A standard for an
Advanced Library Format (ALF)
describing Integrated Circuit (IC)

technology, cells, and blocks

This is an unapproved draft for an IEEE standard
and subject to change

IEEE P1603 Draft 7

October 24, 2002

IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

Copyright© 2001, 2002, 2003 by IEEE. All rights reserved.

put in |[EEE verbiage

Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 7

The following individual s contributed to the creation, editing, and review of this document

Wolfgang Roethig, Ph.D.
Joe Daniels

IEEE P1603 Draft 7

wroethig@eda.org Official Reporter and WG Chair
chippewea@aol.com Technical Editor

Advanced Library Format (ALF) Reference Manual

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

Revision history:

|EEE P1596 Draft O
|EEE P1603 Draft 1
|EEE P1603 Draft 2
|EEE P1596 Draft 3
|EEE P1603 Draft 4
|EEE P1603 Draft 5

August 19, 2001
September 17, 2001
November 12, 2001
April 17, 2002
May 15, 2002

June 21, 2002

Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 7

Table of Contents

O 1 1o o 1 o PSSR 1
L1 IMIOLIVELION. ..c.eiuitiriitisites ettt ettt es bt b et bbbttt st et 1

0 T S 2

1.3 Target @DPliCALIONS. ...covieieieieiieteeee ettt b et bbbttt ettt bene 2

O o0 1V/= 011 o =SSO 5

1.5 Contents of thiS StANAr..........ccevviiiirere e s re et sae et e e e eeneenens 5

2. REFEIENCES. ..ottt b bt b e h b b e bR £ A e At R e R e e Rt eRe bt Rt b e bRt e ebeeeesrenean 7
T B 1< 1oL o] o USRS 9
4. Acronyms and @DDIEVIBLIONScoueiiierieieeei ettt et ettt eb e s b b e e et ene e eneenea 11
5. ALF language construction prinCiples and OVEIVIEWccceoeieririenesieneeseeeseeee e sre e seessesee e 13
LN Y e o1 = =g To 0o T USSR 13

5.2 Categories Of ALF SLALEMENTS........coiiiieiieie ettt sttt b e st e e e e et 14

5.3 Generic abjects and library-specifiC ODJECES..........coiiiriiiiiee e 16

5.4 Singular statements and plural SEBEEMENLS..........ooueeiriiirirerere e e e 18

5.5 Instantiation statement and assignment SEAEEMENLcccoveriiirere e e e 20

5.6 Annotation, arithmetic model, and related StAEEMENES.........cccooerererieieiree e 21

5.7 StatementSfor Parser CONIOottt sb e s sbesae 23

5.8 Name space and visibility Of SEEEEMENTS.........ccooiiiiiiiieeee e e 23

B. LEXICEI FUIES... e ettt b et b e bt b s b e e et e st e e e he e Rt e R e e Re e Rt ehe s b e eheebe s be e et enre e e 25
L R O =T £ = PP S PSS 25

6.2 COMUMENT.eieieiiitee ittt ettt ettt r ek ea bt e e b e ehe e sb e s ae e sae s e e ebe e besheeseesheemeeeaeenbeabeenbeeaeeneesaeenesnneneas 27

LRSI B = [011 = SO U TSP 27

(O @ o= = (0] SRR 28
6.4.1 ATITNMELIC OPEIALONeeeeee ettt e e st s e ese e aesresnaesrennaens 28

(S N = To 0 == T e 0 = o OSSR 29

(S G B = (= = o = 0] 1= = o) OO 29

L S 1110 0= = o SRS 30

6.4.5 EVENL SEQUENCE OPEIEIONeeiueeteiesieesseesieesseesseesessssessssessseessessssesssessssesssessssesssessnsesssesssees 30

(O I (Y 1= 7= 0] < = (o PSPPSR 30

B.5 INUMDET ...ttt b e et b et h e h e bt he bt e be b s b e b e s bese et e e e e e e 31

6.6 Multiplier PrefixX SYMDOLooi et sae e e e s e e aeseenneas 31

LA = T A 11 - OSSR 32

6.8 BASEU HLEIEl ...ecveeeeeieeie ettt sttt b e bR sttt nennene 33

Lo T o (0T 1= = | S 33

Lo L0 o] (o =1 o S 34

L3 o = o 1) 1T OSSOSO 35
6.11.1 NON-eSCapPed ideNtifiercccieeeecec e e e nnae 35

L oo T o [o [() S 35

6.11.3 Placeholder IHENTITIENcoeeeee e et 36

6.11.4 HierarchiCal Identifier..... oo e et 36

IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual Y

10

15

20

25

30

35

40

50

55

Vi

L0 (=LY o 36
(SR RVA=w (o =" 0] (= 0] 1 1 7= o £ JE 37
6.14 RUIES FOr WhitESPACE USAGE.....cuveveeueererieeeeteete st ete st s e st ee e e seeseesesse e e ssessesaesrestesaeseeseenaeseenesneesensesns 37
6.15 Rules against parser ambigUILYcoeveeiierieiicesc e s e ene e reere s 37
AUXITArY SYNEAX TUIES....cueceeceesiesesie st eee e sttt st et e e s e e s e e sestesaeseesaeteseenseneeneeneenensesnensens 39
8 N N o0 oo 1S S = T O 39
7.2 MUIIPHEr PrefiX VAIUB ..ottt 39
7.3 SHING VBIUE ...ttt ettt b et b et bbb bbbt e bbbt 39
T4 ATTNMELC VAIUE........oi ittt et ettt e st e st e s e ebaeabeebeebesaeeseesasebeensesbenreens 39
7.5 BOOIEAN VAIUE........vi ittt ettt ettt et st ae s be et e e beestesbeeseeebaeabesaeenbesbeessesasebesnsesbenseess 40
T8 EQQEVEIUB. ...ttt bbbttt bbbttt 40
T INAEX VAIUB......oveeie ettt ettt ettt e ae e be e e besbe e st e sbeesbeeatenbeebe e besaeeseesnsebeensesbenseens 40
8= T 1 0 (= TSRS 40
7.9 Pinvariable @and PiN VAIUE........c.oi ittt et 41
A Ol T =SS Lo a0 o USSR 41
5 N A 10 - 4 o TSRS 41
7.12 ANNOLELION COMEAINETeeiteeieeiteeie st eie st e e et e s e et e ste e aesreessesteeseestaesteesaenteeseensesaeessesasesessessensenss 42
T 13 ATTRIBUTE SEEEMENEcuvitiieiiietiiieisieisie st ses sttt se e se sttt sesbeseste e stenessenesens 42
7.14 PROPERTY SEALEMENT ... c.citiiitiirtiiereiesetesessesessesestesessesessesessasessesessessssessssessesessesessesessesssenessenssens 43
7. 15 INCLUDE SEBEEIMENL ... c..eiiveuiieiriesieieesiesesesesseessesessesee e stesessesessesessesessessssessssensesessesessesessenessenensens 43
7.16 ASSOCIATE statement and FORMAT annOtation.........c.cccueieeiieieeiesieeseseeeeseeee e eseesneesaesaeeneens 44
7.17 REVISION SEBEEIMENE. ... euiveriiesiriesistesesesesseessesessesessesesseseesessesessesessesessessssessssensesessesessesensenessenesens 45
FA R R T 0T T ol o] o 1= ol AU 45
7.19 Library-speCifiC ODJECLc.oiii e e e 46
7. 20 ATl PUIPOSE ITBIM....cuei ittt ettt sttt sttt e et b e e bt ehe b e s heeb e s b e b sbe b e be e et essese e e eneenenbeene 46
Generic objects and related StALEMENLS.........ccviie it esre e nnenneas 47
S R N I NS Yo (= = 4 o o ISR 47
8.2 CONSTANT ECIArAION.eveviieeirieiirieistee ettt se et se bbb bese st be e seneeens 47
8.3 KEYWORD OECIAIEHIONeuvveeieinieeiieiiieiiieieeeesae e see st stssessesesseses e assesassesssessnsessnsensnsensenesens 47
8.4 SEMANTICS AECIAIEIIONc.veviveeiiriisieesiee ettt sttt st sesbe s be et nesens 48
8.5 Annotations and rulesrelated to a KEYWORD or a SEMANTICS declaration............ccccevevueenene 49

85.1 VALUETYPE @NNOLAiON......ceiieiirieiirieisieirieisie ettt sse st sttt senessenes 49

8.5.2 VALUES GNNOLALION......ceeiieeeeeiiiiiesteeie e e et ere et ee e te e e sae et sreesaessesseesaeenaenseentenseennensennes 50

8.5.3 DEFAULT @nNOAiONecviieeieiiecie sttt et sre e s saeenaesreeneenes 51

R A (0 |\ N =5 I o [To = 1) o TSt 51

855 REFERENCETY PE GNNOLAIIONcvoviiieiirieeerieiesieesieiesieesieseseeesiesesiesessssessssessesessensnsessss 52

8.5.6 S| _MODEL annOtalion........cceeiiiieiieciieieeiete et e e see et sre e sae s sse e e aen e e e ste e e e eneenes 53

8.5.7 Rulesforlega usage of KEYWORD and SEMANTICS declaration............ccccccevvveveennnne. 54
R SR O I NS Yo L= = =4 o] I 54
8.7 Annotationsrelated to a CLASS deClarationccccuveieiieeiesie s 55

8.7.1 General CLASS reference annotationccueceeieeeeeieeneesieseeseeseseesesese e eee e 55

8.7.2 USAGE @NNOLALION.......ccceeiieeeie e sttt ettt sae e e sae e s naesaeesten b e enbenbeennenneenes 56
8.8 GROUP AECIArationc.eceiieiiee ettt sttt s e s st e s aaes e es et e eae e besneeseesneenseeaesrensenns 57
8.9 TEMPLATE ECIArAtioN......ccviviiieeisieiirieisiees ettt sttt 58
8.10 TEMPLATE INSLANTIGLIONcveviieiirieiirieicsiecstenese sttt se st be st b ste et seneneens 58
Library-specific objects and related StatemMEeNtS.........ccccveeeiie e e 63
9.1 LIBRARY and SUBLIBRARY dECIarationcccveireirieiniiisieisenes et 63
9.2 Annotationsrelated to aLIBRARY or a SUBLIBRARY declaration..........ccccvevevveeevesensescvnnnns 63

Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

9.2.1 LIBRARY referenCe anNOtAtiON......c.ceceeiitieieiiiiee ettt stee e s srte s s sabe s srassaessbessneesressnrs 63

9.22 INFORMATION annotation COMTAINEYcecveiriieereeieeiesteeresreereereeseesaeeseeseensesbeebesseens 64
0.3 CELL dECIAIatiON......cueccviitieeie et sttt ettt ettt st e saesbe e sbesaeesbesseesbesasenbeebeenbesseessesaeensesanensens 65
9.4 Annotationsrelated to aCELL deClarationcveveeuieieeiiiec ittt ere e e e snea 66
9.4.1 CELL referenCe annOtatioNc.ccceeiveeieeiiieeeteceecteecee st eteesteesbesresbesteeeesaeenseseesesbeesbesseens 66
9.4.2 CELLTYPE @NNOtALIONcciviiiieticeecteeteeete et eeeeteeseesteereesbeessesressressesnnesaeeseesansnsestesssensenns 66
9.4.3 SWAP _CLASS GNNOAHION.....cueitiieeeeieiereseeesesesteseseeseeteseesesseeseesessessessesssssesseseensenseseens 67
9.4.4 RESTRICT _CLASS @NNOALION....cueiteiveriiseeiereeeereeseetesessesseseesseseessessessesesssssessessessessessessens 67
9.45 SCAN_TYPE @NMNOALHONc.eviviiiirieiriecrie ettt neeens 69
9.4.6 SCAN_USAGE GNNOLBLIONc.eitireriiiitirisiesietesee ettt se s s sse s 69
9.47 BUFFERTY PE GNNOLAIIONuviiiieeeeecteeeeeeeeeseeeessteeeseseeessseessesessssssessassessssseessssesssaseesssseness 70
9.4.8 DRIVERTYPE GNNOLALION ...c.ueiiiviiieeecetee it eeteeetee e steeeieestesssaesaesstessssesssassnbesssessnsessaessnsesssens 70
9.4.9 PARALLEL DRIVE @MNOALIONccvviviieieeseiseeieseeceresseseeseeseeseeseessessesseseessssessessessessessessens 71
9.4.10 PLACEMENT _TYPE @NNOALIONecvieieiieseireeieseeieieeeee et s st e seenaenaenesneeessesnnsnens 71
9.4.11 SITE reference annotation fOr @ CELLcooviiiiiciiec et 72
9.4.12 ATTRIBUTE VAIUESFOr @CELLocviivieieceeeeee ettt et sbe et nraens 72
0.5 PIN ECIAIALION ...ttt ettt et et e e ebe e e be e sab e e beesaeeesbeesabesabeesbaeesseestessseensesssbeens 74
9.6 PINGROUP ECIAIAION......ccveiviiiiieieteiteeteetee e eteeseseteetssaeeeesbeestesbeesaesbessssssesnsesssssesssesesaesssssneessens 75
9.7 Annotationsrelated to aPIN or aPINGROUP declaration............cceeceiieeeceeeie e 76
9.7.1 PIN referenCe annOtatioN........c.ccoviiieeiiee ettt ettt et st e e e ere e saeeeneereas 76
9.7.2 MEMBERS GNNOALION.ceiiiiiiieitie ettt ettt et eree et e st e re e sbee e saeesaaesbeesaeeeseesaneenreenseas 76
0.7.3 VIEW GNNOLAHION.....c.viiiiiitieceece ettt ettt et st et eree e ste e saaeenbeesbaeeareesaeesnbesnneeentens 76
9.7.4 PINTYPE GNNOLAIION....c.ceiviiiiiiiiteiteectietee st cteere e steeteestesaeesaesssesbessbesbesbessbesnsssseensssseensesrens 77
9.7.5 DIRECTION @NNOAION......c.cccviiuiiiticticteeiteiiestestes e seesteesaesseebesreesbessesssssssssseesaesresssesassnrens 78
9.7.6 SIGNALTYPE GNNOLBLIONcuveviiiitictiecte ettt see sttt s e b e e eressessreennssnessesbeesresnnens 79
O.7.7 ACTION GNNOLALIONcveiitiecieecire ettt sttt e sree e ete e str e s beesreeesteesabesabeesbaesaseesaeesbesseesnrens 81
9.7.8 POLARITY GNNOLALIONvieieeciie ettt sttt et stre st e eree e sre e saaesabeesraeeareesaeeenbeeneesnrens 82
9.7.9 CONTROL_POLARITY annotation CONLAINE.........c.ccevveieeiierieesieeiesieeeeseseeseessesseeseesaeas 83
9.7.10 DATATY PE QNNOLALION......ccviiieriiieirictieete e ereestesteeseesteesaesseesbesbessbessesssssesssssasensestesssessenss 84
9.7.11 INITIAL_VALUE @NNOLEHION.......ccceiuiitietiiiectieeeie s e etee e stestestestesbesse st e e sae e esesnesrestesaesnens 84
9.7.12 SCAN_POSITION @NNOLAEIONcoveuierieiieiectectesieseestereeseeeeseetesaesresre e sressestessesasseesessessessens 85
9.7.13 STUCK @NNOLBLION......cccviiitieeiiiteecee et e steeereeste e e sreeeeesbeesseessaeesbeessesbessasesseesansessesssessssens 85
9.7.14 SUPPLY TYPE @NNOLAIIONeciveiiieiieieieieceeite et see st seetesaesbesbaesbessessssssssssssnsessessesssessenss 85
9.7.15 SIGNAL_CLASS QNNOLALIONc.eciiiuierieieeteiteetesieseesteseeseeeeseetesesaestestesaessestessesaensesessessessens 86
9.7.16 SUPPLY _CLASS GNNOALiON......c.eooviueerieriiieitietesieseesteteeeeseeseetestesreste e stessestessesaessesessesnessens 87
9.7.17 DRIVETYPE @NNOLALION.......ccciiitieitieiietieeeeteceecreeiee e estestee e sseesbessbesbeesessbesssssseensesaeessesaens 88
0.7.18 SCOPE QNNOLBLION.......cciieiiecieeitee et e sete et e etre e steeeee s beesseebeesbeeeeseesseesateanseesseesaeesssesnrens 89
9.7.19 CONNECT_CLASS QNNOLALION.......ccveiieiveiriiteiiesieieeieseeeetesseerestestesresseseseesseseesessessessesaessens 90
O0.7.20 SIDE @QNNOLALIONeectiiiiecciiecie ettt et st ettt e e steeete e sabe s beeeaeeesbeesabesabeesbaesareesaeesabesnneesnrens 20
9.7.21 ROW and COLUMN @NNOLELION.........ceeiiierieiieeiiteeeieecre st eeeesreesaeereesreeeareesaeesbeeneesnnes 91
9.7.22 ROUTING_TYPE @NNOALIONcceiuiirieiiiieitiieeie st te e re st sre b e e ssesbesaesseneesesreenesnens 92
9.7.23 PULL GNNOALONcccviiiiiiecie ettt ettt etee e ste e e s beesaaeeaae e sbeesbeenbeesabesnseesaneenseeneesnrens 92
9.7.24 ATTRIBUTE valuesfor aPIN or aPINGROUP............cccccoiiieiiccicte ettt 93
9.8 PRIMITIVE AECIAIGLIONcveiveieeeiieeieiteeteete ettt e ettt s e et sbeestesbeesaesbesssesaeenbesbeenbesseesesaesnsssneesens 95
9.9 WIRE AECIAIALIONcocuviirieiiei et et et eeteeeee et e s teeete et e e sbeesaeesabeesaaesaaeesbeesnsesnbeesaaeenseesaessseensesssseans 95
9.10 Annotationsrelated t0 aWIRE deClarationc.cccveceiiiieeciee ettt ee e enre e 96
9.10.1 WIRE referenCe annOtatioN...........ccoueeieeiiieeieeciee ettt e e sae b sareereesane e saeeenneenreas 96
9.10.2 WIRETY PE GNNOLBLIONccviiiiteiictieteeee et ete e eseesteeteesbeessesteessesseeessaeessesasensestessessenns 96
9.10.3 SELECT CLASS QNNOALiON....c.ccviureieiieeitectestesestestesteseeaeseeeeseesessessessessessessessessessenseneens 97
L RN [@] D] =0 (= == 1 o] TSRS 98
9.12 Annotationsrelated t0 aNODE deClaralioncccceiiieiiecee et sree e sreesaaesaren 98
9.12.1 NODE reference annOtatioNcccueecie ittt re e s e e srreere e sae e s saeennnesnre s 98
9.12.2 NODETY PE @NNOALIONcveiiviitieiieerierieeeeteereesteseesaesaesbessesbessesssesssssssesesseessessesssesssensens 99
9.12.3 NODE_CLASS GNNOAION.....cceiteieiriiteieseeieseseeiesrestessesrestesaessessesssssessssesssssessessessessessenes 100

IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual vii

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

10.

viii

0. 13 VECTOR AECIAIrAiON.....ccueiueeiieiiete et et et ettt ete e eresteesaesteesaesaeeabe st e e besbeeebesaesnsesnsesseereesbesseesresnsenss 101
9.14 Annotationsrelated t0 aVECTOR deCIaration.........ccceoeieevieicieiieeteeireeee et s s 101
9.14.1 VECTOR reference annOtationcceeeecieirieieeiieieeeieesreseesiesteeste s beeeesresseseresnnesreennes 101
9.14.2 PURPOSE @QNNOALION......cciviiieitiiieiteeteeteeste e sreeeesreseestesseesaessaesbessbesbesssessessssssesnsesseenses 101
9.14.3 OPERATION @NNOAiON......ccveiviiieirieteetieire ettt eee e e sresteestesreesbessaenbeeseesbesseesbesanssresnnes 102
9.14.4 LABEL GNNOBLIONocveeieeiieeie ettt ettt ettt st et seestesaeesaesaaesbessbebesnnesbesneeesesnnesreennes 103
9.14.5 EXISTENCE _CONDITION @NNOtationccueeeeueerereeeseereseseesseseesseseesesseeessessessessessenes 103
9.14.6 EXISTENCE _CLASS @NMNOLAtiONccueeoeieeeeeeieriesieseesieseesesseeseeseseeseese s ssenseseessesssesnessesses 104
9.14.7 CHARACTERIZATION_CONDITION annotation.........ccceeuevrerereneesesesseeseesenseesenennes 104
9.14.8 CHARACTERIZATION_VECTOR @nNOtation........cccceeueeereeeeenesereeseeseeseeseeseeseeseeseens 105
9.14.9 CHARACTERIZATION_CLASS ANNOtAtON ...c.vevveueereeeeeieeeeesiesieseeseesieeeseeeeseseenessenns 105
9.14.10 MONITOR GNNOLALION.cueeiiririiteeceecieestteeeee e sesesaeessesesbessreeesbesssesssessseesssesssessressnssensesans 105
e I RN I = o (=T = o) 1 106
9.16 Annotationsrelated t0 ALAY ER deCIarafionccoveiveeieeieeictie ettt sree s 106
9.16.1 LAYER reference annotalionc.ccceiiieeiieiie et ctee et et sve et e sree e sreeeaeesbeesnneeanee e 106
9.16.2 LAYERTY PE @NNOLALION......c.cciiitieieieietececteetee et et evs et steesassaeesaesaeenbesbeebesbessnssnesnseenas 106
9.16.3 PITCH GNNOAION.....cccvviiieeeiee ettt sttt et s ete e ree e ete e saeesbeesteeeabeesbessbeeeseesabeebeesanesnes 107
9.16.4 PREFERENCE GNNOALONccveitiiiiiieeire et cieceeies s stestesstestaesaessaesbeeseesbessesssesnsssnesnees 107
L YA VAN o (= = - o o PSR RRPTRR 108
9.18 Annotationsrelated to aVIA AeCIaralioncceeiiiiiiecie ittt 108
9.18.1 VIA referenCe anNOLAIONcccveeiiieeiieetie et cte ettt eteeebe s teeereebeeesreeeaeesnbeesseesanee e 108
9.18.2 VIATYPE QNNOLALIONceeivieie ettt ettt et sas et ste s e saesbeesbesbaenbeeneebesseesbesneesresneas 109
.19 RULE ECIAIALION ...ttt ettt sttt ettt et s ab e sb e et et e e besbeensesntesbeebeesbesbeesbeenbenns 109
.20 ANTENNA AECIArAiON....veveeiveieeeteceeeteetee ettt eere st sas st e st esb e et e sbeeebesasensssntesaeesessbesseesresnsenss 110
9.21 BLOCKAGE ECIAIAtiONccveeiveiteeieectiee ettt ettt sttt st sb e bt s st sbesnnssneetesbeesbesbassbesnnenns 110
.22 PORT AECIAIAIION......ccvieieeeciieiiteeiee et e ste et e steeeteesaee s beesteesaseesbesensesbaesateeseesbeeesaeesssesnteeseesnseesaeas 111
9.23 Annotationsrelated to aPORT deClarationccceceeiieeecieeciectee ettt et et eree s 111
9.23.1 CONNECT _TYPE @NNOAiONc.ecoieuieiiieciecteeie e ete e seesieree s e e et sre b sresbe st saessenaens 111
.24 SITE AECIAIELIONveeiviecieectiicteecee et cte et et eeteesae e s be e saeesabeesbeeeseebaesabeeseesbeeesaeesasesabeeseesnneesanas 112
9.25 Annotationsrelated t0 aSITE deClarationcvecceeiiecieeiec ettt e r s 112
9.25.1 SITE referenCe annOtatioN...........ccceeiieiiieecee ettt sttt sre e e e e sabeesbeesane e enas 112
9.25.2 ORIENTATION_CLASS anNOaliON........ccceeteiieirieieieieeeereeieeseereetessesrestessesressesaessssseseenes 113
9.25.3 SYMMETRY _CLASS @NNOALONc.ecveeeiciieteceete ettt s sas e st saesnesresne e 113
9.26 ARRAY TECIAIALION.......ccuieciiiitiectie ettt ettt st e s ae e e s be e eeeebeesabeebeesbeeesaeesaaesabesnseesnneesaeas 114
9.27 Annotationsrelated to an ARRAY deClaration...........coceeeceeceeciiecee ettt 114
9.27.1 ARRAYTYPE GNNOALIONc.eccviieieiticrietecte ettt et ste st st srae st st eeeesbesnesebeennesreennas 114
9.27.2 LAYER reference annotation for ARRAY ...ttt e 115
9.27.3 SITE reference annotation for ARRAY ..ottt 115
.28 PATTERN AECIAratioN.......c.eeiviiieciicceectecte ettt ettt sttt ettt e et et ebeentesaeeneesaeensesreentenns 115
9.29 Annotationsrelated to aPATTERN deClaration...........ccccceeieiiiiceee ettt 116
9.29.1 PATTERN reference annotalioncceeoeeiiiieiiecie ettt ere e 116
0.29.2 SHAPE GNNOALION.ccuiiiiieitie ettt ettt steeste e ebe e eabeeere e sabe e ebeessseeabessseebeesareenseesresenns 116
9.29.3 VERTEX @NNOAIION......ceeiviirieitieiieite et citeeteeesereeasseestesteesaesbaesaessaenbesseesessesssesansssesnens 117
9.29.4 ROUTE GNNOALIONvviiieeciee ettt et stte st et e s steesaeesabeestseenseesbessbeessaesabeanseesnnessans 118
9.29.5 LAYER reference annotation for PATTERNccocooiiiiiiiiie it 119
9.30 REGION AECIAIGLION.......cveivieieeitieiie ittt ettt et eere st e ete s eeesteebae st e esaesbeeabeebeebesbeessssaeensesbeesbesseesreentenss 119
9.31 Annotationsrelated to a REGION deClaralioncoceeecueeieieiieeie ettt e 120
9.31.1 REGION reference annotalionceeccveeeieeiirieceeeee sttt st st esreeene e sas 120
9.31.2 BOOLEAN GNNOLBHIONccveivieitieiieitecteereeete et et eeesrs et e stesaessaesaaesbessbesbesssesbesnssssesnresreenees 120
Description of functional and physical implementationcccocveie e 121
10.1 FUNCTION SEAEEIMENTvecveeriitiericiesteeiee st seestesseestesstebesseesbeesessssssesssesnsessesssessessssssesssessesnsessesanes 121
J0.2 TEST SEALEIMENTveiuiiiteiieiteeeeeteete et eeeereetesreeseesbeeaeesaeeabesbeeabesbeesesbesssesaeessesbessbeabeessesssentesabensenses 121

Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

11.

10.3 Declaration of apin Variabl..........ccevceieieiisese et snesrenes
10.4 BEHAVIOR SEBEMENEcvveiiirerrereierese st ene s st nen s senesesnnnes
10.5 STRUCTURE statement and CELL iNStANtILONcveevrreerereireresrereeresrereee e
10.6 STATETABLE SEEMENT.....c.ciiiierciiereriee e
10.7 NON_SCAN_CELL SEAEMENL.........ceirireereriirrseeeresesesre s sesssne e sessessss s sssesesessessssssssnnees
10.8 RANGE SEBLEMENLccveeirieriereerere et re e er e er s r e r e s nenens
LR =Yoo 1= = N 0 (=S o] o
10.10B00I €8N VAIUE SYSLEMceeeueeeceeetieeree e e e st e e s e e e s te s eaesbesbesee e e seneenaeseenenseenenseneeseessenses
10.10.1 Scalar BOOIEAN VBIUE.ccveeeieeeieeieirie e e e se st sne e e see e e sen e nenneenenns
10.10.2 Vectorized bO0I€aN VAIUE...........coveieeeeire sttt s sn e e neenenns
10.10.3 Non-assignable DO0I€aN VAIUE...........covciiiirieereee et
10.11B0oolean Operations aNd OPEFELOIS.c.urvevereerereetereeeerieie sttt se et et sbe s sb s senesseseenes
020 B R o T o= a0 = = PSPPSR
10.11.2 BitWiSE OPEIEHION...c..cuevieirierertereste st et se et ne ettt st st et se b e be et e se et e seese e e s e ene e e e eaens
10.11.3 CoNditioNal OPEFELION........ooueeeerierertesierte sttt sttt be bbbt see e e e ese e e seenenas
10.11.4 Integer arithmMetiC OPEraiONcoueeeiirie ettt b e s
10.11.5 Shift OPEIEHONeieieiteee et e ettt b e bbb e e et s e e e eaenas
10.11.6 COMPEITSON OPEIAHTIONcueeuieuirteriertisterieseesee e see st e e et eaesbe e et ssesbesee s eseeeeseeneebesnesaesbenss
10.11.7 OPEratOr PrTOMTIES ...c..eveeereeeeirieeertesi ettt st se et st e e et be st saesbesbesee b eneesee e ensebesnesaeenernas
10.12V ECLOI EXPIESSIONeeueeuiruirteruertesteseeseesteseeaeeteaee e sseesesbesaesaeebesbeseebeseesseaeansebeeneaaeehenbesaesbesaesbesbeneas
10.130perators for event SPECITICALION.........uieie i b e e
10.13.1 Specification of @SiNGIE BVENL...........cooiiiiii e
10.13.2 Temporal order within an eVent SEQUENCE...........coeverrerieniere e
10.13.3 Canonical specification of asequence Of BVENES.........c.cocrerierirenesee e
10.13.4 Specification of acompletely permutable event ...
10.13.5 Specification of aconditional EVENT ..o e
10.13.6 OPEratOr PrTOMTIESiveeereeeeirieeertesierie st se et sttt be st sbe b b sbe b esee e e e e s eb e e e saeenenis
10.14Predefined PRIMITIVE ...ttt st
10.14.1 Predefined PRIMITIVE ALF_BUF ...t
10.14.2 Predefined PRIMITIVE ALF_NOT ...t
10.14.3 Predefined PRIMITIVE ALF_ANDc.cooiiineee et
10.14.4 Predefined PRIMITIVE ALF_NANDooiiiiieetreeses et
10.14.5 Predefined PRIMITIVE ALF_OR ..ottt
10.14.6 Predefined PRIMITIVE ALF_NORc.ooiiiieereer e
10.14.7 Predefined PRIMITIVE ALF_XOR ...ttt
10.14.8 Predefined PRIMITIVE ALF_XNOR.......cccoiiiirireetrriieeesieie et
10.14.9 Predefined PRIMITIVE ALF_BUFIFL......ccoociiiceceeseesees e
10.14.10Predefined PRIMITIVE ALF_BUFIFO.....ccooiiiieeceee e
10.14.11Predefined PRIMITIVE ALF_NOTIFL ..ottt
10.14.12Predefined PRIMITIVE ALF_NOTHFIFOccociiiiieeei et
10.14.13Predefined PRIMITIVE ALF_MUXc.coiiiiiieerricrees e
10.14.14Predefined PRIMITIVE ALF_LATCH ..ot
10.14.15Predefined PRIMITIVE ALF_FLIPFLOPcociicciretrere e
TO.I5WIRE INSEANLIBIION ...ttt s st et
10.16GEOMELITC MOTEL.......ceeeieciiect ettt et r e s e nn e s s
10.17Predefined geometric models using TEMPLATEccv o
10.17.1 Predefined TEMPLATE RECTANGLEcco it
10.17.2 Predefined TEMPLATE LINE......ccoo ettt
10.18GEOMELIIC trANSFOIMEBIIONveeveeeeesteierree et er s s s n e nren e n s e
10.19ARTWORK SEALEIMENLeveeteieireetetereesiee ettt s et b e st et b et e s b b e b b
10. 20V A TNSEANLIBLTON. ... c.cveeereeerreeer et er e er e e e s sr e e re e e r e s n e seneens

Description of electrical and physiCal MEASUrEMENES..........ccveiiriieie e e s

IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

12,2 ArithMELIC EXPrESSION ...veveieeitesieiesteee e e et e e s e re st stesrese e tesee e eseeseeseeseesesseseesaensesaeeenseneesennnnnens 159
11.2 Arithmetic Operations aNd OPEraLOrS.........ccuerieeerereeesteresreseesteseeseeeeseeseeessessessessessesaeseensessesensensens 159
11.2.1 Unary arithmetiC OPEIaLOr......cccouveeierieresesesesees e seeseeseeseeseseese e seesressessesseseenseseeneensnsennes 159
11.2.2 Binary arithmetiC OPEIatOr........ccvveireieseseseseesereee et s et st sae e e e enensennes 160
11.2.3 Macro arithmetiC OPEIGLONcccveireieres e st sr e sne e nen 160
2 @ o= = o g o o 1 1= 161
113 ArithMELIC MOE ..ot bbb et sttt b e b e s e 161
11.4 HEADER, TABLE, and EQUATION StALEMENEScccrveireeiriririeesiecsieeesieieseesesie s seseesssseseenas 163
11.5 MIN, MAX, aNd TY P SLAEEMENESecviceeeciecteeeee ettt ettt e et sreebeesbeebaesresnsenbeeneenreenis 165
11.6 Auxiliary arithmetic MOGE]cccoiriiii e 166
11.7 ArithmeEtic SUDMOAELccveeiiieee ettt st e et e et ebeesbe e beeaeenas 167
11.8 Arithmetic MOEl CONTAINEYccviiieie ettt sttt be e be e e ereeareebeenas 167
11.8.1 General arithmetic MOdel CONLAINEYveerereerereerere e nre s 167
11.8.2 Arithmetic model contaiNer LIMITooo et 168
11.8.3 Arithmetic model container EARLY and LATE.......cccoiiiieiieiececeeee e 168
11.9 Generally applicable annotations for arithmetic MOdElS...........ccoiiiiriniierrce s 169
T T R 1N I = g Vo = o RSP PSSR 169
11.9.2 CALCULATION @NNOLEIION.......cciiiereereeeiereetesestesesteseetesesteseesesessessssesessessssessssessesessesessens 170
11.9.3 INTERPOLATION @NOLAiON....cuviveueiieieeieieeteseetesisteseetesestesesesessesesesessesessesessestesessesessens 170
11.9.4 DEFAULT @NMNOALHONcveiveieiieesiee ettt ettt ste e st ses s e e e ste e ssenessenessenensns 172
11.9.5 MODEL reference annotationcceceeeiiieieiecie st et e e s sre e s e e sneens 173
11.10VIOLATION statement, MESSAGE TY PE and MESSAGE annotationcccoeveriverereeennns 173
11.11Arithmetic models for timing, power and signal INtEGItYcooererereriieireere e 175
0 O I PSS 175
O L 11 1N 2SS 177
0 O B 0 I 2SSOSR 178
0 o 2 1 OO 178
11,115 SLEWRATE ..ottt sttt sttt st sttt sttt ettt et ettt st sttt tebe st 179
11.11.6 SETUP @A HOLDc.cotiieieseciesiee ettt ettt st st st sttt 181
11.11.7 RECOVERY anNd REMOVALccoiiiiieitsient ettt s et 181
11.11.8 NOCHANGE @NG ILLEGALooviviiiieirieieieeetees ettt st sttt st saste e e saenessenens 182
11.11.9 PULSEWIDTH. ..ottt sttt sttt sttt st st se et e s st s stesessens 183
L1 11 1OPERIODctctiieteieienieieestesestestetesaetestetesae e sae e ssesessesesse e ssesestesestesestesesteseatesessessnsessesensne 185
0 0 I SRR S T R 186
0 0 S TSRS 186
O I s T N 0 PSP 187
11.11.14NOISE and NOISE_MARGINccctieerieitsie ittt st see e st sens 188
11.11.15POWER aNd ENERGYcciiiiieieiniiisie sttt sttt st st et seetesaeteseesesaenessnnens 191
11.12FROM 8Nd TO SLALEMENEScvevevieeieseeiiieierieteseete sttt stsse s e sesbesesbesesseseeteseeteseeseseeseseesesensesensesens 192
11.13Annotations related to timing, power and signal INEGIitYccveceevieeeviie e 193
11.13.1 EDGE_NUMBER @NNOALION.cc.cciiieirieiireeieseee ettt st st snns 193
11.13.2 PIN reference and EDGE_NUMBER annotation for FROM and TOccccceeveveevienen. 193
11.13.3 PIN reference and EDGE_NUMBER annotation for SLEWRATEcccccocoeevivie v 195
11.13.4 PIN reference and EDGE_NUMBER annotation for PULSEWIDTHccccocvieieee, 195
11.13.5 PIN reference and EDGE_NUMBER annotation for SKEWccccccveeeveeveevescie e 195
11.13.6 PIN reference annotation for NOISE and NOISE_ MARGIN........cccevviciiveieevesee s 195
11.13.7 MEASUREMENT @NNOALION........cceieiiieieieeieseeiesistesietesestesae e e e e esae e sse e seesestesessesessns 196
11.14Arithmetic models for environmental CONAItIONScoveveeieirieiierrere e 197
L1141 PROCESS. ..ot cteteteeetees e st st saste st et sae e st st e st et see st st e sesbesesbesesbesesbe st sbesesbesenbenaebentens 197
11.14.2 DERATE _CASE ...ttt sttt sttt ettt st st et sttt 198
11143 TEMPERATURE ...ttt sttt st s st st st bbbt 199
11.15Arithmetic modelS for €leCtriCal CITCUITS..........ooiiriiire e 199
O ST Y @ A ST 199
11.15.2 CURRENT ..ottt sttt st st sttt st st s se e st e s e et st s stenennns 201

Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

11153 CAPACITANCE ...ttt e s 202

11.15.4 RESISTANC E........ooi ettt ettt ete st ettt besbe et esbeasresaeeste s e e sbeebeesbesaeesbesabenbeensesseennes 203
11.15.5 INDUGCTANCEcoi ittt sttt sttt sttt ste e ebe s beeste s e e sbe s e e besbeesbesbeestesasesesnnesseennes 205
11.16ANN0tatiONS FOr ElECIIICAl CITCUITS......eecvieieeieceecte ettt ettt et sre e sre s abesraebesaeenbeere e b enns 206
11.16.1 NODE reference annotation for electrical CIrCUILS...........oovvveieeieecececceceecee e 206
11.16.2 COMPONENT reference anNotationccecceeiveeieeereeeeere et eseesreere e eresreesbeereesnesneennes 207
11.16.3 PIN reference annotation for electrical CirCUILS.........covevviieeiiiiecee et 207
11.16.4 FLOW @NNOLALION.cciuiiiieitieieeteeieete et e eteete ettt steestesteesaesbeesbesaeenbesbeenbesbeessssanensesanensessens 209
11.17Miscellaneous arithmMELiC MOTEIS........ccviiiee e et e s s ree e sree s 210
11.17.1 DRIVE STRENGTH ... ottt tee et e e st eeee e e e e e eetee e s easeseeseeeeasseeesneessneeeeas 210
11.17.2 SWITCHING_BITS with PIN reference annotation.............ccccoeereeeneiesenesenesenerienennene 210
11.18Arithmetic models related to structural implementationccoveerrrninrnee s 211
1 S R 0@ N[N 1 = O I Y L 2 211
11.18.2 DRIVER @Nd RECEIVER........coee ittt ettt sttt s e st s e sste s sessnbessnaesnneesreas 211
11.18.3 FANOUT, FANIN and CONNECTIONS.........ccovcieitceecre ettt sttt st sre e sve e e 213
11.19Arithmetic models related to layout implementationccocccerererenesene s 214
T T 4 TSR 214
T T Y] OO 215
11.19.3 PERIMETER ...ttt ittt ettt ettt e te s te e eee b e te st e beebaesbesreesteenbenteennesreennas 216
12.19.4 EXTENSION......ooitiiieetietiicteeteete e stesteestesteestesteeabesbeebessessssssessesaeesbestaesbessesstesnsesssneessesnnes 217
T1.19.5 THICKINESS. ...ttt ettt sttt sttt sttt et e s ra s etssatssaeeeesbeebeesbesatesbeenbesbeennssreennas 218
I S | 1T I PR 218
I e YL 1 SO 219
T T I N I = IR 220
T1.19.9 DISTANCE ...ttt sttt sttt s b e e be s be e st s saeebe s e e s besbessbesaeesteenbebeennesbesnnas 221
T11.19.100VERHANG ..ottt ettt st ettt e ste s te e sae s b e st e s bt ea b e sbeeabesbessessreensssaeetearens 221

TL 19 TADENSITY ottt ettt sttt e sttt e e st e et e et e s be et e sheeatesae et e sbaebesbeestesnsenteenneabeennas 222
11.20Annotations related to arithmetic models for layout implementationccoecevvcerinncenenene, 223
11.20.1 CONNECT _RULE @NNOAtiON.....c.cceeiiiieictice ittt sre et seesaeseseese e e saesneste e saesnessenes 223
11.20.2 BETWEEN @NNOALiON.....ccoviiviiiiiieiteiiestietie ettt etesseeseesressaesaeesbesbeebesbesssssnssnsssnsessesses 223
11.20.3 BETWEEN annotation for CONNECTIVITY ..cvvcieiiiiiecicice ettt 224
11.20.4 BETWEEN annotation for DISTANCE, LENGTH, OVERHANG.........c.cccovvvvvieenenen. 224
11.20.5 MEASURE @NNOALION.....eccviirieiiiiieie et eseesieeste st stesaebesseesbesbessbesressrssnsessssneesaeesessaesssessens 225
11.20.6 REFERENCE annotation CONLAINEYccceeiiieieeeieereeireeereeseeesreeerresbeesreesebeesanesnneenns 226
11.20.7 ANTENNA reference annOtation..........ccceeiiveeeeeiireeciecee et sesre e b b aeesrnas 228
11.20.8 TARGET @NNOAIONccvviiviieiiiecciecte ettt ettt ste s e sre s e e s ae e esbeebesbeesessaeenesneensearens 228
11.20.9 PATTERN reference annOtationcccveiiieeeieeiie ettt enreeseesnbeesraesnneesreas 228
11.21Arithmetic submodels for timing and electrical data.............cccvevvevviceeiiiee i 229
11.22Arithmetic submodels for phySiCal data............coveeieiieiericeece e e s 230
(iNfOrmative) SYNtaX FUIE SUMIMEIYccveiieiiieecieciesie et e st ette st e te e testeeseesaeeeessaessesteessessaessesssenseentanseensesnnennes 233
Al ALF MEEIANQUAOEecieiieietieee ettt sttt ae e e ere e aesreeneesaeeneesaeeneesreens 233
A2 LexiCal dEfiNITIONScceiiie e et et s be e e e e et e e s eeebeesaresnreesree s 233
A3 AUXITArY AefiNITIONS.......oiiee e et r e re e e sreenae s 237
A4 GENENIC AEFINITIONS......cciicie et et ebe s ae e e e e et e e seeebeesaeesnreesree s 238
A5 Library defiNitioNScoociiieie e sttt s ne e e re e enaenreens 240
A6 FUNCLION AEfINITIONScoeiiie ettt e s e e st eesae e sbe e e saeesanesnbeesreeesree s 243

IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual Xi

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

A7 ArithmetiC AEfiNItIONScviieecere e 246
(informative) SEManti CS rUIE SUMIMIBIYccveiueeerieeeiseeesteseseestes e saeseeseeseeseeseesessessessestessessessensessensensensesenneenens 251
B.1 Auxiliary and generic definitions.........ccccueoieeiirirniisese e e 251
B.2 Library definitions.........cccuieieieieireese st sttt e ene s 252
B.3 Arithmetic AefiNiTiONSciiiieiieee e 258
(INfOrmative) BibliOGrapNYcciuiiiiiiire ettt senes 261

xii Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

List of Figures

ALF and itstarget applications 4
Parent/child relationship between ALF statements 16
Parent/child relationship amongst library-specific objects 18

Parent/child relationship involving singular statements and plural statements 20
Parent/child relationship involving instantiation and assignment statements 21

Scheme for construction of composite signaltype values 80

ROW and COLUMN relative to a bounding box of a CELL 91

NODETY PE in context of a DC-connected net 100
Connection between layers during manufacturing 110
SHAPE annotation illustration 117

VERTEX annotation illustration 118

ROUTE annotation illustration 119

Relationship between FUNCTION and TEST 123
Timing diagrams for single events 138

[llustration of geometric models 152

[llustration of direct point-to-point connection 152
[llustration of manhattan point-to-point connection 153
[llustration of FLIP, ROTATE, and SHIFT 155
Bounding regions for y(x) with INTERPOLATION=fit 172
[llustration of RETAIN and DELAY 179

[llustration of SLEWRATE 180

[llustration of SETUP and HOLD 181

RECOVERY and REMOVAL 182

[llustration of NOCHANGE and ILLEGAL 183
[llustration of PULSEWIDTH 185

[lustration of PERIOD 185

[lustration of JTTER 186

[lustration of SKEW 187

THRESHOLD measurement definition 188

NOISE measurement definition 189

Definition of NOISE MARGIN and LIMIT for NOISE 190

Illustration of PIN reference and EDGE NUMBER annotation within FROM and TO 194
Illustration of peak measurement with FROM or TO statement 197

Electrical components and their terminals 207

Association between electrical components and an input pin 208
Association between electrical components and an output pin 209

[lustration of EXTENSION 217
[lustration of DISTANCE versus OVERHANG 222

[ustration of DISTANCE versus OVERHANG versus LENGTH 225

Illustration of MEASURE 226
Ilustration of REFERENCE for DISTANCE 227

IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual

Xiii

10

15

20

25

30

35

40

50

55

Xiv

Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 7

List of Tables

TADIE L. s Target applications and models supported by ALF2
A 2 e bbb e Categories of ALF statements14
L= o= USSR Generic objects16
LI o] = TSRS Library-specific objects17
LI 0 LSS OSSPSR Singular statements18
LI o] = S Plural statements19
LI o) = Instantiation statements20
LI o= TS Assignment statements21
A G e e e Other categories of ALF statements22
TablE 10— ... Annotations and annotation containers with generic keyword22
TADIE Ll s Keywords related to arithmetic model 22
TADIE 12— ... bbb e Statements for ALF parser control 23
B o= eSO List of whitespace characters25
TADIE L. bt bbbt e ettt List of special characters26
Q= o= USSR List arithmetic operators28
L oL L SO P PPN List of boolean operators29
L oL AP TRRO List of relational operators29
L oL S eSO SRTPOTR List of shift operators30
TADIE 1O b e e List of event sequence operators30
A E 20 e ettt e e b ae e bt List of meta operators30
TabIE 21— ... Multiplier prefix symbol and corresponding Sl-prefix32
TAD @ 22— ... Character symbols within aquoted string34
LIS o) =22 S FORMAT annotation values44
TADIE 24— ... Legal string values within the REVISION statement45
A 25 . bbb et et Syntax item identifier48
TADIE 26— ... VALUETY PE annotation49
L= LA SR SI_MODEL annotation53
QLIS o= S e USAGE annotation56
TaDIE 20— ... Annotations within an INFORMATION statement65
QLI o] = 0T CELLTY PE annotation val ues66
TADIE B Predefined values for RESTRICT_CLASS68
TaDIE 32— ... s SCAN_TY PE annotations for a CELL object69
TaDlE 33— ... SCAN_USAGE annotations for a CELL object69
TADIE 3. BUFFERTY PE annotations for a CELL object70
TAD e 35— .. DRIVERTY PE annotations for a CELL object71
TAD € 36— ..o PLACEMENT_TY PE annotations for a CELL object72
TablE 37— ..o Attribute values for a CELL with CELLTY PE=memory72
TaDlE 38— ... Attributes within a CELL with CELLTY PE=block73
TaDIE 3G ..o Attributes within a CELL with CELLTY PE=core73
TaDIE 40— ... Attributes within a CELL with CELLTY PE=specia 74
TADIE AL ... bbb VIEW annotations for a PIN object77
TADIE 42— ... PINTY PE annotations for a PIN object78
L= o LG S DIRECTION annotations for a PIN object78
TablE 44— ... Fundamental SIGNALTY PE annotations for a PIN object79

IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual XV

10

15

20

25

30

35

40

50

55

Table 46—
Table 47—
Table 48—
Table 49—
Table 50—
Table 51—
Table 52—
Table 53—
Table 54—
Table 55—
Table 56—
Table 57—
Table 58—
Table 59—
Table 60—
Table 61—
Table 62—
Table 63—
Table 64—
Table 65—
Table 66—
Table 67—
Table 68—
Table 69—
Table 70—
Table 71—
Table 72—
Table 73—
Table 74—
Table 75—
Table 76—
Table 77—
Table 78—
Table 79—
Table 80—
Table 81—
Table 82—
Table 83—
Table 84—
Table 85—
Table 86—
Table 87—
Table 88—
Table 89—
Table 90—
Table 91—
Table 92—
Table 93—
Table 94—

XVi

... Composite SIGNALTY PE annotations for a PIN object80
.. ACTION annotations for a PIN object81
.. ACTION applicablein conjunction with SIGNALTY PE values81
.. POLARITY annotations for a PIN82
.. POLARITY applicablein conjunction with SIGNALTY PE val ues82
... DATATY PE annotations for a PIN object84
.. STUCK annotations for a PIN object85
... SUPPLY TY PE annotations for a PIN object86
... DRIVETY PE annotations for a PIN object88
... SCOPE annotations for a PIN object89
.. SIDE annotations for a PIN object90
.. ROUTING-TY PE annotations for a PIN object92
... PULL annotationsfor a PIN object93
... Attributes within a PIN object93
... Attributes for pins of a memory93
.. Attributes for pins representing pairs of signals94
.. PIN or PINGROUP attributes for memory BIST94
... WIRETY PE annotations for a WIRE object96
... NODETY PE annotation values99
... PURPOSE annotation values102
.. OPERATION annotation values103
.. LAY ERTY PE annotation values107
... PREFERENCE annotation values108
.. VIATY PE annotation values109
.. CONNECT_TY PE annotation valuesl12
... ARRAY TY PE annotation values115
.. SHAPE annotation valuesl17
... VERTEX annotation values118
.. Annotations for PINsinvolved in FUNCTION and TEST122
... Scalar boolean values128
.. M apping between octal base and binary base129
... Mapping between hexadecimal base and binary base129
... Symbolic boolean values131
.. Logica Operation132
.. Bitwise Operation132
.. Conditional Operation133
... Integer Arithmetic Operation133
... Shift Operation134
... Comparison Operation134
.. Equal comparison considering drive strength135
... Greater comparison considering drive strength136
... Specification of asingle event137
... Canonical specification of an event141
.. Specification of a completely permutable event143
... Specification a conditional event145
.. Geometric model identifiers151
.. Unary arithmetic operators159
... Binary arithmetic operators160
.. Macro arithmetic operators160
... Calculation annotation170

Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

LIS o = S Interpolation annotation171

L= o LSS P MESSAGE_TY PE annotation175
TAD E Q7 ...ttt et e e e e be e b e e reenbee e MEASUREMENT annotation196
TADIE OB ... b Predefined arithmetic values for PROCESS197
TaDlE OO e Predefined arithmetic values for DERATE CASE198
TADIE 100ottt ettt et sttt e e s heebae s heea b e s beea b e be e beebeeaeeeheenneeaeeresreenens FLOW annotation209
TaADIE L0L ...ttt st b e naeereenre e Boolean values for CONNECTIVITY 211
QLI o LT 0 12 CONNECT_RULE annotation223
Table 103 — ... Restrictions related to multiple requirements for connection223
TADIE LA ...ttt ettt be e naae s Annotation values for MEASURE225
BLIE= o T 05 S Annotation values for REFERENCE227
Tahle 106—....coeeeeeesere e Overview of arithmetic submodels for timing and electrical data229
TaD e L07— ..o Overview of arithmetic submodels for physical data230

IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual XVii

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

XViii

Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 7

IEEE Standard for an

Advanced Library Format (ALF)
describing Integrated Circuit (IC)
technology, cells, and blocks

1. Introduction

** Add alead-in OR change this to parallel an |EEE intro section**

1.1 Motivation

Designing digital integrated circuits has become an increasingly complex process. More functions get integrated
into a single chip, yet the cycle time of electronic products and technol ogies has become considerably shorter. 1t
would be impossible to successfully design a chip of today’s complexity within the time-to-market constraints
without extensive use of EDA tools, which have become an integral part of the complex design flow. The effi-
ciency of the tools and the reliability of the results for simulation, synthesis, timing and power analysis, layout
and extraction rely significantly on the quality of available information about the cellsin the technology library.

New challenges in the design flow, especially signal integrity, arise as the traditional tools and design flows hit
their limits of capability in processing complex designs. As a result, new tools emerge, and libraries are needed
in order to make them work properly. Library creation (generation) itself has become a very complex process and
the choice or rejection of a particular application (tool) is often constrained or dictated by the availability of a
library for that application. The library constraint can prevent designers from choosing an application program
that is best suited for meeting specific design challenges. Similar considerations can inhibit the devel opment and
productization of such an application program altogether. As a result, competitiveness and innovation of the
whol e electronic industry can stagnate.

In order to remove these constraints, an industry-wide standard for library formats, the Advanced Library Format
(ALF), is proposed. It enables the EDA industry to develop innovative products and ASIC designers to choose
the best product without library format constraints. Since ASIC vendors have to support a multitude of libraries
according to the preferences of their customers, acommon standard library is expected to significantly reduce the
library development cycle and facilitate the deployment of new technologies sooner.

IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 1

10

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

1.2 Goals
The basic goals of the proposed library standard are

— simplicity - library creation process needs to be easy to understand and not become a cumbersome pro-
cess only known by afew experts.

— generality - tools of any level of sophistication need to be able to retrieve necessary information from the
library.

— expandability - this needs to be done for early adoption and future enhancement possibilities.

— flexibility - the choice of keeping information in one library or in separate libraries needsto be in the hand
of the user not the standard.

— efficiency - the complexity of the design information requires the process of retrieving information from
the library does not become a bottleneck. The right trade-off between compactness and verbosity needs
to be established.

— ease of implementation - backward compatibility with existing libraries shall be provided and trandlation
to the new library needs to be an easy task.

— conciseness - unambiguous description and accuracy of contents shall be detailed.

— acceptance - there needs to be a preference for the new standard library over existing libraries.

1.3 Target applications

The fundamental purpose of ALF is to serve as the primary database for al third-party applications of ASIC
cells. In other words, it is an elaborate and formalized version of the databook.

In the early days, databooks provided all the information a designer needed for choosing a cell in a particular
application: Logic symbols, schematics, and a truth table provided the functional specification for simple cells.
For more complex blocks, the name of the cell (e.g., asynchronous ROM, synchronous 2-port RAM, or 4-bit syn-
chronous up-down counters) and timing diagrams conveyed the functional information. The performance charac-
teristics of each cell were provided by the loading characteristics, delay and timing constraints, and some
information about DC and AC power consumption. The designers chose the cell type according to the function-
ality, estimated the performance of the design, and eventually re-implemented it in an optimized way as neces-
sary to meet performance constraints.

Design automation enabled tremendous progressin efficiency, productivity, and the ability to deal with complex-
ity, yet it did not change the fundamental requirements for ASIC design. Therefore, ALF needs to provide mod-
els with functional information and performance information, primarily including timing and power. Signal
integrity characteristics, such as noise margin can aso be included under performance category. Such informa-
tion istypically found in any databook for analog cells. At deep sub-micron levels, digital cells behave similar to
analog cells as electronic devices bound by physical laws and therefore are not infinitely robust against noise.

Table 1 shows alist of applications used in ASIC design flow and their relationship to ALF.

NOTE — ALF covers library data, whereas design data needs to be provided in other formats.

Table 1—Target applications and models supported by ALF

Application Functional model Performance model Physical model
Smulation Derived from ALF N/A N/A
Synthesis Supported by ALF Supported by ALF Supported by ALF
Design for test Supported by ALF N/A N/A

2 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

Table 1—Target applications and models supported by ALF (Continued)

Application Functional model Perfor mance model Physical model
Design planning Supported by ALF Supported by ALF Supported by ALF
Timing analysis N/A Supported by ALF N/A
Power analysis N/A Supported by ALF N/A
Sgnal integrity N/A Supported by ALF N/A
Layout N/A N/A Supported by ALF

Historically, afunctional model was virtually identical to a simulation model. A functional gate-level model was
used by the proprietary simulator of the ASIC company and it was easy to lump it together with a rudimentary
timing model. Timing analysis was done through dynamic functional simulation. However, with the advanced
level of sophistication of both functional simulation and timing analysis, thisis no longer the case. The capabili-
ties of the functional simulators have evolved far beyond the gate-level and timing analysis has been decoupled
from simulation.

RTL design planning is an emerging application type aiming to produce “virtual prototypes’ of complex for sys-
tem-on-chip (SOC) designs. RTL design planning is thought of as a combination of some or al of RTL floorplan-
ning and global routing, timing budgeting, power estimation, and functional verification, as well as analysis of
signal integrity, EMI, and thermal effects. The library components for RTL design planning range from simple
logic gates to parameterizeable macro-functions, such as memories, logic building blocks, and cores.

From the point of view of library requirements, applications involved in RTL design planning need functional,
performance, and physical data. The functional aspect of design planning includes RTL simulation and formal
verification. The performance aspect coverstiming and power as primary issues, while signal integrity, EMI, and
thermal effects are emerging issues. The physical aspect isfloorplanning. As stated previously, the functional and
performance models of components can be described in ALF.

ALF also covers the requirements for physical data, including layout. Thisisimportant for the new generation of
tools, where logical design merges with physical design. Also, al design steps involve optimization for timing,
power, signal integrity, i.e. electrical correctness and physical correctness. EDA tools need to be knowledgeable
about an increasing number of design aspects. For example, a place and route tool needs to consider congestion
aswell astiming, crosstalk, electromigration, antennarules etc. Thereforeitisalogical step to combine the func-
tional, electrical and physical models needed by such atool in aunified library.

Figure 1 shows how ALF provides information to various design tools.

IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 3

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

(D Vendor-specific or commercial EDA tool .
. Céll characterization tool
() Commercia EDA tool

/ \ \

[ayout
models

annotations
for scan

universal |—
annotations ALF design limits
for synthesis

wireload |/
models))))
universal functional model universal universal universal signa

— timing model power model integrity model
Test vectors Simulation model
Scan insertion tooD
Place & Route
tool

(Test vector generat@(M odel generat@
Power
analysis tool

Timing
Simulators analysis tool
Verilog & VHDL

Signal integrity
Verilog & VHDL | | Verilog & VHDL analysis tool
Figure 1—ALF and its target applications

The worldwide accepted standards for hardware description and simulation are VHDL and Verilog. Both lan-
guages have awide scope of describing the design at various levels of abstraction: behavioral, functional, synthe-
sizable RTL, and gate level. There are many ways to describe gate-level functions. The existing simulators are
implemented in such a way that some constructs are more efficient for simulation run time than others. Also,
how the simulation model handles timing constraints is a trade-off between efficiency and accuracy. Developing
efficient smulation models which are functionally reliable (i.e., pessimistic for detecting timing constraint viola-
tion) isamajor development effort for ASIC companies.

Hence, the use of a particular VHDL or Verilog simulation model as primary source of functional description of
acell isnot very practical. Moreover, the existence of two simulation standards makes it difficult to pick oneasa

4 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

reference with respect to the other. The purpose of a generic functional model isto serve as an absol ute reference
for all applications that require functional information. Applications such as synthesis, which need functional
information merely for recognizing and choosing cell types, can use the generic functional model directly. For
other applications, such as simulation and test, the generic functional model enables automated simulation model
and test vector generation and verification, which has atremendous benefit for the ASIC industry.

With progress of technology, the set of physical constraints under which the design functions have increased dra-
matically, along with the cost constraints. Therefore, the requirements for detailed characterization and analysis
of those constraints, especially timing and power in deep submicron design, are now much more sophisticated.
Only a subset of the increasing amount of characterization data appearsin today’s databooks.

ALF provides a generic format for all type of characterization data, without restriction to state-of-the art timing
models. Power models are the most immediate extension and they have been the starter and primary driver for
ALF

Detailed timing and power characterization needs to take into account the mode of operation of the ASIC cell,
which isrelated to the functionality. ALF introduces the concept of vector-based modeling, which is a generali-
zation and a superset of today’s timing and power modeling approaches. All existing timing and power analysis
applications can retrieve the necessary model information from ALF.

1.4 Conventions

The syntax for description of lexical and syntax rules uses the following conventions.
**Consider using the BNF nomenclature from | EEE 1481-1999* *

;= definition of a syntax rule
| alternative definition
[item an optional item

[iteml | item2 | ...] optional itemwith alternatives
{itentoptional itemthat can be repeated
{iteml | iten2 | ... } optional itenms with alternatives

whi ch can be repeated
itemitemin bol dface font is taken verbatim
itemtemin italic is for explanation purpose only

The syntax for explanation of semantics of expressions uses the following conventions.

=== | eft side and right side expressions are equival ent
<itemra placeholder for an itemin regular syntax

1.5 Contents of this standard
The organization of the remainder of this standard is

— Clause 2 (References) provides references to other applicable standards that are assumed or required for
ALF.

— Clause 3 (Definitions) defines terms used throughout the different specifications contained in this stan-
dard.

— Clause 4 (Acronyms and abbreviations) defines the acronyms used in this standard.

— Clause 5 (ALF language construction principles and overview) defines the language construction princi-
ples.

— Clause 6 (Lexical rules) specifiesthe lexical rules.

— Clause 7 (Auxiliary syntax rules) defines syntax and semantics of auxiliary items used in this standard.

IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 5

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

Clause 8 (Generic objects and related statements) defines syntax and semantics of generic objects used in
this standard.

Clause 9 (Library-specific objects and related statements) defines syntax and semantics of library-spe-
cific objectsused in this standard.

Clause 10 (Description of functional and physical implementation) defines syntax and semantics of the
control expression language used in this standard

Clause 11 (Description of electrical and physical measurements) defines syntax and semantics of arith-
metic models used in this standard.

Annexes. Following Clause 11are a series of normative and informative annexes.

Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

2. References

**Fill in applicable references, i.e. standards on which the herein proposed standard depends.

This standard shall be used in conjunction with the following publication. When the following standard is super-
seded by an approved revision, the revision shall apply.

**Thefollowing is only an example. AL F does not depend on C.

| SO/IEC 9899:1990, Programming L anguages—C.*

[1SO 8859-1 : 1987(E)] ASCII character set

1130 publications are available from the 1SO Central Secretariat, Case Postale 56, 1 rue de Varembé, CH-1211, Genéve 20, Switzerland/
Suisse (http://www.iso.ch/). IEC publications are available from the Sales Department of the International Electrotechnical Commission,
Case Postale 131, 3, rue de Varembé, CH-1211, Genéve 20, Switzerland/Suisse (http://www.iec.ch/). ISO/IEC publications are aso available
in the United States from the Sales Department, American National Standards Institute, 11 West 42nd Street, 13th Floor, New York, NY
10036, USA.

IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 7

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 7

3. Definitions

For the purposes of this standard, the following terms and definitions apply. The IEEE Sandard Dictionary of
Electrical and Electronics Terms [B4] should be consulted for terms not defined in this standard.

**Fill in definitions of terms which are used in the herein proposed standard.

3.1 advanced library format: The format of any file that can be parsed according to the syntax and semantics
defined within this standard.

3.2 application, electric design automation (EDA) application: Any software program that uses data repre-
sented in the Advanced Library Format (ALF). Examplesinclude RTL (Register Transfer Level) synthesistools,
static timing analyzers, etc. See also: advanced library format; register transfer level.

3.3 arc: See: timing arc.

3.4 argument: A data item required for the mathematical evaluation of an arithmetic model. See also: arith-
metic model.

3.5 arithmetic model: A representation of alibrary quantity that can be mathematically evaluated.
36..

3.7 register transfer level: A behavioral representation of a digital electronic design allowing inference of
sequential and combinational logic components.

38...

3.9timing arc: An abstract representation of a measurement between two points in time during operation of a
library component.

3.10...

IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 9

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

10

Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 7

4. Acronyms and abbreviations

This clause lists the acronyms and abbreviations used in this standard.

ALF
ASIC
AWE
BIST
BNF
CAE
CAM
CLF
CPU
DCL
DEF
DLL
DPCM
DPCS
DSP
DSPF
EDA
EDIF
HDL
IC
1P
ILM
LEF
LIB
LSSD
MPU
OLA
PDEF
PLL
PVT
QTM
RAM
RC
RICE
ROM
RSPF
RTL
SDF
sDC
SPEF
SPF
SPICE
STA

advanced library format, title of the herein proposed standard
application specific integrated circuit

asymptotic waveform evaluation

built-in salf test

Backus-Naur Form

computer-aided engineering [the term electronic design automation (EDA) is preferred]

content-addressable memory

Common Library Format from Avant! Corporation

central processing unit

Delay Calculation Language from |EEE 1481-1999 std

Design Exchange Format from Cadence Design Systems Inc.
delay-locked loop

Delay and Power Calculation Module from |EEE 1481-1999 std
Delay and Power Calculation System from | EEE 1481-1999 std
digital signal processor

Detailed Standard Parasitic Format

electronic design automation

Electronic Design Interchange Format

hardware description language

integrated circuit

intellectual property

Interface Logic Model from Synopsys Inc.

Library Exchange Format from Cadence Design Systems Inc.
Library Format from Synopsys Inc.

level-sensitive scan design

MiCro processor unit

Open Library Architecture from Silicon Integration Initiative Inc.
Physical Design Exchange Format from |EEE 1481-1999 std
Phase-locked loop

process/voltage/temperature (denoting a set of environmental conditions)
Quick Timing Model

random access memory

resistance times capacitance

rapid interconnect circuit eval uator

read-only memory

Reduced Standard Parasitic Format

Register Transfer Level

Standard Delay Format from |EEE 1497 std

Synopsys Design Constraint format from Synopsys Inc.
Standard Parasitic Exchange Format from |EEE 1481-1999 std
Standard Parasitic Format

Simulation Program with Integrated Circuit Emphasis

Static Timing Analysis

IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual

11

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

STAMP
TCL
TLF
VCD
VHDL
VHSIC
VITAL
VLS

12

(STA Model Parameter ?) format from Synopsys Inc.

Tool Command Language (supported by multiple EDA vendors)
Timing Library Format from Cadence Design Systems Inc.
Value Change Dump format (from |EEE 1364 std ?)

VHSIC Hardware Description Language

very-high-speed integrated circuit

VHDL Initiative Towards ASIC Libraries from IEEE ??? std
very-large-scale integration

Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 7

5. ALF language construction principles and overview

** Add lead-in text**

This section presents the ALF language construction principles and gives an overview of the language features.
The types of ALF statements and rules for parent/child relationships between types are presented summarily.
Most of the types are associated with predefined keywords. The keywords in ALF shall be case-insensitive.
However, uppercase is used for keywords throughout this section for clarity.

5.1 ALF meta-language

Syntax 1 establishes an ALF meta-language.

ALF_statement ::=
ALF _type[ALF_name] [= ALF _vaue] ALF_statement_termination
ALF type::=
non_escaped_identifier [index]
@
ALF_name::=
identifier [index]
| control_expression
ALF_value::=
identifier
| number
| arithmetic_expression
| boolean_expression
| control_expression
ALF_statement_termination ::=

|{{ALF_vaIue|I|; }
| {ALF_statement}]}

Syntax 1—Syntax construction for ALF meta-language

An ALF statement uses the delimiters“;”, “{* and “}” to indicate its termination.

The ALF typeis defined by akeyword (see 6.12) eventually in conjunction with an index (see 7.8) or by the oper-
ator “@" (6.4) or by the delimiter “:” (see 6.3). The usage of keyword, index, operator, or delimiter as ALF type
isdefined by ALF language rules concerning the particular ALF type.

The ALF name is defined by an identifier (see 6.11) eventually in conjunction with an index or by a control
expression (see 10.4). Depending on the ALF type, the ALF name is mandatory or optional or not applicable.
The usage of identifier, index, or control expression as ALF name is defined by ALF language rules concerning
the particular ALF type.

The ALF value is defined by an identifier, a number (see 6.5), an arithmetic expression (see 11.1), a boolean
expression (see 10.9), or a control expression. Depending on the type of the ALF statement, the ALF vaue is
mandatory or optional or not applicable. The usage of identifier, number, arithmetic expression, boolean expres-
sion or control expression as ALF valueis defined by ALF language rules concerning the particular ALF type.

An ALF statement can contain one or more other ALF statements. The former is called parent of the latter. Con-

versely, the latter is called child of the former. An ALF statement with child is called a compound ALF state-
ment.

IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 13

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

An ALF statement containing one or more ALF values, eventually interspersed with the delimiters “;” or “:”, is
called a semi-compound ALF statement. The items between the delimiters “{* and “}" are called contents of the
ALF statement. The usage of the delimiters “;” or “:” within the contents of an ALF statement isdefined by ALF
language rules concerning the particular ALF statement.

An ALF statement without child is caled an atomic ALF statement. An ALF statement which is either com-
pound or semi-compound is called anon-atomic ALF statement.

Examples

a) ALF statement describing an unnamed object without va ue:
ARBI TRARY_ALF_TYPE {
/1 put children here
}
b) ALF statement describing an unnamed object with value:
ARBI TRARY_ALF _TYPE = arbitrary_ALF val ue;
or
ARBI TRARY_ALF _TYPE = arbitrary_ALF val ue {
/1 put children here
}
c) ALF statement describing a named object without value:
ARBI TRARY_ALF _TYPE arbitrary_ALF_nane;
or
ARBI TRARY_ALF_TYPE arbitrary_ALF _name {
/1 put children here
}
d) ALF statement describing a named object with value:
ARBI TRARY_ALF_TYPE arbitrary_ALF_nane
or
ARBI TRARY_ALF _TYPE arbitrary ALF_name = arbitrary_ ALF_val ue {
/1 put children here

arbitrary_ ALF val ue;

}

5.2 Categories of ALF statements

In this section, the terms statement, type, name, value are used for shortnessin lieu of ALF statement, ALF name,
ALF value, respectively.

Statements are divided into the following categories: generic object, library-specific object, arithmetic model,

arithmetic submodel, arithmetic model container, geometric model, annotation, annotation container, and auxil-
iary statement, as shown in Table 2.

Table 2—Categories of ALF statements

Category Purpose Syntax particularity

Generic object Provide adefinition for use within other | Statement is atomic, semi-compound or com-
ALF statements. pound.

Name is mandatory.

Value is either mandatory or not applicable.

14 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

Table 2—Categories of ALF statements (Continued)

Category

Purpose

Syntax particularity

Library-specific object

Describe the contents of alC technology

Statement is atomic or compound.

specific measurement condition.

library. Name is mandatory.
Value does not apply.
Category of parent isexclusively
library-specific object.
Arithmetic model Describe an abstract mathematical quan- | Statement is atomic or compound.
tity that can be calculated and eventually | Nameisoptional.
measured within the design of an IC. Valueis mandatory, if atomic.
Arithmetic submodel Describe an arithmetic model under a Statement is atomic or compound.

Name does not apply.

Valueis mandatory, if atomic.
Category of parent isexclusively
arithmetic model.

Arithmetic model con-
tainer

Provide a context for an arithmetic
model.

Statement is compound.

Name and value do not apply.
Category of child isexclusively
arithmetic model.

Geometric model

Describe an abstract geometrical form
used in physical design of an IC.

Statement is semi-compound or compound.
Nameis optional.
Value does not apply.

Annotation

Provide aqualifier or aset of qualifiers
for an ALF statement.

Statement is atomic, semi-compound or com-
pound.

Name does not apply.

Valueis mandatory, if atomic or compound.
Value does not apply, if semi-compound.
Category of child isexclusively

annotation.

Annotation container

Provide a context for an annotation.

Statement is compound.

Name and value do not apply.
Category of child isexclusively
annotation.

Auxiliary statement

Provide an additional description within
the context of alibrary-specific object,
an arithmetic model, an arithmetic sub-
model, geometric model or another aux-
iliary statement.

Dependent on subcategory.

Figure 2 illustrates the parent/child relationship between categories of statements.

IEEE P1603 Draft 7

Advanced Library Format (ALF) Reference Manual

15

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

legend:
parent — > child
parent — — 3 child

no restrictive rules

with restrictive rules

|
|
arithmetic model container :

~

y
library-specific object

arithmetic model

auxiliary statement

generic object o

e

- \
- - * | \
arithmeticmodel <« | 1 _
s B -~ o~ v _ -geometric model
A - awiliary statement. _
[arithmetic submodel- , -
\ - -
- o
>
library-specific object ~a | annotation container

—® generic object
= 4

library-specific object

-~ » arithmetic model container

~ » arithmetic model

— = arithmetic submode

— . auxiliary statement

O - @nnotation container
A annotation

—® annotation
B> _

Figure 2—Parent/child relationship between ALF statements

More detailed rules for parent/child relationships for particular types of statements apply.

5.3 Generic objects and library-specific objects

Statements with mandatory name are called objects, i.e., generic object and library-specific object.

Table 3 lists the keywords and items in the category generic object. The keywords used in this category are

called generic keywords.

Table 3—Generic objects

Keyword

Item

Section

ALl AS

16

Alias declaration

Advanced Library Format (ALF) Reference Manual

See8.1.

IEEE P1603 Draft 7

Table 3—Generic objects (Continued)

Keyword Item Section
CONSTANT Constant declaration See 8.2.
CLASS Class declaration See 8.6.
GROUP Group declaration See 8.8.
KEYWORD Keyword declaration See 8.3.
SEVANTI CS Semantics declaration See 8.4.
TEMPLATE Template declaration See 8.9.

Table 4—Library-specific objects

Keyword Item Section
LI BRARY Library declaration See9.1.
SUBLI BRARY Sublibrary declaration See9.1.
CELL Cell declaration See 9.3.
PRI M Tl VE Primitive declaration See 9.8.
W RE Wire declaration See 9.9.
PI'N Pin declaration See 9.5.
Pl NGROUP Pin group declaration See 9.6.
VECTOR Vector declaration See 9.13.
NODE Node declaration See9.11.
LAYER Layer declaration See 9.15.
VI A Viadeclaration See 9.17.
RULE Rule declaration See 9.19.
ANTENNA Antenna declaration See 9.20.
SITE Site declaration See 9.24.
ARRAY Array declaration See 9.26.
BLOCKAGE Blockage declaration See 9.21.
PORT Port declaration See 9.22.
PATTERN Pattern declaration See 9.28.
REG ON Region declaration See 9.30.

Table 4 lists the keywords and items in the category library-specific object. The keywords used in this category
are called library-specific keywords.

Figure 3 illustrates the parent/child relationship between statements within the category library-specific object.

IEEE P1603 Draft 7

Advanced Library Format (ALF) Reference Manual

17

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

library — = sublibrary

v

node

layer / \

wire cell

antenna pattern

port

primitive

sSte O\ / \1 ‘
vector pin pih-group pin
array
region /blockage
rule /

/ 'egend:
via parent ———>

child

Figure 3—Parent/child relationship amongst library-specific objects

A parent can have multiple library-specific objects of the same type as children. Each child is distinguished by

name.

5.4 Singular statements and plural statements

Auxiliary statements with predefined keywords are divided in the following subcategories: singular statement

and plural statement.

Aucxiliary statements with predefined keywords and without name are called singular statements. Auxiliary state-
ments with predefined keywords and with name, yet without value, are called plural statements.

Table5 liststhe singular statements.

Table 5—Singular statements

Keyword Item Value Complexity Section
FUNCTI ON Function statement N/A Compound See 10.1.
TEST Test statement N/A Compound See 10.2.
RANGE Range statement N/A Semi-compound See 10.8.
FROM From statement N/A Compound See 11.12.
TO To statement N/A Compound See 11.12.

18 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

Table 5—Singular statements (Continued)

10

15

20

25

Keyword Item Value Complexity Section
VI OLATI ON Violation statement N/A Compound See 11.10.
HEADER Header statement N/A Compound (or semi-compound?) See 11.3.1.
TABLE Table statement N/A Semi-compound See 11.3.2.
EQUATI ON Equation statement N/A Semi-compound See 11.3.3.
BEHAVI OR Behavior statement N/A Compound See 10.4.
STRUCTURE Structure statement N/A Compound See 10.5.
NON_SCAN_CELL Non-scan cell statement | Optional Compound or semi-compound See 10.7.
ARTWORK Artwork statement Mandatory Compound or atomic See 9.38.
Table 6 lists the plural statements.
Table 6—Plural statements
Keyword Item Name Complexity Section
STATETABLE State table statement Optional Semi-compound See 10.6.
@ Control statement Mandatory Compound See 10.4.
Alternative control statement Mandatory Compound See 10.4.
Figure 4 illustrates the parent/child relationship for singular statements and plural statements.
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 19

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

primitive cell p pin
non-scan cell
artwork
function test range
/ violation<e— grjthmetic model from
structure
¢ ¢ ':: to
¢ e& L arithmetic submodel | |— = header
statetable behavior table
—arithmetic submo —— equation
L
legend: -
control statement
—» child)
parent o —®alternative control statement

Figure 4—Parent/child relationship involving singular statements and plural statements

A parent can have at most one child of a particular type in the category singular statements, but multiple children
of aparticular type in the category plural statements.

5.5 Instantiation statement and assignment statement

Auxiliary statements without predefined keywords use the name of an object as keyword. Such statements are
divided in the following subcategories. instantiation statement and assignment statement.

Compound or semi-compound statements using the name of an object as keyword are called instantiation state-
ments. Their purpose is to specify an instance of the object.

Table 7 lists the instantiation statements.

Table 7—Instantiation statements

Item Name Value Section
Cell instantiation Optional N/A See9.4.
Primitive instantiation Optional N/A See 10.4.
Template instantiation N/A Optional See 8.10.
Viainstantiation Mandatory N/A See 9.20.
Wire instantiation Mandatory N/A Proposed for |IEEE.

20 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

Atomic statements without name using an identifier as keyword which has been defined within the context of
another object are called assignment statements. A value is mandatory for assignment statements, as their pur-
poseisto assign avaue to the identifier. Such an identifier is called avariable.

Table 8 lists the assignment statements.

Table 8—Assignment statements

Item Section
Pin assignment See 7.10.
Arithmetic assignment See 8.10.
Boolean assignment See 10.4.

Figure 5 illustrates the parent/child relationship involving instantiation and assignment statements.

legend:

behavior parent ——® child no restrictive rules

parent = — —# child with restrictive rules

L primitiveinstantiation——)
- boolean assignment

—® control statement

—®alternative control statement ——
generic object

library-specific object ™
: TN A
sngular statement " A
non-scan cell structure T - templateinstantiation
I plural statement -
| . . - - » !
| y/ arithmetic model 4 |
~
artwork . cell instantiation ~ / arithmetic submodel” _ v \
\ v ¢ ’/ arithmetic model container arithmetic assignment

pin assignment e—Wwire instantiation

Figure 5—Parent/child relationship involving instantiation and assignment statements

A parent can have multiple children using the same keyword in the category instantiation statement, but at most
one child using the same variable in the category assignment statement.

5.6 Annotation, arithmetic model, and related statements

Multiple keywords are predefined in the categories arithmetic model, arithmetic model container, arithmetic
submodel, annotation, annotation container, and geometric model. Their semantics are established within the

IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 21

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

context of their parent. Therefore they are called context-sensitive keywords. In addition, the ALF language
allows additional definition of keywords in these categories.

Table 9 provides areference to sections where more definitions about these categories can be found.

Table 9—Other categories of ALF statements

Item Section
Arithmetic model See 11.3.
Arithmetic submodel See 11.7.

Arithmetic model container See 11.8.

Annotation See 7.11.
Annotation container See7.12.
Geometric model See 9.35.

There exist predefined keywords with generic semantics in the category annotation and annotation container.
They are called generic keywords, like the keywords for generic objects.

Table 10 lists the generic keywords in the category annotation and annotation container.

Table 10—Annotations and annotation containers with generic keyword

Keyword Item / subcategory Section
PROPERTY Annotation container. See 7.14.
ATTRI BUTE Multi-value annotation. See7.13.
| NFORVMATI ON Annotation container. See9.2.2.

Table 11 lists predefined keywords in categories related to arithmetic model.

Table 11—Keywords related to arithmetic model

Keyword Item / category Section
LIMT Arithmetic model container. See11.8.2.
M N Arithmetic submodel, also operator within arithmetic expression. See11.7,11.2.3.
MAX Arithmetic submodel, also operator within arithmetic expression. See11.4.4,11.2.3.
TYP Arithmetic submodel. See 115.
DEFAULT Annotation. See11.9.4.
ABS Operator within arithmetic expression. See11.2.3.
EXP Operator within arithmetic expression. See11.2.3.

22 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

Table 11—Keywords related to arithmetic model (Continued)

Keyword Item / category Section
LOG Operator within arithmetic expression. See11.2.3.

The definitions of other predefined keywords, especially in the category arithmetic model, can be self-described
in ALF using the keyword declaration statement (see 8.3).

5.7 Statements for parser control

Table 12 provides areference to statements used for ALF parser control.

Table 12—Statements for ALF parser control

Keyword Satement Section
I NCLUDE Include statement See 7.15.
ASSCCI ATE Associate statement See 7.16.
ALF_REVI SI ON Revision statement See 7.17.

The statements for parser control do not necessarily follow the ALF meta-language shown in Syntax 1.

5.8 Name space and visibility of statements

The following rules for name space and visibility shall apply:

a)
b)
0)

d)

A statement shall be visible within its parent statement, but not outside its parent statement.

A statement visible within another statement shall also be visible within a child of that other statement.
All objects (i.e., generic objects and library-specific objects) shall share a common name space within
their scope of visibility. No object shall use the same name as any other visible object. Conversely, an
object can use the same name as any other object outside the scope of itsvisibility.

The following exception of rule) is allowed for specific objects and with specific semantic implica-
tions. An abject of the same type and the same name can be redeclared, if semantic support for this
redeclaration is provided. The purpose of such aredeclaration is to supplement the original declaration
with new children statements which augment the original declaration without contradicting it.

All statements with optional names (i.e., property, arithmetic model, geometric model) shall share a com-
mon name space within their scope of visibility. No statement with optional name shall use the same
name as any other visible statement with optional name. Conversely, a statement can use the same
optional name as any other statement with optional name outside the scope of its visibility.

IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 23

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

24

Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 7

6. Lexical rules
This section discusses the lexical rules.

The ALF source text files shall be a stream of Iexical tokens and whitespace. Lexical tokens shall be divided into
the categories delimiter, operator, comment, number, bit literal, based literal, edge, quoted string, and identifier.

Each lexical token shall be composed of one or more characters. Whitespace shall be used to separate lexical
tokens from each other. Whitespace shall not be allowed within alexical token with the exception of comment
and quoted string.

The specific rules for construction of lexical tokens and for usage of whitespace are defined in this section.

6.1 Character set
This standard shall use the ASCI| character set [ISO 8859-1 : 1987(E)].

The ASCII character set shall be divided into the following categories: whitespace, |etter, digit, and special, as
shown in Syntax 2.

character ::=
whitespace
| letter
| digit
| special
whitespace ::=
space | vertical_tab | horizontal_tab | new_line | carriage_return | form_feed
letter ::=
uppercase | lowercase
uppercase ::=
AIBICIDIEIFIGIHITIJIKILIM INJOIPIQIRISITIUIV W
I X1Y|Z
lowercase ::= L.
; ?|b|0|d|e|f|g|h|llj|k|l|m|n|0|p|Q|r|S|t|U|V|W|X|y|z
igit ;1=
011121314,516,718]9
ia =

special ::
&1l =1+ 21 L =N\1.1$| |#
|(||£I|<||>I+|[||l]|l{||}| e L1 1@ 1= 1NV 1S |

Syntax 2—ASCII character set

Table 13 shows the list of whitespace characters and their ASCII code.

Table 13—List of whitespace characters

Name ASCII code (octal)
Space 200
Horizontal tab 011
New line 012
Vertical tab 013

IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 25

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

Table 13—List of whitespace characters (Continued)

Name ASCII code (octal)
Form feed 014
Carriage return 015

Table 14 shows the list of special characters and their names used in this standard

26

Table 14—List of special characters

Symbol

ASCII code (octal)

Name

Amperesand

Vertical bar

Caret

Tilde

Plus

Minus

Asterix

Slash

Percent

Question mark

Exclamation mark

Colon

Semicolon

Comma

Double quote

Single quote

At sign

Equal sign

Backslash

Dot

Dollar

Underscore

Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 7

Table 14—List of special characters (Continued)

Symbol ASCII code (octal) Name
Pound
() , Parenthesis (open, close)
< > , Angular bracket (open, close)
[]) Square bracket (open, close)
{ } , Curly bracket (open, close)

6.2 Comment

A comment shall be divided into the subcategories in-line comment and block comment, as shown in Syntax 3.

comment ::=
in_line_comment
| block_comment
in_line_comment ::=
| I{ character} new_line
|/ [{ character} carriage_return
block_comment ::=
| *{character} * |

Syntax 3—Comment

The start of an in-line comment shall be determined by the occurence of two subsequent slash characters without
whitespace in-between. The end of an in-line comment shall be determined by the occurence of anew line or of a
carriage return character.

The start of a block comment shall be determined by the occurence of a slash character followed by an asterix
without whitespace in-between. The end of a block comment shall be determined by the occurence of an asterix
character followed by a slash character.

A comment shall have the same semantic meaning as a whitespace. Therefore, no syntax rule shall involve a
comment.

6.3 Delimiter

The specia characters shown in Syntax 4 shall be considered delimiters.

delimiter ;=

(DI,

Syntax 4—Delimiter

When appearing in a syntax rule, a delimiter shall be used to indicate the end of a statement or of a partial state-
ment, the begin and end of an expression or of a partial expression.

IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 27

10

15

20

25

30

35

40

45

50

55

1

10

15

20

25

30

35

40

45

50

55

6.4 Operator

Operators shall be divided into the following subcategories: arithmetic operator, boolean operator, relational
operator, shift operator, event sequence operator, and meta operator, as shown in Syntax 5

operator ::=
arithmetic_operator

| boolean_operator

| relational _operator

| shift_operator

| event_sequence_operator

| meta_operator
arithmetic_operator ::=

L AR
boolean_operator ::=

E&II~& I~[I™ M~ 1 &]
relational _operator ::=

::|!_:|>:|<:|>|<
shift_operator ::=

<L |>>
event_sequence_operator ::=

S|~ <> <> &> <& >
meta_op)erator =

=1?71@

Syntax 5—Operator

When appearing in a syntax rule, an operator shall be used within a statement or within an expression. An opera-
tor with one operand shall be called unary operator. An unary operator shall precede the operand. An operator
with two operands shall be called binary operator. A binary operator shall succeed the first operand and precede
the second operand.

6.4.1 Arithmetic operator

Table 15 shows the list of arithmetic operators and their names used in this standard.

Table 15—List arithmetic operators

Symboal Operator name Unary / binary Section
+ Plus Binary See 10.11.4.
- Minus Both See 10.11.4.
* Multiply Binary See 10.11.4.
/ Divide Binary See 10.11.4.
% Modulo Binary See 10.11.4.
*% Power Binary See11.2.2.

Arithmetic operators shall be used to specify arithmetic operations.

28

Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 7

6.4.2 Boolean operator

Table 16 shows the list of boolean operators and their names used in this standard.

Table 16—List of boolean operators

Symbol Operator name Unary / binary Section
| Logical inversion Unary See 10.11.1.
& & Logical and Binary See 10.11.1.
|| Logical or Binary See10.11.1.
~ bit-wiseinversion Unary See 10.11.2.
& bit-wise and Both See10.11.2.
~& bit-wise nand Both See 10.11.2.
| bit-wise or Both See 10.11.2.
~| bit-wise nor Both See 10.11.2.
N Exclusive or Both See 10.11.2.
~N Exclusive nor Both See 10.11.2.
Boolean operators shall be used to specify boolean operations.
6.4.3 Relational operator
Table 17 shows the list of relational operators and their names used in this standard.
Table 17—List of relational operators
Symbol Operator name Unary / binary Section
== Equal Binary See 10.11.6.
1= Not equal Binary See 10.11.6.
> Greater Binary See 10.11.6.
< Lesser Binary See 10.11.6.
>= Gresater or equal Binary See 10.11.6.
<= Lesser or equal Binary See 10.11.6.

Relational operators shall be used to specify mathematical relationships between numerical quantities.

IEEE P1603 Draft 7

Advanced Library Format (ALF) Reference Manual

10

15

20

25

30

35

40

45

50

55

6.4.4 Shift operator

Table 18 shows the list of shift operators and their names used in this standard.

Table 18—List of shift operators

10

15

20

25

30

35

40

45

50

55

Symbol Operator name Unary / binary Section
<< Shift left Binary See 10.11.5.
>> Shift right Binary See 10.11.5.

Shift operators shall be used to specify manipulations of discrete mathematical values.

6.4.5 Event sequence operator

Table 19 shows the list of event sequence operators and their names used in this standard.

Table 19—List of event sequence operators

Symbol Operator name Unary / binary Section
> Immediately followed by Binary See 10.13.3.
~> Eventually followed by Binary See 10.13.3.
<-> Immediately following each other Binary See 10.13.4.
<~> Eventually following each other Binary See 10.13.4.
&> Simultaneous or immediately followed by Binary See 10.13.3.
<& > Simultaneous or immediately following each other Binary See 10.13.4.

Event sequence operators shall be used to express temporal relationships between discrete events.

6.4.6 Meta operator

Table 20 shows the list of meta operators and their names used in this standard.

Table 20—List of meta operators

Symbol Operator name Unary / binary Section
= Assignment Binary See 7.10, 8.10, 10.4.
? Condition Binary See 10.13.5.
@ Control Unary See 10.4.

30

Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 7

Meta operators shall be used to specify transactions between variables.

6.5 Number

Numbers shall be divided into subcategories signed integer, signed real, unsigned integer, and unsigned real.
Furthermore, the categories signed number, unsigned number, integer and real shall be defined as shown in
Syntax 6.

number ::=
signed_integer | signed_real | unsigned_integer | unsigned_real
signed_number ::=
signed_integer | signed_real
unsigned_number ::=
unsigned_integer | unsigned_real
integer ::=
signed_integer | unsigned_integer
signed_integer ::=
sign unsigned_integer
unsigned_integer ::=
digit {[_]digit}
real ::=
signed_rea | unsigned rea
signed_real ::=
sign unsigned_real
unsigned_real ::=
mantisse [exponent]
| unsigned_integer exponent
sign::=
+ |-
mantisse ::=
. unsigned_integer
| unsigned_integer . [unsigned_integer]
exponent ::=
E [sign] unsigned_integer
| €[sign] unsigned_integer

Syntax 6—Numbers

Numbers shall be used to represent numerical quantities.

6.6 Multiplier prefix symbol

A multiplier prefix symbol shall be defined as shown in Syntax 7.

The purpose of amultiplier prefix symbol is the specification of a multiplier for the base unit associated with an
arithmetic model (see Section 11.3). Only the leading characters of the multiplier prefix symbol shall be used for

identification of the corresponding number. Optional subsequent letters can be used to indicate the base unit. For
example, “pF” can be used to denote “ picofarad”, “MegaHZz” can be used to denote “megahertz”, etc.

IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 31

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

multiplier_prefix_symbol ::=

unit{:::
“ T(IK
% im
Ele
Gig
o
Nin
Pip
F |f

Z C o m =2

L

T

unity { letter} |K { letter} [M EG{ letter } |G { letter }
IM { letter} |U{ letter } |N{ letter } | P{ letter } | F{ letter }

Syntax 7—Multiplier prefix symbol

A multiplier prefix symbol shall relate to the International System of Units and Measurements [**_reference

needed **] as shown in Table 21.

Table 21—Multiplier prefix symbol and corresponding Sl-prefix

Lexical token Sl-prefix (symbol) | Sl-prefix (word) Numerical value

F f femto le-15
P p pico le-12
N n nano le-9
U V] micro le-6
M m milli le-3
unity 1 one 1

K k kilo le+3
MVEG M mega le+6
G G giga le+9

6.7 Bit literal

Bit literals shall be divided into the subcategories alphanumeric bit literal and symbolic bit literal, as shown in

Syntax 8.

Bit literals shall be used to specify scalar values within a boolean val ue system (see Section 10.10).

32 Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 7

bit_litera ::=
alphanumeric_hit_literal
| symbolic_bit_literal
aphanumeric_bit_literal
numeric_bit_literal
| alphabetic_hit_literal
numeric_bit_literal ::=

alphabetic_bit_literal ::=
X|1Z|L1H |UW
IX1z|I'1hjujw

symbolic_bit_literal ::=
?21*

Syntax 8—Bit literal

6.8 Based literal

Based literals shall be divided into subcategories binary based literal, octal based literal, decimal based literal,

and hexadecimal based literal, as shown in Syntax 9.

based literal ::=

binary_based_literal ::=

binary_base bit_literal { [_] bit_literal }
bi naré_base n=

1 I 1 b

octal_based_literal ::=
octal_base octal_digit { [__] octal_digit }
octal_base ::=
'‘Ol'o
octal_digit ::=
bit_literal | 2131415167
decimal_based literal ::=
decimal_basedigit{ [_] digit}
decima_base ::=
'‘D|'d
hexadecimal_based_literal ::=
hexadecimal_base hexadecimal _digit { [__] hexadecimal_digit }
hexadecimal _base ::=
'H|'h
hexadecimal_digit ::=
octal_digit|8]9
|A|B|?:AD|E|F
lajbicidie|f

binary_based_literal | octal_based literal | decimal_based_literal | hexadecimal _based_literal

Syntax 9—Based literal

Based literals shall be used to specify vectorized values within a boolean value system.

6.9 Edge literal

Edge literals shall be divided into subcategories bit edge literal, based edge literal, and symbolic edge literal, as

shown in Syntax 10.

IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual

33

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

edge literal ::=

bit_edge literal

| based_edge literal

| symbolic_edge litera
bit_edge literal ::=

bit_literal bit_literal
based_edge literal ::=

based_literal based | Iiteral
symbollc edg)e literal ::

Syntax 10—Edge literal
Edge literals shall be used to specify a change of value within a boolean system. In general, bit edge literals shall

specify achange of a scalar value, based edge literals shall specify a change of a vectorized value, and symbolic
edge literals shall specify a change of ascalar or of avectorized value.

6.10 Quoted string

A quoted string shall be a sequence of zero or more characters enclosed between two double quote characters, as
shown in Syntax 11.

quoted string ::
{ character}

Syntax 11—Quoted string

Within a quoted string, a sequence of characters starting with an escape character shall represent a symbol for
another character, as shown in Table 22.

Table 22—Character symbols within a quoted string

Symbol Character ASCII Code (octal)
\g Alert or bell. 007
\h Backspace. 010
\t Horizontal tab. 011
\n New line. 012
\v Vertical tab. 013
\ f Form feed. 014
\r Carriage return. 015
\ " Double quote. 042
\\ Backdlash. 134
\ digit digit digit ASCII character represented by three digit digit digit digit
octal ASCII code.

34 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

The start of a quoted string shall be determined by a double quote character. The end of a quoted string shall be
determined by a double quote character preceded by an even number of escape characters or by any other charac-
ter than escape character.

6.11 Identifier

Identifiers shall be divided into the subcategories non-escaped identifier, escaped identifier, placeholder identi-
fier, and hierarchical identifier, as shown in Syntax 12.

identifier ::=
non_escaped_identifier
| escaped_identifier
| placeholder_identifier
| hierarchical _identifier

Syntax 12—Identifier

Identifiers shall be used to specify a name of an ALF statement or a value of an ALF statement. Identifiers can
also appear in an arithmetic expression, in a boolean expression, or in avector expression, referencing an already
defined statement by name.

A lowercase character used within a keyword or within an identifier shall be considered equivalent to the corre-
sponding uppercase character. This makes ALF case-insensitive. However, wherever an identifier is used to
specify the name of a statement, the usage of the exact letters shall be preserved by the parser to enable usage of
the same name by a case-sensitive application.

6.11.1 Non-escaped identifier

A non-escaped identifier shall be defined as shown in Syntax 13.

non_escaped_identifier ::=
letter { letter |digit| | B|#}

Syntax 13—Non-escaped identifier

A non-escaped identifier shall be used, when there is no lexical conflict, i.e., no appearance of a character with
special meaning, and no semantic conflict, i.e., theidentifier is not used elsewhere as a keyword.

6.11.2 Escaped identifier

An escaped identifier shall be defined as shown in Syntax 14.

escaped_identifier ::=

\ escapable_character { escapable_character }
escapable_character ::=

letter | digit | specia

Syntax 14—Escaped identifier

An escaped identifier shall be used, when thereisalexical conflict, i.e., an appearance of acharacter with special
meaning, or a semantic conflict, i.e., the identifier is used el sewhere as a keyword.

IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 35

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

6.11.3 Placeholder identifier

A placeholder identifier shall be defined as a non-escaped identifier enclosed by angular brackets without
whitespace, as shown in Syntax 15.

placeholder_identifier ::=
< non_escaped_identifier >

Syntax 15—Placeholder identifier

A placeholder identifier shall be used to represent aformal parameter in atemplate statement (see 8.9), whichis
to be replaced by an actua parameter in atemplate instantiation statement (see 8.10).

6.11.4 Hierarchical identifier

A hierarchical identifier shall be defined as shown in Syntax 16.

hierarchical_identifier ::=
identifier [\] . identifier

Syntax 16—Hierarchical identifier

A hierarchical identifier shall be used to specify a hierarchical name of a statement, i.e., the name of a child pre-
ceded by the name of its parent. A dot within a hierarchical identifier shall be used to separate a parent from a
child, unless the dot is directly preceded by an escape character.

Example
\id1l.id2.\id3 isahierarchical identifier, whereid2 isachild of \id1, and \id3 isachild of id2.
id1\.id2\id3 isahierarchical identifier, where\id3 isachild of “id1.id2".

id1\.id2\.id3 specifies the pseudo-hierarchical name “id1.id2.id3".

6.12 Keyword

Keywords shall be lexically equivalent to non-escaped identifiers. Predefined keywords are listed in Table 3 —
Table 6 and Table 10 — Table 12. Additional keywords are predefined in 8.3.

The predefined keywords in this standard shall follow a more restrictive lexical rule than general non-escaped
identifiers, as shown in Syntax 17.

keyword_identifier ::=
letter { [_] letter}

Syntax 17—Keyword

The reason for the more restrictive lexical rule is to encourage the use of words taken from a natural language as
keywords. Words in a natural language are constructed from lexical characters only, not from numbers. The
underscore can be used to indicate that there would be a whitespace or a dash in the word from the natural lan-

guage.

36 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

NOTE—This document presents keywords in all-uppercase letters for clarity.

6.13 Vector expression macro

A vector expression macro shall be defined as shown in Syntax 18.

Vector_expression_macro ::=
. non_escaped_identifier

Syntax 18—Vector expression macro

A vector expression macro shall be used as a substitution for a predefined vector expression (see Section 10.12).
The alias declaration (see Section 8.1) shall be used to establish the substitution mechanism.

6.14 Rules for whitespace usage
Whitespace shall be used to separate lexical tokens from each other, according to the following rules:

a) Whitespace before and after a delimiter shall be optional.

b) Whitespace before and after an operator shall be optional.

¢) Whitespace before and after a quoted string shall be optional.

d) Whitespace before and after acomment shall be mandatory. Thisrule shall override @), b), and c).

€) Whitespace between subsequent quoted strings shall be mandatory. This rule shall override c).

f) Whitespace between subsequent lexical tokens amongst the categories number, bit literal, based literal,
and identifier shall be mandatory.

0) Whitespace before and after a placeholder identifier shall be mandatory. This rule shall override @), b),
and c).

h) Whitespace after an escaped identifier shall be mandatory. This rule shall override a), b), and c).

i) Either whitespace or delimiter before a signed number shall be mandatory. This rule shall override a), b),
and c).

j) Either whitespace or delimiter before a symbolic edge literal shall be mandatory. This rule shall override
a), b), and c).

Whitespace before thefirst lexical token or after the last lexical token in afile shall be optional. Hencein all rules
prescribing mandatory whitespace, “before” shall not apply for the first lexical token in afile, and “after” shall
not apply for the last lexical token in afile.

6.15 Rules against parser ambiguity

In asyntax rule where multiple legal interpretations of alexical token are possible, the resulting ambiguity shall
be resolved according to the following rules:

a) Inacontext where both bit literal and identifier arelegal, anon-escaped identifier shall take priority over
asymbolic bit literal.

b) In acontext where both bit literal and number are legal, an unsigned integer shall take priority over a
numeric bit literal.

¢) Inacontext where both edge literal and identifier are legal, a non-escaped identifier shall take priority
over abit edgeliteral.

d) Inacontext where both edge literal and number are legal, an unsigned integer shall take priority over a
bit edge literal.

If the interpretation as bit literal isdesired in case @) or b), a based literal can be substituted for a bit literal.

IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 37

10

15

20

25

30

35

40

45

50

55

1

10

15

20

25

30

35

40

50

55

If the interpretation as edge literal isdesired in case c) or d), a based edge literal can be substituted for abit edge

literal.

38

Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 7

7. Auxiliary syntax rules

This section specifies auxiliary syntax rules which are used to build other syntax rules.

7.1 All-purpose value

An all-purpose value shall be defined as shown in Syntax 19.

al_purpose vaue::=
number
| identifier
| quoted_string
| bit_literal
| based_literal
| edge _value
| pin_variable
| control_expression

Syntax 19—All purpose value

7.2 Multiplier prefix value

A multiplier prefix value shall be defined as shown in Syntax 20.

multiplier_prefix_value ::=
unsigned_number | multiplier_prefix_symbol

Syntax 20—Multiplier prefix value

The multiplier prefix value shall be represented either as an unsigned number (see Section 6.5) or a multiplier
prefix symbol (see Section 6.6).

7.3 String value

A string value shall be defined as shown in Syntax 21.

string_value ::=
quoted_string | identifier

Syntax 21—String value

A string value shall represent textual datain general and the name of areferenced object in particular.

7.4 Arithmetic value

An arithmetic value shall be defined as shown in Syntax 22.

arithmetic_value ::=
number | identifier | bit_literal | based literal

Syntax 22—Arithmetic value

IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 39

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

An arithmetic value shall represent data for an arithmetic model or for an arithmetic assignment. Semantic
restrictions apply, depending on the particular type of arithmetic model.

7.5 Boolean value

A boolean value shall be defined as shown in Syntax 23.

boolean value::=
aphanumeric_bit_literal | based_literal | integer

Syntax 23—Boolean value

A boolean value shall represent the contents of a pin variable (see 7.9).

7.6 Edge value

An edge value shall be defined as shown in Syntax 24.

edge vaue::=
(‘edge literal)

Syntax 24—Edge value

An edge value shall represent a standalone edge literal that is not embedded in a vector expression.

7.7 Index value

An index value shall be defined as shown in Syntax 25.

index_value ::=
unsigned_integer | identifier

Syntax 25—Index value

An index value shall represent a particular position within a vector pin (see 9.5). The usage of identifier shall
only be allowed, if that identifier represents a constant (see 8.2) with a value of the category unsigned integer.

7.8 Index

An index shall be defined as shown in Syntax 26.

index ::=
single_index | multi_index
single index ::=
T index_value
multi_index ::=
index_value . index_value]

Syntax 26—Index

40 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

An index shall be used in conjunction with the name of a pin or a pingroup. A single index shall represent a par-
ticular scalar within a one-dimensional vector or a particular one-dimensional vector within a two-dimensional
matrix. A multi index shall represent a range of scalars or a range of vectors, wherein the most significant bit
(MSB) is specified by the left index value and the least significant bit (L SB) is specified by the right index value.

7.9 Pin variable and pin value

A pin variable and a pin value shall be defined as shown in Syntax 27.

pin_variable ::=
pin_variable_identifier [index]
pin_value ::=
pin_variable | boolean_value

Syntax 27—~Pin variable, pin-port variable and pin value

A pinvariable shall represent one of the following:
the name of a declared pin (see Section 9.5) in conjunction with an optional index (see Section 7.8),
the name of a declared pingroup (see Section 9.6) in conjunction with an optional index,
the name of a declared node (see Section 9.11), or
the name of a declared port (see Section 9.22) as a child of ascaar pin.

A pin value can be a pin variable or a boolean value (see Section 7.5).

7.10 Pin assignment

A pin assignment shall be defined as shown in Syntax 28.

pin_assignment ::=
pin_variable = pin_value,

Syntax 28—Pin assignment

A pin assignment shall represent an association between a pin variable and a pin value. The following rules
define the compatibility between a pin variable and a pin value.

a) The bitwidth of the pin value shall be equal to the bitwidth of the pin variable.

b) A bitliteral or abased literal representing a single bit can be assigned to a scalar pin.

¢) A based literal or an unsigned integer, representing a binary number can be assigned to a pingroup, to a
vector pin, or to aone-dimensional slice of amatrix pin.

7.11 Annotation

An annotation shall be divided into the subcategories single value annotation and multi value annotation, as
shown in Syntax 29

An annotation shall represent an association between an identifier and a set of annotation values (values for
shortness). In case of asingle value annotation, only one value shall belegal. In case of amulti value annotation,
one or more values shall be legal. The annotation shall serve as a semantic qualifier of its parent statement. The
value shall be subject to semantic restrictions, depending on the identifier.

IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 41

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

annotation ::=
single_value_annotation
| multi_value_annotation
single_value_annotation ::=
annotation_identifier = annotation_value ;
annotation_value ::=
number
| identifier
| quoted_string
| bit_literal
| based_literal
| edge value
| pin_variable
| control_expression
| boolean_expression
| arithmetic_expression
multi_value_annotation ::=
annotation_identifier { annotation_value{ annotation_value} }

Syntax 29—Annotation

The annotation identifier can be akeyword used for the declaration of an object (i.e., ageneric object or alibrary-
specific object). An annotation using such an annotation identifier shall be called a reference annotation. The
annotation value of areference annotation shall be the name of an object of matching type. A reference annota-
tion can be a single-value annotation or a multi-value annotation. The semantic meaning of a reference annota-
tion shall be defined in the context of its parent statement.

7.12 Annotation container

An annotation container shall be defined as shown in Syntax 30

annotation_container ::=
annotation_container_identifier { annotation { annotation} }

Syntax 30—Annotation container
An annotation container shall represent a collection of annotations. The annotation container shall serve as a
semantic qualifier of its parent statement. The annotation container identifier shall be a keyword. An annotation
within an annotation container shall be subject to semantic restrictions, depending on the annotation container
identifier.
7.13 ATTRIBUTE statement

An attribute statement shall be defined as shown in Syntax 31.

attribute ::=
ATTRIBUTE { identifier { identifier} }

Syntax 31—ATTRIBUTE statement

The attribute statement shall be used to associate arbitrary identifiers with the parent of the attribute statement.
Semantics of such identifiers can be defined depending on the parent of the attribute statement. The attribute
statement has a similar syntax definition as a multi-value annotation (see 7.11). While a multi-value annotation

42 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

can have restricted semantics and a restricted set of applicable values, identifiers with and without predefined
semantics can co-exist within the same attribute statement.

Example

CELL myRAMBx128 {
ATTRI BUTE { rom asynchronous static }
}

7.14 PROPERTY statement

A property statement shall be defined as shown in Syntax 32.

proE)erty = o _ '
ROPERTY [identifier] { annotation { annotation} }

Syntax 32—PROPERTY statement

The property statement shall be used to associate arbitrary annotations with the parent of the property statement.
The property statement has a similar syntax definition as an annotation container (see 7.12). While the keyword
of an annotation container usually restricts the semantics and the set of applicable annotations, the keyword
“property” does not. Annotations shall have no predefined semantics, when they appear within the property
statement, even if annotation identifiers with otherwise defined semantics are used.

Example

PROPERTY mnyProperties {
paranmeterl = val uel ;
paranmeter2 = val ue2 ;
paranmeter3 { val ue3 val ued4 val ue5 }

7.15 INCLUDE statement

Aninclude statement shall be defined as shown in Syntax 33.

include ::=

INCLUDE quoted_string ;

Syntax 33—INCLUDE statement

The quoted string shall specify the name of afile. When the include statement is encountered during parsing of a
file, the application shall parse the specified file and then continue parsing the former file. The format of the file
containing the include statement and the format of the file specified by the include statement shall be the same.

Example

LI BRARY nyLib {
I NCLUDE “tenpl ates.alf”;
I NCLUDE “technol ogy. al f”;
I NCLUDE “primitives.alf”;
I NCLUDE “wires.al f”;

IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 43

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

| NCLUDE “cells.alf”;
}

Note: The filename specified by the quoted string shall be interpreted according to the rules of the application and/or the oper-
ating system. The ALF parser itself shall make no semantic interpretation of the filename.

7.16 ASSOCIATE statement and FORMAT annotation

An associate statement shall be defined as shown in Syntax 34.

associate ::=
ASSOCIATE quoted_string ;
|ASSOCI AT E quoted_string { FORMAT_single value annotation }

Syntax 34—ASSOCIATE statement

The associate statement shall specify a relationship of the parent of the associate statement with an object
described in afile referenced by the quoted string. The format annotation shall specify the format of the associ-
ated file. In contrast to the include statement (see Section 7.15), the ALF parser is not expected to read the asso-
ciated file. The formal specification of the semantic validity of the association is beyond the scope of this
standard.

Using a keyword declaration (see Section 8.3) in conjunction with a context annotation (see Section 8.5.4), aval-
uetype annotation (see Section 8.5.1), a values annotation (see Section 8.5.2), and a default annotation (see
Section 8.5.3), the format annotation shall be defined as shown in Semantics 1.

KEYWORD FORMAT = singl e_val ue_annotation {
CONTEXT = ASSCCI ATE;
VALUETYPE = identifier;
VALUES { vhdl verilog c \c++ alf }
DEFAULT = al f;

}

Semantics 1—FORMAT annotation

The meaning of the annotation valuesis specified in the following Table 23.

Table 23—FORMAT annotation values

Annotation value Description
vhdl The associated fileisin aformat specified by the |IEEE 1076 std.
veril og The associated fileisin aformat specified by the |EEE 1364 std.
c The associated fileisin aformat specified by theANSI [** reference needed **]] std.
\c++ The associated fileisin aformat specified by the [** reference needed **] std.
al f The associated fileisin aformat specified by this standard

44 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

Note: The format annotation value does not specify the format version of the associated file. An application that can read the
associated file can obtain the version either from the associated fileitself or by other means of version control.

7.17 REVISION statement

A revision statement shall be defined as shown in Syntax 35

r

evision ::=
ALF_REVISION string_vaue

Syntax 35—Revision statement

A revision statement shall be used to identify the revision or version of the file to be parsed. One, and only one,
revision statement can appear at the beginning of an ALF file.

The set of legal string values within the revision statement shall be defined as shown in Table 24

Table 24—L egal string values within the REVISION statement

Sring value Revision or version
“1.1" Version 1.1 by Open Verilog International (OV1), released on April 6, 1999.
“2.0" Version 2.0 by Accellera, released on December 14, 2000.
“P1603. 2002- 10- 24" |EEE draft version as described in this document.
TBD |EEE 1603 release version.

The revision statement shall be optional, as the application program parsing the ALF file can provide other
means of specifying the revision or version of thefile to be parsed. If arevision statement is encountered while a
revision has already been specified to the parser (e.g. if an included fileis parsed), the parser shall be responsible
to decide whether the newly encountered revision is compatible with the originally specified revision and then
either proceed assuming the original revision or abandon.

This document suggests, but does not certify, that the |IEEE version of the ALF standard proposed herein be
backward compatible with the Accelleraversion 2.0 and the OV version 1.1.

7.18 Generic object

A generic object shall be defined as shown in Syntax 36.

generic_object ::=

alias_declaration

| constant_declaration

| class_declaration

| keyword_declaration

| semantics_declaration

| group_declaration

| template_declaration

Syntax 36—Generic object

IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 45

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

The syntax items introduced in Syntax 36 are defined in Section 8.

7.19 Library-specific object

A library-specific object shall be defined as shown in Syntax 37.

library_specific_object ::=

library

| sublibrary

| cell

| primitive

| wire

| pin

| pingroup

| vector

| node

| layer

| via

| rule

| antenna

| site

| array

| blockage

| port

| pattern

| region

Syntax 37—Library-specific object

The syntax items introduced in Syntax 37 are defined in Section 9.

7.20 All purpose item

An all purpose item shall be defined as shown in Syntax 38.

al_purpose_item ::=
generic_object
| include_statement
| associate_statement
| annotation
| annotation_container
| arithmetic_model
| arithmetic_model _container
| all_purpose_item_template_instantiation

Syntax 38—All purpose item

The syntax items introduced in Syntax 38 are defined in this Section 7, in Section 8 and in Section 11.

46 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

8. Generic objects and related statements

** Add lead-in text**

8.1 ALIAS declaration

An alias shall be declared as shown in Syntax 39.

alias declaration ::=
AL ASalias identifier = original_identifier ;
|ALTAS vector_expression_macro = (vector_expression)

Syntax 39—ALIAS declaration

The alias declaration shall specify an alias identifier (see Section 6.11) or a vector expression macro (see
Section 6.13).

The alias identifier can be used as a substitution of an original identifier, used to specify a name or avalue of an
ALF statement. The alias identifier shall be semantically interpreted in the same way asthe original identifier.

The vector expression macro can be used as a substitution of a vector expression.
Example

ALI AS reset = clear;
ALI AS #.rising_edge = (01 clock);

8.2 CONSTANT declaration

A constant shall be declared as shown in Syntax 40.

constant_declaration ::=

CONSTANT constant_identifier = constant_value ;
constant_value ::=

number | based_literal

Syntax 40—CONSTANT declaration

The constant declaration shall specify an identifier which can be used instead of a constant value, i.e., a number
or abased literal. The identifier shall be semantically interpreted in the same way as the constant value.

Example

CONSTANT vdd = 3. 3;
CONSTANT opcode = ‘ hOf 3a;

8.3 KEYWORD declaration

A keyword shall be declared as shown in Syntax 41.

IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 47

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

keyword declaration ::=
KEYWORD keyword_identifier = syntax_item identifier ;
| KEYWORD keyword_identifier = syntax_item_identifier { { keyword_item} }
keyword_item ::=
VALUETYPE_single value_annotation
| VALUES multi_value_annotation
| DEFAULT_single value_annotation
| CONTEXT_annotation
| REFERENCETYPE_annotation
| S_MODEL_single value annotation

Syntax 41—KEYWORD declaration
A keyword declaration shall be used to define a new keyword in a category or in a subcategory of ALF state-
ments specified by a syntax item identifier. One or more annotations (see 8.5) can be used to qualify the contents
of the keyword declaration.

A legal syntax item identifier shall be defined as shown in Table 25.

Table 25—Syntax item identifier

Syntax item identifier Semantic meaning
annotation The keyword shall specify an annotation (see 7.11).
si ngl e_val ue_annot ati on The keyword shall specify a single value annotation (see 7.11).
mul ti_val ue_annotation The keyword shall specify amulti-value annotation (see 7.11).
annot at i on_cont ai ner The keyword shall specify an annotation container (see 7.12).
arithmetic_nodel The keyword shall specify an arithmetic model (see 11.3).
arithmetic_subnodel The keyword shall specify an arithmetic submodel (see 11.7).
arithnetic_nodel _contai ner The keyword shall specify an arithmetic model container (see 11.8).

8.4 SEMANTICS declaration

Semantics shall be declared as shown in Syntax 42—.

A semantics declaration shall be used to define context-specific rulesin a category or in a subcategory of ALF
statements. The semantics item identifier shall make reference to alegal ALF statement or to a category or sub-

category of legal ALF statements.

The semantics identifier shall be akeyword identifier or a syntax item identifier or a hierarchical identifier. The
hierarchical identifier can be composed of one or more keyword identifiers and/or syntax item identifiers.

If the ALF type of the referenced ALF statement is annot ati on, the optional syntax item identifier
si ngl e_val ue_annot ationornul ti _val ue_annot ati on can be used.

48 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

semanics_declaration ::=
SEMANT | CS semantics_identifier = syntax_item identifier ;
| SEMANT I CS semantics_identifier [= syntax_item_identifier] { { semantics_item} }
semantics _item ;=
VALUES multi_value_annotation
| DEFAULT _single_value_annotation
| CONTEXT_annotation
| REFERENCETYPE_annotation
| S_MODEL_single_value_annotation

Syntax 42—SEMANTICS declaration

A semantic item can be used to qualify the contents of the semantics declaration. One or more annotations (see
8.5) can be used to qualify the contents of the semantics declaration.

8.5 Annotations and rules related to a KEYWORD or a SEMANTICS declaration
This subsection defines annotations which can be used as legal children of akeyword or a semantics declaration.
8.5.1 VALUETYPE annotation

The valuetype annotation shall be a single value annotation. The set of legal values shall depend on the syntax
item identifier associated with the keyword declaration, as shown in Table 26.

Table 26—VALUETYPE annotation

Default value
Syntax item identifier Set \O/XI??J&IE¥%%§f0r for Comment
VALUETYPE
annot ati on number, identifier See Syntax 29, defi-
orsi ngl e_val ue_annot ati on si gned_i nt eger, nition of annotation
ornul ti_val ue_annot ati on unsi gned_i nt eger, value.
signed_real,
unsi gned_real ,
identifier,
guot ed_stri ng,
edge_val ue,
pi n_vari abl e,
cont r ol _expressi on,
bool ean_expr essi on,
arithmetic_expression.
annot ati on_cont ai ner N/A N/A An annotation con-
tainer (see
Syntax 30) has no
vaue.
ari thnmeti c_nodel nunber, nunber See Syntax 22, defi-
si gned_i nt eger, nition of arithmetic
unsi gned_i nt eger, value.
signed_real,
unsi gned_real ,
identifier,
bit literal,
based literal.

IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 49

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

Table 26—VALUETYPE annotation (Continued)

Default value
for Comment
VALUETYPE

Set of legal valuesfor

Syntax item identifier VALUETYPE

arithneti c_subnodel N/A N/A An arithmetic sub-
model (see 11.7)
shall aways have
thesameval ue-
t ype asits parent
arithmetic model.

arithmetic_nodel cont ai ner N/A N/A An arithmetic model
container (see 11.8)
has no value.

The valuetype annotation shall specify the category of legal ALF values applicable for an ALF statement whose
ALF typeis given by the declared keyword.

The valuetype annotation can be partially self-described as shown in Semantics 2.

KEYWORD VALUETYPE = singl e_val ue_annotati on {
CONTEXT = KEYWORD;
}

Semantics 2—Partial self-description of VALUETYPE annotation
Example:
This example shows a correct and an incorrect usage of adeclared keyword with specified valuetype.
KEYWORD Greeting = annotation { VALUETYPE = identifier ; }
CELL celll { Geeting = H There ; } // correct
CELL cell2 { Geeting = “H There” ; } // incorrect

Thefirst usageis correct, since Hi Ther e isan identifier. The second usage isincorrect, since“ Hi There” is
aquoted string and not an identifier.

8.5.2 VALUES annotation
The values annotation shall be a multi value annotation. It shall be applicable in the case where the valuetype
annotation is also applicable. The values annotation shall specify a discrete set of legal values applicable for an

ALF statement using the declared keyword. The values annotation and the val uetype annotation shall be compatible.

The values annotation can be partially self-described as shown in Semantics 3.

KEYWORD VALUES = nul ti _val ue_annotation {
CONTEXT { KEYWORD SENMANTI CS }

}

Semantics 3—Partial self-description of VALUES annotation

50 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

Example:
This example shows a correct and an incorrect usage of a declared keyword with specified valuetype and values.

KEYWORD Greeting = annotation {
VALUETYPE = identifier ;
VALUES { Hi There Hell o HowboYouDo }
}
CELL cell3 { Geeting
CELL cell 4 { Geeting

Hello ; } /I correct
GoodBye ; } // incorrect

The first usageis correct, since Hel | o is contained within the set of values. The second usage isincorrect, since
GoodBye is not contained within the set of values.

8.5.3 DEFAULT annotation

The default annotation shall be a single value annotation applicable in the case where the valuetype annotation is
also applicable. Compatibility between the default annotation, the valuetype annotation, and the values annota-
tion shall be mandatory.

The default annotation shall specify a presumed value in absence of an ALF statement specifying avalue.

A partial self-description of the default annotation is given in Semantics 4.

KEYWORD DEFAULT = singl e_val ue_annotati on {
CONTEXT { KEYWORD SEMANTI CS arithnetic_nodel }

}

Semantics 4—Partial self-description of DEFAULT annotation

A default annotation shall also be applicable for an arithmetic model (see 11.3 and 11.9.4).
Example:
KEYWORD Greeting = annotation {
VALUETYPE = identifier ;

VALUES { Hi There Hell o HowDoYouDo }
DEFAULT = Hello ;

i:ELL cell5{ /* no Geeting */ }
In this example, the absence of aG eet i ng statement is equivalent to the following:
CELL cell5 { Geeting = Hello ; }
8.5.4 CONTEXT annotation
The context annotation shall be a single value annotation or a multi value annotation. It shall specify the ALF

type of alegal parent of the statement using the declared keyword. The ALF type of alegal parent can be a pre-
defined keyword or a declared keyword.

IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 51

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

A hierarchical identifier can be used to specify the ALF type of alegal parent of the statement, constraint by the
ALF type of the grandparent or by the ALF type of the great-grandparent etc.

A partial self-description of the context annotation is given in Semantics 5.

KEYWORD CONTEXT = annotation {
VALUETYPE = identifier;

}

Semantics 5—Partial self-description of CONTEXT annotation

Example:

KEYWORD Li braryQual ifier = annotation { CONTEXT { LIBRARY SUBLI BRARY } }
KEYWORD Cel | Qualifier = annotation { CONTEXT = CELL ; }
KEYWORD Pi nQualifier = annotation { CONTEXT = PIN ; }
LI BRARY |ibraryl {
Li braryQualifier = foo ; // correct
CELL cell1 {
CellQualifier = bar ; // correct
PinQualifier = foobar ; // incorrect
}
}

The following change would |egalize the example above:

KEYWORD Pi nQual ifier = annotation { CONTEXT { PIN CELL } }
The following example shows the use of an hierarchical identifier.

KEYWORD PrimitivePinQualifier = annotation { CONTEXT = PRIMTIVE. PIN ; }
8.5.5 REFERENCETYPE annotation
The referencetype annotation shall be a single value annotation or a multi value annotation. The referencetype
annotation shall belegal if the syntax item identifier in the keyword declaration is annotation, single value anno-

tation or multi value annotation.

A partial self-description of the referencetype annotation is given in Semantics 6.

KEYWORD REFERENCETYPE = annotation {

CONTEXT { KEYWORD SEMANTI CS }

VALUES { CLASS LI BRARY SUBLI BRARY CELL PI N Pl NGROUP
PRI M TI VE W RE NODE VECTOR LAYER VI A RULE ANTENNA
BLOCKAGE PORT SI TE ARRAY PATTERN REGQ ON
arithmetic_nodel arithnetic_subnodel }

}

Semantics 6—Partial self-description of REFERENCETYPE annotation

52 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

The purpose of the referencetype annotation isto specify the ALF type of areferenced object. An object shall be
referenced by its ALF name or eventually by a hierarchical identifier involving the ALF name of the parent of
the object.

Example:
CLASS nyd ass;
KEYWORD myRef erence = single_value_annotation {
REFERENCETYPE = CLASS;
}
CELL nyCell {
nyRef erence = nyd ass;
}
In this example, the annotation “myReference” refersto an object of the ALF type“CLASS’ with the ALF name
“myClass’.
8.5.6 SI_MODEL annotation
The S-model annotation shall be a single value annotation. It shall specify arelation of a declared keyword with

the International System of Units and Measurements [** reference needed **]. The SI-model annotation is only
applicable for a keyword declaring an arithmetic model (see Section 11.3).

A self-description of the SI-model annotation is given in Semantics 7.

KEYWORD SI _MODEL = singl e_val ue_annotation {

CONTEXT = KEYWORD;
VALUETYPE = identifier;
VALUES {

TI ME FREQUENCY CURRENT VOLTAGE POWNER ENERGY
RESI STANCE CAPACI TANCE | NDUCTANCE
DI STANCE AREA

Semantics 7—SI| model annotation

The set of legal annotation values is shown in the following Table 27.

Table 27—SI_MODEL annotation

. mathematical . relationship with Referenceto arithmetic
annotation value base unit . .
symbol other quantity model declaration
TI ME t Second see Section 11.11.1
FREQUENCY f Hertz 1/t see
CURRENT | Ampere see
VOLTAGE \ Volt see
RESI STANCE R Ohm VIl see

IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 53

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

Table 27—SI_MODEL annotation (Continued)

annotation value mathematical base unit reIationshipvyith Referenceto arithmetic
symbol other quantity model declaration
CAPACI TANCE C Farad I/ (dV/ dt) see
| NDUCTANCE L Henry V/(dl/dt) see
ENERGY E Joule see
PONER P Watt 1V, dE/ dt See
DI STANCE d Meter See
AREA A Square meter | d? see

8.5.7 Rules for legal usage of KEYWORD and SEMANTICS declaration
The following rules shall apply for legal use of annotations within a keyword or a semantics declaration.

a) A keyword declaration can not overwrite, redefine, or otherwise invalidate a syntax rule.
b) A semantics declaration shall relate to a keyword declaration or a syntax rule. A semantics declaration
shall be compatible with arelated keyword declaration or arelated syntax rule.

