ALF 1.1 are written in blue font.

1.5 Organization of this manual

This document presents the Advanced Library Format (ALF), a new standard library for
for ASIC cells, blocks and cores, containing power, timing, functional, and physical
information.

In the first chapter, motivation and goals of ALF are defined.
Version 1.0.9 Advanced Library Format (ALF) Reference Manual 5
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d test.

The second chapter describes the underlying concepts for functional modeling, cell
characterization for timing and power, and additional modeling features for synthesis an

The third chapter is the Language Reference Manual (LRM).

The fourth chapter provides application notes.
6 Advanced Library Format (ALF) Reference Manual Version 1.0.9
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Section 2

Characterization and Modeling

This chapter elaborates on the basics of cell modeling and characterization, which is th
primary source of library information.

2.1 Basic Concepts

The functional models within an ASIC library describe functions and algorithms of hardw
components, as opposed to synthesizable functions or algorithms. The functional mode
language for the ASIC library is designed to make the description of existing hardware 
and efficient. The scope here is different from a hardware description language (HDL) o
programming language designed to specify functionality without other aspects of hardw
implementation.

Functional description provides boolean functions or truth tables, including state variabl
sequential logic. Boolean and arithmetic operators for scalars and vectors are also prov
Combinational and sequential logic cells, macrocells (e.g. adders, multipliers, comparat
and atomic megacells (e.g. memories) can be modeled with these capabilities.

Vectors describe the stimuli for characterization. This encompasses both the concept of 
arcs and logical conditions. An exhaustive set of vectors can be generated from functio
information, although the complexity of the exhaustive set precludes it from practical us
The characterizer makes a choice of the relevant subset for characterization.

Power characterization is a superset of timing characterization using the same set and r
characterization variables: load, input slew rate, skew between multiple switching inputs
voltage, temperature. Characterization measurements, such as delay, output slew rate, 
current in time window, bounds of allowed skew for timing constraints, etc. can be desc
as functions of the characterization variables, either by equations or using lookup tables
complicated calculation algorithms cannot be described explicitly in the library, but can 
referenced using templates.

A core is not an atomic megacell, since it can be split up into smaller components. Tem
provide the capability of defining and reusing blocks consisting of atomic constructs or of 
blocks. Thus a hierarchical description of the complete core can be created in a simple 
efficient way.

Abstraction is required for the characterization of megacells: vectors describe events on
rather than on scalar pins; number and range of switching pins within a bus become add
characterization variables. Characterization measurements are expandable and can be
extrapolated from scalar pin to bus.
Version 1.0.9 Advanced Library Format (ALF) Reference Manual 7



Characterization and Modeling Functional Modeling

rue,
ns can

te.

 RHS
le

thing
ent

ng
te bit

e
 the

eo-
2.2 Functional Modeling

2.2.1 Combinational Logic

Combinational logic can be described by continuous assignments of boolean values (T
False) to output variables as a function of boolean values of input variables. Such functio
be expressed in either equation format or table format1.

Let us consider an arbitrary continuous assignment

z = f(a 1 ..,.. a n)

In a dynamic or simulation context, the left-hand side (LHS) variablez is evaluated whenever
there is a change in one of the right-hand side (RHS) variablesai. No storage of previous states
is needed for dynamic simulation of combinational logic.

2.2.2 Level Sensitive Sequential Logic

In sequential logic, an output variablezj can also be a function of itself, i.e. of its previous sta
The sequential assignment has the form

zj  = f(a 1 ..,.. a n , z 1 ..,.. z m)

The RHS cannot be evaluated continuously, since a change in the LHS as a result of a
evaluation will trigger a new RHS evaluation repeatedly, unless the variables attain stab
values. Modeling capabilities of sequential logic with continuous assignments would be
restricted to systems with oscillating or self-stabilizing behavior.

However, if we introduce the concept of triggering conditions for the LHS, we have every
we need for modelinglevel-sensitive sequential logic. The expression of a triggered assignm
can look like this:

@ g(b 1 ..,.. b k) z j  = f(a 1 ..,.. a n , z 1 ..,.. z m)

The evaluation off is activated whenever thetriggering functiong is true. The evaluation ofg

is self-triggered, i.e. at each time when an argument ofg changes its value. Ifg is a boolean
expression likef, we can model all types oflevel-sensitive sequential logic.

During the time wheng is true, the logic cell behaves exactly like combinational logic. Duri
the time wheng is false, the logic cell holds its value. Hence one memory element per sta
is needed.

2.2.3 Edge Sensitive Sequential Logic

In order to modeledge-sensitive sequential logic, we need to introduce notations for logical
transitions in addition to logical states.

If the triggering functiong is sensitive to logical transitions rather than to logical states, th
functiong evaluates to true only for an infinitely small time, exactly at the moment when

1. Rather than defining a new syntax for boolean equations, we are just adopting existing notations p
ple are familiar with. Those notations can already be found in the ANSI C standard, and they are
widely used in popular script languages such as PERL as well as in HDLs like VERILOG.
8 Advanced Library Format (ALF) Reference Manual Version 1.0.9
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transition happens. The sole purpose ofg is to trigger an assignment to the output variable
through evaluation of the functionf exactly at this time.

Edge-sensitive logic requires storage of the previous output state and the input state (to
a transition). In fact, all implementations of edge-triggered flipflops require at least two sto
elements. For instance, the most popular flipflop architecture features a master latch dri
slave latch.

Using transitions in the triggering function for value assignment, the functionality of a pos
edge triggered flipflop can be described as follows in ALF:

@ (01 CP) {Q = D;}

which reads “at rising edge of CP, assign Q the value of D”.

If the flipflop also has an asynchronous direct clear pin (CD), the functional description
consists of either two concurrent statements or two statements ordered by priority:

Figure 2-1: Model of a flipflop with asynchronous clear in ALF

The following two examples show corresponding simulation models in Verilog and VHD

Figure 2-2: Model of a flipflop with asynchronous clear in Verilog

// concurrent style

@ (!CD) {Q = 0;}
@ (01 CP && CD) {Q = D;}

// priority (if-then-else) style

@ (!CD) {Q = 0;} : (01 CP) {Q = D;}

// full simulation model

always @(negedge CD or posedge CP) begin
if ( ! CD ) Q <= 0;
else if (CP && !CP_last_value) Q <= D;
else Q <= 1’bx;

end
always @ (posedge CP or negedge CP) begin

if (CP===0 | CP===1’bx) CP_last_value <= CP ;
end

// simplified simulation model for synthesis

always @(negedge CD or posedge CP) begin
if ( ! CD ) Q <= 0;
else Q <= D;

end
Version 1.0.9 Advanced Library Format (ALF) Reference Manual 9
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Figure 2-3: Model of a flipflop with asynchronous clear in VHDL

The following differences in modeling style can be noticed: VHDL and Verilog provide the
of sensitive signals at the begin of theprocess  oralways  block, respectively. The information
of level-or edge-sensitivity must be inferred by if-then-else statements inside the block. 
shows the level-or-edge sensitivity as well as the priority directly in the triggering expres
Verilog has another particularity: The sensitivity list indicates whether at least one of the
triggering signals is edge-sensitive, by the use ofnegedge  or posedge . However, it does not
indicate which one, since either none or all signals must havenegedge  or posedge  qualifiers.
Furthermore,posedge  is any transition with 0 as initial stateor 1 as final state. A positive-edge
triggered flipflop will be inferred for synthesis, yet this flipflop will only work correctly if bot
the initial state is 0and the final state is 1. Therefore a simulation model for verification m
be more complex than the model in the synthesizeable RTL code. In Verilog, the extra 
synthesizeable code must also reproduce the relevant previous state of the clock signa
whereas VHDL has built-in support forlast_value  of a signal.

Other aspects of simulation models include performance and tradeoff between accurac
runtime, timing annotation etc.

ALF provides a canonical, compact and highly self-explaining description of thefunctional
specification of a cell, from which simulation models for various applications can be deriv

// full simulation model

process (CP, CD) begin
if (CD = '0') then

Q <= '0';
elsif (CP'last_value = '0' and CP = '1' and CP'event) then

Q <= D;
elsif (CP'last_value = '0' and CP = 'X' and CP'event) then

Q <= ’X’;
elsif (CP'last_value = 'X' and CP = '1' and CP'event) then

Q <= ’X’;
end if;

end process;

// simplified simulation model for synthesis

process (CP, CD) begin
if (CD = '0') then

Q <= '0';
elsif (CP = '1' and CP'event) then

Q <= D;
end if;

end process;
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2.2.4 Vector-Sensitive Sequential Logic

In order to model generalized higher order sequential logic, the concept of vector expre
is introduced, an extension of the boolean expressions.

A vector expression describes sequences of logical events or transitions in addition to s
logical states. A vector expression represents a description of a logical stimulus without
timescale. It describes the order of occurrence of events.

Using the -> operator (followed by operator), we have a general capability of describing a
sequence of events or a vector. For example, consider the following vector expression:

01 A -> 01 B

which reads “rising edge on A is followed by rising edge on B”.

A vector expression is evaluated by an event sequence detection function. Like a single
or a transition, this function evaluates true only at an infinitely short time when the even
sequence is detected.

Figure 2-4: Example of event sequence detection function

The event sequence detection mechanism can be described as a queue that sorts even
according to their order of arrival. The event sequence detection function evaluates true
exactly the time when a new event enters the queue and forms the required sequence,i.e. the
sequence specified by the vector expression with its preceding events.

A vector-sensitive sequential logic can be called(N+1) order sequential logic, where N is the
number of events to be stored in the queue. The implementation of (N+1) order sequentia
requires N memory elements for the event queue and 1 memory element for the output

A sequence of events can also be gated with static logical conditions. For example,

(01 CP -> 10 CP) && CD

A

B

g(A, B) = (01 A -> 01 B)

co
nt

en
ts

 o
f

ev
en

t q
ue

ue last
event

2nd last
event

01 A 10 A01 B 10 B 01 B10 A01 A

01 A 10 A01 B 10 B 10 A01 AX

X

X

sequence(01 A -> 01 B) detected
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the pin CD must have state 1 from some time before the rising edge at CP to some time
the falling edge of CP. The pin CD can not go low (state 0) after the rising edge of CP a
high again before the falling edge of CP because this would insert events into the queu
the sequence “rising edge on CP followed by falling edge on CP” would not be detected

The formal calculation rules for general vector expressions featuring both states and tran
will be introduced in Section 3.5.4.

The concept of vector expression supports functional modeling of devices featuring dig
communication protocols with arbitrary complexity.

2.3 Modeling for Characterization

2.3.1 Timing Modeling

The timing models of cells consists of two types:delay models for combinational and
sequential cells, andtiming constraint models for sequential cells. Both types can be describ
by timing arcs. A timing arc is a sequence of two events which can be described by a v
expression “evente1 is followed by evente2”.

For example, a particular input to output delay of an inverting logic cell is identified by th
following timing arc:

01 A -> 10 Z

which reads “rising edge on input A is followed by falling edge on output Z”.

A setup constraint between data and clock input of a positive edge triggered flipflop is
identified by the following timing arc:

01 D -> 01 CP

which reads “rising edge on input D is followed by rising edge on input CP”.

A crucial part in ASIC cell development is to characterize a model which describes the
behavior of each timing arc with sufficient accuracy in order to guarantee correct functio
behavior under all required operational conditions.

A delay model usually needs two output variables:

• intrinsic delay, measured between a well-defined threshold value of the input signa
a well-defined threshold value of the output signal

• transition delay, measured between two well-defined threshold values of the outp
signal. Hence the transition delay is a fraction of the total output transition time, a
calledslew rate or edge rate.

A timing constraint model needs just one output variable:

• A timing constraint is theminimum or maximum allowed elapsed time between two
signals, measured between well-defined threshold values between those two sig
This definition is similar to the intrinsic delay, except there is no input-output
relationship between the two signals. Both signals are usually inputs to the cell.
12 Advanced Library Format (ALF) Reference Manual Version 1.0.9
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The actual values of transition times and load capacitances seen by each pin of a cell in
are calculated by a delay predictor. Delay prediction can be separated into two tasks:

1. Acquisition of information on pin capacitance, extracted or estimated layout para
for each net and fitting those into the load characterization model (lumped C, R, 

2. Calculation of internal signal transition times based on the extracted internal load
on load and transition times at the boundaries of the system.

Lookup tables provide a general modeling capability without precluding any level of accu

Equations may feature polynomial expressions, exponentials and logarithms, and arbitr
transcendent functions. For practical purpose, only the four basic arithmetic operations (
/) and exponentiation and logarithm will be supported for standard models.

Some models may require transcendent functions or complicated algorithms that canno
expressed directly in equations. Other models and algorithms may need protection from
visible. In order to address needs that go beyond standard modeling features, a templa
reference scheme is proposed: Any model which is neither in table nor in equation format
to be a pointer to a customer-defined model which may reside outside the library.

Regardless of which type of model is chosen, there is a need to specify explicitly the me
of the variables and the units. The specification of variables and units can be made outs
model and independent of the chosen model.

Since the set of variables should not be restrictive in order to allow any enhancements 
move from a lumped capacitance to an RC model),context-sensitive keywords are proposed
(e.g. “load”, “slewrate”). The application parser need not know the meaning of the conte
sensitive keyword, except that it is used as a variable in a model and that it has some u
attached to it, e.g. picofarad, nanosecond etc.

2.3.2 Power Modeling

A power model is an extension of the delay model for each timing arc using a third varia

Table 2-1  Modeling choices for cell characterization library

type of model features purpose

table discrete points, multidimensional direct storage of characterization data,
direct accuracy control through mesh
granularity

equation expressions with +, -, *, /, exponent,
logarithm

analytical model, well-suited for optimi-
zation purpose, more compact than table,
also usable for arithmetic operations on
tabulated data (scale, add, subtract ..)

reference pointer to any type of model reuse of predefined model (which may
be table or equation), protection of user-
defined model
Version 1.0.9 Advanced Library Format (ALF) Reference Manual 13
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• scaled average current, measured by integrating and scaling the total transient cur
through the power supply of the cell for the specific timing arc or vector.
The current measurement can start anytime before the first event of the vector sta
can end anytime after all transients of the vector have stabilized.

Variants of this model are scaled average power and energy, which are obtained by sim
scaling of average current measurements:

power = current * Vdd
energy = current * Vdd * integration time

The set of vectors causing power consumption within a cell is a superset of those vecto
causing the cell output to switch. While only the vectors with switching output are neede
delay characterization, more vectors are needed for accurate power characterization.

For example, consider a flipflop, which consumes power at every edge of the clock, even
output does not switch. The vectors for delay and power characterization can be descri
follows:

01 CP -> 01 Q
01 CP -> 10 Q

The vectors for power characterization with only clock-switching can be described as fo

01 CP && Q==D
10 CP && Q==D

The D input having the same value as the Q output is a necessary and sufficient conditi
the output will not switch at the rising edge of CP and that the value transferred to the m
latch at the falling edge of CP will be the same as already stored. Hence those two vec
capture the actual power dissipation only within the clock buffers. Additional power vect
can be defined to capture the power dissipation within the data buffers and the master la

For a 2-input AND gate with input pinsA, B and output pinZ aglitch is observed if the event
01 A is detected and then the event10 B  is detected before the input-to-output delay elaps
It is possible to describe the glitch by a higher-order vector.

In dynamic simulation withtransport delay mode, the glitch would appear as follows:

01 A -> 10 B -> 01 Z -> 10 Z

Simulation featuringtransport delay mode with invalid-value-detectionwould exhibit the
glitch as follows:2

01 A -> 10 B -> 'b0'bX Z -> 'bX'b0 Z

Simulation withinertial delay mode would suppress the output transitions:

(01 A -> 10 B) && !Z

The last expression can be used for each of the three simulation modes, since!Z is always true
from beginning to end of the sequence01 A -> 10 B , in particular at the time when the
sequence 01 A -> 10 B  is detected.

2. use based edge literals to avoid parser ambiguity.
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Each way of expressing vectors can be derived from the cell functionality. The different
examples for delay vectors (i.e. timing arcs), power vectors, and glitch vectors emphasi
rich potential of modeling capabilities using vector expressions.

State-dependent static power is also within the scope of vector-based power models. Stati
power consumption is activated by a simulation model in the same way as level-sensitive
in functional modeling by a boolean expression, whereastransient power consumption is
activated similar to edge-sensitive logic by a vector expression.

The advantages of adding power models within each delay vector and providing extra p
vectors are the following:

• straightforward extension of delay characterization

• capable of yielding the most detailed and accurate model on gate-level

• each vector defines a comprehensive stimulus for power measurements

More abstract vector expressions are provided for power modeling of complex blocks, w
simplification is needed in order to deal with the complexity of characterization vectors.

2.4 Physical modeling for synthesis and test

2.4.1 Cell modeling

Physical modeling of cells requires annotating cell properties (e.g. area, height, width, a
ratio). The set of annotated properties give an application such as synthesis a choice to p
cell from a set of functionally equivalent cells, if one property is more desirable than ano
one under given synthesis goals and constraints.

Cell pins can also have annotated properties, such as pin capacitance, voltage swing, sw
threshold etc.

Most of the modeling for test requirements are already fulfilled by the functional model.
Declaration of pins and their direction (input, output, bidirectional) is already a generic
requirement for cell modeling.

Scan insertion tools require specific annotations about cell and pin properties relevant fo
test. They also require reference to equivalent non-scan cells. An equivalent non-scan c
scan cell, when all scan specific hardware (e.g. multiplexor, scan clock) is removed.

The variables used in the functional model must have their counterpart in the pin declar
Only primary input pins can be primary inputs of functions, while primary output pins, inte
pins, or virtual pins can be primary or intermediate outputs of functions. Furthermore, te
vectors for fault coverage can be derived from the functional model in a formal way.

The remainder of the modeling for test requirements can be covered by annotations of 
properties and cell pin properties. For instance, a cell can be labeled as a scan-flipflop,
can be labeled as scan input or mode select pin.
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2.4.2 Wire modeling

The purpose ofwire modeling is to get good estimates ofparasitic resistanceandcapacitance
as a function offanout. These estimates are technology specific, and they depend on me
layer, sheet resistance, self capacitance per unit wirelength, fringe capacitance per unit
wirelength, via resistance for wires routed through multiple layers.

The wires can be characterized by types, similar to cells. For example,

// wire with fanout < 5 routed in metal 1, 2
WIRE small_wire {

ATTRIBUTE { metal1 metal2 }
LIMIT { FANOUT { MAX = 5; } }
/* fill in data */

}
// wire with 10 < fanout < 20 routed in metal 1, 2, 3, 4, 5
WIRE big_wire {

ATTRIBUTE { metal1 metal2 metal3 metal4 metal5 }
LIMIT { FANOUT { MIN = 10; MAX = 20; } }
/* fill in data */

}

From a modeling standpoint, no particular language is required for performance modeli
wires that would be different from performance modeling of cells. The fanout will be an i
variable, and capacitance and resistance would be output variables. The values can be
expressed either in tables or in equations. Usually first order equations (with slope and
intercept) are used for wire modeling.
16 Advanced Library Format (ALF) Reference Manual Version 1.0.9
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Section 3

Library Format Specification

This section discusses the object model used by ALF and provides the syntax rules for 
objects. The syntax rules are provided in standard BNF form.

3.1 Object Model

A library consists of one or moreobjects. Each object is defined by a keyword and an option
name for the object and an optionalvalue of the object.

A keyword defines the type of the object. Section 3.1.2 and Section 3.1.3 define various 
of objects used in ALF and related keywords.

An optionalidentifier (also calledname) following the keyword defines thename of the object.
This name must be used while referencing an object inside other objects in the library. 
object is not referenced by name, then the object need not be named.

A literal defines an optional value associated with the object. Anexpression can be used when
the value of the object cannot be expressed as a literal.

An object may contain one or more objects. The containing object is called ahierarchical
object. The contained objects are calledchildren objects. The children objects are defined an
referenced inside curly braces ({}) in the description of the hierarchical object. An objec
without children is called anatomic object.

Forward referencingof objects is not allowed. Therefore, all objects must be defined befo
they can be instantiated. This allows library parsers to be one-pass parsers.

3.1.1 Syntax conventions

In order to make ALF easy to parse, we use syntax conventions which are followed by 
existing syntax rules (see Section 3.4) and should also be followed for future extensions
grammar.

The first token of the object is the object type identifier, followed by a name (mandatory
optional, depending on object type), followed by (mandatory or optional)= and value
assignment, followed by (mandatory or optional) children objects  enclosed by curly bra
Objects with more than one token (i.e. name and/or value) and without children are term
with ; .

Examples:

1. unnamed object without value assignment:

MY_OBJECT_TYPE
Version 1.0.9 Advanced Library Format (ALF) Reference Manual 17
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MY_OBJECT_TYPE {
//fill in children objects

}

2. unnamed object with value assignment:

MY_OBJECT_TYPE = my_object_value;

or

MY_OBJECT_TYPE = my_object_value {
//fill in children objects

}

3. named object without value assignment:

MY_OBJECT_TYPE my_object_name;

or

MY_OBJECT_TYPE my_object_name {
//fill in children objects

}

4. named object with value assignment:

MY_OBJECT_TYPE my_object_name = my_object_value;

or

MY_OBJECT_TYPE my_object_name = my_object_value {
//fill in children objects

}

The objects in ALF are divided into four categories -generic objects, library-specific objects,
arithmetic models, andfunctions.

3.1.2 Generic Objects

A generic object can appear at every level in the library within any scope. The semantic
generic object must be understood by any ALF compiler if the generic object is within th
scope of application for that compiler.

The following objects shall be considered generic objects:
18 Advanced Library Format (ALF) Reference Manual Version 1.0.9
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Figure 3-1: Generic objects

3.1.2.1 CONSTANT

A CONSTANT object is a named object with value assignment and without children object
Value is a number.

Example:

CONSTANT vdd = 3.3;

3.1.2.2 ALIAS

An ALIAS object is a named object with value assignment and without children objects. V
is a string.

Example:

ALIAS RAMPTIME = SLEWRATE;

3.1.2.3 INCLUDE

An INCLUDE object is a named object without value assignment and without children. T
name is a quoted string containing the name of a file to be included.

Example:

INCLUDE “primitives.alf”;

Since the file name is a quoted string, any special symbols (like ~ or *) are allowed withi
filename. The interpretation of those (for file search path etc.) is up to the application.

3.1.2.4 CLASS

A CLASS object is a named object with optional value assignments and children objects
name can be used by other objects to reference the class object.

template

generic object

property
group

alias
constant

class
attribute

is a

include is a
is a

is a

is a

is a
is a

is a
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Example:

CLASS my_class { ... }
...
MY_OBJECT_TYPE my_object {

CLASS = my_class;
} // my_object belongs to my_class

3.1.2.5 ATTRIBUTE

An ATTRIBUTE object is an unnamed object without value, but has children objects. The
attribute object shall be the child object of another object. The children of the attribute o
are unnamed objects which can have other unnamed objects as children objects. The p
of an attribute object is to provide free association of objects with attributes when there 
special category available for the attributes.

Examples:

CELL rr_8x128 {
ATTRIBUTE {ROM ASYNCHRONOUS STATIC}

}

PIN read_write_select {
ATTRIBUTE {READ{POLARITY=low;} WRITE{POLARITY=high;}}

}

3.1.2.6 TEMPLATE

A TEMPLATE object is a named object with one or more children objects. Any valid ALF
object can be a child object of a template object. An identifier enclosed between< and> are
recognized asplaceholders. When a template object is used, each of its placeholders mus
referenced by order or by explicit name association.

Example:

TEMPLATE std_table {
CAPACITANCE {PIN=<pin1>; UNIT=pF; TABLE {0.02 0.04 0.08 0.16}}
SLEWRATE {PIN=<pin2>; UNIT=ns; TABLE {0.1 0.3 0.9}}

}

An instantiation of the above template object with explicit reference to placeholders by n

std_table{pin1=out; pin2=in;}

An instantiation of the above template object with implicit reference to placeholders by o

std_table{out in}

If a symbol within a placeholder appears more than once in the template definition, the 
for implicit reference is defined by the first appearance of the symbol. Explicit referencin
improves the readability and is the recommended usage.

A template instantiation can appear at any place within a hierarchical object, as long as
template object contains the structure of valid objects inside. Hierarchical templates con
other template objects.
20 Advanced Library Format (ALF) Reference Manual Version 1.0.9
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3.1.2.7 PROPERTY

A PROPERTY object is a named or an unnamedannotation container. It can be used at any
level in the library. It is used for arbitrary parameter-value assignment.

Example:

PROPERTY items {
parameter1=value1;
parameter2=value2;

}

3.1.2.8 GROUP

A GROUP object is a set of elements with commonality between them. Thus the commo
characteristics can be defined once for the group instead of being repeated for each ele

Example:

GROUP time_measurements = {DELAY SLEWRATE SKEW JITTER}

Thus the statement

time_measurements { UNIT = ns; }

replaces the following statements:

DELAY { UNIT = ns; }
SLEWRATE { UNIT = ns; }
SKEW { UNIT = ns; }
JITTER { UNIT = ns; }

3.1.3 Library-specific objects

The library-specific objects define their nature and their relationship to each other by
containment rules. For example, a library may contain a cell, but a cell may not contain
library. However, both the library object and the cell object may contain any generic obje
generic object defined at the library level makes it visible inside the scope of that library
defining it on the cell level makes it visible inside the scope of that cell and its children ob

3.1.4 Arithmetic models

An arithmetic model is an object that describes characterization data, or more abstract,
measurable relationships between physical quantities. The modeling language allows tab
data as well as linear and non-linear equations. The equations consists of arithmetic
expressions, for which the IEEE standards have been adopted.

3.1.5 Functions

A function is an object that describes the functional specification of a digital circuit (or a di
model of an analog or a mixed-signal circuit) in a canonical form. The modeling languag
allows behavioral models as well as statetables and structural models with primitives. T
behavioral models contain boolean expressions, for which the IEEE standards have be
adopted. Since boolean expressions are insufficient to describe sequential logic, ALF
introduces new operators and symbols that can be used in conjunction with boolean op
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and symbols. Expressions that use both the IEEE operators and the new operators, are
vector expressions.

The following figures describe the four types of objects and their relationships with each 

Figure 3-2: Library-specific objects

Figure 3-3: Arithmetic model

Figure 3-4: Function

Note that a function can contain a primitive and a primitive can contain a function. See f
3-7 and syntax descriptions in Section 3.4.11 and Section 3.4.16.
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Figure 3-5: Annotations

Figure 3-6: Library-specific objects
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Note that a function can contain a primitive and a primitive can contain a function. See f
3-7 and syntax descriptions in Section 3.4.11 and Section 3.4.16.

3.2 Lexical rules

3.2.1 Character set

Each graphic character corresponds to a unique code of the ISO eight-bit coded charac
[ISO 8859-1 : 1987(E)], and is represented (visually) by a graphical symbol.
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3.2.2 Lexical tokens

The ALF source text files shall be a stream of lexical tokens. Each lexical token is eithe
delimiter, acomment, abit literal, abased literal, anedge literal, anumber, aquoted string or
an identifier.

3.2.3 Whitespace Characters

The following characters shall be consideredwhitespace characters:

Character ASCII code (hex)
space 20
vertical tab 0B
horizontal tab 09
line feed (new line) 0A
carriage return 0D
form feed 0C

Figure 3-8: List of whitespace characters

Comments are also considered white space (see Section 3.2.6).

A whitespace character shall be ignored except when it separates other lexical tokens o
it appears in a quoted string.

3.2.4 Reserved and Non-reserved Characters

The ASCII character set shall be divided in three categories - whitespace (Section 3.2.3
reserved characters, and non-reserved characters. The reserved characters are symbo
make up punctuation marks and operators. The non-reserved characters shall be used
creating identifiers and numbers.

reserved_character ::=

& | |  | ^  | ~ | + | -  | *  | /  | % | ? | !  | = | < | > | :
| (  | )  | [  | ]  | {  | }  | @ | ;  | ,  | .  | ”  | ’

nonreserved_character ::=

  letter | digit | _ | $

letter ::=

a | b | c  | d | e | f  | g | h | i  | j  | k  | l  | m
| n | o | p | q | r  | s  | t  | u | v  | w | x  | y  | z
| A | B | C | D | E | F | G | H | I  | J  | K | L | M
| N | O | P | Q | R | S | T | U | V | W | X | Y | Z

digit ::=

0  | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9

escape_character ::=
\
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any_character ::=
  reserved_character
| nonreserved_character
| escape_character
| whitespace

Figure 3-9: Reserved and non-reserved characters

ALF shall treat uppercase and lowercase characters as the same characters. In other w
ALF is acase-insensitive language.

3.2.5 Delimiters

A delimiter is either a reserved character or one of the following compound operators, e
composed of two or three adjacent reserved characters:

delimiter ::=
  reserved_character

| && | ~& | ||  | ~|  | ~^  | == | !=  | **  | >= | <=
| ?!  | ?~ | ?-  | ??  | ->  | <->  | &> | <&> | >> | <<

Figure 3-10: Tokens that make up delimiters

Each special character in a single character delimiter list shall be a single delimiter unle
character is used as a character in a compound operator or as a character in a quoted 

3.2.6 Comments

ALF has two forms to introduce comments.

A single-line comment shall start with the two characters //  and end with a new line.

A block commentshall start with/*  and end with*/ . Comments shall not be nested. The sing
line comment token//  shall not have any special meaning in a block comment.

comment ::=
  single_line_comment
| block_comment

Figure 3-11: Single-line and block comments

3.2.7 Numbers

Constant numbers can be specified as integer or real.

The integer is a decimal integer constant.

sign ::= +  | -
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unsigned ::=  digit  { _ | digit }

integer ::=  [ sign ] unsigned

non_negative_number ::=

  unsigned [ .  unsigned ]

| unsigned [ .  unsigned ] E [ sign ] unsigned

number ::=
  [ sign ] non_negative_number

Figure 3-12: Integer and real numbers

3.2.8 Bit Literals

A bit literal shall represent a single bit constant.

bit_literal ::=
  numeric_bit_literal
| alphabetic_bit_literal
| dont_care_literal
| random_literal

numeric_bit_literal ::= 0 | 1

alphabetic_bit_literal ::=
X | Z | L | H | U | W

| x  | z  | l  | h | u | w

dont_care_literal ::= ?

random_literal ::= *

Table 3-1 : Single bit constants

Literal Description

0 value is logic zero

1 value is logic one

X or x value is unknown

L or l value is logic zero with weak drive strength

H or h value is logic one with weak drive strength

W or w value is unknown with weak drive strength

Z or z value is high-impedance

U or u value is uninitialized

? value is any of the above, yet stable

* value may randomly change
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3.2.9 Based Literals

A based literal is a constant expressed in a form that specifies the base explicitly. The bas
be specified inbinary, octal, decimal or hexadecimal format.

based_literal ::=

  binary_base { _ | binary_digit }

| octal_base { _ | octal_digit }

| decimal_base { _ | digit }

| hex_base { _ | hex_digit }

binary_base ::=

'B  | 'b

octal_base ::=

'O  | 'o

decimal_base ::=

'D  | 'd

hex_base ::=

'H  | 'h

binary_digit ::=
bit_literal

octal_digit ::=

binary_digit | 2 | 3 | 4 | 5 | 6 | 7

hex_digit ::=

octal_digit | 8 | 9 | A | B | C | D | E | F | a | b | c  | d | e | f

Figure 3-13: Based constants

The underscore(_) shall be legal anywhere in the number except as the first character, an
character is ignored. This feature can be used to break up long numbers for readability
purposes. No white space shall be allowed between base and digit token in a based lite

When an alphabetic bit literal is used as an octal digit, it shall represent 3 repeated bits w
same literal. When an alphabetic bit literal is used as a hex digit, it shall represent 4 rep
bits with the same literal.

For example,

'o2xw0u is same as 'b010_xxx_www_000_uuu

'hLux is same as 'bLLLL_uuuu_xxxx
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3.2.10 Edge Literals

An edge literal shall be constructed by two bit literals or two based literals. It shall describe
transition of a signal from one discrete value to another. No white space shall be allowed 
(between) the two literals. An underscore shall be allowed.

edge_literal ::=
bit_edge_literal

| word_edge_literal
| symbolic_edge_literal

bit_edge_literal ::=
  bit_literal  bit_literal

word_edge_literal ::=
  based_literal  based_literal

symbolic_edge_literal ::=
  ??  | ?~ | ?!  | ?-

Figure 3-14: Edge literals

3.2.11 Quoted Strings

The quoted string shall be a sequence of zero or more characters enclosed between two
quotation marks (" ) and contained on a single line. Characterescape codes are used inside the
string literal to represent some common special characters. The characters that may foll
backslash (\) and their meanings are listed below in Table 3-2.

quoted_string ::=

  " { any_character } "

Figure 3-15: A quoted string

Table 3-2 : Special characters in quoted strings

Symbol ASCII Code
(octal)

Meaning

\g   007 alert/bell

\h   010 backspace

\t   011 horizontal tab

\n   012 new line

\v   013 vertical tab

\f   014 form feed

\r   015 carriage return

\"   042 double quotation mark
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A non-quoted string can not contain any reserved character. Therefore, when referenci
names (which typically contain a period character), use of a quoted string is necessary.

