
Advanced Library Format
for

ASIC Cells & Blocks

containing
Power, Timing, Functional and Physical Information

for
Synthesis, Analysis, Design Planning and Test

Version 1.1

April 6, 1999

Open Verilog International

ans --
and

dress

F) as

ual in
racy, or

n the

should

at the
Copyright© 1996-1999 by Open Verilog International, Inc. All rights reserved.

No part of this work covered by the copyright hereon may be reproduced or used in any form or by any me
- graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage
retrieval systems --- without the prior approval of Open Verilog International.

Additional copies of this manual may be purchased by contacting Open Verilog International at the ad
shown below.

Notices

The information contained in this manual represents the definition of the Advanced Library Format (AL
reviewed and released by OVI (PS- TSC) in April 1999.

Open Verilog International reserves the right to make changes to the ALF language and this man
subsequent revisions and makes no warranties whatsoever with respect to the completeness, accu
applicability of the information in this manual, when used for production design and/or development.

Open Verilog International does not endorse any particular simulator or other CAE tool that is based o
Advanced Library Format.

Suggestions for improvements to the Advanced Library Format and/or to this manual are welcome. They
be sent to the ALF email reflector

alf@eda.org

or to the address below.

Information about Open Verilog International and membership enrollment can be obtained by inquiring
address below.

Published as: Advanced Library Format (ALF) Reference Manual
Version 1.1, April 1999.

Published by: Open Verilog International
15466 Los Gatos Blvd., #109071
Los Gatos, CA 95032
Phone: (408) 358-9510
Fax: (408) 358-3910

Printed in the United States of America.

Verilog® is a registered trademark of Cadence Design Systems, Inc.
ii Advanced Library Format (ALF) Reference Manual Version 1.1

The following individuals contributed to the creation, editing and review of this document.

Jay Abraham Silicon Integration Initiative

Mike Andrews Mentor Graphics Co-Chairman

Tim Ayres Synopsys - Viewlogic

Arun Balakrishnan NEC

Tim Baldwin Cadence - Ambit

John Beatty IBM

Victor Berman VI / IEEE

Dennis Brophy Mentor Graphics / OVI / IEEE

Jose De Castro LSI Logic

Renlin Chang Cadence

Shir-Shen Chang, PhD Synopsys

Sanjay Churiwala Cadworx

Timothy Ehrler VLSI Technology

Ted Elkind Cadence

Paul Foster Avant!

Vassilios Gerousis, PhD Siemens / OVI

Kevin Grotjohn LSI Logic

Mitch Heins Cadence - Ambit

Eric Howard Cadence

Tim Jennings Motorola

Timothy Jordan Motorola

Archie Lachner Mentor Graphics

Tai Le Avant!

Johnson Chan Limqueco Cadence - Ambit

Ta-Yung Liu Avant!

Saumendra Nath Mandal Duet Technologies

Hamid Rahmanian Mentor Graphics

Darshan Rauniyar Mentor Graphics

Wolfgang Roethig, PhD NEC Chairman

Larry Rosenberg, PhD Cadence / VSIA

Ambar Sarkar, PhD Synopsys - Viewlogic

Itzhak Shapira Cadence

Jin-Sheng Shyr Toshiba

Sergei Sokolov Sente

Peter Suaris Mentor Graphics

Toru Toyoda NEC

Yatin Trivedi Seva Technologies Technical Editor

Devadas Varma Cadence - Ambit

David Wallace Mentor Graphics - Exemplar

Cary Wei Fujitsu

Frank Weiler Avant! / OVI

Jeff Wilson Mentor Graphics

Amir Zarkesh, PhD TDT
Version 1.1 Advanced Library Format (ALF) Reference Manual iii

Revision history:

1st draft: 11/20/96

2nd draft: 12/20/96

3rd draft: 3/22/97

4th draft: 3/31/97

5th draft: 4/22/97

6th draft: 6/1/97

7th draft: 6/25/97

8th draft: 8/13/97

9th draft: 10/14/97

Version 1.0 11/14/97

Version 1.0.1 3/20/98

Version 1.0.2 4/8/98

Version 1.0.3 5/15/98

Version 1.0.4 5/31/98

Version 1.0.5 6/15/98

Version 1.0.6 9/20/98

Version 1.0.7 11/15/98

Version 1.0.8 1/12/99

Version 1.0.9 2/5/99

Version 1.0.10 2/19/99

Version 1.0.11 3/12/99
iv Advanced Library Format (ALF) Reference Manual Version 1.1

Table of Contents
1 Introduction. 11

1.1 Motivation 11
1.2 Goals 11
1.3 Target Applications 12
1.4 Conventions 15
1.5 Organization of this manual 16

2 Characterization and Modeling. 17

2.1 Basic Concepts 17
2.2 Functional Modeling 18

2.2.1 Combinational Logic 18
2.2.2 Level Sensitive Sequential Logic 18
2.2.3 Edge Sensitive Sequential Logic 18
2.2.4 Vector-Sensitive Sequential Logic 21

2.3 Performance Modeling for Characterization 22
2.3.1 Timing Modeling 22
2.3.2 Power Modeling 23
2.3.3 Modeling for signal integrity 25

2.4 Physical modeling for synthesis and test 26
2.4.1 Cell modeling 26
2.4.2 Wire modeling 27

3 Library Format Specification . 29

3.1 Object Model 29
3.1.1 Syntax conventions 29
3.1.2 Generic Objects 30
3.1.3 Library-specific objects 33
3.1.4 Arithmetic models 33
3.1.5 Functions 33

3.2 Lexical rules 36
3.2.1 Character set 36
3.2.2 Lexical tokens 37
3.2.3 Whitespace Characters 37
3.2.4 Reserved and Non-reserved Characters 37
3.2.5 Delimiters 38
3.2.6 Comments 38
Version 1.1 Advanced Library Format (ALF) Reference Manual v

3.2.7 Numbers 38
3.2.8 Bit Literals 39
3.2.9 Based Literals 40
3.2.10 Edge Literals 41
3.2.11 Quoted Strings 41
3.2.12 Identifiers 42
3.2.13 Rules against parser ambiguity 43
3.2.14 Cross-reference of lexical tokens 43

3.3 Keywords 44
3.3.1 Keywords for Objects 44
3.3.2 Keywords for Operators 45
3.3.3 Context-Sensitive Keywords 45

3.4 Syntax Rules 45
3.4.1 Assignments 45
3.4.2 Expressions 46
3.4.3 Instantiations 47
3.4.4 Literals 48
3.4.5 Operators 49
3.4.6 Auxiliary Objects 51
3.4.7 Generic Objects 51
3.4.8 CELL 53
3.4.9 LIBRARY 53
3.4.10 PIN 53
3.4.11 PRIMITIVE 54
3.4.12 SUBLIBRARY 54
3.4.13 VECTOR 54
3.4.14 WIRE 55
3.4.15 Arithmetic Model 55
3.4.16 FUNCTION 56
3.4.17 Cross-reference of BNF items 57

3.5 Operators 61
3.5.1 Arithmetic operators 61
3.5.2 Boolean operators on scalars 62
3.5.3 Boolean operators on words 63
3.5.4 Vector operators 64
3.5.5 Operators for sequential logic 68
3.5.6 Operator priorities 68
3.5.7 Datatype mapping 69

3.6 Context-sensitive keywords 71
3.6.1 Annotation Containers 71
vi Advanced Library Format (ALF) Reference Manual Version 1.1

3.6.2 Keywords for referencing objects used as annotation 73
3.6.3 Annotations for a PIN object 73
3.6.4 Annotations for a VECTOR object 78
3.6.5 Annotations for a CELL object 80
3.6.6 Attributes 84
3.6.7 Keywords for arithmetic models 85
3.6.8 Containers for arithmetic models 93
3.6.9 Keywords for arithmetic submodels 95
3.6.10 Annotations for arithmetic models 100

3.7 Library Organization 108
3.7.1 Scoping Rules 108
3.7.2 Use of multiple files 109

3.8 Referenceable objects 109
3.8.1 Referencing PRIMITIVEs or CELLs 110
3.8.2 Referencing PINs in FUNCTIONs 111
3.8.3 Referencing PINs in VECTORs 113
3.8.4 Referencing multi-dimensional PINs 113
3.8.5 Referencing arithmetic models 115

3.9 Functional modeling styles and rules 117
3.9.1 Rules for combinational functions 117
3.9.2 Basic rules for sequential functions 118
3.9.3 Concurrency in combinational and sequential functions 120
3.9.4 Initial values for logic variables 123

3.10 Primitives 124
3.10.1 Concept of user-defined and predefined primitives 124
3.10.2 Predefined combinational primitives 126
3.10.3 Predefined tristate Primitives 129
3.10.4 Predefined multiplexor 131
3.10.5 Predefined flipflop 132
3.10.6 Predefined latch 133

3.11 Parameterizeable Cells 135
3.12 Modeling with Vector Expressions 138

3.12.1 Event reports 139
3.12.2 Event Sequences 140
3.12.3 Scope and content of event sequences 141
3.12.4 Alternative event sequences 143
3.12.5 Symbolic edge operators 145
3.12.6 Non-events 146
3.12.7 Compact and verbose event sequences 146
3.12.8 Unspecified simultaneous events within scope 147
Version 1.1 Advanced Library Format (ALF) Reference Manual vii

3.12.9 Simultaneous event sequences 149
3.12.10 Implicit local variables 151
3.12.11 Conditional event sequences 152
3.12.12 Alternative conditional event sequences 154
3.12.13 Change of scope within a vector expression 156
3.12.14 Sequences of conditional event sequences 159
3.12.15 Incompletely specified event sequences 161
3.12.16 Well-specified vector expressions 163

4 Applications . 165

4.1 Truth Table vs Boolean Equation 165
4.1.1 NAND gate 165
4.1.2 Flipflop 166

4.2 Use of primitives 166
4.2.1 D-Flipflop with asynchronous clear 166
4.2.2 JK-flipflop 167
4.2.3 D-Flipflop with synchronous load and clear 168
4.2.4 D-Flipflop with input multiplexor 168
4.2.5 D-latch 169
4.2.6 SR-latch 169
4.2.7 JTAG BSR 170
4.2.8 Combinational Scan Cell 170
4.2.9 Scan Flipflop 172
4.2.10 Quad D-Flipflop 173

4.3 Templates and vector-specific models 174
4.3.1 Vector-specific delay and power Tables 174
4.3.2 Use of TEMPLATE 176
4.3.3 Vector description styles for timing arcs 178
4.3.4 Vectors for delay, power and timing constraints 179

4.4 Combining tables and equations 181
4.4.1 Table vs equation 181
4.4.2 Cell with Multiple Output Pins 182
4.4.3 PVT Derating 183

4.5 Use of Annotations 185
4.5.1 Annotations for a PIN 185
4.5.2 Annotations for a timing arc 186
4.5.3 Creating Self-explaining Annotations 187

4.6 Providing a fall-back position for applications 187
4.6.1 Use of DEFAULT 187

4.7 Bus Modeling 189
viii Advanced Library Format (ALF) Reference Manual Version 1.1

4.7.1 Tristate Driver 189
4.7.2 Bus with multiple drivers 191
4.7.3 Busholder 192

4.8 Wire models 192
4.8.1 Basic Wire Model 192
4.8.2 Wire select model 193

4.9 Megacell Modeling 194
4.9.1 Expansion of Timing Arcs 194
4.9.2 Two-port memory 195
4.9.3 Three-port memory 198
4.9.4 Annotation for pins of a bus 198
4.9.5 Skew for simultaneously switching signals on a bus 199

4.10 Special cells 200
4.10.1 Pulse generator 200
4.10.2 VCO 200

4.11 Core Modeling 201
4.11.1 Digital Filter 201

4.12 Connectivity 203
4.12.1 External connections between pins of a cell 203
4.12.2 Allowed connections for classes of pins 204

4.13 Signal Integrity 206
4.13.1 I/V curves 206
4.13.2 Driver resistance 208

4.14 Resistance and Capacitance on a Pin 211
4.14.1 Self-Resistance and Capacitance on Input Pin 211
4.14.2 Pullup and Pulldown Resistance on Input Pin 211
4.14.3 Pin and Load Resistance and Capacitance on Output Pin 212

4.15 ALF/SDF cross reference 213
4.15.1 SDF delays 213
4.15.2 SDF timing constraints 218
4.15.3 SDF conditions and labels for delays and timing constraints226
Version 1.1 Advanced Library Format (ALF) Reference Manual ix

x Advanced Library Format (ALF) Reference Manual Version 1.1

sign a
DA
 the
er

esign

 for
tion
may

s a

nced
ucts
ince
eir

a

Section 1

Introduction

1.1 Motivation

Design of digital integrated circuits has become an increasingly complex process. More
functions get integrated into a single chip, yet the cycle time of electronic products and
technologies has become considerably shorter. It would be impossible to successfully de
chip of today’s complexity within the time-to-market constraints without extensive use of E
tools, which have become an integral part of the complex design flow. The efficiency of
tools and the reliability of the results for simulation, synthesis, timing analysis, and pow
analysis rely significantly on the quality of available information about the cells in the
technology library.

New challenges in the design flow, e.g. power analysis, arise as the traditional tools and d
flows hit their limits of capability in processing complex designs. As a result, new tools
emerge, and libraries are needed in order to make them work properly. Library creation
(generation) itself has become a very complex process and the choice or rejection of a
particular application (tool) is often constrained or dictated by the availability of a library
that application. The library constraint may prevent designers from choosing an applica
program that is best suited for meeting specific design challenges. Similar considerations
inhibit the development and productization of such an application program altogether. A
result, competitiveness and innovation of the whole electronic industry may stagnate.

In order to remove these constraints, an industry-wide standard for library format, Adva
Library Format (ALF), is proposed. It enables the EDA industry to develop innovative prod
and the ASIC designers to choose the best product without library format constraints. S
ASIC vendors have to support a multitude of libraries according to the preferences of th
customers, a common standard library is expected to significantly reduce the library
development cycle and facilitate the deployment of new technologies sooner.

1.2 Goals

The basic goals of the proposed library standard are:

• simplicity - library creation process must be easy to understand and not become
cumbersome process only known by a few experts.

• generality - tools of any level of sophistication must be able to retrieve necessary
information from the library.

• expandability - for early adoption and future enhancement possibilities
Version 1.1 Advanced Library Format (ALF) Reference Manual 11

Introduction Target Applications

ust

ade-

e

a cell
ional

d
each
e
rding
ted it

ity to
n.

s
ically
ilar

bust

LF.

and
ther
LEF.
• flexibility - the choice of keeping information in one library or in separate libraries m
be in the hand of the user; it should not be dictated by the standard.

• efficiency - the complexity of the design information requires that the process of
retrieving information from the library does not become a bottleneck. The right tr
off between compactness and verbosity must be found.

• ease of implementation - backward compatibility with existing libraries must be
provided, and translation to the new library must be an easy task.

• conciseness - unambiguous description and accuracy of contents

• acceptance - preference for the new standard library over existing libraries.

1.3 Target Applications

The fundamental purpose of ALF is to serve as the primary database for all 3rd party
applications of ASIC cells. In other words, it is an elaborate and formalized version of th
databook.

In the early days, databooks provided all the information a designer needed for choosing
in a particular application: Logic symbols, schematics and truth table provided the funct
specification for simple cells. For more complex blocks, the name of the cell (e.g.
asynchronous ROM, synchronous 2-port RAM, 4-bit synchronous up-down counter) an
timing diagrams conveyed the functional information. The performance characteristics of
cell were provided by the loading characteristics, delay and timing constraints, and som
information about DC and AC power consumption. The designers chose the cell type acco
to the functionality, estimated the performance of the design, and eventually re-implemen
in an optimized way as necessary to meet performance constraints.

Design automation enabled tremendous progress in efficiency, productivity and the abil
deal with complexity, yet it did not change the fundamental requirements for ASIC desig
Therefore, ALF needs to provide models withfunctional information andperformance
information, primarily including timing and power. Signal integrity characteristics, such a
noise margin can also be included under performance category. Such information is typ
found in any databook for analog cells. At deep sub-micron levels digital cells behave sim
to analog cells as electronic devices bound by physical laws and therefore not infinitely ro
against noise.

Table 1-1 shows a list of applications used in ASIC design flow and their relationship to A
The boundary between supported and not supported applications can be defined by thephysical
information provided by ALF. Information needed for area and performance estimation
optimization, notably by synthesis and design planning tools, is provided by ALF. On the o
hand, layout information is considered to be available in complementary libraries such as
Please note that ALF coverslibrary data, whereasdesign data must be provided in other
formats.
12 Advanced Library Format (ALF) Reference Manual Version 1.1

Target Applications Introduction

l
easy

th
the
een

es"

er
mal
to

ing
ing
and
ues.
ce
for
Historically, a functional model was virtually identical to a simulation model. A functiona
gate-level model was used by the proprietary simulator of the ASIC company, and it was
to lump it together with a rudimentary timing model. Timing analysis was done through
dynamic functional simulation. However, with the advanced level of sophistication of bo
functional simulation and timing analysis, this is no longer the case. The capabilities of
functional simulators have evolved far beyond the gate-level, and timing analysis has b
decoupled from simulation.

RTL design planning is an emerging application type aiming to produce "virtual prototyp
of complex for system-on-chip (SOC) designs. RTL design planning is thought of as a
combination of some or all of RTL floorplanning and global routing, timing budgeting, pow
estimation, and functional verification, as well as analysis of signal integrity, EMI, and ther
effects. The library components for RTL design planning range from simple logic gates
parameterizeable macro-functions, such as memories, logic building blocks, and cores.

From the point of view of library requirements, applications involved in RTL design plann
need functional, performance, and physical data. The functional aspect of design plann
includes RTL simulation and formal verification. The performance aspect covers timing
power as primary issues, while signal integrity, EMI, and thermal effects are emerging iss
The physical aspect is floorplanning. As stated previously, the functional and performan
models of components can be described in ALF. ALF partially covers the requirements
physical data, while the layout information is considered as complementary.

The figure 1-1 shows how ALF provides information to various design tools.

Table 1-1 Target applications and models supported by ALF

application functional model performance model physical model

timing analysis N/A supported by ALF N/A

power analysis N/A supported by ALF N/A

simulation derived from ALF derived from ALF N/A

synthesis supported by ALF supported by ALF supported by ALF

scan insertion supported by ALF N/A N/A

RTL design planning derived from ALF supported by ALF planned for ALF

signal integrity N/A supported by ALF N/A

layout N/A N/A not supported by ALF
Version 1.1 Advanced Library Format (ALF) Reference Manual 13

Introduction Target Applications

nd
f
 to
some
n
ping

ing
Figure 1-1: ALF and its target applications

The worldwide accepted standards for hardware description and simulation are VHDL a
Verilog. Both languages have a wide scope of describing the design at various levels o
abstraction: behavioral, functional, synthesizable RTL, gate level. There are many ways
describe gate-level functions. The existing simulators are implemented in such a way that
constructs are more efficient for simulation run time than others. Also, how the simulatio
model handles timing constraints is a trade-off between efficiency and accuracy. Develo
efficient simulation models which are functionally reliable (i.e. pessimistic for detecting tim
constraint violation) is a major development effort for ASIC companies.

Cell characterization tool

ALF

universal functional model

simulation models

Test vector generator Model generator

Verilog & VHDL
Test vectors

 Verilog & VHDL

simulators
Verilog & VHDL

Synthesis tool

universal universal

annotations
for synthesis

annotations
for scan

wireload

timing model power model

 Scan insertion tool

vendor-specific or commercial EDA tool

commercial EDA tool

models

Timing
analysis tool

Power
analysis tool

Signal integrity
analysis tool

universal
design limits

universal signal
integrity model
14 Advanced Library Format (ALF) Reference Manual Version 1.1

Conventions Introduction

tion
se of
quire
n
ctly.

s

fore
ally
to be.
books.

tate-
been

ling
ary
Hence, the use of a particular VHDL or Verilog simulation model as primary source of
functional description of a cell is not very practical. Moreover, the existence of two simula
standards makes it difficult to pick one as a reference with respect to the other. The purpo
a generic functional model is to serve as an absolute reference for all applications that re
functional information. Applications such as synthesis, which need functional informatio
merely for recognizing and choosing cell types, can use the generic functional model dire
For other applications such as simulation and test, the generic functional model enable
automated simulation model and test vector generation and verification, which has a
tremendous benefit for the ASIC industry.

With progress of technology, not only the cost constraints but also the set of physical
constraints under which the design will function or not have increased dramatically. There
the requirements for detailed characterization and analysis of those constraints, especi
timing and power in deep submicron design, are much more sophisticated than they used
Only a subset of the increasing amount of characterization data appears in today’s data

ALF provides a generic format for all type of characterization data, without restriction to s
of-the art timing models. Power models are the most immediate extension, and they have
the starter and primary driver for ALF.

Detailed timing and power characterization needs to take into account themode of operation
of the ASIC cell, which is related to the functionality. ALF introduces the concept ofvector-
based modeling, which is a generalization and a superset of today’s timing and power mode
approaches. All existing timing and power analysis applications can retrieve the necess
model information from ALF.

1.4 Conventions

The syntax for description of lexical and syntax rules uses following conventions.

::= definition of a syntax rule

| alternative definition

[item] an optional item

[item1 | item2 | ...]
optional item with alternatives

{item} optional item that can be repeated

{item1 | item2 | ... }
optional items with alternatives which can be repeated

item item in boldface font is taken verbatim

item item in italic is for explanation purpose only

The syntax for explanation of semantics of expressions uses the following conventions.

=== left side and right side expressions are equivalent

<item> a placeholder for an item in regular syntax
Version 1.1 Advanced Library Format (ALF) Reference Manual 15

Introduction Organization of this manual

t for
ion.

test.
1.5 Organization of this manual

This document presents the Advanced Library Format (ALF), a new standard library forma
ASIC cells, blocks and cores, containing power, timing, functional, and physical informat

In the first chapter, motivation and goals of ALF are defined.

The second chapter describes the underlying concepts for functional modeling, cell
characterization for timing and power, and additional modeling features for synthesis and

The third chapter is the Language Reference Manual (LRM).

The fourth chapter provides application notes.
16 Advanced Library Format (ALF) Reference Manual Version 1.1

e

are
eling

easy
r a
are

s for
ided.
ors),

iming
nal
age.

nge of
,
verage
ribed
More
be

lates
ther
and

buses
tional
Section 2

Characterization and Modeling

This chapter elaborates on the basics of cell modeling and characterization, which is th
primary source of library information.

2.1 Basic Concepts

The functional models within an ASIC library describe functions and algorithms of hardw
components, as opposed to synthesizeable functions or algorithms. The functional mod
language for the ASIC library is designed to make the description of existing hardware
and efficient. The scope here is different from a hardware description language (HDL) o
programming language designed to specify functionality without other aspects of hardw
implementation.

Functional description provides boolean functions or truth tables, including state variable
sequential logic. Boolean and arithmetic operators for scalars and vectors are also prov
Combinational and sequential logic cells, macrocells (e.g. adders, multipliers, comparat
and atomic megacells (e.g. memories) can be modeled with these capabilities.

Vectors describe the stimuli for characterization. This encompasses both the concept of t
arcs and logical conditions. An exhaustive set of vectors can be generated from functio
information, although the complexity of the exhaustive set precludes it from practical us
The characterizer makes a choice of the relevant subset for characterization.

Power characterization is a superset of timing characterization using the same set and ra
characterization variables: load, input slew rate, skew between multiple switching inputs
voltage, temperature. Characterization measurements, such as delay, output slew rate, a
current in time window, bounds of allowed skew for timing constraints, etc. can be desc
as functions of the characterization variables, either by equations or using lookup tables.
complicated calculation algorithms cannot be described explicitly in the library, but can
referenced using templates.

A core is not an atomic megacell, since it can be split up into smaller components. Temp
provide the capability of defining and reusing blocks consisting of atomic constructs or of o
blocks. Thus a hierarchical description of the complete core can be created in a simple
efficient way.

Abstraction is required for the characterization of megacells: vectors describe events on
rather than on scalar pins; number and range of switching pins within a bus become addi
characterization variables. Characterization measurements are expandable and can be
extrapolated from scalar pin to bus.
Version 1.1 Advanced Library Format (ALF) Reference Manual 17

Characterization and Modeling Functional Modeling

rue,
s can

e.

 RHS
le

ing
ent

g
e bit

e
 the

o-
2.2 Functional Modeling

2.2.1 Combinational Logic

Combinational logic can be described by continuous assignments of boolean values (T
False) to output variables as a function of boolean values of input variables. Such function
be expressed in either equation format or table format1.

Let us consider an arbitrary continuous assignment

z = f(a 1 ..,.. a n)

In a dynamic or simulation context, the left-hand side (LHS) variablez is evaluated whenever
there is a change in one of the right-hand side (RHS) variablesai. No storage of previous states
is needed for dynamic simulation of combinational logic.

2.2.2 Level Sensitive Sequential Logic

In sequential logic, an output variablezj can also be a function of itself, i.e. of its previous stat
The sequential assignment has the form

zj = f(a 1 ..,.. a n , z 1 ..,.. z m)

The RHS cannot be evaluated continuously, since a change in the LHS as a result of a
evaluation will trigger a new RHS evaluation repeatedly, unless the variables attain stab
values. Modeling capabilities of sequential logic with continuous assignments would be
restricted to systems with oscillating or self-stabilizing behavior.

However, if we introduce the concept of triggering conditions for the LHS, we have everyth
we need for modelinglevel-sensitivesequential logic. The expression of a triggered assignm
can look like this:

@ g(b 1 ..,.. b k) z j = f(a 1 ..,.. a n , z 1 ..,.. z m)

The evaluation off is activated whenever thetriggering functiong is true. The evaluation ofg
is self-triggered, i.e. at each time when an argument ofg changes its value. Ifg is a boolean
expression likef, we can model all types oflevel-sensitive sequential logic.

During the time wheng is true, the logic cell behaves exactly like combinational logic. Durin
the time wheng is false, the logic cell holds its value. Hence one memory element per stat
is needed.

2.2.3 Edge Sensitive Sequential Logic

In order to modeledge-sensitive sequential logic, we need to introduce notations for logical
transitions in addition to logical states.

If the triggering functiong is sensitive to logical transitions rather than to logical states, th
functiong evaluates to true only for an infinitely small time, exactly at the moment when

1. Rather than defining a new syntax for boolean equations, we are just adopting existing notations pe
ple are familiar with. Those notations can already be found in the ANSI C standard, and they are
widely used in popular script languages such as PERL as well as in HDLs like VERILOG.
18 Advanced Library Format (ALF) Reference Manual Version 1.1

Functional Modeling Characterization and Modeling

detect
rage
ing a

tive

L:
transition happens. The sole purpose ofg is to trigger an assignment to the output variable
through evaluation of the functionf exactly at this time.

Edge-sensitive logic requires storage of the previous output state and the input state (to
a transition). In fact, all implementations of edge-triggered flipflops require at least two sto
elements. For instance, the most popular flipflop architecture features a master latch driv
slave latch.

Using transitions in the triggering function for value assignment, the functionality of a posi
edge triggered flipflop can be described as follows in ALF:

@ (01 CP) {Q = D;}

which reads “at rising edge of CP, assign Q the value of D”.

If the flipflop also has an asynchronous direct clear pin (CD), the functional description
consists of either two concurrent statements or two statements ordered by priority:

Figure 2-1: Model of a flipflop with asynchronous clear in ALF

The following two examples show corresponding simulation models in Verilog and VHD

Figure 2-2: Model of a flipflop with asynchronous clear in Verilog

// concurrent style

@ (!CD) {Q = 0;}
@ (01 CP && CD) {Q = D;}

// priority (if-then-else) style

@ (!CD) {Q = 0;} : (01 CP) {Q = D;}

// full simulation model

always @(negedge CD or posedge CP) begin
if (! CD) Q <= 0;
else if (CP && !CP_last_value) Q <= D;
else Q <= 1’bx;

end
always @ (posedge CP or negedge CP) begin

if (CP===0 | CP===1’bx) CP_last_value <= CP ;
end

// simplified simulation model for synthesis

always @(negedge CD or posedge CP) begin
if (! CD) Q <= 0;
else Q <= D;

end
Version 1.1 Advanced Library Format (ALF) Reference Manual 19

Characterization and Modeling Functional Modeling

list

e the
ing
t one

k
r
ilog,
clock

y and

ed.
Figure 2-3: Model of a flipflop with asynchronous clear in VHDL

The following differences in modeling style can be noticed: VHDL and Verilog provide the
of sensitive signals at the beginning of theprocess or always block, respectively. The
information of level-or edge-sensitivity must be inferred by if-then-else statements insid
block. ALF shows the level-or-edge sensitivity as well as the priority directly in the trigger
expression. Verilog has another particularity: The sensitivity list indicates whether at leas
of the triggering signals is edge-sensitive, by the use ofnegedge or posedge . However, it does
not indicate which one, since either none or all signals must havenegedge or posedge

qualifiers. Furthermore,posedge is any transition with 0 as initial stateor 1 as final state. A
positive-edge triggered flipflop will be inferred for synthesis, yet this flipflop will only wor
correctly if both the initial state is 0and the final state is 1. Therefore a simulation model fo
verification must be more complex than the model in the synthesizeable RTL code. In Ver
the extra non-synthesizeable code must also reproduce the relevant previous state of the
signal, whereas VHDL has built-in support forlast_value of a signal.

Other aspects of simulation models include performance and trade-off between accurac
runtime, timing annotation etc.

ALF provides a canonical, compact and highly self-explaining description of thefunctional
specification of a cell, from which simulation models for various applications can be deriv

// full simulation model

process (CP, CD) begin
if (CD = '0') then

Q <= '0';
elsif (CP'last_value = '0' and CP = '1' and CP'event) then

Q <= D;
elsif (CP'last_value = '0' and CP = 'X' and CP'event) then

Q <= ’X’;
elsif (CP'last_value = 'X' and CP = '1' and CP'event) then

Q <= ’X’;
end if;

end process;

// simplified simulation model for synthesis

process (CP, CD) begin
if (CD = '0') then

Q <= '0';
elsif (CP = '1' and CP'event) then

Q <= D;
end if;

end process;
20 Advanced Library Format (ALF) Reference Manual Version 1.1

Functional Modeling Characterization and Modeling

sions

tatic

event
t

ts
 at

l logic
 itself.
2.2.4 Vector-Sensitive Sequential Logic

In order to model generalized higher order sequential logic, the concept of vector expres
is introduced, an extension of the boolean expressions.

A vector expression describes sequences of logical events or transitions in addition to s
logical states. A vector expression represents a description of a logical stimulus without
timescale. It describes the order of occurrence of events.

Using the -> operator (followed by operator), we have a general capability of describing a
sequence of events or a vector. For example, consider the following vector expression:

01 A -> 01 B

which reads “rising edge on A is followed by rising edge on B”.

A vector expression is evaluated by an event sequence detection function. Like a single
or a transition, this function evaluates true only at an infinitely short time when the even
sequence is detected.

Figure 2-4: Example of event sequence detection function

The event sequence detection mechanism can be described as a queue that sorts even
according to their order of arrival. The event sequence detection function evaluates true
exactly the time when a new event enters the queue and forms the required sequence,i.e. the
sequence specified by the vector expression with its preceding events.

A vector-sensitive sequential logic can be called(N+1) order sequential logic, where N is the
number of events to be stored in the queue. The implementation of (N+1) order sequentia
requires N memory elements for the event queue and 1 memory element for the output

A sequence of events can also be gated with static logical conditions. For example,

(01 CP -> 10 CP) && CD

A

B

g(A, B) = (01 A -> 01 B)

co
nt

en
ts

 o
f

ev
en

t q
ue

ue last
event

2nd last
event

01 A 10 A01 B 10 B 01 B10 A01 A

01 A 10 A01 B 10 B 10 A01 AX

X

X

sequence(01 A -> 01 B) detected
Version 1.1 Advanced Library Format (ALF) Reference Manual 21

Characterization and Modeling Performance Modeling for Characterization

 after
d go
e, and
.

itions

ital

l
ng
sion

e

avior
vior

and

ut
lso

nals.
the pin CD must have state 1 from some time before the rising edge at CP to some time
the falling edge of CP. The pin CD can not go low (state 0) after the rising edge of CP an
high again before the falling edge of CP because this would insert events into the queu
the sequence “rising edge on CP followed by falling edge on CP” would not be detected

The formal calculation rules for general vector expressions featuring both states and trans
will be introduced in Section 3.5.4.

The concept of vector expression supports functional modeling of devices featuring dig
communication protocols with arbitrary complexity.

2.3 Performance Modeling for Characterization

2.3.1 Timing Modeling

The timing models of cells consist of two types:delay modelsfor combinational and sequentia
cells, andtiming constraint modelsfor sequential cells. Both types can be described by timi
arcs. A timing arc is a sequence of two events that can be described by a vector expres
“evente1 is followed by evente2”.

For example, a particular input to output delay of an inverting logic cell is identified by th
following timing arc:

01 A -> 10 Z

which reads “rising edge on input A is followed by falling edge on output Z”.

A setup constraint between data and clock input of a positive edge triggered flipflop is
identified by the following timing arc:

01 D -> 01 CP

which reads “rising edge on input D is followed by rising edge on input CP”.

A crucial part in ASIC cell development is to characterize a model that describes the beh
of each timing arc with sufficient accuracy in order to guarantee correct functional beha
under all required operational conditions.

A delay model usually needs two output variables:

• intrinsic delay, measured between a well-defined threshold value of the input signal
a well-defined threshold value of the output signal

• transition delay, measured between two well-defined threshold values of the outp
signal. Hence the transition delay is a fraction of the total output transition time, a
calledslew rate or edge rate.

A timing constraint model needs just one output variable:

• A timing constraint is theminimum or maximum allowed elapsed time between two
signals, measured between well-defined threshold values between those two sig
This definition is similar to the intrinsic delay, except there is no input-output
relationship between the two signals. Both signals are usually inputs to the cell.
22 Advanced Library Format (ALF) Reference Manual Version 1.1

Performance Modeling for Characterization Characterization and Modeling

tance

itics
etc.)

 and

racy.

ary
, -, *,

t be
being
te-
eeds

ning
de the

(e.g.

xt-
nit

ble:
The actual values of transition times and load capacitances seen by each pin of a cell ins
are calculated by a delay predictor. Delay prediction can be separated into two tasks:

1. Acquisition of information on pin capacitance, extracted or estimated layout paras
for each net and fitting those into the load characterization model (lumped C, R,

2. Calculation of internal signal transition times based on the extracted internal load
on load and transition times at the boundaries of the system.

Lookup tables provide a general modeling capability without precluding any level of accu

Equations may feature polynomial expressions, exponentials and logarithms, and arbitr
transcendent functions. For practical purpose, only the four basic arithmetic operations (+
/) and exponentiation and logarithm will be supported for standard models.

Some models may require transcendent functions or complicated algorithms that canno
expressed directly in equations. Other models and algorithms may need protection from
visible. In order to address needs that go beyond standard modeling features, a templa
reference scheme is proposed: Any model which is neither in table nor in equation format n
to be a pointer to a customer-defined model which may reside outside the library.

Regardless of which type of model is chosen, there is a need to specify explicitly the mea
of the variables and the units. The specification of variables and units can be made outsi
model and independent of the chosen model.

Since the set of variables should not be restrictive in order to allow any enhancements
move from a lumped capacitance to an RC model),context-sensitive keywords are proposed
(e.g. “load”, “slewrate”). The application parser need not know the meaning of the conte
sensitive keyword, except that it is used as a variable in a model and that it has some u
attached to it, e.g. picofarad, nanosecond etc.

2.3.2 Power Modeling

A power model is an extension of the delay model for each timing arc using a third varia

Table 2-1 Modeling choices for cell characterization library

type of model features purpose

table discrete points, multidimensional direct storage of characterization data,
direct accuracy control through mesh
granularity

equation expressions with +, -, *, /, exponent,
logarithm

analytical model, well-suited for optimi-
zation purpose, more compact than table,
also usable for arithmetic operations on
tabulated data (scale, add, subtract ..)

reference pointer to any type of model reuse of predefined model (which may
be table or equation), protection of user-
defined model
Version 1.1 Advanced Library Format (ALF) Reference Manual 23

Characterization and Modeling Performance Modeling for Characterization

ent

ts and

ple

rs
for

if the
bed as

ows:

n that
aster

tors
ors
ch etc.

s.
• scaled average current, measured by integrating and scaling the total transient curr
through the power supply of the cell for the specific timing arc or vector.
The current measurement can start anytime before the first event of the vector star
can end anytime after all transients of the vector have stabilized.

Variants of this model are scaled average power and energy, which are obtained by sim
scaling of average current measurements:

power = current * Vdd
energy = current * Vdd * integration time

The set of vectors causing power consumption within a cell is a superset of those vecto
causing the cell output to switch. While only the vectors with switching output are needed
delay characterization, more vectors are needed for accurate power characterization.

For example, consider a flipflop, which consumes power at every edge of the clock, even
output does not switch. The vectors for delay and power characterization can be descri
follows:

01 CP -> 01 Q
01 CP -> 10 Q

The vectors for power characterization with only clock-switching can be described as foll

01 CP && Q==D
10 CP && Q==D

The D input having the same value as the Q output is a necessary and sufficient conditio
the output will not switch at the rising edge of CP and that the value transferred to the m
latch at the falling edge of CP will be the same as already stored. Hence those two vec
capture the actual power dissipation only within the clock buffers. Additional power vect
can be defined to capture the power dissipation within the data buffers and the master lat

For a 2-input AND gate with input pinsA, B and output pinZ aglitch is observed if the event
01 A is detected and then the event10 B is detected before the input-to-output delay elapse
It is possible to describe the glitch by a higher-order vector.

In dynamic simulation withtransport delay mode, the glitch would appear as follows:

01 A -> 10 B -> 01 Z -> 10 Z

Simulation featuringtransport delay mode with invalid-value-detectionwould exhibit the
glitch as follows:2

01 A -> 10 B -> 'b0'bX Z -> 'bX'b0 Z

Simulation withinertial delay mode would suppress the output transitions:

(01 A -> 10 B) && !Z

The last expression can be used for each of the three simulation modes, since!Z is always true
from beginning to end of the sequence01 A -> 10 B , in particular at the time when the
sequence 01 A -> 10 B is detected.

2. use based edge literals to avoid parser ambiguity.
24 Advanced Library Format (ALF) Reference Manual Version 1.1

Performance Modeling for Characterization Characterization and Modeling

e the

c
logic

ower

here

dates
 to

n of

rents.
irect

are

d as

n
en at
Each way of expressing vectors can be derived from the cell functionality. The different
examples for delay vectors (i.e. timing arcs), power vectors, and glitch vectors emphasiz
rich potential of modeling capabilities using vector expressions.

State-dependent static power is also within the scope of vector-based power models. Stati
power consumption is activated by a simulation model in the same way as level-sensitive
in functional modeling by a boolean expression, whereastransient power consumption is
activated similar to edge-sensitive logic by a vector expression.

The advantages of adding power models within each delay vector and providing extra p
vectors are the following:

• straightforward extension of delay characterization

• capable of yielding the most detailed and accurate model on gate-level

• each vector defines a comprehensive stimulus for power measurements

More abstract vector expressions are provided for power modeling of complex blocks, w
simplification is needed in order to deal with the complexity of characterization vectors.

2.3.3 Modeling for signal integrity

The concept of vector-based cell characterization with multiple variables also accommo
the requirements for signal integrity modeling. Although signal integrity is closely related
interconnect parasitics, i.e. extracteddesigninformation, there must be data in the celllibrary
in order to support signal integrity analysis.

• Crosstalk analysis needs characterization ofdriver resistanceon output pins andnoise
margin on input pins.

• IR drop and electromigration analysis on power supply lines needs characterizatio
average currents as for power analysis,RMS currents andcurrent waveforms.

• Electromigration (EM) analysis within cells needs characterization ofcurrent limits. In
a direct evaluation approach, the current limits are checked against the actual cur
The latter data comes from the characterization for power and IR drop. In an ind
evaluation approach, the current limits may be expressed asfrequency-dependent load
limits and/orslewrate limits.

• Hot electron (HE) analysis within cells needs characterization offlux (charge density)
or fluence (accumulated charge density over time) and its respective limits for
performance degradation. In a direct evaluation approach, the flux or fluence limits
checked against the actual flux or fluence, respectively. In an indirect evaluation
approach, the limits of performance degradation due to fluence may be expresse
frequency-dependent load limits and/orslewrate limits, in the same way as for
electromigration.

The characterization vector set for driver resistance is a subset of delay characterizatio
vectors. In buffered cells, the driving input does not matter, since the driver resistance se
Version 1.1 Advanced Library Format (ALF) Reference Manual 25

Characterization and Modeling Physical modeling for synthesis and test

d fall,

ntial

 the

g

the
y use
peak,

r to
t

s IR

spect
ck one
ther

itching

del.

scan
ll is a

ation.
nal
st

cell
 a pin
the output is the same. However, there is always a different driver resistance for rise an
which is also dependent on process, voltage, temperature.

Noise margin characterization is especially important for control and data pins of seque
cells. The set of characterization vectors is complementary to the timing constraint
characterization vectors. For instance, noise margin on a clock pin is complementary to
pulsewidth constraint. If pulsewidth corresponds to the smallest possible signal causing avalid
functional reaction, then noise margin corresponds to the largest possible signal causinno
functional reaction.

The characterization vector set for IR drop and EM on power supply lines is essentially
same as for power analysis, only the set of data per vector is richer. IR drop analysis ma
average currents, peak currents, or current waveforms. EM analysis may use average,
RMS or a combination of the above.

The characterization vector set for EM and HE effect occurring within cells is very simila
the characterization vector set for power analysis, depending whether a direct or indirec
evaluation approach is used.

In summary, modeling for crosstalk is a natural extension of modeling for timing, wherea
drop, EM and HE modeling are natural extensions of modeling for power.

2.4 Physical modeling for synthesis and test

2.4.1 Cell modeling

Physical modeling of cells requires annotating cell properties (e.g. area, height, width, a
ratio). The set of annotated properties give an application such as synthesis a choice to pi
cell from a set of functionally equivalent cells, if one property is more desirable than ano
one under given synthesis goals and constraints.

Cell pins can also have annotated properties, such as pin capacitance, voltage swing, sw
threshold etc.

Most of the requirements for the modeling of test are already fulfilled by the functional mo
Declaration of pins and their direction (input, output, bidirectional) is already a generic
requirement for cell modeling.

Scan insertion tools require specific annotations about cell and pin properties relevant for
test. They also require reference to equivalent non-scan cells. An equivalent non-scan ce
scan cell, when all scan specific hardware (e.g. multiplexor, scan clock) is removed.

The variables used in the functional model must have their counterpart in the pin declar
Only primary input pins can be primary inputs of functions, while primary output pins, inter
pins, or virtual pins can be primary or intermediate outputs of functions. Furthermore, te
vectors for fault coverage can be derived from the functional model in a formal way.

The remainder of the modeling for test requirements can be covered by annotations of
properties and cell pin properties. For instance, a cell can be labeled as a scan-flipflop,
can be labeled as scan input or mode select pin.
26 Advanced Library Format (ALF) Reference Manual Version 1.1

Physical modeling for synthesis and test Characterization and Modeling

tal

ng of
put
2.4.2 Wire modeling

The purpose ofwire modelingis to get good estimates ofparasitic resistanceandcapacitance
as a function offanout. These estimates are technology specific, and they depend on me
layer, sheet resistance, self-capacitance per unit wirelength, fringe capacitance per unit
wirelength, via resistance for wires routed through multiple layers.

The wires can be characterized by types, in a similar to cells. For example,

// wire with fanout < 5 routed in metal 1, 2
WIRE small_wire {

ATTRIBUTE { metal1 metal2 }
LIMIT { FANOUT { MAX = 5; } }
/* fill in data */

}
// wire with 10 < fanout < 20 routed in metal 1, 2, 3, 4, 5
WIRE big_wire {

ATTRIBUTE { metal1 metal2 metal3 metal4 metal5 }
LIMIT { FANOUT { MIN = 10; MAX = 20; } }
/* fill in data */

}

From a modeling standpoint, no particular language is required for performance modeli
wires that would be different from performance modeling of cells. The fanout will be an in
variable, and capacitance and resistance would be output variables. The values can be
expressed either in tables or in equations. Usually first order equations (with slope and
intercept) are used for wire modeling.
Version 1.1 Advanced Library Format (ALF) Reference Manual 27

Characterization and Modeling Physical modeling for synthesis and test
28 Advanced Library Format (ALF) Reference Manual Version 1.1

all

al

ypes

If an

t

re

isting
mmar.

 or

es.
ated
Section 3

Library Format Specification

This section discusses the object model used by ALF and provides the syntax rules for
objects. The syntax rules are provided in standard BNF form.

3.1 Object Model

A library consists of one or moreobjects. Each object is defined by a keyword and an option
name for the object and an optionalvalue of the object.

A keyworddefines the type of the object. Section 3.1.2 and Section 3.1.3 define various t
of objects used in ALF and related keywords.

An optionalidentifier(also calledname) following the keyword defines thename of the object.
This name must be used while referencing an object inside other objects in the library.
object is not referenced by name, then the object need not be named.

A literal defines an optional value associated with the object. Anexpressioncan be used when
the value of the object cannot be expressed as a literal.

An object may contain one or more objects. The containing object is called ahierarchical
object. The contained objects are calledchildren objects. The children objects are defined and
referenced inside curly braces ({}) in the description of the hierarchical object. An objec
without children is called anatomic object.

Forward referencingof objects is not allowed. Therefore, all objects must be defined befo
they can be instantiated. This allows library parsers to be one-pass parsers.

3.1.1 Syntax conventions

In order to make ALF easy to parse, we use syntax conventions that are followed by the ex
syntax rules (see Section 3.4) and should also be followed for future extensions of the gra

The first token of the object is the object type identifier, followed by a name (mandatory
optional, depending on object type), followed by (mandatory or optional)= and value
assignment, followed by (mandatory or optional) children objects enclosed by curly brac
Objects with more than one token (i.e. name and/or value) and without children are termin
with ; .

Examples:

1. unnamed object without value assignment:

MY_OBJECT_TYPE
Version 1.1 Advanced Library Format (ALF) Reference Manual 29

Library Format Specification Object Model

of a
e

or

MY_OBJECT_TYPE {
//fill in children objects

}

2. unnamed object with value assignment:

MY_OBJECT_TYPE = my_object_value;

or

MY_OBJECT_TYPE = my_object_value {
//fill in children objects

}

3. named object without value assignment:

MY_OBJECT_TYPE my_object_name;

or

MY_OBJECT_TYPE my_object_name {
//fill in children objects

}

4. named object with value assignment:

MY_OBJECT_TYPE my_object_name = my_object_value;

or

MY_OBJECT_TYPE my_object_name = my_object_value {
//fill in children objects

}

The objects in ALF are divided into four categories -generic objects, library-specific objects,
arithmetic models, andfunctions.

3.1.2 Generic Objects

A generic object can appear at every level in the library within any scope. The semantics
generic object must be understood by any ALF compiler if the generic object is within th
scope of application for that compiler.

The following objects shall be considered generic objects:
30 Advanced Library Format (ALF) Reference Manual Version 1.1

Object Model Library Format Specification

s.

alue

he

the

. The
Figure 3-1: Generic objects

3.1.2.1 CONSTANT

A CONSTANT object is a named object with value assignment and without children object
Value is a number.

Example:

CONSTANT vdd = 3.3;

3.1.2.2 ALIAS

An ALIASobject is a named object with value assignment and without children objects. V
is a string.

Example:

ALIAS RAMPTIME = SLEWRATE;

3.1.2.3 INCLUDE

An INCLUDE object is a named object without value assignment and without children. T
name is a quoted string containing the name of a file to be included.

Example:

INCLUDE “primitives.alf”;

Since the file name is a quoted string, any special symbols (like ~ or *) are allowed within
filename. The interpretation of those (for file search path etc.) is up to the application.

3.1.2.4 CLASS

A CLASS object is a named object with optional value assignments and children objects
name can be used by other objects to reference the class object.

template

generic object

property
group

alias
constant

class
attribute

is a

include is a
is a

is a

is a

is a
is a

is a
Version 1.1 Advanced Library Format (ALF) Reference Manual 31

Library Format Specification Object Model

bject
ose of

no

t be

ame:

rder:

order
g

 the
tain
Example:

CLASS my_class { ... }
...
MY_OBJECT_TYPE my_object {

CLASS = my_class;
} // my_object belongs to my_class

3.1.2.5 ATTRIBUTE

An ATTRIBUTE object is an unnamed object without value, but has children objects. The
attribute object shall be the child object of another object. The children of the attribute o
are unnamed objects that can have other unnamed objects as children objects. The purp
an attribute object is to provide free association of objects with attributes when there is
special category available for the attributes.