Example:

KEYWORD myAnnot ati on = annotation {
VALUETYPE = identifier ;
VALUES { val uel val ue2 val ue3 val ue4 val ue5 }
CONTEXT { CELL PIN }

}

SEMANTI CS CELL. nyAnnotation = nulti_val ue_annotation {
VALUES { val uel val ue2 val ue3 }

}

SEMANTI CS PI N. nyAnnot ati on = single_val ue_annotation {
VALUES { val ue4 val ue5 }
DEFAULT = val ue4;

}

CELL nyCell {
myAnnot ati on { val uel val ue2 }
PIN myPin { myAnnotation = val ueb; }

8.6 CLASS declaration
A class shall be declared as shown in Syntax 43.
A class declaration shall be used to establish a semantic association between ALF statements, including, but not

restricted to, other class declarations. ALF statements shall be associated with each other, if they contain arefer-
ence to the same class. Such areference is made by a class reference annotation (see Section 8.7).

54 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

class_declaration ::=

CL ASSclass identifier :

| CLASS dlass identifier { { class item} }
class item::=

all_purpose_item

| geometric_model

| geometric_transformation

Syntax 43—CLASS declaration
The semantics specified by a class item within a class declaration shall be inherited by the statement containing

the reference. A class item can be an all purpose item (see Section 7.20), a geometric model (see Section 10.16)
or ageometric transformation (see Section 10.18).

8.7 Annotations related to a CLASS declaration

This subsection specifies how other objects can make a reference to a class by using either a general class refer-
ence annotation or a specific class reference annotation.

8.7.1 General CLASS reference annotation

A general class reference annotation shall be defined as shown in Semantics 8.

SEMANTI CS CLASS = annotation {
CONTEXT {
i brary_specific_object
arithmetic_nodel
}
VALUETYPE = identifier;
REFERENCETYPE = CLASS;

}

Semantics 8—CLASS reference annotation

Note: A class declaration itself can not contain a general class reference annotation. This avoids circular reference.
Example

CLASS \1stclass { ATTRIBUTE { everything } }
CLASS \ 2ndcl ass { ATTRIBUTE { nothing } }
CELL celll { CLASS = \1stclass; }

CELL cell2 { CLASS = \2ndcl ass; }

CELL cell 3 { CLASS { \1lstclass \2ndclass } }
/1l celll inherits “everything”

/1 cell2 inherits “nothing”

/1 cell3 inherits “everything” and “nothing”

Note: It is possible that a reference to multiple classes can result in the inheritance of semantically incompatible attributes. It
is expected that an ALF compiler or an ALF interpreter detects such semantic incompatibility. However, the behavior of an
application as a consequence of this detection is not specified by this standard, since the desired behavior can depend on the
nature of the application.

IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 55

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

8.7.2 USAGE annotation

The usage annotation shall be defined as shown in Semantics 9.

KEYWORD USAGE = annotation {

CONTEXT = CLASS;

VALUETYPE = identifier;

VALUES {
SWAP_CLASS RESTRI CT_CLASS
S| GNAL_CLASS SUPPLY_CLASS CONNECT_CLASS
SELECT_CLASS NODE_CLASS
EXI STENCE _CLASS CHARACTERI ZATI ON_CLASS
ORI ENTATI ON_CLASS SYMVETRY_CLASS

Semantics 9—USAGE annotation

The usage annotation shall specify, which specific class reference annotation can be legally used to make arefer-
ence to the class.

The set of legal annotation values is shown in the following Table 28.

Table 28—USAGE annotation

definition of specific

annotation value 8
classreference annotation

SWAP_CLASS see Section 9.4.3
RESTRI CT_CLASS see
SI GNAL_CLASS see
SUPPLY_CLASS see
CONNECT_CLASS see
SELECT_CLASS see
NODE_CLASS see
EXI STENCE_CLASS see

CHARACTERI ZATI ON_CLASS see

ORI ENTATI ON_CLASS see

SYMMETRY_CLASS see

Note: Knowing the ALF type of alegal parent of a specific class reference annotation, the ALF parser can evaluate the con-
tents of the class declaration for semantic correctness. If the usage annotation is not present, the ALF paraser can evaluate the
contents of the class declaration for semantic correctness only when encountering a reference to the class.

56 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

8.8 GROUP declaration

A group shall be declared as shown in Syntax 44.

group_declaration ::=
GROUP group_identifier { all_purpose value{ all_purpose value} }
| GROUP group_identifier { left_index_value : right_index_value

Syntax 44—GROUP declaration

A group declaration shall be used to specify the semantic equivalent of multiple similar ALF statements within a
single ALF statement. An ALF statement containing a group identifier shall be semantically replicated by substi-
tuting each group value for the group identifier, or, by substituting subsequent index values bound by the left
index value and by the right index value for the group identifier. The ALF parser shall verify whether each sub-
gtitution resultsin alegal statement.

The ALF statement which has the same parent as the group declaration shall be semantically replicated, if the
group identifier is found within the statement itself or within a child of the statement or within a child of a child
of the statement etc. If the group identifier is found more than once within the statement or within its children,
the same group value or index value per replication shall be substituted for the group identifier, but no additional
replication shall occur.

The group identifier (i.e., the name associated with the group declaration) can be re-used as hame of another
statement. As a conseguence, the other statement shall be interpreted as multiple statements wherein the group
identifier within each replication shall be replaced by the all-purpose value. On the other hand, no name of any
visible statement shall be allowed to be re-used as group identifier.

Examples
The following example shows substitution involving group values.

/1 statenent using GROUP:
CELL nyCell {
GROUP data { datal data2 data3 }
PIN data { DI RECTION = input ; }
}
/1 semantically equival ent statenent:
CELL nyCell {

PIN datal { DI RECTION = input ; }
PIN data2 { DIRECTION = input ; }
PIN data3 { DIRECTION = input ; }

}

The following example shows substitution involving index values.

/1 statenment using GROUP:
CELL nyCell {

GROUP datalndex { 1 : 3}

PIN[1:3] data { DIRECTION = input ; }

PIN clock { DIRECTION = input ; }

SETUP = 0.5 { FROM{ PIN = data[datalndex]; } TO{ PIN = clock ; } }
}

/1 semantically equival ent statenent:

IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 57

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

CELL nyCell {
GROUP datalndex { 1 : 3}
PIN[1:3] data { DIRECTION = input ; }
PIN clock { DIRECTION = input ; }

SETUP = 0.5 { FROM{ PIN = data[1]; } TO{ PIN=clock ; } }
SETUP = 0.5 { FROM{ PIN = data[2]; } TO{ PIN=clock ; } }
SETUP = 0.5 { FROM{ PIN = data[3]; } TO{ PIN=clock ; } }

}

The following example shows multiple occurrences of the same group identifier within a statement.

/1 statenent using GROUP:
CELL myCel I {
GROUP datalndex { 1 : 3}
PIN[1:3] Din { DDRECTION = input ; }
PIN[1:3] Dout { DIRECTION = input ; }
DELAY = 1.0 { FROM {PI N=Di n[dat al ndex];} TO {PI N=Dout [dat al ndex];} }
}
/1 semantically equival ent statenent:
CELL nyCell {
GROUP datalndex { 1 : 31}
PIN[1:3] Din { DDRECTION = input ; }
PIN[1:3] Dout { DIRECTION = input ; }

DELAY = 1.0 { FROM {PIN=Din[1];} TO {PIN=Dout[1];} }
DELAY = 1.0 { FROM {PIN=Din[2];} TO {PIN=Dout[2];} }
DELAY = 1.0 { FROM {PIN=Din[3];} TO {PIN=Dout[3];} }

8.9 TEMPLATE declaration

A template shall be declared as shown in Syntax 45.

template declaration ::=
EMPLATE template_identifier { ALF_statement { ALF_statement } }

Syntax 45—TEMPLATE declaration

A template declaration shall be used to specify one or more ALF statements with variable contents that can be
used many times. A template instantiation (see 8.10) shall specify the usage of such an ALF statement. Within
the template declaration, the variable contents shall be specified by a placeholder identifier (see 6.11.3).

8.10 TEMPLATE instantiation

A template shall be instantiated in form of a static template instantiation or a dynamic template instantiation, as
shown in Syntax 46

A template instantiation shall be semantically equivalent to the ALF statement or the ALF statements found
within the template declaration, after replacing the placehol der identifiers with replacement values. A static tem-
plate instantiation shall support replacement by order, using an al-purpose value, or aternatively, replacement
by reference, using an annotation (see 7.11). A dynamic template instantiation shall support replacement by refer-
ence only, using an annotation and/or an arithmetic model (see 7.11 and 11.3) and/or an arithmetic assignment.

58 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

template_instantiation ::=
static_template_instantiation
| dynamic_template_instantiation
static_template_instantiation ::=
template identifier [= StatiC] ;
| template:_identifier [= Static]{ { all_purpose value} }
| template_identifier [= StatlC] { { annotation }
dynamic_template_instantiation ::=
template_identifier = dynamic{ { dynamic_template instantiation_item} }
dynamic_template_instantiation_item ::=
annotation
| arithmetic_model
| arithmetic_assignment
arithmetic_assignment ::=
identifier = arithmetic_expression ,

Syntax 46—TEMPLATE instantiation

In the case of replacement by reference, the reference shall be established by a non-escaped identifier matching
the placeholder identifier without the angular brackets. The matching shall be case-insensitive.

The following rules shall apply:

a)

b)

0)

d)

e

A static template instantiation shall be used when the replacement value of any placeholder identifier can
be determined during compilation of the library. Only a matching identifier shall be considered legal.
Each occurrence of the placeholder identifier shall be replaced by the annotation value associated with
the annotation identifier.

A dynamic template instantiation shall be used when the replacement value of at least one placeholder
identifier can only determined during runtime of the application. Only a matching identifier shall be con-
sidered legal.

Multiple replacement values within a multi-value annotation shall be legal if and only if the syntax rules
for the ALF statement within the template declaration allow substitution of multiple values for one place-
holder identifier.

In the case replacement by order, subsequently occurring placeholder identifiersin the template declara-
tion shall be replaced by subsequently occurring all-purpose values in the template instantiation. If a
placeholder identifier occurs more than once within the template declaration, all occurrences of that
placeholder identifier shall be immediately replaced by the same all-purpose value. The first amongst the
remaining placeholder identifiers shall then be considered the next placeholder to be replaced by the next
al-purpose value.

A static template instantiation for which a placeholder identifier is not replaced shall be legal if and only
if the semantic rules for the ALF statement support a placeholder identifier outside a template declara-
tion. However, the semantics of a placeholder identifier as an item to be substituted shall only apply
within the template declaration statement.

Examples

The following exampleillustrates rule a).

/1l statenment using TEMPLATE declaration and instantiation:
TEMPLATE sormeAnnot ati ons {
KEYWORD <oneAnnot ati on> = singl e_val ue_annotation ;
KEYWORD annot ati on2 = single_val ue_annotation ;
<oneAnnot ati on> = val uel ;
annot ati on2 = <anot her Val ue> ;

}

someAnnot ati ons {

IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual

59

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

oneAnnot ati on = annotationl ;

anot her Val ue = val ue2 ;
}
/1 semantically equival ent statenent:
KEYWORD annot ati onl = single val ue_annotation ;
KEYWORD annot ati on2 = singl e val ue_annotation ;
annot ati onl = val uel ;
annot ati on2 = val ue2 ;

The following example illustrates rule b).

/1 statenent using TEMPLATE decl aration and instantiation:
TEMPLATE soneNunbers {
KEYWORD N1 = single_val ue_annotation { VALUETYPE=nunber
KEYWORD N2 = singl e_val ue_annotation { VALUETYPE=numnber
N1 = <nunber1> ;

N2 = <nunber2> ;

}
someNunbers = DYNAM C {

nunmber 2 = nunberl + 1,
}
/! semantically equival ent statenent, assum ng nunber1=3 at
N1 = 3 ;
N2 = 4 ;

The following example illustrates rule c).

TEMPLATE noreAnnot ati ons {
KEYWORD annot ati on3 = annotation ;
KEYWORD annot ati on4 = annotation ;
annot ati on3 { <soneVal ue> }
annot ati on4 = <yet Anot her Val ue> ;
}
nmor eAnnot ati ons {
someVal ue { val uel val ue2 }
yet Anot her Val ue = val ue3 ;
}
/!l semantically equival ent statenent:
KEYWORD annot ati on3 = annotation ;
KEYWORD annot ati on4 = annotation ;
annotation3 { valuel value2 }
annot ati on4 = val ue3 ;

The following exampleillustrates rule €).

60

TEMPLATE evenMor eAnnot ati ons {
KEYWORD <t hi sAnnot ati on> = single_val ue_annotation ;
KEYWORD <t hat Annot ati on> = singl e_val ue_annotation ;
<t hat Annot ati on> = <t hi sVal ue> ;
<t hi sAnnot ati on> = <t hat Val ue> ;

}

/1l tenplate instantiation by reference:

evenMr eAnnot ati ons = STATI C {
t hat Annot ati on = day ;

Advanced Library Format (ALF) Reference Manual

C o}
;)

runti me:

IEEE P1603 Draft 7

t hi sAnnot ati on = nont h;
t hat Val ue = April;
t hi sVal ue = Monday;

}

/1 semantically equivalent tenplate instantiation by order:

evenMr eAnnot ati ons = STATIC { day nonth Mnday April }

/1 semantically equival ent statenent:
KEYWORD day = single val ue_annotation ;
KEYWORD nonth = singl e_val ue_annotation ;
nonth = April;

day = Monday;

The following example illustrates rule d).

/1 statenent using TEMPLATE decl aration and instantiation:
TEMPLATE encor eAnnot ati on {
KEYWORD contextl = annotation_cont ai ner;
KEYWORD cont ext2 = annot ati on_cont ai ner;
KEYWORD annot ati on5 = singl e_val ue_annotation {
CONTEXT { contextl context2 }
VALUES { <sonet hi ng> <not hi ng> }
}
contextl { annotation5
context2 { annotation5

<not hi ng> ; }
<somet hing> ; }

}

encor eAnnot ati on {
somet hing = everything ;
}
/1 semantically equival ent statenent:
KEYWORD contextl = annotation_cont ai ner;
KEYWORD cont ext2 = annotati on_cont ai ner;
KEYWORD annot ati on5 = single_val ue_annotation {
CONTEXT { contextl context2 }
VALUES { everything <nothing> }

}
contextl { annotation5 = <nothing>; }
context2 { annotation5 = all ; }

/1 Both everything (w thout brackets) and <nothing> (wth brackets)

/1l are legal values for annotationb.

IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual

61

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

62

Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 7

9. Library-specific objects and related statements

** Add lead-in text**

9.1 LIBRARY and SUBLIBRARY declaration

A library and a sublibrary shall be declared as shown in Syntax 47.

library ::=
LIBRARY library identifier
|LIBRARY library identifier { { library_item} }
| library_template_instantiation
library_item ::=
sublibrary
| sublibrary_item
sublibrary ::=
SUéLI BRARY sublibrary_identifier ;
|SUBLIBRARY sublibrary identifier { { sublibrary_item} }
| sublibrary_template instantiation
sublibrary_item ::=
all_purpose_item
| cell
| primitive
| wire
| layer
| via
| rule
| antenna
| array
| site
| region

Syntax 47—LIBRARY and SUBLIBRARY declaration

A library shall serve as arepository of technology data for creation of an electronic integrated circuit. A subli-
brary can optionally be used to create different scopes of visibility for particular statements describing technol-
ogy data.

If any two objects of the same ALF type and the same ALF name appear in two libraries, or in two sublibraries
with the same library as parents, their usage for creation of an electronic circuit shall be mutually exclusive. For
example, two cells with the same name shall not be instantiated in the same integrated circuit. It shall be the
responsibility of the application tool to detect and properly handle such cases, as the selection of alibrary or a
sublibrary is controlled by the user of the application tool.

9.2 Annotations related to a LIBRARY or a SUBLIBRARY declaration

** Add lead-in text**

9.2.1 LIBRARY reference annotation
A library reference annotation shall be defined as shown in Semantics 10.

The purpose of alibrary reference annotation is to establish an association between alibrary or a sublibrary and
an arithmetic model (see Section 11.3).

IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 63

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

SEMANTI CS LI BRARY = annotation {
VALUETYPE = identifier;
CONTEXT = arithnetic_nodel ;
REFERENCETYPE { LI BRARY SUBLI BRARY }
}

Semantics 10—LIBRARY reference annotation
A hierarchical identifier can be used to specify areferenceto asublibrary as achild of alibrary.
9.2.2 INFORMATION annotation container

An information annotation container shall be defined as shown in Semantics 11.

KEYWORD | NFORVATI ON = annot ati on_cont ai ner {
CONTEXT { LI BRARY SUBLI BRARY CELL WRE PRI M Tl VE }

}

KEYWORD PRODUCT = si ngl e_val ue_annot ati on {
VALUETYPE = string_val ue; DEFAULT = “*;
CONTEXT = | NFORVATI ON;

}

KEYWORD Tl TLE = singl e_val ue_annotati on {
VALUETYPE = string_val ue; DEFAULT = “*“;
CONTEXT = | NFORVATI ON;

}

KEYWORD VERSI ON = si ngl e_val ue_annot ati on {
VALUETYPE = string_val ue; DEFAULT = “*“;
CONTEXT = | NFORVATI ON;

}

KEYWORD AUTHOR = singl e_val ue_annot ati on {
VALUETYPE = string_val ue; DEFAULT = “*“;
CONTEXT = | NFORVATI ON;

}

KEYWORD DATETI ME = si ngl e_val ue_annotation {
VALUETYPE = string_val ue; DEFAULT = “*“;
CONTEXT = | NFORVATI ON;

}

Semantics 11—INFORMATION statement

The information annotation container shall be used to associate its parent statement with a product specification.
The following semantic restrictions shall apply:

a) Alibrary, asublibrary, or acell can bealegal parent of the information statement.

b) A wire, or aprimitive can be alegal parent of the information statement, provided the parent of the wire
or the primitiveisalibrary or asublibrary.

64 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

The semantics of the information contents are specified in Table 29.

Table 29—Annotations within an INFORMATION statement

Annotation identifier Semantics of annotation value
PRODUCT A code name of a product described herein.
TI TLE A descriptive title of the product described herein.
VERSI ON A version number of the product description.
AUTHOR The name of a person or company generating this product description.
DATETI ME Date and time of day when this product description was created.

The product devel oper shall be responsible for any rules concerning the format and detailed contents of the string

value itself.

Example

LI BRARY nyProduct {

| NFORVATI ON {

PRODUCT = pl0sc;

TI TLE = “0. 10 standard cell”;

VERSION = “v2.1.0";

AUTHOR = “Maj or Asic Vendor, Inc.”;
DATETI ME = “Mon Apr 8 18:33:12 PST 2002";

}

9.3 CELL declaration

A cell shall be declared as shown in Syntax 48.

cdl =

CELL cel_identifier ;
|CELL cell_identifier{{ cell_item} }

| cell_template_instantiation

cel_item::=

all_purpose_item
| pin
| pingroup
| primitive
| function
| non_scan_cell
| test
| vector
| wire
| blockage
| artwork
| pattern

| region

IEEE P1603 Draft 7

Syntax 48—CELL declaration

Advanced Library Format (ALF) Reference Manual

65

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

A cell shall represent an electronic circuit which can be used as a building block for alarger electronic circuit.

9.4 Annotations related to a CELL declaration
This section defines annotations and attribute values rel ated to a cell declaration.
9.4.1 CELL reference annotation

A cell reference annotation shall be defined as shown in Semantics 12.

SEMANTI CS CELL = annotation {
VALUETYPE = identifier;
CONTEXT = arithnetic_nodel;
REFERENCETYPE = CELL;

}

Semantics 12—CELL reference annotation

The purpose of a cell reference annotation is to establish an association between a cell and an arithmetic model
(see Section 11.3).

A hierarchical identifier can be used to specify areference to acell asachild of alibrary or asublibrary.
9.4.2 CELLTYPE annotation

A celltype annotation shall be defined as shown in Semantics 13.

KEYWORD CELLTYPE = singl e _val ue_annotation {
CONTEXT = CELL,;
VALUETYPE = identifier;
VALUES {
buf fer comnbi national multiplexor flipflop latch
menory bl ock core speci al

}

}

Semantics 13—CELLTYPE annotation

The celltype shall divide cellsinto categories, as specified in Table 30.

Table 30—CELLTYPE annotation values

Annotation value Description

buf fer CELL isabuffer, i.e., an element for transmission of adigital signal without per-
forming alogic operation, except for possible logic inversion.

conbi nati onal CELL isacombinatorial logic element, i.e., an element performing alogic opera-
tion on two or more digital input signals.

mul ti pl exor CELL isamultiplexor, i.e., an element for selective transmission of digital signals.

66 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

Table 30—CELLTYPE annotation values (Continued)

Annotation value Description

flipflop CELL isaflip-flop, i.e., aone-bit storage element with edge-sensitive clock

| atch CELL isalatch, i.e., aone-hit storage element without edge-sensitive clock

menory CELL isamemory, i.e., amulti-bit storage element with selectable addresses.

bl ock CELL isahierarchical block, i.e., acomplex element which has an associated
netlist for implementation purpose. All instances of the netlist are library ele-
ments, i.e., thereisa CELL model for each of them in the library.

core CELL isacore, i.e., acomplex element which has no associated netlist for imple-
mentation purpose. However, a netlist representation can exist for modeling pur-
pose.

speci al CELL isaspecial element, which does not fall into any other category of cells.
Examples: bus holder, protection diode, filler cell.

9.4.3 SWAP_CLASS annotation

A swap_class annotation shall be defined as shown in Semantics 14.

}

KEYWORD SWAP_CLASS = annot ation {

CONTEXT = CELL,;

VALUETYPE = identifier;

REFERENCETYPE = CLASS;

Semantics 14—SWAP_CLASS annotation

The value is the name of a declared CLASS. Multi-value annotation can be used. Cells referring to the same
CLASS can be swapped for certain applications.

Cell-swapping isonly alowed, if the RESTRI CT_CLASS annotation (see 9.4.4) authorizes usage of the cell and
the cells to be swapped are compatible from an application standpoint.

9.4.4 RESTRICT_CLASS annotation

A restrict-class annotation shall be defined as shown in Semantics 15.

}

KEYWORD RESTRI CT_CLASS = annotation {

CONTEXT { CELL CLASS }

VALUETYPE = identifier;

REFERENCETYPE = CLASS;

CLASS synthesis { USAGE = RESTRI CT_CLASS ; }
CLASS scan { USAGE = RESTRI CT_CLASS ; }
CLASS dat apath { USAGE = RESTRI CT_CLASS ; }
CLASS clock { USAGE = RESTRI CT_CLASS ; }
CLASS | ayout { USAGE = RESTRI CT_CLASS ; }

IEEE P1603 Draft 7

Semantics 15—RESTRICT_CLASS annotation

Advanced Library Format (ALF) Reference Manual

67

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

The value shall be the name of adeclared CLASS.

The restrict-class annotation shall establish a necessary condition for the usage of a cell by an application per-
forming a design transformation involving instantiations of cells. An application other than a design transforma-
tion (e.g. analysis, file format translation) can disregard the restrict-class annotation or use it for informational
purpose only..

The meaning of the predefined restrict-class valuesin Semantics 15 is specified in Table 31.

Table 31—Predefined values for RESTRICT_CLASS

Annotation value Description
synt hesi s Cell issuitable for creation or modification of a structual design
description (i.e., anetlist) while providing functional equivalence.
scan Cell issuitable for creation or modification of ascan chain within anetlist.
dat apat h Cdll issuitable for structural implementation of a data flow graph.
cl ock Cell is suitable for distribution of aglobal synchronization signal.
| ayout Cdll is suitable for usage within a physical artwork.

Additional restrict-class values can be defined within the context of a LIBRARY or a SUBLIBRARY, using the
CLASS declaration and the SEMANTICS declaration in asimilar way as shown in Semantics 15.

From the application standpoint, the following usage model for restrict-class shall apply:

a) A set of restrict-class values shall be associated with the application. These values are considered
“known” by the application. Usage of a cell shall only be authorized, if the set of restrict-class values
associated with the cell is asubset of the “known” restrict-class values.

b) Optionally, aboolean condition involving the set of “known” restrict-class values or a subset thereof can
be associated with the application. In addition to a), usage of a cell shall only be authorized, if the set of
restrict-class values associated with the cell satisfies the boolean condition.

Example:
Specification within the library:
CELL X { RESTRI CT_CLAS

S{ AB}
CELL Y { RESTRICT_CLASS { C} }
CELL Z { RESTRICT CLASS{ ACF

}
}}

Specification for the application:

Set of “known” restrict-classvalues=(A, B, C, D, E)
Boolean condition=(Aandnot B) or C

Result:
Usage of CELL X isnot authorized, because boolean condition is not true.

Usage of CELL Y isauthorized, because al values are “known”, and boolean condition is true.
Usage of CELL Z isnot authorized, because value F is not “known”.

68 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

9.4.5 SCAN_TYPE annotation

A scan_type annotation shall be defined as shown in Semantics 16.

KEYWORD SCAN TYPE = singl e_val ue_annotation {
CONTEXT = CELL;
VALUETYPE = identifier;
VALUES { nuxscan cl ocked | ssd control O control 1 }

}

Semantics 16—SCAN_TYPE annotation

It can take the values shown in Table 32.

Table 32—SCAN_TYPE annotations for a CELL object

Annotation value Description
nmuxscan Cdl contains a multiplexor for selection between non-scan-mode and
scan-mode data.
cl ocked Cell supports a dedicated scan clock.
| ssd Cell issuitable for level sensitive scan design.
control _0 Combinatorial cell, controlling pin shall be 0 in scan mode.
control _1 Combinatorial cell, controlling pin shall be 1 in scan mode.

9.4.6 SCAN_USAGE annotation

A scan_usage annotation shall be defined as shown in Semantics 17.

KEYWORD SCAN _USAGE = singl e_val ue_annotation {
CONTEXT = CELL;
VALUETYPE = identifier;
VALUES { input output hold }

}

Semantics 17—SCAN_USAGE annotation

It can take the values shown in Table 33.

Table 33—SCAN_USAGE annotations for a CELL object

Annotation value Description
i nput Primary input cell in ascan chain.
out put Primary output cell in ascan chain.

IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual

69

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

Table 33—SCAN_USAGE annotations for a CELL object (Continued)

Annotation value Description

hol d Intermediate cell in ascan chain.

The SCAN_USAGE annotation appliesfor a cell which is designed to be the primary input, output or intermediate
stage of a scan chain. It also appliesfor ablock in case thereis a particular scan-ordering requirement.

9.4.7 BUFFERTYPE annotation

A buffertype annotation shall be defined as shown in Semantics 18.

KEYWORD BUFFERTYPE = singl e_val ue_annotation {
CONTEXT = CELL;
VALUETYPE = identifier;
VALUES { input output inout internal }
DEFAULT = internal;

}

Semantics 18—BUFFERTYPE annotation

It can take the values shown in Table 34.

Table 34—BUFFERTYPE annotations for a CELL object

Annotation value Description
i nput CELL has an external (i.e., off-chip) input pin.
out put CELL has an external output pin.
i nout CELL has an external bidirectional pin or an external input pin and an
external output pin.
i nt ernal CELL has no externa pin.

9.4.8 DRIVERTYPE annotation

A drivertype annotation shall be defined as shown in Semantics 19.

KEYWORD DRI VERTYPE = singl e_val ue_annot ati on {
CONTEXT = CELL;
VALUETYPE = identifier;
VALUES { predriver slotdriver both }

}

Semantics 19—DRIVERTYPE annotation

70 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

It can take the values shown in Table 35.

Table 35—DRIVERTYPE annotations for a CELL object

Annotation value Description
predriver CELL isapredriver, i.e., the core part of an I/O buffer.
sl otdriver CELL isasdlotdriver, i.e., the pad of an 1/0 buffer with off-chip connection.
bot h CELL isboth apredriver and aslot driver, i.e., acomplete 1/O buffer.

DRI VERTYPE applies only for acell with BUFFERTYPE valuei nput or out put ori nout .
9.4.9 PARALLEL_DRIVE annotation

A parallel_drive annotation shall be defined as shown in Semantics 20.

KEYWORD PARALLEL_DRI VE = singl e_val ue_annotation {
CONTEXT = CELL;
VALUETYPE = unsi gned_i nt eger;
DEFAULT = 1;

}

Semantics 20—PARALLEL_DRIVE annotation

The annotation value shall specify the number of cells connected in parallel. This number shall be greater than
zero (0) ; the default shall be 1.

9.4.10 PLACEMENT_TYPE annotation

A placement_type annotation shall be defined as shown in Semantics 21.

KEYWORD PLACEMENT_TYPE = singl e_val ue_annot ati on {
CONTEXT = CELL,;
VALUETYPE = identifier;
VALUES { pad core ring block connector }
DEFAULT = cor e,

Semantics 21—PLACEMENT _TYPE annotation

The purpose of the placement-type annotation is to establish categories of cellsin terms of placement and power
routing requirements.

IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 71

10

15

20

25

30

35

40

45

50

55

1

10

15

20

25

30

35

40

45

50

55

It can take the values shown in Table 36.

Table 36—PLACEMENT_TYPE annotations for a CELL object

Annotation value Description
pad The cell is an element to be placed in the I/O area of adie.
core Thecell isaregular element to be placed in the core area of adie, using aregular
power structure.
ring The cell isamacro element with built-in power structure.
bl ock The cell isan abstraction of acollection of regular elements, each of which uses

aregular power structure.

connect or Thecell isto be placed at the border of the core areaof adiein order to establish
a connection between aregular power structure and a power ring in the I/O area.

9.4.11 SITE reference annotation for a CELL

A site reference annotation in the context of a cell shall be defined as shown in Semantics 72.

SEMANTI CS CELL. SI TE = singl e_val ue_annot ati on;

Semantics 22—SITE reference annotation

The purpose of a site reference annotation in the context of a cell isto specify alega placement location for the
cell.

9.4.12 ATTRIBUTE values for a CELL

An attribute in the context of a cell declaration shall specify more specific information within the category given
by the celltype annotation.

The attribute values shown in Table 37 can be used within a CELL with CELLTYPE=nmenor y.

Table 37—Attribute values for a CELL with CELLTYPE=memory

Attributeitem Description
RAM Random Access Memory
ROM Read Only Memory
CAM Content Addressable Memory
static Static memory, needs no refreshment
dynami c Dynamic memory, needs refreshment
asynchr onous operation self-timed

72 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

Table 37—Attribute values for a CELL with CELLTYPE=memory (Continued)

Attributeitem

Description

synchr onous

operation synchronized with a clock signal

The attributes shown in Table 38 can be used within a CELL with CELLTYPE=bl ock.

Table 38—Attributes within a CELL with CELLTYPE=block

Attributeitem

Description

count er

CELL isacounter, i.e., acomplex sequentia circuit going through a
predefined sequence of states in its normal operation mode where
each state represents an encoded control value.

shift_register

CELL isashift register, i.e., acomplex sequentid circuit going
through a predefined sequence of statesin its normal operation
mode, where each subsequent state can be obtained from the previ-
ous one by a shift operation. Each bit represents a data value.

adder

CELL isanadder, i.e., acombinatorial circuit performing an addition
of two operands.

subtract or

CELL isasubtractor, i.e., acombinatorial circuit performing a sub-
traction of two operands.

mul tiplier

CELL isamultiplier, i.e.,, acombinatoria circuit performing amulti-
plication of two operands.

conpar at or CELL isacomparator, i.e., acombinatorial circuit comparing the
magnitude of two operands.
ALU CELL isan arithmetic logic unit, i.e., acombinatorial circuit combin-

ing the functionality of adder, subtractor, and comparator.

The attributes shown in Table 39 can be used within a CELL with CELLTYPE=cor e.

Table 39—Attributes within a CELL with CELLTYPE=core

Attributeitem

Description

PLL

CELL isaphase-locked loop.

DSP

CELL isadigital signal processor.

CPU

CELL isacentral processing unit.

GPU

CELL isagraphical processing unit.

IEEE P1603 Draft 7

Advanced Library Format (ALF) Reference Manual

73

10

15

20

25

30

35

40

45

50

55

1

10

15

20

25

30

35

40

45

50

55

The attributes shown in Table 40 can be used within a CELL with CELLTYPE=speci al .

Table 40—Attributes within a CELL with CELLTYPE=special

Attributeitem Description

bushol der CELL enables atristate bus to hold itslast value before all drivers
went into high-impedance state (see 10.1).

cl anp CELL connects a net to a constant value (logic value and drive
strength; see 10.1).

di ode CELL isadiode (no FUNCTI ON statement).

capaci tor CELL isacapacitor (no FUNCTI ON statement).

resistor CELL isaresistor (no FUNCTI ON statement).

i nduct or CELL isaninductor (no FUNCTI ON statement).

fillcell CELL isused to fill unused spacein layout (no PIN, no FUNCTI ON
statement).

9.5 PIN declaration

A pin shall be declared as a scalar pin or asavector pin or amatrix pin, as shown in Syntax 49.

pin::=
scalar_pin | vector_pin | matrix_pin
scalar_pin ::=
N pin_identifier ;
| PIN pin_identifier { { scalar_pin item} }
| scalar_pin_template instantiation
scalar_pin_item ::=
all_purpose_item
| pattern
| port
vector_pin ::=
PI'N multi_index pin_identifier ;
| PIN multi_index pin_identifier { { vector_pin_item} }
| vector_pin_template instantiation
vector_pin_item ::=
all_purpose_item
| range
meatrix_pin ::=
PI'N first_multi_index pin_identifier second_multi_index |

| matrix_pin_template_instantiation
matrix_pin_item ::=
vector_pin_item

| PIN first_multi_index pin_identifier second_multi_index { { matrix_pin_item} }

Syntax 49—PIN declaration

A pin shall represent a terminal of an electronic circuit. The purpose of a pin is exchange of information or
energy between the circuit and its environment. A constant value of information shall be caled state. A time-

dependent value of information shall be called signal.

74 Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 7

The order of pin declarations within a cell declaration shall reflect the order in which pins are referenced, when
the cell isinstantiated in a netlist. The view annotation (see Section 9.7.3) shall further specify which pinisvisi-
blein anetlist.

Note: The order of pin declarationsisirrelevant, if pin reference by nameis used.

A scalar pin can be associated with a general electrical signal. However, a vector pin or a matrix pin can only be
associated with a digital signal. One element of a vector pin or of amatrix pin shall be associated with one bit of
information, i.e., abinary digital signal.

A vector-pin can be considered as a bus, i.e., a combination of scalar pins. The declaration of a vector-pin shall
involve a multi index (see Section 7.8). A reference to ascalar within the vector-pin shall be established by the
pin identifier followed by a single index (see Section 7.8). A reference to a subvector within the vector-pin shall
be established by the pinidentifier followed by a multi index.

A matrix-pin can be considered as a combination of vector-pins. A reference to a vector or to a submatrix,
respectively, within the matrix-pin shall be established by the pin identifier followed by a single index or by a
multi index, respectively.

Within a matrix-pin declaration, the first multi index shall specify the range of scalars or bits, and the second
multi index shall specify the range of vectors. Support for direct reference of a scalar within a matrix is not pro-
vided.

Example

PIN [5:8] myVectorPin ;
PIN[3:0] nmyMatrixPin [1:1000] ;

The pin variable nyVect or Pi n[5] refersto the scalar associated with the MSB of nyVect or Pi n.
The pin variable nyVect or Pi n[8] refersto the scalar associated with the LSB of nyVect or Pi n.
The pin variable nyVect or Pi n[6: 7] refersto a subvector within myVect or Pi n.

The pinvariablenyMat ri xPi n[500] refersto avector within nyMat ri xPi n.

The pinvariablenyMat ri xPi n[500: 502] refersto 3 subsequent vectors within nyMat ri xPi n.

Consider the following pin assignment:
nyVect or Pi n=nyMat ri xPi n[500] ;

This establishes the following exchange of information:
nyVect or Pi n[5] receivesinformation from element [3] of myMat ri xPi n[500] .
nyVect or Pi n[6] receivesinformation from element [2] of myMat ri xPi n[500] .

nyVect or Pi n[7] receivesinformation from element [1] of myMat ri xPi n[500] .
nyVect or Pi n[8] receivesinformation from element [0] of myMat ri xPi n[500] .

9.6 PINGROUP declaration
A pingroup shall be declared as a simple pingroup or as a vector pingroup, as shown in Syntax 50.

A pingroup in general shall serve the purpose to specify items applicable to a combination of pins. The combina-
tion of pins shall be specified by the members annotation.

A vector pingroup can only combine scalar pins. A vector pingroup can be used as a pin variable, in the same
capacity asavector pin.

IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 75

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

pingroup ::=
simple_pingroup | vector_pingroup

simple_pingroup ::=
Pﬁ\l&ROUP pingroup_identifier
{ MEMBERS multi_value_annotation { all_purpose item} }
| simple_pingroup_template_instantiation
vector_pingroup ::=
| PINGROUP multi_index pingroup_identifier
{ MEMBERS multi_value_annotation { vector_pingroup_item} }
| vector_pingroup_template_instantiation
vector_pingroup_item ::=
al_purpose_item
| range

Syntax 50—PINGROUP declaration

A simple pingroup can combine pins of any format, i.e., scalar pins, vector pins, and matrix pins. A simple pin-
group can not be used as a pin variable.

9.7 Annotations related to a PIN or a PINGROUP declaration
This section defines annotations and attribute values in the context of a pin declaration or a pingroup declaration.
9.7.1 PIN reference annotation

A pin reference annotation shall be defined as shownin.

SEMANTI CS PI N = annotation {
VALUETYPE = pin_vari abl e;
CONTEXT { arithnetic_nodel FROM TO }
REFERENCETYPE { PI N Pl NGROUP PORT NODE }

}

Semantics 23—PIN reference annotation

The purpose of a pin reference annotation is to establish an association between a pin, a pingroup, a port (see
Section 9.22) or a node (see Section 9.11) and an arithmetic model (see Section 11.3) or afrom-to statement (see
Section 11.12). In this context, the pin, pingroup, port or node is used as a reference point related to a timing
measurement or an electrical measurement.

A hierarchical identifier can be used to specify areference to a pin, a pingroup, a port or a node as a child of a
cell, apin or awire.

9.7.2 MEMBERS annotation

A members annotation shall be defined as shown in Semantics 24.

The purpose of the members annotation is to specify the constituent pins of a pingroup.
9.7.3 VIEW annotation

A view annotation shall be defined as shown in Semantics 25.

The purpose of the view annotation is to specify the visibility of apinin anetlist.

76 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

KEYWORD MEMBERS = nmulti_val ue_annotation {
CONTEXT = Pl NGROUP;
VALUETYPE = identifier;
REFERENCETYPE = PI N,

}

Semantics 24—MEMBERS annotation

KEYWORD VI EW = si ngl e_val ue_annot ati on {
CONTEXT { PI N Pl NGROUP }
VALUETYPE = identifier;
VALUES { functional physical both none }
DEFAULT = bot h;

Semantics 25—VIEW annotation

It can take the values shown in Table 41.

Table 41—VIEW annotations for a PIN object

Annotation value Description
functi onal pi n appearsin functional netlist.
physi cal pi n appearsin physical netlist.
bot h (default) pi n appearsin both functional and physical netlist.
none pi n does not appear in netlist.

9.7.4 PINTYPE annotation

A pintype annotation shall be defined as shown in Semantics 26.

KEYWORD PI NTYPE = singl e_val ue_annotation {
CONTEXT = PIN,;
VALUETYPE = identifier;
VALUES { digital analog supply }
DEFAULT = digital;

Semantics 26—PINTYPE annotation

The purpose of the pintype annotation is to establish broad categories of pins.

IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual

7

10

15

20

25

30

35

40

45

50

55

1

10

15

20

25

30

35

40

45

50

55

It can take the values shown in Table 42.

Table 42—PINTYPE annotations for a PIN object

Annotation value Description
di gi tal (default) Digital signal pin.
anal og Analog signal pin.
supply Power supply or ground pin.

9.7.5 DIRECTION annotation

A direction annotation shall be defined as shown in Semantics 27.

KEYWORD DI RECTI ON = si ngl e_val ue_annot ati on {
CONTEXT = PI N,
VALUETYPE = identifier;
VALUES { input output both none }

}

Semantics 27—DIRECTION annotation
The purpose of the direction annotation is to establish the flow of information and/or electrical energy through a
pin. Information/energy can flow into a cell or out of a cell through a pin. The information/energy flow is not to
be mistaken asthe flow of electrical current through a pin.

The direction annotation can take the values shown in Table 43.

Table 43—DIRECTION annotations for a PIN object

Annotation value Description

i nput Information/energy flows through the pininto the cell. Thepinisa
receiver or asink.

out put Information/energy flows through the pin out of the cell. Thepinisa
driver or a source.

bot h Information/energy flows through the pinin and out of the cell. The
pinisboth areceiver/sink and driver/source, dependent on the mode
of operation.

none No information/energy flows through the pinin or out of the cell.

The pin can be an internal pin without connection to its environment
or afeedthrough where both ends are represented by the same pin.

The direction annotation shall be orthogonal to the pintype annotation, i.e., all combinations of annotation values
are possible.

Examples

78 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

— The power and ground pins of aregular cell have DI RECTI ON=i nput .

— A level converter cell has a power supply pin with DI RECTI ON=i nput and another power supply pin

with DI RECTI ON=out put .

— A level converter can have separate ground pins related to its power supply pins or acommon ground pin

with DI RECTI ON=bot h.

— The power and ground pins of afeed through cell have the DI RECTI ON=none.

9.7.6 SIGNALTYPE annotation

A signaltype annotation shall be defined as shown in Semantics 28.

}

}

KEYWORD S| GNALTYPE = singl e_val ue_annotation {

CONTEXT = PIN,;

VALUETYPE = identifier;

VALUES {
data scan_data address control select tie clear set
enabl e out _enabl e scan_enabl e scan_out _enabl e
cl ock master_cl ock slave_cl ock
scan_master _cl ock scan_sl ave_cl ock

DEFAULT = dat a;

Semantics 28—SIGNALTYPE annotation

S| GNALTYPE classifies the functionality of a pin. The currently defined values apply for pins with Pl N-

TYPE=DI G TAL.

Conceptually, apin with Pl NTYPE = ANALOG can aso have a SI GNALTYPE annotation. However, no values

are currently defined.

The fundamenta SI GNALTYPE values are defined in Table 44

Table 44—Fundamental SIGNALTYPE annotations for a PIN object

Annotation value Description

dat a (default) Genera data signal, i.e., asignal that carries information to be trans-
mitted, received, or subjected to logic operations within the CELL.

addr ess Address signal of amemory, i.e., an encoded signal, usually abus or
part of abus, driving an address decoder within the CELL.

control Genera control signal, i.e., an encoded signal that controls at least
two modes of operation of the CELL, eventually in conjunction with
other signals. The signal value is alowed to change during real-time
circuit operation.

sel ect Select signal, i.e., asignal that selects the data path of a multiplexor
or de-multiplexor within the CELL. Each selected signal has the
same S| GNALTYPE.

enabl e The signal enables storage of general input datain a latch or aflip-
flop or amemory

IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual

79

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

Table 44—Fundamental SIGNALTYPE annotations for a PIN object (Continued)

Annotation value

Description

tie

The signal needs to betied to afixed value staticaly in order to
define afixed or programmable mode of operation of the CELL,
eventually in conjunction with other signals. The signal valueis not
allowed to change during real-time circuit operation.

cl ear

Clear or reset signal of aflip-flop or latch, i.e., asignal that controls
the storage of the value O within the CELL.

set

Preset or set signal of aflip-flop or latch, i.e., asignal that controls
the storage of the value 1 within the CELL.

cl ock

Clock signal of aflip-flop or latch, i.e., atiming-critical signal that
triggers data storage within the CELL.

Figure 6 shows how to construct composite signaltypes.

dat a > scan_dat a
enabl e > scan_enabl e
> out _enabl e > scan_out _enabl e
cl ock scan_cl ock

> mast er _cl ock >
> sl ave_cl ock >

|
scan_mast er _cl ock

scan_sl ave_cl ock

Figure 6—Scheme for construction of composite sighaltype values

The composite SI GNALTYPE values are defined in Table 45

80

Table 45—Composite SIGNALTYPE annotations for a PIN object

Annotation value

Description

scan_dat a

Scan datasignal, i.e., signal isrelevant in scan mode only.

out _enabl e

Enables visibility of general data at an output pin of acell.

scan_enabl e

Enables storage of scan input datain alatch or aflipflop.

scan_out _enabl e

Enables visihility of scan data at an output pin of acell.

mast er _cl ock

Triggers storage of input datain the first stage of aflipflop in atwo-
phase clocking scheme.

sl ave_cl ock

Triggers data transfer from first the stage to the second stage of a
flipflop in atwo-phase clocking scheme.

scan_cl ock

Triggers storage of scan input data within acell.

scan_nast er _cl ock

Advanced Library Format (ALF) Reference Manual

Triggers storage of input scan datain the first stage of aflipflop ina
two-phase clocking scheme.

IEEE P1603 Draft 7

Table 45—Composite SIGNALTYPE annotations for a PIN object (Continued)

Annotation value Description

scan_sl ave_cl ock Triggers scan data transfer from the first stage to the second stage of
aflipflop in atwo-phase clocking scheme.

Within the definitions of Table 44 and Table 45, the elements flipflop, latch, multiplexor, or memory can be stan-
dalone cells or embedded in larger cells. In the former case, the celltypeisflipflop, latch, nulti-
pl exor, or menory, respectively. In the latter case, the celltype can be bl ock or cor e.

9.7.7 ACTION annotation

An action annotation shall be defined as shown in Semantics 29.

KEYWORD ACTI ON = singl e_val ue_annotation {
CONTEXT = PI N,
VALUETYPE = identifier;
VALUES { asynchronous synchronous }

}

Semantics 29—ACTION annotation

The purpose of the action annotation is to define, whether asignal is self-timed or synchronized with a clock sig-
nal.

The ACTION annotation can take the values shown in Table 46.

Table 46—ACTION annotations for a PIN object

Annotation value Description
asynchr onous Signd actsin an asynchronous way, i.e., self-timed.
synchr onous Signa actsin asynchronous way, i.e., triggered by a clock signal.

The ACTI ON annotation applies only to pins with certain SI GNALTYPE values, as shown in Table 47. Therule
applies also to any composite SI GNAL TYPE values based on the fundamental values.

Table 47—ACTION applicable in conjunction with SIGNALTYPE values

SIGNALTYPE value ACTION applicable
data, scan_data No
addr ess No
control Yes
sel ect No

IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 81

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

Table 47—ACTION applicable in conjunction with SIGNALTYPE values (Continued)

SIGNALTYPE value ACTION applicable
enabl e, scan_enabl e, out_enable, scan_out_enable Yes
tie No
cl ear Yes
set Yes
cl ock, scan_cl ock, master_cl ock, slave_cl ock, No
scan_mast er _cl ock, scan_sl ave cl ock

9.7.8 POLARITY annotation

A polarity annotation shall be defined as shown in Semantics 30.

KEYWORD POLARI TY = singl e_val ue_annotation {
CONTEXT = PI N;
VALUETYPE = identifier;

VALUES { high low rising edge falling_edge doubl e_edge }

}

Semantics 30—POLARITY annotation

The purpose of the polarity annotation is to define the active state or the active edge of an input signal.

The POLARITY annotation can take the values shown in Table 48.

Table 48—POLARITY annotations for a PIN

Annotation value Description
hi gh Signal is active high or to be driven high.
| ow Signd is active low or to be driven low.
ri si ng_edge Signd is activated by rising edge.
falling_edge Signd is activated by falling edge.
doubl e_edge Signal is activated by both rising and falling edge.

The POLARI TY annotation applies only to pinswith certain SI GNALTYPE values, as shown in Table 49..

82

Table 49—POLARITY applicable in conjunction with SIGNALTYPE values

SIGNALTYPE value Applicable POLARITY

data, scan_data N/A

Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 7

Table 49—POLARITY applicable in conjunction with SIGNALTYPE values (Continued)

SIGNALTYPE value Applicable POLARITY
addr ess N/A
control N/A
sel ect N/A
enabl e, scan_enabl e, out_enabl e, hi gh, | ow.
scan_out _enabl e
tie hi gh, | ow.
cl ear hi gh, | ow.
set hi gh, | ow.
cl ock, scan_cl ock, naster _cl ock, slave_ cl ock, hi gh,l owri si ng_edge,
scan_nast er _cl ock, scan_sl ave_cl ock falling_edge, doubl e_edge,

9.7.9 CONTROL_POLARITY annotation container

A control polarity annotation container shall be defined as shown in Semantics 31.

KEYWORD CONTROL_PCOLARI TY = annotation_contai ner {
CONTEXT = PIN ;

}

SEMANTI CS

CONTROL_POLARI TY.identifier = single_value_annotation {
VALUETYPE = identifier ;
VALUES { high low rising _edge falling_edge doubl e_edge }

}

Semantics 31—Control polarity annotation container

The control polarity annotation container can be used in the context of a pin with signaltype value control or
clock.

The purpose of the control polarity annotation container is to specify the active state or the active edge of an
input signal in association with a particular mode of operation. The name of the mode of operation is given by the
annotation identifier.

Example:

PI'N MbdeSel 1 {
DI RECTI ON = i nput; SIGNALTYPE = control;
CONTROL_POLARI TY { nor mal =hi gh; scan=l ow, hol d=l ow; }
}
PI' N MbdeSel 2 {
DI RECTI ON = i nput; SIGNALTYPE = control;
CONTROL_POLARI TY { scan=hi gh; hol d=Il ow, }

IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 83

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

/1l corresponding truth table:
/1 ModeSel 1 ModeSel 2 node of operation

/l O 0 hol d
/1 0 1 scan
/11 ? nor mal

9.7.10 DATATYPE annotation

A datatype annotation shall be defined as shown in Semantics 32.

KEYWORD DATATYPE = singl e_val ue_annotation {
CONTEXT { PI'N PI NGROUP }
VALUETYPE = identifier;
VALUES { signed unsigned }

}

Semantics 32—DATATYPE annotation

The purpose of the datatype annotation is to define the arithmetic representation of a digital signal.

The DATATY PE annotation can take the values shown in Table 50.

Table 50—DATATYPE annotations for a PIN object

Annotation value Description
si gned Result of arithmetic operation is signed 2's complement.
unsi gned Result of arithmetic operation is unsigned.

DATATYPE isonly relevant for avector pin.
9.7.11 INITIAL_VALUE annotation

An initial value annotation shall be defined as shown in Semantics 33.

KEYWORD | NI TI AL_VALUE = si ngl e_val ue_annot ati on {
CONTEXT = CELL;
VALUETYPE = bool ean_val ue;
DEFAULT = U,

}

Semantics 33—INITIAL_VALUE annotation

The purpose of the initial value annotation is to provide an initial value of a signal within a simulation model
derived from ALF. A signal shall have the initial value before a simulation event affects the signal. The default
value “U” means “uninitialized” (see Table 74).

84 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

9.7.12 SCAN_POSITION annotation

A scan position annotation shall be defined as shown in Semantics 34.

KEYWORD SCAN_PGSI TI ON = singl e_val ue_annotation {

CONTEXT = PIN;
VALUETYPE = unsi gned,;
DEFAULT = 0;

Semantics 34—SCAN_POSITION annotation

The purpose of the scan position annotation is to specify the position of the pin in scan chain, starting with 1 for

the primary input. The value 0 (which is the default) indicates that the pin is not on the scan chain.

9.7.13 STUCK annotation

A stuck annotation shall be defined as shown in Semantics 35.

KEYWORD STUCK = singl e _val ue_annotation {
CONTEXT = PIN;
VALUETYPE = identifier;
VALUES { stuck_at 0 stuck_at 1 both none }
DEFAULT = bot h;

The purpose of the stuck annotation is to specify a static fault model applicable for the pin.

Semantics 35—STUCK annotation

The STUCK annotation can take the values shown in Table 51.

Table 51—STUCK annotations for a PIN object

Annotation value

Description

stuck_at O

Pin can exhibit afaulty static low state.

stuck_at 1

Pin can exhibit afaulty static high state.

bot h

Pin can exhibit afaulty static high or low state.

none

Pin can not exhibit afaulty static state.

9.7.14 SUPPLYTYPE annotation

A supplytype annotation shall be defined as shown in Semantics 36.

IEEE P1603 Draft 7

Advanced Library Format (ALF) Reference Manual

85

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

KEYWORD SUPPLYTYPE = annotation {
CONTEXT { PIN CLASS }
VALUETYPE = identifier;
VALUES { power ground reference }

}

Semantics 36—SUPPLYTYPE annotation

The supplytype annotation can take the values shown in Table 52.

Table 52—SUPPLYTYPE annotations for a PIN object

Annotation value Description

power Piniselectrically connected to a power supply, i.e., a constant non-zero
voltage source providing energy for operation of acircuit.

ground Piniselectrically connected to ground, i.e., azero voltage source providing
the return path for electrical current through a power supply.

reference Pin exhibits a constant voltage level without providing significant energy
for operation of acircuit.

The purpose of the supplytype annotation is to define a subcategory of pins with pintype value supply (see Table
42).

9.7.15 SIGNAL_CLASS annotation

A signal-class annotation shall be defined as shown in Semantics 37.

KEYWORD SI GNAL _CLASS = annotation {
CONTEXT { PI'N PI NGROUP }
VALUETYPE = identifier;
REFERENCETYPE = CLASS;

}

Semantics 37—SIGNAL_CLASS annotation

The value shall be the name of adeclared CLASS.

The purpose of the signal-class annotation is to specify which terminals of a cell with are functionally related to
each other. The signal-class annotation applies for a pin with arbitrary signaltype value (see Section 9.7.6).

Example:

A multiport memory can have a data bus rel ated to an address bus and another data bus related to another address
bus. Note that the term “port” in “multiport” does not relate to the ALF port declaration (see Section 9.22).

CELL ny2Port Menory {
CLASS ReadPort { USAGE = SIGNAL_CLASS; }
CLASS WitePort { USAGE = SIGNAL_CLASS; }
PIN [3:0] addr_A { SIGNALTYPE = address; SIGNAL_CLASS = ReadPort; }

86 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

PIN[7:0] data_ A { SIGNALTYPE = dat a; SI GNAL_CLASS = ReadPort; }
PIN [3:0] addr_ B { SIGNALTYPE = address; SIGNAL CLASS = WitePort; }
PIN[7:0] data B { SIGNALTYPE = dat a; SI GNAL_CLASS = WitePort; }

PINwite enable { SIGNALTYPE = enabl e; SIGNAL_CLASS = WitePort; }

9.7.16 SUPPLY_CLASS annotation

A supply-class annotation shall be defined as shown in Semantics 38.

KEYWORD SUPPLY_CLASS = annotation {
CONTEXT { PIN CLASS POAER ENERGY }
VALUETYPE = identifier;
REFERENCETYPE = CLASS;

}

Semantics 38—SUPPLY_CLASS annotation

The value shall be the name of adeclared CLASS.

The purpose of the supply-class annotation isto specify arelation between a pin and a power supply system, rep-
resented by the refered class.

The supply-class annotation shall apply for a pin with any signaltype value (see Section 9.7.6) or supplytype
value (see Section 9.7.14).

The supply-class annotation shall also apply for a class with usage value connect-class (see Section 9.7.19). The
latter class shall represent aglobal net related to a power supply system.

The supply-class annotation shall also apply for the arithmetic models power and energy (see Section 11.11.15).
Example 1:
A cell can provide two local power supplies. Each pinisrelated to at least one power supply.

CELL nyLevel Shifter {

CLASS supplyl { USAGE
CLASS supply2 { USAGE

SUPPLY_CLASS; }
SUPPLY_CLASS; }

PIN Vddl { SUPPLYTYPE = power; SUPPLY_CLASS = supplyl; }
PIN Din { SIGNALTYPE = data; SUPPLY_CLASS = supplyl; }
PIN Vdd2 { SUPPLYTYPE = power; SUPPLY_CLASS = supply2; }
PIN Dout { SIGNALTYPE = data; SUPPLY_CLASS = supply2; }

PIN Ghd { SUPPLYTYPE = ground; SUPPLY_CLASS { supplyl supply2 } }

}

Example 2:

A library can provide two environmental power supplies. A supply pin of acell has to be connected to a global
net related to an environmental power supply.

IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 87

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

CLASS core { USAGE
CLASS io { USAGE

SUPPLY_CLASS; }
SUPPLY_CLASS; }

CLASS Vdd1l { USAGE=CONNECT CLASS; SUPPLYTYPE=power; SUPPLY_ CLASS=cor €;
CLASS Vssl1 { USAGE=CONNECT_CLASS; SUPPLYTYPE=ground; SUPPLY_ CLASS=core; }
CLASS Vdd2 { USAGE=CONNECT_CLASS; SUPPLYTYPE=power; SUPPLY_CLASS=io; }
CLASS Vss2 { USAGE=CONNECT_CLASS; SUPPLYTYPE=ground; SUPPLY_CLASS=i o; }

CELL nyl nternal Cel |

{

PIN vdd { CONNECT_CLASS=Vvdd1; }
PI N vss { CONNECT CLASS=Vssl1; }

}
CELL myPadCel | {

PIN vdd { CONNECT_CLASS=Vvdd2; }
PIN vss { CONNECT CLASS=Vss2; }

9.7.17 DRIVETYPE annotation

A drivetype annotation shall be defined as shown in Semantics 39.

KEYWORD DRI VETYPE = singl e_val ue_annotati on {
CONTEXT { PIN CLASS }
VALUETYPE = identifier;
VALUES {
CNDS NNDS pNDS CNDS_pass nNnDS_pass phnos_pass

ttl

}
}

DEFAULT = cnos;

open_drai n open_source

The purpose of the drivetype annotation is to specify a category of electrical characteristics for a pin, which

Semantics 39—DRIVETYPE annotation

relate to the system of logic values and drive strengths (see Table 74).

The drivetype annotation can take the values shown in Table 53.

88

Table 53—DRIVETYPE annotations for a PIN object

Annotation value

Description

cnos (default)

Standard cmos signal. Thelogic high level is equal to the power sup-
ply, the logic low level is equal to ground. The drive strength is
strong. No static current flows. Signal is amplified by cmos stage.

nnos

Nmos or pseudo nmos signal. The logic high level is equa to the
power supply and its drive strength isresistive. The logic low level
voltage depends on the ratio of pull-up and pull-down transistor.
Static current flowsin logic low state.

Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

}

Table 53—DRIVETYPE annotations for a PIN object (Continued)

Annotation value Description

pnos Pmos or pseudo pmos signal. Thelogic low level isequal to ground
and its drive strength is resistive. The logic high level voltage
depends on the ratio of pull-up and pull-down transistor. Static cur-
rent flowsin logic high state.

nNoS_pass Nmos passgate signa. Signal is not amplified by passgate stage.
Logic low voltage level is preserved, logic high voltage level islim-
ited by power supply minus nmos threshold voltage.

pnos_pass Pmos passgate signal. Signal is not amplified by passgate stage.
Logic high voltage level is preserved, logic high voltage level islim-
ited by pmos threshold voltage.

cnos_pass Cmos passgate signdl, i.e., afull transmission gate. Signal is not

amplified by passgate stage. VVoltage levels are preserved.

ttl TTL signa. Both logic high and logic low voltage levels are load-
dependent, as static current can flow.

open_drain Open drain signal. Logic low level is equal to ground. Logic high
level corresponds to high impedance state.

open_sour ce Open source signal. Logic high level is equal to the power supply.
Logic low level corresponds to high impedance state.

9.7.18 SCOPE annotation

A scope annotation shall be defined as shown in Semantics 40.

KEYWORD SCOPE = singl e _val ue_annotation {
CONTEXT = PIN,;
VALUETYPE = identifier;
VALUES { behavi or neasure both none }
DEFAULT = bot h;

Semantics 40—SCOPE annotation
The purpose of the scope annotation is to specify a category of modeling usage for a pin. The scope annotation

specifies whether a pin can be involved in a control expression within a vector declaration (see Section 9.13) or
within a behavior statement (see Section 10.4).

The scope annotation can take the values shown in Table 54.

Table 54—SCOPE annotations for a PIN object

Annotation value Description

behavi or The pinisused for modeling functional behavior. Pin can be
involved in a control expression within a BEHAVI OR statement.

IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 89

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

Table 54—SCOPE annotations for a PIN object (Continued)

Annotation value

Description

neasure

Measurements related to the pin can be described. Pin can be
involved in a control expression within a VECTOR declaration.

both (default)

Pin can be involved in a control expression withinaBEHAVIOR

statement or within a VECTOR declaration.

none

Pin can not be involved in a control expression.

9.7.19 CONNECT_CLASS annotation

A connect_class annotation shall be defined as shown in Semantics 41.

KEYWORD CONNECT _CLASS = singl e_val ue_annotation {

CONTEXT = PIN;
VALUETYPE = identifier;
REFERENCETYPE = CLASS;

}

Semantics 41—CONNECT_CLASS annotation

The value shall be the name of adeclared CLASS.

The purpose of the connect-class annotation is to specify a relationship between a pin and an environmental rule
for connectivity. For application in conjunction with supply-class see Section 9.7.16. For application in conjunc-
tion with connect-rule see Section 11.20.1.

9.7.20 SIDE annotation

A side annotation shall be defined as shown in Semantics 42.

KEYWORD Sl DE = singl e_val ue_annot ati on {
CONTEXT { PI N PI NGROUP }
VALUETYPE = identifier;

VALUES {

}

left right top bottominside }

Semantics 42—SIDE annotation

The purpose of the side annotation isto define an abstract location of a pin relative to the bounding box of a cell.

The side annotation can take the values shown in Table 55.

Table 55—SIDE annotations for a PIN object

Annotation value

Description

| ef t

90

pi n ison the left side of the bounding box.

Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 7

Table 55—SIDE annotations for a PIN object (Continued)

Annotation value Description
ri ght pi n ison theright side of the bounding box.
top pi nisat thetop of the bounding box.
bott om pi n isat the bottom of the bounding box.
i nsi de pi n isinside the bounding box.

9.7.21 ROW and COLUMN annotation

A row annotation and a column annotation shall be defined as shown in Semantics 43.