3.2.12 Identifiers

Identifiers are used in ALF as names of objects, reserved words and context-sensitive
keywords. An identifier shall be any sequence of letters, digits, underscore (_), and dollar sign
($) character. If an identifier is constructed from one or more non-reserved characters, i
callednon-escaped identifier. A digit  shall not be allowed as first character of a non-escap
identifier.

nonescaped_identifier ::=
nonreserved_character { nonreserved_character }

A sequence of characters starting with anescape_character  is called anescaped identifier.
The purpose of the escaped identifier is to legalize the use of adigit  as first character of an
identifier, the use ofreserved_character  anywhere in an identifier or to prevent the
misinterpretation of an identifier as a keyword. The escape character shall be followed 
least one non-white space character to form an escaped identifier.The escaped identifie
contain all characters up to first white space character.

escaped_identifier ::=
escape_character escaped_characters

escaped_characters ::=
escaped_character { escaped_character }

escaped_character ::=
  nonreserved_character
| reserved_character
| escape_character

A placeholder identifier shall be a non-escaped identifier between the less-than characte<)
and the greater-than character (>). No whitespace or delimiters are allowed between the no
escaped identifier and the placeholder characters (< and>). The placeholder identifier is used
in template objects as a formal parameter, which is replaced by the actual parameter in te
instantiation.

placeholder_identifier ::=

< nonescaped_identifier >

Identifiers are treated in a case-insensitive way. They may be used in the definition of o
and in reference to already defined objects. A parser should preserve the case of an ide
in the definition of an object, since a downstream application may be case-sensitive.

\\   134 backslash

\ddd 3-digit octal value of ASCII character

Table 3-2 : Special characters in quoted strings
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3.2.13 Rules against parser ambiguity

The following rules shall apply when resolving ambiguity in parsing ALF source:

• In a context where bothbit_literal  andidentifier  are legal syntax items,
nonescaped_identifier  shall take priority overalphabetic_bit_literal .

• In a context where bothbit_literal  andnumber  are legal syntax items,number  shall
take priority overnumeric_bit_literal .

• In a context where bothedge_literal  andidentifier  are legal syntax items,
identifier  shall take priority overbit_edge_literal .

• In a context where bothedge_literal  andnumber  are legal syntax items,number  shall
take priority overbit_edge_literal .

In such contexts,based_literal  shall be used instead ofbit_literal .

3.2.14 Cross-reference of lexical tokens

Table 3-3 : Cross-reference of lexical tokens

Lexical toekn Section

alphabetic_bit_literal 3.2.8

any_character 3.2.4

based_literal 3.2.9

binary_base 3.2.9

binary_digit 3.2.9

bit_edge_literal 3.2.10

bit_literal 3.2.8

block_comment 3.2.6

comment 3.2.6

decimal_base 3.2.9

delimiter 3.2.5

digit 3.2.4

dont_care_literal 3.2.8

edge_literal 3.2.10

escape_character 3.2.4

escaped_identifier 3.2.12

hex_base 3.2.9

hex_digit 3.2.9

integer 3.2.7

nonescaped_identifier 3.2.12

non_negative_number 3.2.7
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3.3 Keywords

Keywords are case-insensitive non-escaped identifiers. For clarity, this document uses
uppercase letters for keywords and lowercase letters elsewhere, unless otherwise men

Keywords are reserved for use as object identifiers, not for general symbols. To use an
identifier that conflicts with the list of keywords, use the escape character, e.g. to declare
that is calledPIN , use the form:

PIN \PIN {..}

A keyword can either be areserved keyword (also calledhard keyword) or acontext-sensitive
keyword (also calledsoft keyword). The hard keywords have fixed meaning, and must be
understood by any parser of ALF. The soft keywords may be understood only by specif
applications. For example, a parser for a timing analysis application can ignore objects 
contain power related information described using soft keywords.

3.3.1 Keywords for Objects

The following keywords are used to identify object types:

ALIAS ATTRIBUTE BEHAVIOR CELL
CLASS CONSTANT EQUATION FUNCTION
GROUP HEADER INCLUDE LIBRARY
PIN PRIMITIVE PROPERTY STATETABLE
SUBLIBRARY TABLE TEMPLATE VECTOR
WIRE

Figure 3-16: Keywords for objects

nonreserved_character 3.2.4

number 3.2.7

numeric_bit_literal 3.2.8

octal_base 3.2.9

octal_digit 3.2.9

placeholder_identifier 3.2.12

quoted_string 3.2.11

reserved_character 3.2.4

sign 3.2.7

single_line_comment 3.2.6

symbolic_edge_literal 3.2.10

unsigned 3.2.7

whitespace 3.2.3

word_edge_literal 3.2.10

Table 3-3 : Cross-reference of lexical tokens

Lexical toekn Section
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3.3.2 Keywords for Operators

The following keywords are used for built-in arithmetic functions:

ABS absolute value
EXP natural exponential function
LOG natural logarithm
MIN minimum
MAX maximum

Figure 3-17: Keywords for built-in arithmetic functions

3.3.3 Context-Sensitive Keywords

In order to address the need of extensible modeling, ALF provides a predefined set ofpublic
context-sensitive keywords. Additional private context-sensitive keywords can be introd
as long as they do not have the same name as any existing public keyword.

The public context-sensitive keywords and their semantic meaning is defined in Section
This set can be extended to include private context-sensitive keywords.

3.4 Syntax Rules

The formal syntax of ALF language is described using Backus-Naur Form (BNF).

3.4.1 Assignments

unnamed_assignment_base ::=

  context_sensitive_keyword = value

unnamed_assignment ::=

  unnamed_assignment_base ;

unnamed_assignments ::=
  unnamed_assignment { unnamed_assignment }

named_assignment_base ::=

  context_sensitive_keyword identifier = value

named_assignment ::=

  named_assignment_base ;

named_assignments ::=
  named_assignment { named_assignment }

assignment_base ::=
  named_assignment_base
| unnamed_assignment_base

multi_value_assignment ::=

  identifier {  values }
Version 1.0.9 Advanced Library Format (ALF) Reference Manual 33



Library Format Specification Syntax Rules
assignment ::=
  named_assignment
| unnamed_assignment
| multi_value_assignment

pin_assignment ::=

pin_ identifier [index] = pin_ identifier [index] ;
| pin_ identifier [index] = logic_constant ;
| logic_constant = pin_ identifier [index] ;

pin_assignments ::=
  pin_assignment { pin_assignment }

arithmetic_assignment ::=

  identifier = arithmetic_expression ;

3.4.2 Expressions

arithmetic_expression ::=
  (  arithmetic_expression )
| number
| [ arithmetic_unary_operator ] identifier
| arithmetic_expression arithmetic_binary_operator

arithmetic_expression
|arithmetic_function_operator

(  arithmetic_expression { ,  arithmetic_expression } )

boolean_expression ::=
  (  boolean_expression )
| logic_constant
| logic_variable
| boolean_unary_operator boolean_expression
| boolean_expression boolean_binary_operator boolean_expression
| boolean_expression boolean_condition_operator boolean_expression

boolean_else_operator boolean_expression

vector_expression ::=
  (  vector_expression )
| vector_unary_operator boolean_expression
| vector_expression vector_binary_operator vector_expression
| vector_expression boolean_or_operator vector_expression
| vector_expression boolean_and_operator vector_expression
| vector_expression boolean_and_operator boolean_expression
| boolean_expression boolean_and_operator vector_expression
| boolean_expression

boolean_condition_operator vector_expression
boolean_else_operator vector_expression
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3.4.3 Instantiations

cell_instantiation ::=

  cell _identifier { logic_values }
|  cell _identifier {  pin_assignments }

primitive_instantiation ::=

  primitive _identifier [ identifier ] { logic_values }
| primitive _identifier [ identifier ] {  logic_assignments }
| primitive _identifier [ identifier ] {  pin_assignments }

template_instantiation ::=

  template_ identifier ;
|  template_ identifier [ = static  ] {  values }
| template_ identifier [ = static  ] {  all_purpose_items }
| template_ identifier = dynamic {  values }
| template_ identifier = dynamic {  dynamic_instantiation_items }

dynamic_instantiation_items ::=
dynamic_instantiation_item { dynamic_instantiation_item }

dynamic_instantiation_item ::=
  all_purpose_item
| arithmetic_model
| arithmetic_assignment

3.4.4 Literals

context_sensitive_keyword ::=
nonescaped_identifier

edge_literal ::=
bit_edge_literal

| word_edge_literal
| symbolic_edge_literal

edge_literals::=
  edge_literal { edge_literal }

identifier ::=
  nonescaped_identifier
| escaped_identifier
| placeholder_identifier

identifiers ::=
identifier { identifier }

index ::=

[  unsigned ]
| [  unsigned :  unsigned ]
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| [  identifier ]
| [  identifier :  identifier ]

logic_value ::=
logic_constant

| logic_variable

logic_values ::=
  logic_value { logic_value }

logic_constant ::=
  bit_literal
| based_literal

logic_constants::=
 logic_constant { logic_constant }

statetable_value ::=
  logic_constant
| edge_literal

| (  [ ! ] logic_variable )

statetable_values ::=
  statetable_value { statetable_value }

logic_variable ::=
  pin_ identifier [ index ]

logic_variables ::=
  logic_variable { logic_variable }

numbers ::=
  number { number }

string ::=
  quoted_string
| identifier

value ::=
  number
| string
| logic_value

values ::=
  value { value }

3.4.5 Operators

arithmetic_binary_operator ::=

+ | -  | *  | /  | **  | %

arithmetic_function_operator ::=

abs
36 Advanced Library Format (ALF) Reference Manual Version 1.0.9



Syntax Rules Library Format Specification
| exp
| log
| min
| max

arithmetic_unary_operator ::=

+ | -

boolean_binary_operator ::=
  boolean_and_operator
| boolean_or_operator
| boolean_logic_compare_operator
| boolean_case_compare_operator
| boolean_arithmetic_operator

boolean_and_operator ::=
  &  | &&

boolean_or_operator ::=
  |  | ||

boolean_logic_compare_operator ::=
  ^  | ~^

boolean_case_compare_operator ::=
!=  | == | >= | <= | > | <

boolean_arithmetic_operator ::=
  +  | -  | *  | /  | % | >> | <<

boolean_condition_operator ::=
  ?

boolean_else_operator ::=
  :

vector_if_operator ::=
  @

vector_elsif_operator ::=
  :

boolean_unary_operator ::=

!  | ~ | & | ~& | |  | ~|  | ^  | ~^

vector_binary_operator ::=

->  | <->  | &> | <&> | ~>

vector_unary_operator ::=
  edge_literal

See Section 3.5 for semantics of operators.
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3.4.6 Auxiliary Objects

all_purpose_item ::=
  annotation
| annotation_container
| generic_object
| template_instantiation
| cell_instantiation

all_purpose_items ::=
  all_purpose_item { all_purpose_item }

annotation ::=
  assignment

| assignment_base {  all_purpose_items }

annotation_container ::=

  context_sensitive_keyword {  all_purpose_items }

generic_object ::=
  alias
| attribute
| constant
| class
| group
| include
| property
| template

library_specific_object ::=
  annotation
| annotation_container
| cell
| function
| library
| pin
| primitive
| sublibrary
| vector
| wire

source_text ::=

ALF_REVISION version_ string library

3.4.7 Generic Objects

alias ::=

  ALIAS  identifier = identifier ;

attribute ::=

  ATTRIBUTE {  attribute_items }
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attribute_item ::=

  identifier [ {  unnamed_assignments }  ]

attribute_items ::=
  attribute_item { attribute_item }

class::=

  CLASS  identifier ;
| CLASS identifier {  class_items }

class_item ::=
  all_purpose_item
| logic_assignment
| vector_assignment

class_items ::=
class_item { class_item }

constant ::=

  CONSTANT identifier = number ;
| CONSTANT identifier = logic_constant ;

group ::=

GROUPgroup_ identifier {  identifiers }
| GROUPgroup_ identifier {  numbers }
| GROUPgroup_ identifier {  edge_literals }
| GROUPgroup_ identifier { logic_constants }
| GROUPgroup_ identifier {  logic_variables }
| GROUPgroup_ identifier { integer : integer }

include ::=

  INCLUDE quoted_string ;

property ::=

  PROPERTY [ identifier ] {  unnamed_assignments }

template_item ::=
  all_purpose_item
| library_specific_object
| arithmetic_model
| header
| table
| equation
| behavior_item

template_items ::=
  template_item { template_item }

template ::=

  TEMPLATE template_ identifier {  template_items }
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3.4.8 CELL

cell ::=

CELL cell_ identifier {  cell_items }
| CELL cell_ identifier ;
| cell_ template_instantiation

cell_item ::=
  all_purpose_item
| pin
| primitive
| function
| arithmetic_model
| vector
| wire

cell_items ::=
  cell_item {cell_item}

3.4.9 LIBRARY

library ::=

LIBRARY library_ identifier {  library_items [sublibraries] }
| LIBRARY library_ identifier ;
| library_ template_instantiation

libraries ::=
  library { library }

library_item ::=
  all_purpose_item
| arithmetic_model
| cell
| primitive
| wire

library_items ::=
  library_item { library_item }

3.4.10 PIN

pin ::=

PIN  [ index ] pin_ identifier {  pin_items }
PIN  [ index ] pin_ identifier ;

| pin_ template_instantiation

pins ::=
  pin { pin }

pin_item ::=
  all_purpose_item
| arithmetic_model
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pin_items ::=
  pin_item { pin_item }

3.4.11 PRIMITIVE

primitive ::=

PRIMITIVE primitive_ identifier {  primitive_items }
| PRIMITIVE primitive_ identifier ;
| primitive_ template_instantiation

primitives ::=
  primitive { primitive }

primitive_item ::=
  all_purpose_item
| pin
| function

primitive_items ::=
  primitive_item { primitive_item }

3.4.12 SUBLIBRARY

sublibrary ::=

SUBLIBRARY library_ identifier {  library_items }
| SUBLIBRARY library_ identifier ;
| sublibrary_ template_instantiation

sublibraries ::=
  sublibrary { sublibrary }

3.4.13 VECTOR

vector ::=

VECTOR ( vector_expression ) {  vector_items }
| VECTOR ( boolean_expression ) {  vector_items }
| VECTOR ( vector_expression ) ;
| VECTOR ( boolean_expression ) ;
| vector_ template_instantiation

vector_item ::=
  all_purpose_item
| arithmetic_model
| logic_assignment
| vector_assignment

vector_items ::=
  vector_item { vector_item }

vector_assignment ::=

context_sensitive_keyword = (  vector_expression )
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3.4.14 WIRE

wire ::=

WIRE wire_ identifier {  wire_items }
| WIRE wire_ identifier ;
| wire_ template_instantiation

wire_item ::=
  all_purpose_item
| arithmetic_model

wire_items ::=
  wire_item { wire_item }

3.4.15 Arithmetic Model

arithmetic_model ::=
  context_sensitive_keyword [ identifier ]

{  [ all_purpose_items ] [ header ] body }
| context_sensitive_keyword [ identifier ]

= value ;
| context_sensitive_keyword [ identifier ]

= value {  all_purpose_items }
| context_sensitive_keyword [ identifier ]

{  arithmetic_submodels }
| arithmetic_model_ template_instantiation

arithmetic_models ::=
  arithmetic_model { arithmetic_model }

arithmetic_model_container ::=

  context_sensitive_keyword {  arithmetic_models }

arithmetic_submodel ::=
  context_sensitive_keyword

{  [ all_purpose_items ] [ header ] body }
| context_sensitive_keyword

= value ;
| context_sensitive_keyword

= value {  all_purpose_items }
| context_sensitive_keyword

{  arithmetic_submodels }
| arithmetic_submodel_ template_instantiation

arithmetic_submodels ::=
  arithmetic_submodel { arithmetic_submodel }

header ::=

HEADER { [ all_purpose_items ] arithmetic_models }
| header_ template_instantiation
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body ::=
  table
| equation
| table equation

table ::=

TABLE {  table_items }
| table_ template_instantiation

table_item ::=
  number
| identifier

table_items ::=
  table_item { table_item }

equation ::=

EQUATION { arithmetic_expression }
| equation_ template_instantiation

3.4.16 FUNCTION

function ::=

FUNCTION [ identifier ]

  { [all_purpose_items] [primitives] behavior } }
| { [all_purpose_items] [primitives] [behavior] statetables } }
| function_ template_instantiation

statetable ::=

  STATETABLE  [ identifier ] {  statetable_header statetable_body }

statetables ::=
   statetable { statetable }

statetable_body ::=

  statetable_values :  statetable_values ;
  { statetable_values : statetable_values ;  }

statetable_header ::=

  logic_variables : logic_variables ;

behavior ::=

BEHAVIOR [ identifier ] {  behavior_items }

behavior_item ::=
  logic_assignment
| sequential_logic_statement
| primitive_instantiation

behavior_items ::=
behavior_item { behavior_item }
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logic_assignment ::=

  identifier [index] = boolean_expression ;

logic_assignments ::=
  logic_assignment  { logic_assignment }

sequential_logic_statement ::=

vector_if_operator (  vector_expression | boolean_expression )
{  logic_assignments }

  { vector_elsif_operator (  vector_expression | boolean_expression )
{  logic_assignments }  }

3.4.17 Cross-reference of BNF items

Note: A BNF item with singular name is defined in the same section as the BNF item wit
plural name. A plural item name implies one or more items with the corresponding sing
name.

Table 3-4 : Cross-reference of BNF items with short semantic explanation

BNF item Section Short semantic explanation

alias 3.4.7 statement defining an alias

all_purpose_item(s) 3.4.6 item(s) that can appear inside any hierarchical object

annotation 3.4.6 parameter-value assignment inside an object, may be
nested

annotation_container 3.4.6 unnamed object containing annotations

arithmetic_assignment 3.4.1 statement assigning an arithmetic expression to a var

arithmetic_binary_operator 3.4.5 arithmetic operator requiring two operands

arithmetic_expression 3.4.2 expression involving arithmetic operations

arithmetic_function_operator 3.4.5 arithmetic operator prefixing a list of arguments

arithmetic_model(s) 3.4.15 statement(s) for description of characterization data
using single numbers, tables or equations

arithmetic_model_container 3.4.15 unnamed object containing arithmetic models

arithmetic_submodel(s) 3.4.15 statement(s) inside an arithmetic model statement for
egorizing the characterization data

arithmetic_unary_operator 3.4.5 arithmetic operator requireing one operand

assignment 3.4.1 terminated statement for single value assignment to a
object

assignment_base 3.4.1 unterminated statement for single value assignment t
object

attribute 3.4.7 statement associating attributes to an object

attribute_item(s) 3.4.7 item(s) inside an attribute statement

behavior 3.4.16 statement describing the logic function of a  digital cir-
cuit in a behavioral language

behavior_item(s) 3.4.16 item(s) inside a behavior  statement
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body 3.4.15 table or equation defining characterization data for an
arithmetic model

boolean_and_operator 3.4.5 boolean AND operator

boolean_arithmetic_operator 3.4.5 operator for boolean arithmetic

boolean_binary_operator 3.4.5 boolean operator requiring two operands

boolean_case_compare_operator 3.4.5 binary boolean operator for magnitude comparison

boolean_condition_operator 3.4.5 boolean postfix operator evaluating the preceeding b
ean expression (if-clause)

boolean_else_operator 3.4.5 boolean infix operator separating if-and else-clauses

boolean_expression 3.4.2 expression involving boolean operations

boolean_logic_compare_operator 3.4.5 binary boolean operator for logic comparison

boolean_or_operator 3.4.5 boolean OR operator

boolean_unary_operator 3.4.5 boolean operator requiring one operand

cell(s) 3.4.8 statement(s) describing the entire model of a digital or
analog circuit

cell_item(s) 3.4.8 item(s) inside a  cell statement

cell_instantiation 3.4.3 statement inside a cell, describing a reference to anoth
cell with pin-to-pin correspondence

class 3.4.7 statement describing a class for the use of reference a
inheritance by other objets

class_item(s) 3.4.6 item(s) inside a class statement, which will be inherite
by any object refering to the class

constant 3.4.7 statement defining a numeric constant

context_sensitive_keyword 3.4.4 identifier of an object for which the semantic meaning
established by its context

dynamic_instantiation_item(s) 3.4.3 item(s) inside a  dynamic instantiation of a template

edge_literal(s) 3.4.4 symbol(s) describing a transition between two states

equation 3.4.15 statement inside arithmetic model containing an arith-
metic expression for the calculation of characterization
data

function 3.4.16 statement describing the logic function of a circuit in a
canonical way, using behavior and/or statetable stateme

generic_object 3.4.6 statement with the sole purpose of being used by othe
objects

group 3.4.7 statement allowing expansion of one object to multiple
objects

header 3.4.15 statement inside arithmetic model containing a list of
parameters of the arithmetic model

identifier(s) 3.4.4 literal(s) defining a keyword or a name or a string value

include 3.4.7 statement defining the inclusion of a file

Table 3-4 : Cross-reference of BNF items with short semantic explanation

BNF item Section Short semantic explanation
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index 3.4.4 symbol defining an integer or a range of integers for the
use as indices

library (libraries) 3.4.9 statement(s) describing the entire contents of a library

library_item(s) 3.4.9 item(s) inside a library statement

library_specific_object 3.4.6 statement describing an object which is part of the libr

logic_assignment(s) 3.4.1 statement(s) assigning a logic expression to a logic va
able

logic_value(s) 3.4.4 variable(s) or constant logic value(s)

logic_constant(s) 3.4.4 constant logic value(s)

logic_variable(s) 3.4.4 variable(s) containing a logic value

multi_value_assignment 3.4.1 statement for assignment of multiple values to an obje

named_assignment 3.4.1 terminated statement for single value assignment to a
named object

named_assignment_base 3.4.1 unterminated statement for single value assignment
named object

number(s) 3.4.4 integer or floating point number(s)

pin(s) 3.4.10 statement(s) describing a pin inside a cell

pin_item(s) 3.4.10 item(s) inside a pin statement

pin_assignment(s) 3.4.1 statement(s) defining a correspondence between two 
or between a pin and a contant logic value

primitive(s) 3.4.11 statement(s) describing a technology-independent cell

primitive_instantiation 3.4.3 statement inside a behavior statement for logi function
description by reference to a primitive

primitive_item(s) 3.4.11 item(s) inside a primitive statement

property 3.4.7 statement describing private properties without standar
ized semantics

sequential_logic_statement 3.4.1 statement inside a behavior statement for logic funct
description with storage elements

source_text 3.4.6 contents of a self-sufficient file in ALF

statetable(s) 3.4.16 statement(s) describing the logic function o a digital ci
cuit in table format

statetable_body 3.4.16 list of values inside a statetable

statetable_header 3.4.16 list of variables inside a statetable

statetable_value(s) 3.4.4 literal(s) inside a statetable

string 3.4.4 identifier consisting of a restricted set of characters or
quoted string containing arbitrary characters

sublibrary (sublibraries) 3.4.12 statement(s) describing the contents of a sub-library
inside a library

table 3.4.15 statement inside arithmetic model containing a list of
characterization data

table_item(s) 3.4.15 item(s) inside a table statement

Table 3-4 : Cross-reference of BNF items with short semantic explanation

BNF item Section Short semantic explanation
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3.5 Operators

The operators are divided into four groups:

• Arithmetic operators

• Boolean operators on scalars, i.e. single bits

• Boolean operators on words, i.e. arrays of bits

• Vector operators

template 3.4.7 statement defining an object with placeholders

template_instantiation 3.4.3 statement refering to a template and filling the placeh
ers

template_item(s) 3.4.7 statement(s) inside a template statement

unnamed_assignment(s) 3.4.1 terminated statement(s) for single value assignment 
unnamed object

unnamed_assignment_base 3.4.1 unterminated statement for single value assignment
unnamed object

value(s) 3.4.4 number(s) or string(s) or logic value(s)

vector(s) 3.4.13 statement(s) describing event sequence and data for c
acterization of a circuit

vector_binary_operator 3.4.5 operator used for description of an event sequence re
ing two operands

vector_expression 3.4.2 expression describing an event sequence

vector_elsif_operator 3.4.5 operator indicating a lower-priority logic state or event
sequence

vector_if_operator 3.4.5 operator indicating a top-priority logic state or event
sequence

vector_item(s) 3.4.13 item(s) inside a vector statement

vector_unary_operator 3.4.5 operator used for description of an event sequence re
ing one operand

wire(s) 3.4.14 statement(s) describing a wireload model

wire_item(s) 3.4.14 item(s) insidea wire statement

Table 3-4 : Cross-reference of BNF items with short semantic explanation

BNF item Section Short semantic explanation
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3.5.1 Arithmetic operators

Table 3-5, Table 3-6, and Table 3-7 list unary, binary and function arithmetic operators.

Function operators with one argument (such aslog , exp  andabs ) or multiple arguments (such
asmin  andmax) must have the arguments within parenthesis, e.g. min(1.2,-4.3,0.8) .

3.5.2 Boolean operators on scalars

Table 3-8, Table 3-9 and Table 3-10 list unary, binary and ternary boolean operators on s

Table 3-5 : Unary arithmetic operators

Operator Description

+ positive sign (for integer or number)

- negative sign (for integer or number)

Table 3-6 : Binary arithmetic operators

Operator Description

+ addition (integer or number)

- subtraction (integer or number)

* multiplication (integer or number)

/ division (integer or number)

** exponentiation (integer or number)

% modulo division (integer or number)

Table 3-7 : Function arithmetic operators

Operator Description

LOG natural logarithm (argument is + integer or number)

EXP natural exponential (argument is integer or number)

ABS absolute value (argument is integer or number)

MIN minimum (all arguments are integer or number)

MAX maximum (all arguments are integer or number)

Table 3-8 : Unary boolean operators

Operator Description

! , ~ logical inversion
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Combinational if-then-else clauses are constructed as follows:

<cond1>? <value1>: <cond2>? <value2>: <cond3>? <value3>: <default_value>

If cond1  evaluates to booleanTRUE thenvalue1  is the result, else ifcond2  evaluates to boolean
TRUE thenvalue2  is the result, else ifcond3  evaluates to booleanTRUE thenvalue3  is the
result, elsedefault_value  is the result of this clause.

3.5.3 Boolean operators on words

 Table 3-11 and Table 3-12 list unary and binary reduction operators on words (logic var
with one or more bits). The result of an expression using these operators shall be a logic

Table 3-9 : Binary boolean operators

Operator Description

&&, & logical AND

|| , | logical OR

~^ logic equivalence (XNOR)

^ logic antivalence (XOR)

Table 3-10 : Ternary operator

Operator Description

 ? boolean condition operator for construction of combi-
national if-then-else clause

 : boolean else operator for construction of combinational
if-then-else clause

Table 3-11 : Unary reduction operators

Operator Description

& AND all bits

~& NAND all bits

| OR all bits

~| NOR all bits

^ XOR all bits

~^ XNOR all bits

Table 3-12 : Binary reduction operators

Operator Description

 == equality for case comparison

 != non-equality for case comparison

 > greater

 < smaller
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 Table 3-13 and Table 3-14 list unary and binary bitwise operators. The result of an expr
using these operators shall be an array of bits.

 The following arithmetic operators, listed in Table 3-15, are also defined for boolean
operations on words. The result of an expression using these operators shall be an exte
array of bits.

The arithmetic operations addition, subtraction, multiplication, and division shall beunsigned
if all the operands have the datatypeunsigned. If any of the operands have the datatype signe
the operation shall besigned. See Table 3.6.3.13 for DATATYPE definition.

3.5.4 Vector operators

A transition operation is defined using unary operators on a scalar net. The scalar consta
figure 3-13) shall be used to indicate the start and end states of a transition on a scalar

 >= greater or equal

 <= smaller or equal

Table 3-13 : Unary bitwise operators

Operator Description

~ bitwise inversion

Table 3-14 : Binary bitwise operators

Operator Description

 & bitwise AND

 | bitwise OR

 ^ bitwise XOR

 ~^ bitwise XNOR

Table 3-15 : Binary operators

Operator Description

 << shift left

 >> shift right

 + addition

 - subtraction

 * multiplication

 / division

 % modulo division

Table 3-12 : Binary reduction operators

Operator Description
50 Advanced Library Format (ALF) Reference Manual Version 1.0.9



Operators Library Format Specification

tors

nd
bit bit // apply transition from bit value to bit value

For example,

01 is a transition from0 to 1.

No whitespace shall be allowed between the two scalar constants. The transition opera
shown in Table 3-16 shall be considered legal:

Unary operators for transitions can also appear inSTATETABLE.

Transition operators are also defined on words (can appear inSTATETABLE as well):

' base word ' base word

In this context, the transition operator shall apply transition from first word value to seco
word value.

For example,

'hA'h5 is a transition of a 4-bit signal from'b1010  to 'b0101 .

No whitespace shall be allowed betweenbase andword.

Table 3-16 : Unary vector operators on bits

Operator Description

01 signal toggles from 0 to 1

10 signal toggles from 1 to 0

00 signal remains 0

11 signal remains 1

0? signal remains 0 or toggles from0 to arbitrary value

1? signal remains 1 or toggles from 1 to arbitrary value

?0 signal remains 0 or toggles from arbitrary value to 0

?1 signal remains 1 or toggles from arbitrary value to 1

?? signal remains constant or toggles between arbitrary values

0* a number of arbitrary signal transitions, including possibil-
ity of constant value, with the initial value 0

1* a number of arbitrary signal transitions, including possibil-
ity of constant value, with the initial value 1

?* a number of arbitrary signal transitions, including possibil-
ity of constant value, with arbitrary initial value

*0 a number of arbitrary signal transitions, including possibil-
ity of constant value, with the final value 0

*1 a number of arbitrary signal transitions, including possibil-
ity of constant value, with the final value 1

*? a number of arbitrary signal transitions, including possibil-
ity of constant value, with arbitrary final value
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The unary and binary operators for transition, listed in Table 3-17 and Table 3-18 respec
are defined on bits and words:

The following canonical binary operators are necessary to define sequences of transitio

q sequential event AND for completely specified sequence of events

q simultaneous event AND

q alternative event OR

q sequential event AND for incompletely specified sequence of events

The symbols for the boolean operators for AND, OR, are overloaded for simultaneous e
AND, alternative event OR, respectively. New symbols are introduced for the followed-b
operators.

Per definition, the-> , ~> operators shall not be commutative, whereas the &&, || operator
events shall be commutative.

01 a && 01 b === 01 b && 01 a

01 a || 01 b === 01 b || 01 a

The || operator allows also to reduce the set of edge operators (unary vector operators)
canonical and non-canonical operators.

(?? a)  === (?! a)||(?- a)  //a does or does not change its value

Table 3-17 : Unary vector operators on bits or words

Operator Description

?- no transition occurs

?? apply arbitrary transition, including possibility of constant value

?! apply arbitrary transition, excluding possibility of constant value

?~ apply arbitrary transition with all bits toggling

Table 3-18 : Canonical Binary vector operators

Operator Operands
LHS, RHS
commutative Description

-> 2 vector
expressions

no Left-hand side (LHS) transitionis followed byRight-hand
side (RHS) transition, no other transition may occur in-
between

&& or & 2 vector
expressions

yes LHSand RHS transitionoccur simultaneously

|| or | 2 vector
expressions

yes LHSor RHS transitionoccur alternatively

~> 2 vector
expressions

no Left-hand side (LHS) transitionis followed byRight-hand
side (RHS) transition, other transitions may occur in-
between
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Hence?? is non-canonical, since it can be defined by other operators.

If <value1><value2>   is an edge operator consisting of two based literalsvalue1  andvalue2

andword  is an expression which can take the valuevalue1  or value2 , then the following
vector expressions are considered equivalent:

<value1><value2> <word>
=== 10 (<word> == <value1>) && 01 (<word> == <value2>)
=== 01 (<word> != <value1>) && 01 (<word> == <value2>)
=== 10 (<word> == <value1>) && 10 (<word> != <value2>)
=== 01 (<word> != <value1>) && 10 (<word> != <value2>)

// all expressions describe the same event:
// <word> makes a transition from <value1> to <value2>

Hence vector expressions with edge operators using based literals can be reduced to v
expressions using only the edge operators 01, 10.

