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Section 1

Introduction

1.1 Motivation

Design of digital integrated circuits has become an increasingly complex process. More
functions get integrated into a single chip, yet the cycle time of electronic products and
technologies has become considerably shorter. It would be impossible to successfully design a
chip of today’s complexity within the time-to-market constraints without extensive use of EDA
tools, which have become an integral part of the complex design flow. The efficiency of the
tools and the reliability of the results for simulation, synthesis, timing analysis, and power
analysis relies significantly on the quality of available information about the cells in the
technology library.

New challenges in the design flow, e.g. power analysis, arise as the traditional tools and design
flows hit their limits of capability in processing complex designs. As a result, new tools
emerge, and libraries are needed in order to make them work properly. Library creation
(generation) itself has become a very complex process and the choice or rejection of a
particular application (tool) is often constrained or dictated by the availability of a library for
that application. The library constraint may prevent designers from choosing an application
program which is best suited for meeting specific design challenges. Similar considerations
may inhibit the development and productization of such an application program altogether. As
a result, competitiveness and innovation of the whole electronic industry may stagnate.

In order to remove these constraints, an industry-wide standard for library format, Advanced
Library Format (ALF), is proposed. It enables the EDA industry to develop innovative products
and the ASIC designers to chose the best product without library format constraints. Since
ASIC vendors have to support a multitude of libraries according to the preferences of their
customers, a common standard library is expected to significantly reduce the library
development cycle and facilitate the deployment of new technologies sooner.

1.2 Goals

The basic goals of the proposed library standard are:

■ simplicity - library creation process must be easy to understand and not become a
cumbersome process only known by a few experts.

■ generality - tools of any level of sophistication must be able to retrieve necessary
information from the library.

■ expandability - for early adoption and future enhancement possibilities
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■ flexibility - the choice of keeping information in one library or in separate libraries must
be in the hand of the user; it should not be dictated by the standard.

■ efficiency - the complexity of the design information requires that the process of
retrieving information from the library does not become a bottleneck. The right trade-
off between compactness and verbosity must be found.

■ ease of implementation - backward compatibility with existing libraries must be
provided, and translation to the new library must be an easy task.

■ conciseness - unambiguous description and accuracy of contents

■ acceptance - preference for the new standard library over existing libraries.

1.3 Target Applications

The fundamental purpose of ALF is to serve as the primary database for all 3rd party
applications of ASIC cells. In other words, it is an elaborate and formalized version of the
databook.

In the early days, databooks provided all the information a designer needed for choosing a cell
in a particular application: Logic symbols, schematics and truth table provided the functional
specification for simple cells. For more complex blocks, the name of the cell (e.g.
asynchronous ROM, synchronous 2-port RAM, 4-bit synchronous up-down counter) and
timing diagrams conveyed the functional information. The performance characteristics of each
cell were provided by the loading characteristics, delay and timing constraints, and some
information about DC and AC power consumption. The designers chose the cell type according
to the functionality, estimated the performance of the design, and eventually re-implemented it
in an optimized way as necessary to meet performance constraints.

Design automation enabled tremendous progress in efficiency, productivity and the ability to
deal with complexity, yet it did not change the fundamental requirements for ASIC design.
Therefore, ALF needs to provide models withfunctional information andperformance
information, primarily including timing and power. Signal integrity characteristics, such as
noise margin can also be included under performance category. Such information is typically
found in any databook for analog cells. At deep sub-micron levels digital cells behave similar
to analog cells as electronic devices bound by physical laws and therefore not infinitely robust
against noise.

Table 1-1 shows a list of applications used in ASIC design flow and their relationship to ALF.
The boundary between supported and not supported applications can be defined by thephysical
information provided by ALF. Information needed for area and performance estimation and
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optimization, notably by synthesis tools, is provided by ALF. On the other hand, layout
information is only considered for front end application, such as RTL floorplanner.

Historically, a functional model was virtually identical to a simulation model. A functional
gate-level model was used by the proprietary simulator of the ASIC company, and it was easy
to lump it together with a rudimentary timing model. Timing analysis was done through
dynamic functional simulation. However, with the advanced level of sophistication of both
functional simulation and timing analysis, this is no longer the case. The capabilities of the
functional simulators have evolved far beyond the gate-level, and timing analysis has been
decoupled from simulation.

The figure 1-1 shows how ALF provides information to various design tools.

Table 1-1 Target applications and models supported by ALF

application functional model performance model physical model

timing analysis supported by ALF supported by ALF N/A

power analysis supported by ALF supported by ALF N/A

simulation derived from ALF derived from ALF N/A

synthesis supported by ALF supported by ALF supported by ALF

scan insertion supported by ALF N/A N/A

RTL floorplanner N/A N/A planned for ALF

signal integrity N/A planned for ALF planned for ALF

layout N/A N/A not supported by ALF
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Figure 1-1: ALF and its target applications

The worldwide accepted standards for hardware description and simulation are VHDL and
Verilog. Both languages have a wide scope of describing the design at various levels of
abstraction: behavioral, functional, synthesizable RTL, gate level. There are many ways to
describe gate-level functions. The existing simulators are implemented in such a way that some
constructs are more efficient for simulation run time than others. Also, how the simulation
model handles timing constraints is a trade-off between efficiency and accuracy. Developing
efficient simulation models which are functionally reliable (i.e. pessimistic for detecting timing
constraint violation) is a major development effort for ASIC companies.

Hence, the use of a particular VHDL or Verilog simulation model as primary source of
functional description of a cell is not very practical. Moreover, the existence of two simulation
standards makes it difficult to pick one as a reference with respect to the other. The purpose of
a generic functional model is to serve as an absolute reference for all applications that require
functional information. Applications such as synthesis, which needs functional information
merely for recognizing and choosing cell types, can use the generic functional model directly.
For other applications such as simulation and test, the generic functional model enables
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automated simulation model and test vector generation and verification, which has a
tremendous benefit for the ASIC industry.

With progress of technology, not only the cost constraints but also the set of physical
constraints under which the design will function or not have increased dramatically. Therefore
the requirements for detailed characterization and analysis of those constraints, especially
timing and power in deep submicron design, are much more sophisticated than it used to be.
Only a subset of the increasing amount of characterization data appears in today’s databooks.

ALF provides a generic format for all type of characterization data, without restriction to state-
of-the art timing models. Power models are the most immediate extension, and they have been
the starter and primary driver for ALF.

Detailed timing and power characterization needs to take into account themode of operation
of the ASIC cell, which is related to the functionality. ALF introduces the concept ofvector-
based modeling, which is a generalization and a superset of today’s timing and power modeling
approaches. All existing timing and power analysis applications can retrieve the necessary
model information from ALF.

1.4 Conventions

The syntax for description of lexical and syntax rules uses following conventions.

::= definition of a syntax rule

| alternative definition

[item] an optional item

{item} optional item which can be repeated

item item in boldface font is taken as is

item item in italic is for explanation purpose only

1.5 Organization of this manual

This document presents the Advanced Library Format (ALF), a new standard library format
for ASIC cells, blocks and cores, containing power, timing, functional, and physical
information.

In the first chapter, motivation and goals of ALF are defined.

The second chapter describes the basics of functional modeling, cell characterization for timing
and power, and additional modeling features for synthesis and test.

The third chapter is the Language Reference Manual (LRM).

The fourth chapter provides illustrative examples.
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Section 2

Characterization and Modeling

This chapter elaborates on the basics of cell modeling and characterization, which is the
primary source of library information.

2.1 Basic Concepts

The functional models within an ASIC library describe functions and algorithms of hardware
components, as opposed to synthesizable functions or algorithms. The functional modeling
language for the ASIC library is designed to make the description of existing hardware easy
and efficient. The scope here is different from a hardware description language (HDL) or a
programming language designed to specify functionality without other aspects of hardware
implementation.

Functional description provides boolean functions or truth tables, including state variables for
sequential logic. Boolean and arithmetic operators for scalars and vectors are also provided.
Combinational and sequential logic cells, macrocells (e.g. adders, multipliers, comparators),
and atomic megacells (e.g. memories) can be modeled with these capabilities.

Vectors describe the stimuli for characterization. This encompasses both the concept of timing
arcs and logical conditions. An exhaustive set of vectors can be generated from functional
information, although the complexity of the exhaustive set precludes it from practical usage.
The characterizer makes a choice of the relevant subset for characterization.

Power characterization is a superset of timing characterization using the same set and range of
characterization variables: load, input slew rate, skew between multiple switching inputs,
voltage, temperature. Characterization measurements, such as delay, output slew rate, average
current in time window, bounds of allowed skew for timing constraints, etc. can be described
as functions of the characterization variables, either by equations or using lookup tables. More
complicated calculation algorithms cannot be described explicitly in the library, but can be
referenced using templates.

A core is not an atomic megacell, since it can be split up into smaller components. Templates
provide the capability of defining and reusing blocks consisting of atomic constructs or of other
blocks. Thus a hierarchical description of the complete core can be created in a simple and
efficient way.

Abstraction is required for the characterization of megacells: vectors describe events on buses
rather than on pins; number and range of switching pins within a bus become additional
characterization variables. Characterization measurements are expandable and can be
extrapolated from pin to bus.
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2.2 Functional Modeling

2.2.1 Combinational Logic

Combinational logic can be described by continuous assignments of boolean values (True,
False) to output variables as a function of boolean values of input variables. Such functions can
be expressed in either equation format or table format1.

Let us consider an arbitrary continuous assignment

z = f(a 1 ..,.. a n)

In a dynamic or simulation context, the left-hand size (LHS) variablez is evaluated whenever
there is a change in one of the right-hand side (RHS) variablesai. No storage of previous states
is needed for dynamic simulation of combinational logic.

2.2.2 Level Sensitive Sequential Logic

In sequential logic, an output variablezj can also be a function of itself, i.e. of its previous state.
The sequential assignment has the form

zj  = f(a 1 ..,.. a n , z 1 ..,.. z m)

The RHS cannot be evaluated continuously, since a change in the LHS as a result of a RHS
evaluation will trigger a new RHS evaluation repeatedly, unless the variables attain stable
values. Modeling capabilities of sequential logic with continuous assignments would be
restricted to systems with oscillating or self-stabilizing behavior.

However, if we introduce the concept of triggering conditions for the LHS, we have everything
we need for modelingnormal sequential logic. The expression of a triggered assignment can
look like this:

@ g(b 1 ..,.. b k) z j  = f(a 1 ..,.. a n , z 1 ..,.. z m)

The evaluation off is activated whenever thetriggering functiong is true. The evaluation ofg

is self-triggered, i.e. at each time when an argument ofg changes its value. Ifg is a boolean
expression likef, we can model all types oflevel-sensitive sequential logic.

During the time wheng is true, the logic cell behaves exactly like combinational logic. During
the time wheng is false, the logic cell holds its value. Hence one memory element per state bit
is needed.

2.2.3 Edge Sensitive Sequential Logic

In order to modeledge-sensitive sequential logic, we need to introduce notations for logical
transitions in addition to logical states.

If the triggering functiong is sensitive to logical transitions rather than to logical states, the
functiong evaluates to true only for an infinitely small time, exactly at the moment when the

1. Rather than defining a new syntax for boolean equations, we are just adopting existing notations people
are familiar with. Those notations can already be found in the ANSI C standard, and they are widely used
in popular script languages such as PERL as well as in HDLs like VERILOG.
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transition happens. The sole purpose ofg is to trigger an assignment to the output variable
through evaluation of the functionf exactly at this time.

Edge-sensitive logic requires storage of the previous output state and the input state (to detect
a transition). In fact, all implementations of edge-triggered flipflops require at least two storage
elements. For instance, the most popular flipflop architecture features a master latch driving a
slave latch.

Using transitions in the triggering function for value assignment, the functionality of a positive
edge triggered flipflop can be described as follows in ALF:

@ (01 CP) {Q = D;}

which reads “at rising edge of CP, assign Q the value of D”.

If the flipflop also has an asynchronous direct clear pin (CD), the functional description
consists of two assignments:

@ (01 CP && CD) {Q = D;}
@ (!CD) {Q = 0;}

Figure 2-1: Model of a flipflop with asynchronous clear in ALF

The following two examples show an equivalent model in Verilog and VHDL:

reg Q;

always @(posedge CP or negedge CD)
begin

if (!CD)
Q = 0;

else
Q = D;

end

Figure 2-2: Model of a flipflop with asynchronous clear in Verilog

process (CP, CD)
begin

if (CD = ‘0’) then
Q <= 0;

elsif (CP = ‘1’ and CP’event) then
Q <= D;

end if;
end process;

Figure 2-3: Model of a flipflop with asynchronous clear in Verilog

ALF provides a formal, compact and self-explaining functional description of a flipflop2.
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2.2.4 Vector-Sensitive Sequential Logic

In order to model generalized higher order sequential logic, the concept of vector expressions
is introduced, an extension of the boolean expressions.

A vector expression describes sequences of logical events or transitions in addition to static
logical states. A vector expression represents a description of a logical stimulus without
timescale. It describes the order of occurrence of events.

Using the -> operator (followed by operator), we have a general capability of describing a
sequence of events or a vector. For example, consider the following vector expression:

01 A -> 01 B

which reads “rising edge on A is followed by rising edge on B”.

A vector expression is evaluated by an event sequence detection function. Like a single event
or a transition, this function evaluates true only at an infinitely short time when the event
sequence is detected.

Figure 2-4: Example of event sequence detection function

The event sequence detection mechanism can be described as a queue that sorts events
according to their order of arrival. The event sequence detection function evaluates true at
exactly the time when a new event enters the queue and forms the required sequence with its
preceding events.

2. The ALF description has the advantage, that one can see directly the level-sensitivity of the CD pin and
the edge sensitivity of the CP pin. In Verilog or VHDL description, this is not so obvious. This makes it
more difficult to see the kind of timing constraint. A complete simulation model needs to include the tim-
ing constraint checking mechanism, therefore the primary description which contains only functionality,
needs to be transformed into a complete simulation model anyway. Choosing ALF as the primary func-
tional description language avoids a bias in either VHDL or Verilog direction.

A

B

g(A, B) = (01 A -> 01 B)

co
nt

en
ts

 o
f

ev
en

t q
ue

ue last
event

2nd last
event

01 A 10 A01 B 10 B 01 B10 A01 A

01 A 10 A01 B 10 B 10 A01 AX

X

X

sequence(01 A -> 01 B) detected



Version 1.0 Advanced Library Format (ALF) Reference Manual 2-5

Performance Modeling Characterization and Modeling

A vector-sensitive sequential logic can be called(N+1) order sequential logic, where N is the
number of events to be stored in the queue. The implementation of (N+1) order sequential logic
requires N memory elements for the event queue and 1 memory element for the output itself.

A sequence of event can also be gated with static logical conditions. For example,

(01 CP -> 10 CP) && CD

the pin CD must have state 1 from some time before the rising edge at CP to some time after
the falling edge of CP. The pin CD can not go low (state 0) after the rising edge of CP and go
high again before the falling edge of CP because this would insert events into the queue, and
the sequence “rising edge on CP followed by falling edge on CP” would not be detected.

The formal calculation rules for general vector expressions featuring both states and transitions
will be introduced in Section 3.5.4.

The concept of vector expression supports functional modeling of devices featuring digital
communication protocols with arbitrary complexity.

2.3 Performance Modeling

2.3.1 Timing Modeling

The timing models of cells consists of two types:delay models for combinational and
sequential cells, andtiming constraint models for sequential cells. Both types can be described
by timing arcs. A timing arc is a sequence of two events which can be described by a vector
expression “evente1 is followed by evente2”.

For example, a particular input to output delay of an inverting logic cell is identified by the
following timing arc:

01 A -> 10 Z

which reads “rising edge on input A is followed by falling edge on output Z”.

A setup constraint between data and clock input of a positive edge triggered flipflop is
identified by the following timing arc:

01 D -> 01 CP

which reads “rising edge on input D is followed by rising edge on input CP”.

A crucial part in ASIC cell development is to characterize a model which describes the
behavior of each timing arc with sufficient accuracy in order to guarantee correct functional
behavior under all required operational conditions.

A delay model usually needs two output variables:

■ intrinsic delay, measured between a well-defined threshold value of the input signal and
a well-defined threshold value of the output signal

■ transition delay, measured between two well-defined threshold values of the output
signal. Hence the transition delay is a fraction of the total output transition time, also
calledslew rate or edge rate.
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A timing constraint model needs just one output variable:

■ A timing constraint is theminimum or maximum allowed elapsed time between two
signals, measured between well-defined threshold values between those two signals.
This definition is similar to the intrinsic delay, except there is no input-output
relationship between the two signals. Both signals are usually inputs to the cell.

The actual values of transition times and load capacitances seen by each pin of a cell instance
are calculated by a delay predictor. Delay prediction can be separated into two tasks:

1. Acquisition of information on pin capacitance, extracted or estimated layout parasitics
for each net and fitting those into the load characterization model (lumped C, R, etc.)

2. Calculation of internal signal transition times based on the extracted internal load and
on load and transition times at the boundaries of the system.

Lookup tables provide a general modeling capability without precluding any level of accuracy.

Equations may feature polynomial expressions, exponentials and logarithms, and arbitrary
transcendent functions. For practical purpose, only the four basic arithmetic operations (+, -, *,
/) and exponentiation and logarithm will be supported for standard models.

Some models may require transcendent functions or complicated algorithms that cannot be
expressed directly in equations. Other models and algorithms may need protection from being
visible. In order to address needs that go beyond standard modeling features, a template-
reference scheme is proposed: Any model which is neither in table nor in equation format needs
to be a pointer to a customer-defined model which may reside outside the library.

Regardless of which type of model is chosen, there is a need to specify explicitly the meaning
of the variables and the units. The specification of variables and units can be made outside the
model and independent of the chosen model.

Since the set of variables should not be restrictive in order to allow any enhancements (e.g.
move from a lumped capacitance to an RC model),context-sensitive keywords are proposed
(e.g. “load”, “slewrate”). The application parser need not know the meaning of the context-

Table 2-1 Modeling choices for cell characterization library

type of model features purpose

table discrete points, multidimensional direct storage of characterization data,
direct accuracy control through mesh
granularity

equation expressions with +, -, *, /, exponent,
logarithm

analytical model, well-suited for optimi-
zation purpose, more compact than table,
also usable for arithmetic operations on
tabulated data (scale, add, subtract ..)

reference pointer to any type of model reuse of predefined model (which may
be table or equation), protection of user-
defined model
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sensitive keyword, except that it is used as a variable in a model and that it has some unit
attached to it, e.g. picofarad, nanosecond etc.

2.3.2 Power Modeling

A power model is an extension of the delay model for each timing arc using a third variable:

■ scaled average current, measured by integrating and scaling the total transient current
through the power supply of the cell for the specific timing arc or vector.
The current measurement can start anytime before the first event of the vector starts and
can end anytime after all transients of the vector have stabilized.

Variants of this model are scaled average power and energy, which are obtained by simple
scaling of average current measurements:

power = current * Vdd
energy = current * Vdd * integration time

The set of vectors causing power consumption within a cell is a superset of vectors causing the
cell output to switch. While only the latter are needed for delay characterization, more vectors
are needed for accurate power characterization.

For example, consider a flipflop, which consumes power at every edge of the clock, even if the
output does not switch. The vectors for delay and power characterization can be described as
follows:

01 CP -> 01 Q
01 CP -> 10 Q

The vectors for power characterization with only clock-switching can be described as follows:

01 CP && Q==D
10 CP && Q==D

The D input having the same value as the Q output is a necessary and sufficient condition that
the output will not switch at the rising edge of CP and that the value transferred to the master
latch at the falling edge of CP will be the same as already stored. Hence those two vectors
capture the actual power dissipation only within the clock buffers. Additional power vectors
can be defined to capture the power dissipation within the data buffers and the master latch etc.

For a 2-input AND gate, if the event 01 A is detected and then the event10 B  is detected
before the input-to-output delay elapses, aglitch is observed. It is possible to describe the glitch
by a higher-order vector.

In dynamic simulation withtransport delay mode, the glitch would appear as follows:

01 A -> 10 B -> 01 Z -> 10 Z

Simulation featuringtransport delay mode with invalid-value-detectionwould exhibit the
glitch as follows:

01 A -> 10 B -> 0X Z -> X0 Z

Simulation withinertial delay mode would suppress the output transitions:

(01 A -> 10 B) && !Z
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The last expression can be used for each of the three modes, since!Z is always true at the time
when the sequence 01 A -> 10 B  is detected.