KEYWORD ROW = annot ation {
CONTEXT { PI N Pl NGROUP }
VALUETYPE = unsi gned_i nt eger;

}

KEYWORD COLUMN = annot ation {
CONTEXT { PI'N Pl NGROUP }
VALUETYPE = unsi gned_i nt eger;

}

Semantics 43—ROW and COLUMN annotations

The purpose of arow and a column annotation is to indicate a location of a pin when a cell is placed within a
placement grid. The count of rows and columns shall start at the lower |eft corner of the bounding box of the cell,
as shown in figure 7.

row | bounding box of cell | this region has column=1, row=2
? A_ | _ _ _ _ L _Xx_ 1 | < |_ _ _ _L_
| | | | | |
3_ 1 L _ 1 _ _L_
| | | |
2_ 1 _ _ _ L _ _ SR I
| | | | | |
i_40____°c_-_-_J41___ _ L __ _ 1___ _L_
| | | | | |
o_ |\ __C___J1____L___1_ _ _ _L _
[0 11 12 1 3 cqumn'
—

Figure 7—ROW and COLUMN relative to a bounding box of a CELL

The row annotion is applicable for a pin with side value left or right. The column annotion is applicable for apin
with side value top or bottom. Both row and column annotation are applicable for a pin with side value inside.

IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 91

10

15

20

25

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

A single-value annotation is applicable for ascalar pin. A multi-value annotation is applicable for avector pin or
for avector pingroup. The number of values shall match the number of scalar pins within the vector pin or pin-
group. The order of values shall correspond to the order of scalar pins within the vector pin or pingroup.

9.7.22 ROUTING_TYPE annotation

A routing-type annotation shall be defined as shown in Semantics 44.

KEYWORD ROUTI NG TYPE = singl e_val ue_annotati on {
CONTEXT { PIN PORT }
VALUETYPE = identifier;
VALUES { regul ar abutnment ring feedthrough }
DEFAULT = regul ar;

Semantics 44—ROUTING_TYPE annotation

The purpose of the routing-type annotation isto specify the physical connection between a pin and arouted wire.

The routing-type annotation can take the values shown in Table 56.

Table 56—ROUTING-TYPE annotations for a PIN object

Annotation value

Description

regul ar Pin has avia, connection by regular routing to the via
abut nent Pin isthe end of awire segment, connection by abutment
ring Pin forms aring around the cell, connection by abutment to any point

of thering.

f eedt hr ough

Pin has two aligned ends of awire segment, connection by abutment
on both ends

9.7.23 PULL annotation

A pull annotation shall be defined as shown in Semantics 45.

KEYWORD PULL = singl e_val ue_annotation {
CONTEXT = PIN;
VALUETYPE = identifier;
VALUES { up down both none }
DEFAULT =

none;

Semantics 45—PULL annotation

The purpose of the pull annotation is to specify whether a pullup or a pulldown device is connected to the pin.

92

Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

The pull annotation can take the values shown in Table 57.

Table 57—PULL annotations for a PIN object

Annotation value

Description

up Pullup device connected to the pin.

down Pulldown device connected to the pin.

bot h Both pullup and pulldown device connected to pin.
none No pullup or pulldown device connected to the pin.

A pullup device ties the pin to alogic high level when no other signal is driving the pin. A pulldown device ties
the pinto alogic low level when no other signal is driving the pin. If both devices are connected, the pinistied to

an intermediate voltage level, i.e. in-between logic high and logic low, when no other signal is driving the pin.

9.7.24 ATTRIBUTE values for a PIN or a PINGROUP

The attribute values shown in Table 58 are applicable for a pin or a pingroup with the following characteristics.

Table 58—Attributes within a PIN object

Attributeitem Description

SCHM TT Schmitt trigger signal, i.e., the DC transfer characteristics exhibit a
hysteresis. Applicable for output pin.

TRI STATE Tristate signal, i.e., the signal can be in high impedance mode. Appli-
cable for output pin.

XTAL Crystal/oscillator signal. Applicable for output pin of an oscillator
circuit.

PAD Pin has external,i.e., off-chip connection.

The attribute values shown in Table 59 are applicable for apin or a pingroup of a cell with celltype value memory
in conjunction with a specific signaltype value.

Table 59—Attributes for pins of a memory

IEEE P1603 Draft 7

Attributeitem SIGNALTYPE Description
ROW ADDRESS_STROBE cl ock Samples the row address of the memory.
Applicable for scalar pin.
COLUMN_ADDRESS_STROBE cl ock Samples the column address of the memory.
Applicable for scalar pin.
ROW addr ess Selects an addressable row of the memory.

Applicable for pin and pingroup.

Advanced Library Format (ALF) Reference Manual

93

10

15

20

25

30

35

40

45

50

55

Table 59—Attributes for pins of a memory (Continued)

Attributeitem SIGNALTYPE Description

COLUWN addr ess Selects an addressable column of the memory.
Applicable for pin and pingroup.

BANK addr ess Selects an addressable bank of the memory.
Applicable for pin and pingroup.

The attribute values shown in Table 60 are applicable for a pair of signals.

Table 60—Attributes for pins representing pairs of signals

Attributeitem Description

| N\VERTED Represents the inverted value within a pair of signals car-
rying complementary values.

NON_I NVERTED Represents the non-inverted value within apair of signals
carrying complementary values.

DI FFERENTI AL Signal is part of adifferentia pair, i.e., both the inverted
and non-inverted values are always required for physical
implementation.

In case there is more than one pair of signals related to each other by the attribute values inverted, non-inverted,
or differential, each pair shall be member of a dedicated pingroup.

The following restrictions apply for pairs of signals:

— ThePI NTYPE, SI GNALTYPE, and DI RECTI ON of both pins shall be the same.
— One Pl Nshall have the attribute | NVERTED, the other NON_I NVERTED.
— Either both pins or none of the pins shall have the attribute DI FFERENTI AL.
— POLARI TY, if applicable, shall be complementary as follows:
HI GHis paired with LOW
Rl SI NG_EDGE is paired with FALLI NG_EDGE
DOUBLE_EDGE is paired with DOUBLE_EDGE

The attribute inverted, non-inverted also appliesto pins of a cell for which the implementation of apair of signals
is optional, i.e., one of the signals can be missing. The output pin of aflipflop or alatch is an example. The flip-
flop or the latch can have an output pin with attribute non-inverted and/or another output pin with attribute
inverted.

The attribute values shown in Table 61 shall be defined for memory BIST.

Table 61—PIN or PINGROUP attributes for memory BIST

Attributeitem Description

ROW | NDEX vector pin or pingroup with a contiguous range of vaues,
indicating a physical row of amemory.

94 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

Table 61—PIN or PINGROUP attributes for memory BIST (Continued)

Attributeitem Description

COLUMN_| NDEX vector pin or pingroup with a contiguous range of va ues,
indicating aphysical column of a memory.

BANK_| NDEX vector pin or pingroup with a contiguous range of values,
indicating a physical bank of amemory.

DATA | NDEX vector pin or pingroup with a contiguous range of va ues,
indicating the bit position within a data bus of a memory.

DATA VALUE scalar pin, representing a value stored in a physical mem-
ory location.

These attributes apply to the virtual pins associated with a Bl ST wrapper around the memory rather than to the
physical pins of the memory itself. The BIST wrapper can be represented as a test statement (see Section 10.2).

9.8 PRIMITIVE declaration

A primitive shall be declared as shown in Syntax 51.

primitive ::=

| pin
| pingroup
| function
| test

PRIMITIVE primitive_identifier { { primitive_item} }
|PRIMITIVE primitive identifier ;
| primitive_template_instantiation
primitive_item ::=
all_purpose_item

Syntax 51—PRIMITIVE statement

The purpose of a primitive is to describe a virtua circuit. The virtual circuit can be functionally equivalent to a
physical electronic circuit represented as a cell (see Section 9.3). A primitive can be instantiated within a behav-

ior statement (see Section 10.4).

9.9 WIRE declaration

A wire shall be declared as shown in Syntax 52.

wire ;=

wire_item ::=

| node

WI RE wire_identifier { { wire_item} }
| WIRE wire identifier ;

| wire_template instantiation

all_purpose_item

Syntax 52—WIRE declaration

IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual

95

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

The purpose of awire declaration is to describe an interconnect model. The interconnect model can be a statisti-
cal wireload model, a description of boundary parasitics within a complex cell, amodel for interconnect analysis,
or a specification of aload seen by adriver.

9.10 Annotations related to a WIRE declaration

** Add lead-in text**

9.10.1 WIRE reference annotation

A wire reference annotation shall be defined as shownin .

SEMANTI CS W RE = annotation {
VALUETYPE = identifier;
CONTEXT = arithnetic_nodel;
REFERENCETYPE = W RE;

}

Semantics 46—WIRE reference annotation

The purpose of a wire reference annotation is to establish an association between a vector and an arithmetic
model (see Section 11.3).

A hierarchical identifier can be used to specify areferenceto awire asachild of acell or asublibrary or alibrary.
9.10.2 WIRETYPE annotation

A wiretype annotation shall be defined as shown in Semantics 47.

KEYWORD W RETYPE = singl e _val ue_annotation {
CONTEXT = W RE;
VALUETYPE = identifier;
VALUES { estimated extracted interconnect |oad }

}

Semantics 47—WIRETYPE annotation

The purpose of the wiretype annotation is to define a purpose and a usage model for the wire statement.

The wiretype annotation can take the values shown in Table 62.

Table 62—WIRETYPE annotations for a WIRE object

Annotation value Description

esti mat ed The wire declaration contains a statistical wireload model, i.e., a
moded for estimation of R, L, C valuesfor a net, without a structural
description of acircuit.

96 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

Table 62—WIRETYPE annotations for a WIRE object (Continued)

Annotation value Description

extracted The wire declaration contains a structural description of acircuit, i.e.
anetlist, related to the parent object, i.e. acell. The R, L, C compo-
nents represent extracted parasitics from a physical implementation
of the cell.

i nt er connect The wire declaration contains a structural description of acircuit,
representing amodel for interconnect analysis. A genera R, L, C
interconnect network is expected to be reduced to the specified cir-
cuit for analysis purpose.

| oad The wire declaration contains a structural description of acircuit,
which isto be connected as aload to adevice, i.e., acell, for charac-
terization or test. A wire instantiation (see Section 11.11) shall be
used to describe such a connection.

An R, L, C component within the context of the wire declaration shall be described as arithmetic model (see
Section 11). A related electrical measurement, e.g., voltage, current, noise, shall also be described as arithmetic
model.

9.10.3 SELECT_CLASS annotation

A select_class annotation shall be defined as shown in Semantics 48.

KEYWORD SELECT _CLASS = annotation {
CONTEXT = W RE;
VALUETYPE = identifier;
REFERENCETYPE = CLASS;

}

Semantics 48—SELECT_CLASS annotation

Theidentifier shall refer to the name of a declared class.

The purpose of the select class annotation is to provide a mechanism for selecting a set of wire objects by an
application. The user of the application can select a set of related wire objects by specifying the name of a class
rather than specifying the name of each wire object.

The semantics of the select class shall be under the responsibility of the library provider. The library provider can
define a select class based on criteria such as range of wire length, range of die size, accuracy requirements for
delay calculation etc.

The select class annotation is orthogonal to the wiretype annotation, asillustrated in the following example.
Example:

CLASS short_wire { USAGE = SELECT_CLASS ; }

CLASS long wire { USAGE = SELECT CLASS ; }

W RE pre_layout _small {

W RETYPE = estimated; SELECT CLASS = short_wire;
/1 put statistical wreload nodel here

IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 97

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

}
W RE post | ayout _smal | {

W RETYPE = interconnect; SELECT CLASS = short_wire;
/1 put interconnect analysis nodel here

}

W RE pre_layout |arge {
W RETYPE = estinmated; SELECT CLASS = |ong wire;
/1 put statistical wreload nodel here

}

W RE post | ayout large {
W RETYPE = interconnect; SELECT_CLASS = |ong_wire;
/1 put interconnect analysis nodel here

9.11 NODE declaration

A node shall be declared as shown in Syntax 53.

node ::=
NODE node identifier ;
| NODE node identifier { { node item} }
| node_template instantiation
node item ::=
al_purpose_item

Syntax 53—NODE statement

The purpose of a node declaration is to specify an electrical node in the context of a wire declaration (see
Section 9.9) or in the context of a cell declaration (see Section 9.3).

9.12 Annotations related to a NODE declaration
9.12.1 NODE reference annotation

A node reference annotation shall be defined as shown in .

SEMANTI CS NODE = nul ti _val ue_annotation {
VALUETYPE = pin_vari abl e;
CONTEXT = arithnetic_nodel;
REFERENCETYPE { PI N PORT NODE }

}

Semantics 49—PIN reference annotation

The purpose of a node reference annotation is to establish an association between a pin, a pingroup, a port (see
Section 9.22) or a node (see Section 9.11) and an arithmetic model (see Section 11.3). In this context, the pin,
pingroup, port or node is used to specify the connectivity of an electrical component within a structural circuit.

A hierarchical identifier can be used to specify areference to apin, aport or anode as achild of acell, apinor a
wire.

98 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

9.12.2 NODETYPE annotation

A nodetype annotation shall be defined as shown in Semantics 50.

KEYWORD NODETYPE = singl e_val ue_annotation {
CONTEXT = NODE;
VALUETYPE = identifier;
VALUES { power ground source sink
driver
DEFAULT = interconnect;

recei ver interconnect }

Semantics 50—NODETYPE annotation

The values shall have the semantic meaning shown in Table 63.

Table 63—NODETYPE annotation values

Annotation value

Description

driver

The node is the interface between an output pin of acell and an
interconnect wire.

receiver

The node is the interface between an interconnect wire and an
input pin of acell.

source

The node isavirtual start point of signal propagation.

In case of anidea driver, the source node is collapsed with a
driver node . The collapsed node shall have the nodetype value
driver.

si nk

The node isavirtual end point of signal propagation.

In case of an ideal receiver, the sink node is collapsed with a
receiver node . The collapsed node shall have the nodetype value
receiver.

power

The node supports electrical current for arising signal at a
source or adriver node and areference for alogic high signal
at asink or receiver node.

ground

The node supports electrical current for afalling signa at a
source or adriver node and areference for logic alow signal
at asink or areceiver node

i nt erconnect

The node serves for connecting purpose only.

A circuit wherein all nodes are interconnected by either aresistance or an inductance or a voltage sourceiscalled

a DC-connected net.

IEEE P1603 Draft 7

Advanced Library Format (ALF) Reference Manual

99

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

The meaning of the nodetype annotation values in context of a DC-connected net isillustrated in the following
figure 8.

DC-connected net e !

driver node

|
| DC-connected subnet |

Figure 8—NODETYPE in context of a DC-connected net

The nodetype annotation specifies away of separating a DC-connected net into three DC-connected subnets. The
DC-connected subnet between a source node and adriver node is considered amodel of an internal interconnect
within acell. The driver node shall be considered an output pin of the cell. The DC-connected subnet between a
receiver node and a sink node is considered a model of an internal interconnect within another cell. The driver
node shall be considered an input pin of the cell. The DC-connected subnet between a driver node and a receiver
node is considered a model of the external interconnect between two cells. The association of an interconnect
node with either cell or with the interconnect between the cells isinfered by the connectivity within the DC-con-
nected net. A power or a ground node which is not part of the DC-connected net is considered global.

9.12.3 NODE_CLASS annotation

A node class annotation shall be defined as shown in Semantics 51.

KEYWORD NODE_CLASS = annotation {
CONTEXT = NODE;
VALUETYPE = identifier;
REFERENCETYPE = CLASS;

}

Semantics 51—NODE_CLASS annotation

Theidentifier shall refer to the name of a declared class.

The purpose of the node class annotation is to associate a node with a cell in the case where an association can
not be infered by the connectivity within a DC-connected net.

Example:

W RE Crosst al kAccr ossPower Donai ns {
CLASS aggressor { USAGE = NODE CLASS; }
CLASS victim{ USAGE = NODE _CLASS; }
NCDE vdd1l { NODETYPE = power; NODE_CLASS
NODE driverl { NODETYPE = driver; NODE_CLASS
NCDE vdd2 { NODETYPE = power; NODE_CLASS
NODE driver2 { NODETYPE = driver; NODE_CLASS

aggressor; }
aggressor; }
victim }
victim }

100 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

/1 put electrical conponents here
/1l put crosstal k nodel here

}

The node declarations in this example provide a context for a crosstalk model, where the noise magnitude at the
victim’s driver node can depend on the supply voltage at the aggressor’s power node, the supply voltage at the
victim’s power node, the signal characteristics at the aggressor’s driver node and other parameters. The crosstalk
model itself is not shown here.

9.13 VECTOR declaration

A vector shall be declared as shown in Syntax 54.

vector ::=
VECTOR control_expression
IVECTOR control_expression { { vector_item} }
| vector_template_instantiation
vector_item ;=
all_purpose_item
| wire_instantiation

Syntax 54—VECTOR statement

The purpose of avector isto provide a context for electrical characterization data or for functional test data. The
control expression (see 10.4) shall specify a stimulus related to characterization or test.

9.14 Annotations related to a VECTOR declaration

** Add lead-in text**

9.14.1 VECTOR reference annotation

A vector reference annotation shall be defined as shownin .

SEMANTI CS VECTOR = si ngl e_val ue_annot ati on {
VALUETYPE = control _expression;
CONTEXT = arithnetic_nodel ;
REFERENCETYPE = VECTOR

}

Semantics 52—VECTOR reference annotation

The purpose of a vector reference annotation is to establish an association between a vector and an arithmetic
model (see Section 11.3).

9.14.2 PURPOSE annotation
A purpose annotation shall be defined as shown in Semantics 53.

The purpose of the purpose annotation isto specify a category for the datafound in the context of the vector. The
purpose annotation can aso be inherited from a class referenced within the context of the vector.

IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 101

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

KEYWORD PURPCSE = annotation {
CONTEXT { VECTOR CLASS }
VALUETYPE = identifier ;
VALUES { bist test timng power noise reliability }

}

Semantics 53—PURPOSE annotation

The values shall have the semantic meaning shown in Table 65.

Table 64—PURPOSE annotation values

Annotation value Description

bi st The vector contains data related to built-in self test

t est The vector contains data related to test requiring external circuitry.

timng The vector contains an arithmetic model related to timing cal culation (see
from Section 11.11.1 to Section 11.11.11)

power The vector contains an arithmetic model related to power calculation (see
Section 11.11.15)

noi se The vector contains an arithmetic model related to noise calculation (see
Section 11.11.14)

reliability The vector contains an arithmetic model related to reliability calculation

(see Section 11.17.2, also Section 11.11.1 and Section 11.11.2)

9.14.3 OPERATION annotation

An operation annotation shall be defined as shown in Semantics 54.

KEYWORD OPERATI ON = si ngl e_val ue_annotati on {
CONTEXT = VECTOR;
VALUETYPE = identifier;
VALUES {
read wite read_nmodify wite refresh | oad
start end iddqg
}
}

Semantics 54—0OPERATION annotation

The purpose of the operation annotation is to associate a mode of operation of the electronic circuit with the stim-
ulus specified within the vector declaration. This assocation can be used by an application for test vector genera-
tion or test vector verification.

102 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

The values shall have the semantic meaning shown in Table 65.

Table 65—0OPERATION annotation values

Annotation value Description

read Read operation at one address of a memory.

wite Write operation at one address of a memory

read_nodify wite Read followed by write of different value at same address of a
memory

start First operation within a sequence of operations required in a
particular mode.

end Last operation within a sequence of operations required in a
particular mode.

refresh Operation required to maintain the contents of the memory
without modifying it.

| oad Operation for supplying datato a control register.

i ddq Operation for supply current measurements in quiescent state.

9.14.4 LABEL annotation

A label annotation shall be defined as shown in Semantics 55.

KEYWORD LABEL = single_val ue_annotation {
CONTEXT = VECTOR;
VALUETYPE = string_val ue;

}

Semantics 55—LABEL annotation

The purpose of the label annotation is to enable a cross-reference between a statement within the context of a
vector and a corresponding statement outside the ALF library. For example, a cross-reference between a delay
model in context of avector (see Section 11.17.1) and an annotated delay within an SDF file [** put reference to
|EEE1497 here**] can be established, since the SDF standard also supportsa LABEL statement.

9.14.5 EXISTENCE_CONDITION annotation

An existence-condition annotation shall be defined as shown in Semantics 56.

KEYWORD EXI STENCE _CONDI TI ON = si ngl e_val ue_annotation {
CONTEXT { VECTOR CLASS }
VALUETYPE = bool ean_expr essi on;
DEFAULT = 1;

}

Semantics 56—EXISTENCE_CONDITION annotation

IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 103

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

The purpose of the existence-condition isto define a necessary and sufficient condition for avector to be relevant
for an application. This condition can aso be inherited by the vector from a referenced class. A vector shall be
relevant unless the existence-condition eval uates Fal se.

The set of pin variables involved in the vector declaration and the set of pin variables involved in the existence
condition shall be mutually exclusive.

For dynamic evaluation of the control expression within the vector declaration, the boolean expression within the
existence-condition can be treated asiif it were a co-factor of the control expression.

9.14.6 EXISTENCE_CLASS annotation

An existence-class annotation shall be defined as shown in Semantics 57.

KEYWORD EXI STENCE CLASS = annotation {
CONTEXT { VECTOR CLASS }
VALUETYPE = identifier;
REFERENCETYPE = CLASS;

}

Semantics 57—EXISTENCE_CLASS annotation

The identifier shall be the name of a declared class.

The purpose of the existence-class annotation is to provide a mechanism for selection of arelevant vector by an
application. The user of the application can select a set of relevant vectors by specifying the name of the class.
Another purpose is to share acommon existence-condition amongst multiple vectors.

9.14.7 CHARACTERIZATION_CONDITION annotation

A characterization-condition annotation shall be defined as shown in Semantics 58.

KEYWORD

CHARACTERI ZATI ON_CONDI TI ON = si ngl e_val ue_annot ati on {
CONTEXT { VECTCOR CLASS }
VALUETYPE = bool ean_expr essi on;

}

Semantics 58—CHARACTERIZATION_CONDITION annotation

The purpose of the characterization-condition annotation is to specify a unique condition under which the datain
the context of the vector were characterized. The characterization condition is only applicable if the vector decla-
ration eventually in conjunction with an existence-condition allows more than one condition.

The set of pin variables involved in the characterization-condition can overlap with the set of pin variables
involved in the vector declaration and/or the existence-condition, as long as the characterization condition is
compatible with the vector declaration and eventually with the existence-condition.

The characterization condition shall not be relevant for evaluation of either the vector declaration or the exist-
ence condition.

104 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

9.14.8 CHARACTERIZATION_VECTOR annotation

A characterization-vector annotation shall be defined as shown in Semantics 59.

KEYWORD CHARACTERI ZATI ON_VECTOR =
singl e_val ue_annotation {
CONTEXT { VECTOR CLASS }
VALUETYPE = control _expression;

}

Semantics 59—CHARACTERIZATION_VECTOR annotation

The purpose of a characterization-vector annotation is to specify a complete stimulus for characterization in the
case where the vector declaration specifies only apartia stimulus.

The characterization-vector annotation and the characterizati on-condition annotation shall be mutually exclusive
within the context of the same vector.

9.14.9 CHARACTERIZATION_CLASS annotation

A characterization-class annotation shall be defined as shown in Semantics 60.

KEYWORD CHARACTERI ZATI ON_CLASS = annotation {
CONTEXT { VECTOR CLASS }
VALUETYPE = identifier;
REFERENCETYPE = CLASS;

}

Semantics 60—CHARACTERIZATION_CLASS annotation

The identifier shall be the name of a declared class.

The purpose of the characterization-class annotation is to provide a mechanism for classification of characteriza-
tion data. Another purpose isto share a common characterization-condition or acommon characterization-vector
amongst multiple vectors.

9.14.10 MONITOR annotation

A monitor annotation shall be defined as shown in Semantics 61.

KEYWORD MONI TOR = annotation {
CONTEXT { VECTOR CLASS }
VALUETYPE = identifier;

}

Semantics 61—MONITOR annotation

The purpose of the monitor annotation is to specify aset of pin variables (see Section 7.9) involved in the evalu-
ation of avector expression. Events on this set of pin variables need to be monitored for detection of a specified
event sequence (see Section 10.13.2).

IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 105

10

15

20

25

30

35

40

45

50

55

1

10

15

20

25

30

35

40

45

50

55

9.15 LAYER declaration

A layer shall be declared as shown in Syntax 55.

layer ::=
LAYER layer_identifier ;
ILAYER layer identifier { { layer_item} }
| layer_template instantiation
layer_item ::=
al_purpose_item

Syntax 55—LAYER declaration

A layer shall describe process technology for fabrication of an integrated electronic circuit and a set of related
physical data and constraints relevant for a design application.

The order of layer declarations within alibrary or asublibrary shall reflect the order of physical creation of layers

by amanufacturing process. The layer which is created first shall be declared first. A virtua layer, i.e. alayer that
is not created by a manufacturing process, shall be declared last.

9.16 Annotations related to a LAYER declaration

** Add lead-in text**

9.16.1 LAYER reference annotation

A layer reference annotation shall be defined as shownin .

SEMANTI CS LAYER = annotation {
VALUETYPE = identifier;
CONTEXT { arithnetic_npodel PATTERN ARRAY }
REFERENCETYPE = LAYER

}

Semantics 62—LAYER reference annotation

The purpose of a layer reference annotation is to establish an association between a layer and a pattern (see
Section 9.28), an array (see Section 9.26) or an arithmetic model (see Section 11.3).

9.16.2 LAYERTYPE annotation

A layertype annotation shall be defined as shown in Semantics 63.

KEYWORD LAYERTYPE = singl e_val ue_annotation {
CONTEXT = LAYER,
VALUETYPE = identifier;
VALUES {
routing cut substrate dielectric reserved abstract

}
}

Semantics 63—LAYERTYPE annotation

106 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

The values shall have the semantic meaning shown in Table 66.

Table 66—LAYERTYPE annotation values

Annotation value Description
routing Layer provides electrical connections within a plane.
cut Layer provides electrical connections between planes.
substrate Layer at the bottom.
dielectric Layer provides electrical isolation between planes.
reserved Layer isfor proprietary use only.
abstract Layer isvirtual, not manufacturable.

9.16.3 PITCH annotation

A pitch annotation shall be defined as shown in Semantics 64.

KEYWORD PI TCH = singl e_val ue_annotation {
CONTEXT = LAYER;
VALUETYPE = unsi gned_nunber;

}

Semantics 64—PITCH annotation

The purpose of the pitch annotation is specification of the normative distance between parallel wire segments
within alayer with layertype value routing. This distance is measured between the center of two adjacent parallel
wires.

9.16.4 PREFERENCE annotation

A preference annotation shall be defined as shown in Semantics 65.

KEYWORD PREFERENCE = si ngl e_val ue_annotation {
CONTEXT = LAYER,
VALUETYPE = identifier;
VALUES { horizontal vertical acute obtuse }

}

Semantics 65—PREFERENCE annotation

The purpose of the preference annotation is to specify the prefered routing direction for a routing segment on a
layer with layertype value routing (see Section 9.16.2).

IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 107

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

The values shall have the semantic meaning shown in Table 66.

Table 67—PREFERENCE annotation values

Annotation value Description
hori zont al Prefered routing direction is horizontal, i.e., O degrees.
verti cal Prefered routing direction is vertical, i.e., 90 degrees.
acute Prefered routing direction is 45 degrees.
obt use Prefered routing direction is 135 degrees.

9.17 VIA declaration

A via shall be declared as shown in Syntax 56.

via:=
V1 A via_identifier ;
IVIA via_identifier { { via item} }
| via_template_instantiation
via item ;=
all_purpose_item
| pattern
| artwork

Syntax 56—VIA declaration

A viashall describe a stack of physical artwork for electrical connection between wire segments on different lay-
ers.

9.18 Annotations related to a VIA declaration

** Add lead-in text**

9.18.1 VIA reference annotation

A via reference annotation shall be defined as shownin .

SEMANTI CS VI A = annotation {
VALUETYPE = identifier;
CONTEXT = arithnetic_nodel;
REFERENCETYPE = VI A;

}

Semantics 66—VIA reference annotation

The purpose of a via reference annotation is to establish an association between a via and an arithmetic model
(see Section 11.3).

108 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

9.18.2 VIATYPE annotation

** Single subheader* *

A viatype annotation shall be defined as shown in Semantics 67.

KEYWORD VI ATYPE = singl e_val ue_annotati on {
CONTEXT = VI A;
VALUETYPE = identifier;
VALUES { default non_default partial _stack full_stack }
DEFAULT = defaul t;

Semantics 67—VIATYPE annotation

The values shall have the semantic meaning shown in Table 68.

Table 68—VIATYPE annotation values

Annotation value

Description

def aul t

vi a can be used per default.

non_def aul t

vi a can only be used if authorized by a RULE.

partial _stack

vi a contains three patterns: the lower and upper routing layer
and the cut layer in-between. This can only be used to build
stacked vias. The bottom of astack can beadef aul t or a
non_defaul t via.

full _stack

vi a contains 2N+1 patterns (N>1). It describes the full stack
from bottom to top.

9.19 RULE declaration

A rule shall be declared as shown in Syntax 57.

rule::=

rule_item ::=

| pattern
| region

all_purpose_item

RULE rule_identifier ;
| RULE rule identifier { { rule item} }

| rule_template_instantiation

10

15

20

25

30

35

40

45

| via_instantiation

Syntax 57—RULE statement

A rule declaration shall be used to define electrical or physical constraintsinvolving physical objects. A physical
object shall be described as a pattern (see Section 9.28), a region (see Section 9.30), or a via instantiation (see
Section 10.20). The electrical or physical contraint shall be described as arithmetic model (see Section 11.3).

IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 109

1

10

15

20

25

30

35

40

50

55

9.20 ANTENNA declaration

An antenna shall be declared as shown in Syntax 58.

antenna::=
ANTENNA antenna_identifier
|ANTENNA antenna_identifier { { antenna_item} }
| antenna_template_instantiation
antenna_item :;=
all_purpose_item
| region

Syntax 58—ANTENNA declaration

An antenna declaration shall be used to define manufacturability constraints involving physical objects or
regions (see Section 9.30), wherein the regions are created by physical objects. The physical objects shall be
associated with alayer (see Section 9.15). Within the context of an antenna declaration, arithmetic models for
size (see Section 11.19.1), area (see Section 11.19.2), perimeter (see Section 11.19.3) associated with a layer or
with a region can be described. The arithmetic models can be combined, based on electrical connectivity (see
Section 11.18.1) between the layers.

To evaluate connectivity in the context of an antenna declaration, the order of manufacturing given by the order
of layer declarations shall be considered. An object on a layer shall only be considered electrically connected to
an object on another layer, if the connection already exists when the uppermost layer of both layers is manufac-
tured. Thisisillustrated in the following figure 9.

Figure 9—Connection between layers during manufacturing

The dark objectson layer A and layer C on the left side of figure 9 are considered connected, because the connec-
tion is established through layer B which exists already when layer C is manufactured.

The dark objects on layer A and layer C on the right hand side of figure 9 are not considered connected, because
the connection involves layer D and E which do not yet exist when layer C is manufactured.

9.21 BLOCKAGE declaration

A blockage shall be declared as shown in Syntax 59.

A blockage declaration shall be used in context of a cell (see Section 9.3) to describe a part of the physical art-
work of the cell. No short circuit shall be created between the physical artwork described by the blockage and a

physical artwork created by an application. Physical or electrical constraints involving a blockage can be
described by arule (see Section 9.19). A rule within the context of ablockage shall only be applicable for aphys-

110 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

blockage ::=
BL OCKAGE blockage identifier ;
| BLOCK AGE blockage identifier { { blockage_item} }
| blockage _template instantiation
blockage _item ::=
all_purpose_item
| pattern
| region
| rule
| via_instantiation

Syntax 59—BLOCKAGE statement

ical object within the blockage in relation to its environment. A physical object within the blockage can also be
subjected to amore general rule, i.e. arulethat is declared outside the context of the blockage.

9.22 PORT declaration

A port shall be declared as shown in Syntax 60.

port ::=
PORT port_identifier ;{ { port_item} }
| PORT port_identifier ;
| port_template_instantiation
port_item ::=
all_purpose_item
| pattern
| region
| rule
| via_instantiation

Syntax 60—PORT declaration

A port declaration shall be used in context of a scalar pin (see Section 9.5) to describe a part of the physical art-
work of a cell (see Section 9.3) provided to establish electrical connection between a pin and its environment.
Physical or electrical constraints involving aport can be described by arule (see Section 9.19). A rule within the
context of a port shall only be applicable for physical objects within the blockage in relation to their environ-
ment. The physical objects within the port can also be subjected to a more general rule.

9.23 Annotations related to a PORT declaration

** Add lead-in text**

9.23.1 CONNECT_TYPE annotation

** Single subheader* *

A connect_type annotation shall be defined as shown in Semantics 68.

IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 111

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

CONTEXT = PORT;

VALUETYPE = identifier;
VALUES { external internal }
DEFAULT = external;

}

KEYWORD CONNECT _TYPE = singl e_val ue_annotati on {

Semantics 68—PORT_VIEW annotation

The values shall have the semantic meaning shown in Table 69.

Table 69—CONNECT_TYPE annotation values

Annotation value Description
ext er nal A physical port of ablock available for external connection
i nternal A physical port inside ablock

9.24 SITE declaration

A site shall be declared as shown in Syntax 61.

Site::=
SITE site identifier ;
| SI TE site_identifier { { site item} }
| site_template instantiation
site_item ::=
all_purpose_item
| MIDTH_arithmetic_model
| HEIGHT _arithmetic_model

Syntax 61—SITE declaration

A site declaration shall be used to specify alegal placement location for a cell (see Section 9.3).

9.25 Annotations related to a SITE declaration

** Add lead-in text**

9.25.1 SITE reference annotation

A site reference annotation shall be defined as shown in Semantics 69.

SEMANTI CS SI TE = annotation {
CONTEXT { CELL ARRAY CLASS }

}

Semantics 69—SITE reference annotation

112 Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 7

The purpose of asite reference annotation is to establish an association between asite and a cell (see Section 9.3)
or an array (see Section 9.26). A cell or an array can inherit a site reference annotation from a class (see
Section 8.6).

9.25.2 ORIENTATION_CLASS annotation

An orientation class annotation shall be defined as shown in Semantics 70.

KEYWORD ORI ENTATI ON_CLASS = annotation {
CONTEXT { SITE CELL }
VALUETYPE = identifier;
REFERENCETYPE = CLASS;

}

Semantics 70—ORIENTATION_CLASS annotation

The purpose of the orientation class annotation is to specify a legal placement orientation for a cell (see
Section 9.3) on asite. The annotation value shall be the name of a declared class (see Section 8.6). The declared
class can contain a geometric transformation statement (see Section 10.18). The geometric transformation shall
indicate a transformation of coordinates from the cell as a standalone object to the cell placed on asite. The stan-
dalone cell is considered as the original object, whereas the cell placed on asiteis the transformed object.

A cell can only be placed on a site, if a matching orientation class annotation value is found within both the cell
declaration and the site declaration.

9.25.3 SYMMETRY_CLASS annotation

A symmetry class annotation shall be defined as shown in Semantics 71.

KEYWORD SYMMVETRY_CLASS = nul ti _val ue_annotation {
CONTEXT = SI TE;
VALUETYPE = identifier;
REFERENCETYPE = CLASS;

}

Semantics 71—SYMMETRY_CLASS annotation

The purpose of the symmetry class annotation isto specify a symmetry between legal placement orientations of a
cell (see Section 9.3) on a site.

A legal orientation is specified by the orientation class annnotation (see Section 9.25.2). If thereis a set of com-

mon legal orientations for both cell and site with symmetry, the cell can be placed on the site using any orienta
tion within that set.

Example
The site haslegal orientations A and B. The cell haslegal orientations A and B.
Case 1: Aand B are not symmetrical.

CLASS A { PURPCSE
CLASS B { PURPCSE

ORI ENTATI ON_CLASS; }
ORI ENTATI ON_CLASS; }

IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 113

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

SITE nySite { ORI ENTATI ON_CLASS

{ AB} }
CELL nyCell { ORI ENTATION CLASS { AB} }

When the site appearsin orientation A, the cell shall be placed in orientation A. When the site appearsin orienta-
tion B, the cell shall be placed in orientation B.
Case 2: Aand B are symmetrical.

CLASS A { PURPCSE { ORI ENTATI ON CLASS SYMVETRY_CLASS } }

CLASS B { PURPCSE { ORI ENTATI ON CLASS SYMVETRY_CLASS } }

SITE nySite { ORI ENTATION CLASS { A B} SYMVETRY CLASS { AB} }

CELL nyCell { ORIENTATION CLASS { AB} }

When the site appearsin either orientation A or B, the cell can be placed in either orientation A or B.

9.26 ARRAY declaration

An array shall be declared as shown in Syntax 62.

array ;=
ARRAY array_identifier
|ARRAY array identifier { { array_item} }
| array_template instantiation
array_item ::=
all_purpose_item
| geometric_transformation

Syntax 62—ARRAY statement
An array declaration shall be used for the purpose to describe a grid for creating physical objects within design.
A geometric transformation (see Section 10.18) can be used to define a transformation of coordinates from a

basic constructive element of the array to an element placed within the array. The basic constructive element is
considered the original object, whereas the element placed within the array is the transformed object.

9.27 Annotations related to an ARRAY declaration

** Add lead-in text**

9.27.1 ARRAYTYPE annotation

An arraytype annotation shall be defined as shown in Semantics 72.

KEYWORD ARRAYTYPE = singl e_val ue_annot ati on {
CONTEXT = ARRAY;
VALUETYPE = identifier;
VALUES { fl oorplan pl acenent
gl obal _routing detail ed_routing }

Semantics 72—ARRAYTYPE annotation

114 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

The values shall have the semantic meaning shown in Table 70.

Table 70—ARRAYTYPE annotation values

Annotation value Description

f1 oorpl an The array provides agrid for placing macrocells, i.e., cells with
celltype value can be block or core or memory.
The placement_type value shall be core.

pl acenent Thearray providesagrid for placing regular cells, i.e., cellswith
celltype value buffer, combinational, multiplexor, latch, flipflop
or special.
The placement_type value shall be core.

gl obal _routing The array provides agrid for global routing.

detai l ed_routing The array provides agrid for detailed routing.

9.27.2 LAYER reference annotation for ARRAY

A layer reference annotation in the context of an array shall be defined as shown in Semantics 73.

SEMANTI CS ARRAY. LAYER = mul ti _val ue_annot ati on;

Semantics 73—LAYER reference annotation for ARRAY

The layer reference annotation shall be applicable for an array with arraytype value detailed routing (see
Section 9.27.1). It shall specify alayer (see Section 9.15) with layertype value routing (see Section 9.16.2).

9.27.3 SITE reference annotation for ARRAY

A site reference annotation in the context of an array shall be defined as shown in Semantics 72.

SEMANTI CS ARRAY. SI TE = singl e_val ue_annot ati on;

Semantics 74—SITE reference annotation

The purpose of a site reference annotation in the context of an array is to specify the basic element from which
the array is constructed.

The site reference annotation is applicable for an array with arraytype value floorplan or placement (see
Section 9.27.1).

9.28 PATTERN declaration
A pattern shall be declared as shown in Syntax 63.

The purpose of a pattern declaration is the description of a geometry formed by a physical object.

IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 115

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

attern ;=
PATTERN pattern_identifier ;
| PATTERN pattern_identifier { { pattern_item} }
| pattern_template_instantiation
pattern_item ::=
all_purpose_item
| geometric_model
| geometric_transformation

Syntax 63—PATTERN declaration

9.29 Annotations related to a PATTERN declaration

** Add lead-in text**

9.29.1 PATTERN reference annotation

A pattern reference annotation shall be defined as shownin .

SEMANTI CS PATTERN = annotation {
VALUETYPE = identifier ;
CONTEXT = arithnetic_nodel ;
REFERENCETYPE = PATTERN ;

}

Semantics 75—PATTERN reference annotation

The purpose of a pattern reference annotation is to establish an association between a pattern and an arithmetic
model (see Section 11.3).

9.29.2 SHAPE annotation

A shape annotation shall be defined as shown in Semantics 76.

KEYWORD SHAPE = singl e_val ue_annotation {
CONTEXT = PATTERN;
VALUETYPE = identifier;
VALUES { line tee cross jog corner end }
DEFAULT = li ne;

}

Semantics 76—SHAPE annotation

The shape annotation applies for a pattern associated with a layer with layertype value routing (see
Section 9.16.2).

116 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

The values shall have the semantic meaning shown in Table 71.

Table 71—SHAPE annotation values

Annotation value Description

line A routing segment in prefered routing direction.
Each end is connected with avia or with another routing segment.

jog A routing segment in non-prefered routing direction.
Each end is connected with a routing segment in prefered routing direc-
tion.

t ee An intersection point between two orthogonal routing segments.
One of the routing segments ends at the intersection.

Cross An intersection point between two orthogonal routing segments.
Both routing segments continue beyond the intersection.

cor ner An intersection point between two orthogonal routing segments.
Both routing segments end at the intersection.

end An unconnected point of an open routing segment.

The meaning of the shape annotation valuesis further illustrated in Figure 10.

1

tee corner

end
Cross

line 11‘09
—T
7

The shape annotation specifies whether a pattern is represented by a point or by a line. A pattern with shape
annotation value line or jog is represented by aline. A pattern with shape annotation value tee, cross, corner or
end is represented by a point.

9.29.3 VERTEX annotation

Figure 10—SHAPE annotation illustration

A vertex annotation shall be defined as shown in Semantics 77.

The vertex annotation applies for a pattern in conjunction with shape annotation value tee, cross, corner, or end

(see Section 9.29.2).

IEEE P1603 Draft 7

Advanced Library Format (ALF) Reference Manual

10

15

20

25

30

35

40

45

50

55

KEYWORD VERTEX = singl e val ue_annotation {
CONTEXT = PATTERN,
VALUETYPE = identifier;
VALUES { round angul ar }
DEFAULT = angul ar;

10

15

20

25

30

35

40

45

50

55

}

Semantics 77—VERTEX annotation

The values shall have the semantic meaning shown in Table 72.

Table 72—VERTEX annotation values

Annotation value

Description

angul ar

The angle between intersecting routing segments shall be preserved.

round

The angle between intersecting routing segments shall be rounded.

The meaning of the vertex annotation valuesis further illustrated in Figure 11.

VERTEX = angular VERTEX = round

9.29.4 ROUTE annotation

Figure 11—VERTEX annotation illustration

A route annotation shall be defined as shown in .

}

KEYWORD ROUTE = singl e_val ue_annotati on {
CONTEXT = PATTERN;
VALUETYPE = identifier;
VALUES { horizontal acute vertical obtuse }

The route annotation applies for a pattern with shape annotation value line, jog, or tee (see Section 9.29.2).

118

Semantics 78—ROUTE annotation

Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

The purpose of a route annotation is to specify the actual routing direction for the pattern. Thisis illustrated in
Figure 12..

pattern line tee jog
route

horizontal T
vertical 1

Figure 12—ROUTE annotation illustration
If the route annotation does not appear and alayer reference annotation (see Section 9.29.5) appears, the prefered
routing direction specified by the preference annotation (see Section 9.16.4) within the layer declaration shall
apply to infer the actual routing direction. If both route annotation and layer reference annotation appear, the
route annotation shall take precedence.

9.29.5 LAYER reference annotation for PATTERN

A layer reference annotation in the context of a pattern shall be defined as shown in.

SEMANTI CS PATTERN. LAYER = si ngl e_val ue_annot ati on;

Semantics 79—LAYER reference annotation for PATTERN

The purpose of a layer reference annotation in the context of a pattern is to establish an association between a
pattern and a layer (see Section 9.15). The physical object represented by the pattern shall reside on alayer. A
pattern declaration without layer reference annotation shall be considered incomplete.

9.30 REGION declaration

A region object shall be declared as shownin .

region ::=
* REGI ON region_name identifier
|REGION region_name_identifier{ { region_item} }
| region_template_instantiation
region_item ::=
all_purpose_item
| geometric_model
| geometric_transformation
| BOOLEAN_single value_annotation

Syntax 64—REGION declaration

IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 119

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

The purpose of aregion declaration is the description of ageometry. The geometry can be formed by intersection
or union of physical objects. The geometry can also be described in abstract mathematical terms without being
associated with a particular physical object.

The specification of geometries by one or more geometric models (see Section 10.16) and/or by a boolean anno-
tation (see Section 9.31.2) shall be additive, i.e., the region shall be considered the union of the specified geome-

tries. If ageometric transformation (see Section 10.18) is present, it shall apply to all specified geometries within
the region.

9.31 Annotations related to a REGION declaration
9.31.1 REGION reference annotation

A region reference annotation shall be defined as shown in .

SEMANTI CS REA ON = annot ati on {
VALUETYPE = identifier ;
CONTEXT = arithnetic_nodel ;
REFERENCETYPE = REG ON ;

}

Semantics 80—PATTERN reference annotation

The purpose of a region reference annotation is to establish an association between a region and an arithmetic
model (see Section 11.3).

9.31.2 BOOLEAN annotation

A boolean annotation shall be defined as shown in .

KEYWORD BOOLEAN = si ngl e_val ue_annot ati on {
CONTEXT = REG ON ;
VALUETYPE = bool ean_expression ;

}

Semantics 81 —BOOLEAN annotation

The purpose of the boolean annotation is to specify a region by a boolean operation (see Section 10.11). The
name of apattern (see Section 9.28) or the name of another region shall be considered alegal operand. The oper-
ators specified in Section 10.11.1, Table 78 and Section 10.11.2, Table 80 shall be considered legal operators.

120 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

10. Description of functional and physical implementation

** Add lead-in text**

10.1 FUNCTION statement

A function statement shall be defined as shown in Syntax 65.

function ::=
FUNCTION { function_item { function_item} }
| function_template_instantiation
function_item ::=
all_purpose_item

| behavior

| structure

| statetable

Syntax 65—FUNCTION statement

The purpose of the function statement is to describe a canonical specification of adigital electronic circuit imple-
mented by acell. A cell can contain at most one function statement.

The function statement can contain a behavior statement (see Section 10.4) or a set of one or more statetable
statements (see Section 10.6). The purpose of the behavior and statetable statementsin this context isto formally
specify the logic state of a cell as aresponse to a given stimulus.

The function statement can also contain a specification for implementation using the structure statement (see
Section 10.5).

10.2 TEST statement

A test statement shall be defined as shown in Syntax 66.

test =
TEST { test_item { test_item} }
| test_template instantiation
test_item ::=
all_purpose_item
| behavior
| statetable

Syntax 66—TEST statement

The purpose of the test statement is to describe the interface between a cell and a test algorithm applied to the
cell. A cell can contain at most one test statement.

The test statement can contain a behavior statement (see Section 10.4) or a set of one or more statetable state-
ments (see Section 10.6). The purpose of the behavior and statetable statements in this context is to model the
interface between a cell and atest algorithm as avirtual digital circuit.

A test algorithm consists of avirtua input pattern and a virtual expected output pattern. The test statement does

not specify the test algorithm per se, but the mapping of the virtual pattern into a stimulus applicable to the
device under test, i.e., the cell. Thisisfurther explained in Section 10.3.

IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 121

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

10.3 Declaration of a pin variable

Both the variables involved in the test statement and the signalsinvolved in the function statement shall be con-
sidered as pin variables (see Section 7.9).

Pin variables shall be declared as pins or pingroups of the cell with pintype annotation value digital. The annota-

tion values for direction and view shall specify whether a pin can be used asa signal for function or as avariable
for test, according to the following Table 73.

Table 73—Annotations for PINs involved in FUNCTION and TEST

category DIRECTION VIEW
input signa for function input functional or both
output signal for function output functional or both
bidirectional signal for function both functional or both
internal signal for function none none
primary input variable for test input none
primary output variable for test output none
primary bidirectional variablefor test | both none
internal variable for test none none

An pin attribute value can be used to specify a test method related to a variable. See Table 61, “PIN or PIN-
GROUP attributes for memory BIST,” for specification of a particular test method.

A primary input variable for the test statement can hold a state of avirtual input pattern. A primary output vari-
able for the test statemen can hold the state of avirtual expected output pattern. A primary bidirectional variable
for the test statement can hold the state of a virtual input or output pattern, depending on the mode of the test
algorithm. An internal variable for the test statement communicates neither with the test algorithm nor with the
device under test.

Aninput signal of the cell can be controlled or non-controlled by the test algorithm. An output signal of the cell
can be observed or non-observed by the test algorithm. A bidirectional signal of the cell can be controlled or
non-controlled in input mode and observed or non-observed in output mode. An internal signal of the cell com-
municates neither with the test algorithm nor with the environment of the cell.

The relationship between pin variables involved in the test statement and in the function statement is illustrated

in the following figure 13. The information flow depicted therein shall be established by a behavior statement
(see Section 10.4) and/or by a set of statetable statements (see Section 10.6).

122 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

primary input primary output non-controlled non-observed

vari Ibl es v?i ables input s glal s outp\}t signals

controlled input signals

interna > internal

variables TEST < observed output signals FUNCTION signals

controlled / observed
bidirectional signals

primary bi?irectional non-controllii / non-observed
variables bidirectional signals

Figure 13—Relationship between FUNCTION and TEST

10.4 BEHAVIOR statement

A behavior statement shall be defined as shown in Syntax 67.

behavior ::=
BEHAVIOR { behavior_item { behavior_item} }
| behavior_template_instantiation
behavior_item ::=
boolean_assignment
| control_statement
| primitive_instantiation
| behavior_item template instantiation
boolean_assignment ::=
pin_variable = boolean_expression ,
control_statement ::=
primary_control_statement { alternative _control_statement }
primary_control_statement ::=
@ control_expression { boolean_assignment { boolean_assignment } }
dternative _control_statement ::=
 control_expression { boolean_assignment { boolean_assignment } }
control_expression ::=
vector_expression)
| (boolean_expression
primitive_instantiation ::=
primitive_identifier [identifier] 1 pin_vaue{ pin_value} }
| primitive_identifier [identifier] { boolean_assignment { boolean_assignment } }

Syntax 67—BEHAVIOR statement

A control statement consists of a primary control statement, optionally followed by one or more alternative con-
trol statements. A primary control statement is identified by the at character followed by a control expression.
An alternative control statement is identified by the colon character followed by a control expression. A control
expression can be either a boolean expression (see Section 10.9) or a vector expression (see Section 10.12). The
order of aternativs control statements shall specify the order of priority. If the main control statement does not
evaluate true, the first alternative control statement is evaluated. If an alternative control statement does not eval-
uate true, the next alternative control statement is evaluated.

IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 123

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

A boolean assignment assigns the eval uation result of a boolean expression to apin variable (see Section 7.9). A
boolean assignment with a behavior statement as a parent shall be considered a continuous assignment, i.e. the
boolean expression is evaluated continuously.

A boolean assignment with a control statement as parent shall be considered a conditional assignment, i.e., the
boolean expression is only evaluated when the associated control expression evaluates true. When a boolean
expression is not evaluated, a pin variable shall hold its previously assigned value.

If the control expression is a boolean expression, the conditional assignment shall be called level-sensitive or
triggered by state. If the control expression is a vector expression, the conditional assignment shall be called
edge-sensitive or triggered by event.

A behavior itemisfurther subjected to the following rules:

a Aninformation flow graph involving one or more continuous assignments and/or level-sensitive condi-
tional assignments can not contain a loop. The usage of a pin with direction annotation value both as a
primary input and as a primary output in an information flow graph shall not be considered as a loop.

b) Aninformation flow graph involving one or more edge-sensitive conditional assignments can contain a
loop. The value of a pin variable immediately before the triggering event shall be considered for evalua-
tion of a boolean expression. The evaluation result shall be assigned to a pin variable immediately after
the triggering event.

¢) Aninformation flow graph established by boolean assignments can involve an implicitly declared vari-
able, i.e, the LHS of a boolean assignment has not been declared as a pin variable. An implicitly
declared variable can only be used in the context of its parent statement. An implicitly declared variable
involved in a continuous assignment can not be used in the context of a conditional assignment and vice-
versa

A primitive instantiation establishes a reference to a predefined function statement within a primitive declaration
(see Section 9.8). A continuous assignment of a boolean expression to a pin variable can be given by a boolean
assignment within the primitive instantiation, wherein the pin variable shall be a declared pin within the primi-
tive declaration. Alternatively, a continuous assignment of a pin value to a pin variable can be given by a set of
pin values, wherein the order of pin values shall correspond to the order of pin declarations within the primitive
declaration.

A set of predefined primitve declarations is specified in Section 10.14.

10.5 STRUCTURE statement and CELL instantiation

A structure statement shall be defined as shown in Syntax 68.

structure ::=
STRUCTURE { cell_instantiation { cell_instantiation} }
| structure_template_instantiation
cell_instantiation ::=
cell_reference identifier cell_instance identifier
| cell_reference_identifier cell_instance_identifier 1 { cell_instance_pin value} }
| cell_reference identifier cell_instance_identifier 1 { cell_instance pin_assignment }
| cell_instantiation_template_instantiation
cell_instance_pin_assignment ::=
cell_reference pin_variable = cell_instance pin_value ;

Syntax 68—STRUCTURE statement

124 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

The purpose of astructure statement is to specify astructural implementation of acompound cell, i.e., anetlist. A
complete or a partial netlist can be specified. A component of a netlist can be a cell or a primitive. A structure
statement shall not substitute a behavior statement or a statetable statement.

A cell instantiation shall specify the mapping between a cell reference and a cell instance within the structure
statement. The mapping shall be established either by order or by name.

In case of mapping by order, a pin value (see Section 7.9) shall be associated with the cell instance. A corre-
sponding pin variable associated with the cell reference shall be infered by the order of pin declarations within
the cell reference.

If mapping by order is not possible without ambiguity, mapping shall be established by name, using pin assign-
ment (see Section 7.10). The left-hand side of the pin assignment shall represent a pin variable associated with

the cell reference. The right-hand side of the pin assignment shall represent a pin value associated with the cell
instance.

10.6 STATETABLE statement

A statetable statement shall be defined as shown in Syntax 69.

statetable ::=
STATETABLE [identifier]
{ statetable_header statetable _row { statetable row } }

| statetable template instantiation
statetable header ::=

input_pin_variable{ input_pin_variable} : output_pin_variable{ output_pin variable} ,
statetable row ::=

statetable control_values . statetable data values,
statetable_control_values ::=

statetable_control_value { statetable control_value }
statetable control_value ::=

boolean_value

| symbolic_bit_literal

| edge _value
statetable_data values::=

statetable data value { statetable data value}
statetable data value::=

boolean_value

[([!]input_pin variable)
| ([~1input_pin variable)

Syntax 69—STATETABLE statement

A statetable shall specify the state of aset of output pin variables dependent on the state of a set of input pin vari-
ables. Sequentia behavior, i.e., next state as afunction of previous state shall be modeled by a pin variable which
appears both as input and output pin variable within the statetable header. A pin variable with direction annota-
tion value both can also appear as input and output pin variable within the statetable header. However, the state of
the output pin variable does not depend on the state of the corresponding input pin variable, unless there is
sequential behavior.

In each statetable row, a statetable control value shall be associated with a particular input pin variable, and a
statetable data value shall be associated with a particular output variable. The association is given by the position
at which the pin variables appear in the header. Each statetable row shall have the same number of items as the
statetable header. The delimiting colon in each statetable row shall in the same position as in the statetable
header.

IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 125

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

A statetable control value shall be compatible with the datatype of the corresponding input pin variable. A
statetable data val ue shall be compatible with the datatype of the corresponding output pin variable. An input pin
variable enclosed by parentheses shall specify that the value of the input pin variable be assigned to the output
pin variable. Such input pin variable need not appear in the statetable header. A preceding exclamation mark
shall indicate that the logically inverted value be assigned to the output variable. A preceding tilde shall indicate
that the bitwise inverted value be assigned to the output variable.

10.7 NON_SCAN_CELL statement

A non-scan cell statement shall be defined as shown in Syntax 70.

non_scan cell ::=
"NON_SCAN_CELL = non_scan_cell_reference
INON_SCAN_CELL { non_scan_cell_reference{ non_scan_cell_reference} }
| non_scan_cell_template_instantiation
non_scan_cell_reference ::=
non_scan_cell_identifier { { scan_cell_pin_identifier} }
| non_scan_cell_identifier 1 { non_scan_cell_pin_identifier = scan_cell_pin_identifier ; } }

Syntax 70—NON_SCAN_CELL statement

A non-scan cell statement applies for a scan cell. A scan cell is a cell with extra pins for testing purpose. The
non-scan cell reference within the non-scan cell statement specifies a cell that is functionally equivalent to the
scan cell, if the extra pins are not used. The cell without extrapinsis referred to as non-scan cell. The name of the
non-scan cell is given by the non-scan cdll identifier.

The pin mapping is given either by order or by name. In case of pin mapping by order, the pin values shall refer
to pin names of the scan cell. The order of the pin values corresponds to the pin declarations within the non-scan
cell. In case of pin mapping by name, the pin names of the non-scan cell shall appear at the left-hand side, and the
pin names of the scan cell shall appear at the right-hand side.

Example

/1 declaration of a non-scan cell
CELL myNonScanFl op {
PIN D { DI RECTI ON=i nput; SI GNALTYPE=data; }
PIN C { DI RECTI ON=i nput; SI GNALTYPE=cl ock; POLARI TY=ri si ng_edge; }
PIN Q { DI RECTI ON=out put; SI GNALTYPE=data; }
}
/1 declaration of a scan cell
CELL myScanFl op {
PIN CK { DI RECTI ON=i nput; SI GNALTYPE=cl ock; }
PIN DI { DI RECTI ON=i nput; SIGNALTYPE=data; }
PIN SI { DI RECTI ON=i nput; SIGNALTYPE=scan_data; }
PIN SE { DI RECTI ON=i nput; SIGNALTYPE=scan_enabl e; POLARI TY=hi gh; }
PI N DO { DI RECTI ON=out put; SI GNALTYPE=dat a; }
/1 put NON SCAN CELL statenment here

}

The non-scan cell statement with pin mapping by order looks as follows:

NON_SCAN_CELL { nyNonScanFlop { DI CK DO} }
/1 correspondi ng pins by order: D C Q

126 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

The non-scan cell statement with pin mapping by name looks as follows:

NON_SCAN_CELL { nyNonScanFlop { Q=DO D=DI; C=CK; } }

10.8 RANGE statement

A range statement shall be defined as shown in Syntax 71.

range ::=
%QANGE { index_value : index_value }

Syntax 71—RANGE statement

The range statement shall be used to specify a valid address space for elements of a vector- or matrix-pin.
If no range statement is specified, the valid address space A is given by the following mathematical relationship:
0<A<2°-1

B = [1+LSB—MSB if(LSB > MSB)
1+MSB—LSB if(LSB < MSB)

where

Aisan unsigned integer representing the address space within a vector- or matrix-pin,
B is the bitwidth of the vector-or matrix-pin,

and

MSB isthe left-most bit within the vector- or matrix-pin,
L SB isthe right-most bit within the vector or- matrix-pin,

in accordance with Section 7.8.

The index values within a range statement shall be bound by the address space a, otherwise the range statement
shall not be considered valid.

Example

PIN [5:8] nmyVectorPin { RANGE { 3 : 13 } }

bitwidth: B=4
default address space: 0<A<15
address space defined by range statement: 3<A<13

10.9 Boolean expression

A boolean expression shall be defined as shown in Syntax 72.

IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 127

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

boolean_expression ::=
(boolean_expression)
| pin_variable
| boolean_value
| boolean_unary boolean_expression
| boolean_expression boolean_binary boolean_expression
| boolean_expression ? boolean_expression
{ boolean_expression ? boolean_expression : }
boolean_expression
bool ean_unaéy =
Vi~ 1& ~& ([1~ 1™
boolean_binary ::=
&I&& [[||| 1M 1N 1= == |>= |<= |> < |+ |- | |/ |% |>>|<<

Syntax 72—Boolean expression

The purpose of a boolean expression is to specify a boolean operation involving pin variables as operands. The
evaluation result of aboolean expression shall be aboolean value.

10.10 Boolean value system

10.10.1 Scalar boolean value

A scalar boolean value shall be described by an alphanumerical bit literal (see Section 6.7). A scalar boolean
value shall represent alogical value and optionally a drive strength. The set of logical values shall be false, true

and unknown. The set of drive strengths shall be strong, weak, and zero. The symbols used for scalar boolean val-
ues and their meaning shall be defined as shown in Table 74.

Table 74—Scalar boolean values

symbol logical value drive strength rg&ggl\ghe comment
0 fase strong 0
1 true strong 1
Xorx unknown strong Xorx
Lorl false weak 0
Horh true weak 1
Wor w unknown weak Xorx
Zorz undefined zero Xorx use for high impedance
Uoru undefined undefined Xorx use for uninitialized signal in simulation

A boolean expression (see Section 10.9) can evaluate to a scalar boolean value represented by an alphanumeric
bit literal. For evaluation of a boolean expression, a scalar boolean value shall be reduced to avalue 0, 1, or X
within a 3-value system, unless an alphabetic bit literal (L, H, W, Z, U) is explicitely specified as evaluation
result in the boolean expression.

128 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

10.10.2 Vectorized boolean value

A vectorized boolean value shall be described either by a based literal (see Section 6.8) or by an integer (see
Section 6.5). A vectorized boolean value can be mapped into a vector of alphanumerical bit literals. The number
of bit literals shall be called bitwidth.

An octal digit can be mapped into athree bit vector of bit literals, as shown in Table 75.

Table 75—Mapping between octal base and binary base

Octal Binary (bit literal) Numerical value
0 000 0
1 001 1
2 010 2
3 o1 3
4 100 4
5 101 5
6 110 6
7 m 7

A hexadecimal digit can be mapped into afour bit vector of bit literals, as shownin Table 76.

Table 76—Mapping between hexadecimal base and binary base

Hexadecimal Binary (bit literal) Numerical value
0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
7 0111 7
8 1000 8
9 1001 9
aorA 1010 10

IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 129

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

Table 76—Mapping between hexadecimal base and binary base (Continued)

Hexadecimal Binary (bit literal) Numerical value
boB 1011 1
coC 1100 12
dorD 1101 13
eoaE 1110 14
forF 1111 15

An alphabetic bit literal shall be mapped according to the following rules:

a) Anaphabetic bit literal in octal base shall be mapped into three subsequent occurrences of the same bit
literal in binary base.

b) An alphabetic bit literal in hexadecimal base shall be mapped into four subsequent occurrences of the
same bit literal in binary base.

Example

' 02xwou isequivalent to' b010_xxx_ww_000_uuu
"hLux isequivalent to' bLLLL_uuuu_xxxx

An integer can be represented by a vector of bit literals, according to the following mathematical relationship.

