accellera

Advanced Library Format
for
ASIC Technology, Cells, & Blocks

containing Functional, Electrical, and Physical
Models for Design, Analysis, and Optimization
from RTL to Layout

Version 1.9.2
September 28, 2000

This is a draft in progress.
Any section splits and x-refs will be updated.

Accellera

Copyrighf@ 2000 by Accellera. All rights reserved.

No part of this work covered by the copyright hereon may be reproduced or used in any form or by any means --
- graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage and
retrieval systems --- without the prior approval of Accellera.

Additional copies of this manual may be purchased by contacting Accellera at the address shown below.

Notices

The information contained in this manual represents the definition of the Advanced Library Format (ALF) as
reviewed and released by Accellera (PS- TSC) in September 2000.

Accellera reserves the right to make changes to the ALF language and this manual in subsequent revisions and
makes no warranties whatsoever with respect to the completeness, accuracy, or applicability of the information
in this manual, when used for production design and/or development.

Accellera does not endorse any particular simulator or other CAE tool that is based on the Advanced Library
Format.

Suggestions for improvements to the Advanced Library Format and/or to this manual are welcome. They should
be sent to the ALF email reflector

alf@eda.org
or to the address below.
Information about Accellera and membership enroliment can be obtained by inquiring at the address below.

Published as: Advanced Library Format (ALF) Reference Manual
Version 1.9.2, September 2000.

Published by: Accellera
15466 Los Gatos Blvd., #109071
Los Gatos, CA 95032

Phone: (408) 358-9510
Fax: (408) 358-3910

Printed in the United States of America.

Verilog® is a registered trademark of Cadence Design Systems, Inc.

ii Advanced Library Format (ALF) Reference Manual Version 1.9.2

Jay Abraham

Mike Andrews

Tim Ayres

Arun Balakrishnan, PhD
John Beatty

Tom Belpasso
Shir-Shen Chang, PhD
Joe Daniels

Gregory duFour
Timothy Ehrler

Simon Favre

Vassilios Gerousis, PhD
Pierre Girouard

Tim Jennings

Joe Morrell

Stephen Pateras, PhD
John Peters

Wolfgang Roethig, PhD
Dhaval Sejpal

Anand Sethurami
Sergei Sokolov

Gopal Varshney

Paul Zukowski

Version 1.9.2

The following individuals contributed to the creation, editing, and review of ALF 2.0

Silicon Metrics
Mentor Graphics ALF Co-Chairman
Synopsys

NEC Electronics

IBM

Cadence Design Systems

Synopsys

Technical Editor

Mentor Graphics
Philips Semiconductors

Monterey Design Systems

Infineon

LogicVision

Philips Semiconductors
IBM

LogicVision

Philips Semiconductors

NEC Electronics ALF Chairman and Principal Author
IBM

LS| Logic

Sequence Technologies

Philips

IBM

Advanced Library Format (ALF) Reference Manual

iif

The following individuals contributed to the creation, editing and review of ALF 1.0 and/or ALF 1.1.

Jay Abraham

Mike Andrews

Tim Ayres

Arun Balakrishnan
Tim Baldwin

John Beatty

Victor Berman

Dennis Brophy

Jose De Castro

Renlin Chang
Shir-Shen Chang, PhD
Sanjay Churiwala
Timothy Ehrler

Ted Elkind

Paul Foster

Vassilios Gerousis, PhD
Kevin Grotjohn

Mitch Heins

Eric Howard

Tim Jennings

Timothy Jordan

Archie Lachner

Tai Le

Johnson Chan Limqueco
Ta-Yung Liu
Saumendra Nath Mandal
Hamid Rahmanian
Darshan Rauniyar
Wolfgang Roethig, PhD
Larry Rosenberg, PhD
Ambar Sarkar, PhD
ltzhak Shapira
Jin-Sheng Shyr

Sergei Sokolov

Peter Suaris

Toru Toyoda

Yatin Trivedi

Devadas Varma

David Wallace

Cary Wei

Frank Weiler

Jeff Wilson

Amir Zarkesh, PhD

Silicon Integration Initiative
Mentor Graphics Co-Chairman
Synopsys - Viewlogic

NEC
Cadence - Ambit

IBM
VI/IEEE
Mentor Graphics / OVI / IEEE

LSI Logic

Cadence

Synopsys

Cadworx
VLSI Technology
Cadence

Avant!

Siemens / OVI

LSI Logic
Cadence - Ambit
Cadence

Motorola

Motorola
Mentor Graphics
Avant!

Cadence - Ambit
Avant!
Duet Technologies

Mentor Graphics

Mentor Graphics

NEC Chairman

Cadence / VSIA

Synopsys - Viewlogic

Cadence

Toshiba

Sente

Mentor Graphics
NEC
Seva Technologies Technical Editor

Cadence - Ambit
Mentor Graphics - Exemplar
Fujitsu
Avant! / OVI
Mentor Graphics

TDT

Advanced Library Format (ALF) Reference Manual Version 1.9.2

Revision history:

1st draft

2nd draft

3rd draft

4th draft

5th draft

6th draft

7th draft

8th draft

9th draft

Version 1.0

Version 1.0, revision 1
Version 1.0, revision 2
Version 1.0, revision 3
Version 1.0, revision 4
Version 1.0, revision 5
Version 1.0, revision 6
Version 1.0, revision 7
Version 1.0, revision 8
Version 1.0, revision 9
Version 1.0, revision 10
Version 1.0, revision 11
Version 1.1

Version 1.1a, ¥ draft
Version 1.1a, % draft
Version 1.1a, % draft
Version 1.1a, Yidraft
Version 1.1a, 8 draft
Version 1.1a, 6 draft
Version 1.9.0

Version 1.9.1

Version 1.9.2

Version 1.9.2

11/20/1996
12/20/1996
3/22/1997
3/31/1997
4/22/1997
6/1/1997
6/25/1997
8/13/1997
10/14/1997
11/14/1997
3/20/1998
4/8/1998
5/15/1998
5/31/1998
6/15/1998
9/20/1998
11/15/1998
1/12/1999
2/5/1999
2/19/1999
3/12/1999
4/6/1999
10/8/1999
11/4/1999
12/7/1999
1/25/2000
2/28/2000
4/3/2000
7/17/2000
8/21/2000
9/21/2000

Advanced Library Format (ALF) Reference Manual

Vi

Advanced Library Format (ALF) Reference Manual

Version 1.9.2

Table of Contents

1 Introduction. e

1.1 Motivation

1.2 Goals

1.3 Target applications

1.4 Conventions

1.5 Organization of this manual

2 Characterization and Modeling.

2.1 Basic concepts

2.2 Performance modeling for characterization
2.2.1 Modeling for timing
2.2.2 Modeling for power
2.2.3 Modeling for signal integrity

2.3 Physical modeling for synthesis and test
2.3.1 Cell modeling
2.3.2 Wire modeling

2.4 Functional modeling
2.4.1 Combinational logic
2.4.2 Level-sensitive sequential logic
2.4.3 Edge-sensitive sequential logic
2.4.4 Vector-sensitive sequential logic

3 ObjectModel.

3.1 Syntax conventions

3.2 Generic objects
3.2.1 CONSTANT statement
3.2.2 ALIAS statement
3.2.3 INCLUDE statement
3.2.4 CLASS statement
3.25 ATTRIBUTE statement
3.2.6 TEMPLATE statement
3.2.7 PROPERTY statement
3.2.8 GROUP statement
3.2.9 KEYWORD statement

3.3 Library-specific objects

3.4 Arithmetic models

Version 1.9.2 Advanced Library Format (ALF) Reference Manual

Vil

viii

3.5
3.6
3.7
3.8
3.9

4.1
4.2

5.1

5.2

5.3

5.4

Geometric models 22
Library-specific singular objects 22
Relationships between objects 23
INFORMATION container 26
Relations between objects 27
3.9.1 Keywords for referencing objects used as annotation 28
3.9.2 Incremental definitions for VECTOR 29
3.9.3 Other incremental definitions 29
Library Organization 31
Scoping rules 31
Use of multiple files 32
Functional Modeling 33
Combinational functions 33
5.1.1 Combinational logic 33
5.1.2 Boolean operators on scalars 33
5.1.3 Boolean operators on words 34
5.1.4 Operator priorities 35
5.1.5 Datatype mapping 36
5.1.6 Rules for combinational functions 37
5.1.7 Concurrency in combinational functions 38
Sequential functions 39
5.2.1 Level-sensitive sequential logic 39
5.2.2 Edge-sensitive sequential logic 39
5.2.3 Unary operators for vector expressions 41
5.24 Basic rules for sequential functions 43
5.2.5 Concurrency in sequential functions 45
5.2.6 Initial values for logic variables 47
Higher-order sequential functions 48
5.3.1 Vector-sensitive sequential logic 48
5.3.2 Canonical binary operators for vector expressions 49
5.3.3 Complex binary operators for vector expressions 50
5.3.4 Operators for conditional vector expressions 53
5.3.5 Operators for sequential logic 54
5.3.6 Operator priorities 54
5.3.7 Using PINs in VECTORs 54
Modeling with vector expressions 55
54.1 Event reports 56
54.2 Event sequences 57
5.4.3 Scope and content of event sequences 58
Advanced Library Format (ALF) Reference Manual Version 1.9.2

5.4.4 Alternative event sequences 60
5.4.5 Symbolic edge operators 61
5.4.6 Non-events 62
5.4.7 Compact and verbose event sequences 63
5.4.8 Unspecified simultaneous events within scope 64
5.4.9 Simultaneous event sequences 66
5.4.10 Implicit local variables 68
5.4.11 Conditional event sequences 69
5.4.12 Alternative conditional event sequences 71
5.4.13 Change of scope within a vector expression 72
5.4.14 Sequences of conditional event sequences 76
5.4.15 Incompletely specified event sequences 78
5.4.16 How to determine well-specified vector expressions 79

5.5 Variable declarations 80
55.1 BEHAVIOR 81
5.5.2 STATETABLE 81
5.5.3 Multi-dimensional variables 83
5.5.4 ROM initialization 84

5.6 Predefined models 85
5.6.1 Usage of PRIMITIVEs 85
5.6.2 Concept of user-defined and predefined primitives 85
5.6.3 Predefined combinational primitives 87
5.6.4 Predefined tristate primitives 91
5.6.5 Predefined multiplexor 93
5.6.6 Predefined flip-flop 94
5.6.7 Predefined latch 95
5.6.8 Parameterizeable cells 97

6 Modeling for Synthesisand Test. 101

6.1 Annotations and attributes for a CELL 101
6.1.1 CELLTYPE annotation 101
6.1.2 ATTRIBUTE within a CELL object 101
6.1.3 SWAP_CLASS annotation 103
6.1.4 RESTRICT_CLASS annotation 103
6.1.5 Independent SWAP_CLASS and RESTRICT CLASS 104
6.1.6 SWAP_CLASS with inherited RESTRICT_CLASS 105
6.1.7 SCAN_TYPE annotation 106
6.1.8 SCAN_USAGE annotation 106
6.1.9 BUFFERTYPE annotation 107

Version 1.9.2 Advanced Library Format (ALF) Reference Manual ix

6.2
6.3
6.4

6.5

6.6

6.7
6.8

6.1.10
6.1.11

DRIVERTYPE annotation
PARALLEL_DRIVE annotation

NON_SCAN_CELL statement
STRUCTURE statement
Annotations and attributes for a PIN

6.4.1
6.4.2
6.4.3
6.4.4
6.4.5
6.4.6
6.4.7
6.4.8
6.4.9
6.4.10
6.4.11
6.4.12
6.4.13
6.4.14
6.4.15
6.4.16
6.4.17
6.4.18

VIEW annotation

PINTYPE annotation
DIRECTION annotation
SIGNALTYPE annotation
ACTION annotation
POLARITY annotation
DATATYPE annotation
INITIAL_VALUE annotation
SCAN_POSITION annotation
STUCK annotation
SUPPLYTYPE
SIGNAL_CLASS
SUPPLY_CLASS

Driver CELL and PIN specification
DRIVETYPE annotation
SCOPE annotation

PULL annotation
ATTRIBUTE for PIN objects

Definitions for bus pins

6.5.1
6.5.2
6.5.3

RANGE for bus pins
Scalar pins inside a bus
PIN_GROUP statement

Annotations for CLASS and VECTOR

6.6.1
6.6.2
6.6.3
6.6.4
6.6.5
6.6.6
6.6.7
6.6.8

PURPOSE annotation

OPERATION annotation

LABEL annotation
EXISTENCE_CONDITION annotation
EXISTENCE_CLASS annotation

CHARACTERIZATION_CONDITION annotation
CHARACTERIZATION_VECTOR annotation

CHARACTERIZATION_CLASS annotation

ILLEGAL statement for VECTOR
TEST statement

Advanced Library Format (ALF) Reference Manual

107
107
107
109
114
114
115
115
116
119
120
121
121
122
122
122
122
123
124
124
124
125
125
126
126
127
127
129
129
130
131
131
132
132
133
133
133
134

Version 1.9.2

6.9 Physical bitmap for memory BIST 135
6.9.1 Definition of concepts 135
6.9.2 Definitions of pin ATTRIBUTE values for memory BIST 136
6.9.3 Explanatory example 137
7 General Rules for Arithmetic Models. 141
7.1 Principles of arithmetic models 141
7.1.1 Global definitions for arithmetic models 141
7.1.2 Trivial arithmetic model 141
7.1.3 Arithmetic model using EQUATION 142
7.1.4 Arithmetic model using TABLE 142
7.1.5 Complex arithmetic model 143
7.1.6 Containers for arithmetic models and submodels 144
7.2 Arithmetic expressions 144
7.2.1 Syntax of arithmetic expressions 144
7.2.2 Arithmetic operators 145
7.2.3 Operator priorities 146
7.3 Construction of arithmetic models 146
7.4 Annotations for arithmetic models 148
74.1 DEFAULT annotation 148
7.4.2 UNIT annotation 148
7.4.3 CALCULATION annotation 149
7.4.4 INTERPOLATION annotation 150
7.5 Containers for arithmetic models 153
7.6 Arithmetic submodels 154
7.6.1 Semantics of MIN / TYP / MAX 155
7.6.2 Semantics of DEFAULT 156
8 Electrical Performance Modeling 159
8.1 Overview of modeling keywords 159
8.1.1 Timing models 159
8.1.2 Analog models 161
8.1.3 Supplementary models 162
8.2 Auxiliary statements for timing models 163
8.2.1 THRESHOLD definition 163
8.2.2 FROM and TO container 164
8.2.3 PIN annotation 164
8.24 EDGE_NUMBER annotation 164
8.25 Context of THRESHOLD definitions 167
Version 1.9.2 Advanced Library Format (ALF) Reference Manual Xi

Xii

8.3

8.4
8.5
8.6

8.7

8.8

Specification of timing models 169

8.3.1 TEMPLATE for timing measurements

and timing constraints 169
8.3.2 Partially defined timing measurements and constraints 171
8.3.3 TEMPLATE for same-pin timing measurements

and constraints 171
8.3.4 Absolute and incremental evaluation of timing models 172
8.3.5 RISE and FALL submodels 173
8.3.6 TIME 174
8.3.7 DELAY 174
8.3.8 RETAIN 174
8.3.9 SLEWRATE 175
8.3.10 SETUP 175
8.3.11 HOLD 175
8.3.12 NOCHANGE 176
8.3.13 RECOVERY 176
8.3.14 REMOVAL 176
8.3.15 SKEW between two signals 177
8.3.16 SKEW between multiple signals 177
8.3.17 PULSEWIDTH 178
8.3.18 PERIOD 178
8.3.19 JITTER 178
VIOLATION container 178
EARLY and LATE container 179
Environmental dependency for electrical data 179
8.6.1 PROCESS 180
8.6.2 DERATE_CASE 180
8.6.3 Lookup table without interpolation 180
8.6.4 Lookup table for process- or derating-case coefficients 181
8.6.5 TEMPERATURE 181
PIN-related arithmetic models for electrical data 181
8.7.1 Principles 181
8.7.2 CAPACITANCE, RESISTANCE, and INDUCTANCE 182
8.7.3 VOLTAGE and CURRENT 182
8.74 PIN-related timing models 182
8.7.5 Submodels for RISE, FALL, HIGH, and LOW 182
8.7.6 Context-specific semantics 183
Other PIN-related arithmetic models 185
8.8.1 DRIVE_STRENGTH 185
8.8.2 SWITCHING_BITS 186

Advanced Library Format (ALF) Reference Manual Version 1.9.2

8.9 Annotations for arithmetic models 186

8.9.1 MEASUREMENT annotation 187
8.9.2 TIME and FREQUENCY annotation 187
8.9.3 TIME to peak measurement 188
8.94 Rules for combinations of annotations 190
8.10 Waveform description 190
8.10.1 Principles 190
8.10.2 Annotations within a waveform 192
8.11 Arithmetic models for power calculation 192
8.11.1 Principles 192
8.11.2 POWER and ENERGY 193
8.12 Arithmetic models for hot electron calculation 194
8.12.1 Principles 194
8.12.2 FLUX and FLUENCE 194
8.13 Reliability calculation 195
8.13.1 TIME within the LIMIT construct 195
8.13.2 FREQUENCY within a LIMIT construct 196
8.13.3 Global LIMIT specifications 197
8.13.4 LIMIT specification and model specification
in the same context 197
8.13.5 Model specification and argument specification
in the same context 199
8.14 Noise calculation 199
8.14.1 NOISE_MARGIN definition 200
8.14.2 Representation of noise in a VECTOR 201
8.14.3 Context of NOISE_MARGIN 202
8.14.4 Noise propagation 204
8.14.5 Noise rejection 206
8.15 Interconnect parasitics and analysis 207
8.15.1 Principles of the WIRE statement 207
8.15.2 Statistical wireload models 208
8.15.3 Boundary parasitics 209
8.15.4 NODE declaration 211
8.15.5 Interconnect delay and noise calculation 214
8.15.6 SELECT_CLASS annotation for WIRE statement 215
9 Physical Modeling. 217
9.1 Overview 217
9.2 Arithmetic models in the context of layout 218

Version 1.9.2 Advanced Library Format (ALF) Reference Manual Xiii

Xiv

9.3

9.4
9.5

9.6

9.7

9.8

9.9

9.10

Statements for geometric transformation

9.3.1 SHIFT statement

9.3.2 ROTATE statement

9.3.3 FLIP statement

9.34 REPEAT statement

9.3.5 Summary of geometric transformations
ARTWORK statement

LAYER statement

9.5.1 Definition

9.5.2 PURPOSE annotation

9.5.3 PITCH annotation

954 PREFERENCE annotation

9.5.5 Example

Geometric model statement

9.6.1 Definition

9.6.2 Predefined geometric models using TEMPLATE
PATTERN statement

9.7.1 Definition

9.7.2 SHAPE annotation

9.7.3 LAYER annotation

9.7.4 EXTENSION annotation

9.7.5 VERTEX annotation

9.7.6 PATTERN with geometric model

9.7.7 Example

VIA statement

9.8.1 Definition

9.8.2 USAGE annotation

9.8.3 Example

9.8.4 VIA reference

BLOCKAGE statement

9.9.1 Definition

9.9.2 Example

PORT statement

9.10.1 Definition

9.10.2 VIA reference

9.10.3 CONNECTIVITY rules for PORT and PIN
9.10.4 Reference of a declared PORT in a PIN annotation
9.10.5 VIEW annotation

9.10.6 LAYER annotation

9.10.7 ROUTING_TYPE

Advanced Library Format (ALF) Reference Manual

221
221
221
222
222

223
224

225
225
226
227
227
227
228
229
231
233
233
233
234
234
234
235
235
235
235
236
237
238
238
238
239
239
239
240
240
241
242
242
242

Version 1.9.2

9.11

9.12

9.13

9.14

9.15

9.16

9.17

9.18

Version 1.9.2

RULE statement

9.11.1 Definition

9.11.2 Width-dependent spacing

9.11.3 End-of-line rule

9.11.4 Redundant vias

9.11.5 Extraction rules

9.11.6 RULES within BLOCKAGE or PORT
9.11.7 VIA reference

SITE statement

9.12.1 Definition

9.12.2 ORIENTATION_CLASS and SYMMETRY_CLASS

9.12.3 Example

ANTENNA statement

9.13.1 Definition

9.13.2 Layer-specific antenna rules
9.13.3 All-layer antenna rules
9.13.4 Cumulative antenna rules
9.13.5 lllustration

ARRAY Statement

9.14.1 Definition

9.14.2 PURPOSE annotation
9.14.3 Examples

CONNECTIVITY statement

9.15.1 Definition

9.15.2 CONNECT_RULE annotation

9.15.3 CONNECTIVITY modeled with BETWEEN statement
9.15.4 CONNECTIVITY modeled as lookup TABLE

Physical annotations for CELL

9.16.1 PLACEMENT_TYPE annotation

9.16.2 Reference of a SITE by a CELL
Physical annotations for PIN

9.17.1 CONNECT_CLASS annotation

9.17.2 SIDE annotation

9.17.3 ROW and COLUMN annotation

9.17.4 ROUTING_TYPE annotation

Physical annotations for arithmetic models
9.18.1 BETWEEN statement within DISTANCE

9.18.2 MEASUREMENT annotation for DISTANCE

9.18.3 REFERENCE annotation for DISTANCE

Advanced Library Format (ALF) Reference Manual

242
242
243
244
245
245
246
247
247
247
247
248
249
249
250
251
252
253
254
254
254
255
256
256
257
257
258
260
260
260
261
261
261
261
262
262
262
262
263

XV

9.18.4 Reference to ANTENNA within SIZE, AREA,

and PERIMETER 263
10 LexicalRules. 265
10.1 Cross-reference of lexical tokens 265
10.2 Characters 265
10.2.1 Character set 265
10.2.2 Whitespace characters 266
10.2.3 Reserved and non-reserved characters 266
10.3 Lexical tokens 267
10.3.1 Delimiters 267
10.3.2 Comments 267
10.3.3 Numbers 268
10.3.4 Bit literals 268
10.3.5 Based literals 269
10.3.6 Edge literals 270
10.3.7 Quoted strings 270
10.3.8 Identifiers 271
10.3.9 Hierarchical identifier 272
10.4 Keywords 272
10.4.1 Keywords for objects 273
10.4.2 Keywords for operators 273
10.4.3 Context-sensitive keywords 273
10.5 Rules against parser ambiguity 273
11 SyntaxRules......... 275
11.1 Cross-reference of BNF items 275
11.2 Assignments 280
11.3 Expressions 281
11.4 Instantiations 282
11.5 Literals 283
11.6 Operators 284
11.7 Auxiliary objects 286
11.8 Generic objects 287
11.9 CELL 289
11.10 LIBRARY 289
11.11 PIN 290
11.12 PRIMITIVE 290
11.13 SUBLIBRARY 291
11.14 VECTOR 291
11.15 WIRE 291

Xvi Advanced Library Format (ALF) Reference Manual Version 1.9.2

11.16
11.17
11.18
11.19
11.20
11.21
11.22
11.23
11.24
11.25
11.26
11.27
11.28
11.29
11.30

Version 1.9.2

Phased-out Items

Arithmetic model
FUNCTION
TEST

Geometric Model
ARTWORK
LAYER
PATTERN

VIA

BLOCKAGE
PORT

RULE

SITE

ANTENNA
ARRAY
Connectivity

Sample Applications

ALF/SDF Cross Reference

Advanced Library Format (ALF) Reference Manual

XVii

XViii Advanced Library Format (ALF) Reference Manual Version 1.9.2

Section 1
Introduction

1.1 Motivation

Designing digital integrated circuits has become an increasingly complex process. More
functions get integrated into a single chip, yet the cycle time of electronic products and
technologies has become considerably shorter. It would be impossible to successfully design a
chip of today’s complexity within the time-to-market constraints without extensive use of EDA
tools, which have become an integral part of the complex design flow. The efficiency of the
tools and the reliability of the results for simulation, synthesis, timing and power analysis,
layout and extraction rely significantly on the quality of available information about the cells
in the technology library.

New challenges in the design flow, especially signal integrity, arise as the traditional tools and
design flows hit their limits of capability in processing complex designs. As a result, new tools
emerge, and libraries are needed in order to make them work properly. Library creation
(generation) itself has become a very complex process and the choice or rejection of a
particular application (tool) is often constrained or dictated by the availability of a library for
that application. The library constraint can prevent designers from choosing an application
program that is best suited for meeting specific design challenges. Similar considerations can
inhibit the development and productization of such an application program altogether. As a
result, competitiveness and innovation of the whole electronic industry can stagnate.

In order to remove these constraints, an industry-wide standard for library formats, the
Advanced Library Format (ALF), is proposed. It enables the EDA industry to develop
innovative products and ASIC designers to choose the best product without library format
constraints. Since ASIC vendors have to support a multitude of libraries according to the
preferences of their customers, a common standard library is expected to significantly reduce
the library development cycle and facilitate the deployment of new technologies sooner.

1.2 Goals

The basic goals of the proposed library standard are:

simplicity - library creation process needs to be easy to understand and not become a
cumbersome process only known by a few experts.

generality- tools of any level of sophistication need to be able to retrieve necessary
information from the library.

expandability- this needs to be done for early adoption and future enhancement
possibilities.

Version 1.9.2 Advanced Library Format (ALF) Reference Manual 1

Introduction Target applications

flexibility - the choice of keeping information in one library or in separate libraries
needs to be in the hand of the user not the standard.

efficiency- the complexity of the design information requires the process of retrieving
information from the library does not become a bottleneck. The right trade-off between
compactness and verbosity needs to be established.

ease of implementatiorbackward compatibility with existing libraries shall be
provided and translation to the new library needs to be an easy task.

conciseness unambiguous description and accuracy of contents shall be detailed.

acceptance there needs to be a preference for the new standard library over existing
libraries.

1.3 Target applications

The fundamental purpose of ALF is to serve as the primary database for all third-party
applications of ASIC cells. In other words, it is an elaborate and formalized version of the
databook

In the early days, databooks provided all the information a designer needed for choosing a cell
in a particular application: Logic symbols, schematics, and a truth table provided the functional
specification for simple cells. For more complex blocks, the name of the cell (e.g.,
asynchronous ROM, synchronous 2-port RAM, or 4-bit synchronous up-down counters) and
timing diagrams conveyed the functional information. The performance characteristics of each
cell were provided by the loading characteristics, delay and timing constraints, and some
information about DC and AC power consumption. The designers chose the cell type according
to the functionality, estimated the performance of the design, and eventually re-implemented it
in an optimized way as necessary to meet performance constraints.

Design automation enabled tremendous progress in efficiency, productivity, and the ability to
deal with complexity, yet it did not change the fundamental requirements for ASIC design.
Therefore, ALF needs to provide models withctionalinformation angerformance

information, primarily including timing and power. Signal integrity characteristics, such as
noise margin can also be included under performance category. Such information is typically
found in any databook for analog cells. At deep sub-micron levels, digital cells behave similar
to analog cells as electronic devices bound by physical laws and therefore are not infinitely
robust against noise.

Table 1-1 shows a list of applications used in ASIC design flow and their relationship to ALF.
The boundary between supported and not supported applications can be defingoHygita!
information provided by ALF. Information needed for area and performance estimation and
optimization, notably by synthesis and design planning tools, is provided by ALF. On the other
hand, layout information is considered to be available in complementary libraries such as LEF.

Note: ALF coverdibrary data, whereadesigndata needs to be provided in other formats.

2 Advanced Library Format (ALF) Reference Manual Version 1.9.2

Target applications

Introduction

Table 1-1 Target applications and models supported by ALF

Application Functional model Performance model Physical model
simulation derived from ALF N/A N/A
synthesis supported by ALF supported by ALF supported by ALF

design for test

supported by ALF

N/A

N/A

design planning

supported by ALF

supported by ALF

supported by ALF

timing analysis N/A supported by ALF N/A
power analysis N/A supported by ALF N/A
signal integrity N/A supported by ALF N/A
layout N/A N/A supported by ALF

Historically, a functional model was virtually identical to a simulation model. A functional
gate-level model was used by the proprietary simulator of the ASIC company and it was easy
to lump it together with a rudimentary timing model. Timing analysis was done through
dynamic functional simulation. However, with the advanced level of sophistication of both
functional simulation and timing analysis, this is no longer the case. The capabilities of the
functional simulators have evolved far beyond the gate-level and timing analysis has been
decoupled from simulation.

RTL design planning is an emerging application type aiming to produce "virtual prototypes”
of complex for system-on-chip (SOC) designs. RTL design planning is thought of as a
combination of some or all of RTL floorplanning and global routing, timing budgeting, power
estimation, and functional verification, as well as analysis of signal integrity, EMI, and thermal
effects. The library components for RTL design planning range from simple logic gates to
parameterizeable macro-functions, such as memories, logic building blocks, and cores.