Each way of expressing vectors can be derived from the cell functionality. The different
examples for delay vectors (i.e. timing arcs), power vectors, and glitch vectors emphasize the
rich potential of modeling capabilities using vector expressions.

State-dependent static power is also within the scope of vector-based power models. Static
power consumption is activated in the same way as level-sensitive logic in functional modeling
by a vector expression featuring steady states, whereastransient power consumption is
activated similar to edge-sensitive logic by a vector expression featuring transitions.

The advantages of adding power models within each delay vector and providing extra power
vectors are the following:

■ straightforward extension of delay characterization

■ capable of yielding the most detailed and accurate model on gate-level

■ each vector defines a comprehensive stimulus for power measurements

The vector-based power model is a general and reliable model. However, the pin-toggle power
model can be expressed as a special case of the vector-based model. This model has its
justification in applications working at a high level of abstraction, where accurate
characterization is not a predominant requirement.

2.4 Physical modeling for synthesis and test

2.4.1 Cell modeling

Physical modeling of cells requires annotating cell properties (e.g. area, height, width, aspect
ratio). The set of annotated properties give an application such as synthesis a choice to pick one
cell from a set of functionally equivalent cells, if one property is more desirable than another
one under given synthesis goals and constraints.

Cell pins can also have annotated properties, such as pin capacitance, voltage swing, switching
threshold etc.

Most of the modeling for test requirements are already fulfilled by the functional model.
Declaration of pins and their direction (input, output, bidirectional) is already a generic
requirement for cell modeling.

Scan insertion tools require specific annotations about cell and pin properties relevant for scan
test. They also require reference to equivalent non-scan cells. An equivalent non-scan cell is a
scan cell, when all scan specific hardware (e.g. multiplexor, scan clock) is removed.

The variables used in the functional model must have their counterpart in the pin declaration.
Only primary input pins can be primary inputs of functions, while primary output pins, internal
pins, or virtual pins can be primary or intermediate outputs of functions. Furthermore, test
vectors for fault coverage can be derived from the functional model in a formal way.
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The reminder of the modeling for test requirements can be covered by annotations of cell
properties and cell pin properties. For instance, a cell can be labeled as a scan-flipflop, a pin
can be labeled as scan input or mode select pin.

2.4.2 Wire modeling

The purpose ofwire modeling is to get good estimates ofparasitic resistanceandcapacitance
as a function offanout. These estimates are technology specific, and they depend on metal
layer, sheet resistance, self capacitance per unit wirelength, fringe capacitance per unit
wirelength, via resistance for wires routed through multiple layers.

The wires can be characterized by types, similar to cells. For example,

wire with fanout < 5 in metal 1
wire with 10 < fanout < 20 routed in metal 2 and 3

From a modeling standpoint, nothing special is required for performance modeling of wires
that would be different from performance modeling of cells. The fanout will be an input
variable, and capacitance and resistance would be output variables. The values can be
expressed either in tables or in equations. Usually first order equations (with slope and
intercept) are used for wire modeling.
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Section 3

Library Format Specification

This section discusses the object model used by ALF and provides the syntax rules for all
objects. The syntax rules are provided in standard BNF form.

3.1 Object Model

A library consists of one or moreobjects. Each object is defined by a keyword and an optional
name for the object and an optionalvalue of the object.

A keyword defines the type of the object. Section 3.1.1 and Section 3.1.2 define various types
of objects used in ALF and related keywords.

An optionalidentifier (also calledname) following the keyword defines thename of the object.
This name must be used while referencing an object inside other objects in the library. If an
object is not referenced by name, then the object need not be named.

A literal defines an optional value associated with the object. Anexpression can be used when
the value of the object cannot be expressed as a literal.

An object may contain one or more objects. The containing object is called ahierarchical
object. The contained objects are calledchildren objects. The children objects are defined and
referenced inside curly braces ({}) in the description of the hierarchical object.

Forward referencingof objects is not allowed. Therefore, all objects must be defined before
they can be instantiated. This allows library parsers to be one-pas parsers.

Examples:

1. unnamed object without value assignment:

MY_OBJECT_TYPE {
//fill in children objects

}

2. unnamed object with value assignment:

MY_OBJECT_TYPE = my_object_value {
//fill in children objects

}

3. named object without value assignment:

MY_OBJECT_TYPE my_object_name {
//fill in children objects

}
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4. named object with value assignment:

MY_OBJECT_TYPE my_object_name = my_object_value {
//fill in children objects

}

The objects in ALF are divided into four categories -generic objects, library-specific objects,
arithmetic models, andfunctions.

3.1.1 Generic Objects

A generic object can appear at every level in the library within any scope. The semantics of a
generic object must be understood by any ALF compiler if the generic object is within the
scope of application for that compiler.

The following objects shall be considered generic objects:

Figure 3-1: Generic objects

3.1.1.1 Constant

A CONSTANT object is a named object with value assignment and without children objects.
Value is a number.

Example:

CONSTANT vdd = 3.3

3.1.1.2 Alias

An ALIAS object is a named object with value assignment and without children objects. Value
is a string.

Example:

ALIAS RAMPTIME = SLEWRATE

3.1.1.3 Include

An INCLUDE object is a named object without value assignment and without children. The
name is a quoted string containing the name of a file to be included.
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Example:

INCLUDE ’primitives.alf’

Since the file name is a quoted string, any special symbols (like ~ or *) are allowed within the
filename. The interpretation of those (for file search path etc.) is up to the application.

3.1.1.4 Class

A CLASS object is a named object with optional value assignments and children objects. The
name can be used by other objects to reference the class object.

Example:

CLASS my_class { ... }
...
MY_OBJECT_TYPE my_object {

CLASS = my_class
} // my_object belongs to my_class

3.1.1.5 Attribute

An ATTRIBUTE object is an unnamed object without value, but has children objects. The
attribute object shall be the child object of another object. The children of the attribute object
are unnamed objects which can have other unnamed objects as children objects. The purpose
of an attribute object is to provide free association of objects with attributes when there is no
special category available for the attributes.

Examples:

CELL rr_8x128 {
ATTRIBUTE {ROM ASYNCHRONOUS STATIC}

}

PIN read_write_select {
ATTRIBUTE {READ{POLARTITY=low} WRITE{POLARTITY=high}}

}

3.1.1.6 Template

A TEMPLATE object is a named object with one or more children objects. Any valid ALF
object can be a child object of a template object. An identifier enclosed between< and> are
recognized asplaceholders. When a template object is used, each of its placeholders must be
referenced by order or by explicit name association.

Example:

TEMPLATE std_table {
CAPACITANCE {PIN=<pin1> UNIT=pF TABLE {0.02 0.04 0.08 0.16}}
SLEWRATE {PIN=<pin2> UNIT=ns TABLE {0.1 0.3 0.9}}

}

An instantiation of the above template object with explicit reference to placeholders by name:

std_table{pin1=out pin2=in}
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An instantiation of the above template object with implicit reference to placeholders by order:

std_table{out in}

If a symbol within a placeholder appears more than once in the template definition, the order
for implicit reference is defined by the first appearance of the symbol. Explicit referencing
improves the readability and is the recommended usage.

A template instantiation can appear at any place within a hierarchical object, as long as the
template object contains the structure of valid objects inside. Hierarchical templates contain
other template objects.

3.1.1.7 Property

A PROPERTY object is a namedannotation container. It can be used at any level in the library.
It is used for arbitrary parameter-value assignment.

Example:

PROPERTY items {
parameter1=value1
parameter2=value2

}

3.1.1.8 Group

A GROUP object is a set of elements with commonality between them. Thus the common
characteristics can be defined once for the group instead of being repeated for each element.

Example:

GROUP time_measurements = {DELAY SLEWRATE SKEW JITTER}

Thus the statement

time_measurements { UNIT = ns }

replaces the following statements:

DELAY { UNIT = ns }
SLEWRATE { UNIT = ns }
SKEW { UNIT = ns }
JITTER { UNIT = ns }

3.1.2 Library-specific objects

The library-specific objects define their nature and their relationship to each other by
containment rules. For example. a library may contain a cell, but a cell may not contain a
library. However, both the library object and the cell object may contain any generic object. A
generic object defined at the library level makes it visible inside the scope of that library,
defining it on the cell level makes it visible inside the scope of that cell and its children objects.

The library-specific objects require no interpretation of their semantics.

3.1.3 Arithmetic models

An arithmetic model is an object that describes characterization data, or more abstract,
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measurable relationships between physical quantities. The modeling language allows tabulated
data as well as linear and non-linear equations. The equations consists of arithmetic
expressions, for which the IEEE standards have been adopted.

3.1.4 Functions

A function is an object that describes the functional specification of a digital circuit (or a digital
model of an analog or a mixed-signal circuit) in a canonical form. The modeling language
allows behavioral models as well as statetables and structural models with primitives. The
behavioral models contain boolean expressions, for which the IEEE standards have been
adopted. Since boolean expressions are insufficient to describe sequential logic, ALF
introduces new operators and symbols that can be used in conjunction with boolean operators
and symbols. Expressions that use both the IEEE operators and the new operators, are called
vector expressions.

The following figures describe the four types of objects and their relationships with each other.

Figure 3-2: Library-specific objects

Figure 3-3: Arithmetic model

Figure 3-4: Function
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Figure 3-5: Annotations

Figure 3-6: Library-specific objects

annotation container

annotation

library

sublibrary

cell

wire

pin

vector

function

arithmetic model

contains

contains

contains

primitive

library

sublibrary

cell

wire

pin

vector
is a

is a

is a

is a

is a

is a

is a

is a

library specific

annotation container

annotation
is a

object

primitive



Version 1.0 Advanced Library Format (ALF) Reference Manual 3-7

Lexical rules Library Format Specification

Figure 3-7: Library objects and their relationships
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3.2.3 Whitespace Characters

The following characters shall be consideredwhitespace characters:

Character ASCII code (hex)
space 20
vertical tab 0B
horizontal tab 09
line feed (new line) 0A
carriage return 0D
form feed 0C

Figure 3-8: List of whitespace characters

Comments are also considered white space (see Section 3.2.6).

A whitespace character shall be ignored except when it separates other lexical tokens or when
it appears in a quoted string.

3.2.4 Reserved and Non-reserved Characters

The ASCII character set shall be divided in three categories - whitespace (Section 3.2.3),
reserved characters, and non-reserved characters. The reserved characters are symbols that
make up punctuation marks and operators. The non-reserved characters shall be used for
creating identifiers and numbers.

reserved_character ::=
& | |  | ^  | ~ | + | -  | *  | /  | % | ? | !  | = | < | > | :

| (  | )  | [  | ]  | {  | }  | @ | ;  | ,  | .  | ”  | ’

nonreserved_character ::=
letter | digit | _ | $

any_character ::=
  reserved_character
| nonreserved_character
| whitespace

Figure 3-9: Reserved and non-reserved characters

ALF shall treat uppercase and lowercase characters as the same characters. In other words,
ALF is acase-insensitive language.

3.2.5 Delimiters

A delimiter is either a reserved character or one of the following compound operators, each
composed of two or three adjacent reserved characters:

delimiter ::=
  reserved_character
| && | ~& | ||  | ~|  | ~^  | == | !=  | **  | >= | <=
| ?!  | ?~ | ?-  | ??  | ->  | <->  | &> | <&> | >> | <<

Figure 3-10: Tokens that make up delimiters
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Each special character in single character delimiter list shall be a single delimiter except unless
this character is used as a character in a compound operator or as a character in a quoted string.

3.2.6 Comments

ALF has two forms to introduce comments.

A single-line comment shall start with the two characters //  and end with a new line.

A block commentshall start with/*  and end with*/ . Comments shall not be nested. The single-
line comment token//  shall not have any special meaning in a block comment.

comment ::=
  single_line_comment
| block_comment

Figure 3-11: Single-line and block comments

3.2.7 Number Literals

Constant numbers can be specified as integer literal or real literal.

The integer literal is a decimal integer constant.

integer_digit ::= 0  | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9

sign ::= +  | -

unsigned_number ::=  { _} integer_digit  { _ | integer_digit }

integer_literal ::=  [ sign ] unsigned_number

real_literal ::=
  unsigned_number .  unsigned_number
| unsigned_number [ .  unsigned_number] E [sign] unsigned_number

Figure 3-12: Integer and real numbers

3.2.8 Boolean Literals

Thebit literal shall represent a single bit constant.

bit_literal ::= X | Z | L | H | U | ? | 0 | 1

where

0 logic zero
1 logic one
X or x unknown value
L  or l weak zero
H or h weak one
W or w weak unknown
Z or z high-impedance value
U or u unknown (i.e. uninitialized)
? don’t care

Figure 3-13: Single bit constants
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A based literal is a constant expressed in a form that specifies the base explicitly. The base can
be specified inbinary, octal, decimal or hexadecimal format.

based_literal ::=
  binary_base { _ | binary_digit }
| octal_base { _ | octal_digit }
| decimal_base { _ | decimal_digit }
| hex_base { _ | hex_digit }

binary_base ::=
'B

octal_base ::=
'O

decimal_base ::=
'D

hex_base ::=
'H

binary_digit ::=
bit_literal

octal_digit ::=
binary_digit  | 2 | 3 | 4 | 5 | 6 | 7

decimal_digit ::=
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

hex_digit ::=
octal_digit | 8 | 9 | A | B | C | D | E | F | a | b | c  | d | e | f

Figure 3-14: Based constants

The underscore(_) shall be legal anywhere in the number except as the first character, and this
character is ignored. This feature can be used to break up long numbers for readability
purposes. No white space shall be allowed between base and digit token in a based literal.

3.2.9 Edge Literals

An edge literal shall be constructed by two bit literals or two based literals. It shall describe the
transition of a signal from one discrete value to another. No white space shall be allowed within
(between) the two literals. An underscore shall be allowed.

edge_literal ::=
bit_edge_literal | word_edge_literal | symbolic_edge_literal

bit_edge_literal ::=
bit_literal bit_literal

word_edge_literal ::=
based_literal based_literal

symbolic_edge_literal::=
??  | ?~ | ?!  | ?-

Figure 3-15: Edge literals
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3.2.10 Quoted String

The quoted string shall be a sequence of zero or more graphic characters enclosed between two
quotation marks (" or ' ) and contained on a single line. Characterescape codes are used inside
the string literal to represent some common special characters. The character that may follow
the backslash (\), and their meanings are listed below.

Symbol ASCII Code Usage
(octal)

\g   007 alert/bell
\h   010 backspace
\t   011 horizontal tab
\n   012 new line
\v   013 vertical tab
\f   014 form feed
\r   015 carriage return
\"   042 double quotation mark
\'   047 single quotation mark
\\   134 backslash
\ddd 3-digit octal value of ASCII character

Figure 3-16: Special characters in quoted strings

quoted string ::=
  " { any_character } "
| '  { any_character } '

Figure 3-17: Quoted string

3.2.11 Identifiers

Identifiers are used in ALF as names of objects, reserved words and context sensitive
keywords. An identifier shall be any sequence of letters, digits, underscore (_), and dollar sign
($) character. If an identifier is constructed from one or more non-reserved characters, it is
callednon-escaped identifier.

nonescaped_identifier ::=
nonreserved_character { nonreserved_character }

If an identifier is constructed from one or more reserved characters, it is called anescaped
identifier. The escaped identifiers shall start with the backslash character (\) and end with a
whitespace.The backslash character is considered to be part of the escaped identifier, but the
whitespace is not. Therefore, an escaped identifier\PIN  is not the same as a non-escaped
identifier PIN .

escaped_identifier ::=
‘ \ ’ { nonreserved_character | reserved_character }

A placeholder identifier shall be a non-escaped identifier between the less-than character (<)
and the greater-than character (>). No whitespace or delimiters are allowed between the non-
escaped identifier and the placeholder characters (< and>). The placeholder identifier is used
in template objects as an formal parameter, which is replaced by the actual parameter in
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template instantiation.

placeholder_identifier ::=
‘ <’ nonescaped_identifier ‘ >’

All the identifiers are case-insensitive.

3.3 Keywords

Keywords are case-insensitive. For clarity, this document uses uppercase letters for keywords
identifying objects, and lowercase letters for keywords identifying values of objects.

Keywords are reserved for use as object identifiers, not for general symbols. To use an
identifier that conflicts with the list of keywords, use the escape character, e.g. to declare a pin
that is calledPIN , use the form:

PIN \PIN {..}

A keyword can either be areserved keyword (also calledhard keyword) or acontext-sensitive
keyword (also calledsoft keyword). The hard keywords have fixed meaning, and must be
understood by any parser of ALF. The soft keywords may be understood only by specific
applications. For example, a parser for a timing analysis application can ignore objects which
contain power related information described using soft keywords.

3.3.1 Keywords for generic object types

The following keywords are used to identify generic object types:

ALIAS ATTRIBUTE
BEHAVIOR CELL
CLASS CONSTANT
EQUATION FUNCTION
GROUP HEADER
INCLUDE LIBRARY
PIN PRIMITIVE
PROPERTY STATETABLE
SUBLIBRARY TABLE
TEMPLATE VECTOR
WIRE

Figure 3-18: Keywords for generic object types

3.3.2 Keywords for Operators

The following keywords are used for built-in arithmetic functions:

ABS absolute value
EXP natural exponential function
LOG natural logarithm
MIN minimum
MAX maximum

Figure 3-19: Keywords for built-in arithmetic functions
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3.3.3 Context-Sensitive Keywords

In order to address the need of extensible modeling, we introduce the concept of context-
sensitive keywords. They are some kind of a free vocabulary for the library application. New
context-sensitive keywords can be introduced as long as they do not clash with any existing
keyword.

A predefined set of context-sensitive keywords and their semantic meaning is proposed in
Section 3.6. This set can be extended.

3.4 Syntax Rules

The formal syntax of ALF language is described using Backus-Naur Form (BNF).