Examples:

CELL rr_8x128 {
ATTRIBUTE {ROM ASYNCHRONOUS STATIC}

}

PIN read_write_select {
ATTRIBUTE {READ{POLARITY=low;} WRITE{POLARITY=high;}}

}

3.1.2.6 TEMPLATE

A TEMPLATE object is a named object with one or more children objects. Any valid ALF
object can be a child object of a template object. Identifiers enclosed between< and> are
recognized asplaceholders. When a template object is used, each of its placeholders mus
referenced by order or by explicit name association.

Example:

TEMPLATE std_table {
CAPACITANCE {PIN=<pin1>; UNIT=pF; TABLE {0.02 0.04 0.08 0.16}}
SLEWRATE {PIN=<pin2>; UNIT=ns; TABLE {0.1 0.3 0.9}}

}

An instantiation of the above template object with explicit reference to placeholders by n

std_table{pin1=out; pin2=in;}

An instantiation of the above template object with implicit reference to placeholders by o

std_table{out in}

If a symbol within a placeholder appears more than once in the template definition, the
for implicit reference is defined by the first appearance of the symbol. Explicit referencin
improves the readability and is the recommended usage.

A template instantiation can appear at any place within a hierarchical object, as long as
template object contains the structure of valid objects inside. Hierarchical templates con
other template objects.
32 Advanced Library Format (ALF) Reference Manual Version 1.1

Object Model Library Format Specification

n
ment.

 a
t. A
,
ects.

t,
ulated
sions,

ital
e
he
en

rators
3.1.2.7 PROPERTY

A PROPERTY object is a named or an unnamedannotation container. It can be used at any
level in the library. It is used for arbitrary parameter-value assignment.

Example:

PROPERTY items {
parameter1=value1;
parameter2=value2;

}

3.1.2.8 GROUP

A GROUP object is a set of elements with commonality between them. Thus the commo
characteristics can be defined once for the group instead of being repeated for each ele

Example:

GROUP time_measurements = {DELAY SLEWRATE SKEW JITTER}

Thus the statement

time_measurements { UNIT = ns; }

replaces the following statements:

DELAY { UNIT = ns; }
SLEWRATE { UNIT = ns; }
SKEW { UNIT = ns; }
JITTER { UNIT = ns; }

3.1.3 Library-specific objects

The library-specific objects define their nature and their relationship to each other by
containment rules. For example, a library may contain a cell, but a cell may not contain
library. However, both the library object and the cell object may contain any generic objec
generic object defined at the library level makes it visible inside the scope of that library
defining it on the cell level makes it visible inside the scope of that cell and its children obj

3.1.4 Arithmetic models

An arithmetic model is an object that describes characterization data, or a more abstrac
measurable relationship between physical quantities. The modeling language allows tab
data as well as linear and non-linear equations. The equations consist of arithmetic expres
for which the IEEE standards have been adopted.

3.1.5 Functions

A function is an object that describes the functional specification of a digital circuit (or a dig
model of an analog or a mixed-signal circuit) in a canonical form. The modeling languag
allows behavioral models as well as statetables and structural models with primitives. T
behavioral models contain boolean expressions, for which the IEEE standards have be
adopted. Since boolean expressions are insufficient to describe sequential logic, ALF
introduces new operators and symbols that can be used in conjunction with boolean ope
Version 1.1 Advanced Library Format (ALF) Reference Manual 33

Library Format Specification Object Model

 called

ther.

ure
and symbols. Expressions that use both the IEEE operators and the new operators, are
vector expressions.

The following figures describe the four types of objects and their relationships with each o

Figure 3-2: Library-specific objects

Figure 3-3: Arithmetic model

Figure 3-4: Function

Note that a function can contain a primitive and a primitive can contain a function. See fig
3-7 and syntax descriptions in Section 3.4.11 and Section 3.4.16.

contains

generic object
library specific object

arithmetic model
function

contains

contains

arithmetic model
containsco

nt
ain

s

table equation
header

contains contains

contains

function
containsco

nt
ain

s

statetablebehavior
contains

vector
contains

vector expression

primitive
contains

contains
34 Advanced Library Format (ALF) Reference Manual Version 1.1

Object Model Library Format Specification
Figure 3-5: Annotations

Figure 3-6: Library-specific objects

annotation container

annotation

library

sublibrary

cell

wire

pin

vector

function

arithmetic model

contains

contains

contains

primitive

library

sublibrary

cell

wire

pin

vector
is a

is a

is a

is a

is a

is a

is a

is a

library specific

annotation container

annotation
is a

object

primitive
Version 1.1 Advanced Library Format (ALF) Reference Manual 35

Library Format Specification Lexical rules

ure

ter set
Figure 3-7: Library objects and their relationships

Note that a function can contain a primitive and a primitive can contain a function. See fig
3-7 and syntax descriptions in Section 3.4.11 and Section 3.4.16.

3.2 Lexical rules

3.2.1 Character set

Each graphic character corresponds to a unique code of the ISO eight-bit coded charac
[ISO 8859-1 : 1987(E)], and is represented (visually) by a graphical symbol.

library

sublibrary

cell wire

pin

vector

arithmetic model

function
co

nt
ai

ns

co
nt

ai
ns

co
nt

ai
ns

co
nt

ai
ns

co
nt

ai
ns

co
nt

ai
ns

co
nt

ai
ns

co
nt

ai
ns

co
nt

ai
ns

contains

contains

contains

co
nt

ai
ns

primitive

co
nt

ai
ns

co
nt

ai
ns

co
nt

ai
ns

co
nt

ai
ns

co
nt

ai
ns

co
nt

ai
ns

contains
36 Advanced Library Format (ALF) Reference Manual Version 1.1

Lexical rules Library Format Specification

r a

when

),
ls that
 for
3.2.2 Lexical tokens

The ALF source text files shall be a stream of lexical tokens. Each lexical token is eithe
delimiter, acomment, abit literal, abased literal, anedge literal, anumber, aquoted stringor
an identifier.

3.2.3 Whitespace Characters

The following characters shall be consideredwhitespace characters:

Character ASCII code (hex)
space 20
vertical tab 0B
horizontal tab 09
line feed (new line) 0A
carriage return 0D
form feed 0C

Figure 3-8: List of whitespace characters

Comments are also considered white space (see Section 3.2.6).

A whitespace character shall be ignored except when it separates other lexical tokens or
it appears in a quoted string.

3.2.4 Reserved and Non-reserved Characters

The ASCII character set shall be divided in three categories - whitespace (Section 3.2.3
reserved characters, and non-reserved characters. The reserved characters are symbo
make up punctuation marks and operators. The non-reserved characters shall be used
creating identifiers and numbers.

reserved_character ::=

& | | | ^ | ~ | + | - | * | / | % | ? | ! | = | < | > | :
| (|) | [|] | { | } | @ | ; | , | . | ” | ’

nonreserved_character ::=

 letter | digit | _ | $

letter ::=

a | b | c | d | e | f | g | h | i | j | k | l | m
| n | o | p | q | r | s | t | u | v | w | x | y | z
| A | B | C | D | E | F | G | H | I | J | K | L | M
| N | O | P | Q | R | S | T | U | V | W | X | Y | Z

digit ::=

0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

escape_character ::=
\

Version 1.1 Advanced Library Format (ALF) Reference Manual 37

Library Format Specification Lexical rules

ords,

ach

s this
string.

e-
any_character ::=
 reserved_character
| nonreserved_character
| escape_character
| whitespace

Figure 3-9: Reserved and non-reserved characters

ALF shall treat uppercase and lowercase characters as the same characters. In other w
ALF is acase-insensitive language.

3.2.5 Delimiters

A delimiter is either a reserved character or one of the following compound operators, e
composed of two or three adjacent reserved characters:

delimiter ::=
 reserved_character

| && | ~& | || | ~| | ~^ | == | != | ** | >= | <=
| ?! | ?~ | ?- | ?? | -> | <-> | &> | <&> | >> | <<

Figure 3-10: Tokens that make up delimiters

Each special character in a single character delimiter list shall be a single delimiter unles
character is used as a character in a compound operator or as a character in a quoted

3.2.6 Comments

ALF has two forms to introduce comments.

A single-line comment shall start with the two characters // and end with a new line.

A block commentshall start with/* and end with*/ . Comments shall not be nested. The singl
line comment token// shall not have any special meaning in a block comment.

comment ::=
 single_line_comment
| block_comment

Figure 3-11: Single-line and block comments

3.2.7 Numbers

Constant numbers can be specified as integer or real.

The integer is a decimal integer constant.

sign ::= + | -
38 Advanced Library Format (ALF) Reference Manual Version 1.1

Lexical rules Library Format Specification
unsigned ::= digit { _ | digit }

integer ::= [sign] unsigned

non_negative_number ::=

 unsigned [. unsigned]

| unsigned [. unsigned] E [sign] unsigned

number ::=
 [sign] non_negative_number

Figure 3-12: Integer and real numbers

3.2.8 Bit Literals

A bit literal shall represent a single bit constant.

bit_literal ::=
 numeric_bit_literal
| alphabetic_bit_literal
| dont_care_literal
| random_literal

numeric_bit_literal ::= 0 | 1

alphabetic_bit_literal ::=
X | Z | L | H | U | W

| x | z | l | h | u | w

dont_care_literal ::= ?

random_literal ::= *

Table 3-1 : Single bit constants

Literal Description

0 value is logic zero

1 value is logic one

X or x value is unknown

L or l value is logic zero with weak drive strength

H or h value is logic one with weak drive strength

W or w value is unknown with weak drive strength

Z or z value is high-impedance

U or u value is uninitialized

? value is any of the above, yet stable

* value may randomly change
Version 1.1 Advanced Library Format (ALF) Reference Manual 39

Library Format Specification Lexical rules

e can

this

ral.

th the
eated
3.2.9 Based Literals

A based literalis a constant expressed in a form that specifies the base explicitly. The bas
be specified inbinary, octal, decimal or hexadecimal format.

based_literal ::=

 binary_base { _ | binary_digit }

| octal_base { _ | octal_digit }

| decimal_base { _ | digit }

| hex_base { _ | hex_digit }

binary_base ::=

'B | 'b

octal_base ::=

'O | 'o

decimal_base ::=

'D | 'd

hex_base ::=

'H | 'h

binary_digit ::=
bit_literal

octal_digit ::=

binary_digit | 2 | 3 | 4 | 5 | 6 | 7

hex_digit ::=

octal_digit | 8 | 9 | A | B | C | D | E | F | a | b | c | d | e | f

Figure 3-13: Based constants

The underscore(_) shall be legal anywhere in the number except as the first character, and
character is ignored. This feature can be used to break up long numbers for readability
purposes. No white space shall be allowed between base and digit token in a based lite

When an alphabetic bit literal is used as an octal digit, it shall represent 3 repeated bits wi
same literal. When an alphabetic bit literal is used as a hex digit, it shall represent 4 rep
bits with the same literal.

For example,

'o2xw0u is same as 'b010_xxx_www_000_uuu

'hLux is same as 'bLLLL_uuuu_xxxx
40 Advanced Library Format (ALF) Reference Manual Version 1.1

Lexical rules Library Format Specification

the
ithin

w the
3.2.10 Edge Literals

An edge literalshall be constructed by two bit literals or two based literals. It shall describe
transition of a signal from one discrete value to another. No white space shall be allowed w
(between) the two literals. An underscore shall be allowed.

edge_literal ::=
bit_edge_literal

| word_edge_literal
| symbolic_edge_literal

bit_edge_literal ::=
 bit_literal bit_literal

word_edge_literal ::=
 based_literal based_literal

symbolic_edge_literal::=
 ?? | ?~ | ?! | ?-

Figure 3-14: Edge literals

3.2.11 Quoted Strings

The quoted string shall be a sequence of zero or more characters enclosed between two
quotation marks (") and contained on a single line. Characterescape codesare used inside the
string literal to represent some common special characters. The characters that may follo
backslash (\) and their meanings are listed below in Table 3-2.

quoted_string ::=

 " { any_character } "

Figure 3-15: A quoted string

Table 3-2 : Special characters in quoted strings

Symbol ASCII Code
(octal)

Meaning

\g 007 alert/bell

\h 010 backspace

\t 011 horizontal tab

\n 012 new line

\v 013 vertical tab

\f 014 form feed

\r 015 carriage return

\" 042 double quotation mark
Version 1.1 Advanced Library Format (ALF) Reference Manual 41

Library Format Specification Lexical rules

ng file

t is
ed

by at
r shall

r (
n-

plate

jects
ntifier
A non-quoted string can not contain any reserved character. Therefore, when referenci
names (which typically contain a period character), use of a quoted string is necessary.

3.2.12 Identifiers

Identifiers are used in ALF as names of objects, reserved words and context-sensitive
keywords. An identifier shall be any sequence of letters, digits, underscore (_), and dollar sign
($) character. If an identifier is constructed from one or more non-reserved characters, i
callednon-escaped identifier. A digit shall not be allowed as first character of a non-escap
identifier.

nonescaped_identifier ::=
nonreserved_character { nonreserved_character }

A sequence of characters starting with anescape_character is called anescaped identifier.
The purpose of the escaped identifier is to legalize the use of adigit as first character of an
identifier, the use ofreserved_character anywhere in an identifier or to prevent the
misinterpretation of an identifier as a keyword. The escape character shall be followed
least one non-white space character to form an escaped identifier. The escaped identifie
contain all characters up to first white space character.

escaped_identifier ::=
escape_character escaped_characters

escaped_characters ::=
escaped_character { escaped_character }

escaped_character ::=
 nonreserved_character
| reserved_character
| escape_character

A placeholder identifier shall be a non-escaped identifier between the less-than characte<)
and the greater-than character (>). No whitespace or delimiters are allowed between the no
escaped identifier and the placeholder characters (< and>). The placeholder identifier is used
in template objects as a formal parameter, which is replaced by the actual parameter in tem
instantiation.

placeholder_identifier ::=

< nonescaped_identifier >

Identifiers are treated in a case-insensitive way. They may be used in the definition of ob
and in reference to already defined objects. A parser should preserve the case of an ide
in the definition of an object, since a downstream application may be case-sensitive.

\\ 134 backslash

\ddd 3-digit octal value of ASCII character

Table 3-2 : Special characters in quoted strings
42 Advanced Library Format (ALF) Reference Manual Version 1.1

Lexical rules Library Format Specification
3.2.13 Rules against parser ambiguity

The following rules shall apply when resolving ambiguity in parsing ALF source:

• In a context where bothbit_literal andidentifier are legal syntax items,
nonescaped_identifier shall take priority overalphabetic_bit_literal .

• In a context where bothbit_literal andnumber are legal syntax items,number shall
take priority overnumeric_bit_literal .

• In a context where bothedge_literal andidentifier are legal syntax items,
identifier shall take priority overbit_edge_literal .

• In a context where bothedge_literal andnumber are legal syntax items,number shall
take priority overbit_edge_literal .

In such contexts,based_literal shall be used instead ofbit_literal .

3.2.14 Cross-reference of lexical tokens

Table 3-3 : Cross-reference of lexical tokens

Lexical token Section

alphabetic_bit_literal 3.2.8

any_character 3.2.4

based_literal 3.2.9

binary_base 3.2.9

binary_digit 3.2.9

bit_edge_literal 3.2.10

bit_literal 3.2.8

block_comment 3.2.6

comment 3.2.6

decimal_base 3.2.9

delimiter 3.2.5

digit 3.2.4

dont_care_literal 3.2.8

edge_literal 3.2.10

escape_character 3.2.4

escaped_identifier 3.2.12

hex_base 3.2.9

hex_digit 3.2.9

integer 3.2.7

nonescaped_identifier 3.2.12

non_negative_number 3.2.7
Version 1.1 Advanced Library Format (ALF) Reference Manual 43

Library Format Specification Keywords

tioned.

a pin

ic
that
3.3 Keywords

Keywords are case-insensitive non-escaped identifiers. For clarity, this document uses
uppercase letters for keywords and lowercase letters elsewhere, unless otherwise men

Keywords are reserved for use as object identifiers, not for general symbols. To use an
identifier that conflicts with the list of keywords, use the escape character, e.g. to declare
that is calledPIN , use the form:

PIN \PIN {..}

A keyword can either be areserved keyword (also calledhard keyword) or acontext-sensitive
keyword (also calledsoft keyword). The hard keywords have fixed meaning, and must be
understood by any parser of ALF. The soft keywords may be understood only by specif
applications. For example, a parser for a timing analysis application can ignore objects
contain power related information described using soft keywords.

3.3.1 Keywords for Objects

The following keywords are used to identify object types:

ALIAS ATTRIBUTE BEHAVIOR CELL
CLASS CONSTANT EQUATION FUNCTION
GROUP HEADER INCLUDE LIBRARY
PIN PRIMITIVE PROPERTY STATETABLE
SUBLIBRARY TABLE TEMPLATE VECTOR
WIRE

Figure 3-16: Keywords for objects

nonreserved_character 3.2.4

number 3.2.7

numeric_bit_literal 3.2.8

octal_base 3.2.9

octal_digit 3.2.9

placeholder_identifier 3.2.12

quoted_string 3.2.11

reserved_character 3.2.4

sign 3.2.7

single_line_comment 3.2.6

symbolic_edge_literal 3.2.10

unsigned 3.2.7

whitespace 3.2.3

word_edge_literal 3.2.10

Table 3-3 : Cross-reference of lexical tokens

Lexical token Section
44 Advanced Library Format (ALF) Reference Manual Version 1.1

Syntax Rules Library Format Specification

uced

n 3.6.
3.3.2 Keywords for Operators

The following keywords are used for built-in arithmetic functions:

ABS absolute value
EXP natural exponential function
LOG natural logarithm
MIN minimum
MAX maximum

Figure 3-17: Keywords for built-in arithmetic functions

3.3.3 Context-Sensitive Keywords

In order to address the need of extensible modeling, ALF provides a predefined set ofpublic
context-sensitive keywords. Additional private context-sensitive keywords can be introd
as long as they do not have the same name as any existing public keyword.

The public context-sensitive keywords and their semantic meaning are defined in Sectio
This set can be extended to include private context-sensitive keywords.

3.4 Syntax Rules

The formal syntax of ALF language is described using Backus-Naur Form (BNF).

3.4.1 Assignments

unnamed_assignment_base ::=

 context_sensitive_keyword = value

unnamed_assignment ::=

 unnamed_assignment_base ;

unnamed_assignments ::=
 unnamed_assignment { unnamed_assignment }

named_assignment_base ::=

 context_sensitive_keyword identifier = value

named_assignment ::=

 named_assignment_base ;

named_assignments ::=
 named_assignment { named_assignment }

assignment_base ::=
 named_assignment_base
| unnamed_assignment_base

multi_value_assignment ::=

 identifier { values }
Version 1.1 Advanced Library Format (ALF) Reference Manual 45

Library Format Specification Syntax Rules
assignment ::=
 named_assignment
| unnamed_assignment
| multi_value_assignment

pin_assignment ::=

pin_ identifier [index] = pin_ identifier [index] ;
| pin_ identifier [index] = logic_constant ;
| logic_constant = pin_ identifier [index] ;

pin_assignments ::=
 pin_assignment { pin_assignment }

arithmetic_assignment ::=

 identifier = arithmetic_expression ;

3.4.2 Expressions

arithmetic_expression ::=

(arithmetic_expression)
| number
| [arithmetic_unary] identifier
| arithmetic_expression arithmetic_binary

arithmetic_expression
|arithmetic_function_operator

(arithmetic_expression { , arithmetic_expression })

boolean_expression ::=

(boolean_expression)
| logic_constant
| logic_variable
| boolean_unary boolean_expression
| boolean_expression boolean_binary boolean_expression
| boolean_expression

boolean_cond boolean_expression boolean_else
{ boolean_expression boolean_cond boolean_else }
boolean_expression

vector_single_event ::=

(vector_single_event)
| vector_unary boolean_expression

vector_event ::=

(vector_event)
| vector_single_event
| vector_event vector_and vector_event

vector_event_sequence ::=

(vector_event_sequence)
| vector_event
| vector_event_sequence vector_followed_by vector_event_sequence
46 Advanced Library Format (ALF) Reference Manual Version 1.1

Syntax Rules Library Format Specification
vector_complex_event ::=

(vector_complex_event)
| vector_event_sequence
| vector_complex_event vector_binary vector_complex_event

vector_conditional_event ::=
 vector_expression vector_boolean_and boolean_expression
| boolean_expression vector_boolean_and vector_expression
| boolean_expression vector_boolean_cond vector_expression

vector_boolean_else
{ boolean_expression vector_boolean_cond vector_expression
vector_boolean_else } vector_expression

vector_expression ::=

(vector_expression)
| vector_complex_event
| vector_conditional_event
| vector_expression vector_binary vector_expression

vector_or_boolean_expression ::=
 vector_expression
| boolean_expression

3.4.3 Instantiations

cell_instantiation ::=

 cell _identifier { logic_values }
| cell _identifier { pin_assignments }

primitive_instantiation ::=

 primitive _identifier [identifier] { logic_values }
| primitive _identifier [identifier] { logic_assignments }
| primitive _identifier [identifier] { pin_assignments }

template_instantiation ::=

 template_ identifier ;
| template_ identifier [= static] { values }
| template_ identifier [= static] { all_purpose_items }
| template_ identifier = dynamic { values }
| template_ identifier = dynamic { dynamic_instantiation_items }

dynamic_instantiation_items ::=
dynamic_instantiation_item { dynamic_instantiation_item }

dynamic_instantiation_item ::=
 all_purpose_item
| arithmetic_model
| arithmetic_assignment
Version 1.1 Advanced Library Format (ALF) Reference Manual 47

Library Format Specification Syntax Rules
3.4.4 Literals

context_sensitive_keyword ::=
nonescaped_identifier

edge_literal ::=
bit_edge_literal

| word_edge_literal
| symbolic_edge_literal

edge_literals::=
 edge_literal { edge_literal }

identifier ::=
 nonescaped_identifier
| escaped_identifier
| placeholder_identifier

identifiers ::=
identifier { identifier }

index ::=

[unsigned]
| [unsigned : unsigned]
| [identifier]
| [identifier : identifier]

logic_value ::=
 logic_constant
| logic_variable

logic_values ::=
 logic_value { logic_value }

logic_constant ::=
 bit_literal
| based_literal

logic_constants ::=
 logic_constant { logic_constant }

statetable_value ::=
 logic_constant
| edge_literal

| ([!] logic_variable)

statetable_values ::=
 statetable_value { statetable_value }

logic_variable ::=
 pin_ identifier [index]
48 Advanced Library Format (ALF) Reference Manual Version 1.1

Syntax Rules Library Format Specification
logic_variables ::=
 logic_variable { logic_variable }

numbers ::=
 number { number }

string ::=
 quoted_string
| identifier

value ::=
 number
| string
| logic_value

values ::=
 value { value }

3.4.5 Operators

arithmetic_unary ::=

+ | -

arithmetic_binary ::=

+ | - | * | / | ** | %

arithmetic_function_operator ::=

abs
| exp
| log
| min
| max

boolean_unary ::=

! | ~ | & | ~& | | | ~| | ^ | ~^

boolean_and ::=

& | &&

boolean_or ::=
 | | ||

boolean_logic_compare ::=

^ | ~^

boolean_case_compare ::=

!= | == | >= | <= | > | <

boolean_arithmetic ::=

+ | - | * | / | % | >> | <<
Version 1.1 Advanced Library Format (ALF) Reference Manual 49

Library Format Specification Syntax Rules
boolean_binary ::=
 boolean_and
| boolean_or
| boolean_logic_compare
| boolean_case_compare
| boolean_arithmetic

boolean_cond ::=

?

boolean_else ::=

:

vector_unary ::=
 edge_literal

vector_and ::=

& | &&

vector_or ::=

| | ||

vector_followed_by ::=

-> | ~>

vector_binary ::=
 vector_and
| vector_or
| vector_followed_by

| <->
| &>
| <&>

vector_boolean_and ::=

& | &&

vector_boolean_cond ::=

?

vector_boolean_else ::=

:

sequential_if ::=

@

sequential_else_if ::=

:

See Section 3.5 for semantics of operators.
50 Advanced Library Format (ALF) Reference Manual Version 1.1

Syntax Rules Library Format Specification
3.4.6 Auxiliary Objects

all_purpose_item ::=
 annotation
| annotation_container
| generic_object
| template_instantiation
| cell_instantiation

all_purpose_items ::=
 all_purpose_item { all_purpose_item }

annotation ::=
 assignment

| assignment_base { all_purpose_items }

annotation_container ::=

 context_sensitive_keyword { all_purpose_items }

generic_object ::=
 alias
| attribute
| constant
| class
| group
| include
| property
| template

library_specific_object ::=
 annotation
| annotation_container
| cell
| function
| library
| pin
| primitive
| sublibrary
| vector
| wire

source_text ::=

ALF_REVISION version_ string library

3.4.7 Generic Objects

alias ::=

 ALIAS identifier = identifier ;

attribute ::=

 ATTRIBUTE { attribute_items }
Version 1.1 Advanced Library Format (ALF) Reference Manual 51

Library Format Specification Syntax Rules
attribute_item ::=

 identifier [{ unnamed_assignments }]

attribute_items ::=
 attribute_item { attribute_item }

class ::=

 CLASS identifier ;
| CLASS identifier { class_items }

class_item ::=
 all_purpose_item
| logic_assignment
| vector_assignment

class_items ::=
class_item { class_item }

constant ::=

 CONSTANT identifier = number ;
| CONSTANT identifier = logic_constant ;

group ::=

GROUPgroup_ identifier { identifiers }
| GROUPgroup_ identifier { numbers }
| GROUPgroup_ identifier { edge_literals }
| GROUPgroup_ identifier { logic_constants }
| GROUPgroup_ identifier { logic_variables }
| GROUPgroup_ identifier { integer : integer }

include ::=

 INCLUDE quoted_string ;

property ::=

 PROPERTY [identifier] { unnamed_assignments }

template_item ::=
 all_purpose_item
| library_specific_object
| arithmetic_model
| header
| table
| equation
| behavior_item

template_items ::=
 template_item { template_item }

template ::=

 TEMPLATE template_ identifier { template_items }
52 Advanced Library Format (ALF) Reference Manual Version 1.1

Syntax Rules Library Format Specification
3.4.8 CELL

cell ::=

CELL cell_ identifier { cell_items }
| CELL cell_ identifier ;
| cell_ template_instantiation

cell_item ::=
 all_purpose_item
| pin
| primitive
| function
| arithmetic_model
| vector
| wire

cell_items ::=
 cell_item {cell_item}

3.4.9 LIBRARY

library ::=

LIBRARY library_ identifier { library_items [sublibraries] }
| LIBRARY library_ identifier ;
| library_ template_instantiation

libraries ::=
 library { library }

library_item ::=
 all_purpose_item
| arithmetic_model
| cell
| primitive
| wire

library_items ::=
 library_item { library_item }

3.4.10 PIN

pin ::=

PIN [index] pin_ identifier { pin_items }
PIN [index] pin_ identifier ;

| pin_ template_instantiation

pins ::=
 pin { pin }

pin_item ::=
 all_purpose_item
| arithmetic_model
Version 1.1 Advanced Library Format (ALF) Reference Manual 53

Library Format Specification Syntax Rules
pin_items ::=
 pin_item { pin_item }

3.4.11 PRIMITIVE

primitive ::=

PRIMITIVE primitive_ identifier { primitive_items }
| PRIMITIVE primitive_ identifier ;
| primitive_ template_instantiation

primitives ::=
 primitive { primitive }

primitive_item ::=
 all_purpose_item
| pin
| function

primitive_items ::=
 primitive_item { primitive_item }

3.4.12 SUBLIBRARY

sublibrary ::=

SUBLIBRARY library_ identifier { library_items }
| SUBLIBRARY library_ identifier ;
| sublibrary_ template_instantiation

sublibraries ::=
 sublibrary { sublibrary }

3.4.13 VECTOR

vector ::=

VECTOR (vector_or_boolean_expression) { vector_items }
| VECTOR (vector_or_boolean_expression) ;
| vector_ template_instantiation

vector_item ::=
 all_purpose_item
| arithmetic_model
| logic_assignment
| vector_assignment

vector_items ::=
 vector_item { vector_item }

vector_assignment ::=

context_sensitive_keyword = (vector_expression) ;
54 Advanced Library Format (ALF) Reference Manual Version 1.1

Syntax Rules Library Format Specification
3.4.14 WIRE

wire ::=

WIRE wire_ identifier { wire_items }
| WIRE wire_ identifier ;
| wire_ template_instantiation

wire_item ::=
 all_purpose_item
| arithmetic_model

wire_items ::=
 wire_item { wire_item }

3.4.15 Arithmetic Model

arithmetic_model ::=
 context_sensitive_keyword [identifier]

{ [all_purpose_items] [header] body }
| context_sensitive_keyword [identifier]

= value ;
| context_sensitive_keyword [identifier]

= value { all_purpose_items }
| context_sensitive_keyword [identifier]

{ arithmetic_submodels }
| arithmetic_model_ template_instantiation

arithmetic_models ::=
 arithmetic_model { arithmetic_model }

arithmetic_model_container ::=

 context_sensitive_keyword { arithmetic_models }

arithmetic_submodel ::=
 context_sensitive_keyword

{ [all_purpose_items] [header] body }
| context_sensitive_keyword

= value ;
| context_sensitive_keyword

= value { all_purpose_items }
| context_sensitive_keyword

{ arithmetic_submodels }
| arithmetic_submodel_ template_instantiation

arithmetic_submodels ::=
 arithmetic_submodel { arithmetic_submodel }

header ::=

HEADER { [all_purpose_items] arithmetic_models }
| header_ template_instantiation
Version 1.1 Advanced Library Format (ALF) Reference Manual 55

Library Format Specification Syntax Rules
body ::=
 table
| equation
| table equation

table ::=

TABLE { table_items }
| table_ template_instantiation

table_item ::=
 number
| identifier

table_items ::=
 table_item { table_item }

equation ::=

EQUATION { arithmetic_expression }
| equation_ template_instantiation

3.4.16 FUNCTION

function ::=

FUNCTION [identifier]

 { [all_purpose_items] [primitives] behavior } }
| { [all_purpose_items] [primitives] [behavior] statetables } }
| function_ template_instantiation

statetable ::=

STATETABLE[identifier] { statetable_header statetable_body }

statetables ::=
 statetable { statetable }

statetable_body ::=

 statetable_values : statetable_values ;
 { statetable_values : statetable_values ; }

statetable_header ::=

 logic_variables : logic_variables ;

behavior ::=

BEHAVIOR [identifier] { behavior_items }

behavior_item ::=
 logic_assignment
| sequential_logic_statement
| primitive_instantiation

behavior_items ::=
behavior_item { behavior_item }
56 Advanced Library Format (ALF) Reference Manual Version 1.1

Syntax Rules Library Format Specification

the
ular

able

ing

cat-

n

an
logic_assignment ::=

 identifier [index] = boolean_expression ;

logic_assignments ::=
 logic_assignment { logic_assignment }

sequential_logic_statement ::=

sequential_if (vector_or_boolean_expression)
{ logic_assignments }

 { sequential_else_if (vector_or_boolean_expression)
{ logic_assignments } }

3.4.17 Cross-reference of BNF items

Note: A BNF item with singular name is defined in the same section as the BNF item with
plural name. A plural item name implies one or more items with the corresponding sing
name.

Table 3-4 : Cross-reference of BNF items with short semantic explanation

BNF item Section Short semantic explanation

alias 3.4.7 statement defining an alias

all_purpose_item(s) 3.4.6 item(s) that can appear inside any hierarchical object

annotation 3.4.6 parameter-value assignment inside an object, may be
nested

annotation_container 3.4.6 unnamed object containing annotations

arithmetic_assignment 3.4.1 statement assigning an arithmetic expression to a vari

arithmetic_binary 3.4.5 arithmetic operator requiring two operands

arithmetic_expression 3.4.2 expression involving arithmetic operations

arithmetic_function_operator 3.4.5 arithmetic operator prefixing a list of arguments

arithmetic_model(s) 3.4.15 statement(s) for description of characterization data us
single numbers, tables or equations

arithmetic_model_container 3.4.15 unnamed object containing arithmetic models

arithmetic_submodel(s) 3.4.15 statement(s) inside an arithmetic model statement for
egorizing the characterization data

arithmetic_unary 3.4.5 arithmetic operator requiring one operand

assignment 3.4.1 terminated statement for single value assignment to a
object

assignment_base 3.4.1 unterminated statement for single value assignment to
object

attribute 3.4.7 statement associating attributes to an object

attribute_item(s) 3.4.7 item(s) inside an attribute statement

behavior 3.4.16 statement describing the logic function of a digital cir-
cuit in a behavioral language

behavior_item(s) 3.4.16 item(s) inside a behavior statement
Version 1.1 Advanced Library Format (ALF) Reference Manual 57

Library Format Specification Syntax Rules

l-

er

nd

d

 is

nt

r

body 3.4.15 table or equation defining characterization data for an
arithmetic model

boolean_and 3.4.5 boolean AND operator

boolean_arithmetic 3.4.5 operator for boolean arithmetic

boolean_binary 3.4.5 boolean operator requiring two operands

boolean_case_compare 3.4.5 binary boolean operator for magnitude comparison

boolean_cond 3.4.5 boolean postfix operator evaluating the preceding boo
ean expression (if-clause)

boolean_else 3.4.5 boolean infix operator separating if-and else-clauses

boolean_expression 3.4.2 expression involving boolean operations

boolean_logic_compare 3.4.5 binary boolean operator for logic comparison

boolean_or 3.4.5 boolean OR operator

boolean_unary 3.4.5 boolean operator requiring one operand

cell(s) 3.4.8 statement(s) describing the entire model of a digital or
analog circuit

cell_item(s) 3.4.8 item(s) inside a cell statement

cell_instantiation 3.4.3 statement inside a cell, describing a reference to anoth
cell with pin-to-pin correspondence

class 3.4.7 statement describing a class for the use of reference a
inheritance by other objects

class_item(s) 3.4.6 item(s) inside a class statement, which will be inherite
by any object referring to the class

constant 3.4.7 statement defining a numeric constant

context_sensitive_keyword 3.4.4 identifier of an object for which the semantic meaning
established by its context

dynamic_instantiation_item(s) 3.4.3 item(s) inside a dynamic instantiation of a template

edge_literal(s) 3.4.4 symbol(s) describing a transition between two states

equation 3.4.15 statement inside arithmetic model containing an arith-
metic expression for the calculation of characterization
data

function 3.4.16 statement describing the logic function of a circuit in a
canonical way, using behavior and/or statetable stateme

generic_object 3.4.6 statement with the sole purpose of being used by othe
objects

group 3.4.7 statement allowing expansion of one object to multiple
objects

header 3.4.15 statement inside arithmetic model containing a list of
parameters of the arithmetic model

identifier(s) 3.4.4 literal(s) defining a keyword or a name or a string value

include 3.4.7 statement defining the inclusion of a file

Table 3-4 : Cross-reference of BNF items with short semantic explanation

BNF item Section Short semantic explanation
58 Advanced Library Format (ALF) Reference Manual Version 1.1

Syntax Rules Library Format Specification

ry

ri-

ct

 to a

ins

n

d-

ion

r-
index 3.4.4 symbol defining an integer or a range of integers for the
use as indices

library (libraries) 3.4.9 statement(s) describing the entire contents of a library

library_item(s) 3.4.9 item(s) inside a library statement

library_specific_object 3.4.6 statement describing an object which is part of the libra

logic_assignment(s) 3.4.1 statement(s) assigning a logic expression to a logic va
able

logic_value(s) 3.4.4 variable(s) or constant logic value(s)

logic_constant(s) 3.4.4 constant logic value(s)

logic_variable(s) 3.4.4 variable(s) containing a logic value

multi_value_assignment 3.4.1 statement for assignment of multiple values to an obje

named_assignment 3.4.1 terminated statement for single value assignment to a
named object

named_assignment_base 3.4.1 unterminated statement for single value assignment
named object

number(s) 3.4.4 integer or floating point number(s)

pin(s) 3.4.10 statement(s) describing a pin inside a cell

pin_item(s) 3.4.10 item(s) inside a pin statement

pin_assignment(s) 3.4.1 statement(s) defining a correspondence between two p
or between a pin and a constant logic value

primitive(s) 3.4.11 statement(s) describing a technology-independent cell

primitive_instantiation 3.4.3 statement inside a behavior statement for logic functio
description by reference to a primitive

primitive_item(s) 3.4.11 item(s) inside a primitive statement

property 3.4.7 statement describing private properties without standar
ized semantics

sequential_else_if 3.4.5 operator indicating a lower-priority logic state or event
sequence

sequential_if 3.4.5 operator indicating a top-priority logic state or event
sequence

sequential_logic_statement 3.4.1 statement inside a behavior statement for logic funct
description with storage elements

source_text 3.4.6 contents of a self-sufficient file in ALF

statetable(s) 3.4.16 statement(s) describing the logic function o a digital ci
cuit in table format

statetable_body 3.4.16 list of values inside a statetable

statetable_header 3.4.16 list of variables inside a statetable

statetable_value(s) 3.4.4 literal(s) inside a statetable

string 3.4.4 identifier consisting of a restricted set of characters or
quoted string containing arbitrary characters

Table 3-4 : Cross-reference of BNF items with short semantic explanation

BNF item Section Short semantic explanation
Version 1.1 Advanced Library Format (ALF) Reference Manual 59

Library Format Specification Syntax Rules

o an

to an

ar-

r

f

out

ul-
sublibrary (sublibraries) 3.4.12 statement(s) describing the contents of a sub-library
inside a library

table 3.4.15 statement inside arithmetic model containing a list of
characterization data

table_item(s) 3.4.15 item(s) inside a table statement

template 3.4.7 statement defining an object with placeholders

template_instantiation 3.4.3 statement referring to a template and filling the place-
holders

template_item(s) 3.4.7 statement(s) inside a template statement

unnamed_assignment(s) 3.4.1 terminated statement(s) for single value assignment t
unnamed object

unnamed_assignment_base 3.4.1 unterminated statement for single value assignment
unnamed object

value(s) 3.4.4 number(s) or string(s) or logic value(s)

vector(s) 3.4.13 statement(s) describing event sequence and data for ch
acterization of a circuit

vector_and 3.4.5 operator used for description of simultaneous events o
simultaneous event sequences

vector_binary 3.4.5 operator requiring two operands used for description o
event sequences

vector_boolean_and 3.4.5 operator used for description of event sequences with
condition, one operand is an expression describing a
complex event, other operand is a boolean expression

vector_boolean_cond 3.4.5 condition operator indicating if-clause

vector_boolean_else 3.4.5 condition operator separating if-and else-clauses

vector_complex_event 3.4.2 expression describing complex event sequences with
condition

vector_conditional_event 3.4.2 expression describing complex event sequences with
condition

vector_event_sequence 3.4.2 expression describing one event sequence

vector_expression 3.4.2 expression describing complex event sequences

vector_followed_by 3.4.5 operator used for description of subsequent events

vector_item(s) 3.4.13 item(s) inside a vector statement

vector_event 3.4.2 expression describing one single event or multiple sim
taneous events

vector_or_boolean_expression 3.4.2 a vector expression or a boolean expression

vector_expression 3.4.2 expression describing complex event sequences

vector_single_event 3.4.2 expression describing one single event

vector_unary 3.4.5 operator requiring one operand used for description of
event sequences

Table 3-4 : Cross-reference of BNF items with short semantic explanation

BNF item Section Short semantic explanation
60 Advanced Library Format (ALF) Reference Manual Version 1.1

Operators Library Format Specification
3.5 Operators

The operators are divided into the following groups:

• Arithmetic operators

• Boolean operators on scalars, i.e. single bits

• Boolean operators on words, i.e. arrays of bits

• Vector operators

• Operators for sequential logic

3.5.1 Arithmetic operators

Table 3-5, Table 3-6, and Table 3-7 list unary, binary and function arithmetic operators.

wire(s) 3.4.14 statement(s) describing a wireload model

wire_item(s) 3.4.14 item(s) inside a wire statement

Table 3-5 : Unary arithmetic operators

Operator Description

+ positive sign (for integer or number)

- negative sign (for integer or number)

Table 3-6 : Binary arithmetic operators

Operator Description

+ addition (integer or number)

- subtraction (integer or number)

* multiplication (integer or number)

/ division (integer or number)

** exponentiation (integer or number)

% modulo division (integer or number)

Table 3-7 : Function arithmetic operators

Operator Description

LOG natural logarithm (argument is + integer or number)

EXP natural exponential (argument is integer or number)

ABS absolute value (argument is integer or number)

Table 3-4 : Cross-reference of BNF items with short semantic explanation

BNF item Section Short semantic explanation
Version 1.1 Advanced Library Format (ALF) Reference Manual 61

Library Format Specification Operators

alars.
Function operators with one argument (such aslog , exp andabs) or multiple arguments (such
asmin andmax) must have the arguments within parenthesis, e.g. min(1.2,-4.3,0.8) .

3.5.2 Boolean operators on scalars

Table 3-8, Table 3-9 and Table 3-10 list unary, binary and ternary boolean operators on sc

Combinational if-then-else clauses are constructed as follows:

<cond1>? <value1>: <cond2>? <value2>: <cond3>? <value3>: <default_value>

If cond1 evaluates to booleanTRUEthenvalue1 is the result, else ifcond2 evaluates to boolean
TRUE thenvalue2 is the result, else ifcond3 evaluates to booleanTRUE thenvalue3 is the
result, elsedefault_value is the result of this clause.

MIN minimum (all arguments are integer or number)

MAX maximum (all arguments are integer or number)

Table 3-8 : Unary boolean operators

Operator Description

! , ~ logical inversion

Table 3-9 : Binary boolean operators

Operator Description

&&, & logical AND

|| , | logical OR

~^ logic equivalence (XNOR)

^ logic antivalence (XOR)

Table 3-10 : Ternary operator

Operator Description

 ? boolean condition operator for construction of combi-
national if-then-else clause

 : boolean else operator for construction of combinational
if-then-else clause

Table 3-7 : Function arithmetic operators

Operator Description
62 Advanced Library Format (ALF) Reference Manual Version 1.1

Operators Library Format Specification

bles
alue.

ssion
3.5.3 Boolean operators on words

Table 3-11 and Table 3-12 list unary and binary reduction operators on words (logic varia
with one or more bits). The result of an expression using these operators shall be a logic v

Table 3-13 and Table 3-14 list unary and binary bitwise operators. The result of an expre
using these operators shall be an array of bits.

Table 3-11 : Unary reduction operators

Operator Description

& AND all bits

~& NAND all bits

| OR all bits

~| NOR all bits

^ XOR all bits

~^ XNOR all bits

Table 3-12 : Binary reduction operators

Operator Description

 == equality for case comparison

 != non-equality for case comparison

 > greater

 < smaller

 >= greater or equal

 <= smaller or equal

Table 3-13 : Unary bitwise operators

Operator Description

~ bitwise inversion

Table 3-14 : Binary bitwise operators

Operator Description

 & bitwise AND

 | bitwise OR

 ^ bitwise XOR

 ~^ bitwise XNOR
Version 1.1 Advanced Library Format (ALF) Reference Manual 63

Library Format Specification Operators

nded

d,

ts (see
 net.

tors
 The following arithmetic operators, listed in Table 3-15, are also defined for boolean
operations on words. The result of an expression using these operators shall be an exte
array of bits.

The arithmetic operations addition, subtraction, multiplication, and division shall beunsigned
if all the operands have the datatypeunsigned. If any of the operands have the datatype signe
the operation shall besigned. See Table 3.6.3.13 for DATATYPE definition.

3.5.4 Vector operators

A transition operation is defined using unary operators on a scalar net. The scalar constan
figure 3-13) shall be used to indicate the start and end states of a transition on a scalar

bit bit // apply transition from bit value to bit value

For example,

01 is a transition from0 to 1.

No whitespace shall be allowed between the two scalar constants. The transition opera
shown in Table 3-16 shall be considered legal:

Table 3-15 : Binary operators

Operator Description

 << shift left

 >> shift right

 + addition

 - subtraction

 * multiplication

 / division

 % modulo division

Table 3-16 : Unary vector operators on bits

Operator Description

01 signal toggles from 0 to 1

10 signal toggles from 1 to 0

00 signal remains 0

11 signal remains 1

0? signal remains 0 or toggles from0 to arbitrary value

1? signal remains 1 or toggles from 1 to arbitrary value

?0 signal remains 0 or toggles from arbitrary value to 0

?1 signal remains 1 or toggles from arbitrary value to 1

?? signal remains constant or toggles between arbitrary values
64 Advanced Library Format (ALF) Reference Manual Version 1.1

Operators Library Format Specification

nd

ively,

ns:
Unary operators for transitions can also appear inSTATETABLE.

Transition operators are also defined on words (can appear inSTATETABLE as well):

' base word ' base word

In this context, the transition operator shall apply transition from first word value to seco
word value.

For example,

'hA'h5 is a transition of a 4-bit signal from'b1010 to 'b0101 .

No whitespace shall be allowed betweenbase andword.

The unary and binary operators for transition, listed in Table 3-17 and Table 3-18 respect
are defined on bits and words:

The following canonical binary operators are necessary to define sequences of transitio

• vector_followed_by for completely specified sequence of events
• vector_and for simultaneous events
• vector_or for alternative events
• vector_followed_by for incompletely specified sequence of events

0* a number of arbitrary signal transitions, including possibility of
constant value, with the initial value 0

1* a number of arbitrary signal transitions, including possibility of
constant value, with the initial value 1

?* a number of arbitrary signal transitions, including possibility of
constant value, with arbitrary initial value

*0 a number of arbitrary signal transitions, including possibility of
constant value, with the final value 0

*1 a number of arbitrary signal transitions, including possibility of
constant value, with the final value 1

*? a number of arbitrary signal transitions, including possibility of
constant value, with arbitrary final value

Table 3-17 : Unary vector operators on bits or words

Operator Description

?- no transition occurs

?? apply arbitrary transition, including possibility of constant value

?! apply arbitrary transition, excluding possibility of constant value

?~ apply arbitrary transition with all bits toggling

Table 3-16 : Unary vector operators on bits

Operator Description
Version 1.1 Advanced Library Format (ALF) Reference Manual 65

Library Format Specification Operators

on

ber of

onical

n

The symbols for the boolean operators for AND, OR, are overloaded forvector_and ,
vector_or , respectively. New symbols are introduced for thevector_followed_by

operators.

Per definition, the-> , ~> operators shall not be commutative, whereas the &&, || operators
events shall be commutative.

01 a && 01 b === 01 b && 01 a

01 a || 01 b === 01 b || 01 a

The-> , ~> operators shall be freely associative.

01 a -> 01 b -> 01 c === (01 a -> 01 b) -> 01 c === 01 a -> (01 b -> 01 c)

01 a ~> 01 b ~> 01 c === (01 a ~> 01 b) ~> 01 c === 01 a ~> (01 b ~> 01 c)

The&& operator is defined for single events and for event sequences with the same num
-> operators each.

(01 A1 .. -> ... 01 AN) & (01 B1 .. -> ... 01 BN)
===
01 A1 & 01 B1 ... -> ... 01 AN & 01 BN

The || operator allows to reduce the set of edge operators (unary vector operators) to can
and non-canonical operators.

(?? a) === (?! a)||(?- a) //a does or does not change its value

Hence?? is non-canonical, since it can be defined by other operators.

If <value1><value2> is an edge operator consisting of two based literalsvalue1 andvalue2

andword is an expression which can take the valuevalue1 or value2 , then the following
vector expressions are considered equivalent:

<value1><value2> <word>
=== 10 (<word> == <value1>) && 01 (<word> == <value2>)
=== 01 (<word> != <value1>) && 01 (<word> == <value2>)
=== 10 (<word> == <value1>) && 10 (<word> != <value2>)
=== 01 (<word> != <value1>) && 10 (<word> != <value2>)

// all expressions describe the same event:
// <word> makes a transition from <value1> to <value2>

Table 3-18 : Canonical Binary vector operators

Operator Operands
LHS, RHS
commutative Description

-> 2 vector
expressions

no Left-hand side (LHS) transitionis followed byRight-hand
side (RHS) transition, no transition may occur in-between

&&, & 2 vector
expressions

yes LHSand RHS transitionoccur simultaneously

|| , | 2 vector
expressions

yes LHSor RHS transitionoccur alternatively

~> 2 vector
expressions

no Left-hand side (LHS) transitionis followed byRight-hand
side (RHS) transition, other transitions may occur in-betwee
66 Advanced Library Format (ALF) Reference Manual Version 1.1

Operators Library Format Specification

ector

tors

lean
Hence vector expressions with edge operators using based literals can be reduced to v
expressions using only the edge operators 01, 10.

Complexvector_binary operators are also defined. Vector expressions using those opera
can be decomposed into vector expressions using only canonical operators.