Complex binary vector operators are also defined. Vector expressions using those oper
can be decomposed into vector expressions using only canonical operators.

The following expressions shall be considered equivalent:

(01 a <-> 01 b) === (01 a -> 01 b)||(01 b -> 01 a)

(01 a  &> 01 b) === (01 a -> 01 b)||(01 a && 01 b)

(01 a <&> 01 b) === (01 a -> 01 b)||(01 b -> 01 a)||(01 a && 01 b)

By their symetric definition, the <->, <&> operators are commutative.

01 a <-> 01 b === 01 b <-> 01 a

01 a <&> 01 b === 01 b <&> 01 a

The definition of the && operator is also overloaded to describe aconditional vector
expression (conditional event AND), involving a boolean expression and a vector expres

Example:

(01 a && !b) // a rises while b==0

Table 3-19 : Complex Binary vector operators

Operator Operands
LHS, RHS
commutative Description

<-> 2 vector
expressions

yes LHS transitionfollows or is followed by RHS transition

&> 2 vector
expressions

yes LHS transitionis followed by or occurs simultaneously
with RHS transition

<&> 2 vector
expressions

yes LHS transitionfollows or is followed by or occurs simulta-
neously with RHS transition

&& or & 1 vector
expression,
1 boolean
expression

yes boolean expression (LHS or RHS) is true while sequence
of transitions, defined by vector expression (RHS or LHS)
occurs
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The order of the operands in a conditional vector expression shall not matter.

<vector_expr> && <boolean_expr> === <boolean_expr> && <vector_expr>

The && operator is still commutative in this case, although one operand is a boolean
expression defining a static state, the other operand is a vector expression defining an e
a sequence of events. However, since the operands are distinguishable per se, it is not ne
to impose a particular order of the operands.

A conditional vector expression can be reduced to a canonical vector expression in the
following way:

<vector_expr> && <boolean_expr>
=== *1 <boolean_expr> -> <vector_expr> -> 1* <boolean_expr>

Every binary vector operator may be applied to a conditional vector expression.

3.5.5 Operators for sequential logic

Sequential assignments are constructed as follows:

@ ( <trigger1> ) { <action1> } : ( <trigger2> ) { <action2> } :
  ( <trigger3> ) { <action3> }

If trigger1  event is detected thenaction1  is performed, else iftrigger2  event is detected
thenaction2  is performed, else iftrigger3  event is detected thenaction3  is performed as a
result of this clause.

3.5.6 Operator priorities

The priority of binding operators to operands shall be from strongest to weakest in the
following order:

1. unary vector operators (edge literals)

2. binary vector operators (-> , <-> , &>, <&>, ~> )

3. unary arithmetic operator (+, - ) and unary boolean operator (! , ~, &, ~&, | , ~| , ^ , ~^ )

4. XNOR(~^ ), XOR (^ ), relational (>, <, >=, <=, ==, != ), exponentiation (** ) ,
shift (<<, >>)

Table 3-20 : Operators for sequential logic

Operator Description

 @ vector if operator, followed by a boolean logic expression (for level-
sensitive assignment) or by a vector expression (for edge-sensitive
assignment)

 : vector elsif operator, followed by a boolean logic expression (for
level-sensitive assignment) or by a vector expression (for edge-sen-
sitive assignment) with lower priority
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5. AND (&, &&), NAND (~&), multiplication (* ), division (/ ), modulo division (%)

6. OR (|, || ), NOR (~| ), addition (+), subtraction (- )

The priority applies also to the overloaded boolean operators in vector expressions.

Operators with equal priority are evaluated strictly in order of occurrence from left to right.
parenthesis()  shall be used for changing the priority of binding operators to operands.

3.5.7 Datatype mapping

Logical operations can be applied to scalars and words. For that purpose, the values of
operands are reduced to a system of 3 logic values in the following way:

H has the logic value1
L has the logic value0
W, Z, U have the logic valueX
A word has the logic value1, if the unary OR reduction of all bits results in1

A word has the logic value0, if the unary OR reduction of all bits results in0

A word has the logic valueX, if the unary OR reduction of all bits results inX

Case comparison operations can also be applied to scalars and words. For scalars, the
defined in the following way:

Table 3-21 : Case comparison operators

A B A==B A!=B A>B A<B

1 1 1 0 0 0

1 H 0 1 X X

1 0 0 1 1 0

1 L 0 1 1 0

1 W, U, Z, X 0 1 X 0

H 1 0 1 X X

H H 1 0 0 0

H 0 0 1 1 0

H L 0 1 1 0

H W, U, Z, X 0 1 X 0

0 1 0 1 0 1

0 H 0 1 0 1

0 0 1 0 0 0

0 L 0 1 X X

0 W, U, Z, X 0 1 0 X

L 1 0 1 0 1

L H 0 1 0 1

L 0 0 1 X X

L L 1 0 0 0

L W, U, Z, X 0 1 0 X
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For word operands, the operations> and< are performed after reducing all bits to the 3-valu
system first, and then interpreting the resulting number according to the datatype of the
operands. For example, if datatype issigned, 'b1111  is smaller than'b0000 ; if datatype is
unsigned, 'b1111  is greater than'b0000 . If two operands have the same value'b1111  and a
different datatype, the unsigned'b1111  is greater than the signed'b1111 .

The operations>= and<= are defined in the following way:

(a >= b) === (a > b) || (a == b)

(a <= b) === (a < b) || (a == b)

3.6 Context-sensitive keywords

The context-sensitive keywords permit legal extensions to ALF syntax. An ALF parser s
either accept or ignore when an unknown keyword or annotation is encountered. The pu
of context-sensitive keywords is to have a vocabulary of keywords with already well-def
semantic meaning. That means, an ALF compiler for an application must understand th
keywords needed (used) by the application. For example, a compiler that needs SLEW
must understand the keywordSLEWRATE and not expect a keywordRAMPTIME.

3.6.1 Containers for Annotations and Arithmetic Models

Any object with children objects may contain annotations. In addition, the following obje
are defined only for the purpose ofunnamed annotation containers.

X X 1 0 X X

X U X X X X

X 0, 1, H, L, W, Z 0 1 X X

W W 1 0 X X

W U X X X X

W 0, 1, H, L, X, Z 0 1 X X

Z Z 1 0 X X

Z U X X X X

Z 0, 1, H, L, X, W 0 1 X X

U 0, 1, H, L,
X,W, Z, U

X X X X

Table 3-22 : Unnamed annotation containers

Objects Description

SCAN contains information relevant to design for test

FROM contains start point of timing measurement or timing constraint

Table 3-21 : Case comparison operators

A B A==B A!=B A>B A<B
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3.6.1.1 Scan container

A SCAN container may be used inside a CELL or a PIN object and may contain annota
which are allowed inside a CELL (Section 3.6.5) or a PIN object (Section 3.6.3) for limit
the scope of those annotations.

Example:

PIN clk1 { signaltype = master_clock; SCAN {signaltype = slave_clock;} }

PIN clk2 { SCAN {signaltype = master_clock;} }

In normal mode,clk1  is master clock,clk2  is unused. In scan mode,clk2  is master clock,
clk1  is slave clock.

3.6.1.2 FROM and TO container

A FROM container and a TO container may be used inside a DELAY or SLEWRATE ob
(Section 3.6.7.5). It may contain a PIN annotation (Section 3.6.3) and/or a THRESHOL
annotation (Section 3.6.7.5) or a THRESHOLD annotation container. The THRESHOLD
annotation container may contain RISE and/or FALL annotations (Section 3.6.7.5).

Example:

DELAY {
FROM {PIN = data_in;  THRESHOLD { RISE = 0.4; FALL = 0.6;} }
TO   {PIN = data_out; THRESHOLD = 0.5;}

}

The delay is measured from pindata_in  to pindata_out . The threshold fordata_in  is 0.4
for rising signal and 0.6 for falling signal. The threshold fordata_out  is 0.5.

3.6.1.3 LIMIT container

A LIMIT container may be used inside a library-specific object (Section 3.4.6). It may con
annotation containers defined by keywords for arithmetic models (Section 3.6.7.5). Tho
annotation containers must containarithmetic models identified byMIN and/or MAX (Section
3.6.7.6)

TO contains end point of measurement or timing constraint

LIMIT containsarithmetic models forlimit values

EARLY contains arithmetic models for timing measurements relevant for early signal
arrival time

LATE contains arithmetic models for timing measurements relevant for late signal
arrival time

VIOLATION contains items relevant to timing violations

INFORMATION contains purely informational items

Table 3-22 : Unnamed annotation containers

Objects Description
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Example:

PIN data_in {
LIMIT {

SLEWRATE { UNIT = ns; MIN = 0.05; MAX = 5.0;}
}

}

The minimum slewrate allowed at pindata_in  is 0.05 ns, the maximum is 5.0 ns.

PIN data_in {
LIMIT {

SLEWRATE {
UNIT = ns;
MAX {

HEADER { FREQUENCY { UNIT=megahz;} }
EQUATION { 250 / FREQUENCY  }

}
}

}
}

The maximum allowed slewrate is frequency-dependent, e.g. the value is 0.25ns for 1G

3.6.1.4 EARLY and LATE container

The EARLY and LATE containers define the boundaries of timing measurements in one
gle analysis. Only applicable to DELAY and SLEWRATE. Both of them must appear in b
containers.

The quadruple

EARLY {
DELAY { FROM {...} TO { ...} /* data */ }
SLEWRATE { /* data */ }

LATE {
DELAY { FROM {...} TO { ...} /* data */ }
SLEWRATE { /* data */ }

is used to calculate the envelope of the timing waveform at the TO point of a delay arc w
respect to the timing waveform at the FROM point of a delay arc.

The EARLY DELAY is of course a smaller number (or a set of smaller numbers) than th
LATE DELAY. However, the EARLY SLEWRATE is not necessarily smaller than the LAT
SLEWRATE, since the SLEWRATE of the EARLY signal may be larger than the SLE-
WRATE of the LATE signal.

3.6.1.5 VIOLATION container

A VIOLATION container may be inside a SETUP, HOLD, RECOVERY, REMOVAL,
PULSEWIDTH, PERIOD, or NOCHANGE object. It may contain the BEHAVIOR object
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(Section 3.4.16), since the behavior in case of timing constraint violation cannot be des
in the FUNCTION. It may also contain the following annotations:

Example:

VECTOR (01 d <&> 01 cp) {
SETUP {

VIOLATION {
MESSAGE_TYPE = error;
MESSAGE = “setup violation 01 d <&> 01 cp“;
BEHAVIOR {q = 'bx;}

}
}

}

3.6.1.6 INFORMATION container

An INFORMATION container may be inside a LIBRARY, SUBLIBRARY, CELL, or WIRE
object. It may also be in PRIMITIVE objects inside a LIBRARY or SUBLIBRARY, but not
the locally defined primitives inside cells or functions. It may contain the following
annotations:

Table 3-23 : Violation annotation container

Keyword Value type Description

MESSAGE_TYPE string specifies the type of the message. It can be one
of information , warning , error .

MESSAGE string specifies the message itself.

Table 3-24 : Information annotation container

Keyword Value type Description Examples

VERSION string version of the object containing
this INFORMATION block

“v1r3_2”
“1.3.2”

TITLE string title or comment related this object “0.2u StdCell Library”
“2-input NAND, 4x drive”
“3-layer metal, best case,
wireload model”

PRODUCT string product related to the object “vsc1083”
“vsm10rs111”
“0.2u technology family”

AUTHOR string originator or modifier of the object “user@system.com”
“Imn N. Gineer”
“An ASIC Vendor, Inc.”

DATETIME string date/time stamp related to the
object

“Wed Aug 19 08:13:01
MST 1998”
“July 4, 1998”
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LIBRARY major_ASIC_vendor {
INFORMATION {

version = “v2.1.0”;
title = “0.35 standard cell”;
product = p35sc;
author = “Major Asic Vendor, Inc.”;
datetime = “Wed Jul 23 13:50:12 MST 1997”;

}
}

3.6.2 Keywords for referencing objects used as annotation

The following object references may be used as annotations:

The syntax is as follows:

object_keyword = string ;

3.6.3 Annotations for a PIN object

A PIN object may contain the following annotations:

3.6.3.1 VIEW annotation

VIEW = string ;

annotates the view where the pin appears, which can take the following values:

3.6.3.2 PINTYPE annotation

PINTYPE = string ;

Table 3-25 : Object references as annotation

Keyword Value type Description

CELL string reference to a declared CELL object

PRIMITIVE string reference to a declared PRIMITIVE object

PIN string reference to a declared PIN object

CLASS string reference to a declared CLASS object

Table 3-26 : VIEW annotations for a PIN object

Annotation string Description

functional pin appears in functional netlist

physical pin appears in physical netlist

both (default) pin appears in both functional and physical netlist

none pin does not appear in netlist
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annotates the type of the pin, which can take the following values:

3.6.3.3 SIGNALTYPE annotation

SIGNALTYPE = string;

annotates the type of the signal connected to the pin, which can take the following valu

3.6.3.4 DRIVETYPE annotation

DRIVETYPE = string ;

Table 3-27 : PINTYPE annotations for a PIN object

Annotation string Description

digital (default) digital signal pin

analog analog signal pin

supply power supply or ground pin

Table 3-28 : SIGNALTYPE annotations for a PIN object

Annotation string Description

data  (default) general data signal

scan_data scan data signal

control general control signal

select select signal of a multiplexor

enable enable signal

out_enable output enable signal

scan_enable scan enable signal

scan_out_enable scan output enable signal

clear clear signal of a flipflop or latch

set set signal of a flipflop or latch

write write signal for memory, register file

read read signal for memory, register file

clock clock signal of a flipflop or latch

scan_clock scan clock signal of a flipflop or latch

master_clock master clock signal of a flipflop or latch

slave_clock slave clock signal of a flipflop or latch

address address signal of a memory
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annotates the drive type for the pin, which can take the following values:

3.6.3.5 DIRECTION annotation

DIRECTION = string ;

annotates the direction of the pin, which can take the following values:

3.6.3.6 SCOPE annotation

SCOPE = string ;

annotates modeling scope of a pin, which can take the following values:

Table 3-29 : DRIVETYPE annotations for a PIN object

Annotation string Description

cmos  (default) standard cmos signal

nmos nmos or pseudo nmos signal

pmos pmos or pseudo pmos signal

nmos_pass nmos passgate signal

pmos_pass pmos passgate signal

cmos_pass cmos passgate signal, i.e. full transmission gate

ttl TTL signal

open_drain open drain signal

open_source open source signal

Table 3-30 : DIRECTION annotations for a PIN object

Annotation string Description

input input pin

output output pin

both bidirectional pin

none no direction can be assigned to the pin

Table 3-31 : SCOPE annotations for a PIN object

Annotation string Description

behavior can be used for modeling functional behavior

measure measurements can be done related to this pin,
e.g. timing or power characterization

both  (default) can be used for function as well as for characterization
measurements

none no model, only pin exists
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3.6.3.7 ACTION annotation

ACTION = string ;

annotates action of the signal, which can take the following values:

3.6.3.8 POLARITY annotation

POLARITY = string ;

annotates the polarity of the pin signal.

The polarity of an input pin (i.e.DIRECTION = input; ) can take the following values:

The polarity of an output pin (i.e.DIRECTION = output; ) can take the following values:

3.6.3.9 ENABLE_PIN annotation

ENABLE_PIN = string ;

references an output enable pin ( i.e. a pin withSIGNALTYPE = out_enable;  ).

3.6.3.10 PULL annotation

PULL = string ;

Table 3-32 : ACTION annotations for a PIN object

Annotation string Description

synchronous signal acts in synchronous way

asynchronous signal acts in asynchronous way

Table 3-33 : POLARITY (input) annotations for a PIN object

Annotation string Description

high signal active high or to be driven high

low signal active low or to be driven low

rising_edge signal sensitive to rising edge

falling_edge signal sensitive to falling edge

double_edge signal sensitive to any edge

Table 3-34 : POLARITY (output) annotations for a PIN object

Annotation string Description

inverted polarity change between input and output

non_inverted no polarity change between input and output

both polarity may change or not (e.g. XOR)  (default)

none polarity has no meaning(e.g. analog signal)
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which can take the following values:

3.6.3.11 ORIENTATION annotation

ORIENTATION  = string ;

which can take the following pin orientation values:

3.6.3.12 CONNECT_CLASS annotation

CONNECT_CLASS = identifier ;

annotates a declared class object for connectivity determination.

3.6.3.13 DATATYPE annotation

DATATYPE = string ;

is only relevant for bus pins, which can take the following values:

3.6.3.14 SCAN_POSITION annotation

SCAN_POSITION = unsigned ;

annotates position in scan chain.

3.6.3.15 STUCK annotation

STUCK = string ;

Table 3-35 : PULL annotations for a PIN object

Annotation string Description

up pullup device connected to pin

down pulldown device connected to pin

both pullup and pulldown device connected to pin

none  (default) no pull device

Table 3-36 : ORIENTATION annotations for a PIN object

Annotation string Description

left pin is on the left side

right pin is on the right side

top pin is at the top

bottom pin is at the bottom

Table 3-37 : DATATYPE annotations for a PIN object

Annotation string Description

signed result of arithmetic operation is signed 2’s complement

unsigned result of arithmetic operation is unsigned
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3.6.3.16 OFF_STATE annotation

OFF_STATE = string ;

which can be

3.6.4 Annotations for a VECTOR object

A VECTOR object may contain the following annotations:

3.6.4.1 LABEL annotation

LABEL = string ;

to be used to ensure SDF matching with conditional delays across Verilog, VITAL etc.

3.6.4.2 EXISTENCE_CONDITION

EXISTENCE_CONDITION = boolean_expression ;

For false-path analysis tools, the existence condition shall be used to eliminate the vecto
further analysis if and only if the existence condition evaluates to “false”. For applications 
than false-path analysis, the existence condition shall be treated as if the boolean expre
was a cofactor to the vector itself. Default existence condition is “true”.

Example:

VECTOR (01 a -> 01 z & (c | !d) ) {
EXISTENCE_CONDITION = !scan_select;
DELAY { FROM { PIN=a; } TO { PIN=z; } /* data */ }

}
VECTOR (01 a -> 01 z & (!c | d) ) {

EXISTENCE_CONDITION = !scan_select;
DELAY { FROM { PIN=a; } TO { PIN=z; } /* data */ }

}

Table 3-38 : STUCK annotations for a PIN object

Annotation string Description

stuck_at_0 pin can have stuck-at-0 fault

stuck_at_1 pin can have stuck-at-1 fault

both  (default) pin can have both stuck-at-0 and stuck-at-1 faults

none pin can not have stuck-at faults

Table 3-39 : OFF_STATE annotations for a PIN object

Annotation string Description

inverted pin is inverted when in off state

non_inverted pin is not inverted when in off state
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Each vector contains state-dependent delay for the same timing arc. If "!scan_select "
evaluates "true", both vectors are eliminated from timing analysis.

3.6.4.3 EXISTENCE_CLASS

EXISTENCE_CLASS = string ;

Reference to the same existence class by multiple vectors has the following effects:

• A common mode of operation is established between those vectors, which can be us
selective analysis, for instance mode-dependent timing analysis. Name of the mode 
name of the class.

• A common existence condition is inherited from that existence class, if there is one.

Example:

CLASS non_scan_mode {
EXISTENCE_CONDITION = !scan_select;

}
VECTOR (01 a -> 01 z & (c | !d) ) {

EXISTENCE_CLASS = non_scan_mode;
DELAY { FROM { PIN=a; } TO { PIN=z; } /* data */ }

}
VECTOR (01 a -> 01 z & (!c | d) ) {

EXISTENCE_CLASS = non_scan_mode;
DELAY { FROM { PIN=a; } TO { PIN=z; } /* data */ }

}

Each vector contains state-dependent delay for the same timing arc. If the mode
"non_scan_mode " is turned off or if "!scan_select " evaluates "true", both vectors are
eliminated from timing analysis.

3.6.4.4 CHARACTERIZATION_CONDITION

CHARACTERIZATION_CONDITION = boolean_expression ;

For characterization tools, the characterization condition shall be treated as if the boole
expression was a cofactor to the vector itself. For all other applications, the characteriza
condition shall be disregarded. Default characterization condition is “true”.

Example:

VECTOR (01 a -> 01 z & (c | !d) ) {
CHARACTERIZATION_CONDITION = c & !d;
DELAY { FROM { PIN=a; } TO { PIN=z; } /* data */ }

}

The delay value for the timing arc applies for any of the following conditions
(c & !d ) or (c & d ) or (!c & !d ), since they all satisfy (c | !d ) .
However, the only condition chosen for delay characterization is (c & !d ).
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3.6.4.5 CHARACTERIZATION_VECTOR

CHARACTERIZATION_VECTOR = ( vector_expression ) ;

The characterization vector is provided for the case that the vector expression cannot b
structed using the vector and a boolean cofactor. The use of the characterization vector
restricted to characterization tools in the same way as the use of the characterization co
tion. Either a characterization condition or a characterization vector may be provided, b
both. If none is provided, the vector itself will be used by the characterization tool.

Example:

VECTOR (01 A -> 01 Z) {
CHARACTERIZATION_VECTOR = ((01 A & 10 inv_A) -> (01 Z & 10 inv_Z));

}

Analysis tools see the signals "A" and "Z". The signals "inv_A " and "inv_Z " are visible to the
characterization tool only.

3.6.4.6 CHARACTERIZATION_CLASS

CHARACTERIZATION_CLASS = string ;

Reference to the same characterization class by multiple vectors has the following effec

• A commonality is established between those vectors, which can be used for selective
acterization in a way defined by the library characterizer, for instance to share the ch
terization task between different teams or jobs or tools ...

• A common characterization condition or characterization vector is inherited from that 
acterization class, if there is one.

3.6.5 Annotations for a CELL object

A CELL object may contain the following annotations:

3.6.5.1 CELLTYPE annotation

CELLTYPE = string ;

which can take the following values:

Table 3-40 : CELLTYPE annotations for a CELL object

Annotation string Description

buffer cell is a buffer

combinational cell is a combinational logic element

multiplexor cell is a multiplexor

flipflop cell is a flip-flop

latch cell is a latch

memory cell is a memory element
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3.6.5.2 BUFFERTYPE annotation

BUFFERTYPE = string ;

which can take the following values:

3.6.5.3 DRIVERTYPE annotation

DRIVERTYPE = string ;

which can take the following values:

3.6.5.4 PARALLEL_DRIVE annotation

PARALLEL_DRIVE = unsigned  ;

which specifies the number of parallel drivers.

3.6.5.5 SCAN_TYPE annotation

SCAN_TYPE = string ;

block cell is a block

core cell is a core element

pad cell is a pad

special cell is a special element

Table 3-41 : BUFFERTYPE annotations for a CELL object

Annotation string Description

input cell is an input buffer

output cell is an output buffer

inout cell is an inout (bidirectional) buffer

internal cell is an internal buffer

Table 3-42 : DRIVERTYPE annotations for a CELL object

Annotation string Description

predriver cell is a predriver

slotdriver cell is a slotdriver

both cell is both a predriver and a slot driver

Table 3-40 : CELLTYPE annotations for a CELL object

Annotation string Description
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which can take the following values:

3.6.5.6 SCAN_USAGE annotation

SCAN_USAGE = string ;

which can take the following values:

3.6.5.7 NON_SCAN_CELL annotation

NON_SCAN_CELL [ identifier ]  = cell_identifier {  pin_assignments }

NON_SCAN_CELL [ identifier ]  = primitive_identifier {  pin_assignments }

This annotation shall define non-scan cell equivalency to the scan cell in which this anno
is contained. A cell instantiation form (Section 3.4.3) is used to reference the library cell w
defines the non-scan functionality of the current cell. If no such cell is available or define
if an explicit reference to such a cell is not desired, then a primitive instantiation form (Se
3.4.3) may reference a primitive, either ALF- or user- defined, for such use. In either ca
constant values may appear on either the left-hand side or right-hand side of the pin
connectivity relationships. A constant on the left-hand side defines the value the scan ce
(appearing on the right-hand side) must have in order for the primitive to perform with the 
functionality as does the instantiated reference. Multiple non-scan cells may be referen
within the same scope by giving a name to each one.

Table 3-43 : SCAN_TYPE annotations for a CELL object

Annotation string Description

muxscan There is a multiplexer for normal data and scan data

clocked There is a special scan clock

lssd combination between flipflop and latch with special clocking

(level sensitive scan design)

control_0 combinational scan cell, controlling pin must be 0 in scan mode

control_1 combinational scan cell, controlling pin must be 1 in scan mode

Table 3-44 : SCAN_USAGE annotations for a CELL object

Annotation string Description

input primary input in a chain of cells

output primary output in a chain of cells

hold holds intermediate value in the scan chain
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Example:

CELL my_flipflop {
PIN q { DIRECTION=output; }
PIN d { DIRECTION=input; }
PIN clk { DIRECTION=input;  }
PIN clear { DIRECTION=input; polarity=low; }
// followed by function, vectors etc.

}

CELL my_other_flipflop {
// declare the pins
// followed by function, vectors etc.

}

CELL my_scan_flipflop {
PIN data_out { DIRECTION=output; }
PIN data_in { DIRECTION=input; }
PIN clock { DIRECTION=input; }
PIN scan_in { DIRECTION=input; }
PIN scan_sel { DIRECTION=input; }
NON_SCAN_CELL first_choice = my_flipflop {

q = data_out;
d = data_in;
clk = clock;
clear = 'b1; // scan cell has no clear
'b0 = scan_in; // non-scan cell has no scan_in
'b0 = scan_sel; // non-scan cell has no scan_sel

}
NON_SCAN_CELL second_choice = my_other_flipflop {

// put in the pin assignments
}

// followed by function, vectors etc.
}

3.6.5.8 SWAP_CLASS annotation

SWAP_CLASS = string ;

The value is the name of a declared CLASS.  Multi-value annotation may be used. Cell
refering to the same CLASS may be swapped for certain applications.

Cell-swapping is only allowed under the following conditions:

• The RESTRICT_CLASS annotation (see next) authorizes usage of the cell
• The cells to be swappped are compatible from an application standpoint (functional 

patibility for synthesis, physical compatibility for layout)

3.6.5.9 RESTRICT_CLASS annotation

RESTRICT_CLASS = string ;

The value is the name of a declared CLASS.  Multi-value annotation may be used. Cell
refering to a particular class may be used in design tools identified by the value.
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User-defined values are also possible. If a cell has no or only unknown values for
RESTRICT_CLASS, the application tool may not modify any instantiation of that cell in 
design. However, the cell must still be considered for analysis.

Example:

CLASS foo;
CLASS bar;
CELL c1 {

SWAP_CLASS = foo;
RESTRICT_CLASS = synthesis;

}
CELL c2 {

SWAP_CLASS = foo;
RESTRICT_CLASS { synthesis scan bar }

}

Supposed that the cells c1 and c2 are compatible from an application standpoint, the ce
and c2 can be used  for synthesis, where they may be swapped which each other. The
can be also used for scan insertion and for the user-defined application “bar”.

3.6.6 Attributes

Identifiers insideATTRIBUTE can be used to add information which does not fit into the
annotation scheme. The syntax for specifying ATTRIBUTE is

 ATTRIBUTE {  attribute_items }

whereattribute_items  is a list of predefined or user-defined attributes.

3.6.6.1 ATTRIBUTE within a PIN object

The following attributes can be used within a PIN object:

Table 3-45 : Predefined values for RESTRICT_CLASSt

Annotation string Description

synthesis use restricted to logic synthesis

scan use restricted to scan insertion

datapath use restricted to datapath synthesis

clock use restricted to clock tree synthesis

Table 3-46 : Attributes within a PIN object

Attribute item Description

SCHMITT Schmitt trigger signal

TRISTATE tristate signal

XTAL crystal/oscillator signal

PAD pad going off-chip
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The following attributes within a PIN object can also havePOLARITY annotation:

Example:

PIN rw {
ATTRIBUTE {

WRITE { POLARITY = high; }
READ  { POLARITY = low ; }

}
}

3.6.6.2 ATTRIBUTE within a CELL object

The following attributes can be used within a CELL object:

3.6.6.3 ATTRIBUTE within a LIBRARY object

There are no attributes with predefined meaning specified yet.

3.6.7 Annotations for arithmetic models

The following four annotations shall be recognized within arithmetic models:

3.6.7.1 DEFAULT annotation

Thedefault annotation allows use of the default value instead of the arithmetic model, if t
arithmetic model is beyond the scope of the application tool.

DEFAULT = number ;

Restrictions may apply for the allowed type ofnumber . For instance, if the arithmetic model
allows onlynon_negative_number , then the default is restricted tonon_negative_number .

Table 3-47 : Attributes with POLARITY annotation

Attribute item Description

TIE signal that needs to be tied to a fixed value

READ read enable mode

WRITE write enable mode

Table 3-48 : Attributes within a CELL object

Attribute item Description

RAM Random Access Memory

ROM Read Only Memory

CAM Content Addressable Memory

static static device (e.g. static CMOS, static RAM)

dynamic dynamic device (e.g. dynamic CMOS, dynamic RAM)

asynchronous asynchronous operation

synchronous synchronous operation
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3.6.7.2 UNIT annotation

Theunit annotation associates units with the value computed by the arithmetic model.

UNIT = string | non_negative_number ;

A unit specified by astring  can take the following values (*  indicates wildcard):

Arithmetic models are context-sensitive, i.e. the units for their values can be determined
the context. IfUNIT annotation for such a context does not exist, default units are applied t
value (Section 3.6.7.5).

Example:

TIME { UNIT = ns; }
FREQUENCY { UNIT = gigahz; }

If the unit is a string, then only the first character (respectively the first 3 characters in ca
MEG) is interpreted. The reminder of the string can be used to define base units. Metric b
units are assumed, but not verified, in ALF.

There is no semantic difference between

unit = 1sec;

and

unit = 1volt;

Therefore, if the unit is specified as

unit = meg;

the interpretation is1E+6. However, for

unit = 1meg;

the interpretation is1 and not1E+6.

a. or uppercase/lowercase combination

Table 3-49 : UNIT annotation

Annotation string Description

f* or F* equivalent to1E-15

p* or P* equivalent to1E-12

n* or N* equivalent to1E-9

u* or U* equivalent to1E-6

m* or M* equivalent to1E-3

1* equivalent to1E+0

k* or K* equivalent to1E+3

meg* or MEG*a equivalent to1E+6

g* or G* equivalent to1E+9
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Units in a non-metric system can only be specified with numbers, not with strings. For inst
if the intent is to specify inch instead of meter as base unit, the following specification wil
meet the intent:

unit = 1inch;

since the interpretation is1 and meters are assumed.

The correct way of specifying inch instead of meter is

unit = 26E-3;

since 1 inch is 26 millimeters.

3.6.7.3 MEASUREMENT annotation

Themeasurement annotation indicates the type of measurement used for the computation
arithmetic model.

MEASUREMENT = string ;

where measurement string can take the following values:

3.6.7.4 CONNECT_RULE annotation

Theconnect_rule annotation may be only inside a CONNECTIVITY object. It specifies
connectivity requirement.

CONNECT_RULE = string ;

which can take the following values:

3.6.7.5 RISE/FALL annotation

This section will be superseeded by 3.6.9.1.

Table 3-50 : MEASUREMENT annotation

Annotation string Description

transient measurement is a transient value

static measurement is a static value

average measurement is an average value

rms measurement is an RMS value

peak measurement is a peak value

Table 3-51 : CONNECT_RULE annotation

Annotation string Description

must_short short connection required

can_short short connection allowed

cannot_short short connection disallowed
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A RISE annotation and aFALL annotation may be inside a DELAY, SLEWRATE, or
THRESHOLD object, which are used as annotation containers (Section 3.6.7.5). The va
RISE and/or FALL annotation is a number.

RISE = number ;
FALL = number ;

3.6.7.6 MIN/TYP/MAX annotation

This section will be superseeded by 3.6.9.2.

A MIN annotation, aTYP annotation, and aMAX annotation may be inside an annotation
container defined by a keyword for arithmetic models (Section 3.6.7.5).

MIN = number ;
TYP = number ;
MAX = number ;

The keyword for arithmetic models itself may be inside a LIMIT container (Section 3.6.1
In that case, only MIN and MAX have a semantic meaning.