3.4.1 Assignments

unnamed_assignment ::=
  context_sensitive_keyword = number [ ; ]
| context_sensitive_keyword = string [ ; ]

unnamed_assignments ::=
  unnamed_assignment { unnamed_assignment }

named_assignment ::=
  context_sensitive_keyword identifier = number [ ; ]
| context_sensitive_keyword identifier = string [ ; ]

named_assignments ::=
  named_assignment { named_assignment }

assignment ::=
  named_assignment
| unnamed_assignment

assignments ::=
  assignment { assignment }

combinational_assignment ::=
  identifier [index] = boolean_expression ;

combinational_assignments ::=
  combinational_assignment  { combinational_assignment }

pin_assignment ::=
  identifier [index] = identifier [index] [ ; ]
| identifier [index] = logic_literal [ ; ]
| logic_literal = identifier [index] [ ; ]

pin_assignments ::=
  pin_assignment { pin_assignment }

sequential_assignment ::=
  @ (  vector_boolean_expression ) {  combinational_assignments }
{ : (  vector_boolean_expression ) {  combinational_assignments }  }

sequential_assignments ::=
sequential_assignment  { sequential_assignment }
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3.4.2 Expressions

arithmetic_expression ::=
  [ arithmetic_unary_operator ] arithmetic_primary
| arithmetic_expression  arithmetic_binary_operator
  arithmetic_expression
| arithmetic_function_operator (  arithmetic_expression
  { ,  arithmetic_expression } )

arithmetic_primary ::=
  number
| identifier
| (  arithmetic_expression )

boolean_expression ::=
  [ boolean_unary_operator ]  boolean_primary
| boolean_expression boolean_binary_operator boolean_expression
| boolean_expression ? boolean_expression :  boolean_expression

boolean_primary ::=
  logic_literal
| identifier [ index ]
| (  boolean_expression )

vector_boolean_expression ::=
  vector_expression
| boolean_expression

vector_expression ::=
(  vector_expression )
| vector_unary_operator boolean_expression
| vector_expression  vector_binary_operator  vector_expression
| vector_expression  boolean_binary_operator  vector_expression
| vector_expression &&  boolean_expression
| boolean_expression &&  vector_expression
| vector_expression &  boolean_expression
| boolean_expression &  vector_expression
| boolean_expression ? vector_expression :  vector_expression
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3.4.3 Instantiations

cell_instantiation ::=
  cell _identifier {  primaries }
|  cell _identifier {  pin_assignments }

cell_instantiations ::=
cell_instantiation  { cell_instantiation }

primitive_instantiation ::=
  primitive _identifier {  primaries }
| primitive _identifier {  combinational_assignments }

primitive_instantiations ::=
primitive_instantiation  { primitive_instantiation }

template_instantiation ::=
  template_ identifier {  primaries }
| template_ identifier {  unnamed_assignments }

template_instantiations ::=
template_instantiation  { template_instantiation }
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3.4.4 Literals

context_sensitive_keyword ::=
nonescaped_identifier

edge_literal ::=
bit_edge_literal

| word_edge_literal
| symbolic_edge_literal

edge_literals::=
  edge_literal { edge_literal }

identifier ::=
  nonescaped_identifier
| escaped_identifier
| placeholder_identifier

identifiers ::=
identifier { identifier }

index ::=
  [  primary ]
| [  primary :  primary ]

logic_literal ::=
  bit_literal
| based_literal

logic_literals::=
 logic_literal { logic_literal }

logic_value ::=
  logic_literal
| edge_literal
| (  [ ! ] logic_variable )

logic_values ::=
  logic_value {logic_value}

logic_variable ::=
  pin_ identifier [index ]

logic_variables ::=
  logic_variable {logic_variable}

number ::=
  integer_literal
| real_literal

numbers::=
  number { number }

primary ::=
  number
| identifier

primaries ::=
  primary { primary }

string ::=
  quoted_string
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| identifier

3.4.5 Operators

arithmetic_binary_operator ::=
+ | -  | *  | /  | **  | %

arithmetic_function_operator ::=
  abs
| exp
| log
| min
| max

arithmetic_unary_operator ::=
+ | -

boolean_binary_operator ::=
+ | -  | *  | /  | % | && | ||  | & | |  | ^  | ~& | ~|  | ~^

|  >  | < | >= | <= | == | !=

boolean_unary_operator ::=
!  | ~ | & | ~& | |  | ~|  | ^  | ~^

vector_binary_operator ::=
->  | <->  | &> | <&>

vector_unary_operator ::=
  edge_literal

See Section 3.5 for further details on operators.
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3.4.6 Auxiliary Objects

all_purpose_item ::=
  annotation
| annotation_container
| generic_object
| template_instantiation
| cell_instantiation

all_purpose_items ::=
  all_purpose_item { all_purpose_item }

annotation ::=
  assignment [ {  all_purpose_items }  ]

annotation_container ::=
  context_sensitive_keyword {  all_purpose_items }

generic_object ::=
  alias
| attribute
| constant
| class
| group
| include
| property
| template

generic_objects ::=
  generic_object { generic_object }

library_specific_object ::=
  annotation
| annotation_container
| cell
| function
| library
| pin
| primitive
| sublibrary
| vector
| wire

object ::=
  generic_object
| library_specific_object
| arithmetic_model
| function

objects ::=
  object { object }

source_text ::=
  library
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3.4.7 Generic Objects

alias ::=
  ALIAS  identifier = identifier [ ; ]

attribute ::=
  ATTRIBUTE {  attribute_items }

attribute_item ::=
  identifier [ {  unnamed_assignments }  ]

attribute_items ::=
  attribute_item { attribute_item }

class::=
  CLASS  identifier  { ; }
  CLASS  identifier  [ {  generic_objects }  ]

constant ::=
  CONSTANT identifier = number [ ; ]
  CONSTANT identifier = logic_literal [ ; ]

group ::=
  GROUP group_ identifier {  identifiers }
| GROUPgroup_ identifier {  numbers }
| GROUPgroup_ identifier {  edge_literals }
| GROUPgroup_ identifier { logic_literals }
| GROUPgroup_ identifier {  logic_variables }
| GROUPgroup_ identifier { int_literal : int_literal }

include ::=
  INCLUDE quoted_string [ ; ]

property ::=
  PROPERTY {  unnamed_assignments }

template ::=
  TEMPLATE template_ identifier {  objects }

3.4.8 Cell Object

cell ::=
  CELL cell_ identifier  [ {  cell_items } ]
| cell_ template_instantiation

cells ::=
  cell { cell }

cell_item ::=
  all_purpose_item
| pin
| primitive
| function
| arithmetic_model
| vector

cell_items ::=
  cell_item {cell_item}
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3.4.9 Library Object

library ::=
  LIBRARY library_ identifier {  library_items [sublibraries] }
| library_ template_instantiation

libraries ::=
  library { library }

library_item ::=
  all_purpose_item
| arithmetic_model
| cell
| primitive
| wire

library_items ::=
  library_item { library_item }

3.4.10 Pin Object

pin ::=
  PIN  [ index ] pin_ identifier [ index ] [ {  pin_items } ]
| pin_ template_instantiation

pins ::=
  pin { pin }

pin_item ::=
  all_purpose_item

pin_items ::=
  pin_item { pin_item }

3.4.11 Primitive Object

primitive ::=
  PRIMITIVE primitive_ identifier {  primitive_items }
| primitive_ template_instantiation

primitives ::=
  primitive { primitive }

primitive_item ::=
  all_purpose_item
| pin
| function

primitive_items ::=
  primitive_item { primitive_item }

3.4.12 Sublibrary Object

sublibrary ::=
  SUBLIBRARY library_ identifier {  library_items }
| sublibrary_ template_instantiation

sublibraries ::=
  sublibrary { sublibrary }
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3.4.13 Vector Object

vector ::=
  VECTOR (  vector_boolean_expression ) {  vector_items }
| vector_ template_instantiation

vectors ::=
  vector { vector }

vector_item ::=
  all_purpose_item
| arithmetic_model

vector_items ::=
  vector_item { vector_item }

3.4.14 Wire Object

wire ::=
  WIRE wire_ identifier {  wire_items }
| wire_ template_instantiation

wires ::=
  wire { wire }

wire_item ::=
  all_purpose_item
| arithmetic_model

wire_items ::=
  wire_item { wire_item }
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3.4.15 Arithmetic Model

arithmetic_model ::=
  context_sensitive_keyword [ identifier ]
  {  [all_purpose_items] [header] bodies }
  context_sensitive_keyword [identifier] =
  primary  [ {  all_purpose_items } ]
| arithmetic_model_ template_instantiation

header ::=
  HEADER {  header_items [ body ] }
| header_ template_instantiation

header_items ::=
  header_item { header_item }

header_item ::=
  identifier
| all_purpose_item
| arithmetic_model

body ::=
  table
| equation

bodies ::=
  body { body }

table ::=
  TABLE {  primaries }
| table_ template_instantiation

equation ::=
  EQUATION {  arithmetic_expression }
| equation_ template_instantiation
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3.4.16 Function

function ::=
  FUNCTION  [ identifier ] { [all_purpose_items] [primitives]
  [function_bodies] }
| function_ template_instantiation

functions ::=
  function { function }

function_bodies ::=
  function_body { function_body }

function_body ::=
  STATETABLE  [ identifier ] {   statetable_body }
| BEHAVIOR [ identifier ] {  behavior_body }

statetable_body ::=
  logic_variables  : logic_variables ;
  logic_values  :  logic_values ;
  { logic_values  : logic_values ;  }

behavior_body ::=
  primitives
| combinational_assignments
| sequential_assignments
| primitive_instantiations

3.5 Operators

The operators are divided into four groups:

■ Arithmetic operators

■ Boolean operators on scalars, i.e. single bits

■ Boolean operators on words, i.e. arrays of bits

■ Vector operators
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3.5.1 Arithmetic operators

Unary operators:
+ // positive sign (for integer or float)
- // negative sign (for integer or float)

Binary operators:
+ // addition (integer or float)
- // subtraction (integer or float)
* // multiplication (integer or float)
/ // division (integer or float)
** // exponentiation (integer or float)
% // modulo division (integer or float)

Function operators:
LOG // natural logarithm (argument is + integer or float)
EXP // natural exponential (argument is integer or float)
ABS // absolute value (argument is integer or float)
MIN // minimum (all arguments are integer or float)
MAX // maximum (all arguments are integer or float)

Function operators with one argument (such aslog , exp  andabs ) or multiple arguments (such
asmin  andmax) must have the arguments within parenthesis, e.g. min(1.2,-4.3,0.8) .

3.5.2 Boolean operators on scalars

Unary operators:
! // logical inversion

Binary operators:
&& or & // logical AND
||  or | // logical OR
== or ~^ // equivalence (XNOR)
!=  or ^ // antivalence (XOR)

Ternary operator:

? : // if-then-else clause
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3.5.3 Boolean operators on words

Unary reduction operators (result is a logic value):
& // AND all bits
~& // NAND all bits
| // OR all bits
~| // NOR all bits
^ // XOR all bits
~^ // XNOR all bits

Binary reduction operators (result is a logic value):
 > // greater
 < // smaller
 >= // greater or equal
 <= // smaller or equal

Unary bitwise operator (result is an array of bits):
~ // bitwise inversion

Binary bitwise operators (result is an array of bits):
 & // bitwise AND
 | // bitwise OR
 ^ // bitwise XOR
 ~^ // bitwise XNOR

Binary operators (result is an extended array of bits):
 << // shift left
 >> // shift right
 + // addition
 - // subtraction
 * // multiplication
 / // division
 % // modulo division

The arithmetic operators addition, subtraction, multiplication, and division shall beunsigned if
all the operands in an expression are unsigned variables or constants. If any of the operands are
signed operands, the arithmetic operators shall besigned operators.

3.5.4 Vector operators

A transition operation is defined using unary operators on a scalar net. The scalar constants (see
figure 3-13) shall be used to indicate the start and end states of a transition on a scalar net.

bit bit apply transition from bit value to bit value

For example,

01 is a transition from 0 to 1.

No whitespace shall be allowed between the two scalar constants. The following transition
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operators shall be considered legal:

01 signal toggles from 0 to 1
10 signal toggles from 1 to 0
00 signal remains 0
11 signal remains 1
0? signal remains 0 or toggles from0 to arbitrary value
1? signal remains 1 or toggles from 1 to arbitrary value
?0 signal remains 0 or toggles from arbitrary value to 0
?1 signal remains 1 or toggles from arbitrary value to 1
?? signal remains constant or toggles between arbitrary

values

Figure 3-20: Unary vector operators on bits

Unary operators for transitions can also appear inSTATETABLE.

Transition operators are also defined on words (can appear inSTATETABLE as well):

' base word ' base word
apply transition from word value to word value,

For example,

’hA’h5 is a transition of a 4-bit signal from ’b1010 to ’b0101.

No whitespace shall be allowed betweenbase andword.

The following unary operators are defined on bits and words:

?- no transition occurs
?? apply arbitrary transition, including possibility

of constant value
?! apply arbitrary transition, excluding possibility

of constant value
?~ apply arbitrary transition with all bits toggling

Figure 3-21: Unary vector operators on bits or words

The following binary operators are defined:

-> Left-hand side (LHS) transitionis followed by
Right-hand side (RHS) transition

&& or & LHS and RHS transitionoccur simultaneously
|| or | LHS or RHS transitionoccurs
<-> LHS transitionfollows or is followed by RHS transition
&> LHS transitionis followed by or occurs simultaneously

with RHS transition
<&> LHS transitionfollows or is followed by or occurs

simultaneously with RHS transition

Figure 3-22: Binary vector operators
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The following expressions are considered equivalent:

(?? a) ==
(0? a)||(1? a)||(Z? a)||(X? a)

|| (H? a)||(L? a)||(W? a)
|| (?0 a)||(?1 a)||(?Z a)||(?X a)
|| (?H a)||(?L a)||(?W a)

(01 a <-> 01 b) == (01 a -> 01 b)||(01 b -> 01 a)

(01 a  &> 01 b) == (01 a -> 01 b)||(01 a && 01 b)

(01 a <&> 01 b) == (01 a -> 01 b)||(01 b -> 01 a)||(01 a && 01 b)

The binary AND operator is also defined between a vector expression and a boolean
expression. The result is a conditional vector expression.

Example:

(01 a && !b)// ‘a’ rises while b==0

Every binary vector operator may be applied to a conditional vector expression.

3.5.5 Operator priorities

The priority of binding operators to operands shall be from strongest to weakest in the
following order:

1. unary operators for vector expression

2. binary operators for vector expression

3. unary operator for arithmetic and boolean expression

4. XNOR(~^ ), XOR (^ ), relational (>, <, >=, <= ), exponentiation (** ) , shift (<<, >>)

5. AND (&), NAND (~&), multiplication (* ), division (/ ), modulo division (%)

6. OR (| ), NOR (~| ), addition (+), subtraction (- )

7. ternary operator (?: )

Operators with equal priority are evaluated strictly in order of occurrence from left to right. The
parenthesis()  shall be used for changing the priority of binding operators to operands.

3.6 Context-sensitive keywords

The context-sensitive keywords permit legal extensions to ALF syntax. An ALF parser shall
either accept or ignore when an unknown keyword or annotation is encountered. The purpose
of context-sensitive keywords is to have a vocabulary of keywords with already well-defined
semantic meaning. That means, an ALF compiler for an application must understand those
keywords needed (used) by the application. For example, a compiler that needs SLEWRATE
must understand the keywordSLEWRATE and not expect a keywordRAMPTIME.
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3.6.1 Annotation containers

Any complex object can be used as anannotation container. In addition, the following objects
are defined only for the purpose ofunnamed annotation containers.

FROM specifies starting point ofDELAY or SLEWRATE measurement
TO specifies ending point ofDELAY or SLEWRATE measurement
SCAN specifies information relevant to design for test
LIMIT specifies limit values
VIOLATION specifies items relevant to timing violations
INFORMATION specifies purely informational items

Figure 3-23: Unnamed annotation containers
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The following syntax notations describe the annotations:

unnamed_annotation_container ::=
FROM ( from_to_container )

| TO ( from_to_container )
| SCAN ( scan_container )
| LIMIT (  limit_container )
| VIOLATION (  violation_container )
| INFORMATION ( information_container )

limit_container ::=
  limit_type integer_constant
| limit_type real_constant

limit_type ::=
MAX

| MIN
| TYP

from_to_container ::=
  from_to_type integer_constant
| from_to_type real_constant

from_to_type ::=
RISE // applies to rising signal

| FALL // applies to falling signal

violation_container ::=
MESSAGEquoted_string

| MESSAGE_TYPE INFORMATION
| MESSAGE_TYPE WARNING
| MESSAGE_TYPE ERROR

information_container ::=
VERSION string

| TITLE quoted_string
| PRODUCTquoted_string
| AUTHORquoted_string
| DATETIME string

scan_container ::=
SCAN_POSITION positive_integer // position in scan chain

| STUCK stuck_type // fault model type
| OFF_STATE off_state_type // map information

stuck_type ::=
stuck_at_0

| stuck_at_1
| both
| none

off_state_type ::=
inverted   // polarity change between scan and non-scan cell

| non_inverted  // no polarity change
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3.6.2 Keywords for referencing objects used as annotation

The following object references may be used as annotations:

CELL  [string] reference to a declared CELL object

PRIMITIVE [string] reference to a declared PRIMITIVE object

PIN  [string] reference to a declared PIN object

CLASS  [string] reference to a declared CLASS object

3.6.3 Annotations for a PIN object

A PIN object may contain the following annotations:

3.6.3.1 VIEW annotation

VIEW [string]

annotates the view where the pin appears, which can take the following values:

functional pin appears in functional netlist
physical pin appears in physical netlist
both pin appears in both functional and physical netlist
none pin does not appear in netlist

3.6.3.2 PINTYPE annotation

PINTYPE [string]

annotates the type of the pin, which can take the following values:

digital digital signal pin
analog analog signal pin
supply power supply or ground pin

3.6.3.3 SIGNALTYPE annotation

SIGNALTYPE [string]

annotates the type of the signal connected to the pin, which can take the following values:

data general data signal {default}
scan_data scan data signal
control general control signal
select select signal of a multiplexor
out_enable output enable signal
scan_enable scan enable signal
scan_out_enable scan output enable signal
clear clear signal of a flipflop or latch
set set signal of a flipflop or latch
clock clock signal of a flipflop or latch
enable enable signal
write write signal for memory, register file
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read read signal for memory, register file
scan_clock scan clock signal of a flipflop or latch
master_clock master clock signal of a flipflop or latch
slave_clock slave clock signal of a flipflop or latch

3.6.3.4 DRIVETYPE annotation

DRIVETYPE [string]

annotates the drive type for the pin, which can take the following values:

cmos standard cmos signal
nmos nmos or pseudo nmos signal
pmos pmos or pseudo pmos signal
nmos_pass nmos passgate signal
pmos_pass pmos passgate signal
cmos_pass cmos passgate signal, i.e. full transmission gate
ttl TTL signal
open_drain open drain signal
open_source open source signal

3.6.3.5 DIRECTION annotation

DIRECTION [string]

annotates the direction of the pin, which can take the following values:

input input pin
output output pin
both bidirectional pin
none no direction can be assigned to the pin

3.6.3.6 SCOPE annotation

SCOPE [string]

annotates modeling scope of a pin, which can take the following values:

behavior can be used for modeling functional behavior
measure measurements can be done related to this pin,

e.g. timing or power characterization
both can be used for function as well as for

characterization measurements
none no model, pin just exists

3.6.3.7 ACTION annotation

ACTION [string]

annotates action of the signal, which can take the following values:

synchronous signal acts in synchronous way
asynchronous signal acts in asynchronous way (default)
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3.6.3.8 POLARITY annotation

POLARITY [string]

annotates the polarity of the pin signal, which can take the following values:

high signal active high or to be driven high
low signal active low or to be driven low
rising_edge signal sensitive to rising edge
falling_edge signal sensitive to falling edge
double_edge signal sensitive to any edge
inverted polarity change between input and output
non_inverted no polarity change between input and output
both polarity may change or not (e.g. XOR)
none polarity has no meaning(e.g. analog signal)

3.6.3.9 ENABLE_PIN annotation

ENABLE_PIN reference to a pin with SIGNALTYPE=out_enable

3.6.3.10 PULL annotation

PULL [string]

which can take the following values:

up pullup device connected to pin
down pulldown device connected to pin
both pullup and pulldown device connected to pin
none no pull device (default)

3.6.3.11 ORIENTATION annotation

ORIENTATION pin orientation [string]

which can take the following values:

left
right
top
bottom

3.6.3.12 CONNECT_CLASS annotation

CONNECT_CLASS reference to a declared class object for connectivity
determination

3.6.3.13 DATATYPE annotation

DATATYPE [string], only relevant for bus pins, which can take the
following values:

signed result of arithmetic operation is signed 2’s complement
unsigned result of arithmetic operation is unsigned
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3.6.4 Annotations for a VECTOR object

A VECTOR object may contain the following annotations:

3.6.4.1 LABEL annotation

LABEL [quoted string]

to be used to ensure SDF matching with conditional delays across Verilog, VITAL etc.

3.6.5 Annotations for a CELL object

A CELL object may contain the following annotations:

3.6.5.1 CELLTYPE annotation

CELLTYPE [string]

which can take the following values:

buffer
combinational
multiplexor
flipflop
latch
memory
block
core
pad
special

3.6.5.2 BUFFERTYPE annotation

BUFFERTYPE [string]

which can take the following values:

input
output
inout
internal

3.6.5.3 DRIVETYPE annotation

DRIVERTYPE [string]

which can take the following values:

predriver
slotdriver

both

3.6.5.4 PARALLEL_DRIVE annotation

PARALLEL_DRIVE [positive integer] number of parallel drivers



Version 1.0 Advanced Library Format (ALF) Reference Manual 3-34

Context-sensitive keywords Library Format Specification

3.6.5.5 SCAN_TYPE annotation

SCAN_TYPE [string]

which can take the following values:

muxscan
clocked
lssd
control_0
control_1

3.6.5.6 SCAN_USAGE annotation

SCAN_USAGE [string]

which can take the following values:

input primary input in a chain of cells
output primary output in a chain of cells
hold

3.6.5.7 NON_SCAN_CELL annotation

NON_SCAN_CELL reference toPRIMITIVE  or CELL, assignment ofPIN  connectivity
LHS refers to pins in non-scan-cell, RHS refers to pins in
scan cell. constant values (i.e. pins tied to fixed values) may
appear on both sides. Multiple non-scan cells can be referenced
within the same scope by giving a name to each one.