From the point of view of library requirements, applications involved in RTL design planning
need functional, performance, and physical data. The functional aspect of design planning
includes RTL simulation and formal verification. The performance aspect covers timing and
power as primary issues, while signal integrity, EMI, and thermal effects are emerging issues.
The physical aspect is floorplanning. As stated previously, the functional and performance
models of components can be described in ALF.

ALF also covers the requirements for physical data, including layout. This is important for the
new generation of tools, where logical design merges with physical design. Also, all design
steps involve optimization for timing, power, signal integrity, i.e. electrical correctness and
physical correctness. EDA tools must be knowledgable about an increasing number of design
aspects. For example, a place and route tool must consider congestion as well as timing,
crosstalk, electromigration, antenna rules etc. Therefore it is a logical tep to combine the
functional, electrical and physical models needed by such a tool in a unified library.

Figure 1-1 shows how ALF provides information to various design tools.

Version 1.9.2 Advanced Library Format (ALF) Reference Manual 3

Introduction

(D Vendor-specific or commercial EDA tool
(D Commercial EDA tool

Target applications

(Cell characterization to@
/ \

layout
models

annotations
for scan

annotations
for synthesis

ALF

wireload
models

niversal functional model universal
u u timing model power model

universal
design limit$

4

y

universal

universal signa
integrity model

/ \

(Test vector genera)@ Model gener;

\tor

: \ y

Test vectors
Verilog & VHDL | | Verilog & VHDL

Simulation mode

Signal integrit
analysis tool

\ /

Simulators
Verilog & VHDL

Timing
analysis tool

Power
analysis tool

Synthe5|s tool

Place & Route
tool

can insertion t@l

Figure 1-1: ALF and its target applications

The worldwide accepted standards for hardware description and simulation are VHDL and

Verilog. Both languages have a wide scope of describing the design at various levels of

abstraction: behavioral, functional, synthesizable RTL, and gate level. There are many ways to
describe gate-level functions. The existing simulators are implemented in such a way that some

constructs are more efficient for simulation run time than others. Also, how the simulation

model handles timing constraints is a trade-off between efficiency and accuracy. Developing

efficient simulation models which are functionally reliable (i.e., pessimistic for detecting
timing constraint violation) is a major development effort for ASIC companies.

Advanced Library Format (ALF) Reference Manual

Version 1.9.2

Conventions Introduction

Hence, the use of a particular VHDL or Verilog simulation model as primary source of
functional description of a cell is not very practical. Moreover, the existence of two simulation
standards makes it difficult to pick one as a reference with respect to the other. The purpose of
a generic functional model is to serve as an absolute reference for all applications that require
functional information. Applications such as synthesis, which need functional information
merely for recognizing and choosing cell types, can use the generic functional model directly.
For other applications, such as simulation and test, the generic functional model enables
automated simulation model and test vector generation and verification, which has a
tremendous benefit for the ASIC industry.

With progress of technology, the set of physical constraints under which the design functions
have increased dramatically, along with the cost constraints. Therefore, the requirements for
detailed characterization and analysis of those constraints, especially timing and power in deep
submicron design, are now much more sophisticated. Only a subset of the increasing amount
of characterization data appears in today’s databooks.

ALF provides a generic format for all type of characterization data, without restriction to state-
of-the art timing models. Power models are the most immediate extension and they have been
the starter and primary driver for ALF.

Detailed timing and power characterization needs to take into accoumbtieeof operation

of the ASIC cell, which is related to the functionality. ALF introduces the concegictdr-
based modelingvhich is a generalization and a superset of today’s timing and power modeling
approaches. All existing timing and power analysis applications can retrieve the necessary
model information from ALF.

1.4 Conventions

The syntax for description of lexical and syntax rules uses following conventions.
e definition of a syntax rule
| alternative definition
[item] an optional item

[iteml | item2] ...]
optional item with alternatives

{item} optional item that can be repeated

{iteml | item2] ... }
optional items with alternatives which can be repeated

item item in boldface font is taken verbatim

item item in italic is for explanation purpose only
The syntax for explanation of semantics of expressions uses the following conventions.

=== left side and right side expressions are equivalent

<item> a placeholder for an item in regular syntax

Version 1.9.2 Advanced Library Format (ALF) Reference Manual 5

Introduction Organization of this manual

1.5 Organization of this manual

This document presents the Advanced Library Format (ALF), a new standard library format
for ASIC cells, blocks and cores, containing power, timing, functional, and physical
information.

The first chapter defines the motivation and goals of ALF.

The second chapter describes the underlying modeling concepts: functional modeling, cell
characterization for timing and power, and additional modeling features for synthesis and test.

The third chapter defines the object model.

The fourth chapter details the library organization within ALF.

The fifth chapter defines the formal constructs for functional modelling.

The sixth chapter defines supplementary constructs for synthesis and design for test.
The seventh chapter defines the general rules for arithmetic models.

The eight chapter defines electrical performance modeling, i.e., timing, power, signal integrity
The ninth chapter defines modeling for physical design.

The tenth chapter specifies the lexical rules.

The eleventh chapter specifies the syntactical rules.

The first appendix provides sample applications.

The second appendix provides an ALF/SDF cross-reference.

6 Advanced Library Format (ALF) Reference Manual Version 1.9.2

Section 2
Characterization and Modeling

This chapter elaborates on the basics of cell modeling and characterization, which is the
primary source of library information.

2.1 Basic concepts

The functional models within an ASIC library describe functions and algorithms of hardware
components, as opposed to synthesizeable functions or algorithms. The functional modeling
language for the ASIC library is designed to make the description of existing hardware easy
and efficient. The scope here is different from a hardware description language (HDL) or a
programming language designed to specify functionality without other aspects of hardware
implementation.

Functional description provides boolean functions or truth tables, including state variables for
sequential logic. Boolean and arithmetic operators for scalars and vectors are also provided.
Combinational and sequential logic cells, macrocells (e.g., adders, multipliers, and
comparators), and atomic megacells (e.g., memories) can be modeled with these capabilities.

Vectors describe the stimuli for characterization. This encompasses both the concept of timing
arcs and logical conditions. An exhaustive set of vectors can be generated from functional
information, although the complexity of the exhaustive set precludes it from practical usage.
The characterizer makes a choice of the relevant subset for characterization.

Power characterization is a superset of timing characterization using the same set and range of
characterization variables: load, input slew rate, skew between multiple switching inputs,
voltage, and temperature. Characterization measurements, such as delay, output slew rate,
average current in time window, bounds of allowed skew for timing constraints, etc. can be
described as functions of the characterization variables, by using equations or lookup tables.
More complicated calculation algorithms cannot be described explicitly in the library, but can
be referenced using templates.

A core is not an atomic megacell, since it can be split up into smaller components. Templates
provide the capability of defining and reusing blocks consisting of atomic constructs or of other
blocks. Thus a hierarchical description of the complete core can be created in a simple and
efficient way.

Abstraction is required for the characterization of megacells: vectors describe events on buses
rather than on scalar pins; number and range of switching pins within a bus become additional
characterization variables. Characterization measurements are expandable and can be
extrapolated from scalar pin to bus.

Version 1.9.2 Advanced Library Format (ALF) Reference Manual 7

Characterization and Modeling Performance modeling for characterization

2.2 Performance modeling for characterization

This section highlights modeling for timing, power, and signal integrity.

221 Modeling for timing

The timing models of cells consist of two typeelay model$or combinational and sequential
cells, andiming constraint model®r sequential cells. Both types can be described by timing
arcs. A timing arc is a sequence of two events that can be described by a vector expression
“eventelis followed by evene2'.

For example, a particular input to output delay of an inverting logic cell is identified by the
following timing arc:

01A->10Z
which reads “rising edge on inpuis followed by falling edge on outpat.

A setup constraint between data and clock input of a positive edge triggered flip-flop is
identified by the following timing arc:
01D->01CP
which reads “rising edge on inpois followed by rising edge on inpa#’.
A crucial partin ASIC cell development is to characterize a model that describes the behavior

of each timing arc with sufficient accuracy in order to guarantee correct functional behavior
under all required operational conditions.

A delay model usually needs two output variables:

the intrinsic delay measured between a well-defined threshold value of the input signal
and a well-defined threshold value of the output signal, and

the transitiordelay, measured between two well-defined threshold values of the output
signal. Hence the transition delay is a fraction of the total output transition time, also
calledslew rateor edge rate

A timing constraint model needs one output variable:

A timing constraint is theninimum or maximum allowed elapsed tibeween two sig-

nals, measured between well-defined threshold values between those two signals. This
definition is similar to théntrinsic delay except there is no input-output relationship
between the two signals. Both signals are usually inputs to the cell.

The actual values of transition times and load capacitances seen by each pin of a cell instance
are calculated by a delay predictor. Delay prediction can be separated into two tasks:

1. Acquisition of information on pin capacitance, then extracting or estimating layout
parasitics for each net and fitting those into the load characterization model (lumped C,
R, etc.).

2. Calculation of internal signal transition times based on the extracted internal load and
on load and transition times at the boundaries of the system.

8 Advanced Library Format (ALF) Reference Manual Version 1.9.2

Performance modeling for characterization Characterization and Modeling

Lookup tables provide a general modeling capability without precluding any level of accuracy.

Equations can feature polynomial expressions, exponentials and logarithms, and arbitrary
transcendent functions. For practical purpose, only the four basic arithmetic operations (
*, 1) and exponentiation and logarithm are supported for standard models.

Some models can require transcendent functions or complicated algorithms that cannot be
expressed directly in equations. Other models and algorithms need protection from being
visible. In order to address needs that go beyond standard modeling features, a template-
reference scheme is used: any model which is not in table or equation format needs to be a
pointer to a customer-defined model, which can reside outside the library. All these are defined
further in Table 2-1.

Table 2-1 Modeling choices for cell characterization library

Type of model Features Purpose
table discrete points, multidimensional direct storage of characterization data,
direct accuracy control through mesh
granularity
equation expressions with +, -, *, /, exponent,analytical model, well-suited for optimir
logarithm zation purpose, more compact than tabje,

>

also usable for arithmetic operations o
tabulated data (scale, add, subtract ..)

reference pointer to any type of model reuse of predefined model (which can be
table or equation), protection of user-
defined model

Regardless of which type of model is chosen, there is a need to explicitly specify the meaning
of the variables and the units. The specification of variables and units can be made outside the
model and independent of the chosen model.

Since the set of variables shall not be restrictive in order to allow any enhancements (e.g., move
from a lumped capacitance to an RC modaihtext-sensitive keywordse proposed (e.g.,

load andslewrate). The application parser need not know the meaning of the context-
sensitive keyword, except it is used as a variable in a model and has some unit attached to it,
e.g., picofarad, nanosecond, etc.

2.2.2 Modeling for power

A power model is an extension of the delay model for each timing arc using a third variable:

thescaled average currenineasured by integrating and scaling the total transient current
through the power supply of the cell for the specific timing arc or vector. The current mea-
surement can start anytime before the first event of the vector starts and can end anytime
after all transients of the vector have stabilized.

Variants of this model are scaled average power and energy, which are obtained by simple
scaling of average current measurements:

power = current * Vdd
energy = current * Vdd * integration time

Version 1.9.2 Advanced Library Format (ALF) Reference Manual 9

Characterization and Modeling Performance modeling for characterization

The set of vectors causing power consumption within a cell is a superset of those vectors
causing the cell output to switch. While only the vectors with switching output are needed for
delay characterization, more vectors are needed for accurate power characterization.

For example, consider a flip-flop, which consumes power at every edge of the clock, even if
the output does not switch. The vectors for delay and power characterization can be described
as follows:

01CP->010Q
01CP->10Q

The vectors for power characterization with only clock-switching can be described as follows:
01 CP && Q==D
10 CP && Q==D
TheD input having the same value as theutput is a necessary and sufficient condition that
the output shall not switch at the rising edgecefand that the value transferred to the master
latch at the falling edge afPis the same as already stored. Hence, those two vectors capture
the actual power dissipation only within the clock buffers. Additional power vectors can be
defined to capture the power dissipation within the data buffers and the master latch etc.

For a 2-input AND gate with input pins, B and output pire, aglitch is observed if the event
01 A is detected and then the evant B is detected before the input-to-output delay elapses.
It is possible to describe the glitch by a higher-order vector.

In dynamic simulation wittransport delay modehe glitch would appear as follows:
01A->10B->01Z->10Z

Simulation featuringransport delay mode with invalid-value-detectiwould exhibit the
glitch as follows!

01 A->10B ->'b0'bX Z -> 'bX'b0 Z
Simulation withinertial delay modevould suppress the output transitions:
(0LA->10B)&&Z

The last expression can be used for each of the three simulation mode$z sis@waysTrue
from beginning to end of the sequernaer ->10B |, in particular at the time when the
sequencelA->10B is detected.

Each way of expressing vectors can be derived from the cell functionality. The different
examples for delay vectors (i.e., timing arcs), power vectors, and glitch vectors emphasize the
rich potential of modeling capabilities using vector expressions.

State-dependerstatic powelis also within the scope of vector-based power models. Static
power consumption is activated by a simulation model in the same way as level-sensitive logic
in functional modeling by a boolean expression, whetr@asient poweconsumption is

activated similar to edge-sensitive logic by a vector expression.

The advantages of adding power models within each delay vector and providing extra power
vectors are the following:

1. Use based-edge literals to avoid parser ambiguity.

10 Advanced Library Format (ALF) Reference Manual Version 1.9.2

Performance modeling for characterization Characterization and Modeling

straightforward extension of delay characterization
capable of yielding the most detailed and accurate model on gate-level
each vector defines a comprehensive stimulus for power measurements

More abstract vector expressions are provided for power modeling of complex blocks, where
simplification is needed in order to deal with the complexity of characterization vectors.

2.2.3 Modeling for signal integrity

The concept of vector-based cell characterization with multiple variables also accommodates
the requirements for signal integrity modeling. Although signal integrity is closely related to
interconnect parasitics, i.e., extractigsigninformation, data in the celibrary needs to exist

in order to support signal integrity analysis.

Crosstalk analysis needs characterizatiodrofer resistancen output pins andoise
marginon input pins.

IR drop and electromigration analysis on power supply lines needs characterization of
average current$or power analysidRMS currentsandcurrent waveforms

Electromigration (EM) analysis within cells needs characterizati@uognt limits In

a direct evaluation approach, the current limits are checked against the actual currents.
The latter data comes from the characterization for power and IR drop. In an indirect
evaluation approach, the current limits can be expresdeelcaency-dependent load
limits and/orslewrate limits

Hot electron (HE) analysis within cells needs characterizatidtugf{charge density)

or fluence(accumulated charge density over time) and its respective limits for
performance degradation. In a direct evaluation approach, the flux or fluence limits are
checked against the actual flux or fluence, respectively. In an indirect evaluation
approach, the limits of performance degradation due to fluence can be expressed as
frequency-dependent load limasd/orslewrate limitsin the same way as for
electromigration.

The characterization vector set for driver resistance is a subset of delay characterization
vectors. In buffered cells, the driving input does not matter, since the driver resistance seen at
the output is the same. However, there is always a different driver resistance for rise and fall,
which is also dependent on process, voltage, and temperature.

Noise margin characterization is especially important for control and data pins of sequential
cells. The set of characterization vectors is complementary to the timing constraint
characterization vectors. For instance, noise margin on a clock pin is complementary to the
pulsewidth constraint. If pulsewidth corresponds to the smallest possible signal causiitg a
functional reaction, noise margin corresponds to the largest possible signal causing
functional reaction.

The characterization vector set for IR drop and EM on power supply lines is essentially the
same as for power analysis, only the set of data per vector is richer. IR drop analysis can use

Version 1.9.2 Advanced Library Format (ALF) Reference Manual 11

Characterization and Modeling Physical modeling for synthesis and test

average currents, peak currents, or current waveforms. EM analysis can use average, peak,
RMS, or a combination of the above.

The characterization vector set for EM and HE effect occurring within cells is very similar to
the characterization vector set for power analysis, depending whether a direct or indirect
evaluation approach is used.

In summary, modeling for crosstalk is a natural extension of modeling for timing, whereas IR
drop and EM and HE modeling are natural extensions of modeling for power.

2.3 Physical modeling for synthesis and test

This section highlights cell and wire modeling.

231 Cell modeling

Physical modeling of cells requires annotating cell properties (e.g., area, height, width, and
aspect ratio). The set of annotated properties give an application, such as synthesis, a choice to
pick one cell from a set of functionally equivalent cells, if one property is more desirable than
another one under given synthesis goals and constraints.

Cell pins can also have annotated properties, such as pin capacitance, voltage swing, switching
threshold, etc.

Most of the requirements for the modeling of test are already fulfilled by the functional model.
Declaration of pins and their direction (input, output, or bidirectional) is already a generic
requirement for cell modeling.

Scan insertion tools require specific annotations about cell and pin properties relevant for scan
test. They also require reference to equivalent non-scan cells. An equivalent non-scan cell is a
scan cell where all scan-specific hardware (e.g., a multiplexor or scan clock) is removed.

The variables used in the functional model shall have their counterpart in the pin declaration.
Only primary input pins can be primary inputs of functions, while primary output pins, internal
pins, or virtual pins can be primary or intermediate outputs of functions. Furthermore, test
vectors for fault coverage can be derived from the functional model in a formal way.

The remainder of the modeling for test requirements can be covered by annotations of cell
properties and cell pin properties. For instance, a cell can be labeled as a scan flip-flop and a
pin can be labeled as scan input or mode select pin.

2.3.2 Wire modeling

The purpose ofvire modelings to get good estimates pérasitic resistancandcapacitance

as a function ofanout These estimates are technology-specific and they depend on metal
layer, sheet resistance, self-capacitance per unit wirelength, fringe capacitance per unit
wirelength, and via resistance for wires routed through multiple layers.

The wires can be represented as a collection of models, in a similar way as cells. For example,

12 Advanced Library Format (ALF) Reference Manual Version 1.9.2

Functional modeling Characterization and Modeling

/I wire with fanout < 5routed in metal 1, 2
WIRE small_wire {

ATTRIBUTE { metall metal2 }

LIMIT { FANOUT { MAX =5; }}

/* fill in data */
}

/I wire with 10 <fanout < 20routedinmetal 1, 2, 3, 4,5
WIRE big_wire {

ATTRIBUTE { metall metal2 metal3 metal4 metal5 }

LIMIT { FANOUT { MIN = 10; MAX = 20; } }

/*fill in data */
}

From a modeling standpoint, no particular language is required for performance modeling of
wires that is different from performance modeling of cells. The fanout shall be an input variable

and the capacitance and resistance are output variables. The values can be expressed either in
tables or in equations. Usually first order equations (with slope and intercept) are used for wire
modeling.

2.4 Functional modeling

This section highlights the usage of combination and sequential logic.

24.1 Combinational logic

Combinational logic can be described by continuous assignments of boolean Tialaes (
Falsé to output variables as a function of boolean values of input variables. Such functions can
be expressed in either equation or table format.

Consider an arbitrary continuous assignment:
z=fa 4.,.a n)

In a dynamic or simulation context, the left-hand side (LHS) varialidesvaluated whenever
there is a change in one of the right-hand side (RHS) variablBb® storage of previous states
is needed for dynamic simulation of combinational logic.

24.2 Level-sensitive sequential logic

In sequential logic, an output varialglecan also be a function of itself, i.e., of its previous
state. The sequential assignment has the form

zi=fa ;.,.a n+Z 152 m

The RHS cannot be evaluated continuously, since a change in the LHS as a result of a RHS
evaluation shall trigger a new RHS evaluation repeatedly, unless the variables attain stable
values. Modeling capabilities of sequential logic with continuous assignments are restricted to
systems with oscillating or self-stabilizing behavior.

See Section 5.2.1 for more details.

2. This standard uses the existing boolean syntax notation described in the ANSI C standard.

Version 1.9.2 Advanced Library Format (ALF) Reference Manual 13

Characterization and Modeling Functional modeling

2.4.3 Edge-sensitive sequential logic
In order to modeédge-sensitive sequential logibe concept of logical transitions and logical
states are introduced here.

If the triggering functiorg is sensitive to logical transitions rather than to logical states, the
functiong evaluates t@rueonly for an infinitely small time, exactly at the moment when the
transition happens. The sole purposg of to trigger an assignment to the output variable
through evaluation of the functidrexactly at this time.

Edge-sensitive logic requires storage of the previous output state and the input state (to detect
a transition). In fact, all implementations of edge-triggered flip-flops require at least two
storage elements. For instance, the most popular flip-flop architecture features a master latch
driving a slave latch.

See Section 5.2.2 for more details.

24.4 Vector-sensitive sequential logic

In order to model generalized higher order sequential logic, the concept of vector expressions
is introduced, an extension of the boolean expressions.

A vector expression describes sequences of logical events or transitions in addition to static
logical states. A vector expression represents a description of a logical stimulus without
timescale. It describes the order of occurrence of events.

The -> operato(followed by can be used to generally describe a sequence of events or a
vector. For example, consider the following vector expression:

01A->01B
which reads “rising edge oxis followed by rising edge o#i'.

A vector expression is evaluated by an event sequence detection function. Like a single event
or atransition, this function evaluat@sueonly at an infinitesimally short time when the event
sequence is detected.

See Section 5.3.1 for more details.

14 Advanced Library Format (ALF) Reference Manual Version 1.9.2

Syntax conventions Object Model

Section 3
Object Model

This section discusses the object model used by ALF and provides the syntax rules for all
objects. The syntax rules are provided in standard BNF form.

A library consists of one or mombjects Each object is defined by a keyword and an optional
name for the object and an optiomalueof the object.

A keyworddefines the type of the object. Section 3.2 and Section 3.3 define various types of
objects used in ALF and related keywords.

An optionalidentifier(also callechamg following the keyword defines theame of the object
This name shall be used while referencing an object inside other objects in the library. If an
object is not referenced by name, then the object need not be named.

A literal defines an optional value associated with the objecteXpressiortan be used when
the value of the object cannot be expressed as a literal.

An object can contain one or more objects. The containing object is caliecechical

object The contained objects are callelildren objectsThe children objects are defined and
referenced inside curly braces ({}) in the description of the hierarchical object. An object
without children is called aatomic object

Forward referencingf objects is not allowed. Therefore, all objects shall be defined before
they can be instantiated. This allows library parsers to be one-pass parsers.

3.1 Syntax conventions

In order to make ALF easy to parse, the syntax conventions follow the syntax rules defined in
Section 1.4. These should also be followed for future extensions of the grammar.

The first token of the object is the object type identifier, followed by a name (mandatory or
optional, depending on object type), followed by (mandatory or optienahd value
assignment, followed by (mandatory or optional) children objects enclosed by curly braces.
Objects with more than one token (i.e., name and/or value) and without children are terminated
with & .

Examples:

1. Unnamed object without value assignment:
MY_OBJECT_TYPE
or

MY_OBJECT_TYPE {
[ffill in children objects

}

Version 1.9.2 Advanced Library Format (ALF) Reference Manual 15

Object Model Generic objects

2. Unnamed object with value assignment:

MY_OBJECT_TYPE = my_object_value;
or

MY_OBJECT_TYPE = my_object_value {
[ffill in children objects

}
3. Named object without value assignment:

MY_OBJECT_TYPE my_object_name;
or

MY_OBJECT_TYPE my_object_name {
[ffill in children objects

}
4. Named object with value assignment:

MY_OBJECT_TYPE my_object_name = my_object_value;
or

MY_OBJECT_TYPE my_object_ name = my_object_value {
[ffill in children objects

}

The objects in ALF can be divided into the following categogesieric objectdibrary-
specific objectsarithmetic modelsgeometric modeJsandlibrary-specific singular objects

3.2 Generic objects

A generic object can appear at every level in the library within any scope. The semantics of a
generic object need to be understood by any ALF compiler if the generic object is within the
scope of application for that compiler.

The objects shown in Figure 3-1 shall be considered generic objects:

16 Advanced Library Format (ALF) Reference Manual Version 1.9.2

Generic objects Object Model

alias

constant \

include Sl _ _
class — ea generic object
attribute - >

template A >

property 2

a
group /
keyword

Figure 3-1: Generic objects

3.21 CONSTANT statement

A CONSTANTobject is a named object with value assignment and without children objects.
The value is a number.

Example:
CONSTANT vdd = 3.3;

3.2.2 ALIAS statement

An ALIASobject is a named object with value assignment and without children objects. The
value is a string.

Example:
ALIAS RAMPTIME = SLEWRATE;

3.2.3 INCLUDE statement

An INCLUDE object is a named object without value assignment and without children. The
name is a quoted string containing the name of a file to be included.

Example:

INCLUDE “primitives.alf”;

Since the file name is a quoted string, any special symbols<{liwe) are allowed within the
filename. The interpretation of those (e.g., as a file search path) is up to the application.

3.24 CLASS statement

A CLASSobject is a named object with optional value assignments and children objects. The
name can be used by other objects to reference the class object.

Version 1.9.2 Advanced Library Format (ALF) Reference Manual 17

Object Model Generic objects

Example:
CLASS my_class{ ... }

MY_OBJECT_TYPE my_object {
CLASS =my_class;
} /I my_object belongs to my_class

3.25 ATTRIBUTE statement

An ATTRIBUTEobject is an unnamed object without value, but containing children objects.
The attribute object shall be the child object of another object. The children of the attribute
object are unnamed objects that can have other unnamed objects as children objects. The
purpose of an attribute object is to provide free association of objects with attributes when there
IS no special category available for the attributes.

Examples:

CELL rr_8x128 {
ATTRIBUTE {ROM ASYNCHRONOUS STATIC}

}

PIN read_write_select {
ATTRIBUTE {READ{POLARITY=low;} WRITE{POLARITY=high;}}

}

3.2.6 TEMPLATE statement

A TEMPLATEObject is a named object with one or more children objects. Any valid ALF
object can be a child object of a template object. Identifiers enclosed betandsn are
recognized aplaceholdersWhen a template object is used, each of its placeholders shall be
referenced by order or by explicit name association.

Example:

TEMPLATE std_table {
CAPACITANCE {PIN=<pin1>; UNIT=pF; TABLE {0.02 0.04 0.08 0.16}}
SLEWRATE {PIN=<pin2>; UNIT=ns; TABLE {0.1 0.3 0.9}}

}

An instantiation of the above template object with explicit reference to placeholders by name:
std_table{pinl=out; pin2=in;}

An instantiation of the above template object with implicit reference to placeholders by order:
std_table{out in}

If a symbol within a placeholder appears more than once in the template definition, the order
for implicit reference is defined by the first appearance of the symbol. Explicit referencing
improves the readability and is the recommended usage.

A template instantiation can appear at any place within a hierarchical object, as long as the
template object contains the structure of valid objects inside. Hierarchical templates contain
other template objects.

18 Advanced Library Format (ALF) Reference Manual Version 1.9.2

Generic objects Object Model

3.2.7 PROPERTY statement

A PROPERTYobject is a named or an unnanauhotation containerlt can be used at any
level in the library. It is used for arbitrary parameter-value assignment.

Example:

PROPERTY items {
parameterl=valuel,;
parameter2=value2;

}

A PROPERTtatement can also contain assignments with multiple values.

property ::=
PROPERT Yidentifier] { property_items }

property_items ::=
property_item { property_item }

property_item ::=
unnamed_assignment
| multi_value_assignment

Example:

PROPERTY {
my_paraml = valuel;
my_param? { vall val2 val3 }
my_param3 = value4;

}

3.2.8 GROUP statement

A GROUPOobject is a set of elements with commonality between them. Thus, the common
characteristics can be defined once for the group instead of being repeated for each element.

Example:

GROUP time_measurements = {DELAY SLEWRATE SKEW JITTER}
The statement

time_measurements { UNIT = ns; }
replaces the following statements:

DELAY {UNIT = ns; }

SLEWRATE {UNIT =ns;}
SKEW {UNIT = ns; }
JITTER {UNIT = ns; }

3.2.9 KEYWORD statement

The ALF language allows the use of customized context-sensitive keywords for certain pur-
poses. While the semantics of these custom keywords can only be known by the user of such

Version 1.9.2 Advanced Library Format (ALF) Reference Manual 19

Object Model Library-specific objects

keywords, every ALF parser needs to have the capability to check the correct syntax of objects
involving custom keywords.