The following expressions shall be considered equivalent:

(01 a <-> 01 b) === (01 a -> 01 b)||(01 b -> 01 a)

(01 a &> 01 b) === (01 a -> 01 b)||(01 a && 01 b)

(01 a <&> 01 b) === (01 a -> 01 b)||(01 b -> 01 a)||(01 a && 01 b)

By their symmetric definition, the <->, <&> operators are commutative.

01 a <-> 01 b === 01 b <-> 01 a

01 a <&> 01 b === 01 b <&> 01 a

The definitions of the &&, ?, : operators are also overloaded to describe aconditional vector
expression, involving boolean expressions and vector expressions. The clauses are boo
expressions, while vector expressions are subject to those clauses.

Table 3-19 : Complex Binary vector operators

Operator Operands
LHS, RHS
commutative Description

<-> 2 vector
expressions

yes LHS transition follows or is followed by RHS transition

&> 2 vector
expressions

no LHS transitionis followed by or occurs simultaneously
with RHS transition

<&> 2 vector
expressions

yes LHS transitionfollows or is followed by or occurs simulta-
neously with RHS transition

Table 3-20 : Operators for conditional vector expressions

Operator Operands
LHS, RHS
commutative Description

&&, & 1 vector
expression,
1 boolean
expression

yes boolean expression (LHS or RHS) is true while sequence
of transitions, defined by vector expression (RHS or LHS)
occurs

 ? 1 vector
expression,
1 boolean
expression

no boolean condition operator for construction of if-then-else
clause involving vector expressions

 : 1 vector
expression,
1 boolean
expression

no boolean else operator for construction of if-then-else
clause involving vector expressions
Version 1.1 Advanced Library Format (ALF) Reference Manual 67

Library Format Specification Operators

ent or
cessary

e

some

gest
An example for conditional vector expression using && is given below:

(01 a && !b) // a rises while b==0

The order of the operands in a conditional vector expression using && shall not matter.

<vector_exp> && <boolean_exp> === <boolean_exp> && <vector_exp>

The && operator is still commutative in this case, although one operand is a boolean
expression defining a static state, the other operand is a vector expression defining an ev
a sequence of events. However, since the operands are distinguishable per se, it is not ne
to impose a particular order of the operands.

An example for conditional vector expression using ?, : is given below.

!b ? 01 a : c ? 10 b : 01 d
===
!b & 01 a | !(!b) & c & 10 b | !(!b) & !c & 01 d

This example shows how a conditional vector expression using ternary operators can b
expressed with alternative conditional vector expressions.

A conditional vector expression can be reduced to a non-conditional vector expression in
cases, as it will be explained in section 3.12.11.

Every binary vector operator may be applied to a conditional vector expression.

3.5.5 Operators for sequential logic

Sequential assignments are constructed as follows:

@ (<trigger1>) { <action1> } : (<trigger2>) { <action2> } :
 (<trigger3>) { <action3> }

If trigger1 event is detected thenaction1 is performed, else iftrigger2 event is detected
thenaction2 is performed, else iftrigger3 event is detected thenaction3 is performed as a
result of this clause.

3.5.6 Operator priorities

The priority of binding operators to operands in arithmetic expressions shall be from stron
to weakest in the following order:

1. unary arithmetic operator (+, -)

Table 3-21 : Operators for sequential logic

Operator Description

 @ sequential "if" operator, followed by a boolean logic expression (for
level-sensitive assignment) or by a vector expression (for edge-sen-
sitive assignment)

 : sequential "else if" operator, followed by a boolean logic expression
(for level-sensitive assignment) or by a vector expression (for edge-
sensitive assignment) with lower priority
68 Advanced Library Format (ALF) Reference Manual Version 1.1

Operators Library Format Specification

est to

ll be

The

itional
ve a
 of

 the
2. exponentiation (**)

3. multiplication (*), division (/), modulo division (%)

4. addition (+), subtraction (-)

The priority of binding operators to operands in boolean expressions shall be from strong
weakest in the following order:

1. unary boolean operator (! , ~, &, ~&, | , ~| , ^ , ~^)

2. XNOR(~^), XOR (^), relational (>, <, >=, <=, ==, !=), shift (<<, >>)

3. AND (&, &&), NAND (~&), multiply (*), divide (/), modulus (%)

4. OR (|, ||), NOR (~|), add (+), subtract (-)

5. ternary operators (?, :)

The priority of binding operators to operands in non-conditional vector expressions sha
from strongest to weakest in the following order:

1. unary vector operators (edge literals)

2. complex binary vector operators (<-> , &>, <&>)

3. vectorAND (&, &&)

4. vector_followed_by operators (-> , ~>)

5. vectorOR (| , ||)

Operators with equal priority are evaluated strictly in order of occurrence from left to right.
parenthesis() shall be used for changing the priority of binding operators to operands.

For ternary operators and operators with hybrid operands, i.e., one operand is a non-cond
vector expression, the other operand is a boolean expression, each expression shall ha
higher binding priority than the operands connecting the expressions. However, the use
parenthesis is recommended.

3.5.7 Datatype mapping

Logical operations can be applied to scalars and words. For that purpose, the values of
operands are reduced to a system of 3 logic values in the following way:

H has the logic value1
L has the logic value0
W, Z, U have the logic valueX
A word has the logic value1, if the unary OR reduction of all bits results in1

A word has the logic value0, if the unary OR reduction of all bits results in0

A word has the logic valueX, if the unary OR reduction of all bits results inX
Version 1.1 Advanced Library Format (ALF) Reference Manual 69

Library Format Specification Operators

y are

e

Case comparison operations can also be applied to scalars and words. For scalars, the
defined in the following way:

For word operands, the operations> and< are performed after reducing all bits to the 3-valu
system first, and then interpreting the resulting number according to the datatype of the
operands. For example, if datatype issigned, 'b1111 is smaller than'b0000 ; if datatype is
unsigned, 'b1111 is greater than'b0000 . If two operands have the same value'b1111 and a
different datatype, the unsigned'b1111 is greater than the signed'b1111 .

Table 3-22 : Case comparison operators

A B A==B A!=B A>B A<B

1 1 1 0 0 0

1 H 0 1 X X

1 0 0 1 1 0

1 L 0 1 1 0

1 W, U, Z, X 0 1 X 0

H 1 0 1 X X

H H 1 0 0 0

H 0 0 1 1 0

H L 0 1 1 0

H W, U, Z, X 0 1 X 0

0 1 0 1 0 1

0 H 0 1 0 1

0 0 1 0 0 0

0 L 0 1 X X

0 W, U, Z, X 0 1 0 X

L 1 0 1 0 1

L H 0 1 0 1

L 0 0 1 X X

L L 1 0 0 0

L W, U, Z, X 0 1 0 X

X X 1 0 X X

X U X X X X

X 0, 1, H, L, W, Z 0 1 X X

W W 1 0 X X

W U X X X X

W 0, 1, H, L, X, Z 0 1 X X

Z Z 1 0 X X

Z U X X X X

Z 0, 1, H, L, X, W 0 1 X X

U 0, 1, H, L,
X,W, Z, U

X X X X
70 Advanced Library Format (ALF) Reference Manual Version 1.1

Context-sensitive keywords Library Format Specification

hall
rpose
ined
ose
ATE

cts

tions
ing
The operations>= and<= are defined in the following way:

(a >= b) === (a > b) || (a == b)

(a <= b) === (a < b) || (a == b)

3.6 Context-sensitive keywords

The context-sensitive keywords permit legal extensions to ALF syntax. An ALF parser s
either accept or ignore when an unknown keyword or annotation is encountered. The pu
of context-sensitive keywords is to have a vocabulary of keywords with already well-def
semantic meaning. That means, an ALF compiler for an application must understand th
keywords needed (used) by the application. For example, a compiler that needs SLEWR
must understand the keywordSLEWRATE and not expect a keywordRAMPTIME.

3.6.1 Annotation Containers

Any object with children objects may contain annotations. In addition, the following obje
are defined only for the purpose ofunnamed annotation containers.

3.6.1.1 Scan container

A SCAN container may be used inside a CELL or a PIN object and may contain annota
which are allowed inside a CELL (Section 3.6.5) or a PIN object (Section 3.6.3) for limit
the scope of those annotations.

Example:

PIN clk1 { signaltype = master_clock; SCAN {signaltype = slave_clock;} }

PIN clk2 { SCAN {signaltype = master_clock;} }

In normal mode,clk1 is master clock,clk2 is unused. In scan mode,clk2 is master clock,
clk1 is slave clock.

3.6.1.2 VIOLATION container

A VIOLATION container may be inside a SETUP, HOLD, RECOVERY, REMOVAL,
PULSEWIDTH, PERIOD, or NOCHANGE object. It may contain the BEHAVIOR object

Table 3-23 : Unnamed annotation containers

Objects Description

SCAN contains information relevant to design for test

VIOLATION contains items relevant to timing violations

INFORMATION contains purely informational items
Version 1.1 Advanced Library Format (ALF) Reference Manual 71

Library Format Specification Context-sensitive keywords

ribed

n

(Section 3.4.16), since the behavior in case of timing constraint violation cannot be desc
in the FUNCTION. It may also contain the following annotations:

Example:

VECTOR (01 d <&> 01 cp) {
SETUP {

VIOLATION {
MESSAGE_TYPE = error;
MESSAGE = “setup violation 01 d <&> 01 cp“;
BEHAVIOR {q = 'bx;}

}
}

}

3.6.1.3 INFORMATION container

An INFORMATION container may be inside a LIBRARY, SUBLIBRARY, CELL, or WIRE
object. It may also be in PRIMITIVE objects inside a LIBRARY or SUBLIBRARY, but not i
the locally defined primitives inside cells or functions. It may contain the following
annotations:

Table 3-24 : Violation annotation container

Keyword Value type Description

MESSAGE_TYPE string specifies the type of the message. It can be one
of information , warning or error .

MESSAGE string specifies the message itself.

Table 3-25 : Information annotation container

Keyword Value type Description Examples

VERSION string version of the object containing
this INFORMATION block

“v1r3_2”
“1.3.2”

TITLE string title or comment related this object “0.2u StdCell Library”
“2-input NAND, 4x drive”
“3-layer metal, best case,
wireload model”

PRODUCT string product related to the object “vsc1083”
“vsm10rs111”
“0.2u technology family”

AUTHOR string originator or modifier of the object “user@system.com”
“Imn N. Gineer”
“An ASIC Vendor, Inc.”

DATETIME string date/time stamp related to the
object

“Wed Aug 19 08:13:01
MST 1998”
“July 4, 1998”
72 Advanced Library Format (ALF) Reference Manual Version 1.1

Context-sensitive keywords Library Format Specification
 Example:

LIBRARY major_ASIC_vendor {
INFORMATION {

version = “v2.1.0”;
title = “0.35 standard cell”;
product = p35sc;
author = “Major Asic Vendor, Inc.”;
datetime = “Wed Jul 23 13:50:12 MST 1997”;

}
}

3.6.2 Keywords for referencing objects used as annotation

The following object references may be used as annotations:

The syntax is as follows:

object_keyword = string ;

3.6.3 Annotations for a PIN object

A PIN object may contain the following annotations:

3.6.3.1 VIEW annotation

VIEW = string ;

annotates the view where the pin appears, which can take the following values:

3.6.3.2 PINTYPE annotation

PINTYPE = string ;

Table 3-26 : Object references as annotation

Keyword Value type Description

CELL string reference to a declared CELL object

PRIMITIVE string reference to a declared PRIMITIVE object

PIN string reference to a declared PIN object

CLASS string reference to a declared CLASS object

Table 3-27 : VIEW annotations for a PIN object

Annotation string Description

functional pin appears in functional netlist

physical pin appears in physical netlist

both (default) pin appears in both functional and physical netlist

none pin does not appear in netlist
Version 1.1 Advanced Library Format (ALF) Reference Manual 73

Library Format Specification Context-sensitive keywords

es:
annotates the type of the pin, which can take the following values:

3.6.3.3 SIGNALTYPE annotation

SIGNALTYPE = string;

annotates the type of the signal connected to the pin, which can take the following valu

3.6.3.4 DRIVETYPE annotation

DRIVETYPE = string ;

Table 3-28 : PINTYPE annotations for a PIN object

Annotation string Description

digital (default) digital signal pin

analog analog signal pin

supply power supply or ground pin

Table 3-29 : SIGNALTYPE annotations for a PIN object

Annotation string Description

data (default) general data signal

scan_data scan data signal

control general control signal

select select signal of a multiplexor

enable enable signal

out_enable output enable signal

scan_enable scan enable signal

scan_out_enable scan output enable signal

clear clear signal of a flipflop or latch

set set signal of a flipflop or latch

write write signal for memory, register file

read read signal for memory, register file

clock clock signal of a flipflop or latch

scan_clock scan clock signal of a flipflop or latch

master_clock master clock signal of a flipflop or latch

slave_clock slave clock signal of a flipflop or latch

address address signal of a memory
74 Advanced Library Format (ALF) Reference Manual Version 1.1

Context-sensitive keywords Library Format Specification
annotates the drive type for the pin, which can take the following values:

3.6.3.5 DIRECTION annotation

DIRECTION = string ;

annotates the direction of the pin, which can take the following values:

3.6.3.6 SCOPE annotation

SCOPE = string ;

annotates modeling scope of a pin, which can take the following values:

Table 3-30 : DRIVETYPE annotations for a PIN object

Annotation string Description

cmos (default) standard cmos signal

nmos nmos or pseudo nmos signal

pmos pmos or pseudo pmos signal

nmos_pass nmos passgate signal

pmos_pass pmos passgate signal

cmos_pass cmos passgate signal, i.e. full transmission gate

ttl TTL signal

open_drain open drain signal

open_source open source signal

Table 3-31 : DIRECTION annotations for a PIN object

Annotation string Description

input input pin

output output pin

both bidirectional pin

none no direction can be assigned to the pin

Table 3-32 : SCOPE annotations for a PIN object

Annotation string Description

behavior Pin is used for modeling functional behavior. Events on the
pin are monitored for vector expressions in BEHAVIOR state-
ment

measure Measurements related to the pin can be described,
e.g. timing or power characterization. Events on the pin are
monitored for vector expressions in VECTOR statements

both (default) Pin is used for functional behavior as well as for characteriza-
tion measurements

none no model, only pin exists
Version 1.1 Advanced Library Format (ALF) Reference Manual 75

Library Format Specification Context-sensitive keywords
3.6.3.7 ACTION annotation

ACTION = string ;

annotates action of the signal, which can take the following values:

3.6.3.8 POLARITY annotation

POLARITY = string ;

annotates the polarity of the pin signal.

The polarity of an input pin (i.e.DIRECTION = input;) can take the following values:

The polarity of an output pin (i.e.DIRECTION = output;) can take the following values:

3.6.3.9 ENABLE_PIN annotation

ENABLE_PIN = string ;

references an output enable pin (i.e. a pin withSIGNALTYPE = out_enable;).

3.6.3.10 PULL annotation

PULL = string ;

Table 3-33 : ACTION annotations for a PIN object

Annotation string Description

synchronous signal acts in synchronous way

asynchronous signal acts in asynchronous way

Table 3-34 : POLARITY (input) annotations for a PIN object

Annotation string Description

high signal active high or to be driven high

low signal active low or to be driven low

rising_edge signal sensitive to rising edge

falling_edge signal sensitive to falling edge

double_edge signal sensitive to any edge

Table 3-35 : POLARITY (output) annotations for a PIN object

Annotation string Description

inverted polarity change between input and output

non_inverted no polarity change between input and output

both polarity may change or not (e.g. XOR) (default)

none polarity has no meaning(e.g. analog signal)
76 Advanced Library Format (ALF) Reference Manual Version 1.1

Context-sensitive keywords Library Format Specification
which can take the following values:

3.6.3.11 ORIENTATION annotation

ORIENTATION = string ;

which can take the following pin orientation values:

3.6.3.12 CONNECT_CLASS annotation

CONNECT_CLASS = identifier ;

annotates a declared class object for connectivity determination.

3.6.3.13 DATATYPE annotation

DATATYPE = string ;

is only relevant for bus pins, which can take the following values:

3.6.3.14 SCAN_POSITION annotation

SCAN_POSITION = unsigned ;

annotates position in scan chain.

3.6.3.15 STUCK annotation

STUCK = string ;

Table 3-36 : PULL annotations for a PIN object

Annotation string Description

up pullup device connected to pin

down pulldown device connected to pin

both pullup and pulldown device connected to pin

none (default) no pull device

Table 3-37 : ORIENTATION annotations for a PIN object

Annotation string Description

left pin is on the left side

right pin is on the right side

top pin is at the top

bottom pin is at the bottom

Table 3-38 : DATATYPE annotations for a PIN object

Annotation string Description

signed result of arithmetic operation is signed 2’s complement

unsigned result of arithmetic operation is unsigned
Version 1.1 Advanced Library Format (ALF) Reference Manual 77

Library Format Specification Context-sensitive keywords

lator

from
ther
ssion
which can be:

3.6.3.16 OFF_STATE annotation

OFF_STATE = string ;

which can be:

3.6.3.17 INITIAL_VALUE annotation

INITIAL_VALUE = logic_constant ;

which must be compatible with the buswidth andDATATYPE of the signal.

INITIAL_VALUE is used for a downstream behavioral simulation model, as far as the simu
(e.g. VITAL-compliant simulator) supports the notion of initial value.

3.6.4 Annotations for a VECTOR object

A VECTOR object may contain the following annotations:

3.6.4.1 LABEL annotation

LABEL = string ;

to be used to ensure SDF matching with conditional delays across Verilog, VITAL etc.

3.6.4.2 EXISTENCE_CONDITION

EXISTENCE_CONDITION = boolean_expression ;

For false-path analysis tools, the existence condition shall be used to eliminate the vector
further analysis if and only if the existence condition evaluates to “false”. For applications o
than false-path analysis, the existence condition shall be treated as if the boolean expre
was a cofactor to the vector itself. Default existence condition is “true”.

Table 3-39 : STUCK annotations for a PIN object

Annotation string Description

stuck_at_0 pin can have stuck-at-0 fault

stuck_at_1 pin can have stuck-at-1 fault

both (default) pin can have both stuck-at-0 and stuck-at-1 faults

none pin can not have stuck-at faults

Table 3-40 : OFF_STATE annotations for a PIN object

Annotation string Description

inverted pin is inverted when in off state

non_inverted pin is not inverted when in off state
78 Advanced Library Format (ALF) Reference Manual Version 1.1

Context-sensitive keywords Library Format Specification

ed for
is the

an
tion
Example:

VECTOR (01 a -> 01 z & (c | !d)) {
EXISTENCE_CONDITION = !scan_select;
DELAY { FROM { PIN=a; } TO { PIN=z; } /* data */ }

}
VECTOR (01 a -> 01 z & (!c | d)) {

EXISTENCE_CONDITION = !scan_select;
DELAY { FROM { PIN=a; } TO { PIN=z; } /* data */ }

}

Each vector contains state-dependent delay for the same timing arc. If "!scan_select "
evaluates "true", both vectors are eliminated from timing analysis.

3.6.4.3 EXISTENCE_CLASS

EXISTENCE_CLASS = string ;

Reference to the same existence class by multiple vectors has the following effects:

• A common mode of operation is established between those vectors, which can be us
selective analysis, for instance mode-dependent timing analysis. Name of the mode
name of the class.

• A common existence condition is inherited from that existence class, if there is one.

Example:

CLASS non_scan_mode {
EXISTENCE_CONDITION = !scan_select;

}
VECTOR (01 a -> 01 z & (c | !d)) {

EXISTENCE_CLASS = non_scan_mode;
DELAY { FROM { PIN=a; } TO { PIN=z; } /* data */ }

}
VECTOR (01 a -> 01 z & (!c | d)) {

EXISTENCE_CLASS = non_scan_mode;
DELAY { FROM { PIN=a; } TO { PIN=z; } /* data */ }

}

Each vector contains state-dependent delay for the same timing arc. If the mode
"non_scan_mode " is turned off or if "!scan_select " evaluates "true", both vectors are
eliminated from timing analysis.

3.6.4.4 CHARACTERIZATION_CONDITION

CHARACTERIZATION_CONDITION = boolean_expression ;

For characterization tools, the characterization condition shall be treated as if the boole
expression was a cofactor to the vector itself. For all other applications, the characteriza
condition shall be disregarded. Default characterization condition is “true”.
Version 1.1 Advanced Library Format (ALF) Reference Manual 79

Library Format Specification Context-sensitive keywords

e con-
 is
ndi-

ut not

ts:

 char-
arac-

har-
Example:

VECTOR (01 a -> 01 z & (c | !d)) {
CHARACTERIZATION_CONDITION = c & !d;
DELAY { FROM { PIN=a; } TO { PIN=z; } /* data */ }

}

The delay value for the timing arc applies for any of the following conditions
(c & !d) or (c & d) or (!c & !d), since they all satisfy (c | !d) .
However, the only condition chosen for delay characterization is (c & !d).

3.6.4.5 CHARACTERIZATION_VECTOR

CHARACTERIZATION_VECTOR = (vector_expression) ;

The characterization vector is provided for the case that the vector expression cannot b
structed using the vector and a boolean cofactor. The use of the characterization vector
restricted to characterization tools in the same way as the use of the characterization co
tion. Either a characterization condition or a characterization vector may be provided, b
both. If none is provided, the vector itself will be used by the characterization tool.

Example:

VECTOR (01 A -> 01 Z) {
CHARACTERIZATION_VECTOR = ((01 A & 10 inv_A) -> (0 1 Z & 10 inv_Z));

}

Analysis tools see the signals "A" and "Z". The signals "inv_A " and "inv_Z " are visible to the
characterization tool only.

3.6.4.6 CHARACTERIZATION_CLASS

CHARACTERIZATION_CLASS = string ;

Reference to the same characterization class by multiple vectors has the following effec

• A commonality is established between those vectors, which can be used for selective
acterization in a way defined by the library characterizer, for instance to share the ch
terization task between different teams or jobs or tools ...

• A common characterization condition or characterization vector is inherited from that c
acterization class, if there is one.

3.6.5 Annotations for a CELL object

A CELL object may contain the following annotations:

3.6.5.1 CELLTYPE annotation

CELLTYPE = string ;
80 Advanced Library Format (ALF) Reference Manual Version 1.1

Context-sensitive keywords Library Format Specification
which can take the following values:

3.6.5.2 BUFFERTYPE annotation

BUFFERTYPE = string ;

which can take the following values:

3.6.5.3 DRIVERTYPE annotation

DRIVERTYPE = string ;

which can take the following values:

3.6.5.4 PARALLEL_DRIVE annotation

PARALLEL_DRIVE = unsigned ;

which specifies the number of parallel drivers.

Table 3-41 : CELLTYPE annotations for a CELL object

Annotation string Description

buffer cell is a buffer

combinational cell is a combinational logic element

multiplexor cell is a multiplexor

flipflop cell is a flip-flop

latch cell is a latch

memory cell is a memory element

block cell is a block

core cell is a core element

pad cell is a pad

special cell is a special element

Table 3-42 : BUFFERTYPE annotations for a CELL object

Annotation string Description

input cell is an input buffer

output cell is an output buffer

inout cell is an inout (bidirectional) buffer

internal cell is an internal buffer

Table 3-43 : DRIVERTYPE annotations for a CELL object

Annotation string Description

predriver cell is a predriver

slotdriver cell is a slotdriver

both cell is both a predriver and a slot driver
Version 1.1 Advanced Library Format (ALF) Reference Manual 81

Library Format Specification Context-sensitive keywords

ation
l that
, or
tion
se,

l pins
ame
ced
3.6.5.5 SCAN_TYPE annotation

SCAN_TYPE = string ;

which can take the following values:

3.6.5.6 SCAN_USAGE annotation

SCAN_USAGE = string ;

which can take the following values:

3.6.5.7 NON_SCAN_CELL annotation

NON_SCAN_CELL [identifier] = cell_identifier { pin_assignments }

NON_SCAN_CELL [identifier] = primitive_identifier { pin_assignments }

This annotation shall define non-scan cell equivalency to the scan cell in which this annot
is contained. A cell instantiation form (Section 3.4.3) is used to reference the library cel
defines the non-scan functionality of the current cell. If no such cell is available or defined
if an explicit reference to such a cell is not desired, then a primitive instantiation form (Sec
3.4.3) may reference a primitive, either ALF- or user- defined, for such use. In either ca
constant values may appear on either the left-hand side or right-hand side of the pin
connectivity relationships. A constant on the left-hand side defines the value the scan cel
(appearing on the right-hand side) must have in order for the primitive to perform with the s
functionality as does the instantiated reference. Multiple non-scan cells may be referen
within the same scope by giving a name to each one.

Table 3-44 : SCAN_TYPE annotations for a CELL object

Annotation string Description

muxscan There is a multiplexor for normal data and scan data

clocked There is a special scan clock

lssd combination between flipflop and latch with special clocking

(level sensitive scan design)

control_0 combinational scan cell, controlling pin must be 0 in scan mode

control_1 combinational scan cell, controlling pin must be 1 in scan mode

Table 3-45 : SCAN_USAGE annotations for a CELL object

Annotation string Description

input primary input in a chain of cells

output primary output in a chain of cells

hold holds intermediate value in the scan chain
82 Advanced Library Format (ALF) Reference Manual Version 1.1

Context-sensitive keywords Library Format Specification

s

om-
Example:

CELL my_flipflop {
PIN q { DIRECTION=output; }
PIN d { DIRECTION=input; }
PIN clk { DIRECTION=input; }
PIN clear { DIRECTION=input; polarity=low; }
// followed by function, vectors etc.

}

CELL my_other_flipflop {
// declare the pins
// followed by function, vectors etc.

}

CELL my_scan_flipflop {
PIN data_out { DIRECTION=output; }
PIN data_in { DIRECTION=input; }
PIN clock { DIRECTION=input; }
PIN scan_in { DIRECTION=input; }
PIN scan_sel { DIRECTION=input; }
NON_SCAN_CELL first_choice = my_flipflop {

q = data_out;
d = data_in;
clk = clock;
clear = 'b1; // scan cell has no clear
'b0 = scan_in; // non-scan cell has no

scan_in
'b0 = scan_sel; // non-scan cell has no

scan_sel
}
NON_SCAN_CELL second_choice = my_other_flipflop {

// put in the pin assignments
}

// followed by function, vectors etc.
}

3.6.5.8 SWAP_CLASS annotation

SWAP_CLASS = string ;

The value is the name of a declared CLASS. Multi-value annotation may be used. Cell
referring to the same CLASS may be swapped for certain applications.

Cell-swapping is only allowed under the following conditions:

• The RESTRICT_CLASS annotation (see next) authorizes usage of the cell
• The cells to be swapped are compatible from an application standpoint (functional c

patibility for synthesis, physical compatibility for layout)

3.6.5.9 RESTRICT_CLASS annotation

RESTRICT_CLASS = string ;
Version 1.1 Advanced Library Format (ALF) Reference Manual 83

Library Format Specification Context-sensitive keywords

s

the

lls c1
 cell c2

ion
The value is the name of a declared CLASS. Multi-value annotation may be used. Cell
referring to a particular class may be used in design tools identified by the value.

:

User-defined values are also possible. If a cell has no or only unknown values for
RESTRICT_CLASS, the application tool may not modify any instantiation of that cell in
design. However, the cell must still be considered for analysis.

Example:

CLASS foo;
CLASS bar;
CELL c1 {

SWAP_CLASS = foo;
RESTRICT_CLASS = synthesis;

}
CELL c2 {

SWAP_CLASS = foo;
RESTRICT_CLASS { synthesis scan bar }

}

Supposed that the cells c1 and c2 are compatible from an application standpoint, the ce
and c2 can be used for synthesis, where they may be swapped which each other. The
can be also used for scan insertion and for the user-defined application “bar”.

3.6.6 Attributes

Identifiers insideATTRIBUTEcan be used to add information that does not fit into the annotat
scheme. The syntax for specifying ATTRIBUTE is

 ATTRIBUTE { attribute_items }

whereattribute_items is a list of predefined or user-defined attributes.

3.6.6.1 ATTRIBUTE within a PIN object

The following attributes can be used within a PIN object:

Table 3-46 : Predefined values for RESTRICT_CLASS

Annotation string Description

synthesis use restricted to logic synthesis

scan use restricted to scan synthesis

datapath use restricted to datapath synthesis

clock use restricted to clock tree synthesis

Table 3-47 : Attributes within a PIN object

Attribute item Description

SCHMITT Schmitt trigger signal

TRISTATE tristate signal
84 Advanced Library Format (ALF) Reference Manual Version 1.1

Context-sensitive keywords Library Format Specification

l.
ables
The following attributes within a PIN object can also havePOLARITY annotation:

Example:

PIN rw {
ATTRIBUTE {

WRITE { POLARITY = high; }
READ { POLARITY = low ; }

}
}

3.6.6.2 ATTRIBUTE within a CELL object

The following attributes can be used within a CELL object:

3.6.6.3 ATTRIBUTE within a LIBRARY object

There are no attributes with predefined meaning specified yet.

3.6.7 Keywords for arithmetic models

The following keywords shall identify arithmetic model objects inside aLIBRARY, a
SUBLIBRARY, aCELL, aWIRE or aVECTOR object, i.e. output variables of an arithmetic mode
Inside an arithmetic model object, the same keywords identify arguments, i.e. input vari

XTAL crystal/oscillator signal

PAD pad going off-chip

Table 3-48 : Attributes with POLARITY annotation

Attribute item Description

TIE signal that needs to be tied to a fixed value

READ read enable mode

WRITE write enable mode

Table 3-49 : Attributes within a CELL object

Attribute item Description

RAM Random Access Memory

ROM Read Only Memory

CAM Content Addressable Memory

static static device (e.g. static CMOS, static RAM)

dynamic dynamic device (e.g. dynamic CMOS, dynamic RAM)

asynchronous asynchronous operation

synchronous synchronous operation

Table 3-47 : Attributes within a PIN object

Attribute item Description
Version 1.1 Advanced Library Format (ALF) Reference Manual 85

Library Format Specification Context-sensitive keywords

 for

n be
reas

e
they
units

ed.

s

to the arithmetic model. This gives virtually unlimited choice of combination of variables
characterization. The keywords for arithmetic models can also be used

• for simple annotations
• as annotation container

The annotations or annotation containers identified by keywords for arithmetic models ca
interpreted asreducedarithmetic models, since they don't contain a header or a body, whe
full arithmetic models always contain a header and a body (table or equation).

All the keywords for arithmetic models are considered context-sensitive keywords. In th
following sections, these arithmetic models are described along with the type of the value
can have. If the quantity associated with the arithmetic model is a measurement, default
and base units are also noted. The default units are applied when the unit is not specifi

3.6.7.1 Models for interpolateable tables and equations

The following tables list the keywords that identify arithmetic models that can be used a
interpolateable table indices and/or as equations.

Table 3-50 : Timing measurements

Keyword Value type
Base
Units

Default
Units Description

DELAY number Second n (nano) time between two threshold crossings
within two consecutive events on two pins

RETAIN number Second n (nano) time during which an output pin will retain
its value after an event on the related input
pin. RETAIN appears always in conjunction
with DELAY for the same two pins.

SLEWRATE non-negative
number

Second n (nano) time between two threshold crossings
within one event on one pin

Table 3-51 : Timing constraints

Keyword Value type
Base
Units

Default
Units Description

HOLD number Second n (nano) minimum time limit for hold between two
threshold crossings within two consecutive
events on two pins

NOCHANGE optionala non-
negative num-
ber

Second n (nano) minimum time limit between two threshold
crossings within two arbitrary consecutive
events on one pin, in conjunction with
SETUP and HOLD

PERIOD non-negative
number

Second n (nano) minimum time limit between two identical
events within a sequence of periodical
events on one pin
86 Advanced Library Format (ALF) Reference Manual Version 1.1

Context-sensitive keywords Library Format Specification

e

PULSEWIDTH number Second n (nano) minimum time limit between two threshold
crossings within two consecutive and com-
plementary events on one pin

RECOVERY number Second n (nano) minimum time limit for recovery between
two threshold crossings within two consecu-
tive events on two pins

REMOVAL number Second n (nano) minimum time limit for removal between
two threshold crossings within two consecu-
tive events on two pins

SETUP number Second n (nano) minimum time limit for setup between two
threshold crossings within two consecutive
events on two pins

SKEW number Second n (nano) absolute value is maximum time limit
between two threshold crossings within two
consecutive events on two pins, the sign
indicates positive or negative direction

a. The associated SETUP and HOLD measurements provide data. NOCHANGE itself need not provid
data

Table 3-52 : Analog measurements

Keyword Value type Base Units Default Units Description

CURRENT number Ampere m (milli) electrical current
drawn by the cell. A
pin may be specified

as annotation.a

ENERGY number Joule p (pico) electrical energy
drawn by the cell,
including charge and
discharge energy, if
applicable.

FREQUENCY non-negative
number

Hz meg (mega) frequency

JITTER non-negative
number

Second n (nano) uncertainty of arrival
time

POWER number Watt u (micro) electrical power
drawn by the cell,
including charge and
discharge power, if
applicable.

TEMPERATURE number o Celsius 1 (unit) temperature

Table 3-51 : Timing constraints

Keyword Value type
Base
Units

Default
Units Description
Version 1.1 Advanced Library Format (ALF) Reference Manual 87

Library Format Specification Context-sensitive keywords
TIME number Second 1 (unit) time point for wave-
form modeling, time
span for average,
RMS, peak modeling

VOLTAGE number Volt 1 (unit) voltage

FLUX non-negative
number

Coulomb per
Square Meter

1 (unit) amount of hot elec-
trons in units of elec-
trical charge per gate
oxide area

FLUENCE non-negative
number

Second times
Coulomb per
Square Meter

1 (unit) integral of FLUX
over time

a. If the annotatedPIN hasPINTYPE=supply , theCURRENTmeasurement qualifies for
power analysis. In this case, the current includes charge/discharge current, if applicable.

Table 3-53 : Electrical components

Keyword Value type Base Units
Default
Units Description

CAPACITANCE non-negative
number

Farad p (pico) pin, wire, load, or net capacitance

INDUCTANCE non-negative
number

Henry n (nano) pin, wire, load, or net inductance

RESISTANCE non-negative
number

Ohm K (kilo) pin, wire, load, or net resistance

Table 3-54 : Layout data

Keyword Value type
Base
Units

Default
Units Description

AREA non-negative number Square
Meter

p (pico) area in square microns (pico = micro2)

DISTANCE number Meter u (micro) distance between two points in microns

HEIGHT non-negative number Meter u (micro) x-or y- dimension of a placeable object
(e.g. cell, block)

x-, y-, or z- dimension of a routeable object
(e.g. wire) measured in orthogonal direction
to the route

Table 3-52 : Analog measurements

Keyword Value type Base Units Default Units Description
88 Advanced Library Format (ALF) Reference Manual Version 1.1

Context-sensitive keywords Library Format Specification

ct
LENGTH non-negative number Meter u (micro) x-, y-, or z- dimension of a routeable obje
(e.g. wire) measured in parallel direction to
the route

WIDTH non-negative number Meter u (micro) x-or y- dimension of a placeable object
(e.g. cell, block)

x-, y-, or z- dimension of a routeable object
(e.g. wire) measured in orthogonal direction
to the route

Table 3-55 : Abstract measurements

Keyword Value type
Base
Units

Default
Units Description

DRIVE_STRENGTH non-negative
number

None 1 (unit) drive strength of a pin, abstract measure

for (drive resistance)-1

SIZE non-negative
number

None 1 (unit) abstract cost function for actual or esti-
mated area of a cell or a block

Table 3-56 : Normalized measurements

Keyword Value type
Base
Units

Default
Units Description

THRESHOLD non-negative
number
between 0 and 1

Normalized
signal volt-
age swing

1 (unit) Fraction of signal voltage swing, specify-
ing a reference point for timing measure-
ment data.
The threshold is the voltage for which the
timing measurement is taken.

NOISE_MARGIN non-negative
number
between 0 and 1

Normalized
signal volt-
age swing

1 (unit) Fraction of signal voltage swing, specify-
ing the noise margin.
The noise margin is a deviation of the
actual voltage from the expected voltage
for a specified signal level

Table 3-54 : Layout data

Keyword Value type
Base
Units

Default
Units Description
Version 1.1 Advanced Library Format (ALF) Reference Manual 89

Library Format Specification Context-sensitive keywords

ted

rs or
les. A
n

able

e

Actual values for discrete measurements are always integer numbers, however, estima
values may be non-integer numbers (e.g. average fanout of a net =2.4).

3.6.7.2 Models for non-interpolateable tables

The following keywords identify arithmetic models that can only be used as
non-interpolateable tables. The values in the table may not be used in equations.

The following table describes connectivity data:

The connectivity function specifies the allowed and disallowed connections amongst drive
receivers in 1-dimensional tables, or between drivers and receivers in 2-dimensional tab
CONNECTIVITYobject requires aCONNECT_RULEannotation (3.6.7.4). The boolean literals i
the table have the following meaning:

The arguments of the connectivity functions are tables of strings, which refer to user-defin
classes. Pins that are subject to a particularCONNECT_RULE refer to the relevant class via a
CONNECT_CLASS annotation (see section 3.6.3.12).

Table 3-57 : Discrete measurements

Keyword Value type
Base
Units

Default
Units Description

SWITCHING_BITS non-negative
number

None 1 number of switching bits on a bus

FANOUT non-negative
number

None 1 number of receivers connected to a net

FANIN non-negative
number

None 1 number of drivers connected to a net

CONNECTIONS non-negative
number

None 1 number of pins connected to a net, wher
CONNECTIONS = FANIN+FANOUT

Table 3-58 : Connectivity data

Annotation string Value type Description

CONNECTIVITY boolean literal connectivity function

DRIVER string argument of connectivity function

RECEIVER string argument of connectivity function

Table 3-59 : Boolean literals in non-interpolateable tables

Boolean literal Description

1 CONNECT_RULE is true

0 CONNECT_RULE is false

? CONNECT_RULE is don’t care
90 Advanced Library Format (ALF) Reference Manual Version 1.1

Context-sensitive keywords Library Format Specification

equires
 and a
Example:

CLASS power;
CLASS ground;
CONNECTIVITY {

CONNECT_RULE = must_short;
HEADER {

RECEIVER r1 { TABLE { power ground } }
RECEIVER r2 { TABLE { power ground } }

}
TABLE { 1 0 0 1 }

}

All pins of thepower andground class must be connected amongst themselves, butpower and
ground class must not be shorted together.

3.6.7.3 Models for non-interpolateable tables and equations

The following keywords identify arithmetic models that may be used directly as non-
interpolateable tables and indirectly as equations. The use of those models as equations r
that a non-interpolateable table establishes a relationship between a symbolic identifier
number.

The following table describes process data:

The following identifiers can be used as predefined processes:

?n?p process definition with transistor strength

where? can be

s strong
w weak

The possible process name combinations are

The following identifiers can be used as predefined derating cases:

nom nominal case
bc? prefix for best case

Table 3-60 : Process data

Annotation string Value type Description

DERATE_CASE string derating case coefficient

PROCESS string process derating coefficient

Table 3-61 : Predefined process names

Process name Description

snsp strong NMOS, strong PMOS

snwp strong NMOS, weak PMOS

wnsp weak NMOS, strong PMOS

wnwp weak NMOS, weak PMOS
Version 1.1 Advanced Library Format (ALF) Reference Manual 91

Library Format Specification Context-sensitive keywords
wc? prefix for worst case

where? can be

com suffix for commercial case
ind suffix for industrial case
mil suffix for military case

The possible derating case combinations are defined in Table 3-62.

Example:

• Direct use ofPROCESS in a non-interpolateable table:

DELAY {
UNIT = ns;
HEADER {

PROCESS { TABLE { nom snsp wnwp } }
}
TABLE { 0.4 0.3 0.6 }

}

The delay is 0.4 ns for nominal process, 0.3 ns forsnsp , 0.6 ns forwnwp.

• Indirect use ofPROCESS in an equation:

DELAY {
UNIT = ns;
HEADER {

PROCESS { HEADER { nom snsp wnwp } TABLE {0.0 -0.25 0.5} }
}
EQUATION { (1 + PROCESS)*0.4 }

}

The equation uses the derating factors 0.0 for nominal, -0.25 forsnsp , 0.5 for wnwp.

Table 3-62 : Predefined derating cases

Derating case Description

bccom best case commercial

bcind best case industrial

bcmil best case military

wccom worst case commercial

wcind worst case military

wcmil worst case military
92 Advanced Library Format (ALF) Reference Manual Version 1.1

Context-sensitive keywords Library Format Specification

iming
c. In

M,
sense

r one
ay be
3.6.8 Containers for arithmetic models

The following keywords are defined for objects that may contain arithmetic models

3.6.8.1 FROM and TO container

A FROM container and a TO container shall be used inside timing measurements and t
constraints. They shall contain PIN annotations for the purpose of defining the timing ar
addition, both containers may contain arithmetic models for THRESHOLD.

Example:

DELAY {
FROM {PIN = data_in; THRESHOLD { RISE = 0.4; FALL = 0.6;} }
TO {PIN = data_out; THRESHOLD = 0.5;}

}

The delay is measured from pindata_in to pindata_out . The threshold fordata_in is 0.4
for rising signal and 0.6 for falling signal. The threshold fordata_out is 0.5, which applies for
both rising and falling signal.

If the timing measurements or timing constraints, respectively, apply for two pins, the FRO
TO containers shall each contain the PIN annotation. These annotations shall define the
of measurement.

<model_keyword> {
FROM { PIN = <pin_name> ; }
TO { PIN = <pin_name> ; }
/* data */

}

Otherwise, if the timing measurements or timing constraints, respectively, apply only fo
pin, the same PIN annotation may be repeated in both containers or the PIN annotation m
outside the FROM, TO container.

<model_keyword> {
PIN = <pin_name> ;
/* data */

}

Table 3-63 : Unnamed annotation containers

Objects Description

FROM contains start point of timing measurement or timing constraint

TO contains end point of measurement or timing constraint

LIMIT contains arithmetic models for limit values

EARLY contains arithmetic models for timing measurements relevant for early signal
arrival time

LATE contains arithmetic models for timing measurements relevant for late signal
arrival time
Version 1.1 Advanced Library Format (ALF) Reference Manual 93

Library Format Specification Context-sensitive keywords

shall

 a
f and

eas

tain
If thresholds are needed for exact definition of the model data, the FROM, TO containers
each contain an arithmetic model for THRESHOLD.

<model_keyword> {
FROM { THRESHOLD /*data*/ }
TO { THRESHOLD /*data*/ }
/* data */

}

An arithmetic model for THRESHOLD outside a FROM or TO container shall only have
semantic meaning, if said annotation or arithmetic model contains a PIN annotation itsel
this PIN annotation matches a PIN annotation in a FROM or TO container.

Example:

DELAY {
FROM {

PIN = pin1;
THRESHOLD /*data*/

}
TO {

PIN = pin2;
}
HEADER {

THRESHOLD {
PIN = pin2;
TABLE { <numbers> }

}
TABLE { <numbers> }

}

Note: The data of the THRESHOLD at pin1 is calculated independently of DELAY, wher
DELAY is calculated as a function of THRESHOLD at pin2.

3.6.8.2 LIMIT container

A LIMIT container may be used inside a library-specific object (Section 3.4.6). It shall con
arithmetic models identified by MIN and/or MAX.

Example:

PIN data_in {
LIMIT {

SLEWRATE { UNIT = ns; MIN = 0.05; MAX = 5.0;}
}

}

94 Advanced Library Format (ALF) Reference Manual Version 1.1

Context-sensitive keywords Library Format Specification

Hz.

 sin-
oth

ith

e
E

tions
dels.
etic
The minimum slewrate allowed at pindata_in is 0.05 ns, the maximum is 5.0 ns.

PIN data_in {
LIMIT {

SLEWRATE {
UNIT = ns;
MAX {

HEADER { FREQUENCY { UNIT=megahz;} }
EQUATION { 250 / FREQUENCY }

}
}

}
}

The maximum allowed slewrate is frequency-dependent, e.g. the value is 0.25ns for 1G

3.6.8.3 EARLY and LATE container

The EARLY and LATE containers define the boundaries of timing measurements in one
gle analysis. Only applicable to DELAY and SLEWRATE. Both of them must appear in b
containers.

The quadruple

EARLY {
DELAY { FROM {...} TO { ...} /* data */ }
SLEWRATE { /* data */ }

LATE {
DELAY { FROM {...} TO { ...} /* data */ }
SLEWRATE { /* data */ }

is used to calculate the envelope of the timing waveform at the TO point of a delay arc w
respect to the timing waveform at the FROM point of a delay arc.

The EARLY DELAY is of course a smaller number (or a set of smaller numbers) than th
LATE DELAY. However, the EARLY SLEWRATE is not necessarily smaller than the LAT
SLEWRATE, since the SLEWRATE of the EARLY signal may be larger than the SLE-
WRATE of the LATE signal.

3.6.9 Keywords for arithmetic submodels

Arithmetic submodels are for the purpose of distinguishing different measurement condi
for the same model. The root of an arithmetic model may contain nested arithmetic submo
The header of an arithmetic model may contain nested arithmetic models, but not arithm
submodels.

3.6.9.1 MIN/TYP/MAX

MIN, TYP, MAX provide 3 distinct sets of data

<model_keyword> { MIN /*data*/ TYP /*data*/ MAX /*data*/ }
Version 1.1 Advanced Library Format (ALF) Reference Manual 95

Library Format Specification Context-sensitive keywords

g
d

, TYP,
erate

or

s

er
ot
as opposed to a single set of data

<model_keyword> /*data*/

The set of valid keywords for <model_keyword> is defined in section 3.6.7.1.

The MIN, TYP, MAX represent a statistical distribution of data without specifying or implyin
a particular cause of the distribution. If process corners or derate cases are not modele
explicitly, MIN, TYP, MAX can be used for representing the distribution of data across
processes or derate cases. If process corners or delay cases are modeled explicitly, MIN
MAX can be used for representing the distribution of data within each process corner or d
case.

Note: The arithmetic model root containing MIN, TYP, MAX must not contain HEADER
TABLE or EQUATION. Instead, the MIN, TYP, MAX models may contain HEADER or
TABLE or EQUATION.

<model_keyword> {
MIN {

HEADER{ <model_keyword> /*data*/ .. <model_keyword> /*data*/
}

TABLE /* or equation */ { <numbers> }
}
TYP {

HEADER{ <model_keyword> /*data*/ .. <model_keyword> /*data*/
}

TABLE /* or equation */ { <numbers> }
}
MAX {

HEADER{ <model_keyword> /*data*/ .. <model_keyword> /*data*/
}

TABLE /* or equation */ { <numbers> }
}

}

MIN, TYP, MAX can also be single numbers. In this case, they have the same syntax a
annotations within the arithmetic model.

<model_keyword> {
MIN = <number> ;
TYP = <number> ;
MAX = <number> ;

}

Within the scope of a LIMIT container, MIN and MAX contain the data for a lower or upp
limit, respectively. There must be at least one limit, lower or upper, in each model, but n
necessarily both, as shown in the example below.

LIMIT {
<model_keyword1> { MIN /*data*/ } // lower limit
<model_keyword2> { MAX /*data*/ }// upper limit
<model_keyword3> { MIN /*data*/ MAX /*data*/ }// lower and upper

limit
}

96 Advanced Library Format (ALF) Reference Manual Version 1.1

Context-sensitive keywords Library Format Specification

el

R,
Note: The arithmetic model root inside LIMIT must not contain HEADER or TABLE or
EQUATION. Instead, the MIN or MAX models may contain HEADER or TABLE or
EQUATION.

LIMIT {
<model_keyword> {

MIN {
HEADER{ <model_keyword> /*data*/ .. }
TABLE { <numbers> } /* or equation */

}
MAX {

HEADER{ <model_keyword> /*data*/ .. }
TABLE { <numbers> } /* or equation */

}
}

}

MIN, MAX inside arithmetic model root inside LIMIT can also be single numbers.

LIMIT {
<model_keyword> {

MIN = <number> ;
MAX = <number> ;

}
}

MIN, MAX inside a model inside a HEADER define the validity limits of the data. The mod
inside the HEADER may contain TABLE or EQUATION. It may also contain HEADER,
which represents a nested arithmetic model.

If MIN, MAX is not defined and the data is in a TABLE, the boundaries of the data in the
TABLE shall be considered as validity limits.

Note: The MIN and MAX numbers qualify the data of the arithmetic model in the HEADE
they do not represent the data itself.