3.6.6 Attributes

Keywords insideATTRIBUTE can be used for add pin information which does not fit into the
annotation scheme.

3.6.6.1 ATTRIBUTE within a PIN object:

schmitt Schmitt trigger signal
tristate tristate signal
xtal crystal/oscillator signal
pad pad going off-chip

The following attributes can also havePOLARITY annotation:

tie signal that needs to be tied to a fixed value
read read enable signal
write write enable signal

3.6.6.2 ATTRIBUTE within a CELL object:

RAM Random Access Memory
ROM Read Only Memory
CAM Content Addressable Memory
static static device (e.g. static CMOS, static RAM)
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dynamic dynamic device (e.g. dynamic CMOS, dynamic RAM)
asynchronous asynchronous operation
synchronous synchronous operation

3.6.6.3 ATTRIBUTE within a LIBRARY object:

There are no attributes with predefined meaning specified yet.

3.6.7 Annotations for arithmetic models

The following four annotations shall be recognized within arithmetic models:

Thedefault annotation allows use of the default value instead of the arithmetic model, if the
arithmetic model is beyond the scope of the application tool. The default value shall be specific
to the object type.

Theunit annotation associates units with the value computed by the arithmetic model. The
units can take the following values:

f* or 1E-15
p* or 1E-12
n* or 1E-9
u* or 1E-6
m* or 1E-3
1
k* or 1E+3
meg* or 1E+6
g* or 1E+9
any positive real number

The*  indicates wildcard here, e.g.ns, gigahz .

Themeasurement annotation indicates the type of measurement used for the computation in
arithmetic model. It can take the following values:

transient
static
average
rms
peak

Theconnect_rule annotation specifies connection requirement. It can take the following
values:

must_short short connection required
can_short short connection allowed
cannot_short short connection disallowed
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arithmetic_model_annotations ::=
  default_annotation
| unit_annotation
| measurement_annotation
| connect_annotation

default_annotation ::=
DEFAULT constant_expression

unit_annotation ::=
UNIT units_string

| UNIT real_constant

measurement_annotation ::=
MEASUREMENT measurement_string

measurement_string ::=
TRANSIENT

| STATIC
| AVERAGE
| RMS
| PEAK

connect_annotation ::=
CONNECT_RULE connection_type

connection_type ::=
MUST_SHORT // short connection required

| CAN_SHORT // short connection allowed
| CANNOT_SHORT // short connection disallowed

3.6.8 Keywords for arithmetic models

The following keywords shall identify arithmetic model objects inside aCELL, aWIRE or a
VECTOR object, i.e. output variables of an arithmetic model. Inside an arithmetic model object,
the same keywords identify arguments, i.e. input variables to the arithmetic model. This gives
virtually unlimited choice of combination of variables for characterization. All the keywords
listed below are considered context-sensitive keywords.

DELAY measured between two threshold points of two signals
[non-negative float]

SLEWRATE measured between two threshold point of one signal
[non-negative float]

SKEW same definition asDELAY, but it may have negative
values [float]

JITTER uncertainty of arrival time [non-negative float]
SETUP setup timing constraint [float]
HOLD hold timing constraint [float]
RECOVERY signal recovery timing constraint [float]
REMOVAL signal removal timing constraint [float]
PULSEWIDTH pulse width timing constraint [float]
PERIOD period timing constraint [float]
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NOCHANGE signal stability timing constraint [float]
THRESHOLD reference point forDELAY, SLEWRATE and timing

constraint measurement [float]
PROCESS process derating coefficient [float]

TEMPERATURE in oC [float]
VOLTAGE in Voilts [float]
DERATE_CASE derating case coefficient [float]
CURRENT in Amps [float]
POWER in Watts [float]
ENERGY in Joules [float]
CAPACITANCE pin, wire, or net capacitance [non-negative float]
RESISTANCE pin, wire, or net resistance [non-negative float]
DRIVE_STRENGTH drive strength of a signal [non-negative float]
SWITCHING_BITS number of switching bits on a bus [non-negative integer]
FANOUT number of receivers connected to a net [non-negative integer]
FANIN number of drivers connected to a net [non-negative integer]
CONNECTIONS number of pins connected to a net:

CONNECTIONS = FANIN+FANOUT

TIME [float]
FREQUENCY [non-negative float]
AREA [non-negative float]
DISTANCE [float]
LENGTH [non-negative float]
WIDTH [non-negative float]
HEIGHT [non-negative float]
CONNECTIVITY connectivity function
DRIVER argument of connectivity function
RECEIVER argument of connectivity function

Use the following names as predefined process identifiers:

*n*p process definition with strength characteristic for NMOS
and PMOS

* can be s (=strong) or w (=weak)
The possible combinations aresnsp , snwp, wnsp, wnwp.

Use the following names as predefined derating case identifiers:

nom identifier for nominal case
bc* prefix for best case
wc* prefix for worst case
*com suffix for commercial case
*ind suffix for industrial case
*mil suffix for military case

The possible combinations arebccom, bcind , bcmil , wccom, wcind , wcmil .
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3.7 Library Organization

3.7.1 Scoping Rules

The following scope rules shall apply to all library objects and its usage.

Rule 1: An object shall be defined before it is referenced.

Rule 2: An ALF object shall be known (referenceable) inside the parent object, inside all
objects defined after that object within the same parent object, and inside all the children of
those objects.

Rule 3: An object definition with only a keyword but without an object identifier implies that
the content of this definition will be applied to all objects identified by this keyword at the
current scope and the underlying levels of hierarchy.

Example:

LIBRARY my_library {
CAPACITANCE {UNIT = pF} // default capacitance units for all
... // cells in my_library
CELL cell1 {

CAPACITANCE {UNIT = fF} // capacitance units specific to cell1
PIN A {CAPACITANCE = 10.5}
...

}
CELL cell2 {

PIN A {CAPACITANCE = 0.010} // default capacitance units
...

}
}

The capacitance of pinA of cell1  is 10.5 fF . The capacitance of pinA of cell2  is 0.010 pF .

Rule 4:An object shall not be defined again at the same level of scope A definition of an object
is considered duplicate, if both keyword and object identifier are identical.

Example:

It is illegal to write the following:

LIBRARY my_library {
CAPACITANCE {UNIT = fF}
...
CELL cell1 {

pin A {CAPACITANCE = 10.5}
...

}
CAPACITANCE {UNIT = pF} // duplicate definition
CELL cell2 {

pin A {CAPACITANCE = 0.010}
...

}
}

There are three possible ways capacitance units can be set to fF for some of the cells in the
library and pF for other cells in the same library:
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1. put each set of cells in a different sublibrary,

2. define templates for the different units and reference them appropriately, or

3. define the units locally inside each cell.

3.7.2 Use of multiple files

Sometimes it is inconvenient or impractical to include all of the data for a technology library
in a single file. TheINCLUDE keyword is used to compose a library from multiple files.

An INCLUDE statement may be used within any context, but any included file shall contain at
least a valid object definition to be considered a legal ALF file. It shall begin with a keyword,
otherwise it may be ignored by a generic parser.

In general the effect of using theINCLUDE statement is to be considered equivalent to inserting
the contents of the included file at that point in the parent file.

For example, a top-level ALF library file may contain only the following statements, where
each file contains appropriate data to make up the entire library.

LIBRARY ‘mylib’ {
INCLUDE ‘libdata.alf’
INCLUDE ‘templates.alf’
INCLUDE ‘cells.alf’
INCLUDE ‘wiremodels.alf’

}

A complete ALF library definition must begin with theLIBRARY keyword. A list of cell
definitions shall not be considered a full, legal ALF library database.

3.8 Referenceable objects

General referenceable objects within the scope of visibility areTEMPLATE andGROUP. Library-
specific referenceable objects arePIN , PRIMITIVE  and arithmetic model. The figure 3-24
shows relationships between these objects and where they can be referenced.
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Figure 3-24: Referencing rules for ALF objects

TheTEMPLATE andGROUP objects are referenceable only by their respective instantiation. The
TEMPLATE definitions may contain instantiation of previously defined templates, which allows
constructions of reusable objects.

The arithmetic models can be referenced by other arithmetic models, if they are contained
within each other. This allows hierarchical modeling and a mix of table and equation based
models.

ThePIN  objects are referenced withinFUNCTION andVECTOR objects and within any annotation
container inside the sameCELL object.

ThePRIMITIVE s are referenceable by aCELL in order to define pins and functionality or within
a FUNCTION to define functionality only or within an annotation container, e.g.SCAN.

3.8.1 Referencing PRIMITIVEs or CELLs

A PRIMITIVE  referenced in aCELL may replace the complete set ofPIN  andFUNCTION

definition.PINs may be declared before the reference to thePRIMITIVE , in order to provide
supplementary annotations that cannot be inherited from thePRIMITIVE . However, theCELL

must be pin-compatible with thePRIMITIVE .

If the PRIMITIVE  or aCELL is referenced in an annotation container such asSCAN, only the
subset ofPINs used in the non-scan cell must be compatible with thePINs of the cell.

The pin names can be referenced by order or by name. In the latter case, the LHS is the pin
name of the referencedPRIMITIVE  orCELL (e.g. the non-scan cell), the RHS is the pin name of
the actual cell. A binary number can also appear at the LHS or RHS, indicating that a pin needs
to be tied to a constant value. If this information is already specified in an annotation inside the
PIN  object itself, referencing between a pin name and a constant value is not necessary.

PRIMITIVE s can also be instantiated insideBEHAVIOR.
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3.8.2 Referencing PINs in FUNCTIONs

Inside aCELL object, thePIN  objects with thePINTYPE digital  define variables forFUNCTION

objects inside the sameCELL. A primary input variable inside aFUNCTION must be declared as
a PIN  with DIRECTION=input  or both  (sinceDIRECTION=both  is a bidirectional pin).
However, it is not required that all declared pins are used in the function. Output variables
inside aFUNCTION need not be declared pins, since they are implicitly declared when they
appear at the left-hand side (LHS) of an assignment.

Example:

CELL my_cell {
PIN A {DIRECTION = input}
PIN B {DIRECTION = input}
PIN C {DIRECTION = output}
FUNCTION {

BEHAVIOR {
D = A && B;
C = !D;

}
}

C andD are output variables that need not be declared prior to use. After implicit declaration,
D is reused as an input variable.A andB are primary input variables.

InsideBEHAVIOR, variables which appear at the LHS of an assignment conditionally controlled
by a vector expression, as opposed to an unconditional continuous assignment, will hold their
values, when the vector expression evaluatesfalse . Those variables are considered to have
latch-type behavior.

Examples:

BEHAVIOR {
@(G){

Q = D;  // both Q and QN have latch-type behavior
QN = !Q;

}
}

BEHAVIOR {
@(G){

Q = D;  // only Q has latch-type behavior
}
QN = !Q;

}

The functional description can be supplemented by aSTATETABLE, the first row of which
contains the arguments that are object IDs of declaredPINs. The arguments appear in two
fields, first is input, second is output. The fields are separated by colon (: ). The rows are
separated by (; ). The arguments may appear in both fields, if thePINs have attribute
direction=output  or direction=both . If direction=output , then the argument has latch-
type behavior. The argument on the input field is considered previous state, and the argument
on the output field is considered the next state. Ifdirection=both , then the argument on the
input field applies for input direction, and the argument on the output field applies for output
direction of the bidirectionalPIN .
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Example:

CELL ff_sd {
PIN  q {DIRECTION=output}
PIN  d {DIRECTION=input}
PIN cp {DIRECTION=input

ATTRIBUTE clock
POLARITY=rising_edge}

PIN cd {DIRECTION=input SIGNALTYPE=clear POLARITY=low}
PIN sd {DIRECTION=input SIGNALTYPE=set POLARITY=low}
FUNCTION {

BEHAVIOR {
@(!cd) {q = 0;} :(!sd) {q = 1;} :(01 cp) {q = d;}

}
STATETABLE {

cd sd  cp  d   q  : q ;
0  ?   ??  ?   ?  : 0 ;
1  0   ??  ?   ?  : 1 ;
1  1   1?  ?   0  : 0 ;
1  1   ?0  ?   1  : 1 ;
1  1   1?  ?   0  : 0 ;
1  1   ?0  ?   1  : 1 ;
1  1   01  ?   ?  :(d);

}
}

}

If the output variable with latch-type behavior depends only on the previous state of itself as
opposed to the previous state of other output variables with latch-type behavior, it is not
necessary to use that output variable in the input field. This allows a more compact form of the
STATETABLE.

Example:

STATETABLE {
cd sd  cp  d  : q ;
0  ?   ??  ?  : 0 ;
1  0   ??  ?  : 1 ;
1  1   1?  ?  :(q);
1  1   ?0  ?  :(q);
1  1   01  ?  :(d);

}

A generic ALF parser must make the following semantic checks:

■ Are all variables of aFUNCTION declared either by declaration asPIN  names or through
assignment?

■ Does theSTATETABLE exclusively contain declaredPINs?

■ Is the format of theSTATETABLE, i.e. the number of elements in each field of each row,
consistent?

■ Are the values consistently either state or transition digits?
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■ Is the number of digits in eachTABLE entry compatible with the signal bus width?

A more sophisticated checker for complete verification for logical consistency of aFUNCTION

given in both equation and tabular representation is out of scope for a generic ALF parser,
which checks only syntax and compliance to semantic rules. However, formal verification
algorithms can be implemented in special-purpose ALF analyzers or model generators/
compilers.

3.8.3 Referencing PINs in VECTORs

Let us call the set ofPINs of aCELL with PINTYPE=digital  andSCOPE=both theset of physical
digital pins. The set of physical digital pinsdefines the set of variables used by theVECTOR

objects, since aVECTOR defines state, transition, or sequence of transitions of pins and those
pins need to be physically controllable and observable for characterization.

For detection of a sequence of transitions it is necessary to observe the complete set of physical
digital pins. For instance, if the set of physical digital pins consists ofA, B, andC, the vector

 (01 A -> 01 B)

implies, that no transition onC occurs between the transitions01 A  and01 B .

There is a relation between theFUNCTION and the possible set ofVECTORs for aCELL. Again,
complete verification of the logical consistency is out of scope for the generic parser, but it will
be considered in ALF analyzers or model generators/compilers.

3.8.4 Referencing arithmetic models

Input variables, also calledarguments of arithmetic models, appear in theHEADER of the model.
In the simplest case, theHEADER is just a list of arguments, each being a context-sensitive
keyword. The model itself is also defined with a context-sensitive keyword.

The model can be in equation form. All arguments of the equation must be in theHEADER. The
ALF parser should issue an error, if theEQUATION uses an argument not defined in theHEADER.
A warning should be issued, if theHEADER contains arguments not used in theEQUATION.

Example:

DELAY {
...
HEADER {

CAPACITANCE {...}
SLEWRATE {...}

}
EQUATION {

0.01 + 0.3*SLEWRATE + (0.6 + 0.1*SLEWRATE)*CAPACITANCE
}

}

If the model uses aTABLE, then each argument in theHEADER also needs a table in order to
define the format. The order of arguments decides how the index to each entry is calculated.



Version 1.0 Advanced Library Format (ALF) Reference Manual 3-44

Referenceable objects Library Format Specification

The first argument is the innermost index, the following arguments are outer indices.

DELAY {
HEADER {

CAPACITANCE {
TABLE {0.03 0.06 0.12 0.24}

}
SLEWRATE {

TABLE {0.1 0.3 0.9}
}

}
TABLE {

0.07 0.10 0.14 0.22
0.09 0.13 0.19 0.30
0.10 0.15 0.25 0.41

}
}

The first argumentload  has 4 entries. The second argumentramptime  has 3 entries. Hence
DELAY has 4*3=12 entries. For readability, comments may be inserted in the table.

TABLE {
//capacitance:0.03 0.06 0.12 0.24
//            -------------------   slewrate:

         0.07 0.10 0.14 0.22 // 0.1
         0.09 0.13 0.19 0.30 // 0.3
         0.10 0.15 0.25 0.41 // 0.9

}

Comments have no significance for the ALF parser, nor has the arrangement in rows and
columns. Only the order of values is important for index calculation. The table can be made
more compact by removing line breaks.

TABLE { 0.07 0.10 0.14 0.22 0.09 0.13 0.19 0.30 0.10 0.15 0.25 0.41 }

For readability, the models and arguments can also have names, i.e. object IDs. For named
objects, the name is used for referencing, rather than the keyword.

DELAY rise_out{
...
HEADER {

CAPACITANCE c_out {...}
SLEWRATE fall_in {...}

}
EQUATION {

0.01 + 0.3 * fall_in + (0.6 + 0.1* fall_in) * c_out
}

}

The arguments of an arithmetic model can be arithmetic models themselves. In this way,
combinations ofTABLE- andEQUATION-based models can be used, for instance, in derating.

Coherent withFUNCTION, bothEQUATION andTABLE representation of an arithmetic model are
allowed. TheEQUATION is intended to be used when the values of the arguments fall out of
range, i.e. to avoid extrapolation. This is especially used in wire models.
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3.9 Functional modeling styles and rules

ALF allows the following functional modeling styles: equation based, table-based, and
primitive based. Both equation- and table-based functions are canonical and specify exactly the
same functionality. Each primitive must be definable in either of the canonical modeling styles.

Since ALF supports both combinational and sequential functional specification using the 8-
value logic system, an exhaustive behavioral description of all scenarios, which is needed for
a simulation model, would be very cumbersome and defeat the purpose of a simple, easy-to-
use language. Hence the following rules shall apply for compilation of the ALF description into
a full simulation model. These rules cover all cases where the functional description is not
explicit. All of these rules can be overruled by explicit specification of the behavior.

3.9.1 Rules for combinational functions

If a boolean expression evaluatesTrue , the assigned output value is1. If a boolean expression
evaluatesFalse , the assigned output value is0. If the value of a boolean expression cannot be
determined, the assigned output value isX. Assignment of values than1, 0, or X must be
specified explicitly.

For evaluation of the boolean expression, input value 'bH shall be treated as 'b1. Input value 'bL
shall be treated as 'b0. All other input values shall be treated as 'bX.

Examples:

In equation form, these rules can be expressed as follows.

Z = A;

is equivalent to

Z = A ? ’b1 : ’b0;

More explicitly, this is also equivalent to

Z = (A==’b1 || A==’bH)? ’b1 : (A==’b0 || A==’bL)? ’b0 : ’bX;

In table form, this can be expressed as follows:

A : Z;
? : (A);

which is equivalent to

A : Z;
0 : 0;
1 : 1;
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More explicitly, this is also equivalent to

A : Z;
0 : 0;
L : 0;
1 : 1;
H : 1;
X : X;
W : X;
Z : X;
U : X;

3.9.2 Rules for sequential functions

A sequential function is described in equation form by a boolean assignment with a condition
specified by a vector expression. If the vector expression evaluates to1 (True ), the boolean
assignment is activated, and the assigned output values follows the rules for combinational
functions. If the vector expression evaluates to 0  (False ), the output variables hold their
assigned value from the previous evaluation. If the vector expression evaluates toX, the output
variables area assigned anX.

For evaluation of the vector expression, input value 'bH shall be treated as 'b1. Input value 'bL
shall be treated as 'b0. All other input values shall be treated as 'bX.

Examples:

In equation form, these rules can be expressed as follows.

@ (E) {Z = A;}

which is equivalent to

@ (E==’b1 || E==’bH) {Z = A;}
: (E!=’b0 && E!=’bL) {Z = ’bX;}

For a sequential function in table form, these rules can be expressed as follows:

 E A :  Z;
 0 ? : (Z);
 1 ? : (A);

which is equivalent to

E A :  Z;
0 ? : (Z);
L ? : (Z);
1 ? : (A);
H ? : (A);
X ? :  X;
W ? :  X;
Z ? :  X;
U ? :  X;

For edge-sensitive and higher level event sensitive functions, transitions from or to 'bL shall be
treated like transitions from or to 'b0, and transitions from or to 'bH shall be treated like
transitions from or to 'b1.

Not every transition may trigger the evaluation of a function. The set of vectors triggering the
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evaluation of a function are calledactive vectors. From the set of active vectors, a set of
inactive vectors can be derived, which will clearly not trigger the evaluation of a function.