Generic objects shall be augmented by usingcv@vORBtatement. ThEEYWORBtatement
shall be defined as:

generic_object ::=
/I set of current definitions in Section 11.7
| keyword_statement

keyword_statement ::=
KEYWOREdntext_sensitive_keyword = syntax_item_ identifier ;

The followingsyntax_item_ identifiers , Which are a subset of the objects defined in Sec-
tion 11.8 are legal:

syntax_item_ identifier ::=
annotation
| annotation_container
| arithmetic_model
| arithmetic_submodel
| arithmetic_model_container
| vector_assignment
Example:

KEYWORD my_arithmetic_model = arithmetic_model;
KEYWORD my_annotation_for_capacitance = annotation;
KEYWORD my_annotation_for_resistance = annotation;
my_arithmetic_model {
HEADER {
CAPACITANCE { my_annotation_for_capacitance = foo; }
RESITANCE { my_annotation_for_resistance = bar; }

}
EQUATION { 10*CAPACITANCE + 0.5*RESISTANCE }

}
It is illegal to redefine intrinsic ALF keywords.

Example:
KEYWORD vector = arithmetic_model; // THIS IS ILLEGAL!!!

3.3 Library-specific objects

The library-specific objects define their nature and their relationship to each other by
containment rules. For example, a library can contain a cell, but a cell can not contain a library.
However, both the library and the cell can contain any generic object. A generic object defined
at the library level makes it visible inside the scope of that library, defining it on the cell level
makes it visible inside the scope of that cell and its children objects.

20 Advanced Library Format (ALF) Reference Manual Version 1.9.2

Arithmetic models Object Model

library
sublibrary

cell
wire
pin

pin group —
vector \
primitive \

node u library-specific

layer isa object
via _’

rule M

antenna /

array is a

site IS a

connectivity—s
blockage is
port is a

Figure 3-2: Library-specific objects

Multiple instances of named library-specific objects may appear in a given context. for
example, a library may contain multiple cells, a cell may contain multiple pins etc.

3.4 Arithmetic models

An arithmetic model is an object that describes characterization data or a more abstract,
measurable relationship between physical quantities. The modeling language allows tabulated
data as well as linear and non-linear equations. The equations consist of arithmetic expressions
based on the symbols definedHEE 1364-1995

| Version 1.9.2 Advanced Library Format (ALF) Reference Manual 21

Object Model Geometric models

arithmetic model

contains \(\ O contains
%
%
head

contains = table equation

QJ@
arithmetic expressid&

Figure 3-3: Arithmetic model

3.5 Geometric models

A geometric model describes the form of an object in a physical library. It is in the context of
a pattern, which is associated with physical objects, such as via, blockage, port, rule. Patterns
and other physical objects can also be subjected to geometric transformations.

via contains o pattern array artwork

b|ockagétmiams/' \xontains ‘contains /ontains

port con geometric transformation

rule Ontains _ _ _
geometric model—<centains . coordinates

Figure 3-4: Geometric model and its context

3.6 Library-specific singular objects

Library-specific singular objects may only appear in one instance within a given context. For
instance, a cell may contain at most one function and one test description.

22 Advanced Library Format (ALF) Reference Manual Version 1.9.2

Relationships between objects Object Model

function -

st Ceﬁ‘k‘»

lest ~ —ke— 2 library-specific
range < > singular object

Figure 3-5: Library-specific singular objects

An object called FUNCTION describes the functional specification of a digital circuit (or a
digital model of an analog or a mixed-signal circuit) in a canonical form. The modeling
language allows behavioral models as well as statetables and structural models with primitives.
The behavioral models contain boolean expressions, closely matéttiigl 364-1995Since
boolean expressions are insufficient to describe sequential logic, ALF introduces new
operators and symbols that can be used in conjunction with boolean operators and symbols.
Expressions that use both the IEEE operators and the new operators anectdied

expressions

An object called TEST describes the specification for testing a digital circuit, using the same
constructs as FUNCTION. However, TEST describes a stimulus generator for the circuit,
whereas FUNCTION describes the circuit itself.

test function

19 & o e
o S 0 0
2> N 2> N
% ® % %

behavior structure statetable

USESNQ vector expression

and/iorboolean expression

Figure 3-6: FUNCTION and TEST

3.7 Relationships between objects

The following figures describe the categories of objects and their relationships with each other.

Library-specifi objects, arithmetic models, geometric models and library-specific singular
objects may contain auxiliary objects, called annotation and annotation container, respectively.
The purpose of the latter is to qualify the semantics of the former.

Version 1.9.2 Advanced Library Format (ALF) Reference Manual 23

Object Model Relationships between objects

library-specific objectontains annotation container

arithmetic model contains
contains

geometric model contains

library-specific contains annotation
singular object

Figure 3-7: Objects containing annotations or annotation containers

All the above mentioned objects may contain generic objects.

library-specific object contains

arithmetic model }Tm“ o
library-specific singular object /% generic object
annotation contai

|

annotation container

Figure 3-8: Objects containing generic objects

The following figures illustrate the relationship between objects in a library for functional and
electrical design and for physical design, respectively.

24 Advanced Library Format (ALF) Reference Manual Version 1.9.2

Relationships between objects Object Model

g
IS
c
3
blib g 0
sublibrary £ 2
/// S 5 node
2 §
non-s¢anicell g g
- . 5 &
Contains—_ S range
I contains &
teSt*contei\ﬂS/ cell —— wire =&
/ g Q Co 8
g > %//7 2
c <;a E
0 |o 2 8 2 Ppinor pln groupH g
5 g o E function A g8
=M= g £ vec
5 |6 g g 9
O |O c| c 2
g 8 -%
" :
primitive \\\\“’ zEE
— A Y . 318 B
‘ arithmetic mod)

Figure 3-9: Objects in a library for logical and electrical design and their relationships

A library for functional and electrical design may contain sublibraries, cells, primitives, wires.
Those cells which represent hierarchical blocks may also contain primitives and wires. Also,
cells may contain pins, pin groups and vectors. Each object in the library may arithmetic
models for electrical characteristics. In particular, electrical models which require a stimulus
for characterization shall be in the context of a vector, which describes the stimulus.

Certain objects may also contain library-specific singular objects: A cell may contain function,
test, and non-scan cell. A wire may contain node. A pin may contain range.

Version 1.9.2 Advanced Library Format (ALF) Reference Manual 25

Object Model INFORMATION container

Iibrary contains
/ -g
8
C
3
sublibrary contains
T layer "<
S E—
contai rule ==
— . S i—
. via ==
g o o o contains
T Sl El S
E g g g — antenna-=
O ~]
o 8 8 8)
[
s array -——
5
Yvyyy Y
connectivity ~ arithmetic model

Figure 3-10: Objects in a library for physical design and their relationships

A library for physical design may contain sublibraries, cells, layers, vias, gneral rules, antenna
rules, and arrays. Cells and vias may contain a reference to artwork. Cells may contain
blockages. Pins may contain ports. almost each library may contain arithmetic models for
physical characteristics. Library, sublibrary, cell and pin may also contein connectivity rules.

3.8 INFORMATION container

An INFORMATIONconNtainer can be insideLBRARY, SUBLIBRARY, CELL, or WIRE It can also
be inPRIMITIVE objects inside alBRARY or SUBLIBRARY, but not in the locally defined
primitives inside cells or functions. It can contain the annotations shown in Table 3-1.

26 Advanced Library Format (ALF) Reference Manual Version 1.9.2

Relations between objects Object Model

Table 3-1 : Information annotation container

Keyword Value type Description Examples

VERSION string version of the object containing | “v1r3_2"
thisINFORMATIONblock “1.3.2"

TITLE string title or comment related this obje¢t “0.2u StdCell Library”

“2-input NAND, 4x drive”
“3-layer metal, best case,
wireload model”

PRODUCT string product related to the object “vsc1083”
“vsm10rs111”
“0.2u technology family”

AUTHOR string originator or modifier of the objecf “user@system.com”
“Imn N. Gineer”
“An ASIC Vendor, Inc.”

DATETIME string date/time stamp related to the “Wed Aug 19 08:13:01
object MST 1998”
“July 4, 1998”
Example:

LIBRARY major_ASIC_vendor {
INFORMATION {
version = “v2.1.0%;
title = “0.35 standard cell”;
product = p35sc;
author = “Major Asic Vendor, Inc.”;
datetime = “Wed Jul 23 13:50:12 MST 19977

3.9 Relations between objects

General referenceable objects within the scope of visibilityranePLATEAaNdGROUPL ibrary-
| specific referenceable objects ar®'s, PRIMITIVE s, and the arithmetic model. Figure 3-11
shows the relationships between these objects and where they can be referenced.

| Version 1.9.2 Advanced Library Format (ALF) Reference Manual 27

Object Model

Relations between objects

template —teferenceable by, template instantiation

group

arithmetic model

primitive

function

= annotation container

referenceable by, 4 rithmetic model

B g function
r

eferenceable by> ceII

referenceable by group instantiation

— ————» annotation container

Figure 3-11: Referencing rules for ALF objects

The TEMPLATEandGROURDbjects are referenceable only by their respective instantiation. The
TEMPLATEdefinitions can contain instantiation of previously defined templates, which allows

construction of reusable objects.

The arithmetic models can be referenced by other arithmetic models, if they are contained
within each other. This allows hierarchical modeling and a mix of table- and equation-based

models.

ThePIN objects are referenced withfuNCTIONandvVECTORDbjects and within any annotation

container inside the san@&LL object.

ThePRIMITIVE s are referenceable bycaLL, to define pins and functionality, within a
FUNCTION to define functionality only, or within an annotation container, 8@AN

To usePRIMITIVE s andPIN S, see Section 5.6.1 and Section 5.3.7.

3.9.1 Keywords for referencing objects used as annotation

The object references hown in Table 3-2 can be used as annotations.

Table 3-2 : Object references as annotation

Keyword Value type Description

CELL string reference to a declared CELL object
PRIMITIVE string reference to a declared PRIMITIVE object
PIN string reference to a declared PIN object
CLASS string reference to a declared CLASS object

28

Advanced Library Format (ALF) Reference Manual

Version 1.9.2

Relations between objects Object Model

The syntax is:
object keyword =string ;

3.9.2 Incremental definitions for VECTOR

In general, it is illegal to re-declare an ALF object (see Section 4.1, Rule 4). However, there
are objects which merely define the context for other objects. When objects are incrementally
added to the library, it is natural to re-declare the context as well. In this way, new objects can
be added at the end of the library instead of being inserted somewhere in the middle within the
already declared context. The classical example iggb&ORobject, which defines the con-

text for timing and power models.

In a characterization process, timing models are always there in the first revision of a library,
whereas power models are often added later. The new rule legalizes common practice within
existing ALF libraries and tools. It makes it easier to add characterization data incrementally,
e.g., power data. It also facilitates conversion from and to legacy library formats.

Multiple instances of the samweCTORshall be legal for the purpose of incrementally adding
children objects. The first instance of trecTORshall be interpreted as a declaration. All fol-
lowing instances shall be interpreted as supplemental definitions\a¢tTeR The rule of
illegal re-declaration shall apply for the children objects withigE@roR

Example:

/I the following is legal
VECTOR (01 A->012Z){
DELAY =1{FROM{PIN=A;}TO{PIN=Z;}}
}
VECTOR (01 A->012Z){
ENERGY =25

}
/I the following is illegal
VECTOR (01 A->012Z){
DELAY =1{FROM{PIN=A;}TO{PIN=Z;}}

}
VECTOR (01 A->017){

DELAY =2 {FROM{PIN=A;} TO{PIN=2Z;}}
}

3.9.3 Other incremental definitions

Supplemental definitions ®#ROPERTYATTRIBUTE, LIBRARY, SUBLIBRARYshall also be legal.

Version 1.9.2 Advanced Library Format (ALF) Reference Manual 29

Object Model Relations between objects

30 Advanced Library Format (ALF) Reference Manual Version 1.9.2

Scoping rules Library Organization

Section 4
Library Organization

This section defines the scoping rules and use of multiple files within a library.

4.1 Scoping rules

The following scope rules shall apply to all library objects and its usage.
Rule 1: An object shall be defined before it is referenced.

Rule 2: An ALF object shall be known (referenceable) inside the parent object, inside all
objects defined after that object within the same parent object, and inside all the children of
those objects.

Rule 3: An object definition with only a keyword, but without an object identifier, implies the
content of this definition shall be applied to all objects identified by this keyword at the current
scope and the underlying levels of hierarchy.

Example:
LIBRARY my_library {
CAPACITANCE {UNIT = pF;} /I default capacitance units for all
I cells in my_library
CELL cell1 {

CAPACITANCE {UNIT =fF;} /I capacitance units specific to celll
PIN A {CAPACITANCE = 10.5;}

}
CELL cell2 {

PIN A {CAPACITANCE = 0.010;} // default capacitance units

}
}

Here, the capacitance of phofcelll is10.5 fF . The capacitance of pmof cell2 is0.010
pF.

Rule 4: An object shall not be defined again at the same level of scope. A definition of an object
is considered duplicate, if both keyword and object identifier are identical.

Version 1.9.2 Advanced Library Format (ALF) Reference Manual 31

Library Organization Use of multiple files

Example:
It is illegal to write the following:

LIBRARY my_library {
CAPACITANCE {UNIT = fF;}

CELL cell1 {
pin A {CAPACITANCE = 10.5;}

}

CAPACITANCE {UNIT = pF;} /I duplicate definition
CELL cell2 {
pin A {CAPACITANCE = 0.010;}

}
}

There are three possible ways capacitance units can bemsdbtasome of the cells in the
library andpF for other cells in the same library:

1. Put each set of cells in a different sublibrary

2. Define templates for the different units and reference them appropriately

3. Define the units locally inside each cell

4.2 Use of multiple files

Sometimes it is inconvenient or impractical to include all of the data for a technology library
in a single file. ThenCLUDE keyword is used to compose a library from multiple files.

An INCLUDE statement can be used within any context, but any included file shall contain at
least a valid object definition to be considered a legal ALF file. It needs to begin with a
keyword, otherwise it can be ignored by a generic parser.

In general, the effect of using teCLUDE statement is to be considered equivalent to inserting
the contents of the included file at that point in the parent file.

For example, a top-level ALF library file can contain only the following statements, where
each file contains appropriate data to make up the entire library.

LIBRARY mylib {
INCLUDE “libdata.alf”;
INCLUDE “templates.alf”;
INCLUDE “cells.alf”;
INCLUDE “wiremodels.alf”;

}

A complete ALF library definition shall begin with thesRARY keyword. A list of cell
definitions shall not be considered a full, legal ALF library database.

32 Advanced Library Format (ALF) Reference Manual Version 1.9.2

Section 5
Functional Modeling

This chapter specifies the functional modeling for synthesis, formal verification, and
simulation.

5.1 Combinational functions

This section defines the different types of combinational functions in ALF.

5.1.1 Combinational logic

Combinational logic can be described by continuous assignments of boolean Tialaes (
False to output variables as a function of boolean values of input variables. Such functions can
be expressed in either boolean expression format or statetable format.

Let us consider an arbitrary continuous assignment

z=fa ;.,.a n)
In a dynamic or simulation context, the left-hand side (LHS) varialdesvaluated whenever
there is a change in one of the right-hand side (RHS) variabls® storage of previous states
is needed for dynamic simulation of combinational logic.
5.1.2 Boolean operators on scalars

Table 5-1, Table 5-2,and Table 5-3 listunary, binary, and ternary boolean operators on scalars.

Table 5-1 : Unary boolean operators

Operator Description

I~ logical inversion

Table 5-2 : Binary boolean operators

Operator Description
&& & logical AND
[l . | logical OR
~N logic equivalence (XNOR)
N logic anti valence (XOR)

Version 1.9.2 Advanced Library Format (ALF) Reference Manual 33

Functional Modeling Combinational functions

Table 5-3 : Ternary operator

Operator Description

? boolean condition operator for construction of comb
national if-then-else clause

boolean else operator for construction of combinatiopal
if-then-else clause

Combinational if-then-else clauses are constructed as follows:

<cond1>? <valuel>: <cond2>? <value2>: <cond3>? <value3>: <default value>
If condl evaluates to booleafrue thenvaluel isthe result; else ifond2 evaluates to boolean

True thenvalue2 is the result; else Hond3 evaluates to booledfrue thenvalue3d is the
result; elsalefault_value is the result of this clause.
5.1.3 Boolean operators on words

Table 5-4 and Table 5-5 list unary and binary reduction operators on words (logic variables
with one or more bits). The result of an expression using these operators shall be a logic value.

Table 5-4 : Unary reduction operators

Operator Description
& AND all bits

~& NAND all bits
| OR all bits

~ NOR all bits
N XOR all bits
~N XNOR all bits

Table 5-5 : Binary reduction operators

Operator Description

== equality for case comparison

1= non-equality for case comparison

> greater
< smaller
>= greater or equal
<= smaller or equal

34 Advanced Library Format (ALF) Reference Manual Version 1.9.2

Combinational functions Functional Modeling

Table 5-6 and Table 5-7 list unary and binary bitwise operators. The result of an expression
using these operators shall be an array of bits.

Table 5-6 : Unary bitwise operators

Operator Description

~ bitwise inversion

Table 5-7 : Binary bitwise operators

Operator Description

& bitwise AND

| bitwise OR

N bitwise XOR
~N bitwise XNOR

The following arithmetic operators, listed in Table 5-8, are also defined for boolean operations
on words. The result of an expression using these operators shall be an extended array of bits.

Table 5-8 : Binary operators

Operator Description
<< shift left
>> shift right
+ addition

- subtraction

* multiplication
/ division
% modulo division

The arithmetic operations addition, subtraction, multiplication, and division shat&igned
if all the operands have the datatypesignedIf any of the operands have the datatype signed,
the operation shall bagned See Table 6-25 for tHRATATYPEdefinitions.

514 Operator priorities

The priority of binding operators to operands in boolean expressions shall be from strongest to
weakest in the following order:

1. unary boolean operatar,, & ~&, |, ~| ,~, ~*)
2. XNOR(~"), XOR(?), relational §, <, >=, <=, ==, 1=), shift <, >>)

3. AND(&, &&), NAND(~&), multiply (+), divide (), modulus ¢

Version 1.9.2 Advanced Library Format (ALF) Reference Manual 35

Functional Modeling Combinational functions

4. OR(|,|l), NOR(~|), add ¢), subtract)

5. ternary operator®(:)

5.1.5 Datatype mapping

Logical operations can be applied to scalars and words. For that purpose, the values of the
operands are reduced to a system of three logic values in the following way:

H has the logic value

L has the logic value

Wz, U have the logic valug

A word has the logic valug if the unary OR reduction of all bits resultsLin
A word has the logic valug if the unary OR reduction of all bits resultin
A word has the logic valug, if the unary OR reduction of all bits resultsxin

Case comparison operations can also be applied to scalars and words. For scalars, they are
defined in Table 5-9.

Table 5-9 : Case comparison operators

A B ==B | Al=B A>B A<B
1 1 1 0 0 0
1 H 0 1 X X
1 0 0 1 1 0
1 L 0 1 1 0
1 W, U, Z X 0 1 X 0
H 1 0 1 X X
H H 1 0 0 0
H 0 0 1 1 0
H L 0 1 1 0
H W, U, Z, X 0 1 X 0
0 1 0 1 0 1
0 H 0 1 0 1
0 0 1 0 0 0
0 L 0 1 X X
0 W, U, Z X 0 1 0 X
L 1 0 1 0 1
L H 0 1 0 1
L 0 0 1 X X
L L 1 0 0 0
L W, U, Z, X 0 1 0 X
X X 1 0 X X
X U X X X X
X 0O,1L,HLWZ]| O 1 X X

36 Advanced Library Format (ALF) Reference Manual Version 1.9.2

Combinational functions Functional Modeling

Table 5-9 : Case comparison operators, continued

A B ==B | Al=B A>B A<B
W wW 1 0 X X
w U X X X X
W 0,L,HLX Z | O 1 X X
Z Z 1 0 X X
z u X X X X

Z O0LHLXW]| O 1 X X
u 0,1,H,L, X X X X

XW, Z,U

For word operands, the operationand< are performed after reducing all bits to the 3-value
system first and then interpreting the resulting number according to the datatype of the
operands. For example, if datatypsiigned'b1111 is smaller tharboooo ; if datatype is
unsigned'n1111 is greater thamoooo . If two operands have the same vatue11 and a
different datatype, the unsignedi11 is greater than the signad111 .

The operations= and<= are defined in the following way:
(a>=b)===(a>b) || (@==b)
(a<=b)===(a<b) || (@==b)

5.1.6 Rules for combinational functions

If a boolean expression evaluafbsie the assigned output valuelisif a boolean expression
evaluates-alse the assigned output valuedslf the value of a boolean expression cannot be
determined, the assigned output valug.idssignment of values other thano, or X needs to
be specified explicitly.

For evaluation of the boolean expression, input vakieshall be treated asL . Input value
'bL shall be treated as0 . All other input values shall be treatedas.

Examples:
In equation form, these rules can be expressed as follows.
BEHAVIOR {
Z=A;
}
is equivalent to
BEHAVIOR {
Z=A7?'bl:bO;
}
More explicitly, this is also equivalent to
BEHAVIOR {
Z = (A=="b1 || A=="bH)? 'b1 : (A=="b0 || A=="bL)? 'b0 : 'bX;
}

In table form, this can be expressed as follows:

Version 1.9.2 Advanced Library Format (ALF) Reference Manual 37

Functional Modeling Combinational functions

STATETABLE {
A : Z,
? : (A);
}
which is equivalent to
STATETABLE {
A : Z,
0 : ;
1 : 1,
}
More explicitly, this is also equivalent to
STATETABLE {
: Z,
0 0;
L 0;
1 1,
H 1,
X X;
W X;
VA X;
U X;
}
5.1.7 Concurrency in combinational functions

Multiple boolean assignments in combinational functions are understood to be concurrent. The
order in the functional description does not matter, as each boolean assignment describes a
piece of a logic circuit. This is illustrated in Figure 5-1.

BEHAVIOR {
Q1 = <1st_boolean_expression(D1..Di)> ;

Qn = <nth_boolean_expression(D1..Di)> ;

}
| -
1st boolean expression Q1
¢)
® > :
nth boolean expression) p QN
* -
D1 Di

Figure 5-1: Concurrency for combinational logic

38 Advanced Library Format (ALF) Reference Manual Version 1.9.2

Sequential functions Functional Modeling

5.2 Sequential functions

This section defines the different types of sequential functions in ALF.

5.2.1 Level-sensitive sequential logic

In sequential logic, an output varialglecan also be a function of itself, i.e., of its previous
state. The sequential assignment has the form

zi=fa ... a N1 Z e z m

The RHS cannot be evaluated continuously, since a change in the LHS as a result of a RHS
evaluation shall trigger a new RHS evaluation repeatedly, unless the variables attain stable
values. Modeling capabilities of sequential logic with continuous assignments are restricted to
systems with oscillating or self-stabilizing behavior.

However, using the concept tifggering conditiongor the LHS enables everything which is
necessary for modelingvel-sensitivesequential logic. The expression of a triggered
assignment can look like this:

@gbj ... b KWz j=fla 1... a N Z e z m

The evaluation of is activated whenever thaggering functiong is True The evaluation of
is self-triggered, i.e. at each time when an argumegitbéinges its value. ¢fis a boolean
expression liké, we can model all types tdvel-sensitive sequential logic

During the time whe is True, the logic cell behaves exactly like combinational logic. During
the time wherg is False the logic cell holds its value. Hence, one memory element per state
bit is needed.

5.2.2 Edge-sensitive sequential logic

In order to modeédge-sensitive sequential logrotations for logical transitions and logical
states are needed.

If the triggering functiorg is sensitive to logical transitions rather than to logical states, the
functiong evaluates t@rueonly for an infinitely small time, exactly at the moment when the
transition happens. The sole purposg of to trigger an assignment to the output variable
through evaluation of the functidrexactly at this time.

Edge-sensitive logic requires storage of the previous output state and the input state (to detect
a transition). In fact, all implementations of edge-triggered flip-flops require at least two
storage elements. For instance, the most popular flip-flop architecture features a master latch
driving a slave latch.

Using transitions in the triggering function for value assignment, the functionality of a positive
edge triggered flip-flop can be described as follows in ALF:

@ (01 CP){Q =D}
which reads “at rising edge aP, assigm the value ob".

If the flip-flop also has an asynchronous direct clear pmj, the functional description
consists of either two concurrent statements or two statements ordered by priority, as shown in
Figure 5-2.

Version 1.9.2 Advanced Library Format (ALF) Reference Manual 39

Functional Modeling Sequential functions

/I concurrent style

@ (ICD){Q =03}

@ (01 CP && CD) {Q =D;}

I/ priority (if-then-else) style

@ (ICD){Q =0;}: (01 CP) {Q =D}

Figure 5-2: Model of a flip-flop with asynchronous clear in ALF

The following two examples show corresponding simulation models in Verilog and VHDL.

/I full simulation model

always @(negedge CD or posedge CP) begin
if('!CD)Q<=0;
else if (CP && !CP_last_value) Q <=D;
else Q <= 1'bx;
end
always @ (posedge CP or negedge CP) begin
if (CP===0 | CP===1'bx) CP_last_value <= CP ;
end

/I simplified simulation model for synthesis

always @(negedge CD or posedge CP) begin
if('!CD)Q<=0;
else Q <=D;

end

Figure 5-3: Model of a flip-flop with asynchronous clear in Verilog

40 Advanced Library Format (ALF) Reference Manual Version 1.9.2

Sequential functions Functional Modeling

/I full simulation model
process (CP, CD) begin
if (CD ="'0") then
Q<="05
elsif (CP'last_value ='0"and CP ="'1" and CP'event) then
Q<=D;
elsif (CP'last_value ='0" and CP ="'X'and CP'event) then
Q<="X;
elsif (CP'last_value ='X'and CP ='1' and CP'event) then
Q<="X;
end if;
end process;
Il simplified simulation model for synthesis
process (CP, CD) begin
if (CD ="'0") then
Q<='0,
elsif (CP ='1" and CP'event) then
Q<=D;
end if;
end process;

Figure 5-4: Model of a flip-flop with asynchronous clear in VHDL

The following differences in modeling style can be noticed: VHDL and Verilog provide the list
of sensitive signals at the beginning of phecess oralways block, respectively. The
information of level-or edge-sensitivity shall be inferredfbythen -else statements inside

the block. ALF shows the level-or-edge sensitivity as well as the priority directly in the
triggering expression. Verilog has another particularity: The sensitivity list indicates whether
at least one of the triggering signals is edge-sensitive by the uegedje or posedge .

However, it does not indicate which one, since either none or all signals shaléudge or
posedge qualifiers.

Furthermoreposedge is any transition witlo as initial stateor 1 as final state. A positive-edge
triggered flip-flop shall be inferred for synthesis, yet this flip-flop shall only work correctly if
both the initial state is andthe final state i9. Therefore, a simulation model for verification
needs to be more complex than the model in the synthesizeable RTL code.

In Verilog, the extra non-synthesizeable code needs to also reproduce the relevant previous
state of the clock signal, whereas VHDL has built-in suppottforalue of a signal.

5.2.3 Unary operators for vector expressions

A transition operation is defined using unary operators on a scalar net. The scalar constants (see
Figure 10-6) shall be used to indicate the start and end states of a transition on a scalar net.

bit bit /[apply transition from bit value to bit value

Version 1.9.2 Advanced Library Format (ALF) Reference Manual 41

Functional Modeling Sequential functions

For example,

01 is a transition frono to 1.

No whitespace shall be allowed between the two scalar constants. The transition operators
shown in Table 5-10 shall be considered legal.

Table 5-10 : Unary vector operators on bits

Operator Description

01 signal toggles frond to 1

10 signal toggles from to 0

00 signal remain®

11 signal remaingd

0? signal remain® or toggles fron® to arbitrary value

1? signal remaind or toggles fromd to arbitrary value

20 signal remain® or toggles from arbitrary value @

?1 signal remaind or toggles from arbitrary value fo

?? signal remains constant or toggles between arbitrary values
o* a number of arbitrary signal transitions, including possibility of]

constant value, with the initial val@e

1* a number of arbitrary signal transitions, including possibility of]
constant value, with the initial valde

% a number of arbitrary signal transitions, including possibility off
constant value, with arbitrary initial value

*0 a number of arbitrary signal transitions, including possibility of]
constant value, with the final valGe

*1 a number of arbitrary signal transitions, including possibility of]
constant value, with the final valde

*? a number of arbitrary signal transitions, including possibility off
constant value, with arbitrary final value

Unary operators for transitions can also appear iSTAEETABLE
Transition operators are also defined on words (and can appeastiarBTABLEas well):

' base word ' base word

In this context, the transition operator shall apply transition from first word value to second
word value.