<model_keyword> {
HEADER {

<model_keyword> {
MIN = <number> ; // minimum value for valid

extrapolation
MAX = <number> ; // maximum value for valid

extrapolation
TABLE { <numbers> } // data for inter-and extrapolation

}
}
TABLE { <numbers> }

}

Version 1.1 Advanced Library Format (ALF) Reference Manual 97

Library Format Specification Context-sensitive keywords

ic

ly,

lue
5.7. If
hout

t be
atory
3.6.9.2 RISE/FALL and HIGH/LOW

RISE, FALL contain data for transient measurements. HIGH, LOW contain data for stat
measurements.

<model_keyword> { RISE /*data*/ FALL /*data*/ }

<model_keyword> {HIGH /*data*/ LOW /*data*/ }

It is generally not required that both RISE and FALL or both HIGH and LOW, respective
appear in the arithmetic model root.

HIGH and LOW qualify states with the logic value 1 and 0, respectively. RISE and FALL
qualify transitions between states with initial logic value 0 and 1, respectively and final va
1 and 0, respectively. For other states and their mapping to logic values, see Section 3.
the arithmetic model is within the scope of a vector which describes the logic values wit
ambiguity, the use of RISE, FALL, HIGH, LOW is not necessary.

Example:

VECTOR (?! A -> 10 B) {
SLEWRATE { PIN = A; RISE = 3.1; FALL = 2.8; }

}

Alternative description:

VECTOR (01 A -> 10 B) {
SLEWRATE = 3.1 { PIN = A; }

}
VECTOR (10 A -> 10 B) {

SLEWRATE = 2.8 { PIN = A; }
}

Note: For states that cannot be mapped to logic 1 or 0, RISE, FALL, HIGH, LOW canno
used. The use of VECTOR with unambiguous description of the relevant states is mand
in such cases.

The arithmetic model root containing RISE, FALL or HIGH, LOW must not contain MIN,
TYP, MAX, HEADER, TABLE or EQUATION. Instead, the RISE, FALL or HIGH, LOW
models may contain HEADER, TABLE, EQUATION.

<model_keyword> {
<RISE or FALL or HIGH or LOW> {

HEADER{ <model_keyword> /*data*/ .. }
TABLE { <numbers> } /* or equation */

}
}

Alternatively, the RISE, FALL or HIGH, LOW models may contain MIN, TYP, MAX, which
may contain HEADER, TABLE, EQUATION themselves.

<model_keyword> {
<RISE or FALL or HIGH or LOW> {

MIN /*data*/
TYP /*data*/
MAX /*data*/

}

98 Advanced Library Format (ALF) Reference Manual Version 1.1

Context-sensitive keywords Library Format Specification

ion

del,

t
r

ers

els.

,

Alternatively, the RISE, FALL or HIGH, LOW models may be single numbers.

<model_keyword> {
<RISE or FALL or HIGH or LOW> = number ;

}

Semantic meaning for RISE and FALL is provided for the following measurements:

• DELAY, RETAIN:

RISE, FALL is the switching direction on the PIN specified in the TO field.

If the TO field does not exist (a special case for port delay), RISE, FALL is the switching
direction on the PIN specified in the FROM field.

• CAPACITANCE, RESISTANCE, INDUCTANCE, CURRENT, ENERGY, POWER,
SLEWRATE, THRESHOLD:

RISE, FALL is the switching direction on the PIN. Either the PIN is specified as annotat
inside the model, or the model is inside a PIN.

Semantic meaning for HIGH and LOW is provided for the following measurements:

• CAPACITANCE, RESISTANCE, INDUCTANCE, CURRENT, ENERGY, POWER,
VOLTAGE, NOISE_MARGIN:

HIGH, LOW is the state on the PIN. Either the PIN is specified as annotation inside the mo
or the model is inside a PIN.

The arithmetic model root containing RISE, FALL or HIGH, LOW may be inside a LIMIT
container with the following rule: A model containing RISE, FALL or HIGH, LOW must no
contain MIN or MAX. Instead, the RISE, FALL or HIGH, LOW model must contain MIN o
MAX.

LIMIT {
<model_keyword> {

<RISE or FALL or HIGH or LOW> { MIN /*data*/ MAX /*data*/ }
}

}

The arithmetic model root containing RISE, FALL may be inside EARLY, LATE contain
with the following rules:

If only RISE appears in one model, only RISE must appear in all models.

If only FALL appears in one model, only FALL must appear in all models.

If both RISE and FALL appear in one model, both RISE and FALL must appear in all mod

EARLY {
DELAY { RISE /*data*/ FALL /*data*/ }
SLEWRATE { RISE /*data*/ FALL /*data*/ }
}

LATE {
DELAY { RISE /*data*/ FALL /*data*/ }
SLEWRATE { RISE /*data*/ FALL /*data*/ }

}

Semantic meaning for RISE and FALL is provided for the following LIMIT specifications
EARLY or LATE measurements:
Version 1.1 Advanced Library Format (ALF) Reference Manual 99

Library Format Specification Context-sensitive keywords

ing

ion

:

del,

antic

 have
tic

he
• DELAY, RETAIN:

RISE, FALL is the switching direction on the PIN specified in the TO field.

Only if the TO field does not exist (a special case for port delay), RISE, FALL is the switch
direction on the PIN specified in the FROM field (since the switching direction of the
unspecified PIN in the TO field will be the same).

• SLEWRATE:

RISE, FALL is the switching direction on the PIN. Either the PIN is specified as annotat
inside the model, or the model is inside a PIN.

Semantic meaning for HIGH and LOW is provided for the following LIMIT specifications

• CURRENT, ENERGY, POWER, VOLTAGE

HIGH, LOW is the state on the PIN. Either the PIN is specified as annotation inside the mo
or the model is inside a PIN.

3.6.10 Annotations for arithmetic models

Annotations and annotation containers described in this chapter are relevant for the sem
interpretation of arithmetic models and their arguments.

Example: DELAY=f(CAPACITANCE).
DELAY is the arithmetic model, CAPACITANCE is the argument.

Arguments of arithmetic models have the form of annotation containers. They may also
the form of arithmetic models themselves, in which case they represent nested arithme
models.

3.6.10.1 DEFAULT annotation

Thedefault annotation allows use of the default value instead of the arithmetic model, if t
arithmetic model is beyond the scope of the application tool.

DEFAULT = number ;

Restrictions may apply for the allowed type ofnumber . For instance, if the arithmetic model
allows onlynon_negative_number , then the default is restricted tonon_negative_number .

3.6.10.2 UNIT annotation

Theunit annotation associates units with the value computed by the arithmetic model.

UNIT = string | non_negative_number ;

A unit specified by astring can take the following values (* indicates wildcard):

Table 3-64 : UNIT annotation

Annotation string Description

f* or F* equivalent to1E-15

p* or P* equivalent to1E-12
100 Advanced Library Format (ALF) Reference Manual Version 1.1

Context-sensitive keywords Library Format Specification

from
the

e of
ase

nce,
not
Arithmetic models are context-sensitive, i.e. the units for their values can be determined
the context. IfUNIT annotation for such a context does not exist, default units are applied to
value (Section 3.6.9.2).

Example:

TIME { UNIT = ns; }
FREQUENCY { UNIT = gigahz; }

If the unit is a string, then only the first character (respectively the first 3 characters in cas
MEG) is interpreted. The reminder of the string can be used to define base units. Metric b
units are assumed, but not verified, in ALF.

There is no semantic difference between

unit = 1sec;

and

unit = 1volt;

Therefore, if the unit is specified as

unit = meg;

the interpretation is1E+6. However, for

unit = 1meg;

the interpretation is1 and not1E+6.

Units in a non-metric system can only be specified with numbers, not with strings. For insta
if the intent is to specify inch instead of meter as base unit, the following specification will
meet the intent:

unit = 1inch;

since the interpretation is1 and meters are assumed.

The correct way of specifying inch instead of meter is

unit = 25.4E-3;

since 1 inch is (approximately) 25.4 millimeters.

n* or N* equivalent to1E-9

u* or U* equivalent to1E-6

m* or M* equivalent to1E-3

1* equivalent to1E+0

k* or K* equivalent to1E+3

meg* or MEG*a equivalent to1E+6

g* or G* equivalent to1E+9

a. or uppercase/lowercase combination

Table 3-64 : UNIT annotation

Annotation string Description
Version 1.1 Advanced Library Format (ALF) Reference Manual 101

Library Format Specification Context-sensitive keywords

ing

or a

e of a

ing
3.6.10.3 CONNECT_RULE annotation

Theconnect_rule annotation may be only inside a CONNECTIVITY object. It specifies
connectivity requirement.

CONNECT_RULE = string ;

which can take the following values:

3.6.10.4 PIN annotation

The use of PIN annotation in arithmetic models other than timing measurements and tim
constraints is defined here.

If the PIN annotation appears inside an arithmetic model within the scope of a HEADER
LIMIT, the physical quantity identified by the model keyword isappliedto the PIN. Otherwise,
if the PIN annotation appears inside an arithmetic model root that is not within the scop
LIMIT, the physical quantity identified by the model keyword ismeasured at the PIN.

Example:

// intrinsic capacitance of pin1
CAPACITANCE {

PIN = pin1;
/*data*/

}
// maximum allowed capacitance on a net connected to pin2
LIMIT {

CAPACITANCE {
PIN = pin2;
MAX /*data*/

}
}

// delay measured as function of capacitance on a net connected to pin3
DELAY {

HEADER {
CAPACITANCE {

PIN = pin3;
}

}
/*data*/

}

If the arithmetic model is within the scope of a PIN object, a PIN annotation is illegal accord
to the visibility rules of ALF, since a PIN cannot be visible inside another PIN, with the

Table 3-65 : CONNECT_RULE annotation

Annotation string Description

must_short short connection required

can_short short connection allowed

cannot_short short connection disallowed
102 Advanced Library Format (ALF) Reference Manual Version 1.1

Context-sensitive keywords Library Format Specification

tion

al

ord

 to a

r

following exception: The PIN outside the arithmetic model is a bus, and the PIN annota
inside the arithmetic model refers to a bit of the bus.

Example:

PIN [1:2] bus_pin {
// intrinsic capacitance of bus_pin[1]

CAPACITANCE {
PIN = bus_pin[1];
/*data*/

}
// maximum allowed capacitance on a net connected to bus_pin[2]

LIMIT {
CAPACITANCE {

PIN = bus_pin[2];
/*data*/

}
}

}

If an arithmetic model root appears within the scope of a LIMIT inside a PIN, the physic
quantity identified by the model keyword isapplied to the PIN. Otherwise, if an arithmetic
model root appears directly inside a PIN, the physical quantity identified by the model keyw
is measured at the PIN.

Example:

PIN scalar_pin {
// intrinsic capacitance of scalar_pin

CAPACITANCE {
/*data*/

}
// maximum allowed capacitance on a net connected to scalar_pin

LIMIT {
CAPACITANCE {

/*data*/
}

}
}

An arithmetic model inside a bus or an arithmetic model with a PIN annotation referring
bus shall apply to the entire bus, not to each individual scalar pin of the bus.

Example:

PIN [1:10] large_bus {
CAPACITANCE = 1 { unit = pf; }

}

The total pin capacitance oflarge_bus is 1 pf, not 10 pf. The capacitance of individual scala
pins large_bus[1] .. large_bus[10] is not defined.
Version 1.1 Advanced Library Format (ALF) Reference Manual 103

Library Format Specification Context-sensitive keywords

r the

lues
3.6.10.5 MEASUREMENT, TIME and FREQUENCY annotations

Arithmetic models describing analog measurements (see Table 3-52) can have a
MEASUREMENT annotation. This annotation indicates the type of measurement used fo
computation in arithmetic model.

MEASUREMENT = string ;

The string can take the following values:

In this context,either TIME or FREQUENCY can also be used as annotations.

The semantics are defined as follows:

In all applicable cases, the interpretation FREQUENCY = 1 / TIME is valid.

The values foraverage measurements and forrms measurements scale linearly with
FREQUENCY and 1 / TIME, respectively. Fortransient measurements and forpeak

measurements, the TIME or FREQUENCY annotations are purely informational. The va
do not scale with TIME or FREQUENCY.

Table 3-66 : MEASUREMENT annotation

Annotation string Description

transient measurement is a transient value

static measurement is a static value

average measurement is an average value

rms measurement is an root mean square value

peak measurement is a peak value

Table 3-67 : Semantic interpretation of MEASUREMENT, TIME or FREQUENCY annotation

MEASUREMENT
annotation

Semantic meaning of TIME
annotation

Semantic meaning of FREQUENCY
annotation

transient integration of analog measurement is
done during that time window

integration of analog measurement is
repeated with that frequency

static N/A N/A

average average value is measured over that
time window

average value measurement is repeated
with that frequency

rms root-mean-square value is measured
over that time window

root-mean-square measurement is
repeated with that frequency

peak peak value occurs during that time win-
dow

observation of peak value is repeated
with that frequency
104 Advanced Library Format (ALF) Reference Manual Version 1.1

Context-sensitive keywords Library Format Specification

itial

ll be
tation
Mathematical definitions:

Examples:

transient measurement of ENERGY
static measurement of VOLTAGE, CURRENT, POWER
average measurement of POWER, CURRENT
rms measurement of POWER, CURRENT
peak measurement of VOLTAGE, CURRENT, POWER

3.6.10.6 TIME and FREQUENCY for waveform description

Both FREQUENCYand TIME can also be used in the HEADER of arithmetic models. In
particular, TIME in the HEADER describes waveforms of analog measurements. The in
and final values of the measurement, respectively, apply to the time before the first
measurement and after the last measurement, respectively.

The semantics are defined as follows:

In the context of analog measurement versus TIME description, FREQUENCY may sti
used either as complementary argument in the HEADER or as annotation. The interpre

Table 3-68 : Semantic interpretation of TIME for waveform description

MEASUREMENT
annotation

Semantic meaning of TIME in
HEADER Use of FREQUENCY

transient piece-wise linear waveform of instanta-
neous value over time

allowed in HEADER or as annotation,
boundary restrictions apply (see below)

static N/A allowed in HEADER only, no restric-
tion

average incremental average value, measured
from the previous time point to the
actual time point

allowed in HEADER or as annotation,
boundary restrictions apply

rms incremental rms value, measured from
the previous time point to the actual
time point

allowed in HEADER or as annotation,
boundary restrictions apply

peak peak value encountered between the
previous time point and the actual time
point

allowed in HEADER or as annotation,
boundary restrictions apply

max E t()() E t()sgn⋅ 0 t T≤ ≤

E t()d

t 0=()

t T=()

∫ E t() td

t 0=()

t T=()

∫
T

E t()2
td

t 0=()

t T=()

∫
T

E constant=

transient

static

average

rms

peak
Version 1.1 Advanced Library Format (ALF) Reference Manual 105

Library Format Specification Context-sensitive keywords

 by

 a

ults in

-

rvable
FREQUENCY = 1 / TIME isnot valid. Instead, the following boundary restrictions are
imposed in order to make the waveforms repeatable:

• The initial value and the final value of a transient measurement must be the same.
• The initial values of average, rms, or peak measurements, i.e. the values that applybefore

the first time index apply also as valueafter the last time index.
• The overall time window between the first and the last measurement must be bound

1 / FREQUENCY

These restrictions make sure that there is a physical interpretation of measurements as
function of TIME and FREQUENCY.

Examples:

transient waveform,average , rms , peak of CURRENT vs. TIME, VOLTAGE vs.
TIME. Resonance effects (parasitic oscillators) may influence the measurement res
a certain FREQUENCY range.

static measurement of POWER vs. FREQUENCY. FREQUENCY of a voltage-con
trolled oscillator is statically controlled by a DC voltage. Measurement could also be
expressed as power versus control voltage, but the control voltage may not be obse
in simulation, whereas the frequency of the oscillating output signal is observable.
106 Advanced Library Format (ALF) Reference Manual Version 1.1

Context-sensitive keywords Library Format Specification

table
The following figure illustrates transient, average, rms, and peak waveforms for a repea
analog signal.

Figure 3-18: Illustration of Waveforms

TIME

FREQUENCY

MEASUREMENT=transient

MEASUREMENT=average

MEASUREMENT=rms

MEASUREMENT=peak

T0 T1 T2 T3 T4
1

T4 T0–
------------------=

E T0()

E T1() E T2()

E T3()

1
T1 T0–
------------------ E t() td

T0

T1

∫⋅

1
T2 T1–
------------------ E t() td

T1

T2

∫⋅

1
T3 T2–
------------------ E t() td

T2

T3

∫⋅

1
T3 T2–
------------------ E t()2

td

T2

T3

∫⋅

1
T2 T1–
------------------ E t()2

td

T1

T2

∫⋅

1
T1 T0–
------------------ E t()2

td

T0

T1

∫⋅

T0 t T1≤ ≤
max E t()()

T1 t T2≤ ≤
max E t()()

T2 t T3≤ ≤
max E t()()

1
T4 T3–
------------------ E t() td

T3

T4

∫⋅

1
T4 T3–
------------------ E t()2

td

T3

T4

∫⋅

T3 t T4≤ ≤
max E t()()
Version 1.1 Advanced Library Format (ALF) Reference Manual 107

Library Format Specification Library Organization

l
n of

t

ject
3.7 Library Organization

3.7.1 Scoping Rules

The following scope rules shall apply to all library objects and its usage.

Rule 1: An object shall be defined before it is referenced.

Rule 2: An ALF object shall be known (referenceable) inside the parent object, inside al
objects defined after that object within the same parent object, and inside all the childre
those objects.

Rule 3: An object definition with only a keyword but without an object identifier implies tha
the content of this definition will be applied to all objects identified by this keyword at the
current scope and the underlying levels of hierarchy.

Example:

LIBRARY my_library {
CAPACITANCE {UNIT = pF;} // default

capacitance units for all
... // cells in

my_library
CELL cell1 {

CAPACITANCE {UNIT = fF;} // capacitance
units specific to cell1

PIN A {CAPACITANCE = 10.5;}
...

}
CELL cell2 {

PIN A {CAPACITANCE = 0.010;} // default
capacitance units

...
}

}

The capacitance of pinA of cell1 is 10.5 fF . The capacitance of pinA of cell2 is 0.010 pF .

Rule 4:An object shall not be defined again at the same level of scope A definition of an ob
is considered duplicate, if both keyword and object identifier are identical.

Example:

It is illegal to write the following:

LIBRARY my_library {
CAPACITANCE {UNIT = fF;}
...
CELL cell1 {

pin A {CAPACITANCE = 10.5;}
...

}

108 Advanced Library Format (ALF) Reference Manual Version 1.1

Referenceable objects Library Format Specification

n the

rary

in at
rd,

ng

re
CAPACITANCE {UNIT = pF;} // duplicate
definition

CELL cell2 {
pin A {CAPACITANCE = 0.010;}
...

}
}

There are three possible ways capacitance units can be set to fF for some of the cells i
library and pF for other cells in the same library:

1. put each set of cells in a different sublibrary,

2. define templates for the different units and reference them appropriately, or

3. define the units locally inside each cell.

3.7.2 Use of multiple files

Sometimes it is inconvenient or impractical to include all of the data for a technology lib
in a single file. TheINCLUDE keyword is used to compose a library from multiple files.

An INCLUDE statement may be used within any context, but any included file shall conta
least a valid object definition to be considered a legal ALF file. It shall begin with a keywo
otherwise it may be ignored by a generic parser.

In general the effect of using theINCLUDEstatement is to be considered equivalent to inserti
the contents of the included file at that point in the parent file.

For example, a top-level ALF library file may contain only the following statements, whe
each file contains appropriate data to make up the entire library.

LIBRARY mylib {
INCLUDE “libdata.alf”;
INCLUDE “templates.alf”;
INCLUDE “cells.alf”;
INCLUDE “wiremodels.alf”;

}

A complete ALF library definition must begin with theLIBRARY keyword. A list of cell
definitions shall not be considered a full, legal ALF library database.

3.8 Referenceable objects

General referenceable objects within the scope of visibility areTEMPLATEandGROUP. Library-
specific referenceable objects arePIN , PRIMITIVE and arithmetic model. The figure 3-19
shows relationships between these objects and where they can be referenced.
Version 1.1 Advanced Library Format (ALF) Reference Manual 109

Library Format Specification Referenceable objects

he
ws

ed
sed

e pin
of
a pin
tion
Figure 3-19: Referencing rules for ALF objects

TheTEMPLATEandGROUPobjects are referenceable only by their respective instantiation. T
TEMPLATEdefinitions may contain instantiation of previously defined templates, which allo
construction of reusable objects.

The arithmetic models can be referenced by other arithmetic models, if they are contain
within each other. This allows hierarchical modeling and a mix of table and equation ba
models.

ThePIN objects are referenced withinFUNCTIONandVECTORobjects and within any annotation
container inside the sameCELL object.

ThePRIMITIVE s are referenceable by aCELL in order to define pins and functionality or within
a FUNCTION to define functionality only or within an annotation container, e.g.SCAN.

3.8.1 Referencing PRIMITIVEs or CELLs

A PRIMITIVE referenced in aCELL may replace the complete set ofPIN andFUNCTION

definition.PINs may be declared before the reference to thePRIMITIVE , in order to provide
supplementary annotations that cannot be inherited from thePRIMITIVE . However, theCELL

must be pin-compatible with thePRIMITIVE .

If the PRIMITIVE or aCELL is referenced in an annotation container such asSCAN, only the
subset ofPINs used in the non-scan cell must be compatible with thePINs of the cell.

The pin names can be referenced by order or by name. In the latter case, the LHS is th
name of the referencedPRIMITIVE or CELL (e.g. the non-scan cell), the RHS is the pin name
the actual cell. A constant logic value can also appear at the LHS or RHS, indicating that
needs to be tied to a constant value. If this information is already specified in an annota

function

template

pin

group

referenceable by

vector
annotation container

arithmetic modelarithmetic model

template instantiation

group instantiationreferenceable by

referenceable by

referenceable by

function
primitive cell

annotation container
referenceable by
110 Advanced Library Format (ALF) Reference Manual Version 1.1

Referenceable objects Library Format Specification

les
y

tion,

lled
their
inside thePIN object itself, referencing between a pin name and a constant value is not
necessary.

PRIMITIVE s can also be instantiated insideBEHAVIOR.

3.8.2 Referencing PINs in FUNCTIONs

Inside aCELLobject, thePIN objects with thePINTYPE digital define variables forFUNCTION

objects inside the sameCELL. A primary input variableinside aFUNCTIONmust be declared as
a PIN with DIRECTION=input or both (sinceDIRECTION=both is a bidirectional pin).
However, it is not required that all declared pins are used in the function. Output variab
inside aFUNCTION need not be declared pins, since they are implicitly declared when the
appear at the left-hand side (LHS) of an assignment.

Example:

CELL my_cell {
PIN A {DIRECTION = input;}
PIN B {DIRECTION = input;}
PIN C {DIRECTION = output;}
FUNCTION {

BEHAVIOR {
D = A && B;
C = !D;

}
}

}

C andD are output variables that need not be declared prior to use. After implicit declara
D is reused as an input variable.A andB are primary input variables.

InsideBEHAVIOR, variables that appear at the LHS of an assignment conditionally contro
by a vector expression, as opposed to an unconditional continuous assignment, will hold
values, when the vector expression evaluatesfalse . Those variables are considered to have
latch-type behavior.

Examples:

BEHAVIOR {
@(G){

Q = D; // both Q and QN have latch-type behavior
QN = !D;

}
}

BEHAVIOR {
@(G){

Q = D; // only Q has latch-type behavior
}
QN = !Q;

}

The functional description can be supplemented by aSTATETABLE, the first row of which
contains the arguments that are object IDs of declaredPINs. The arguments appear in two
fields, first is input, second is output. The fields are separated by colon (:). The rows are
Version 1.1 Advanced Library Format (ALF) Reference Manual 111

Library Format Specification Referenceable objects

-
ment

tput

lf as
t
f the
separated by (;). The arguments may appear in both fields, if thePINs have attribute
direction=output or direction=both . If direction=output , then the argument has latch
type behavior. The argument on the input field is considered previous state, and the argu
on the output field is considered the next state. Ifdirection=both , then the argument on the
input field applies for input direction, and the argument on the output field applies for ou
direction of the bidirectionalPIN .

Example:

CELL ff_sd {
PIN q {DIRECTION=output;}
PIN d {DIRECTION=input;}
PIN cp {DIRECTION=input;

 SIGNALTYPE=clock;
 POLARITY=rising_edge;}

PIN cd {DIRECTION=input; SIGNALTYPE=clear; POLARITY=low;}
PIN sd {DIRECTION=input; SIGNALTYPE=set; POLARITY=low;}
FUNCTION {

BEHAVIOR {
@(!cd) {q = 0;} :(!sd) {q = 1;} :(01 cp) {q = d;}

}
STATETABLE {

cd sd cp d q : q ;
0 ? ?? ? ? : 0 ;
1 0 ?? ? ? : 1 ;
1 1 1? ? 0 : 0 ;
1 1 ?0 ? 1 : 1 ;
1 1 1? ? 0 : 0 ;
1 1 ?0 ? 1 : 1 ;
1 1 01 ? ? :(d);

}
}

}

If the output variable with latch-type behavior depends only on the previous state of itse
opposed to the previous state of other output variables with latch-type behavior, it is no
necessary to use that output variable in the input field. This allows a more compact form o
STATETABLE.

Example:

STATETABLE {
cd sd cp d : q ;
0 ? ?? ? : 0 ;
1 0 ?? ? : 1 ;
1 1 1? ? :(q);
1 1 ?0 ? :(q);
1 1 01 ? :(d);

}

A generic ALF parser must make the following semantic checks:

• Are all variables of aFUNCTIONdeclared either by declaration asPIN names or through
assignment?
112 Advanced Library Format (ALF) Reference Manual Version 1.1

Referenceable objects Library Format Specification

,

er,
n

e and

 in the

onal
te of

nge.
• Does theSTATETABLE exclusively contain declaredPINs?

• Is the format of theSTATETABLE, i.e. the number of elements in each field of each row
consistent?

• Are the values consistently either state or transition digits?

• Is the number of digits in eachTABLE entry compatible with the signal bus width?

A more sophisticated checker for complete verification for logical consistency of aFUNCTION

given in both equation and tabular representation is out of scope for a generic ALF pars
which checks only syntax and compliance to semantic rules. However, formal verificatio
algorithms can be implemented in special-purpose ALF analyzers or model generators/
compilers.

3.8.3 Referencing PINs in VECTORs

A VECTOR defines state, transition, or sequence of transitions of pins that are controllabl
observable for characterization.

Within aCELL, the set ofPINs withSCOPE=behavior or SCOPE=measureor SCOPE=both is the
default set of variables in the event queue for vector expressions relevant forBEHAVIOR or
VECTOR statements or both, respectively.

For detection of a sequence of transitions it is necessary to observe the set of variables
event queue. For instance, if the set of pins consists ofA, B, C, D, the vector expression

 (01 A -> 01 B)

implies, that no transition onA, B, C, D occurs between the transitions01 A and01 B .

The default set of pins applies only for vector expressions without conditions. The conditi
event AND operator limits the set of variables in the event queue. In this case, only the sta
the condition and the variables appearing in the vector expression are observed.

Example:

(01 A -> 01 B) && (C | D)

No transition onA, B occurs between01 A and01 B , and(C | D) must stay true in-between
01 A and01 B as well. However,C andD may change their values as long as(C | D) is
satisfied.

3.8.4 Referencing multi-dimensional PINs

A group of pins of a cell can be logically considered together by declaring a PIN with a ra
A pin can be declared with one dimension or two dimensions. For example,

PIN A ; // declares a scalar pin A
PIN [1:8] A1 ; // declares pin A1 with bits
numbered 1 through 8
PIN [1:8] A2[1:4] ; // declares pin A2 with two
dimensions
Version 1.1 Advanced Library Format (ALF) Reference Manual 113

Library Format Specification Referenceable objects

most
f the
 first

bits.
ship

tire

be
al

right-
it. If

f the
bject
d PIN

l to
ect.
When a pin is declared with one dimension, the left number in the range shall specify the
significant bit number and the right number shall specify the least significant bit number. I
pin is declared with two dimensions, the second dimension shall specify the index of the
and the last rows of the two-dimension pin object.

A PIN object can be referenced in one of the four forms:

1. Individual bit - pin name shall be followed by an index of the bit

2. Contiguous group of bits - pin name shall be followed by the contiguous range of
The most significant and least significant bit numbers shall follow the same relation
as given in the declaration.

3. Entire PIN object - Only pin name shall be used. It shall be illegal to reference en
two-dimension pin object in any operation.

4. One row of a PIN object - For a two-dimension pin object, name of the pin shall
followed by the row index of that pin. It shall be illegal to reference either individu
bit or a group of bits of a two-dimension pin object directly in an operation.

When a PIN object is referenced on the left-hand side of an assignment, the result of the
hand side expression is copied from the least significant bit towards the most significant b
the right-hand side value has lesser number of bits than the referenced PIN object in an
assignment, the right-hand side value shall be zero-extended to fill the remaining bits o
referenced PIN object. If the right-hand side value has more bits than the referenced PIN o
in an assignment, the right-hand side value shall be truncated to the size of the reference
object.

Example:

pin [1:8] A1;
pin [1:8] A2[1:32] ;

A1[8] = 'b0 ;
A1[1:6] = 'o75 ; // is equivalent to A1[1:6] =
'b111_101
A1[1:5] = 'o75 ; // is equivalent to A1[1:5] =
'b11_101,

// left most bit is truncated
A2[18] = 'h5 ; // is equivalent to A2[18] =
'b0000_0101

// entire row 18 of A2 is assigned a
value.

The two-dimension PIN objects shall be referenced with the row index. It shall be illega
directly reference an individual bit or a contiguous group of bits of a two-dimension PIN obj
It shall be illegal to reference the entire PIN object as a two-dimension PIN object.
114 Advanced Library Format (ALF) Reference Manual Version 1.1

Referenceable objects Library Format Specification

ex.
Example:

pin [1:8] A2[1:32] ;
pin [1:8] B1 ;
pin C ;

// legal references and
assignments

A2[10] = 'h45 ; // assign 'h45 to row 10 of A2
('b0100_0101)
B1 = A2[10] ; // copies whole row A2[10] to
B1
C = B1[3] ; // c = 'b0

// Illegal references and assignments
// B1[3] = A2[10][3] ; illegal reference to bit
3 of A2[10]
// A2 = B1 ; illegal reference to
entire A2

It shall be legal to use identifiers as index, but expressions shall not be permitted as ind

Example

pin [4:1] ADDR;

ADDR = 'd 10;
A2[ADDR] = 'h45 ; // assign 'h45 to row 10 of A2
('b0100_0101)

// A2[ADDR+1] = 'h45 ; illegal

3.8.5 Referencing arithmetic models

Input variables, also calledarguments of arithmetic models, appear in theHEADERof the model.
In the simplest case, theHEADER is just a list of arguments, each being a context-sensitive
keyword. The model itself is also defined with a context-sensitive keyword.

The model can be in equation form. All arguments of the equation must be in theHEADER. The
ALF parser should issue an error if theEQUATIONuses an argument not defined in theHEADER.
A warning should be issued if theHEADER contains arguments not used in theEQUATION.

Example:

DELAY {
...
HEADER {

CAPACITANCE {...}
SLEWRATE {...}

}
EQUATION {

0.01 + 0.3*SLEWRATE + (0.6 + 0.1*SLEWRATE)*CAPACITANCE
}

}

Version 1.1 Advanced Library Format (ALF) Reference Manual 115

Library Format Specification Referenceable objects

lated.

.

nd
ade

med

y,
.

If the model uses aTABLE, then each argument in theHEADER also needs a table in order to
define the format. The order of arguments decides how the index to each entry is calcu
The first argument is the innermost index, the following arguments are outer indices.

DELAY {
HEADER {

CAPACITANCE {
TABLE {0.03 0.06 0.12 0.24}

}
SLEWRATE {

TABLE {0.1 0.3 0.9}
}

}
TABLE {

0.07 0.10 0.14 0.22
0.09 0.13 0.19 0.30
0.10 0.15 0.25 0.41

}
}

The first argumentCAPACITANCEhas 4 entries. The second argumentSLEWRATEhas 3 entries.
HenceDELAY has 4*3=12 entries. For readability, comments may be inserted in the table

TABLE {
//capacitance:0.03 0.06 0.12 0.24
// ------------------- slewrate:

 0.07 0.10 0.14 0.22 // 0.1
 0.09 0.13 0.19 0.30 // 0.3
 0.10 0.15 0.25 0.41 // 0.9

}

Comments have no significance for the ALF parser, nor has the arrangement in rows a
columns. Only the order of values is important for index calculation. The table can be m
more compact by removing new lines.

TABLE { 0.07 0.10 0.14 0.22 0.09 0.13 0.19 0.30 0.10 0.15 0.25 0.41 }

For readability, the models and arguments can also have names, i.e. object IDs. For na
objects, the name is used for referencing, rather than the keyword.

DELAY rise_out{
...
HEADER {

CAPACITANCE c_out {...}
SLEWRATE fall_in {...}

}
EQUATION {

0.01 + 0.3 * fall_in + (0.6 + 0.1* fall_in) * c_out
}

}

The arguments of an arithmetic model can be arithmetic models themselves. In this wa
combinations ofTABLE- andEQUATION-based models can be used, for instance, in derating
116 Advanced Library Format (ALF) Reference Manual Version 1.1

Functional modeling styles and rules Library Format Specification

e
of

tly the
yles.

e 8-
ed for
sy-to-
into
ot

e

Coherent withFUNCTION, bothEQUATIONandTABLErepresentation of an arithmetic model ar
allowed. TheEQUATION is intended to be used when the values of the arguments fall out
range, i.e. to avoid extrapolation. This is especially used in wire models.

3.9 Functional modeling styles and rules

ALF allows the following functional modeling styles: equation based, table-based, and
primitive based. Both equation- and table-based functions are canonical and specify exac
same functionality. Each primitive must be definable in either of the canonical modeling st

Since ALF supports both combinational and sequential functional specification using th
value logic system, an exhaustive behavioral description of all scenarios, which is need
a simulation model, would be very cumbersome and defeat the purpose of a simple, ea
use language. Hence the following rules shall apply for compilation of the ALF description
a full simulation model. These rules cover all cases where the functional description is n
explicit. All of these rules can be overruled by explicit specification of the behavior.

3.9.1 Rules for combinational functions

If a boolean expression evaluatesTrue , the assigned output value is1. If a boolean expression
evaluatesFalse , the assigned output value is0. If the value of a boolean expression cannot b
determined, the assigned output value isX. Assignment of values other than1, 0, or X must be
specified explicitly.

For evaluation of the boolean expression, input value 'bHshall be treated as 'b1. Input value 'bL
shall be treated as 'b0. All other input values shall be treated as 'bX.

Examples:

In equation form, these rules can be expressed as follows.

BEHAVIOR {
Z = A;

}

is equivalent to

BEHAVIOR {
Z = A ? ’b1 : ’b0;

}

More explicitly, this is also equivalent to

BEHAVIOR {
Z = (A==’b1 || A==’bH)? ’b1 : (A==’b0 || A==’bL)? ’b0 : ’bX;

}

In table form, this can be expressed as follows:

STATETABLE {
A : Z;

? : (A);
}

Version 1.1 Advanced Library Format (ALF) Reference Manual 117

Library Format Specification Functional modeling styles and rules

ition

r

which is equivalent to

STATETABLE {
A : Z;

0 : 0;
1 : 1;

}

More explicitly, this is also equivalent to

STATETABLE {
A : Z;

0 : 0;
L : 0;
1 : 1;
H : 1;
X : X;
W : X;
Z : X;
U : X;

}

3.9.2 Basic rules for sequential functions

A sequential function is described in equation form by a boolean assignment with a cond
specified by a boolean expression or a vector expression. If the condition evaluates to1 (true),
the boolean assignment is activated and the assigned output values follows the rules fo
combinational functions. If the vector expression evaluates to0 (false), the output variables
hold their assigned value from the previous evaluation.

For evaluation of a condition, the value 'bH shall be treated astrue , the value 'bL shall be
treated asfalse . All other values shall be treated as the unknown value 'bX.

Example:

The following behavior statement

BEHAVIOR {
@ (E) {Z = A;}

}

is equivalent to

BEHAVIOR {
@ (E==’b1 || E==’bH) {Z = A;}

}

The following statetable statement, describing the same logic function

STATETABLE {
E A : Z;

0 ? : (Z);
1 ? : (A);

}

118 Advanced Library Format (ALF) Reference Manual Version 1.1

Functional modeling styles and rules Library Format Specification

the

e is
ction.

 after
 the

ates
tates
is equivalent to

STATETABLE {
E A : Z;

0 ? : (Z);
L ? : (Z);
1 ? : (A);
H ? : (A);

}

For edge-sensitive and higher-order event sensitive functions, transitions from or to 'bL shall
be treated like transitions from or to 'b0, and transitions from or to 'bH shall be treated like
transitions from or to 'b1.

Not every transition may trigger the evaluation of a function. The set of vectors triggering
evaluation of a function are calledactive vectors. From the set of active vectors, a set ofinactive
vectorscan be derived, which will clearly not trigger the evaluation of a function. There ar
also a set of ambiguous vectors, which may or may not trigger the evaluation of the fun

The set of active vectors is the set of vectors for which both observed states before and
the transition are known to be logically equivalent to the corresponding states defined in
vector expression.

The set of inactive vectors is the set of vectors for which at least one of the observed st
before or after the transition is known to be not logically equivalent to the corresponding s
defined in the vector expression.

Example:

For the following sequential function

@ (01 CP) { Z = A; }

the active vectors are

('b0'b1 CP)
('b0'bH CP)
('bL'b1 CP)
('bL'bH CP)

and the inactive vectors are

(’b1’b0 CP)
(’b1’bL CP)
(’b1’bX CP)
(’b1’bW CP)
(’b1’bZ CP)
(’bH’b0 CP)
(’bH’bL CP)
(’bH’bX CP)
(’bH’bW CP)
(’bH’bZ CP)
(’bX’b0 CP)
(’bX’bL CP)
Version 1.1 Advanced Library Format (ALF) Reference Manual 119

Library Format Specification Functional modeling styles and rules

e set
tors

avior

t. The
es a
(’bW’b0 CP)
(’bW’bL CP)
(’bZ’b0 CP)
(’bZ’bL CP)
(’bU’b0 CP)
(’bU’bL CP)

and the ambiguous vectors are

(’b0’bX CP)
(’b0’bW CP)
(’b0’bZ CP)
(’bL’bX CP)
(’bL’bW CP)
(’bL’bZ CP)
(’bX’b1 CP)
(’bW’b1 CP)
(’bZ’b1 CP)
(’bX’bH CP)
(’bW’bH CP)
(’bZ’bH CP)
(’bX’bW CP)
(’bX’bZ CP)
(’bW’bX CP)
(’bW’bZ CP)
(’bZ’bX CP)
(’bZ’bW CP)
(’bU’bX CP)
(’bU’bW CP)
(’bU’bZ CP)

For vectors using exclusively based literals, the set of active vectors is the vector itself, th
of inactive vectors is any vector with at least one different literal, the set of ambiguous vec
is empty.

Therefore ALF does not provide a default behavior for ambiguous vectors, since the beh
for each vector may be explicitly defined in vectors using based literals.

3.9.3 Concurrency in combinational and sequential functions

Multiple boolean assignments in combinational functions are understood to be concurren
order in the functional description does not matter, as each boolean assignment describ
piece of a logic circuit. This is illustrated below.
120 Advanced Library Format (ALF) Reference Manual Version 1.1

Functional modeling styles and rules Library Format Specification

 the
n. In
be an
plies
s

Figure 3-20: Concurrency for combinational logic

In level-sensitive sequential logic, one condition may trigger more than one boolean
assignment, which are also understood to be concurrent. This is illustrated below.

Figure 3-21: Concurrency for level-sensitive sequential logic

The principle of concurrency applies also for edge-sensitive sequential functions, where
triggering condition is described by a vector expression rather than a boolean expressio
edge-sensitive logic, the target logic variable for the boolean assignment (LHS) may also
operand of the boolean expression defining the assigned value (RHS). Concurrency im
that the RHS expressions are evaluated immediatelybeforethe triggering edge, and the value
are assigned to the LHS variables immediatelyafter the triggering edge. This is illustrated
below.

BEHAVIOR {
Q1 = <1st_boolean_expression(D1..Di)> ;
...
Qn = <nth_boolean_expression(D1..Di)> ;

}

Q1

Qn

D1 Di

nth boolean expression

1st boolean expression

BEHAVIOR {
@ (<boolean_expression(E1..Em)>) {

Q1 =
<1st_boolean_expression(D1..Di)> ;

...
Qn =

<nth_boolean_expression(D1..Di)> ;

Q1

Qn

D1 Di

1st boolean expression
true

false

true

false

nth boolean expression

boolean
expression

E1 Em
Version 1.1 Advanced Library Format (ALF) Reference Manual 121

Library Format Specification Functional modeling styles and rules

sed in
le. A

 by

av-

flict
 be

d

Figure 3-22: Concurrency for edge-sensitive sequential logic

Statements with multiple concurrent conditions for boolean assignments may also be u
sequential logic. In that case conflicting values may be assigned to the same logic variab
default conflict resolution is not provided for the following reasons:

• Conflict resolution may not be necessary, since the conflicting situation is prohibited
specification.

• For different types of analysis (e.g. logic simulation), a different conflict resolution beh
ior may be desirable, while the physical behavior of the circuit will not change. For
instance, pessimistic conflict resolution would always assign "X", more accurate con
resolution would first check whether the values are conflicting. Different choices may
motivated by a trade-off in analysis accuracy and runtime.

• If complete library control over analysis is desired, conflict resolution can be specifie
explicitly.

Example:

BEHAVIOR {
@ (<condition_1>) { Q = <value_1>; }
@ (<condition_2>) { Q = <value_2>; }

}

Explicit pessimistic conflict resolution can be described as follows:

BEHAVIOR {
@ (<condition_1> && <condition_2>) { Q = ’bX; }
@ (<condition_1> && ! <condition_2>) { Q = <value_1>; }
@ (<condition_2> && ! <condition_1>) { Q = <value_2>; }

}

BEHAVIOR {
@ (<vector_expression(E1..Em)>) {

Q1 =
<1st_boolean_expression(D1..Di)> ;

...
Qn =

<nth_boolean_expression(D1..Di)> ;

Q1

Qn

D1 Di

1st boolean expression

nth boolean expression

vector
expression

E1 Em

d q

d q
122 Advanced Library Format (ALF) Reference Manual Version 1.1

Functional modeling styles and rules Library Format Specification

iority
ments.

fault

ich
d in a

initial

s.
Explicit accurate conflict resolution can be described as follows:

BEHAVIOR {
@ (<condition_1> && <condition_2>) {

Q = (<value_1>==<value_2>)? <value_1> : ’bX;
}
@ (<condition_1> && ! <condition_2>) { Q = <value_1>; }
@ (<condition_2> && ! <condition_1>) { Q = <value_2>; }

}

Since the conditions are now rendered mutually exclusive, equivalent descriptions with pr
statements can be used. They are more elegant than descriptions with concurrent state

BEHAVIOR {
@ (<condition_1> && <condition_2>) {

Q = <conflict_resolution_value>;
}
: (<condition_1>) { Q = <value_1>; }
: (<condition_2>) { Q = <value_2>; }

}

Given the various explicit description possibilities, the standard does not prescribe a de
behavior. The model developer has the freedom of incomplete specification.

3.9.4 Initial values for logic variables

Per definition, all logic variables in a behavioral description have the initial value "U" wh
means "uninitialized". This value cannot be assigned to a logic variable, yet it can be use
behavioral description in order to assign other values than "U" after initialization.

Example:

BEHAVIOR {
@ (Q1 == ’bU) { Q1 = ’b1 ; }
@ (Q2 == ’bU) { Q2 = ’b0 ; }
// followed by the rest of the behavioral description

}

A template can be used to make the intent more obvious, for example:

TEMPLATE VALUE_AFTER_INITIALIZATION {
@ (<logic_variable> == ’b U) { <logic_variable> = <initial_value>

; }
}
BEHAVIOR {

VALUE_AFTER_INITIALIZATION (Q1 ’b1’)
VALUE_AFTER_INITIALIZATION (Q2 ’b0’)
// followed by the rest of the behavioral description

}

Logic variables in a vector expression must be declared as PINs. It is possible to annotate
values directly to a pin. Such variables will never take the value "U". Therefore vector
expressions involving "U" for such variables (see previous example) will be meaningles
Version 1.1 Advanced Library Format (ALF) Reference Manual 123

Library Format Specification Primitives

tural
Example:

PIN Q1 { INITIAL_VALUE = ’b1 ; }
PIN Q2 { INITIAL_VALUE = ’b0 ; }

3.10 Primitives

3.10.1 Concept of user-defined and predefined primitives

Primitives are described in ALF syntax. Primitives are generic cells containing PIN and
FUNCTION objects only, i.e. no characterization data. The primitives are used for struc
functional modeling.

Example:

PRIMITIVE MY_PRIMITIVE {
PIN x { ... }
PIN y { ... }
PIN z { ... }
FUNCTION { ... }

}

CELL MY_CELL {
PIN a { ... }
PIN b { ... }
PIN c { ... }
FUNCTION {

BEHAVIOR { MY_PRIMITIVE { x=a; y=b; z=c; } }
}
...

}

 Extensible primitives, i.e. primitives with variable number of pins can be modeled with
TEMPLATE.

Example:

TEMPLATE EXTENSIBLE_PRIMITIVE{
PRIMITIVE <primitive_name> {

PIN [0:<max_index>] pin_name { ... }
...

}
}

// instantiation of the template creates a primitive
EXTENSIBLE_PRIMITIVE {

primitive_name = MY_EXTENSIBLE_PRIMITIVE;
max_index = 2;

}

124 Advanced Library Format (ALF) Reference Manual Version 1.1

Primitives Library Format Specification

fined
ed
The set of statements above is equivalent to the following statement:

PRIMITIVE MY_EXTENSIBLE_PRIMITIVE {
PIN [0:2] pin_name { ... }

...
}

The primitive can be used as shown in the following example:

CELL MY_MEGACELL {
PIN a { ... }
PIN b { ... }
PIN c { ... }
FUNCTION {

BEHAVIOR {
// reference to the primitive
MY_EXTENSIBLE_PRIMITIVE {

pin_name[0] = a;
pin_name[1] = b;
pin_name[2] = c;

}
}

}
...

}

Primitives can be freely defined by the user. For convenience, ALF provides a set of prede
primitives with the reserved prefixALF_ in their name, which cannot be used by user-defin
primitives.

For all PINs of predefined primitives, the following annotations are defined per default:

VIEW = functional;
SCOPE = behavioral;

For predefined extensible primitives a placeholder may be directly in the PRIMITIVE
definition:

PRIMITIVE ALF_EXTENSIBLE_PRIMITIVE {
PIN [0:<max_index>] pin_name { ... }

...
}

This is equivalent to the following more verbose set of statements:

TEMPLATE EXTENSIBLE_PRIMITIVE{
PRIMITIVE <primitive_name> {

PIN [0:<max_index>] pin_name { ... }
...

}
}

EXTENSIBLE_PRIMITIVE {
primitive_name = ALF_EXTENSIBLE_PRIMITIVE;
max_index = <max_index>;

}

Version 1.1 Advanced Library Format (ALF) Reference Manual 125

Library Format Specification Primitives

d

3.10.2 Predefined combinational primitives

3.10.2.1 One input, multiple output primitives

There are two combinational primitives with one input pin and multiple output pins:

ALF_BUF, ALF_NOT

A GROUP statement is used to define the behavior of all output pins in one statement.

The output pins are indexed starting with0. If 0 is the only index used, the index can be omitte
when referencing the output pin, e.g.out refers toout[0] .

PRIMITIVE ALF_BUF {
GROUP index {0:<max_index>}
PIN[0:<max_index>] out {

DIRECTION = output ;
}
PIN in {

DIRECTION = input ;
}
FUNCTION {

BEHAVIOR {
out[index] = in;

}
}

}

Figure 3-23: Primitive model of ALF_BUF

PRIMITIVE ALF_NOT {
GROUP index {0:<max_index>}
PIN[0:<max_index>] out {

DIRECTION = output ;
}
PIN in {

DIRECTION = input ;
}
FUNCTION {

BEHAVIOR {
out[index] = !in;

}
}

}

Figure 3-24: Primitive model of ALF_NOT

3.10.2.2 One output, multiple input primitives

There are six combinational primitives with one output pin and multiple input pins:

ALF_AND, ALF_NAND, ALF_OR, ALF_NOR, ALF_XOR, ALF_XNOR
126 Advanced Library Format (ALF) Reference Manual Version 1.1

Primitives Library Format Specification

d
The input pins are indexed starting with0. If 0 is the only index used, the index can be omitte
when referencing the input pin, e.g.in refers toin[0] .