3.6.8 Keywords for arithmetic models

The following keywords shall identify arithmetic model objects inside aLIBRARY, a
SUBLIBRARY, aCELL, aWIRE or aVECTOR object, i.e. output variables of an arithmetic mode
Inside an arithmetic model object, the same keywords identify arguments, i.e. input vari
to the arithmetic model. This gives virtually unlimited choice of combination of variables
characterization. The keywords for arithmetic models can also be used

• for simple annotations
• as annotation container

The annotations or annotation containers identified by keywords for arithmetic models c
interpreted asreduced arithmetic models, since they don't contain a header or a body, whe
full arithmetic models always contain a header and a body (table or equation).

All the keywords for arithmetic models are considered context-sensitive keywords. In th
following sections, these arithmetic models are described along with the type of the valu
can have. If the quantity associated with the arithmetic model is a measurement, defau
and base units are also noted. The default units are applied when the unit is not specifi
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3.6.8.1 Models for interpolateable tables and equations

The following tables list the keywords that identify arithmetic models which can be used
interpolateable table indices and/or as equations.

Table 3-52 : Timing measurements

Keyword Value type
Base
Units

Default
Units Description

DELAY number Second n (nano) time between two threshold crossings
within two consecutive events on two pins

RETAIN number Second n (nano) time between two threshold crossings
within two consecutive events on two pins,
in conjunction with DELAY

SLEWRATE non-negative
number

Second n (nano) time between two threshold crossings
within one event on one pin

Table 3-53 : Timing constraints

Keyword Value type
Base
Units

Default
Units Description

HOLD number Second n (nano) minimum time limit for hold between two
threshold crossings within two consecutive
events on two pins

NOCHANGE optionala non-
negative num-
ber

Second n (nano) minimum time limit between two threshold
crossings within two arbitrary consecutive
events on one pin, in conjunction with
SETUP and HOLD

PERIOD non-negative
number

Second n (nano) minimum time limit betweentwo identical
events within a sequence of periodical
events on one pin

PULSEWIDTH number Second n (nano) minimum time limit between two threshold
crossings within two consecutive and com-
plementary events on one pin

RECOVERY number Second n (nano) minimum time limit for recovery between
two threshold crossings within two consecu-
tive events on two pins

REMOVAL number Second n (nano) minimum time limit for removal between
two threshold crossings within two consecu-
tive events on two pins

SETUP number Second n (nano) minimum time limit for setup between two
threshold crossings within two consecutive
events on two pins

SKEW number Second n (nano) absolute value is maximum time limit
between two threshold crossings within two
consecutive events on two pins, the sign
indicates positive or negative direction
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a. The associated SETUP and HOLD measurements provide data. NOCHANGE itself need not prov
data

Table 3-54 : Analog measurements

Keyword Value type Base Units Default Units Description

CURRENT number Ampere m (milli) electrical current

ENERGY number Joule p (pico) electrical energy

FREQUENCY non-negative
number

Hz meg (mega) frequency

JITTER non-negative
number

Second n (nano) uncertainty of arrival
time

POWER number Watt u (micro) electrical power

TEMPERATURE number oCelsius 1 (unit) temperature

TIME number Second 1 (unit) time point for wave-
form modeling, time
span for average,
RMS, peak modeling

VOLTAGE number Volt 1 (unit) voltage

FLUX non-negative
number

Coloumb per
Square Meter

1 (unit) amount of hot elec-
trons in units of elec-
trical charge per gate
oxide area

FLUENCE non-negative
number

Second times
Coloumb per
Square Meter

1 (unit) integral of FLUX
over time

Table 3-55 : Electrical components

Keyword Value type Base Units
Default
Units Description

CAPACITANCE non-negative
number

Farad p (pico) pin, wire, load, or net capacitance

INDUCTANCE non-negative
number

Henry n (nano) pin, wire, load, or net resistance

RESISTANCE non-negative
number

Ohm K (kilo) pin, wire, load, or net resistance
Version 1.0.9 Advanced Library Format (ALF) Reference Manual 77



Library Format Specification Context-sensitive keywords

t

Table 3-56 : Layout data

Keyword Value type
Base
Units

Default
Units Description

AREA non-negative number Square
Meter

p (pico) area in square microns (pico = micro2)

DISTANCE number Meter u (micro) distance between two points in microns

HEIGHT non-negative number Meter u (micro) x-or y- dimension of a placeable object
(e.g. cell, block)

x-, y-, or z- dimension of a routable object
(e.g. wire) measured in orthogonal direction
to the route

LENGTH non-negative number Meter u (micro) x-, y-, or z- dimension of a routable objec
(e.g. wire) measured in parallel direction to
the route

WIDTH non-negative number Meter u (micro) x-or y- dimension of a placeable object
(e.g. cell, block)

x-, y-, or z- dimension of a routable object
(e.g. wire) measured in orthogonal direction
to the route

Table 3-57 : Abstract measurements

Keyword Value type
Base
Units

Default
 Units Description

DRIVE_STRENGTH non-negative
number

None 1 (unit) drive strength of a pin, abstract measure

for (drive resistance)-1

SIZE non-negative
number

None 1 (unit) abstract cost function for actual or esti-
mated area of a cell or a block
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Actual values for discrete measurements are always integer numbers, however, estima
values may be non-integer numbers (e.g. average fanout of a net =2.4 ).

3.6.8.2 Models for non-interpolateable tables

The following keywords identify arithmetic models which can only be used as
non-interpolateable tables. The values in the table may not be used in equations.

The following table describes connectivity data:

Table 3-58 : Normalized measurements

Keyword Value type
Base
Units

Default
 Units Description

THRESHOLD non-negative
number
between 0 and 1

Normalized
signal volt-
age swing

1 (unit) Fraction of signal voltage swing, specify-
ing a reference point for timing measure-
ment data.
The threshold is the voltage for which the
timing measurement is taken.

NOISE_MARGIN non-negative
number
between 0 and 1

Normalized
signal volt-
age swing

1 (unit) Fraction of signal voltage swing, specify-
ing the noise margin.
The noise margin is a deviation of the
actual voltage from the expected voltage
for a specified signal level

Table 3-59 : Discrete measurements

Keyword Value type
Base
Units

Default
 Units Description

SWITCHING_BITS non-negative
number

None 1 number of switching bits on a bus

FANOUT non-negative
number

None 1 number of receivers connected to a net

FANIN non-negative
number

None 1 number of drivers connected to a net

CONNECTIONS non-negative
number

None 1 number of pins connected to a net, wher
CONNECTIONS = FANIN+FANOUT

Table 3-60 : Connectivity data

Annotation string Value type Description

CONNECTIVITY boolean literal connectivity function

DRIVER string argument of connectivity function

RECEIVER string argument of connectivity function
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The connectivity function specifies the allowed and disallowed connections amongst driv
receivers in 1-dimensional tables, or between drivers and receivers in 2-dimensional tab
CONNECTIVITY object requires aCONNECT_RULE annotation (3.6.7.4). The boolean literals i
the table have the following meaning:

The arguments of the connectivity functions are tables of strings, which refer to user-def
classes. Pins which are subject to a particularCONNECT_RULE refer to the relevant class via
a CONNECT_CLASS annotation (see section 3.6.3.12).

Example:

CLASS power;
CLASS ground;
CONNECTIVITY {

CONNECT_RULE = must_short;
HEADER {

RECEIVER r1 { TABLE { power ground } }
RECEIVER r2 { TABLE { power ground } }

}
TABLE { 1 0 0 1 }

}

All pins of thepower  andground  class must be connected amongst themselves, butpower  and
ground  class must not be shorted together.

3.6.8.3 Models for non-interpolateable tables and equations

The following keywords identify arithmetic models which may be used directly as non-
interpolateable tables and indirectly as equations. The use of those models as equation
requires that a non-interpolateable table establishes a relationship between a symbolic
identifier and a number.

The following table describes process data:

The following identifiers can be used as predefined processes:

?n?p process definition with transistor strength

Table 3-61 : Boolean literals in non-interpolateable tables

Boolean literal Description

1 CONNECT_RULE is true

0 CONNECT_RULE is false

? CONNECT_RULE is don’t care

Table 3-62 : Process data

Annotation string Value type Description

DERATE_CASE string derating case coefficient

PROCESS string process derating coefficient
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s strong
w weak

The possible process name combinations are

The following identifiers can be used as predefined derating cases:

nom nominal case
bc? prefix for best case
wc? prefix for worst case

where? can be

com suffix for commercial case
ind suffix for industrial case
mil suffix for military case

The possible derating case combinations are

Example:

• Direct use ofPROCESS in a non-interpolateable table:

DELAY {
UNIT = ns;
HEADER {

PROCESS { TABLE { nom snsp wnwp } }
}
TABLE { 0.4 0.3 0.6 }

}

The delay is 0.4 ns for nominal process, 0.3 ns forsnsp , 0.6 ns forwnwp.

Table 3-63 : Predefined process names

Process name Description

snsp strong NMOS, strong PMOS

snwp strong NMOS, weak PMOS

wnsp weak NMOS, strong PMOS

wnwp weak NMOS, weak PMOS

Table 3-64 : Predefined derating cases

Derating case Description

bccom best case commercial

bcind best case industrial

bcmil best case military

wccom worst case commercial

wcind worst case military

wcmil worst case military
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• Indirect use ofPROCESS in an equation:

DELAY {
UNIT = ns;
HEADER {

PROCESS { HEADER { nom snsp wnwp } TABLE {0.0 -0.25 0.5} }
}
EQUATION { (1 + PROCESS)*0.4 }

}

The equation uses the derating factors 0.0 for nominal, -0.25 forsnsp , 0.5 for wnwp.

3.6.9 Keywords for arithmetic submodels

Arithmetic submodels are for the purpose of distinguishing different measurement cond
for the same model. The root of an arithmetic model may contain nested arithmetic subm
The header of an arithmetic model may contain nested arithmetic models, but not arithm
submodels.

3.6.9.1 MIN/TYP/MAX

MIN, TYP, MAX provide 3 distinct sets of data

<model_keyword> { MIN /*data*/ TYP /*data*/ MAX /*data*/ }

as opposed to a single set of data

<model_keyword> /*data*/

The MIN, TYP, MAX represent a statistical distribution of data without specifying or imply
a particular cause of the distribution. If process corners or derate cases are not modele
explicitly, MIN, TYP, MAX can be used for representing the distribution of data across
processes or derate cases. If process corners or delay cases are modeled explicitly, MIN
MAX can be used for representing the distribution of data within each process corner or 
case.

Note: The arithmetic model root containing MIN, TYP, MAX must not contain HEADER 
TABLE or EQUATION. Instead, the MIN, TYP, MAX models may contain HEADER or
TABLE or EQUATION.

<model_keyword> {
MIN {

HEADER{ <model_keyword> /*data*/  .. <model_keyword> /*data*/ }
TABLE /* or equation */ { <numbers> }

}
TYP {

HEADER{ <model_keyword> /*data*/  .. <model_keyword> /*data*/ }
TABLE /* or equation */ { <numbers> }

}
MAX {

HEADER{ <model_keyword> /*data*/  .. <model_keyword> /*data*/ }
TABLE /* or equation */ { <numbers> }

}
}
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Within the scope of a LIMIT container, MIN and MAX contain the data for a lower or upp
limit, respectively. There must be at least one limit, lower or upper, in each model, but n
necessarily both, as shown in the example below.

LIMIT  {
<model_keyword1> { MIN /*data*/ } // lower limit
<model_keyword2> { MAX /*data*/ }// upper limit
<model_keyword3> { MIN /*data*/ MAX /*data*/ }// lower and upper limit

}

Note: The arithmetic model root inside LIMIT must not contain HEADER or TABLE or
EQUATION. Instead, the MIN or MAX models may contain HEADER or TABLE or
EQUATION.

LIMIT {
<model_keyword> {

MIN {
HEADER{ <model_keyword> /*data*/  .. }
TABLE { <numbers> } /* or equation */

}
MAX {

HEADER{ <model_keyword> /*data*/  .. }
TABLE { <numbers> } /* or equation */

}
}

}

MIN, MAX inside a model inside a HEADER define the validity limits of the data. The mo
inside the HEADER may contain TABLE or EQUATION. It may also contain HEADER,
which represents a nested arithmetic model.

If MIN, MAX is not defined and the data is in a TABLE, the boundaries of the data in the
TABLE shall be considered as validity limits.

Note: The MIN and MAX numbers qualify the data of the arithmetic model in the HEADE
they do not represent the data itself.

<model_keyword> {
HEADER {

<model_keyword> {
MIN = <number> ; // minimum value for valid extrapolation
MAX = <number> ; // maximum value for valid extrapolation
TABLE { <numbers> } // data for inter-and extrapolation

}
}
TABLE { <numbers> }

}

3.6.9.2 RISE/FALL and HIGH/LOW

RISE, FALL contain data for transient measurements. HIGH, LOW contain data for stat
measurements.

<model_keyword> { RISE /*data*/ FALL /*data*/ }

<model_keyword> {HIGH /*data*/ LOW /*data*/ }
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It is generally not required that both RISE and FALL or both HIGH and LOW, respective
appear in the arithmetic model root.

The arithmetic model root containing RISE, FALL or HIGH, LOW must not contain MIN,
TYP, MAX, HEADER, TABLE or EQUATION. Instead, the RISE, FALL or HIGH, LOW
models may either contain HEADER, TABLE, EQUATION or contain MIN, TYP, MAX
which may contain HEADER, TABLE, EQUATION themselves.

<model_keyword> {
<RISE or FALL or HIGH or LOW> {

HEADER{ <model_keyword> /*data*/  .. }
TABLE { <numbers> } /* or equation */

}
}

or

<model_keyword> {
<RISE or FALL or HIGH or LOW> {

MIN /*data*/
TYP /*data*/
MAX /*data*/

}

Semantic meaning for RISE and FALL is provided for the following measurements:

• DELAY:

RISE, FALL is the switching direction on the PIN specified in the TO field.

If the TO field does not exist (a special case for port delay), RISE, FALL is the switching
direction on the PIN specified in the FROM field.

• CAPACITANCE, RESISTANCE, INDUCTANCE, CURRENT, ENERGY, POWER,
SLEWRATE, THRESHOLD:

RISE, FALL is the switching direction on the PIN. Either the PIN is specified as annotat
inside the model, or the model is inside a PIN.

Semantic meaning for HIGH and LOW is provided for the following measurements:

• CAPACITANCE, RESISTANCE, INDUCTANCE, CURRENT, ENERGY, POWER,
VOLTAGE, NOISE_MARGIN:

HIGH, LOW is the state on the PIN. Either the PIN is specified as annotation inside the m
or the model is inside a PIN.

The arithmetic model root containing RISE, FALL or HIGH, LOW may be inside a LIMIT
container with the following rule: A model containing RISE, FALL or HIGH, LOW must n
contain MIN or MAX. Instead, the RISE, FALL or HIGH, LOW model must contain MIN 
MAX.

LIMIT {
<model_keyword> {

<RISE or FALL or HIGH or LOW> { MIN /*data*/ MAX /*data*/ }
}

}
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The arithmetic model root containing RISE, FALL may be inside EARLY, LATE contain
with the following rules:

If only RISE appears in one model, only RISE must appear in all models.

If only FALL appears in one model, only FALL must appear in all models.

If both RISE and FALL appear in one model, both RISE and FALL must appear in all mo

EARLY {
DELAY { RISE /*data*/ FALL /*data*/ }
SLEWRATE { RISE /*data*/ FALL /*data*/ }
}

LATE {
DELAY { RISE /*data*/ FALL /*data*/ }
SLEWRATE { RISE /*data*/ FALL /*data*/ }

}

Semantic meaning for RISE and FALL is provided for the following LIMIT specifications
EARLY or LATE measurements:

• DELAY:

RISE, FALL is the switching direction on the PIN specified in the TO field.

Only if the TO field does not exist (a special case for port delay), RISE, FALL is the switc
direction on the PIN specified in the FROM field (since the switching direction of the
unspecified PIN in the TO field will be the same).

• SLEWRATE:

RISE, FALL is the switching direction on the PIN. Either the PIN is specified as annotat
inside the model, or the model is inside a PIN.

Semantic meaning for HIGH and LOW is provided for the following LIMIT specifications

• CURRENT, ENERGY, POWER, VOLTAGE

HIGH, LOW is the state on the PIN. Either the PIN is specified as annotation inside the m
or the model is inside a PIN.

3.6.10 Special Annotations and Annotation Containers for Arithmetic Models

Annotations and annotation containers described in this chapter are relevant for the sem
interpretation of the arithmetic models. Annotations and annotation containers not descri
this chapters can be interpreted as simple properties or attributes of the arithmetic mod

3.6.10.1 FROM, TO annotation container

Annotation container used inside arithmetic models for timing measurement and timing
constraints.
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If said models apply for two pins, the FROM, TO containers shall each contain the PIN
annotation. These annotations shall define the sense of measurement.

<model_keyword> {
FROM { PIN = <pin_name> ; }
TO { PIN = <pin_name> ; }
/* data */

}

Otherwise, if said models apply only for one pin, the same PIN annotation may be repea
both containers or the PIN annotation may be outside the FROM, TO container.

<model_keyword> {
PIN = <pin_name> ;
/* data */

}

If thresholds are needed for exact definition of the model data, the FROM, TO containers
each contain the annotation or an arithmetic model for THRESHOLD.

<model_keyword> {
FROM { THRESHOLD /*data*/ }
TO { THRESHOLD /*data*/ }
/* data */

}

An annotation or arithmetic model for THRESHOLD outside a FROM or TO container sha
only have a semantic meaning, if said annotation or arithmetic model contains a PIN anno
itself and this PIN annotation matches a PIN annotation in a FROM or TO container.

Example:

DELAY {
FROM {

PIN = pin1;
THRESHOLD /*data*/

}
TO {

PIN = pin2;
}
HEADER {

THRESHOLD {
PIN = pin2;
TABLE { <numbers> }

}
TABLE { <numbers> }

}

Note: The data of the THRESHOLD at pin1 is calculated independently of DELAY, whe
DELAY is calucated as a function of THRESHOLD at pin2.

3.6.10.2 PIN annotation

The use of PIN annotation in arithmetic models other than timing measurements and tim
constraints is defined here.
86 Advanced Library Format (ALF) Reference Manual Version 1.0.9



Context-sensitive keywords Library Format Specification

 or a

ithin

rding

tion

cal
If the PIN annotation appears inside an arithmetic model within the scope of a HEADER
LIMIT, the physcical quantity identified by the model keyword isapplied to the PIN.
Otherwise, if the PIN annotation appears inside an arithmetic model root which is not w
the scope of a LIMIT, the physical quantity identified by the model keyword ismeasured at the
PIN.

Example:

// intrinsic capacitance of pin1
CAPACITANCE {

PIN = pin1;
/*data*/

}
// maximum allowed capacitance on a net connected to pin2
LIMIT {

CAPACITANCE {
PIN = pin2;
MAX /*data*/

}
}

// delay measured as function of capacitance on a net connected to pin3
DELAY {

HEADER {
CAPACITANCE {

PIN = pin3;
}

}
/*data*/

}

If the arithmetic model is within the scope of a PIN object, a PIN annotation is illegal acco
to the visibility rules of ALF, since a PIN cannot be visible inside another PIN, with the
following exception: The PIN outside the arithmetic model is a bus, and the PIN annota
inside the arithmetic model refers to a bit of the bus.

Example:

PIN [1:2] bus_pin {
// intrinsic capacitance of bus_pin[1]

CAPACITANCE {
PIN = bus_pin[1];
/*data*/

}
// maximum allowed capacitance on a net connected to bus_pin[2]

LIMIT {
CAPACITANCE {

PIN = bus_pin[2];
/*data*/

}
}

}

If an arithmetic model root appears within the scope of a LIMIT inside a PIN, the physci
quantity identified by the model keyword isapplied to the PIN. Otherwise, if an arithmetic
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model root appears directly inside a PIN, the physical quantity identified by the model key
is measured at the PIN.

Example:

PIN scalar_pin {
// intrinsic capacitance of scalar_pin

CAPACITANCE {
/*data*/

}
// maximum allowed capacitance on a net connected to scalar_pin

LIMIT {
CAPACITANCE {

/*data*/
}

}
}

An arithmetic model inside a bus or an arithmetic model with a PIN annotation refering 
bus shall apply to the entire bus, not to each individual scalar pin of the bus.

Example:

PIN [1:10] large_bus {
CAPACITANCE = 1 { unit = pf; }

}

The total pin capacitance oflarge_bus  is 1 pf, not 10 pf. The capacitance of individual scal
pins large_bus[1]  .. large_bus[10]  is not defined.

3.6.11  TIME and FREQUENCY in Analog Measurements and Waveforms

Artihmetic models describing analog measurements (see Table 3-54) can have a
MEASUREMENT annotation (see Table 3-50). In this context,either TIME or FREQUENCY
can also be used as annotations.

The semantics are defined as follows:

In all applicable cases, the interpretation FREQUENCY = 1 / TIME is valid.

Table 3-65 : Semantic interprestion of MEASUREMENT, TIME or FREQUENCY annotation

MEASUREMENT
annotation

Semantic meaning of TIME
annotation

Semantic meaning of FREQUENCY
annotation

transient integration of analog measurement is
done during that time window

integration of analog measurement is
repeated with that frequency

static N/A N/A

average average value is measured over that
time window

average value measurement is repeated
with that frequency

rms root-mean-square value is measured
over that time window

roor-mean-square measurement is
repeated with that frequency

peak peak value occurs during that time win-
dow

observation of peak value is repeated
with that frequency
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The values foraverage  measurements and forrms  measurements scale linearily with
FREQUENCY and 1 / TIME, respectively. For transient  measurements and forpeak

measurements, the TIME or FREQUENCY annotations are purely informational. The va
do not scale with TIME or FREQUENCY.

Examples:

transient measurement of ENERGY
static measurement of VOLTAGE, CURRENT, POWER
average measurement of POWER, CURRENT
rms measurement of POWER, CURRENT
peak measurement of VOLTAGE, CURRENT, POWER

Both FREQUENCYand TIME can also be used in the HEADER of arithmetic models. In
particular, TIME in the HEADER describes waveforms of analog measurements. The in
and final values of the measurement, respectively, apply to the time before the first
measurement and after the last measurement, respectively.

The semantics are defined as follows:

In the context of  analog measurement versus TIME description, FREQUENCY may sti
used either as complementary argument in the HEADER or as annotation. The interpre
FREQUENCY = 1 / TIME isnot valid. Instead, the following boundary restrictions apply:

• The initial measurement value and the final measurement value must be the same.
• The overall time window between the first and the last measurement must be bound

1 / FREQUENCY

These restrictions make sure that there is a physical interpretation of measurements as
function of TIME and FREQUENCY.

Examples:

Table 3-66 : Semantic interprestion of TIME for waveform description

MEASUREMENT
annotation

Semantic meaning of TIME in
HEADER Use of FREQUENCY

transient piece-wise linear waveform of instan-
taneous value over time

allowed in HEADER or as annotation,
boundary restrictions apply (see below)

static N/A allowed in HEADER only, no restric-
tion

average incremental average value, measured
from the previous time point to the
actual time point

allowed in HEADER or as annotation,
boundary restrictions apply

rms incremental rms value, measured from
the previous time point to the actual
time point

allowed in HEADER or as annotation,
boundary restrictions apply

peak peak value encounterd between the
previous time point and the actual time
point

allowed in HEADER or as annotation,
boundary restrictions apply
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• transient waveform, average, rms, peak of CURRENT vs. TIME, VOLTAGE vs.
TIME. Resonance effects (parasitic oscillators) may influence the measurement r
in a certain FREQUENCY range.

• static measurement of POWER vs. FREQUENCY. FREQUENCY of a voltage-
controlled oscillator is statically controlled by a DC voltage. Measurement could 
be expressed as power versus control voltage, but the control voltage may not b
observable in simulation, whereas the frequency of the oscillating output signal i
observable.

Figure 3-18: Illustration of Waveforms

3.7 Library Organization

3.7.1 Scoping Rules

The following scope rules shall apply to all library objects and its usage.

Rule 1: An object shall be defined before it is referenced.

TIMET0 T1 T2 T3 T4

T4 - T0 <= 1 / FREQUENCY

E1
E2

E3E0

avg(T0) = E0

avg(T1) = (E0+E1) / 2

avg(T2) = (E1+E2) / 2

avg(T3) = (E2+E3) / 2

avg(T4) = E3

rms(T0) =     E02

rms(T1) =     (E02+E0E1+E12)/3

rms(T2) =     (E12+E1E2+E22)/3

rms(T3) =     (E22+E2E3+E32)/3

rms(T4) =     E32

MEASUREMENT=transient

MEASUREMENT=average

MEASUREMENT=rms
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Rule 2: An ALF object shall be known (referenceable) inside the parent object, inside al
objects defined after that object within the same parent object, and inside all the childre
those objects.

Rule 3: An object definition with only a keyword but without an object identifier implies th
the content of this definition will be applied to all objects identified by this keyword at the
current scope and the underlying levels of hierarchy.

Example:

LIBRARY my_library {
CAPACITANCE {UNIT = pF;} // default capacitance units for all
... // cells in my_library
CELL cell1 {

CAPACITANCE {UNIT = fF;} // capacitance units specific to cell1
PIN A {CAPACITANCE = 10.5;}
...

}
CELL cell2 {

PIN A {CAPACITANCE = 0.010;} // default capacitance units
...

}
}

The capacitance of pinA of cell1  is 10.5 fF . The capacitance of pinA of cell2  is 0.010 pF .

Rule 4:An object shall not be defined again at the same level of scope A definition of an o
is considered duplicate, if both keyword and object identifier are identical.

Example:

It is illegal to write the following:

LIBRARY my_library {
CAPACITANCE {UNIT = fF;}
...
CELL cell1 {

pin A {CAPACITANCE = 10.5;}
...

}
CAPACITANCE {UNIT = pF;} // duplicate definition
CELL cell2 {

pin A {CAPACITANCE = 0.010;}
...

}
}

There are three possible ways capacitance units can be set to fF for some of the cells i
library and pF for other cells in the same library:

1. put each set of cells in a different sublibrary,

2. define templates for the different units and reference them appropriately, or

3. define the units locally inside each cell.
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3.7.2 Use of multiple files

Sometimes it is inconvenient or impractical to include all of the data for a technology lib
in a single file. TheINCLUDE keyword is used to compose a library from multiple files.

An INCLUDE statement may be used within any context, but any included file shall conta
least a valid object definition to be considered a legal ALF file. It shall begin with a keyw
otherwise it may be ignored by a generic parser.

In general the effect of using theINCLUDE statement is to be considered equivalent to insert
the contents of the included file at that point in the parent file.

For example, a top-level ALF library file may contain only the following statements, whe
each file contains appropriate data to make up the entire library.

LIBRARY mylib {
INCLUDE “libdata.alf”;
INCLUDE “templates.alf”;
INCLUDE “cells.alf”;
INCLUDE “wiremodels.alf”;

}

A complete ALF library definition must begin with theLIBRARY keyword. A list of cell
definitions shall not be considered a full, legal ALF library database.

3.8 Referenceable objects

General referenceable objects within the scope of visibility areTEMPLATE andGROUP. Library-
specific referenceable objects arePIN , PRIMITIVE  and arithmetic model. The figure 3-19
shows relationships between these objects and where they can be referenced.

Figure 3-19: Referencing rules for ALF objects

function

template

pin

group

referenceable by

vector
annotation container

arithmetic modelarithmetic model

template instantiation

group instantiationreferenceable by

referenceable by

referenceable by

function
primitive cell

annotation container
referenceable by
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TheTEMPLATE andGROUP objects are referenceable only by their respective instantiation. 
TEMPLATE definitions may contain instantiation of previously defined templates, which allo
construction of reusable objects.

The arithmetic models can be referenced by other arithmetic models, if they are contain
within each other. This allows hierarchical modeling and a mix of table and equation ba
models.

ThePIN  objects are referenced withinFUNCTION andVECTOR objects and within any annotation
container inside the sameCELL object.

ThePRIMITIVE s are referenceable by aCELL in order to define pins and functionality or within
a FUNCTION to define functionality only or within an annotation container, e.g.SCAN.

3.8.1 Referencing PRIMITIVEs or CELLs

A PRIMITIVE  referenced in aCELL may replace the complete set ofPIN  andFUNCTION

definition.PINs may be declared before the reference to thePRIMITIVE , in order to provide
supplementary annotations that cannot be inherited from thePRIMITIVE . However, theCELL

must be pin-compatible with thePRIMITIVE .

If the PRIMITIVE  or aCELL is referenced in an annotation container such asSCAN, only the
subset ofPINs used in the non-scan cell must be compatible with thePINs of the cell.

The pin names can be referenced by order or by name. In the latter case, the LHS is th
name of the referencedPRIMITIVE  orCELL (e.g. the non-scan cell), the RHS is the pin name
the actual cell. A constant logic value can also appear at the LHS or RHS, indicating tha
needs to be tied to a constant value. If this information is already specified in an annota
inside thePIN  object itself, referencing between a pin name and a constant value is not
necessary.

PRIMITIVE s can also be instantiated insideBEHAVIOR.

3.8.2 Referencing PINs in FUNCTIONs

Inside aCELL object, thePIN  objects with thePINTYPE digital  define variables forFUNCTION

objects inside the sameCELL. A primary input variable inside aFUNCTION must be declared as
a PIN  with DIRECTION=input  or both  (sinceDIRECTION=both  is a bidirectional pin).
However, it is not required that all declared pins are used in the function. Output variab
inside aFUNCTION need not be declared pins, since they are implicitly declared when the
appear at the left-hand side (LHS) of an assignment.
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Example:

CELL my_cell {
PIN A {DIRECTION = input;}
PIN B {DIRECTION = input;}
PIN C {DIRECTION = output;}
FUNCTION {

BEHAVIOR {
D = A && B;
C = !D;

}
}

}

C andD are output variables that need not be declared prior to use. After implicit declara
D is reused as an input variable.A andB are primary input variables.

InsideBEHAVIOR, variables which appear at the LHS of an assignment conditionally contro
by a vector expression, as opposed to an unconditional continuous assignment, will hol
values, when the vector expression evaluatesfalse . Those variables are considered to have
latch-type behavior.

Examples:

BEHAVIOR {
@(G){

Q = D;  // both Q and QN have latch-type behavior
QN = !D;

}
}

BEHAVIOR {
@(G){

Q = D;  // only Q has latch-type behavior
}
QN = !Q;

}

The functional description can be supplemented by aSTATETABLE, the first row of which
contains the arguments that are object IDs of declaredPINs. The arguments appear in two
fields, first is input, second is output. The fields are separated by colon (: ). The rows are
separated by (; ). The arguments may appear in both fields, if thePINs have attribute
direction=output  or direction=both . If direction=output , then the argument has latch
type behavior. The argument on the input field is considered previous state, and the arg
on the output field is considered the next state. Ifdirection=both , then the argument on the
input field applies for input direction, and the argument on the output field applies for ou
direction of the bidirectionalPIN .
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Example:

CELL ff_sd {
PIN  q {DIRECTION=output;}
PIN  d {DIRECTION=input;}
PIN cp {DIRECTION=input;

  SIGNALTYPE=clock;
  POLARITY=rising_edge;}

PIN cd {DIRECTION=input; SIGNALTYPE=clear; POLARITY=low;}
PIN sd {DIRECTION=input; SIGNALTYPE=set; POLARITY=low;}
FUNCTION {

BEHAVIOR {
@(!cd) {q = 0;} :(!sd) {q = 1;} :(01 cp) {q = d;}

}
STATETABLE {

cd sd  cp  d   q  : q ;
0  ?   ??  ?   ?  : 0 ;
1  0   ??  ?   ?  : 1 ;
1  1   1?  ?   0  : 0 ;
1  1   ?0  ?   1  : 1 ;
1  1   1?  ?   0  : 0 ;
1  1   ?0  ?   1  : 1 ;
1  1   01  ?   ?  :(d);

}
}

}

If the output variable with latch-type behavior depends only on the previous state of itse
opposed to the previous state of other output variables with latch-type behavior, it is no
necessary to use that output variable in the input field. This allows a more compact form
STATETABLE.

Example:

STATETABLE {
cd sd  cp  d  : q ;
0  ?   ??  ?  : 0 ;
1  0   ??  ?  : 1 ;
1  1   1?  ?  :(q);
1  1   ?0  ?  :(q);
1  1   01  ?  :(d);

}

A generic ALF parser must make the following semantic checks:

• Are all variables of aFUNCTION declared either by declaration asPIN  names or through
assignment?

• Does theSTATETABLE exclusively contain declaredPINs?

• Is the format of theSTATETABLE, i.e. the number of elements in each field of each ro
consistent?