For example,

'hA'h5 IS a transition of a 4-bit signal from1010 to'b0101 .
No whitespace shall be allowed betwéaseandword.

42 Advanced Library Format (ALF) Reference Manual Version 1.9.2

Sequential functions Functional Modeling

The unary and binary operators for transition, listed in Table 5-11 and Table 5-12 respectively,
are defined on bits and words.

Table 5-11 : Unary vector operators on bits or words

Operator Description
?- no transition occurs
?? apply arbitrary transition, including possibility of constant valug¢
?! apply arbitrary transition, excluding possibility of constant value
?~ apply arbitrary transition with all bits toggling

5.24 Basic rules for sequential functions

A sequential function is described in equation form by a boolean assignment with a condition
specified by a boolean expression or a vector expression. If the condition evalua{ésue),

the boolean assignment is activated and the assigned output values follows the rules for
combinational functions. If the vector expression evaluategkalse), the output variables

hold their assigned value from the previous evaluation.

For evaluation of a condition, the value shall be treated asue the valuebL shall be
treated agalse All other values shall be treated as the unknown vakue

Example:
The following behavior statement

BEHAVIOR {
@ (B){z=A}
}
is equivalent to
BEHAVIOR {
@ (E=="bl || E=="bH) {Z = A}
}
The following statetable statement, describing the same logic function
STATETABLE {
E A : Z,
0 ? ; 2);
1 ? : (M)
}
is equivalent to
STATETABLE {
A Z,
0 ? (2);
L ? 2);
1 ? (A);
H ? (A);
}

Version 1.9.2 Advanced Library Format (ALF) Reference Manual 43

Functional Modeling Sequential functions

For edge-sensitive and higher-order event sensitive functions, transitions frorlorgball
be treated like transitions from or'bo , and transitions from or tbH shall be treated like
transitions from or t1 .

Not every transition can trigger the evaluation of a function. The set of vectors triggering the
evaluation of a function are calladtive vectorsFrom the set of active vectors, a set of

inactive vectorgan be derived, which shall clearly not trigger the evaluation of a function.
There are is also a set of ambiguous vectors, which can trigger the evaluation of the function.

The set of active vectors is the set of vectors for which both observed states before and after
the transition are known to be logically equivalent to the corresponding states defined in the
vector expression.

The set of inactive vectors is the set of vectors for which at least one of the observed states
before or after the transition is known to be not logically equivalent to the corresponding states
defined in the vector expression.

Example:

For the following sequential function
@O1CP){Z=A;}

the active vectors are

(b0'b1 CP)
(bO'bH CP)
(bL'b1 CP)
(bL'bH CP)

and the inactive vectors are

(b1'b0 CP)
(b1'bL CP)
(b1'bX CP)
(b1'bW CP)
(b1'bZ CP)
(bH'bO CP)
(bH'bL CP)
(bHbX CP)
(bH’bW CP)
(bHbZ CP)
(bX’b0 CP)
(bX’bL CP)
(bW’b0 CP)
(bW’bL CP)
(bZ’b0 CP)
(bZ’bL CP)
(bU’b0 CP)
(bU’bL CP)

and the ambiguous vectors are

44 Advanced Library Format (ALF) Reference Manual Version 1.9.2

Sequential functions Functional Modeling

(bO’bX CP)
(bO’bW CP)
(bO’bZ CP)
(bL’bX CP)
(bL’bW CP)
(bL’bZ CP)
(bX'b1 CP)
(bWb1 CP)
(bZ'b1 CP)
(bX’bH CP)
(bWbH CP)
(bZ'bH CP)
(bX’bW CP)
(bX'bZ CP)
(bWbX CP)
(bW'bZ CP)
(bZ'bX CP)
(bZ'bW CP)
(bU'bX CP)
(bUbW CP)
(bU'bZ CP)

For vectors using exclusively based literals, the set of active vectors is the vector itself, the set

of inactive vectors is any vector with at least one different literal, and the set of ambiguous
vectors is empty.

Therefore, ALF does not provide a default behavior for ambiguous vectors, since the behavior
for each vector can be explicitly defined in vectors using based literals.

5.2.5 Concurrency in sequential functions

The principle of concurrency applies also for edge-sensitive sequential functions, where the
triggering condition is described by a vector expression rather than a boolean expression. In
edge-sensitive logic, the target logic variable for the boolean assignment (LHS) can also be an
operand of the boolean expression defining the assigned value (RHS). Concurrency implies
that the RHS expressions are evaluated immediatfyrethe triggering edge, and the values

are assigned to the LHS variables immediaadigr the triggering edge. This is illustrated in
Figure 5-5.

| Version 1.9.2 Advanced Library Format (ALF) Reference Manual 45

Functional Modeling Sequential functions

BEHAVIOR {
@ (<vector_expression(E1..Em)>) { El Em
Ql=

<1st_boolean_expression(D1..Di)>;

vector
expression
Qn=

<nth_boolean_expression(D1..Di)>; } }

1st boolean expression) d 9@ QL

AN #v/v\v

nth boolean expression >_d q T_> Qn

)
=
)

Figure 5-5: Concurrency for edge-sensitive sequential logic

Statements with multiple concurrent conditions for boolean assignments can also be used in
sequential logic. In that case conflicting values can be assigned to the same logic variable. A
default conflict resolution is not provided for the following reasons:

» Conflict resolution might not be necessary, since the conflicting situation is prohibited by
specification.

» For different types of analysis (e.g., logic simulation), a different conflict resolution
behavior might be desirable, while the physical behavior of the circuit shall not change.
For instance, pessimistic conflict resolution always assignere accurate conflict reso-
lution first checks whether the values are conflicting. Different choices can be motivated
by a trade-off in analysis accuracy and runtime.

» If complete library control over analysis is desired, conflict resolution can be specified
explicitly.

Example:

BEHAVIOR {
@ (<condition_1>){ Q = <value_1>;}
@ (<condition_2>){ Q = <value_2>;}
}

Explicit pessimistic conflict resolution can be described as follows:

BEHAVIOR {
@ (<condition_1> && <condition_2>) { Q ='bX; }
@ (<condition_1> && ! <condition_2>) { Q = <value_1>; }
@ (<condition_2> && ! <condition_1>) { Q = <value_2>; }

}
Explicit accurate conflict resolution can be described as follows:

46 Advanced Library Format (ALF) Reference Manual Version 1.9.2

Sequential functions Functional Modeling

BEHAVIOR {
@ (<condition_1> && <condition_2>) {
Q = (<value_1>==<value_2>)? <value_1>: 'bX;
}
@ (<condition_1> && ! <condition_2>) { Q = <value_1>;}
@ (<condition_2> && ! <condition_1>) { Q = <value_2>;}
}
Since the conditions are now rendered mutually exclusive, equivalent descriptions with priority
statements can be used. They are more elegant than descriptions with concurrent statements.

BEHAVIOR {
@ (<condition_1> && <condition_2>) {
Q = <conflict_resolution_value>;
}

: (<condition_1>) { Q = <value_1>;}
: (<condition_2>) { Q = <value_2>;}
}
Given the various explicit description possibilities, the standard does not prescribe a default
behavior. The model developer has the freedom of incomplete specification.

5.2.6 Initial values for logic variables

Per definition, all logic variables in a behavioral description have the initial valdniech
means “uninitialized”. This value cannot be assigned to a logic variable, yet it can be used in a
behavioral description in order to assign other valuesutadter initialization.

Example:

BEHAVIOR {
@ (Q1=="bU){Q1="bl;}
@ (Q2=="bU){Q2="b0;}
/I followed by the rest of the behavioral description

}
A template can be used to make the intent more obvious, for example:

TEMPLATE VALUE_AFTER_INITIALIZATION {

@ (<logic_variable> ==" U) { <logic_variable> = <initial_value>
'}
}
BEHAVIOR {
VALUE_AFTER_INITIALIZATION (Q1 'b1")
VALUE_AFTER_INITIALIZATION (Q2 'b0")
/I followed by the rest of the behavioral description
}

Logic variables in a vector expression shall be declareunss. It is possible to annotate initial
values directly to a pin. Such variables shall never take the valteerefore vector
expressions involving for such variables (see the previous example) are meaningless.

Example:

PIN Q1 { INITIAL_VALUE ="b1;}
PIN Q2 { INITIAL_VALUE ="b0 ; }

Version 1.9.2 Advanced Library Format (ALF) Reference Manual 47

Functional Modeling Higher-order sequential functions

5.3 Higher-order sequential functions

This section defines the different types of higher-order sequential functions in ALF.

5.3.1 Vector-sensitive sequential logic

Vector expressions can be used to model generalized higher order sequential logic; they are an
extension of the boolean expressions.eitor expressiodescribes sequences of logical

events or transitions in addition to static logical states. A vector expression represents a
description of a logical stimulus without timescale. It describes the order of occurrence of
events.

The -> operatoffollowed by gives a general capability of describing a sequence of events or
a vector. For example, consider the following vector expression:

01A->01B
which reads “rising edge oxis followed by rising edge o#i'.

A vector expression is evaluated by an event sequence detection function. Like a single event
or a transition, this function evaluat&sie only at an infinitely short time when the event
sequence is detected, as shown in Figure 5-6.

A

B —

w3

oolast % fo1A 01B| 10 A 01A|10B | 10AD1B

Ecevent

ICRS

§%2ndlastx X 0O1LA| 01B 10A | 01A|10B [I0A
event

g(A,B)= (01 A->01B) +

sequenc¢0l A -> 01 B) detected

Figure 5-6: Example of event sequence detection function

The event sequence detection mechanism can be described as a queue that sorts events
according to their order of arrival. The event sequence detection function evaluatas
exactly the time when a new event enters the queue and forms the required sequetie, i.e.,
sequence specified by the vector expressitnits preceding events.

48 Advanced Library Format (ALF) Reference Manual Version 1.9.2

Higher-order sequential functions Functional Modeling

A vector-sensitive sequential logic can be call8d1) order sequential logiovhereN is the
number of events to be stored in the queue. The implementat{dhHdf) order sequential logic
requiredN memory elements for the event queue and one memory element for the output itself.

A sequence of events can also be gated with static logical conditions. In the example,

(01 CP -> 10 CP) && CD

the pincbshall havestate 1 from some time before the rising edgecato some time after

the falling edge otP. The pincDhcan not go lowtate 0) after the rising edge afPand go

high again before the falling edge ©Pbecause this would insert events into the queue and the
sequence “rising edge a followed by falling edge ogP’ would not be detected.

The formal calculation rules for general vector expressions featuring both states and transitions
are detailed in Section 5.3.2 and Section 5.3.3.

The concept of vector expression supports functional modeling of devices featuring digital
communication protocols with arbitrary complexity.

5.3.2 Canonical binary operators for vector expressions

The following canonical binary operators are necessary to define sequences of transitions:

* vector_followed_by for completely specified sequence of events

» vector_and for simultaneous events

e vector_or for alternative events

* vector_followed_by for incompletely specified sequence of events

The symbols for the boolean operatorsAibandoRrare overloaded farector_and and

vector_or , respectively. The new symbols for thetor_followed_by operators are shown
in Table 5-12.

Table 5-12 : Canonical binary vector operators

LHS, RHS

Operator | Operands | commutative | Description

-> 2 vector no Left-hand side (LHS) transitiaa followed byRight-hand
expressions| side (RHS) transition, no transition can occur in-between

&&, & 2 vector yes LHSand RHS transitioroccur simultaneously
expressions

[, | 2 vector yes LHSor RHS transitioroccur alternatively

expressions|

~> 2 vector no Left-hand side (LHS) transitiaa followed byRight-hand
expressions| side (RHS) transition, other transitions can occur in-betwgen

Per definition, the>and ~> operators shall not be commutative, whereas.ghend]|
operators on events shall be commutative.

01a&&01b===01b&&01la
0lal||0l1b===01b||0la
The-> and-~> operators shall be freely associative.

Version 1.9.2 Advanced Library Format (ALF) Reference Manual 49

Functional Modeling Higher-order sequential functions

0la->01b->01c (01 a -> 01 b) -> 01 ¢ 0l a-> (01 b -> 01 c)
0la~>01b~->01c (01 a ~> 01 b) ~> 01 ¢ 01 a~> (01 b ~> 01 c)

Theg&s& operator is defined for single events and for event sequences with the same number of
-> operators each.

(01Al..->..01AN) & (01 B1..->... 01 BN)

01A1&01B1..->..01AN&O1BN

The || operator reduces the set of edge operators (unary vector operators) to canonical and non-
canonical operators.

(??7 a)

Hence?? is non-canonical, since it can be defined by other operators.

(?' @)||(?- a) //a does or does not change its value

If <valuel><value2> is an edge operator consisting of two based literali&1 andvalue2
andword is an expression which can take the valuee1 orvalue2 , then the following
vector expressions are considered equivalent:

<valuel><value2> <word>

10 (<word> == <valuel>) && 01 (<word> == <value2>)
01 (<word> = <valuel>) && 01 (<word> == <value2>)
10 (<word> == <valuel>) && 10 (<word> != <value2>)
01 (<word> = <valuel>) && 10 (<word> != <value2>)
/I all expressions describe the same event:

/I <word> makes a transition from <valuel> to <value2>

Hence vector expressions with edge operators using based literals can be reduced to vector
expressions using only the edge operatorand10.

5.3.3

Table 5-13 defines the complex binary operators for vector operators.

Complex binary operators for vector expressions

Table 5-13 : Complex binary vector operators

The following expressions shall be considered equivalent:

(01a<->01b)
(0la &>01h)
(01 a<&>01b)

(01 a->01Db)|j(01b->01a)
(01 a->01b)||(01a&&01b)
(01 a-> 01 b)||(01 b -> 01 a)||(01 a && 01 b)

By their symmetric definition, the-> and<&> operators are commutative.

50

Advanced Library Format (ALF) Reference Manual

LHS, RHS

Operator | Operands commutative | Description

<-> 2 vector yes LHS transition follows or is followed by RHS transition
expressions

&> 2 vector no LHS transitioris followed by or occurs simultaneously
expressions with RHS transition

<&> 2 vector yes LHS transitiorfollows or is followed by or occurs simultg-
expressions neouslywith RHS transition

Version 1.9.2

Higher-order sequential functions Functional Modeling

0Ola<>01b===01b<->0l1a
0la<&>01b===01b<&>01a

The commutative complex binary vector operators are defined in Table 5-12. The commuta-
tivity rules are only defined for two operands:

» commutative “followed by”:

vect_exprl <-> vect_expr2 ===
vect_exprl -> vect_expr2 // vect_exprl occurs first
| vect_expr2 -> vect_exprl // vect_expr2 occurs first

» commutative “followed by or simultaneously occurring”:

vect_exprl <&> vect_expr2 ===
vect_exprl -> vect_expr2 // vect_exprl occurs first
| vect_expr2 -> vect_exprl // vect_expr2 occurs first
| vect_exprl &&vect_expr2 // both occur simultaneously

5.3.3.1 Extension to N operands
This section defines how to uSleoperands.

A complex_vector_expression of the form

vector_expression { <-> vector_expression }

shall be commutative for all operands. Theplex_vector_expression describes

alternative event sequences in which the temporal order of each constituent
vector_expression is completely permutable, excluding simultaneous occurrence of each
constituentector_expression

A complex_vector_expression of the form
vector_expression { <&> vector_expression }

shall be commutative for all operands. Theplex_vector_expression describes
alternative event sequences in which the temporal order of each constituent
vector_expression is completely permutable, including simultaneous occurrence of each
constituentector_expression

Example:

01A<>01B<->01C===
0OlA->01B->01C

| 01B->01C->01A

| 01C->01A->01B

| 01C->01B->01A

| 01B->01A->01C

| 01A->01C->01B

| Version 1.9.2 Advanced Library Format (ALF) Reference Manual 51

Functional Modeling Higher-order sequential functions

01 A<&>01B<&>01C-===
0Ol1A->01B->01C
| 01B->01C->01A
| 01C->01A->01B
| 01C->01B->01A
| 01B->01A->01C
| 01A->01C->01B
| 01A&&01B->01C
| 01A->01B&&01C
| 01B&&01C->01A
| 01B->01C&&01A
| 01C&&%01A->01B
| 01C->01A&&01B
| 01A&&%01B&&01C

5.3.3.2 Boolean rules
The following rule applies for a booleanDoperation with three operands:

rule 1:
A&B&C==(A&B)&C|A&B&C)

A corresponding rule also applies to the commutative followed-by operation with three oper-
ands:

rule 2:
01A<>01B<->01C-===
(0O1A<>01B)<->01C
| 01A<->(01B<->01C)

The alternative boolean expressiogns.B)& C andA& (B &C) inrule 1 are equivalent.
Therefore, rule 1 can be reduced to the following:

rule 3:
A&B&C===(A&B)&C===(B&C)&A

A corresponding rule doemt apply to complex vector operands, since each expression with
associated operands generates only a subset of permutations:

(0O1A<->01B)<->01C===
(01 A<->01B)->01C)

| (01C->(01A<->01B)) ===
01lA->01B->01C

| 01B->01A->01C

| 01C->01A->01B

| 01C->01B->01A

The permutations

0l1A->01C->01B
01B->01C->01A

are missing.

52 Advanced Library Format (ALF) Reference Manual Version 1.9.2

Higher-order sequential functions Functional Modeling

01 A<> (01 B <->01C) ===
(O1A->(01B<->010Q))

| ((01B<->01C)->01A)===
0OlA->01B->01C

| 0LA->01C->01B

| 01B->01C->01A

| 01C->01B->01A

The permutations

| 01B->01A->01C
| 01C->01A->01B

are missing.

5.34 Operators for conditional vector expressions

The definitions of th&g&, ?, and: operators are also overloaded to describeralitional vector
expressior(involving boolean expressions and vector expressions), as shown in Table 5-14.
The clauses are boolean expressions; while vector expressions are subject to those clauses.

Table 5-14 : Operators for conditional vector expressions

LHS, RHS
Operator | Operands commutative | Description
&& & | 1vector yes boolean expression (LHS or RHS)Tsuewhile sequence

expression, of transitions, defined by vector expression (RHS or LHS)
1 boolean occurs
expression

? 1 vector no boolean condition operator for construction of if-then-else
expression, clause involving vector expressions
1 boolean
expression
1 vector no boolean else operator for construction of if-then-else
expression, clause involving vector expressions
1 boolean
expression

An example for conditional vector expression usiggs given below:
(01 a && 'b) /I a rises whilen==0

The order of the operands in a conditional vector expression &&sttall not matter.
<vector_exp> && <boolean_exp> === <boolean_exp> && <vector_exp>

Theg&&operator is still commutative in this case, although one operand is a boolean expression
defining a static state, the other operand is a vector expression defining an event or a sequence
of events. However, since the operands are distinguishable per se, itis not necessary to impose
a particular order of the operands.

An example for conditional vector expression usirand: is given below.

Version 1.9.2 Advanced Library Format (ALF) Reference Manual 53

Functional Modeling Higher-order sequential functions

Ib?01la:c?10b:01d

Ib&O0la|!('b)&c&10b|!(Ib) & !c &01d

This example shows how a conditional vector expression using ternary operators can be
expressed with alternative conditional vector expressions.

A conditional vector expression can be reduced to a non-conditional vector expression in some
cases (see Section 5.4.11).

Every binary vector operator can be applied to a conditional vector expression.

5.35 Operators for sequential logic

Table 5-15 defines the complex binary operators for vector operators.

Table 5-15 : Operators for sequential logic

Operator Description

@ sequentialf operator, followed by a boolean logic expression (for
level-sensitive assignment) or by a vector expression (for edge{sen-
sitive assignment)

sequentiaklse if operator, followed by a boolean logic exprep-
sion (for level-sensitive assignment) or by a vector expression (for
edge-sensitive assignment) with lower priority

Sequential assignments are constructed as follows:

@ (<triggerl>) { <action1>}: (<trigger2>) { <action2>} :
(<trigger3>) { <action3>}

If triggerl event is detected, thewtion1 is performed; else ifrigger2 event is detected,
thenaction2 is performed; else ifrigger3 event is detected, themtion3 is performed as
a result of this clause.

5.3.6 Operator priorities

The priority of binding operators to operands in non-conditional vector expressions shall be
from strongest to weakest in the following order:

unary vector operators (edge literals)

complex binary vector operatoksx, &>, <&>)

1

2

3. VectorAND(&, &8&)
4. vector_followed_by operators-(, ~>)
5

vectoror(| , ||)

5.3.7 Using PINs in VECTORs

A VECTORdefines state, transition, or sequence of transitions of pins that are controllable and
observable for characterization.

54 Advanced Library Format (ALF) Reference Manual Version 1.9.2

Modeling with vector expressions Functional Modeling

Within aCELL, the set oPINS with SCOPE=behavior Oor SCOPE=measure Or SCOPE=both is the
default set of variables in the event queue for vector expressions relevisetiAsORor
VECTORStatements or both, respectively.

For detection of a sequence of transitions it is necessary to observe the set of variables in the
event queue. For instance, if the set of pins consig{sBt, D, the vector expression

(01 A -> 01 B)
implies no transition oR, B, C, D occurs between the transitiadisA andol B .

The default set of pins applies only for vector expressions without conditions. The conditional
eventANDoperator limits the set of variables in the event queue. In this case, only the state of
the condition and the variables appearing in the vector expression are observed.

Example:
(01 A ->01B) && (C | D)

No transition orn, Boccurs betweem A andol B, and(C | D) needs to stayruein-between
01 Aando1 B as well. Howeverc andD can change their values as long@g D) is satisfied.

5.4 Modeling with vector expressions

Vector expressions provide a formal language to describe digital waveforms. This capability
can be used for functional specification, for timing and power characterization, and for timing
and power analysis.

In particular, vector expressions add value by addressing the following modeling issues:

* Functional specificationcomplex sequential functionality, e.g., bus protocols.

* Timing analysiscomplex timing arcs and timing constraints involving more than two sig-
nals.

» Power analysistemporal and spatial correlation between events relevant for power con-
sumption.

» Circuit characterization and tesspecification of characterization and/or test vectors for
particular timing, power, fault, or other measurements within a circuit.

Like boolean expressions, vector expressions provide the means for describing the
functionality of digital circuits in various contexts without being self-sufficient. Vector
expressions enrich this functional description capability by adding a “dynamic” dimension to
the otherwise “static” boolean expressions.

The following subsections explain the semantics of vector expressions step-by-step. The vector
expression concept is explained using terminology from simulation event reports. However,
the application of vector expressions is not restricted to post-processing event reports.

Some application tools (e.g., power analysis tools) can actually evaluate vector expressions
during post-processing of event reports from simulation. Other application tools, especially
simulation model generators, need to respect the causality between the triggering events and
the actions to be triggered. While it is semantically impossible to describe cause and effect in
the same vector expression for the purpose of functional modeling, both cause and effect can
appear in a vector expression used for a timing arc description.

Version 1.9.2 Advanced Library Format (ALF) Reference Manual 55

Functional Modeling Modeling with vector expressions

ALF does not make assumption about the physical nature of the event report. Vector
expressions can be applied to an actual event report written in a file, to an internal event queue
within a simulator, or to a hypothetical event report which is merely a mathematical concept.

54.1 Event reports

This section describes the terminology of event reports from simulation, which is used to
explain the concept of ALF vector expressions. The intent of ALF vector expressions is not to
replaceexisting event report formats. Non-pertinent details of event report formats are not
described here.

Simulation events (e.g., from Verilog or VHDL) can be reported in a value change dump
(VCD) file, which has the following general form:

<timel>
<variableA> <stateU>
<variableB> <stateV>

<time2>
<variableC> <stateW>
<variableD> <stateX>

<time3> ...

The set of variables for which simulation events are reported, i.escthygeof the event report
needs to be defined beforehand. Each variable also has a definitiondet tfietated can

take. For instance, there can be binary variables, 16-bit integer variables, 1-bit variables with
drive-strength information, etc. Furthermore, the initial state of each variable shall be defined
as well. In an ALF context, the ternsggnalandvariableare used interchangeably. In VHDL,

the corresponding term ggnal In Verilog, there is no single corresponding term. iAblut

output , wire , andreg variables in Verilog correspond taignal in VHDL.

The time valuestimel> , <time2> , <time3> , etc. shall be in increasing order. The order in
which simultaneous events are reported does not matter. The number of time points and the
number of simultaneous events at a certain time point are unlimited.

In the physical world, each event or change of state of a variable takes a certain amount of time.
A variable cannot change its state more than once at a given point in time. However, in
simulation, this time can be smaller than the resolution of the time scale or ever).zero (
Therefore, a variable can change its state more than once at a given point in simulation time.
Those events are, strictly speaking, not simultaneous. They occur in a certain order, separated
by an infinitely small delta-time. Multiple simultaneous events of the same variable are not
reported in the VCD. Only the final state of each variable is reported.

A VCD file is the most compact format that allows reconstruction of entire waveforms for a
given set of variables. A more verbose form is the test pattern format.

<TIME> <variableA> <variableB> <variableC> <variableD>
<timel> <stateU> <stateV>

<time2> <stateU> <stateV> <stateW> <stateX>
<time3> ...

56 Advanced Library Format (ALF) Reference Manual Version 1.9.2

Modeling with vector expressions Functional Modeling

The test pattern format reports the state of each variable at every point in time, regardless of
whether the state has changed or not. Previous and following states are immediately available
in the previous and next row, respectively. This makes the test pattern format more readable
than the VCD and well-suited for taking a snapshot of events in a time window.

An example of an event report in VCD format:

/I initial values

AO B1 Ci1 D X E1l
/I event dump

109 Al DO

258 BO
573 CO
586 AOQ
643 Al
788 AOQ B1L C1
915 Al
1062 EO

1395 BO CO
1640 AO D1
/I end of event dump

An example of an event report in test pattern format:

time A B C D E
0 0 1 1 X 1
109 1 1 1 0 1
258 1 0 1 0 1
573 1 0 0 0 1
586 0 0 0 0 1
643 1 0 0 0 1
788 0 1 1 0 1
915 1 1 1 0 1
1062 1 1 1 0 0
1395 1 0 0 0 0
1640 O 0 0 1 0

Both VCD and test pattern formats represent the same amount of information and can be
translated into each other.

54.2 Event sequences

For specification of a functional waveform (e.g., the write cycle of amemory), itis not practical

to use an event report format, such as a VCD or test pattern format. In such waveforms, there
is no absolute time. And the relative time, for example, the setup time between address change
and write enable change, can vary from one instance to the other.

The main purpose okctor_expressions is waveform specification capability. The
following operators can be used:
» vector_unary (also callededge operatoor unary vector operatqr

The edge operator is a prefix to a variable in a vector expression. It contains a pair of
states, the first being the previous state, the second being the new state. Edge operators can
describe a change of state or no change of state.

Version 1.9.2 Advanced Library Format (ALF) Reference Manual 57

Functional Modeling Modeling with vector expressions

* vector_and (also callecsimultaneous event operajor
This operator uses the overloaded syngbot && interchangeably. The operator is the
separator between simultaneously occurring events

* vector_followed_by (also calledollowed-by operatgr
The “immediately followed-by operator” using the symbelis treated first. The> oper-
ator is the separator between consecutively occurring events.

These operators are necessary and sufficient to describe the following subset of
vector_expressions

* vector_single_event
A change of state in a single variable, for example:
0L A
* vector_event
A simultaneous change of state in one or more variables, for example:
01A&10B
* vector_event_sequence

Subsequently occurring changes of state in one or more variables, for example:
01A&10B->10A

Thevector_and operator has a higher binding priority thanibe&or_followed_by
operator.

We can now express the pattern of the sample event reporédteraevent_sequence
expression:

0lA&X0OD->10B->10C->10A->01A
->10A&01B&01C->01A->10E->10B&10C->10A&01D
We can define thkengthof avector_event_sequence expression as the number of
subsequent events described invdgor_event_sequence expression. The length is equal
to the number of> operators plus one

Although the vector expression format contains an inherent redundancy, since the old state of
each variable is always the same as the new state of the same variable in a previous event, it is
more human-readable, especially for waveform description. On the other hand, it is more
compact than the test pattern format. For short event sequences, it is even more compact than
the VCD, since it eliminates the declaration of initial values. To be accurate, for variables with
exactly one event the vector expression is more compact than the VCD. For variables with
more than one event the VCD is more compact than the vector expression. In summary, the
vector expression format offers readability similar to the test pattern format and compactness
close to the VCD format.

5.4.3 Scope and content of event sequences

Thescopeapplicable to a vector expression defines the set of variables in the event report. The
contentof a vector expression is the set of variables that appear in the vector expression itself.
The content of a vector expression shall be a subset of variables within scope.