Example:

For the following sequential function

@ (01 CP) { Z = A; }

the active vectors are

(’b0’b1 CP)
(’b0’bH CP)
(’bL’b1 CP)
(’bL’bH CP)

and the inactive vectors are

(’b1’b0 CP)
(’b1’bL CP)
(’bH’b0 CP)
(’bH’bL CP)

The union of active and inactive vectors is the set oflegal vectors. Any vector outside the set
of legal vectors is anillegal vector. An illegal vector can be obtained from a legal vector by
replacing arbitrary binary literals withX or W or Z. Let us think of the replaced digits as
wildcards. Depending on the number of wildcards, the illegal vector can be matched to one or
multiple legal vectors.

Example:

Given the legal vectors above, examples of illegal vectors are:

(’bZ’b1 CP) (’bL’bX CP) (’bH’bX CP) (’bW’b0 CP) (’bX’bZ CP)

Representing the replaced bits with wildcards, we obtain:

(*’b1 CP) (’bL* CP) (’bH* CP) (*’b0 CP) (** CP)

Possible match for(*’b1 CP)  is (’b0’b1 CP)  or (’bL’b1 CP) .
Possible match for(’bL* CP)  is (’bL’b1 CP)  or (’bL’bH CP) .
Possible match for(’bH* CP)  is (’bH’b0 CP)  or (’bH’bL CP) .
Possible match for(*’b0 CP)  is (’b1’b0 CP)  or (’bH’b0 CP) .
Possible match for(** CP)  is anything.

Illegal vector output rule: If the set of possible matches for an illegal vector contains at least
one active vector, the output shall be assigned'bX .

In this example, the illegal vectors(’bZ’b1 CP) , (’bL’bX CP) , and(’bX’bZ CP)  will assign
'bX, whereas(’bH’bX CP)  and(’bW’b0 CP)  will not assign'bX .

Rule for resolving ambiguity in sequential functions: No particular ordering of
simultaneous events is implied. It is up to the model writer to ensure correct operation when
simultaneous events occur.

3.10 Predefined primitives

Primitives are described in ALF syntax. Extensible primitives, i.e. primitives with variable
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number of pins use symbolic placeholders such as<N> for the pin index. This syntax is not
directly supported by ALF, since only constant values are allowed as pin index. If<N> is
replaced by an arbitrary positive integer, the primitive definitions become legal ALF.

However, it is possible to use variable numbers of pins in legal ALF, if they are incorporated
in templates, and the templates are then instantiated for the desired range of indices.

Example:

TEMPLATE {
PRIMITIVE MY_PRIMITIVE {

GROUP index {0:< N>}
... }

}

MY_PRIMITIVE {N = 7} //this is legal ALF

The purpose here is to show the functionality of predefined primitives. The user need not
reproduce them, so template definitions and instantiations for the supported primitives are not
shown.

For all predefined primitives, the following annotations are assumed to be defined at library
level:

PIN {
VIEW = functional
SCOPE = behavioral

}

Only the annotations different from the annotations shown above are described in the primitive
definitions.

All predefined primitives shall have the prefixALF_ in their name, in order to distinguish them
from user-defined primitives.

3.10.1 Combinational primitives

3.10.1.1 One input, multiple output primitives

There are two combinational primitives -ALF_BUF andALF_NOT - with one input pin and
multiple output pins.

The output pins are indexed starting with0. If 0 is the only index used, the index can be omitted
when referencing the output pin, e.g.out  refers toout[0] .

PRIMITIVE ALF_BUF {
GROUP index {0:< N>}
PIN[index] out {

DIRECTION = output
}
PIN in {

DIRECTION = input
}
FUNCTION alf_buf_behavior {

BEHAVIOR {
out[index] = in;
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}
}
FUNCTION alf_buf_statetable {

STATETABLE {
in : out[index];
?  : (in);

}
}

}

Figure 3-25: Primitive model of ALF_BUF

PRIMITIVE ALF_NOT {
GROUP index {0:< N>}
PIN[index] out {

DIRECTION = output
}
PIN in {

DIRECTION = input
}
FUNCTION alf_not_behavior {

BEHAVIOR {
out[index] = !in;

}
}
FUNCTION alf_not_statetable {

STATETABLE {
in : out[index];
?  : (!in);

}
}

}

Figure 3-26: Primitive model of ALF_NOT

3.10.1.2 One output, multiple input primitives

There are six combinational primitives with one output pin and multiple input pins -

ALF_AND, ALF_NAND, ALF_OR, ALF_NOR, ALF_XOR, ALF_XNOR

The input pins are indexed starting with0. If 0 is the only index used, the index can be omitted
when referencing the input pin, e.g.in  refers toin[0] .

The models are defined in a pseudo-recursive way. If<N> is replaced by a positive integer, they
become regular ALF models.

PRIMITIVE ALF_AND {
GROUP index {0:< N>}
GROUP index2 {1:< N>}
PIN out {

DIRECTION = output
}
PIN[index] in {

DIRECTION = input
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}
PIN[index] in2 {

DIRECTION = output
VIEW = none

}
FUNCTION alf_and_behavior {

BEHAVIOR {
in2[0] = in[0];
out    = in2[< N>];
index3 = index2 - 1;
in2[index2] = in[index2] && in2[index3];

}
}
FUNCTION alf_and_statetable {

STATETABLE {
in[index2] in2[index3] : in2[index2];
0          ?           : 0;
1          ?           : (in2[index3]);

}
STATETABLE {

in2[< N>] : out;
?        : (in2[< N>]);

}
}

}

Figure 3-27: Primitive model of ALF_AND

PRIMITIVE ALF_NAND {
GROUP index {0:< N>}
GROUP index2 {1:< N>}
PIN out {

DIRECTION = output
}
PIN[index] in {

DIRECTION = input
}
PIN[index] in2 {

DIRECTION = output
VIEW = none

}
FUNCTION {

BEHAVIOR alf_nand_behavior {
in2[0] = in[0];
out    = ! in2[< N>];
index3 = index2 - 1;
in2[index2] = in[index2] && in2[index3];

}
}
FUNCTION alf_nand_statetable {

STATETABLE {
in[index2] in2[index3] : in2[index2];
0          ?           : 0;
1          ?           : (in2[index3]);
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}
STATETABLE {

in2[< N>] : out;
?        : (!in2[< N>]);

}
}

}

Figure 3-28: Primitive model of ALF_NAND

PRIMITIVE ALF_OR {
GROUP index {0:< N>}
GROUP index2 {1:< N>}
PIN out {

DIRECTION = output
}
PIN[index] in {

DIRECTION = input
}
PIN[index] in2 {

DIRECTION = output
VIEW = none

}
FUNCTION alf_or_behavior {

BEHAVIOR {
in2[0] = in[0];
out    = in2[< N>];
index3 = index2 - 1;
in2[index2] = in[index2] || in2[index3];

}
}
FUNCTION alf_or_statetable {

STATETABLE {
in[index2] in2[index3] : in2[index2];
1          ?           : 1;
0          ?           : (in2[index3]);

}
STATETABLE {

in2[< N>] : out;
?        : (in2[< N>]);

}
}

}

Figure 3-29: Primitive model of ALF_OR

PRIMITIVE ALF_NOR {
GROUP index {0:< N>}
GROUP index2 {1:< N>}
PIN out {

DIRECTION = output
}
PIN[index] in {

DIRECTION = input
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}
PIN[index] in2 {

DIRECTION = output
VIEW = none

}
FUNCTION alf_nor_behavior {

BEHAVIOR {
in2[0] = in[0];
out    = ! in2[< N>];
index3 = index2 - 1;
in2[index2] = in[index2] || in2[index3];

}
}
FUNCTION alf_nor_statetable {

STATETABLE {
in[index2] in2[index3] : in2[index2];
1          ?           : 1;
0          ?           : (in2[index3]);

}
STATETABLE {

in2[< N>] : out;
?        : (! in2[< N>]);

}
}

}

Figure 3-30: Primitive model of ALF_NOR

PRIMITIVE ALF_XOR {
GROUP index {0:< N>}
GROUP index2 {1:< N>}
PIN out {

DIRECTION = output
}
PIN[index] in {

DIRECTION = input
}
PIN[index] in2 {

DIRECTION = output
VIEW = none

}
FUNCTION alf_xor_behavior {

BEHAVIOR {
in2[0] = in[0];
out    = in2[< N>];
index3 = index2 - 1;
in2[index2] = in[index2] != in2[index3];

}
}
FUNCTION alf_xor_statetable {

STATETABLE {
in[index2] in2[index3] : in2[index2];
1          ?           : (!in2[index3]);
0          ?           : (in2[index3]);
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}
STATETABLE {

in2[< N>] : out;
?        : (in2[< N>]);

}
}

}

Figure 3-31: Primitive model of ALF_XOR

PRIMITIVE ALF_XNOR {
GROUP index {0:< N>}
GROUP index2 {1:< N>}
PIN out {

DIRECTION = output
}
PIN[index] in {

DIRECTION = input
}
PIN[index] in2 {

DIRECTION = output
VIEW      = none

}
FUNCTION alf_xnor_behavior {

BEHAVIOR {
in2[0] = in[0];
out    = in2[< N>];
index3 = index2 - 1;
in2[index2] = in[index2] == in2[index3];

}
}
FUNCTION alf_xnor_statetable {

STATETABLE {
in[index2] in2[index3] : in2[index2];
1          ?           : (in2[index3]);
0          ?           : (!in2[index3]);

}
STATETABLE {

in2[< N>] : out;
?        : (in2[< N>]);

}
}

}

Figure 3-32: Primitive model of ALF_XNOR
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3.10.2 Tristate Primitives

There are four tristate primitives -

ALF_BUFIF1, ALF_BUFIF0, ALF_NOTIF1, ALF_NOTIF0

PRIMITIVE ALF_BUFIF1 {
PIN out {

DIRECTION  = output
ENABLE_PIN = enable
ATTRIBUTE {tristate}

}
PIN in  {

DIRECTION  = input
}
PIN enable {

DIRECTION  = input
SIGNALTYPE = out_enable

}
FUNCTION alf_bufif1_behavior {

BEHAVIOR {
out = (enable)? in : ’bZ;

}
}
FUNCTION alf_bufif1_statetable {

STATETABLE {
enable in : out;
 0     ?  : Z;
 1     ?  : (in);

}
}

}

Figure 3-33: Primitive model of ALF_BUFIF1

PRIMITIVE ALF_BUFIF0 {
PIN out {

DIRECTION  = output
ENABLE_PIN = enable
ATTRIBUTE {tristate}

}
PIN in  {

DIRECTION  = input
}
PIN enable {

DIRECTION  = input
SIGNALTYPE = out_enable

}
FUNCTION alf_bufif0_behavior {

BEHAVIOR {
out = (!enable)? in : ’bZ;

}
}
FUNCTION alf_bufif0_statetable {
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STATETABLE {
enable in : out;
 1     ?  : Z;
 0     ?  : (in);

}
}

}

Figure 3-34: Primitive model of ALF_BUFIF0

PRIMITIVE ALF_NOTIF1 {
PIN out {

DIRECTION  = output
ENABLE_PIN = enable
ATTRIBUTE {tristate}

}
PIN in  {

DIRECTION  = input
}
PIN enable {

DIRECTION  = input
SIGNALTYPE = out_enable

}
FUNCTION alf_notif1_behavior {

BEHAVIOR {
out = (enable)? !in : ’bZ;

}
}
FUNCTION alf_notif1_statetable {

STATETABLE {
enable in : out;
 0     ?  : Z;
 1     ?  : (!in);

}
}

}

Figure 3-35: Primitive model of ALF_NOTIF1

PRIMITIVE ALF_NOTIF0 {
PIN out {

DIRECTION  = output
ENABLE_PIN = enable
ATTRIBUTE {tristate}

}
PIN in  {

DIRECTION  = input
}
PIN enable {

DIRECTION  = input
SIGNALTYPE = out_enable

}
FUNCTION alf_notif0_behavior {

BEHAVIOR {
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out = (!enable)? !in : ’bZ;
}

}
FUNCTION alf_notif0_statetable {

STATETABLE {
enable in : out;
 1     ?  : Z;
 0     ?  : (!in);

}
}

}

Figure 3-36: Primitive model of ALF_NOTIF0

3.10.3 Multiplexor

PRIMITIVE ALF_MUX {
PIN Q  {

DIRECTION  = output
SIGNALTYPE = data

}
PIN[1:0] D  {

DIRECTION  = input
SIGNALTYPE = data

}
PIN S  {

DIRECTION  = input
SIGNALTYPE = select

}
FUNCTION alf_mux_behavior {

BEHAVIOR {
Q = (S)? d[1] : (!S || d[0]==d[1])? d[0] : ’bX;

}
}
FUNCTION alf_mux_statetable {

STATETABLE {
D[0] D[1] S  : Z ;
?    ?    0  : (D[0]);
?    ?    1  : (D[1]);
0    0    ?  : 0;
1    1    ?  : 1;

}
}

}

Figure 3-37: Primitive model of ALF_MUX

3.10.4 Flipflop

A dual-rail output D-flipflop with asynchronous set and clear pins is a generic edge-sensitive
sequential device. Simpler flipflops can be modeled using this primitive by setting input pins
to appropriate constant values. More complex flipflops can be modeled by adding
combinational logic around the primitive.
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A particularity of this model is the use of the last two pinsQ_CONFLICT andQN_CONFLICT,
which are virtual pins. They specify the state ofQ andQN in the eventCLEAR andSET become
active simultaneously.

PRIMITIVE ALF_FLIPFLOP {
PIN Q     {

DIRECTION  = output
SIGNALTYPE = data
POLARITY   = non_inverted

}
PIN QN    {

DIRECTION  = output
SIGNALTYPE = data
POLARITY   = inverted

}
PIN D     {

DIRECTION  = input
SIGNALTYPE = data

}
PIN CLOCK {

DIRECTION  = input
SIGNALTYPE = clock
POLARITY   = rising_edge

}
PIN CLEAR {

DIRECTION  = input
SIGNALTYPE = clear
POLARITY   = high
ACTION     = asynchronous

}
PIN SET   {

DIRECTION  = input
SIGNALTYPE = set
POLARITY   = high
ACTION     = asynchronous

}
PIN Q_CONFLICT   {

DIRECTION  = input
VIEW       = none

}
PIN QN_CONFLICT  {

DIRECTION  = input
VIEW       = none

}
FUNCTION {

ALIAS QX  Q_CONFLICT
ALIAS QNX QN_CONFLICT
BEHAVIOR alf_flipflop_behavior {

@ (CLEAR && SET) {
Q  = QX;
QN = QNX;

}
: (CLEAR) {

Q  = 0;
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QN = 1;
}
: (SET) {

Q  = 1;
QN = 0;

}
: (01 CLOCK) { // edge-sensitive behavior

Q  = D;
QN = !D;

}
}
FUNCTION alf_flipflop_statetable {

STATETABLE {
D CLOCK CLEAR SET QX  QNX :  Q    QN ;
?  ??    1     1  ?   ?   : (QX) (QNX);
?  ??    0     1  ?   ?   :  1    0 ;
?  ??    1     0  ?   ?   :  0    1 ;
?  1?    0     0  ?   ?   : (Q)  (QN) ;
?  ?0    0     0  ?   ?   : (Q)  (QN) ;
?  01    0     0  ?   ?   : (D)  (!D) ;

}
}

}

Figure 3-38: Primitive model of ALF_FLIPFLOP

3.10.5 Latch

The dual-rail D-latch with set and clear pins has the same functionality as the flipflop, except
the level-sensitive clock (enable pin).

PRIMITIVE ALF_LATCH {
PIN Q     {

DIRECTION  = output
SIGNALTYPE = data
POLARITY   = non_inverted

}
PIN QN    {

DIRECTION  = output
SIGNALTYPE = data
POLARITY   = inverted

}
PIN D     {

DIRECTION  = input
SIGNALTYPE = data

}
PIN ENABLE {

DIRECTION  = input
SIGNALTYPE = clock
POLARITY   = high

}
PIN CLEAR {

DIRECTION  = input
SIGNALTYPE = clear
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POLARITY   = high
ACTION     = asynchronous

}
PIN SET   {

DIRECTION  = input
SIGNALTYPE = set
POLARITY   = high
ACTION     = asynchronous

}
PIN Q_CONFLICT   {

DIRECTION = input
VIEW      = none

}
PIN QN_CONFLICT  {

DIRECTION = input
VIEW      = none

}
FUNCTION alf_latch_behavior {

ALIAS QX  Q_CONFLICT
ALIAS QNX QN_CONFLICT
BEHAVIOR {

@ (CLEAR && SET) {
Q  = QX;
QN = QNX;

}
: (CLEAR) {

Q  = 0;
QN = 1;

}
: (SET) {

Q  = 1;
QN = 0;

}
: (ENABLE) { // level-sensitive behavior

Q  = D;
QN = !D;

}
}
FUNCTION alf_latch_statetable {

STATETABLE {
D  ENABLE CLEAR SET QX  QNX :  Q    QN ;
?  ?      1     1   ?   ?   : (QX) (QNX);
?  ?      0     1   ?   ?   :  1    0 ;
?  ?      1     0   ?   ?   :  0    1 ;
?  0      0     0   ?   ?   : (Q)  (QN) ;
?  1      0     0   ?   ?   : (D)  (!D) ;

}
}

}

Figure 3-39: Primitive model of ALF_LATCH
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Section 4

Applications

This section shows various examples of library cells modeled using ALF.

4.1 Truth Table vs Boolean Equation

A combinational logic cell and a sequential logic cell are shown below using two different
constructs - truth table and boolean equation.

4.1.1 NAND gate

A 2-input NAND gate library cell can be modeled as shown below. The behavior of the cell
can be modeled either as aSTATETABLE or as a boolean equation.

Modeling a NAND gate using truth table:

CELL ND2 { /* 2 input NAND gate */
PIN a {DIRECTION=input}
PIN b {DIRECTION=input}
PIN z {DIRECTION=output}

STATETABLE {
a  b : z ;
0  ? : 1 ;
1  ? : (!b);

}
)

Modeling a NAND gate using boolean expression:

CELL ND2 { /* 2 input NAND gate */
PIN a {DIRECTION=input}
PIN b {DIRECTION=input}
PIN z {DIRECTION=output}

BEHAVIOR {
z = !(a && b);

}
)
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4.1.2 Flipflop

A flipflop with asynchronous set and clear signals is shown below using truth table.

CELL FLIPFLOP {
PIN CLEAR {DIRECTION=input SIGNALTYPE=clear POLARITY=low}
PIN SET   {DIRECTION=input SIGNALTYPE=set   POLARITY=low}
PIN CLOCK {DIRECTION=input SIGNALTYPE=clock POLARITY=rising_edge}
PIN D     {DIRECTION=input}
PIN Q     {DIRECTION=output}
.../* One of the two behaviors below go here */

}

STATETABLE {
CLEAR SET CLOCK D Q : Q;
0 ? ?? ? ? : 0;
1 0 ?? ? ? : 1;
1 1 01 ? ? : (d);
1 1 1? ? ? : (q);
1 1 ?0 ? ? : (q);

}

Modeling a flipflop with asynchronous set and clear using boolean expression:

BEHAVIOR {
@(!CLEAR) {Q = 0;} : (!SET) {Q = 1;} : (01 CLOCK) {Q = D;}

}

4.2 Use of primitives

The functionality of a cell can be described using instances of other cells.

4.2.1 D-Flipflop with asynchronous clear

CELL d_flipflop_clr {
PIN cd {DIRECTION=input SIGNALTYPE=clear POLARITY=low}
PIN cp {DIRECTION=input SIGNALTYPE=clock POLARITY=rising_edge}
PIN d  {DIRECTION=input}
PIN q  {DIRECTION=output}
.../* One of the two behaviors below go here */

}

Explicit description does not use instances of other cells defined in the library:

BEHAVIOR {
@(01 cp && cd) {q = d;}
@(!cd) {q = 0;}

}

Use of primitives permit derivation of new cells from other cells. Below, a D-Flipflop with
asynchronous clear is derived from a D-Flipflop with asynchronous set and clear (see Section
4.1.2):

BEHAVIOR {
ALF_FLIPFLOP {CLOCK=cp D=d Q=q SET='b0 CLEAR=!cd}

}
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4.2.2 JK-flipflop

This example shows three ways of modeling a JK-Flipflop.