B-1

unsigned integer N = Z s(p) (2°
p=0
B-2

signed integer N =3 s(p) 2" -sm®*
p=0

where
N isthe integer.

B is the bitwidth of the vector of bit literals.
p isthe position of a bit within the vector, counted from O to B-1.
s(p) isthe scalar value (zero or one) of the bit at position p.
Sisthe scalar value (zero or one) of the MSB, i.e., the bit at position B-1.
The bitwidth B of avectorized boolean variable restricts the range of a corresponding integer N as follows:
unsigned integer 0<N<2°_1

signed integer 2P teN<2®t

130 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

A vector pin (see Section 9.5) can be used as a pin variable holding a vectorized boolean value. The position of a
bit isrelated to an index within the pin declaration as follows:

_ (LSB —i if(LSB > MSB)
i —LSB if(LSB < MSB)

where
i isthe index within a vector pin.
L SB isthe rightmost index within a vector pin. The corresponding position is 0.
MSB isthe leftmost index within a vector pin. The corresponding position is B-1.
Example:

PIN [5:8] ny_vector_pin;

bit[index] position comment
ny_vect or _pi n[5] 3 MSB
nmy_vect or _pi n[6] 2
nmy_vect or _pi n[7] 1
ny_vect or _pi n[8] 0 LSB

10.10.3 Non-assignable boolean value

A non-assignable boolean value shall be described by a symbolic hit literal (see Section 6.7), as shown in Table
7.

Table 77—Symbolic boolean values

symbol logical value drivestrength comment
? arbitrary arbitrary use for “don’t care”
* subject to random change | arbitrary signal is not monitored

A symbolic bit literal or a based literal containing a symbolic bit lieteral can not be assigned to a pin variable as
a boolean value. A symbolic bit literal can be used within a statetable control value, but not within a statetable
datavalue.

Within the context of a vectorized boolean value, a symbolic bit literal shall be mapped according to the follow-
ing rules:

a A symbolic bit literal in octal base shall be mapped into three subsequent occurrences of the same bit lit-
eral in binary base.

b) A symboalic bit literal in hexadecimal base shall be mapped into four subsequent occurrences of the same
bit literal in binary base.

IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 131

10

15

20

25

30

35

40

45

50

55

1

5

10

15

20

25

30

35

40

45

50

55

10.11 Boolean operations and operators
10.11.1 Logical operation

The operators for alogical operation shall be defined as shown in Table 78

Table 78—Logical Operation

Operator Description

| logical inversion

& & logical and

|| logical or

A boolean expression involving alogical inversion, and, or (see Table 78), nand, nor, exor, exnor (see Table 79)
shall be evaluated according to the rules of boolean algebra** do we need a reference to a textbook on boolean

algebra here?**.

The result of the evaluation shall be true, false, or unknown.

If an alphabetic bit literal is used as operand, only the logical value, not the drive strength, shall be considered for
evaluation. An undefined logical value within an operand shall be considered unknown.

If avectorized boolean valueis used as operand, the logical value of the operand shall be obtained by applying a
logical or to al bits of the operand.

10.11.2 Bitwise operation

The operators for a bitwise operation shall be defined as shown in Table 79

Table 79—Bitwise Operation

Operator Description

~ bit-wise inversion

& bit-wise and

| bit-wise or

N bit-wise exclusive or (exor)

~& bit-wise and with inversion (nand)

~| bit-wise or with inversion (nor)

~I bit-wise exclusive or with inversion (exnor)

A bit-wiseinversion shall invert each bit of a vectorized boolean value.

132 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

The operators for bit-wise operations, except bit-wise inversion, can be used as boolean unary or as boolean
binary operators.

A boolean unary operator for the operation and, or, exor, nand, nor, or exnor shall reduce a vectorized boolean
value to a scalar boolean value by applying alogical and, or, exor, nand, nor, or exnor to all bits of the operand.

A boolean binary operator for the operation and, or, exor, nand, nor, or exnor shall apply alogical and, or, exor,
nand, nor, or exnor to each corresponding bit of two vectorized boolean values. The operands shall be LSB-
aligned. If the operands have different bitwidths, the missing bits of the operand with smaller bitwidth shall be
considered undefined. The result of the operation shall be a vectorized boolean value.

A hit-wise operation involving only scalar boolean values or single bit vectorized boolean values as operands
shall be considered equivalent to the corresponding logical operation.

10.11.3 Conditional operation

The symbols used for a conditional operation shall be defined as shown in Table 80

Table 80—Conditional Operation

Symbol Description

? operator for a condition

delimiter between aternatives

If the boolean sub-expression to the left of the condition operator evaluates true, the boolean sub-expression to
the right of the condition operator shall be evaluated. Otherwise, the boolean expression to the right of the delim-
iter between alternatives shall be evaluated. If multiple conditions and alternatives exist within a boolean expres-
sion, the evaluation shall proceed from the left to the right.

10.11.4 Integer arithmetic operation

The operators for an integer arithmetic operation shall be defined as shown in Table 81.

Table 81—Integer Arithmetic Operation

Operator Description
+ add
- subtract
* multiply
/ divide
% modulus

IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 133

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

A boolean expression involving an integer arithmetic operation with operands represented as integer shall be
evaluated according to the rules of integer arithmetic ** do we need a reference to a textbook on integer arith-
metic here? **.

If an operand is represented as a based literal, the operand shall be converted into an integer according to
Section 10.10.2. This conversion is well-defined, if each bit has the logical value true or false. The MSB of a
based literal shall be interpreted according to the datatype annotation value (see Section 9.7.10) of apin variable
associated with the based literal.

An operand represented as a bit literal shall be treated in the same way as a single bit binary based literal.

If abit literal or abit of abased literal has the logical value unknown, the conversion into an integer is not well-
defined. In this case, an application can optionally perform a partial evaluation of the boolean expression, by
replacing the value unknown with the value true or false.

10.11.5 Shift operation

The operators for a shift operation shall be defined as shown in Table 82

Table 82—Shift Operation

Operator Description

<< shift left

>> shift right

A shift operation shall involve two operands. The LHS operand shall be a vectorized boolean value, represented
by an integer, by a based literal, or, as atrivial case, by abit literal. The RHS operand shall be an unsigned inte-
ger N in the range between zero and the bitwidth of the LHS operand, specifying the number of positions by
which the bits of the LHS operand are to be shifted.

For shift left, N bits of the LHS operand shall be replaced with the logical value unknown, starting from the LSB.
For shift right, N bits of the LHS operand shall be replaced with the logical value unknown, starting from the
MSB.

10.11.6 Comparison operation

The operators for a comparison operation shall be defined as shown in Table 83

Table 83—Comparison Operation

Operator Description
== equal
1= non equal
> greater
< less

134 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

Table 83—Comparison Operation

Operator Description

>= greater or equal

<= lesser or equal

A comparison involving operands represented as integer shall be evaluated according to the rules of integer
arithmetic ** do we need areference to atextbook on integer arithmetic here? **.

If an operand is represented as a based literal, the operand shall be converted into an integer according to
Section 10.10.2. This conversion is well-defined, if each bit has the logical value true or false. The MSB of a
based literal shall be interpreted according to the datatype annotation value (see Section 9.7.10) of apin variable
associated with the based literal.

If abit of abased literal hasthe logical value unknown, the conversion into an integer is not well-defined. In this
case, an application can optionally perform a partial comparison, by replacing the value unknown with the value
true or false.
If the operands are integers or the conversion from based literal to integer is well-defined, a comparison shall
evaluate true or false. If the conversion from based literal to integer is not well-defined, a comparison can evalu-
ate unknown.

A comparison between scalar boolean values or single bit vectorized boolean values shall consider both the logi-
cal value and the drive strength as criterion for comparison

The egual comparison considering drive strength shall be evaluated according to the following Table 84

Table 84—Equal comparison considering drive strength

logical value _ drive strength _ result
(true, false, unknown, or undefined) | (strong, weak, zero, or undefined)
same for both operands same for both operands true
same for both operands different for each operand fase
different for each operand arbitrary false

The non-equal comparison shall evaluate true, if the equal comparison evaluates false, and vice-versa.
Note: To compare scalar boolean values or single hit vectorized boolean values considering the logical value

only, the exor operation can be used instead of the non-equal comparison, and the exnor operation can be used
instead of the equal comparison.

IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 135

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

The greater comparison considering drive strength shall be evaluated according to the following Table 85

Table 85—Greater comparison considering drive strength

[gse |l gnesrenh e
true fase arbitrary true
true unknown arbitrary unknown
false true arbitrary false
fase unknown arbitrary false
unknown true arbitrary unknown
unknown false arbitrary unknown
unknown unknown arbitrary unknown
true true same for both operands false
false fase same for both operands false
true true different for each operand | unknown
false fase different for each operand | unknown

Thelesser comparision shall be evaluated in the same way as the greater comparison, when the LHS operand and
the RHS operand switch places.

The greater-or-equal comparison shall be evaluated as logical or between greater comparison and equal com-
parison.

The lesser-or-equal comparison shall be evaluated as logical or between lesser comparison and equal compari-
son.

10.11.7 Operator priorities

The binding priority of operations in a boolean expression shall be from the strongest to the weakest in the fol-
lowing order:

a) operation enclosed by parentheses

b) booleanunary (!, ~, & ~&|,~|,", ~")

c) exor (M), exnor (~"), comparison (>, <,>=, <=, == 1 =) shift (<<, >>)
d) and (&, &&), nand (~&), multiply (*), divide (/), modulus (%9

e or(,||), nor(~]),add (+), subtract (-)

f) operator and delimiter for conditional operation (?, :)

When operations of the same binding priority are subsequently encountered in a boolean expression, the evalua-
tion shall proceed from the left to the right.

10.12 Vector expression

A vector expression shall be defined as shown in Syntax 73.

136 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

vector_expression ::=
(‘vector_expression)
| vector_unary boolean_expression
| vector_expression vector_binary vector_expression
| boolean_expression ? vector_expression :
{ boolean_expression ? vector_expression . }
Vector_expression
| boolean_expression control_and vector_expression
| vector_expression control_and boolean_expression
| vector_expression_macro
vector_unary ::=
edge literal
vector_binary ::=
& 1&& (||| 1-=> 1> |<-> |<~> |&> |<&>
control_and ::=

& &&

Syntax 73—Vector expression
The purpose of a vector expression to specify a sequence of events. In a static application context, the vector
expression shall be evaluated against a proposed segquence of events. In a dynamic application context, a vector
expression shall be evaluated against a monitored sequence of events.
A vector expression shall evaluate true, when the specified sequence of events is satisfied or detected, i.e., the
vector expression matches a proposed or monitored sequence of events. The true evaluation of a vector expres-

sion constitutes an event by itself, which can be used as a trigger within the context of a behavior statement (see
Section 10.4).

10.13 Operators for event specification

The term event is used synonymously to contents of an arbitrary vector expression.

10.13.1 Specification of a single event

An edge literal (see Section 6.9) shall be used as a vector unary operator to specify a single event. The operand

shall be a boolean expression. A single event on the operand shall be interpreted according to the following Table
86.

Table 86—Specification of a single event

row edgeliteral event on operand

1 first_bit_literal second hit_literal value beforeisfirst_bit literal, value after is second_bit_litera

2 first_based literal second based literal | value beforeisfirst based literal, value after is second based_literal

3 ? value before and after the event is arbitrary

4 > state of operand is random after the event

5 *? state of operand is random before the event

6 ?! operand changes from arbitrary value to arbitrary different value
7 ?~ every binary digit of the operand changes from arbitrary value to

arbitrary different value

IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 137

10

15

20

25

30

40

45

50

55

10

15

20

25

30

35

40

45

50

55

Table 86—Specification of a single event

row edgeliteral event on operand

8 ?- operand does not change its value

An edge literal consisting of two consecutive alphanumerical bit literals (row 1) can be used for a scalar operand.
An edge literal consisting of two consecutive based literals (row 2) can be used for a scalar operand or for avec-
torized operand, as long as the bitwidth of the operator is compatible ith the bitwidth of the operand. An edge lit-
eral consisting of two consecutive symbolic bit literals (row 3, 4, 5) can be used for either a scalar or avectorized
operand. A symbolic edge literal (row 6, 7, 8) can be used for either a scalar or a vectorized operand.

An edge literal (row 8 in particular) can specify the same value before and after the event. Such a specification
shall beinterpreted as event by exclusion, i.e., an event happens, but not on the operand.

An arbitrary value shall be comprised within the set of applicable values for the operand, i.e., a scalar operand or
abinary digit of avectorized operand can have avalue specified by an alphanumerical bit literal, an operand with
datatype unsigned can have an arbitrary unsigned integer value within the range of specified bitwidth, an oper-
and with datatype signed can have an arbitrary signed integer value within the range of specified bitwidth.

A random value shall be interpreted as an arbitrary value subjected to random change. In a dynamic application
context, an event on avariable is not monitored while the variable isin random value state.

A single event can be described by atiming diagram asillustrated in the following figure 14.

vector unary operator corresponding timing diagram
|
01 |
|

“d5'd9 value=5 | value=9

?7? X

- DEEEZEIK
2! >1<

event occurence time

Figure 14—Timing diagrams for single events

The specification of asingle event by itself does not imply any transition time. A single event can happen instan-
taneoudly. The transition time in figure 14 is only for the purpose of illustrating the difference between ?? and ?!.

138 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

The operator ?? shall be considered neutral operator, since a specified single event involving ?? on an arbitrary
operand always matches a proposed single event on any operand. A single event involving the neutral operator
shall be considered neutral single event.

10.13.2 Temporal order within an event sequence

A vector binary operator shall be used to specify a temporal order between events, thus establishing an event
sequence. Each operand shall be a vector expression. The operation result shall be another vector expression.

The vector expression shall be evaluated against a proposed or monitored event sequence. The proposed or mon-
itored event sequence shall be established as follows:

a) A primary event sequence shall be established by representing in temporal order all single events on a set
of pin variables. The set of pin variables shall be specified either by the scope annotation (see
Section 9.7.18) within a pin declaration or by the monitor annotation (see Section 9.14.10) within a vec-
tor declaration. The elapsed time between subsequently occuring single events can vary between arbi-
trarily large and arbitrarily small values.

Note: In a dynamic application context, “all” single events can be eventually reduced to “the N latest relevant” single events,
where N is large enough to contain the specified vector expression.

b) Thesingle events on pin variables involved in the vector expression shall be reduced to single events on
boolean expressions wherein the pin variables are involved. Other single events on these pin variables
shall be disregarded. The single events on pin variables not involved in the vector expression shall be not
be reduced.

Example:

A set of pin variables applicable for two vector expressions v,and v, isA, B, C, D.
The vector expression v; reads (01 (A& B) -> 10 (B|C)).

The vector expression v, reads (1? A -> 10 (C & ! D)).

Therefore, the primary event sequence represents the single eventson A, B, C and D.

The reduced event sequence for evaluation of v, represents the single events on (A& B), (B|C) and D.
The reduced event sequence for evaluation of v, representsthe single eventson A, B and (C & ! D).

IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 139

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

The following picture shows sample event sequences.

T T T T T T T T T T T T
primary event sequence A | | | L |
B — —t— I I | |
[| | | | |
C | |1 | | | |
1 T I 1 | | I 1
D LIl [| | | |
| L1 | | | | | 1 | |
reduced event sequence o ! ! ! P '
forevaluationofv; ~ A&B I | [S I
BIC [| |
D~ 11 | | | |
| 1 | | | | | |
reduced event sequence Pl ' ot Ll
for evaluation of v (A S— | I — [
B | T |
C&!D || | | | |
1 | | | | 1

The temporal order concept does not specify or imply a particular time interval between consecutive single
event. Mathematically, each time interval shall be greater than zero, but it can be arbitrarily close to zero. Two
single events can occur simultaneously, i.e., at the same time, either by implication or by co-incidence.

The following rules shall apply for the temporal order of events.

a) A value change of a boolean expression and a single event on a pin variable causing this value change
shall be considered simultaneous by implication.

b) A value change of avectorized pin variable and a corresponding value change of any part of the vector-
ized pin variable shall be considered simultaneous by implication.

c) Within the context of abehavior statement, the assignment of a boolean expression to apin variable as a
consequence of avalue change of the boolean expression shall trigger an advancement in time.

d) Within the context of a control statement as part of a behavior statement, the assignment of a boolean
expression to a pin variable as a consequence of a value change of a control expression shall trigger an
advancement in time.

€) Singleevents on arbitrary independent pin variables can occur simultaneously by co-incidence.

f) In the context of a vector statement, al pin variables shall be considered independent, even though a
causal dependency between some pin variables can exist in the context of abehavior statement.

It is possible that the application does not support a monitor capable of detecting simultaneously occuring events
by co-incidence. In this case, the temporal order of such eventsis not predictable.

Example:

A behavior statement contains the boolean assignment Z = A& B.

The single event (01 (A& B)) is caused by the single event (01 A).

The single events (01 (A& B)) and (01 A) are considered to occur simultaneously by implication.

Within the context of the behavior statement, the single event (01 Z) is considered to occur after the single event
(01 (A& B)).

Outside the context of the behavior statement, the variables A and Z are considered independent. The numerical

140 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

value of the measured propagation delay from A to Z could be greater than zero, lesser than zero, or zero. There-
fore, the single events (01 A) and (01 Z) could occur simultaneously by co-incidence.

10.13.3 Canonical specification of a sequence of events

The operators in the following Table 87 shall be used for acanonical specification of an event sequence.

Table 87—Canonical specification of an event

symbol operator name explanation
-> immediately followed by LHS event occurs before RHS event,
no event can occur in-between
~> eventually followed by LHS event occurs before RHS event,
an arbitrary number of events can occur in-between
&& or& simultaneous occurence LHS event and RHS event occur at the same time
[l or| alternative occurence Either LHS event or RHS event occur
&> closely followed by LHS event occursimmediately before RHS event,

or both events occur at the sametime

The semantic meaning of the operatorsis furthermore detailed as follows:

The immediately followed by operator applied to a sequence of single events shall specify that the latest single
event within the LHS vector expression immediately precedes the earliest single event within the RHS vector
expression.

The eventually followed by operator applied to a sequence of single events shall specify that the latest single
event within the LHS vector expression occurs earlier than the earliest single event within the RHS vector
expression.

The simultaneous occurence operator applied to a sequence of single events shall specify that each Nth latest sin-
gle event within the LHS vector expression occurs at the same time as each Nth latest single event within the
RHS vector expression.

This rule can be formulated as follows:

a) Product involving immediately followed by and simultaneously occuring operator
(Wi>Wi)& (Wh>wWy) =Mia Wy >N e vy

where vMi and vNi , respectively, are vector expressions describing a sequence of M single events each and N sin-
gle events each, respectively, ordered by the immediately followed by operator.

If the LHS and RHS vector expressions comprise a different number of subsequently occuring single events, the
shorter vector expression shall be left-extended with neutral single events.

b) Product involving sequences of events with different length
(WMi>Wiye Wy =W (WNie)

A set of mathematical rules for evaluation of acompound vector expression shall be established, wherein the the
symbols v; represent vector expressions within the compound vector expression.

IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 141

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

¢) Associativity for immediately followed by operator
V1 ->Vp-> V3= (Vg ->Vp) ->V3=Vy -> (Vo ->V3)
d) Associativity for eventually followed by operator
V] ~>Vp~>V3= (V) ~>Vp) ~>V3=V) ~> (Vv ~>V3)
€) Mixed associativity for immediately followed by and eventually followed by operator
V1 ->Vp =>V3 = (Vg ->Vp) > V3=V -> (Vp ~>V3)
V1 ~>Vp-> V3= (V1 ~>Vp) ->V3=Vy ~> (V2 ->V3)
f) Assocativity for simultaneous occurence operator
Vl& Vz& V3=(Vl& Vo)& V3:V1& (Vz& V3)
g) Commutativity for simultaneous occurence operator
Vl & V2 = V2 & Vl
h) Reduction rule for simultaneous occurence operator
Vl & Vl = Vl
i) Assocativity for alternative occurence operator
ViIV2 V3= (V| Vz) [Va3=Vy[(V2]V3)
j) Commutativity for alternative occurence operator
ViV =Va vy
k) Reduction rule for alternative occurence operator
V1 |vy=Vvy
I) Distributivity between immediately followed by operator and alter native occurence operator
(vilvz) ->v3=(vy->V3)[(V2->V3)
Vi > (V2| v3) =(v->Vp) [(Vg ->V3)
m) Distributivity between eventually followed by operator and alter native occurence operator
(vilv2) =>Vv3=(vy>Vv3)[(V2~>V3)
Vi => (V2 |v3) =(vy=>V2) [(v ~>V3)
n) Distributivity between simultaneous occurence operator and alter native occurence operator
(vilVv2) & v3=(Vv1 & V3) [(V2& V3)

The closely followed by operator shall be mathematically defined as follows:
0) V1&>Vy =(Vi& V) [(Vvy->Vp)

Therefore, the closely followed by operator applied to a sequence of single events shall specify that the latest sin-
gle event within the LHS vector expression immediately precedes the earliest single event within the RHS vector
expression, or, each Nth latest single event within the LHS vector expression occurs at the same time as each Nth
latest single event within the RHS vector expression.

A general vector expression can be mathematically formulated as a canonical “sum of products’.
m

p _ —
Vi = Vi@ -0 Vicy - ORimVim = [PiiyVia)

opiy=->|~>1&

where v® is a vector expression in “sum” form applying the alter native occurence operator to vector expressions
vpj, and each vpj isavector expression in “product” form applying the operators immediately followed by, even-
tually followed by, or simultaneous occurence to single events v;;. The usage of the symbols op;(;), I and Z for
vector binary operatorsis only for mathematical representation, it is not a syntax feature for a vector expression.
Also, the first operator opj(1 isirrelevant when converting the mathematical representation into a vector expres-
sion.

142 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

Example:

my
v = [OPii)Vaa) m =3 0py(y) = nil Opy(p) = -> 0py(3) = ->
=1 vy = (01A) vy = (10A) vy3) = (10B)
m,
p_ .
V2 = [9P26)Vai) mp=3 opy(y) = nil Opy(2) = -> Opy(3) = ->
i=1 V1) = (01 B) V2(2) = (10 B) V2(3) = (10 A)

2
v’ = 3 = (01A)->(10A) -> (10B) [(01 B) -> (10 B) - > (10 A)
j=1
10.13.4 Specification of a completely permutable event
Permutation operations shall be defined for events immediately followed by each other, for events eventually fol-
lowed by each other, and for events closely followed by each otheer. The operands, i.e., arbitrary vector expres-

sionsv;, shall be subjected to alternative event sequences with completely permutable temporal order.

The symbols for permutation operators are shown in the following Table 88.

Table 88—Specification of a completely permutable event

symbol operator name explanation
<> permutation of eventsimmediately fol- | LHS event immediately followed by RHS event
lowed by each other or
RHS event immediately followed by LHS event
<~> permutation of events eventually fol- LHS event eventually followed by RHS event
lowed by each other or
RHS event eventually followed by LHS event
<&> permutation of events closely followed | LHS event immediately followed by RHS event
by each other or

RHS event eventually followed by LHS event
or
LHS event and RHS event occur simultaneously

The permutation operator for two events immediately followed by each other shall be mathematically defined as
follows:

p) vi<->Vo =(Vvp->Vp)[(Va->Vy)

The permutation operator for two events eventually followed by each other shall be mathematically defined as
follows:

Q Vi<V =(vp=>Vp) | (Va~>Vvq)

The permutation operator for two events closely followed by each other shall be mathematically defined as fol-
lows:

r) Vi <&>Vo = (V1 &>Vy) | (Vo &>Vy)

IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 143

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

The definition of a permutation operator for N events (N>2) shall be extended for N+1 events in the following
way:

N N where Vi) O (Vi)

<>y, = SV = Vp(N) . p(N) SV
[1<>%= 2 |_| i) Z with VY] |_| o)
k=1 j=1li=1
N+1 N N+1 k-1 N (N+1)! +1

— — p(K +1) p(N+1) —

<%= 2 2 [I‘l'”(l)j (N+1)(|‘|->v,-(i)j = >V with |_| “>Vi(i)
k=1 j=ik=1%=1 i =k j=1 i=1

If the operator <-> is globally replaced by <~> or <& >, respectively, the operator -> shall be globally replaced by
~> or & >, respectively.

A vector expression with N operands v, subjected to a permutation operator (i.e., <-> or <~> or <&>) is equivar
lent to a vector expression with NI sum terms wherein each sum term represents a particular permutation of V.
Each sum term consists of N product terms, i.e., a sequence of N events vy subjected to a corresponding fol-
lowed by operator (i.e., -> or ~> or &>). There are N! such sequences of events. The (N+1)th operand can be
inserted in N+1 places within each sum term. Therefore a vector expression with N+1 operands v, subjected to a
permutation operator is equivalent to a vector expression with (N+1)! sum terms, each of which consists of N+1
product terms.

As each permutation operator is defined for N=2 events, the definition can be immediatley extended to N=3
events.

Permutation of 3 immediately followed events:

Vl <-> V2 <-> V3 =
(Vg -> Vo ->Vg) | (V1 -> V3 -> V) | (V3 -> Vg -> Vp) | (Vo -> Vg -> V3) | (Vo -> Vg -> Vy) | (V3 -> Vo -> V)

Permutation of 3 eventually followed events:

Vl <~> V2 <~> V3 =
(Vg ~> Vo ~>Vg) | (V1 ~> V3 ~> V) | (V3 ~> V1 ~> Vo) | (Vo ~> V1 ~>V3) | (Vo ~> V3 ~> V) | (V3 ~> Vp ~> Vy)

Permutation of 3 closely followed events:

Vy <&> V, <&> Vg =
(V1 &>V5 &>V3) | (Vq &>V3 &>V)) | (V3 &>V &>V) | (Vo &>Vq &>V3) | (Vo &>V3 &>Vy) | (V3 &>V &>Vy)

From N=3 events, the definition can be extended to N=4 events, and so forth.
10.13.5 Specification of a conditional event

A conditional event shall be defined by a condition operator with avector expression and aboolean expression as
operands.

144 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

The symbols for condition operators are shown in the following Table 88.

Table 89—Specification a conditional event

symbol operator name comment
&& control-and operator overloaded symbol, also used for logical and (see
or Table 78) and bitwise and (Table 79)
&
? condition operator see also Table 80
delimiter between alternatives see also Table 80

A conditional event involving the control-and operator, an arbitrary vector expression v and an arbitrary boolean
expression b shall be mathematically defined as follows:

s) Vv&b=(*1b)->v->(1*b)
The vector expression v shall be evaluated while b is true. Commutativity shall apply for the operands v and b.
) v&b=b&v

A conditional event involving the condition operator, the delimiter between aternatives, arbitrary vector expres-
sions v, and v, and an arbitrary boolean expression b shall be mathematically defined as follows:

u b?viiv,=vi& blv,&!b

If the boolean expression to the left of the condition operator evaluates true, the vector expression to the right of
the condition operator shall be evaluated. Otherwise, the bool ean expression to the right of the delimiter between
alternatives shall be evaluated. If multiple conditions and alternatives exist, the eval uation shall proceed from the
left to the right.

10.13.6 Operator priorities

The binding priority of operationsin avector expression shall be from the strongest to the weakest in the follow-
ing order:

a) operation enclosed by parentheses

b) vector unary, i.e., edgeliteral

C) permutation operators (<- >, <~>, <&>)

d) and operator (&, &&), to be interpreted as simultaneous occurence or as control-and
e) followed-by operators (- >, ~>, &)

f) oroperator (| ,| |), to beinterpreted as alter native

g) operator and delimiter for conditional operation (?, :)

When operations of the same binding priority are subsequently encountered in a boolean expression, the evalua-
tion shall proceed from the left to the right.

IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 145

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

10.14 Predefined PRIMITIVE

This section defines the predefined primitive declarations, wherein the prefix “ALF_" isreserved for the name of

such primitives.
10.14.1 Predefined PRIMITIVE ALF_BUF

The primitive ALF_BUF shall be defined as shown in .

PRI M Tl VE ALF_BUF {
PINin { DIRECTION = input; }
PIN [1: <bitwi dth>] out { DI RECTION = output; }
GROUP index { 1 : <bitw dth> }
FUNCTION { BEHAVIOR { out[index] =in; } }
}
Semantics 82—Predefined PRIMITIVE ALF_BUF
10.14.2 Predefined PRIMITIVE ALF_NOT
The primitive ALF_NOT shall be defined as shown in .
PRI M TI VE ALF_NOT {
PINin { DIRECTION = input; }
PIN [1: <bitwi dth>] out { DI RECTION = output; }

GROUP index { 1 : <bitw dth> }
FUNCTI ON { BEHAVIOR { out[index] = ! i

n,; }

}

Semantics 83—Predefined PRIMITIVE ALF_NOT

10.14.3 Predefined PRIMITIVE ALF_AND

The primitive ALF_AND shall be defined as shownin .

PRI M Tl VE ALF_AND ({
PIN out { DI RECTION = output; }

}

PIN [1:<bitwidth>] in { DIRECTION = input; }
FUNCTION { BEHAVIOR { out = & in ; } }

Semantics 84—Predefined PRIMITIVE ALF_AND

10.14.4 Predefined PRIMITIVE ALF_NAND
The primitive ALF_NAND shall be defined as shownin .
10.14.5 Predefined PRIMITIVE ALF_OR

The primitive ALF_OR shall be defined as shownin .

146 Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 7

PRI M TI VE ALF_NAND {
PIN out { DI RECTION = output; }
PIN[1:<bitwidth>] in { D RECTION = input;
FUNCTION { BEHAVIOR { out = ~&in ; } }

}

}

Semantics 85—Predefined PRIMITIVE ALF_NAND

PRI M TI VE ALF_OR {
PIN out { DI RECTION = output; }
PIN[1l:<bitwidth>] in { D RECTION = input;
FUNCTION { BEHAVIOR { out =] in; } }

}

}

Semantics 86—Predefined PRIMITIVE ALF_OR
10.14.6 Predefined PRIMITIVE ALF_NOR

The primitive ALF_NOR shall be defined as shownin .

PRI M TI VE ALF_NOR {
PIN out { DI RECTION = output; }
PIN [1:<bitwidth>] in { DI RECTION = input;
FUNCTION { BEHAVIOR { out = ~| in; } }

}

}

Semantics 87—Predefined PRIMITIVE ALF_NOR

10.14.7 Predefined PRIMITIVE ALF_XOR

The primitive ALF_XOR shall be defined as shown in .

PRI M TI VE ALF_XOR {
PIN out { DI RECTION = output; }
PIN[1:<bitwidth>] in { D RECTION = input;
FUNCTION { BEHAVIOR { out =" in; } }

}

}

Semantics 88—Predefined PRIMITIVE ALF_XOR

10.14.8 Predefined PRIMITIVE ALF_XNOR

The primitive ALF_XNOR shall be defined as shownin .
10.14.9 Predefined PRIMITIVE ALF_BUFIF1

The primitive ALF_BUFIF1 shall be defined as shown in .
10.14.10 Predefined PRIMITIVE ALF_BUFIFO

The primitive ALF_BUFIFO shall be defined as shown in .

IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual

147

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

PRI M TI VE ALF_XNCR {

PIN out { DI RECTION = output; }
PIN[1l:<bitwidth>] in { DIRECTION = input; }
FUNCTION { BEHAVIOR { out = ~* in ; } }
}
Semantics 89—Predefined PRIMITIVE ALF_XNOR
PRI M TI VE ALF_BUFI F1 {
PIN out { DI RECTION = output; }
PINin { D RECTION = input; }
PIN enable { DI RECTION = input; }
FUNCTION { BEHAVIOR { out = (enable)? in: ‘bz ; } }
}
Semantics 90—Predefined PRIMITIVE ALF_BUFIF1
PRI M TI VE ALF_BUFI FO {
PIN out { DI RECTION = output; }
PINin { D RECTION = input; }
PIN enable { DI RECTION = input; }
FUNCTI ON { BEHAVIOR { out = (! enable)? in: ‘bz ; } }
}
Semantics 91—Predefined PRIMITIVE ALF_BUFIFO
10.14.11 Predefined PRIMITIVE ALF_NOTIF1
The primitive ALF_NOTIF1 shall be defined as shown in .
PRI M TI VE ALF_NOTI F1 {
PIN out { DI RECTION = output; }
PINin { D RECTION = input; }
PIN enable { DI RECTION = input; }
FUNCTION { BEHAVIOR { out = (enable)? ! in: ‘bz ; } }

Semantics 92—Predefined PRIMITIVE ALF_NOTIF1

10.14.12 Predefined PRIMITIVE ALF_NOTFIFO

The primitive ALF_NOTIFO shall be defined as shownin .

PRI M Tl VE ALF_NOTI FO {

PIN out { DI RECTION = output;
PINin { D RECTION = input;

}
}

PIN enable { DI RECTION = input; }

FUNCTI ON { BEHAVI OR { out = (!
}

enable)? !

in :

‘bZ ;

b}

148

Semantics 93—Predefined PRIMITIVE ALF_NOTIFO

Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 7

10.14.13 Predefined PRIMITIVE ALF_MUX

The primitive ALF_MUX shall be defined as shownin .

PRI M TI VE ALF_MJX {
PIN Q { DIRECTION = output; }
PIN[1:0] D{ DIRECTION = input; }
PIN S { DIRECTION = input; }
FUNCTI ON {
BEHAVI OR {
}Q=! S&DO0] | S&D1] | Do] & D1]
}
}

Semantics 94—Predefined PRIMITIVE ALF_MUX

10.14.14 Predefined PRIMITIVE ALF_LATCH

The primitive ALF_LATCH shall be defined as shown in .

PRI M Tl VE ALF_LATCH {
PIN Q { DIRECTION = output; }
PIN QN { DI RECTI ON = output; }
PIN D { DIRECTION = input; }
PIN ENABLE { DI RECTION = input; }
PIN CLEAR { DI RECTION = input; }
PI'N SET { DIRECTION = input; }
PIN Q CONFLICT { DIRECTION = input; }
PIN QN _CONFLI CT { DIRECTION = input; }
FUNCTI ON {
BEHAVI OR {
@(CLEAR && SET) {
Q = Q. CONFLICT ; QN = QN_CONFLICT ;
oo QLEAR) |

Q=0; N=1;
pooo(SET) |

Q=1; N=20;
} : (ENABLE) {

Q=D; N=1 D;

}
}
}

}

Semantics 95—Predefined PRIMITIVE ALF_LATCH

10.14.15 Predefined PRIMITIVE ALF_FLIPFLOP

The primitive ALF_FLIPFLOP shall be defined as shownin.

IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual

149

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

PRI M TI VE ALF_FLI PFLOP {

PIN Q { DIRECTION = output; }
PIN QN { DI RECTI ON = output; }
PIN D { DIRECTION = input; }

PIN CLOCK { DI RECTION = input; }
PIN CLEAR { DI RECTION = input; }
PI'N SET { DIRECTION = input; }

PIN Q CONFLICT { DIRECTION = input; }
PIN QN_CONFLICT { DIRECTION = input; }
FUNCTI ON {

BEHAVI OR {

@(CLEAR && SET) {
Q= Q CONFLICT : QN = QN_CONFLI CT ;
} o (CLEAR) {

Q:O;Q\]:]_;
pooo(SET) |
Q:]_;Q\]:O;
} (01 CLOCK) {
Q=D; N=1! D;
}
}

}
}

Semantics 96—Predefined PRIMITIVE ALF_FLIPFLOP

10.15 WIRE instantiation

A wire instantiation shall be defined as shown in Syntax 74.

wire_instantiation ::=
wire_reference_identifier wire_instance_identifier |
{ wire_instance_pin value} }
{ wire_instance _pin_assignment }

| wire_reference_identifier wire_instance_identifier
| wire_reference_identifier wire_instance_identifier
| wire_instantiation_template_instantiation
wire_instance pin_assignment ::=
wire_reference_pin_variable = wire_instance_pin_value,

Syntax 74—WIRE instantiation

The purpose of awire instantiation is to describe an electrical circuit for characterization or test. A reference of
the electrical circuit shall be given by awire declaration (see Section 9.9). A cell, subjected to characterization or
test, can be connected with an instance of the electrical circuit.

The mapping between the wire reference and the wire instance shall be established either by order or by name.
In case of mapping by order, a pin value (see Section 7.9) shall be associated with the wire instance. A corre-
sponding pin variable associated with the wire reference shall be infered by the order of node declarations within

the wire reference.

If mapping by order is not possible without ambiguity, mapping shall be established by name, using pin assign-
ment (see Section 7.10). The left-hand side of the pin assignment shall represent the name of a node associated

150 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

with the wire reference. The right-hand side of the pin assignment shall represent a pin value associated with the
wire instance.

10.16 Geometric model

A geometric model shall be defined as shown in Syntax 75.

geometric_model ::=
nonescaped_identifier [geometric_model _identifier]
{ geometric_model_item { geometric_model_item } }
| geometric_model_template instantiation
geometric_model_item ::=
POINT_TO_POINT _single value_annotation
| coordinates
coordinates ::=
COORDINATES({ point { point} }
point ::=
X_number y_number

Syntax 75—Geometric model

A geometric model shall describe the form of a physical object. A geometric model can appear in the context of
apattern (see Section 9.32) or aregion (see Section 9.34).

The numbersin the point statement shall be measured in units of distance (see Section 11.19.9).

The parent object of the geometric model can contain a geometric transformation (see Section 10.18) applicable
to the geometric model.

Table 90 specifiies the meaning of predefined geometric model identifiers.

Table 90—Geometric model identifiers

Identifier Description
DOoT Describes one point.
POLYLI NE Defined by N>1 directly connected points, forming an open object.
Rl NG Defined by N>1 directly connected points, forming a closed object,

i.e., the last point is connected with first point. The object occupies
the boundary of the enclosed space.

POLYGON Defined by N>1 connected points, forming aclosed object, i.e., the last
point is connected with first point. The object occupies the entire
enclosed space.

The meaning of predefined geometric model identifiersis further illustrated in Figure 15.

IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 151

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

DOT (5 dots)

POLYLINE RING POLYGON

Figure 15—Illustration of geometric models

A point_to_point annotation shall be defined as shown in Semantics 97.

KEYWORD PO NT_TO PO NT = single_val ue_annotation {

CONTEXT { POLYLI NE RI NG POLYGON }
VALUETYPE = identifier;

VALUES { direct manhattan }
DEFAULT = direct;

Semantics 97—POINT_TO_POINT annotation

The point-to-point annotation applies for a polyline, a ring or a polygon. The annotation value specifies, how
subsequent pointsin the coordinates statement are to be connected.

The meaning of the annotation value direct isillustrated in Figure 16. It specifies the shortest possible connection
between points.

Y-axis

P N W b~ 01O N 00O ©

A direct connection direct connection
from (-1/8) to (-1/5) i from (3/8) to (-1/8)
X X
direct connection
9 from (-3/5) to (3/8)
direct connection
from (-1/5) to (3/5)
5 -4 -3 -2 -101 2 3 4 5 X-axis

152

Figure 16—lllustration of direct point-to-point connection

Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

The meaning of the annotation value manhattan is illustrated in Figure 17. It specifies a connection between
points by moving in the x-direction first and then moving in the y-direction. This enables a non-redundant speci-
fication of arectilinear object using N/ 2 pointsinstead of N points.

Y-axis
A manhattan connection from (-3/8) to (-1/5)

X

X

manhattan connection from (-1/5) to (3/8)

R N W s~ 01O N 00O ©

L
5 -4 -3 -2 -101 2 3 4 5 X-axis

Figure 17—lllustration of manhattan point-to-point connection

Example 1
POLYGON ({
PO NT_TO PO NT = direct;
COORDINATES { -1 53 538-1281}
}
Example 2
POLYGON ({
PO NT_TO PO NT = nanhatt an;
COORDINATES { -1 5 3 8}
}

Both statements describe the same rectangle.

10.17 Predefined geometric models using TEMPLATE

A template declaration (see Section 8.9) can be used to describe particular geometric models. This section
describes predefined geometric models.

10.17.1 Predefined TEMPLATE RECTANGLE

The template rectangle shall be predefined as shown in Semantics 98.

IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 153

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

TEMPLATE RECTANGLE {
POLYGON {
PO NT_TO PO NT = nmanhatt an;
COORDI NATES { <l eft> <bottonp <right> <top> }
}
}

Semantics 98—Predefined TEMPLATE RECTANGLE

10.17.2 Predefined TEMPLATE LINE

The template line shall be predefined as shown in Semantics 99.

TEMPLATE LI NE {
POLYLI NE {
PO NT_TO PO NT = direct;
COORDI NATES { <x_start> <y _start> <x_end> <y_end> }
}
}

Semantics 99—Predefined TEMPLATE LINE

10.18 Geometric transformation

A geometric transformation shall be defined as shown in Syntax 76.

geometric_transformation ::=
shift
| rotate
| flip

| repeat
shift ::=

SHIFT { x_number y number }
rotate ;:=

ROTATE = number ;

flip ::=
FLIP = number ;

repeat ::=
REPEAT [= unsigned_integer] { geometric_transformation { geometric_transformation} }

Syntax 76—Geometric transformation

A geometric model (see Section 10.16) shall be subjected to a geometric transformation if both statements
appear in the same context, i.e., they have the same parent.

The following rules shall apply for the geometric transformations shift, rotate and flip:
— A number associated with a geometric transformation shall be measured in units of distance (see
Section 11.19.9).

— A geometric transformation shall apply to the origin of ageometric model. Therefore, the result of subse-
quent transformations is independent of the order in which each individual transformation is applied.

154 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

— Thedirection of the transformation shall be from the geometric model to the actual object.

The shift statement shall define the horizontal and vertical offset measured between the coordinates within a
declared geometric model and the actual coordinates of an object.

The rotate statement shall define the angle of rotation in degrees measured between the orientation of a defined
geometric model and the actual orientation of an object. The angle shall be measured in counter-clockwise direc-
tion, specified by a number between 0 and 360.

The flip statement shall define a mirror operation. The number shall represent the angle of the movement of the
object in degrees. By definition, the movement is orthogonal to the mirror axis. Therefore, the number O speci-
fies flip in horizontal direction, therefore the axis is vertical, whereas the number 90 specifies flip in vertical
direction, therefore the axis is horizontal.

The geometric transformations flip, rotate, and shift are further illustrated in Figure 18.

FLIP ROTATE ... SHIFT
—_— — —
o
o o o P
legend: @ originof theobject [| &

Figure 18—lllustration of FLIP, ROTATE, and SHIFT

The repeat statement shall describe the replication of an object. The unsigned integer shall define the total num-
ber of replications, including the original instance. Therefore, the number 1 means that the object appears once.
A repeat statement without unsigned integer shall indicate an arbitrary number of replications.

Examples
The following example replicates an object three times along the horizontal axisin a distance of 7 units.

REPEAT = 3 {
SHIFT{ 7 0}
}

The following example replicates an object five times a ong a 45-degree axis in a distance of 4 units.

REPEAT = 5 {
SHIFT { 4 4}
}

The following example replicates an object two times along the horizontal axis and four times along the vertical
axisin ahorizontal distance of 5 unitsand a vertical distance of 6 units.

IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 155

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

REPEAT = 2 {
SHIFT { 5 0 }
REPEAT = 4 {

SHIFT { 0 6 }
}

}

NOTE—The order of nested REPEAT statements does not matter. The following example gives the same result as the previ-
ous example.

REPEAT = 4 {
SHFT{ 0 6 }
REPEAT = 2 {

SHFT { 50 }
}

10.19 ARTWORK statement

An artwork statement shall be defined as shown in Syntax 77.

artwork ::=

ARTWORK = artwork_identifier ;

|ARTWORK = artwork_reference

|ARTWORK { artwork_reference { artwork_reference} }

| artwork_template_instantiation
artwork_reference ::=

artwork_identifier { { geometric_transformation } { cell_pin_identifier} }
| artwork__identifier
{ { geometric_transformation} { artwork_pin_identifier = cell_pin_identifier ; } }

Syntax 77—ARTWORK statement

The purpose of the artwork statement is to create a reference between an artwork described in a physical layout
format, e.g., GDSII [**put reference to GDSII here**], and the cell described inthe ALF.

A geometric transformation (see Section 10.18) can be used to define a transformation of coordinates from the
artwork geometry to the cell geometry. The artwork is considered the original object whereas the cell isthe trans-
formed object.

The artwork statement can also etablish a mapping between a pin within the artwork and a pin of the cell. The
name of the artwork pin shall appear on the left-hand side. The name of the cell pin shall appear on the right-hand
side.

Example
CELL ny_cell {
PINA{ /* fill inpinitems */ }
PINZ { /* fill inpinitems */ }

ARTWORK = \ GDS2$! @$ {
SHIFT { 0 0 }

ROTATE = 0O;
\ CDS2$! @$A = A
\ GCDS2$! @$B = B;

156 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

10.20 VIA instantiation

A viainstantiation shall be defined as shown in Syntax 78.

via instantiation ::=
via_identifier instance identifier |
| via_identifier instance identifier { { geometric_transformation} }

Syntax 78—VIA instantiation

The purpose of aviainstantiation is to enable the definition of a design rule (see Section 9.22), a blockage (see
Section 9.24) or a port (see Section 9.25) involving a declared via (see Section 9.17). A geometric transforma-
tion (see Section 10.18) can be used to describe atransformation of coordinates from a via declaration to the via
instantiation. The declared via is considered the original object, whereas the instantiated via is the transformed
object.

IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 157

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

158

Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 7

11. Description of electrical and physical measurements

** Add lead-in text**

11.1 Arithmetic expression

An arithmetic expression shall be defined as shown in Syntax 79.

arithmetic_expression ::=
(‘arithmetic_expression)

| arithmetic_value

| { boolean_expression ? arithmetic_expression : } arithmetic_expression

| [unary_arithmetic_operator] arithmetic_operand

| arithmetic_operand binary_arithmetic_operator arithmetic_operand

| macro_arithmetic_operator (arithmetic_operand { , arithmetic_operand })
arithmetic_operand ::=

arithmetic_expression

Syntax 79—Arithmetic expression

The purpose of an arithmetic expression is the construction of an arithmetic model (see Section 11.3) or an arith-
metic assignment (see Section 8.10).

Examples for arithmetic expressions
1.24
- vdd
Cl + C2

MAX (3.5*C, -Vdd/2 , 0.0)
(C > 10) ? Vdd**2 : 1/2*Vdd - 0.5*C

11.2 Arithmetic operations and operators
11.2.1 Unary arithmetic operator

An unary arithmetic operator shall be defined as shown in Syntax 80.

unary_arithmetic_operator ::=
+

Syntax 80—Unary arithmetic operator

Table 91 defines the semantics of unary arithmetic operators.

Table 91—Unary arithmetic operators

Operator Description Comment
+ Positive sign. Neutral operator.
- Negative sign.

IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 159

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

11.2.2 Binary arithmetic operator

A binary arithmetic operator shall be defined as shown in Syntax 81.

+

};
|/
|*
I

*

%

binary_arithmetic_operator ::=

Syntax 81—Binary arithmetic operator

Table 92 defines the semantics of binary arithmetic operators.

Table 92—Binary arithmetic operators

Operator

Description

Comment

+

Addition

Subtraction

*

Multiplication

/

Division

Result includes fractional part.

* %

Power

%

Modulus

Remainder of division.

11.2.3 Macro arithmetic operator

A macro arithmetic operator shall be defined as shown in Syntax 82.

macro_arithmetic_operator ::=

Syntax 82—Macro arithmetic operator

Table 93 defines the semantics of macro arithmetic operators.

Table 93—Macro arithmetic operators

Operator

Description

Comment

| og

Natural logarithm.

1 operand, operand > 0

exp

160

Natural exponential.

Advanced Library Format (ALF) Reference Manual

1 operand

IEEE P1603 Draft 7

Table 93—Macro arithmetic operators (Continued)

Operator Description Comment
abs Absolute value. 1 operand
mn Minimum. Noperands, N > 1
max Maximum. N operands, N > 1

11.2.4 Operator priorities

The priority of operatorsin arithmetic expressions shall be from strongest to weakest in the following order:
a) unary arithmetic operator (+, -)
b) power (**)

c¢) multiplication (*), division (/), modulo division (%9
d) addition (+), subtraction (-)

11.3 Arithmetic model

An arithmetic model shall be defined asatrivial arithmetic model, apartial arithmetic model, or afull arithmetic
model, as shown in Syntax 83.

arithmetic_model ::=
trivial_arithmetic_model
| partial_arithmetic_model
| full_arithmetic_model
| arithmetic_model_template instantiation

Syntax 83—Avrithmetic model

The purpose of an arithmetic model isto specify a measurable or a calculatable quantity.

A trivial arithmetic model shall be defined as shown in Syntax 84.

trivial_arithmetic_modd ::=
arithmetic_model_identifier [name_identifier]| = arithmetic_value ;
| arithmetic_model_identifier [name_identifier] = arithmetic_value
{ { arithmetic_ model_qualifier } }

Syntax 84—Trivial arithmetic model

The purpose of atrivial arithmetic model isto specify a constant arithmetic value associated with the arithmetic
model. Therefore, no mathematical operation is necessary to evaluate a trivial arithmetic model. A trivial arith-
metic model can contain asingular or a plural arithmetic model qualifier (see Syntax 88).

A partial arithmetic model shall be defined as shown in Syntax 85.
The purpose of a partial arithmetic model isto specify asingluar or aplural model qualifier (see Syntax 88), or a

table (see Syntax 91) or atrivial min-max statement (see Syntax 95). The specification contained within a partial
arithmetic model can be inherited by another arithmetic model of the same type, according to the following rules:

IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 161

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

partial_arithmetic_model ::=
arithmetic_model_identifier [name_identifier] { { partia_arithmetic_model_item } }
partial_arithmetic_model_item ::=
arithmetic_model_qudlifier
| table
| trivial_min-max

Syntax 85—~Patrtial arithmetic model

a) If the partial arithmetic model has no name, the specification shall be inherited by all arithmetic models
of the same type appearing either within the same parent or within a descendant of the same parent.

b) If the partial arithmetic model has a name, the specification shall be only inherited by an arithmetic
model containing a reference to the name, using the model reference annotation (see Section 11.9.5).

¢) Anarithmetic model can override an inherited specification by its own specification.

A partial arithmetic model does not specify a mathematical operation or an arithmetic value. Therefore it can not
be mathematically evaluated.

A full arithmetic model shall be defined as shown in Syntax 86.

full_arithmetic_model ::=
nonescaped_identifier [name_identifier]
{ { arithmetic_model_qualifier } arithmetic_model_body { arithmetic_model_qualifier } }

Syntax 86—Full arithmetic model

The purpose of a full arithmetic model is to specify mathematical data and a mathematical evaluation method
associated with the arithmetic model. This specification resides in the arithmetic model body (see Syntax 87). A
full arithmetic model can also contain a singular or aplural arithmetic model qualifier (see Syntax 88).

The arithmetic model identifier in Syntax 84, Syntax 85 and Syntax 86 shall be declared as a keyword (see
Section 8.3) and provide specific semantics for the arithmetic model.

An arithmetic model body shall be defined as shown in Syntax 87.

arithmetic_model_body ::=
header-table-equation [trivial_min-max]
| min-typ-max
| arithmetic_submodel { arithmetic_submodel }

Syntax 87—Arithmetic model body

The purpose of the arithmetic model body is to specify mathematical data associated with a full arithmetic
model. The data is represented either by a header-table-equation statement (see Section 11.4), or by a min-typ-
max statement (see Section 11.5), or by asingular or aplural arithmetic submodel (see Section 11.7).

An arithmetic model qualifier shall be defined as shown in Syntax 88.

The purpose of an arithmetic model qualifier isto specify semantics related to an arithmetic model.

An inheritable arithmetic model qualifier, i.e., an annotation (see Section 7.11), an annotation container (see

Section 7.12) or a from-to statement (see Section 11.12) can be inherited by another arithmetic model using a
model reference annotation (see Section 11.9.5).

162 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

arithmetic_model_qualifier ::=
inheritable_arithmetic_model_qualifier
| non_inheritable_arithmetic_model_qualifier
inheritable_arithmetic_model_qualifier ::=
annotation
| annotation_container
| from-to
non_inheritable_arithmetic_model_qualifier ::=
auxiliary_arithmetic_model
| violation

Syntax 88—Arithmetic model qualifier
A non-inheritable arithmetic model qualifier, i.e., an auxiliary arithmetic model (see Section 11.6), a violation

(see Section 11.10) or a wire instantiation (see Section 11.11) shall apply only for the arithmetic model under
evaluation.

11.4 HEADER, TABLE, and EQUATION statements

A header-table-eguation statement shall be defined as shown in Syntax 89.

header-table-equation ::=
header table | header equation

Syntax 89—Header table equation

The purpose of a header-table-equation statement isto specify the mathematical data and a method for evaluation
of the mathematical data associated with afull arithmetic model (see Syntax 86).

A header statement shall be defined as shown in Syntax 90.

header ::=

HEADER { header_arithmetic_model { header_arithmetic_model } }
header_arithmetic_model ::=

arithmetic_model_identifier [name_identifier] { { header_arithmetic_model_item } }
header_arithmetic_ model_item ::=

inheritable_arithmetic_model_qualifier
| table
| trivial_min-max

Syntax 90—HEADER statement

Each header arithmetic model shall represent a dimension of an arithmetic model.

Any arithmetic model (see Section 11.3) with a header as a parent shall be interpreted as a header arithmetic
model. A declared keyword (see Section 8.3) for arithmetic model shall apply as identifier.

Note: The syntax for header arithmetic model is a true subset of the syntax for arithmetic model.
A table statement shall be defined as shown in Syntax 91.

A table statement within a partial arithmetic model shall define a discrete set of legal and applicable values. A
table statement within a full arithmetic model shall represent a lookup table. If the arithmetic model body con-

IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 163

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

table::=
TABLE { arithmetic_value{ arithmetic value} }

Syntax 91—TABLE statement

tains a table statement, each header arithmetic model shall also contain a table statement. The table statement
within the header arithmetic model shall represent the lookup index for a particular dimension.

The mathematical relation between alookup table and its lookup indices shall be established as follows:

N N=>1
S= S0 S>1

= O<P<S-1

N i—1 S(I)>1
P = % P(i) 7 S(K) =

E:l k|:|1 O<P(i)sS(i)-1

where

N denotes the number of dimensions

Sdenotes the size of the lookup table, i.e., the number of arithmetic values within the lookup table

P denotes the position of an arithmetic value within the lookup table

i denotes the index corresponding to the order of appearance of a dimension within the header statement
S(i) denotes the size of adimension, i.e., the number of arithmetic values in the table within adimension
P(i) denotes the position of an arithmetic value within a dimension

A dimension can be either discrete or continuous. In the latter case, interpolation and extrapolation of table val-
uesisalowed, and the arithmetic values in this dimension shall appear in strictly monotonous ascending order.

An equation statement shall be defined as shown in Syntax 92.

equation ::=
EQUATION { arithmetic_expression }

| equation_template instantiation

Syntax 92—EQUATION statement

The arithmetic expression within the equation statement shall represent the mathematical operation for evalua-
tion of the arithmetic model.

Each dimension shall be involved in the arithmetic expression. The arithmetic expression shall refer to a dimen-
sion by name, if aname identifier exists or by type otherwise. Consequently, the type or the name of adimension
shall be unique.

A full arithmetic model or any of its dimensions can inherit a set of legal values from a partial arithmetic model
(see Syntax 85), represented by atable statement. Such a table statement can not substitute alookup index within
a dimension, and it can not pose a restriction on the evaluation of an arithmetic expression. The header-table-
equation statement shall enable evaluation of the arithmetic model at least within the set or range of legal values,
but possibly beyond.

164 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

11.5 MIN, MAX, and TYP statements

A min-typ-max statement shall be defined as shown in Syntax 93.

min-typ-max ::=

min-max | [min] typ [max]
min-max ::=

min | max | min max
min ::=

trivial_min | non_trivial_min
max ::=

trivial_max | non_trivial_max
typ::=

trivial_typ | non_trivial_typ

Syntax 93—MIN-TYP-MAX statement

The purpose of a min-typ-max statement is to represent one or more possible sets of mathematical data associ-
ated with an arithmetic model, rather than a single actual set.

Data associated with a min statement shall represent the smallest possible evaluation result under a given evalua-
tion condition, i.e., actual evaluation results can be numerically greater.

Data associated with a max statement shall represent the greatest possible eval uation result under a given evalua-
tion condition, i.e., actual evaluation results can be numerically smaller.

Data associated with a typ statement shall represent a typical evaluation result under a given evaluation condi-
tion, i.e., actual evaluation results can be numerically greater or smaller.

A non-trivial min or max or typ statement shall be defined as shown in Syntax 94.

non_trividl_min ::=

"MIN = aithmetic_value{ violation }

IMIN {[violation] header-table-equation }
non_trivial_max ::=

= arithmetic_value{ violation }

|MAX { [violation] header-table-equation }
non_trivia_typ ::=

"TY P{ header-table-equation }

Syntax 94—Non-trivial MIN, MAX and TYP statements

By definition, a non-trivial min or max statement is associated with a header-table-equation statement (see
Syntax 89) or aviolation statement (see Section 11.10). A non-trivial typ statement is associated with a header-
table-equation statement.

Note: A violation statement is a particular arithmetic model qualifier (see Syntax 88).

A trivial min, max, or typ statement shall be defined as shown in Syntax 95

By definition, atrivial min, max, or typ statement is associated with a constant arithmetic val ue.

A trivial min-max statement within apartial arithmetic model (see Syntax 85) shall define the legal range of val-

ues for an arithmetic model. The arithmetic value associated with the trivial min statement represent the smallest
legal number. The arithmetic value associated with the trivial max statement represents the greatest legal number.

IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 165

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

trivial_min-max ::=
trivia_min | trivial_max |trivia_min trivia_max
trivia_min ::=
MTN = arithmetic_value
trivial_max ::=
MAX = arithmetic_value;

trivial tyE)::z
TY P = arithmetic_value;

Syntax 95—Trivial MIN, MAX and TYP statements

A trivial min-max statement within a header arithmetic model (see Syntax 90) shall define the range of validity
of a particular dimension. An application tool can evaluate the header-table-equation statement (see Syntax 89)
outside the range of validity, however, the accuracy of the evaluation outside the range of validity is not guaran-
teed.

A trivial min-max statement shall be subjected to the following parsing rules:

a) Within apartial arithmetic model (see Syntax 85), a set of legal values defined by atable statement (see
Syntax 91) shall take precedence over arange of legal values defined by atrivial min-max statement.

b) Within an arithmetic model (see Syntax 83) that can be interpreted as either a partial arithmetic model
(see Syntax 85) or afull arithmetic model (see Syntax 86), the interpretation of a trivial min-max state-
ment as a min-typ-max statement (see Syntax 95) shall take precedence. As a consequence, the interpre-
tation of an arithmetic model as a full arithmetic model takes precedence.

The following Semantics 100 define the interpretation of min, max, typ as a particular arithmetic submodel (see
Section 11.7).

SEMANTICS M N = arithnetic_subnodel {

CONTEXT { arithnetic_nodel arithnetic_subnodel }
}
SEMANTI CS MAX = arithnetic_subnodel {

CONTEXT { arithnetic_nodel arithnetic_subnodel }
}
SEMANTI CS TYP = arithnetic_subnodel {

CONTEXT { arithnetic_nodel arithnetic_subnodel }

}

Semantics 100—Interpretation of MIN, MAX, TYP as arithmetic submodel

Thisinterpretation shall only apply in the context of a semantic rule, without invalidating a more restrictive syn-
tax rule.

Note: The syntax rule for min, max, typ (see Syntax 93, Syntax 94, Syntax 95) isatrue subset of the syntax rule for arithmetic
submodel (see Syntax 97).

11.6 Auxiliary arithmetic model
An auxiliary arithmetic model shall be defined as shown in Syntax 96.

The purpose of an auxiliary arithmetic model is to serve as a non-inheritable arithmetic model qualifier (see
Syntax 88) for another arithmetic model (see Syntax 83), called principal arithmetic model. The auxiliary arith-

166 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

auxiliary_arithmetic_model ::=
arithmetic_model_identifier = arithmetic_value,
| arithmetic_model_identifier [= arithmetic_value]
{ inheritable_arithmetic_model_qualifier { inheritable_arithmetic_model_qualifier } }

Syntax 96—Auxiliary arithmetic model

metic model an be associated with a singular or plural inheritable arithmetic model qualifier (see Syntax 88),
with a constant arithmetic value, or both.

Any arithmetic model (see Section 11.3) with another arithmetic model as a parent shall be interpreted as an aux-
iliary arithmetic model. A declared keyword (see Section 8.3) for arithmetic model shall apply as identifier.

Note: The syntax for auxiliary arithmetic model is a true subset of the syntax for arithmetic model.

A constant arithmetic value associated with an auxiliary arithmetic model shall indicate that an applicable
dimension of the principa arithmetic model shall be evaluated under this constant arithmetic value or that the
principal arithmetic model itself is characterized by this constant arithmetic value.

Note: The auxiliary arithmetic model is not adimension of the principal arithmetic model.

11.7 Arithmetic submodel

An arithmetic submodel shall be defined as shown in Syntax 97.

arithmetic_submodel ::=
arithmetic_submodel_identifier = arithmetic_value ;
| arithmetic_submodel_identifier 1 [violation] min-max}
| arithmetic_submodel_identifier 1 header-table-equation [trivial_min-max] }
| arithmetic_submodel_identifier { min-typ-max
| arithmetic_submodel_template instantiation

Syntax 97—Arithmetic submodel

The purpose of an arithmetic submodel is to serve as arithmetic model body (see Syntax 87), wherein the data
associated with the full arithmetic model (see Syntax 83) is represented as one or more measurement-specific
sets rather than a single set. The arithmetic submodel identifier shall be declared as a keyword (see Section 8.3)
and provide specific semantics.

11.8 Arithmetic model container
11.8.1 General arithmetic model container

A general arithmetic model container shall be defined as shown in Syntax 98.

arithmetic_model_container ::=
limit_arithmetic_model _container
| early-late_arithmetic_model_container
| arithmetic_model_container_identifier { arithmetic_model { arithmetic_model } }

Syntax 98—General arithmetic model container

IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 167

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

The purpose of an arithmetic model container is to provide a context for an arithmetic model. The arithmetic
model container identifier shall be a declared keyword (see Section 8.3) and provide specific semantics.