• Are the values consistently either state or transition digits?
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• Is the number of digits in eachTABLE entry compatible with the signal bus width?

A more sophisticated checker for complete verification for logical consistency of aFUNCTION

given in both equation and tabular representation is out of scope for a generic ALF pars
which checks only syntax and compliance to semantic rules. However, formal verificatio
algorithms can be implemented in special-purpose ALF analyzers or model generators/
compilers.

3.8.3 Referencing PINs in VECTORs

A VECTOR defines state, transition, or sequence of transitions of pins which are controllabl
observable for characterization.

The set ofPINs of aCELL with PINTYPE=digital  andSCOPE=both (i.e. bothbehavior  and
measure ) is thedefault set of variables in the event queue for vector expressions relevan
VECTOR objects andBEHAVIOR statements.

For detection of a sequence of transitions it is necessary to observe the set of variables
event queue. For instance, if the set of pins consists ofA, B, C, D, the vector expression

 (01 A -> 01 B)

implies, that no transition onA, B, C, D occurs between the transitions01 A  and01 B .

The default set of pins applies only for vector expressions without conditions. The condi
event AND operator limits the set of variables in the event queue. In this case, only the s
the condition and the variables appearing in the vector expression are observed.

Example:

(01 A -> 01 B) && (C | D)

No transition onA, B occurs between01 A  and01 B , and(C | D)  must stay true in-between
01 A  and01 B  as well. However,C andD may change their values as long as(C | D)  is
satisfied.

3.8.4 Referencing multi-dimensional PINs

A group of pins of a cell can be logically considered together by declaring a PIN with a ra
A pin can be declared with one dimension or two dimensions. For example,

PIN A ; // declares a scalar pin A
PIN [1:8] A1 ; // declares pin A1 with bits numbered 1 through 8
PIN [1:8] A2[1:4] ; // declares pin A2 with two dimensions

When a pin is declared with one dimension, the left number in the range shall specify the
significant bit number and the right number shall specify the least significant bit number. 
pin is declared with two dimensions, the second dimension shall specify the index of the
and the last rows of the two-dimension pin object.

A PIN object can be referenced in one of the four forms:

1. Individual bit - pin name shall be followed by an index of the bit
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2. Contiguous group of bits - pin name shall be followed by the contiguous range of
The most significant and least significant bit numbers shall follow the same relation
as given in the declaration.

3. Entire PIN object - Only pin name shall be used. It shall be illegal to reference en
two-dimension pin object in any operation.

4. One row of a PIN object - For a two-dimension pin object, name of the pin shall 
followed by the row index of that pin. It shall be illegal to reference either individu
bit or a group of bits of a two-dimension pin object directly in an operation.

When a PIN object is referenced on the left-hand side of an assignment, the result of th
hand side expression is copied from the least significant bit towards the most significant
the right-hand side value has lesser number of bits than the referenced PIN object in an
assignment, the right-hand side value shall be zero-extended to fill the remaining bits o
referenced PIN object. If the right-hand side value has more bits than the referenced PIN
in an assignment, the right-hand side value shall be truncated to the size of the referenc
object.

Example:

pin [1:8] A1;
pin [1:8] A2[1:32] ;

A1[8]   = 'b0 ;
A1[1:6] = 'o75 ; // is equivalent to A1[1:6] = 'b111_101
A1[1:5] = 'o75 ; // is equivalent to A1[1:5] = 'b11_101,

// left most bit is truncated
A2[18]  = 'h5 ; // is equivalent to A2[18] = 'b0000_0101

// entire row 18 of A2 is assigned a value.

The two-dimension PIN objects shall be referenced with the row index. It shall be illega
directly reference an individual bit or a contiguous group of bits of a two-dimension PIN
object. It shall be illegal to reference the entire PIN object as a two-dimension PIN obje

Example:

pin [1:8] A2[1:32] ;
pin [1:8] B1 ;
pin C ;

// legal references and assignments

A2[10]  = 'h45 ; // assign 'h45 to row 10 of A2  ('b0100_0101)
B1      = A2[10] ; // copies whole row A2[10] to B1
C       = B1[3] ; // c = 'b0

// Illegal references and assignments
// B1[3]   = A2[10][3] ;  illegal reference to bit 3 of A2[10]
// A2      = B1 ;  illegal reference to entire A2

It shall be legal to use identifiers as index, but expressions shall not be permitted as ind
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Example

pin [4:1] ADDR;

ADDR       = 'd 10;
A2[ADDR]   = 'h45 ; // assign 'h45 to row 10 of A2  ('b0100_0101)

// A2[ADDR+1] = 'h45 ;  illegal

3.8.5 Referencing arithmetic models

Input variables, also calledarguments of arithmetic models, appear in theHEADER of the model.
In the simplest case, theHEADER is just a list of arguments, each being a context-sensitive
keyword. The model itself is also defined with a context-sensitive keyword.

The model can be in equation form. All arguments of the equation must be in theHEADER. The
ALF parser should issue an error if theEQUATION uses an argument not defined in theHEADER.
A warning should be issued if theHEADER contains arguments not used in theEQUATION.

Example:

DELAY {
...
HEADER {

CAPACITANCE {...}
SLEWRATE {...}

}
EQUATION {

0.01 + 0.3*SLEWRATE + (0.6 + 0.1*SLEWRATE)*CAPACITANCE
}

}

If the model uses aTABLE, then each argument in theHEADER also needs a table in order to
define the format. The order of arguments decides how the index to each entry is calcu
The first argument is the innermost index, the following arguments are outer indices.

DELAY {
HEADER {

CAPACITANCE {
TABLE {0.03 0.06 0.12 0.24}

}
SLEWRATE {

TABLE {0.1 0.3 0.9}
}

}
TABLE {

0.07 0.10 0.14 0.22
0.09 0.13 0.19 0.30
0.10 0.15 0.25 0.41

}
}
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The first argumentload  has 4 entries. The second argumentramptime  has 3 entries. Hence
DELAY has 4*3=12 entries. For readability, comments may be inserted in the table.

TABLE {
//capacitance:0.03 0.06 0.12 0.24
//            -------------------   slewrate:

         0.07 0.10 0.14 0.22 // 0.1
         0.09 0.13 0.19 0.30 // 0.3
         0.10 0.15 0.25 0.41 // 0.9

}

Comments have no significance for the ALF parser, nor has the arrangement in rows a
columns. Only the order of values is important for index calculation. The table can be m
more compact by removing newlines.

TABLE { 0.07 0.10 0.14 0.22 0.09 0.13 0.19 0.30 0.10 0.15 0.25 0.41 }

For readability, the models and arguments can also have names, i.e. object IDs. For na
objects, the name is used for referencing, rather than the keyword.

DELAY rise_out{
...
HEADER {

CAPACITANCE c_out {...}
SLEWRATE fall_in {...}

}
EQUATION {

0.01 + 0.3 * fall_in + (0.6 + 0.1* fall_in) * c_out
}

}

The arguments of an arithmetic model can be arithmetic models themselves. In this wa
combinations ofTABLE- andEQUATION-based models can be used, for instance, in derating

Coherent withFUNCTION, bothEQUATION andTABLE representation of an arithmetic model ar
allowed. TheEQUATION is intended to be used when the values of the arguments fall out 
range, i.e. to avoid extrapolation. This is especially used in wire models.

3.9 Functional modeling styles and rules

ALF allows the following functional modeling styles: equation based, table-based, and
primitive based. Both equation- and table-based functions are canonical and specify exac
same functionality. Each primitive must be definable in either of the canonical modeling s

Since ALF supports both combinational and sequential functional specification using th
value logic system, an exhaustive behavioral description of all scenarios, which is need
a simulation model, would be very cumbersome and defeat the purpose of a simple, ea
use language. Hence the following rules shall apply for compilation of the ALF description
a full simulation model. These rules cover all cases where the functional description is n
explicit. All of these rules can be overruled by explicit specification of the behavior.
Version 1.0.9 Advanced Library Format (ALF) Reference Manual 99



Library Format Specification Functional modeling styles and rules

be
3.9.1 Rules for combinational functions

If a boolean expression evaluatesTrue , the assigned output value is1. If a boolean expression
evaluatesFalse , the assigned output value is0. If the value of a boolean expression cannot 
determined, the assigned output value isX. Assignment of values other than1, 0, orX must be
specified explicitly.

For evaluation of the boolean expression, input value 'bH shall be treated as 'b1. Input value 'bL
shall be treated as 'b0. All other input values shall be treated as 'bX.

Examples:

In equation form, these rules can be expressed as follows.

BEHAVIOR {
Z = A;

}

is equivalent to

BEHAVIOR {
Z = A ? ’b1 : ’b0;

}

More explicitly, this is also equivalent to

BEHAVIOR {
Z = (A==’b1 || A==’bH)? ’b1 : (A==’b0 || A==’bL)? ’b0 : ’bX;

}

In table form, this can be expressed as follows:

STATETABLE {
A : Z;
? : (A);

}

which is equivalent to

STATETABLE {
A : Z;
0 : 0;
1 : 1;

}

More explicitly, this is also equivalent to

STATETABLE {
A : Z;
0 : 0;
L : 0;
1 : 1;
H : 1;
X : X;
W : X;
Z : X;
U : X;

}
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3.9.2 Basic rules for sequential functions

A sequential function is described in equation form by a boolean assignment with a con
specified by a boolean expression or a vector expression. If the condition evaluates to1 (true ),
the boolean assignment is activated and the assigned output values follows the rules fo
combinational functions. If the vector expression evaluates to0 (false ), the output variables
hold their assigned value from the previous evaluation.

For evaluation of a condition, the value 'bH shall be treated astrue , the value 'bL shall be
treated asfalse . All other values shall be treated as the unknown value 'bX.

Example:

The following behavior statement

BEHAVIOR {
@ (E) {Z = A;}

}

is equivalent to

BEHAVIOR {
@ (E==’b1 || E==’bH) {Z = A;}

}

The following statetable statement, describing the same logic function

STATETABLE {
E A : Z;
0 ? : (Z);
1 ? : (A);

}

is equivalent to

STATETABLE {
E A : Z;
0 ? : (Z);
L ? : (Z);
1 ? : (A);
H ? : (A);

}

For edge-sensitive and higher-order event sensitive functions, transitions from or to 'bL shall
be treated like transitions from or to 'b0, and transitions from or to 'bH shall be treated like
transitions from or to 'b1.

Not every transition may trigger the evaluation of a function. The set of vectors triggerin
evaluation of a function are calledactive vectors. From the set of active vectors, a set of
inactive vectors can be derived, which will clearly not trigger the evaluation of a function.
There are is also a set of ambiguous vectors, which may or may not trigger the evaluati
the function.

The set of active vectors is the set of vectors for which both observed states before and
the transition are known to be logically equivalent to the corresponding states defined in
vector expression.
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The set of inactive vectors is the set of vectors for which at least one of the observed st
before or after the tranition is known to be not logically equivalent to the corresponding s
defined in the vector expression.

Example:

For the following sequential function

@ (01 CP) { Z = A; }

the active vectors are

('b0'b1 CP)
('b0'bH CP)
('bL'b1 CP)
('bL'bH CP)

and the inactive vectors are

(’b1’b0 CP)
(’b1’bL CP)
(’b1’bX CP)
(’b1’bW CP)
(’b1’bZ CP)
(’bH’b0 CP)
(’bH’bL CP)
(’bH’bX CP)
(’bH’bW CP)
(’bH’bZ CP)
(’bX’b0 CP)
(’bX’bL CP)
(’bW’b0 CP)
(’bW’bL CP)
(’bZ’b0 CP)
(’bZ’bL CP)
(’bU’b0 CP)
(’bU’bL CP)

and the ambiguous vectors are

(’b0’bX CP)
(’b0’bW CP)
(’b0’bZ CP)
(’bL’bX CP)
(’bL’bW CP)
(’bL’bZ CP)
(’bX’b1 CP)
(’bW’b1 CP)
(’bZ’b1 CP)
(’bX’bH CP)
(’bW’bH CP)
(’bZ’bH CP)
(’bX’bW CP)
(’bX’bZ CP)
(’bW’bX CP)
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(’bW’bZ CP)
(’bZ’bX CP)
(’bZ’bW CP)
(’bU’bX CP)
(’bU’bW CP)
(’bU’bZ CP)

For vectors using exclusively based literals, the set of active vectors is the vector itself, t
of inactive vectors is any vector with at least one different literal, the set of ambiguous ve
is empty.

Therefore ALF does not provide a default behavior for ambiguous vectors, since the beh
for each vector may be explicitely defined in vectors using based literals.

3.9.3 Concurrency in combinational and sequential functions

Multiple boolean assignments in combinational functions are understood to be concurren
order in the functional description does not matter, as each boolean assignment describ
piece of a logic circuit. This is illustrated below.

Figure 3-20: Concurrency for combinational logic

In level-sensitive sequential logic, one condition may trigger more than one boolean
assignment, which are also understood to be concurrent. This is illustrated below.

BEHAVIOR {
Q1 = <1st_boolean_expression(D1..Di)> ;
...
Qn = <nth_boolean_expression(D1..Di)> ;

}

Q1

Qn

D1 Di

nth boolean expression

1st boolean expression
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Figure 3-21: Concurrency for level-sensitive sequential logic

The principle of concurrency applies also for edge-sensitive sequential functions, where
triggering condition is described by a vector expression rather than a boolean expressio
edge-sensitive logic, the target logic variable for the boolean assignment (LHS) may also
operand of the boolean expression defining the assigned value (RHS). Concurrency im
that the RHS expressions are evaluated immediatelybefore the triggering edge, and the value
are assigned to the LHS variables immediatelyafter the triggering edge. This is illustrated
below.

BEHAVIOR {
@ ( <boolean_expression(E1..Em)> ) {

Q1 = <1st_boolean_expression(D1..Di)> ;
...
Qn = <nth_boolean_expression(D1..Di)> ;

}
}

Q1

Qn

D1 Di

1st boolean expression
true

false

true

false

nth boolean expression

boolean
expression

E1 Em
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Figure 3-22: Concurrency for edge-sensitive sequential logic

Statements with multiple concurrent conditions for boolean assignments may also be u
sequential logic. In that case conflicting values may be assigned to the same logic varia
default conflict resolution is not provided for the following reasons:

• Conflict resolution may not be necessary, since the conflicting situation is prohibited
specification.

• For different types of analysis (e.g. logic simulation), a different conflict resolution be
ior may be desireable, while the physical behavior of the circuit will not change. For
instance, pessimistic conflict resolution would always assign "X", more accurate con
resolution would first check whether the values are conflicting. Different choices may
motivated by a tradeoff in analysis acccuracy and runtime.

• If complete library control over analysis is desired, conflict resolution can be specifie
explicitely.

Example:

BEHAVIOR {
@ ( <condition_1> ) { Q = <value_1>; }
@ ( <condition_2> ) { Q = <value_2>; }

}

Explicit pessimistic conflict resolution can be described as follows:

BEHAVIOR {
@ ( <condition_1> && <condition_2>  ) { Q = ’bX; }
@ ( <condition_1> && ! <condition_2>) { Q = <value_1>; }
@ ( <condition_2> && ! <condition_1>) { Q = <value_2>; }

}

BEHAVIOR {
@ ( <vector_expression(E1..Em)> ) {

Q1 = <1st_boolean_expression(D1..Di)> ;
...
Qn = <nth_boolean_expression(D1..Di)> ;

}
}

Q1

Qn

D1 Di

1st boolean expression

nth boolean expression

vector
expression

E1 Em

d q

d q
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Explicit accurate conflict resolution can be described as follows:

BEHAVIOR {
@ ( <condition_1> && <condition_2>  ) {

Q = (<value_1>==<value_2>)? <value_1> : ’bX;
}
@ ( <condition_1> && ! <condition_2>) { Q = <value_1>; }
@ ( <condition_2> && ! <condition_1>) { Q = <value_2>; }

}

Since the conditions are now rendered mutually exclusive, equivalent descriptions with pr
statements can be used. They are more elegant than descriptions with concurrent state

BEHAVIOR {
@ ( <condition_1> && <condition_2>  ) {

Q = <conflict_resolution_value>;
}
: ( <condition_1> ) { Q = <value_1>; }
: ( <condition_2> ) { Q = <value_2>; }

}

Given the various explicit description possibilities, the standard does not prescribe a de
behavior. The model developper has the freedom of incomplete specification.

3.9.4 Initial values for logic variables

Per definition, all logic variables in a behavioral description have the initial value "U" wh
means "uninitialized". This value cannot be assigned to a logic variable, yet it can be use
behavioral description in order to assign inital values different from "U", if desired.

Example:

BEHAVIOR {
@ ( Q1 == ’bU ) { Q1 = ’b1 ; }
@ ( Q2 == ’bU ) { Q2 = ’b0 ; }
// followed by the rest of the behavioral description

}

A template can be used to make the intent more obvious, for example:

TEMPLATE INITIAL_VALUE {
@ ( <logic_variable> == ’bU ) {

<logic_variable> = <initial_value> ;
}

}
BEHAVIOR {

INITIAL_VALUE ( Q1 ’b1’ )
INITIAL_VALUE ( Q2 ’b0’ )
// followed by the rest of the behavioral description

}
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3.10 Primitives

3.10.1 Concept of user-defined and predefined primitives

Primitives are described in ALF syntax. Primitives are generic cells containing PIN and
FUNCTION objects only, i.e. no characterization data. The primitives are used for struc
functional modeling.

Example:

PRIMITIVE MY_PRIMITIVE {
PIN x { ... }
PIN y { ... }
PIN z { ... }
FUNCTION { ... }

}

CELL MY_CELL {
PIN a { ... }
PIN b { ... }
PIN c { ... }
FUNCTION {

BEHAVIOR { MY_PRIMITIVE { x=a; y=b; z=c; } }
}
...

}

 Extensible primitives, i.e. primitives with variable number of pins can be modeled with
TEMPLATE.

Example:

TEMPLATE EXTENSIBLE_PRIMITIVE{
PRIMITIVE <primitive_name> {

PIN [0:<max_index>] pin_name {  ... }
...

}
}

// instantiation of the template creates a primitive
EXTENSIBLE_PRIMITIVE {

primitive_name = MY_EXTENSIBLE_PRIMITIVE;
max_index = 2;

}

The set of statements above is equivalent to the following statement:

PRIMITIVE MY_EXTENSIBLE_PRIMITIVE {
PIN [0:2] pin_name {  ... }

...
}
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The primitive can be used as shown in the following example:

CELL MY_MEGACELL {
PIN a { ... }
PIN b { ... }
PIN c { ... }
FUNCTION {

BEHAVIOR {
// reference to the primitive
MY_EXTENSIBLE_PRIMITIVE {

pin_name[0] = a;
pin_name[1] = b;
pin_name[2] = c;

}
}

}
...

}

Primitives can be freely defined by the user. For convenience, ALF provides a set of pred
primitives with the reserved prefixALF_ in their name, which cannot be used by user-defin
primitives.

For all PINs of predefined primitives, the following annotations are defined per default:

VIEW = functional;
SCOPE = behavioral;

For predefined extensible primitives a placeholder may be directly in the PRIMITIVE
definition:

PRIMITIVE ALF_EXTENSIBLE_PRIMITIVE {
PIN [0:<max_index>] pin_name {  ... }

...
}

This is equivalent to the following more verbose set of statements:

TEMPLATE EXTENSIBLE_PRIMITIVE{
PRIMITIVE <primitive_name> {

PIN [0:<max_index>] pin_name {  ... }
...

}
}

EXTENSIBLE_PRIMITIVE {
primitive_name = ALF_EXTENSIBLE_PRIMITIVE;
max_index = <max_index>;

}

3.10.2 Predefined combinational primitives

3.10.2.1 One input, multiple output primitives

There are two combinational primitives with one input pin and multiple output pins:

ALF_BUF, ALF_NOT
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A GROUP statement is used to define the behavior of all output pins in one statement.

The output pins are indexed starting with0. If 0 is the only index used, the index can be omitte
when referencing the output pin, e.g.out  refers toout[0] .

PRIMITIVE ALF_BUF {
GROUP index {0:<max_index>}
PIN[0:<max_index>] out {

DIRECTION = output ;
}
PIN in {

DIRECTION = input ;
}
FUNCTION {

BEHAVIOR {
out[index] = in;

}
}

}

Figure 3-23: Primitive model of ALF_BUF

PRIMITIVE ALF_NOT {
GROUP index {0:<max_index>}
PIN[0:<max_index>] out {

DIRECTION = output ;
}
PIN in {

DIRECTION = input ;
}
FUNCTION {

BEHAVIOR {
out[index] = !in;

}
}

}

Figure 3-24: Primitive model of ALF_NOT

3.10.2.2 One output, multiple input primitives

There are six combinational primitives with one output pin and multiple input pins:

ALF_AND, ALF_NAND, ALF_OR, ALF_NOR, ALF_XOR, ALF_XNOR
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The input pins are indexed starting with0. If 0 is the only index used, the index can be omitte
when referencing the input pin, e.g.in  refers toin[0] .

PRIMITIVE ALF_AND {
PIN out {

DIRECTION = output;
}
PIN[0:<max_index>] in {

DIRECTION = input;
}
FUNCTION {

BEHAVIOR {
out = & in;

}
}

}

Figure 3-25: Primitive model of ALF_AND

PRIMITIVE ALF_NAND {
PIN out {

DIRECTION = output;
}
PIN[0:<max_index>] in {

DIRECTION = input;
}
FUNCTION {

BEHAVIOR {
out = ~& in;

}
}

}

Figure 3-26: Primitive model of ALF_NAND

PRIMITIVE ALF_OR {
PIN out {

DIRECTION = output;
}
PIN[0:<max_index>] in {

DIRECTION = input;
}
FUNCTION {

BEHAVIOR {
out = | in;

}
}

}

Figure 3-27: Primitive model of ALF_OR
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PRIMITIVE ALF_NOR {
PIN out {

DIRECTION = output;
}
PIN[0:<max_index>] in {

DIRECTION = input;
}
FUNCTION {

BEHAVIOR {
out = ~| in;

}
}

}

Figure 3-28: Primitive model of ALF_NOR

PRIMITIVE ALF_XOR {
PIN out {

DIRECTION = output;
}
PIN[0:<max_index>] in {

DIRECTION = input;
}
FUNCTION {

BEHAVIOR {
out = ^in;

}
}

}

Figure 3-29: Primitive model of ALF_XOR

PRIMITIVE ALF_XNOR {
PIN out {

DIRECTION = output;
}
PIN[0:<max_index>] in {

DIRECTION = input;
}
FUNCTION {

BEHAVIOR {
out = ~^in;

}
}

}

Figure 3-30: Primitive model of ALF_XNOR
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There are four tristate primitives:

ALF_BUFIF1, ALF_BUFIF0, ALF_NOTIF1, ALF_NOTIF0

PRIMITIVE ALF_BUFIF1 {
PIN out {

DIRECTION  = output;
ENABLE_PIN = enable;
ATTRIBUTE {TRISTATE}

}
PIN in  {

DIRECTION  = input;
}
PIN enable {

DIRECTION  = input;
SIGNALTYPE = out_enable;

}
FUNCTION {

BEHAVIOR {
out = (enable)? in : 'bZ;

}
STATETABLE {

enable in : out;
 0     ?  : Z;
 1     ?  : (in);

}
}

}

Figure 3-31: Primitive model of ALF_BUFIF1

PRIMITIVE ALF_BUFIF0 {
PIN out {

DIRECTION  = output;
ENABLE_PIN = enable;
ATTRIBUTE {TRISTATE}

}
PIN in  {

DIRECTION  = input;
}
PIN enable {

DIRECTION  = input;
SIGNALTYPE = out_enable;

}
FUNCTION {

BEHAVIOR {
out = (!enable)? in : 'bZ;

}
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STATETABLE {
enable in : out;
 1     ?  : Z;
 0     ?  : (in);

}
}

}

Figure 3-32: Primitive model of ALF_BUFIF0

PRIMITIVE ALF_NOTIF1 {
PIN out {

DIRECTION  = output;
ENABLE_PIN = enable;
ATTRIBUTE {TRISTATE}

}
PIN in  {

DIRECTION  = input;
}
PIN enable {

DIRECTION  = input;
SIGNALTYPE = out_enable;

}
FUNCTION {

BEHAVIOR {
out = (enable)? !in : 'bZ;

}
STATETABLE {

enable in : out;
 0     ?  : Z;
 1     ?  : (!in);

}
}

}

Figure 3-33: Primitive model of ALF_NOTIF1

PRIMITIVE ALF_NOTIF0 {
PIN out {

DIRECTION  = output;
ENABLE_PIN = enable;
ATTRIBUTE {TRISTATE}

}
PIN in  {

DIRECTION  = input;
}
PIN enable {

DIRECTION  = input;
SIGNALTYPE = out_enable;

}
FUNCTION {
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BEHAVIOR {
out = (!enable)? !in : 'bZ;

}
STATETABLE {

enable in : out;
 1     ?  : Z;
 0     ?  : (!in);

}
}

}

Figure 3-34: Primitive model of ALF_NOTIF0

3.10.4 Predefined multiplexor

The predefined multiplexor has a known output value if either the select signal and the se
data inputs are known or both data inputs have the same known value while the select s
unknown.

PRIMITIVE ALF_MUX {
PIN Q  {

DIRECTION  = output;
SIGNALTYPE = data;

}
PIN[1:0] D  {

DIRECTION  = input;
SIGNALTYPE = data;

}
PIN S  {

DIRECTION  = input;
SIGNALTYPE = select;

}
FUNCTION {

BEHAVIOR {
Q = (S || (d[0] ~^ d[1]) )? d[1] : d[0];

}
STATETABLE {

D[0] D[1] S  : Q ;
?    ?    0  : (D[0]);
?    ?    1  : (D[1]);
0    0    ?  : 0;
1    1    ?  : 1;

}
}

}

Figure 3-35: Primitive model of ALF_MUX
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3.10.5 Predefined flipflop

A dual-rail output D-flipflop with asynchronous set and clear pins is a generic edge-sen
sequential device. Simpler flipflops can be modeled using this primitive by setting input 
to appropriate constant values. More complex flipflops can be modeled by adding
combinational logic around the primitive.

A particularity of this model is the use of the last two pinsQ_CONFLICT andQN_CONFLICT,
which are virtual pins. They specify the state ofQ andQN in the eventCLEAR andSET become
active simultaneously.

PRIMITIVE ALF_FLIPFLOP {
PIN Q     {

DIRECTION  = output;
SIGNALTYPE = data;
POLARITY   = non_inverted;

}
PIN QN    {

DIRECTION  = output;
SIGNALTYPE = data;
POLARITY   = inverted;

}
PIN D     {

DIRECTION  = input;
SIGNALTYPE = data;

}
PIN CLOCK {

DIRECTION  = input;
SIGNALTYPE = clock;
POLARITY   = rising_edge;

}
PIN CLEAR {

DIRECTION  = input;
SIGNALTYPE = clear;
POLARITY   = high;
ACTION     = asynchronous;

}
PIN SET   {

DIRECTION  = input;
SIGNALTYPE = set;
POLARITY   = high;
ACTION     = asynchronous;

}
PIN Q_CONFLICT   {

DIRECTION  = input;
VIEW       = none;

}
PIN QN_CONFLICT  {

DIRECTION  = input;
VIEW       = none;

}
FUNCTION {

ALIAS QX  = Q_CONFLICT;
ALIAS QNX = QN_CONFLICT;
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BEHAVIOR {
@ (CLEAR && SET) {

Q  = QX;
QN = QNX;

}
: (CLEAR) {

Q  = 0;
QN = 1;

}
: (SET) {

Q  = 1;
QN = 0;

}
: (01 CLOCK) { // edge-sensitive behavior

Q  = D;
QN = !D;

}
}
STATETABLE {

D CLOCK CLEAR SET QX  QNX :  Q    QN ;
?  ??    1     1  ?   ?   : (QX) (QNX);
?  ??    0     1  ?   ?   :  1    0 ;
?  ??    1     0  ?   ?   :  0    1 ;
?  1?    0     0  ?   ?   : (Q)  (QN) ;
?  ?0    0     0  ?   ?   : (Q)  (QN) ;
?  01    0     0  ?   ?   : (D)  (!D) ;

}
}

}

Figure 3-36: Primitive model of ALF_FLIPFLOP

3.10.6 Predefined latch

The dual-rail D-latch with set and clear pins has the same functionality as the flipflop, e
the level-sensitive clock (ENABLE pin) instead of the edge-sensitive clock.

PRIMITIVE ALF_LATCH {
PIN Q     {

DIRECTION  = output;
SIGNALTYPE = data;
POLARITY   = non_inverted;

}
PIN QN    {

DIRECTION  = output;
SIGNALTYPE = data;
POLARITY   = inverted;

}
PIN D     {

DIRECTION  = input;
SIGNALTYPE = data;

}
PIN ENABLE {
116 Advanced Library Format (ALF) Reference Manual Version 1.0.9



Primitives Library Format Specification
DIRECTION  = input;
SIGNALTYPE = clock;
POLARITY   = high;

}
PIN CLEAR {

DIRECTION  = input;
SIGNALTYPE = clear;
POLARITY   = high;
ACTION     = asynchronous;

}
PIN SET   {

DIRECTION  = input;
SIGNALTYPE = set;
POLARITY   = high;
ACTION     = asynchronous;

}
PIN Q_CONFLICT   {

DIRECTION = input;
VIEW      = none;

}
PIN QN_CONFLICT  {

DIRECTION = input;
VIEW      = none;

}
FUNCTION {

ALIAS QX  = Q_CONFLICT;
ALIAS QNX = QN_CONFLICT;
BEHAVIOR {

@ (CLEAR && SET) {
Q  = QX;
QN = QNX;

}
: (CLEAR) {

Q  = 0;
QN = 1;

}
: (SET) {

Q  = 1;
QN = 0;

}
: (ENABLE) { // level-sensitive behavior

Q  = D;
QN = !D;

}
}
STATETABLE {

D  ENABLE CLEAR SET QX  QNX :  Q    QN ;
?  ?      1     1   ?   ?   : (QX) (QNX);
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?  ?      0     1   ?   ?   :  1    0 ;
?  ?      1     0   ?   ?   :  0    1 ;
?  0      0     0   ?   ?   : (Q)  (QN) ;
?  1      0     0   ?   ?   : (D)  (!D) ;

}
}

}

Figure 3-37: Primitive model of ALF_LATCH

3.11 Parametrizable Cells

The concept of describing primitives with variable bus size shall be extended to parame
zable cells. Dynamic template instantiations are introduced for that purpose.

Template definitions may incorporate any type of object. Placeholders in the template d
tion are the equivalent of parameters. Hence the definition of parametrizable cells is alr
supported within the support of general template definitions.

In astatic template instantiation, which is identified by the name of the template and by the
optional value assignmentstatic , placeholders are replaced by fixed values or by comple
objects containing fixed values. Non-referenced placeholders will stay in place and even
result in semantically unrecognizeable objects, which cannot be processed by downstre
applications. Such unrecognizable objects shall be disreagarded.

In adynamic template instantiation, which is identified by the name of the template and by t
mandatory value assignmentdynamic , some placeholders may not be replaced. Those pla
holders are application parameters. The template definition may already contain certain
tionships between parameters (e.g. arithmetic model and its arguments in the header).
Therefore the template instantiation determines, which parameters need application va
order to calculate values for other parameters.

Going one step further, even the relationship between parameters may be defined in th
dynamic template instantiation rather than in the template definition. In this case, the id
ers inside the placeholders become variables for arithmetic assignments. This definition
variables shall only be recognized within the context of the dynamic template instantiati

Arithmetic assignments provide a shorter syntax for equation-based arithmetic models 
only placeholder-parameters are involved.

param1 = 1.5 + 0.4 * param2 ** 3 - 2.7 / param3

is equivalent to

param1 {
HEADER { param2 param3 }
EQUATION { 1.5 + 0.4 * param2 ** 3 - 2.7 / param3 }

}
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For table-based models or for models where the arguments have children objects attac
them, the verbose syntax with HEADER must be used.