* PINs with the annotatioBCOPE = BEHAVIOR are applicable variables for vector expres-
sions within the context &EHAVIOR

58 Advanced Library Format (ALF) Reference Manual Version 1.9.2

Modeling with vector expressions Functional Modeling

* PINs with the annotatioBCOPE = MEASUREe applicable variables for vector expressions
within the context of/ECTOR

* PINs with the annotatioSCOPE = BOTIare applicable variables for all vector expressions.
A vector_event_sequence expression is an event pattern without time, containing only the
variables within its own content. This event pattern is evaluated against the event report

containing all variables within scope. The vector expressidruswhen the event pattern
matches the event report.

Example:
time A B C D E /I scopeisA,B,C,D,E
0 0 1 1 X 1
109 1 1 1 0 1
258 1 0 1 0 1
573 1 0 0 0 1
586 0 0 0 0 1
643 1 0 0 0 1
788 0 1 1 0 1
915 1 1 1 0 1
1062 1 1 1 0 0
1395 1 0 0 0 0
1640 O 0 0 1 0
Consider the following vector expressions in the context of the sample event report:
01 A //(1) contentis A
/levent pattern expressed by (1):
1 A

I 0
I 1

(1) isTrueat time 109, time 643, and time 915.
10B->10C /l(2) contentis B, C

/levent pattern expressed by (2):
I B C

I 1 1

I 0 1

I 0 0

(2) isTrueat time 573.
10A->01A /I(3) contentis A

/levent pattern expressed by (3):
1 A
1 1
1 0
1 1

(3) isTrueat time 643 and time 915.
01D /[(4) contentis D

Version 1.9.2 Advanced Library Format (ALF) Reference Manual 59

Functional Modeling

/levent pattern expressed by (4):

1 D
1 0
1 1

(4) isTrueat time 1640.
01A->10C

Modeling with vector expressions

/[(5) contentis A, C

/levent pattern expressed by (5):

) A C
) 0 1
) 1 1
) 1 0

(5) is not beTrueat any time, since the event pattern expresses) bgoes not match the
event report at any time.

544 Alternative event sequences

The following operator can be used to describe alternative events:

vector_or , also callecgevent-or operatoor alternative-event operatpusing the over-
loaded symbal or|| interchangeably. Theoperator is the separator between alternative
events or alternative event sequences.

In analogy to boolean operatorshas a lower binding priority thagaand-> . Parentheses can
be used to change the binding priority.

Example:

(0LA->01B)|10C===01A->01B|10C
01A->(01B|10C)===01A->01B|01A->10C

Consider the following vector expressions in the context of the sample event report:
01A|10C 11(6)

/levent pattern expressed by (6):

I A
I 0
I 1
/[alternative event pattern expressed by (6):
I C
I 1
I 0
(6) isTrueat time 109, time 573, time 643, time 915, and time 1395.
10B->10C|10A->01A 1(7)
/levent pattern expressed by (7):
I B C
I 1 1
I 0 1
I 0 0

60

Advanced Library Format (ALF) Reference Manual Version 1.9.2

Modeling with vector expressions Functional Modeling

/[alternative event pattern expressed by (7):
1 A
1 1
1 0
1 1

(7) isTrueat time 573, time 643, and time 915.
01D|10B->10C 1(8)

/levent pattern expressed by (8):
I D
I 0
I 1

/[alternative event pattern expressed by (8):

I B C
I 1 1
I 0 1
I 0 0
(8) isTrueat time 573 and time 1640.
10B->10C|10A 11(9)
/levent pattern expressed by (9):
I B C
I 1 1
I 0 1
I 0 0
/[alternative event pattern expressed by (9):
I A

I 1
I 0

(9) isTrueat time 573, time 586, time 788, and time 1640.

The following operators provide a more compact description of certain alternative event
sequences:

* &> events occur simultaneously or follow each other in the order RHS after LHS

* <> aLHS event followed by a RHS event or a RHS event followed by a LHS event
* <&>events occur simultaneously or follow each other in arbitrary order

Example:
01A&>01C === 01A&01C|01A->01C
01A<>01C === (01A->01C|01C->01A
01A<&>01C === 01A<>01C|01A&01C

The binding priority of these operators is higher thaa afid-> .

5.4.5 Symbolic edge operators

Alternative events of the same variable can be described in a even more compact way through
the use of edge operators with symbolic states. The syrdtahds for “any state”.

* edge operator with as the previous state:
transition from any state to the defined new state

Version 1.9.2 Advanced Library Format (ALF) Reference Manual 61

Functional Modeling Modeling with vector expressions

» edge operator with as the next state:
transition from the defined previous state to any state.

Both edge operators include the possibility no transition occurred at all, i.e., the previous and
the next state are the same. This situation can be explicitly described with the following
operator:

edge operator with next state = previous state, also calleeédvent operator
The operand stays in the state defined by the operator.

The following symbolic edge operators also can be used:

e ?- no transition on the operand
e 2! transition from any state to any state different from the previous state
» 2?7 transition from any state to any state or no transition on the operand

e 2~ transition from any state to its bitwise complementary state
Example: Let be a logic variable with the possible states, andX.

?20A===00A|10A| X0 A

?1A===01A|11A|X1A

2XA===0XA|1XA|XXA

0? A===00A|01A|OXA

1?7 A===10A|11A|1XA

X? A=== X0 A|X1A|XXA

21A===01A|0XA|10A|1XA|X0OA|XLA

?~A===01A|10A| XX A

2?2 A===00A|01LA|OXA|10A|11A|1XA|XOA|XLA|XXA

?2-A===00A|11A|XXA
For variables with more possible states (e.g., logic states with different drive strength and
multiple bits) the explicit description of alternative events is quite verbose. Therefore the
symbolic edge operators are useful for a more compact description.

This completes the set adctor_binary ~ operators necessary for the description of a subset
of vector_expressions calledvector_complex_event expressions. ANector_binary

operators have twaector_complex_event expressions as operands. The set of
vector_event_sequence expressions is a subsetvettor_complex_event expressions.
Everyvector_complex_event expression can be expressed in terms of alternative
vector_event_sequence expressions. The latter could be caltiditerms in analogy to
boolean algebra.

5.4.6 Non-events

A vector_single_event expression involving a non-event operator is calletha-eventA
rigorous definition is required fakector_complex_event ~ expressions containing non-events.
Consider the following example of a flip-flop with clock inmitK and data outpl.

01 CLK ->01 Q 11 (i)

01 CLK -> 00 Q 11 (ii)
The vector expressian describes the situation where the output switches éréon after
the rising edge of the clock. The vector expresgipn describes the situation where the
output remains at after the rising edge of the clock.

62 Advanced Library Format (ALF) Reference Manual Version 1.9.2

Modeling with vector expressions Functional Modeling

How is it possible to decide wheth@gy or (i) is True without knowing the delay between
CLK and@? The only way is to wait until any event occurs after the rising edgexoff the
event is not o and the state ajis 0 during that event, theii) is True

Hence, a non-event ®ueevery time when another event happens and the state of the variable
involved in the non-event satisfies the edge operator of the non-event.

Example:

time A B C D E
0 0 1 1 X 1
109 1 1 1 0 1
258 1 0 1 0 1
573 1 0 0 0 1
586 0 0 0 0 1
643 1 0 0 0 1
788 0 1 1 0 1
915 1 1 1 0 1
1062 1 1 1 0 0
1395 1 0 0 0 0
1640 O 0 0 1 0

The test pattern format represents an event, for example in no different way than a non-
event, for examplel E. This non-eventi3rueat times 109, 258, 573, 586, 643, 788, and 915;
in short, every time when an event happens whiteconstant.

54.7 Compact and verbose event sequences

A vector_event_sequence expression in a compact form can be transformed into a verbose
form by padding up evergector_event expression with non-events. The next state of each
variable within avector_event expression shall be equal to the previous state of the same
variable in the subsequerictor_event expression.

Example:
01A->10B===01A&11B->11A&10B

A vector expression for a complete event report in compact form resembles the VCD, whereas
the verbose form looks like the test pattern.

/I compact form
01A&X0OD->10B->10C->10A->01A
->10A&01B&01C->01A->10E
->10B&10C->10A&01D

/I verbose form

?20A&?1B&?1C&?XD&?1E->
01A&11B&11C&X0D&11E->
11A&10B&11C&00D & 11 E->
11A&00B&10C&00D & 11 E->

Version 1.9.2 Advanced Library Format (ALF) Reference Manual 63

Functional Modeling Modeling with vector expressions

10A&00B&00C&0O0D & 11 E->

01A&00B&00C&0O0D & 11 E->

10A&01B&01C&00D & 11 E->

01A&11B&11C&00D & 11E->

11A&11B&11C&00D & 10 E->

11A&10B&10C&00D & 00 E->

10A&00B&00C&01D&00E
The transformation rule needs to be slightly modified in case the compact form contains a
vector_event expression consisting only of non-events. By definition, the non-evamues
only if a real event happens simultaneously with the non-event. Paddingdigx a&vent
expression consisting of non-events with other non-events make this impossible. Rather, this
vector_event expression needs to be padded up with unspecified events, ustg the
operator. Eventually, unspecified events can be further transformed into partly specified
events, if a former or future state of the involved variable is known.

Example:
01A->00B
===01A&00B->??A&00B
In the first transformation step, the unspecified evemt is introduced.
01A&00B->??A&00B
===01A&00B->1?A&00B

In the second step, this event becomes partly specified.is bound to be? A due to the
previous event oA.

5.4.8 Unspecified simultaneous events within scope

Variables which are within the scope of the vector expression yet do not appear in the vector
expression, can be used to pad up the vector expression with unspecified events as well. This
is equivalent to omitting them from the vector expression.

Example:
01 A->10B /Iletus assume a scope containing A, B, C, D, E

01A&10B&??C&??D&??E->11A&10B&??2C&??D&??E
This definition allows unspecified events to ocsumultaneouslyvith specified events or
specified non-events. However, it disallows unspecified events to ibebatweerspecified
events or specified non-events.

At first sight, this distinction seems to be arbitrary. Why not disallow unspecified events
altogether? Yet there are several reasons why this definition is practical.

If a vector expression disallows simultaneously occurring unspecified events, the application

tool has the burden not only to match the pattern of specified events with the event report but
also to check whether the other variables remain constant. Therefore, it is better to specify this

extra pattern matching constraint explicitly in the vector expression by using tperator.

There are many cases where it actually does not matter whether simultaneously occurring
unspecified events are allowed or disallowed:

64 Advanced Library Format (ALF) Reference Manual Version 1.9.2

Modeling with vector expressions Functional Modeling

» Case 1Simultaneous events are impossible by design of the flip-flop. For instance, in a
flip-flop it is impossible for a triggering clock edgeck and a switch of the data output
? Qto occur at the same time. Therefore, such events can not appear in the event report. It
makes no difference wheth&rCK & >-Q ,01CK&??Q , 0rol CK is specified. The
only occurring event pattern 8 CK & ?- Q and this pattern can be reliably detected by
specifyingo1 CK.

» Case 2 Simultaneous events are prohibited by design. For instance, in a flip-flop with a
positive setup time and positive hold time, the triggering clock edgek and a switch of
the data input! D is a timing violation. A timing checker tool needs the violating pattern
specified explicitly, i.e.901 CK & ?!' D . In this context, it makes sense to specify the non-
violating pattern also explicitly, i.e01 CK & ?-D . The pattero1 CK by itself is not
applicable.

» Case 3 Simultaneous events do not occur in correct design. For instance, power analysis
of the evenbl CK needs no specification @D or?-D . In the analysis of an event
report with timing violations, the power analysis is less accurate anyway. In the analysis of
the event report for the design without timing violation, the only occurring event pattern is

01CK&?-D and this pattern can be reliably detected by specifyirax .1

» Case 4 The effects of simultaneous events are not modeled accurately. This is the case in
static timing analysis and also to some degree in dynamic timing simulation. For instance,
aNANDgate can have the inputandB and the output. The event sequence exercising
the timing ar@w1 A -> 10 z can only happen i is constant.. No event orB can happen
in-betweern1 A and10z. Likewise, the timing aro1B->10z can only happen &
is constant. and no event happens in-betweem and10 z . The timing arc with simul-
taneously switching inputs is commonly ignored. A tool encountering the scenanos.

01 B -> 10 Z has no choice other than treating it arbitrarilyoasAa -> 10 z or asol B
->10Z

» Case 5The effects of simultaneous events are modeled accurately. Here it makes sense to
specify all scenarios explicitly, e.@@1 A & ?- B > 10 Z ,01 A &?!' B > 10 Z ,?- A
&01B->10z , etc., whereas the pattelgisA->10z andolB->10z by them-
selves apply only for less accurate analysis Gaese 4.

There is also a formal argument why unspecified events on a vector expression need to be
allowed rather than disallowed. Consider the following vector expressions within the scope of
two variables A and B.

01 A 0
01B 11 (ii)
01A&01B 11 (iii)

The natural interpretation here(i§ ===() & (i) . This interpretation is only possible

by allowing simultaneously occurring unspecified events.

Allowing simultaneously occurring unspecified events, the vector expregsioasd(i)
respectively, are interpreted as follows:

1. The power analysis tool relates to a timing constraint checker in a similar way as a parasitic extraction tool
relates to a DRC tool. If the layout has DRC violations, for instance shorts between nets, the parasitic extraction
tool shall report inaccurate wire capacitance for those nets. After final layout, the DRC violations shall be gone
and the wire capacitance shall be accurate.

Version 1.9.2 Advanced Library Format (ALF) Reference Manual 65

Functional Modeling Modeling with vector expressions

01A&??B 11 (@)

?7?A&01B 11 (i)
Disallowing simultaneously occurring unspecified events, the vector expresgsioasd
(i) , respectively, are interpreted as follows:

01A&?-B Il (i)

?-A&01B 1 (i)
The vector expressioniy and(i) are compatible witkii) , whereagi’) and
(i) are not.

5.4.9 Simultaneous event sequences

The semantic meaning of the “simultaneous event operator” can be extended to describe
simultaneously occurringvent sequencgly using the following definition:

(01 A#1 .. -> ... 01 A#N) & (01 B#1 .. -> ... 01 B#N)
=== 01 A#1 & 01 B#1 ... -> ... 01 A#N & 01 B#N

This definition is analogous to scalar multiplication of vectors with the same number of indices.
The number of indices corresponds to the numbeeabr_event expressions separated by

-> operators. If the number et in both vector expressions is not the same, the shorter vector
expression can be left-extended with unspecified events, using tgerator, in order to align
both vector expressions.

Example:

(O1LA->01B->01C) & (01 D -> 01 E)
===(01A->01B->01C) & (?? D ->01 D -> 01 E)
===01A&??D->01B&01D->01C&O1E
===01A->01B&01D->01C&O0LE

The easiest way to understand the meaning of “simultaneous event sequences” is to consider
the event report in test pattern format. If eashor_event_sequence expression matches
the event report in the same time window, then the event sequences happen simultaneously.

time A B C D E
0 0 1 1 X 1
109 1 1 1 0 1
258 1 0 1 0 1
573 1 0 0 0 1
586 O 0 0 0 1
643 1 0 0 0 1
788 0 1 1 0 1
915 1 1 1 0 1
1062 1 1 1 0 0
1395 1 0 0 0 0
1640 O 0 0 1 0
Example:

01A->10B===01A&11B->11A&10B /1 (10a)

66 Advanced Library Format (ALF) Reference Manual Version 1.9.2

Modeling with vector expressions Functional Modeling

/I event pattern expressed by (10a):

1 A B

1 0 1

1 1 1

1 1 0

X0D->00D I/l (10b)

/I event pattern expressed by (10b):
1 D
1 X
1 0
1 0

(01 A->10B) & (X0 D -> 00 D) /I (10) === (10a)&(10b)
Both (10a) and(10b) areTrueat time 258. Therefor@0) is Trueat time 258.

10C
==7??C->??C->10C
===7??C->?1C->10C Il (11&)

/I event pattern expressed by (11a):
I C
I ?
I ?
I 1
I 0

(11a) is left-extended to match the length of the followint) .

0lA->00D->11E ===
01A&00D&??E

>??A&00D&7??E

>?2?7A&??D&11E

01A&00D & ??E
>1?A&00D&?LE
>??A&0?D&11E /I (11b)

/I event pattern expressed by (11b):
1l D E
1l 0 ?
1l 0 ?
1l 0 1
1l 7 ? 1
(11b) contains explicitly specified non-events. The non-evemt calls for the unspecified
events?? A and?? E. The non-evento E calls for the unspecified everts A and?? D. By
propagating well-specified previous and next states to subsequent events, some unspecified
events become partly specified.

10 C & (01 A -> 00 D -> 11 E) /I (11) === (11a)&(11b)

(11a) isTrueat time 573 and time 1398.1b) is Trueat time 573 and time 915. Therefore,
(11) isTrueattime 573.

VWV O >

Version 1.9.2 Advanced Library Format (ALF) Reference Manual 67

Functional Modeling Modeling with vector expressions

5.4.10 Implicit local variables

Until now, vector expressions are evaluated against an event report containing all variables
within the scope of a cell. It is practical for the application to work with only one event report

per cell or, at most, two event reports if the set of variablessianvIOR(scope=behavior)
andVECTORscope=measure) is different. However, for complex cells and megacells, it is
sometimes necessary to change the scope of event observation, depending on operation modes.
Different modes can require a different set of variables to be observed in different event reports.

The following definition allows t@xtendthe scope of a vector expression locally:

Edge operators apply not only to variables, but also to boolean expressions involving those
variables. Those boolean expressions reprasgaticit local variablesthat are visible
only within the vector expression where they appear.

Suppose the local variablgs & B) ,(A|B) are inserted into the event report:

time A B C D E A&B AlB
0 0 1 1 X 1 0 1
109 1 1 1 0 1 1 1
258 1 0 1 0 1 0 1
573 1 0 0 0 1 0 1
586 O 0 0 0 1 0 0
643 1 0 0 0 1 0 1
788 0 1 1 0 1 0 1
915 1 1 1 0 1 1 1
1062 1 1 1 0 0 1 1
1395 1 0 0 0 0 0 1
1640 O 0 0 1 0 0 0
Example:
01 (A &B) 11 (12)
/I event pattern expressed by (12):
I A&B
I 0
I 1
(12) is Trueat time 109 and time 915.
10 (A | B) 11 (13)
/I event pattern expressed by (13):
I A|B
I 1
I 0
(13) is Trueat time 586 and time 1640.
01(A&B)->10B I (14)
/I event pattern expressed by (14):
I B A&B
I 1 0
I 1 1
I 0 1

68 Advanced Library Format (ALF) Reference Manual Version 1.9.2

Modeling with vector expressions Functional Modeling

(14) is Trueat time 258.

10 (A&B)&10B->10C Il (15)
/I event pattern expressed by (15):
1 B C A&B
1 1 1 1
1 0 1 0
1 0 0 0
(15) is Trueat time 573.
10(A&B)->10(A|B) 11 (16)

/I event pattern expressed by (16):
1 A&B A|B

I 1 1
I 0 1
I 0 0

(16) is Trueat time 1640.

5.4.11 Conditional event sequences

The following definitionrestrictsthe scope of a vector expression locally:

vector_boolean_and , also callecconditional event operator

This operator is defined between a vector expression and a boolean expression, using the
overloaded symbd or && The scope of the vector expression is restricted to the variables
and eventual implicit local variables appearing within that vector expression. The boolean
expression shall b&ueduring the entire vector expression. The boolean expression is

called theExistence Conditioof the vector expressicﬁﬁ.

Vector expressions using thector_boolean_and operator are called
vector_conditional_event expressions. Scope and contents of such expressions are
identical, as opposed to non-conditiomadtor_complex_event expressions, where the
content is a subset of the scope.

Example:
(10(A&B)->10(A|B))&!D Il (17)

/[event pattern expressed by (17):
1 A&B A|B

1 1 1
1 0 1
1 0 0

2. An Existence Condition can also appear as annotatioW @& ORvbject instead of appearing in the
vector expression. This enables recognition of existence conditions by application tools which can
not evaluate vector expressions (e.g., static timing analysis tools). However, for tools that can evalu-
ate vector expressions, there is no difference between existence condition as a co-factor in the vector
expression or as an annotation.

| Version 1.9.2 Advanced Library Format (ALF) Reference Manual 69

Functional Modeling Modeling with vector expressions

/I event report without C, E:

time A B D A&B A|B
0 0 1 X 0 1
109 1 1 0 1 1
258 1 0 0 0 1
586 O 0 0 0 0
643 1 0 0 0 1
788 0 1 0 0 1
915 1 1 0 1 1
1062 1 1 0 1 1
1395 1 0 0 0 1
1640 O 0 1 0 0

(17) contains the samector_complex_event expression ag6) . However, althouglwe)

is notTrueat time 586(17) is Trueat time 586, since the scope of observation is narrowed to
A, B, A&B andA|B by the existence conditidD , which is staticallyTrue while the specified
event sequence is observed.

Within, and only within, the narrowed scope of tetor_conditional_event expression,
(17) can be considered equivalent to the following:

(10 (A&B)->10 (A|B)) & D

(10 (A & B) -> 10 (A | B)) & (11 (ID) -> 11 (D))

10 (A & B) & 11 (D) -> 10 (A | B) & 11 (D)
The transformation consists of the following steps:

1. Transform the boolean condition into a non-event.
For example!D becomed1 (D)

2. Left-extend theector_single_event expression containing the non-eventin order to
match the length of thector_complex_event expression.

For examplel1 (D) becomedi (D) -> 11 (D) to match the length of
10 (A & B) -> 10 (A | B)

3. Apply scalar multiplication rule for simultaneously occurring event sequences.

Thus, avector_conditional_event expression can be transformed into an equivalent
vector_complex_event expression, but the change of scope needs to be kept in mind. An
operator which can express the change of scope in the vector expression language is defined in
Section 5.4.13. This can make the transformation more rigorous.

Regardless of scope, the transformation fiettor_conditional_event expression to
vector_complex_event expression also provides the means of detecting ill-specified
vector_conditional_event expressions.

Example:

(10A->01B->01A)&A

1I0A&11A>01B&11A->01A&11A

70 Advanced Library Format (ALF) Reference Manual Version 1.9.2

Modeling with vector expressions Functional Modeling

The first expressiomo A& 11 A and the third expressian A& 11 A within the
vector_complex_event expression are contradictory. Hence, the
vector_conditional_event expression can never beue

5.4.12 Alternative conditional event sequences

All vector_binary ~ operators, in particular thvector_or operator, can be applied to

vector_conditional_event expressions as well aswector_complex_event expressions.
Consider again the event report:

time A B C D E

0 0 1 1 X 1

109 1 1 1 0 1

258 1 0 1 0 1

573 1 0 0 0 1

586 0 0 0 0 1

643 1 0 0 0 1

788 0 1 1 0 1

915 1 1 1 0 1

1062 1 1 1 0 0

1395 1 0 0 0 0

1640 O 0 0 1 0
Concurrent alternativeector_conditional_event expressions can be paraphrased in the
following way:

IF <boolean_expression 1> THEN <vector_expression 1>

OR IF <boolean_expression »> THEN <vector_expression 2>

... OR IF <boolean_expression n THEN <vector_expression N

The conditions can b&uewithin overlapping time windows and thus the vector expressions
are evaluated concurrently. Thetor_boolean_and operator andector_or operator
describe such vector expressions.

Example:
C&(01 A -> 10 B) | ID&(10 B -> 10 A) | E&(10 B -> 10 C) 11 (18)
/I Event pattern expressed by (18):
1 A B C
1 0 1 1
1 1 1 1
1 1 0 1

(18) isTrueat time 258 because 0f& (01 A -> 10 B)

/I Alternative event pattern expressed by (18):

1 A B D
1 1 1 0
1 1 0 0
1 0 0 0

(18) is alsoTrueat time 586 because of & (10 B -> 10 A)

/I Alternative event pattern expressed by (18):
1 B C E
1 1 1 1

Version 1.9.2 Advanced Library Format (ALF) Reference Manual 71

Functional Modeling Modeling with vector expressions

1 0 1 1

1 0 0 1
(18) is alsoTrueat time 573 because Bf& (10 B -> 10 C)
Prioritized alternativeector_conditional_event expressions can be paraphrased in the
following way:

IF <boolean_expression 1> THEN <vector_expression 1>

ELSE IF <boolean_expression »> THEN <vector_expression 5>

... ELSE IF <boolean_expression n> THEN <vector_expression N

(optional) ELSE <vector_expression default >

Only the vector expression with the highest priofitye condition is evaluated. The
vector_boolean_cond operator andector_boolean_else operator are used in ALF to
describe such vector expressions.

Example:

C? (01 A->10B): 'D? (10 B->10 A): E? (10 B -> 10 C) 11 (19)
The prioritized alternativeector_conditional_event expression can be transformed into
concurrent alternativeector_conditional_event expression as shown:

C?(L1A->10B):!D?(10B->10A): E? (10 B -> 10 C)

C & (01 A->10B)

|!IC&!D&(10B->10A)

|!IC&!('D) & E & (10 B ->10C)
(19) isTrueattime 258 because af& (01 A -> 10 B) , but not attime 586 because of higher
priority C while D & (10 B -> 10 A) , hor at time 573 because of higher prioritywhile
E&(10B->10C)

5.4.13 Change of scope within a vector expression

Conditions on vector expressions redefine the scope of vector expressions locally. The
following definition can be used to change the scope even within a part of a vector expression.
For this purpose, the symbolic statean be used, which means “don’t care about events”. This

is different from the symbolic statewhich means “don’t care about state”. When the state of

a variable ig, arbitrary events occurring on that variable are disregarded.

» Edge operator with as next state:
The variable to which the operator applies is no longer within the scope of the vector
expression.

» Edge operator with as previous state:
The variable to which the edge operator applies is now within the scope of the vector
expression.

As opposed ta, * stands for an infinite variety of possibilities.
Example:
Let A be a logic variable with the possible states, andx.

72 Advanced Library Format (ALF) Reference Manual Version 1.9.2

Modeling with vector expressions Functional Modeling

*0 A ===

O0A|10A|X0A

|O0OA->00A|10A->00A|X0A->00A

|0OLA->10A|11A->10A|X1A->10A

|OXA->X0OA|1XA->X0A|XXA->X0A

|00OA->00A->00A]...

O* A ===

00 A|0LA|OXA

|O0OA->00A|00A->01A|00A->0XA

|0OLA->10A|01A->11A|01A->1XA

|OX A ->X0A|O0XA->X1LA|0XA->XXA

|00OA->00A->00A]...
A vector expression with an infinite variety of possible event sequences cannot be directly
matched with an event report. However, there are feasible ways to implement event sequence
detection involving . In principle, there is a “static” and “dynamic” way. The following parts
of the vector expression are separated byb-sequences events.

» “Static” event sequence detection with
The event report with all variables can be maintained, but certain variables are masked for

the purpose of detection of certain sub-sequences.

* “Dynamic” event sequence detection with
The event report shall contain the set of variables necessary for detection of a relevant sub-
sequence. When such a sub-sequence is detected, the set of variables in the event report
shall change until the next sub-sequence is detected, etc.

Examples:
01A->1*B->10C I/ (20)
/I Event pattern expressed by (20):
1 A B C
1 0 1 1
1 1 1 1
1 1 * 1
1 1 * 0
/l pattern for 1st sub-sequence:
1 A B C
1 0 1 1
1 1 1 1
1 1 * 1
/I pattern for 2nd sub-sequence:
1 A B C
1 1 * 1
1 1 * 0
The event report with masking relevant zo) :
time A B C D E
0 0 1 1 X 1
109 1 1 1 0 1
258 1 * 1 0 1 /I detection of 1st sub-sequence
573 1 * 0 0 1 /l detection of 2nd sub-sequence

| Version 1.9.2 Advanced Library Format (ALF) Reference Manual 73

Functional Modeling Modeling with vector expressions

586 O
643 1
788 0
915 1
1062 1
1395 1
1640 O

(20) isTrueat time 573 and time 1395. The first sub-sequenge-> 1* B is detected at
time 258, since * maps to any state. From time 258 onwaiidsnasked. The second sub-
sequencd0 Cis detected at time 573. From time 573 onwaglis, unmasked. The first sub-

sequence is detected again at time 1062. The second sub-sequence is detected again at time
1395.