CELL jk_flipflop {
PIN cp {DIRECTION=input SIGNALTYPE=clock POLARITY=rising_edge}
PIN j  {DIRECTION=input}
PIN k  {DIRECTION=input}
PIN q  {DIRECTION=output}
...

}

Explicit description:

BEHAVIOR {
d =

(!j &&  k) ?   0  :
( j && !k) ?   1  :
( j &&  k) ? !(q) :
(!j && !k) ?  (q) :

    ’bx  ;
@(01 cp) {q = d;}

}

Use of primitives (assumesALF_MUX cell is described in the library):

BEHAVIOR {
ALF_MUX {Q=d D0=j D1=!k SELECT=q}
ALF_FLIPFLOP {CLOCK=cp D=d Q=q SET='b0 CLEAR='b0}

}

Use of truth table:

STATETABLE {
cp j k q : (q) ;
01 0 0 ? : (q) ;
01 0 1 ? :  0  ;
01 1 0 ? :  1  ;
01 1 1 ? : (!q);
1? ? ? ? : (q) ;
?0 ? ? ? : (q) ;

}

4.2.3 D-Flipflop with synchronous load and clear

This example shows two different models of a synchronous D-Flipflop.

CELL d_flipflop_ld_clr {
PIN cs {DIRECTION=input SIGNALTYPE=clear

  POLARITY=high   ACTION=synchronous}
PIN ls {DIRECTION=input}
PIN cp {DIRECTION=input SIGNALTYPE=clock POLARITY=rising_edge}
PIN d  {DIRECTION=input}
PIN q  {DIRECTION=output}
...

}
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Explicit description:

BEHAVIOR {
d1 = (ls)? d : q;
d2 = d1 && !cs;
@(01 cp) {q = d2;}

}

Use of primitives:

BEHAVIOR {
ALF_MUX {Q=d1 D0=q D1=d SELECT=ls} /* Connection by pin name */
ALF_AND {d2 d1 !cs} /* Connection by pin order */
ALF_FLIPFLOP {CLOCK=cp D=d2 Q=q SET=’b0 CLEAR=’b0 }

}

4.2.4 D-Flipflop with input multiplexor

This example shows three different modeling styles for a D-flipflop with input multiplexor,
asynchronous set and asynchronous clear:

CELL d_flipflop_mux_set_clr {
PIN sel {DIRECTION=input}
PIN sd  {DIRECTION=input SIGNALTYPE=set   POLARITY=low}
PIN cd  {DIRECTION=input SIGNALTYPE=clear POLARITY=low}
PIN cp  {DIRECTION=input SIGNALTYPE=clock POLARITY=rising_edge}
PIN d1  {DIRECTION=input}
PIN d2  {DIRECTION=input}
PIN q   {DIRECTION=output}
...

}

Explicit description:

BEHAVIOR {
@(!cd) {q = 0;}
@(!sd && cd) {q = 1;}
@(01 cp && cd && sd) {q = (sel)? d1: d2;}

}

More efficient description can be created using priority assignments:

BEHAVIOR {
@(!cd)  {q = 0;}
:(!sd)  {q = 1;}
:(01 cp){q = (sel)? d1: d2;}

}

Use of primitive:

BEHAVIOR {
ALF_FLIPFLOP {CLOCK=cp D=((sel)? d1: d2) Q=q SET=!sd CLEAR=!cd}

}

Note that the use ofALF_MUX primitive is eliminated by using an assignment expression to D
input inALF_FLIPFLOP instance.
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4.2.5 D-latch

This example shows a level-sensitive cell in two different styles.

CELL d_latch {
PIN g {DIRECTION=input SIGNALTYPE=clock POLARITY=high}
PIN d {DIRECTION=input}
PIN q {DIRECTION=output}
...

}

Explicit description:

BEHAVIOR {
@(g) {q = d;}

}

Use of primitive:

BEHAVIOR {
ALF_LATCH {ENABLE=g D=d Q=q SET='b0 CLEAR='b0}

}

4.2.6 SR-latch

The example below shows how some of the input pins can be left unconnected if they represent
don’t care situation.

CELL sr_latch {
PIN sn {DIRECTION=input SIGNALTYPE=set   POLARITY=low}
PIN rn {DIRECTION=input SIGNALTYPE=clear POLARITY=low}
PIN q  {DIRECTION = output}
PIN qn {DIRECTION = output}
...

}

Explicit description:

BEHAVIOR {
@ (!sn) {q  = 'b1; qn = !rn;}
@ (!rn) {qn = 'b1; q  = !sn;}

}

Use of primitive:

BEHAVIOR {
ALF_LATCH {ENABLE='b0 Q=q SET=!sn CLEAR=!rn}

}

SinceENABLE pin is always set to0, the connection ofD pin is irrelevant. Even ifD is considered
'bX  or 'bZ , the behavior will not change.
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4.2.7 JTAG BSR

The following example shows a JTAG BSR cell with built-in scan chain.

CELL F10_18 {
PIN SysOut {DIRECTION  = output}
PIN TDO    {DIRECTION  = output SIGNALTYPE = scan_data}
PIN SysIn  {DIRECTION  = input}
PIN TDI    {DIRECTION  = input SIGNALTYPE = scan_data}
PIN Shift  {DIRECTION  = input SIGNALTYPE = scan_enable}
PIN Clk    {DIRECTION  = input POLARITY = rising_edge

SIGNALTYPE = master_clock}
PIN Update {DIRECTION  = input POLARITY = rising_edge

SIGNALTYPE = slave_clock}
PIN Mode   {DIRECTION  = input SIGNALTYPE = select}
PIN STATE0 {  // This state is on the scan chain

SCAN_POSITION = 1 DIRECTION = output VIEW = none}
PIN STATE1 {  // NOT on scan chain (just update latch)

DIRECTION = output VIEW = none}
FUNCTION {

BEHAVIOR {
@(01 Clk) {STATE0 = Shift ? TDI : SysIn;}
@(01 Update) {STATE1 = STATE0;}
TDO = STATE0;
SysOut = Mode ? STATE1 : SysIn;

}
}

}

4.2.8 Combinational Scan Cell

The following example shows a combinational scan cell with a reused primitive.

LIBRARY major_ASIC_vendor {
INFORMATION {

version = v2.1.0
title = “0.35 standard cell”
product = p35sc
author = “Major Asic Vendor, Inc.”
datetime = “Wed Jul 23 13:50:12 MST 1997”

}
..
CELL ND3A {

INFORMATION {
version = v6.0
title = “3 input nand”
product = p35sc_lib
author = “Joe Cell Designer”
datetime = “Tue Apr 1 01:39:47 PST 1997”

}
PIN Z {DIRECTION=output}
PIN A {DIRECTION=input}
PIN B {DIRECTION=input}
PIN C {DIRECTION=input}
FUNCTION {
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BEHAVIOR {
 ALF_NAND {Z A B C}

}
}
/* fill in timing and power data for ND3A cell */

}
..
CELL ND3B {

PIN Z {DIRECTION=output}
PIN A {DIRECTION=input}
PIN B {DIRECTION=input}
PIN C {DIRECTION=input}
FUNCTION {

BEHAVIOR {
 ALF_NAND {Z A B C}

}
}
/* fill in timing and power data for ND3B cell */

}
..
CELL SCAN_ND4 {

PIN Z {DIRECTION=output}
PIN A {DIRECTION=input}
PIN B {DIRECTION=input}
PIN C {DIRECTION=input}
PIN D {DIRECTION=input SIGNALTYPE=scan_enable}

SCAN_TYPE = control_0
NON_SCAN_CELL = ALF_NAND {Z A B C}
FUNCTION {

BEHAVIOR { Z = !(A && B && C && D);}
}

}
..

}

4.2.9 Scan Flipflop

The following example shows a scan flipflop using the genericALF_FLIPFLOP primitive.

LIBRARY major_ASIC_vendor {
...
CELL F614 {

PIN H01 {DIRECTION = input SIGNALTYPE = data}
PIN H02 {DIRECTION = input SIGNALTYPE = clock}
PIN H03 {DIRECTION = input SIGNALTYPE = clear POLARITY = high}
PIN H04 {DIRECTION = input SIGNALTYPE = set POLARITY = high}
PIN N01 {DIRECTION = output

SCAN {SIGNALTYPE = data POLARITY = non_inverted}}
PIN N02 {DIRECTION = output POLARITY = inverted}
FUNCTION {

BEHAVIOR {
ALF_FLIPFLOP {D=H01 CLOCK=H02 CLEAR=H03 SET=H04

Q=N01 QN=N02 Q_CONFLICT='bX QN_CONFLICT='bX}
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}
}

}
...
CELL S000 {

PIN H01 {DIRECTION = input  SIGNALTYPE = scan_data}
PIN H02 {DIRECTION = input  SIGNALTYPE = clock

OFFSTATE  = non_inverted}
PIN H03 {DIRECTION = input  SIGNALTYPE = scan_enable

   POLARITY  = low}
PIN H04 (DIRECTION = input  SIGNALTYPE = set   POLARITY = high}
PIN H05 {DIRECTION = input  SIGNALTYPE = clear POLARITY = high}
PIN H06 {DIRECTION = input  SIGNALTYPE = data}
PIN N01 {DIRECTION = output SIGNALTYPE = data

POLARITY  = non_inverted}
PIN N02 {DIRECTION = output POLARITY = inverted}
FUNCTION{

BEHAVIOR {
ALF_MUX {Q=flipflop_d D0=H06 D1=H01 SELECT=H03}
ALF_FLIPFLOP {D=flipflop_d CLOCK=H02 CLEAR=H05 SET=H04

Q=N01 QN=N02 Q_CONFLICT='bX QN_CONFLICT='bX}
}

}
SCAN_TYPE = muxscan
NON_SCAN_CELL = ALF_FLIPFLOP {D=H06 CLOCK=H02 CLEAR=H05 SET=H04

 Q=N01 QN=N02 Q_CONFLICT='bX
 QN_CONFLICT='bX 'b0=H03 'b0=H01}

}
...

}

4.2.10 Quad D-Flipflop

The following example shows a quad D-Flipflop with and without built-in scan chain.

LIBRARY major_ASIC_vendor {
PRIMITIVE FFX4 {

PIN CK { DIRECTION = input }
PIN D0 { DIRECTION = input }
PIN D1 { DIRECTION = input }
PIN D2 { DIRECTION = input }
PIN D3 { DIRECTION = input }
PIN Q0 { DIRECTION = output }
PIN Q1 { DIRECTION = output }
PIN Q2 { DIRECTION = output }
PIN Q3 { DIRECTION = output }
FUNCTION {

BEHAVIOR {
ALF_FLIPFLOP {Q=Q0 D=D0 CLOCK=CK SET='b0 CLEAR='b0}
ALF_FLIPFLOP {Q=Q1 D=D1 CLOCK=CK SET='b0 CLEAR='b0}
ALF_FLIPFLOP {Q=Q2 D=D2 CLOCK=CK SET='b0 CLEAR='b0}
ALF_FLIPFLOP {Q=Q3 D=D3 CLOCK=CK SET='b0 CLEAR='b0}

}
}
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}
CELL SCAN_FFX4 {

PIN OUT0  {DIRECTION = output}
PIN OUT1  {DIRECTION = output}
PIN OUT2  {DIRECTION = output}
PIN OUT3  {DIRECTION = output}
PIN SO  {DIRECTION = output SIGNALTYPE = scan_data}
PIN IN0  {DIRECTION = input SIGNALTYPE = data}
PIN IN1  {DIRECTION = input SIGNALTYPE = data}
PIN IN2  {DIRECTION = input SIGNALTYPE = data}
PIN IN3  {DIRECTION = input SIGNALTYPE = data}
PIN CLK {DIRECTION = input SIGNALTYPE = clock}
PIN SI  {DIRECTION = input SIGNALTYPE = scan_data}
PIN SE  {DIRECTION = input SIGNALTYPE = scan_enable}
PIN STATE0 {SCAN_POSITION = 1 DIRECTION = output VIEW = none}
PIN STATE1 {SCAN_POSITION = 2 DIRECTION = output VIEW = none}
PIN STATE2 {SCAN_POSITION = 3 DIRECTION = output VIEW = none}
PIN STATE3 {SCAN_POSITION = 4 DIRECTION = output VIEW = none}
FUNCTION {

BEHAVIOR {
OUT0 = STATE0; OUT1 = STATE1; OUT2 = STATE2; OUT3 = STATE3;
SO = !STATE3;
@(01 CLK) {

STATE0 = SE ? !SI     : IN0;
STATE1 = SE ? !STATE0 : IN1;
STATE2 = SE ? !STATE1 : IN2;
STATE3 = SE ? !STATE2 : IN3;

}
}

}
SCAN_TYPE = muxscan
NON_SCAN_CELL = FFX4 {CLK IN0 IN1 IN2 IN3 OUT0 OUT1 OUT2 OUT3}
} // this example shows referencing by order

}
}

4.3 Templates and vector-specific models

4.3.1 Vector specific delay and power Tables

In this example, the use of vector specific models for input-to-output delay, output ramptime,
and switching energy is shown.

CELL nand2 {
PIN a {DIRECTION = input CAPACITANCE = 0.02 {UNIT = pF}}
PIN b {DIRECTION = input CAPACITANCE = 0.02 {UNIT = pF}}
PIN z {DIRECTION = output}
FUNCTION {

BEHAVIOR {z = !(a && b); }
}
VECTOR (10 a -> 01 z){ /* Vector specific characterization */

DELAY {
UNIT = ns
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FROM {PIN = a  THRESHOLD = 0.4}
TO   {PIN = z  THRESHOLD = 0.6}
HEADER {

CAPACITANCE {
PIN = z UNIT = pF
TABLE {0.01 0.02 0.04 0.08 0.16}

}
SLEWRATE {

PIN = a UNIT = ns
FROM {THRESHOLD = 0.5}
TO   {THRESHOLD = 0.3}
TABLE {0.1 0.3 0.9}

}
}
TABLE {

0.1 0.2 0.4 0.8 1.6
0.2 0.3 0.5 0.9 1.7
0.4 0.5 0.7 1.1 1.9

}
}
SLEWRATE {

PIN = z UNIT = ns
FROM {THRESHOLD = 0.3}
TO   {THRESHOLD = 0.5}
HEADER {

CAPACITANCE {
PIN = z UNIT = pF
TABLE {0.01 0.02 0.04 0.08 0.16}

}
SLEWRATE {

PIN = a UNIT = ns
FROM {THRESHOLD = 0.5}
TO   {THRESHOLD = 0.3}
TABLE {0.1 0.3 0.9}

}
}
TABLE {

0.1 0.2 0.4 0.8 1.6
0.1 0.2 0.4 0.8 1.6
0.2 0.4 0.6 1.0 1.8

}
}
ENERGY {

UNIT = pJ
HEADER {

CAPACITANCE {
PIN = z UNIT = pF
TABLE {0.01 0.02 0.04 0.08 0.16}

}
SLEWRATE {

PIN = a UNIT = ns
FROM {THRESHOLD = 0.5}
TO   {THRESHOLD = 0.3}
TABLE {0.1 0.3 0.9}
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}
}
TABLE {

0.21 0.32 0.64 0.98 1.96
0.22 0.33 0.65 0.99 1.97
0.31 0.42 0.74 1.08 2.06

}
}

}
VECTOR (01 a -> 10 z){

DELAY    { ... }
SLEWRATE { ... }
ENERGY   { ... }

}
VECTOR (10 b -> 01 z){

DELAY    { ... }
SLEWRATE { ... }
ENERGY   { ... }

}
VECTOR (01 b -> 10 z){

DELAY    { ... }
SLEWRATE { ... }
ENERGY   { ... }

}
}

4.3.2 Use of TEMPLATE

Notice that the header for the delay, ramptime, and energy models was the same in the example
above. Therefore creating a template definition can eliminate duplicate information, reduce the
possibility of inadvertent errors, and make the models compact. For example, a header template
can be created as shown below:

TEMPLATE std_header_2d {
HEADER {

CAPACITANCE {
PIN = <out_pin> UNIT = pF
TABLE {0.01 0.02 0.04 0.08 0.16}

}
SLEWRATE {

PIN = <in_pin> UNIT = ns
FROM {THRESHOLD {RISE = 0.3  FALL = 0.5} }
TO   {THRESHOLD {RISE = 0.5  FALL = 0.3} }
TABLE {0.1 0.3 0.9}

}
}
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The use ofTEMPLATE eliminates the repetition of header information by rewriting the previous
example (only the first vector) as shown below.

DELAY {
UNIT = ns
THRESHOLD {RISE=0.4 FALL=0.6}
FROM {PIN = a}
TO   {PIN = z}
std_header_2d { /* Template is used */

in_pin = a
out_pin = z

}
TABLE {

0.1 0.2 0.4 0.8 1.6
0.2 0.3 0.5 0.9 1.7
0.4 0.5 0.7 1.1 1.9

}
}
SLEWRATE {

PIN = z UNIT = ns
FROM {THRESHOLD {RISE = 0.3  FALL = 0.5} }
TO   {THRESHOLD {RISE = 0.5  FALL = 0.3} }
std_header_2d { /* Template is used */

in_pin = a
out_pin = z

}
TABLE {

0.1 0.2 0.4 0.8 1.6
0.1 0.2 0.4 0.8 1.6
0.2 0.4 0.6 1.0 1.8

}
}
ENERGY {

UNIT = pJ
std_header_2d { /* Template is used */

in_pin = a
out_pin = z

}
TABLE {

0.21 0.32 0.64 0.98 1.96
0.22 0.33 0.65 0.99 1.97
0.31 0.42 0.74 1.08 2.06

}
}

}

Note that the entire characterization model for CELLnand2  is the same for each vector (i.e.
pair of input and output pins), so further efficiency can be achieved by defining the
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characterization model itself as a template. This template definition uses the instantiation of the
previously defined header template.

TEMPLATE std_char_2d {
DELAY {

UNIT = ns
THRESHOLD {RISE=0.4 FALL=0.6}
FROM {PIN = <in_pin>  }
TO   {PIN = <out_pin> }
std_header_2d {

in_pin = <in_pin>
out_pin = <out_pin>

}
TABLE <delay_data>

}
SLEWRATE {

PIN = <out_pin> UNIT = ns
FROM {THRESHOLD {RISE = 0.3  FALL = 0.5} }
TO   {THRESHOLD {RISE = 0.5  FALL = 0.3} }
std_header_2d {

in_pin = <in_pin>
out_pin = <out_pin>

}
TABLE <ramptime_data>

}
ENERGY {

UNIT = pJ
std_header_2d {

in_pin = <in_pin>
out_pin = <out_pin>

}
TABLE <energy_data>

}
}

Now only the delay, ramptime and energy models contain specific data that is different for each
vector. All repetitive information is in the template definition. The characterization model can
be rewritten compactly as shown below:

std_char_2d {
in_pin = a
out_pin = z
delay_data = {

0.1 0.2 0.4 0.8 1.6
0.2 0.3 0.5 0.9 1.7
0.4 0.5 0.7 1.1 1.9

}
ramptime_data = {

0.1 0.2 0.4 0.8 1.6
0.1 0.2 0.4 0.8 1.6
0.2 0.4 0.6 1.0 1.8
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}
energy_data = {

0.21 0.32 0.64 0.98 1.96
0.22 0.33 0.65 0.99 1.97
0.31 0.42 0.74 1.08 2.06

}
}

4.3.3 Vector description styles for timing arcs

In previous examples, the vectors were specified as timing arcs. This is not ambiguous, since
the sequence of transitions can only happen under one test condition.

VECTOR (10 a -> 01 z){
std_char_2d { ... }

}
VECTOR (01 a -> 10 z){

std_char_2d { ... }
}
VECTOR (10 b -> 01 z){

std_char_2d { ... }
}
VECTOR (01 b -> 10 z){

std_char_2d { ... }
}

An alternate way of describing the above vectors is to specify the input transition and the state
of the other input(s) which control the output transition.

VECTOR (10 a && b){
std_char_2d { ... }

}
VECTOR (01 a && b){

std_char_2d { ... }
}
VECTOR (10 b && a){

std_char_2d { ... }
}
VECTOR (01 b && a){

std_char_2d { ... }
}
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A redundant yet safe way of vector description is to specify both output transition and input
state(s) together with the input transition.