PRIMITIVE ALF_AND {
PIN out {

DIRECTION = output;
}
PIN[0:<max_index>] in {

DIRECTION = input;
}
FUNCTION {

BEHAVIOR {
out = & in;

}
}

}

Figure 3-25: Primitive model of ALF_AND

PRIMITIVE ALF_NAND {
PIN out {

DIRECTION = output;
}
PIN[0:<max_index>] in {

DIRECTION = input;
}
FUNCTION {

BEHAVIOR {
out = ~& in;

}
}

}

Figure 3-26: Primitive model of ALF_NAND

PRIMITIVE ALF_OR {
PIN out {

DIRECTION = output;
}
PIN[0:<max_index>] in {

DIRECTION = input;
}
FUNCTION {

BEHAVIOR {
out = | in;

}
}

}

Figure 3-27: Primitive model of ALF_OR
Version 1.1 Advanced Library Format (ALF) Reference Manual 127

Library Format Specification Primitives
PRIMITIVE ALF_NOR {
PIN out {

DIRECTION = output;
}
PIN[0:<max_index>] in {

DIRECTION = input;
}
FUNCTION {

BEHAVIOR {
out = ~| in;

}
}

}

Figure 3-28: Primitive model of ALF_NOR

PRIMITIVE ALF_XOR {
PIN out {

DIRECTION = output;
}
PIN[0:<max_index>] in {

DIRECTION = input;
}
FUNCTION {

BEHAVIOR {
out = ^in;

}
}

}

Figure 3-29: Primitive model of ALF_XOR

PRIMITIVE ALF_XNOR {
PIN out {

DIRECTION = output;
}
PIN[0:<max_index>] in {

DIRECTION = input;
}
FUNCTION {

BEHAVIOR {
out = ~^in;

}
}

}

Figure 3-30: Primitive model of ALF_XNOR
128 Advanced Library Format (ALF) Reference Manual Version 1.1

Primitives Library Format Specification
3.10.3 Predefined tristate Primitives

There are four tristate primitives:

ALF_BUFIF1, ALF_BUFIF0, ALF_NOTIF1, ALF_NOTIF0

PRIMITIVE ALF_BUFIF1 {
PIN out {

DIRECTION = output;
ENABLE_PIN = enable;
ATTRIBUTE {TRISTATE}

}
PIN in {

DIRECTION = input;
}
PIN enable {

DIRECTION = input;
SIGNALTYPE = out_enable;

}
FUNCTION {

BEHAVIOR {
out = (enable)? in : 'bZ;

}
STATETABLE {

enable in : out;
 0 ? : Z;
 1 ? : (in);

}
}

}

Figure 3-31: Primitive model of ALF_BUFIF1

PRIMITIVE ALF_BUFIF0 {
PIN out {

DIRECTION = output;
ENABLE_PIN = enable;
ATTRIBUTE {TRISTATE}

}
PIN in {

DIRECTION = input;
}
PIN enable {

DIRECTION = input;
SIGNALTYPE = out_enable;

}
FUNCTION {

BEHAVIOR {
out = (!enable)? in : 'bZ;

}

Version 1.1 Advanced Library Format (ALF) Reference Manual 129

Library Format Specification Primitives
STATETABLE {
enable in : out;
 1 ? : Z;
 0 ? : (in);

}
}

}

Figure 3-32: Primitive model of ALF_BUFIF0

PRIMITIVE ALF_NOTIF1 {
PIN out {

DIRECTION = output;
ENABLE_PIN = enable;
ATTRIBUTE {TRISTATE}

}
PIN in {

DIRECTION = input;
}
PIN enable {

DIRECTION = input;
SIGNALTYPE = out_enable;

}
FUNCTION {

BEHAVIOR {
out = (enable)? !in : 'bZ;

}
STATETABLE {

enable in : out;
 0 ? : Z;
 1 ? : (!in);

}
}

}

Figure 3-33: Primitive model of ALF_NOTIF1

PRIMITIVE ALF_NOTIF0 {
PIN out {

DIRECTION = output;
ENABLE_PIN = enable;
ATTRIBUTE {TRISTATE}

}
PIN in {

DIRECTION = input;
}
PIN enable {

DIRECTION = input;
SIGNALTYPE = out_enable;

}
FUNCTION {
130 Advanced Library Format (ALF) Reference Manual Version 1.1

Primitives Library Format Specification

ected
nal is
BEHAVIOR {
out = (!enable)? !in : 'bZ;

}
STATETABLE {

enable in : out;
 1 ? : Z;
 0 ? : (!in);

}
}

}

Figure 3-34: Primitive model of ALF_NOTIF0

3.10.4 Predefined multiplexor

The predefined multiplexor has a known output value if either the select signal and the sel
data inputs are known or both data inputs have the same known value while the select sig
unknown.

PRIMITIVE ALF_MUX {
PIN Q {

DIRECTION = output;
SIGNALTYPE = data;

}
PIN[1:0] D {

DIRECTION = input;
SIGNALTYPE = data;

}
PIN S {

DIRECTION = input;
SIGNALTYPE = select;

}
FUNCTION {

BEHAVIOR {
Q = (S || (d[0] ~^ d[1]))? d[1] : d[0];

}
STATETABLE {

D[0] D[1] S : Q ;
? ? 0 : (D[0]);
? ? 1 : (D[1]);
0 0 ? : 0;
1 1 ? : 1;

}
}

}

Figure 3-35: Primitive model of ALF_MUX
Version 1.1 Advanced Library Format (ALF) Reference Manual 131

Library Format Specification Primitives

sitive
pins
3.10.5 Predefined flipflop

A dual-rail output D-flipflop with asynchronous set and clear pins is a generic edge-sen
sequential device. Simpler flipflops can be modeled using this primitive by setting input
to appropriate constant values. More complex flipflops can be modeled by adding
combinational logic around the primitive.

A particularity of this model is the use of the last two pinsQ_CONFLICT andQN_CONFLICT,
which are virtual pins. They specify the state ofQ andQN in the eventCLEAR andSET become
active simultaneously.

PRIMITIVE ALF_FLIPFLOP {
PIN Q {

DIRECTION = output;
SIGNALTYPE = data;
POLARITY = non_inverted;

}
PIN QN {

DIRECTION = output;
SIGNALTYPE = data;
POLARITY = inverted;

}
PIN D {

DIRECTION = input;
SIGNALTYPE = data;

}
PIN CLOCK {

DIRECTION = input;
SIGNALTYPE = clock;
POLARITY = rising_edge;

}
PIN CLEAR {

DIRECTION = input;
SIGNALTYPE = clear;
POLARITY = high;
ACTION = asynchronous;

}
PIN SET {

DIRECTION = input;
SIGNALTYPE = set;
POLARITY = high;
ACTION = asynchronous;

}
PIN Q_CONFLICT {

DIRECTION = input;
VIEW = none;

}
PIN QN_CONFLICT {

DIRECTION = input;
VIEW = none;

}
FUNCTION {

ALIAS QX = Q_CONFLICT;
ALIAS QNX = QN_CONFLICT;
132 Advanced Library Format (ALF) Reference Manual Version 1.1

Primitives Library Format Specification

cept
BEHAVIOR {
@ (CLEAR && SET) {

Q = QX;
QN = QNX;

}
: (CLEAR) {

Q = 0;
QN = 1;

}
: (SET) {

Q = 1;
QN = 0;

}
: (01 CLOCK) { // edge-sensitive

behavior
Q = D;
QN = !D;

}
}
STATETABLE {

D CLOCK CLEAR SET QX QNX : Q QN ;
? ?? 1 1 ? ? : (QX) (QNX);
? ?? 0 1 ? ? : 1 0 ;
? ?? 1 0 ? ? : 0 1 ;
? 1? 0 0 ? ? : (Q) (QN) ;
? ?0 0 0 ? ? : (Q) (QN) ;
? 01 0 0 ? ? : (D) (!D) ;

}
}

}

Figure 3-36: Primitive model of ALF_FLIPFLOP

3.10.6 Predefined latch

The dual-rail D-latch with set and clear pins has the same functionality as the flipflop, ex
the level-sensitive clock (ENABLE pin) instead of the edge-sensitive clock.

PRIMITIVE ALF_LATCH {
PIN Q {

DIRECTION = output;
SIGNALTYPE = data;
POLARITY = non_inverted;

}
PIN QN {

DIRECTION = output;
SIGNALTYPE = data;
POLARITY = inverted;

}
PIN D {

DIRECTION = input;
SIGNALTYPE = data;

}

Version 1.1 Advanced Library Format (ALF) Reference Manual 133

Library Format Specification Primitives
PIN ENABLE {
DIRECTION = input;
SIGNALTYPE = clock;
POLARITY = high;

}
PIN CLEAR {

DIRECTION = input;
SIGNALTYPE = clear;
POLARITY = high;
ACTION = asynchronous;

}
PIN SET {

DIRECTION = input;
SIGNALTYPE = set;
POLARITY = high;
ACTION = asynchronous;

}
PIN Q_CONFLICT {

DIRECTION = input;
VIEW = none;

}
PIN QN_CONFLICT {

DIRECTION = input;
VIEW = none;

}
FUNCTION {

ALIAS QX = Q_CONFLICT;
ALIAS QNX = QN_CONFLICT;
BEHAVIOR {

@ (CLEAR && SET) {
Q = QX;
QN = QNX;

}
: (CLEAR) {

Q = 0;
QN = 1;

}
: (SET) {

Q = 1;
QN = 0;

}
: (ENABLE) { // level-sensitive

behavior
Q = D;
QN = !D;

}
}
STATETABLE {

D ENABLE CLEAR SET QX QNX : Q QN ;
? ? 1 1 ? ? : (QX) (QNX);
134 Advanced Library Format (ALF) Reference Manual Version 1.1

Parameterizeable Cells Library Format Specification

erize-

efini-
ready

e
x

tually
m

e
ce-
 rela-

lues in

e
entifi-
 of

on.

where
? ? 0 1 ? ? : 1 0 ;
? ? 1 0 ? ? : 0 1 ;
? 0 0 0 ? ? : (Q) (QN) ;
? 1 0 0 ? ? : (D) (!D) ;

}
}

}

Figure 3-37: Primitive model of ALF_LATCH

3.11 Parameterizeable Cells

The concept of describing primitives with variable bus size shall be extended to paramet
able cells. Dynamic template instantiations are introduced for that purpose.

Template definitions may incorporate any type of object. Placeholders in the template d
tion are the equivalent of parameters. Hence the definition of parameterizeable cells is al
supported within the support of general template definitions.

In astatic template instantiation, which is identified by the name of the template and by th
optional value assignmentstatic , placeholders are replaced by fixed values or by comple
objects containing fixed values. Non-referenced placeholders will stay in place and even
result in semantically unrecognizable objects, which cannot be processed by downstrea
applications. Such unrecognizable objects shall be disregarded.

In adynamic template instantiation, which is identified by the name of the template and by th
mandatory value assignmentdynamic , some placeholders may not be replaced. Those pla
holders are application parameters. The template definition may already contain certain
tionships between parameters (e.g. arithmetic model and its arguments in the header).
Therefore the template instantiation determines, which parameters need application va
order to calculate values for other parameters.

Going one step further, even the relationship between parameters may be defined in th
dynamic template instantiation rather than in the template definition. In this case, the id
ers inside the placeholders become variables for arithmetic assignments. This definition
variables shall only be recognized within the context of the dynamic template instantiati

Arithmetic assignments provide a shorter syntax for equation-based arithmetic models
only placeholder-parameters are involved.

param1 = 1.5 + 0.4 * param2 ** 3 - 2.7 / param3

is equivalent to

param1 {
HEADER { param2 param3 }
EQUATION { 1.5 + 0.4 * param2 ** 3 - 2.7 / param3 }

}

Version 1.1 Advanced Library Format (ALF) Reference Manual 135

Library Format Specification Parameterizeable Cells

hed to
For table-based models or for models where the arguments have children objects attac
them, the verbose syntax with HEADER must be used.

Example:

TEMPLATE adder {
CELL <cellname> {

PIN [<bitwidth> : 1] A { DIRECTION = input; }
PIN [<bitwidth> : 1] B { DIRECTION = input; }
PIN Cin { DIRECTION = input; }
PIN [<bitwidth> : 1] S { DIRECTION = output; }
PIN Cout { DIRECTION = output; }

FUNCTION {
BEHAVIOR {

S = A + B + Cin;
Cout = (A + B + Cin >= (‘b1 << (<bitwidth> - 1)));

}
}
AREA = <areavalue>;
VECTOR (?! Cin -> ?! Cout) {

DELAY {
HEADER {

CAPACITANCE {PIN = Cout; }
SLEWRATE {PIN = Cin; }

}
EQUATION { <D0> + <D1>*CAPACITANCE + <D2>*SLEWRATE }

}
}

}
}

The template is used for instantiation of a hardmacro:

adder { /* a hardmacro */
cellname = ripple_carry_adder_16_bit;
bitwidth = 16;
areavalue = 500;
// D0, D1, D2 are undefined. DELAY cannot be calculated.

}

The static instantiation of the hardmacro is equivalent to the following static object:

CELL ripple_carry_adder_16_bit {
PIN [16 : 1] A { DIRECTION = input; }
PIN [16 : 1] B { DIRECTION = input; }
PIN Cin { DIRECTION = input; }
PIN [16 : 1] S { DIRECTION = output; }
PIN Cout { DIRECTION = output; }

FUNCTION {
BEHAVIOR {

S = A + B + Cin;
Cout = (A + B + Cin >= ’b1000000000000000);

}

136 Advanced Library Format (ALF) Reference Manual Version 1.1

Parameterizeable Cells Library Format Specification

pend

 for
}

AREA = 500 ;

VECTOR (?! Cin -> ?! Cout) {
// DELAY {
// HEADER {
// CAPACITANCE {PIN = Cout; }
// SLEWRATE {PIN = Cin; }
// }
// EQUATION { <D0> + <D1>*CAPACITANCE + <D2>*SLEWRATE }
// }

}
}

Now the template is used for instantiation of a softmacro:

adder = dynamic { /* a softmacro */
cellname = ripple_carry_adder_N_bit;
areavalue = 20 + 30 * bitwidth;
}
D0 {

HEADER { AREA { TABLE { 10 20 30 } } }
TABLE { 15.6 34.3 50.7 }

}
D1 = 0.29;
D2 = 0.08;

}

The dynamic instantiation of the softmacro results in an object for which certain data de
on the runtime-values of the placeholder-parameters, as indicated initalic below. The
calculation method for such data, however, can be compiled statically (e.g. the equation
AREA as a function of bitwidth, the lookup table for D0 as a function of AREA).

CELL ripple_carry_adder_N_bit {
PIN [bitwidth : 1] A { DIRECTION = input; }
PIN [bitwidth : 1] B { DIRECTION = input; }
PIN Cin { DIRECTION = input; }
PIN [bitwidth : 1] S { DIRECTION = output; }
PIN Cout { DIRECTION = output; }

FUNCTION {
BEHAVIOR {

S = A + B + Cin;
Cout = (A + B + Cin >= (‘b1 << (bitwidth - 1)));

}
}

AREA = 20 + 30 * bitwidth ;

VECTOR (?! Cin -> ?! Cout) {
DELAY {

HEADER {
CAPACITANCE {PIN = Cout; }
Version 1.1 Advanced Library Format (ALF) Reference Manual 137

Library Format Specification Modeling with Vector Expressions

bility
ing

:

.
 sig-

con-

 for

lity of
this
ic”

vector
 is

tools,
ng
e and
 and

ent
cal
SLEWRATE {PIN = Cin; }
D0 {

HEADER { AREA { TABLE { 10 20 30 } } }
TABLE { 15.6 34.3 50.7 }

}
}
EQUATION { D0 + 0.29*CAPACITANCE + 0.08*SLEWRATE }

}
}

}

3.12 Modeling with Vector Expressions

Vector expressions provide a formal language to describe digital waveforms. This capa
can be used for functional specification, for timing and power characterization and for tim
and power analysis.

In particular, vector expressions add value by addressing the following modeling issues

• Functional specification: complex sequential functionality, for example bus protocols
• Timing analysis: complex timing arcs and timing constraints involving more than two

nals.
• Power analysis: temporal and spatial correlation between events relevant for power

sumption.
• Circuit characterization and test: specification of characterization and/or test vectors

particular timing, power, fault or other measurements within a circuit.

Like boolean expressions, vector expressions provide means for description of functiona
digital circuits in various contexts without being self-sufficient. Vector expressions enrich
functional description capability by adding a “dynamic” dimension to the otherwise “stat
boolean expressions.

The following subsections explain the semantics of vector expressions step by step. The
expression concept is introduced using terminology from simulation event reports. This
because the ideas can be easily explained this way. However, the application of vector
expressions is not restricted to post-processing event reports.

Some application tools, for example power analysis, tools may actually evaluate vector
expressions during post-processing of event reports from simulation. Other application
especially simulation model generators, must respect the causality between the triggeri
events and the actions to be triggered. While it is semantically impossible to describe caus
effect in the same vector expression for the purpose of functional modeling, both cause
effect may appear in a vector expression used for a timing arc description.

ALF does not make assumption about the physical nature of the event report. Vector
expressions can be applied to an actual event report written in a file, or to an internal ev
queue within a simulator, or to a hypothetical event report which is merely a mathemati
concept.
138 Advanced Library Format (ALF) Reference Manual Version 1.1

Modeling with Vector Expressions Library Format Specification

d as
r

ort

CD)

with
fined
. In
rm.

r
nd the

f time.

 even
lation

er,
iable

r a

ss
ilable

dable
3.12.1 Event reports

This section describes the terminology of event reports from simulation, which will be use
an instrument to explain the concept of ALF vector expressions. The intent of ALF vecto
expressions is not toreplaceexisting event report formats. Non-pertinent details of event rep
formats are not described here.

Simulation events (e.g. from Verilog or VHDL) can be reported in a value change dump (V
file, which has the following general form:

<time1>
<variableA> <stateU>
<variableB> <stateV>
...

<time2>
<variableC> <stateW>
<variableD> <stateX>
...

<time3> ...

The set of variables for which simulation events are reported, i.e. thescopeof the event report
need to be defined beforehand. Each variable also has a definition for theset of states it can
take. For instance, there may be binary variables, 16-bit integer variables, 1-bit variables
drive-strength information etc. Furthermore, the initial state of each variable must be de
as well. In an ALF context, we may use the term “signal” and “variable” interchangeably
VHDL, the corresponding term is “signal”. In Verilog, there is no single corresponding te
All “input”, “output”, “wire”, “reg” variables in Verilog correspond to “signal” in VHDL.

The time values<time1> , <time2> , <time3> etc. must be in increasing order. The orde
in which simultaneous events are reported does not matter. The number of time points a
number of simultaneous events at a certain time point are unlimited.

In the physical world, each event or change of state of a variable takes a certain amount o
A variable cannot change its state more than once at a given point in time. However, in
simulation, this time may be sometimes smaller than the resolution of the time scale, or
zero. Therefore a variable may change its state more than once at a given point in simu
time. Those events are, strictly speaking, not simultaneous. They occur in a certain ord
separated by an infinitely small delta-time. Multiple simultaneous events of the same var
are not reported in the VCD. Only the final state of each variable is reported.

A VCD file is the most compact format that allows reconstruction of entire waveforms fo
given set of variables. A more verbose form is the test pattern format.

<TIME> <variableA> <variableB> <variableC> <variableD>
<time1> <stateU> <stateV>
<time2> <stateU> <stateV> <stateW> <stateX>
<time3>

The test pattern format reports the state of each variable at every point in time, regardle
whether the state has changed or not. Previous and following states are immediately ava
in the previous and next row, respectively. This makes the test pattern format more rea
than the VCD and well-suited for taking a snapshot of events in a time window.
Version 1.1 Advanced Library Format (ALF) Reference Manual 139

Library Format Specification Modeling with Vector Expressions

e

not
orms,
dress

f

w
ted
Example of an event report in VCD format:

// initial values
A 0 B 1 C 1 D X E 1
// event dump
109 A 1 D 0
258 B 0
573 C 0
586 A 0
643 A 1
788 A 0 B 1 C 1
915 A 1
1062 E 0
1395 B 0 C 0
1640 A 0 D 1
// end of event dump

Example of an event report in test pattern format:

time A B C D E
0 0 1 1 X 1
109 1 1 1 0 1
258 1 0 1 0 1
573 1 0 0 0 1
586 0 0 0 0 1
643 1 0 0 0 1
788 0 1 1 0 1
915 1 1 1 0 1
1062 1 1 1 0 0
1395 1 0 0 0 0
1640 0 0 0 1 0

Both VCD and test pattern formats represent the same amount of information and can b
translated into each other.

3.12.2 Event Sequences

For specification of a functional waveform (for example the write cycle of a memory), it is
practical to use an event report format, such as VCD or test pattern format. In such wavef
there is no absolute time. And the relative time, for example the setup time between ad
change and write enable change, may vary from one instance to the other.

The main purpose ofvector_expressions is waveform specification capability. The
following operators are introduced:

• vector_unary (also called “edge operator” or “unary vector operator”)
The edge operator is a prefix to a variable in a vector expression. It contains a pair o
states, the first being the previous state, the second being the new state.
In the following presentation the set of edge operators with different previous and ne
state, where there are (N-1)*N possibilities in a system of N possible states, are trea
first. Later we shall also explain edge operators that have no change of state.

• vector_and (also called “simultaneous event operator”)
This operator uses the overloaded symbol “&” or “&&” interchangeably.
The “&” operator is the separator between simultaneously occurring events
140 Advanced Library Format (ALF) Reference Manual Version 1.1

Modeling with Vector Expressions Library Format Specification

l

ate of
nt, it is
re
ct than
with
ith
, the
tness

vents

. The
itself.
• vector_followed_by (also called “followed-by operator”)
The “immediately followed-by operator” using the symbol “->” is treated first.
The “->” operator is the separator between consecutively occurring events.

These operators are necessary and sufficient to describe the following subset of
vector_expressions :

• vector_single_event

A change of state in a single variable, for example:
01 A

• vector_event

A simultaneous change of state in one or more variables, for example:
01 A & 10 B

• vector_event_sequence

Subsequently occurring changes of state in one or more variables, for example:
01 A & 10 B -> 10 A

Thevector_and operator has a higher binding priority than thevector_followed_by

operator.

We can now express the pattern of the sample event report in avector_event_sequence

expression:

01 A & X0 D -> 10 B -> 10 C -> 10 A -> 01 A
-> 10 A & 01 B & 01 C -> 01 A -> 10 E -> 10 B & 10 C -> 10 A & 01 D

We can define thelength of avector_event_sequence expression as the number of
subsequent events described in thevector_event_sequence expression. The length is equa
to the number of "->" operators plus one.

Although the vector expression format contains an inherent redundancy, since the old st
each variable is always the same as the new state of the same variable in a previous eve
more human-readable, especially for waveform description. On the other hand, it is mo
compact than the test pattern format. For short event sequences, it is even more compa
the VCD, since it eliminates the declaration of initial values. To be accurate, for variables
exactly one event the vector expression is more compact than the VCD. For variables w
more than one event the VCD is more compact than the vector expression. In summary
vector expression format offers readability similar to the test pattern format and compac
close to the VCD format.

Again, the intent is not to propose another event report format but to specify a pattern of e
that may be detected within an event report.

3.12.3 Scope and content of event sequences

Thescopeapplicable to a vector expression defines the set of variables in the event report
contentof a vector expression is the set of variables that appear in the vector expression
The content of a vector expression must be a subset of variables within scope.

• PINs with the annotationSCOPE = BEHAVIOR are applicable variables
for vector expressions within the context of BEHAVIOR.

• PINs with the annotationSCOPE = MEASURE are applicable variables
Version 1.1 Advanced Library Format (ALF) Reference Manual 141

Library Format Specification Modeling with Vector Expressions

he
t
ern
for vector expressions within the context of VECTOR.
• PINs with the annotationSCOPE = BOTH are applicable variables

for all vector expressions.

A vector_event_sequence expression is an event pattern without time, containing only t
variables within its own content. This event pattern is evaluated against the event repor
containing all variables within scope. The vector expression is true when the event patt
matches the event report.

Example:

time A B C D E // scope is A, B, C, D, E
0 0 1 1 X 1
109 1 1 1 0 1
258 1 0 1 0 1
573 1 0 0 0 1
586 0 0 0 0 1
643 1 0 0 0 1
788 0 1 1 0 1
915 1 1 1 0 1
1062 1 1 1 0 0
1395 1 0 0 0 0
1640 0 0 0 1 0

Consider the following vector expressions in the context of the sample event report:

01 A //(1) content is A

//event pattern expressed by (1):
// A
// 0
// 1

(1) will be true at time 109, at time 643 and at time 915.

10 B -> 10 C //(2) content is B, C

//event pattern expressed by (2):
// B C
// 1 1
// 0 1
// 0 0

(2) will be true at time 573.

10 A -> 01 A //(3) content is A

//event pattern expressed by (3):
// A
// 1
// 0
// 1

(3) will be true at time 643 and at time 915.
142 Advanced Library Format (ALF) Reference Manual Version 1.1

Modeling with Vector Expressions Library Format Specification

 the

ver-

ences.

ses
01 D //(4) content is D

//event pattern expressed by (4):
// D
// 0
// 1

(4) will be true at time 1640.

01 A -> 10 C //(5) content is A, C

//event pattern expressed by (5):
// A C
// 0 1
// 1 1
// 1 0

(5) will not be true at any time, since the event pattern expressed by (5) does not match
event report at any time.

3.12.4 Alternative event sequences

The following operator is introduced to describe alternative events:

• vector_or , also called “event-or operator” or “alternative-event operator”, using the o
loaded symbol “|” or “||” interchangeably.
The “|” operator is the separator between alternative events or alternative event sequ

In analogy to boolean operators, “|” has a lower binding priority than “&” and “->”. Parenthe
can be used to change the binding priority.

Example:

(01 A -> 01 B) | 10 C === 01 A -> 01 B | 10 C
01 A -> (01 B | 10 C) === 01 A -> 01 B | 01 A -> 10 C

Consider the following vector expressions in the context of the sample event report:

01 A | 10 C //(6)

//event pattern expressed by (6):
// A
// 0
// 1

//alternative event pattern expressed by (6):
// C
// 1
// 0

(6) will be true at time 109, at time 573, at time 643, at time 915 and at time 1395.
Version 1.1 Advanced Library Format (ALF) Reference Manual 143

Library Format Specification Modeling with Vector Expressions

tive
10 B -> 10 C | 10 A -> 01 A //(7)

//event pattern expressed by (7):
// B C
// 1 1
// 0 1
// 0 0

//alternative event pattern expressed by (7):
// A
// 1
// 0
// 1

(7) will be true at time573, at time 643 and at time 915.

01 D | 10 B -> 10 C //(8)

//event pattern expressed by (8):
// D
// 0
// 1

//alternative event pattern expressed by (8):
// B C
// 1 1
// 0 1
// 0 0

(8) will be true at time 573 and at time 1640.

10 B -> 10 C | 10 A //(9)

//event pattern expressed by (9):
// B C
// 1 1
// 0 1
// 0 0

//alternative event pattern expressed by (9):
// A
// 1
// 0

(9) will be true at time 573, at time 586, at time 788 and at time 1640.

The following operators are introduced for a more compact description of certain alterna
event sequences:

• “&>” events occur simultaneously or follow each other in the order RHS after LHS
• “<->” LHS event followed by RHS event or RHS event followed by LHS event
• “<&>” events occur simultaneously or follow each other in arbitrary order

Example:

01 A &> 01 C === 01 A & 01 C | 01 A -> 01 C
01 A <-> 01 C === 01 A -> 01 C | 01 C -> 01 A
01 A <&> 01 C === 01 A <-> 01 C | 01 A & 01 C

The binding priority of these operators is higher than of “&” and “->”.
144 Advanced Library Format (ALF) Reference Manual Version 1.1

Modeling with Vector Expressions Library Format Specification

rough

ious
wing

ltiple

f

et

to
3.12.5 Symbolic edge operators

Alternative events of the same variable can be described in a even more compact way th
use of edge operators with symbolic states. The symbol “?” stands for “any state”.

• edge operator with “?” as previous state:
transition from any state to the defined new state

• edge operator with “?” as next state:
transition from the defined previous state to any state.

Both edge operators include the possibility that no transition occurred at all, i.e., the prev
and the next state are the same. This situation can be explicitly described with the follo
operator:

• edge operator with next state = previous state, also called “non-event operator”
The operand stays in the state defined by the operator.

The following symbolic edge operators are also introduced:

• “?-” no transition on the operand
• “?!” transition from any state to any state different from the previous state
• “??” transition from any state to any state or no transition on the operand
• “?~” transition from any state to its bitwise complementary state

Example: Let “A” be a logic variable with the possible states “1”, “0”, “X”.

?0 A === 00 A | 10 A | X0 A
?1 A === 01 A | 11 A | X1 A
?X A === 0X A | 1X A | XX A
0? A === 00 A | 01 A | 0X A
1? A === 10 A | 11 A | 1X A
X? A === X0 A | X1 A | XX A
?! A === 01 A | 0X A | 10 A | 1X A | X0 A | X1 A
?~ A === 01 A | 10 A | XX A
?? A === 00 A | 01 A | 0X A | 10 A | 11 A | 1X A | X0 A | X1 A | XX A
?- A === 00 A | 11 A | XX A

For variables with more possible states (e.g. logic states with different drive strength, mu
bits) the explicit description of alternative events would be quite verbose. Therefore the
symbolic edge operators are useful for a more compact description.

So far we have introduced the set ofvector_binary operators necessary for the description o
a subset ofvector_expressions calledvector_complex_event expressions. All
vector_binary operators have twovector_complex_event expressions as operands. The s
of vector_event_sequence expressions is a subset ofvector_complex_event expressions.
Everyvector_complex_event expression can be expressed in terms of alternative
vector_event_sequence expressions. The latter could be called “minterms", in analogy
boolean algebra.
Version 1.1 Advanced Library Format (ALF) Reference Manual 145

Library Format Specification Modeling with Vector Expressions

.

er the
t

LK
ent

ariable

8,

ose
ch
e

3.12.6 Non-events

A vector_single_event expression involving a non-event operator is called anon-event. A
rigorous definition is required forvector_complex_event expressions containing non-events
Consider the following example of a flipflop with clock input CLK and data output Q.

01 CLK -> 01 Q // (i)
01 CLK -> 00 Q // (ii)

The vector expression (i) describes the situation that the output switches from 0 to 1 aft
rising edge of the clock. The vector expression (ii) describes the situation that the outpu
remains at 0 after the rising edge of the clock.

How is it possible to decide whether (i) or (ii) is true, without knowing the delay between C
and Q? The only way is to wait until any event occurs after the rising edge of CLK. If the ev
is not on Q and the state of Q is 0 during that event, then (ii) is true.

Hence a non-event is true every time when another event happens and the state of the v
involved in the non-event satisfies the edge operator of the non-event.

Example:

time A B C D E
0 0 1 1 X 1
109 1 1 1 0 1
258 1 0 1 0 1
573 1 0 0 0 1
586 0 0 0 0 1
643 1 0 0 0 1
788 0 1 1 0 1
915 1 1 1 0 1
1062 1 1 1 0 0
1395 1 0 0 0 0
1640 0 0 0 1 0

The test pattern format represents an event, for example “01 A “, in no different way than a
non-event, for example “11 E “. This non-event is true at time 109, 258, 573, 586, 643, 78
915, in short every time when an event happens while E is constant 1.

3.12.7 Compact and verbose event sequences

A vector_event_sequence expression in a compact form can be transformed into a verb
form by padding up everyvector_event expression with non-events. The next state of ea
variable within avector_event expression must be equal to the previous state of the sam
variable in the subsequentvector_event expression.

Example:

01 A -> 10B === 01 A & 11 B -> 11 A & 10 B
146 Advanced Library Format (ALF) Reference Manual Version 1.1

Modeling with Vector Expressions Library Format Specification

ereas

rue

ather,
??”

o the

ector
This is
A vector expression for a complete event report in compact form resembles the VCD, wh
the verbose form looks like the test pattern.

// compact form
01 A & X0 D -> 10 B -> 10 C -> 10 A -> 01 A
-> 10 A & 01 B & 01 C -> 01 A -> 10 E
-> 10 B & 10 C -> 10 A & 01 D
===
// verbose form
?0 A & ?1 B & ?1 C & ?X D & ?1 E->
01 A & 11 B & 11 C & X0 D & 11 E->
11 A & 10 B & 11 C & 00 D & 11 E->
11 A & 00 B & 10 C & 00 D & 11 E->
10 A & 00 B & 00 C & 00 D & 11 E->
01 A & 00 B & 00 C & 00 D & 11 E->
10 A & 01 B & 01 C & 00 D & 11 E->
01 A & 11 B & 11 C & 00 D & 11 E->
11 A & 11 B & 11 C & 00 D & 10 E->
11 A & 10 B & 10 C & 00 D & 00 E->
10 A & 00 B & 00 C & 01 D & 00 E

The transformation rule must be slightly modified in case the compact form contains a
vector_event expression consisting only of non-events. By definition, the non-event is t
only if a real event happens simultaneously with the non-event. Padding up avector_event

expression consisting of non-events with other non-events would make this impossible. R
this vector_event expression should be padded up with unspecified events, using the “
operator. Eventually, unspecified events can be further transformed into partly specified
events, if a former or future state of the involved variable is known.

Example:

01 A -> 00 B
=== 01 A & 00 B -> ?? A & 00 B

In the first transformation step, the unspecified event “?? A” is introduced.

01 A & 00 B -> ?? A & 00 B
=== 01 A & 00 B -> 1? A & 00 B

In the second step, this event becomes partly specified. “?? A” is bound to be “1? A” due t
previous event on A.

3.12.8 Unspecified simultaneous events within scope

Variables which are within the scope of the vector expression yet do not appear in the v
expression can be used to pad up the vector expression with unspecified events as well.
equivalent to omitting them from the vector expression.

Example:

01 A -> 10 B // let us assume a scope containing A, B, C, D, E
===
01 A & 10 B & ?? C & ?? D & ?? E -> 11 A & 10 B & ?? C & ?? D & ?? E
Version 1.1 Advanced Library Format (ALF) Reference Manual 147

Library Format Specification Modeling with Vector Expressions

ation
rt but

y this
tor.

ing

s
”
es no

ted

h pos-
of

at-
the

alysis
nt
nal-
nt
01

case in

t
. No

nt

un-
as

n

This definition allows unspecified events to occursimultaneously with specified events or
specified non-events. However, it disallows unspecified events to occurin-between specified
events or specified non-events.

At first sight, this distinction seems to be arbitrary. Why not disallow unspecified events
altogether? Yet there are several reasons why this definition is practical:

If a vector expression disallows simultaneously occurring unspecified events, the applic
tool has the burden not only to match the pattern of specified events with the event repo
also to check whether the other variables remain constant. Therefore it is better to specif
extra pattern matching constraint explicitly in the vector expression, using the “?-” opera

There are many cases where it actually does not matter whether simultaneously occurr
unspecified events are allowed or disallowed:

• Case 1: Simultaneous events are impossible by design. For instance, in a flipflop it i
impossible that a triggering clock edge “01 CK” and a switch of the data output *? Q
happen at the same time. Therefore such events will not be in the event report. It mak
difference whether to specify “01 CK & ?- Q” or “01 CK & ?? Q“ or “01 CK“. The only
occurring event pattern will be “01 CK & ?- Q”, and this pattern can be reliably detec
by specifying “01 CK”.

• Case 2: Simultaneous events are prohibited by design. For instance, in a flipflop wit
itive setup time and positive hold time, the triggering clock edge “01 CK” and a switch
the data input “?! D” is a timing violation. A timing checker tool needs the violating p
tern specified explicitly, i.e. “01 CK & ?! D”. In this context it makes sense to specify
non-violating pattern also explicitly, i.e. “01 CK & ?- D”. The pattern “01 CK” by itself is
not applicable.

• Case 3: Simultaneous events do not occur in correct design. For instance, power an
of the event “01 CK” needs no specification of “?! D” or “?- D”. In the analysis of an eve
report with timing violations, the power analysis will be less accurate anyway. In the a
ysis of the event report for the design without timing violation, the only occurring eve
pattern will be “01 CK & ?- D”, and this pattern can be reliably detected by specifying “

CK”.1

• Case 4: The effects of simultaneous events are not modeled accurately. This is the
static timing analysis and also to some degree in dynamic timing simulation.
For instance, a NAND gate may have the inputs A and B and the output Z. The even
sequence exercising the timing arc “01 A -> 10 Z” can only happen if B is constant 1
event on B can happen in-between “01 A” and “10 Z”.
Likewise, the timing arc “01 B -> 10 Z” can only happen if A is constant 1 and no eve
happens in-between “01 B” and “10 Z”.
The timing arc with simultaneously switching inputs is commonly ignored. A tool enco
tering the scenario “01 A & 01 B -> 10 Z” has no choice other than treating it arbitrarily
“01 A -> 10 Z” or as “01 B -> 10 Z”.

1. The power analysis tool related to a timing constraint checker in a similar way as a parasitic extraction tool
relates to a DRC tool. If the layout has DRC violations, for instance shorts between nets, the parasitic extractio
tool will report inaccurate wire capacitance for those nets. After final layout, the DRC violations will be gone
and the wire capacitance will be accurate.
148 Advanced Library Format (ALF) Reference Manual Version 1.1

Modeling with Vector Expressions Library Format Specification

nse to

e

 be
the

,

 (ii),

t.

e

ces.

rter
, in
• Case 5: The effects of simultaneous events are modeled accurately. Here it makes se
specify all scenarios explicitly, i.e..
“01 A & ?- B -> 10 Z”, “01 A &?! B -> 10 Z”, “?- A & 01 B -> 10 Z” etc., whereas the
patterns “01 A -> 10 Z” and “01 B -> 10 Z” by themselves apply only for less accurat
analysis (see case 4).

There is also a formal argument why unspecified events on a vector expression should
allowed rather than disallowed. Let us consider the following vector expressions within in
scope of two variables A and B.

01 A // (i)
01 B // (ii)
01 A & 01 B // (iii)

One would naturally interpret (iii) === (i) & (ii). This interpretation is only possible by
allowing simultaneously occurring unspecified events.

Allowing simultaneously occurring unspecified events, the vector expressions (i) and (ii)
respectively, are interpreted as follows:

01 A & ?? B // (i’)
?? A & 01 B // (ii’)

Disallowing simultaneously occurring unspecified events, the vector expressions (i) and
respectively, are interpreted as follows:

01 A & ?- B // (i’’)
?- A & 01 B // (ii’’)

The vector expressions (i’) and (ii’) are compatible with (iii) whereas (i’’) and (ii’’) are no

3.12.9 Simultaneous event sequences

The semantic meaning of the “simultaneous event operator” can be extended to describ
simultaneously occurringevent sequences, by introducing the following definition:

(01 A#1 .. -> ... 01 A#N) & (01 B#1 .. -> ... 01 B#N)
=== 01 A#1 & 01 B#1 ... -> ... 01 A#N & 01 B#N

This definition is analogous to scalar multiplication of vectors with the same number of indi
The number of indices corresponds to the number ofvector_event expressions separated by
“->” operators. If the number of “->” in both vector expressions is not the same, the sho
vector expression can be left-extended with unspecified events, using the “??” operator
order to align both vector expressions.

Example:

(01 A -> 01 B -> 01 C) & (01 D -> 01 E)
=== (01 A -> 01 B -> 01 C) & (?? D -> 01 D -> 01 E)
=== 01 A & ?? D -> 01 B & 01 D -> 01 C & 01 E
=== 01 A -> 01 B & 01 D -> 01 C & 01 E
Version 1.1 Advanced Library Format (ALF) Reference Manual 149

Library Format Specification Modeling with Vector Expressions

nsider

ously.
The easiest way to understand the meaning of “simultaneous event sequences” is to co
the event report in test pattern format. If eachvector_event_sequence expression matches
the event report in the same time window, then the event sequences happen simultane

time A B C D E
0 0 1 1 X 1
109 1 1 1 0 1
258 1 0 1 0 1
573 1 0 0 0 1
586 0 0 0 0 1
643 1 0 0 0 1
788 0 1 1 0 1
915 1 1 1 0 1
1062 1 1 1 0 0
1395 1 0 0 0 0
1640 0 0 0 1 0

Example:

01 A -> 10 B === 01 A & 11 B -> 11 A & 10 B // (10a)

// event pattern expressed by (10a):
// A B
// 0 1
// 1 1
// 1 0

X0 D -> 00 D // (10b)

// event pattern expressed by (10b):
// D
// X
// 0
// 0

(01 A -> 10 B) & (X0 D -> 00 D) // (10) === (10a)&(10b)

Both (10a) and (10b) are true at time 258. Therefore (10) is true at time 258.

10 C
=== ?? C -> ?? C -> 10 C
=== ?? C -> ?1 C -> 10 C // (11a)

// event pattern expressed by (11a):
// C
// ?
// ?
// 1
// 0

(11a) is left-extended to match the length of the following (11b).

01 A -> 00 D -> 11 E ===
 01 A & 00 D & ?? E
-> ?? A & 00 D & ?? E
-> ?? A & ?? D & 11 E
===
 01 A & 00 D & ?? E
150 Advanced Library Format (ALF) Reference Manual Version 1.1

Modeling with Vector Expressions Library Format Specification

fied
nd

ome

efore

bles
ort
vior)
, it is
modes.
t

hose
-> 1? A & 00 D & ?1 E
-> ?? A & 0? D & 11 E // (11b)

// event pattern expressed by (11b):
// A D E
// 0 0 ?
// 1 0 ?
// ? 0 1
// ? ? 1

(11b) contains explicitly specified non-events. The non-event “00 D” calls for the unspeci
events “?? A” and “?? E”. The non-event “00 E” calls for the unspecified events “?? A” a
“?? D”. By propagating well-specified previous and next states to subsequent events, s
unspecified events become partly specified.

10 C & (01 A -> 00 D -> 11 E) // (11) === (11a)&(11b)

(11a) is true at time 573 and at time 1395. (11b) is true at time 573 and at time 915. Ther
(11) is true at time 573.

3.12.10 Implicit local variables

Until now, vector expressions are evaluated against an event report containing all varia
within the scope of a cell. It is practical for the application to work with only one event rep
per cell or at most two event reports, if the set of variables for BEHAVIOR (scope=beha
and VECTOR (scope=measure) was different. However, for complex cells and megacells
sometimes necessary to change the scope of event observation, dependent on operation
Different modes may require a different set of variables to be observed in different even
reports.

The following definition allows toextend the scope of a vector expression locally:

• Edge operators apply not only to variables but also to boolean expressions involving t
variables. Those boolean expressions representimplicit local variables that are visible
only within the vector expression where they appear.

Let us insert the local variables(A & B) , (A | B) into the event report:

time A B C D E A&B A|B
0 0 1 1 X 1 0 1
109 1 1 1 0 1 1 1
258 1 0 1 0 1 0 1
573 1 0 0 0 1 0 1
586 0 0 0 0 1 0 0
643 1 0 0 0 1 0 1
788 0 1 1 0 1 0 1
915 1 1 1 0 1 1 1
1062 1 1 1 0 0 1 1
1395 1 0 0 0 0 0 1
1640 0 0 0 1 0 0 0
Version 1.1 Advanced Library Format (ALF) Reference Manual 151

Library Format Specification Modeling with Vector Expressions

ing the
e
n.
an
Example:

01 (A & B) // (12)

// event pattern expressed by (12):
// A&B
// 0
// 1

(12) is true at time 109 and at time 915.

10 (A | B) // (13)

// event pattern expressed by (13):
// A|B
// 1
// 0

(13) is true at time 586 and at time 1640.

01 (A & B) -> 10 B // (14)

// event pattern expressed by (14):
// B A&B
// 1 0
// 1 1
// 0 1

(14) is true at time 258.

10 (A & B) & 10 B -> 10 C // (15)

// event pattern expressed by (15):
// B C A&B
// 1 1 1
// 0 1 0
// 0 0 0

(15) is true at time 573.

10 (A & B) -> 10 (A | B) // (16)

// event pattern expressed by (16):
// A&B A|B
// 1 1
// 0 1
// 0 0

(16) is true at time 1640.

3.12.11 Conditional event sequences

The following definition allows torestrict the scope of a vector expression locally:

• vector_boolean_and , also called “conditional event operator”
This operator is defined between a vector expression and a boolean expression, us
overloaded symbol “&” or “&&”. The scope of the vector expression is restricted to th
variables and eventual implicit local variables appearing within that vector expressio
The boolean expression must be true during the entire vector expression. The boole

expression is calledExistence Condition of the vector expression.1
152 Advanced Library Format (ALF) Reference Manual Version 1.1

Modeling with Vector Expressions Library Format Specification

is
“

in

s
tor
Vector expressions using thevector_boolean_and operator are called
vector_conditional_event expressions. Scope and contents of such expressions are
identical, as opposed to non-conditionalvector_complex_event expressions, where the
content is a subset of the scope.

Example:

(10 (A & B) -> 10 (A | B)) & !D // (17)

// event pattern expressed by (17):
// A&B A|B
// 1 1
// 0 1
// 0 0

// event report without C, E:
time A B D A&B A|B
0 0 1 X 0 1
109 1 1 0 1 1
258 1 0 0 0 1
586 0 0 0 0 0
643 1 0 0 0 1
788 0 1 0 0 1
915 1 1 0 1 1
1062 1 1 0 1 1
1395 1 0 0 0 1
1640 0 0 1 0 0

(17) contains the samevector_complex_event expression as (16). However, although (16)
not true at time 586, (17) is true at time 586, since the scope of observation is narrowed toA“,
“B“, “ A&B“, “ A|B “ by the existence condition “!D “, which is statically true while the specified
event sequence is observed.

Within and only within the narrowed scope of thevector_conditional_event expression,
(17) can be considered equivalent to the following:

(10 (A & B) -> 10 (A | B)) & !D
===
(10 (A & B) -> 10 (A | B)) & (11 (!D) -> 11 (!D))
===
10 (A & B) & 11 (!D) -> 10 (A | B) & 11 (!D)

The transformation consists of the following steps:

• Step 1: transform the boolean condition into a non-event.
For example, “!D ” becomes “11 (!D) ”

• Step 2: left-extend thevector_single_event expression containing the non-event in
order to match the length of thevector_complex_event expression.
For example, “11 (!D) ” becomes “11 (!D) -> 11 (!D) “ to match the length of

1. An Existence Condition may also appear as annotation to a VECTOR object instead of appearing
the vector expression. The purpose is to enable recognition of existence conditions by application
tools which can not evaluate vector expressions (e.g. static timing analysis tools). However, for tool
that can evaluate vector expressions, there is no difference between existence condition as a co-fac
in the vector expression or as annotation.
Version 1.1 Advanced Library Format (ALF) Reference Manual 153

Library Format Specification Modeling with Vector Expressions

s.

tion
n the

sions
“10 (A & B) -> 10 (A | B) “
• Step 3: apply scalar multiplication rule for simultaneously occurring event sequence

Thus avector_conditional_event expression can be transformed into an equivalent
vector_complex_event expression, but the change of scope must be kept in mind. In sec
3.12.13 an operator will be introduced which will allow to express the change of scope i
vector expression language. This will make the transformation more rigorous.

Regardless of scope, the transformation fromvector_conditional_event expression to
vector_complex_event expression also provides means of detecting ill-specified
vector_conditional_event expressions.

Example:

(10 A -> 01 B -> 01 A) & A
===
10 A & 11 A -> 01 B & 11 A -> 01 A & 11 A

The first expression "10 A & 11 A " and the third expression "01 A & 11 A " within the
vector_complex_event expression are contradictory.
Hence thevector_conditional_event expression can never be true.

3.12.12 Alternative conditional event sequences

All vector_binary operators, in particular thevector_or operator, can be applied to
vector_conditional_event expressions as well as tovector_complex_event expressions.

Consider again the event report:

time A B C D E
0 0 1 1 X 1
109 1 1 1 0 1
258 1 0 1 0 1
573 1 0 0 0 1
586 0 0 0 0 1
643 1 0 0 0 1
788 0 1 1 0 1
915 1 1 1 0 1
1062 1 1 1 0 0
1395 1 0 0 0 0
1640 0 0 0 1 0

Concurrent alternativevector_conditional_event expressions can be paraphrased in the
following way:

IF <boolean_expression1> THEN <vector_expression1>
OR IF <boolean_expression2> THEN <vector_expression2>
... OR IF <boolean_expressionN> THEN <vector_expressionN>

The conditions may be true within overlapping time windows and hence the vector expres
are evaluated concurrently. Thevector_boolean_and operator andvector_or operator are
used in ALF to describe such vector expressions.
154 Advanced Library Format (ALF) Reference Manual Version 1.1

Modeling with Vector Expressions Library Format Specification
Example:

C&(01 A -> 10 B) | !D&(10 B -> 10 A) | E&(10 B -> 10 C) // (18)

// Event pattern expressed by (18):
// A B C
// 0 1 1
// 1 1 1
// 1 0 1

(18) is true at time 258 because of “C & (01 A -> 10 B) “.