11.8.2 Arithmetic model container LIMIT

The arithmetic model container limit shall be defined as shown in Syntax 99.

limit_arithmetic model_container ::=
MIT { limit_arithmetic_model { limit_arithmetic_model } }

limit_arithmetic_model ::=

arithmetic_model_identifier [name_identifier]

{ { arithmetic_model_qudlifier } Iimit_arithmetic_model_body}
limit_arithmetic_model_body ::=

limit_arithmetic_submodel { limit_arithmetic_submodel }

| min-max
limit_arithmetic_submodel ::=

arithmetic_submodel_identifier { [violation] min-max }

Syntax 99—Arithmetic model container LIMIT

The purpose of the arithmetic model container limit is to specify one or more quantifiable design limits. The
design limit shall be represented as a min-max statement (see Section 11.5) in the context of a limit arithmetic
model or alimit arithmetic submodel.

Any arithmetic model (see Section 11.3) with alimit as a parent shall be interpreted as a limit arithmetic model.
A declared keyword (see Section 8.3) for arithmetic model shall apply as identifier. Any arithmetic submodel
(see Section 11.7) with alimit arithmetic model as a parent shall be interpreted as alimit arithmetic submodel. A
declared keyword (see Section 8.3) for arithmetic submodel shall apply as identifier.

Note: The syntax for limit arithmetic model is atrue subset of the syntax for arithmetic model. The syntax for limit arithmetic
submodel is atrue subset of the syntax for arithmetic submodel.

The following Semantics 101 define the interpretation of limit as arithmetic model container.

SEMANTICS LIMT = arithnetic_nodel _contai ner;

Semantics 101—Arithmetic model container LIMIT

11.8.3 Arithmetic model container EARLY and LATE

The arithmetic model containers early and late shall be defined as shown in Syntax 100.

The purpose of the arithmetic model containers early and late is to specify an envelope of a timing waveform.
The arithmetic model delay (see Section 11.11.3), retain (see Section 11.11.4) or slewrate (see Section 11.11.5)
can be used to specify atiming waveform. The arithmetic model container early and late shall be associated with
the leading and trailing part of the envelope, respectively. A partial specification of the envelope, i.e., only the
leading part or only the trailing part, is possible.

The following Semantics 102 define the interpretation of early and late as arithmetic model container.

The arithmetic model containers early and late shall be children of a declared vector (see Section 9.13).

168 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

early-late_arithmetic_model_container ::=
early_arithmetic_model_container
| late_arithmetic_model_container
| early_arithmetic_model_container late_arithmetic_model_container
early arithmetic_model_container ::=
RLY { early-late_arithmetic_model { early-late_arithmetic_mode! } }
late arithmetic model_container ::=
LATE { early-late_arithmetic_mode! { early-late_arithmetic_mode } }
early-late_arithmetic_model ::=
DELAY _arithmetic_model
| RETAIN_arithmetic_model
| SLEWRATE_arithmetic_model

Syntax 100—Arithmetic model container EARLY and LATE

SEMANTI CS EARLY = arithnetic_nodel contai ner
{ CONTEXT = VECTOR; }

SEMANTI CS LATE = arithnetic_nodel contai ner
{ CONTEXT = VECTOR; }

Semantics 102—Arithmetic model container EARLY and LATE

11.9 Generally applicable annotations for arithmetic models

** Add lead-in text**

11.9.1 UNIT annotation

A unit annotation shall be defined as shown in Semantics 103.

KEYWORD UNI T = singl e_val ue_annotati on {
CONTEXT = arithnetic_nodel ;
VALUETYPE = mul tiplier_prefix_value ;
}

Semantics 103—UNIT annotation

The purpose of the unit annotation is to specify a multiplier prefix value (see Section 7.2) associated with the
base unit of the arithmetic model. The base unit of an arithmetic model shall be specified by the S-model anno-
tation (see Section 8.5.6).

If the unit annotation is not present, alocally declared arithmetic model shall inherit the unit annotation of a glo-
bally declared arithmetic model of the same ALF type. If the ALF type of the globally declared arithmetic model
isan SI-model annotation value, alocally declared arithmetic model with the same associated Sl-model annota-
tion value shall inherit the unit annotation as well.

Note: The multiplier prefix value specification given by the unit annotation appliesto an arithmetic model declaration. There-
fore it can be locally changed. The SI-model annotation applies to the keyword declaration (see Section 8.3) of an arithmetic
model. Therefore it can not be changed.

Example:

The arithmetic model delay (see Section 11.11.3) has the SI-model annotation value time. Therefore delay can
inherit the unit annotation value of the arithmetic model time (see Section 11.11.1).

IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 169

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

11.9.2 CALCULATION annotation

A calculation annotation shall be defined as shown in Semantics 104.

KEYWORD CALCULATI ON = annotation {
CONTEXT = library_specific_object.arithnetic_nodel ;
VALUES { absolute incremental }
DEFAULT = absol ute ;

Semantics 104—CALCULATION annotation

The meaning of the annotation valuesis shown in Table 94.

Table 94—Calculation annotation

Annotation value Description
absol ute The arithmetic model datais complete within itself.
i ncr ement al The arithmetic model data shall be combined with other arithmetic model data.

The following rules for combination of arithmetic model data shall apply:
a) Datashall be combined by adding them together.
b) Datacan only be combined, if the respective arithmetic models have the same type.
c) Data can only be combined, if a common semantic interpretation of the respective arithmetic models
within their context exists.
Specifics of rule c) are described in sections for specific arithmetic models.

11.9.3 INTERPOLATION annotation

A interpolation annotation shall be defined as shown in Semantics 105.

KEYWORD | NTERPOLATI ON = si ngl e_val ue_annotati on {
CONTEXT = HEADER. arithneti c_nodel ;
VALUES { linear fit ceiling floor }
DEFAULT = fit ;

Semantics 105—INTERPOLATION annotation

The interpolation annotation shall apply for a dimension of a lookup table with a continuous range of values.
Every dimension in alookup table can have its own interpolation annotation.

170 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

The meaning of the annotation valuesis shown in Table 95.

Table 95—Interpolation annotation

Annotation value Description
I'i near Linear interpolation shall be used.
ceiling The next greater value in the table shall be used.
f1 oor The next lesser value in the table shall be used.
fit Linear or higher-order interpolation shall be used.

The mathematical operations for floor, ceiling, and linear are specified as follows:

floor y(x) = y(x)
ceiling y(x) = y(x')
linear Yo = KX * (< =) G(x)
X =X
where

x denotes the value in a dimension subjected to interpolation.
x" and X" denote two subsequent values in the table associated with that dimension.
X denotes the value to the left of X, such that X < x, or else X' denotes the smallest value in the table.
x* denotes the val ue to the right of x, such that x < x*, or else x* denotes the largest value in the table.
y denotes the evaluation result of the arithmetic model.

The mathematical operation for fit can be chosen by the application, aslong as the following conditions are satis-
fied:

y(X) is acontinuous function of order N>0.

The first N-1 derivatives of y(x) are continuous.

y(X) is bound by y(x) and y(x").

In case of monotony, y(X) is aso bound by linear interpolation applied to the left and the right neighbor of x.
In case of monotonous derivative, y(x) isaso bound by linear interpolation applied to x itself.

These conditions are illustrated in Figure 19.

IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 171

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

arbitrary y(x) monotonous Y(X) monotonous d y/dx
X
A A A \\
yxXF — — yoor "= yor — —
|
Yoy — — — Yy — — o — =K - yp — — = =X _
| | | X | X
| | | | | |
| | | | | |
1 1 » 1 | » 1 1 »
X x* X x* X x*

Figure 19—Bounding regions for y(x) with INTERPOLATION=fit
11.9.4 DEFAULT annotation

A default annotation (see Section 8.5.3) shall be applicable for an arithmetic model, unless the keyword declara-
tion (see Section 8.3) for the arithmetic model contains already a default annotation.

The purpose of the default annotation is the specification of an evaluation result for a full arithmetic model (see
Section 11.3, Syntax 86) or a header arithmetic model (see Section 11.4, Syntax 90) in case the arithmetic model
can not be evaluated otherwise. A default annotation shall not apply for a trivial arithmetic model (see
Section 11.3, Syntax 84). A default annotation for a partial arithmetic model (see Section 11.3, Syntax 85) shall
serve as inheritable arithmetic model qualifier (see Section 11.3, Syntax 88), to be acquired by another full
arithmetic model.

A default annotation value associated with a header arithmetic model or with a partial arithmetic model shall be
an arithmetic value (see Section 7.4) compatible with the arithmetic model’s valuetype (see Section 8.5.1). A
default annotation value associated with a full arithmetic model shall be either an arithmetic value compatible
with its valuetype, or, alternatively, an identifier refering to another arithmetic model or to an arithmetic sub-
model (see Section 11.7).

The following rules shall apply for the usage of the default annotation value:

a) If the application provides values for all header arithmetic models, no default annotation value shall be
used for the evaluation of afull arithmetic model.

b) If the application provides values for some, but not all header arithmetic models, and the remaining
header arithmetic models have associated default annotations, those default annotation values shall be
used.

c) If application values for al header arithmetic models are missing and the full arithmetic model has an
associated default annotation, this default annotation value shall be used.

d) If application values for al header arithmetic models are missing and the full arithmetic model has no
associated default annotation, but all header arithmetic models have, those default annotation values
shall be used.

In any other case, the evaluation of the full arithmetic model shall fail and result in an application error.

172 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

11.9.5 MODEL reference annotation

A model reference annotation shall be defined as shown in Semantics 106.

KEYWORD MODEL = singl e_val ue_annotation {
CONTEXT = arithnetic_nodel ;
VALUETYPE = identifier ;
REFERENCETYPE { arithnetic_nodel arithnetic_subnodel }

}

Semantics 106—MODEL reference annotation

The purpose of a model reference annotation is to acquire an inheritable arithmetic model qualifier (see
Section 11.3, Syntax 88), an evaluation result (Syntax 91, Syntax 92) or both from another arithmetic model. The
model reference annotation value shall be the ALF name of the referenced arithmetic model.

An evaluation result can also be acquired from a referenced arithmetic submodel (see Section 11.7). In this case,
the model reference annotation value shall be a hierarchical identifier (see Section 6.11.4) composed of the ALF
name of the parent arithmetic model and the ALF type of the arithmetic submodel.
A calculation graph can be established by using the model reference annotation within aheader arithmetic model
(see Section 11.4, Syntax 90). In this case, the evaluation of the arithmetic model containing the header arith-
metic model depends on the evaluation of the referenced model. A circular reference shall not be allowed.
The model reference annotation shall further be legal under the following restrictions:
a) Boththereferencing and the referenced arithmetic model have the same ALF type,
or, aternatively:
b) the ALF type of either arithmetic model is an S-model annotation value (see Section 8.5.6), and both
arithmetic models have the same associated SI-model annotation value.
¢) Thesemantics of any arithmetic model qualifier are compatible with the semantics of any acquired arith-
metic model qualifier.
Examples:

Rule @): An arithmetic model of ALF type time (see Section 11.11.1) can refer to the arithmetic model of ALF
type time.

Rule b): The arithmetic model delay (see Section 11.11.3) has the SI-model annotation value time. Therefore an
arithmetic model of ALF type delay can refer to an arithmetic model of ALF type time and vice-versa.

Rule ¢): If both arithmetic models have an annotation of the same ALF type (e.g. unit annotation, see
Section 11.9.1), the annotation values shall be the same.

11.10 VIOLATION statement, MESSAGE TYPE and MESSAGE annotation
A violation statement shall be defined as shown in Syntax 101.

The purpose of aviolation statement is to specify the consequence of an evaluation of an arithmetic model (see
Section 11.3) resulting in aviolation of adesign constraint or adesign limit.

A violation statement shall be subjected to the restriction shown in Semantics 107.

IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 173

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

violation ::=
VIOLATION { violation_item { violation_item} }
| violation_template_instantiation
violation_item ::=
MESSAGE_TYPE_single_value_annotation
| MESSAGE_single_value_annotation
| behavior

Syntax 101—VIOLATION statement

SEMANTI CS VI OLATI ON {
CONTEXT {

SETUP HOLD RECOVERY REMOVAL NOCHANGE | LLEGAL
NO SE_MARG N
LIMT. arithnetic_nodel
LIMT.arithnetic_nodel . M N
LIMT. arithnetic_nodel . MAX
LIMT. arithnetic_nodel . arithmetic_subnodel
LIMT.arithnetic_nodel .arithmetic_subnodel . M N
LIMT. arithnetic_nodel . arithmetic_subnodel . MAX

Semantics 107—Restriction for VIOLATION statement
The purpose of the restriction is to specify alegal anchestor of a violation statement. Only an arithmetic model
that serves the purpose of evaluating a design constraint or a design limit can be alegal anchestor of aviolation
statement.

A violation statement can contain a message-type annotation, a message annotation and a behavior statement
(see Section 10.4).

The behavior statement shall be subjected to the restriction shown in Semantics 108.

SEMANTI CS VI OLATI ON. BEHAVI OR {
CONTEXT {
VECTOR. ari t hneti c_nodel
VECTOR. LIM T. ari thmeti c_nodel
VECTOR. LIM T. arithneti c_nodel . M N
VECTOR. LIM T. ari t hnmeti c_nodel . MAX
VECTOR. LIM T. arithmeti c_nodel . arithneti c_subnodel
VECTOR. LIM T. arithneti c_nodel . arithnetic_subnmodel . M N
VECTOR. LIM T. arithnetic_nodel . arithneti c_subnodel . MAX
}
}

Semantics 108—Restriction for BEHAVIOR statement within VIOLATION
The purpose of the restriction is to provide atriggering event for the consequence of a violation. The evaluation
of an arithmetic model with a vector as anchestor, and hence the consegquence of a violation, is triggered by the
evaluation of the vector expression ,which is the name of the vector.

A message type annotation shall be defined as shown in Semantics 109.

174 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

KEYWORD MESSAGE TYPE = singl e_val ue_annotati on {
CONTEXT = VI OLATI ON ;
VALUETYPE = identifier ;
VALUES { infornation warning error }

}

Semantics 109—MESSAGE_TYPE annotation
The purpose of the message type annotation valueisto classify the severity of aviolation.

The meaning of the annotation valuesis shownin.

Table 96—MESSAGE_TYPE annotation

Annotation value Description
i nformation The application tool shall issue an informative message when the violation is encountered.
war ni ng The application tool shall issue awarning message when the violation is encountered.
error The application tool shall issue an error message when the violation is encountered.

A message annotation shall be defined as shown in Semantics 110.

KEYWORD MESSAGE = singl e_val ue_annotati on {
CONTEXT = VI OLATI ON ;
VALUETYPE = quoted_string ;

}

Semantics 110—MESSAGE annotation

The purpose of the message annotation is to specify verbatim the text of the message issued by the application
tool when aviolation is encountered.

11.11 Arithmetic models for timing, power and signal integrity
11.11.1 TIME

The arithmetic model time shall be defined as shown in Semantics 111.

The purpose of the arithmetic model time is to specify atime interval in general.

— TIME in context of adeclared library or sublibrary (see Section 9.1), adeclared cell (see Section 9.3), or
adeclared wire (see Section 9.9)

A partial arithmetic model (see Syntax 85 within Section 11.3) can be used to globally specify an inheritable
arithmetic model qualifier (see Syntax 88 within Section 11.3).

— TIME in context of adeclared vector (see Section 9.13)

IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 175

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

KEYWORD TI ME = arithmetic_nodel ({
VALUETYPE = nunber ;
S| _MODEL = TIME ;
}
SEMANTI CS TI ME {
CONTEXT {
LI BRARY SUBLI BRARY CELL W RE
VECTOR VECTOR. arit hnetic_nodel contai ner
HEADER
ari thnetic_nodel
}
}
TIME { UNIT = NanoSeconds ; }

Semantics 111—Arithmetic model TIME

If the ALF name of the vector is a vector expression (see Section 10.12), afrom-to statement (see Section 11.12)
shall be used as model qualifier. The arithmetic model shall represent a measured time interval between two sin-
gle events (see Section 10.13.1).

Otherwise, if the ALF name of the vector is a boolean expression (see Section 10.9), the arithmetic model shall
represent a time interval during which the boolean expression is true. A from-to statement shall not be used as
model qualifier.

As a child of the arithmetic model container limit (see Section 11.8.2), the arithmetic model shall specify a
design limit for atime interval. Otherwise, the arithmetic model shall specify a measured time interval.

— TIME as header arithmetic model (see Syntax 89 in Section 11.4)

The header arithmetic model time shall represent a dimension of another arithmetic model. The dimension time
shall generally describe a quantity changing over time, which can be visualized by atiming waveform.

If the grandparent or the great-grandparent of the header arithmetic model is a vector with a vector expression as
ALF name, a from statement can be used as model qualifier to define a temporal relationship between a single
event and the dimension time.

If the grandparent of the header arithmetic model is the arithmetic model container limit, the dimension time shall
describe a dependency between adesign limit and the expected lifetime of an electronic circuit, rather than atim-
ing waveform.

Note: By definition, the parent of aheader arithmetic model is always afull arithmetic model.

— TIME asauxiliary arithmetic model (see Syntax 96 in Section 11.6)
The auxiliary arithmetic model time shall be used in conjunction with a measurement annotation (see
Section 11.13.7). The auxiliary arithmetic model shall specify the timeinterval during which the measurement is
taken.
If the grandparent of the auxiliary arithmetic model is a vector with avector expression as ALF name, a from-to

statement can be used to define atemporal relationship between one or two single eventsin the vector expression
and thetime interval.

176 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

11.11.2 FREQUENCY

The arithmetic model frequency shall be defined as shown in Semantics 112.

KEYWORD FREQUENCY = arithmetic_nodel {
VALUETYPE = unsi gned_nunber ;
SI _MODEL = FREQUENCY ;
}
SEMANTI CS FREQUENCY {
CONTEXT {
LI BRARY SUBLI BRARY CELL W RE
VECTOR VECTOR. arit hnetic_nodel contai ner
HEADER
ari thnetic_nodel

}

}
FREQUENCY { UNIT = G gaHertz; }

Semantics 112—Arithmetic model FREQUENCY

The purpose of the arithmetic model frequency is to specify atemporal frequency in general.

The arithmetic model frequency can be a child or a grandchild of a declared library or sublibrary (see
Section 9.1), adeclared cell (see Section 9.3), wire (see Section 9.9) or vector (see Section 9.13).

— FREQUENCY in context of adeclared vector (see Section 9.13)

As achild or a grandchild of a declared vector with a vector expression (see Section 10.12) as ALF name, the
arithmetic model shall specify a statistical occurence frequency of the vector.

As a child of the arithmetic model container limit (see Section 11.8.2), the arithmetic model shall specify a
design limit for an occurence frequency. Otherwise, the arithmetic model shall specify a measured occurence fre-
quency.

— FREQUENCY as header arithmetic model (see Syntax 89 in Section 11.4)

The header arithmetic model frequency shall represent a dimension of another arithmetic model.

If the grandparent or the great-grandparent of the header arithmetic model is a vector with a vector expression as
ALF name, the dimension frequency shall represent the occurrence frequency of the vector.

If the grandparent or the great-grandparent of the header arithmetic model is not a vector, the frequency dimen-
sion shall be represent a spectral dependency of the arithmetic model.

— FREQUENCY as auxiliary arithmetic model (see Syntax 96 in Section 11.6)
A frequency statement can be a child of an arithmetic model, thus representing an auxiliary arithmetic model.

The auxiliary arithmetic model frequency shall be used in conjunction with a measurement annotation (see
Section 11.13.7). The auxiliary arithmetic model shall specify the repetition frequency of the measurement.

IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 177

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

The auxiliary arithmetic models frequency and time (see Section 11.11.1) can be used interchangably, unless a
from or ato statement is associated with time. The measurement repetition frequency f and the measurement time
interval t can beequated by f=1/t.

11.11.3 DELAY

The arithmetic model delay shall be defined as shown in Semantics 113.

KEYWORD DELAY = arithnetic_nodel { SI_MODEL = TIME ; }
SEMANTI CS DELAY {
CONTEXT {
LI BRARY SUBLI BRARY CELL W RE
VECTOR VECTOR. EARLY VECTOR. LATE

}

}

Semantics 113—Arithmetic model DELAY

The purpose of the arithmetic model delay is to specify atime interval, implying a causal relationship between
two events. A from-to statement (see Section 11.12) shall be used as model qualifier.

— DELAY in context of adeclared vector (see Section 9.13)

As achild or a grandchild of a declared vector with a vector expression (see Section 10.12) as ALF name, the
arithmetic model delay shall specify a measured time interval between two single events (see Section 10.13.1),
implying that the from-event is the cause of the to-event.

If the model qualifier features only afrom or only ato statement, the arithmetic model delay shall be interpreted
asapartia timeinterval specification. The calculation annotation (see 11.9.2) shall be used in conjunction a par-
tial time interval specification. If the annotation value is incremental, the partial time interval shall be added to
another time interval. If the annotation value is absolute, the partial time interval shall be used as a default and
otherwise be substituted by a completely specified timeinterval.

— DELAY in context of adeclared library or sublibrary (see Section 9.1), a declared cell (see Section 9.3),
or adeclared wire (see Section 9.9)

Asapartial arithmetic model (see Syntax 85 within Section 11.3), delay can be used for global specification of
amodel qualifier. In particular, the arithmetic model threshold (see Section 11.11.13) within afrom-to statement
can be globally specified.

The globa specification of a model qualifier shall be inherited by the arithmetic models delay, retain (see
Section 11.11.4), setup and hold (see Section 11.11.6), recovery and removal (see Section 11.11.7) and skew (see
Section 11.11.12) in the context of a vector.

11.11.4 RETAIN

The arithmetic model retain shall be defined as shown in Semantics 114.

The purpose of the arithmetic model retain is to specify atime interval, during which a cause has no observable
effect. A from-to statement (see Section 11.12) shall be used as model qualifier.

178 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

KEYWORD RETAIN = arithnmetic_nmodel { SI_MODEL = TIME ; }
SEMANTI CS RETAI N{
CONTEXT {
VECTOR VECTOR. EARLY VECTOR. LATE
}

}

Semantics 114—Arithmetic model RETAIN

As achild or a grandchild of a declared vector with a vector expression (see Section 10.12) as ALF name, the
arithmetic model retain shall specify a measured time interval between two single events (see Section 10.13.1),
implying that the to-event is the earliest observable effect of the from-event.

The arithmetic models retain and delay with matching model qualifiers can be jointly used. In this case, retain
shall represent the time interval between acause (i.e., an input signal) and the earliest effect (i.e., initial change of
an output signal), and delay shall represent the time interval between a cause and the latest effect (i.e., final
change of an output signal). During the timeinterval between initial and final change, the output signal is consid-
ered unstable.

Retain in conjunction with delay isillustrated in Figure 20.

delay

Figure 20—lIllustration of RETAIN and DELAY
11.11.5 SLEWRATE

The arithmetic model dewrate statement shall be defined as shown in Semantics 115.

KEYWORD SLEWRATE = arithnetic_model { SI_MODEL = TIME ; }
SEMANTI CS SLEWRATE {
CONTEXT {
LI BRARY LI BRARY.LIM T
SUBLI BRARY SUBLI BRARY. LIM T
CELL CELL.LIMT
PINPIN.LIMT
WRE WRE.LIMT
VECTOR VECTOR LIM T VECTOR EARLY VECTOR LATE
HEADER

}

}
SLEWRATE { MN = 0; }

Semantics 115—Arithmetic model SLEWRATE

IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 179

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

The purpose of the arithmetic model slewrate is to specify the duration of a transient event, measured between
two reference points. A reference point shall be specified by the arithmetic model threshold (see
Section 11.11.13) within a from-to statement (see Section 11.12). No particular waveform shape shall be implied
for the transient event.

— SLEWRATE in context of a declared vector (see Section 9.13)
If dewrate is a child or a grandchild of a declared vector with a vector expression (see Section 10.12) as ALF
name, a pin reference annotation, eventually in conjunction with an edge number anotation, shall be used (see
Section 11.13.2) to refer to asingle event (see Section 10.13.1).

— SLEWRATE in context of adeclared pin (see Section 9.5)

If dewrate is a child or a grandchild of a declared pin, the arithmetic submodel rise or fall (see Section 11.21)
can be used as a substitute for a reference to a single event.

— SLEWRATE in context of a declared library or sublibrary (see Section 9.1), a declared cell (see
Section 9.3), or a declared wire (see Section 9.9)

Asapartial arithmetic model (see Syntax 85 within Section 11.3), slewrate can be used for global specification
of amodel qualifier. In particular, the arithmetic model threshold (see Section 11.11.13) within a from-to state-
ment can be globally specified.

The global specification of amodel qualifier shall be inherited by the arithmetic model slewrate in the context of
avector.

— SLEWRATE as header arithmetic model (see Syntax 89 in Section 11.4)

The header arithmetic model slewrate shall represent a dimension of another arithmetic model. The arithmetic
model shall bein the context of avector. A referenceto asingle event shall be used as model qualifier.

Slewrate isillustrated in the following .

from.threshold.rise to.threshold.rise

from.threshold.fal to.threshold.fall

sewrate.fall

Figure 21—Illustration of SLEWRATE

180 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

11.11.6 SETUP and HOLD

The arithmetic models setup and hold shall be defined as shownin .

KEYWORD SETUP = arithnetic_nodel { SI_MODEL = TIME ; }
SEMANTI CS SETUP { CONTEXT = VECTOR ; }
KEYWORD HOLD = arithmetic _nodel { SI_MODEL = TIME ; }
SEMANTI CS HOLD { CONTEXT = VECTOR ; }

Semantics 116—Arithmetic models SETUP and HOLD

The purpose of the arithmetic models setup and hold is to specify timing constraints between a data signal and a
clock signal. Each arithmetic model shall be a child of a declared vector (see Section 9.13) with a vector expres-
sion (see Section 10.12) as ALF name. A from-to statement (see Section 11.12) shall be used as model qualifier.

The arithmetic model setup shall represent the minimal required timeinterval during which adata signal needsto
be stable before activation of aclock signal. Thistime interval can be positive, zero, or negative. The data signa
shall be refered to within a from statement. The clock signal shall be refered to within ato statement.

The arithmetic model hold shall represent the minimal required time interval during which adata signal needsto
be stable after activation of a clock signal. Thistimeinterval can be positive, zero, or negative. The clock signal
shall be refered to within a from statement. The data signal shall be refered to within ato statement.

Co-dependent arithmetic models setup and hold can be described as children of the same vector. A corresponding
timing diagram isillustrated in Figure 22.

data signal A

clock signal B |

i

|

from |to |
|

|

l—>
setup [

from
hold ,

Figure 22—lllustration of SETUP and HOLD
11.11.7 RECOVERY and REMOVAL

The arithmetic models recovery and removal shall be defined as shown in Semantics 117.

KEYWORD RECOVERY = arithnetic_nodel { SI_MODEL = TIME ; }
SEMANTI CS RECOVERY { CONTEXT = VECTOR ; }
KEYWORD REMOVAL = arithmetic_nodel { SI_MODEL = TIME ; }
SEMANTI CS REMOVAL { CONTEXT = VECTOR ; }

Semantics 117—Arithmetic models RECOVERY and REMOVAL

The purpose of the arithmetic models recovery and removal is to specify timing constraints between a clock sig-
nal and an asynchronous control signal. Each arithmetic model shall be a child of a declared vector (see
Section 9.13) with avector expression (see Section 10.12) as ALF name. A from-to statement (see Section 11.12)
shall be used as model qualifier.

IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 181

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

The arithmetic model recovery shall represent the minimal required time interval between de-assertion of an
asynchronous control signal and activation of a clock signal. Thistimeinterval can be positive, zero, or negative.
The asynchronous control signal signal shall be refered to within a from statement. The clock signal shall be ref-
ered to within ato statement.

The arithmetic model removal shall represent the minimal required time interval between a suppressed activation
of aclock signal and de-assertion of an asynchronous control signal. Thistime interval can be positive, zero, or
negative. The clock signal shall be refered to within a from statement. The asynchronous control signal signal
shall be refered to within ato statement.

Co-dependent arithmetic models recovery and removal can be described as children of the same vector. A corre-
sponding timing diagram isillustrated in Figure 23.

A
asynchronous or |
control signa
g A |
fro to

recovery I

I

! |

clock signal B |

I

from to
removal

Figure 23—RECOVERY and REMOVAL
11.11.8 NOCHANGE and ILLEGAL

The arithmetic models nochange and illegal shall be defined as shown in Semantics 118.

KEYWORD NOCHANGE = arithnetic_model { SI_MODEL = TIME ; }
SEMANTI CS NOCHANGE { CONTEXT = VECTOR ; }

NOCHANGE { MN = 0; }

KEYWORD | LLEGAL = arithnetic_nodel { SI_MODEL = TIME ; }
SEMANTI CS | LLEGAL { CONTEXT = VECTOR ; }

ILLEGAL { MN = 0; }

Semantics 118—Arithmetic models NOCHANGE and ILLEGAL

The purpose of the arithmetic models nochange and illegal isto specify requirements for the duration of alogi-
cal statein the context of a declared vector (see Section 9.13).

If the ALF name of the vector is a vector expression (see Section 10.12), afrom-to statement (see Section 11.12)
can be used as model qualifier. The events occuring in-between the from-and to-events, including the from-and
to-events themselves, shall be considered a vector sub-expression.

— NOCHANGE in the context of a declared vector

182 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

If the ALF name of the vector is a boolean expression (see Section 10.9), the arithmetic model nochange shall
specify aminimum required time interval during which the boolean expression istrue. A partial arithmetic model
nochange shall indicate a requirement for the boolean expression to be forever true.

Otherwise, if the ALF name of the vector is a vector expression (see Section 10.12), the arithmetic model
nochange shall specify a minimum required duration for the vector expression or for the vector sub-expression
specified by the from-to statement. A partial arithmetic model nochange shall specify that the vector expression
or the vector sub-expression is required to be observed as specified.

— |ILLEGAL in the context of adeclared vector

If the ALF name of the vector is a boolean expression (see Section 10.9), the arithmetic model illegal shall spec-
ify a maximum allowed time interval during which the boolean expression is true. A partia arithmetic model
illegal shall indicate a requirement for the boolean expression to be never true.

Otherwise, if the ALF name of the vector is a vector expression (see Section 10.12), the arithmetic model illegal
shall specify a maximum allowed duration for the vector expression or for the vector sub-expression specified by
the from-to statement. A partial arithmetic model illegal shall specify that the vector expression or the vector
sub-expression is not alowed to be observed as specified.

Nochange and illegal areillustrated in the following .

-l i
- i Q

from|< > to

nochange or illega

Figure 24—lllustration of NOCHANGE and ILLEGAL
If an actual event sequence involving the four signals A, B, C and D matches the beginning and the end of the
timing diagram (underlaid in grey), including the fromrand to-events (marked with circles), the actual event
sequence in-between the from-and to-events shall be examined.

In the case of nochange, the actual event sequence is required to match the middle of the timing diagram, and
eventually aminimal timeinterval between fromand to is required.

In the case of illegal, the actual event sequence is required not to match the middle of the timing diagram, or
eventually amaximum time interval between fromand to is allowed.

11.11.9 PULSEWIDTH
The arithmetic model pulsewidth shall be defined as shown in Semantics 119.

The purpose of the arithmetic model pulsewidth is to specify the duration of a pulse, measured between two ref-
erence points. A reference point shall be specified by the arithmetic model threshold (see Section 11.11.13)

IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 183

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

KEYWORD PULSEW DTH=arithnetic_nodel { SI_MODEL = TI Mg }
SEMANTI CS PULSEW DTH {
CONTEXT {
LI BRARY LI BRARY.LIM T
SUBLI BRARY SUBLI BRARY.LIM T
CELL CELL.LIMT
PINPINLIMT
WRE WRE.LIMT
VECTOR VECTOR LIMT
HEADER

}

}
PULSEWDTH { MN = 0; }

Semantics 119—Arithmetic model PULSEWIDTH

within a from-to statement (see Section 11.12). No particular waveform shape shall be implied for the sequence
of transient events.

For a noise waveform (see Section 11.11.14), i.e., awaveform that does not reach a constant logic value, pulse-
width shall be measured between the crossings of 50% magnitude.

— PULSEWIDTH in context of adeclared vector (see Section 9.13)
If pulsewidth is achild or a grandchild of a declared vector with a vector expression (see Section 10.12) as ALF
name, a pin reference annotation, eventually in conjunction with an edge number anotation, shall be used (see
Section 11.13.2) to refer to a single event (see Section 10.13.1), representing the leading edge of the pulse.

— PULSEWIDTH in context of adeclared pin (see Section 9.5)

If pulsewidth is achild or agrandchild of adeclared pin, the arithmetic submodel rise or fall (see Section 11.21)
can be used as a substitute for areference to a single event.

— PULSEWIDTH in context of a declared library or sublibrary (see Section 9.1), a declared cell (see
Section 9.3), or a declared wire (see Section 9.9)

As apartial arithmetic model (see Syntax 85 within Section 11.3), pulsewidth can be used for global specifica-
tion of a model qualifier. In particular, the arithmetic model threshold (see Section 11.11.13) within a from-to
statement can be globally specified. The global specification of a model qualifier shall be inherited by the arith-
metic model pulsewidth in the context of a vector.

— PULSEWIDTH as header arithmetic model (see Syntax 89 in Section 11.4)

The header arithmetic model pulsewidth shall represent a dimension of another arithmetic model. The arithmetic
model shall be in the context of avector. A reference to asingle event shall be used as model qualifier.

184 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

Pulsewidth isillustrated in the following .

to.threshold.fall

from.threshold.fall t } to.threshold.rise

Figure 25—lllustration of PULSEWIDTH
11.11.10 PERIOD

The arithmetic model period shall be defined as shown in Semantics 120.

SEMANTI CS PERI CD {
CONTEXT { VECTOR VECTOR. LIM T HEADER }

}
PERIOD { MN = 0; }

KEYWORD PERI OD = arithmetic_nodel { SI_MODEL =

TIME ; }

Semantics 120—Arithmetic model PERIOD

The purpose of the arithmetic model period isto specify atimeinterval between periodical repetitions of events.

The arithmetic model period shall be in the context of a declared vector (see Section 9.13) with a vector expres-
sion (see Section 10.12) as ALF name. The vector expression shall specify a primitive sequence of events.

The header arithmetic model (see Syntax 89 in Section 11.4) period shall represent a dimension of another arith-

metic model, which shall be in the context of a vector.

Period isillustrated in the following .

A | |
primitive | |
event sequence gl |

| | | | |

periodical Al | | | |

repetition | | | | |

I I I 1 1

Bl | | I I

period period period period
Figure 26—lllustration of PERIOD
A primitive event sequence involving two signals A and B is repeated periodically.

IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 185

10

15

20

25

30

35

40

45

50

55

1

10

15

20

25

30

35

40

50

55

11.11.11 JITTER

The arithmetic model jitter shall be defined as shown in Semantics 121.

KEYWORD JI TTER = arithnetic_nodel { SI_MODEL = TIME ; }
SEMANTI CS JI TTER {
CONTEXT { VECTOR VECTOR. LIM T HEADER }

}
JITTER{ MN = 0; }

Semantics 121—Arithmetic model JITTER

The purpose of the arithmetic model jitter isto specify the variability of atime interval between periodical repe-
titions of events. The measurement annotation (see Section 11.13.7) shall be applicable as model qualifier.

The arithmetic model jitter shall be in the context of a declared vector (see Section 9.13) with a vector expression
(see Section 10.12) as ALF name. The vector expression shall specify a primitive sequence of events.

The header arithmetic model (see Syntax 89 in Section 11.4) jitter shall represent a dimension of another arith-
metic model, which shall be in the context of a vector.

Jitter isillustrated in the following .

|
primitive |
event sequence gl

| | | | |
periodical Al | | | |
repetition | |
without jitter ! ' l ' |
B | | | | |
R —>'j i t@_ | —J.meru— |
periodical | | |
repetition

|
|
withjitter Bl |
|

Figure 27—Illustration of JITTER

A primitive event sequence involving two signals A and B is repeated periodically. A timing diagram with and
without jitter is shown.

11.11.12 SKEW
The arithmetic model skew shall be defined as shown in Semantics 122.

The purpose of the arithmetic model skew isto specify a non-negative temporal separation between multiple sig-
nals.

In the context of a declared vector (see Section 9.13) with avector expression (see Section 10.12) as ALF name,
a pin reference annotation, eventually in conjunction with a matching edge number anotation, shall be used (see

186 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

KEYWORD SKEW = arithmetic _nodel { SI_MODEL = TIME ; }
SEMANTI CS SKEW {
CONTEXT { VECTOR VECTOR. LI M T HEADER }

}
SKEW{ MN = 0; }

Semantics 122—Arithmetic model SKEW

Section 11.13.5) to refer to multiple single events (see Section 10.13.1). The arithmetic model itself shall not
specify atemporal order of the events. The temporal separation between events shall be considered for any order
of events allowed by the vector expression. If the vector expression specifies simultaneously occuring events (see
Section 10.13.3), but the arithmetic model skew specifies a non-zero temporal separation between these events,
the skew shall take precedence, and the temporal separation shall be considered for an arbitrary permutation of
order of occurence.

The header arithmetic model skew shall represent a dimension of another arithmetic model, which shall be in the
context of avector. A reference to multiple single events shall be used as model qualifier.

Skew isillustrated in the following Figure 28.

A I T T
- |
skew

B | | |

| ‘ skew)
C 1 1 I

or

A | I T
. skew) |
B | | |

| ‘ skew)
C ! ! |

Restriction by vector expression: A occurs before C, B occurs before C

Figure 28—Illustration of SKEW

The arithmetic model skew involves three signals A, B and C, and the vector expression restricts A and B to
occur before C.

11.11.13 THRESHOLD

The arithmetic model threshold shall be defined as shown in Semantics 123.

KEYWORD THRESHOLD = arithmeti c_nodel {
VALUETYPE = nunber ;
CONTEXT { PIN FROM TO }

}
THRESHOLD { MN = 0; MAX = 1; }

Semantics 123—Arithmetic model THRESHOLD

IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 187

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

The purpose of the arithmetic model threshold is to specify areference point for a timing measurement.
Threshold shall be a normalized quantity, according to the following mathematical definition.

threshold.rise = (Vt, - Vig) / (V4 - Vo)
threshold.fall = (vt; - Vi) / (V4 - Vp)

where
Vp isthe nominal voltage level for the value logic zero,
vy isthe nominal voltage level for the value logic one,
vt, isaspecified voltage level crossed during arising transition,
vt is a specified voltage level crossed during afalling transition,

subject to the following restrictions:

Vo<Vp
Vo< WVt <vpandvg< Vi <vy.

Threshold isillustrated in Figure 29.

threshold.rise * (v; - Vo)

4

Vi Vi Vo Vi Vi Vo

Figure 29—THRESHOLD measurement definition

The arithmetic model threshold can contain the arithmetic submodels rise and fall (see Section 11.21). If atim-
ing-related arithmetic model refering to a single event (see Section 10.13.1) in the context of a declared vector
(see Section 9.13) inherits a definition for threshold, the matching arithmetic submodel rise or fall shall apply
according to the single event.

Note: The arithmetic submodel rise or fall is not necessary, if vt, = vi;.

Threshold can be specified in the context of a from-to statement (see Section 11.12) or in the context of a
declared pin (see Section 9.5). As a child of a from-to statement, threshold shall apply to the parent arithmetic
model of the from-to statement. Asachild of a declared pin, threshold shall apply to the parent arithmetic model
of afrom-to statement, if the from-to statement acontains a pin reference annotation (see Section 11.13.2), refer-
ing to the declared pin.

Note: Threshold in the context of a declared pin does not apply to slewrate (see Section 11.11.5) or pulsewidth (see
Section 11.11.9), since afrom-to statement in the context of slewrate or pulsewidth can not contain a pin reference annotation.

11.11.14 NOISE and NOISE_MARGIN
The arithmetic models noise and noise margin shall be defined as shown in Semantics 124.

The purpose of the arithmetic model noise is to specify a noise measurement. The purpose of the arithmetic
model noise margin isto specify atolerance against noise.

Noise shall be anormalized quantity, according to the following mathematical definition.

188 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

KEYWORD NO SE = arithnetic_nodel { VALUETYPE = nunber ; }
SEMANTI CS NO SE {
CONTEXT {
LI BRARY. LIM T SUBLI BRARY. LIMT CELL.LIMT
PIN PIN.LIMT VECTOR VECTOR. LI M T HEADER

}

}
KEYWORD NO SE MARG N = arithmeti c_nodel {

VALUETYPE = nunber
}
SEMANTI CS NOI SE_MARGI N {
CONTEXT { CLASS LI BRARY SUBLIBRARY CELL PI N VECTOR }

}
NO SE MMARG N { MN = 0; }

Semantics 124—Arithmetic models NOISE and NOISE_MARGIN

noise.low = (vn - Vig) / (V4 - Vp)
noise.high = (v - vn) / (vq - V)

where

Note:

Vg isthe nominal voltage level for the logic value logic zero,
v, isthe nominal voltage level for the value logic one,
vn isameasured voltage level caused by noise

Noise on asignal with the logic value zero is positive or negative, respectively, if vn > v or vn < v, respectively.
Noise on asignal with thelogic value oneis positive or negative, respectively, if vih < vy or vn > v4, respectively.

Noiseisillustrated in Figure 29.

Vo

noise.high* (vq - vp) ; \)/

noise.low * (vq - vg)

Vi vn Vg

Figure 30—NOISE measurement definition

A distinction shall be made between a noise margin and adesign limit for noise. A noise margin shall be defined
as avalue for noise that ensures that the logic value of asignal is recognizable. A design limit for noise shall be
defined as avalue of noise that is tolerable regardless whether the logic value is recognizable or not.

IEEE P1603 Draft 7

Advanced Library Format (ALF) Reference Manual 189

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

The distinction between a hoise margin and a design limit for noiseisillustrated in Figure 31.

limit.noise.high.min * (v4 - vp)

noise_margin.high™ (v - Vo) limit.noise.high.max * (vi-Vg) ~— 34— ~

- —'— = limit.noiselow.max * (vq - vg)

4 limit.noise.low.min * (v, - vg)
Vi Vo

Figure 31—Definition of NOISE MARGIN and LIMIT for NOISE

Per definition, noise can be positive or negative, noise margin shall be positive, a maximum design limit for
noise shall be positive, and a minimum design limit for noise shall be negative.

— NOISE in context of adeclared library or sublibrary (see Section 9.1) or adeclared cell (see Section 9.3)

The arithmetic model container limit (see Section 11.8.2) can be used to specify a design limit for noise. An
arithmetic submodel high, low (see Section 11.21) can optionally be used.

A child shall inherit the design limit specification from its parent, unless a design limit is specified within the
child. In particular, a sublibrary can inherit from alibrary. A cell can inherit from a sublibrary or from alibrary.
A pin caninherit from a cell, asublibrary or alibrary.

— NOISE in context of adeclared pin (see Section 9.5)

A static noise measurement related to the pin can be described. An arithmetic submodel high, low can optionally
be used.

A design limit for noise can be described in the same way asin the context of alibrary, asublibrary or acell.

— NOISE in context of adeclared vector (see Section 9.13)
A noise measurement in response to a stimulus provided by the vector can be described. A pin reference annota-
tion shall be used. A static noise measurement can be described using a boolean expression (see Section 10.9) as
a stimulus. A transient noise measurement, i.e., either a waveform for noise or a peak value for noise, can be

described using a vector expression (see Section 10.12) as stimulus.

A design limit for noise related to the stimulus can be specified using the arithmetic model container limit. A pin
reference annotation shall be used.

— NOISE as header arithmetic model (see Syntax 89 in Section 11.4)
A noisethat acts as a stimulus can be described. A pin reference annotation shall be used.
— NOISE MARGIN in context of adeclared class (see Section 8.6)

A static noise margin can be specified. An arithmetic submodel high, low can optionally be used. A declared pin
can inherit this specification by refering to the class.

190 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

— NOISE MARGIN in context of a declared library or sublibrary (see Section 9.1) or a declared cell (see
Section 9.3) or adeclared pin (see Section 9.5).

A static noise margin can be specified. The arithmetic submodels high or low can optionally be used.

A child shall inherit the noise margin specification from its parent, unless a noise margin is specified within the
child. In particular, a sublibrary can inherit from alibrary. A cell can inherit from a sublibrary or from alibrary.
A pin can inherit from a cell, a sublibrary or alibrary. Inheritance from a class by a pin shall take precedence
over inheritance from a cell, asublibrary or alibrary.

— NOISE MARGIN in the context of adeclared vector (see Section 9.13)

A noise margin in the context of a stimulus given by the vector can be described. A pin reference annotation (see
Section 11.13.6) shall be used.

A state-dependent noise margin can be described using a boolean expression (see Section 10.9) as stimulus.

A sensitivity window for a noise margin can be described using a vector expression (see Section 10.12) as stimu-
lus. The arithmetic model time (see Section 11.11.1) shall be used as an auxiliary arithmetic model (see
Section 11.6). A from-to statement (see Section 11.12) shall be associated with time.

A transient noise margin, i.e., a noise margin that depends on the timing characteristics of the stimulus can be
described using a vector expression as stimulus and a timing-related arithmetic model, e.g. pulsewidth (see
Section 11.11.9) or slewrate (see Section 11.11.5), as aheader arithmetic model (see Syntax 89 in Section 11.4).
11.11.15 POWER and ENERGY

The arithmetic models power and energy shall be defined as shown in Semantics 125.

KEYWORD POAER = arithnetic_nodel { VALUETYPE = nunber; }
SEMANTI CS POVER {
CONTEXT {
LI BRARY SUBLI BRARY CELL VECTOR
CLASS.LIMT CELL.LIMT

}
}
PONER { UNNT = MIliWwatt; }
KEYWORD ENERGY = arithnetic_nodel { VALUETYPE = nunber; }
SEMANTI CS ENERGY {
CONTEXT { LI BRARY SUBLI BRARY CELL VECTOR }

}
ENERGY { UNIT = PicoJoul e; }

Semantics 125—Arithmetic models POWER and ENERGY

The purpose of the arithmetic models power and energy isto specify the electrical power consumption of an elec-
tronic circuit.

— POWER in context of a declared class (see Section 8.6)
The arithmetic model container limit (see Section 11.8.2) can be used to specify a design limit for power con-

sumption associated with a class with usage annotation value supply-class (see Section 9.7.16). A measurement
annotation (see Section 11.13.7) shall be used.

IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 191

10

15

20

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

— POWER in context of adeclared library or sublibrary (see Section 9.1)

A partial arithmetic model (see Syntax 85 within Section 11.3) can be used to globally specify an inheritable
arithmetic model qualifier (see Syntax 88 within Section 11.3) for power.

— POWER in context of adeclared cell (see Section 9.3)

Power consumption of acell or adesign limit for power consumption of acell can be described. A measurement
annotation shall be used.

A partial arithmetic model can be used in the same way as in the context of library or sublibrary.
— POWER in context of a declared vector (see Section 9.13)

Power consumption related to a stimulus defined by the vector can be described. A measurement annotation
shall be used.

— ENERGY in context of a declared library or sublibrary (see Section9.1) or a declared cell (see
Section 9.3)

A partial arithmetic model (see Syntax 85 within Section 11.3) can be used to globally specify an inheritable
arithmetic model qualifier (see Syntax 88 within Section 11.3) for energy.

— ENERGY in context of a declared vector (see Section 9.13)
Energy consumption related to a stimulus defined by the vector can be described. Total energy consumption
associated with different stimuli shall be additive, regardless whether the stimuli are mutually exclusive or not.

Also, energy consumption shall be additive with power consumption, if the measurement annotation value static
is associated with the latter.

11.12 FROM and TO statements

A from-to statement shall be defined as shown in Syntax 102.

from-to ::=
from | to | from to

rom ::=
FROM { from-to_item { from-to_item} }

to::=

TO { from-to_item { from-to_item} }

from-to_item ::=

PIN_reference_single value_annotation
| EDGE_NUMBER single_value_annotation
| THRESHOLD _arithmetic_model

Syntax 102—FROM and TO statements

The purpose of afrom and a to statement is to define the start and end point, respectively, of atiming measure-
ment. The timing measurement shall be applicable for digital signals.

A from and ato statement can contain a pin reference annotation (see Section 11.13.2), an edge number annota-
tion (see Section 11.11.2) and athreshold arithmetic model (see Section 11.11.13).

192 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

A reference to a single event (see Section 10.13.1) is specified by the pin reference annotation in conjunction
with the edge number annotation. The single event referenced within the from and to statement, respectively,
shall be called from-event and to-event, respectively.

The from-and to-statements shall be subjected to the restriction shown in Semantics 126.

SEMANTI CS FROM {
CONTEXT {
TI ME DELAY RETAI N SLEWRATE PULSEW DTH
SETUP HOLD RECOVERY REMOVAL NOCHANGE | LLEGAL SKEW
}
}
SEMANTI CS TO {
CONTEXT {
TI ME DELAY RETAI N SLEWRATE PULSEW DTH
SETUP HOLD RECOVERY REMOVAL NOCHANGE | LLEGAL SKEW

}
}

Semantics 126— Restriction for FROM and TO statements

11.13 Annotations related to timing, power and signal integrity

** Add lead-in text**

11.13.1 EDGE_NUMBER annotation

An edge number annotation shall be defined as shown in .

KEYWORD EDGE_NUMBER = annotation {
CONTEXT { arithnetic_nodel FROM TO }
VALUETYPE = unsi gned_i nteger ;
DEFAULT = 0;

}

Semantics 127—EDGE_NUMBER annotation

The edge number annotation shall be a child of an arithmetic model (see Section 11.3) or afrom-to statement (see
Section 11.12).

The purpose of the edge number annotation isto specify areferenceto asingle event (see Section 10.13.1) within
a vector expression. The vector expression shall be the name of a declared vector. The reference shall be estab-
lished by using the edge number annotation in conjunction with a pin reference annotation (see Section 9.8.1).
The pin reference annotation shall point to apin variable (see Section 7.9) involved in the vector expression. The
edge number annotation shall point to a single event on the pin variable. Every single event on a pin variable
shall be counted in chronological order, starting with O.

11.13.2 PIN reference and EDGE_NUMBER annotation for FROM and TO

A pin reference annotation shall be subjected to the restriction shown in Semantics 128.

IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 193

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

SEMANTI CS FROM PI'N = singl e_val ue_annotation {
CONTEXT { TI ME DELAY RETAI N SETUP HOLD
RECOVERY REMOVAL NOCHANGE | LLEGAL }

}

SEMANTI CS TO. PIN = single_val ue_annotation {
CONTEXT { TI ME DELAY RETAI N SETUP HOLD
RECOVERY REMOVAL NOCHANGE | LLEGAL }

}

Semantics 128—Restriction for PIN reference annotation within FROM and TO

The purpose of the restriction isto define areference to asingle pin variable in the context of afrom-to statement
(see Section 11.12).

An edge_number annotation shall be subjected to the restriction shown in Semantics 127.

SEMANTI CS FROM EDGE_NUMBER = si ngl e_val ue_annot ati on {
CONTEXT { TI ME DELAY RETAI N SETUP HOLD
RECOVERY REMOVAL NOCHANGE | LLEGAL }

}

SEMANTI CS TO. EDGE_NUMBER = si ngl e_val ue_annot ati on {
CONTEXT { TI ME DELAY RETAI N SETUP HOLD
RECOVERY REMOVAL NOCHANGE | LLEGAL }

}

Semantics 129—Restriction for EDGE_NUMBER annotation within FROM and TO

The purpose of the restriction is to define a reference to a single event (see Section 10.13.1) in the context of a
from-to statement.

Example:
TIME { FROM { PI N=A; EDGE_NUMBER=1; } TO { PI N=B; EDGE_NUMBER=3; } }

The following Figure 32 illustrates the restriction using atiming diagram.

pin variable
A \
|
edge number 0O 1 | 2
|
B | '
edge number 0 : 1 2 3‘:
L
from > o

Figure 32—lllustration of PIN reference and EDGE NUMBER annotation within FROM and TO

A measurement is taken from edge number 1 at pin variable A to edge number 3 at pin variable B.

194 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

11.13.3 PIN reference and EDGE_NUMBER annotation for SLEWRATE

A pin reference annotation and an edge_number annotation shall be subjected to the restriction shownin .

SEMANTI CS SLEWRATE. PI N = singl e_val ue_annotati on ;
SEMANTI CS SLEWRATE. EDGE_NUMBER = si ngl e_val ue_annot ati on ;

Semantics 130—Restriction for PIN reference and EDGE_NUMBER annotation within SLEWRATE

The purpose of the restriction isto define areference to a single event for which slewrate (see Section 11.11.5) is
measured.

11.13.4 PIN reference and EDGE_NUMBER annotation for PULSEWIDTH

A pin reference annotation and an edge_number annotation shall be subjected to the restriction shown in .

SEMANTI CS PULSEW DTH. PI N = si ngl e_val ue_annot ati on;
SEMANTI CS PULSEW DTH. EDGE_NUMBER = si ngl e_val ue_annot ati on;

Semantics 131—Restriction for PIN reference and EDGE_NUMBER annotation within PULSEWIDTH

The purpose of the restriction is to define a reference to a single event which is the leading edge of a pulse for
which pulsewidth (see Section 11.11.9) is measured. The trailing edge shall be the following single event on the
same pin.

11.13.5 PIN reference and EDGE_NUMBER annotation for SKEW

A pin reference annotation and an edge number annotation shall be subjected to the restriction shownin .

SEMANTI CS SKEWPIN = multi _val ue_annotation ;
SEMANTI CS SKEW EDGE_NUMBER = mul ti _val ue_annot ati on ;

Semantics 132—Restriction for PIN reference and EDGE_NUMBER annotation within SKEW

The purpose of the restriction is to define a reference to plura events, for which skew (see Section 11.11.12) is
measured.

The number of annotation values within the pin reference and edge number annotation shall match. Subsequent
annotation values shall correspond to each other. i.e., the first annotation value within the pin reference annota-
tion shall correspond to the first annotation value within the edge number annotation, etc.

11.13.6 PIN reference annotation for NOISE and NOISE_MARGIN

A pin reference annotation shall be subjected to the restriction shownin .

SEMANTI CS NO SE. PI N = singl e_val ue_annotation ;
SEMANTI CS NO SE_MARG N. PIN = singl e_val ue_annotation ;

Semantics 133—Restriction for PIN reference annotation within NOISE and NOISE MARGIN

IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 195

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

The purpose of the restriction
Section 11.11.14) is described.

is to define a reference to a pin, for which noise or noise margin (see

11.13.7 MEASUREMENT annotation

A measurement annotation shall be defined as shown in Semantics 134.

}

}

}

KEYWORD MEASUREMENT = singl e _val ue_annotation {
VALUETYPE = identifier ;
VALUES {
transient static average absol ute_average rns peak

CONTEXT {
ENERGY POWER CURRENT VOLTAGE JI TTER

Semantics 134—MEASUREMENT annotation

The purpose of the measurement annotation is to specify the mathematical definition of atemporal measurement.

The mathematical definition of the annotation valuesis shown in Table 97.

Table 97—MEASUREMENT annotation

Annotation value

Mathematical description

transi ent measurement = x(t)
static measurement = x, with x constant
aver age t=T

1
measurement = T I x(t)at

t=0

absol ut e_aver age

t=T

1
measurement =T I (1)l
t=0

rns

peak

measurement = max(max(x),-min(x)), with x = x(t)

The arithmetic model time (see Section 11.11.1) or frequency (see Section 11.11.2) shall be used as auxiliary
arithmetic model (see Section 11.6), if the measurement annotation value is average, absolute average, or rms.
The auxiliary arithmetic model time shall be interpreted as the integration time T in Table 97. The auxiliary arith-
metic model frequency shall be interpreted as the repetition frequency f of the measurement, with f=1/T.

196

Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

The auxiliary arithmetic model time can be used, if the parent arithmetic model is in the context of a declared
vector (see Section 9.13) and the measurement annotation value is peak. Either a from or a to statement (see
Section 11.12) can be used to specify the time interval between a single event (see Section 10.13.1) and the
occurence of the measurement or vice-versa.

Thisisillustrated in Figure 33.

singl
event

A

from ; > to

Ime tim

Figure 33—lllustration of peak measurement with FROM or TO statement

11.14 Arithmetic models for environmental conditions

11.14.1 PROCESS

The arithmetic model process shall be defined as shown in Semantics 135.

KEYWORD PROCESS = arithnetic_nodel {
VALUETYPE = identifier ;
}
SEMANTI CS PROCESS {
CONTEXT {
CLASS LI BRARY SUBLI BRARY CELL W RE
HEADER
arithmetic_nodel
}
}

PROCESS { DEFAULT = nom TABLE { nomsnsp snwp wnsp wnwp } }

Semantics 135—Arithmetic model PROCESS

The purpose of the arithmetic model processisto specify a dependency between an arithmetic model and a man-
ufacturing process condition. A partial arithmetic model (see Syntax 85 within Section 11.3), a header arith-
metic model (see Syntax 89 within Section 11.4), or an auxiliary arithmetic model (see Section 11.6) can be used.

The meaning of the predefined arithmetic values for processis explained in Table 98.

Table 98—Predefined arithmetic values for PROCESS

IEEE P1603 Draft 7

Value Description
nom NMOS and PMOS transistors with nominal strength
snsp Strong NMOS transistor, strong PMOS transistor.

Advanced Library Format (ALF) Reference Manual 197

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

198

Table 98—Predefined arithmetic values for PROCESS (Continued)

Value Description
snwp Strong NMOS transistor, weak PMOS transistor.
wnsp Weak NMOS transistor, strong PMOS transistor.
wnwp Weak NMOS transistor, weak PMOS transistor.

11.14.2 DERATE_CASE

The arithmetic model derate case shall be defined as shown in Semantics 136.

KEYWORD DERATE_CASE = arithmetic_nodel {
VALUETYPE = identifier ;
}
SEMANTI CS DERATE_CASE {
CONTEXT {
CLASS LI BRARY SUBLI BRARY CELL W RE
HEADER
arithmetic_nodel
}
}
DERATE_CASE { DEFAULT = nom
TABLE { nom bccom wccom bci nd wei nd bemi |

}

wemi | }}

Semantics 136—Avrithmetic model DERATE_CASE

The purpose of the arithmetic model derate case isto specify a dependency between an arithmetic model and an
environmental condition. A partial or a full arithmetic model (see Syntax 85, Syntax 86 within Section 11.3), a
header arithmetic model (see Syntax 89 within Section 11.4), or an auxiliary arithmetic model (see Section 11.6)

can be used.

The meaning of the predefined arithmetic values for derate caseis explained in Table 99.

Table 99—Predefined arithmetic values for DERATE CASE

Derating case Description
nom Nominal environmental condition
bccom Best case commercial condition
bci nd Best caseindustrial condition
bcm | Best case military condition
weecom Worst case commercial condition
wei nd Worst case industrial condition
wem | Worst case military condition

A full arithmetic model can be used to describe the dependency between the condition and its defining parame-
ters (e.g., process, voltage, temperature).

11.14.3 TEMPERATURE

The arithmetic model temperature shall be defined as shown in Semantics 137.

KEYWORD TEMPERATURE = arithmetic_nodel {
VALUETYPE = nunber ;
}
SEMANTI CS TEMPERATURE {
CONTEXT {
CLASS LI BRARY SUBLI BRARY CELL W RE
LIMT
HEADER
arithmetic_nodel

}

}
TEMPERATURE { UNIT = 1DegreeCel sius; MN = -273; }

Semantics 137—Arithmetic model TEMPERATUREt

The purpose of the arithmetic model temperatureisto specify a dependency between an arithmetic model and an

environmental temperature. Temperature shall be measured in degrees Celsius. A partial or a full arithmetic

model (see Syntax 85, Syntax 86 within Section 11.3), a header arithmetic model (see Syntax 89 within
Section 11.4), or an auxiliary arithmetic model (see Section 11.6) can be used.

11.15 Arithmetic models for electrical circuits

11.15.1 VOLTAGE

The arithmetic model voltage shall be defined as shownin .

KEYWORD VOLTAGE = arithmetic_nodel ({
VALUETYPE = nunber ;

}
SEMANTI CS VOLTAGE {
CONTEXT {
CLASS LI BRARY SUBLI BRARY CELL PIN W RE VECTOR HEADER
CLASS.LIMT CELL.LIMT PIN.LIMT VECTOR LIM T
}
}

VOLTAGE { UNIT = 1Volt; }

Semantics 138—Arithmetic model VOLTAGE

The purpose of the arithmetic model voltage is to specify either ameasurement of electrical voltage or an electri-
cal component that can be model ed as a voltage source.

— VOLTAGE in context of a declared class (see Section 8.6)

IEEE P1603 Draft 7

Advanced Library Format (ALF) Reference Manual

199

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

An environmental voltage can be specified. An arithmetic submodel high, low (see Section 11.21) can optionally
be used. A pin (see Section 9.5) can inherit this specification by refering to the class. In particular, asupply class
annotation (see Section 9.7.16) or a connect class annotation (see Section 9.7.19) can be used for this purpose.
— VOLTAGE in context of adeclared library or sublibrary (see Section 9.1)
A partial arithmetic model (see Syntax 85 within Section 11.3) can be used to globally specify an inheritable
arithmetic model qualifier (see Syntax 88 within Section 11.3) or a trivial min-max statement (see Section 95
within Section 11.5) for voltage.
— VOLTAGE in context of adeclared cell (see Section 9.3)

A voltage source that is part of the implementation of a cell can be specified. A node reference annotation (see
Section 11.16.1) shall be used.

A design limit for a voltage related to the cell can be specified using the arithmetic model container limit (see
Section 11.8.2). Either a pin reference annotation (see Section 11.16.3) or a model reference annotation (see
Section 11.9.5) shall be used.

A partial arithmetic model can be used in the same way asin the context of library or sublibrary.

— VOLTAGE in context of adeclared pin (see Section 9.5)

An environmental voltage related to apin, e.g., asupply voltage, can be described. An arithmetic submodel high,
low can optionally be used.

A design limit for a voltage that can be applied to the pin can be described using the arithmetic model container
limit.

— VOLTAGE in context of adeclared wire (see Section 9.9)

A voltage source within an electrically equivalent circuit used for interconnect analysis can be specified. A node
reference annotation shall be used.

— VOLTAGE in context of a declared vector (see Section 9.13)

A voltage measurement in response to a stimulus provided by the vector can be described. Either a pin reference
annotation or amodel reference annotation shall be used.

A design limit for a voltage related to the stimulus can be specified using the arithmetic model container limit
(see Section 11.8.2). Either a pin reference annotation or amodel reference annotationshall be used.