Example:

TEMPLATE adder {
CELL <cellname> {

PIN [ <bitwidth> : 1 ] A { DIRECTION = input; }
PIN [ <bitwidth> : 1 ] B { DIRECTION = input; }
PIN Cin { DIRECTION = input; }
PIN [ <bitwidth> : 1 ] S { DIRECTION = output; }
PIN Cout { DIRECTION = output; }

FUNCTION {
BEHAVIOR {

S = A + B + Cin;
Cout = (A + B + Cin >= (‘b1 << (<bitwidth> - 1)));

}
}
AREA = <areavalue>;
VECTOR (?! Cin -> ?! Cout) {

DELAY {
HEADER {

CAPACITANCE {PIN = Cout; }
SLEWRATE {PIN = Cin; }

}
EQUATION { <D0> + <D1>*CAPACITANCE + <D2>*SLEWRATE }

}
}

}
}

The template is used for instantiation of a hardmacro:

adder { /* a hardmacro */
cellname = ripple_carry_adder_16_bit;
bitwidth = 16;
areavalue = 500;
// D0, D1, D2 are undefined. DELAY cannot be calculated.

}

The static instantiation of the hardmacro is equivalent to the following static object:

CELL ripple_carry_adder_16_bit {
PIN [ 16 : 1 ] A { DIRECTION = input; }
PIN [ 16 : 1 ] B { DIRECTION = input; }
PIN Cin { DIRECTION = input; }
PIN [ 16 : 1 ] S { DIRECTION = output; }
PIN Cout { DIRECTION = output; }

FUNCTION {
BEHAVIOR {

S = A + B + Cin;
Cout = (A + B + Cin >= ’b1000000000000000);

}
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AREA = 500 ;

VECTOR (?! Cin -> ?! Cout) {
// DELAY {
// HEADER {
// CAPACITANCE {PIN = Cout; }
// SLEWRATE {PIN = Cin; }
// }
// EQUATION { <D0> + <D1>*CAPACITANCE + <D2>*SLEWRATE }
// }

}
}

}

Now the template is used for instantiation of a softmacro:

adder = dynamic { /* a softmacro */
cellname = ripple_carry_adder_N_bit;
areavalue = 20 + 30 * bitwidth;
}
D0 {

HEADER { AREA { TABLE { 10 20 30 } } }
TABLE { 15.6 34.3 50.7 }

}
D1 = 0.29;
D2 = 0.08;

}

The dynamic instantiation of the softmacro results in an object for which certain data de
on the runtime-values of the placeholder-parameters, as indicated initalic below. The
calculation method for such data, however, can be compiled statically (e.g. the equation
AREA as a function of bitwidth, the lookup table for D0 as a function of AREA).

CELL ripple_carry_adder_N_bit {
PIN [ bitwidth  : 1 ] A { DIRECTION = input; }
PIN [ bitwidth  : 1 ] B { DIRECTION = input; }
PIN Cin { DIRECTION = input; }
PIN [ bitwidth  : 1 ] S { DIRECTION = output; }
PIN Cout { DIRECTION = output; }

FUNCTION {
BEHAVIOR {

S = A + B + Cin;
Cout = (A + B + Cin >= (‘b1 << (bitwidth - 1)) );

}
}

AREA = 20 + 30 * bitwidth  ;

VECTOR (?! Cin -> ?! Cout) {
DELAY {

HEADER {
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CAPACITANCE {PIN = Cout; }
SLEWRATE {PIN = Cin; }
D0 {

HEADER { AREA { TABLE { 10 20 30 } } }
TABLE { 15.6 34.3 50.7 }

}
}
EQUATION { D0 + 0.29*CAPACITANCE + 0.08*SLEWRATE }

}
}

}
}
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Section 4

Applications

This section shows various examples of library cells modeled using ALF.

4.1 Truth Table vs Boolean Equation

A combinational logic cell and a sequential logic cell are shown below using two differe
constructs - truth table and boolean equation.

4.1.1 NAND gate

A 2-input NAND gate library cell can be modeled as shown below. TheFUNCTION of the cell
can be modeled either as aSTATETABLE or asBEHAVIOR using a boolean equation.

Modeling a NAND gate using truth table:

CELL ND2 { /* 2 input NAND gate */
PIN a {DIRECTION=input;}
PIN b {DIRECTION=input;}
PIN z {DIRECTION=output;}

FUNCTION {
STATETABLE {

a b : z ;
0 ? : 1 ;
1 ? : (!b);

}
}

)

Modeling a NAND gate using boolean expression:

CELL ND2 { /* 2 input NAND gate */
PIN a {DIRECTION=input;}
PIN b {DIRECTION=input;}
PIN z {DIRECTION=output;}

FUNCTION {
BEHAVIOR {

z = !(a && b);
}

}
)
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4.1.2 Flipflop

A flipflop with asynchronous set and clear signals is shown below using truth table.

CELL FLIPFLOP {
PIN CLEAR {DIRECTION=input; SIGNALTYPE=clear; POLARITY=low;}
PIN SET {DIRECTION=input; SIGNALTYPE=set; POLARITY=low;}
PIN CLOCK {DIRECTION=input; SIGNALTYPE=clock; POLARITY=rising_edge;}
PIN D {DIRECTION=input;}
PIN Q {DIRECTION=output;}
FUNCTION {
.../* One of the descriptions below go here */
}

}

STATETABLE {
CLEAR SET CLOCK D Q : Q;
0 ? ?? ? ? : 0;
1 0 ?? ? ? : 1;
1 1 01 ? ? : (d);
1 1 1? ? ? : (q);
1 1 ?0 ? ? : (q);

}

Modeling a flipflop with asynchronous set and clear using boolean expression:

BEHAVIOR {
@(!CLEAR) {Q = 0;} : (!SET) {Q = 1;} : (01 CLOCK) {Q = D;}

}

4.2 Use of primitives

The functionality of a cell can be described using instances of other cells.

4.2.1 D-Flipflop with asynchronous clear

CELL d_flipflop_clr {
PIN cd {DIRECTION=input; SIGNALTYPE=clear; POLARITY=low;}
PIN cp {DIRECTION=input; SIGNALTYPE=clock; POLARITY=rising_edge;}
PIN d {DIRECTION=input;}
PIN q {DIRECTION=output;}
FUNCTION {
.../* One of the descriptions below go here */
}

}

Explicit description does not use instances of other cells defined in the library:

BEHAVIOR {
@(01 cp && cd) {q = d;}
@(!cd) {q = 0;}

}
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Use of primitives permit derivation of new cells from other cells. Below, a D-Flipflop with
asynchronous clear is derived from a predefinedALF_FLIPFLOP with asynchronous set and
clear (see Section 4.1.2):

BEHAVIOR {
ALF_FLIPFLOP {CLOCK=cp; D=d; Q=q; SET='b0; CLEAR=!cd;}

}

4.2.2 JK-flipflop

This example shows three ways of modeling a JK-Flipflop.

CELL jk_flipflop {
PIN cp {DIRECTION=input; SIGNALTYPE=clock; POLARITY=rising_edge;}
PIN j {DIRECTION=input;}
PIN k {DIRECTION=input;}
PIN q {DIRECTION=output;}
FUNCTION {
.../* One of the descriptions below go here */
}

}

Explicit description:

BEHAVIOR {
d =

(!j && k) ? 0 :
( j && !k) ? 1 :
( j && k) ? !(q) :
(!j && !k) ? (q) :

 'bx ;
@(01 cp) {q = d;}

}

Use of primitives (using predefinedALF_MUX andALF_FLIPFLOP):

BEHAVIOR {
ALF_MUX {Q=d D0=j D1=!k SELECT=q}
ALF_FLIPFLOP {CLOCK=cp D=d Q=q SET='b0 CLEAR='b0}

}

Use of a hybrid form (boolean expressions within primitive instantiation):

BEHAVIOR {
ALF_FLIPFLOP {CLOCK=cp; D=q ? !k : j; Q=q; SET='b0; CLEAR='b0;}

}

Use of truth table:

STATETABLE {
cp j k q : (q) ;
01 0 0 ? : (q) ;
01 0 1 ? : 0 ;
01 1 0 ? : 1 ;
01 1 1 ? : (!q);
1? ? ? ? : (q) ;
?0 ? ? ? : (q) ;

}
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4.2.3 D-Flipflop with synchronous load and clear

This example shows two different models of a synchronous D-Flipflop.

CELL d_flipflop_ld_clr {
PIN cs {DIRECTION=input; SIGNALTYPE=clear;

 POLARITY=low; ACTION=synchronous;}
PIN ls {DIRECTION=input;}
PIN cp {DIRECTION=input; SIGNALTYPE=clock; POLARITY=rising_edge;}
PIN d {DIRECTION=input;}
PIN q {DIRECTION=output;}
FUNCTION { ... }

}

Explicit description:

BEHAVIOR {
d1 = (ls)? d : q;
d2 = d1 && cs;
@(01 cp) {q = d2;}

}

Use of primitives:

BEHAVIOR {
ALF_MUX {Q=d1; D0=q; D1=d; SELECT=ls;}/* Connection by pin name */
ALF_AND {d2 d1 cs} /* Connection by pin order */
ALF_FLIPFLOP {CLOCK=cp; D=d2; Q=q; SET='b0; CLEAR='b0; }

}

4.2.4 D-Flipflop with input multiplexor

This example shows three different modeling styles for a D-flipflop with input multiplexo
asynchronous set and asynchronous clear:

CELL d_flipflop_mux_set_clr {
PIN sel {DIRECTION=input;}
PIN sd {DIRECTION=input; SIGNALTYPE=set; POLARITY=low;}
PIN cd {DIRECTION=input; SIGNALTYPE=clear; POLARITY=low;}
PIN cp {DIRECTION=input; SIGNALTYPE=clock; POLARITY=rising_edge;}
PIN d1 {DIRECTION=input;}
PIN d2 {DIRECTION=input;}
PIN q {DIRECTION=output;}
FUNCTION { ... }

}

Explicit description:

BEHAVIOR {
@(!cd) {q = 0;}
@(!sd && cd) {q = 1;}
@(01 cp && cd && sd) {q = (sel)? d1: d2;}

}
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More efficient description can be created using if-then-else style:

BEHAVIOR {
@(!cd) {q = 0;}
:(!sd) {q = 1;}
:(01 cp){q = (sel)? d1: d2;}

}

Use of primitive:

BEHAVIOR {
ALF_FLIPFLOP {CLOCK=cp D=((sel)? d1: d2) Q=q SET=!sd CLEAR=!cd}

}

Note that the use ofALF_MUX primitive is eliminated by using an assignment expression to
input inALF_FLIPFLOP instance.

4.2.5 D-latch

This example shows a level-sensitive cell in two different styles.

CELL d_latch {
PIN g {DIRECTION=input; SIGNALTYPE=clock; POLARITY=high;}
PIN d {DIRECTION=input;}
PIN q {DIRECTION=output;}
FUNCTION { ... }

}

Explicit description:

BEHAVIOR {
@(g) {q = d;}

}

Use of primitive:

BEHAVIOR {
ALF_LATCH {ENABLE=g; D=d; Q=q; SET='b0; CLEAR='b0;}

}

4.2.6 SR-latch

The example below shows how some of the input pins can be left unconnected if they rep
don’t care situation.

CELL sr_latch {
PIN sn {DIRECTION=input; SIGNALTYPE=set; POLARITY=low;}
PIN rn {DIRECTION=input; SIGNALTYPE=clear; POLARITY=low;}
PIN q {DIRECTION = output;}
PIN qn {DIRECTION = output;}
FUNCTION { ... }

}

Explicit description:

BEHAVIOR {
@ (!sn) {q = 'b1; qn = !rn;}
@ (!rn) {qn = 'b1; q = !sn;}

}
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Use of primitive:

BEHAVIOR {
ALF_LATCH {ENABLE='b0; Q=q; SET=!sn; CLEAR=!rn;}

}

SinceENABLE pin is always set to0, the connection ofD pin is irrelevant. Even ifD is considered
'bX  or 'bZ , the behavior will not change.

4.2.7 JTAG BSR

The following example shows a JTAG BSR cell with built-in scan chain.

CELL F10_18 {
PIN SysOut {DIRECTION = output;}
PIN TDO {DIRECTION = output; SIGNALTYPE = scan_data;}
PIN SysIn {DIRECTION = input;}
PIN TDI {DIRECTION = input; SIGNALTYPE = scan_data;}
PIN Shift {DIRECTION = input; SIGNALTYPE = scan_enable;}
PIN Clk {DIRECTION = input; POLARITY = rising_edge;

SIGNALTYPE = master_clock;}
PIN Update {DIRECTION = input; POLARITY = rising_edge;

SIGNALTYPE = slave_clock;}
PIN Mode {DIRECTION = input; SIGNALTYPE = select;}
PIN STATE0 { // This state is on the scan chain

SCAN_POSITION = 1; DIRECTION = output; VIEW = none;}
PIN STATE1 { // NOT on scan chain (just update latch)

DIRECTION = output; VIEW = none;}
FUNCTION {

BEHAVIOR {
@(01 Clk) {STATE0 = Shift ? TDI : SysIn;}
@(01 Update) {STATE1 = STATE0;}
TDO = STATE0;
SysOut = Mode ? STATE1 : SysIn;

}
}

}

4.2.8 Combinational Scan Cell

The following example shows a combinational scan cell with a reused primitive.

LIBRARY major_ASIC_vendor {
INFORMATION {

version = v2.1.0;
title = “0.35 standard cell”;
product = p35sc;
author = “Major Asic Vendor, Inc.”;
datetime = “Wed Jul 23 13:50:12 MST 1997”;

}
..
CELL ND3A {

INFORMATION {
version = v6.0;
title = “3 input nand”;
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product = p35sc_lib;
author = “Joe Cell Designer”;
datetime = “Tue Apr 1 01:39:47 PST 1997”;

}
PIN Z {DIRECTION=output;}
PIN A {DIRECTION=input;}
PIN B {DIRECTION=input;}
PIN C {DIRECTION=input;}
FUNCTION {

BEHAVIOR {
ALF_NAND {Z A B C}

}
}
/* fill in timing and power data for ND3A cell */

}
..
CELL ND3B {

PIN Z {DIRECTION=output;}
PIN A {DIRECTION=input;}
PIN B {DIRECTION=input;}
PIN C {DIRECTION=input;}
FUNCTION {

BEHAVIOR {
ALF_NAND {Z A B C}

}
}
/* fill in timing and power data for ND3B cell */

}
..
CELL SCAN_ND4 {

PIN Z {DIRECTION=output;}
PIN A {DIRECTION=input;}
PIN B {DIRECTION=input;}
PIN C {DIRECTION=input;}
PIN D {DIRECTION=input; SIGNALTYPE=scan_enable;}

SCAN_TYPE = control_0;
NON_SCAN_CELL = ALF_NAND {Z A B C}
FUNCTION {

BEHAVIOR {
Z = !(A && B && C && D);

}
}

}
..

}
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4.2.9 Scan Flipflop

The following example shows a scan flipflop using the genericALF_FLIPFLOP primitive.

LIBRARY major_ASIC_vendor {
...
CELL F614 {

PIN H01 {DIRECTION = input; SIGNALTYPE = data;}
PIN H02 {DIRECTION = input; SIGNALTYPE = clock;}
PIN H03 {DIRECTION = input; SIGNALTYPE = clear; POLARITY = high;}
PIN H04 {DIRECTION = input; SIGNALTYPE = set; POLARITY = high;}
PIN N01 {DIRECTION = output;

SCAN {SIGNALTYPE = data; POLARITY = non_inverted;}}
PIN N02 {DIRECTION = output; POLARITY = inverted;}
FUNCTION {

BEHAVIOR {
ALF_FLIPFLOP {

D=H01; CLOCK=H02; CLEAR=H03; SET=H04;
Q=N01; QN=N02; Q_CONFLICT='bX; QN_CONFLICT='bX;

}
}

}
}
...
CELL S000 {

PIN H01 {DIRECTION = input; SIGNALTYPE = scan_data;}
PIN H02 {DIRECTION = input; SIGNALTYPE = clock;

OFFSTATE = non_inverted;}
PIN H03 {DIRECTION = input; SIGNALTYPE = scan_enable;

 POLARITY = low;}
PIN H04 (DIRECTION = input; SIGNALTYPE = set; POLARITY = high;}
PIN H05 {DIRECTION = input; SIGNALTYPE = clear; POLARITY = high;}
PIN H06 {DIRECTION = input; SIGNALTYPE = data;}
PIN N01 {DIRECTION = output; SIGNALTYPE = data;

POLARITY = non_inverted;}
PIN N02 {DIRECTION = output; POLARITY = inverted;}
FUNCTION{

BEHAVIOR{ // flipflop_d is an implicitely defined internal pin
ALF_MUX {Q=flipflop_d; D0=H06; D1=H01; SELECT=H03;}
ALF_FLIPFLOP {

D=flipflop_d; CLOCK=H02; CLEAR=H05; SET=H04;
Q=N01; QN=N02; Q_CONFLICT='bX; QN_CONFLICT='bX;

}
}

}
SCAN_TYPE = muxscan;
NON_SCAN_CELL = ALF_FLIPFLOP {D=H06; CLOCK=H02; CLEAR=H05; SET=H04;

 Q=N01; QN=N02; Q_CONFLICT='bX;
 QN_CONFLICT='bX; 'b0=H03; 'b0=H01;}

} // H03 and H01 have no corresponding pin in ALF_FLIPFLOP
...

}
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4.2.10 Quad D-Flipflop

The following example shows a quad D-Flipflop with and without built-in scan chain.

LIBRARY major_ASIC_vendor {
PRIMITIVE FFX4 {

PIN CK { DIRECTION = input; }
PIN D0 { DIRECTION = input; }
PIN D1 { DIRECTION = input; }
PIN D2 { DIRECTION = input; }
PIN D3 { DIRECTION = input; }
PIN Q0 { DIRECTION = output; }
PIN Q1 { DIRECTION = output; }
PIN Q2 { DIRECTION = output; }
PIN Q3 { DIRECTION = output; }
FUNCTION {

BEHAVIOR {
ALF_FLIPFLOP {Q=Q0; D=D0; CLOCK=CK; SET='b0; CLEAR='b0;}
ALF_FLIPFLOP {Q=Q1; D=D1; CLOCK=CK; SET='b0; CLEAR='b0;}
ALF_FLIPFLOP {Q=Q2; D=D2; CLOCK=CK; SET='b0; CLEAR='b0;}
ALF_FLIPFLOP {Q=Q3; D=D3; CLOCK=CK; SET='b0; CLEAR='b0;}

}
}

}
CELL SCAN_FFX4 {

PIN OUT0 {DIRECTION = output;}
PIN OUT1 {DIRECTION = output;}
PIN OUT2 {DIRECTION = output;}
PIN OUT3 {DIRECTION = output;}
PIN SO {DIRECTION = output; SIGNALTYPE = scan_data;}
PIN IN0 {DIRECTION = input; SIGNALTYPE = data;}
PIN IN1 {DIRECTION = input; SIGNALTYPE = data;}
PIN IN2 {DIRECTION = input; SIGNALTYPE = data;}
PIN IN3 {DIRECTION = input; SIGNALTYPE = data;}
PIN CLK {DIRECTION = input; SIGNALTYPE = clock;}
PIN SI {DIRECTION = input; SIGNALTYPE = scan_data;}
PIN SE {DIRECTION = input; SIGNALTYPE = scan_enable;}
PIN STATE0 {SCAN_POSITION = 1; DIRECTION = output; VIEW = none;}
PIN STATE1 {SCAN_POSITION = 2; DIRECTION = output; VIEW = none;}
PIN STATE2 {SCAN_POSITION = 3; DIRECTION = output; VIEW = none;}
PIN STATE3 {SCAN_POSITION = 4; DIRECTION = output; VIEW = none;}
FUNCTION {

BEHAVIOR {
OUT0 = STATE0; OUT1 = STATE1; OUT2 = STATE2; OUT3 = STATE3;
SO = !STATE3;
@(01 CLK) {

STATE0 = SE ? !SI : IN0;
STATE1 = SE ? !STATE0 : IN1;
STATE2 = SE ? !STATE1 : IN2;
STATE3 = SE ? !STATE2 : IN3;

}
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ate,
}
}
SCAN_TYPE = muxscan;
NON_SCAN_CELL = FFX4 {CLK IN0 IN1 IN2 IN3 OUT0 OUT1 OUT2 OUT3}
} // this example shows referencing by order

}
}

4.3 Templates and vector-specific models

4.3.1 Vector specific delay and power Tables

In this example, the use of vector specific models for input-to-output delay, output slewr
and switching energy is shown.

CELL nand2 {
PIN a {DIRECTION = input; CAPACITANCE = 0.02 {UNIT = pF;}}
PIN b {DIRECTION = input; CAPACITANCE = 0.02 {UNIT = pF;}}
PIN z {DIRECTION = output;}
FUNCTION {

BEHAVIOR {z = !(a && b); }
}
VECTOR (10 a -> 01 z){ /* Vector specific characterization */

DELAY {
UNIT = ns;
FROM {PIN = a; THRESHOLD = 0.4;}
TO {PIN = z; THRESHOLD = 0.6;}
HEADER {

CAPACITANCE {
PIN = z; UNIT = pF;
TABLE {0.01 0.02 0.04 0.08 0.16}

}
SLEWRATE {

PIN = a; UNIT = ns;
FROM {THRESHOLD = 0.5;}
TO {THRESHOLD = 0.3;}
TABLE {0.1 0.3 0.9}

}
}
TABLE {

0.1 0.2 0.4 0.8 1.6
0.2 0.3 0.5 0.9 1.7
0.4 0.5 0.7 1.1 1.9

}
}
SLEWRATE {

PIN = z; UNIT = ns;
FROM {THRESHOLD = 0.3;}
TO {THRESHOLD = 0.5;}
HEADER {

CAPACITANCE {
PIN = z; UNIT = pF;
TABLE {0.01 0.02 0.04 0.08 0.16}
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}
SLEWRATE {

PIN = a; UNIT = ns;
FROM {THRESHOLD = 0.5;}
TO {THRESHOLD = 0.3;}
TABLE {0.1 0.3 0.9}

}
}
TABLE {

0.1 0.2 0.4 0.8 1.6
0.1 0.2 0.4 0.8 1.6
0.2 0.4 0.6 1.0 1.8

}
}
ENERGY {

UNIT = pJ;
HEADER {

CAPACITANCE {
PIN = z; UNIT = pF;
TABLE {0.01 0.02 0.04 0.08 0.16}

}
SLEWRATE {

PIN = a; UNIT = ns;
FROM {THRESHOLD = 0.5;}
TO {THRESHOLD = 0.3;}
TABLE {0.1 0.3 0.9}

}
}
TABLE {

0.21 0.32 0.64 0.98 1.96
0.22 0.33 0.65 0.99 1.97
0.31 0.42 0.74 1.08 2.06

}
}

}
VECTOR (01 a -> 10 z){

DELAY { ... }
SLEWRATE { ... }
ENERGY { ... }

}
VECTOR (10 b -> 01 z){

DELAY { ... }
SLEWRATE { ... }
ENERGY { ... }

}
VECTOR (01 b -> 10 z){

DELAY { ... }
SLEWRATE { ... }
ENERGY { ... }

}
}
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4.3.2 Use of TEMPLATE

Notice that the header for the delay, ramptime, and energy models was the same in the e
above. Therefore creating a template definition can eliminate duplicate information, redu
possibility of inadvertent errors, and make the models compact. For example, a header te
can be created as shown below:

TEMPLATE std_header_2d {
HEADER {

CAPACITANCE {
PIN = <out_pin>; UNIT = pF;
TABLE {0.01 0.02 0.04 0.08 0.16}

}
SLEWRATE {

PIN = <in_pin>; UNIT = ns;
FROM {THRESHOLD {RISE = 0.3; FALL = 0.5;} }
TO {THRESHOLD {RISE = 0.5; FALL = 0.3;} }
TABLE {0.1 0.3 0.9}

}
}

The use ofTEMPLATE eliminates the repetition of header information by rewriting the previo
example (only the first vector) as shown below.

DELAY {
UNIT = ns;
THRESHOLD {RISE=0.4; FALL=0.6;}
FROM {PIN = a;}
TO {PIN = z;}
std_header_2d { /* Template is used */

in_pin = a;
out_pin = z;

}
TABLE {

0.1 0.2 0.4 0.8 1.6
0.2 0.3 0.5 0.9 1.7
0.4 0.5 0.7 1.1 1.9

}
}
SLEWRATE {

PIN = z; UNIT = ns;
FROM {THRESHOLD {RISE = 0.3; FALL = 0.5;} }
TO {THRESHOLD {RISE = 0.5; FALL = 0.3;} }
std_header_2d { /* Template is used */

in_pin = a;
out_pin = z;

}
TABLE {

0.1 0.2 0.4 0.8 1.6
0.1 0.2 0.4 0.8 1.6
0.2 0.4 0.6 1.0 1.8

}
}
ENERGY {

UNIT = pJ;
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 of the
std_header_2d { /* Template is used */
in_pin = a;
out_pin = z;

}
TABLE {

0.21 0.32 0.64 0.98 1.96
0.22 0.33 0.65 0.99 1.97
0.31 0.42 0.74 1.08 2.06

}
}

}

Note that the entire characterization model for CELLnand2  is the same for each vector (i.e.
pair of input and output pins), so further efficiency can be achieved by defining the
characterization model itself as a template. This template definition uses the instantiation
previously defined header template.

TEMPLATE std_char_2d {
DELAY {

UNIT = ns;
THRESHOLD {RISE=0.4; FALL=0.6;}
FROM {PIN = <in_pin>; }
TO {PIN = <out_pin>; }
std_header_2d {

in_pin = <input_pin>;
out_pin = <output_pin>;

}
TABLE <delay_data>

}
SLEWRATE {

PIN = <out_pin>; UNIT = ns;
FROM {THRESHOLD {RISE = 0.3; FALL = 0.5;} }
TO {THRESHOLD {RISE = 0.5; FALL = 0.3;} }
std_header_2d {

in_pin = <input_pin>;
out_pin = <output_pin>;

}
TABLE <slewrate_data>

}
ENERGY {

UNIT = pJ;
std_header_2d {

in_pin = <input_pin>;
out_pin = <output_pin>;

}
TABLE <energy_data>

}
}
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Now only the delay, slewrate and energy models contain specific data that is different fo
vector. All repetitive information is in the template definition. The characterization model
be rewritten compactly as shown below:

std_char_2d {
in_pin = a;
out_pin = z;
delay_data {

0.1 0.2 0.4 0.8 1.6
0.2 0.3 0.5 0.9 1.7
0.4 0.5 0.7 1.1 1.9

}
slewrate_data {

0.1 0.2 0.4 0.8 1.6
0.1 0.2 0.4 0.8 1.6
0.2 0.4 0.6 1.0 1.8

}
energy_data {

0.21 0.32 0.64 0.98 1.96
0.22 0.33 0.65 0.99 1.97
0.31 0.42 0.74 1.08 2.06

}
}

4.3.3 Vector description styles for timing arcs

In previous examples, the vectors were specified as timing arcs. This is not ambiguous
the sequence of transitions can only happen under one test condition.

VECTOR (10 a -> 01 z){
std_char_2d { ... }

}
VECTOR (01 a -> 10 z){

std_char_2d { ... }
}
VECTOR (10 b -> 01 z){

std_char_2d { ... }
}
VECTOR (01 b -> 10 z){

std_char_2d { ... }
}
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An alternate way of describing the above vectors is to specify the input transition and the
of the other input(s) which control the output transition.

VECTOR (10 a && b){
std_char_2d { ... }

}
VECTOR (01 a && b){

std_char_2d { ... }
}
VECTOR (10 b && a){

std_char_2d { ... }
}
VECTOR (01 b && a){

std_char_2d { ... }
}

A redundant yet safe way of vector description is to specify both output transition and in
state(s) together with the input transition.

VECTOR (10 a -> 01 z && b){
std_char_2d { ... }

}
VECTOR (01 a -> 10 z && b){

std_char_2d { ... }
}
VECTOR (10 b -> 01 z && a){

std_char_2d { ... }
}
VECTOR (01 b -> 10 z && a){

std_char_2d { ... }
}

In the non-redundant specification, either the input state or the output transition can be d
from the functional description.

4.3.4 Vectors for delay, power and timing constraints

A D-Flipflop model without the set and clear signals is shown below. This model has ve
for specific purpose - some for delay and power, some for power only (output is not switch
and some for timing constraints. However, each vector has the same structure, althoug
input variables change. The vectors for delay and power model require 2-dimensional t
with load capacitance and input ramptime as variables, the vectors for power model req
1-dimensional tables with input ramptime as variable, and the vectors for time constrain
require 2-dimensional tables with ramptime on two inputs as variables.

CELL d_flipflop {
PIN cp {DIRECTION = input;}
PIN d {DIRECTION = input;}
PIN q {DIRECTION = output;}
FUNCTION {

BEHAVIOR { @(01 cp) {q = d; } }
}
VECTOR (01 cp -> 01 q) {

/* fill in arithmetic models for delay and power */
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}
VECTOR (01 cp -> 10 q) {

/* fill in arithmetic models for delay and power */
}
VECTOR (01 cp && d == q) {

/* fill in arithmetic model for power */
}
VECTOR (10 cp && d == q) {

/* fill in arithmetic model for power */
}
VECTOR (10 cp && d != q) {

/* fill in arithmetic model for power */
}
VECTOR (01 d && !cp) {

/* fill in arithmetic model for power */
}
VECTOR (10 d && !cp) {

/* fill in arithmetic model for power */
}
VECTOR (01 d && cp) {

/* fill in arithmetic model for power */
}
VECTOR (10 d && cp) {

/* fill in arithmetic model for power */
}
VECTOR (01 d <&> 01 cp)

SETUP {
/* fill in arithmetic model for setup time constraint */
VIOLATION {

BEHAVIOR {q = 'bx;}
MESSAGE_TYPE = error;
MESSAGE = “setup violation 01 d <-> 01 cp“;

}
}
HOLD {

/* fill in arithmetic model for hold time constraint */
VIOLATION {

BEHAVIOR {q = 'bx;}
MESSAGE_TYPE = error;
MESSAGE = “hold violation 01 d <-> 01 cp“;

}
}

VECTOR (10 d <&> 01 cp)
SETUP {

/* fill in arithmetic model for setup time constraint */
VIOLATION {

BEHAVIOR {q = 'bx;}
MESSAGE_TYPE = error;
MESSAGE = “setup violation 10 d <-> 01 cp“;

}
}
HOLD {

/* fill in arithmetic model for hold time constraint */
VIOLATION {
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BEHAVIOR {q = 'bx;}
MESSAGE_TYPE = error;
MESSAGE = “hold violation 10 d <-> 01 cp“;

}
}

}
}

4.4 Combining tables and equations

4.4.1 Table vs equation

The following examples show the usage ofTABLE andEQUATION in the model.

Example with table:

CURRENT {
PIN = VDD;
UNIT = mA;
TIME = 30 {UNIT = ns;}
MEASUREMENT = average;
HEADER {

CAPACITANCE {
PIN = z; UNIT = pF;
TABLE {0.02 0.04 0.08 0.16}

}
SLEWRATE {

PIN = a; UNIT = ns;
TABLE {0.1 0.3 0.9}

}
}
TABLE {

0.0011 0.0021 0.0041 0.0081
0.0013 0.0023 0.0043 0.0083
0.0019 0.0029 0.0049 0.0089

}
}

Equivalent example with equation:

CURRENT {
PIN = VDD; UNIT = mA;
TIME = 30 {UNIT = ns;}
MEASUREMENT = average;
HEADER {

CAPACITANCE {PIN = z; UNIT = pF;}
SLEWRATE {PIN = a; UNIT = ns;}

}
EQUATION { 0.05*CAPACITANCE + 0.001*SLEWRATE }

}

If the model uses anEQUATION, then each argument must appear in theHEADER. If the model
uses aTABLE, then theHEADER must contain aTABLE for each argument. The number of value
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in the main table and the indexing scheme is defined by the order and the number of va
each table inside the header.

4.4.2 Cell with Multiple Output Pins

The following example shows how to use combinations of tables and equations for effic
modeling of energy consumption of a cell with two (buffered) outputs. When two output
switching, triggered by the same input, the dynamic energy consumption depends on ram
of the input signal and load capacitance on each output.

Instead of creating a 3-dimensional table, two 2-dimensional tables are used, varying th
capacitance at one output and keeping zero load at the other output. The equation calcul
energy for both outputs switching by adding the values from each table together for the
applicable load capacitance and by subtracting a corresponding correction term. The re
exact for cells with buffered outputs.

As shown in the example below, an arithmetic model must be a named object, if several o
of the same type occur within the same scope (e.g.ENERGY). For named objects, the equation
uses the object name instead of the object type.