// Alternative event pattern expressed by (18):
// A B D
// 1 1 0
// 1 0 0
// 0 0 0

(18) is also true at time 586 because of “!D & (10 B -> 10 A) “,.

// Alternative event pattern expressed by (18):
// B C E
// 1 1 1
// 0 1 1
// 0 0 1

(18) is also true at time 573 because of “E & (10 B -> 10 C) “.

Prioritized alternativevector_conditional_event expressions can be paraphrased in the
following way:

IF <boolean_expression1> THEN <vector_expression1>
ELSE IF <boolean_expression2> THEN <vector_expression2>
... ELSE IF <boolean_expressionN> THEN <vector_expressionN>
(optional) ELSE <vector_expressiondefault>

Only the vector expression with the highest priority true condition is evaluated. The
vector_boolean_cond operator andvector_boolean_else operator are used in ALF to
describe such vector expressions.

Example:

C? (01 A -> 10 B): !D? (10 B -> 10 A): E? (10 B -> 10 C) // (19)

The prioritized alternative vector_conditional_event expression can be transformed into
concurrent alternative vector_conditional_event expression as shown:

C ? (01 A -> 10 B) : !D ? (10 B -> 10 A) : E ? (10 B -> 10 C)
===
C & (01 A -> 10 B)
| !C & !D & (10 B -> 10 A)
| !C & !(!D) & E & (10 B -> 10 C)

(19) is true at time 258 because of “C & (01 A -> 10 B) “,
but not at time 586 because of higher priority “C“ while “ !D & (10 B -> 10 A) “,
nor at time 573 because of higher priority “!D “ while “E & (10 B -> 10 C) “.
Version 1.1 Advanced Library Format (ALF) Reference Manual 155

Library Format Specification Modeling with Vector Expressions

For
This
of a

r

res-

tly
uence
e

t sub-
report
3.12.13 Change of scope within a vector expression

Conditions on vector expressions redefine the scope of vector expressions locally. The
following definition allows to change the scope even within a part of a vector expression.
this purpose, the symbolic state “*” is introduced, which means “don’t care about events”.
is different from the symbolic state “?” which means “don’t care about state”. When state
variable is “*”, arbitrary events may occur on that variable which are all disregarded.

• edge operator with “*” as next state.
The variable to which the operator applies is no longer within the scope of the vecto
expression from now on.

• edge operator with “*” as previous state.
The variable to which the edge operator applies is within the scope of the vector exp
sion from now on.

As opposed to “?”, “*” stand for an infinite variety of possibilities.

Example:

Let “A” be a logic variable with the possible states “1”, “0”, “X”.

*0 A ===
00 A | 10 A | X0 A
| 00 A -> 00 A | 10 A -> 00 A | X0 A -> 00 A
| 01 A -> 10 A | 11 A -> 10 A | X1 A -> 10 A
| 0X A -> X0 A | 1X A -> X0 A | XX A -> X0 A
| 00 A -> 00 A -> 00 A | ...

0* A ===
00 A | 01 A | 0X A
| 00 A -> 00 A | 00 A -> 01 A | 00 A -> 0X A
| 01 A -> 10 A | 01 A -> 11 A | 01 A -> 1X A
| 0X A -> X0 A | 0X A -> X1 A | 0X A -> XX A
| 00 A -> 00 A -> 00 A | ...

A vector expression with an infinite variety of possible event sequences cannot be direc
matched with an event report. However, there are feasible ways to implement event seq
detection involving “*”. In principle there is a “static” and “dynamic” way. Let us name th
parts of the vector expression separated by “*”sub-sequences of events.

• “Static” event sequence detection with “*”:
The event report with all variables may be maintained, but certain variables will be
masked for the purpose of detection of certain sub-sequences.

• “Dynamic” event sequence detection with “*”:
The event report will contain the set of variables necessary for detection of a relevan
sequence. When such a sub-sequence is detected, the set of variables in the event
will change until the next sub-sequence is detected etc.

Examples:
156 Advanced Library Format (ALF) Reference Manual Version 1.1

Modeling with Vector Expressions Library Format Specification

nd sub-
irst
n at time
01 A -> 1* B -> 10 C // (20)

// Event pattern expressed by (20):
// A B C
// 0 1 1
// 1 1 1
// 1 * 1
// 1 * 0

// pattern for 1st sub-sequence:
// A B C
// 0 1 1
// 1 1 1
// 1 * 1

// pattern for 2nd sub-sequence:
// A B C
// 1 * 1
// 1 * 0

Event report with masking relevant for (20):

time A B C D E
0 0 1 1 X 1
109 1 1 1 0 1
258 1 * 1 0 1 // detection of 1st sub-sequence
573 1 * 0 0 1 // detection of 2nd sub-sequence
586 0 0 0 0 1
643 1 0 0 0 1
788 0 1 1 0 1
915 1 1 1 0 1
1062 1 * 1 0 0 // detection of 1st sub-sequence
1395 1 * 0 0 0 // detection of 2nd sub-sequence
1640 0 0 0 1 0

(20) is true at time 573 and at time 1395. The first sub-sequence “01 A -> 1* B “ is detected
at time 258, since * maps to any state. From time 258 onwards, B is masked. The seco
sequence “10 C “ is detected at time 573. From time 573 onwards, B is unmasked. The f
sub-sequence is detected again at time 1062. The second sub-sequence is detected agai
1395.

01 A & 1* E -> 10 C // (21)

// Event pattern expressed by (21):
// A C E
// 0 1 1
// 1 1 *
// 1 0 *

// pattern for 1st sub-sequence:
// A C E
// 0 1 1
// 1 1 *

// pattern for 2nd sub-sequence:
// A C E
// 1 1 *
// 1 0 *
Version 1.1 Advanced Library Format (ALF) Reference Manual 157

Library Format Specification Modeling with Vector Expressions

rom
ction
at time
cope.
Event report with masking relevant for (21):

time A B C D E
0 0 1 1 X 1
109 1 1 1 0 * // detection of 1st sub-sequence
258 1 0 1 0 * // abortion of detection process
573 1 0 0 0 1
586 0 0 0 0 1
643 1 0 0 0 1
788 0 1 1 0 1
915 1 1 1 0 * // detection of 1st sub-sequence
1062 1 1 1 0 * // disregard event out of scope
1395 1 0 0 0 0 // detection of 2nd sub-sequence
1640 0 0 0 1 0

(21) is true at time1395. The first sub-sequence “01 A & 1* E“ is detected at time 109. F
time 109 onwards, E is masked. The event on B at time 258 aborts continuation of the dete
process and triggers restart from the beginning. The first sub-sequence is detected again
915. From time 915 onwards, E is masked. The event at time 1062 is therefore out of s
The second sub-sequence “10 C“ is detected at time 1395.

01 A -> *1 B -> 10 B & 10 C // (22)

// Event pattern expressed by (22):
// A B C
// 0 * 1
// 1 * 1
// 1 1 1
// 1 0 0

// pattern for 1st sub-sequence:
// A B C
// 0 * 1
// 1 * 1

// pattern for 2nd sub-sequence:
// A B C
// 1 * 1
// 1 1 1
// 1 0 0

Event report with masking relevant for (22):

time A B C D E
0 0 1 1 X 1
109 1 1 1 0 1 // detection of 1st sub-sequence
258 1 0 1 0 1 // abort
573 1 * 0 0 1
586 0 * 0 0 1
643 1 * 0 0 1
788 0 * 1 0 1
915 1 * 1 0 1 // detection of 1st sub-sequence
1062 1 1 1 0 0 // continue
1395 1 0 0 0 0 // detection of 2nd sub-sequence
1640 0 0 0 1 0
158 Advanced Library Format (ALF) Reference Manual Version 1.1

Modeling with Vector Expressions Library Format Specification

B is
orted,

tected
1395.

t time

ctly

hin
(22) is true at time 1395. The first sub-sequence “01 A“ is detected at time 109. Therefore
unmasked. Since B=0 at time 258, the attempt to detect the second sub-sequence is ab
and the detection process restarts from the beginning. The first sub-sequence “01 A“ is de
again at time 109. The second sub-sequence “*1 B -> 10 B & 10 C“ is detected at time

01 A -> 1? A & 0* B & 1* E -> 10 C // (23)

// Event pattern expressed by (23):
// A B C E
// 0 0 1 1
// 1 0 1 1
// 1 * 1 *
// 1 * 0 *

// pattern for 1st sub-sequence:
// A B C E
// 0 0 1 1
// 1 0 1 1
// ? * 1 *

// pattern for 2nd sub-sequence:
// A B C E
// ? * 1 *
// ? * 0 *

Event report with masking relevant for (23):

time A B C D E
0 0 1 1 X 1
109 1 1 1 0 1
258 1 0 1 0 1
573 1 0 0 0 1
586 0 0 0 0 1
643 1 0 0 0 1
788 0 * 1 0 * // detection of 1st sub-sequence
915 1 * 1 0 * // abort
1062 1 1 1 0 0
1395 1 0 0 0 0
1640 0 0 0 1 0

(23) is not true at any time. The first sub-sequence is detected at time 788. The event a
915 does not match the expected second sub-sequence.

3.12.14 Sequences of conditional event sequences

The introduction of the symbol “*” allows to describe the scope of a vector expression dire
in the vector expression language. This is particularly useful for sequences of
vector_conditional_event expressions.

Let us reuse (17) as example:

(10 (A & B) -> 10 (A | B)) & !D

The scope the sample event report contains contain the variables A, B, C, D, E. The
vector_conditional_event expression (17) contains only the variables A, B, D and the
implicit local variables A&B, A|B. Therefore the global variables C, E are out of scope wit
(17). The implicit local variables A&B, A|B are in scope within and only within (17).
Version 1.1 Advanced Library Format (ALF) Reference Manual 159

Library Format Specification Modeling with Vector Expressions

ed

led
Now let us consider asequenceof vector_conditional_event expressions, where variables
move in and out of scope. With the following formalism it is possible to transform such a
sequence into an equivalentvector_complex_event expression, allowing for a change of
scope within eachvector_conditional_event expression.

<vector_conditional_event#1> .. -> .. <vector_conditional_event#N>

where

<vector_conditional_event#i>
=== <vector_complex_event#i> & <boolean_expression#i>// 1 < i < N

The principle is to decompose eachvector_conditional_event expression into a sequence
of three vector expressionsprefix, kernel, andpostfixand then to reassemble the decompos
expressions.

<vector_conditional_event#i>
=== <prefix#i> -> <kernel#i> -> <postfix#i>// 1 < i < N

• Step 1: Define the prefix for eachvector_conditional_event expression.
Theprefix is avector_event expression introducing all implicit local variables.

Example:

*? (A&B) & *? (A|B)

• Step 2: Define the kernel for eachvector_conditional_event expression.
Thekernel is thevector_complex_event expression equivalent to the
vector_conditional_event expression.

<vector_complex_event#i> & <boolean_expression#i>
=== <vector_complex_event#i>
& (11 <boolean_expression#i> ..->.. 11 <boolean_expression#i>)

The kernel may consist of one or several alternativevector_event_sequence expressions.
Within eachvector_event_sequence expression, the same set of global variables are pul
out of scope at the firstvector_event expression and pushed back in scope at the last
vector_event expression.

Example:

?* C & ?* E // global variables out of scope
& 10 (A & B) & 11 (!D) -> 10 (A | B) & 11 (!D)
& *? C & *? E // global variables back in scope

• Step 3: Define the postfix for eachvector_conditional_event expression.
Thepostfix is avector_event expression removing all implicit local variables.

Example:

?* (A&B) & ?* (A|B)

• Step 4: join the subsequentvector_complex_event expressions with thevector_and
160 Advanced Library Format (ALF) Reference Manual Version 1.1

Modeling with Vector Expressions Library Format Specification

.

reas
is

nt

ce
ed for

sible

fore
operator between prefix#i+1and kernel#i and also between postfix#i and kernel#i+1

.. <vector_conditional_event#i> -> <vector_conditional_event#i+1> ..
=== .. <prefix#i>

-> <postfix#i-1> & <kernel#i> & <prefix#i+1>
-> <postfix#i> & <kernel#i+1> & <prefix#i+2>
-> <postfix#i+1> ..

Complete example:

(10 (A & B) -> 10 (A | B)) & !D
===
*? (A&B) & *? (A|B)
-> ?* C & ?* E
& 10 (A & B) & 11 (!D) -> 10 (A | B) & 11 (!D)
& *? C & *? E
-> ?* (A&B) & ?* (A|B)

Note that the in-and-out-of-scope definitions for global variables are within the kernel, whe
the in-and-out-of-scope definitions for global variables are within prefix and postfix. In th
way, the resultingvector_complex_event expression contains the same uninterrupted
sequence of events as the original sequence ofvector_conditional_event expressions.

3.12.15 Incompletely specified event sequences

So far the vector expression language has provided support forcompletely specified event
sequences and also the capability to put variables temporarily in and out of scope for eve
observation. As opposed to changing the scope of event observation,incompletely specified
event sequencesrequire continuous observation of all variables while allowing the occurren
of intermediate events between the specified events. The following operator is introduc
that purpose:

• vector_followed_by , also called “followed-by operator” using the symbol “~>”.
The “~>” operator is the separator between consecutively occurring events with pos
unspecified events in-between.

Detection of event sequences involving “~>” requires detection of the sub-sequence be
“~>”, setting a flag, detection of the sub-sequence after “~>” and clearing the flag.

This can be illustrated with our sample event report:

time A B C D E
0 0 1 1 X 1
109 1 1 1 0 1 // 01 A detected, set flag
258 1 0 1 0 1
573 1 0 0 0 1 // 10 C detected, clear flag
586 0 0 0 0 1
643 1 0 0 0 1 // 01 A detected, set flag
788 0 1 1 0 1
915 1 1 1 0 1 // 01 A detected again
1062 1 1 1 0 0
1395 1 0 0 0 0 // 10 C detected, clear flag
1640 0 0 0 1 0
Version 1.1 Advanced Library Format (ALF) Reference Manual 161

Library Format Specification Modeling with Vector Expressions

gain
ever

ent

ously
Example:

01 A ~> 10 C // (24)
// as opposed to previous example (5):01 A -> 10 C

(24) is true at time 573 because of “01 A” at time 109 and “10 C” at time 573. It is true a
at time 1395 because of “01 A” at time 643 and “10 C” at 1395. On the other hand, (5) is n
true because there are always events in-between “01 A” and “10 C”.

Vector expressions consisting ofvector_event expressions separated by “->” or by “~>” are
calledvector_event_sequence expressions, using the same syntax rules for the two differ
vector_followed_by operators. Consequently, all vector expressions involving
vector_event_sequence expressions andvector_binary operators are called
vector_complex_event expressions.

However, only a subset of the semantic transformation rules can be applied to vector
expressions containing “~>”.

Associative rule applies for both “->” and “~>”.

(01 A ~> 01 B) ~> 01 C === 01 A ~> (01 C ~> 01 B ~> 01 C)

(01 A -> 01 B) -> 01 C === 01 A -> (01 C -> 01 B -> 01 C)

(01 A ~> 01 B) -> 01 C === 01 A ~> (01 C ~> 01 B -> 01 C)

(01 A -> 01 B) ~> 01 C === 01 A -> (01 C -> 01 B ~> 01 C)

Distributive rule applies for both “->” and “~>”.

(01 A | 01 B) -> 01 C === 01 A ~> 01 C | 01 B -> 01 C

(01 A | 01 B) ~> 01 C === 01 A ~> 01 C | 01 B ~> 01 C

(01 A | 01 B) -> 01 C === 01 A ~> 01 C | 01 B -> 01 C

Scalar multiplication rule applies only for “->”. The transformation involving “~>” is more
complicated.

(01 A -> 01 B) & (01 C -> 01 D)
=== (01 A & 01 C) -> (01 B & 01 D)

(01 A ~> 01 B) & (01 C -> 01 D)
=== (01 A & 01 C) -> (01 B & 01 D)
| 01 A ~> 01 C -> (01 B & 01 D)

(01 A ~> 01 B) & (01 C ~> 01 D)
=== (01 A & 01 C) ~> (01 B & 01 D)
| 01 A ~> 01 C ~> (01 B & 01 D)
| 01 C ~> 01 A ~> (01 B & 01 D)

Transformation ofvector_conditional_event expressions intovector_complex_event

expressions applies only for “->”.

(01 A -> 01 B) & C
=== 01 A & 11 C -> 01 B & 11 C

(01 A ~> 01 B) & C
 === 01 A & 11 C ~> 01 B & 11 C

Since the “~>” operator allows intermediate events, there is no way to express the continu
true condition “C”.
162 Advanced Library Format (ALF) Reference Manual Version 1.1

Modeling with Vector Expressions Library Format Specification

d. An

s

only

”.
3.12.16 Well-specified vector expressions

By defining semantics for

q alternativevector_event_sequence expressions

and establishing calculation rules for

q transformingvector_complex_event expressions into alternative
vector_event_sequence expressions

and for

q transforming alternativevector_conditional_event expressions into alternative
vector_complex_event expressions,

semantics are now defined for all vector expressions.

As we have seen forvector_conditional_event expressions, the calculation rules also
provide means to determine whether a vector expression is well-specified or ill-specifie
ill-specified vector expression is contradictory in itself and can therefore never be true.

Once a vector expression is reduced to a set of alternativevector_event_sequence

expressions, two criteria define whether a vector expression is well-defined or not.

• Compatibility between subsequent events on the same variable:
Next state of earlier event must be compatible with previous state of later event. Thi
check applies only if no “~>” operator is found between the events.

• Compatibility between simultaneous events on the same variable:
Both previous and next state of both events must be compatible. Such events comm
occur as intermediate calculation results within vector expression transformation.

The following compatibility rules apply:

• “?” is compatible with any other state. If the other state is “*”, the resulting state is “?
Otherwise, the resulting state is the other state.

• “*” is compatible with any other state. Resulting state is the other state.
• Any other state is only compatible with itself.

Examples:

01 A -> 01 B -> 10 A

The next state of “01 A” is compatible with the previous state of “10 A”

0X A -> 01 B -> 10 A

The next state of “0X A” is not compatible with the previous state of “10 A”

0X A ~> 01 B -> 10 A

Compatibility check does not apply, since intermediate events are allowed.

01 A & 10 A

Both previous and next state of “A” are contradictory and result in an impossible event.

?1 A & 1? A

Both previous and next state of “A” are compatible and result in the non-event “11 A”.
Version 1.1 Advanced Library Format (ALF) Reference Manual 163

Library Format Specification Modeling with Vector Expressions
164 Advanced Library Format (ALF) Reference Manual Version 1.1

nt
Section 4

Applications

This section shows various examples of library elements modeled using ALF.

4.1 Truth Table vs Boolean Equation

A combinational logic cell and a sequential logic cell are shown below using two differe
constructs - truth table and boolean equation.

4.1.1 NAND gate

A 2-input NAND gate library cell can be modeled as shown below. TheFUNCTION of the cell
can be modeled either as aSTATETABLE or asBEHAVIOR using a boolean equation.

Modeling a NAND gate using truth table:

CELL ND2 { /* 2 input NAND gate */
PIN a {DIRECTION=input;}
PIN b {DIRECTION=input;}
PIN z {DIRECTION=output;}

FUNCTION {
STATETABLE {

a b : z ;
0 ? : 1 ;
1 ? : (!b);

}
}

)

Modeling a NAND gate using boolean expression:

CELL ND2 { /* 2 input NAND gate */
PIN a {DIRECTION=input;}
PIN b {DIRECTION=input;}
PIN z {DIRECTION=output;}

FUNCTION {
BEHAVIOR {

z = !(a && b);
}

}
)

Version 1.1 Advanced Library Format (ALF) Reference Manual 165

Applications Use of primitives
4.1.2 Flipflop

A flipflop with asynchronous set and clear signals is shown below using truth table.

CELL FLIPFLOP {
PIN CLEAR {DIRECTION=input; SIGNALTYPE=clear; POLARITY=low;}
PIN SET {DIRECTION=input; SIGNALTYPE=set; POLARITY=low;}
PIN CLOCK {DIRECTION=input; SIGNALTYPE=clock; POLARITY=rising_edge;}
PIN D {DIRECTION=input;}
PIN Q {DIRECTION=output;}
FUNCTION {
.../* One of the descriptions below go here */
}

}

STATETABLE {
CLEAR SET CLOCK D Q : Q;
0 ? ?? ? ? : 0;
1 0 ?? ? ? : 1;
1 1 01 ? ? : (d);
1 1 1? ? ? : (q);
1 1 ?0 ? ? : (q);

}

Modeling a flipflop with asynchronous set and clear using boolean expression:

BEHAVIOR {
@(!CLEAR) {Q = 0;} : (!SET) {Q = 1;} : (01 CLOCK) {Q = D;}

}

4.2 Use of primitives

The functionality of a cell can be described using instances of other cells.

4.2.1 D-Flipflop with asynchronous clear

CELL d_flipflop_clr {
PIN cd {DIRECTION=input; SIGNALTYPE=clear; POLARITY=low;}
PIN cp {DIRECTION=input; SIGNALTYPE=clock; POLARITY=rising_edge;}
PIN d {DIRECTION=input;}
PIN q {DIRECTION=output;}
FUNCTION {
.../* One of the descriptions below go here */
}

}

Explicit description does not use instances of other cells defined in the library:

BEHAVIOR {
@(01 cp && cd) {q = d;}
@(!cd) {q = 0;}

}

166 Advanced Library Format (ALF) Reference Manual Version 1.1

Use of primitives Applications

ith
Use of primitives permit the derivation of new cells from other cells. Below, a D-Flipflop w
asynchronous clear is derived from a predefinedALF_FLIPFLOP with asynchronous set and
clear (see Section 4.1.2):

BEHAVIOR {
ALF_FLIPFLOP {CLOCK=cp; D=d; Q=q; SET='b0; CLEAR=!cd;}

}

4.2.2 JK-flipflop

This example shows three ways of modeling a JK-Flipflop.

CELL jk_flipflop {
PIN cp {DIRECTION=input; SIGNALTYPE=clock; POLARITY=rising_edge;}
PIN j {DIRECTION=input;}
PIN k {DIRECTION=input;}
PIN q {DIRECTION=output;}
FUNCTION {
.../* One of the descriptions below go here */
}

}

Explicit description:

BEHAVIOR {
d =

(!j && k) ? 0 :
(j && !k) ? 1 :
(j && k) ? !(q) :
(!j && !k) ? (q) :

 'bx ;
@(01 cp) {q = d;}

}

Use of primitives (using predefinedALF_MUX andALF_FLIPFLOP):

BEHAVIOR {
ALF_MUX {Q=d; D[0]=j; D[1]=!k; S=q;}
ALF_FLIPFLOP {CLOCK=cp; D=d; Q=q; SET='b0; CLEAR='b0;}

}

Use of a hybrid form (boolean expressions within primitive instantiation):

BEHAVIOR {
ALF_FLIPFLOP {CLOCK=cp; D=(q ? !k : j); Q=q; SET='b0; CLEAR='b0;}

}

Use of truth table:

STATETABLE {
cp j k q : (q) ;
01 0 0 ? : (q) ;
01 0 1 ? : 0 ;
01 1 0 ? : 1 ;
01 1 1 ? : (!q);
1? ? ? ? : (q) ;
?0 ? ? ? : (q) ;

}

Version 1.1 Advanced Library Format (ALF) Reference Manual 167

Applications Use of primitives

r,
4.2.3 D-Flipflop with synchronous load and clear

This example shows two different models of a synchronous D-Flipflop.

CELL d_flipflop_ld_clr {
PIN cs {DIRECTION=input; SIGNALTYPE=clear;

 POLARITY=low; ACTION=synchronous;}
PIN ls {DIRECTION=input;}
PIN cp {DIRECTION=input; SIGNALTYPE=clock; POLARITY=rising_edge;}
PIN d {DIRECTION=input;}
PIN q {DIRECTION=output;}
FUNCTION { ... }

}

Explicit description:

BEHAVIOR {
d1 = (ls)? d : q;
d2 = d1 && cs;
@(01 cp) {q = d2;}

}

Use of primitives:

BEHAVIOR {
ALF_MUX {Q=d1; D0=q; D1=d; SELECT=ls;}/* Connection by pin name */
ALF_AND {d2 d1 cs} /* Connection by pin order */
ALF_FLIPFLOP {CLOCK=cp; D=d2; Q=q; SET='b0; CLEAR='b0; }

}

4.2.4 D-Flipflop with input multiplexor

This example shows three different modeling styles for a D-flipflop with input multiplexo
asynchronous set and asynchronous clear:

CELL d_flipflop_mux_set_clr {
PIN sel {DIRECTION=input;}
PIN sd {DIRECTION=input; SIGNALTYPE=set; POLARITY=low;}
PIN cd {DIRECTION=input; SIGNALTYPE=clear; POLARITY=low;}
PIN cp {DIRECTION=input; SIGNALTYPE=clock; POLARITY=rising_edge;}
PIN d1 {DIRECTION=input;}
PIN d2 {DIRECTION=input;}
PIN q {DIRECTION=output;}
FUNCTION { /* fill in BEHAVIOR */ }

}

Explicit description:

BEHAVIOR {
@(!cd) {q = 0;}
@(!sd && cd) {q = 1;}
@(01 cp && cd && sd) {q = sel? d1 : d2;}

}

168 Advanced Library Format (ALF) Reference Manual Version 1.1

Use of primitives Applications

 D

esent
More efficient description can be created using if-then-else style:

BEHAVIOR {
@(!cd) {q = 0;}
:(!sd) {q = 1;}
:(01 cp){q = sel ? d1 : d2;}

}

Use of primitive:

BEHAVIOR {
ALF_FLIPFLOP {CLOCK=cp; D=(sel ? d1: d2); Q=q; SET=!sd; CLEAR=!cd;}

}

Note that the use ofALF_MUX primitive is eliminated by using an assignment expression to
input inALF_FLIPFLOP instance.

4.2.5 D-latch

This example shows a level-sensitive cell in two different styles.

CELL d_latch {
PIN g {DIRECTION=input; SIGNALTYPE=clock; POLARITY=high;}
PIN d {DIRECTION=input;}
PIN q {DIRECTION=output;}
FUNCTION { ... }

}

Explicit description:

BEHAVIOR {
@(g) {q = d;}

}

Use of primitive:

BEHAVIOR {
ALF_LATCH {ENABLE=g; D=d; Q=q; SET='b0; CLEAR='b0;}

}

4.2.6 SR-latch

The example below shows how some of the input pins can be left unconnected if they repr
a don’t care situation.

CELL sr_latch {
PIN sn {DIRECTION=input; SIGNALTYPE=set; POLARITY=low;}
PIN rn {DIRECTION=input; SIGNALTYPE=clear; POLARITY=low;}
PIN q {DIRECTION = output;}
PIN qn {DIRECTION = output;}
FUNCTION { ... }

}

Explicit description:

BEHAVIOR {
@ (!sn) {q = 'b1; qn = !rn;}
@ (!rn) {qn = 'b1; q = !sn;}

}

Version 1.1 Advanced Library Format (ALF) Reference Manual 169

Applications Use of primitives
Use of primitive:

BEHAVIOR {
ALF_LATCH {ENABLE='b0; Q=q; SET=!sn; CLEAR=!rn;}

}

SinceENABLEpin is always set to0, the connection ofDpin is irrelevant. Even ifD is considered
'bX or 'bZ , the behavior will not change.

4.2.7 JTAG BSR

The following example shows a JTAG BSR cell with built-in scan chain.

CELL F10_18 {
PIN SysOut {DIRECTION = output;}
PIN TDO {DIRECTION = output; SIGNALTYPE = scan_data;}
PIN SysIn {DIRECTION = input;}
PIN TDI {DIRECTION = input; SIGNALTYPE = scan_data;}
PIN Shift {DIRECTION = input; SIGNALTYPE = scan_enable;}
PIN Clk {DIRECTION = input; POLARITY = rising_edge;

SIGNALTYPE = master_clock;}
PIN Update {DIRECTION = input; POLARITY = rising_edge;

SIGNALTYPE = slave_clock;}
PIN Mode {DIRECTION = input; SIGNALTYPE = select;}
PIN STATE0 { // This state is on the scan chain

SCAN_POSITION = 1; DIRECTION = output; VIEW = none;}
PIN STATE1 { // NOT on scan chain (just update latch)

DIRECTION = output; VIEW = none;}
FUNCTION {

BEHAVIOR {
@(01 Clk) {STATE0 = Shift ? TDI : SysIn;}
@(01 Update) {STATE1 = STATE0;}
TDO = STATE0;
SysOut = Mode ? STATE1 : SysIn;

}
}

}

4.2.8 Combinational Scan Cell

The following example shows a combinational scan cell with a reused primitive.

LIBRARY major_ASIC_vendor {
INFORMATION {

version = v2.1.0;
title = “0.35 standard cell”;
product = p35sc;
author = “Major Asic Vendor, Inc.”;
datetime = “Wed Jul 23 13:50:12 MST 1997”;

}
..
CELL ND3A {

INFORMATION {
version = v6.0;
title = “3 input nand”;
170 Advanced Library Format (ALF) Reference Manual Version 1.1

Use of primitives Applications
product = p35sc_lib;
author = “Joe Cell Designer”;
datetime = “Tue Apr 1 01:39:47 PST 1997”;

}
PIN Z {DIRECTION=output;}
PIN A {DIRECTION=input;}
PIN B {DIRECTION=input;}
PIN C {DIRECTION=input;}
FUNCTION {

BEHAVIOR {
ALF_NAND {Z A B C}

}
}
/* fill in timing and power data for ND3A cell */

}
..
CELL ND3B {

PIN Z {DIRECTION=output;}
PIN A {DIRECTION=input;}
PIN B {DIRECTION=input;}
PIN C {DIRECTION=input;}
FUNCTION {

BEHAVIOR {
ALF_NAND {Z A B C}

}
}
/* fill in timing and power data for ND3B cell */

}
..
CELL SCAN_ND4 {

PIN Z {DIRECTION=output;}
PIN A {DIRECTION=input;}
PIN B {DIRECTION=input;}
PIN C {DIRECTION=input;}
PIN D {DIRECTION=input; SIGNALTYPE=scan_enable;}

SCAN_TYPE = control_0;
NON_SCAN_CELL = ALF_NAND {Z A B C}
FUNCTION {

BEHAVIOR {
Z = !(A && B && C && D);

}
}

}
..

}

Version 1.1 Advanced Library Format (ALF) Reference Manual 171

Applications Use of primitives
4.2.9 Scan Flipflop

The following example shows a scan flipflop using the genericALF_FLIPFLOP primitive.

LIBRARY major_ASIC_vendor {
...
CELL F614 {

PIN H01 {DIRECTION = input; SIGNALTYPE = data;}
PIN H02 {DIRECTION = input; SIGNALTYPE = clock;}
PIN H03 {DIRECTION = input; SIGNALTYPE = clear; POLARITY = high;}
PIN H04 {DIRECTION = input; SIGNALTYPE = set; POLARITY = high;}
PIN N01 {DIRECTION = output;

SCAN {SIGNALTYPE = data; POLARITY = non_inverted;}}
PIN N02 {DIRECTION = output; POLARITY = inverted;}
FUNCTION {

BEHAVIOR {
ALF_FLIPFLOP {

D=H01; CLOCK=H02; CLEAR=H03; SET=H04;
Q=N01; QN=N02; Q_CONFLICT='bX; QN_CONFLICT='bX;

}
}

}
}
...
CELL S000 {

PIN H01 {DIRECTION = input; SIGNALTYPE = scan_data;}
PIN H02 {DIRECTION = input; SIGNALTYPE = clock;

OFFSTATE = non_inverted;}
PIN H03 {DIRECTION = input; SIGNALTYPE = scan_enable;

 POLARITY = low;}
PIN H04 (DIRECTION = input; SIGNALTYPE = set; POLARITY = high;}
PIN H05 {DIRECTION = input; SIGNALTYPE = clear; POLARITY = high;}
PIN H06 {DIRECTION = input; SIGNALTYPE = data;}
PIN N01 {DIRECTION = output; SIGNALTYPE = data;

POLARITY = non_inverted;}
PIN N02 {DIRECTION = output; POLARITY = inverted;}
FUNCTION{

BEHAVIOR{ // flipflop_d is an implicitly defined internal pin
ALF_MUX {Q=flipflop_d; D0=H06; D1=H01; SELECT=H03;}
ALF_FLIPFLOP {

D=flipflop_d; CLOCK=H02; CLEAR=H05; SET=H04;
Q=N01; QN=N02; Q_CONFLICT='bX; QN_CONFLICT='bX;

}
}

}
SCAN_TYPE = muxscan;
NON_SCAN_CELL = ALF_FLIPFLOP {D=H06; CLOCK=H02; CLEAR=H05; SET=H04;

 Q=N01; QN=N02; Q_CONFLICT='bX;
 QN_CONFLICT='bX; 'b0=H03; 'b0=H01;}

} // H03 and H01 have no corresponding pin in ALF_FLIPFLOP
...

}

172 Advanced Library Format (ALF) Reference Manual Version 1.1

Use of primitives Applications
4.2.10 Quad D-Flipflop

The following example shows a quad D-Flipflop with and without built-in scan chain.

LIBRARY major_ASIC_vendor {
PRIMITIVE FFX4 {

PIN CK { DIRECTION = input; }
PIN D0 { DIRECTION = input; }
PIN D1 { DIRECTION = input; }
PIN D2 { DIRECTION = input; }
PIN D3 { DIRECTION = input; }
PIN Q0 { DIRECTION = output; }
PIN Q1 { DIRECTION = output; }
PIN Q2 { DIRECTION = output; }
PIN Q3 { DIRECTION = output; }
FUNCTION {

BEHAVIOR {
ALF_FLIPFLOP {Q=Q0; D=D0; CLOCK=CK; SET='b0; CLEAR='b0;}
ALF_FLIPFLOP {Q=Q1; D=D1; CLOCK=CK; SET='b0; CLEAR='b0;}
ALF_FLIPFLOP {Q=Q2; D=D2; CLOCK=CK; SET='b0; CLEAR='b0;}
ALF_FLIPFLOP {Q=Q3; D=D3; CLOCK=CK; SET='b0; CLEAR='b0;}

}
}

}
CELL SCAN_FFX4 {

PIN OUT0 {DIRECTION = output;}
PIN OUT1 {DIRECTION = output;}
PIN OUT2 {DIRECTION = output;}
PIN OUT3 {DIRECTION = output;}
PIN SO {DIRECTION = output; SIGNALTYPE = scan_data;}
PIN IN0 {DIRECTION = input; SIGNALTYPE = data;}
PIN IN1 {DIRECTION = input; SIGNALTYPE = data;}
PIN IN2 {DIRECTION = input; SIGNALTYPE = data;}
PIN IN3 {DIRECTION = input; SIGNALTYPE = data;}
PIN CLK {DIRECTION = input; SIGNALTYPE = clock;}
PIN SI {DIRECTION = input; SIGNALTYPE = scan_data;}
PIN SE {DIRECTION = input; SIGNALTYPE = scan_enable;}
PIN STATE0 {SCAN_POSITION = 1; DIRECTION = output; VIEW = none;}
PIN STATE1 {SCAN_POSITION = 2; DIRECTION = output; VIEW = none;}
PIN STATE2 {SCAN_POSITION = 3; DIRECTION = output; VIEW = none;}
PIN STATE3 {SCAN_POSITION = 4; DIRECTION = output; VIEW = none;}
FUNCTION {

BEHAVIOR {
OUT0 = STATE0; OUT1 = STATE1; OUT2 = STATE2; OUT3 = STATE3;
SO = !STATE3;
@(01 CLK) {

STATE0 = SE ? !SI : IN0;
STATE1 = SE ? !STATE0 : IN1;
STATE2 = SE ? !STATE1 : IN2;
STATE3 = SE ? !STATE2 : IN3;

}

Version 1.1 Advanced Library Format (ALF) Reference Manual 173

Applications Templates and vector-specific models

ate,
}
}
SCAN_TYPE = muxscan;
NON_SCAN_CELL = FFX4 {CLK IN0 IN1 IN2 IN3 OUT0 OUT1 OUT2 OUT3}
} // this example shows referencing by order

}
}

4.3 Templates and vector-specific models

4.3.1 Vector-specific delay and power Tables

In this example, the use of vector specific models for input-to-output delay, output slewr
and switching energy is shown.

CELL nand2 {
PIN a {DIRECTION = input; CAPACITANCE = 0.02 {UNIT = pF;}}
PIN b {DIRECTION = input; CAPACITANCE = 0.02 {UNIT = pF;}}
PIN z {DIRECTION = output;}
FUNCTION {

BEHAVIOR {z = !(a && b); }
}
VECTOR (10 a -> 01 z){ /* Vector specific characterization */

DELAY {
UNIT = ns;
FROM {PIN = a; THRESHOLD = 0.4;}
TO {PIN = z; THRESHOLD = 0.6;}
HEADER {

CAPACITANCE {
PIN = z; UNIT = pF;
TABLE {0.01 0.02 0.04 0.08 0.16}

}
SLEWRATE {

PIN = a; UNIT = ns;
FROM {THRESHOLD = 0.5;}
TO {THRESHOLD = 0.3;}
TABLE {0.1 0.3 0.9}

}
}
TABLE {

0.1 0.2 0.4 0.8 1.6
0.2 0.3 0.5 0.9 1.7
0.4 0.5 0.7 1.1 1.9

}
}
SLEWRATE {

PIN = z; UNIT = ns;
FROM {THRESHOLD = 0.3;}
TO {THRESHOLD = 0.5;}
HEADER {

CAPACITANCE {
PIN = z; UNIT = pF;
TABLE {0.01 0.02 0.04 0.08 0.16}
174 Advanced Library Format (ALF) Reference Manual Version 1.1

Templates and vector-specific models Applications
}
SLEWRATE {

PIN = a; UNIT = ns;
FROM {THRESHOLD = 0.5;}
TO {THRESHOLD = 0.3;}
TABLE {0.1 0.3 0.9}

}
}
TABLE {

0.1 0.2 0.4 0.8 1.6
0.1 0.2 0.4 0.8 1.6
0.2 0.4 0.6 1.0 1.8

}
}
ENERGY {

UNIT = pJ;
HEADER {

CAPACITANCE {
PIN = z; UNIT = pF;
TABLE {0.01 0.02 0.04 0.08 0.16}

}
SLEWRATE {

PIN = a; UNIT = ns;
FROM {THRESHOLD = 0.5;}
TO {THRESHOLD = 0.3;}
TABLE {0.1 0.3 0.9}

}
}
TABLE {

0.21 0.32 0.64 0.98 1.96
0.22 0.33 0.65 0.99 1.97
0.31 0.42 0.74 1.08 2.06

}
}

}
VECTOR (01 a -> 10 z){

DELAY { ... }
SLEWRATE { ... }
ENERGY { ... }

}
VECTOR (10 b -> 01 z){

DELAY { ... }
SLEWRATE { ... }
ENERGY { ... }

}
VECTOR (01 b -> 10 z){

DELAY { ... }
SLEWRATE { ... }
ENERGY { ... }

}
}

Version 1.1 Advanced Library Format (ALF) Reference Manual 175

Applications Templates and vector-specific models

ample
e the
plate

us
4.3.2 Use of TEMPLATE

Notice that the header for the delay, ramptime, and energy models was the same in the ex
above. Therefore creating a template definition can eliminate duplicate information, reduc
possibility of inadvertent errors, and make the models compact. For example, a header tem
can be created as shown below:

TEMPLATE std_header_2d {
HEADER {

CAPACITANCE {
PIN = <out_pin>; UNIT = pF;
TABLE {0.01 0.02 0.04 0.08 0.16}

}
SLEWRATE {

PIN = <in_pin>; UNIT = ns;
FROM {THRESHOLD {RISE = 0.3; FALL = 0.5;} }
TO {THRESHOLD {RISE = 0.5; FALL = 0.3;} }
TABLE {0.1 0.3 0.9}

}
}

The use ofTEMPLATEeliminates the repetition of header information by rewriting the previo
example (only the first vector) as shown below.

DELAY {
UNIT = ns;
THRESHOLD {RISE=0.4; FALL=0.6;}
FROM {PIN = a;}
TO {PIN = z;}
std_header_2d { /* Template is used */

in_pin = a;
out_pin = z;

}
TABLE {

0.1 0.2 0.4 0.8 1.6
0.2 0.3 0.5 0.9 1.7
0.4 0.5 0.7 1.1 1.9

}
}
SLEWRATE {

PIN = z; UNIT = ns;
FROM {THRESHOLD {RISE = 0.3; FALL = 0.5;} }
TO {THRESHOLD {RISE = 0.5; FALL = 0.3;} }
std_header_2d { /* Template is used */

in_pin = a;
out_pin = z;

}
TABLE {

0.1 0.2 0.4 0.8 1.6
0.1 0.2 0.4 0.8 1.6
0.2 0.4 0.6 1.0 1.8

}
}
ENERGY {

UNIT = pJ;
176 Advanced Library Format (ALF) Reference Manual Version 1.1

Templates and vector-specific models Applications

of the
std_header_2d { /* Template is used */
in_pin = a;
out_pin = z;

}
TABLE {

0.21 0.32 0.64 0.98 1.96
0.22 0.33 0.65 0.99 1.97
0.31 0.42 0.74 1.08 2.06

}
}

}

Note that the entire characterization model for CELLnand2 is the same for each vector (i.e.
pair of input and output pins), so further efficiency can be achieved by defining the
characterization model itself as a template. This template definition uses the instantiation
previously defined header template.

TEMPLATE std_char_2d {
DELAY {

UNIT = ns;
THRESHOLD {RISE=0.4; FALL=0.6;}
FROM {PIN = <in_pin>; }
TO {PIN = <out_pin>; }
std_header_2d {

in_pin = <input_pin>;
out_pin = <output_pin>;

}
TABLE <delay_data>

}
SLEWRATE {

PIN = <out_pin>; UNIT = ns;
FROM {THRESHOLD {RISE = 0.3; FALL = 0.5;} }
TO {THRESHOLD {RISE = 0.5; FALL = 0.3;} }
std_header_2d {

in_pin = <input_pin>;
out_pin = <output_pin>;

}
TABLE <slewrate_data>

}
ENERGY {

UNIT = pJ;
std_header_2d {

in_pin = <input_pin>;
out_pin = <output_pin>;

}
TABLE <energy_data>

}
}

Version 1.1 Advanced Library Format (ALF) Reference Manual 177

Applications Templates and vector-specific models

each
can

, since
Now only the delay, slewrate and energy models contain specific data that is different for
vector. All repetitive information is in the template definition. The characterization model
be rewritten compactly as shown below:

std_char_2d {
in_pin = a;
out_pin = z;
delay_data {

0.1 0.2 0.4 0.8 1.6
0.2 0.3 0.5 0.9 1.7
0.4 0.5 0.7 1.1 1.9

}
slewrate_data {

0.1 0.2 0.4 0.8 1.6
0.1 0.2 0.4 0.8 1.6
0.2 0.4 0.6 1.0 1.8

}
energy_data {

0.21 0.32 0.64 0.98 1.96
0.22 0.33 0.65 0.99 1.97
0.31 0.42 0.74 1.08 2.06

}
}

4.3.3 Vector description styles for timing arcs

In previous examples, the vectors were specified as timing arcs. This is not ambiguous
the sequence of transitions can only happen under one test condition.

VECTOR (10 a -> 01 z){
std_char_2d { ... }

}
VECTOR (01 a -> 10 z){

std_char_2d { ... }
}
VECTOR (10 b -> 01 z){

std_char_2d { ... }
}
VECTOR (01 b -> 10 z){

std_char_2d { ... }
}

178 Advanced Library Format (ALF) Reference Manual Version 1.1

Templates and vector-specific models Applications

state

put

rived

tors
ing),
h the
ables
uire
ts
An alternate way of describing the above vectors is to specify the input transition and the
of the other input(s) which control the output transition.

VECTOR (10 a && b){
std_char_2d { ... }

}
VECTOR (01 a && b){

std_char_2d { ... }
}
VECTOR (10 b && a){

std_char_2d { ... }
}
VECTOR (01 b && a){

std_char_2d { ... }
}

A redundant yet safe way of vector description is to specify both output transition and in
state(s) together with the input transition.

VECTOR (10 a -> 01 z && b){
std_char_2d { ... }

}
VECTOR (01 a -> 10 z && b){

std_char_2d { ... }
}
VECTOR (10 b -> 01 z && a){

std_char_2d { ... }
}
VECTOR (01 b -> 10 z && a){

std_char_2d { ... }
}

In the non-redundant specification, either the input state or the output transition can be de
from the functional description.

4.3.4 Vectors for delay, power and timing constraints

A D-Flipflop model without the set and clear signals is shown below. This model has vec
for specific purpose - some for delay and power, some for power only (output is not switch
and some for timing constraints. However, each vector has the same structure, althoug
input variables change. The vectors for delay and power model require 2-dimensional t
with load capacitance and input ramptime as variables, the vectors for power model req
1-dimensional tables with input ramptime as variable, and the vectors for time constrain
require 2-dimensional tables with ramptime on two inputs as variables.

CELL d_flipflop {
PIN cp {DIRECTION = input;}
PIN d {DIRECTION = input;}
PIN q {DIRECTION = output;}
FUNCTION {

BEHAVIOR { @(01 cp) {q = d; } }
}
VECTOR (01 cp -> 01 q) {

/* fill in arithmetic models for delay and power */
Version 1.1 Advanced Library Format (ALF) Reference Manual 179

Applications Templates and vector-specific models
}
VECTOR (01 cp -> 10 q) {

/* fill in arithmetic models for delay and power */
}
VECTOR (01 cp && d == q) {

/* fill in arithmetic model for power */
}
VECTOR (10 cp && d == q) {

/* fill in arithmetic model for power */
}
VECTOR (10 cp && d != q) {

/* fill in arithmetic model for power */
}
VECTOR (01 d && !cp) {

/* fill in arithmetic model for power */
}
VECTOR (10 d && !cp) {

/* fill in arithmetic model for power */
}
VECTOR (01 d && cp) {

/* fill in arithmetic model for power */
}
VECTOR (10 d && cp) {

/* fill in arithmetic model for power */
}
VECTOR (01 d <&> 01 cp)

SETUP {
/* fill in arithmetic model for setup time constraint */
VIOLATION {

BEHAVIOR {q = 'bx;}
MESSAGE_TYPE = error;
MESSAGE = “setup violation 01 d <-> 01 cp“;

}
}
HOLD {

/* fill in arithmetic model for hold time constraint */
VIOLATION {

BEHAVIOR {q = 'bx;}
MESSAGE_TYPE = error;
MESSAGE = “hold violation 01 d <-> 01 cp“;

}
}

VECTOR (10 d <&> 01 cp)
SETUP {

/* fill in arithmetic model for setup time constraint */
VIOLATION {

BEHAVIOR {q = 'bx;}
MESSAGE_TYPE = error;
MESSAGE = “setup violation 10 d <-> 01 cp“;

}
}
HOLD {

/* fill in arithmetic model for hold time constraint */
VIOLATION {
180 Advanced Library Format (ALF) Reference Manual Version 1.1

Combining tables and equations Applications

s

BEHAVIOR {q = 'bx;}
MESSAGE_TYPE = error;
MESSAGE = “hold violation 10 d <-> 01 cp“;

}
}

}
}

4.4 Combining tables and equations

4.4.1 Table vs equation

The following examples show the usage ofTABLE andEQUATION in the model.

Example with table:

CURRENT {
PIN = VDD;
UNIT = mA;
TIME = 30 {UNIT = ns;}
MEASUREMENT = average;
HEADER {

CAPACITANCE {
PIN = z; UNIT = pF;
TABLE {0.02 0.04 0.08 0.16}

}
SLEWRATE {

PIN = a; UNIT = ns;
TABLE {0.1 0.3 0.9}

}
}
TABLE {

0.0011 0.0021 0.0041 0.0081
0.0013 0.0023 0.0043 0.0083
0.0019 0.0029 0.0049 0.0089

}
}

Equivalent example with equation:

CURRENT {
PIN = VDD; UNIT = mA;
TIME = 30 {UNIT = ns;}
MEASUREMENT = average;
HEADER {

CAPACITANCE {PIN = z; UNIT = pF;}
SLEWRATE {PIN = a; UNIT = ns;}

}
EQUATION { 0.05*CAPACITANCE + 0.001*SLEWRATE }

}

If the model uses anEQUATION, then each argument must appear in theHEADER. If the model
uses aTABLE, then theHEADERmust contain aTABLEfor each argument. The number of value
Version 1.1 Advanced Library Format (ALF) Reference Manual 181

Applications Combining tables and equations

es in

ient
are
ptime

load
tes the

sult is

jects
in the main table and the indexing scheme is defined by the order and the number of valu
each table inside the header.