/[detection of 1st sub-sequence
/[detection of 2nd sub-sequence

O * *FP P OO
o9 FrErLrEFrLrOoOO
rOOOOOO
OO0 R R R

0lA&1*E->10C 11 (21)
/I Event pattern expressed by (21):
1 A C E
1 0 1 1
1 1 1 *
1 1 0 *
/I pattern for 1st sub-sequence:
1 A C E
1 0 1 1
1 1 1 *
/I pattern for 2nd sub-sequence:
1 A C E
1 1 1 *
1 1 0 *
The event report with masking relevant far) :
time A B C D E
0 0 1 1 X 1
109 1 1 1 0 * /I detection of 1st sub-sequence
258 1 0 1 0 * /l abortion of detection process
573 1 0 0 0 1
586 O 0 0 0 1
643 1 0 0 0 1
788 0 1 1 0 1
915 1 1 1 0 * /I detection of 1st sub-sequence
1062 1 1 1 0 * /[disregard event out of scope
1395 1 0 0 0 0 /[detection of 2nd sub-sequence
1640 O 0 0 1 0

(21) isTrueat time 1395. The first sub-sequenceer & 1*E is detected at time 109. From

time 109 onwards; is masked. The event @at time 258 aborts continuation of the detection
process and triggers restart from the beginning. The first sub-sequence is detected again at time
915. From time 915 onwardss masked. The event at time 1062 is therefore out of scope.
The second sub-sequerniceC is detected at time 1395.

01A->*1B->10B&10C 1 (22)

74 Advanced Library Format (ALF) Reference Manual Version 1.9.2

Modeling with vector expressions

/[Event pattern expressed by (22):

1 A B C
1 0 * 1
1 1 * 1
1 1 1 1
1 1 0 0
/Il pattern for 1st sub-sequence:
1 A B C
1 0 * 1
1 1 * 1
/Il pattern for 2nd sub-sequence:
1 A B C
1 1 * 1
1 1 1 1
1 1 0 0
The event report with masking relevant (zz) :
time A B C D E
0 0 1 1 X 1
109 1 1 1 0 1 I
258 1 0 1 0 1 I
573 1 * 0 0 1
586 O * 0 0 1
643 1 * 0 0 1
788 O * 1 0 1
915 1 * 1 0 1 /)
1062 1 1 1 0 0 1
1395 1 0 0 0 0 1
1640 O 0 0 1 0

Functional Modeling

detection of 1st sub-sequence
abort

detection of 1st sub-sequence
continue
detection of 2nd sub-sequence

(22) is Trueat time 1395. The first sub-sequertaeA is detected at time 109. TherefoBas
unmasked. Since=0 at time 258, the attempt to detect the second sub-sequence is aborted and
the detection process restarts from the beginning. The first sub-sequeacedetected again

at time 109. The second sub-sequenae->10B & 10 C

is detected at time 1395.

0lA->1?7A&0*B&1*E->10C I (23)
/I Event pattern expressed by (23):
1l A B C E
1l 0 0 1 1
1l 1 0 1 1
1l 1 * 1 *
1l 1 * 0 *
/Il pattern for 1st sub-sequence:
1l A B C E
1l 0 0 1 1
1l 1 0 1 1
1l ? * 1 *
/I pattern for 2nd sub-sequence:
1l A B C E
1l ? * 1 *
1l ? * 0 *
| Version 1.9.2 Advanced Library Format (ALF) Reference Manual 75

Functional Modeling Modeling with vector expressions

The event report with masking relevant for (23):
C E

o]
O

time A
0 0
109 1
258 1
573 1
586 0
643 1
788 0
915 1
1062 1
1395 1 0
1640 O 0

(23) is notTrueat any time. The first sub-sequence is detected at time 788. The event at time
915 does not match the expected second sub-sequence.

I detection of 1st sub-sequence

1
1
1
1
1
1

*
* I abort

0

COR * *OOOOR R
mroo®PPococo0oox

corPPFRPOocOOR R R

5.4.14 Sequences of conditional event sequences

The symbok can be used to describe the scope of a vector expression directly in the vector
expression language. This is particularly useful for sequencestof_conditional_event
expressions.
In reusing(17) as example:

(10 (A&B)->10(A|B) &!D
the scope of the sample event report contains contain the varab)&s D, ande. The
vector_conditional_event expressiorgl7) contains only the variables B, andD and the
implicit local variablesa&BandA|B . Therefore, the global variablesande are out of scope
within (17) . The implicit local variables&BandA|B are in scope within, and only within,
a7 .
Now consider aequencef vector_conditional_event expressions, where variables move
in and out of scope. With the following formalism, it is possible to transform such a sequence

into an equivalentector_complex_event expression, allowing for a change of scope within
eachvector_conditional_event expression.

<vector_conditional_event#1> .. -> .. <vector_conditional_event#N>

where
<vector_conditional_event#i>
=== <vector_complex_event#i> & <boolean_expression#i>// 1 <i <N
The principle is to decompose eagttor_conditional_event expression into a sequence

of three vector expressiopsefix, kerne| andpostfixand then to reassemble the decomposed
expressions.

<vector_conditional_event#i>
=== <prefix#i> -> <kernel#i> -> <postfix#i>// 1 <i <N

1. Define the prefix for eackector_conditional_event expression.
Theprefixis avector_event expression defining all implicit local variables.

76 Advanced Library Format (ALF) Reference Manual Version 1.9.2

Modeling with vector expressions Functional Modeling

Example:
*2 (A&B) & *? (A|B)

2. Define the kernel for eaalactor_conditional_event expression.
Thekernelis thevector_complex_event expression equivalent to the
vector_conditional_event expression.

<vector_complex_event#i> & <boolean_expression#i>

=== <vector_complex_event#i>

& (11 <boolean_expression#i> ..->.. 11 <boolean_expression#i>)
The kernel can consist of one or several alternaieer_event_sequence expressions.
Within eachvector_event_sequence expression, the same set of global variables are
pulled out of scope at the fingictor_event expression and pushed back in scope at the
lastvector_event expression.

Example:
P*C&?*E I/l global variables out of scope
& 10 (A &B)&11('D)->10(A|B) &11('D)
&*? C&*?E /I global variables back in scope
3. Define the postfix for eaclector_conditional_event expression.

Thepostfixis avector_event expression removing all implicit local variables.

Example:
?* (A&B) & ?* (A|B)
4. Join the subsequewdctor_complex_event expressions with theector_and
operator between prefix#i+1land kernel#i and also between postfix#i and kernel#i+1.

.. <vector_conditional_event#i> -> <vector_conditional_event#i+1>

=== .. <prefix#i>
-> <postfix#i-1> & <kernel#i> & <prefix#i+1>
-> <postfix#i> & <kernel#i+1> & <prefix#i+2>
-> <postfix#i+1> ..

The complete example:

(10 (A&B)->10(A|B)) &'D

*? (A&B) & *? (A|B)

>*C&?E

& 10 (A & B) & 11 (ID) -> 10 (A | B) & 11 (D)
&*? C&*?E

-> 2% (A&B) & ?* (A|B)

Note: The in-and-out-of-scope definitions for global variables are within the kernel, whereas

the in-and-out-of-scope definitions for global variables are within the prefix and
postfix. In this way, the resultingctor_complex_event expression contains the
same uninterrupted sequence of events as the original sequence of
vector_conditional_event expressions.

Version 1.9.2 Advanced Library Format (ALF) Reference Manual 77

Functional Modeling Modeling with vector expressions

5.4.15 Incompletely specified event sequences

So far the vector expression language has provided suppodrgietely specified event
sequenceand also the capability to put variables temporarily in and out of scope for event
observation. As opposed to changing the scope of event obserrata@npletely specified

event sequencesquire continuous observation of all variables while allowing the occurrence
of intermediate events between the specified events. The following operator can be used for
that purpose:

vector_followed_by , also calledollowed-by operatqrusing the symboi>.
The~> operator is the separator between consecutively occurring events, with possible
unspecified events in-between.

Detection of event sequences involvirgrequires detection of the sub-sequence befere
setting a flag, detection of the sub-sequence afteaind clearing the flag.

This can be illustrated with a sample event report:

time A C
0
109
258
573
586

0
1
1
1
0
643 1
0
1
1
1
0

O
m

//01 A detected, set flag
//110C detected, clear flag

//01 A detected, set flag
788

915

1062
1395
1640

Example:

01A~>10C I (24)

/I as opposed to previous example (5):01 A->10C
(24) is Trueattime 573 because of A attime 109 ando C at time 573. It isTrueagain at
time 1395 because ofi A attime 643 ando C at 1395. On the other han@) is neverTrue
because there are always events in-between and10 C .

/01 A detected again

//10C detected, clear flag

oopl—‘l—‘OOOOl—‘Hm
OO RrRPFRPPFPOOORPRFER
P OOOOO0OOOO0OO X
cocookFRPFRPRFRPRPFPRPRPAL

Vector expressions consistingwettor_event expressions separated-byor by~> are
calledvector_event_sequence expressions, using the same syntax rules for the two different
vector_followed_by operators. Consequently, all vector expressions involving
vector_event_sequence expressions angkctor_binary operators are called
vector_complex_event expressions.

However, only a subset of the semantic transformation rules can be applied to vector
expressions containing.

Associative rule applies for both and~>.
(01A~>01B)~>01C===01A~>(01C~>01B~>01C)
(01LA->01B)->01C===01A->(01C->01B->01C)
(01LA~>01B)->01C===01A~>(01C~>01B->01C)
(0LA->01B)~>01C===01A->(01C->01B~>01C)

78 Advanced Library Format (ALF) Reference Manual Version 1.9.2

Modeling with vector expressions Functional Modeling

Distributive rule applies for botly and-~>.
(01LA|01B)->01C===01A~>01C|01B->01C
(0LA|01B)~>01C===01A~>01C|01B~>01C
(01LA|01B)->01C===01A~>01C|01B->01C

Scalar multiplication rule applies only fer. The transformation involving> is more
complicated.

(01A->01B)&(01C->01D)
===(01A&01C)->(01B&01D)

(01A~>01B)&(01C->01D)
===(01A&01C)->(01B&01D)
| 01A~>01C->(01B&01D)

(01 A ~> 01 B) & (01 C ~> 01 D)
=== (01 A & 01 C) ~> (01 B & 01 D)
| 01A-~>01C~>(01B&O01D)
| 01C~>01A~>(01B&O01D)

Transformation ofector_conditional_event expressions int@ector_complex_event
expressions applies only for.

(OLA->01B)&C
===01A&11C->01B&11C

(0OLA~>01B)&C
=== 01A&11C~>01B&11C

Since the-> operator allows intermediate events, there is no way to express the continuously
True conditionc.

5.4.16 How to determine well-specified vector expressions

By defining semantics for
alternativevector_event_sequence expressions
and establishing calculation rules for

transformingvector_complex_event expressions into alternative
vector_event_sequence expressions

and for

transforming alternativeector_conditional_event expressions into alternative
vector_complex_event expressions,

semantics are now defined for all vector expressions.

The calculation rules also provide means to determine whether a vector expression is well-
specified or ill-specified. An ill-specified vector expression is contradictory in itself and can
therefore never bérue

Once a vector expression is reduced to a set of alternative event_sequence
expressions, two criteria define whether a vector expression is well-defined or not.

Version 1.9.2 Advanced Library Format (ALF) Reference Manual 79

Functional Modeling Variable declarations

» Compatibility between subsequent events on the same variable:
The next state of earlier event shall be compatible with previous state of later event. This
check applies only if ne> operator is found between the events.

» Compatibility between simultaneous events on the same variable:
Both the previous and next state of both events shall be compatible. Such events com-
monly occur as intermediate calculation results within vector expression transformation.

The following compatibility rules apply:

* ?is compatible with any other state. If the other statetise resulting state is Other-
wise, the resulting state is the other state.

* * js compatible with any other state. The resulting state is the other state.
* Any other state is only compatible with itself.

Examples:
01A->01B->10A

The next state af1 A is compatible with the previous state10fA .
OXA->01B->10A

The next state afx A is not compatible with the previous stateto® .
OXA~>01B->10A

Compatibility check does not apply, since intermediate events are allowed.
01A&10A

Both the previous and next stateacdre contradictory; this results in an impossible event.
21A&1? A

Both previous and next statedare compatible; this results in the non-eveans .

5.5 Variable declarations

Inside aCELL object, thePIN objects with theeINTYPE digital ~ define variables fOFUNCTION
objects inside the san@ELL. A primary input variablenside aFUNCTIONshall be declared as
aPIN with DIRECTION=input Orboth (SINCeDIRECTION=both is a bidirectional pin).

However, it is not required that all declared pins are used in the function. Output variables
inside aFUNCTIONNneed not be declared pins, since they are implicitly declared when they
appear at the left-hand side (LHS) of an assignment.

Example:

CELL my_cell {
PIN A {DIRECTION = input;}
PIN B {DIRECTION = input;}
PIN C {DIRECTION = output;}

80 Advanced Library Format (ALF) Reference Manual Version 1.9.2

Variable declarations Functional Modeling

FUNCTION {
BEHAVIOR {
D=A&&B,;
C=1D;

}
}

candD are output variables that need not be declared prior to use. After implicit declaration,
Dis reused as an input variabfeandB are primary input variables.

5.5.1 BEHAVIOR

InsideBEHAVIOR variables that appear at the LHS of an assignment conditionally controlled
by a vector expression, as opposed to an unconditional continuous assignment, hold their
values, when the vector expression evalubsése Those variables are considered to have
latch-type behavior.

Examples:

BEHAVIOR {

@(GX
Q =D; /' both Q and QN have latch-type behavior
QN = ID;

}

BEHAVIOR {
@(GY

}
QN =1Q;

Q =D; /l only Q has latch-type behavior

}

5.5.2 STATETABLE

The functional description can be supplemented §yAaETABLE the first row of which
contains the arguments that are object IDs of the deckaresl The arguments appear in two
fields, the first is input and the second is output. The fields are separated. @ha rows are
separated by a The arguments can appear in both fields iffines have attribute

direction=output or direction=both . If direction=output , then the argument has latch-
type behavior. The argument on the input field is considered previous state and the argument
on the output field is considered the next stateirdétion=both , then the argument on the

input field applies for input direction and the argument on the output field applies for output
direction of the bidirectionaIN.

Example:

CELL ff_sd {
PIN g {DIRECTION=output;}
PIN d {DIRECTION=input;}
PIN cp {DIRECTION=input;
SIGNALTYPE=clock;
POLARITY=rising_edge;}

Version 1.9.2 Advanced Library Format (ALF) Reference Manual 81

Functional Modeling Variable declarations

PIN cd {DIRECTION=input; SIGNALTYPE=clear; POLARITY=low;}
PIN sd {DIRECTION=input; SIGNALTYPE=set; POLARITY=low;}

FUNCTION {

BEHAVIOR {

} @('cd) {q = 0;} :(!sd) {q = 1;} :(01 cp) {q = d}}

STATETABLE {
cdsd cpd q:q;
0? ??27?2 ?:0;
10 ??27? ?2:1;
111?72 0:0;
11 ?207? 1:1;
111?72 0:0;
11 ?207? 1:1;
11 0172 ?:(d)

}
}
If the output variable with latch-type behavior depends only on the previous state of itself, as
opposed to the previous state of other output variables with latch-type behavior, it is not
necessary to use that output variable in the input field. This allows a more compact form of the
STATETABLE

Example:
STATETABLE {
cdsd cp d :q;
07? ??27?:0;
10 ?2?7?:1;
11 1?2 ? (q)
11 207 (q)
11 017 :(d)

}
A generic ALF parser shall make the following semantic checks:

Are all variables of &UNCTIONdeclared either by declarationrisi names or through
assignment?

Does thesTATETABLEexclusively contain declargdNs?

Is the format of thesTATETABLE i.e., the number of elements in each field of each row,
consistent?

Are the values consistently either state or transition digits?
Is the number of digits in eadABLE entry compatible with the signal bus width?

A more sophisticated checker for complete verification of logical consistencyuxGrION
given in both equation and tabular representation is out of scope for a generic ALF parser,
which checks only syntax and compliance to semantic rules. However, formal verification
algorithms can be implemented in special-purpose ALF analyzers or model generators/
compilers.

82 Advanced Library Format (ALF) Reference Manual Version 1.9.2

Variable declarations Functional Modeling

553 Multi-dimensional variables

A group of pins of a cell can be logically considered together by declaring avith a range.
A pin can be declared with one dimension or two dimensions. For example,

PIN A; /l declares a scalar pin A

PIN [1:8] Al; |/l declares pin Al with bits numbered 1
/l through 8

PIN [1:8] A2[1:4] ;// declares pin A2 with two dimensions

When a pin is declared with one dimension, the left number in the range shall specify the most
significant bit number and the right number shall specify the least significant bit number. If the
pin is declared with two dimensions, the second dimension shall specify the index of the first
and the last rows of the two-dimension pin object.

A PIN object can be referenced in one of the four forms:

Individual bit - the pin name shall be followed by an index of the bit.

Contiguous group of bits - the pin name shall be followed by the contiguous range of
bits. The most significant and least significant bit numbers shall follow the same
relationship as given in the declaration.

EntirePIN object - only the pin name shall be used. It shall be illegal to reference the
entire two-dimension pin object in any operation.

One row of aPIN object - for a two-dimension pin object, the name of the pin shall be
followed by the row index of that pin. It shall be illegal to reference the individual bit
or a group of bits of a two-dimension pin object directly in an operation.

When aPIN object is referenced on the left-hand side of an assignment, the result of the right-
hand side expression is copied from the least significant bit towards the most significant bit. If
the right-hand side value has lesser number of bits than the referenaagject in an
assignment, the right-hand side value shall be zero-extended to fill the remaining bits of the
referencedIN object. If the right-hand side value has more bits than the referenseabject

in an assignment, the right-hand side value shall be truncated to the size of the refer®nced
object.

Example:
pin [1:8] AL,
pin [1:8] A2[1:32] ;
A1[8] ='b0;
Al[1:6] ='075; /l'is equivalent to A1[1:6] ='b111 101
Al[1:5] ='075; /l'is equivalent to A1[1:5] ='b11 101,
/I left most bit is truncated
A2[18] ='h5; /I is equivalent to A2[18] = 'b0000_0101

/I entire row 18 of A2 is assigned a value.

Two-dimensiorPIN objects shall be referenced with the row index. It shall be illegal to directly
reference an individual bit or a contiguous group of bits of a two-dimermiombject. It shall
be illegal to reference the enteN object as a two-dimensignN object.

Version 1.9.2 Advanced Library Format (ALF) Reference Manual 83

Functional Modeling Variable declarations

Example:
pin [1:8] A2[1:32] ;
pin [1:8] B1 ;
pin C;
/' legal references and assignments

A2[10] ='h45; /[assign 'h45 to row 10 of A2 ('b0100_0101)
Bl =A2[10]; /I copies whole row A2[10] to B1
C =B1[3]; Il c="b0

/I lllegal references and assignments
/I B1[3] = A2[10][3] ;illegal reference to bit 3 of A2[10]
A2 =B1,; illegal reference to entire A2

It shall be legal to use identifiers as an index, but expressions shall not be permitted.
Example:
pin [4:1] ADDR,;

ADDR ='d 10;
A2[ADDR] ='h45; /I assign 'h45 to row 10 of A2 ('b0100_0101)

/l A2[ADDR+1] ='h45; illegal

554 ROM initialization

The STATETABLEStatement can be used to describe the contents of a ROM, as far as this con-
tent is fixed in the library.

Example:

CELL my_rom {
CELLTYPE = memory;
ATTRIBUTE { rom asynchronous }
PIN[1:2] addr { DIRECTION = input; SIGNALTYPE = address; }
PIN[3:0] dout { DIRECTION = output; SIGNALTYPE = data,; }
PIN[3:0] mem[1:4] { DIRECTION=none; VIEW=none; SIGNALTYPE=data,; }
FUNCTION {
BEHAVIOR { dout = mem[addr]; }
STATETABLE {

addr: mem ;
‘h0: ‘h5;
‘hl: ‘hA;
‘h2: ‘h5;
‘h3: ‘hA;

}

For flexibility, a separate included file can be used:

84 Advanced Library Format (ALF) Reference Manual Version 1.9.2

Predefined models Functional Modeling

CELL my_rom {
CELLTYPE = memory;
ATTRIBUTE { rom asynchronous }
PIN[1:2] addr { DIRECTION = input; SIGNALTYPE = address; }
PIN[3:0] dout { DIRECTION = output; SIGNALTYPE = data,; }
PIN[3:0] mem][1:4] { DIRECTION=none; VIEW=none; SIGNALTYPE=data; }
FUNCTION {
BEHAVIOR { dout = mem[addr]; }
INCLUDE “rom_initialization_file.alf” ;

}
}

The contents of the included fil@n_initialization_file.alf are:
STATETABLE {
addr: mem ;
‘h0: ‘h5;
‘hl: ‘hA;
‘h2: ‘h5;
‘h3: ‘hA;

5.6 Predefined models

This section defines the use of predefined models in ALF.

5.6.1 Usage of PRIMITIVEs

A PRIMITIVE referenced in @€ELL can replace the complete sePof andFUNCTION
definition. PINs can be declared before the reference teRnITIVE , in order to provide
supplementary annotations that cannot be inherited fromRiveTIVE . However, thecELL
shall be pin-compatible with trRRIMITIVE .

If the PRIMITIVE or aCELL is referenced in an annotation container suctcasj only the
subset oPINs used in the non-scan cell shall be compatible witiriting of the cell.

The pin names can be referenced by order or by name. In the latter case, the LHS is the pin
name of the referenc@&RIMITIVE or CELL (e.g., the non-scan cell), the RHS is the pin name

of the actual cell. A constant logic value can also appear at the LHS or RHS, indicating a pin
needs to be tied to a constant value. If this information is already specified in an annotation
inside thePIN object itself, referencing between a pin name and a constant value is not
necessary.

PRIMITIVE s can also be instantiated ins&EHAVIOR

5.6.2 Concept of user-defined and predefined primitives

Primitives are described in ALF syntax. Primitives are generic cells cont&mnirand
FUNCTION objects only, i.e., no characterization data. The primitives are used for structural
functional modeling.

Version 1.9.2 Advanced Library Format (ALF) Reference Manual 85

Functional Modeling

Predefined models

Example:
PRIMITIVE MY_PRIMITIVE {
PINx{...}
PINy{..}
PINz{..}
FUNCTION{ ... }
}
CELL MY_CELL {
PINa{..}
PINb{..}
PINc{...}
FUNCTION {
BEHAVIOR { MY_PRIMITIVE { x=a; y=b; z=c; } }
}
}
Extensible primitives, i.e., primitives with variable number of pins can be modeled using a
TEMPLATE
Example:

TEMPLATE EXTENSIBLE_PRIMITIVE{
PRIMITIVE <primitive_name> {
PIN [0:<max_index>] pin_name { ... }

}

/l instantiation of the template creates a primitive
EXTENSIBLE_PRIMITIVE {
primitive_name = MY_EXTENSIBLE_PRIMITIVE;
max_index = 2;

}

The set of statements above is equivalent to the following statement:

PRIMITIVE MY_EXTENSIBLE_PRIMITIVE {
PIN [0:2] pin_name { ... }

}
The primitive can be used as shown in the following example:

CELL MY_MEGACELL {
PINa{...}
PINb{...}
PINc{...}
FUNCTION {
BEHAVIOR {
/I reference to the primitive
MY_EXTENSIBLE_PRIMITIVE {
pin_name[0] = a;

86 Advanced Library Format (ALF) Reference Manual

Version 1.9.2

Predefined models Functional Modeling

pin_name[1] = b;
pin_name[2] = c;

}
Primitives can be freely defined by the user. For convenience, ALF provides a set of predefined
primitives with the reserved prefaCF_ in their name, which cannot be used by user-defined
primitives.
For allPINs of predefined primitives, the following annotations are defined by default:

VIEW = functional;
SCOPE = behavioral;

For predefined extensible primitives, a placeholder can be directly PRIMTIVE definition:
PRIMITIVE ALF_EXTENSIBLE_PRIMITIVE {
PIN [0:<max_index>] pin_name { ... }

}
This is equivalent to the following more verbose set of statements:

TEMPLATE EXTENSIBLE_PRIMITIVE{
PRIMITIVE <primitive_name> {
PIN [0:<max_index>] pin_name { ... }

}

EXTENSIBLE_PRIMITIVE {
primitive_name = ALF_EXTENSIBLE_PRIMITIVE;
max_index = <max_index>;

}

5.6.3 Predefined combinational primitives

This section defines the use of predefined combinational primitives.

5.6.3.1 One input, multiple output primitives
There are two combinational primitives with one input pin and multiple output pins:

ALF_BUF andALF_NOT
A GROUP statement is used to define the behavior of all output pins in one statement.

The output pins are indexed starting watHf o is the only index used, the index can be omitted
when referencing the output pin, egut refers toout[0]

Version 1.9.2 Advanced Library Format (ALF) Reference Manual 87

Functional Modeling Predefined models

PRIMITIVE ALF_BUF {
GROUP index {0:<max_index>}
PIN[O:<max_index>] out {
DIRECTION = output ;

}
PIN in {
DIRECTION = input ;
}
FUNCTION {
BEHAVIOR {
out[index] = in;

}

Figure 5-7: Primitive model of ALF_BUF

PRIMITIVE ALF_NOT {
GROUP index {0:<max_index>}
PIN[O:<max_index>] out {
DIRECTION = output ;

}
PIN in {

DIRECTION = input ;
}

FUNCTION {
BEHAVIOR {
out[index] = lin;

}

Figure 5-8: Primitive model of ALF_NOT

5.6.3.2 One output, multiple input primitives
There are six combinational primitives with one output pin and multiple input pins:
ALF_AND ALF_NAND ALF_OR ALF_NOR ALF_XOR andALF_XNOR

The input pins are indexed starting withif 0 is the only index used, the index can be omitted
when referencing the input pin, e.g.,refers tan[0]

88 Advanced Library Format (ALF) Reference Manual Version 1.9.2

Predefined models

PRIMITIVE ALF_AND {
PIN out {
DIRECTION = output;
}
PIN[O:<max_index>] in {
DIRECTION = input;

}
FUNCTION {
BEHAVIOR {
out=∈
}
}

Figure 5-9: Primitive model of ALF_AND

PRIMITIVE ALF_NAND {
PIN out {
DIRECTION = output;
}

PIN[O:<max_index>] in {
DIRECTION = input;

}
FUNCTION {
BEHAVIOR {
out=-~∈
}
}

Figure 5-10: Primitive model of ALF_NAND

PRIMITIVE ALF_OR {
PIN out {
DIRECTION = output;
}
PIN[O:<max_index>] in {
DIRECTION = input;

}
FUNCTION {
BEHAVIOR {
out =|in;
}
}

Figure 5-11: Primitive model of ALF_OR

Version 1.9.2 Advanced Library Format (ALF) Reference Manual

Functional Modeling

89

Functional Modeling

PRIMITIVE ALF_NOR {
PIN out {
DIRECTION = output;
}
PIN[O:<max_index>] in {
DIRECTION = input;

}
FUNCTION {
BEHAVIOR {
out = ~| in;
}
}

Figure 5-12: Primitive model of ALF_NOR

PRIMITIVE ALF_XOR {
PIN out {
DIRECTION = output;
}

PIN[O:<max_index>] in {
DIRECTION = input;

}
FUNCTION {
BEHAVIOR {
out = "in;
}
}

Figure 5-13: Primitive model of ALF_XOR

PRIMITIVE ALF_XNOR {
PIN out {
DIRECTION = output;
}
PIN[O:<max_index>] in {
DIRECTION = input;

}
FUNCTION {
BEHAVIOR {
out = ~"in;
}
}

Figure 5-14: Primitive model of ALF_XNOR

90 Advanced Library Format (ALF) Reference Manual

Predefined models

Version 1.9.2

Predefined models

5.6.4 Predefined tristate primitives
There are four tristate primitives:

ALF_BUFIF1, ALF_BUFIFO, ALF_NOTIF1, andALF_NOTIFO

PRIMITIVE ALF_BUFIF1 {
PIN out {
DIRECTION = output;
ENABLE_PIN = enable;
ATTRIBUTE {TRISTATE}

}
PIN in {
DIRECTION = input;
}
PIN enable {
DIRECTION = input;
SIGNALTYPE = out_enable;
}
FUNCTION {
BEHAVIOR {
out = (enable)? in : 'bZ;
}
STATETABLE {
enable in : out;
0 ?:7
1 7 :(in);
}
}

Figure 5-15: Primitive model of ALF_BUFIF1

PRIMITIVE ALF_BUFIFO {
PIN out {
DIRECTION = output;
ENABLE_PIN = enable;
ATTRIBUTE {TRISTATE}

}
PIN in {
DIRECTION = input;
}
PIN enable {
DIRECTION = input;
SIGNALTYPE = out_enable;
}
FUNCTION {

BEHAVIOR {
out = (lenable)? in : 'bZ;
}

Version 1.9.2 Advanced Library Format (ALF) Reference Manual

Functional Modeling

91

Functional Modeling

STATETABLE {
enable in : out;
1 ?:z
0 2 :(in);

}

Figure 5-16: Primitive model of ALF_BUFIFO

PRIMITIVE ALF_NOTIF1 {
PIN out {
DIRECTION = output;
ENABLE_PIN = enable;
ATTRIBUTE {TRISTATE}

}
PIN in {
DIRECTION = input;
}
PIN enable {
DIRECTION = input;
SIGNALTYPE = out_enable;
}
FUNCTION {
BEHAVIOR {
out = (enable)? lin : 'bZ;
}
STATETABLE {
enable in : out;
0 ?:z
1 2 :(lin);
}
}

Figure 5-17: Primitive model of ALF_NOTIF1

PRIMITIVE ALF_NOTIFO {
PIN out {
DIRECTION = output;
ENABLE_PIN = enable;
ATTRIBUTE {TRISTATE}

}
PIN in {
DIRECTION = input;
}
PIN enable {
DIRECTION = input;
SIGNALTYPE = out_enable;
}

92 Advanced Library Format (ALF) Reference Manual

Predefined models

Version 1.9.2

Predefined models Functional Modeling

FUNCTION {
BEHAVIOR {
out = ('enable)? lin : 'bZ;
}
STATETABLE {
enable in : out;
1 ?:z
0 72 :(lin);
}
}

Figure 5-18: Primitive model of ALF_NOTIFO

5.6.5 Predefined multiplexor

The predefined multiplexor has a known output value if either the select signal and the selected
data inputs are known or both data inputs have the same known value while the select signal is
unknown.