VECTOR (10 a -> 01 z && b){
std_char_2d { ... }

}
VECTOR (01 a -> 10 z && b){

std_char_2d { ... }
}
VECTOR (10 b -> 01 z && a){

std_char_2d { ... }
}
VECTOR (01 b -> 10 z && a){

std_char_2d { ... }
}

In the non-redundant specification, either the input state or the output transition can be derived
from the functional description.

4.3.4 Vectors for delay, power and timing constraints

A D-Flipflop model without the set and clear signals is shown below. This model has vectors
for specific purpose - some for delay and power, some for power only (output is not switching),
and some for timing constraints. However, each vector has the same structure, although the
input variables change. The vectors for delay and power model require 2-dimensional tables
with load capacitance and input ramptime as variables, the vectors for power model require
1-dimensional tables with input ramptime as variable, and the vectors for time constraints
require 2-dimensional tables with ramptime on two inputs as variables.

CELL d_flipflop {
PIN cp {DIRECTION = input}
PIN d  {DIRECTION = input}
PIN q  {DIRECTION = output}
FUNCTION {

BEHAVIOR { @(01 cp) {q = d; } }
}
VECTOR (01 cp -> 01 q) {

/* fill in arithmetic models for delay and power */
}
VECTOR (01 cp -> 10 q) {

/* fill in arithmetic models for delay and power */
}
VECTOR (01 cp && d == q) {

/* fill in arithmetic model for power */
}
VECTOR (10 cp && d == q) {

/* fill in arithmetic model for power */
}
VECTOR (10 cp && d != q) {

/* fill in arithmetic model for power */
}
VECTOR (01 d && !cp) {

/* fill in arithmetic model for power */
}
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VECTOR (10 d && !cp) {
/* fill in arithmetic model for power */

}
VECTOR (01 d && cp) {

/* fill in arithmetic model for power */
}
VECTOR (10 d && cp) {

/* fill in arithmetic model for power */
}
VECTOR (01 d <&> 01 cp)

SETUP {
/* fill in arithmetic model for setup time constraint */
VIOLATION {

BEHAVIOR {q = 'bx;}
MESSAGE_TYPE = error
MESSAGE = “setup violation 01 d <-> 01 cp“

}
}
HOLD {

/* fill in arithmetic model for hold time constraint */
VIOLATION {

BEHAVIOR {q = 'bx;}
MESSAGE_TYPE = error
MESSAGE = “hold violation 01 d <-> 01 cp“

}
}

VECTOR (10 d <&> 01 cp)
SETUP {

/* fill in arithmetic model for setup time constraint */
VIOLATION {

BEHAVIOR {q = 'bx;}
MESSAGE_TYPE = error
MESSAGE = “setup violation 10 d <-> 01 cp“

}
}
HOLD {

/* fill in arithmetic model for hold time constraint */
VIOLATION {

BEHAVIOR {q = 'bx;}
MESSAGE_TYPE = error
MESSAGE = “hold violation 10 d <-> 01 cp“

}
}

}
}

4.4 Combining tables and equations

4.4.1 Table vs equation

The following examples show the usage ofTABLE andEQUATION in the model.
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Example with table:

CURRENT {
PIN = VDD
UNIT = mA
TIME = 30 {UNIT = ns}
MEASUREMENT = average
HEADER {

CAPACITANCE {
PIN = z UNIT = pF
TABLE {0.02 0.04 0.08 0.16}

}
SLEWRATE {

PIN = a UNIT = ns
TABLE {0.1 0.3 0.9}

}
}
TABLE {

0.0011 0.0021 0.0041 0.0081
0.0013 0.0023 0.0043 0.0083
0.0019 0.0029 0.0049 0.0089

}
}

Equivalent example with equation:

CURRENT {
PIN = VDD UNIT = mA
TIME = 30 {UNIT = ns}
MEASUREMENT = average
HEADER {

CAPACITANCE {PIN = z UNIT = pF}
SLEWRATE    {PIN = a UNIT = ns}

}
EQUATION {0.05*CAPACITANCE + 0.001*SLEWRATE}

}

If the model uses anEQUATION, then each argument must appear in theHEADER. If the model
uses aTABLE, then theHEADER must contain aTABLE for each argument. The number of values
in the main table and the indexing scheme is defined by the order and the number of values in
each table inside the header.

4.4.2 Cell with Multiple Output Pins

The following example shows how to use combinations of tables and equations for efficient
modeling of energy consumption of a cell with two (buffered) outputs. When two outputs are
switching, triggered by the same input, the dynamic energy consumption depends on ramptime
of the input signal and load capacitance on each output.

Instead of creating a 3-dimensional table, two 2-dimensional tables are used, varying the load
capacitance at one output and keeping zero load at the other output. The equation calculates the
energy for both outputs switching by adding the values from each table together for the
applicable load capacitance and by subtracting a corresponding correction term. The result is
exact for cells with buffered outputs.
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As shown in the example below, an arithmetic model must be a named object, if several objects
of the same type occur within the same scope (e.g.ENERGY). For named objects, the equation
uses the object name instead of the object type.

VECTOR (01 ci -> (01 co <-> 10 s) & a) {
ENERGY {

UNIT = pJ
HEADER {

ENERGY energy_co { // named object
UNIT = pJ
HEADER {

CAPACITANCE {
PIN = co UNIT = pF
TABLE { ... }

}
SLEWRATE {

PIN = ci UNIT = ns
TABLE { ... }

}
}
TABLE { ... }

}
ENERGY energy_s { // named object

UNIT = pJ
HEADER {

CAPACITANCE {
PIN = s UNIT = pF
TABLE { ... }

}
SLEWRATE {

PIN = ci UNIT = ns
TABLE { ... }

}
}
TABLE { ... }

}
ENERGY energy_noload { // named object

UNIT = pJ
HEADER {

SLEWRATE {
PIN = ci UNIT = ns
TABLE { ... }

}
}
TABLE { ... }

}
}
EQUATION {energy_co + energy_s - energy_noload}

}
}
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4.4.3 PVT Derating

Combinations of tables and equations can also be used for derating with respect to voltage and
temperature, since those variables would add more dimensions to a purely table-based model.

In this example, theDELAY objects must be named, since there is both a nominal and a derated
DELAY.

DELAY rise_out{
HEADER {

PROCESS {
HEADER {nom snsp snwp wnsp wnwp}
TABLE  {0.0 -0.1 -0.2 +0.3 +0.2}

}
VOLTAGE {//fill in any annotations
}
TEMPERATURE {//fill in any annotations
}
DELAY nom_rise_out {

HEADER {
CAPACITANCE {

TABLE {0.03 0.06 0.12 0.24}
}
SLEWRATE {

TABLE {0.1 0.3 0.9}
}

}
TABLE {

0.07 0.10 0.14 0.22
0.09 0.13 0.19 0.30
0.10 0.15 0.25 0.41

}
}

}
EQUATION {

nom_rise_out
* (1 + process)
* (1 + (temperature - 273)*0.001)
* (1 + (voltage - 3.3)*(-0.3))

}
}

TheHEADER in theprocess  object contains exclusively named variables(nom, snsp...) ,
similar to the truth table of aFUNCTION that contains only pin names. Therefore theTABLE is
expected to have as many entries as theHEADER. TheTABLE insidenom_rise_out  must follow
the format defined by eachTABLE inside the declarations ofload  andramptime . Other declared
object in theHEADER would be ignored for theTABLE format, if they do not have aTABLE inside
themselves.
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For convenience, the derating equation can be defined as a template for future reuse.

TEMPLATE std_derating {
EQUATION {

<variable>
* (1 + <Kp>)
* (1 + (TEMPERATURE - 273)*<Kt>)
* (1 + (VOLTAGE - 3.3)*<Kv>)

}
}

Instantiation of the template in the model:

DELAY rise_out{
HEADER {

PROCESS {
HEADER {nom snsp snwp wnsp wnwp}
TABLE  {0.0 -0.1 -0.2 +0.3 +0.2}

}
VOLTAGE     { ... }
TEMPERATURE { ... }
DELAY nom_rise_out {

HEADER {
CAPACITANCE {TABLE { ... }}
SLEWRATE    {TABLE { ... }}

}
TABLE { ... }

}
std_derating {

variable = nom_rise_out
Kp = PROCESS
Kt = 0.001
Kv = -0.3

}
}

It is possible to assign explicit values to the predefined process and derating case identifiers.

Example:

PROCESS snsp = 0.9
PROCESS wnwp = 1.1

TEMPERATURE nom = 25
VOLTAGE nom = 3.3

TEMPERATURE bccom = 0
VOLTAGE bccom = 3.5

TEMPERATURE wcmil = 125
VOLTAGE wcmil = 2.8
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It is also possible to express voltage, temperature and delay with the derating case as an
independent variable:

VOLTAGE {
HEADER {nom bccom wcmil}
TABLE {3.3 3.5 2.8}

}
TEMPERATURE {

HEADER {nom bccom wcmil}
TABLE  {25 0 125}

}
DELAY {

HEADER {
DERATE_CASE {

HEADER {nom bccom  wcmil}
TABLE  {0 -0.0835 0.265}

}
PROCESS

HEADER {nom snsp snwp wnsp wnwp}
TABLE  {0.0 -0.1 -0.2 +0.3 +0.2}

}
DELAY nom_rise_out { ... }

}
EQUATION {

nom_rise_out
* (1 + PROCESS)
* (1 + DERATE_CASE)

}

Yet another possibility is a completely tabulated model, where the process and derating
identifiers can be directly used as table items.

DELAY {
HEADER {

DERATE_CASE {
TABLE {nom bccom wcmil}

}
PROCESS

TABLE {nom snsp snwp wnsp wnwp}
}

TABLE {
// 3*5 = 15 values

}

4.5 Use of Annotations

4.5.1 Annotations for a PIN

Direct annotation:

PIN data_in {DIRECTION = input THRESHOLD = 0.35 CAPACITANCE = 0.010}
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Using annotation containers:

PIN data_in {DIRECTION = input
 THRESHOLD = 0.35
 CAPACITANCE = 0.010 {

UNIT = pF   MEASUREMENT = average
MIN = 0.009 TYP = 0.010 MAX = 0.012

 }
 LIMIT {SLEWRATE {MAX=3.0 UNIT=ns}

  VOLTAGE  {MAX=3.5 MIN=-0.2}
 }

}

The input pindata_in  has a non-linear capacitance which was characterized using an average
type of measurement. Different measurements yield average capacitances between 0.009 pF
and 0.012 pF, typical average capacitance is 0.010 pF. The slewrate applied to the pin must not
exceed 3.0 ns. The voltage swing must not exceed the lower bound of -0.2 V and the upper
bound of 3.5 volt.

CAPACITANCE {UNIT = pF}
PIN data_out {

DIRECTION = output CAPACITANCE = 0.002
LIMIT {CAPACITANCE = 0.96}

}

The output pin data_out has a capacitance of 0.002 pF. The maximum load capacitance that
may be applied to the pin is 0.96 pF.

4.5.2 Annotations for a timing arc

Specifications for a particular timing arc references specific pins:

DELAY {
UNIT = ns
FROM {PIN = data_in  THRESHOLD = 0.4}
TO   {PIN = data_out THRESHOLD = 0.6}

}

SLEWRATE {
PIN = data_out  UNIT = ns
FROM {THRESHOLD = 0.3}
TO   {THRESHOLD = 0.5}

}

Specifications for a generic timing arc does not reference specific pins, but values for both
switching directions must be defined):

DELAY {
UNIT = ns
THRESHOLD {RISE=0.4 FALL=0.6}

}

SLEWRATE {
UNIT = ns
FROM {THRESHOLD {RISE=0.3 FALL=0.5}}
TO   {THRESHOLD {RISE=0.5 FALL=0.3}}

}
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4.5.3 Creating Self-explaining Annotations

The self-explaining annotations can be created usingTEMPLATE.

Example: number of connections allowed for each pin

TEMPLATE must_connect {
LIMIT {CONNECTION {MIN = 1}}

}

TEMPLATE can_float {
LIMIT {CONNECTION {MIN = 0}}

}

TEMPLATE no_connection {
LIMIT {CONNECTION {MAX = 0}}

}

CELL a_flipflop {
PIN q  {must_connect  DIRECTION=output}
PIN qn {can_float     DIRECTION=output}
PIN qi {no_connection DIRECTION=output}
...

}

4.6 Providing fallback position for applications

4.6.1 Use of DEFAULT

ALF’s modeling capabilities address the needs for all types of applications. However, ALF
should also work for applications that use only a subset of information. In order to make the
subset of information controllable, modeling capability withDEFAULT is provided. The
information provided byDEFAULT can be strictly ignored by applications that understand the
full information.

A particular application may not be able to use 3-dimensional tables, or it may not understand
certain models.DEFAULT values can be provided for each model.

Example:

DELAY {
HEADER {

SLEWRATE {
PIN = a UNIT = 1e-9
TABLE {0.5  1.0  1.5}
DEFAULT = 1.0

}
CAPACITANCE {

PIN = z UNIT = 1e-12
TABLE {0.1  0.2  0.3  0.4}
DEFAULT = 0.1

}
VOLTAGE {

PIN = vdd UNIT = 1
TABLE {3.0  3.3  3.6}
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DEFAULT = 3.3
}

}
TABLE {

// arrangement of whitespaces and comments
// is only for readability
// parser sees just a sequence of 3x4x3=36 numbers

//slewrate 0.5  1.0  1.5  capacitance voltage
// --------------+--------------+-------

0.2  0.8  1.1 // 0.1 3.0
0.4  1.0  1.2 // 0.2
0.7  1.2  1.4 // 0.3
0.9  1.5  1.8 // 0.4

0.1  0.7  1.2 // 0.1 3.3
0.3  0.9  1.3 // 0.2
0.6  1.1  1.5 // 0.3
0.8  1.3  1.7 // 0.4

0.1  0.6  1.0 // 0.1 3.6
0.2  0.8  1.1 // 0.2
0.4  1.0  1.3 // 0.3
0.7  1.2  1.6 // 0.4

}
}

An application that does not understandVOLTAGE, will extract the following information from
this example:

DELAY {
HEADER {

SLEWRATE {
PIN = a UNIT = 1e-9
TABLE {0.5  1.0  1.5}

}
CAPACITANCE {

PIN = z UNIT = 1e-12
TABLE {0.1  0.2  0.3  0.4}

}
}
TABLE {

//slewrate 0.5  1.0  1.5  capacitance voltage
// --------------+--------------+-------

0.1  0.7  1.2 // 0.1 3.3
0.3  0.9  1.3 // 0.2
0.6  1.1  1.5 // 0.3
0.8  1.3  1.7 // 0.4

}
}
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An application that does not understandSLEWRATE, will extract only the following information:

DELAY {
HEADER {

CAPACITANCE {
UNIT = 1e-12
PIN = z
TABLE {0.1 0.2 0.3 0.4}

}
}
TABLE {

//slewrate 1.0  capacitance voltage
// ----+--------------+-------

0.7 // 0.1 3.3
0.9 // 0.2
1.1 // 0.3
1.3 // 0.4

}
}

4.7 Bus Modeling

4.7.1 Tristate Driver

Bus drivers are usually tristate buffers, which have straightforward functional models. If both
input signal and enable signal have well-defined logic states, the output is driven to'b1 , 'b0 ,
or 'bz , otherwise it is driven to'bx .

CELL tristate_buffer {
PIN a {DIRECTION   = input    SIGNALTYPE = data}
PIN e {DIRECTION   = input    SIGNALTYPE = out_enable}
PIN z {DIRECTION   = output   SIGNALTYPE = data

 SIGNALDRIVE = tristate ENABLE_PIN = e}
FUNCTION {

BEHAVIOR {
z =
 (e & a)  ? 'b1:
 (e & !a) ? 'b0:
 (!e)  ? 'bz:

   'bx;
}

}
}
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A different model can be used for transmission-gate type of buffers, which also passes the high
impedance state from input to output.

BEHAVIOR {
z =
 ( e) ? a  :
 (!e) ? 'bz:

  'bx;
}

}

In order to model bus contention, the drive strength information of tristate buffers is needed.
This is easily achieved by annotation of a pin property, using a context-sensitive keyword.

CELL tristate_buffer {
...
PIN z {DIRECTION = output DRIVE_STRENGTH = 4}
...

}

The pin-propertyDRIVE_STRENGTH can take an arbitrary positive integer or a real number. In
general, greater values override smaller values, and thatDRIVE_STRENGTH=0 is equivalent to

FUNCTION {z=’bz}.

ALF does not assume a particular set of legal drive strengths. The scale and granularity is left
to the discretion of the ASIC vendor (user).

Modeling of state-dependent drive strength is achieved by annotating drive strength within a
vector rather than within a pin. The following example shows a buffer withstrong-0  and
weak-1  drive.

CELL tristate_buffer {
...
PIN z {DIRECTION = output}
...
VECTOR (z==0) {

DRIVE_STRENGTH = 4 {PIN = z}
}
VECTOR (z==1) {

DRIVE_STRENGTH = 2 {PIN = z}
}

}

The bus itself is not described by an ALF model, since the bus is a design construct rather than
a library cell. A simulation model (Verilog or VHDL) would handle the bus contention.
However, since buses can also be embedded within a core cell, the functional model of the core
would need a functional model of that bus as well.
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4.7.2 Bus with multiple drivers

The following example shows a bus with 3 drivers of equal strength. The output is the resolved
value of the bus.

CELL bus3 {
PIN z1 {DIRECTION = input}
PIN z2 {DIRECTION = input}
PIN z3 {DIRECTION = input}
PIN z  {DIRECTION = output}
FUNCTION {

BEHAVIOR {
z =
 ((z2=='bz || z2==z1) && z3=='bz)?  z1:
 ((z3=='bz || z3==z2) && z1=='bz)?  z2:
 ((z1=='bz || z1==z3) && z2=='bz)?  z3:
  (z1=='b1 && z2=='b1 && z3=='b1)? 'b1:
  (z1=='b0 && z2=='b0 && z3=='b0)? 'b0:

   'bx;
}

}
}

The following example shows a bus with two drivers of equal strength and one driver with
weaker strength (e.g. a busholder).

CELL bus2s1w {
PIN z_strong1 {DIRECTION = input}
PIN z_strong2 {DIRECTION = input}
PIN z_weak   {DIRECTION = input}
PIN z   {DIRECTION = output}
FUNCTION {

BEHAVIOR {
z =
 (z_strong1=='b1 && z_strong2=='b1)? 'b1:
 (z_strong1=='b0 && z_strong2=='b0)? 'b0:
 (z_strong1=='bz && z_strong2=='bz)? z_weak:

  'bx;
}

}
}
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4.7.3 Busholder

A busholder is a cell that retains the previous value of a tristate bus, when all drivers go to high
impedance. This device has only one external pin, which is bidirectional. The input to this
bidirectional pin is the resolved value of the bus.

CELL busholder {
PIN a {DIRECTION = both}
PIN z {DIRECTION = output VIEW = none}
FUNCTION {

BEHAVIOR {
a = !z;
@(a==0)   {z = 1;}
@(a==1)   {z = 0;}
@(a=='bx) {z = 'bx;}

}
}

}

In order to understand the functionality of a bidirectional pin, we split the pin conceptually into
an input pin and an output pin as shown below.

CELL busholder_explicit {
PIN a_in  {DIRECTION = input}
PIN a_out {DIRECTION = output}
PIN z     {DIRECTION = output VIEW = none}
FUNCTION {

BEHAVIOR {
a_out = !z;
@(a_in==0)   {z = 1;}
@(a_in==1)   {z = 0;}
@(a_in=='bx) {z = 'bx;}

}
}

}

The function of this device is well defined, ifa_out==a_in  for all cases wherea_in!=’bz . In
the case ofa_in==’bz, a_out  can take any value. This is a general modeling rule for functions
with bidirectional pins.

4.8 Wire models

4.8.1 Basic Wire Model

This example shows two wire models, using tables and equations. The equation is used outside
the defined table range. If no equation was defined, the table would be extrapolated.