VECTOR (01 ci -> (01 co <-> 10 s) & a) {
ENERGY {

UNIT = pJ;
HEADER {

ENERGY energy_co { // named object
UNIT = pJ;
HEADER {

CAPACITANCE {
PIN = co; UNIT = pF;
TABLE { ... }

}
SLEWRATE {

PIN = ci; UNIT = ns;
TABLE { ... }

}
}
TABLE { ... }

}
ENERGY energy_s { // named object

UNIT = pJ;
HEADER {

CAPACITANCE {
PIN = s; UNIT = pF;
TABLE { ... }

}
SLEWRATE {

PIN = ci; UNIT = ns;
TABLE { ... }

}
}
TABLE { ... }

}
ENERGY energy_noload { // named object
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UNIT = pJ;
HEADER {

SLEWRATE {
PIN = ci; UNIT = ns;
TABLE { ... }

}
}
TABLE { ... }

}
}
EQUATION { energy_co + energy_s - energy_noload }

}
}

4.4.3 PVT Derating

Combinations of tables and equations can also be used for derating with respect to volta
temperature, since those variables would add more dimensions to a purely table-based

In this example, theDELAY objects must be named, since there is both a nominal and a de
DELAY.

DELAY rise_out{
HEADER {

PROCESS {
HEADER {nom snsp snwp wnsp wnwp}
TABLE {0.0 -0.1 -0.2 +0.3 +0.2}

}
VOLTAGE {//fill in any annotations
}
TEMPERATURE {//fill in any annotations
}
DELAY nom_rise_out {

HEADER {
CAPACITANCE {

TABLE {0.03 0.06 0.12 0.24}
}
SLEWRATE {

TABLE {0.1 0.3 0.9}
}

}
TABLE {

0.07 0.10 0.14 0.22
0.09 0.13 0.19 0.30
0.10 0.15 0.25 0.41

}
}

}
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EQUATION {
nom_rise_out
* (1 + PROCESS)
* (1 + (TEMPERATURE - 25)*0.001)
* (1 + (VOLTAGE - 3.3)*(-0.3))

}
}

TheHEADER in theprocess  object contains exclusively named variables(nom, snsp...) ,
similar to the truth table of aFUNCTION that contains only pin names. Therefore theTABLE is
expected to have as many entries as theHEADER. TheTABLE insidenom_rise_out  must follow
the format defined by eachTABLE inside the declarations ofload  andramptime . Other declared
object in theHEADER would be ignored for theTABLE format, if they do not have aTABLE inside
themselves.

For convenience, the derating equation can be defined as a template for future reuse.

TEMPLATE std_derating {
EQUATION {

<variable>
* (1 + <Kp>)
* (1 + (TEMPERATURE - 25)*<Kt>)
* (1 + (VOLTAGE - 3.3)*<Kv>)

}
}

Instantiation of the template in the model:

DELAY rise_out{
HEADER {

PROCESS {
HEADER {nom snsp snwp wnsp wnwp}
TABLE {0.0 -0.1 -0.2 +0.3 +0.2}

}
VOLTAGE { ... }
TEMPERATURE { ... }
DELAY nom_rise_out {

HEADER {
CAPACITANCE {TABLE { ... }}
SLEWRATE {TABLE { ... }}

}
TABLE { ... }

}
std_derating {

variable = nom_rise_out ;
Kp = PROCESS ;
Kt = 0.001 ;
Kv = -0.3 ;

}
}

It is possible to assign explicit values to the predefined process and derating case ident
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Example:

PROCESS snsp = 0.9;
PROCESS wnwp = 1.1;

TEMPERATURE nom = 25;
VOLTAGE nom = 3.3;

TEMPERATURE bccom = 0;
VOLTAGE bccom = 3.5;

TEMPERATURE wcmil = 125;
VOLTAGE wcmil = 2.8;

It is also possible to express voltage, temperature and delay with the derating case as a
independent variable:

VOLTAGE {
HEADER {nom bccom wcmil}
TABLE {3.3 3.5 2.8}

}
TEMPERATURE {

HEADER {nom bccom wcmil}
TABLE {25 0 125}

}
DELAY {

HEADER {
DERATE_CASE {

HEADER {nom bccom wcmil}
TABLE {0 -0.0835 0.265}

}
PROCESS

HEADER {nom snsp snwp wnsp wnwp}
TABLE {0.0 -0.1 -0.2 +0.3 +0.2}

}
DELAY nom_rise_out { ... }

}
EQUATION {

nom_rise_out
* (1 + PROCESS)
* (1 + DERATE_CASE)

}

Yet another possibility is a completely tabulated model, where the process and derating
identifiers can be directly used as table items.

DELAY {
HEADER {

DERATE_CASE {
TABLE {nom bccom wcmil}

}
PROCESS

TABLE {nom snsp snwp wnsp wnwp}
}

TABLE {
// 3*5 = 15 values

}
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4.5 Use of Annotations

4.5.1 Annotations for a PIN

Direct annotation:

PIN data_in {DIRECTION = input; THRESHOLD = 0.35; CAPACITANCE = 0.010;}

Using annotation containers:

PIN data_in {
DIRECTION = input;
THRESHOLD = 0.35;
CAPACITANCE = 0.010; {

UNIT = pF; MEASUREMENT = average;
MIN = 0.009; TYP = 0.010; MAX = 0.012;

}
LIMIT {

SLEWRATE {MAX=3.0; UNIT=ns;}
VOLTAGE {MAX=3.5; MIN=-0.2;}

}
}

The input pindata_in  has a non-linear capacitance which was characterized using an av
measurement (as opposed to RMS or peak measurements). Different measurements y
average capacitances between 0.009 pF and 0.012 pF, typical average capacitance is 0
The slewrate applied to the pin must not exceed 3.0 ns. The voltage swing must not exc
lower bound of -0.2 V and the upper bound of 3.5 volt.

CAPACITANCE {UNIT = pF;}
PIN data_out {

DIRECTION = output; CAPACITANCE = 0.002;
LIMIT {CAPACITANCE {MAX = 0.96;} }

}

The output pin data_out has a capacitance of 0.002 pF. The maximum load capacitanc
may be applied to the pin is 0.96 pF.

4.5.2 Annotations for a timing arc

Specifications for a particular timing arc references specific pins:

DELAY {
UNIT = ns;
FROM {PIN = data_in; THRESHOLD = 0.4;}
TO {PIN = data_out; THRESHOLD = 0.6;}

}

SLEWRATE {
PIN = data_out; UNIT = ns;
FROM {THRESHOLD = 0.3;}
TO {THRESHOLD = 0.5;}

}
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Specifications for a generic timing arc does not reference specific pins, but values for b
switching directions must be defined):

DELAY {
UNIT = ns;
THRESHOLD {RISE=0.4; FALL=0.6;}

}

SLEWRATE {
UNIT = ns;
FROM {THRESHOLD {RISE=0.3; FALL=0.5;}}
TO  {THRESHOLD {RISE=0.5; FALL=0.3;}}

}

4.5.3 Creating Self-explaining Annotations

The self-explaining annotations can be created usingTEMPLATE.

Example: number of connections allowed for each pin

TEMPLATE must_connect {
LIMIT {CONNECTION {MIN = 1;}}

}

TEMPLATE can_float {
LIMIT {CONNECTION {MIN = 0;}}

}

TEMPLATE no_connection {
LIMIT {CONNECTION {MAX = 0;}}

}

CELL a_flipflop {
PIN q {must_connect DIRECTION=output;}
PIN qn {can_float DIRECTION=output;}
PIN qi {no_connection DIRECTION=output;}
...

}

4.6 Providing fallback position for applications

4.6.1 Use of DEFAULT

ALF’s modeling capabilities address the needs for all types of applications. However, A
should also work for applications that use only a subset of information. In order to make
subset of information controllable, modeling capability withDEFAULT is provided. The
information provided byDEFAULT can be strictly ignored by applications that understand th
full information.

A particular application may not be able to use 3-dimensional tables, or it may not under
certain models.DEFAULT values can be provided for each model.
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Example:

DELAY {
HEADER {

SLEWRATE {
PIN = a; UNIT = 1e-9;
TABLE {0.5 1.0 1.5}
DEFAULT = 1.0;

}
CAPACITANCE {

PIN = z; UNIT = 1e-12;
TABLE {0.1 0.2 0.3 0.4}
DEFAULT = 0.1;

}
VOLTAGE {

PIN = vdd; UNIT = 1;
TABLE {3.0 3.3 3.6}
DEFAULT = 3.3;

}
}
TABLE {

// arrangement of whitespaces and comments
// is only for readability
// parser sees just a sequence of 3x4x3=36 numbers

//slewrate 0.5 1.0 1.5 capacitance voltage
// --------------+--------------+-------

0.2 0.8 1.1 // 0.1 3.0
0.4 1.0 1.2 // 0.2
0.7 1.2 1.4 // 0.3
0.9 1.5 1.8 // 0.4

0.1 0.7 1.2 // 0.1 3.3
0.3 0.9 1.3 // 0.2
0.6 1.1 1.5 // 0.3
0.8 1.3 1.7 // 0.4

0.1 0.6 1.0 // 0.1 3.6
0.2 0.8 1.1 // 0.2
0.4 1.0 1.3 // 0.3
0.7 1.2 1.6 // 0.4

}
}

An application that does not understandVOLTAGE, will extract the following information from
this example:

DELAY {
HEADER {

SLEWRATE {
PIN = a; UNIT = 1e-9;
TABLE {0.5 1.0 1.5}

}
CAPACITANCE {

PIN = z; UNIT = 1e-12;
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TABLE {0.1 0.2 0.3 0.4}
}

}
TABLE {

//slewrate 0.5 1.0 1.5  capacitance voltage
// --------------+--------------+-------

0.1 0.7 1.2 // 0.1 3.3
0.3 0.9 1.3 // 0.2
0.6 1.1 1.5 // 0.3
0.8 1.3 1.7 // 0.4

}
}

An application that does not understandSLEWRATE, will extract only the following information:

DELAY {
HEADER {

CAPACITANCE {
UNIT = 1e-12;
PIN = z;
TABLE {0.1 0.2 0.3 0.4}

}
}
TABLE {

//slewrate 1.0 capacitance voltage
// ----+--------------+-------

0.7 // 0.1 3.3
0.9 // 0.2
1.1 // 0.3
1.3 // 0.4

}
}

4.7 Bus Modeling

4.7.1 Tristate Driver

Bus drivers are usually tristate buffers, which have straightforward functional models. If 
input signal and enable signal have well-defined logic states, the output is driven to'b1 , 'b0 ,
or 'bz , otherwise it is driven to'bx .

CELL tristate_buffer {
PIN a {DIRECTION = input; SIGNALTYPE = data;}
PIN e {DIRECTION = input; SIGNALTYPE = out_enable;}
PIN z {DIRECTION = output; SIGNALTYPE = data;

 SIGNALDRIVE = tristate; ENABLE_PIN = e;}
FUNCTION {

BEHAVIOR {
z =
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 (e & a) ? 'b1:
 (e & !a) ? 'b0:
 (!e)  ? 'bz:

 'bx;
}

}
}

A different model can be used for transmission-gate type of buffers, which also passes th
impedance state from input to output.

BEHAVIOR {
z =
 ( e) ? a :
 (!e) ? 'bz:

 'bx;
}

}

In order to model bus contention, the drive strength information of tristate buffers is nee
This is easily achieved by annotation of a pin property, using a context-sensitive keywo

CELL tristate_buffer {
...
PIN z {DIRECTION = output; DRIVE_STRENGTH = 4;}
...

}

The pin-propertyDRIVE_STRENGTH can take an arbitrary positive integer or a real number.
general, greater values override smaller values, and thatDRIVE_STRENGTH=0 is equivalent to

BEHAVIOR {z='bz;}.

ALF does not assume a particular set of legal drive strengths. The scale and granularity
to the discretion of the ASIC vendor (user).

Modeling of state-dependent drive strength is achieved by annotating drive strength wit
vector rather than within a pin. The following example shows a buffer withstrong-0  and
weak-1  drive.

CELL tristate_buffer {
...
PIN z {DIRECTION = output;}
...
VECTOR (z==0) {

DRIVE_STRENGTH = 4; {PIN = z;}
}
VECTOR (z==1) {

DRIVE_STRENGTH = 2; {PIN = z;}
}

}

The bus itself is not described by an ALF model, since the bus is a design construct rath
a library cell. A simulation model (Verilog or VHDL) would handle the bus contention.
However, since buses can also be embedded within a core cell, the functional model of th
would need a functional model of that bus as well.
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4.7.2 Bus with multiple drivers

The following example shows a bus with 3 drivers of equal strength. The output is the res
value of the bus.

CELL bus3 {
PIN z1 {DIRECTION = input;}
PIN z2 {DIRECTION = input;}
PIN z3 {DIRECTION = input;}
PIN z {DIRECTION = output;}
FUNCTION {

BEHAVIOR {
z =
 ((z2=='bz || z2==z1) && z3=='bz)? z1:
 ((z3=='bz || z3==z2) && z1=='bz)? z2:
 ((z1=='bz || z1==z3) && z2=='bz)? z3:
 (z1=='b1 && z2=='b1 && z3=='b1)? 'b1:
 (z1=='b0 && z2=='b0 && z3=='b0)? 'b0:

 'bx;
}

}
}

The following example shows a bus with two drivers of equal strength and one driver w
weaker strength (e.g. a busholder).

CELL bus2s1w {
PIN z_strong1 {DIRECTION = input;}
PIN z_strong2 {DIRECTION = input;}
PIN z_weak  {DIRECTION = input;}
PIN z  {DIRECTION = output;}
FUNCTION {

BEHAVIOR {
z =
 (z_strong1=='b1 && z_strong2=='b1)? 'b1:
 (z_strong1=='b0 && z_strong2=='b0)? 'b0:
 (z_strong1=='bz && z_strong2=='bz)? z_weak:

 'bx;
}

}
}
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4.7.3 Busholder

A busholder is a cell that retains the previous value of a tristate bus, when all drivers go to
impedance. This device has only one external pin, which is bidirectional. The input to th
bidirectional pin is the resolved value of the bus.

CELL busholder {
PIN a {DIRECTION = both;}
PIN z {DIRECTION = output; VIEW = none;}
FUNCTION {

BEHAVIOR {
a = !z;
@(a==0) {z = 1;}
@(a==1) {z = 0;}
@(a=='bx) {z = 'bx;}

}
}

}

In order to understand the functionality of a bidirectional pin, we split the pin conceptually
an input pin and an output pin as shown below.

CELL busholder_explicit {
PIN a_in {DIRECTION = input;}
PIN a_out {DIRECTION = output;}
PIN z {DIRECTION = output; VIEW = none;}
FUNCTION {

BEHAVIOR {
a_out = !z;
@(a_in==0) {z = 1;}
@(a_in==1) {z = 0;}
@(a_in=='bx) {z = 'bx;}

}
}

}

The function of this device is well defined, ifa_out==a_in  for all cases wherea_in!='bz . In
the case ofa_in=='bz, a_out  can take any value. This is a general modeling rule for functi
with bidirectional pins.

4.8 Wire models

4.8.1 Basic Wire Model

This example shows two wire models, using tables and equations. The equation is used 
the defined table range. If no equation was defined, the table would be extrapolated.

WIRE small_wire {
CAPACITANCE {

UNIT = pF;
HEADER {

CONNECTIONS {
TABLE {2 3 4 5}

}
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}
TABLE {0.05 0.09 0.13 0.17}
EQUATION {CONNECTIONS * 0.04 - 0.03}

}
RESISTANCE {

UNIT = mOHM;
HEADER {

CONNECTIONS {
TABLE {2 3 4 5}

}
}
TABLE {7.5 10.0 12.5 15.0}
EQUATION {CONNECTIONS * 2.5 + 2.5}

}
}

WIRE large_wire {
CAPACITANCE {

UNIT = pF;
HEADER {

CONNECTIONS {
TABLE {2 3 4}

}
}
TABLE {0.10 0.16 0.22}
EQUATION {CONNECTIONS * 0.06 - 0.2}

}
RESISTANCE {

UNIT = mOhm;
HEADER {

CONNECTIONS {
TABLE {2 3 4}

}
}
TABLE {10.0 12.5 15.0}
EQUATION {CONNECTIONS * 2.5 + 5.0}

}
}

4.8.2 Wire select model

Since a library may contain multiple wire models, it is necessary to specify which model s
be selected for an application. The annotations inside each wire model can be used for
purpose.

WIRE small_wire {
LIMIT {AREA {UNIT=1e-6; MAX=25;}}
...

}

WIRE large_wire {
LIMIT {AREA {UNIT=1e-6; MIN=25; MAX=100;}}
...

}
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If the area covering the routing space is smaller than 25mm2, thesmall_wire  model will be
chosen. If the area covering the routing space is between 25mm2 and 100mm2, thelarge_wire

model is chosen. The unit for area is 1mm2.

More annotations using theUSAGE keyword can be introduced in order to enable customize
wire model selection.

4.9 Megacell Modeling

4.9.1 Expansion of Timing Arcs

GROUP can be used for sets of numbers or for a continuous range of numbers. This can be
for defining timing arcs between all bits of two vectors. For example,

GROUP adr_bits {1 2 3}
GROUP data_bits {1 2}
VECTOR (01 adr[adr_bits] -> 01 dout[data_bits]) { ... }

replaces the following statements:

VECTOR (01 adr[1] -> 01 dout[1]) { ... }
VECTOR (01 adr[2] -> 01 dout[1]) { ... }
VECTOR (01 adr[3] -> 01 dout[1]) { ... }
VECTOR (01 adr[1] -> 01 dout[2]) { ... }
VECTOR (01 adr[2] -> 01 dout[2]) { ... }
VECTOR (01 adr[3] -> 01 dout[2]) { ... }

The following example shows bit-wise expansion of two vectors:

GROUP data_bits {1 2}
VECTOR (01 din[data_bits] -> 01 dout[data_bits]) { ... }

This replaces the following statements:

VECTOR (01 din[1] -> 01 dout[1]) { ... }
VECTOR (01 din[2] -> 01 dout[2]) { ... }

Example for bytewise (or sub-word wise) expansion:

GROUP low_byte {1 2}
GROUP high_byte {3 4}
VECTOR (01 we[0] -> 01 din[low_byte]) { ... }
VECTOR (01 we[1] -> 01 din[high_byte]) { ... }

This replaces the following statements:

VECTOR (01 we[0] -> 01 din[1]) { ... }
VECTOR (01 we[0] -> 01 din[2]) { ... }
VECTOR (01 we[1] -> 01 din[3]) { ... }
VECTOR (01 we[1] -> 01 din[4]) { ... }
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4.9.2 Two-port memory

The memory model example below shows the use of abstract transition operators on w
various vectors. Note the simplicity of the functional description of this two-port asynchro
memory. This example also contains some vectors with distinction between events on ro
column address lines.

CELL async_1write_1read_ram {
GROUP col {1:0}
GROUP row {4:2}
GROUP all {row col}
GROUP byte{7:0}
GROUP \* {0:31}
PIN enable_write {DIRECTION = input}
PIN [4:0] adr_write {DIRECTION = input}
PIN [4:0] adr_read {DIRECTION = input}
PIN [7:0] data_write {DIRECTION = input}
PIN [7:0] data_read {DIRECTION = output}
PIN [7:0] data_store [0:31] {DIRECTION = output VIEW = none}
FUNCTION {

BEHAVIOR {
data_read = data_store[adr_read];
@(enable_write) {data_store[adr_write] = data_write;}

}
}
VECTOR
(?! adr_read[col] -> ?? data_read[byte]) {

/* fill in arithmetic models for delay and power */
}
VECTOR
(?! adr_read[row] -> ?? data_read[byte]) {

/* fill in arithmetic models for delay and power */
}
VECTOR
((?!adr_read[col] && ?!adr_read[row]) -> ??data_read[byte]){

/* fill in arithmetic models for delay and power */
}
VECTOR (01 enable_write -> ?? data_read[byte]) {

/* fill in arithmetic models for delay and power */
}
VECTOR (?! data_write[byte] -> ?? data_read[byte]) {

/* fill in arithmetic models for delay and power */
}
VECTOR (?! adr_write[col]) {

/* fill in arithmetic models for power */
}
VECTOR (?! adr_write[row]) {

/* fill in arithmetic models for power */
}
VECTOR (?! adr_write[row] && ?! adr_write[col]) {

/* fill in arithmetic models for power */
}
VECTOR (01 enable_write) {

/* fill in arithmetic models for power */
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}
VECTOR (10 enable_write) {

/* fill in arithmetic models for power */
}
VECTOR (?! data_write[byte] && !enable_write) {

/* fill in arithmetic models for power */
}
VECTOR (?! data_write[byte] && enable_write) {

/* fill in arithmetic models for power */
}

}
VECTOR (?! adr_write[all] <-> 01 enable_write) {

SETUP {
VIOLATION {

BEHAVIOR { data_store[\*] = 'bxxxxxxxx; }
MESSAGE_TYPE = error;
MESSAGE =

"setup violation: changing 'adr_write' -> rising 'enable_write', memory -
> 'X'";

}
FROM { pin = adr_write; }
TO { pin = enable_write; }
/* fill in header, table or equation */

}
}
VECTOR (10 enable_write <-> ?! adr_write[all]) {

HOLD {
VIOLATION {

BEHAVIOR { data_store[\*] = 'bxxxxxxxx; }
MESSAGE_TYPE = error;
MESSAGE =

"hold violation: falling 'enable_write' -> changing 'adr_write', memory -
> 'X'";

}
FROM { pin = enable_write; }
TO { pin = adr_write; }
/* fill in header, table or equation */

}
}
VECTOR (?! data_write[byte] <-> 10 enable_write) {

SETUP {
VIOLATION {

BEHAVIOR { data_store[adr_write] = 'bxxxxxxxx; }
MESSAGE_TYPE = error;
MESSAGE =

"setup violation: changing 'data_write' -> falling 'enable_write',
memory[adr_write] -> 'X'";

}
FROM { pin = data_write; }
TO { pin = enable_write; }
/* fill in header, table or equation */

}
HOLD {

VIOLATION {
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BEHAVIOR { data_store[adr_write] = 'bxxxxxxxx; }
MESSAGE_TYPE = error;
MESSAGE =

"hold violation: falling 'enable_write' -> changing 'data_write',
memory[adr_write] -> 'X'";

}
FROM { pin = enable_write; }
TO { pin = data_write; }
/* fill in header, table or equation */

}
}
VECTOR (01 enable_write -> 10 enable_write) {

PULSEWIDTH {
VIOLATION {

MESSAGE_TYPE = error;
MESSAGE = "pulsewidth violation: high 'enable_write'";

}
PIN = enable_write;
/* fill in header, table or equation */

}
}
VECTOR (10 enable_write -> 01 enable_write) {

PULSEWIDTH {
VIOLATION {

MESSAGE_TYPE = error;
MESSAGE = "pulsewidth violation: low 'enable_write'";

}
PIN = enable_write;
/* fill in header, table or equation */

}
}

}

The energy consumption for each operation depends on the number of switching bits of th
Therefore, the model for power inside a particular vector may look like this:

VECTOR (?! data_write && enable_write) {
ENERGY {

UNIT = pJ;
HEADER {switching_bits {PIN = data_write;}}
EQUATION {1.3 * switching_bits}

}
}

The rule that the address on a write port must not change during write enable high can 
incorporated easily in the functional model. A pessimistic model assumes that the whol
memory content will become unknown, if such an illegal address change occurs.

BEHAVIOR {
data_read = data_store[adr_read];
@(enable_write) {data_store[adr_write] = data_write;}
@(!?adr_write && enable_write)

{data_store[\*] = 'bxxxxxxxx;}
}
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4.9.3 Three-port memory

Functional models of more complex memories are also straightforward. The conflicts of
writing to one memory location simultaneously from different ports can be modeled in a
pessimistic way as follows:

CELL async_2write_1read_ram {
PIN enb_write1 {DIRECTION = input;}
PIN enb_write2 {DIRECTION = input;}
PIN [4:0] adr_write1 {DIRECTION = input;}
PIN [4:0] adr_write2 {DIRECTION = input;}
PIN [4:0] adr_read {DIRECTION = input;}
PIN [7:0] data_write1 {DIRECTION = input;}
PIN [7:0] data_write2 {DIRECTION = input;}
PIN [7:0] data_read {DIRECTION = output;}
PIN [7:0] data_store [0:31] {DIRECTION = output; VIEW = none;}
FUNCTION {

BEHAVIOR {
data_read = data_store[adr_read];
@(enb_write1 && !enb_write2)

{data_store[adr_write1] = data_write1;}
@(enb_write2 && !enb_write1)

{data_store[adr_write2] = data_write2;}
@(enb_write1 && enb_write2 && adr_write1!=adr_write2) {

data_store[adr_write1] = data_write1;
data_store[adr_write2] = data_write2;

}
@(enb_write1 && enb_write2 && adr_write1==adr_write2) {

data_store[adr_write1] =
(data_write1==data_write2)? data_write1:8'bx;

data_store[adr_write2]
(data_write2==data_write1)? data_write2:8'bx;

}
}

}
}

4.9.4 Annotation for pins of a bus

Annotations of numeric values to a bus apply to the total bus, not to each individual pin.

Example:

PIN [1:4] my_bus_pin {
CAPACITANCE = 0.04 ;

}

The total bus pin capacitance is 0.4, the capacitance values on each individual pin are n
defined.
156 Advanced Library Format (ALF) Reference Manual Version 1.0.9



Megacell Modeling Applications

owed

d lat-

to a

dif-
d:
The individual pin capacitance can be defined as follows:

PIN [1:4] my_bus_pin {
CAPACITANCE c1 = 0.01 { PIN = my_bus_pin[1]; }
CAPACITANCE c2 = 0.01 { PIN = my_bus_pin[2]; }
CAPACITANCE c3 = 0.01 { PIN = my_bus_pin[3]; }
CAPACITANCE c4 = 0.01 { PIN = my_bus_pin[4]; }

}

4.9.5 Skew for simultaneously switching signals on a bus

Vectors with simultaneously switching bits on a bus may contain a specification of the all
skew in order to be still considered as simultaneously switching bits.

Example:

PIN [1:3] address;
VECTOR (?! address )

SKEW {
PIN = address;
/* fill in data */

}
}

SKEW applied to a bus pin is the maximal allowed time window between the earliest an
est edge within simultaneously switching signals of a bus.

The multiple value annotation feature allows the definition of a group of pins equivalent 
bus for SKEW modeling in the following way:

PIN A;
PIN [1:4] B;
VECTOR (?! A && ?! B)

SKEW { PIN { A B[2:3] } }
}

SKEW applies to the group of pins A, B[2], B[3]. Note that the following is semantically 
ferent, since this would result in expansion of each object where the group is instantiate

PIN A;
PIN [1:4] B;
GROUP my_group { A B[2] B[3] }
VECTOR (?! my_group)

SKEW { PIN = my_group; }
}
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PIN A;
PIN [1:4] B;
VECTOR (?! A)

SKEW { PIN = A ; }
}
VECTOR (?! B[2])

SKEW { PIN = B[2] ; }
}
VECTOR (?! B[3])

SKEW { PIN = B[3] ; }
}

See Section 4.15.2.7 for definition of SKEW for scalar pins.

4.10 Special cells

4.10.1 Pulse generator

The following cell generates a one-shot pulse of 1 ns duration when enable goes high.

CELL one_shot {
PIN enable {DIRECTION = input;}
PIN q {DIRECTION = output;}
FUNCTION {

BEHAVIOR {
@(01 enable) {q = 1;}
@(q) {q = 0;}

}
}
VECTOR (01 q -> 10 q) {

DELAY = 1.0 {UNIT = ns;}
}

}

4.10.2 VCO

The following cell is a voltage controlled oscillator with 50% duty cycle and enable.

CELL vco {
PIN enable {DIRECTION = input; PINTYPE = digital;}
PIN v_in {DIRECTION = input; PINTYPE = analog;}
PIN q {DIRECTION = output; PINTYPE = digital;}
FUNCTION {

BEHAVIOR {
@(!enable) {q = 0;}
@(!q && enable) {q = 1;}
@( q && enable) {q = 0;}

}
}
TEMPLATE voltage_controlled_delay {

DELAY {
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UNIT = ns;
HEADER {

voltage {
PIN = v_in;
TABLE {0.5 1.0 1.5 2.0 2.5 3.0}

}
}
TABLE {10.00 5.00 3.33 2.50 2.00 1.67}

}
}
VECTOR (01 q -> 10 q)

voltage_controlled_delay
}
VECTOR (10 q -> 01 q)

voltage_controlled_delay
}

}

The template shown above can also be written as an equation to map voltage to freque

TEMPLATE voltage_controlled_delay {
DELAY {

UNIT = ns;
HEADER {voltage {PIN = v_in;}}
EQUATION {5.0 / voltage}

}
}

4.11 Core Modeling

4.11.1 Digital Filter

This example illustrates the potential of ALF for modeling complex blocks. It shows a di
filter performing the following operation

dout(t) = state(t) + b1 * state(t-1) + b2 * state(t-2)
state(t) = din(t) - a1 * state(t-1) - a2 * state(t-2)

This second order infinite impulse response (IIR) filter is implemented with a single multi
and a single adder/subtractor in a way that a newdout  is produced every 4 clock cycles. The
variable coefficientsa1, a2, b1,  andb2 are stored in a dual port RAM.

The model uses templates for the functional blocks of a 2-bit counter used as controller
memory access and I/O operation, a RAM for coefficient storage, and the filter itself. In th
module they are instantiated as a structural netlist.
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The use of templates is more general than the use of primitives, since not all basic blocks
core may be supported as primitives.

LIBRARY core_lib {
TEMPLATE CNT2 {

BEHAVIOR {
@ (!<cd>) {<cnt> = 2'b0;}
: (01 <cp>) {<cnt> = <start> ? 2'b0 : <cnt> + 1;}

}
}

TEMPLATE RAM16X4 {
BEHAVIOR {

<dout> = <dmem>[<r_adr>];
@ (<we>) {<dmem>[<w_adr>] = <din>;}

}
}

TEMPLATE IIR2 {
BEHAVIOR {

sum =
(<cntrl>=='d0)? <din> - product :
(<cntrl>=='d1)? accu - product :
(<cntrl>=='d2)? accu + product :
(<cntrl>=='d3)? accu + product;

@ (!<cd>) {
product = 16'b0;
accu = 16'b0;

}
: (01 <cp>){

product =
(<cntrl>=='d0)? coeff * state2 :
(<cntrl>=='d1)? coeff * state1 :
(<cntrl>=='d2)? coeff * state2 :
(<cntrl>=='d3)? coeff * state1 :
16'bX;

accu = sum;
}

@ (!<cd>) {
<dout> = 16'b0;
state1 = 16'b0;
state2 = 16'b0;

}
: (01 <cp> && <cntrl>=='d0){

state2 = state1;
state1 = accu;
<dout> = accu;

}
}

}

CELL digital_filter {
PIN [15:0] data_out {DIRECTION = output}
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PIN [15:0] data_in {DIRECTION = input}
PIN [1:0] index_coeff {DIRECTION = input}
PIN write_coeff {DIRECTION = input}
PIN [15:0] coeff_in {DIRECTION = input}
PIN [15:0] coeff_out {DIRECTION = output VIEW = none}
PIN [15:0] coeff_array [1:4] {DIRECTION = output VIEW = none}
PIN data_strobe {DIRECTION = input}
PIN [1:0] count {DIRECTION = output VIEW = none}
PIN clock {DIRECTION = input}
PIN reset {DIRECTION = input}
FUNCTION {

IIR2 { din=data_in; dout=data_out; coeff=coeff_out;
cp=clock; cd=reset; cntrl = count;}

CNT2 { start=data_strobe; cnt=count; ck=clock; cd=reset;}
RAM16X4{ we=write_coeff; din=coeff_in; dout=coeff_out;

dmem=coeff_array; r_adr=count; w_adr=index_coeff;}
}

}
}

4.12 Connectivity

Connectivity information may be specified within the definition of the ALF language form
as described below. A connectivity object always contains a rule specifying the type of
connections (e.g. must short, can short, cannot short) and a table. If no header is given, t
table contains the pins or pin classes subject to the connectivity rule. If a header is given
the table contains the values of the connectivity function between arguments in the hea
There must be a table inside each connectivity argument, containing the pins or pin cla
subject to the connectivity rule. Valid arguments areDRIVER and/orRECEIVER. Valid values
are the boolean digits0, 1, and?. The value1 implies the connection rule is true, the value0

implies the connection rule is false, the value? implies don’t care situation with the connectio
rule.

4.12.1 External connections between pins of a cell

The following example shows how to specify required and disallowed interconnections
external to a cell.