PRIMITIVE ALF_MUX {
PIN Q {
DIRECTION = output;
SIGNALTYPE = data;

}
PIN[1:0] D {
DIRECTION = input;
SIGNALTYPE = data;
}
PIN S {
DIRECTION = input;
SIGNALTYPE = select;
}
FUNCTION {
BEHAVIOR {
} Q = (S| (d[0] ~*d[1]))? d[1] : d[O];
STATETABLE {
D[O]D[1] S : Q;
? ? 0 :(D[O]);
? ? 1 :(D[1);
0O 0 ?:0;
1 1 ?:1;
}
}

Figure 5-19: Primitive model of ALF_MUX

Version 1.9.2 Advanced Library Format (ALF) Reference Manual 93

Functional Modeling Predefined models

5.6.6 Predefined flip-flop

A dual-rail output D-flip-flop with asynchronous set and clear pins is a generic edge-sensitive
sequential device. Simpler flip-flops can be modeled using this primitive by setting input pins
to appropriate constant values. More complex flip-flops can be modeled by adding
combinational logic around the primitive.

A particularity of this model is the use of the last two @NSONFLICTandQN_CONFLICT
which are virtual pins. They specify the stat®aindQNin the eventLEARandSET become
active simultaneously.

PRIMITIVE ALF_FLIPFLOP {
PINQ {
DIRECTION = output;
SIGNALTYPE = data;
POLARITY =non_inverted,;

}

PINQN {
DIRECTION = output;
SIGNALTYPE = data;
POLARITY =inverted,;

}

PIND {
DIRECTION = input;
SIGNALTYPE = data;

}

PIN CLOCK {
DIRECTION = input;
SIGNALTYPE = clock;
POLARITY =rising_edge;

}

PIN CLEAR {
DIRECTION = input;
SIGNALTYPE = clear;
POLARITY = high;
ACTION = asynchronous;

}

PIN SET {
DIRECTION = input;
SIGNALTYPE = set;
POLARITY = high;
ACTION = asynchronous;

}

PIN Q_CONFLICT {
DIRECTION = input;
VIEW =none;

}

PIN QN_CONFLICT {
DIRECTION = input;
VIEW =none;

}

FUNCTION {
ALIAS QX = Q_CONFLICT;

94 Advanced Library Format (ALF) Reference Manual Version 1.9.2

Predefined models

ALIAS QNX = QN_CONFLICT;
BEHAVIOR {
@ (CLEAR && SET) {
Q =QX
QN = QNX;
}
: (CLEAR) {
Q =0;
ON=1;
}
: (SET){
Q=1
QN =0;
}
: (01 CLOCK) {
Q =D;
QN = ID;
}
}
STATETABLE {
D CLOCK CLEAR SET QX QNX: Q ON;
?2?22 1 1 : (QX) (QNX);
?7? -1 0;
?7? -0 1;
1? 1(Q) (QN);
70 1(Q) (QN);
01 (D) (ID);

ESEECREN LS BES BEN]

?
?
?
?
?
?

SRS EENEENEEN]
oNoNeoN e
[oNoNoNely]

Figure 5-20: Primitive model of ALF_FLIPFLOP

5.6.7 Predefined latch

/I edge-sensitive behavior

Functional Modeling

The dual-rail D-latch with set and clear pins has the same functionality as the flip-flop, except
the level-sensitive clocke(NABLEpIn) is used instead of the edge-sensitive clock.

PRIMITIVE ALF_LATCH {
PINQ {
DIRECTION = output;
SIGNALTYPE = data;
POLARITY =non_inverted;

}

PINQN {
DIRECTION = output;
SIGNALTYPE = data;
POLARITY =inverted,

}

PIND {
DIRECTION = input;
SIGNALTYPE = data;

}

Version 1.9.2 Advanced Library Format (ALF) Reference Manual

95

Functional Modeling

PIN ENABLE {
DIRECTION = input;
SIGNALTYPE = clock;
POLARITY = high;

}

PIN CLEAR {
DIRECTION = input;
SIGNALTYPE = clear;
POLARITY = high;
ACTION = asynchronous;

}

PIN SET {
DIRECTION = input;
SIGNALTYPE = set;
POLARITY = high;
ACTION = asynchronous;

}

PIN Q_CONFLICT {
DIRECTION = input;
VIEW = none;
}
PIN QN_CONFLICT {
DIRECTION = input;
VIEW = none;
}
FUNCTION {
ALIAS QX = Q_CONFLICT;
ALIAS QNX = QN_CONFLICT;

BEHAVIOR {
@ (CLEAR && SET) {
Q =QX;
QN = QNX;
}
: (CLEAR) {
Q =0;
ON=1;
}
: (SET){
Q =1,
QN =0;
}
: (ENABLE) { /I level-sensitive behavior
Q =D;
QN = ID;
}
}
STATETABLE {

D ENABLE CLEAR SETQX QNX: Q ON;
22 1 1?2 2 :(QX) (QNX);

96 Advanced Library Format (ALF) Reference Manual

Predefined models

Version 1.9.2

Predefined models Functional Modeling

22 0 1?22 :1 0;
22 1 07?2 :0 1;

?70 0 07?72 :(Q) (QN);
21 0 0 ? ? :(D) (ID);

Figure 5-21: Primitive model of ALF_LATCH

5.6.8 Parameterizeable cells

The concept of describing primitives with variable bus size shall be extended to parameterize-
able cells. Dynamic template instantiations can be used for that purpose.

Template definitions can incorporate any type of object. Placeholders in the template defini-
tion are the equivalent of parameters. Hence, the definition of parameterizeable cells is already
supported within the support of general template definitions.

In astatic template instantiatignvhich is identified by the name of the template and by the
optional value assignmestttic , placeholders are replaced by fixed values or by complex
objects containing fixed values. Non-referenced placeholders stay in place and eventually
result in semantically unrecognizable objects, which cannot be processed by downstream
applications. Such unrecognizable objects shall be disregarded.

In adynamic template instantiatiowhich is identified by the name of the template and by the
mandatory value assignmetyhamic , some placeholders can not be replaced. Those place-
holders are application parameters. The template definition can already contain certain rela-
tionships between parameters (e.g., arithmetic model and its arguments in the header).
Therefore the template instantiation determines which parameters need application values in
order to calculate values for other parameters.

Going one step further, even the relationship between parameters can be defined in the
dynamic template instantiation rather than in the template definition. In this case, the identifi-
ers inside the placeholders become variables for arithmetic assignments. This definition of
variables shall only be recognized within the context of the dynamic template instantiation.

Arithmetic assignments provide a shorter syntax for equation-based arithmetic models where
only placeholder-parameters are involved.
paraml = 1.5 + 0.4 * param2 ** 3 - 2.7 / param3

is equivalent to

param1 {
HEADER { param2 param3 }
EQUATION { 1.5 + 0.4 * param2 ** 3 - 2.7 / param3 }

Version 1.9.2 Advanced Library Format (ALF) Reference Manual 97

Functional Modeling Predefined models

For table-based models or for models where the arguments have children objects attached to
them, the verbose syntax wilEADERneeds to be used.

Example:

TEMPLATE adder {
CELL <cellname> {
PIN [<bitwidth>: 1] A { DIRECTION = input; }
PIN [<bitwidth>: 1] B { DIRECTION = input; }
PIN Cin { DIRECTION = input; }
PIN [<bitwidth>: 1] S { DIRECTION = output; }
PIN Cout { DIRECTION = output; }
FUNCTION {
BEHAVIOR {
S=A+B+Cin;
Cout = (A + B + Cin >= (‘b1 << (<bhitwidth> - 1)));
}
}
AREA = <areavalue>;
VECTOR (?! Cin -> ?! Cout) {
DELAY {
HEADER {
CAPACITANCE {PIN = Cout; }
SLEWRATE {PIN = Cin; }

}
EQUATION { <D0> + <D1>*CAPACITANCE + <D2>*SLEWRATE }

}
The template is used for instantiation of a hard macro:

adder { /* a hard macro */
cellname = ripple_carry_adder_16_bit;
bitwidth = 16;
areavalue = 500;
/I DO, D1, D2 are undefined. DELAY cannot be calculated.

}
The static instantiation of the hard macro is equivalent to the following static object:

CELL ripple_carry_adder_16_bit {
PIN[16:1]A{DIRECTION = input; }
PIN[16:1]B{DIRECTION = input; }
PIN Cin { DIRECTION = input; }
PIN[16:1]S {DIRECTION = output; }
PIN Cout { DIRECTION = output; }

FUNCTION {
BEHAVIOR {
S=A+B+Cin;
Cout = (A + B + Cin >="p1000000000000000);
}
}
AREA =500 ;

98 Advanced Library Format (ALF) Reference Manual Version 1.9.2

Predefined models Functional Modeling

VECTOR (?! Cin -> ?! Cout) {

/I’ DELAY{
I HEADER {
I CAPACITANCE {PIN = Cout; }
I SLEWRATE {PIN = Cin; }
I }
I EQUATION { <D0> + <D1>*CAPACITANCE + <D2>*SLEWRATE }
noy
}
}

Now the template is used for instantiation of a soft macro:

adder = dynamic { /* a soft macro */
cellname = ripple_carry_adder_N_bit;
areavalue = 20 + 30 * bitwidth;
}
DO {
HEADER { AREA { TABLE {1020 30}}}
TABLE { 15.6 34.3 50.7 }
}
D1 =0.29;
D2 =0.08;
}

The dynamic instantiation of the soft macro results in an object for which certain data depend
on the runtime-values of the placeholder-parameters, as indicatalicifmelow. The

calculation method for such data, however, can be compiled statically (e.g., the equation for
AREAIs a function of bitwidth and the lookup table Baris a function oRAREA.

CELL ripple_carry_adder_N_bit {
PIN[bitwidth :1]A{DIRECTION = input; }
PIN[bitwidth :1]B{DIRECTION = input; }
PIN Cin { DIRECTION = input; }
PIN[bitwidth :1]S{DIRECTION = output; }
PIN Cout { DIRECTION = output; }

FUNCTION {
BEHAVIOR {
S=A+B+Cin;
Cout= (A +B + Cin>= (‘b1 << (bitwidth - 1)));
}
}

AREA = 20 + 30 * bitwidth ;

VECTOR (?! Cin -> ?! Cout) {
DELAY {
HEADER {
CAPACITANCE {PIN = Cout; }
SLEWRATE {PIN = Cin; }
DO {

| Version 1.9.2 Advanced Library Format (ALF) Reference Manual 99

Functional Modeling Predefined models

HEADER { AREA { TABLE { 102030} } }
TABLE { 15.6 34.350.7 }

}
}

EQUATION { DO+ 0.29*CAPACITANCE + 0.08*SLEWRATE }

100 Advanced Library Format (ALF) Reference Manual Version 1.9.2

Section 6
Modeling for Synthesis and Test

6.1 Annotations and attributes for a CELL

This section defines varioELL annotations and attributes.

6.1.1 CELLTYPE annotation

CELLTYPEClassifies the functionality of cells into broad categories. This is useful for informa-
tion purpose, for tools which do not need the exact specification of functionality, and for tools
which can interpret the exact specification of functionality only for certain categories of cells.
The exact specification of the functionality is described irFthecTIONStatement.

CELLTYPE =string X
which can take the values shown in Table 6-1.

Table 6-1 : CELLTYPE annotations for a CELL object

Annotation string Description

buffer cell is a buffer, inverting or non-inverting

combinational cell is a combinational logic element

multiplexor cell is a multiplexor

flipflop cell is a flip-flop

latch cell is a latch

memory cell is a memory or a register file

block cell is a hierarchical block, i.e., a complex element which gan

be represented as a netlist. All instances of the netlist are
library elements, i.e., there iSGELL model for each of them
in the library.

core cell is a core, i.e., a complex element which can be repre
sented as a netlist. At least one instance of the netlist is not a
library element, i.e., there is i@ELL model, but @RIMI-
TIVE model for that instance.

special cell is a special element, which can only be used in certaip
application contexts not describable by BuNCTIONstate-
ment. Examples: busholders, protection diodes, and fillce|ls.

6.1.2 ATTRIBUTE within a CELL object

An ATTRIBUTE within aCELL classifies the functionality given BELLTYPEIn more detail.

| Version 1.9.2 Advanced Library Format (ALF) Reference Manual 101

Modeling for Synthesis and Test

Annotations and attributes for a CELL

The attributes shown in Table 6-2 can be used witltiBLa with CELLTYPE=memory

Table 6-2 : Attributes within a CELL with CELLTYPE=memory

Attribute item Description

RAM Random Access Memory

ROM Read Only Memory

CAM Content Addressable Memory

static static memory (e.g., static RAM)
dynamic dynamic memory (e.g., dynamic RAM)
asynchronous asynchronous memory

synchronous synchronous memory

The attributes shown in Table 6-3 can be used witldaLa with CELLTYPE=block .

Table 6-3 : Attributes within a CELL with CELLTYPE=block

Attribute item

Description

counter

cell is a complex sequential cell going through a predefing

d

sequence of states in its normal operation mode where eg@ch

state represents an encoded control value.

shift_register

cell is a complex sequential cell going through a predefing
sequence of states in its normal operation mode, where €
subsequent state can be obtained from the previous one
shift operation. Each bit represents a data value.

d
ach
Dy a

adder

cell is an adder, i.e., a combinational element performing
addition of two operands.

subtractor

cellis a subtractor, i.e., a combinational element performin
subtraction of two operands.

multiplier

cell is a multiplier, i.e., a combinational element performing
multiplication of two operands.

comparator

cell is a comparator, i.e., a combinational element compatfi

the magnitude of two operands.

ALU

cell is an arithmetic logic unit, i.e., a combinational eleme
combining the functionality of adder, subtractor, comparaf
in a selectable way.

The attributes shown in Table 6-4 can be used witldaLa with CELLTYPE=core.

Table 6-4 : Attributes within a CELL with CELLTYPE=core

Attribute item Description

PLL CELL is a phase-locked loop

DSP CELLis a digital signal processor
CPU CELLs a central processing unit
GPU CELLs a graphical processing unit

102

Advanced Library Format (ALF) Reference Manual

Version 1.9.2

Annotations and attributes for a CELL Modeling for Synthesis and Test

The attributes shown in Table 6-5 can be used witliBLa with CELLTYPE=special

Table 6-5 : Attributes within a CELL with CELLTYPE=special

Attribute item Description

busholder CELL enables a tristate bus to hold its last value before al
drivers went into high-impedance state (detail BE&NCTION
statement)

clamp CELL connects a net to a constant value (logic value and dfive
strength seEUNCTIONstatement)

diode CELL is a diode (nd-UNCTIONstatement)

capacitor CELL s a capacitor (nEUNCTIONstatement)

resistor CELL s aresistor (n&UNCTIONstatement)

inductor dELL is aninductor (né-UNCTIONstatement)

fillcell CELL is merely used to fill unused space in layout FHONC-
TION statement)

6.1.3 SWAP_CLASS annotation

SWAP_CLASS =string X

The value is the name of a declar@d\ss Multi-value annotation can be used. Cells referring
to the same&LASScan be swapped for certain applications.

Cell-swapping is only allowed under the following conditions:

* theRESTRICT_CLASSannotation (see Section 6.1.4) authorizes usage of the cell

» the cells to be swapped are compatible from an application standpoint (functional compat-
ibility for synthesis and physical compatibility for layout)

6.1.4 RESTRICT_CLASS annotation

RESTRICT_CLASS =string ;

The value is the name of a declar@d\ss Multi-value annotation can be used. Cells referring
to a particular class can be used in design tools identified by the value. The restricted
annotations are shown in Table 6-6.

Table 6-6 : Predefined values for RESTRICT_CLASS

Annotation string Description

synthesis use restricted to logic synthesis

scan use restricted to scan synthesis

datapath use restricted to datapath synthesis
clock use restricted to clock tree synthesis
layout use restricted to layout, i.e., place & route

| Version 1.9.2 Advanced Library Format (ALF) Reference Manual 103

Modeling for Synthesis and Test Annotations and attributes for a CELL

User-defined values are also possible. If a cell has no or only unknown values for
RESTRICT_CLASS the application tool shall not modify any instantiation of that cell in the
design. However, the cell shall still be considered for analysis.

6.1.5 Independent SWAP_CLASS and RESTRICT CLASS

SWAP_CLASS and RESTRICT_CLASS may be defined for cells, independent of each other.
In this case, the set of cells that can be swapped with each other is the set of cells with a non-
empty intersection of both SWAP_CLASS and RESTRICT_CLASS.

Example:

CLASS foo;

CLASS bar;

CLASS whatever;

CLASS my_tool;

CELL cell1 {
SWAP_CLASS { foo bar }
RESTRICT_CLASS { synthesis datapath }

}

CELL cell2 {
SWAP_CLASS { foo whatever }
RESTRICT_CLASS { synthesis scan my_tool }

}

The cellscelll andcell2 can be used for synthesis, where they can be swapped which each
other. Cellelll can be also used for datapath. Gell2 can be also used for scan insertion
and for the user-defined applicatiog_tool . Figure 6-1 depicts this scenario.

SWAP CLASS SWAP_CLASS
for celll for cell2

non-empty intersection

RESTRICT_CLASS
for celll datapath RESTRICT_CLASS

for cell2

Figure 6-1: Illustration of independent SWAP_CLASS and RESTRICT_CLASS

104 Advanced Library Format (ALF) Reference Manual Version 1.9.2

Annotations and attributes for a CELL Modeling for Synthesis and Test

6.1.6 SWAP_CLASS with inherited RESTRICT_CLASS

The definition of a CLASS may contain a RESTRICT_CLASS annotation. In this case, the
RESTRICT_CLASS is inherited by the SWAP_CLASS. Cells can only be swapped if the
intersection of their SWAP_CLASS and the inherited RESTRICT_CLASS is non-empty.

Example :

A combination ofSWAP_CLAS®NJRESTRICT_CLASScan be used to emulate the concept of
“logically equivalent cells” and “electrically equivalent cells”. A synthesis tool needs to know
about “logically equivalent cells” for swapping. A layout tool needs to know about “electrically
equivalent cells” for swapping.

CLASS all_nand2 { RESTRICT_CLASS { synthesis } }
CLASS all_high_power_nand2 { RESTRICT_CLASS { layout } }
CLASS all_low_power_nand2 { RESTRICT_CLASS { layout } }

CELL cell1 {
SWAP_CLASS { all_nand2 all_low_power_nand2 }

}
CELL cell2 {
SWAP_CLASS { all_nand2 all_high_power_nand2 }

}
CELL cell3 {
SWAP_CLASS { all_low_power_nand2 }

}
CELL cell4 {
SWAP_CLASS { all_high_power_nand2 }

}
all_nand2 encompasses a set of logically equivalent cells.
all_high_power_nand?2 encompasses a set of electrically equivalent cells.
all_low_power_nand2 encompasses another set of electrically equivalent cells.

The synthesis tool can swaglll with cell2 . The layout tool can swaglll with cell3
andcell2 with cell4 . Figure 6-2 depicts this scenario.

Version 1.9.2 Advanced Library Format (ALF) Reference Manual 105

Modeling for Synthesis and Test Annotations and attributes for a CELL

non-empty intersection
between celll and cell2

SWAP_CLASS inherited RESTRICT_CLASS

SWAP_CLASS or cell2

for celll

> synthesis

all_nand2

layout
all_low_power_nand2 >
all_high_power_nand?2 P Jayout
SWAP_CLASS SWAP_CLASS
for cell3 for cell4 non-empty intersection

. . between cell2 and cell4
non-empty intersection

between celll and cell3

Figure 6-2: lllustration of SWAP_CLASS with inherited RESTRICT_CLASS

6.1.7 SCAN_TYPE annotation

SCAN_TYPE =string X
can take the values shown in Table 6-7.

Table 6-7 : SCAN_TYPE annotations for a CELL object

Annotation string Description

muxscan a multiplexor for normal data and scan data

clocked a special scan clock

Issd combination between flip-flop and latch with special clocking
(level sensitive scan design)

control_0 combinational scan cell, controlling pin shall®& scan mode

control_1 combinational scan cell, controlling pin shallb&é scan mode

6.1.8 SCAN_USAGE annotation

SCAN_USAGE =string :
can take the values shown in Table 6-8.

106 Advanced Library Format (ALF) Reference Manual Version 1.9.2

NON_SCAN_CELL statement Modeling for Synthesis and Test

Table 6-8 : SCAN_USAGE annotations for a CELL object

Annotation string Description

input primary input in a chain of cells

output primary output in a chain of cells

hold holds intermediate value in the scan chain

6.1.9 BUFFERTYPE annotation

BUFFERTYPE =string ;
can take the values shown in Table 6-9.

Table 6-9 : BUFFERTYPE annotations for a CELL object

Annotation string Description

input cell has at least one external (off-chip) input pin
output cell has at least one external (off-chip) output pin

inout cell has at least one external (off-chip) bidirectional pin
internal cell has only internal (on-chip) pins

6.1.10 DRIVERTYPE annotation

DRIVERTYPE = string :
can take the values shown in Table 6-10.

Table 6-10 DRIVERTYPE annotations for a CELL object

Annotation string Description

predriver cell is a predriver

slotdriver cell is a slotdriver

both cell is both a predriver and a slot driver

Note: DRIVERTYPE applies only for cells WitBUFFERTYPE = input | output | inout

6.1.11 PARALLEL_DRIVE annotation

PARALLEL_DRIVE = unsigned ;
specifies the number of parallel drivers. Must be greater than zero.

6.2 NON_SCAN_CELL statement

non_scan_cell ::=

NON_SCAN_CELL {non_scan_ cell_instantiations }

Version 1.9.2 Advanced Library Format (ALF) Reference Manual

107

Modeling for Synthesis and Test NON_SCAN_CELL statement

non_scan_ cell_instantiations ::=
non_scan_ cell_instantiation { non_scan_ cell_instantiation }

non_scan_ cell_instantiation ::=
cell _identifier { pin_assignments }
| primitive _identifier { pin_assignments }

In case of a single non-scan cell, the following syntax shall also be valid:

NON_SCAN_CELL =0n_scan_ cell_instantiation

This statement shall define non-scan cell equivalency to the scan cell in which this annotation
is contained. A cell instantiation form is used to reference the library cell that defines the non-
scan functionality of the current cell. If no such cell is available or defined, or if an explicit
reference to such a cell is not desired, then a primitive instantiation form can reference a
primitive, either ALF- or user- defined, for such use. In either case, constant values can appear
on either the left-hand side or right-hand side of the pin connectivity relationships. A constant
on the left-hand side defines the value the scan cell pins (appearing on the right-hand side) shall
have in order for the primitive to perform with the same functionality as does the instantiated
reference. A statement containing multiple non-scan cells shall indicate a choice between
alternative non-scan cells.

Example:
CELL my_flip_flop {
PIN q { DIRECTION=output; }
PIN d { DIRECTION=input; }

PINclk {DIRECTION=input; }
PIN clear { DIRECTION=input; polarity=low; }
/I followed by function, vectors etc.

}

CELL my_other_flip_flop {
/I declare the pins
/I followed by function, vectors etc.

}

CELL my_scan_flip_flop {
PIN data_out { DIRECTION=output; }
PIN data_in { DIRECTION=input; }
PIN clock { DIRECTION=input; }
PIN scan_in { DIRECTION=input; }
PIN scan_sel { DIRECTION=input; }
NON_SCAN_CELL {
my_flip_flop {

g = data_out;

d = data_in;

clk = clock;

clear = 'b1,; // scan cell has no clear

108 Advanced Library Format (ALF) Reference Manual Version 1.9.2

STRUCTURE statement Modeling for Synthesis and Test

'b0 = scan_in; /I non-scan cell has no scan_in
'b0 = scan_sel; /I non-scan cell has no scan_sel

}
my_other_flip_flop {

/[put in the pin assignments

}
}

/I followed by function, vectors etc.
}
Note: Both scan cells and the referenced non-scan cells must have at least the
RESTRICT_CLASS value “scan”.

6.3 STRUCTURE statement

An optionalSTRUCTURBtatement shall be legal in the context ¢fiaNCTION The purpose of
the STRUCTURIStatement is to describe the structure of a complex cell composed of atomic
cells, for example I/O buffers, LSSD flip-flops, or clock trees.

The syntax for theUNCTIONstatement shall be augmented as follows:

function ::=
FUNCTION] identifier] { [all_purpose_items] [primitives]
[behavior] [structure] [statetables] }
| function_ template_instantiation
structure ::=

STRUCTURE {named_cell_instantiations }

named_cell_instantiations ::=
named_cell_instantiation { named_cell_instantiation }

named_cell_instantiation ::=
cell_ identifier instance_ identifier { logic_values }
| cell_ identifier instance_ identifier { pin_instantiations }

The STRUCTURBtatement shall describe a netlist of components insidesthe TheSTRU-
CUREstatement shall not be a substitute forgBEAVIORStatement. If # UNCTIONcontains
only aSTRUCTURBtatement and nBEHAVIORstatement, a behavior description for that par-
ticular cell shall be meaningless (e.g., fillcells, diodes, vias, or analog cells).

Timing and power models shall be provided fordieL, if such models are meaningful.
Application tools are not expected to use function, timing, or power models from the instanti-
ated components as a substitute of a missing function, timing, or power model at the top-level.
However, tools performing characterization, construction, or verification of a top-level model
shall use the models of the instantiated components for this purpose.

Test synthesis applications can use the structural information in order to define a one-to-many
mapping for scan cell replacement, such as where a single flip-flop is replaced by a pair of

Version 1.9.2 Advanced Library Format (ALF) Reference Manual 109

Modeling for Synthesis and Test STRUCTURE statement

master/slave latches. A macro cell can be defined whose structure is a netlist containing the
master and slave latch and this shall contaimthie SCAN_CELannotation to define which
sequential cells it is replacing. No timing model is required for this macro cell, since it should
be treated as a transparent hierarchy level in the design netlist after test synthesis.

Notes:

1. Everyinstance_ identifier within asSTRUCTURBtatement shall be different from
each other.

2. ThesSTRUCTURBtatement provides a directive to the application (e.g., synthesis and
DFT) as to how theELL is implemented. AELL referenced in
named_cell_instantiation can be replaced by anotregLL within the same
SWAP_CLAS®INdRESTRICT_CLASS(recognized by the application).

3. Thecell identifier within aSTRUCTURBtatement can refer to actual cells as well
as to primitives. The usage of primitives is recommended in fault modeling for DFT.

4. BEHAVIORstatements also provide the possibility of instantiating primitives. However,
those instantiations are for modeling purposes only; they do not necessarily match a
physical structure. ThEeTRUCTURBtatement always matches a physical structure.