WIRE small_wire {
CAPACITANCE {

UNIT = pF
HEADER {

CONNECTIONS {
TABLE {2 3 4 5}

}
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}
TABLE {0.05 0.09 0.13 0.17}
EQUATION {CONNECTIONS * 0.04 - 0.03}

}
RESISTANCE {

UNIT = mOHM
HEADER {

CONNECTIONS {
TABLE {2 3 4 5}

}
}
TABLE {7.5 10.0 12.5 15.0}
EQUATION {CONNECTIONS * 2.5 + 2.5}

}
}

WIRE large_wire {
CAPACITANCE {

UNIT = pF
HEADER {

CONNECTIONS {
TABLE {2 3 4}

}
}
TABLE {0.10 0.16 0.22}
EQUATION {CONNECTIONS * 0.06 - 0.2}

}
RESISTANCE {

UNIT = mOhm
HEADER {

CONNECTIONS {
TABLE {2 3 4}

}
}
TABLE {10.0 12.5 15.0}
EQUATION {CONNECTIONS * 2.5 + 5.0}

}
}

4.8.2 Wire select model

Since a library may contain multiple wire models, it is necessary to specify which model should
be selected for an application. The annotations inside each wire model can be used for this
purpose.

WIRE small_wire {
LIMIT {AREA=25 {UNIT=1e-6}}
...

}

WIRE large_wire {
LIMIT {AREA {UNIT=1e-6 MIN=25 MAX=100}}
...

}
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If the area covering the routing space is smaller than 25mm2, thesmall_wire  model will be
chosen. If the area covering the routing space is between 25mm2 and 100mm2, thelarge_wire

model is chosen. The unit for area is 1mm2.

More annotations using theUSAGE keyword can be introduced in order to enable customized
wire model selection.

4.9 Megacell Modeling

4.9.1 Expansion of Timing Arcs

GROUP can be used for sets of numbers or for a continuous range of numbers. This can be useful
for defining timing arcs between all bits of two vectors. For example,

GROUP adr_bits  {1 2 3}
GROUP data_bits {1 2}
VECTOR (01 adr[adr_bits] -> 01 dout[data_bits]) { ... }

replaces the following statements:

VECTOR (01 adr[1] -> 01 dout[1]) { ... }
VECTOR (01 adr[2] -> 01 dout[1]) { ... }
VECTOR (01 adr[3] -> 01 dout[1]) { ... }
VECTOR (01 adr[1] -> 01 dout[2]) { ... }
VECTOR (01 adr[2] -> 01 dout[2]) { ... }
VECTOR (01 adr[3] -> 01 dout[2]) { ... }

The following example shows bit-wise expansion of two vectors:

GROUP data_bits {1 2}
VECTOR (01 din[data_bits] -> 01 dout[data_bits]) { ... }

This replaces the following statements:

VECTOR (01 din[1] -> 01 dout[1]) { ... }
VECTOR (01 din[2] -> 01 dout[2]) { ... }

Example for bytewise (or sub-word wise) expansion:

GROUP low_byte  {1 2}
GROUP high_byte {3 4}
VECTOR (01 we[0] -> 01 din[low_byte])  { ... }
VECTOR (01 we[1] -> 01 din[high_byte]) { ... }

This replaces the following statements:

VECTOR (01 we[0] -> 01 din[1]) { ... }
VECTOR (01 we[0] -> 01 din[2]) { ... }
VECTOR (01 we[1] -> 01 din[3]) { ... }
VECTOR (01 we[1] -> 01 din[4]) { ... }
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4.9.2 Two-port memory

The memory model example below shows the use of abstract transition operators on words in
various vectors. Note the simplicity of the functional description of this two-port asynchronous
memory. This example also contains some vectors with distinction between events on row and
column address lines.

CELL async_1write_1read_ram {
GROUP col {1:0}
GROUP row {4:2}
GROUP all {row col}
GROUP byte{7:0}
PIN       enable_write {DIRECTION = input}
PIN [4:0] adr_write    {DIRECTION = input}
PIN [4:0] adr_read     {DIRECTION = input}
PIN [7:0] data_write   {DIRECTION = input}
PIN [7:0] data_read    {DIRECTION = output}
PIN [7:0] data_store [0:31] {DIRECTION = output VIEW = none}
FUNCTION {

BEHAVIOR {
data_read = data_store[adr_read];
@(enable_write) {data_store[adr_write] = data_write;}

}
}
VECTOR
(?! adr_read[col] -> ?? data_read[byte]) {

/* fill in arithmetic models for delay and power */
}
VECTOR
(?! adr_read[row] -> ?? data_read[byte]) {

/* fill in arithmetic models for delay and power */
}
VECTOR
((?!adr_read[col] && ?!adr_read[row]) -> ??data_read[byte]){

/* fill in arithmetic models for delay and power */
}
VECTOR (01 enable_write -> ?? data_read[byte]) {

/* fill in arithmetic models for delay and power */
}
VECTOR (?! data_write[byte] -> ?? data_read[byte]) {

/* fill in arithmetic models for delay and power */
}
VECTOR (?! adr_write[col]) {

/* fill in arithmetic models for power */
}
VECTOR (?! adr_write[row]) {

/* fill in arithmetic models for power */
}
VECTOR (?! adr_write[row] && ?! adr_write[col]) {

/* fill in arithmetic models for power */
}
VECTOR (01 enable_write) {

/* fill in arithmetic models for power */
}
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VECTOR (10 enable_write) {
/* fill in arithmetic models for power */

}
VECTOR (?! data_write[byte] && !enable_write) {

/* fill in arithmetic models for power */
}
VECTOR (?! data_write[byte] &&  enable_write) {

/* fill in arithmetic models for power */
}
VECTOR (?! adr_write[all] <-> 01 enable_write) {

/* fill in arithmetic models for setup time  constraint */
}
VECTOR (10 enable_write <-> ?! adr_write[all]) {

/* fill in arithmetic models for hold time constraint */
}
VECTOR (?! data_write[byte] <-> 10 enable_write) {

/* fill in arithmetic models for setup time constraint */
}
VECTOR (10 enable_write -> ?! data_write[byte]) {

/* fill in arithmetic models for hold time constraint */
}
VECTOR (01 enable_write -> 10 enable_write) {

/* fill in arithmetic models for pulsewidth constraint */
}
VECTOR (10 enable_write -> 01 enable_write) {

/* fill in arithmetic models for pulsewidth constraint */
}

}

The energy consumption for each operation depends on the number of switching bits of the bus.
Therefore, the model inside a particular vector may look like this:

VECTOR (?! data_write[byte] && 1 enable_write) {
ENERGY {

UNIT = pJ
HEADER {switching_bits {PIN = data_write}}
EQUATION {1.3 * switching_bits}

}
}

The rule that the address on a write port must not change during write enable high can be
incorporated easily in the functional model. A pessimistic model assumes that the whole
memory content will become unknown, if such an illegal address change occurs.

BEHAVIOR {
data_read = data_store[adr_read];
@(enable_write) {data_store[adr_write] = data_write;}
@(!?adr_write && enable_write)

{data_store[0:31] = 8'bx;}
}
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4.9.3 Three-port memory

Functional models of more complex memories are also straightforward. The conflicts of
writing to one memory location simultaneously from different ports can be modeled in a
pessimistic way as follows:

CELL async_2write_1read_ram {
PIN       enb_write1  {DIRECTION = input}
PIN       enb_write2  {DIRECTION = input}
PIN [4:0] adr_write1  {DIRECTION = input}
PIN [4:0] adr_write2  {DIRECTION = input}
PIN [4:0] adr_read    {DIRECTION = input}
PIN [7:0] data_write1 {DIRECTION = input}
PIN [7:0] data_write2 {DIRECTION = input}
PIN [7:0] data_read   {DIRECTION = output}
PIN [7:0] data_store [0:31] {DIRECTION = output VIEW = none}
FUNCTION {

BEHAVIOR {
data_read = data_store[adr_read]
@(enb_write1 && !enb_write2)

{data_store[adr_write1] = data_write1;}
@(enb_write2 && !enb_write1)

{data_store[adr_write2] = data_write2;}
@(enb_write1 && enb_write2 && adr_write1!=adr_write2) {

data_store[adr_write1] = data_write1;
data_store[adr_write2] = data_write2;

}
@(enb_write1 && enb_write2 && adr_write1==adr_write2) {

data_store[adr_write1] =
(data_write1==data_write2)? data_write1:8’bx;

data_store[adr_write2]
(data_write2==data_write1)? data_write2:8’bx;

}
}

}
}
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4.10 Special cells

4.10.1 Pulse generator

The following cell generates a one-shot pulse of 1 ns duration when enable goes high.

CELL one_shot {
PIN enable {DIRECTION = input}
PIN q      {DIRECTION = output}
FUNCTION {

BEHAVIOR {
@(01 enable) {q = 1;}
@(q)         {q = 0;}

}
}
VECTOR (01 q -> 10 q) {

DELAY = 1.0 {UNIT = ns}
}

}

4.10.2 VCO

The following cell is a voltage controlled oscillator with 50% duty cycle and enable.

CELL vco {
PIN enable {DIRECTION = input  PINTYPE = digital}
PIN v_in   {DIRECTION = input  PINTYPE = analog}
PIN q      {DIRECTION = output PINTYPE = digital}
FUNCTION {

BEHAVIOR {
@(!enable)      {q = 0;}
@(!q && enable) {q = 1;}
@( q && enable) {q = 0;}

}
}
TEMPLATE voltage_controlled_delay {

DELAY {
UNIT = ns
HEADER {

voltage {
PIN = v_in
TABLE {0.5 1.0 1.5 2.0 2.5 3.0}

}
}
TABLE {10.00 5.00 3.33 2.50 2.00 1.67}

}
}
VECTOR (01 q -> 10 q)

voltage_controlled_delay
}
VECTOR (10 q -> 01 q)

voltage_controlled_delay
}

}
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The template shown above can also be written as an equation to map voltage to frequency:

TEMPLATE voltage_controlled_delay {
DELAY {

UNIT = ns
HEADER {voltage {PIN = v_in}}
EQUATION {5.0 / voltage}

}
}

4.11 Core Modeling

4.11.1 Digital Filter

This example illustrates the potential of ALF for modeling complex blocks. It shows a digital
filter performing the following operation

dout(t) = state(t) + b1 * state(t-1) + b2 * state(t-2)
state(t) = din(t) - a1 * state(t-1) - a2 * state(t-2)

This second order infinite impulse response (IIR) filter is implemented with a single multiplier
and a single adder/subtractor in a way that a newdout  is produced every 4 clock cycles. The
variable coefficientsa1, a2, b1,  andb2 are stored in a dual port RAM.

The model uses templates for the functional blocks of a 2-bit counter used as controller for
memory access and I/O operation, a RAM for coefficient storage, and the filter itself. In the top
module they are instantiated as a structural netlist.

The use of templates is more general than the use of primitives, since not all basic blocks of the
core may be supported as primitives.

LIBRARY core_lib {
TEMPLATE CNT2 {

BEHAVIOR {
@ (!<cd>)   {<cnt> = 2'b0;}
: (01 <cp>) {<cnt> = <start> ? 2'b0 : <cnt> + 1;}

}
}

TEMPLATE RAM16X4 {
BEHAVIOR {

<dout> = <dmem>[<r_adr>];
@ (<we>)  {<dmem>[<w_adr>] = <din>;}

}
}

TEMPLATE IIR2 {
BEHAVIOR {

sum =
(<cntrl>=='d0)? <din> - product :
(<cntrl>=='d1)? accu  - product :
(<cntrl>=='d2)? accu  + product :
(<cntrl>=='d3)? accu  + product;

@ (!<cd>)  {
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product = 16'b0;
accu    = 16'b0;

}
: (01 <cp>){

product =
(<cntrl>=='d0)? coeff * state2 :
(<cntrl>=='d1)? coeff * state1 :
(<cntrl>=='d2)? coeff * state2 :
(<cntrl>=='d3)? coeff * state1 :
16’bX;

accu  = sum;
}

@ (!<cd>)  {
<dout> = 16'b0;
state1 = 16'b0;
state2 = 16'b0;

}
: (01 <cp> && <cntrl>=='d0){

state2 = state1;
state1 = accu;
<dout> = accu;

}
}

}

CELL digital_filter {
PIN [15:0] data_out    {DIRECTION = output}
PIN [15:0] data_in     {DIRECTION = input}
PIN [1:0]  index_coeff {DIRECTION = input}
PIN        write_coeff {DIRECTION = input}
PIN [15:0] coeff_in    {DIRECTION = input}
PIN [15:0] coeff_out   {DIRECTION = output VIEW = none}
PIN [15:0] coeff_array [1:4] {DIRECTION = output VIEW = none}
PIN        data_strobe {DIRECTION = input}
PIN [1:0]  count       {DIRECTION = output VIEW = none}
PIN        clock       {DIRECTION = input}
PIN        reset       {DIRECTION = input}
FUNCTION {

IIR2 U1 {din=data_in dout=data_out coeff=coeff_out
cp=clock cd=reset cntrl = count}

CNT2 U2 {start=data_strobe cnt=count ck=clock cd=reset}
RAM16X4 U3 {we=write_coeff din=coeff_in dout=coeff_out

   dmem=coeff_array r_adr=count w_adr=index_coeff}
}

}
}

4.12 Connectivity

Connectivity information may be specified within the definition of the ALF language format
as described below. A connectivity object always contains a rule specifying the type of
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connections (e.g. must short, can short, cannot short) and a table. If no header is given, then the
table contains the pins or pin classes subject to the connectivity rule. If a header is given, then
the table contains the values of the connectivity function between arguments in the header.
There must be a table inside each connectivity argument, containing the pins or pin classes
subject to the connectivity rule. Valid arguments areDRIVER and/orRECEIVER. Valid values
are the boolean digits0, 1, and?. The value1 implies the connection rule is true, the value0

implies the connection rule is false, the value? implies don’t care situation with the connection
rule.

4.12.1 External connections between pins of a cell

The following example shows how to specify required and disallowed interconnections
external to a cell.

CELL pll {
PIN vdd_ana {PINTYPE=supply}
PIN vdd_dig {PINTYPE=supply}
PIN vss_ana {PINTYPE=supply}
PIN vss_dig {PINTYPE=supply}
CONNECTIVITY common_ground {

CONNECT_RULE = must_short
TABLE {vss_ana vss_dig}

CONNECTIVITY separate_supply {
CONNECT_RULE = cannot_short
TABLE {vdd_ana vdd_dig}

}
}

4.12.2 Allowed connections for classes of pins

The following example defines allowable pin interconnections. The constants for the desired
connectivity classes, the grouping of these classes, and the allowable class connectivity table
are first defined at the library level. The non-zero values within the matrix specify allowable
connectivity of indexed classes. The connectivity classes for pins are then specified with the
pin annotation sections.

LIBRARY example_library {
...
CLASS default_class
CLASS clock_class
CLASS enable_class
CLASS reset_class
CLASS tristate_class
...
TEMPLATE drivers {

default_class
clock_class
enable_class
reset_class
tristate_class

}
TEMPLATE receivers {
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default_class
clock_class
enable_class
reset_class

}
CONNECTIVITY driver_to_driver {

CONNECT_RULE = can_short
HEADER {

DRIVER {TABLE {drivers}}
}
TABLE {// def clk enb rst tri

 0 0 0 0 1
}

}
CONNECTIVITY receiver_to_receiver {

CONNECT_RULE = can_short
HEADER {

RECEIVER {TABLE {receivers}}
}
TABLE {// def clk enb rst

 1 1 1 1
}

}
CONNECTIVITY driver_to_receiver {

CONNECT_RULE = can_short
HEADER {

DRIVER {TABLE {drivers}}
RECEIVER {TABLE {receivers}}

}
TABLE {//  def  clk enb  rst   tri // driver/receiver

1 1  1 1    0 // def
0 1  0 0 0 // clk
0 0  1 0 0 // enb
0 0  0 1 0 // rst

}
}

The above table specifies allowed connectivity from each class to itself, as well as from each
class todefault_class  except for thetristate_class  class which may only connect to
itself. Note also that while any class may connect todefault_class , thedefault_class  may
only connect to itself.
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Once the library level connectivity is defined, connection class specifications are defined for
each pin within cells. The default integer value for theCLASS annotation is0, which
corresponds to the constant declaration value fordefault_class .

CELL d_flipflop_clr {
PIN cd {PINTYPE  = input       SIGNALTYPE    = clear

  POLARITY = low         CONNECT_CLASS = reset_class}
PIN cp {PINTYPE  = input       SIGNALTYPE = clock

  POLARITY = rising_edge CONNECT_CLASS = clock_class}
PIN d  {PINTYPE  = input}
PIN q  {PINTYPE  = output      CONNECT_CLASS = default_class}

}

CELL d_latch {
PIN g {PINTYPE  = input  SIGNALTYPE    = enable

 POLARITY = high   CONNECT_CLASS = enable_class}
PIN d {PINTYPE  = input  CONNECT_CLASS = default_class}
PIN q {PINTYPE  = output CONNECT_CLASS = default_class}

}

CELL tristate_buffer {
PIN a      {PINTYPE = input}
PIN enable {PINTYPE = input  CONNECT_CLASS = enable_class}
PIN z      {PINTYPE = output CONNECT_CLASS = tristate_class}
...

}

Net-specific connectivity, as opposed to the pin-specific connectivity as shown above, is also
possible within the syntax of the language, since aCLASS is not restricted to pins. Specific
applications may assign all pins of a specific type as well as nets like power and ground rails
to a defined class. This class may be used within the connectivity tables to allow or disallow
certain connectivity.

For example, ifvddrail_class  was defined as a net-specific connectivity class, then a specific
pin may be disallowed from connecting to any net in thevddrail_class  connectivity class.

CLASS vddrail_class
...
CELL inverter {

PIN in_pin {PINTYPE = input SIGNALTYPE = clear
POLARITY = low CONNECT_CLASS = reset_class}

CONNECTIVITY dont_tie {
CONNECT_RULE = cannot_short
TABLE {in_pin vddrail_class}

}
...

}
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power 2-7
Power characterization 2-1
power characterization 2-7
power constraint 1-5
power dissipation 2-7
Power model 1-5
power modeling 2-7
primitive 4-2
PROCESS 4-19

PROPERTY 3-4
pulse generator 4-34
PVT Derating 4-19

Q
Q_CONFLICT 3-57
QN_CONFLICT 3-57
quad D-Flipflop 4-8
quoted string 3-8, 3-11

R
RAM16X4 4-36
real 3-9
reserved keyword 3-12
RESISTANCE 4-29
RTL 1-4

S
scaled average current 2-7
scaled average power 2-7
scan cell

combinational 4-6
scan chai 4-6
Scan Flipflop 4-7
Scan insertion 2-8
scan test 2-8
scan_data 4-8
scan_enable 4-8
SCAN_FFX4 4-9
SCAN_ND4 4-7
SCAN_TYPE 4-7
self capacitanc 2-9
self-explaining annotations 4-23
sequential logic

edge-sensitive 2-2
level-sensitive 2-2
N+1 order 2-5
vector-sensitive 2-4

sheet resistance 2-9
signed operators 3-25
simulation model 1-5
single-line comment 3-9
slew rate 2-5
SLEWRATE 4-10, 4-25
soft keyword 3-12
sr_latch 4-5
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state-dependent drive strength 4-26
STATETABLE 4-1
static power 2-8
std_derating 4-20
std_header_2d 4-11
switching energy 4-9

T
TABLE 4-10
TEMPERATURE 4-19
TEMPLATE 3-3, 4-12
template 4-9
template definition 4-11
template-reference scheme 2-6
Three-port Memory 4-33
timing arc 4-22
timing characterization 2-1
timing constraint model 2-6
timing constraint models 2-5
timing constraints 1-5, 4-15
timing modeling 2-5
timing models 1-5
transcendent functions 2-6
transient power 2-8
transition delay 2-5
transmission-gate 4-26
transport delay mode 2-7

invalid-value-detection 2-7
triggering conditions 2-2
triggering function 2-2
tristate driver 4-25
tristate primitives 3-54
tristate_buffer 4-25
Truth Table 4-1
truth table 2-1
Two-port memory 4-31

U
unit annotation 3-35
unnamed annotation containers 3-28
unsigned operators 3-25

V
VCO 4-34
VECTOR 4-9
vector expression 2-4

vector-based modeling 1-5
Vector-Sensitive Sequential Logic 2-4
vector-specific model 4-9
Verilog 1-4, 2-3
VHDL 1-4, 2-3
via resistance 2-9
VIOLATION 4-16
virtual pins 2-8, 3-57
VOLTAGE 4-19, 4-24
voltage_controlled_delay 4-35

W
whitespace characters 3-8
wire modeling 2-9
wire select model 4-29
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