4.4.2 Cell with Multiple Output Pins

The following example shows how to use combinations of tables and equations for effic
modeling of energy consumption of a cell with two (buffered) outputs. When two outputs
switching, triggered by the same input, the dynamic energy consumption depends on ram
of the input signal and load capacitance on each output.

Instead of creating a 3-dimensional table, two 2-dimensional tables are used, varying the
capacitance at one output and keeping zero load at the other output. The equation calcula
energy for both outputs switching by adding the values from each table together for the
applicable load capacitance and by subtracting a corresponding correction term. The re
exact for cells with buffered outputs.

As shown in the example below, an arithmetic model must be a named object, if several ob
of the same type occur within the same scope (e.g.ENERGY). For named objects, the equation
uses the object name instead of the object type.

VECTOR (01 ci -> (01 co <-> 10 s) & a) {
ENERGY {

UNIT = pJ;
HEADER {

ENERGY energy_co { // named object
UNIT = pJ;
HEADER {

CAPACITANCE {
PIN = co; UNIT = pF;
TABLE { ... }

}
SLEWRATE {

PIN = ci; UNIT = ns;
TABLE { ... }

}
}
TABLE { ... }

}
ENERGY energy_s { // named object

UNIT = pJ;
HEADER {

CAPACITANCE {
PIN = s; UNIT = pF;
TABLE { ... }

}
SLEWRATE {

PIN = ci; UNIT = ns;
TABLE { ... }

}
}
TABLE { ... }

}
ENERGY energy_noload { // named object
182 Advanced Library Format (ALF) Reference Manual Version 1.1

Combining tables and equations Applications

e and
 model.

ated
UNIT = pJ;
HEADER {

SLEWRATE {
PIN = ci; UNIT = ns;
TABLE { ... }

}
}
TABLE { ... }

}
}
EQUATION { energy_co + energy_s - energy_noload }

}
}

4.4.3 PVT Derating

Combinations of tables and equations can also be used for derating with respect to voltag
temperature, since those variables would add more dimensions to a purely table-based

In this example, theDELAYobjects must be named, since there is both a nominal and a der
DELAY.

DELAY rise_out{
HEADER {

PROCESS {
HEADER {nom snsp snwp wnsp wnwp}
TABLE {0.0 -0.1 -0.2 +0.3 +0.2}

}
VOLTAGE {//fill in any annotations
}
TEMPERATURE {//fill in any annotations
}
DELAY nom_rise_out {

HEADER {
CAPACITANCE {

TABLE {0.03 0.06 0.12 0.24}
}
SLEWRATE {

TABLE {0.1 0.3 0.9}
}

}
TABLE {

0.07 0.10 0.14 0.22
0.09 0.13 0.19 0.30
0.10 0.15 0.25 0.41

}
}

}

Version 1.1 Advanced Library Format (ALF) Reference Manual 183

Applications Combining tables and equations
EQUATION {
nom_rise_out
* (1 + PROCESS)
* (1 + (TEMPERATURE - 25)*0.001)
* (1 + (VOLTAGE - 3.3)*(-0.3))

}
}

TheHEADER in theprocess object contains exclusively named variables(nom, snsp...) ,
similar to the truth table of aFUNCTION that contains only pin names. Therefore theTABLE is
expected to have as many entries as theHEADER. TheTABLE insidenom_rise_out must follow
the format defined by eachTABLEinside the declarations ofload andramptime . Other declared
object in theHEADERwould be ignored for theTABLEformat, if they do not have aTABLE inside
themselves.

For convenience, the derating equation can be defined as a template for future reuse.

TEMPLATE std_derating {
EQUATION {

<variable>
* (1 + <Kp>)
* (1 + (TEMPERATURE - 25)*<Kt>)
* (1 + (VOLTAGE - 3.3)*<Kv>)

}
}

Instantiation of the template in the model:

DELAY rise_out{
HEADER {

PROCESS {
HEADER {nom snsp snwp wnsp wnwp}
TABLE {0.0 -0.1 -0.2 +0.3 +0.2}

}
VOLTAGE { ... }
TEMPERATURE { ... }
DELAY nom_rise_out {

HEADER {
CAPACITANCE {TABLE { ... }}
SLEWRATE {TABLE { ... }}

}
TABLE { ... }

}
std_derating {

variable = nom_rise_out ;
Kp = PROCESS ;
Kt = 0.001 ;
Kv = -0.3 ;

}
}

184 Advanced Library Format (ALF) Reference Manual Version 1.1

Use of Annotations Applications

endent

ifiers
It is possible to express voltage, temperature and delay with the derating case as an indep
variable:

VOLTAGE {
HEADER { DERATE_CASE { TABLE {nom bccom wcmil} } }
TABLE {3.3 3.5 2.8}

}
TEMPERATURE {

HEADER { DERATE_CASE { TABLE {nom bccom wcmil} } }
TABLE {25 0 125}

}
DELAY {

HEADER {
DERATE_CASE {

HEADER {nom bccom wcmil}
TABLE {0 -0.0835 0.265}

}
PROCESS

HEADER {nom snsp snwp wnsp wnwp}
TABLE {0.0 -0.1 -0.2 +0.3 +0.2}

}
DELAY nom_rise_out { ... }

}
EQUATION {

nom_rise_out
* (1 + PROCESS)
* (1 + DERATE_CASE)

}

Another possibility is a completely tabulated model, where the process and derating ident
can be directly used as table items.

DELAY {
HEADER {

DERATE_CASE {
TABLE {nom bccom wcmil}

}
PROCESS

TABLE {nom snsp snwp wnsp wnwp}
}

TABLE {
// 3*5 = 15 values

}

4.5 Use of Annotations

4.5.1 Annotations for a PIN

Direct annotation:

PIN data_in {DIRECTION = input; THRESHOLD = 0.35; CAPACITANCE = 0.010;}
Version 1.1 Advanced Library Format (ALF) Reference Manual 185

Applications Use of Annotations

rage
ield
010 pF.
ed the

e that
Using annotation containers:

PIN data_in {
DIRECTION = input;
THRESHOLD = 0.35;
CAPACITANCE = 0.010; {

UNIT = pF; MEASUREMENT = average;
MIN = 0.009; TYP = 0.010; MAX = 0.012;

}
LIMIT {

SLEWRATE {MAX=3.0; UNIT=ns;}
VOLTAGE {MAX=3.5; MIN=-0.2;}

}
}

The input pindata_in has a non-linear capacitance that was characterized using an ave
measurement (as opposed to RMS or peak measurements). Different measurements y
average capacitances between 0.009 pF and 0.012 pF, typical average capacitance is 0.
The slewrate applied to the pin must not exceed 3.0 ns. The voltage swing must not exce
lower bound of -0.2 V and the upper bound of 3.5 volt.

CAPACITANCE {UNIT = pF;}
PIN data_out {

DIRECTION = output; CAPACITANCE = 0.002;
LIMIT {CAPACITANCE {MAX = 0.96;} }

}

The output pin data_out has a capacitance of 0.002 pF. The maximum load capacitanc
may be applied to the pin is 0.96 pF.

4.5.2 Annotations for a timing arc

Specifications for a particular timing arc references specific pins:

DELAY {
UNIT = ns;
FROM {PIN = data_in; THRESHOLD = 0.4;}
TO {PIN = data_out; THRESHOLD = 0.6;}

}

SLEWRATE {
PIN = data_out; UNIT = ns;
FROM {THRESHOLD = 0.3;}
TO {THRESHOLD = 0.5;}

}

186 Advanced Library Format (ALF) Reference Manual Version 1.1

Providing a fall-back position for applications Applications

oth

LF
 the

e

tand
Specifications for a generic timing arc does not reference specific pins, but values for b
switching directions must be defined):

DELAY {
UNIT = ns;
THRESHOLD {RISE=0.4; FALL=0.6;}

}

SLEWRATE {
UNIT = ns;
FROM {THRESHOLD {RISE=0.3; FALL=0.5;}}
TO {THRESHOLD {RISE=0.5; FALL=0.3;}}

}

4.5.3 Creating Self-explaining Annotations

The self-explaining annotations can be created usingTEMPLATE.

Example: number of connections allowed for each pin

TEMPLATE must_connect {
LIMIT {CONNECTION {MIN = 1;}}

}

TEMPLATE can_float {
LIMIT {CONNECTION {MIN = 0;}}

}

TEMPLATE no_connection {
LIMIT {CONNECTION {MAX = 0;}}

}

CELL a_flipflop {
PIN q {must_connect DIRECTION=output;}
PIN qn {can_float DIRECTION=output;}
PIN qi {no_connection DIRECTION=output;}
...

}

4.6 Providing a fall-back position for applications

4.6.1 Use of DEFAULT

ALF’s modeling capabilities address the needs for all types of applications. However, A
should also work for applications that use only a subset of information. In order to make
subset of information controllable, modeling capability withDEFAULT is provided. The
information provided byDEFAULT can be strictly ignored by applications that understand th
full information.

A particular application may not be able to use 3-dimensional tables, or it may not unders
certain models.DEFAULT values can be provided for each model.
Version 1.1 Advanced Library Format (ALF) Reference Manual 187

Applications Providing a fall-back position for applications
Example:

DELAY {
HEADER {

SLEWRATE {
PIN = a; UNIT = 1e-9;
TABLE {0.5 1.0 1.5}
DEFAULT = 1.0;

}
CAPACITANCE {

PIN = z; UNIT = 1e-12;
TABLE {0.1 0.2 0.3 0.4}
DEFAULT = 0.1;

}
VOLTAGE {

PIN = vdd; UNIT = 1;
TABLE {3.0 3.3 3.6}
DEFAULT = 3.3;

}
}
TABLE {

// arrangement of whitespaces and comments
// is only for readability
// parser sees just a sequence of 3x4x3=36 numbers

//slewrate 0.5 1.0 1.5 capacitance voltage
// --------------+--------------+-------

0.2 0.8 1.1 // 0.1 3.0
0.4 1.0 1.2 // 0.2
0.7 1.2 1.4 // 0.3
0.9 1.5 1.8 // 0.4

0.1 0.7 1.2 // 0.1 3.3
0.3 0.9 1.3 // 0.2
0.6 1.1 1.5 // 0.3
0.8 1.3 1.7 // 0.4

0.1 0.6 1.0 // 0.1 3.6
0.2 0.8 1.1 // 0.2
0.4 1.0 1.3 // 0.3
0.7 1.2 1.6 // 0.4

}
}

An application that does not understandVOLTAGE, will extract the following information from
this example:

DELAY {
HEADER {

SLEWRATE {
PIN = a; UNIT = 1e-9;
TABLE {0.5 1.0 1.5}

}
CAPACITANCE {

PIN = z; UNIT = 1e-12;
188 Advanced Library Format (ALF) Reference Manual Version 1.1

Bus Modeling Applications

oth
TABLE {0.1 0.2 0.3 0.4}
}

}
TABLE {

//slewrate 0.5 1.0 1.5 capacitance voltage
// --------------+--------------+-------

0.1 0.7 1.2 // 0.1 3.3
0.3 0.9 1.3 // 0.2
0.6 1.1 1.5 // 0.3
0.8 1.3 1.7 // 0.4

}
}

An application that does not understandSLEWRATE, will extract only the following information:

DELAY {
HEADER {

CAPACITANCE {
UNIT = 1e-12;
PIN = z;
TABLE {0.1 0.2 0.3 0.4}

}
}
TABLE {

//slewrate 1.0 capacitance voltage
// ----+--------------+-------

0.7 // 0.1 3.3
0.9 // 0.2
1.1 // 0.3
1.3 // 0.4

}
}

4.7 Bus Modeling

4.7.1 Tristate Driver

Bus drivers are usually tristate buffers, which have straightforward functional models. If b
input signal and enable signal have well-defined logic states, the output is driven to'b1 , 'b0 ,
or 'bz , otherwise it is driven to'bx .

CELL tristate_buffer {
PIN a {DIRECTION = input; SIGNALTYPE = data;}
PIN e {DIRECTION = input; SIGNALTYPE = out_enable;}
PIN z {DIRECTION = output; SIGNALTYPE = data;

 SIGNALDRIVE = tristate; ENABLE_PIN = e;}
FUNCTION {

BEHAVIOR {
z =
Version 1.1 Advanced Library Format (ALF) Reference Manual 189

Applications Bus Modeling

high

ded.
rd.

 In

is left

hin a

r than

e core
 (e & a) ? 'b1:
 (e & !a) ? 'b0:
 (!e) ? 'bz:

 'bx;
}

}
}

A different model can be used for transmission-gate type of buffers, which also passes the
impedance state from input to output.

BEHAVIOR {
z =
 (e) ? a :
 (!e) ? 'bz:

 'bx;
}

}

In order to model bus contention, the drive strength information of tristate buffers is nee
This is easily achieved by annotation of a pin property, using a context-sensitive keywo

CELL tristate_buffer {
...
PIN z {DIRECTION = output; DRIVE_STRENGTH = 4;}
...

}

The pin-propertyDRIVE_STRENGTH can take an arbitrary positive integer or a real number.
general, greater values override smaller values, and thatDRIVE_STRENGTH=0 is equivalent to

BEHAVIOR {z='bz;}.

ALF does not assume a particular set of legal drive strengths. The scale and granularity
to the discretion of the ASIC vendor (user).

Modeling of state-dependent drive strength is achieved by annotating drive strength wit
vector rather than within a pin. The following example shows a buffer withstrong-0 and
weak-1 drive.

CELL tristate_buffer {
...
PIN z {DIRECTION = output;}
...
VECTOR (z==0) {

DRIVE_STRENGTH = 4; {PIN = z;}
}
VECTOR (z==1) {

DRIVE_STRENGTH = 2; {PIN = z;}
}

}

The bus itself is not described by an ALF model, since the bus is a design construct rathe
a library cell. A simulation model (Verilog or VHDL) would handle the bus contention.
However, since buses can also be embedded within a core cell, the functional model of th
would need a functional model of that bus as well.
190 Advanced Library Format (ALF) Reference Manual Version 1.1

Bus Modeling Applications

lved

ith
4.7.2 Bus with multiple drivers

The following example shows a bus with 3 drivers of equal strength. The output is the reso
value of the bus.

CELL bus3 {
PIN z1 {DIRECTION = input;}
PIN z2 {DIRECTION = input;}
PIN z3 {DIRECTION = input;}
PIN z {DIRECTION = output;}
FUNCTION {

BEHAVIOR {
z =
 ((z2=='bz || z2==z1) && z3=='bz)? z1:
 ((z3=='bz || z3==z2) && z1=='bz)? z2:
 ((z1=='bz || z1==z3) && z2=='bz)? z3:
 (z1=='b1 && z2=='b1 && z3=='b1)? 'b1:
 (z1=='b0 && z2=='b0 && z3=='b0)? 'b0:

 'bx;
}

}
}

The following example shows a bus with two drivers of equal strength and one driver w
weaker strength (e.g. a busholder).

CELL bus2s1w {
PIN z_strong1 {DIRECTION = input;}
PIN z_strong2 {DIRECTION = input;}
PIN z_weak {DIRECTION = input;}
PIN z {DIRECTION = output;}
FUNCTION {

BEHAVIOR {
z =
 (z_strong1=='b1 && z_strong2=='b1)? 'b1:
 (z_strong1=='b0 && z_strong2=='b0)? 'b0:
 (z_strong1=='bz && z_strong2=='bz)? z_weak:

 'bx;
}

}
}

Version 1.1 Advanced Library Format (ALF) Reference Manual 191

Applications Wire models

igh
is

into

ns

utside
4.7.3 Busholder

A busholderis a cell that retains the previous value of a tristate bus, when all drivers go to h
impedance. This device has only one external pin, which is bidirectional. The input to th
bidirectional pin is the resolved value of the bus.

CELL busholder {
PIN a {DIRECTION = both;}
PIN z {DIRECTION = output; VIEW = none;}
FUNCTION {

BEHAVIOR {
a = !z;
@(a==0) {z = 1;}
@(a==1) {z = 0;}
@(a=='bx) {z = 'bx;}

}
}

}

In order to understand the functionality of a bidirectional pin, we split the pin conceptually
an input pin and an output pin as shown below.

CELL busholder_explicit {
PIN a_in {DIRECTION = input;}
PIN a_out {DIRECTION = output;}
PIN z {DIRECTION = output; VIEW = none;}
FUNCTION {

BEHAVIOR {
a_out = !z;
@(a_in==0) {z = 1;}
@(a_in==1) {z = 0;}
@(a_in=='bx) {z = 'bx;}

}
}

}

The function of this device is well defined, ifa_out==a_in for all cases wherea_in!='bz . In
the case ofa_in=='bz, a_out can take any value. This is a general modeling rule for functio
with bidirectional pins.

4.8 Wire models

4.8.1 Basic Wire Model

This example shows two wire models, using tables and equations. The equation is used o
the defined table range. If no equation was defined, the table would be extrapolated.

WIRE small_wire {
CAPACITANCE {

UNIT = pF;
HEADER {

CONNECTIONS {
TABLE {2 3 4 5}

}

192 Advanced Library Format (ALF) Reference Manual Version 1.1

Wire models Applications

ould
 this
}
TABLE {0.05 0.09 0.13 0.17}
EQUATION {CONNECTIONS * 0.04 - 0.03}

}
RESISTANCE {

UNIT = mOHM;
HEADER {

CONNECTIONS {
TABLE {2 3 4 5}

}
}
TABLE {7.5 10.0 12.5 15.0}
EQUATION {CONNECTIONS * 2.5 + 2.5}

}
}

WIRE large_wire {
CAPACITANCE {

UNIT = pF;
HEADER {

CONNECTIONS {
TABLE {2 3 4}

}
}
TABLE {0.10 0.16 0.22}
EQUATION {CONNECTIONS * 0.06 - 0.2}

}
RESISTANCE {

UNIT = mOhm;
HEADER {

CONNECTIONS {
TABLE {2 3 4}

}
}
TABLE {10.0 12.5 15.0}
EQUATION {CONNECTIONS * 2.5 + 5.0}

}
}

4.8.2 Wire select model

Since a library may contain multiple wire models, it is necessary to specify which model sh
be selected for an application. The annotations inside each wire model can be used for
purpose.

WIRE small_wire {
LIMIT {AREA {UNIT=1e-6; MAX=25;}}
...

}

WIRE large_wire {
LIMIT {AREA {UNIT=1e-6; MIN=25; MAX=100;}}
...

}

Version 1.1 Advanced Library Format (ALF) Reference Manual 193

Applications Megacell Modeling

d

useful
If the area covering the routing space is smaller than 25mm2, thesmall_wire model will be
chosen. If the area covering the routing space is between 25mm2 and 100mm2, thelarge_wire

model is chosen. The unit for area is 1mm2.

More annotations using theUSAGE keyword can be introduced in order to enable customize
wire model selection.

4.9 Megacell Modeling

4.9.1 Expansion of Timing Arcs

GROUPcan be used for sets of numbers or for a continuous range of numbers. This can be
for defining timing arcs between all bits of two vectors. For example,

GROUP adr_bits {1 2 3}
GROUP data_bits {1 2}
VECTOR (01 adr[adr_bits] -> 01 dout[data_bits]) { ... }

replaces the following statements:

VECTOR (01 adr[1] -> 01 dout[1]) { ... }
VECTOR (01 adr[2] -> 01 dout[1]) { ... }
VECTOR (01 adr[3] -> 01 dout[1]) { ... }
VECTOR (01 adr[1] -> 01 dout[2]) { ... }
VECTOR (01 adr[2] -> 01 dout[2]) { ... }
VECTOR (01 adr[3] -> 01 dout[2]) { ... }

The following example shows bit-wise expansion of two vectors:

GROUP data_bits {1 2}
VECTOR (01 din[data_bits] -> 01 dout[data_bits]) { ... }

This replaces the following statements:

VECTOR (01 din[1] -> 01 dout[1]) { ... }
VECTOR (01 din[2] -> 01 dout[2]) { ... }

Example for bytewise (or sub-word wise) expansion:

GROUP low_byte {1 2}
GROUP high_byte {3 4}
VECTOR (01 we[0] -> 01 din[low_byte]) { ... }
VECTOR (01 we[1] -> 01 din[high_byte]) { ... }

This replaces the following statements:

VECTOR (01 we[0] -> 01 din[1]) { ... }
VECTOR (01 we[0] -> 01 din[2]) { ... }
VECTOR (01 we[1] -> 01 din[3]) { ... }
VECTOR (01 we[1] -> 01 din[4]) { ... }
194 Advanced Library Format (ALF) Reference Manual Version 1.1

Megacell Modeling Applications

rds in
ous

and
4.9.2 Two-port memory

The memory model example below shows the use of abstract transition operators on wo
various vectors. Note the simplicity of the functional description of this two-port asynchron
memory. This example also contains some vectors with distinction between events on row
column address lines.

CELL async_1write_1read_ram {
GROUP col {1:0}
GROUP row {4:2}
GROUP all {row col}
GROUP byte{7:0}
GROUP * {0:31}
PIN enable_write {DIRECTION = input}
PIN [4:0] adr_write {DIRECTION = input}
PIN [4:0] adr_read {DIRECTION = input}
PIN [7:0] data_write {DIRECTION = input}
PIN [7:0] data_read {DIRECTION = output}
PIN [7:0] data_store [0:31] {DIRECTION = output VIEW = none}
FUNCTION {

BEHAVIOR {
data_read = data_store[adr_read];
@(enable_write) {data_store[adr_write] = data_write;}

}
}
VECTOR
(?! adr_read[col] -> ?? data_read[byte]) {

/* fill in arithmetic models for delay and power */
}
VECTOR
(?! adr_read[row] -> ?? data_read[byte]) {

/* fill in arithmetic models for delay and power */
}
VECTOR
((?!adr_read[col] && ?!adr_read[row]) -> ??data_read[byte]){

/* fill in arithmetic models for delay and power */
}
VECTOR (01 enable_write -> ?? data_read[byte]) {

/* fill in arithmetic models for delay and power */
}
VECTOR (?! data_write[byte] -> ?? data_read[byte]) {

/* fill in arithmetic models for delay and power */
}
VECTOR (?! adr_write[col]) {

/* fill in arithmetic models for power */
}
VECTOR (?! adr_write[row]) {

/* fill in arithmetic models for power */
}
VECTOR (?! adr_write[row] && ?! adr_write[col]) {

/* fill in arithmetic models for power */
}
VECTOR (01 enable_write) {

/* fill in arithmetic models for power */
Version 1.1 Advanced Library Format (ALF) Reference Manual 195

Applications Megacell Modeling
}
VECTOR (10 enable_write) {

/* fill in arithmetic models for power */
}
VECTOR (?! data_write[byte] && !enable_write) {

/* fill in arithmetic models for power */
}
VECTOR (?! data_write[byte] && enable_write) {

/* fill in arithmetic models for power */
}

}
VECTOR (?! adr_write[all] <-> 01 enable_write) {

SETUP {
VIOLATION {

BEHAVIOR { data_store[*] = 'bxxxxxxxx; }
MESSAGE_TYPE = error;
MESSAGE =

"setup violation: changing 'adr_write' -> rising 'enable_write', memory -
> 'X'";

}
FROM { pin = adr_write; }
TO { pin = enable_write; }
/* fill in header, table or equation */

}
}
VECTOR (10 enable_write <-> ?! adr_write[all]) {

HOLD {
VIOLATION {

BEHAVIOR { data_store[*] = 'bxxxxxxxx; }
MESSAGE_TYPE = error;
MESSAGE =

"hold violation: falling 'enable_write' -> changing 'adr_write', memory -
> 'X'";

}
FROM { pin = enable_write; }
TO { pin = adr_write; }
/* fill in header, table or equation */

}
}
VECTOR (?! data_write[byte] <-> 10 enable_write) {

SETUP {
VIOLATION {

BEHAVIOR { data_store[adr_write] = 'bxxxxxxxx; }
MESSAGE_TYPE = error;
MESSAGE =

"setup violation: changing 'data_write' -> falling 'enable_write',
memory[adr_write] -> 'X'";

}
FROM { pin = data_write; }
TO { pin = enable_write; }
/* fill in header, table or equation */

}
HOLD {

VIOLATION {
196 Advanced Library Format (ALF) Reference Manual Version 1.1

Megacell Modeling Applications

e bus.

be
e

BEHAVIOR { data_store[adr_write] = 'bxxxxxxxx; }
MESSAGE_TYPE = error;
MESSAGE =

"hold violation: falling 'enable_write' -> changing 'data_write',
memory[adr_write] -> 'X'";

}
FROM { pin = enable_write; }
TO { pin = data_write; }
/* fill in header, table or equation */

}
}
VECTOR (01 enable_write -> 10 enable_write) {

PULSEWIDTH {
VIOLATION {

MESSAGE_TYPE = error;
MESSAGE = "pulsewidth violation: high 'enable_write'";

}
PIN = enable_write;
/* fill in header, table or equation */

}
}
VECTOR (10 enable_write -> 01 enable_write) {

PULSEWIDTH {
VIOLATION {

MESSAGE_TYPE = error;
MESSAGE = "pulsewidth violation: low 'enable_write'";

}
PIN = enable_write;
/* fill in header, table or equation */

}
}

}

The energy consumption for each operation depends on the number of switching bits of th
Therefore, the model for power inside a particular vector may look like this:

VECTOR (?! data_write && enable_write) {
ENERGY {

UNIT = pJ;
HEADER {switching_bits {PIN = data_write;}}
EQUATION {1.3 * switching_bits}

}
}

The rule that the address on a write port must not change during write enable high can
incorporated easily in the functional model. A pessimistic model assumes that the whol
memory content will become unknown, if such an illegal address change occurs.

BEHAVIOR {
data_read = data_store[adr_read];
@(enable_write) {data_store[adr_write] = data_write;}
@(!?adr_write && enable_write)

{data_store[*] = 'bxxxxxxxx;}
}

Version 1.1 Advanced Library Format (ALF) Reference Manual 197

Applications Megacell Modeling

ot
4.9.3 Three-port memory

Functional models of more complex memories are also straightforward. The conflicts of
writing to one memory location simultaneously from different ports can be modeled in a
pessimistic way as follows:

CELL async_2write_1read_ram {
PIN enb_write1 {DIRECTION = input;}
PIN enb_write2 {DIRECTION = input;}
PIN [4:0] adr_write1 {DIRECTION = input;}
PIN [4:0] adr_write2 {DIRECTION = input;}
PIN [4:0] adr_read {DIRECTION = input;}
PIN [7:0] data_write1 {DIRECTION = input;}
PIN [7:0] data_write2 {DIRECTION = input;}
PIN [7:0] data_read {DIRECTION = output;}
PIN [7:0] data_store [0:31] {DIRECTION = output; VIEW = none;}
FUNCTION {

BEHAVIOR {
data_read = data_store[adr_read];
@(enb_write1 && !enb_write2)

{data_store[adr_write1] = data_write1;}
@(enb_write2 && !enb_write1)

{data_store[adr_write2] = data_write2;}
@(enb_write1 && enb_write2 && adr_write1!=adr_write2) {

data_store[adr_write1] = data_write1;
data_store[adr_write2] = data_write2;

}
@(enb_write1 && enb_write2 && adr_write1==adr_write2) {

data_store[adr_write1] =
(data_write1==data_write2)? data_write1:8'bx;

data_store[adr_write2]
(data_write2==data_write1)? data_write2:8'bx;

}
}

}
}

4.9.4 Annotation for pins of a bus

Annotations of numeric values to a bus apply to the total bus, not to each individual pin.

Example:

PIN [1:4] my_bus_pin {
CAPACITANCE = 0.04 ;

}

The total bus pin capacitance is 0.4, the capacitance values on each individual pin are n
defined.
198 Advanced Library Format (ALF) Reference Manual Version 1.1

Megacell Modeling Applications

d lat-

to a

dif-
d:
The individual pin capacitance can be defined as follows:

PIN [1:4] my_bus_pin {
CAPACITANCE c1 = 0.01 { PIN = my_bus_pin[1]; }
CAPACITANCE c2 = 0.01 { PIN = my_bus_pin[2]; }
CAPACITANCE c3 = 0.01 { PIN = my_bus_pin[3]; }
CAPACITANCE c4 = 0.01 { PIN = my_bus_pin[4]; }

}

4.9.5 Skew for simultaneously switching signals on a bus

Vectors with simultaneously switching bits on a bus may contain a specification of the
allowed skew in order to be still considered as simultaneously switching bits.

Example:

PIN [1:3] address;
VECTOR (?! address)

SKEW {
PIN = address;
/* fill in data */

}
}

SKEW applied to a bus pin is the maximal allowed time window between the earliest an
est edge within simultaneously switching signals of a bus.

The multiple value annotation feature allows the definition of a group of pins equivalent
bus for SKEW modeling in the following way:

PIN A;
PIN [1:4] B;
VECTOR (?! A && ?! B)

SKEW { PIN { A B[2:3] } }
}

SKEW applies to the group of pins A, B[2], B[3]. Note that the following is semantically
ferent, since this would result in expansion of each object where the group is instantiate

PIN A;
PIN [1:4] B;
GROUP my_group { A B[2] B[3] }
VECTOR (?! my_group)

SKEW { PIN = my_group; }
}

Version 1.1 Advanced Library Format (ALF) Reference Manual 199

Applications Special cells
The expansion yields the following:

PIN A;
PIN [1:4] B;
VECTOR (?! A)

SKEW { PIN = A ; }
}
VECTOR (?! B[2])

SKEW { PIN = B[2] ; }
}
VECTOR (?! B[3])

SKEW { PIN = B[3] ; }
}

See Section 4.15.2.7 for definition of SKEW for scalar pins.

4.10 Special cells

4.10.1 Pulse generator

The following cell generates a one-shot pulse of 1 ns duration when enable goes high.

CELL one_shot {
PIN enable {DIRECTION = input;}
PIN q {DIRECTION = output;}
FUNCTION {

BEHAVIOR {
@(01 enable) {q = 1;}
@(q) {q = 0;}

}
}
VECTOR (01 q -> 10 q) {

DELAY = 1.0 {UNIT = ns;}
}

}

4.10.2 VCO

The following cell is a voltage controlled oscillator with 50% duty cycle and enable.

CELL vco {
PIN enable {DIRECTION = input; PINTYPE = digital;}
PIN v_in {DIRECTION = input; PINTYPE = analog;}
PIN q {DIRECTION = output; PINTYPE = digital;}
FUNCTION {

BEHAVIOR {
@(!enable) {q = 0;}
@(!q && enable) {q = 1;}
@(q && enable) {q = 0;}

}
}
TEMPLATE voltage_controlled_delay {

DELAY {
200 Advanced Library Format (ALF) Reference Manual Version 1.1

Core Modeling Applications

ncy:

ital

lier

 for
top
UNIT = ns;
HEADER {

voltage {
PIN = v_in;
TABLE {0.5 1.0 1.5 2.0 2.5 3.0}

}
}
TABLE {10.00 5.00 3.33 2.50 2.00 1.67}

}
}
VECTOR (01 q -> 10 q)

voltage_controlled_delay
}
VECTOR (10 q -> 01 q)

voltage_controlled_delay
}

}

The template shown above can also be written as an equation to map voltage to freque

TEMPLATE voltage_controlled_delay {
DELAY {

UNIT = ns;
HEADER {voltage {PIN = v_in;}}
EQUATION {5.0 / voltage}

}
}

4.11 Core Modeling

4.11.1 Digital Filter

This example illustrates the potential of ALF for modeling complex blocks. It shows a dig
filter performing the following operation

dout(t) = state(t) + b1 * state(t-1) + b2 * state(t-2)
state(t) = din(t) - a1 * state(t-1) - a2 * state(t-2)

This second order infinite impulse response (IIR) filter is implemented with a single multip
and a single adder/subtractor in a way that a newdout is produced every 4 clock cycles. The
variable coefficientsa1, a2, b1, andb2 are stored in a dual port RAM.

The model uses templates for the functional blocks of a 2-bit counter used as controller
memory access and I/O operation, a RAM for coefficient storage, and the filter itself. In the
module they are instantiated as a structural netlist.
Version 1.1 Advanced Library Format (ALF) Reference Manual 201

Applications Core Modeling

of the
The use of templates is more general than the use of primitives, since not all basic blocks
core may be supported as primitives.

LIBRARY core_lib {
TEMPLATE CNT2 {

BEHAVIOR {
@ (!<cd>) {<cnt> = 2'b0;}
: (01 <cp>) {<cnt> = <start> ? 2'b0 : <cnt> + 1;}

}
}

TEMPLATE RAM16X4 {
BEHAVIOR {

<dout> = <dmem>[<r_adr>];
@ (<we>) {<dmem>[<w_adr>] = <din>;}

}
}

TEMPLATE IIR2 {
BEHAVIOR {

sum =
(<cntrl>=='d0)? <din> - product :
(<cntrl>=='d1)? accu - product :
(<cntrl>=='d2)? accu + product :
(<cntrl>=='d3)? accu + product;

@ (!<cd>) {
product = 16'b0;
accu = 16'b0;

}
: (01 <cp>){

product =
(<cntrl>=='d0)? coeff * state2 :
(<cntrl>=='d1)? coeff * state1 :
(<cntrl>=='d2)? coeff * state2 :
(<cntrl>=='d3)? coeff * state1 :
16'bX;

accu = sum;
}

@ (!<cd>) {
<dout> = 16'b0;
state1 = 16'b0;
state2 = 16'b0;

}
: (01 <cp> && <cntrl>=='d0){

state2 = state1;
state1 = accu;
<dout> = accu;

}
}

}

CELL digital_filter {
PIN [15:0] data_out {DIRECTION = output}
202 Advanced Library Format (ALF) Reference Manual Version 1.1

Connectivity Applications

at

en the
, then
der.
sses

.

PIN [15:0] data_in {DIRECTION = input}
PIN [1:0] index_coeff {DIRECTION = input}
PIN write_coeff {DIRECTION = input}
PIN [15:0] coeff_in {DIRECTION = input}
PIN [15:0] coeff_out {DIRECTION = output VIEW = none}
PIN [15:0] coeff_array [1:4] {DIRECTION = output VIEW = none}
PIN data_strobe {DIRECTION = input}
PIN [1:0] count {DIRECTION = output VIEW = none}
PIN clock {DIRECTION = input}
PIN reset {DIRECTION = input}
FUNCTION {

IIR2 { din=data_in; dout=data_out; coeff=coeff_out;
cp=clock; cd=reset; cntrl = count;}

CNT2 { start=data_strobe; cnt=count; ck=clock; cd=reset;}
RAM16X4{ we=write_coeff; din=coeff_in; dout=coeff_out;

dmem=coeff_array; r_adr=count; w_adr=index_coeff;}
}

}
}

4.12 Connectivity

Connectivity information may be specified within the definition of the ALF language form
as described below. A connectivity object always contains a rule specifying the type of
connections (e.g. must short, can short, cannot short) and a table. If no header is given, th
table contains the pins or pin classes subject to the connectivity rule. If a header is given
the table contains the values of the connectivity function between arguments in the hea
There must be a table inside each connectivity argument, containing the pins or pin cla
subject to the connectivity rule. Valid arguments areDRIVERand/orRECEIVER. Valid values are
the boolean digits0, 1, and?. The value1 implies the connection rule is true, the value0 implies
the connection rule is false, the value? implies don’t care situation with the connection rule

4.12.1 External connections between pins of a cell

The following example shows how to specify required and disallowed interconnections
external to a cell.

CELL pll {
PIN vdd_ana {PINTYPE=supply;}
PIN vdd_dig {PINTYPE=supply;}
PIN vss_ana {PINTYPE=supply;}
PIN vss_dig {PINTYPE=supply;}
CONNECTIVITY common_ground {

CONNECT_RULE = must_short;
TABLE {vss_ana vss_dig}

CONNECTIVITY separate_supply {
CONNECT_RULE = cannot_short;
TABLE {vdd_ana vdd_dig}

}
}

Version 1.1 Advanced Library Format (ALF) Reference Manual 203

Applications Connectivity

sired
y table
ble

h the
4.12.2 Allowed connections for classes of pins

The following example defines allowable pin interconnections. The constants for the de
connectivity classes, the grouping of these classes, and the allowable class connectivit
are first defined at the library level. The non-zero values within the matrix specify allowa
connectivity of indexed classes. The connectivity classes for pins are then specified wit
pin annotation sections.

LIBRARY example_library {
...
CLASS default_class;
CLASS clock_class;
CLASS enable_class;
CLASS reset_class;
CLASS tristate_class;
...
TEMPLATE drivers {

default_class
clock_class
enable_class
reset_class
tristate_class

}
TEMPLATE receivers {

default_class
clock_class
enable_class
reset_class

}
CONNECTIVITY driver_to_driver {

CONNECT_RULE = can_short;
HEADER {

DRIVER {TABLE {drivers}}
}
TABLE {// def clk enb rst tri

 0 0 0 0 1
}

}
CONNECTIVITY receiver_to_receiver {

CONNECT_RULE = can_short;
HEADER {

RECEIVER {TABLE {receivers}}
}
TABLE {// def clk enb rst

 1 1 1 1
}

}
CONNECTIVITY driver_to_receiver {

CONNECT_RULE = can_short;
HEADER {

DRIVER {TABLE {drivers}}
RECEIVER {TABLE {receivers}}

}

204 Advanced Library Format (ALF) Reference Manual Version 1.1

Connectivity Applications

 each

d for

also

 rails
llow
TABLE {// def clk enb rst tri // driver/receiver
1 1 1 1 0 // def
0 1 0 0 0 // clk
0 0 1 0 0 // enb
0 0 0 1 0 // rst

}
}

The above table specifies allowed connectivity from each class to itself, as well as from
class todefault_class except for thetristate_class class which may only connect to
itself. Note also that while any class may connect todefault_class , thedefault_class may
only connect to itself.

Once the library level connectivity is defined, connection class specifications are define
each pin within cells. The default integer value for theCLASS annotation is0, which
corresponds to the constant declaration value fordefault_class .

CELL d_flipflop_clr {
PIN cd {PINTYPE = input; SIGNALTYPE = clear;

 POLARITY = low; CONNECT_CLASS = reset_class;}
PIN cp {PINTYPE = input; SIGNALTYPE = clock;

 POLARITY = rising_edge; CONNECT_CLASS = clock_class;}
PIN d {PINTYPE = input;}
PIN q {PINTYPE = output; CONNECT_CLASS = default_class;}

}

CELL d_latch {
PIN g {PINTYPE = input; SIGNALTYPE = enable;

 POLARITY = high; CONNECT_CLASS = enable_class;}
PIN d {PINTYPE = input; CONNECT_CLASS = default_class;}
PIN q {PINTYPE = output; CONNECT_CLASS = default_class;}

}

CELL tristate_buffer {
PIN a {PINTYPE = input;}
PIN enable {PINTYPE = input; CONNECT_CLASS = enable_class;}
PIN z {PINTYPE = output; CONNECT_CLASS = tristate_class;}
...

}

Net-specific connectivity, as opposed to the pin-specific connectivity as shown above, is
possible within the syntax of the language, since aCLASS is not restricted to pins. Specific
applications may assign all pins of a specific type as well as nets like power and ground
to a defined class. This class may be used within the connectivity tables to allow or disa
certain connectivity.
Version 1.1 Advanced Library Format (ALF) Reference Manual 205

Applications Signal Integrity

ific

ne or
n of
For example, ifvddrail_class was defined as a net-specific connectivity class, then a spec
pin may be disallowed from connecting to any net in thevddrail_class connectivity class.

CLASS vddrail_class
...
CELL inverter {

PIN in_pin {PINTYPE = input; SIGNALTYPE = clear;
POLARITY = low; CONNECT_CLASS = reset_class;}

CONNECTIVITY dont_tie {
CONNECT_RULE = cannot_short;
TABLE {in_pin vddrail_class}

}
...

}

4.13 Signal Integrity

4.13.1 I/V curves

I/V curves describe the driven or drawn current at a pin as a function of the voltage at o
several pins. The following example describes the output current of a buffer as a functio
the input and output voltage with a 2-dimensional lookup table.

CELL simple_buffer {
PIN z { DIRECTION = output; }
PIN a { DIRECTION = input; }
// current @ z dependent on voltage @ z and @ a
CURRENT {

PIN = z;
UNIT = ma;
HEADER {

VOLTAGE vout {
PIN = z;
TABLE { 0.0 0.5 1.0 1.5 2.0 2.5 3.0 }

}
VOLTAGE vin {

PIN = a;
TABLE { 0.0 1.0 2.0 3.0 }

}
}
TABLE {

5.0 5.0 4.8 4.2 3.2 1.6 0.0
2.5 1.5 0.2 -0.4 -1.8 -2.7 -3.5
1.2 0.1 -1.3 -1.9 -2.5 -3.8 -4.6
0.0 -2.0 -3.8 -4.7 -5.5 -6.2 -6.3

}
}
// fill in function, vector and other stuff

}

206 Advanced Library Format (ALF) Reference Manual Version 1.1

Signal Integrity Applications

pins.

nt or
versus
An equation can also be used instead of a lookup table, for example:

CURRENT {
PIN = z;
UNIT = ma;
HEADER {

VOLTAGE vout {
PIN = z;

}
VOLTAGE vin {

PIN = a;
}

}
EQUATION {

(1 - exp(6.3 - 2.4*vout))*exp(0.9 - 0.3*vin)
- (1 - exp(3.2*vout))*exp(0.3*vin)

}
}

A buffer may have programmable drive strength controlled by the state of additional input
State-dependent I/V curves can be described by vector-specificCURRENT models.

CELL programmable_drive_strength_buffer {
PIN z { DIRECTION = output; }
PIN a { DIRECTION = input; }
// control pins for drive strength
PIN p1 { DIRECTION = input; }
PIN p2 { DIRECTION = input; }
VECTOR (!p1 && !p2) {

CURRENT {
// fill in the model

}
}
VECTOR (!p1 && p2) {

CURRENT {
// fill in the model

}
}
VECTOR (p1 && !p2) {

CURRENT {
// fill in the model

}
}
VECTOR (p1 && p2) {

CURRENT {
// fill in the model

}
}

}

Note that it is also possible to describe other analog cell characteristics, state-depende
state-independent, for instance voltage versus voltage, frequency versus voltage, current
temperature etc. in the same way.
Version 1.1 Advanced Library Format (ALF) Reference Manual 207

Applications Signal Integrity

. The

 with
linear

te
fitting

low
lues for
4.13.2 Driver resistance

Driver resistance is used to model the transient behavior of signals especially for crosstalk
drivers are modeled by voltage sources and driver resistances, as illustrated below:

Figure 4-1: Modeling driver resistance

The purpose is to use linear circuit theory for the analysis of multiple drivers interacting
coupled RC-interconnect networks. In reality, the drivers have non-linear resistance. The
resistance is a model of the non-linear resistance with the best-fitting linear resistance.
Therefore the driver resistance is state-dependent and eventually also load-and slewra
dependent, since for different states and different ranges of load and slewrates the best-
value for driver resistance is different.

The following example shows a buffer featuring different driver resistance values for static
and high states, and tables of slewrate and load-dependent transient driver resistance va
rise and fall transitions.

cell simple_buffer {
PIN z { DIRECTION = output; }
PIN a { DIRECTION = input; }
// state-dependent static driver resistance
VECTOR (!z) {

RESISTANCE = 0.7k { PIN = z; }
}
VECTOR (z) {

RESISTANCE = 1.2k { PIN = z; }
}
// slew & load dependent transient driver resistance
VECTOR (01 a -> 01 z) {

RESISTANCE {
PIN = z;
UNIT = kohm;
HEADER {

CAPACITANCE {
PIN = z;
UNIT = pfarad;
TABLE { 0.1 0.4 1.6 }

Vo
ut

(t
)

Rdriver

Cload

driver model

V0(t)=
f(Vin(t))

Vo
ut

(t
) Cload

real driver

V
in

(t
) interconnect

circuitry
interconnect
circuitry
208 Advanced Library Format (ALF) Reference Manual Version 1.1

Signal Integrity Applications

buffer
}
SLEWRATE {

PIN = a;
UNIT = nsec;
TABLE { 0.5 1.5}

}
TABLE { 1.4 1.3 1.3 1.6 1.4 1.3 }

}
}
VECTOR (10 a -> 10 z) {

RESISTANCE {
PIN = z;
UNIT = kohm;
HEADER {

CAPACITANCE {
PIN = z;
UNIT = pfarad;
TABLE { 0.1 0.4 1.6 }

}
SLEWRATE {

PIN = a;
UNIT = nsec;
TABLE { 0.5 1.5}

}
TABLE { 0.9 0.8 0.8 1.1 0.9 0.8 }

}
}

}

The transient driver resistance can also be state-dependent, for example in the case of a
with programmable drive-strength.

CELL programmable_drive_strength_buffer {
PIN z { DIRECTION = output; }
PIN a { DIRECTION = input; }
// control pins for drive strength
PIN p1 { DIRECTION = input; }
PIN p2 { DIRECTION = input; }
// state-dependent static driver resistance
VECTOR (!z && !p1 && !p2) {

RESISTANCE = 0.7k { PIN = z; }
}
VECTOR (!z && !p1 && p2) {

RESISTANCE = 0.6k { PIN = z; }
}
VECTOR (!z && p1 && !p2) {

RESISTANCE = 0.5k { PIN = z; }
}
VECTOR (!z && p1 && !p2) {

RESISTANCE = 0.4k { PIN = z; }
}
VECTOR (z && !p1 && !p2) {

RESISTANCE = 1.2k { PIN = z; }
}
VECTOR (z && !p1 && p2) {
Version 1.1 Advanced Library Format (ALF) Reference Manual 209

Applications Signal Integrity

endent
so be
RESISTANCE = 1.0k { PIN = z; }
}
VECTOR (z && p1 && !p2) {

RESISTANCE = 0.8k { PIN = z; }
}
VECTOR (z && p1 && p2) {

RESISTANCE = 0.6k { PIN = z; }
}
// slew & load and state dependent transient driver resistance
VECTOR (01 a -> 01 z && !p1 && !p2) {

RESISTANCE {
// fill in the model

}
VECTOR (01 a -> 01 z && !p1 && p2) {

RESISTANCE {
// fill in the model

}
VECTOR (01 a -> 01 z && p1 && !p2) {

RESISTANCE {
// fill in the model

}
VECTOR (01 a -> 01 z && p1 && p2) {

RESISTANCE {
// fill in the model

}
VECTOR (10 a -> 10 z && !p1 && !p2) {

RESISTANCE {
// fill in the model

}
VECTOR (10 a -> 10 z && !p1 && p2) {

RESISTANCE {
// fill in the model

}
VECTOR (10 a -> 10 z && p1 && !p2) {

RESISTANCE {
// fill in the model

}
VECTOR (10 a -> 10 z && p1 && p2) {

RESISTANCE {
// fill in the model

}
}

The model for transient driver resistance has the same form as a slewrate and load dep
model for delay. Voltage, process, and temperature dependent driver resistance can al
modeled in the same way as voltage, process, and temperature-dependent delay.
210 Advanced Library Format (ALF) Reference Manual Version 1.1

Resistance and Capacitance on a Pin Applications

ed as

:

4.14 Resistance and Capacitance on a Pin

4.14.1 Self-Resistance and Capacitance on Input Pin

A pin resistance is a resistance inside a PIN object.

PIN <pin_identifier> {
DIRECTION = input;
RESISTANCE = <resistance_number>;
CAPACITANCE = <capacitance_number>;

}

The pin resistance is in series with the pin capacitance, as shown in figure 4-2:

Figure 4-2: Resistance and capacitance on a pin

4.14.2 Pullup and Pulldown Resistance on Input Pin

A pullup or pulldown resistance or a combination of both on an input pin can be describ
follows:

PIN <pin_identifier> {
DIRECTION = input;
PULL = < up | down | both > {

VOLTAGE = <voltage_number>;
RESISTANCE = <resistance_number>;

}
}

The pullup/pulldown resistance is in series with a clamp voltage, as shown in figure 4-3

Figure 4-3: Pullup or pulldown resistance

input pin

pin resistance

pin capacitance

input pin

pullup or pulldown resistance

clamp voltage
Version 1.1 Advanced Library Format (ALF) Reference Manual 211

Applications Resistance and Capacitance on a Pin

put pin,

ce and
nd
In the case of a pullup/pulldown combination, the resistance and voltage represent the
Thevenin equivalent resistance and voltage, respectively, as shown in figure 4-4:

Figure 4-4: Thevenin equivalent resistance

4.14.3 Pin and Load Resistance and Capacitance on Output Pin

The driver resistance (see 4.13.2) can also be represented as pin capacitance of an out
in case there is no state dependency.