— VOLTAGE as header arithmetic model (see Syntax 89 in Section 11.4)
A voltage that acts as a stimulus can be described. Either a pin reference annotation or a model reference annota-
tion shall be used. In particular, if awire instantiation (see Section 10.15) is present, a reference to a voltage
source specified within the declared wire can be established.
11.15.2 CURRENT

The arithmetic model current shall be defined as shownin .

The purpose of the arithmetic model current isto specify either a measurement of electrical current or an electri-
cal component that can be modeled as a current source.

200 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

KEYWORD CURRENT = arithmeti c_nodel ({
VALUETYPE = nunber ;
}
SEMANTI CS CURRENT {
CONTEXT {
LI BRARY SUBLI BRARY CELL W RE VECTOR HEADER
CELL.LIMT VECTOR. LIMT
LAYER LIMT VIALIMT RULE.LIMT
}
}
CURRENT { UNIT = MIIi Anpere; }

Semantics 139—Arithmetic model CURRENT
— CURRENT in context of adeclared library or sublibrary (see Section 9.1)

A partial arithmetic model (see Syntax 85 within Section 11.3) can be used to globally specify an inheritable
arithmetic model qualifier (see Syntax 88 within Section 11.3) for current.

— CURRENT in context of adeclared cell (see Section 9.3)

A current source that is part of the implementation of a cell can be specified. A node reference annotation (see
Section 11.16.1) shall be used.

A design limit for a current related to the cell can be specified using the arithmetic model container limit (see
Section 11.8.2). Either a pin reference annotation (see Section 11.16.3) or a model reference annotation (see
Section 11.9.5) or a component reference annotation (see Section 11.16.2) shall be used.

A partial arithmetic model can be used in the same way asin the context of library or sublibrary.

— CURRENT in context of adeclared wire (see Section 9.9)

A current source within an electrically equivalent circuit used for interconnect analysis can be specified. A node
reference annotation shall be used.

— CURRENT in context of a declared layer (see Section 9.15), a declared via (see Section 9.17), or a
declared rule (see Section 9.19)

A design limit for current can be specified using the arithmetic model container limit. A measurement annotation
(see Section 11.13.7) shall be used.

In the context of alayer, the current shall flow through a general layout segment created by that layer. In the con-
text of aviaor in the context of arule, the current shall flow through a particular layout segment in context of
other layout segments described within the via or within the rule. A pattern reference annotation (see
Section 11.20.9) shall be used.

— CURRENT in context of adeclared vector (see Section 9.13)

A current measurement in response to a stimulus provided by the vector can be described. Either a pin reference
annotation or amodel reference annotation or a component reference annotation shall be used.

IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 201

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

A design limit for a current related to the stimulus can be specified using the arithmetic model container limit .
Either a pin reference annotation or a model reference annotation or a component reference annotation shall be
used.

— CURRENT as header arithmetic model (see Syntax 89 in Section 11.4)
A current that acts as a stimulus can be described. Either a pin reference annotation or amodel reference annota-
tion or a component reference annotation shall be used. In particular, if awire instantiation (see Section 10.15) is
present, areference to a current source or to a component specified within the declared wire can be established.
11.15.3 CAPACITANCE

The arithmetic model capacitance shall be defined as shown in Semantics 134.

KEYWORD CAPACI TANCE = arithmetic_nodel {
VALUETYPE = nunber ;
S| _MODEL = CAPACI TANCE ;

}
SEMANTI CS CAPACI TANCE {
CONTEXT {
LI BRARY SUBLI BRARY CELL CELL.LIMT PINPIN.LIMT
W RE LAYER RULE VECTOR HEADER
}
}

CAPACI TANCE { UNIT = PicoFarad; MN = 0; }

Semantics 140—Arithmetic model CAPACITANCE

The purpose of the arithmetic model capacitance is to describe either a measurement of electrical capacitance or
an electrical component that can be modeled as a capacitor.

— CAPACITANCE in context of a declared library or sublibrary (see Section 9.1)

A partial arithmetic model (see Syntax 85 within Section 11.3) can be used to globally specify an inheritable
arithmetic model qualifier (see Syntax 88 within Section 11.3) for capacitance.

— CAPACITANCE in context of a declared cell (see Section 9.3)

A capecitor that is part of the implementation of a cell can be described. A node reference annotation (see
Section 11.16.1) shall be used.

A design limit for a capacitor related to the cell can be specified using the arithmetic model container limit (see
Section 11.8.2). Either a pin reference annotation (see Section 11.16.3) or a model reference annotation (see
Section 11.9.5) shall be used.

A partial arithmetic model can be used in the same way asin the context of library or sublibrary.

— CAPACITANCE in context of adeclared pin (see Section 9.5)

The self-capacitance of a pin can be described as a child of a pin. An arithmetic submodel rise, fall, high, low
(see Section 11.21) can optionally be used.

202 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

A design limit for a capacitance that can be connected to the pin can be specified using the arithmetic model con-
tainer limit as a child of a pin.

— CAPACITANCE in context of a declared wire (see Section 9.9)
A capacitance with or without node reference annotation can be described.
A capacitance with node reference annotation shall represent a capacitor within an electrically equivalent circuit
used for interconnect analysis. If the wire is a child of the cell and a permanent connectivity between pins and
nodes of the cell and the nodes of the wire exists, the capacitance shall represent a parasitic capacitor within the
cell. Interconnect analysis shall either use a (lumped) self-capacitance of apin or a (distributed) parasitic capaci-
tor connected to a pin.

A capacitance without node reference annotation shall represent an estimation model for interconnect capaci-
tance.

— CAPACITANCE in context of adeclared layer (see Section 9.15)

An estimation model for capacitance of a general layout segment can be described. An arithmetic submodel hor-
izontal, vertical, acute, obtuse (see Section 11.22) can optionally be used.

— CAPACITANCE in context of adeclared rule (see Section 9.19)
An estimation model for capacitance created by a particular layout pattern can be described.

— CAPACITANCE in context of a declared vector (see Section 9.13)
An effective capacitance can be described. Either a pin reference annotation or amodel reference annotation shall
be used. The effective capacitance shall be interpreted as a virtual capacitor, which, under the specific stimulus
provided by the vector, behavesin asimilar way as the actual load circuit.

— CAPACITANCE as header arithmetic model (see Syntax 89 in Section 11.4)

A capacitance as a dimension of an arithmetic model can be described. Either a pin reference annotation or a
model reference annotation shall be used.

The pin reference annotation shall be used to specify alumped load capacitance. The self-capacitance of the pin
shall not be included in the load capacitance.

The model reference annotation shall be used to refer to another capacitor. In particular, if a wire instantiation
(see Section 10.15) is present, areference to a capacitor described within the declared wire can be established.

11.15.4 RESISTANCE
The arithmetic model resistance shall be defined as shown in .

The purpose of the arithmetic model resistance is to describe either a measurement of electrical resistance or an
electrical component that can be modeled as aresistor.

— RESISTANCE in context of adeclared library or sublibrary (see Section 9.1)

A partial arithmetic model (see Syntax 85 within Section 11.3) can be used to globally specify an inheritable
arithmetic model qualifier (see Syntax 88 within Section 11.3) for resistance.

IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 203

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

KEYWORD RESI STANCE = arithnetic_nodel {
VALUETYPE = nunber ;
SI _MODEL = RESI STANCE ;
}
SEMANTI CS RESI STANCE {
CONTEXT {
LI BRARY SUBLI BRARY CELL W RE LAYER RULE
CELL. LIM T VECTOR HEADER

}

}
RESI STANCE { UNIT = KiloChm MN = 0; }

Semantics 141—Avrithmetic model RESISTANCE
— RESISTANCE in context of adeclared cell (see Section 9.3)

A resistor that is part of the implementation of a cell can be described. A node reference annotation (see
Section 11.16.1) shall be used.

A design limit for a resistor related to the cell can be specified using the arithmetic model container limit (see
Section 11.8.2). A model reference annotation (see Section 11.9.5) shall be used.

A partial arithmetic model can be used in the same way asin the context of library or sublibrary.

— RESISTANCE in context of adeclared wire (see Section 9.9)
A resistance with or without node reference annotation can be described.
A resistance with node reference annotation shall represent a resistor within an electrically equivalent circuit
used for interconnect analysis. If the wire is a child of the cell and a permanent connectivity between pins and
nodes of the cell and the nodes of the wire exists, the resistance shall represent a parasitic resistor within the cell.
A resistance without node reference annotation shall represent an estimation model for interconnect resi stance.

— RESISTANCE in context of adeclared layer (see Section 9.15)

An estimation model for resistance of a general layout segment can be described. An arithmetic submodel hori-
zontal, vertical, acute, obtuse (see Section 11.22) can optionally be used.

— RESISTANCE in context of adeclared rule (see Section 9.19)
An estimation model for resistance created by a particular layout pattern can be described.

— RESISTANCE in context of adeclared vector (see Section 9.13)
A driver resistance can be described. Either a pin reference annotation or a model reference annotation shall be
used. The driver resistance shall be interpreted as part of an electrically equivalent circuit, which, under the spe-

cific stimulus provided by the vector, behavesin asimilar way as the actual driver circuit.

— RESISTANCE as header arithmetic model (see Syntax 89 in Section 11.4)

204 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

A resistance as adimension of an arithmetic model can be described. A model reference annotation shall be used.
In particular, if awire instantiation (see Section 10.15) is present, a reference to a resistor described within the
declared wire can be established.

11.15.5 INDUCTANCE

The arithmetic model inductance shall be defined as shownin .

KEYWORD | NDUCTANCE = arithnetic_nodel {
VALUETYPE = nunber ;
S| _MODEL = | NDUCTANCE ;
}
SEMANTI CS | NDUCTANCE {
CONTEXT {
LI BRARY SUBLI BRARY CELL W RE RULE
CELL. LIM T HEADER

}

}
I NDUCTANCE { UNIT = McroHenry; MN = 0; }

Semantics 142—Arithmetic model INDUCTANCE

The purpose of the arithmetic model inductance is to describe either a measurement of electro-magnetic induc-
tance or an electro-magnetic component that can be modeled as an inductor (i.e., a component with self-induc-
tance) or atransformator (i.e., a component with mutual inductance).

— INDUCTANCE in context of adeclared library or sublibrary (see Section 9.1)

A partial arithmetic model (see Syntax 85 within Section 11.3) can be used to globally specify an inheritable
arithmetic model qualifier (see Syntax 88 within Section 11.3) for inductance.

— INDUCTANCE in context of adeclared cell (see Section 9.3)

An inductor or a transformator that is part of the implementation of a cell can be described. A node reference
annotation (see Section 11.16.1) shall be used.

A design limit for an inductor or for a transformator related to the cell can be specified using the arithmetic
model container limit (see Section 11.8.2). A pin reference annotation (see Section 11.16.3) or amodel reference
annotation (see Section 11.9.5) shall be used.
A partial arithmetic model can be used in the same way asin the context of library or sublibrary.

— INDUCTANCE in context of adeclared wire (see Section 9.9)
An inductance with or without node reference annotation can be described.
An inductance with node reference annotation shall represent a self-inductance or a mutual inductance within an
electrically equivalent circuit used for interconnect analysis. If the wireisachild of the cell and a permanent con-
nectivity between pins and nodes of the cell and the nodes of the wire exists, the inductance shall represent a par-

asitic self-inducatnace or mutual inductance within the cell.

An inductance without node reference annotation shall represent an estimation model for interconnect self-
inductance.

IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 205

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

INDUCTANCE in context of adeclared rule (see Section 9.19)

An estimation model for inductance created by a particular layout pattern can be described.

INDUCTANCE as header arithmetic model (see Syntax 89 in Section 11.4)

An inductance as a dimension of an arithmetic model can be described. A model reference annotation shall be
used. In particular, if awire instantiation (see Section 10.15) is present, a reference to a self-inductance or to a
mutual inductance described within the declared wire can be established.

11.16 Annotations for electrical circuits

11.16.1 NODE reference annotation for electrical circuits

The node reference annotation (see Section 9.12.1) shall be subjected to restrictions defined in the following.

SEMANTI CS VOLTAGE. NODE = nul ti_val ue_annotation {
CONTEXT { CELL WRE } }

SEMANTI CS CURRENT. NOCDE = nul ti_val ue_annotation {
CONTEXT { CELL WRE } }

SEMANTI CS CAPACI TANCE. NODE = mul ti _val ue_annotati on {
CONTEXT { CELL WRE } }

SEMANTI CS RESI STANCE. NODE = nul ti _val ue_annot ati on {
CONTEXT { CELL WRE } }

SEMANTI CS | NDUCTANCE. NODE
CONTEXT { CELL WRE } }

mul ti _val ue_annot ati on {

Semantics 143—Restrictions for NODE reference annotation

The purpose of a node reference annotation with these restrictions is to specify the connectivity of an electrical
component within an electrical circuit.

The following restrictions shall further apply:

a)
b)

0)

d)
€)

f)

206

An arithmetic model with a node reference annotation shall always have an ALF name.

A node annotation associated with the arithmetic model voltage shall have two values, representing the
terminal nodes of a voltage source. The defined polarity of the first and the second terminal shall be pos-
itive and negative, respectively.

A node annotation associated with the arithmetic model current shall have two values, representing the
terminal nodes of a current source. The defined flow of the current shall be from the first to the second
terminal.

A node annotation associated with the arithmetic model capacitance shall have two values, representing
the terminal nodes of a capacitor.

A node annotation associated with the arithmetic model resistance shall have two values, representing
the terminal nodes of aresistor.

A node annotation associated with the arithmetic model inductance shall have either two values or four
values. Two values shall represent the terminal nodes of an inductor. Four values shall represent the ter-
minal nodes of two coupled inductors. Thefirst two values shall represent the terminal s accross which an
induced voltage is observed. The last two values shall represent the terminals accross which a controlling
current flows.

Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

The electrical components and their terminals are illustrated in the following Figure 34.

1 1 1 1 T 1 3
Vi, Iy, c __ R % L- - M -
2 2 2 2 2 4

2
|1,2:(:D—dt'2 Vi2 = ROy, V1’2:LDd—lt'2 Vi, = MD%1

Figure 34—Electrical components and their terminals

The numbers in Figure 34 indicate the first, second, third and fourth node annotation values. However, the node
annotation values shall be the ALF names of declared nodes.

11.16.2 COMPONENT reference annotation

A component reference annotation shall be defined as shown in Semantics 144.

KEYWORD COVMPONENT = si ngl e_val ue_annot ati on {
CONTEXT { CURRENT POWER ENERGY }
VALUETYPE = identifier ;
REFERENCETYPE {
CURRENT VOLTAGE CAPACI TANCE RESI STANCE | NDUCTANCE

}
}

Semantics 144—COMPONENT annotation

The purpose of the component reference annotation is to relate the arithmetic model current (see
Section 11.15.2), power or energy (see Section 11.11.15) to an electrical component.

Electrical current shall flow through an electrical component with two terminals, i.e., a voltage source, a current
source, acapacitor, aresistor, or an inductor. The defined flow of the current shall be from thefirst terminal to the
second terminal.

Electrical power or energy shall be supplied by avoltage source or by acurrent source, stored in a capacitor or in
an inductor and dissipated in aresistor. A negative value shall mean that a voltage source or a current sourceisa
sink of power or energy rather than a source, that a capacitor or an inductor releases energy or power, or that a
resistor virtually supplies power.

Note: A resistor that supplies power is physically impossible. However, certain active electronic circuits, for example aNIC
(Negative Impedance Convertor), can be modeled using a“negative” resistor. The electrical energy “supplied” by the “nega-
tive” resistor is dissipated in other parts of the electronic circuit.

11.16.3 PIN reference annotation for electrical circuits
The pin reference annotation (see Section 9.7.1) shall be subjected to restrictions defined in the following.

The purpose of a pin reference annotation for electrical circuitsis to specify an assocation between an electrical
component with two terminals and a pin variable, i.e., a declared pin, port or node (see Section 7.9).

IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 207

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

SEMANTI CS VOLTAGE. PI N = singl e _val ue_annotation {
CONTEXT { VECTOR VECTCOR. LIM T HEADER } }

SEMANTI CS CURRENT. PI N = singl e_val ue_annotation {
CONTEXT { VECTOR VECTCOR. LIM T HEADER } }

SEMANTI CS CAPACI TANCE. PIN = singl e_val ue_annotation {
CONTEXT { VECTOR HEADER } }

SEMANTI CS RESI STANCE. PI N = si ngl e_val ue_annot ati on {
CONTEXT { VECTOR } }

b)

)

d)

Semantics 145—PIN reference annotation

A pin reference annotation associated with the arithmetic model voltage shall specify a connection
between a pin, port or node and a voltage meter. The terminal with defined positive polarity shall be con-
nected to the pin, port or node. The terminal with defined negative polarity shall be connected to ground.
A pin reference annotation associated with the arithmetic model current shall specify a connection
between a pin, port or node and a current meter. The flow of the current shall be defined by the flow
annotation (see Section 11.16.4).

A pin reference annotation associated with the arithmetic model capacitance shall specify a connection
between a pin, port or node and one terminal of a capacitor. The other terminal of the capacitor shall be
connected to ground. The capacitor shall represent either aload capacitance or an effective capacitance.
A pin reference annotation associated with the arithmetic model resistance specify a connection between
apin and oneterminal of aresistor. The other terminal of the resistor shall be connected to a virtual volt-
age source. Theresistor shall represent adriver resistance.

An electrical component can be associated with an input pin or with an output pin.

A node with nodetype annotation value receiver (see Section 9.12.2), a pin with direction annotation value input
(see Section 9.7.5), aport or a node connected to such apin shall be consider an input pin.

The association between electrical components and an input pin involves amodel of a stimulus and a model of a
receiver circuit, asillustrated in Figure 35.

model of stimulus (outside cell) model of receiver circuit (inside cell)
- TN current meter , BN
voltage source —>
or ! pin . | : |
current source | or | N S?If-capaqltance |
| pinport | Voltagg —— ofinputpin |
| or meter | | |
Y node \ Y,

Figure 35—Association between electrical components and an input pin

A node with nodetype annotation value driver (see Section 9.12.2), a pin with direction annotation val ue output
(see Section 9.7.5), aport or a node connected to such apin shall be consider an output pin.

208

Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

The association between electrical components and an output pin involves a model of a driver circuit and a
model of aload circuit, asillustrated in Figure 35.

model of driver circuit (inside cell) model of load circuit (outside cell)
;7 N current meter - N
| ' > | \
—)
| - . } load capacitance |
. . 4 pin
| virtual driver resistance | | | o _ |
| voltage sourc | pin.port voltagq ___ effective capacitance |
\) or eter \ B J
~ ~ node ~ -

Figure 36—Association between electrical components and an output pin

Note: In order to describe amore complex model for astimulus, aload circuit, adriver circuit or areceiver circuit, an electri-
cal component in context of a declared wire can be used, as described in Section 11.15.

11.16.4 FLOW annotation

A flow annotation shall be defined as shown in Semantics 146.

KEYWORD FLOW = si ngl e_val ue_annot ati on {
CONTEXT = CURRENT ;
VALUETYPE = identifier ;
VALUES { in out }
DEFAULT = in;

Semantics 146—FLOW annotation

The purpose of the flow annotation is to specify the defined measurement direction of a current in conjunction
with a pin reference annotation (see Section 11.16.3).

The meaning of the annotation valuesis shownin.

Table 100—FLOW annotation

Annotation value Description
in The defined flow of the current isfrom outside the cell to inside the cell.
out The defined flow of the current isfrom inside the cell to outside the cell.

Note: The flow annotation is not applicable in conjunction with a node reference annotation (see Section 11.16.1) or acompo-
nent reference annotation (see Section 11.16.2), since the direction of current measurement is already defined by the order of
terminals of the electrical component.

IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 209

10

15

20

25

30

35

40

45

50

55

1

5

10

15

20

25

30

35

40

45

50

55

11.17 Miscellaneous arithmetic models
11.17.1 DRIVE STRENGTH

The arithmetic model drive strength shall be defined as shown in Semantics 147.

KEYWORD DRI VE_STRENGTH = arithnetic_nodel {
VALUETYPE = unsi gned_nunber ;
}
SEMANTI CS DRI VE_STRENGTH {
CONTEXT { CLASS LI BRARY SUBLI BRARY CELL PI'N Pl NGROUP }

}

Semantics 147—Arithmetic model DRIVE_STRENGTH

The purpose of the arithmetic model drive strength is to specify an abstract, unit-less measure for drivability
associated with a primitive circuit or a compound circuit.

A cell (see Section 9.3) shall be considered either a primitive circuit or a compound circuit, depending on its
celltype annotation (see Section 9.4.2). In case of a primitive circuit, drive strength can be a child of a céll. In
case of a compound circuit, drive strength can be a child of a pin (see Section9.5) or a pingroup (see
Section 9.6).

A cell with celltype annotation value buffer, combinational, multiplexor, flipflop, or latch shall be considered a
primitive circuit. A cell with celltype annotation value memory, block, or core shall be considered a compound
circuit.

A partial arithmetic model (see Syntax 85 within Section 11.3) in the context of a class (see Section 8.6), a
library or asublibrary (see Section 9.1) can be used to globally specify a set of discrete values or arange of val-
ues for drive strength, using atable statement (see Syntax 91 within Section 11.4) or atrivial min-max statement
(see Syntax 95 within Section 11.5), respectively.

11.17.2 SWITCHING_BITS with PIN reference annotation

Thearithmetic model switching bits shall be defined as shown in Semantics 148.

KEYWORD SW TCHI NG BI TS = arithmetic_nodel {
VALUETYPE = unsi gned_i nteger ;
}
SEMANTI CS SW TCHI NG BI TS {
CONTEXT { VECTOR. POWER. HEADER VECTOR. ENERGY. HEADER }

}
SEMANTI CS SW TCHI NG BI TS. PI N = si ngl e_val ue_annot ati on;

Semantics 148—Arithmetic model SWITCHING_BITS

The purpose of the arithmetic model switching bitsisto specify the number of binary value changes during asin-
gle event (see Section 10.13.1) on avectorized pin (see Section 9.5) or a pingroup (see Section 9.6) .

Drive strength can be used as header arithmetic model (see Syntax 89 in Section 11.4) for calculation of power
or energy (see Section 11.11.15) in context of avector (see Section 9.13).

210 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

The pin reference annotation (see Section 9.7.1) shall be used.

11.18 Arithmetic models related to structural implementation
11.18.1 CONNECTIVITY

The arithmetic model connectivity shall be defined as shown in Semantics 149.

KEYWORD CONNECTI VI TY = arithnetic_nodel {
VALUETYPE = bool ean ;
VALUES { 1 0 ? }
}
SEMANTI CS CONNECTI VI TY {
CONTEXT { LI BRARY SUBLI BRARY CELL RULE ANTENNA HEADER }

}

Semantics 149—Arithmetic model CONNECTIVITY

The purpose of the arithmetic model connectivity is to specify an actual connection or a requirement for a con-
nection between physical objects.

Either atable statement (see Syntax 91 in Section 11.4) or a between annotation (see Section 11.20.2) shall be used
to establish arelation between physical objects and the arithmetic model connectivity.

The interpretation of connectivity as an actual connection or as a requirement for a connection shall be specified
by the connect-rule annotation (see Section 11.20.1).

The interpretation of the boolean values is specified in the following Table 101.

Table 101—Boolean values for CONNECTIVITY

Boolean value I nter pretation as actual connection Inter pretation as requirement for a connection
1 Connection exists. Requirement istrue.

0 Connection does not exist. Requirement isfalse.

? Connection is not relevant. Requirement is not relevant.

Note: The boolean value “?’ is non-assignable (see Section 10.10.3) and can therefore only be used, if the connectivity is
modeled as atable (see Syntax 91 in Section 11.4).

11.18.2 DRIVER and RECEIVER

The arithmetic models driver and receiver shall be defined as shown in Semantics 150.

The purpose of the header arithmetic model (see Syntax 89 within Section 11.4) driver or receiver isto specify a
dependency between connectivity (see Section 11.18.1) and adeclared class (see Section 8.6) with usage annota-
tion value connect-class (see Section 8.7.2, Section 9.7.19).

The header arithmetic model driver or receiver shall contain atable statement (see Syntax 91 in Section 11.4). The
parent arithmetic model connectivity shall contain either a one-dimensional |ookup table involving either dimen-

IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 211

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

KEYWORD DRI VER = arithnetic_nodel {
VALUETYPE = identifier ;
REFERENCETYPE = CLASS ;

}

KEYWORD RECEI VER = arithnetic_nodel {
VALUETYPE = identifier ;
REFERENCETYPE = CLASS ;

}

SEMANTI CS DRI VER { CONTEXT = CONNECTI VI TY. HEADER; }

SEMANTI CS RECEI VER { CONTEXT = CONNECTI VI TY. HEADER; }

Semantics 150— Arithmetic models DRIVER and RECEIVER

sion driver or receiver, or aternatively a two-dimensional lookup table involving both dimensions driver and

receiver.

A declared pin (see Section 9.5) shall be subjected to a connection with another pin, if a connect-class annotation
exists for both pins, and the respective connect-class annotation values are found in a table statement within the

header arithmetic model driver or receiver.

The association of apin with the dimension driver or receiver shall depend on the direction annotation value (see
Section 9.7.5). A pin with direction annotation value input shall be associated with the dimension receiver. A pin
with direction annotation val ue output shall be associated with the dimension driver. A pin with direction annota-

tion value both shall be associated with both dimensions driver and receiver.
Example:

CLASS Normal { USAGE = CONNECT_CLASS; }
CLASS Special { USAGE = CONNECT_CLASS; }
CONNECTI VI TY Exanpl el {
HEADER { DRI VER { Normal Special } }
TABLE { 0 1}

}
CONNECTI VI TY Exanpl e2 {
HEADER {
DRI VER { Normal Special } }
RECEI VER { Special Normal } }
}
TABLE { 0110}
}

Examplel specifies the following:

A connection between an output pin and another output pin associated with Normal is false.
A connection between an output pin and another output pin associated with Special is true.

Example2 specified the following:

A connection between an output pin associated with Normal and an input pin associated with Special isfase.
A connection between an output pin associated with Special and an input pin associated with Special istrue.

A connection between an output pin associated with Normal and an input pin associated with Normal is true.
A connection between an output pin associated with Special and an input pin associated with Normal isfalse.

212 Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 7

11.18.3 FANOUT, FANIN and CONNECTIONS

The arithmetic model fanout shall be defined as shown in Semantics 151.

KEYWORD FANOQUT = arithnetic_nodel ({
VALUETYPE = unsi gned_nunber ;
}
SEMANTI CS FANOUT {
CONTEXT {
PIN.LIMT WRE. SI ZE. HEADER W RE. CAPACI TANCE. HEADER
W RE. RESI STANCE. HEADER W RE. | NDUCTANCE. HEADER
}
}

Semantics 151— Arithmetic model FANOUT

The purpose of the arithmetic model fanout is to specify the total number of input pins connected to a net.

The arithmetic model fanin shall be defined as shown in .

KEYWORD FANIN = arithnetic_nodel {
VALUETYPE = unsi gned_nunber ;
}
SEMANTI CS FANI N {
CONTEXT {
PIN. LIM W RE. SI ZE. HEADER W RE. CAPACI TANCE. HEADER
W RE. RESI STANCE. HEADER W RE. | NDUCTANCE. HEADER
}
}

Semantics 152— Arithmetic model FANIN

The purpose of the arithmetic model fanin is to specify the total number of output pins connected to a net.

The arithmetic model connections shall be defined as shownin .

KEYWORD CONNECTIONS = arithnetic_nodel {
VALUETYPE = unsi gned_nunber ;
}
SEMANTI CS CONNECTI ONS {
CONTEXT {
PIN.LIMT W RE. SI ZE. HEADER W RE. CAPACI TANCE. HEADER
W RE. RESI STANCE. HEADER W RE. | NDUCTANCE. HEADER
}
}

Semantics 153— Arithmetic model CONNECTIONS

The purpose of the arithmetic model connections is to specify the total number of pins connected to a net. The
arithmetic value for connections shall equal the sum of arithmetic values for fanout and fanin.

IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 213

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

The accounting of apin shall depend on its direction annotation value (see).
A pin with direction annotation value input shall count for fanout and for connections. A pin with direction anno-
tation value output shall count for fanin and for connections. A pin with direction value both shall count for fanin
and for fanout and twice for connections. A pin without direction annotation or with direction annotation value
none shall not count.

— FANOUT, FANIN, or CONNECTIONS as limit arithmetic model (see) in the context of apin (see)

A design limit for the number of pins or nodes connected to a net can be described. The declared pin wherein the
design limit is described shall count, according on its direction annotation value.

— FANOUT, FANIN, or CONNECTIONS as header arithmetic model (see) in the context of awire (see)

The arithmetic value of size (see), capacitance (see), resistance (see), or inductance (see) can be calculated.

11.19 Arithmetic models related to layout implementation
11.19.1 SIZE

The arithmetic model size shall be defined as shown in Semantics 154.

KEYWORD S| ZE = arithnetic_nodel {
VALUETYPE = unsi gned_nunber ;
}
SEMANTI CS Sl ZE {
CONTEXT {
CELL W RE
W RE. CAPACI TANCE. HEADER
W RE. RES| STANCE. HEADER
W RE. | NDUCTANCE. HEADER
ANTENNA ANTENNA. LIM T PIN

Semantics 154—Arithmetic model SIZE

The purpose of the arithmetic model size is to define an abstract, unit-less measure for the space occupied by a
physical object or the magnitude of a physical effect.

— SIZE as arithmetic model in the context of acell (see) or awire (see)
Size shall represent a measure for the space occupied by a placed cell or by arouted wire. The space occupied by
adesign or asubdesign shall be calculated as the sum of the space occupied by each cell instance and each routed
wire. The space allocated for a design or a subdesign can be greater or equal to the space occupied by the design
or subdesign.

— SIZE as header arithmetic model (see) in context of awire (see)
The arithmetic value of capacitance (see), resistance (see), or inductance (see) in the context of awire can be

calculated. The dimension size shall represent a measure for space allocated for a design or subdesign wherein
thewireis routed.

214 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

— SIZE as arithmetic model in the context of an antenna (see)
Size shall represent a measure for the magnitude of the antenna effect. A design limit for the magnitude of the
antenna effect can be given using the arithmetic model container limit (see). The calculated size shall be com-
pared against the design limit for size given in the context of the same antenna.

— SIZE as arithmetic model in the context of apin (see)
Size shall represent a measure for the additive magnitude of an antenna (see), when the layout created by the
connection between a pin and a routed wire is subjected to an antenna effect. An antenna reference annotation
(see) and atarget annotation (see) shall be used.
11.19.2 AREA

The arithmetic model area shall be defined as shown in Semantics 155.

KEYWORD AREA = arithnetic_nodel {
VALUETYPE = unsi gned_nunber
S| _MODEL = AREA ;

}

SEMANTI CS AREA {
CONTEXT { CELL W RE HEADER }

}

Semantics 155—Arithmetic model AREA

The purpose of the arithmetic model area is to define a physical area, according to the International System of
Measurements and Units [reference needed)].

— AREA as arithmetic model in the context of acell (see) or awire (see)

Areashall represent the physical area occupied by aplaced cell or arouted wire, respectively. The area shall take
into account the required space between neighboring objects.

The physical area occupied by a design or a subdesign shall be calculated as the sum of the physical area occu-
pied by each cell instance and each routed wire. The physical area allocated for a design or a subdesign can be
greater or equal to the physical area occupied by the design or subdesign.

— AREA as header arithmetic model (see) in context of awire (see)

The arithmetic value of capacitance (see), resistance (see), or inductance (see) can be calculated. The dimen-
sion area shall represent the physical area allocated for a design or subdesign wherein the wire is routed.

— AREA as header arithmetic model (see) in context of alayer (see)
The arithmetic value of capacitance (see), resistance (see) can be calculated. A design limit for current (see)
can be calculated. The dimension area shall represent the physical area occupied by alayout segment residing on
the layer.

— AREA as header arithmetic model (see) in context of arule (see)

The arithmetic value of capacitance (see), resistance (see) or inductance (see) can be calculated. A design limit
for current (see), distance (see), overhang (see), width (see), length (see) or extension (see) can be cal culated.

IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 215

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

The dimension area shall represent the physical area occupied by a pattern or by aregion. A pattern reference
annotation (see) or aregion reference annotation (see) shall be used.

— AREA as header arithmetic model (see) in context of an antenna (see)
The arithmetic value of size (see) in the context of an antenna can be calculated. The dimension area shall rep-
resent the physical area occupied by alayout segment residing on alayer (see). A layer reference annotation (see
) shall be used.
11.19.3 PERIMETER

The arithmetic model perimeter shall be defined as shown in Semantics 156.

KEYWORD PERI METER = arithnetic_nodel {
VALUETYPE = unsi gned_nunber ;
S| _MODEL = DI STANCE ;

}

SEMANTI CS PERI METER {
CONTEXT { CELL W RE HEADER }

}

Semantics 156—Arithmetic model PERIMETER

The purpose of the arithmetic model perimeter is to define the distance (see) measured when surrounding the
boundaries of aphysical object.

— PERIMETER as arithmetic model in the context of acell (see) or awire (see)

Perimeter shall represent the perimeter surrounding a placed cell or a routed wire. The perimeter shall take into
account the required space between neighboring objects.

— PERIMETER as header arithmetic model (see) in context of awire (see)
The arithmetic value of capacitance (see), resistance (see), or inductance (see) can be calculated. The dimen-
sion perimeter shall represent the perimeter surrounding a space allocated for a design or subdesign wherein the
wire is routed.

— PERIMETER as header arithmetic model (see) in context of alayer (see)
The arithmetic value of capacitance (see), resistance (see) can be calculated. A design limit for current (see)
can be calculated. The dimension perimeter shall represent the perimeter surrounding a layout segment residing
on the layer.

— PERIMETER as header arithmetic model (see) in context of arule (see)
The arithmetic value of capacitance (see), resistance (see) or inductance (see) can be calculated. A design limit
for current (see), distance (see), overhang (see), width (see), length (see) or extension (see) can be cal culated.
The dimension perimeter shall represent the perimeter surrounding a pattern or for aregion. A pattern reference

annotation (see) or aregion reference annotation (see) shall be used.

— PERIMETER as header arithmetic model (see) in context of an antenna (see)

216 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

The arithmetic value of size (see) in the context of an antenna can be calculated. The dimension perimeter shall
represent the perimeter surrounding alayout segment residing on alayer (see). A layer reference annotation (see
) shall be used.

11.19.4 EXTENSION

The arithmetic model extension shall be defined as shown in Semantics 157.

KEYWORD EXTENSI ON = arithnetic_nodel {
VALUETYPE = unsi gned_nunber ;
SI _MODEL = DI STANCE ;

}

SEMANTI CS EXTENSI ON {
CONTEXT { LAYER PATTERN RULE. LIM T HEADER }

}

Semantics 157—Arithmetic model EXTENSION

The purpose of the arithmetic model extension is to specify the size of a polygon created by expanding a point
within a geometric model (see Table 90 in Section 10.16). In the case of two allowed routing directions in an
interval of 90 degrees, the expansion shall result in a rectangle. In the case of four allowed routing directionsin
an interval of 45 degrees, the expansion shall result in a hexagon.

Thisisillustrated in the following Figure 37.

extension extension
.horizontal .horizontal
- -

T extension
. | . .obtuse
extension extension
.vertical | .vertical

| extension
, .acute

Figure 37—lIllustration of EXTENSION

The arithmetic submodels horizontal, vertical, acute and obtuse (see) can be used to specify anisotrop expan-
sion.

— EXTENSION as arithmetic model in the context of alayer (see)

Extension shall represent the expansion of an endpoint of arouting segment residing on a layer (see) with layer-
type annotation val ue routing (see).

— EXTENSION as arithmetic model in the context of a pattern (see)

Extension shall represent the expansion of apattern (see) with an associated shape annotation or with an associ-
ated geometric model (see). Each reference point shall be subject to expansion.

— EXTENSION as limit arithmetic model (see) in the context of arule (see)

IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 217

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

Extension shall represent a design limit for expansion of a pattern. Each reference point shall be subject to
expansion. A pattern reference annotation (see) shall be used.

— EXTENSION as header arithmetic model (see) in the context of arule (see)

An arithmetic value of capacitance (see), resistance (see) or inductance (see) can be calculated. A design limit
for current (see), distance (see), overhang (see), width (see), length (see) or extension (see) can be cal culated.
The dimension extension shall represent the expansion of a pattern with shape annotation value tee, cross, corner
or end (see). A pattern reference annotation (see) or a model reference annotation (see) shall be used. The
model reference annotation shall refer to an arithmetic model extension as achild of apattern or to an arithmetic
submodel as a child of extension and a grandchild of pattern.

11.19.5 THICKNESS

The arithmetic model thickness shall be defined as shown in Semantics 158.

KEYWORD THI CKNESS = arithmetic_nodel ({
VALUETYPE = unsi gned_nunber ;
S| _MODEL = DI STANCE ;

}

SEMANTI CS EXTENSI ON {
CONTEXT { LAYER HEADER }

}

Semantics 158—Arithmetic model THICKNESS

The purpose of the arithmetic model thicknessisto specify the distance between the bottom and the top of a man-
ufactured layer (see).

Thickness as header arithmetic model (see) can be used to calculate an arithmetic value of capacitance (see),
resistance (see) or inductance (see) in the context of arule (see).

11.19.6 HEIGHT

The arithmetic model height shall be defined as shown in Semantics 159.

KEYWORD HEI GHT = arithnetic_nodel {
VALUETYPE = unsi gned_nunber ;
SI _MODEL = DI STANCE ;

}

SEMANTI CS HEI GHT {
CONTEXT { CELL SI TE REA ON LAYER HEADER }

}

Semantics 159—Arithmetic model HEIGHT

The purpose of the arithmetic model height isto specify a vertical distance, i.e., a distance measured in y direc-
tion or in zdirection.

— HEIGHT as arithmetic model in the context of alayer (see)

218 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

Height shall represent a distance in z direction measured between the manufacturing substrate and the bottom of
amanufactured layer.

— HEIGHT as arithmetic model in the context of acell (see), site (see) or region (see)

Height shall represent a distance in y direction measured between the bottom and the top of a rectangular cell ,
site, pattern or region.

— HEIGHT as header arithmetic model (see) in the context of awire (see)

Height shall represent the distance in y direction measured between the bottom and the top of an allocated rectan-
gular space for adesign or a subdesign wherein the wireis routed.

11.19.7 WIDTH

The arithmetic model width shall be defined as shown in Semantics 160.

KEYWORD W DTH = arithnetic_nodel {
VALUETYPE = unsi gned_nunber ;
S| _MODEL = DI STANCE ;
}
SEMANTI CS W DTH {
CONTEXT {
CELL SITE REG ON LAYER LAYER LIMT
PATTERN RULE. LI M T HEADER

Semantics 160—Arithmetic model WIDTH

The purpose of the arithmetic model width is to specify a distance within an x-y plane.
— WIDTH as arithmetic model in the context of acell (see), asite (see) or aregion (see)

Width shall represent a distance in x direction measured between the left and the right of arectangular cell , site
or region.

— WIDTH as header arithmetic model (see) in the context of awire (see)

Width shall represent the distance in x direction measured between the |eft and the right of an allocated rectangu-
lar space for adesign or a subdesign wherein the wire is routed.

— WIDTH as arithmetic model or limit arithmetic model (see) in the context of alayer (see)
Width shall represent adistance or adesign limit for a distance between the borders of arouting segment residing
on a layer with layertype annotation value routing (see). Width shall be measured orthogona to the routing
direction, i.e., iny (i.e., 90 degree) direction if the routing isin x (i.e., O degree) direction and vice-versa, in 135
degree direction if the routing isin 45 degree direction and vice versa.

— WIDTH as arithmetic model in the context of a pattern (see)

Width shall represent the distance between the borders of a pattern (see) with an associated shape annotation
value line or jog (see) or with an associated a geometric model of type polyline or ring (see). Width shall be

IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 219

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

measured orthogonal to the lines of the shape. A line shall be expanded by half the arithmetic value of width to
each side of theline.

— WIDTH aslimit arithmetic model (see) in the context of arule (see)

Width shall represent a design limit for the distance between the borders of a pattern with an associated shape
annotation value line or jog or with an associated a geometric model of type polyline or ring. A pattern reference
annotation (see) shall be used.

— WIDTH as header arithmetic model (see) in the context of arule (see)

An arithmetic value of capacitance (see), resistance (see) or inductance (see) can be calculated. A design limit
for current (see), distance (see), overhang (see), width (see), length (see) or extension (see) can be cal culated.
The dimension width shall represent the distance between the borders of a pattern with shape annotation value
line or end (see). A pattern reference annotation (see) or amodel reference annotation (see) shall be used. The
model reference annotation shall refer to an arithmetic model width as a child of a pattern or to an arithmetic sub-
model as a child of width and a grandchild of pattern.

11.19.8 LENGTH

The arithmetic model length shall be defined as shown in Semantics 161.

KEYWORD LENGTH = arithnetic_nodel {
VALUETYPE = unsi gned_nunber ;
S| _MODEL = DI STANCE ;
}
SEMANTI CS LENGTH {
CONTEXT { LAYER LAYER LIM T PATTERN RULE. LI M T HEADER }

}

Semantics 161—Arithmetic model LENGTH

— LENGTH as arithmetic model or limit arithmetic model (see) in the context of alayer (see)
Length shall represent a distance or a design limit for a distance between the end points of a routing segment
residing on alayer with layertype annotation value routing (see). Length shall be measured parallel to the rout-
ing direction.

— LENGTH as arithmetic model in the context of a pattern (see)

Length shall represent the distance between the end points of a pattern (see) with an associated shape annotation
valuelineor jog (see).

— LENGTH aslimit arithmetic model (see) in the context of arule (see)

Length shall represent a design limit for the distance between the end points of a pattern with an associated
shape annotation value line or jog. A pattern reference annotation (see) shall be used.

— LENGTH as header arithmetic model (see) in the context of arule (see)
An arithmetic va ue of capacitance (see), resistance (see) or inductance (see) can be calculated. A design limit

for current (see), distance (see), overhang (see), width (see), length (see) or extension (see) can be cal culated.
The dimension length shall represent the distance between the end points of a pattern with shape annotation

220 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

value line or jog (see). A pattern reference annotation (see), a model reference annotation (see) or a between
annotation (see) shall be used. The model reference annotation shall refer to an arithmetic model length as a
child of apattern or to an arithmetic submodel as a child of length and a grandchild of pattern. A between anno-
tation shall refer to two patterns representing two parallel routing segments.

11.19.9 DISTANCE

The arithmetic model distance shall be defined as shown in Semantics 162.

KEYWORD DI STANCE = arithnetic_nodel {
VALUETYPE = unsi gned_nunber ;
SI _MODEL = DI STANCE ;

}

SEMANTI CS DI STANCE {
CONTEXT { RULE RULE.LIM T HEADER }

}

Semantics 162—Arithmetic model DISTANCE

The purpose of the arithmetic model distance is to define a space in-between two objects, according to the Inter-
national System of Measurements and Units [reference needed].

— DISTANCE as arithmetic model or as limit arithmetic model (see) in the context of arule (see)

Distance shall represent a measured distance or adesign limit for a distance between two patterns in the context
of the rule. A between annotation (see) shall be used.

The arithmetic submodels horizontal, vertical, acute and obtuse (see) can be used.

— DISTANCE as header arithmetic model (see) in the context of arule (see)
An arithmetic value of capacitance (see), resistance (see) or inductance (see) can be calculated. A design limit
for current (see), distance (see), overhang (see), width (see), length (see) or extension (see) can be cal culated.
The dimension distance shall represent the measured distance between two patterns. A between reference anno-
tation (see) or amodel reference annotation shall be used. The model reference annotation shall refer to an arith-
metic model distance asachild of arule or to alimit arithmetic model distance as a grandchild of arule.

11.19.10 OVERHANG

The arithmetic model overhang shall be defined as shown in Semantics 163.

KEYWORD OVERHANG = arithnetic_nodel {
VALUETYPE = unsi gned_nunber ;
SI _MODEL = DI STANCE ;

}

SEMANTI CS OVERHANG {
CONTEXT { RULE RULE. LIM T HEADER }

}

Semantics 163—Arithmetic model OVERHANG

The purpose of the arithmetic model overhang isto define an overlapping space between two objects.

IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 221

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

Overhang can be used as arithmetic model or as limit arithmetic model (see) or as header arithmetic model (see
) in the context of arule (see), with similar semantic restrictions as distance (see).

Overhang can be interpreted as “negative” distance between the nearest parallel edges of two objects.

Thisisillustrated in the following Figure 38.

distance

Figure 38—lllustration of DISTANCE versus OVERHANG
11.19.11 DENSITY

The arithmetic model density shall be defined as shown in Semantics 164.

KEYWORD DENSI TY = arithnetic_nodel {
VALUETYPE = unsi gned_nunber ;
MN = 0;
MAX = 1,
}
SEMANTI CS DENSI TY {
CONTEXT { LAYER. LIMT RULE RULE.LIMT }

}

Semantics 164—Arithmetic model DENSITY

The purpose of the arithmetic model density is to specify a design limit or a calculation model for metal density.
Metal density shall be defined asthe area occupied by all metal segmentsresiding on alayer (see) with layertype
annotation value routing (see), divided by an allocated area wherein the metal segments are found.

— DENSITY aslimit arithmetic model (see) in the context of alayer (see)
A constant design limit for metal density can be specified.

— DENSITY asarithmetic model or as limit arithmetic model (see) in the context of arule (see)
A design limit or a calculation model for metal density can be specified. A region reference annotation (see) can
be used to relate the design limit or the calculation model for metal density to aregion (see) declared in the con-

text of the samerule. A model reference annotation (see) can be used to relate adesign limit to arelated calcula-
tion model.

222 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

11.20 Annotations related to arithmetic models for layout implementation

** Add lead-in text**

11.20.1 CONNECT_RULE annotation

A connect-rule annotation shall be defined as shown in Semantics 165.

KEYWORD CONNECT_RULE = singl e_val ue_annot ati on {
VALUETYPE = identifier ;
VALUES { must_short can_short cannot_short }
CONTEXT = CONNECTIVITY ;

}

Semantics 165—CONNECT_RULE annotation

The purpose of the connect-rule annotation is to specify that the arithmetic model connectivity (see

Section 11.18.1) isto be interpreted as arequirement for connection rather than an actual connection.

The meaning of the annotation valuesis shown in Table 102.

Table 102—CONNECT_RULE annotation

Annotation value Description
must _short Electrical connection required.
can_short Electrical connection allowed.
cannot _short Electrical connection disallowed.

If multiple requirements for connection between the same objects are specified, restrictions for the boolean val-

ues of the respective arithmetic models connectivity shall apply.

These restrictions are specified in the following Table 103.

Table 103—Restrictions related to multiple requirements for connection

must_short cannot_short can_short
0 0 1
0 1 0
1 0 1

Any combination of boolean values not shown in Table 103 shall be considered invalid.
11.20.2 BETWEEN annotation

A between annotation shall be defined as shown in Semantics 166.

IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual

223

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

KEYWORD BETWEEN = nulti _val ue_annotation {
VALUETYPE = identifier ;
CONTEXT { DI STANCE LENGTH OVERHANG CONNECTI VI TY }

}

Semantics 166—BETWEEN annotation
The purpose of the between annotation is to specify areference to multiple objects related to an arithmetic model
distance (see Section 11.19.9), length (see Section 11.19.8), overhang (see Section 11.19.10), or connectivity
(see Section 11.18.1).
11.20.3 BETWEEN annotation for CONNECTIVITY

A between annotation shall be subjected to the restriction shownin .

SEMANTI CS ANTENNA. CONNECTI VI TY. BETWEEN {
REFERENCETYPE = LAYER;

}

SEMANTI CS HEADER. CONNECTI VI TY. BETWEEN {
REFERENCETYPE { PATTERN REG ON LAYER }

}

SEMANTI CS LI BRARY. CONNECTI VI TY. BETVEEN {
REFERENCETYPE = CLASS ;

}

SEMANTI CS SUBLI BRARY. CONNECTI VI TY. BETVEEEN {
REFERENCETYPE = CLASS ;

}

SEMANTI CS CELL. CONNECTI VI TY. BETVEEN {
REFERENCETYPE { PI'N CLASS }

}

Semantics 167—BETWEEN annotation for CONNECTIVITY

The purpose of the restriction is to alow only areference to objects which are semantically valid in the context
of connectivity (see).

11.20.4 BETWEEN annotation for DISTANCE, LENGTH, OVERHANG

A between annotation shall be subjected to the restriction shownin.

SEMANTI CS DI STANCE. BETWEEN {
REFERENCETYPE { PATTERN REG ON }

}

SEMANTI CS LENGTH. BETVEEEN {
REFERENCETYPE { PATTERN REG ON }

}

SEMANTI CS OVERHANG. BETWEEN {
REFERENCETYPE { PATTERN REG ON }

}

Semantics 168—BETWEEN annotation for DISTANCE, LENGTH, OVERHANG

224 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

The purpose of the restriction is to alow only areference to objects which are semantically valid in the context

of distance (see), length (see) or overhang (see).

Furthermore, the number of annotation values, i.e., the number of referenced objects for distance, length, over-

hang shall be restricted to exactly two objects.

A distance between two objects can be generally defined. An overhang or a length involving two objects can be

defined only between the nearest parallel edges of two objects.

In the case of two objects with nearest parallel edges, distance prescribes an empty space between the objects.

Overhang prescribes an overlapping space between the objects. Length is defined as the distance between the end

points of the intersection formed by projecting the parallel edges onto each other.

Thisisillustrated in the following Figure 39.

distance
—— Iength Iength
Figure 39—llllustration of DISTANCE versus OVERHANG versus LENGTH
11.20.5 MEASURE annotation
A measure annotation shall be defined as shown in Semantics 169.
KEYWORD MEASURE = si ngl e_val ue_annot ati on {
VALUETYPE = identifier ;
VALUES { euclidean horizontal vertical manhattan }
DEFAULT = eucl i dean ;
CONTEXT = DI STANCE ;
}
Semantics 169—DISTANCE_MEASUREMENT annotation
The mathematical description of the annotation values is specified in the following .
Table 104—Annotation values for MEASURE
Annotation value Mathematical description
eucl i dean
measure= X+ yz
manhat t an
measure = X+y
hori zont al
measure = X
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 225

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

Table 104—Annotation values for MEASURE (Continued)

Annotation value Mathematical description

verti cal
measure = y

Distance can be measured between two points, between a point and a line, or between two paralel lines. The
shape annotation (see) specifies whether a pattern is represented by a point or by aline.

The specification of x and y for the mathematical definition of the measure annotation values is illustrated in
Figure 40.

point line line
---@
| P
Yoo oo
¢]
point |
i

Figure 40—lllustration of MEASURE
Figure 40 shows distance between two points, a point and a line and between two parallel lines.
11.20.6 REFERENCE annotation container

A reference annotation container shall be defined as shown in Semantics 170.

KEYWORD REFERENCE = annot ati on_cont ai ner {
CONTEXT = DI STANCE ;
REFERENCETYPE { PATTERN REG ON }
}
SEMANTI CS REFERENCE. i denti fier = single_val ue_annotation {
VALUETYPE = identifier ;
VALUES { center origin near_edge far_edge }
DEFAULT = origin ;
}

Semantics 170—REFERENCE annotation container

The purpose of the reference annotation container is to specify the reference points for a measurement of dis-
tance (see).

An annotation within the reference annotation container shall associate a pattern (see) or aregion (see) with a
reference point specified by an annotation value.

226 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

The meaning of the annotation values is specified in the following .

Table 105—Annotation values for REFERENCE

Annotation value Description

origin Thereference point is the origin of a pattern or region.

center Thereference point is the center of a pattern or region

near _edge Thereference point is the edge of a pattern or region
which is nearest to a parallel edge of another pattern or
region.

far _edge The reference point is the edge of a pattern or region
which is farest from a parallel edge of another pattern or
region.

The following restrictions shall further apply:

a) Theannotation value origin can only apply in the following cases:

1) A shape annotation is associated with the pattern, and the annotation value is tee, cross, corner or
end. The reference point of the shape shall be considered the origin.

2) A geometric model (see) isassociated with the pattern or region. A geometric transformation (see)
can describe the location of the origin. If no geometric transformation is given, the location of the
origin shall be the point x=0, y=0.

b) The annotation value center, near edge or far edge can only apply in the following cases:

1) A shape annotation is associated with the pattern, and the annotation value is line or jog. The
straight line connecting the end points shall be considered as center. The border of the line given by
width (see) shall be considered either as near edge or as far edge.

2) A predefined geometric model rectangle (see) is associated with the pattern or region. The point of
gravity of the rectangle shall be considered as center.

3) A predefined geometric model line (see) is associated with the pattern or region. The straight line
connecting the end points shall be considered as center.

The meaning of the reference annotation valuesis further illustrated in Figure 41.

far edge

center | ‘TA_ A_@gﬁ o _i_ _ objectl
near edge I (AI
S i IR I !
\® origin object2

center N A \J

far edge V V V

Figure 41—lIllustration of REFERENCE for DISTANCE

IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 227

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

Figure 41 shows euclidean distance between all possible reference points of objectl and object2.
11.20.7 ANTENNA reference annotation

An antenna reference annotation shall be defined as shown in Semantics 171.

SEMANTI CS ANTENNA = annotation {
VALUETYPE = identifier ;
CONTEXT { PIN. SI ZE PI N. AREA PI N. PERI VETER }
REFERENCETYPE = ANTENNA;

}

Semantics 171—ANTENNA reference annotation

An antenna reference annotation shall be used to relate a calculated size (see) or area (see) or perimeter (see) in
the context of the pin with a calculation rule for size in the context of an antenna (see). Reference to multiple
antennas can be made using a multi-value annotation.

11.20.8 TARGET annotation

An target annotation shall be defined as shown in Semantics 171.

SEMANTI CS TARGET = annotation {
VALUETYPE = identifier ;
CONTEXT = PI N. SI ZE;
REFERENCETYPE = PI N. PATTERN,

}

Semantics 172—TARGET annotation

The target annotation shall be associated with the arithmetic model size (see) in the context of apin (see).

The purpose of the target annotation is to specify a pattern (see) in the context of the same pin which isthe vic-
tim of an antenna effect (see). The referenced pattern shall have alayer reference annotation (see) and atrivial
or afull arithmetic model (see) for area (see) or perimeter (see).

An antenna reference annotation (see) shall also be associated with the arithmetic model size. The refered
antenna (see) shall also contain an arithmetic model size, used as a calculation rule. The size in the context of the
pin shall be considered additive to the size formulated by the calculation rule. The arithmetic value for area or
perimeter in the referenced pattern shall further be used as eval uation results for the dimension area or perimeter
within the calculation rule.

11.20.9 PATTERN reference annotation

A pattern reference annotation shall be defined as shownin .

The purpose of the pattern reference annotation is to relate an arithmetic model or aheader arithmetic model (see
) to adeclared pattern (see).

228 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

SEMANTI CS PATTERN = singl e_val ue_annotati on {
VALUETYPE = identifier ;
CONTEXT {
LENGTH W DTH HEI GHT S| ZE AREA THI CKNESS
PERI METER EXTENSI ON

Semantics 173—PATTERN annotation

11.21 Arithmetic submodels for timing and electrical data

The arithmetic submodels shown in Table 106 shall be applicable in the context of electrica modeling.

Table 106—Overview of arithmetic submodels for timing and electrical data

Keyword Description
H GH Applicable for electrical data measured at alogic hi gh state of apin.
Low Applicable for electrical data measured at alogic | ow state of apin.
Rl SE Applicable for electrical data measured during alogic | owto hi gh transition of a pin.
FALL Applicable for electrical data measured during alogic hi gh tol owtransition of apin.

The arithmetic submodels high and low shall be defined as shown in .

KEYWORD HI GH = arithmeti c_subnodel {
CONTEXT = arithnetic_nodel;
}
SEMANTI CS HI GH { CONTEXT {
CLASS. VOLTAGE CLASS. LI M T. VOLTAGE
PI N. VOLTAGE PIN.LIM T. VOLTAGE
LI BRARY. NO SE_MARG N LI BRARY. LI M T. NO SE
PIN. NO SE PIN. NO SE VARG N PIN. LIMT. NO SE
Pl N. CAPACI TANCE PI N. RESI STANCE
P}
KEYWORD LOW = arithnetic_subnodel {
CONTEXT = arithnetic_nodel;
}
SEMANTI CS LOW { CONTEXT ({
CLASS. VOLTAGE CLASS. LI M T. VOLTAGE
PI N. VOLTAGE PIN.LIM T. VOLTAGE
LI BRARY. NO SE_MARG N LI BRARY. LI M T. NO SE
PIN. NO SE PIN. NO SE VARG N PIN. LIMT. NO SE
Pl N. CAPACI TANCE PI N. RESI STANCE

b}

IEEE P1603 Draft 7

Semantics 174—Arithmetic submodels HIGH and LOW

Advanced Library Format (ALF) Reference Manual

229

10

15

20

25

30

35

40

45

50

55

The arithmetic submodelsrise and fall shall be defined as shownin .

KEYWORD RI SE = arithnetic_subnodel {
CONTEXT = arithnetic_nodel;

}
SEMANTI CS RI SE { CONTEXT {

10

15

20

25

30

35

40

45

50

55

FROM THRESHOLD TO. THRESHOLD PI N. THRESHOLD
Pl N. CAPACI TANCE PI N. RESI STANCE

PI N. SLEWRATE PI N. LI M T. SLEWRATE

PI N. PULSEW DTH PI N. LI M T. PULSEW DTH

P}
KEYWORD FALL = arithnetic_subnodel {

CONTEXT = arithnetic_nodel ;

SEMANTI CS FALL { CONTEXT {

FROM THRESHOLD TO. THRESHOLD PI N. THRESHOLD
Pl N. CAPACI TANCE PI N. RESI STANCE

PI N. SLEWRATE PI N. LI M T. SLEWRATE

PI N. PULSEW DTH PI' N. LI M T. PULSEW DTH

b}

Semantics 175—Arithmetic submodels RISE and FALL

11.22 Arithmetic submodels for physical data

The arithmetic submodels shown in Table 107 shall be applicable in the context of physical modeling.

Table 107—Overview of arithmetic submodels for physical data

Keyword Description
HORI ZONTAL Applicable for layout measurementsin O degree, i.e., horizontal direction.
VERTI CAL Applicable for layout measurementsin 90 degree, i.e., vertical direction.
ACUTE Applicable for layout measurements in 45 degree direction.
OBTUSE Applicable for layout measurements in 135 degree direction.

The arithmetic submodels horizontal , vertical, acute and obtuse shall be defined as showniin .

230

Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

KEYWORD HORI ZONTAL = arithnetic_subnodel {
CONTEXT = arithnetic_nodel ;
}
SEMANTI CS HORI ZONTAL { CONTEXT {
W DTH LENGTH EXTENSI ON DI STANCE OVERHANG
P}
KEYWORD VERTI CAL = arithmetic_subnodel {
CONTEXT = arithnetic_nodel ;
}
SEMANTI CS VERTI CAL { CONTEXT {
W DTH LENGTH EXTENSI ON DI STANCE OVERHANG
P}
KEYWORD ACUTE = arithnetic_subnodel {
CONTEXT = arithnetic_nodel ;
}
SEMANTI CS ACUTE { CONTEXT {
W DTH LENGTH EXTENSI ON DI STANCE OVERHANG
P}
KEYWORD OBTUSE = arithmetic_subnodel {
CONTEXT = arithnetic_nodel;
}
SEMANTI CS OBTUSE { CONTEXT ({
W DTH LENGTH EXTENSI ON DI STANCE OVERHANG

b}

Semantics 176—Arithmetic submodels HORIZONTAL, VERTICAL, ACUTE and OBTUSE

IEEE P1603 Draft 7

Advanced Library Format (ALF) Reference Manual

231

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

232

Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 7

Annex A

(informative)

Syntax rule summary

This summary replicates the syntax detailed in the preceding clauses. If there is any conflict, in detail or com-
pleteness, the syntax presented in the clauses shall considered as the normative definition.

The current ordering is as each item appearsin its subchapter; this needs to be updated to be complete.