CELL pll {
PIN vdd_ana {PINTYPE=supply;}
PIN vdd_dig {PINTYPE=supply;}
PIN vss_ana {PINTYPE=supply;}
PIN vss_dig {PINTYPE=supply;}
CONNECTIVITY common_ground {

CONNECT_RULE = must_short;
TABLE {vss_ana vss_dig}

CONNECTIVITY separate_supply {
CONNECT_RULE = cannot_short;
TABLE {vdd_ana vdd_dig}

}
}
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4.12.2 Allowed connections for classes of pins

The following example defines allowable pin interconnections. The constants for the de
connectivity classes, the grouping of these classes, and the allowable class connectivit
are first defined at the library level. The non-zero values within the matrix specify allowa
connectivity of indexed classes. The connectivity classes for pins are then specified wit
pin annotation sections.

LIBRARY example_library {
...
CLASS default_class;
CLASS clock_class;
CLASS enable_class;
CLASS reset_class;
CLASS tristate_class;
...
TEMPLATE drivers {

default_class
clock_class
enable_class
reset_class
tristate_class

}
TEMPLATE receivers {

default_class
clock_class
enable_class
reset_class

}
CONNECTIVITY driver_to_driver {

CONNECT_RULE = can_short;
HEADER {

DRIVER {TABLE {drivers}}
}
TABLE {// def clk enb rst tri

 0 0 0 0 1
}

}
CONNECTIVITY receiver_to_receiver {

CONNECT_RULE = can_short;
HEADER {

RECEIVER {TABLE {receivers}}
}
TABLE {// def clk enb rst

 1 1 1 1
}

}
CONNECTIVITY driver_to_receiver {

CONNECT_RULE = can_short;
HEADER {

DRIVER {TABLE {drivers}}
RECEIVER {TABLE {receivers}}

}
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TABLE {// def clk enb rst tri // driver/receiver
1 1  1 1  0 // def
0 1  0 0 0 // clk
0 0  1 0 0 // enb
0 0  0 1 0 // rst

}
}

The above table specifies allowed connectivity from each class to itself, as well as from
class todefault_class  except for thetristate_class  class which may only connect to
itself. Note also that while any class may connect todefault_class , thedefault_class  may
only connect to itself.

Once the library level connectivity is defined, connection class specifications are define
each pin within cells. The default integer value for theCLASS annotation is0, which
corresponds to the constant declaration value fordefault_class .

CELL d_flipflop_clr {
PIN cd {PINTYPE = input; SIGNALTYPE = clear;

 POLARITY = low; CONNECT_CLASS = reset_class;}
PIN cp {PINTYPE = input; SIGNALTYPE = clock;

 POLARITY = rising_edge; CONNECT_CLASS = clock_class;}
PIN d {PINTYPE = input;}
PIN q {PINTYPE = output; CONNECT_CLASS = default_class;}

}

CELL d_latch {
PIN g {PINTYPE = input; SIGNALTYPE = enable;

 POLARITY = high; CONNECT_CLASS = enable_class;}
PIN d {PINTYPE = input; CONNECT_CLASS = default_class;}
PIN q {PINTYPE = output; CONNECT_CLASS = default_class;}

}

CELL tristate_buffer {
PIN a {PINTYPE = input;}
PIN enable {PINTYPE = input; CONNECT_CLASS = enable_class;}
PIN z {PINTYPE = output; CONNECT_CLASS = tristate_class;}
...

}

Net-specific connectivity, as opposed to the pin-specific connectivity as shown above, i
possible within the syntax of the language, since aCLASS is not restricted to pins. Specific
applications may assign all pins of a specific type as well as nets like power and ground
to a defined class. This class may be used within the connectivity tables to allow or disa
certain connectivity.
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For example, ifvddrail_class  was defined as a net-specific connectivity class, then a spe
pin may be disallowed from connecting to any net in thevddrail_class  connectivity class.

CLASS vddrail_class
...
CELL inverter {

PIN in_pin {PINTYPE = input; SIGNALTYPE = clear;
POLARITY = low; CONNECT_CLASS = reset_class;}

CONNECTIVITY dont_tie {
CONNECT_RULE = cannot_short;
TABLE {in_pin vddrail_class}

}
...

}

4.13 Signal Integrity

4.13.1 I/V curves

I/V curves describe the driven or drawn current at a pin as a function of the voltage at o
several pins. The following example describes the output current of a buffer as a functio
the input and output voltage with a 2-dimensional lookup table.

CELL simple_buffer {
PIN z { DIRECTION = output; }
PIN a { DIRECTION = input; }
// current @ z dependent on voltage @ z and @ a
CURRENT {

PIN = z;
UNIT = ma;
HEADER {

VOLTAGE vout {
PIN = z;
TABLE { 0.0 0.5 1.0 1.5 2.0 2.5 3.0 }

}
VOLTAGE vin {

PIN = a;
TABLE { 0.0  1.0  2.0  3.0 }

}
}
TABLE {

5.0 5.0 4.8 4.2 3.2 1.6 0.0
2.5 1.5 0.2 -0.4 -1.8 -2.7 -3.5
1.2 0.1 -1.3 -1.9 -2.5 -3.8 -4.6
0.0 -2.0 -3.8 -4.7 -5.5 -6.2 -6.3

}
}
// fill in function, vector and other stuff

}
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An equation can also be used instead of a lookup table, for example:

CURRENT {
PIN = z;
UNIT = ma;
HEADER {

VOLTAGE vout {
PIN = z;

}
VOLTAGE vin {

PIN = a;
}

}
EQUATION {

(1 - exp(6.3 - 2.4*vout))*exp(0.9 - 0.3*vin)
- (1 - exp(3.2*vout))*exp(0.3*vin)

}
}

A buffer may have programmable drive strength controlled by the state of additional input
State-dependent I/V curves can be described by vector-specificCURRENT models.

CELL programmable_drive_strength_buffer {
PIN z { DIRECTION = output; }
PIN a { DIRECTION = input; }
// control pins for drive strength
PIN p1 { DIRECTION = input; }
PIN p2 { DIRECTION = input; }
VECTOR (!p1 && !p2) {

CURRENT {
// fill in the model

}
}
VECTOR (!p1 &&  p2) {

CURRENT {
// fill in the model

}
}
VECTOR ( p1 && !p2) {

CURRENT {
// fill in the model

}
}
VECTOR ( p1 &&  p2) {

CURRENT {
// fill in the model

}
}

}

Note that it is also possible to describe other analog cell characteristics, state-depende
state-independent, for instance voltage versus voltage, frequency versus voltage, curren
temperature etc. in the same way.
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4.13.2 Driver resistance

Driver resistance is used to model the transient behavior of signals especially for crossta
drivers are modeled by voltage sources and driver resistances, as illustrated below:

Figure 4-1: Modeling driver resistance

The purpose is to use linear circuit theory for the analysis of multiple drivers interacting
coupled RC-interconnect networks. In reality, the drivers have non-linear resistance. The
resistance is a model of the non-linear resistance with the best-fitting linear resistance.
Therefore the driver resistance is state-dependent and eventually also load-and slewra
dependent, since for different states and different ranges of load and slewrates the bes
value for driver resistance is different.

The following example shows a buffer featuring different driver resistance values for stati
and high states, and tables of slewrate and load-dependent transient driver resistance va
rise and fall transitions.

cell simple_buffer {
PIN z { DIRECTION = output; }
PIN a { DIRECTION = input; }
// state-dependent static driver resistance
VECTOR (!z) {

RESISTANCE = 0.7k { PIN = z; }
}
VECTOR (z) {

RESISTANCE = 1.2k { PIN = z; }
}
// slew & load dependent transient driver resistance
VECTOR (01 a -> 01 z) {

RESISTANCE {
PIN = z;
UNIT = kohm;
HEADER {

CAPACITANCE {
PIN = z;
UNIT = pfarad;
TABLE { 0.1  0.4  1.6 }
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}
SLEWRATE {

PIN = a;
UNIT = nsec;
TABLE { 0.5  1.5}

}
TABLE { 1.4  1.3  1.3  1.6  1.4  1.3 }

}
}
VECTOR (10 a -> 10 z) {

RESISTANCE {
PIN = z;
UNIT = kohm;
HEADER {

CAPACITANCE {
PIN = z;
UNIT = pfarad;
TABLE { 0.1  0.4  1.6 }

}
SLEWRATE {

PIN = a;
UNIT = nsec;
TABLE { 0.5  1.5}

}
TABLE { 0.9  0.8  0.8  1.1  0.9  0.8 }

}
}

}

The transient driver resistance can also be state-dependent, for example in the case of 
with programmable drive-strength.

CELL programmable_drive_strength_buffer {
PIN z { DIRECTION = output; }
PIN a { DIRECTION = input; }
// control pins for drive strength
PIN p1 { DIRECTION = input; }
PIN p2 { DIRECTION = input; }
// state-dependent static driver resistance
VECTOR (!z && !p1 && !p2) {

RESISTANCE = 0.7k { PIN = z; }
}
VECTOR (!z && !p1 &&  p2) {

RESISTANCE = 0.6k { PIN = z; }
}
VECTOR (!z &&  p1 && !p2) {

RESISTANCE = 0.5k { PIN = z; }
}
VECTOR (!z &&  p1 && !p2) {

RESISTANCE = 0.4k { PIN = z; }
}
VECTOR (z && !p1 && !p2) {

RESISTANCE = 1.2k { PIN = z; }
}
VECTOR (z && !p1 &&  p2) {
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RESISTANCE = 1.0k { PIN = z; }
}
VECTOR (z &&  p1 && !p2) {

RESISTANCE = 0.8k { PIN = z; }
}
VECTOR (z &&  p1 &&  p2) {

RESISTANCE = 0.6k { PIN = z; }
}
// slew & load and state dependent transient driver resistance
VECTOR (01 a -> 01 z && !p1 && !p2) {

RESISTANCE {
// fill in the model

}
VECTOR (01 a -> 01 z && !p1 &&  p2) {

RESISTANCE {
// fill in the model

}
VECTOR (01 a -> 01 z &&  p1 && !p2) {

RESISTANCE {
// fill in the model

}
VECTOR (01 a -> 01 z &&  p1 &&  p2) {

RESISTANCE {
// fill in the model

}
VECTOR (10 a -> 10 z && !p1 && !p2) {

RESISTANCE {
// fill in the model

}
VECTOR (10 a -> 10 z && !p1 &&  p2) {

RESISTANCE {
// fill in the model

}
VECTOR (10 a -> 10 z &&  p1 && !p2) {

RESISTANCE {
// fill in the model

}
VECTOR (10 a -> 10 z &&  p1 &&  p2) {

RESISTANCE {
// fill in the model

}
}

The model for transient driver resistance has the same form as a slewrate and load dep
model for delay. Voltage, process, and temperature dependent driver resistance can al
modeled in the same way as voltage, process, and temperature-dependent delay.
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4.14 Resistance and Capacitance on a Pin

4.14.1 Self-Resistance and Capacitance on Input Pin

A pin resistance is a resistance inside a PIN object.

PIN <pin_identifier> {
DIRECTION = input;
RESISTANCE = <resistance_number>;
CAPACITANCE = <capacitance_number>;

}

The pin resistance is in series with the pin capacitance, as shown in figure 4-2:

Figure 4-2: Resistance and capacitance on a pin

4.14.2 Pullup and Pulldown Resistance on Input Pin

A pullup or pulldown resistance or a combination of both on an input pin can be describ
follows:

PIN <pin_identifier> {
DIRECTION = input;
PULL = < up | down | both > {

VOLTAGE = <voltage_number>;
RESISTANCE = <resistance_number>;

}
}

The pullup/pulldown resistance is in series with a clamp voltage, as shown in figure 4-3

Figure 4-3: Pullup or pulldown resistance

input pin

pin resistance

pin capacitance

input pin

pullup or pulldown resistance

clamp voltage
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In the case of a pullup/pulldown combination, the resistance and voltage represent the
Thevenin equivalent resistance and voltage, respectively, as shown in figure 4-4:

Figure 4-4: Thevenin equivalent resistance

4.14.3 Pin and Load Resistance and Capacitance on Output Pin

The driver resistance (see 4.13.2) can also be represented as pin capacitance of an ou
in case there is no state dependency.

PIN <pin_identifier> {
DIRECTION = output;
CAPACITANCE = <capacitance_number>;
RESISTANCE {

RISE = <rise_resistance_number>;
FALL = <rise_resistance_number>;

}
}

Please note the distinction of capacitance and resistance of the pin itself and capacitan
resistance applied as load to the pin in the following schematic. The load capacitance a
resistance would be specified in a characterization vector (see Section 4.3).

See the following schematic for driver signal, pin and load resistance and capacitance:

Figure 4-5: Resistance and capacitance on output pin

input pin
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equivalent voltage

input pin

R = R1*R0 / (R1 + R0)

V1

V0

R1

R0

V = (V1*R0 + V0*R1) / (R1 + R0)
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4.15 ALF/SDF cross reference

This section provides a cross reference between the representation of timing data in AL
SDF. In general, ALF is used as a characterization library, which is the input to a delay
calculator, whereas SDF is the output from a delay calculator. Therefore ALF typically
contains tables or equations (i.e. arithmetic models) for timing data whereas SDF conta
discrete set of data in fixed format. However, in an ALF representation of timing shells f
cores, which are typically represented in SDF today, the ALF library would contain the s
data as the SDF.

The specification of the stimulus for a particular timing measurement (i.e. the timing diag
is pertinent to both ALF and SDF. In ALF, timing diagrams are directly described in the ve
expression language, and the timing measurements are always specified in relation to a
particular timing vector. In SDF, timing diagrams are partly described in the language a
partly implied by the keyword for timing measurements. Therefore SDF needs a larger 
keywords than ALF for the same description capability.

4.15.1 SDF delays

4.15.1.1 SDF DELAY for IOPATH and INTERCONNECT

DELAY is a measurement of the time needed for a signal to travel from one port to ano
port. In ALF, delay measurements are described in a uniform language, independent of w
A and Z are the input and output port of the same cell, respectively, or A and Z are the 
and receiver connected to the same net, or A and Z are both outputs of a cell. Therefore t
keywords IOPATH and INTERCONNECT have no counterpart in ALF.

VECTOR (01 A -> 01 Z) {
DELAY {

FROM {PIN = A;}
TO {PIN = Z;}
/* fill in data */

}
}

Figure 4-6: Measurement of SDF IOPATH or INTERCONNECT delay

The ALF VECTOR describes the sequence of events shown in figure 4-6

rising edge at A followed by rising edge at Z.

delay

A

Z
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The FROM and TO pin annotations define the sense of measurement for DELAY.

As opposed to SDF where input ports of an IOPATH may have an edge specification an
output ports may not, the vector expression language in ALF always contains the specifi
of the edge:

rising edge = “01”, falling edge = “10”, any edge = “?!”.

4.15.1.2 SDF PATHPULSE

PATHPULSE in SDF defines the smallest pulse that may appear at a port in form of

1. a full-swing pulse

2. a pulse to X.

The equivalent model in ALF uses two vectors in conjunction with the keyword
PULSEWIDTH.1

The ALF keywords are of more general use than the SDF PATHPULSE keyword, which i
for one specific use.

VECTOR (01 Z -> 10 Z) {
PULSEWIDTH {

PIN = Z;
/* fill in data */

}
}

Figure 4-7: Measurement of SDF PATHPULSE full-swing

The ALF VECTOR above describes the sequence of events

rising edge at Z followed by falling edge at Z.

The smallest possible full-swing pulse applies at pin Z.

VECTOR ('b0'bX Z -> 'bX'b0 Z) {
PULSEWIDTH {

PIN = Z;
/* fill in data */

}
}

1. The same keyword PULSEWIDTH is also used for a timing constraint in ALF. The semantic mean
ing in both usage cases is consistent: PULSEWIDTH = smallest possible pulse at output or smalle
allowed pulse at input. Therefore the usage of the same keyword is justified.

pulsewidth

Z
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Figure 4-8: Measurement of SDF PATHPULSE  to X

This ALF VECTOR describes the sequence of events

rising edge at Z from 0 to X followed by falling edge at Z from X to 0.

The smallest possible pulse to “X” applies at pin Z.

VECTOR (01 A -> 10 B -> 01 Z -> 10 Z) {
PULSEWIDTH {

PIN = Z;
/* fill in data */

}
}

Figure 4-9: Measurement of SDF PATHPULSE with triggering inputs

This ALF VECTOR describes the sequence of events as shown in figure 4-9

rising edge at A followed by falling edge at B followed by rising edge at Z followed by
ing edge at Z.

This is a detailed specification of the pulse itself at pin Z as well as of the triggering inpu
signals A and B.

4.15.1.3 SDF RETAIN delays

RETAIN delay in SDF is a measurement for the time for which an output signal will retai
value after a change at a related input signal occurs. It appears always in conjunction w
IOPATH delay, which is the time for which an output will stabilize after changing its valu

pulsewidth

Z XXXXXXXXXXX

pulsewidth

A

B

Z

Version 1.0.9 Advanced Library Format (ALF) Reference Manual 173



Applications ALF/SDF cross reference

r at the

ot

 point
.

RETAIN is mainly used for asynchronous memories, where decoder glitches may appea
data output port.

VECTOR (01 A -> ?! Z) {
RETAIN {

FROM {PIN = A;}
TO {PIN = Z;}
/* fill in data */

}
DELAY {

FROM {PIN = A;}
TO {PIN = Z;}
/* fill in data */

}
}

Figure 4-10: RETAIN and IOPATH delay

The ALF VECTOR describes the sequence of events shown in figure 4-10

rising edge at A followed by any edge at Z.

The intermediate events at Z, occuring eventually between retain and delay time, are n
specified.

4.15.1.4 SDF PORT delays

PORT delay in SDF is a delay measurement with unspecified start point, since the start
is going to be established by a connection to a driver in the design and not in the library

VECTOR (01 A) {
DELAY {

TO {PIN = A;}
/* fill in data */

}
}

A

Z

retain

XXXXXXXX

delay
174 Advanced Library Format (ALF) Reference Manual Version 1.0.9



ALF/SDF cross reference Applications

e exact

int.

o

ific

as a
up or

Z)
Figure 4-11: SDF PORT delay

This ALF VECTOR describes the event figure 4-11

rising edge at A.

The absence of a FROM pin defines the absence of a start point, which corresponds to th
meaning of PORT in SDF.

ALF also has the capability of describing a delay measurement with unspecified end po

VECTOR (01 Z) {
DELAY {

FROM {PIN = Z;}
/* fill in data */

}
}

Hence ALF provides the description capability for both a delay from unspecified driver t
specified receiver and a delay from specified driver to unspecified receiver.

4.15.1.5 SDF DEVICE delays

DEVICE delay in SDF is a delay that applies from all input ports of a device to one spec
output port or to all output ports by default.

The ALF vector expression language has no notion of “all input ports of a device”. ALF h
more general capability of declaring groups of pins and define delays from group to gro
from group to pin or from pin to group.

GROUP any_input { A B }
GROUP any_output { Y Z }
VECTOR (01 any_input -> 01 any_output) {

DELAY {
FROM {PIN = any_input;}
TO {PIN = any_output;}
/* fill in data */

}
}

The ALF VECTOR above describes the event

rising edge at any_input (i.e. A or B) followed by rising edge at any_output (i.e. Y or .

delay

A

Version 1.0.9 Advanced Library Format (ALF) Reference Manual 175



Applications ALF/SDF cross reference

 edge
This construct is equivalent to the following four vectors:

VECTOR (01 A -> 01 Y) {
DELAY {

FROM {PIN = A;}
TO {PIN = Y;}
/* fill in data */

}
}
VECTOR (01 B -> 01 Y) {

DELAY {
FROM {PIN = B;}
TO {PIN = Y;}
/* same data */

}
}
VECTOR (01 A -> 01 Z) {

DELAY {
FROM {PIN = A;}
TO {PIN = Z;}
/* same data */

}
}
VECTOR (01 B -> 01 Z) {

DELAY {
FROM {PIN = B;}
TO {PIN = Z;}
/* same data */

}
}

4.15.2 SDF timing constraints

4.15.2.1 SDF SETUP

SETUP in SDF is the minimal time required for a data signal to arrive before the sampling
of a clock signal in order to be sampled correctly.

VECTOR (?! din -> 01 clk) {
SETUP {

FROM {PIN = din;}
TO {PIN = clk;}
/* fill in data */

}
}
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Figure 4-12: Measurement of SDF SETUP

The ALF VECTOR describes the sequence of events as shown in figure 4-12

any edge at din followed by rising edge at clk.

The FROM and TO pin annotations define the sense of measurement for SETUP. Since
time is measured in positive sense from data to clock, din is the data pin, and clk is the 
pin.

4.15.2.2 SDF HOLD

HOLD in SDF is the minimal non-negative time required for a data signal to stay at its v
after the sampling edge of a clock signal in order to be sampled correctly.

VECTOR (01 clk -> ?! din) {
HOLD {

FROM {PIN = clk;}
TO {PIN = din;}
/* fill in data */

}

Figure 4-13: Measurement of SDF HOLD

The ALF VECTOR describes the sequence of events as shown in figure 4-13

rising edge at clk followed by any edge at din.

The FROM and TO pin annotations define the sense of measurement for HOLD. Since
time is measured in positive sense from clock to data, clk is the clock pin, and din is the
pin.

setup

din

clk

hold

din

clk
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4.15.2.3 SDF SETUPHOLD

SETUPHOLD in SDF is a combination of SETUP and HOLD. In this combination, eithe
SETUP or HOLD may be a negative value, but the sum of both values, which represen
minimal pulsewidth of the data in order to be sampled correctly, must be non-negative. 
time from the leading data edge to the sampling clock edge is SETUP. The time from th
sampling clock edge to the trailing data edge is HOLD.

VECTOR // for SETUPHOLD
( ?! din -> 01 clk -> ?! din //setup & hold both positive
| 01 clk -> ?! din -> ?! din //negative setup, positive hold
| ?! din -> ?! din -> 01 clk //positive setup, negative hold
) {
SETUP {

FROM {PIN = din;
 TO {PIN = clk;}
/* fill in data */

}
HOLD {

FROM {PIN = clk;}
TO {PIN = din;}
/* fill in data */

}
}

Figure 4-14: Measurement of SDF SETUPHOLD

The ALF VECTOR describes the alternative sequences of events as shown in figure 4-

    any edge at din followed by rising edge at clk followed by any edge at din
or rising edge at clk followed by any edge at din followed by any edge at din
or any edge at din followed by any edge at din followed by rising edge at clk.

The FROM and TO pin annotations define the sense of measurement for SETUP and H
respectively, in the same way as if they were specified in separate vectors.

hold

din

clk
setup

minimal data pulse
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4.15.2.4 SDF RECOVERY

RECOVERY in SDF is the minimal time required for a higher priority asynchronous con
signal to be released before a lower priority clock signal in order to allow the clock to be
control.

VECTOR (01 clearbar -> 01 clk) {
RECOVERY {

FROM {PIN = clearbar;}
TO {PIN = clk;}

}

Figure 4-15: Measurement of SDF RECOVERY

The ALF VECTOR describes the sequence of events as shown in figure 4-15

rising edge at clearbar followed by rising edge at clk.

The FROM and TO pin annotations define the sense of measurement for RECOVERY. 
recovery time is measured in positive sense from the higher priority asynchronous cont
signal to the lower priority clock, clearbar is the asynchronous control pin, and clk is the 
pin.

4.15.2.5 SDF REMOVAL

REMOVAL in SDF is the minimal time required for a higher priority asynchronous contr
signal to stay active after a lower priority clock signal in order to keep overriding the clo

VECTOR (01 clk -> 01 clearbar) {
REMOVAL {

FROM {PIN = clk;}
TO {PIN = clearbar;}

}

recovery

clearbar

clk
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Figure 4-16: Measurement of SDF REMOVAL

The ALF VECTOR describes the sequence of events as shown in figure 4-16

rising edge at clk followed by rising edge at clearbar.

The FROM and TO pin annotations define the sense of measurement for REMOVAL. S
removal time is measured in positive sense from the lower priority clock to the higher pr
asynchronous control signal, clk is the clock pin, and clearbar is the asynchronous cont

4.15.2.6 SDF RECREM

RECREM in SDF is a combination of RECOVERY and REMOVAL. In this combination
either RECOVERY or REMOVAL may be negative, but the sum of both must be non-
negative. The sum of RECOVERY and REMOVAL represents the width of the “forbidde
zone” for the phase between the higher priority and the lower priority signal. The bounda
the left is RECOVERY, the boundary to the right is REMOVAL.

In a characterization vector for RECREM, either the REVOVERY or the REMOVAL effe
can be observed, depending on the phase relationship between the signals. This is diffe
from SETUPHOLD where the effects of both SETUP and HOLD can be observed in the 
characterization vector.

VECTOR // for RECREM
( 01 clearbar -> 01 clk// pos. recovery or neg. removal
| 01 clk -> 01 clearbar// neg. recovery or pos. removal
) {
RECOVERY{

FROM {PIN = clearbar;}
TO {PIN = clk;}
/* fill in data */

}
REMOVAL {

FROM {PIN = clk;}
TO {PIN = clearbar;}
/* fill in data */

}
}

removal

clearbar

clk
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Figure 4-17: Measurement of SDF RECREM

The ALF VECTOR describes the alternative sequences of events as shown in figure 4-

rising edge at clearbar followed by rising edge at clk
or rising edge at clk followed by rising edge at clearbar

The FROM and TO pin annotations define the sense of measurement for RECOVERY 
REMOVAL, respectively, in the same way as if they were specified in separate vectors.

4.15.2.7 SDF SKEW

SKEW in SDF is maximum allowed difference in arrival time between signals. The allow
region for the phase between signals is bound by zero to the left and SKEW to the right
positive SKEW or by SKEW to the left and zero to the right for negative SKEW.

VECTOR (01 clk1 <&> 01 clk2) {// pos. or neg. or zero skew
SKEW {

FROM {PIN = clk1;}
TO {PIN = clk2;}
/* fill in data */

}
}

Figure 4-18: Measurement of SDF SKEW
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recovery

forbidden zone
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clk2

skew (if negative value)

allowed zone

allowed zone
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The ALF VECTOR describes the alternative sequences of events as shown in figure 4-

     rising edge at clk1 followed by rising edge at clk2
or rising edge at clk2 followed by rising edge at clk1
or rising edge at clk2 simultaneously with rising edge at clk1

This is the most general case, where the skew may be positive, negative or zero across
characterization space. The FROM and TO pin annotations define the sense of measur
for SKEW.

4.15.2.8 SDF WIDTH

VECTOR (01 clk -> 10 clk) {// high pulse
PULSEWIDTH {

PIN = clk;
/* fill in data */

}
}

This ALF vector describe the sequence of events as shown in figure 4-19

rising edge at clk followed by falling edge at clk.

The pulsewidth applies to the positive phase of the signal clk.

VECTOR (10 clk -> 01 clk) {// low pulse
PULSEWIDTH {

PIN = clk;
/* fill in data */

}
}

This ALF vector describe the sequence of events

falling edge at clk followed by rising edge at clk.

The pulsewidth applies to the negative phase of the signal clk.

Figure 4-19: Measurement of SDF WIDTH

VECTOR (01 clk -> 10 clk | 10 clk -> 01 clk) {// high or low pulse
PULSEWIDTH {

PIN = clk;
/* fill in data */

}
}

This ALF vectors describes the alternative sequences of events as shown in figure 4-20

clk

pulsewidth
pulsewidth
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     rising edge at clk followed by falling edge at clk
or falling edge at clk followed by rising edge at clk.

The pulsewidth applies to both phases of the signal clk.

4.15.2.9 SDF PERIOD

VECTOR (01 clk -> 10 clk -> 01 clk) {
PERIOD {

PIN = clk;
/* fill in data */

}
}

Figure 4-20: Measurement of SDF PERIOD

This ALF vectors describes the sequence of events as shown in figure 4-21

rising edge at clk followed by falling edge at clk followed by rising edge at clk.

Thus the period is measured between.two consecutive rising edges at the signal clk.

4.15.2.10 SDF NOCHANGE

VECTOR (?! addr -> 10 write -> 01 write -> ?! addr) {
SETUP {

FROM {PIN = addr;}
TO {PIN = write;}
/* fill in data */

HOLD {
FROM {PIN = write;}
TO {PIN = addr;}
/* fill in data */ }

NOCHANGE {
PIN = addr;
/* fill in optional data */

}
}

clk

period
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Figure 4-21: Detection of SDF NOCHANGE

This ALF vector describes the sequence of events as shown in figure 4-21

any edge at addr followed by falling edge at write followed by rising edge at write fol
lowed by any edge at addr.

The SETUP time is measured from the first edge at addr to the first edge at write. The H
time is measured from the second edge at write to the second edge at addr. The signal a
not change between the start time of the setup measurement until the end time of the h
measurement. ALF allows to specify an additional measurement between the first and s
edge of the signal subject to NOCHANGE. However, this additional measurement could
be directly translated into SDF and would be for characterization and future purpose on

4.15.3 SDF conditions and labels for delays and timing constraints

Conditions for IOPATH timing arcs in SDF apply to the entire timing arc. The condition 
evaluated during the event on the “from” port (i.e. an input pin), and the event on the “to”
(i.e. an output pin) is scheduled consequently.

Conditions for timing constraints in SDF can be defined individually for each port. The
condition associated with thestart point of the timing constraint (i.e. data for SETUP, clock fo
HOLD etc.) is calledstamp condition. The condition associated with theend point of the timing
constraint (i.e. clock for SETUP, data for HOLD) is calledcheck condition.

The use of SETUPHOLD instead of individual SETUP and HOLD or RECREM instead 
individual RECOVERY and REMOVAL in SDF imposes restrictions in the definition of
conditions. Whereas the use of 2 individual timing constraints allows the definition of 4
conditions (2 stamp, 2 check), the use of 1 combined timing constraint allows only the
definition of 2 conditions (1 stamp, 1 check).

The ALF vector expression language allows to specify conditions during the sequence 
events in a more general way than SDF.

Some more examples in ALF:

addr

write

setup hold

nochange
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Figure 4-22: Condition during sequence of two events

VECTOR ( C & ( 01 A -> 01 B) )

alternative specification options:

VECTOR ( ?1 C -> 01 A -> 01 B -> 1? C ) // verbose

VECTOR ( ?1 C -> 01 A -> 01 B ) // C must be true before start

VECTOR ( 01 A -> 01 B -> 1? C ) // C must be true until the end

This ALF vector describes the sequence of events as shown in figure 4-22

rising edge at A is followed by rising edge at B, C is true before rising edge of A until 
rising edge of B.

Either of the pseudo-events (?1 C, 1? C) at the boundary can be omitted, since either o
them is sufficient to specify that the condition C must be true during the entire event seq

Figure 4-23: Condition during leading event

VECTOR ( ( C & 01 A ) -> 01 B )

alternative specification options:

VECTOR ( ?1 C -> 01 A -> 1? C -> 01 B )

VECTOR ( 01 A -> 1? C -> 01 B )

This ALF vector describes the sequence of events as shown in figure 4-23

A

B

C don’t care don’t care

A

B

C don’t care don’t care
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after

after

 be
rising edge at A is followed by rising edge at B, C is true before rising edge of A until 
rising edge of A.

Figure 4-24: Condition during trailing event

VECTOR ( 01 A -> (C & 01 B) )

alternative syntax:

VECTOR ( 01 A -> ?1 C -> 01 B -> 1? C )

This ALF vector describes the sequence of events as shown in figure 4-24

rising edge at A is followed by rising edge at B, C is true before rising edge of B until 
rising edge of B.

SETUPHOLD with SCOND (stamp condition) and CCOND (check condition) in SDF can
described in ALF in the following way:

A

B

C don’t care don’t care
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dard.
Figure 4-25: SETUPHOLD with SCOND and CCOND

VECTOR ( ?! din -> ?1 ccond -> 01 clk -> 1? scond -> ?! din ) {
SETUP {

FROM {PIN = din;
 TO {PIN = clk;}
/* fill in data */

}
HOLD {

FROM {PIN = clk;}
TO {PIN = din;}
/* fill in data */

}
}

A more verbose specification of the vector looks as follows:

VECTOR (
?1 scond // scond must be true at the beginning

-> ?! din // din toggles
-> ?1 ccond // last chance for ccond to become true
-> 01 clk // rising edge at clk
-> 1? scond // scond gets a break
-> ?! din // din toggles
-> 1? ccond // ccond gets a break at last
)

The optional condition label in SDF has its counterpart in ALF (see 3.6.4.1). As in SDF,
use and interpretation of this label is defined by the application tool and not by the stan

hold

din

clk
setup

minimal data pulse

scond

ccond don’t care don’t care

don’t care don’t carefor setup

for setup for hold

for hold
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