PIN <pin_identifier> {
DIRECTION = output;
CAPACITANCE = <capacitance_number>;
RESISTANCE {

RISE = <rise_resistance_number>;
FALL = <rise_resistance_number>;

}
}

Please note the distinction of capacitance and resistance of the pin itself and capacitan
resistance applied as load to the pin in the following schematic. The load capacitance a
resistance would be specified in a characterization vector (see Section 4.3).

See the following schematic for driver signal, pin and load resistance and capacitance:

Figure 4-5: Resistance and capacitance on output pin

input pin

equivalent resistance

equivalent voltage

input pin

R = R1*R0 / (R1 + R0)

V1

V0

R1

R0

V = (V1*R0 + V0*R1) / (R1 + R0)

Thevenin
Equivalent

pulldown

pullup

resistance

resistance

output pin
pin resistance

load capacitancedriver signal pin capacitance

load resistance

(rise or fall)
212 Advanced Library Format (ALF) Reference Manual Version 1.1

ALF/SDF cross reference Applications

F and

ins a
or
ame

am)
ctor

nd
set of

ther
ether

driver
e SDF
4.15 ALF/SDF cross reference

This section provides a cross reference between the representation of timing data in AL
SDF. In general, ALF is used as a characterization library, which is the input to a delay
calculator, whereas SDF is the output from a delay calculator. Therefore ALF typically
contains tables or equations (i.e. arithmetic models) for timing data whereas SDF conta
discrete set of data in fixed format. However, in an ALF representation of timing shells f
cores, which are typically represented in SDF today, the ALF library would contain the s
data as the SDF.

The specification of the stimulus for a particular timing measurement (i.e. the timing diagr
is pertinent to both ALF and SDF. In ALF, timing diagrams are directly described in the ve
expression language, and the timing measurements are always specified in relation to a
particular timing vector. In SDF, timing diagrams are partly described in the language a
partly implied by the keyword for timing measurements. Therefore SDF needs a larger
keywords than ALF for the same description capability.

4.15.1 SDF delays

4.15.1.1 SDF DELAY for IOPATH and INTERCONNECT

DELAY is a measurement of the time needed for a signal to travel from one port to ano
port. In ALF, delay measurements are described in a uniform language, independent of wh
A and Z are the input and output port of the same cell, respectively, or A and Z are the
and receiver connected to the same net, or A and Z are both outputs of a cell. Therefore th
keywords IOPATH and INTERCONNECT have no counterpart in ALF.

VECTOR (01 A -> 01 Z) {
DELAY {

FROM {PIN = A;}
TO {PIN = Z;}
/* fill in data */

}
}

Figure 4-6: Measurement of SDF IOPATH or INTERCONNECT delay

The ALF VECTOR describes the sequence of events shown in figure 4-6

rising edge at A followed by rising edge at Z.

delay

A

Z

Version 1.1 Advanced Library Format (ALF) Reference Manual 213

Applications ALF/SDF cross reference

d
ation

just

-
st
The FROM and TO pin annotations define the sense of measurement for DELAY.

As opposed to SDF where input ports of an IOPATH may have an edge specification an
output ports may not, the vector expression language in ALF always contains the specific
of the edge:

rising edge = “01”, falling edge = “10”, any edge = “?!”.

4.15.1.2 SDF PATHPULSE

PATHPULSE in SDF defines the smallest pulse that may appear at a port in form of

1. a full-swing pulse

2. a pulse to X.

The equivalent model in ALF uses two vectors in conjunction with the keyword
PULSEWIDTH.1

The ALF keywords are of more general use than the SDF PATHPULSE keyword, which is
for one specific use.

VECTOR (01 Z -> 10 Z) {
PULSEWIDTH {

PIN = Z;
/* fill in data */

}
}

Figure 4-7: Measurement of SDF PATHPULSE full-swing

The ALF VECTOR above describes the sequence of events

rising edge at Z followed by falling edge at Z.

The smallest possible full-swing pulse applies at pin Z.

VECTOR ('b0'bX Z -> 'bX'b0 Z) {
PULSEWIDTH {

PIN = Z;
/* fill in data */

}
}

1. The same keyword PULSEWIDTH is also used for a timing constraint in ALF. The semantic mean
ing in both usage cases is consistent: PULSEWIDTH = smallest possible pulse at output or smalle
allowed pulse at input. Therefore the usage of the same keyword is justified.

pulsewidth

Z

214 Advanced Library Format (ALF) Reference Manual Version 1.1

ALF/SDF cross reference Applications

fall-

t

its
ith a
e.
Figure 4-8: Measurement of SDF PATHPULSE to X

This ALF VECTOR describes the sequence of events

rising edge at Z from 0 to X followed by falling edge at Z from X to 0.

The smallest possible pulse to “X” applies at pin Z.

VECTOR (01 A -> 10 B -> 01 Z -> 10 Z) {
PULSEWIDTH {

PIN = Z;
/* fill in data */

}
}

Figure 4-9: Measurement of SDF PATHPULSE with triggering inputs

This ALF VECTOR describes the sequence of events as shown in figure 4-9

rising edge at A followed by falling edge at B followed by rising edge at Z followed by
ing edge at Z.

This is a detailed specification of the pulse itself at pin Z as well as of the triggering inpu
signals A and B.

4.15.1.3 SDF RETAIN delays

RETAIN delay in SDF is a measurement for the time for which an output signal will retain
value after a change at a related input signal occurs. It appears always in conjunction w
IOPATH delay, which is the time for which an output will stabilize after changing its valu

pulsewidth

Z XXXXXXXXXXX

pulsewidth

A

B

Z

Version 1.1 Advanced Library Format (ALF) Reference Manual 215

Applications ALF/SDF cross reference

at the

ot

 point
.

RETAIN is mainly used for asynchronous memories, where decoder glitches may appear
data output port.

VECTOR (01 A -> ?! Z) {
RETAIN {

FROM {PIN = A;}
TO {PIN = Z;}
/* fill in data */

}
DELAY {

FROM {PIN = A;}
TO {PIN = Z;}
/* fill in data */

}
}

Figure 4-10: RETAIN and IOPATH delay

The ALF VECTOR describes the sequence of events shown in figure 4-10

rising edge at A followed by any edge at Z.

The intermediate events at Z, occurring eventually between retain and delay time, are n
specified.

4.15.1.4 SDF PORT delays

PORT delay in SDF is a delay measurement with unspecified start point, since the start
is going to be established by a connection to a driver in the design and not in the library

VECTOR (01 A) {
DELAY {

TO {PIN = A;}
/* fill in data */

}
}

A

Z

retain

XXXXXXXX

delay
216 Advanced Library Format (ALF) Reference Manual Version 1.1

ALF/SDF cross reference Applications

exact

int.

o

ific

as a
up or

Z)
Figure 4-11: SDF PORT delay

This ALF VECTOR describes the event figure 4-11

rising edge at A.

The absence of a FROM pin defines the absence of a start point, which corresponds to the
meaning of PORT in SDF.

ALF also has the capability of describing a delay measurement with unspecified end po

VECTOR (01 Z) {
DELAY {

FROM {PIN = Z;}
/* fill in data */

}
}

Hence ALF provides the description capability for both a delay from unspecified driver t
specified receiver and a delay from specified driver to unspecified receiver.

4.15.1.5 SDF DEVICE delays

DEVICE delay in SDF is a delay that applies from all input ports of a device to one spec
output port or to all output ports by default.

The ALF vector expression language has no notion of “all input ports of a device”. ALF h
more general capability of declaring groups of pins and define delays from group to gro
from group to pin or from pin to group.

GROUP any_input { A B }
GROUP any_output { Y Z }
VECTOR (01 any_input -> 01 any_output) {

DELAY {
FROM {PIN = any_input;}
TO {PIN = any_output;}
/* fill in data */

}
}

The ALF VECTOR above describes the event

rising edge at any_input (i.e. A or B) followed by rising edge at any_output (i.e. Y or .

delay

A

Version 1.1 Advanced Library Format (ALF) Reference Manual 217

Applications ALF/SDF cross reference

edge
This construct is equivalent to the following four vectors:

VECTOR (01 A -> 01 Y) {
DELAY {

FROM {PIN = A;}
TO {PIN = Y;}
/* fill in data */

}
}
VECTOR (01 B -> 01 Y) {

DELAY {
FROM {PIN = B;}
TO {PIN = Y;}
/* same data */

}
}
VECTOR (01 A -> 01 Z) {

DELAY {
FROM {PIN = A;}
TO {PIN = Z;}
/* same data */

}
}
VECTOR (01 B -> 01 Z) {

DELAY {
FROM {PIN = B;}
TO {PIN = Z;}
/* same data */

}
}

4.15.2 SDF timing constraints

4.15.2.1 SDF SETUP

SETUP in SDF is the minimal time required for a data signal to arrive before the sampling
of a clock signal in order to be sampled correctly.

VECTOR (?! din -> 01 clk) {
SETUP {

FROM {PIN = din;}
TO {PIN = clk;}
/* fill in data */

}
}

218 Advanced Library Format (ALF) Reference Manual Version 1.1

ALF/SDF cross reference Applications

setup
clock

alue

 hold
 data
Figure 4-12: Measurement of SDF SETUP

The ALF VECTOR describes the sequence of events as shown in figure 4-12

any edge at din followed by rising edge at clk.

The FROM and TO pin annotations define the sense of measurement for SETUP. Since
time is measured in positive sense from data to clock, din is the data pin, and clk is the
pin.

4.15.2.2 SDF HOLD

HOLD in SDF is the minimal non-negative time required for a data signal to stay at its v
after the sampling edge of a clock signal in order to be sampled correctly.

VECTOR (01 clk -> ?! din) {
HOLD {

FROM {PIN = clk;}
TO {PIN = din;}
/* fill in data */

}

Figure 4-13: Measurement of SDF HOLD

The ALF VECTOR describes the sequence of events as shown in figure 4-13

rising edge at clk followed by any edge at din.

The FROM and TO pin annotations define the sense of measurement for HOLD. Since
time is measured in positive sense from clock to data, clk is the clock pin, and din is the
pin.

setup

din

clk

hold

din

clk
Version 1.1 Advanced Library Format (ALF) Reference Manual 219

Applications ALF/SDF cross reference

r
ts the
The
e

14

OLD,
4.15.2.3 SDF SETUPHOLD

SETUPHOLD in SDF is a combination of SETUP and HOLD. In this combination, eithe
SETUP or HOLD may be a negative value, but the sum of both values, which represen
minimal pulsewidth of the data in order to be sampled correctly, must be non-negative.
time from the leading data edge to the sampling clock edge is SETUP. The time from th
sampling clock edge to the trailing data edge is HOLD.

VECTOR // for SETUPHOLD
(?! din -> 01 clk -> ?! din //setup & hold both positive
| 01 clk -> ?! din -> ?! din //negative setup, positive hold
| ?! din -> ?! din -> 01 clk //positive setup, negative hold
) {
SETUP {

FROM {PIN = din;
 TO {PIN = clk;}
/* fill in data */

}
HOLD {

FROM {PIN = clk;}
TO {PIN = din;}
/* fill in data */

}
}

Figure 4-14: Measurement of SDF SETUPHOLD

The ALF VECTOR describes the alternative sequences of events as shown in figure 4-

 any edge at din followed by rising edge at clk followed by any edge at din
or rising edge at clk followed by any edge at din followed by any edge at din
or any edge at din followed by any edge at din followed by rising edge at clk.

The FROM and TO pin annotations define the sense of measurement for SETUP and H
respectively, in the same way as if they were specified in separate vectors.

hold

din

clk
setup

minimal data pulse
220 Advanced Library Format (ALF) Reference Manual Version 1.1

ALF/SDF cross reference Applications

trol
 in

ince
rol
lock

ol
ck.
4.15.2.4 SDF RECOVERY

RECOVERY in SDF is the minimal time required for a higher priority asynchronous con
signal to be released before a lower priority clock signal in order to allow the clock to be
control.

VECTOR (01 clearbar -> 01 clk) {
RECOVERY {

FROM {PIN = clearbar;}
TO {PIN = clk;}

}

Figure 4-15: Measurement of SDF RECOVERY

The ALF VECTOR describes the sequence of events as shown in figure 4-15

rising edge at clearbar followed by rising edge at clk.

The FROM and TO pin annotations define the sense of measurement for RECOVERY. S
recovery time is measured in positive sense from the higher priority asynchronous cont
signal to the lower priority clock, clearbar is the asynchronous control pin, and clk is the c
pin.

4.15.2.5 SDF REMOVAL

REMOVAL in SDF is the minimal time required for a higher priority asynchronous contr
signal to stay active after a lower priority clock signal in order to keep overriding the clo

VECTOR (01 clk -> 01 clearbar) {
REMOVAL {

FROM {PIN = clk;}
TO {PIN = clearbar;}

}

recovery

clearbar

clk
Version 1.1 Advanced Library Format (ALF) Reference Manual 221

Applications ALF/SDF cross reference

ince
rity

ol pin.

tive.
the
 is

ct
rent
ame
Figure 4-16: Measurement of SDF REMOVAL

The ALF VECTOR describes the sequence of events as shown in figure 4-16

rising edge at clk followed by rising edge at clearbar.

The FROM and TO pin annotations define the sense of measurement for REMOVAL. S
removal time is measured in positive sense from the lower priority clock to the higher prio
asynchronous control signal, clk is the clock pin, and clearbar is the asynchronous contr

4.15.2.6 SDF RECREM

RECREM in SDF is a combination of RECOVERY and REMOVAL. In this combination
either RECOVERY or REMOVAL may be negative, but the sum of both must be non-nega
The sum of RECOVERY and REMOVAL represents the width of the “forbidden zone” for
phase between the higher priority and the lower priority signal. The boundary to the left
RECOVERY, the boundary to the right is REMOVAL.

In a characterization vector for RECREM, either the REVOVERY or the REMOVAL effe
can be observed, depending on the phase relationship between the signals. This is diffe
from SETUPHOLD where the effects of both SETUP and HOLD can be observed in the s
characterization vector.

VECTOR // for RECREM
(01 clearbar -> 01 clk// pos. recovery or neg. removal
| 01 clk -> 01 clearbar// neg. recovery or pos. removal
) {
RECOVERY{

FROM {PIN = clearbar;}
TO {PIN = clk;}
/* fill in data */

}
REMOVAL {

FROM {PIN = clk;}
TO {PIN = clearbar;}
/* fill in data */

}
}

removal

clearbar

clk
222 Advanced Library Format (ALF) Reference Manual Version 1.1

ALF/SDF cross reference Applications

17

and

ed
 for
Figure 4-17: Measurement of SDF RECREM

The ALF VECTOR describes the alternative sequences of events as shown in figure 4-

rising edge at clearbar followed by rising edge at clk
or rising edge at clk followed by rising edge at clearbar

The FROM and TO pin annotations define the sense of measurement for RECOVERY
REMOVAL, respectively, in the same way as if they were specified in separate vectors.

4.15.2.7 SDF SKEW

SKEW in SDF is maximum allowed difference in arrival time between signals. The allow
region for the phase between signals is bound by zero to the left and SKEW to the right
positive SKEW or by SKEW to the left and zero to the right for negative SKEW.

VECTOR (01 clk1 <&> 01 clk2) {// pos. or neg. or zero skew
SKEW {

FROM {PIN = clk1;}
TO {PIN = clk2;}
/* fill in data */

}
}

Figure 4-18: Measurement of SDF SKEW

removal

clearbar

clk

recovery

forbidden zone

clk1

clk2

skew (if positive value)

clk2

skew (if negative value)

allowed zone

allowed zone
Version 1.1 Advanced Library Format (ALF) Reference Manual 223

Applications ALF/SDF cross reference

18

 the
ement
The ALF VECTOR describes the alternative sequences of events as shown in figure 4-

 rising edge at clk1 followed by rising edge at clk2
or rising edge at clk2 followed by rising edge at clk1
or rising edge at clk2 simultaneously with rising edge at clk1

This is the most general case, where the skew may be positive, negative or zero across
characterization space. The FROM and TO pin annotations define the sense of measur
for SKEW.

4.15.2.8 SDF WIDTH

VECTOR (01 clk -> 10 clk) {// high pulse
PULSEWIDTH {

PIN = clk;
/* fill in data */

}
}

This ALF vector describe the sequence of events as shown in figure 4-19

rising edge at clk followed by falling edge at clk.

The pulsewidth applies to the positive phase of the signal clk.

VECTOR (10 clk -> 01 clk) {// low pulse
PULSEWIDTH {

PIN = clk;
/* fill in data */

}
}

This ALF vector describe the sequence of events

falling edge at clk followed by rising edge at clk.

The pulsewidth applies to the negative phase of the signal clk.

Figure 4-19: Measurement of SDF WIDTH

VECTOR (01 clk -> 10 clk | 10 clk -> 01 clk) {// high or low pulse
PULSEWIDTH {

PIN = clk;
/* fill in data */

}
}

This ALF vectors describes the alternative sequences of events as shown in figure 4-20

clk

pulsewidth
pulsewidth
224 Advanced Library Format (ALF) Reference Manual Version 1.1

ALF/SDF cross reference Applications
 rising edge at clk followed by falling edge at clk
or falling edge at clk followed by rising edge at clk.

The pulsewidth applies to both phases of the signal clk.

4.15.2.9 SDF PERIOD

VECTOR (01 clk -> 10 clk -> 01 clk) {
PERIOD {

PIN = clk;
/* fill in data */

}
}

Figure 4-20: Measurement of SDF PERIOD

This ALF vectors describes the sequence of events as shown in figure 4-21

rising edge at clk followed by falling edge at clk followed by rising edge at clk.

Thus the period is measured between two consecutive rising edges at the signal clk.

4.15.2.10 SDF NOCHANGE

VECTOR (?! addr -> 10 write -> 01 write -> ?! addr) {
SETUP {

FROM {PIN = addr;}
TO {PIN = write;}
/* fill in data */

HOLD {
FROM {PIN = write;}
TO {PIN = addr;}
/* fill in data */ }

NOCHANGE {
PIN = addr;
/* fill in optional data */

}
}

clk

period
Version 1.1 Advanced Library Format (ALF) Reference Manual 225

Applications ALF/SDF cross reference

-

OLD
dr may
old
econd
 not
ly.

is
port

r

of

of
Figure 4-21: Detection of SDF NOCHANGE

This ALF vector describes the sequence of events as shown in figure 4-21

any edge at addr followed by falling edge at write followed by rising edge at write fol
lowed by any edge at addr.

The SETUP time is measured from the first edge at addr to the first edge at write. The H
time is measured from the second edge at write to the second edge at addr. The signal ad
not change between the start time of the setup measurement until the end time of the h
measurement. ALF allows to specify an additional measurement between the first and s
edge of the signal subject to NOCHANGE. However, this additional measurement could
be directly translated into SDF and would be for characterization and future purpose on

4.15.3 SDF conditions and labels for delays and timing constraints

Conditions for IOPATH timing arcs in SDF apply to the entire timing arc. The condition
evaluated during the event on the “from” port (i.e. an input pin), and the event on the “to”
(i.e. an output pin) is scheduled consequently.

Conditions for timing constraints in SDF can be defined individually for each port. The
condition associated with thestart pointof the timing constraint (i.e. data for SETUP, clock fo
HOLD etc.) is calledstamp condition. The condition associated with theend pointof the timing
constraint (i.e. clock for SETUP, data for HOLD) is calledcheck condition.

The use of SETUPHOLD instead of individual SETUP and HOLD or RECREM instead
individual RECOVERY and REMOVAL in SDF imposes restrictions in the definition of
conditions. Whereas the use of 2 individual timing constraints allows the definition of 4
conditions (2 stamp, 2 check), the use of 1 combined timing constraint allows only the
definition of 2 conditions (1 stamp, 1 check).

The ALF vector expression language allows to specify conditions during the sequence
events in a more general way than SDF.

Some more examples in ALF:

addr

write

setup hold

nochange
226 Advanced Library Format (ALF) Reference Manual Version 1.1

ALF/SDF cross reference Applications

fter

ne of
ence.
Figure 4-22: Condition during sequence of two events

VECTOR (C & (01 A -> 01 B))

alternative specification options:

VECTOR (?1 C -> 01 A -> 01 B -> 1? C) // verbose

VECTOR (?1 C -> 01 A -> 01 B) // C must be true before start

VECTOR (01 A -> 01 B -> 1? C) // C must be true until the end

This ALF vector describes the sequence of events as shown in figure 4-22

rising edge at A is followed by rising edge at B, C is true before rising edge of A until a
rising edge of B.

Either of the pseudo-events (?1 C, 1? C) at the boundary can be omitted, since either o
them is sufficient to specify that the condition C must be true during the entire event sequ

Figure 4-23: Condition during leading event

VECTOR ((C & 01 A) -> 01 B)

alternative specification options:

VECTOR (?1 C -> 01 A -> 1? C -> 01 B)

VECTOR (01 A -> 1? C -> 01 B)

This ALF vector describes the sequence of events as shown in figure 4-23

A

B

C don’t care don’t care

A

B

C don’t care don’t care
Version 1.1 Advanced Library Format (ALF) Reference Manual 227

Applications ALF/SDF cross reference

fter

fter

be
rising edge at A is followed by rising edge at B, C is true before rising edge of A until a
rising edge of A.

Figure 4-24: Condition during trailing event

VECTOR (01 A -> (C & 01 B))

alternative syntax:

VECTOR (01 A -> ?1 C -> 01 B -> 1? C)

This ALF vector describes the sequence of events as shown in figure 4-24

rising edge at A is followed by rising edge at B, C is true before rising edge of B until a
rising edge of B.

SETUPHOLD with SCOND (stamp condition) and CCOND (check condition) in SDF can
described in ALF in the following way:

A

B

C don’t care don’t care
228 Advanced Library Format (ALF) Reference Manual Version 1.1

ALF/SDF cross reference Applications

 the
dard.
Figure 4-25: SETUPHOLD with SCOND and CCOND

VECTOR (?! din -> ?1 ccond -> 01 clk -> 1? scond -> ?! din) {
SETUP {

FROM {PIN = din;
 TO {PIN = clk;}
/* fill in data */

}
HOLD {

FROM {PIN = clk;}
TO {PIN = din;}
/* fill in data */

}
}

A more verbose specification of the vector looks as follows:

VECTOR (
?1 scond // scond must be true at the beginning

-> ?! din // din toggles
-> ?1 ccond // last chance for ccond to become true
-> 01 clk // rising edge at clk
-> 1? scond // scond gets a break
-> ?! din // din toggles
-> 1? ccond // ccond gets a break at last
)

The optional condition label in SDF has its counterpart in ALF (see 3.6.4.1). As in SDF,
use and interpretation of this label is defined by the application tool and not by the stan

hold

din

clk
setup

minimal data pulse

scond

ccond don’t care don’t care

don’t care don’t carefor setup

for setup for hold

for hold
Version 1.1 Advanced Library Format (ALF) Reference Manual 229

Applications ALF/SDF cross reference
230 Advanced Library Format (ALF) Reference Manual Version 1.1

Index

Symbols
(N+1) order sequential logic 21
-> operator 21
?- 41
?! 41
?? 41
?~ 41
@ 19

Numerics
2-dimensional tables 179
3-dimensional table 182, 187

A
ABS 61
abs 49
abstract transition operators 195
active vectors 119
ALF_AND 126, 127, 168
ALF_BUF 126
ALF_BUFIF0 129
ALF_BUFIF1 129
ALF_FLIPFLOP 132, 166
ALF_LATCH 133
ALF_MUX 131, 167
ALF_NAND 126, 127
ALF_NAND2 165
ALF_NOR 126, 128
ALF_NOT 126
ALF_NOTIF0 129, 130
ALF_NOTIF1 129, 130
ALF_OR 126, 127
ALF_XNOR 126, 128
ALF_XOR 126, 128
ALIAS 31
alias 51
all_purpose_items 51
alphabetic_bit_literal 39
annotated properties 26
annotation 51

arithmetic model tables
AREA 88
CAPACITANCE 88
Version 1.1 Advanced Library Forma
CONNECTIONS 90
CONNECTIVITY 90
CURRENT 87
DELAY 86
DERATE_CASE 91
DISTANCE 88
DRIVE_STRENGTH 89
DRIVER 90
ENERGY 87
FANIN 90
FANOUT 90
FREQUENCY 87
HEIGHT 88
HOLD 86
JITTER 87
LENGTH 89
NOCHANGE 86
PERIOD 86
POWER 87
PROCESS 91
PULSEWIDTH 87
RECEIVER 90
RECOVERY 87
REMOVAL 87
RESISTANCE 88
SETUP 87
SKEW 87
SLEWRATE 86
SWITCHING_BITS 90
TEMPERATURE 87
THRESHOLD 89
TIME 88
VOLTAGE 88
WIDTH 89

arithmetic models 100
average 104
can_short 102
cannot_short 102
CONNECT_RULE 102
DEFAULT 100
FALL 99
MAX 96
MEASUREMENT 104
t (ALF) Reference Manual Index-231

MIN 96
must_short 102
peak 104
RISE 99
rms 104
static 104
transient 104
TYP 96
UNIT 100

CELL 80
BUFFERTYPE 81
CELLTYPE 80
DRIVERTYPE 81
NON_SCAN_CELL 82
PARALLEL_DRIVE 81
SCAN_TYPE 82
SCAN_USAGE 82

cell buffertype
inout 81
input 81
internal 81
output 81

cell celltype
block 81
buffer 81
combinational 81
core 81
flipflop 81
latch 81
memory 81
multiplexor 81
pad 81
special 81

cell drivertype
both 81
predriver 81
slotdriver 81

cell scan_type
clocked 82
control_0 82
control_1 82
lssd 82
muxscan 82

cell scan_usage
hold 82
input 82

output 82
default 100
from 93
information 71

AUTHOR 72
DATETIME 72
PRODUCT 72
TITLE 72
VERSION 72

limit 93
object reference

cell 73
pin 73
primitive 73

PIN
ACTION 76
CONNECT_CLASS 77
DATATYPE 77
DIRECTION 75
DRIVETYPE 74
ENABLE_PIN 76
OFF_STATE 78
ORIENTATION 77
POLARITY 76
PULL 76
SCAN_POSITION 77
SCOPE 75
SIGNALTYPE 74
STUCK 77
VIEW 73

pin
PINTYPE 73

pin action
asynchronous 76
synchronous 76

pin datatype
signed 77
unsigned 77

pin direction
both 75
input 75
none 75
output 75

pin drivetype
cmos 75
cmos_pass 75
Index-232 Advanced Library Format (ALF) Reference Manual Version 1.1

nmos 75
nmos_pass 75
open_drain 75
open_source 75
pmos 75
pmos_pass 75
ttl 75

pin off_state
inverted 78
non_inverted 78

pin orientation
bottom 77
left 77
right 77
top 77

pin pintype
analog 74
digital 74
supply 74

pin polarity
both 76
double_edge 76
falling_edge 76
high 76
inverted 76
low 76
non_inverted 76
none 76
rising_edge 76

pin pull
both 77
down 77
none 77
up 77

pin scope
behavior 75
both 75
measure 75
none 75

pin signaltype
clear 74
clock 74
control 74
data 74
enable 74
master_clock 74

out_enable 74
read 74
scan_clock 74
scan_data 74
scan_enable 74
scan_out_enable 74
select 74
set 74
slave_clock 74
write 74

pin stuck
both 78
none 78
stuck_at_0 78
stuck_at_1 78

pin view
both 73
functional 73
none 73
physical 73

scan 71
to 93
unnamed 71
VECTOR 78

LABEL 78, 79, 80
violation 71

MESSAGE 72
MESSAGE_TYPE 72

annotation container 33, 71, 93
annotation_container 51
annotations 185

PIN 185
pin 204
self-explaining 187
timing arc 186

anotation
object reference

class 73
any_character 38
arithmetic models 30
arithmetic operations 23
arithmetic operators

binary 61
function 61
unary 61

arithmetic_binary_operator 49
Version 1.1 Advanced Library Format (ALF) Reference Manual Index-233

arithmetic_expression 46
arithmetic_function_operator 49
arithmetic_model 55
arithmetic_model_template_instantiation 55
arithmetic_unary_operator 49
assignment_base 45
async_2write_1read_ram 198
atomic megacell 17
atomic object 29
ATTRIBUTE 32, 84
attribute 51

CELL 85
cell

asynchronous 85
CAM 85
dynamic 85
RAM 85
ROM 85
static 85
synchronous 85

LIBRARY 85
PIN 84
pin

PAD 85
SCHMITT 84
TRISTATE 84
XTAL 85

pin polarity
READ 85
TIE 85
WRITE 85

attribute_items 52
average 181

B
based literal 40
based_literal 40
BEHAVIOR 165
behavior 56
behavior_body 56
bidirectional pin 192
binary 40
Binary operators

arithmetic 61
bitwise 63
boolean, scalars 62

reduction 63
vector 66, 67

binary_base 40
binary_digit 40
bit 39
bit_edge_literal 41
bit_literal 39
Bitwise operators

binary 63
unary 63

block comment 38
bodies 56
Boolean Equatio 165
boolean functions 17
boolean operators

binary 62
unary 62

boolean_and_operator 49
boolean_arithmetic_operator 49
boolean_binary_operator 50
boolean_case_compare_operator 49
boolean_condition_operator 50
boolean_else_operator 50
boolean_expression 46
boolean_logic_compare_operator 49
boolean_or_operator 49
boolean_unary_operator 49
both 192
bus contention 190
bus modeling 189
bus with multiple drivers 191
busholder 191

C
can_float 187
CAPACITANCE 174, 192
case-insensitive langauge 38
cell 53
cell modeling 26
cell_identifier 47, 53
cell_instantiation 47
cell_items 53
cell_template_instantiation 53
characterization 15, 17

power 17, 24
timing 17
Index-234 Advanced Library Format (ALF) Reference Manual Version 1.1

characterization model 178
Characterization Modeling 22
characterization variables 17
children object 29
CLASS 31, 204
class 52

connectivity 204
combinational logic 18
combinational primitives 126
combinational scan cell 170
combinational_assignments 57
comment 37

block 38
long 38
short 38
single-line 38

comments
nested 38

compound operators 38
CONNECT_RULE 204
CONNECTION 187
connections

allowed 204
disallowed 203
external 203

CONNECTIVITY 204
connectivity 203

class 204
net-specific 205
pin-specific 205

connectivity class 204
CONSTANT 31
constant 52
constant numbers 38
constraints

delay 179
power 179
timing 179

context_sensitive_keyword 48
context-sensitive keyword 44, 190
context-sensitive keywords 23
core 17
core cell 190
core modeling 201

D
d_flipflop_clr 166
d_flipflop_ld_clr 168
d_flipflop_mux_set_clr 168
d_latch 169
decimal 40
decimal_base 40
deep submicron 15
DEFAULT 187, 188
default annotation 100
delay mode

inertial 24
invalid-value-detection 24
transport 24

delay models 22
delay predictor 23
delimiter 37, 38
derating 183
derating equation 184
digit 40
digital filter 201
digital_filter 202
DRIVE_STRENGTH 190
DRIVER 204

E
edge literal 41
edge rate 22
edge_literal 41
edge_literals 48
edge-sensitive sequential logic 18
elapsed time 22
ENERGY 182
energy 24
equation 56
equation_template_instantiation 56
escape codes 41
escape_character 37
escaped identifier 42
escaped_identifier 42
event sequence detection 21
EXP 61
exp 49
expansion

bit-wise 194
bytewise 194
Version 1.1 Advanced Library Format (ALF) Reference Manual Index-235

expansion of vectors 194
exponentiation 23
extensible primitives 124
external connections 203

F
fanout 27
Flipflop 132
flipflop 166
forward referencing 29
fringe capacitance 27
FUNCTION 165
function 56

exponentiation 23
logarithm 23

Function operators
arithmetic 61

function_template_instantiation 56
functional model 15
functional modeling 18
functional models 17
functions 30

G
generic objects 30
generic_object 51
glitch 24
GROUP 33, 194
group 52
group_identifier 52

H
hard keyword 44
hardware description language 17
HDL 17
header 55
header_template_instantiation 55
hex_base 40
hex_digit 40
hexadecimal 40
hierarchical object 29

I
identifier 29, 37
Identifiers 42
identifiers 48

inactive vectors 119
INCLUDE 31, 109
include 52
index 48
inertial delay mode 24
infinite impulse response filter 201
INFORMATION 170
integer 38, 39
internal load 23
intrinsic delay 22

J
JK-flipflop 167
JTAG BSR cell 170

K
keyword 29
Keywords

context-sensitive 45
generic objects 44
operators 45

keywords
context-sensitive 23

L
Latch 133
layout parasitics 23
level-sensitive cell 169
level-sensitive sequential logic 18
libraries 53
LIBRARY 170
library 29
Library creation 11
library_identifier 54
library_items 53
library_specific_object 51
library_template_instantiation 53
library-specific objects 30
LIMIT 187
literal 29, 37
load characterization model 23
LOG 61
log 49
logarithm 23
logic_literals 48
logic_values 48
Index-236 Advanced Library Format (ALF) Reference Manual Version 1.1

logic_variables 49

M
macrocells 17
MAX 62
max 49
MEASUREMENT 181
megacell modeling 194
megacells 17
metal layer 27
MIN 62
min 49
mode of operation 15
modeling

bus 189
cell 26
characterization 22
cores 201
functional 18
megacell 194
physical 26
power 23
synthesis 26
test 26
timing 22
wire 27
wireload 192

multiplexor 131
must_connect 187
muxscan 172

N
named_assignment 45
named_assignment_base 45
NAND gate 165
nested comments 38
no_connection 187
non_negative_number 39
NON_SCAN_CELL 171
non-escaped identifier 42
nonescaped_identifier 42
nonreserved_character 37
non-scan cells 26
Number 38
number 39
numbers 49

numeric_bit_literal 39

O
objects 29, 52
octal 40
octal_base 40
octal_digit 40
one_shot 200
one-pass parser 29
operation mode 15
operator

-> 21
followed by 21

operators
arithmetic 61
boolean, scalars 62
boolean, words 63
signed 64
unsigned 64

output ramptime 174

P
parasitic capacitance 27
parasitic resistance 27
physical modeling 26
pin_assignments 46
pin_identifier 53
pin_items 54
pin_template_instantiation 53
pins 53
placeholder identifier 42
placeholder_identifier 42
placeholders 32
POLARITY 172
power 24
Power characterization 17
power characterization 24
power constraint 15
power dissipation 24
Power model 15
power modeling 23
predefined derating cases 92, 104, 105

bccom 92
bcind 92
bcmil 92
wccom 92
Version 1.1 Advanced Library Format (ALF) Reference Manual Index-237

wcind 92
wcmil 92

predefined process names 91
snsp 91
snwp 91
wnsp 91
wnwp 91

primitive 166
primitive_identifier 47, 54
primitive_instantiation 47
primitive_items 54
primitive_template_instantiation 54
primitives 54
private keywords 45
PROCESS 183
PROPERTY 33
property 52
public keywords 45
pulse generator 200
PVT Derating 183

Q
Q_CONFLICT 132
QN_CONFLICT 132
quad D-Flipflop 173
quoted string 37, 41
quoted_string 41

R
RAM16X4 203
real 38
Reduction operators

binary 63
unary 63

reserved keyword 44
reserved_character 37
RESISTANCE 193
RTL 14

S
scaled average current 24
scaled average power 24
scan cell

combinational 170
scan chai 170
Scan Flipflop 172

Scan insertion 26
scan test 26
scan_data 172
scan_enable 172
SCAN_FFX4 173
SCAN_ND4 171
SCAN_TYPE 171
self capacitanc 27
self-explaining annotations 187
sequential logic

edge-sensitive 18
level-sensitive 18
N+1 order 21
vector-sensitive 21

sequential_assignment 57
sheet resistance 27
sign 38
signed operators 64
simulation model 15
single-line comment 38
slew rate 22
SLEWRATE 174, 189
soft keyword 44
source_text 51
sr_latch 169
state-dependent drive strength 190
STATETABLE 165
statetable 56
statetable_body 56
static power 25
std_derating 184
std_header_2d 176
string 49
sublibraries 54
sublibrary_template_instantiation 54
switching energy 174
symbolic_edge_literal 41

T
TABLE 174
table 56
table_items 56
table_template_instantiation 56
TEMPERATURE 183
TEMPLATE 32, 176
template 52, 174
Index-238 Advanced Library Format (ALF) Reference Manual Version 1.1

template definition 176
template_identifier 52
template_instantiation 47
template-reference scheme 23
Ternary operator 62
Three-port Memory 198
timing arc 186
timing characterization 17
timing constraint model 22
timing constraint models 22
timing constraints 15, 179
timing modeling 22
timing models 15
transcendent functions 23
transient power 25
transition delay 22
transmission-gate 190
transport delay mode 24

invalid-value-detection 24
triggering conditions 18
triggering function 18
tristate driver 189
tristate primitives 129
tristate_buffer 189
Truth Table 165
truth table 17
Two-port memory 195

U
Unary operator

bitwise 63
Unary operators

arithmetic 61
boolean, scalar 62
reduction 63

Unary vector operators 64
unnamed annotation containers 71
unnamed_assignment 45
unnamed_assignment_base 45
unnamed_assignments 45
unsigned 39
unsigned operators 64

V
VCO 200
VECTOR 174

vector 54
vector expression 21
Vector operators

binary 66, 67
unary, bits 64
unary, words 65

vector_binary_operator 50
vector_elsif_operator 50
vector_expression 47, 54
vector_if_operator 50
vector_items 54
vector_template_instantiation 54
vector_unary_operator 50
vector-based modeling 15
Vector-Sensitive Sequential Logic 21
vector-specific model 174
Verilog 14, 19
VHDL 14, 19
via resistance 27
VIOLATION 180
virtual pins 26, 132
VOLTAGE 183, 188
voltage_controlled_delay 201

W
whitespace 38
whitespace characters 37
wildcard_literal 39
wire 55
wire modeling 27
wire select model 193
wire_identifier 55
wire_items 55
wire_template_instantiation 55
word_edge_literal 41
Version 1.1 Advanced Library Format (ALF) Reference Manual Index-239

Index-240 Advanced Library Format (ALF) Reference Manual Version 1.1

	Introduction
	1.1 Motivation
	1.2 Goals
	1.3 Target Applications
	1.4 Conventions
	1.5 Organization of this manual

	Characterization and Modeling
	2.1 Basic Concepts
	2.2 Functional Modeling
	2.2.1 Combinational Logic
	2.2.2 Level Sensitive Sequential Logic
	2.2.3 Edge Sensitive Sequential Logic
	2.2.4 Vector-Sensitive Sequential Logic

	2.3 Performance Modeling for Characterization
	2.3.1 Timing Modeling
	2.3.2 Power Modeling
	2.3.3 Modeling for signal integrity

	2.4 Physical modeling for synthesis and test
	2.4.1 Cell modeling
	2.4.2 Wire modeling

	Library Format Specification
	3.1 Object Model
	3.1.1 Syntax conventions
	3.1.2 Generic Objects
	3.1.2.1 CONSTANT
	3.1.2.2 ALIAS
	3.1.2.3 INCLUDE
	3.1.2.4 CLASS
	3.1.2.5 ATTRIBUTE
	3.1.2.6 TEMPLATE
	3.1.2.7 PROPERTY
	3.1.2.8 GROUP

	3.1.3 Library-specific objects
	3.1.4 Arithmetic models
	3.1.5 Functions

	3.2 Lexical rules
	3.2.1 Character set
	3.2.2 Lexical tokens
	3.2.3 Whitespace Characters
	3.2.4 Reserved and Non-reserved Characters
	3.2.5 Delimiters
	3.2.6 Comments
	3.2.7 Numbers
	3.2.8 Bit Literals
	3.2.9 Based Literals
	3.2.10 Edge Literals
	3.2.11 Quoted Strings
	3.2.12 Identifiers
	3.2.13 Rules against parser ambiguity
	3.2.14 Cross-reference of lexical tokens

	3.3 Keywords
	3.3.1 Keywords for Objects
	3.3.2 Keywords for Operators
	3.3.3 Context-Sensitive Keywords

	3.4 Syntax Rules
	3.4.1 Assignments
	3.4.2 Expressions
	3.4.3 Instantiations
	3.4.4 Literals
	3.4.5 Operators
	3.4.6 Auxiliary Objects
	3.4.7 Generic Objects
	3.4.8 CELL
	3.4.9 LIBRARY
	3.4.10 PIN
	3.4.11 PRIMITIVE
	3.4.12 SUBLIBRARY
	3.4.13 VECTOR
	3.4.14 WIRE
	3.4.15 Arithmetic Model
	3.4.16 FUNCTION
	3.4.17 Cross-reference of BNF items

	3.5 Operators
	3.5.1 Arithmetic operators
	3.5.2 Boolean operators on scalars
	3.5.3 Boolean operators on words
	3.5.4 Vector operators
	3.5.5 Operators for sequential logic
	3.5.6 Operator priorities
	3.5.7 Datatype mapping

	3.6 Context-sensitive keywords
	3.6.1 Annotation Containers
	3.6.1.1 Scan container
	3.6.1.2 VIOLATION container
	3.6.1.3 INFORMATION container

	3.6.2 Keywords for referencing objects used as annotation
	3.6.3 Annotations for a PIN object
	3.6.3.1 VIEW annotation
	3.6.3.2 PINTYPE annotation
	3.6.3.3 SIGNALTYPE annotation
	3.6.3.4 DRIVETYPE annotation
	3.6.3.5 DIRECTION annotation
	3.6.3.6 SCOPE annotation
	3.6.3.7 ACTION annotation
	3.6.3.8 POLARITY annotation
	3.6.3.9 ENABLE_PIN annotation
	3.6.3.10 PULL annotation
	3.6.3.11 ORIENTATION annotation
	3.6.3.12 CONNECT_CLASS annotation
	3.6.3.13 DATATYPE annotation
	3.6.3.14 SCAN_POSITION annotation
	3.6.3.15 STUCK annotation
	3.6.3.16 OFF_STATE annotation
	3.6.3.17 INITIAL_VALUE annotation

	3.6.4 Annotations for a VECTOR object
	3.6.4.1 LABEL annotation
	3.6.4.2 EXISTENCE_CONDITION
	3.6.4.3 EXISTENCE_CLASS
	3.6.4.4 CHARACTERIZATION_CONDITION
	3.6.4.5 CHARACTERIZATION_VECTOR
	3.6.4.6 CHARACTERIZATION_CLASS

	3.6.5 Annotations for a CELL object
	3.6.5.1 CELLTYPE annotation
	3.6.5.2 BUFFERTYPE annotation
	3.6.5.3 DRIVERTYPE annotation
	3.6.5.4 PARALLEL_DRIVE annotation
	3.6.5.5 SCAN_TYPE annotation
	3.6.5.6 SCAN_USAGE annotation
	3.6.5.7 NON_SCAN_CELL annotation
	3.6.5.8 SWAP_CLASS annotation
	3.6.5.9 RESTRICT_CLASS annotation

	3.6.6 Attributes
	3.6.6.1 ATTRIBUTE within a PIN object
	3.6.6.2 ATTRIBUTE within a CELL object
	3.6.6.3 ATTRIBUTE within a LIBRARY object

	3.6.7 Keywords for arithmetic models
	3.6.7.1 Models for interpolateable tables and equations
	3.6.7.2 Models for non-interpolateable tables
	3.6.7.3 Models for non-interpolateable tables and equations

	3.6.8 Containers for arithmetic models
	3.6.8.1 FROM and TO container
	3.6.8.2 LIMIT container
	3.6.8.3 EARLY and LATE container

	3.6.9 Keywords for arithmetic submodels
	3.6.9.1 MIN/TYP/MAX
	3.6.9.2 RISE/FALL and HIGH/LOW

	3.6.10 Annotations for arithmetic models
	3.6.10.1 DEFAULT annotation
	3.6.10.2 UNIT annotation
	3.6.10.3 CONNECT_RULE annotation
	3.6.10.4 PIN annotation
	3.6.10.5 MEASUREMENT, TIME and FREQUENCY annotations
	3.6.10.6 TIME and FREQUENCY for waveform description

	3.7 Library Organization
	3.7.1 Scoping Rules
	3.7.2 Use of multiple files

	3.8 Referenceable objects
	3.8.1 Referencing PRIMITIVEs or CELLs
	3.8.2 Referencing PINs in FUNCTIONs
	3.8.3 Referencing PINs in VECTORs
	3.8.4 Referencing multi-dimensional PINs
	3.8.5 Referencing arithmetic models

	3.9 Functional modeling styles and rules
	3.9.1 Rules for combinational functions
	3.9.2 Basic rules for sequential functions
	3.9.3 Concurrency in combinational and sequential functions
	3.9.4 Initial values for logic variables

	3.10 Primitives
	3.10.1 Concept of user-defined and predefined primitives
	3.10.2 Predefined combinational primitives
	3.10.2.1 One input, multiple output primitives
	3.10.2.2 One output, multiple input primitives

	3.10.3 Predefined tristate Primitives
	3.10.4 Predefined multiplexor
	3.10.5 Predefined flipflop
	3.10.6 Predefined latch

	3.11 Parameterizeable Cells
	3.12 Modeling with Vector Expressions
	3.12.1 Event reports
	3.12.2 Event Sequences
	3.12.3 Scope and content of event sequences
	3.12.4 Alternative event sequences
	3.12.5 Symbolic edge operators
	3.12.6 Non-events
	3.12.7 Compact and verbose event sequences
	3.12.8 Unspecified simultaneous events within scope
	3.12.9 Simultaneous event sequences
	3.12.10 Implicit local variables
	3.12.11 Conditional event sequences
	3.12.12 Alternative conditional event sequences
	3.12.13 Change of scope within a vector expression
	3.12.14 Sequences of conditional event sequences
	3.12.15 Incompletely specified event sequences
	3.12.16 Well-specified vector expressions

	Applications
	4.1 Truth Table vs Boolean Equation
	4.1.1 NAND gate
	4.1.2 Flipflop

	4.2 Use of primitives
	4.2.1 D-Flipflop with asynchronous clear
	4.2.2 JK-flipflop
	4.2.3 D-Flipflop with synchronous load and clear
	4.2.4 D-Flipflop with input multiplexor
	4.2.5 D-latch
	4.2.6 SR-latch
	4.2.7 JTAG BSR
	4.2.8 Combinational Scan Cell
	4.2.9 Scan Flipflop
	4.2.10 Quad D-Flipflop

	4.3 Templates and vector-specific models
	4.3.1 Vector-specific delay and power Tables
	4.3.2 Use of TEMPLATE
	4.3.3 Vector description styles for timing arcs
	4.3.4 Vectors for delay, power and timing constraints

	4.4 Combining tables and equations
	4.4.1 Table vs equation
	4.4.2 Cell with Multiple Output Pins
	4.4.3 PVT Derating

	4.5 Use of Annotations
	4.5.1 Annotations for a PIN
	4.5.2 Annotations for a timing arc
	4.5.3 Creating Self-explaining Annotations

	4.6 Providing a fall-back position for applications
	4.6.1 Use of DEFAULT

	4.7 Bus Modeling
	4.7.1 Tristate Driver
	4.7.2 Bus with multiple drivers
	4.7.3 Busholder

	4.8 Wire models
	4.8.1 Basic Wire Model
	4.8.2 Wire select model

	4.9 Megacell Modeling
	4.9.1 Expansion of Timing Arcs
	4.9.2 Two-port memory
	4.9.3 Three-port memory
	4.9.4 Annotation for pins of a bus
	4.9.5 Skew for simultaneously switching signals on a bus

	4.10 Special cells
	4.10.1 Pulse generator
	4.10.2 VCO

	4.11 Core Modeling
	4.11.1 Digital Filter

	4.12 Connectivity
	4.12.1 External connections between pins of a cell
	4.12.2 Allowed connections for classes of pins

	4.13 Signal Integrity
	4.13.1 I/V curves
	4.13.2 Driver resistance

	4.14 Resistance and Capacitance on a Pin
	4.14.1 Self-Resistance and Capacitance on Input Pin
	4.14.2 Pullup and Pulldown Resistance on Input Pin
	4.14.3 Pin and Load Resistance and Capacitance on Output Pin

	4.15 ALF/SDF cross reference
	4.15.1 SDF delays
	4.15.1.1 SDF DELAY for IOPATH and INTERCONNECT
	4.15.1.2 SDF PATHPULSE
	4.15.1.3 SDF RETAIN delays
	4.15.1.4 SDF PORT delays
	4.15.1.5 SDF DEVICE delays

	4.15.2 SDF timing constraints
	4.15.2.1 SDF SETUP
	4.15.2.2 SDF HOLD
	4.15.2.3 SDF SETUPHOLD
	4.15.2.4 SDF RECOVERY
	4.15.2.5 SDF REMOVAL
	4.15.2.6 SDF RECREM
	4.15.2.7 SDF SKEW
	4.15.2.8 SDF WIDTH
	4.15.2.9 SDF PERIOD
	4.15.2.10 SDF NOCHANGE

	4.15.3 SDF conditions and labels for delays and timing constraints