A.1 ALF meta-language

ALF_statement ::= (seeb5.1)
ALF_type[ALF_name] [= ALF_vaue] ALF_statement_termination
ALF type::=
non_escaped_identifier [index]
| @
|:
ALF_name::=
identifier [index]
| control_expression
ALF vaue::=
identifier
| number
| arithmetic_expression
| boolean_expression
| control_expression
ALF_statement_termination ::=

|{,{ALF_vaIue|: 151}
|{ { ALF_statement} }

A.2 Lexical definitions

character ::= (see6.1)
whitespace
| letter
| digit
| special
whitespace ::=
space | vertical_tab | horizontal _tab | new_line | carriage_return | form_feed
letter ::=
uppercase | lowercase
uppercase ::=
AIBICIDIEIFIGIHIIJIKILIM INJOIPIQIRISITIUIV W
IX1Y1Z
lowercase ::=

alblcidielfiglihlifjikiliminjolpiglr|sitiu|viw|x|y|z

IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 233

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

digit ::=
0111213141516171819
special ::=
N I=1+ -1 1% 12105 L1 1@ 1=\ 18| |#
ICI) 1< 1>l 11}
comment ;= (see6.2)

in_line_comment
| block_comment
in_line_comment ::=
[I{ character} new_line
| / /{ character} carriage_return
block_comment ::=
[*{character}* /
delimiter ::= (sce6.3)
(IO,
operator ::= (see 6.4)
arithmetic_operator
| boolean_operator
| relational _operator
| shift_operator
| event_sequence_operator
| meta_operator
arithmetic_operator ::=
-1 %
boolean_operator ::=

&& [[[1~& [~[IM M~ H&]
relational_operator ::=

==|1=|>=|<=|>|<
shift_operator ::=

<<|>>

event_sequence_operator ::=

S| > <> <> | &> <& >
meta_operator ::=

=1?71@
number ::= (see 6.5)

signed _integer | signed_real | unsigned _integer | unsigned real
signed_number ::=

signed_integer | signed _real
unsigned_number ::=

unsigned_integer | unsigned_real
integer ::=

signed_integer | unsigned_integer
signed_integer ::=

sign unsigned_integer
unsigned _integer ::=

digit { [_] digit}
real ::=

signed_real | unsigned_real
signed real ::=

sign unsigned_real
unsigned redl ::=

mantisse [exponent]

234 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

| unsigned_integer exponent

sign =

+] -
mantisse ::=

. unsigned_integer

| unsigned_integer . [unsigned integer]
exponent ::=

E [sign] unsigned_integer
| e[sign] unsigned_integer
multiplier_prefix_symbol ::=
unity { letter } |K { letter} [M EG{ letter } | G{ letter }
[M { letter} |U { letter } |N { letter } | P{ letter} | F { letter}

unity ::=

1
K:=

K |k
M=

M|m
E:=

Ele
G:=

Glg
U:=

Ulu
N =

N|n
P:=

Pip
Fu=

Fif
bit_literal ::=

alphanumeric_bit_literal
| symbolic_hit_literal
alphanumeric_bit_literal ::=
numeric_bit_literal
| alphabetic_bit_literal
numeric_bit_literal ::=
0|1
alphabetic_bit_literal ::=
X|Z|LH|UIW
IX1z|I'1hju|w
symbolic_bit_literal ::=
?21*

based literal ::=

(see 6.6)

(see 6.7)

(see 6.8)

binary_based literal | octal_based literal | decimal_based literal | hexadecimal_based_literal

binary_based_literal ::=
binary_base bit_literal { [_] bit_litera }
binary_base ::=

'‘B|'b

octal_based litera ::=

IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

octal_base octal_digit { [_] octal_digit }
octal_base ::=

‘Ol'o

octal_digit ::=
bit_literal |2]|3|4|5|6|7
decimal_based _litera ::=
decimal_base digit{ [_] digit}
decimal_base ::=

'‘D|'d

hexadecimal_based_literal ::=
hexadecimal_base hexadecimal_digit { [_] hexadecimal_digit }
hexadecimal _base ::=

'H|'h

hexadecimal_digit ::=

octa |89
|IAIBICIDIE|F
lalblcid|e|f

edge literal ::=

bit_edge literal
| based_edge literal
| symbolic_edge literal

bit edge litera ::=

bit_literal bit_literal

based edge literal ::=
based_literal based literal
symbolic_edge literal ::=

7~ 70| 7

quoted_string ::=

" { character } "

identifier ::=

non_escaped_identifier
| escaped_identifier
| placeholder_identifier
| hierarchical _identifier

non_escaped_identifier ::=
letter { letter | digit | | $|#}
escaped identifier ;=
backslash escapable character { escapable character }
escapable _character ::=

letter | digit | special

placeholder_identifier ::=
< non_escaped_identifier >
hierarchical_identifier ::=

identifier [\] . identifier

keyword_identifier ::=

letter { [_] letter }

VECtOr_expression_macro ::=

236

. non_escaped_identifier

Advanced Library Format (ALF) Reference Manual

(see 6.9)

(see 6.10)

(see6.11)

(see 6.11.1)

(see 6.11.2)

(see 6.11.3)
(see 6.11.4)
(see 6.12)

(s 6.13)

IEEE P1603 Draft 7

A.3 Auxiliary definitions

all_purpose value::=
number

| identifier

| quoted_string

| bit_literal

| based_literal

| edge_value

| pin_variable

| control_expression
multiplier_prefix_value ::=

unsigned_number | multiplier_prefix_symbol
string_value ::=

quoted_string | identifier
arithmetic_value ::=

number | identifier | bit_literal | based literal
boolean value::=

alphanumeric_bit_literal | based_literal | integer

edge vaue::=

(edge literal)
index_value ::=

unsigned_integer | identifier
index ::=

single_index | multi_index
single_index ::=

[index_value]
multi_index ::=

[index_value : index_value]
pin_variable::=

pin_variable identifier [index]
pin_value::=

pin_variable | boolean value
pin_assignment ::=
pin_variable = pin_vaue;
annotation ::=
single_value_annotation
| multi_value_annotation
single value annotation ::=
annotation_identifier = annotation_value
annotation_value ::=
number
| identifier
| quoted_string
| bit_literal
| based_litera
| edge_value
| pin_variable
| control_expression
| boolean_expression
| arithmetic_expression
multi_value annotation ::=
annotation_identifier { annotation_value { annotation_value} }

IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual

(see7.1)

(see7.2)
(see7.3)
(see7.4)

(see7.5)
(see 7.6)

(see7.7)

(see7.8)

(see7.9)

(see 7.10)

(see7.11)

237

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

annotation_container ::=
annotation_container_identifier { annotation { annotation} }
attribute ::=
ATTRIBUTE { identifier { identifier } }
property ::=
PROPERTY [identifier] { annotation { annotation} }
include ::=
INCLUDE quoted string ;
associate ::=
ASSOCIATE quoted_string ;
| ASSOCIATE quoted_string{ FORMAT_single_value_annotation }
revision ::=
ALF_REVISION string_value
generic_object ::=
alias declaration
| constant_declaration
| class_declaration
| keyword_declaration
| semantics_declaration
| group_declaration
| template_declaration
library_specific_object ::=
library
| sublibrary
| cell
| primitive
| wire
| pin
| pingroup
| vector
| node
| layer
| via
[rule
| antenna
| site
| array
| blockage
| port
| pattern
| region
al_purpose item ::=
generic_object
| include_statement
| associate_statement
| annotation
| annotation_container
| arithmetic_model
| arithmetic_model _container
| all_purpose item template instantiation

A.4 Generic definitions

dlias_declaration ::=

238 Advanced Library Format (ALF) Reference Manual

(see7.12)
(see7.13)
(see7.14)
(see 7.15)

(see 7.16)

(see7.17)

(see 7.18)

(see 7.19)

(see 7.20)

(see8.1)

IEEE P1603 Draft 7

ALIASalias identifier = original_identifier ;
| ALIAS vector_expression_macro = (vector_expression)
constant_declaration ::= (see 8.2)
CONSTANT constant_identifier = constant_value ;
constant_value ::=
number | based literal
class declaration ::= (see 8.6)
CLASSclass identifier ;
| CLASSclass identifier { { class_item} }
class item::=
all_purpose_item
| geometric_model
| geometric_transformation
keyword_declaration ::= (see 8.3)
KEYWORD keyword identifier = syntax_item identifier ;
| KEYWORD keyword_identifier = syntax_item identifier { { keyword_item} }
keyword _item ::=
VALUETYPE_single value_annotation
| VALUES multi_value_annotation
| DEFAULT _single_value_annotation
| CONTEXT_annotation
| REFERENCETYPE_annotation
| S_MODEL_single_value_annotation
semantics_declaration ::= (see 8.9)
SEMANTICS semantics _identifier = syntax_item_identifier ;
| SEMANTICS semantics_identifier [= syntax_item_identifier] { { semantics item} }
semantics_item ::=
VALUES multi_value annotation
| DEFAULT _single_value_annotation
| CONTEXT_annotation
| REFERENCETYPE_annotation
| S_MODEL_single_value_annotation
group_declaration ::= (see8.8)
GROUP group_identifier { all_purpose value{ all_purpose vaue} }
| GROUP group_identifier { left_index_value : right_index_value }

template_declaration ::= (see 8.9)
TEMPLATE template_identifier { ALF_statement { ALF_statement } }
template_instantiation ::= (see 8.10)

static_template instantiation
| dynamic_template instantiation
static_template instantiation ::=
template_identifier [= static];
| template_identifier [= static] { { all_purpose value} }
| template_identifier [= static] { { annotation} }
dynamic_template instantiation ::=
template_identifier = dynamic { { dynamic_template instantiation_item} }
dynamic_template instantiation_item ::=
annotation
| arithmetic_model
| arithmetic_assignment
arithmetic_assignment ::=
identifier = arithmetic_expression ,

IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

A.5 Library definitions

library ::=
LIBRARY library identifier ;
|LIBRARY library_identifier { { library_item} }
|library template instantiation
library_item::=
sublibrary
| sublibrary_item
sublibrary ::=
SUBL IBRARY sublibrary identifier ;
| SUBLIBRARY sublibrary_identifier { { sublibrary_item} }
| sublibrary_template instantiation
sublibrary_item ::=
all_purpose_item
| cell
| primitive
| wire
| layer
| via
[rule
| antenna
| array
| site
| region

cell ::

CELL cdl_identifier ;
| CELL cell_identifier { { cell_item} }
| cell_template instantiation
cell_item::=
all_purpose_item
| pin
| pingroup
| primitive
| function
| non_scan_cell
| test
| vector
| wire
| blockage
| artwork
| pattern
| region
pin:=
scalar_pin | vector_pin | matrix_pin
scalar_pin ::=
PIN pin_identifier ;
| PIN pin_identifier { { scalar_pin_item} }
| scalar_pin_template instantiation
scaar_pin_item ::=
al_purpose_item
| pattern
| port
vector_pin ::=

240 Advanced Library Format (ALF) Reference Manual

(see9.1)

(see9.3)

(see9.5)

IEEE P1603 Draft 7

PIN multi_index pin_identifier ;
| PIN multi_index pin_identifier { { vector_pin _item} }
| vector_pin_template_instantiation
vector_pin_item ::=
all_purpose_item
| range
matrix_pin ::=
PIN first_multi_index pin_identifier second_multi_index ;
| PIN first_multi_index pin_identifier second_multi_index { { matrix_pin_item} }
| matrix_pin_template instantiation
matrix_pin_item ::=
vector_pin_item
pingroup ::=
simple_pingroup | vector_pingroup
simple_pingroup ::=
PINGROUP pingroup_identifier
{ MEMBERS multi_value annotation { all_purpose_item} }
| simple_pingroup_template instantiation
vector_pingroup ::=
| PINGROUP muilti_index pingroup_identifier
{ MEMBERS muilti_value_annotation { vector_pingroup_item} }
| vector_pingroup_template_instantiation
vector_pingroup_item ::=
all_purpose_item
| range
primitive ::=
PRIMITIVE primitive_identifier { { primitive_item} }
| PRIMITIVE primitive identifier ;
| primitive_template_instantiation
primitive_item ::=
all_purpose_item
| pin
| pingroup
| function
| test
wire ;=
WIRE wire identifier { { wire_ item} }
| WIRE wire_identifier ;
| wire_template_instantiation
wire_item ::=
all_purpose_item
| node
wire_instance pin_assignment ::=
wire_reference pin_variable = wire_instance_pin value,

node ::=
NODE node identifier ;
| NODE node _identifier { { node item} }
| node_template_instantiation
node_item ::=
al_purpose_item
vector ::=

VECTOR control_expression ;
|[VECTOR control_expression { { vector_item} }

IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual

(see 9.6)

(see9.8)

(see9.9)

(see 9.11)

(see9.13)

241

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

| vector_template instantiation
vector_item ::=
all_purpose_item
| wire_instantiation
layer ::=
LAYER layer_identifier ;
|LAYER layer_identifier { { layer_item} }
| layer_template_instantiation
layer_item ::=
all_purpose_item
via:=
V1A via_identifier ;
| VIA via_identifier { { via_item} }
| via_template instantiation
via item ::=
all_purpose_item
| pattern
| artwork

via instantiation ::=
via_identifier instance_identifier ;
| via_identifier instance_identifier { { geometric_transformation } }

rule ::=
RULE rule identifier ;
| RULE rule_identifier { { rule_item} }
| rule_template instantiation
rule_item ::=
all_purpose_item
| pattern
| region
| via_instantiation
antenna::=
ANTENNA antenna_identifier ;
| ANTENNA antenna_identifier { { antenna_item} }
| antenna_template instantiation
antenna item ::=
all_purpose_item
blockage ::=
BL OCK AGE blockage identifier ;
| BLOCKAGE blockage_identifier { { blockage_item} }
| blockage template instantiation
blockage item ::=
al_purpose_item
| pattern
| region
[rule
| via_instantiation
port ::=
PORT port_identifier ;{ { port_item} }
| PORT port_identifier ;
| port_template instantiation
port_item ::=
all_purpose_item
| pattern

242 Advanced Library Format (ALF) Reference Manual

(see9.15)

(see 9.17)

(see 9.20)

(see9.19)

(see 9.20)

(see 9.21)

(see9.22)

IEEE P1603 Draft 7

| region
[rule
| via_instantiation
site::=
SITE site identifier ;
| SITE site identifier { { site item} }
| site_template instantiation
site item ;=
al_purpose_item
| WIDTH_arithmetic_model
| HEIGHT _arithmetic_model
array ;=
ARRAY array identifier ;
| ARRAY array_identifier { { array_item} }
| array_template instantiation
array_item ::=
all_purpose_item
| geometric_transformation
pattern ::=
PATTERN pattern_identifier ;

| PATTERN pattern_identifier { { pattern_item} }
| pattern_template _instantiation
pattern_item ::=
all_purpose_item
| geometric_model
| geometric_transformation

A.6 Function definitions

function ::=
FUNCTION { function_item { function_item} }
| function_template instantiation

function_item ::=
all_purpose_item
| behavior
| structure
| statetable
test ;=

TEST { test_item { test_item} }

| test_template instantiation
test_item ::=

al_purpose_item

| behavior

| statetable

behavior ::=
BEHAVIOR { behavior_item { behavior_item}s}
| behavior_template instantiation
behavior_item ::=
boolean_assignment
| control_statement
| primitive_instantiation

IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual

(see9.24)

(see 9.26)

(see 9.28)

(see 10.1)

(see 10.2)

(see 10.4)

243

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

| behavior_item template instantiation
boolean_assignment ::=
pin_variable = boolean_expression ;
control_statement ::=
primary_control_statement { alternative_control_statement }
primary_control_statement ::=
@ control_expression { boolean_assignment { boolean_assignment } }
alternative_control_statement ::=
- control_expression { boolean_assignment { boolean_assignment } }
primitive_instantiation ::=
primitive_identifier [identifier] { pin_value{ pin_value} }
| primitive_identifier [identifier] { boolean_assignment { boolean_assignment } }
structure ::=
STRUCTURE { cdll_instantiation { cell_instantiation} }
| structure_template instantiation
cell_instantiation ::=
cell_reference identifier cell_instance identifier
| cell_reference_identifier cell_instance_identifier { { cell_instance pin value} }
| cell_reference_identifier cell_i nstance_identifier{ { cell_instance pin_assignment } }
| cell_instantiation_template_instantiation
cell_instance pin_assignment ::=
cell_reference_pin_variable = cell_instance pin vaue;
statetable ::=
STATETABLE [identifier]
{ statetable_header statetable_row { statetable row } }
| statetable_template instantiation
statetable_header ::=

(see 10.5)

(see 10.6)

input_pin_variable { input_pin_variable} : output_pin variable{ output_pin variable} ;

statetable row ::=
statetable _control_values: statetable data values;
statetable _control_values ::=
statetable _control_value { statetable control_value}
statetable _control_value ::=
boolean value
| symbolic_bit_literal
| edge_value
statetable data values::=
statetable data value { statetable data vaue}
statetable data value::=
boolean value
| ([!]input_pin_variable)
| ([~] input_pin_variable)
non_scan_cell ::=
NON_SCAN_CELL = non_scan cell_reference
INON_SCAN_CELL { non _scan_cell_reference{ non_scan_cell_reference} }
| non_scan cell_template instantiation
non_scan_cell_reference ::=
non_scan_cell_identifier { { scan_cell_pin_identifier} }

|non_scan_ce||_identifier{ { non_scan _cell_pin_identifier = scan_cell_pin_identifier ; } }

range ::=
RANGE {index_value: index_value }
boolean_expression ::=

244 Advanced Library Format (ALF) Reference Manual

(see 10.7)

(see 10.8)

(see 10.9)

IEEE P1603 Draft 7

(boolean_expression)

| pin_variable

| boolean_value

| boolean_unary boolean_expression

| boolean_expression boolean binary boolean_expression

| boolean_expression ? boolean_expression :
{ boolean_expression ? boolean_expression : }
boolean_expression

boolean unary ::=

boolean binary ::=
&
| & &

I
Il
|/\
|.J\
1=

| >=
| <=
|>
| <
|+
K
|/
| %
| >>
| <<
vector_expression ::=
(vector_expression)
| vector_unary boolean_expression
| vector_expression vector_binary vector_expression
| boolean_expression ? vector_expression -
{ boolean_expression ? vector_expression . }
Vector_expression
| boolean_expression control_and vector_expression
| vector_expression control_and boolean_expression
| vector_expression_macro
Vector_unary 1=
edge litera

vector_binary ::=

IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual

(see 10.12)

245

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

&
| & &
I
Il
[->
| ~>
| <->
| <~>
| &>
| <& >
control_and ::=
& |1&&
control_expression ::=
('vector_expression)
| (boolean_expression)
geometric_model ::= (see 10.16)
nonescaped _identifier [geometric_model_identifier]
{ geometric_model_item { geometric_model_item} }
| geometric_model_template instantiation
geometric_model_item ::=
POINT_TO_POINT_single_value_annotation

| coordinates
coordinates ::=
COORDINATES({ point { point} }
point ::=
X_number y_number
geometric_transformation ::= (see 10.18)
shift
| rotate
| flip
| repeat
shift ::=

SHIFT { x_number y_number }
rotate ::=
ROTATE = number ;

flip::=

FLIP = number ;
repeat ::=

REPEAT [= unsigned_integer] { geometric_transformation { geometric_transformation} }
artwork ::= (see 10.19)

ARTWORK = artwork_identifier ;
|ARTWORK = artwork_reference
|ARTWORK { artwork_reference { artwork_reference} }
| artwork_template_instantiation
artwork_reference ::=
artwork_identifier{ { geometric_transformation } { cell_pin_identifier } }
| artwork__identifier { { geometric_transformation } { artwork_pin_identifier = cell_pin_identifier ; } }

A.7 Arithmetic definitions

arithmetic_expression ::= (seel1l.l)

246 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

(‘arithmetic_expression)
| arithmetic_value
| { boolean_expression ? arithmetic_expression . } arithmetic_expression
| [unary_arithmetic_operator] arithmetic_operand
| arithmetic_operand binary_arithmetic_operator arithmetic_operand
| macro_arithmetic_operator (arithmetic_operand { , arithmetic_operand })
arithmetic_operand ::=
arithmetic_expression
unary_arithmetic_operator ::= (see11.2.)
+
| -
binary_arithmetic_operator ::
+
| -
| *
|/
| **
| %
macro_arithmetic_operator ::
abs
| eXp
|log
|min
| max
arithmetic_model ::= (see11.3)
trivial_arithmetic_model
| partial_arithmetic_model
| full_arithmetic_model
| arithmetic_model_template instantiation

(see11.2.2)

(see 11.2.3)

trivial_arithmetic_model ::= (see11.2.2)
nonescaped_identifier [name_identifier | = arithmetic_value ;
| nonescaped_identifier [name_identifier | = arithmetic_value { { model_qualifier } }
partial_arithmetic_model ::= (see11.2.2)
nonescaped_identifier [name_identifier] { { partial_arithmetic_model_item} }
partial_arithmetic_model_item ::=
model_qualifier
| table
| trivial_min-max
full_arithmetic_model ::= (see11.2.3)
nonescaped_identifier [name_identifier] { { model_qualifier } model_body { model_qualifier } }
model_body ::=
header-table-equation [trivial_min-max]
| min-typ-max
| arithmetic_submodel { arithmetic_submodel }
header-table-equation ::= (see11.9)
header table
| header equation
header ::= (see11.3.1)
HEADER { partia_arithmetic_ model { partial_arithmetic_model } }
table ::= (see11.3.2)
TABLE { arithmetic_value { arithmetic value} }

IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

equation ::= (see 11.3.3)
EQUATION { arithmetic_expression }
| equation_template_instantiation
model_qualifier ::= (see11.4.2)
annotation
| annotation_container
| event_reference
| from-to
| auxiliary_arithmetic_model
| violation
auxiliary _arithmetic_model ::= (see 11.6)
nonescaped_identifier = arithmetic_value;
| nonescaped_identifier [= arithmetic_value] { auxiliary_qualifier { auxiliary_qualifier } }
auxiliary_qualifier
annotation
| annotation_container
| event_reference
| from-to
arithmetic_submodel ::= (see11.7)
nonescaped_identifier = arithmetic_value ;
| nonescaped_identifier { [violation] min-max }
| nonescaped_identifier { header-table-equation [trivial_min-max] }
| nonescaped_identifier { min-typ-max }
| arithmetic_submodel _template instantiation
min-max ::= (see11.4.49)
min [max]
| max [min]
min ::=
M IN = arithmetic_value;
|MIN = arithmetic_value{ violation }
IMIN {[violation] header-table-equation }
max ::=
MAX = arithmetic value;
IMAX = arithmetic_value{ violation }
|MAX {[violation] header-table-equation }
min-typ-max ::= (see11.5)
[min-max] typ [min-max]
typ =
TYP = arithmetic_value;
| TY P { header-table-equation }
trivial_min-max ::= (see 11.4.6)
trivial_min [trivial_max]
| trivial_max [trivial_min]
trivial_min ::=
MIN = arithmetic_value;
trivial_max ::=
MAX = arithmetic_value;
arithmetic_model_container ::= (see 11.8)
limit
| early-late
| arithmetic_model_container_identifier { arithmetic_model { arithmetic_mode! } }
limit ::= (see11.8.2)
LIMIT { limit_item{ limit_item} }

248 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

limit_item ::=

limit_arithmetic_model
limit_arithmetic_model ::=

nonescaped_identifier [name_identifier] { { model_qualifier } limit_arithmetic_model_body }
limit_arithmetic_model_body ::=

limit_arithmetic_submodel { limit_arithmetic_submodel }

| min-max
limit_arithmetic_submodel ::=

nonescaped_identifier { [violation] min-max }

event_reference ::= (see11.4.9)
PIN_reference_single value _annotation [EDGE_NUMBER_single value_annotation]
from-to ::= (see11.12)
from [to]
|[from] to
from::=

FROM { from-to_item { from-to_item} }
from-to_item ::=
event_reference
| THRESHOLD _arithmetic_model

to::=
TO { from-to_item { from-to_item} }
early-late ::= (see11.8.3)
early [late]
|[early] late
early ::=
EARLY { ealy-late_item { early-late_item} }
late ;=

LATE { early-late item { early-late_item} }
early-late item ::=
DELAY _arithmetic_model
| RETAIN_arithmetic_model
| SLEWRATE_arithmetic_model
violation ::= (see 11.10)
VIOLATION { violation_item { violation_item} }
| violation_template instantiation
violation_item ::=
MESSAGE_TYPE single value annotation
| MESSAGE_single value_annotation
| behavior
wire_instantiation ::= (see 11.11)
wire_reference _identifier wire_instance_identifier ;
| wire_reference_identifier wire_instance_identifier { { wire_instance pin_value} }
| wire_reference_identifier wire_instance_identifier { { wire_instance pin_assignment } }
| wire_instantiation_template_instantiation
wire_instance_pin_assignment ::=
wire_reference_pin_variable = wire_instance_pin_value,

IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 249

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

250

Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 7

Annex B

(informative)

Semantics rule summary

This summary replicates the semantics detailed in the preceding clauses. If thereisany conflict, in detail or com-
pleteness, the semantics presented in the clauses shall considered as the normative definition.

The current ordering is as each item appearsin its subchapter; this needs to be updated to be complete.

**| kept the font/formatting as it is from the original semantics sections; let me know if you want to change this

(how it appearsin print)**

B.1 Auxiliary and generic definitions

KEYWORD FORMAT = singl e_val ue_annotation {
CONTEXT = ASSCCI ATE;
VALUETYPE = identifier;
VALUES { vhdl verilog c \c++ alf }
DEFAULT = al f;

}

KEYWORD VALUETYPE = singl e_val ue_annotati on {
CONTEXT = KEYWORD;

}

KEYWORD VALUES = mnul ti _val ue_annotation {
CONTEXT { KEYWORD SEMANTI CS }

}

KEYWORD DEFAULT = single_val ue_annotation {
CONTEXT { KEYWORD arithnetic_nodel }

}
KEYWORD CONTEXT = annotation {
VALUETYPE = identifier;
}
KEYWORD REFERENCETYPE = annotation {
CONTEXT { KEYWORD SEMANTI CS }
VALUETYPE = identifier;
}
KEYWORD SI _MODEL = singl e _val ue_annotation {
CONTEXT = KEYWORD;
VALUETYPE = identifier;
VALUES {
TI ME FREQUENCY CURRENT VOLTAGE POVNER ENERGY
RESI STANCE CAPACI TANCE | NDUCTANCE
DI STANCE AREA FLUENCE FLUX
}
}
SEMANTI CS CLASS = annotation {
CONTEXT { library_specific_object arithnetic_nodel }
VALUETYPE = identifier;

IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual

251

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

REFERENCETYPE = CLASS;

}
KEYWORD USAGE = annotation {
CONTEXT = CLASS;
VALUETYPE = identifier;
VALUES {
SWAP_CLASS RESTRI CT_CLASS
S| GNAL_CLASS SUPPLY_CLASS CONNECT_CLASS
SELECT_CLASS NODE_CLASS
EXI STENCE_CLASS CHARACTERI ZATI ON_CLASS
ORI ENTATI ON_CLASS SYMVETRY_CLASS

B.2 Library definitions

SEMANTI CS LI BRARY = annotation {
VALUETYPE = identifier;
REFERENCETYPE { LI BRARY SUBLI BRARY }

}
KEYWORD | NFORVATI ON = annot ati on_cont ai ner { (see 9.2.2)
CONTEXT { LI BRARY SUBLI BRARY CELL W RE PRI M Tl VE }
}
KEYWORD PRODUCT = singl e_val ue_annotation {
VALUETYPE = string_val ue; DEFAULT = “*; CONTEXT = | NFORVMATI ON;
}
KEYWORD Tl TLE = singl e_val ue_annotation {
VALUETYPE = string val ue; DEFAULT = ““; CONTEXT = | NFORMATI ON;
}
KEYWORD VERSI ON = singl e_val ue_annotati on {
VALUETYPE = string_val ue; DEFAULT = ““; CONTEXT = | NFORVMATI ON;
}
KEYWORD AUTHOR = singl e_val ue_annotation {
VALUETYPE = string_val ue; DEFAULT = “*; CONTEXT = | NFORVMATI ON;
}
KEYWORD DATETI ME = singl e_val ue_annotation {
VALUETYPE = string val ue; DEFAULT = ““; CONTEXT = | NFORMATI ON;
}
SEMANTI CS CELL = annotation {
VALUETYPE = identifier;
REFERENCETYPE = CELL;
}
KEYWORD CELLTYPE = singl e_val ue_annotati on { (see 9.4.2)

CONTEXT = CELL;

VALUETYPE = identifier;

VALUES ({
buffer conbinational nultiplexor flipflop Iatch
menory bl ock core speci al

}
}

252 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

KEYWORD SWAP_CLASS = annotation { (see 9.4.3)
CONTEXT = CELL;
VALUETYPE = identifier;
REFERENCETYPE = CLASS;

}

KEYWORD RESTRI CT_CLASS = annotation { (see 9.4.4)
CONTEXT { CELL CLASS }
VALUETYPE = identifier;
REFERENCETYPE = CLASS;

}

KEYWORD SCAN TYPE = single_val ue_annotation { (see 9.4.5)
CONTEXT = CELL;
VALUETYPE = identifier;
VALUES { nuxscan cl ocked Issd control O control 1 }

}

KEYWORD SCAN USAGE = singl e_val ue_annotation { (see 9.4.6)
CONTEXT = CELL;
VALUETYPE = identifier;
VALUES { input output hold }

}
KEYWORD BUFFERTYPE = singl e_val ue_annotation { (see 9.4.7)
CONTEXT = CELL;
VALUETYPE = identifier;
VALUES { input output inout internal }
DEFAULT = internal;

}

KEYWORD DRI VERTYPE = singl e_val ue_annot ation { (see 9.4.8)
CONTEXT = CELL;
VALUETYPE = identifier;
VALUES { predriver slotdriver both }

}

KEYWORD PARALLEL DRI VE = singl e_val ue_annotation { (see 9.4.9)
CONTEXT = CELL;
VALUETYPE = unsi gned_i nt eger;
DEFAULT = 1;

}

KEYWORD PLACEMENT_TYPE = singl e_val ue_annotation { (see 9.4.10)
CONTEXT = CELL;
VALUETYPE = identifier;
VALUES { pad core ring bl ock connector }
DEFAULT = core;

}

KEYWORD MEMBERS = nul ti_val ue_annotation { (see 9.7.2)
CONTEXT = Pl NGROUP;
VALUETYPE = identifier;
REFERENCETYPE = PI N,

}

KEYWORD VI EW = si ngl e_val ue_annot ati on { (see 9.7.3)
CONTEXT { PI'N PI NGROUP }
VALUETYPE = identifier;
VALUES { functional physical both none }

IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual

253

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

DEFAULT = bot h;

}
KEYWORD PI NTYPE = singl e_val ue_annotation { (see 9.7.4)
CONTEXT = PI N;
VALUETYPE = identifier;
VALUES { digital analog supply }
DEFAULT = digital
}
KEYWORD DI RECTI ON = singl e_val ue_annotation { (see 9.7.5)
CONTEXT = PIN,
VALUETYPE = identifier;
VALUES { input output both none }

}
KEYWORD SI GNALTYPE = si ngl e_val ue_annotation { (see 9.7.6)
CONTEXT = PIN;
VALUETYPE = identifier;
VALUES ({
data scan_data address control select tie clear set
enabl e out _enabl e scan_enabl e scan_out _enabl e
cl ock master_clock slave_cl ock
scan_master _cl ock scan_sl ave_cl ock

}
DEFAULT = dat a;
}
KEYWORD ACTI ON = singl e_val ue_annotation { (see 9.7.7)

CONTEXT = PIN;
VALUETYPE = identifier
VALUES { asynchronous synchronous }

}

KEYWORD POLARI TY = singl e_val ue_annotation { (see 9.7.8)
CONTEXT = PIN;
VALUETYPE = identifier;
VALUES { high low rising_edge falling_edge doubl e_edge }

}

KEYWORD DATATYPE = si ngl e_val ue_annot ati on { (see 9.7.10)
CONTEXT { PI N PI NGROUP }
VALUETYPE = identifier
VALUES { signhed unsigned }

}

KEYWORD | NI TI AL_VALUE = singl e _val ue_annotation { (see 9.7.11)
CONTEXT = CELL;
VALUETYPE = bool ean_val ue;

}

KEYWORD SCAN_POSI TI ON = si ngl e_val ue_annotation { (see 9.7.12)
CONTEXT = PI N,
VALUETYPE = unsi gned;
DEFAULT = O;

}

KEYWORD STUCK = singl e_val ue_annotation { (see 9.7.13)
CONTEXT = PIN;
VALUETYPE = identifier
VALUES { stuck_at 0O stuck_at_1 both none }

254 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

DEFAULT = bot h;

}

KEYWORD SUPPLYTYPE = annotation {
CONTEXT = PI N;
VALUETYPE = identifier;
VALUES { power ground reference }

}

KEYWORD SI GNAL CLASS = annotation {
CONTEXT { PI'N Pl NGROUP }
VALUETYPE = identifier;
REFERENCETYPE = CLASS

}

KEYWORD SUPPLY_ CLASS = annotation {
CONTEXT { PI'N PI NGROUP CLASS }
VALUETYPE = identifier;
REFERENCETYPE = CLASS

}
KEYWORD DRI VETYPE = singl e_val ue_annotation {
CONTEXT = PIN;
VALUETYPE = identifier;
VALUES ({
CNDS NNDS pNDS CNDS_pass NNDS_pass pnos_pass
ttl open_drain open_source
}
DEFAULT = cnos
}
KEYWORD SCOPE = singl e _val ue_annotation {
CONTEXT = PIN;
VALUETYPE = identifier;
VALUES { behavi or neasure both none }
DEFAULT = bot h;
}
KEYWORD CONNECT_CLASS = singl e_val ue_annotation {
CONTEXT = PIN;
VALUETYPE = identifier
REFERENCETYPE = CLASS

}

KEYWORD SI DE = singl e _val ue_annotation {
CONTEXT { PI N PI NGROUP }
VALUETYPE = identifier
VALUES { left right top bottominside }

}

KEYWORD ROW = annot ation {
CONTEXT { PIN Pl NGROUP }
VALUETYPE = unsi gned_i nt eger

}

KEYWORD COLUWN = annot ation {
CONTEXT { PI'N PI NGROUP }
VALUETYPE = unsi gned_i nt eger

}

KEYWORD ROUTI NG TYPE = singl e_val ue_annotati on {
CONTEXT { PIN PORT }

IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual

(see

(see

(see

(see

(see

(see

(see

(see

(see

. 14)

. 15)

. 16)

.17)

.18)

. 19)

. 20)

. 21)

. 22)

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

VALUETYPE = identifier
VALUES { regul ar abutnment ring feedthrough }

DEFAULT = regqul ar
}

KEYWORD PULL = single_val ue_annotation {

CONTEXT = PI N,

VALUETYPE = identifier;
VALUES { up down both none }

DEFAULT = none;
}

KEYWORD W RETYPE = singl e val ue_annotation {

CONTEXT = W RE;

VALUETYPE = identifier;
VALUES { estinmated extracted anal ytical |oad }

}

KEYWORD SELECT_CLASS = annotation {

CONTEXT = W RE;

VALUETYPE = identifier;
REFERENCETYPE = CLASS

}

KEYWORD NODETYPE = singl e_val ue_annotation {

CONTEXT = NCDE

VALUETYPE = identifier

VALUES { power ground source sink
driver receiver interconnect }

DEFAULT = interconnect;

}

KEYWORD NODE _CLASS = annotation {

CONTEXT = NOCDE

VALUETYPE = identifier;
REFERENCETYPE = CLASS

}

KEYWORD PURPOSE = annotation {
CONTEXT { VECTOR CLASS }
VALUETYPE = identifier
VALUES { bist test timng power noise reliability }

}

KEYWORD OPERATI ON = singl e_val ue_annotation {

CONTEXT = VECTOR

VALUETYPE = identifier

VALUES {

read wite read_nodify wite refresh | oad

start end iddq

}
}

KEYWORD LABEL = singl e_val ue_annotation {

CONTEXT = VECTOR

VALUETYPE = string_val ue;

}

KEYWORD EXI STENCE _CONDI TI ON = si ngl e_val ue_annotation {
CONTEXT { VECTOR CLASS }
VALUETYPE = bool ean_expressi on

256

Advanced Library Format (ALF) Reference Manual

(see

(see

(see

(see

(see

(see

(see

(see

(see

IEEE P1603 Draft 7

9.7.23)

.2)

.3)

.2)

. 3)

.2)

.3)

. 4)

.5)

DEFAULT = 1;
}

KEYWORD EXI STENCE_CLASS = annotation {
CONTEXT { VECTOR CLASS }
VALUETYPE = identifier;
REFERENCETYPE = CLASS

}
KEYWORD

CHARACTERI ZATI ON_CONDI TI ON = si ngl e_val ue_annot ati on {
CONTEXT { VECTOR CLASS }
VALUETYPE = bool ean_expr essi on

}

KEYWORD CHARACTERI ZATI ON_VECTOR = si ngl e_val ue_annot ati on {

CONTEXT { VECTCOR CLASS }
VALUETYPE = control _expression

}

KEYWORD CHARACTERI ZATI ON_CLASS = annotation {
CONTEXT { VECTOR CLASS }
VALUETYPE = identifier;
REFERENCETYPE = CLASS

}

KEYWORD LAYERTYPE = singl e_val ue_annotation {

CONTEXT = LAYER

VALUETYPE = identifier;

VALUES {

routing cut substrate dielectric reserved abstract

}
}

KEYWORD PI TCH = singl e_val ue_annotation {

CONTEXT = LAYER;

VALUETYPE = unsi gned_nunber

}

KEYWORD PREFERENCE = si ngl e_val ue_annot ati on {

CONTEXT = LAYER;

VALUETYPE = identifier
VALUES { horizontal vertical acute obtuse }

}

KEYWORD VI ATYPE = singl e_val ue_annotation {

CONTEXT = VI A

VALUETYPE = identifier;
VALUES { default non_default partial _stack full _stack }

DEFAULT = defaul t;
}

KEYWORD CONNECT_TYPE = si ngl e_val ue_annot ati on {

CONTEXT = PORT;

VALUETYPE = identifier
VALUES { external internal }

DEFAULT = ext ernal
}

KEYWORD ORI ENTATI ON_CLASS = annotation {

CONTEXT { SITE CELL }

VALUETYPE = identifier;

IEEE P1603 Draft 7

Advanced Library Format (ALF) Reference Manual

(see

(see

(see

(see

(see

(see

(see

(see

(see

(see

.14,

. 14.

. 14.

.14,

. 16.

. 16.

. 16.

. 18.

. 23.

. 25.

6)

7)

8)

9)

2)

3)

4)

2)

1)

2)

257

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

REFERENCETYPE = CLASS;

}

KEYWORD SYMVETRY_CLASS = annotation {
CONTEXT = SI TE;
VALUETYPE = identifier;
REFERENCETYPE = CLASS;

}

KEYWORD ARRAYTYPE = singl e val ue_annotation {
CONTEXT = ARRAY;
VALUETYPE = identifier;
VALUES { fl oorpl an pl acenent

}

gl obal _routing detailed_routing }

KEYWORD SHAPE = singl e val ue_annotation {
CONTEXT = PATTERN;
VALUETYPE = identifier;
VALUES { line tee cross jog corner end }
DEFAULT = li ne;

}

KEYWORD VERTEX = singl e_val ue_annotation {
CONTEXT = PATTERN,
VALUETYPE = identifier;
VALUES { round linear }
DEFAULT = li near;

KEYWORD PO NT_TO PO NT = singl e_val ue_annotation {
CONTEXT { POLYLI NE RI NG POLYGON }
VALUETYPE = identifier;
VALUES { direct manhattan }
DEFAULT = direct;

B.3 Arithmetic definitions

SEMANTI CS VI OLATI ON {
CONTEXT {

}
}

SETUP HOLD RECOVERY REMOVAL SKEW NOCHANGE | LLEGAL
LIMT. arithneti c_nodel

LIMT.arithnetic_nodel . M N

LIMT. arithnmetic_nodel . MAX

LIMT. arithnetic_nodel .arithnetic_subnodel
LIMT.arithnetic_nodel .arithnetic_subnodel . M N
LIMT.arithnetic_nodel .arithnetic_subnodel . MAX

SEMANTI CS VI OLATI ON. BEHAVI OR {
CONTEXT {

258

VECTOR. ari t hneti ¢c_nodel
VECTOR. LIM T. ari t hnmeti c_nodel
VECTOR. LIM T. arithnmetic_nodel . M N

Advanced Library Format (ALF) Reference Manual

(see 9.

(see 9.

(see 9.

(see 9.

(see

25. 3)

27.1)

29. 2)

29. 3)

9. 35)

(see 11.10)

IEEE P1603 Draft 7

VECTOR. LIM T. ari thneti c_nodel . MAX
VECTOR. LIM T. arithnetic_nodel . arithnetic_subnodel
VECTOR. LIM T. arithnetic_nodel . arithnetic_subnodel . M N
VECTOR. LIM T. arithnetic_nodel . arithnetic_subnodel . MAX
}
}
KEYWORD MESSAGE TYPE = singl e_val ue_annotation {
CONTEXT = VI OLATI ON ;
VALUETYPE = identifier ;
VALUES { information warning error }

}
KEYWORD MESSAGE = singl e _val ue_annotation {
CONTEXT = VI CLATI ON ;
VALUETYPE = quoted_string ;
}
KEYWORD UNI T = singl e_val ue_annotation { (see 11.9.1)
CONTEXT = arithnetic_nodel ;
VALUETYPE = nul tiplier_prefix_val ue ;

DEFAULT = 1 ;

}

KEYWORD CALCULATI ON = annot ation { (see 11.9.2)
CONTEXT = library_specific_object.arithmetic_nodel ;

VALUES { absolute incremental }
DEFAULT = absolute ;

KEYWORD | NTERPOLATI ON = si ngl e_val ue_annotati on { (see 11.9.3)
CONTEXT = HEADER. arithnetic_nodel ;
VALUES { linear fit ceiling floor }
DEFAULT = fit ;
}
SEMANTI CS PIN = single_value_annotation { (see 11.13.2)
CONTEXT {
FROM TO SLEWRATE PULSEW DTH
CAPACI TANCE RESI STANCE | NDUCTANCE VOLTAGE CURRENT

}
REFERENCETYPE { PI'N PI N. PORT NCDE W RE. NCDE }

}

SEMANTI CS SKEW PIN = mul ti _val ue_annotation {
REFERENCETYPE { PI'N PI NGROUP PI N. PORT NODE W RE. NODE }

}

KEYWORD EDGE_NUMBER = annot ation { (see 11.11.2)
CONTEXT { FROM TO SLEWRATE PULSEW DTH SKEW }
VALUETYPE = unsi gned_i nt eger ;

DEFAULT = O;

}

SEMANTI CS EDGE_NUMBER = si ngl e_val ue_annot ati on {
CONTEXT { FROM TO SLEWRATE PULSEW DTH }

}
SEMANTI CS SKEW EDGE_NUMBER = mnulti _val ue_annotation ;
KEYWORD MEASUREMENT = singl e_val ue_annotation { (see 11.13.7)

VALUETYPE = identifier ;

IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 259

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

VALUES ({
transient static average absol ute_average rns peak
}
CONTEXT {
ENERGY POWER CURRENT VOLTAGE FLUX FLUENCE JI TTER
}

}

KEYWORD CONNECT_RULE = singl e_val ue_annotati on {
VALUETYPE = identifier ;
VALUES { nust_short can_short cannot_short }
CONTEXT = CONNECTI VI TY;

}

KEYWORD BETWEEN = rul ti _val ue_annotation {
VALUETYPE = identifier
CONTEXT { DI STANCE LENGTH OVERHANG CONNECTI VI TY }

}

KEYWORD DI STANCE_MEASUREMENT = singl e_val ue_annot ati on {
VALUETYPE = identifier ;
VALUES { euclidean horizontal vertical manhattan }
DEFAULT = euclidean ;
CONTEXT = DI STANCE

}
KEYWORD REFERENCE = annot ati on_cont ai ner {
CONTEXT = DI STANCE

}
SEMANTI CS REFERENCE. i denti fier = single_value_annotation {
VALUETYPE = identifier ;
VALUES { center origin near_edge far_edge }
DEFAULT = origin
}
SEMANTI CS ANTENNA = annot ati on {
VALUETYPE = identifier ;
CONTEXT { PIN. SI ZE PI N. AREA PI N. PERI METER }

}
SEMANTI CS PATTERN = si ngl e_val ue_annot ati on {
VALUETYPE = identifier
CONTEXT {
LENGTH W DTH HEI GHT SI ZE AREA THI CKNESS
PERI METER EXTENSI ON

260 Advanced Library Format (ALF) Reference Manual

(see

(see

(see

(see

(see

(see

IEEE P1603 Draft 7

11.

11.

11.

11.

11.

11.

20.

20.

20.

20.

20.

20.

1)

2)

5)

6)

7)

9)

Annex C

(informative)

Bibliography

[B1] Ratzlaff, C. L., Gopal, N., and Pillage, L. T., “RICE: Rapid Interconnect Circuit Evaluator,” Proceedings of

28th Design Automation Conference, pp. 555-560, 1991.

[B2] SPICE 2G6 User’'s Guide.

[B3] Standard Delay Format Specification, Version 3.0, Open Verilog International, May 1995.

[B4] The IEEE Standard Dictionary of Electrical and Electronics Terms, Sixth Edition.

IEEE P1603 Draft 7

Advanced Library Format (ALF) Reference Manual

261

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

262

Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 7

A

ABS161
abs 160
ALIAS47
dias47

alphabetic_bit_literal 33

annotation
arithmetic models
average 196
can_short 223

cannot_short 223
must_short 223

peak 196

rms 196

static 196

transient 196
CELL

NON_SCAN_CELL 126

cell buffertype
inout 70
input 70
internal 70
output 70

cell celltype
block 67
buffer 66

combinational 66

core67
flipflop 67
latch 67
memory 67

multiplexor 66

special 67
cell drivertype
both 71
predriver 71
sotdriver 71
cell scan_type
clocked 69
control_069
control_169
Issd 69
muxscan 69
cell scan_usage
hold 70
input 69

IEEE P1603 Draft 7

Advanced Library Format (ALF) Reference Manual

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

output 69

pin action
asynchronous 81
synchronous 81

pin datatype
signed 84
unsigned 84

pin direction
both 78
input 78
none78
output 78

pin drivetype
cmos 88
Cmos_pass 89
nmos 88
nmos_pass 89
open_drain 89
open_source 89
pmos 89
pmos_pass 89
ttl 89

pin orientation
bottom 91
left 90
right 91
top9l

pin pintype
analog 78
digital 78
supply 78

pin polarity
double_edge 82
falling_edge 82
high 82
low 82
rising_edge 82

pin pull
both 93,99
down 93,99, 103
none 93, 99, 103
up 93,99, 103

pin scope
behavior 89
both 90
measure 90

Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

none 90

pin signaltype
clear 80, 82, 83
clock 80, 82, 83
control 79,81, 83
data79, 81, 82

enable 79, 80, 82, 83

select 79,81, 83
set 80, 82, 83
pin stuck
both 85, 86
none 85
stuck_at_085, 86
stuck at 185,86
pin view
both 77
functional 77
none77
physical 77
arithmetic models 14
arithmetic operators
binary 160
unary 159

arithmetic_binary _operator 160
arithmetic_expression 159, 246
arithmetic_function_operator 160
arithmetic_unary_operator 159

atomic object 14
ATTRIBUTE 42
attribute 42
CELL 72,73, 74
cell
asynchronous 72
CAM 72
dynamic 72
RAM 72
ROM 72
static 72
synchronous 73
pin
PAD 93
SCHMITT 93
TRISTATE 93
XTAL 93

IEEE P1603 Draft 7

Advanced Library Format (ALF) Reference Manual

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

B

based literal 33
based literal 33
behavior 123
behavior_body 123
Binary operators

arithmetic 160
binary base 33
bit 128
bit_edge litera 34
bit_literal 33
boolean_binary_operator 128
boolean_expression 128
boolean_unary_operator 128

C

cell 65

cell identifier 65, 126, 244
cell_template instantiation 65
characterization 5

children object 13
CLASS%4

class55

comment 25

CONSTANT 47

constant 47

D

decimal_base 33
deep submicron5
delimiter 25

E

edge literal 34

equation 164

eguation_template instantiation 164
escape codes 34

escape_character 27, 28

escaped _identifier 35

EXP 160

exp 160

F

function 121
Function operators
arithmetic 160

4 Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 7

function_template_instantiation 121
functional model 5

G

generic objects 14
group 57
group_identifier 57

H

header 163
hex_base 33

|

identifier 13, 25
INCLUDE 43
include43, 44
index 40

L

Library creation 1
library_template_instantiation 63
library-specific objects 14

literal 25

LOG 160

log 160

logic_values125

M

MAX 161

max 160

MIN 161

min 160

mode of operation5

N

nonescaped _identifier 35, 36
Number 31
numeric_bit_literal 33

O

octal base 33
operation mode 5

P

pin_assignments41
placeholder identifier 36
power constraint 5

IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

Power model 5
predefined derating cases 198
bccom 198
bcind 198
bcmil 198
wccom 198
wcind 198
wcmil 199
predefined process names 197
snsp 198
snwp 198
wnsp 198
wnwp 198
primitive_identifier 95, 123
primitive_instantiation 123
primitive_template_instantiation 95
PROPERTY 43
property 43

Q
quoted string 34
quoted_string 34

R
RTL 4

S

sequential_assignment 123, 244
simulation model 5

statetable 125

statetable _body 125

string 39

symbolic_edge literal 34

T
table 164

template 58
template_identifier 58
template_instantiation 59
timing constraints5
timing models5

U

Unary operators
arithmetic 159
unnamed_assignment 42

6 Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 7

Vv

vector 101
vector_expression 101, 137

vector_template _instantiation 101

vector_unary_operator 137
vector-based modeling 5
Verilog4

VHDL 4

W

wire 95,98, 106, 108, 109, 110, 111, 112,114, 116, 156, 157
wire identifier 95,98, 106, 108, 109, 110,112

wire_template_instantiation 95, 98, 106, 108, 109, 110, 111, 112, 114, 116, 156, 246

word_edge literal 34

IEEE P1603 Draft 7

Advanced Library Format (ALF) Reference Manual

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 7

	1. Introduction
	1.1 Motivation
	1.2 Goals
	1.3 Target applications
	1.4 Conventions
	1.5 Contents of this standard

	2. References
	3. Definitions
	4. Acronyms and abbreviations
	5. ALF language construction principles and overview
	5.1 ALF meta-language
	5.2 Categories of ALF statements
	5.3 Generic objects and library-specific objects
	5.4 Singular statements and plural statements
	5.5 Instantiation statement and assignment statement
	5.6 Annotation, arithmetic model, and related statements
	5.7 Statements for parser control
	5.8 Name space and visibility of statements

	6. Lexical rules
	6.1 Character set
	6.2 Comment
	6.3 Delimiter
	6.4 Operator
	6.4.1 Arithmetic operator
	6.4.2 Boolean operator
	6.4.3 Relational operator
	6.4.4 Shift operator
	6.4.5 Event sequence operator
	6.4.6 Meta operator

	6.5 Number
	6.6 Multiplier prefix symbol
	6.7 Bit literal
	6.8 Based literal
	6.9 Edge literal
	6.10 Quoted string
	6.11 Identifier
	6.11.1 Non-escaped identifier
	6.11.2 Escaped identifier
	6.11.3 Placeholder identifier
	6.11.4 Hierarchical identifier

	6.12 Keyword
	6.13 Vector expression macro
	6.14 Rules for whitespace usage
	6.15 Rules against parser ambiguity

	7. Auxiliary syntax rules
	7.1 All-purpose value
	7.2 Multiplier prefix value
	7.3 String value
	7.4 Arithmetic value
	7.5 Boolean value
	7.6 Edge value
	7.7 Index value
	7.8 Index
	7.9 Pin variable and pin value
	7.10 Pin assignment
	7.11 Annotation
	7.12 Annotation container
	7.13 ATTRIBUTE statement
	7.14 PROPERTY statement
	7.15 INCLUDE statement
	7.16 ASSOCIATE statement and FORMAT annotation
	7.17 REVISION statement
	7.18 Generic object
	7.19 Library-specific object
	7.20 All purpose item

	8. Generic objects and related statements
	8.1 ALIAS declaration
	8.2 CONSTANT declaration
	8.3 KEYWORD declaration
	8.4 SEMANTICS declaration
	8.5 Annotations and rules related to a KEYWORD or a SEMANTICS declaration
	8.5.1 VALUETYPE annotation
	8.5.2 VALUES annotation
	8.5.3 DEFAULT annotation
	8.5.4 CONTEXT annotation
	8.5.5 REFERENCETYPE annotation
	8.5.6 SI_MODEL annotation
	8.5.7 Rules for legal usage of KEYWORD and SEMANTICS declaration

	8.6 CLASS declaration
	8.7 Annotations related to a CLASS declaration
	8.7.1 General CLASS reference annotation
	8.7.2 USAGE annotation

	8.8 GROUP declaration
	8.9 TEMPLATE declaration
	8.10 TEMPLATE instantiation

	9. Library-specific objects and related statements
	9.1 LIBRARY and SUBLIBRARY declaration
	9.2 Annotations related to a LIBRARY or a SUBLIBRARY declaration
	9.2.1 LIBRARY reference annotation
	9.2.2 INFORMATION annotation container

	9.3 CELL declaration
	9.4 Annotations related to a CELL declaration
	9.4.1 CELL reference annotation
	9.4.2 CELLTYPE annotation
	9.4.3 SWAP_CLASS annotation
	9.4.4 RESTRICT_CLASS annotation
	9.4.5 SCAN_TYPE annotation
	9.4.6 SCAN_USAGE annotation
	9.4.7 BUFFERTYPE annotation
	9.4.8 DRIVERTYPE annotation
	9.4.9 PARALLEL_DRIVE annotation
	9.4.10 PLACEMENT_TYPE annotation
	9.4.11 SITE reference annotation for a CELL
	9.4.12 ATTRIBUTE values for a CELL

	9.5 PIN declaration
	9.6 PINGROUP declaration
	9.7 Annotations related to a PIN or a PINGROUP declaration
	9.7.1 PIN reference annotation
	9.7.2 MEMBERS annotation
	9.7.3 VIEW annotation
	9.7.4 PINTYPE annotation
	9.7.5 DIRECTION annotation
	9.7.6 SIGNALTYPE annotation
	9.7.7 ACTION annotation
	9.7.8 POLARITY annotation
	9.7.9 CONTROL_POLARITY annotation container
	9.7.10 DATATYPE annotation
	9.7.11 INITIAL_VALUE annotation
	9.7.12 SCAN_POSITION annotation
	9.7.13 STUCK annotation
	9.7.14 SUPPLYTYPE annotation
	9.7.15 SIGNAL_CLASS annotation
	9.7.16 SUPPLY_CLASS annotation
	9.7.17 DRIVETYPE annotation
	9.7.18 SCOPE annotation
	9.7.19 CONNECT_CLASS annotation
	9.7.20 SIDE annotation
	9.7.21 ROW and COLUMN annotation
	9.7.22 ROUTING_TYPE annotation
	9.7.23 PULL annotation
	9.7.24 ATTRIBUTE values for a PIN or a PINGROUP

	9.8 PRIMITIVE declaration
	9.9 WIRE declaration
	9.10 Annotations related to a WIRE declaration
	9.10.1 WIRE reference annotation
	9.10.2 WIRETYPE annotation
	9.10.3 SELECT_CLASS annotation

	9.11 NODE declaration
	9.12 Annotations related to a NODE declaration
	9.12.1 NODE reference annotation
	9.12.2 NODETYPE annotation
	9.12.3 NODE_CLASS annotation

	9.13 VECTOR declaration
	9.14 Annotations related to a VECTOR declaration
	9.14.1 VECTOR reference annotation
	9.14.2 PURPOSE annotation
	9.14.3 OPERATION annotation
	9.14.4 LABEL annotation
	9.14.5 EXISTENCE_CONDITION annotation
	9.14.6 EXISTENCE_CLASS annotation
	9.14.7 CHARACTERIZATION_CONDITION annotation
	9.14.8 CHARACTERIZATION_VECTOR annotation
	9.14.9 CHARACTERIZATION_CLASS annotation
	9.14.10 MONITOR annotation

	9.15 LAYER declaration
	9.16 Annotations related to a LAYER declaration
	9.16.1 LAYER reference annotation
	9.16.2 LAYERTYPE annotation
	9.16.3 PITCH annotation
	9.16.4 PREFERENCE annotation

	9.17 VIA declaration
	9.18 Annotations related to a VIA declaration
	9.18.1 VIA reference annotation
	9.18.2 VIATYPE annotation

	9.19 RULE declaration
	9.20 ANTENNA declaration
	9.21 BLOCKAGE declaration
	9.22 PORT declaration
	9.23 Annotations related to a PORT declaration
	9.23.1 CONNECT_TYPE annotation

	9.24 SITE declaration
	9.25 Annotations related to a SITE declaration
	9.25.1 SITE reference annotation
	9.25.2 ORIENTATION_CLASS annotation
	9.25.3 SYMMETRY_CLASS annotation

	9.26 ARRAY declaration
	9.27 Annotations related to an ARRAY declaration
	9.27.1 ARRAYTYPE annotation
	9.27.2 LAYER reference annotation for ARRAY
	9.27.3 SITE reference annotation for ARRAY

	9.28 PATTERN declaration
	9.29 Annotations related to a PATTERN declaration
	9.29.1 PATTERN reference annotation
	9.29.2 SHAPE annotation
	9.29.3 VERTEX annotation
	9.29.4 ROUTE annotation
	9.29.5 LAYER reference annotation for PATTERN

	9.30 REGION declaration
	9.31 Annotations related to a REGION declaration
	9.31.1 REGION reference annotation
	9.31.2 BOOLEAN annotation

	10. Description of functional and physical implementation
	10.1 FUNCTION statement
	10.2 TEST statement
	10.3 Declaration of a pin variable
	10.4 BEHAVIOR statement
	10.5 STRUCTURE statement and CELL instantiation
	10.6 STATETABLE statement
	10.7 NON_SCAN_CELL statement
	10.8 RANGE statement
	10.9 Boolean expression
	10.10 Boolean value system
	10.10.1 Scalar boolean value
	10.10.2 Vectorized boolean value
	10.10.3 Non-assignable boolean value

	10.11 Boolean operations and operators
	10.11.1 Logical operation
	10.11.2 Bitwise operation
	10.11.3 Conditional operation
	10.11.4 Integer arithmetic operation
	10.11.5 Shift operation
	10.11.6 Comparison operation
	10.11.7 Operator priorities

	10.12 Vector expression
	10.13 Operators for event specification
	10.13.1 Specification of a single event
	10.13.2 Temporal order within an event sequence
	10.13.3 Canonical specification of a sequence of events
	10.13.4 Specification of a completely permutable event
	10.13.5 Specification of a conditional event
	10.13.6 Operator priorities

	10.14 Predefined PRIMITIVE
	10.14.1 Predefined PRIMITIVE ALF_BUF
	10.14.2 Predefined PRIMITIVE ALF_NOT
	10.14.3 Predefined PRIMITIVE ALF_AND
	10.14.4 Predefined PRIMITIVE ALF_NAND
	10.14.5 Predefined PRIMITIVE ALF_OR
	10.14.6 Predefined PRIMITIVE ALF_NOR
	10.14.7 Predefined PRIMITIVE ALF_XOR
	10.14.8 Predefined PRIMITIVE ALF_XNOR
	10.14.9 Predefined PRIMITIVE ALF_BUFIF1
	10.14.10 Predefined PRIMITIVE ALF_BUFIF0
	10.14.11 Predefined PRIMITIVE ALF_NOTIF1
	10.14.12 Predefined PRIMITIVE ALF_NOTFIF0
	10.14.13 Predefined PRIMITIVE ALF_MUX
	10.14.14 Predefined PRIMITIVE ALF_LATCH
	10.14.15 Predefined PRIMITIVE ALF_FLIPFLOP

	10.15 WIRE instantiation
	10.16 Geometric model
	10.17 Predefined geometric models using TEMPLATE
	10.17.1 Predefined TEMPLATE RECTANGLE
	10.17.2 Predefined TEMPLATE LINE

	10.18 Geometric transformation
	10.19 ARTWORK statement
	10.20 VIA instantiation

	11. Description of electrical and physical measurements
	11.1 Arithmetic expression
	11.2 Arithmetic operations and operators
	11.2.1 Unary arithmetic operator
	11.2.2 Binary arithmetic operator
	11.2.3 Macro arithmetic operator
	11.2.4 Operator priorities

	11.3 Arithmetic model
	11.4 HEADER, TABLE, and EQUATION statements
	11.5 MIN, MAX, and TYP statements
	11.6 Auxiliary arithmetic model
	11.7 Arithmetic submodel
	11.8 Arithmetic model container
	11.8.1 General arithmetic model container
	11.8.2 Arithmetic model container LIMIT
	11.8.3 Arithmetic model container EARLY and LATE

	11.9 Generally applicable annotations for arithmetic models
	11.9.1 UNIT annotation
	11.9.2 CALCULATION annotation
	11.9.3 INTERPOLATION annotation
	11.9.4 DEFAULT annotation
	11.9.5 MODEL reference annotation

	11.10 VIOLATION statement, MESSAGE TYPE and MESSAGE annotation
	11.11 Arithmetic models for timing, power and signal integrity
	11.11.1 TIME
	11.11.2 FREQUENCY
	11.11.3 DELAY
	11.11.4 RETAIN
	11.11.5 SLEWRATE
	11.11.6 SETUP and HOLD
	11.11.7 RECOVERY and REMOVAL
	11.11.8 NOCHANGE and ILLEGAL
	11.11.9 PULSEWIDTH
	11.11.10 PERIOD
	11.11.11 JITTER
	11.11.12 SKEW
	11.11.13 THRESHOLD
	11.11.14 NOISE and NOISE_MARGIN
	11.11.15 POWER and ENERGY

	11.12 FROM and TO statements
	11.13 Annotations related to timing, power and signal integrity
	11.13.1 EDGE_NUMBER annotation
	11.13.2 PIN reference and EDGE_NUMBER annotation for FROM and TO
	11.13.3 PIN reference and EDGE_NUMBER annotation for SLEWRATE
	11.13.4 PIN reference and EDGE_NUMBER annotation for PULSEWIDTH
	11.13.5 PIN reference and EDGE_NUMBER annotation for SKEW
	11.13.6 PIN reference annotation for NOISE and NOISE_MARGIN
	11.13.7 MEASUREMENT annotation

	11.14 Arithmetic models for environmental conditions
	11.14.1 PROCESS
	11.14.2 DERATE_CASE
	11.14.3 TEMPERATURE

	11.15 Arithmetic models for electrical circuits
	11.15.1 VOLTAGE
	11.15.2 CURRENT
	11.15.3 CAPACITANCE
	11.15.4 RESISTANCE
	11.15.5 INDUCTANCE

	11.16 Annotations for electrical circuits
	11.16.1 NODE reference annotation for electrical circuits
	11.16.2 COMPONENT reference annotation
	11.16.3 PIN reference annotation for electrical circuits
	11.16.4 FLOW annotation

	11.17 Miscellaneous arithmetic models
	11.17.1 DRIVE STRENGTH
	11.17.2 SWITCHING_BITS with PIN reference annotation

	11.18 Arithmetic models related to structural implementation
	11.18.1 CONNECTIVITY
	11.18.2 DRIVER and RECEIVER
	11.18.3 FANOUT, FANIN and CONNECTIONS

	11.19 Arithmetic models related to layout implementation
	11.19.1 SIZE
	11.19.2 AREA
	11.19.3 PERIMETER
	11.19.4 EXTENSION
	11.19.5 THICKNESS
	11.19.6 HEIGHT
	11.19.7 WIDTH
	11.19.8 LENGTH
	11.19.9 DISTANCE
	11.19.10 OVERHANG
	11.19.11 DENSITY

	11.20 Annotations related to arithmetic models for layout implementation
	11.20.1 CONNECT_RULE annotation
	11.20.2 BETWEEN annotation
	11.20.3 BETWEEN annotation for CONNECTIVITY
	11.20.4 BETWEEN annotation for DISTANCE, LENGTH, OVERHANG
	11.20.5 MEASURE annotation
	11.20.6 REFERENCE annotation container
	11.20.7 ANTENNA reference annotation
	11.20.8 TARGET annotation
	11.20.9 PATTERN reference annotation

	11.21 Arithmetic submodels for timing and electrical data
	11.22 Arithmetic submodels for physical data

	Annex A
	A.1 ALF meta-language
	A.2 Lexical definitions
	A.3 Auxiliary definitions
	A.4 Generic definitions
	A.5 Library definitions
	A.6 Function definitions
	A.7 Arithmetic definitions
	Annex B
	B.1 Auxiliary and generic definitions
	B.2 Library definitions
	B.3 Arithmetic definitions
	Annex C