Example 1:
iobuffer = pre buffer + main buffer

CELL my_main_driver {
DRIVERTYPE = slotdriver ;
BUFFERTYPE = output ;
PIN i { DIRECTION = input; }
PIN o { DIRECTION = output; }
FUNCTION { BEHAVIOR {0 =1i;}}

}

CELL my_pre_driver {
DRIVERTYPE = predriver ;
BUFFERTYPE = output ;
PIN i { DIRECTION = input; }
PIN o { DIRECTION = output; }
FUNCTION { BEHAVIOR {0 =1i;}}

}

CELL my_buffer {
DRIVERTYPE = both ;
BUFFERTYPE = output ;
PIN A { DIRECTION = input; }
PIN Z { DIRECTION = output; }
PIN Y { VIEW = physical; }
FUNCTION {

110 Advanced Library Format (ALF) Reference Manual Version 1.9.2

STRUCTURE statement Modeling for Synthesis and Test

BEHAVIOR {Z =A;}

STRUCTURE {
my_pre_driver pre { AY }// pin by order
my_main_driver main { i=Y; o=Z; }// pin by name

}
Example 2:

Issd flip-flop = latch + flip-flop + mux

CELL my_latch {
RESTRICT_CLASS { synthesis scan }
PIN enable { DIRECTION = input; }
PINd {DIRECTION =input; }
PINd {DIRECTION = output; }
FUNCTION { BEHAVIOR {

@ (enable){qg=d;}

bl

}

CELL my_flip-flop {
RESTRICT_CLASS { synthesis scan }
PIN clock { DIRECTION = input; }
PINd {DIRECTION =input; }
PINgq {DIRECTION = output; }
FUNCTION { BEHAVIOR {

@ (0lclock){qg=d;}

bl

}

CELL my_mux {
RESTRICT_CLASS { synthesis scan }
PIN dout { DIRECTION = output; }
PIN din0 {DIRECTION = input; }
PIN din1 {DIRECTION = input; }
PIN select { DIRECTION = input; }
FUNCTION { BEHAVIOR {

dout = select ? dinl : din0 ;

bl

}

CELL my_lIssd_flip-flop {
RESTRICT_CLASS { scan }
CELLTYPE = block;
SCAN_TYPE = Issd;
PIN clock { DIRECTION = input; }
PIN master_clock { DIRECTION = input; }
PIN slave_clock { DIRECTION =input; }
PIN scan_data {DIRECTION =input; }
PIN din { DIRECTION =input; }
PIN dout { DIRECTION = output; }
PIN scan_master {VIEW = physical; }
PIN scan_slave {VIEW = physical; }
PIN d_internal { VIEW = physical; }
FUNCTION { BEHAVIOR {

| Version 1.9.2 Advanced Library Format (ALF) Reference Manual 111

Modeling for Synthesis and Test

@ (master_clock) {
scan_data_master = scan_data ;
}
@ (slave_clock & ! clock) {
dout = scan_data_master ;
}: (01 clock) {
dout = din ;
b}
STRUCTURE {
my_latch UO {
enable = master_clock;
din =scan_data;
dout =scan_data_master;

}
my_flip-flop U1 {
clock = clock;

d =din;
g =d_internal;
}
my_mux U2 {
select = slave_clock;
dinl =scan_data_master;
din0 = dout;
dout =scan_data_slave;
}
my_mux U3 {
select = clock;
dinl =d_internal,
din0 =scan_data_slave;
dout = dout;
b}
}
NON_SCAN_CELL {
my_flip_flop {
clock = clock;
d =din;
g =dout;
'b0 =slave_clock;
}
}
}
Example 3:

clock tree = chains of clock buffers

CELL my_root_buffer {
RESTRICT_CLASS { clock }
PIN i0 { DIRECTION = input; }
PIN 00 { DIRECTION = output; }
FUNCTION { BEHAVIOR {00 =1i0; }}

112 Advanced Library Format (ALF) Reference Manual

STRUCTURE statement

Version 1.9.2

STRUCTURE statement Modeling for Synthesis and Test

CELL my_levell_buffer {
RESTRICT_CLASS { clock }
PIN i1 { DIRECTION = input; }
PIN o1 { DIRECTION = output; }
FUNCTION { BEHAVIOR {01 =il1;}}

}

CELL my_level2_buffer {
RESTRICT_CLASS { clock }
PIN i2 { DIRECTION = input; }
PIN 02 { DIRECTION = output; }
FUNCTION { BEHAVIOR {02 =i2;}}

}

CELL my_level3_buffer {
RESTRICT_CLASS { clock }
PIN i3 { DIRECTION = input; }
PIN 03 { DIRECTION = output; }
FUNCTION { BEHAVIOR {03 =i3;}}

}

CELL my_tree_from_level2 {
RESTRICT_CLASS { clock }
PIN in { DIRECTION = input; }
PIN out { DIRECTION = output; }
PIN[1:2] level3 { DIRECTION = output; }
FUNCTION {
BEHAVIOR {out=1in;}
STRUCTURE {
my_level2_buffer U1l { i2=in; 02=out; }
my_level3_buffer U2 { i3=out; 03=level3[1]; }
my_level3_buffer U3 { i3=out; 03=level3[2]; }

}

CELL my_tree_from_levell {
RESTRICT_CLASS { clock }
PIN in { DIRECTION = input; }
PIN out { DIRECTION = output; }
PIN[1:4] level2 { DIRECTION = output; }
FUNCTION {
BEHAVIOR {out=1in;}
STRUCTURE {
my_levell_buffer Ul {i1=in; ol=out; }
my_tree_from_level2 U2 {i2=out; 02=level2[1]; }
my_tree_from_level2 U3 { i2=out; 02=level2[2]; }
my_tree_from_level2 U4 {i2=out; 02=level2[3]; }
my_tree_from_level2 U5 {i2=out; 02=level2[4]; }

Version 1.9.2 Advanced Library Format (ALF) Reference Manual

113

Modeling for Synthesis and Test Annotations and attributes for a PIN

CELL my_tree_from_root {
RESTRICT_CLASS { clock }
PIN in { DIRECTION = input; }
PIN out { DIRECTION = output; }
PIN[1:4] levell { DIRECTION = output; }
FUNCTION {
BEHAVIOR {out=1in;}
STRUCTURE {
my_root_buffer U1 { i0=in; o0=out; }
my_tree_from_levell U2 {i1=0; ol=levell[1]; }
my_tree_from_levell U3 {i1=0; ol=levell[2]; }
my_tree_from_levell U4 {i1=0; ol=levell[3]; }
my_tree_from_levell U5 {i1=0; ol=levell[4]; }

}
Example 4:

Multiplexor, showing the conceptional difference between BEHAVIOR and STRUCTURE.

CELL my_multiplexor {
PIN a { DIRECTION = input; }
PIN b { DIRECTION = input; }
PIN s { DIRECTION = input; }
PIN y { DIRECTION = output; }

FUNCTION {
BEHAVIOR {
/l's_a and s_b are virtual internal nodes
ALF_AND {out=s_a;in[0] =!s;in[1l]=a;}
ALF_AND {out=s_b;in[0] = s;in[1]=b;}

ALF_OR {out=y;in[0]=s_a;in[l]=s_b;}

}
STRUCTURE {

/I sbar, sel_a, sel_b are physical internal nodes
ALF_NOT {out=sbar;in=s;}
ALF_NAND { out = sel_a; in[0] = sbar; in[1] = a; }
ALF_NAND {out =sel_b;in[0] = s; in[1]=b;}
ALF_NAND { out =y; in[0] = sel_a; in[1] = sel_b; }

6.4 Annotations and attributes for a PIN

This section defines vario®N annotations and attributes.

6.4.1 VIEW annotation

VIEW = string :
annotates the view where the pin appears, which can take the values shown in Table 6-11.

114 Advanced Library Format (ALF) Reference Manual Version 1.9.2

Annotations and attributes for a PIN Modeling for Synthesis and Test

Table 6-11 : VIEW annotations for a PIN object

Annotation string Description

functional pin appears in functional netlist

physical pin appears in physical netlist

both (default) pin appears in both functional and physical netlist
none pin does not appear in netlist

6.4.2 PINTYPE annotation

PINTYPE = string :
annotates the type of the pin, which can take the values shown in Table 6-12.

Table 6-12 : PINTYPE annotations for a PIN object

Annotation string Description

digital (default) digital signal pin

analog analog signal pin

supply power supply or ground pin

6.4.3 DIRECTION annotation

DIRECTION = string :
annotates the direction of the pin, which can take the values shown in Table 6-13.

Table 6-13 : DIRECTION annotations for a PIN object

Annotation string Description

input input pin

output output pin

both bidirectional pin

none no direction can be assigned to the pin

Table 6-14 gives a more detailed semantic interpretation for UISRECTION in combination
with PINTYPE.

Table 6-14 : DIRECTION in combination with PINTYPE

DIRECTION PINTYPE=digital PINTYPE=analog PINTYPE=supply
input pin receives a digital signal pin receives an analog sigpnal pin is a power sink
output pin drives a digital signal pin drives an analog signalll pin is a power source

Version 1.9.2 Advanced Library Format (ALF) Reference Manual 115

Modeling for Synthesis and Test Annotations and attributes for a PIN

Table 6-14 : DIRECTION in combination with PINTYPE, continued

DIRECTION PINTYPE=digital PINTYPE=analog PINTYPE=supply

both pin drives or receives a digit pin drives or receives an pin is both power sink
tal signal, depending on thg analog signal, depending op and source
operation mode the operation mode

none pin represents either an pin represents either an pin represents either an

internal digital signal with | internal analog signal with | internal power pin with
no external connection or @ no external connection or al no external connection o
feed through feed through a feed through

Examples:
. The power and ground pins of regular cells shall ILARECTION=input .

- Alevel converter cell shall have a power supply pin \WIRECTION=input and
another power supply pin WithRECTION=output .

. Alevel converter can have separate ground pins on the input and output side or a
common ground pin WitDIRECTION=both .

. The power and ground pins of a feed through cell shall bBREECTION=none.

6.4.4 SIGNALTYPE annotation

SIGNALTYPECclassifies the functionality of a pin. The currently defined values apply for pins
with PINTYPE=DIGITAL .

Conceptually, a pin WitRINTYPE = ANALOG can also have SIGNALTYPEannotation. How-
ever, no values are currently defined.

SIGNALTYPE = string ;
annotates the type of the signal connected to the pin.
The fundamentadIGNALTYPEVvalues are defined in Table 6-15.

Table 6-15 : Fundamental SIGNALTYPE annotations for a PIN object

Annotation string Description

data (default) general data signal, i.e., a signal that carries information tp be
transmitted, received, or subjected to logic operations within
the CELL.

address address signal of a memory, i.e., an encoded signal, usuglly a
bus or part of a bus, driving an address decoder within th¢
CELL

control general control signal, i.e., an encoded signal that control
least two modes of operation of t6B&LL, eventually in con-
junction with other signals. The signal value is allowed to
change during real-time circuit operation.

v)
Q
—

116 Advanced Library Format (ALF) Reference Manual Version 1.9.2

Annotations and attributes for a PIN

Table 6-15 : Fundamental SIGNALTYPE annotations for a PIN object,

Modeling for Synthesis and Test

continued

Annotation string

Description

select

select signal of a multiplexor, i.e., a decoded or encoded

nal that selects the data path of a multiplexor or de-multi-
plexor within theCELL. Each selected signal has the samg
SIGNALTYPE

big-

enable

general enable signal, i.e., a decoded signal which enableq
disables a set of operational modes of @teLL, eventually in

and

conjunction with other signals. The signal value is expectedl to

change during real-time circuit operation.

tie

the signal needs to be tied to a fixed value statically in orde
define a fixed or programmable mode of operation of the

CELL, eventually in conjunction with other signals. The sig-

nal value is not allowed to change during real-time circuit
operation.

I to

clear

clear signal of a flip-flop or latch, i.e., a signal that control$

the storage of the valiewithin the CELL.

p

set

set signal of a flip-flop or latch, i.e., a signal that controls the

storage of the valug within theCELL.

clock

clock signal of a flip-flop or latch, i.e., a timing-critical signd

L

that triggers data storage within tG&LL.

"Flipflop", "latch”, "multiplexor”,
larger cells. In the former case, the celltyptigop , latch , multiplexor

and "memory" can be standalone cells or embedded in

respectively. In the latter case, the celltypeldek or core .

, andmemory,

Composite values f@IGNALTYPEshall be constructed using one or more prefixes in
combination with certain fundamental values, separated by the undergochar@cter, as
shown in Table 6-16 through Table 6-20.

The scheme for this is shown in Figure 6-3.

address

» load »

I out I

I -
> control
_>
read > enable
| . -
write
_>
> data
|

p-Master > clock
> slave

Figure 6-3: Construction scheme for composite SIGNALTYPE values

Version 1.9.2

Advanced Library Format (ALF) Reference Manual

117

Modeling for Synthesis and Test

118

Annotations and attributes for a PIN

Table 6-16 : Composite SIGNALTYPE annotations based on DATA

Annotation string

Description

scan_data data signal for scan mode
test_data data signal for test mode
bist_data data signal iBIST mode

Table 6-17 : Composite SIGNALTYPE annotations based on ADDRESS

Annotation string

Description

test_address

address signal for test mode

bist_address

address signal f@IST mode

Table 6-18 : Composite SIGNALTYPE annotations based on CONTROL

Annotation string

Description

load_control

control signal for switching between
load mode and normal mode

scan_control

control signal for switching between
scan mode and normal mode

test_control

control signal for switching between ted
mode and normal mode

—

bist_control

control signal for switching between
BIST mode and normal mode

read_write_control

control signal for switching between
read and write operation

test_read_write_control control signal for switching between

read and write operation in test mode

bist_read_write_control control signal for switching between

read and write operation BIST mode

Table 6-19 : Composite SIGNALTYPE annotations based on ENABLE

Annotation string Description

load_enable signal enables load operation in a counter or a shift register
out_enable signal enables the output stage of an arbitrary cell
scan_enable signal enables scan mode of a flip-flop or latch only

scan_out_enable

signal enables the output of a flip-flop or latch in scan mode only

test_enable

signal enables test mode only

Advanced Library Format (ALF) Reference Manual Version 1.9.2

Annotations and attributes for a PIN

Table 6-19 : Composite SIGNALTYPE annotations based on ENABLE,

Modeling for Synthesis and Test

continued

Annotation string

Description

bist_enable

signal enableBIST mode only

test_out_enable

signal enables the output stage in test mode only

bist_out_enable

signal enables the output stagdisT mode only

read_enable

signal enables the read operation of a memory

write_enable

signal enables the write operation of a memory

test_read_enable

signal enables the read operation in test mode only

test_write_enable

signal enables the write operation in test mode only

bist_read_enable

signal enables the read operatioBIST mode only

bist_write_enable

signal enables the write operatiorBIST mode only

Table 6-20 : Composite SIGNALTYPE annotations based on CLOCK

Annotation string

Description

scan_clock

signal is clock of a flip-flop or latch in scan mode

master_clock

signal is master clock of a flip-flop or latch

slave_clock

signal is slave clock of a flip-flop or latch

scan_master_clock

signal is master clock of a flip-flop or latch in scan mode

scan_slave_clock

signal is slave clock of a flip-flop or latch in scan mode

read_clock

clock signal triggers the read operation in a synchronous mem

pry

write_clock

clock signal triggers the write operation in a synchronous mem

ory

read_write_clock

clock signal triggers both read and write operation in a synchron
memory

Ous

test_clock

signal is clock in test mode

test_read_clock

clock signal triggers the read operation in a synchronous memo
test mode

yin

test_write_clock

clock signal triggers the write operation in a synchronous mem
in test mode

ory

test_read_write_clock

clock signal triggers both read and write operation in a synchron
memory in test mode

ous

bist_clock

signal is clock iBIST mode

bist_read_clock

clock signal triggers the read operation in a synchronous memo
BIST mode

yin

bist_write_clock

clock signal triggers the write operation in a synchronous mem
in BIST mode

ory

bist_read_write_clock

clock signal triggers both read and write operation in a synchron
memory inBIST mode

Ous

6.4.5

ACTION annotation

ACTION = string :

Version 1.9.2

Advanced Library Format (ALF) Reference Manual

119

Modeling for Synthesis and Test Annotations and attributes for a PIN

annotates the action of the signal, which can take the values shown in Table 6-21.

Table 6-21 : ACTION annotations for a PIN object

Annotation string Description
synchronous signal acts in synchronous way, i.e., self-triggered
asynchronous signal acts in asynchronous way, i.e., triggered by a signg|

with SIGNALTYPE CLOCKor a compositSIGNALTYPE
with postfix_CLOCK

TheACTION annotation applies only to pins with certaiGNALTYPEvalues, as shown in
Table 6-22. The rule applies also to any comp@GaIALTYPEValues based on the
fundamental values.

Table 6-22 : ACTION applicable in conjunction with fundamental SIGNALTYPE values

fundamental SIGNALTYPE applicable ACTION

data N/A

address N/A

control synchronous or asynchronous

select N/A

enable synchronous or asynchronous

tie N/A

clear synchronous or asynchronous

set synchronous or asynchronous

clock N/A, but the presence &GNALTYPE=clock conditions
the validity of ACTION=synchronous for other signals

6.4.6 POLARITY annotation

POLARITY = string :
annotates the polarity of the pin signal.
The polarity of an input pin (i.eDIRECTION = input;) takes the values shown in Table 6-23.

Table 6-23 : POLARITY annotations for a PIN

Annotation string Description

high signal active high or to be driven high
low signal active low or to be driven low
rising_edge signal sensitive to rising edge
falling_edge signal sensitive to falling edge
double_edge signal sensitive to any edge

120 Advanced Library Format (ALF) Reference Manual Version 1.9.2

Annotations and attributes for a PIN Modeling for Synthesis and Test

ThePOLARITY annotation applies only to pins with certgiGNALTYPEvalues, as shown
iTable 6-24. The rule applies also to any comp@&itaALTYPEvalues based on the
fundamental values.

Table 6-24 : POLARITY applicable in conjunction with fundamental SIGNALTYPE values

fundamental SIGNALTYPE applicable POLARITY value

data N/A

address N/A

control mode-specifihiigh orlow for composite signaltype

select N/A

enable Mandatoryhigh orlow

tie Optionalhigh orlow

clear Mandatoryhigh orlow

set Mandatoryhigh orlow

clock Mandatoryhigh , low, rising_edge , falling_edge , or
double_edge , can be mode-specific for composite signaltype.

Signals with composite signaltype®de CLOCKcan have a single polarity or mode-specific
polarities.

Example:

PIN rw {
SIGNALTYPE = READ_WRITE_CONTROL;
POLARITY { READ=high; WRITE=low; }

}

PIN rwc {
SIGNALTYPE = READ_WRITE_CLOCK;
POLARITY { READ=rising_edge; WRITE=falling_edge; }

6.4.7 DATATYPE annotation

DATATYPE =string
annotates the datatype of the pin, which can take the values shown in Table 6-25.

Table 6-25 : DATATYPE annotations for a PIN object

Annotation string

Description

signed

result of arithmetic operation is signed 2's complement

unsigned

result of arithmetic operation is unsigned

DATATYPHES only relevant for bus pins.

6.4.8 INITIAL_VALUE annotation
INITIAL_VALUE = logic_constant ;
Version 1.9.2 Advanced Library Format (ALF) Reference Manual 121

Modeling for Synthesis and Test Annotations and attributes for a PIN

shall be compatible with the buswidth amwirATYPEOf the signal.
INITIAL_VALUE is used for a downstream behavioral simulation model, as far as the simulator

(e.g., a VITAL-compliant simulator) supports the notion of initial value.
6.4.9 SCAN_POSITION annotation

SCAN_POSITION = unsigned ;
annotates the position of the pin in scan chain, starting withalue 0 (default) indicates that

the PIN is not on the scan chain.
6.4.10 STUCK annotation

STUCK =string :
annotates the stuck-at fault model as shown in Table 6-26.

Table 6-26 : STUCK annotations for a PIN object

Annotation string Description

stuck_at 0 pin can have stuck-at-0 fault

stuck at 1 pin can have stuck-at-1 fault

both (default) pin can have both stuck-at-0 and stuck-at-1 faults
none pin can not have stuck-at faults

6.4.11 SUPPLYTYPE

A PIN with PINTYPE = SUPPLY shall have &UPPLYTYPEANnnotation.

supplytype _ assignment :;=
SUPPLYTYPE = supplytype_ identifier
supplytype_identifier ::=
power
| ground
| reference

6.4.12 SIGNAL_CLASS

The following new keyword for class reference shall be defined:

SIGNAL_CLASS

aPIN referring to the sam&GNAL_CLASSbelong to the same logic port.

For example, theDDRESSWRITE_ENABLEandDATApiIn of a logic port of a memory have
the sameIGNAL_CLASS

SIGNAL_CLASSapplies to @IN with PINTYPE=DIGITAL |ANALOG

SIGNAL_CLASSIs orthogonal tGIGNALTYPE

122 Advanced Library Format (ALF) Reference Manual Version 1.9.2

Annotations and attributes for a PIN Modeling for Synthesis and Test

Example:

CLASS portA;
CLASS portB;
CELL my_memory {

PIN[1:4] addrA { DIRECTION = input;
SIGNALTYPE = address;
SIGNAL_CLASS = portA;

}

PIN[7:0] dataA { DIRECTION = output;
SIGNALTYPE = data;
SIGNAL_CLASS = portA;

}

PIN[1:4] addrB { DIRECTION = input;
SIGNALTYPE = address;
SIGNAL_CLASS = portB;

}

PIN[7:0] dataB { DIRECTION = input;
SIGNALTYPE = data;
SIGNAL_CLASS = portB;

}

PIN weB { DIRECTION = input;
SIGNALTYPE = write_enable;
SIGNAL_CLASS = portB;

Note: The combination (JIGNAL_CLASSandSIGNALTYPEidentifies the port typecLASS
portA represents a read port, since it consistsrolavith SIGNALTYPE = address
and aPIN with SIGNALTYPE =data andDIRECTION = output . CLASS portB
represents a write port, since it consists PiNawith SIGNALTYPE = address , aPIN
with SIGNALTYPE =data andDIRECTION =input , and aPIN with SIGNALTYPE =
write_enable

6.4.13 SUPPLY_CLASS

The following new keyword for class reference shall be defined:

SUPPLY_CLASS

aPIN referring to the sam&uPPLY_CLAS<elongs to the same power terminal.
For example, digitatDband digitalvss have the samg&UPPLY_CLASS
SIGNAL_CLASSapplies to @IN with PINTYPE=SUPPLY

SUPPLY_CLASdSs orthogonal tGsUPPLYTYPE

Example:

CELL my_core {
PIN vdd_dig { SUPPLYTYPE = power; SUPPLY_CLASS = digital; }
PIN vss_dig { SUPPLYTYPE = ground; SUPPLY_CLASS = digital; }
PIN vdd_ana { SUPPLYTYPE = power; SUPPLY_CLASS = analog; }
PIN vss_ana { SUPPLYTYPE = ground; SUPPLY_CLASS = analog; }

| Version 1.9.2 Advanced Library Format (ALF) Reference Manual 123

Modeling for Synthesis and Test Annotations and attributes for a PIN

6.4.14 Driver CELL and PIN specification

The keywordsCELL andPIN can be used as references to existing objects to define a driver
cell and pin in a macro, i.e., a cell WitELLTYPE=block .

Example:

/I this is a standard ASIC cell
CELL my_inv{
CELLTYPE = buffer;
PIN in { DIRECTION = input; }
PIN out { DIRECTION = output; }
}

/I this is a macro, synthesized from standard ASIC cells
CELL my_macro {
CELLTYPE = block;
PIN my_output {
DIRECTION = output;
CELL =my_inv { PIN = out; }

/* fill in other pins and stuff */

}

6.4.15 DRIVETYPE annotation

DRIVETYPE = string ;
annotates the drive type for the pin, which can take the values shown in Table 6-27.

Table 6-27 : DRIVETYPE annotations for a PIN object

Annotation string Description

cmos (default) standard cmos signal

nmos nmos or pseudo nmos signal

pmos pmos or pseudo pmos signal

nMos_pass nmos passgate signal

pmos_pass pmos passgate signal

cmos_pass cmos passgate signal, i.e., the full transmission gate
ttl TTL signal

open_drain open drain signal

open_source open source signal

6.4.16 SCOPE annotation

SCOPE = string ;
annotates the modeling scope of a pin, which can take the values shown in Table 6-28.

124 Advanced Library Format (ALF) Reference Manual Version 1.9.2

Annotations and attributes for a PIN Modeling for Synthesis and Test

Table 6-28 : SCOPE annotations for a PIN object

Annotation string Description

behavior the in is used for modeling functional behavior and eventq on
the pin are monitored for vector expressionBEHAVIOR
statements

measure measurements related to the pin can be described, e.g., tiring
or power characterization, and events on the pin are monitgred

for vector expressions MECTORstatements

both (default) the pin is used for functional behavior as well as for charagter-
ization measurements

none no model; only the pin exists

6.4.17 PULL annotation

PULL = string ;
annotates the pull type for the pin, which can take the values shown in Table 6-29.

Table 6-29 : PULL annotations for a PIN object

Annotation string Description

up pullup device connected to pin

down pulldown device connected to pin

both pullup and pulldown device connected to pin
none (default) no pull device

6.4.18 ATTRIBUTE for PIN objects

The attributes shown in Table 6-30 can be used witkin abject.

Table 6-30 : Attributes within a PIN object

Attribute item Description

SCHMITT Schmitt trigger signal
TRISTATE tristate signal

XTAL crystal/oscillator signal
PAD pad going off-chip

The attributes shown in Table 6-31 are only applicable for pins within cells with
CELLTYPE=memoryand certain values GiGNALTYPE

Table 6-31 : Attributes for pins of a memory

Attribute item SIGNALTYPE |Description
ROW_ADDRESS_STROBE clock samples the row address of the memory
COLUMN_ADDRESS_STROBE clock samples the column address of the memory

Version 1.9.2 Advanced Library Format (ALF) Reference Manual 125

Modeling for Synthesis and Test Definitions for bus pins

Table 6-31 : Attributes for pins of a memory, continued

Attribute item SIGNALTYPE |Description

ROW address selects an addressable row of the memory
COLUMN address selects an addressable column of the memory
BANK address selects an addressable bank of the memory

The attributes shown in Table 6-32 are only applicable for pins representing double-rail
signals.

Table 6-32 : Attributes for pins representing double-rail signals

Attribute item Description

INVERTED represents the inverted value within a pair of signfls
carrying complementary values

NON_INVERTED represents the non-inverted value within a pair of
signals carrying complementary values

DIFFERENTIAL signal is part of a differential pair, i.e., both the
inverted and non-inverted values are always
required for physical implementation

The following restrictions apply for double-rail signals:
. ThePINTYPE, SIGNALTYPE andDIRECTION of both pins shall be the same.
- OnePIN shall have the attribut®VERTED, the otheNON_INVERTED
- Either both pins or no pins shall have the attrilDIFEERENTIAL.

- POLARITY, if applicable, shall be complementary as follows:
HIGH is paired with.ow
RISING_EDGEIs paired withFALLING_EDGE
DOUBLE_EDGHK paired withDOUBLE_EDGE
6.5 Definitions for bus pins

This section defines how to specify bus pins and group pins.

6.5.1 RANGE for bus pins

A one-dimensional bus pin can contaiRANGEstatement, defined as follows:

range ::=
RANGE { unsigned : unsigned }

TheRANGEstatement applies only if the range of valid indices is contiguous. The range is lim-

ited by the width of the bus. The possible range for a N-bit wide bus is betwaad2. The
possible range of values shall also be the default range.

126 Advanced Library Format (ALF) Reference Manual Version 1.9.2

Definitions for bus pins Modeling for Synthesis and Test

Example:

A 4-bit wide bus has the following possible range of indices: 0, 1, 2, 3, 4,5, 6,7, 8,9, 10, 11,
12, 13, 14, 15.

RANGE {3:13} specifies the indices 1, 2, 14, and15 are invalid.

In the case where non-contiguous indices are valid, for example 1, 2, 3,5, 6, 7, 9, 10, 11, 13,
14, 15, therANGEstatement does not apply.

6.5.2 Scalar pins inside a bus
A PIN declared as a bus shall contain the optipinainstantiation statement, defined as
follows:

pin_instantiation ::=

pin_ identifier [index] {
pin_items
}
| whereindex andpin_items are defined in Section 11.5 and Section 11.11, respectively.
A pin_instantiation statement can also refer to a part of the bus.
Annotations within the scope of tireN or a higher-levepin_instantiation shall be inher-
ited by a lower-levepin_instantiation (see Section 6.4), as long as their values are appli-

cable for both the bus and each scalar pin within the bus. ValuagwfINITIAL_VALUE , and
arithmetic models such @A\PACITANCEshall not be inherited, since a particular value cannot
apply at the same time to the bus and to its scalar pins.

Example:

PIN [1:4] my_address {

DIRECTION = input;

SIGNALTYPE = address;

VIEW = functional;

CAPACITANCE =0.07;

my_address [1:2] { ATTRIBUTE { ROW } CAPACITANCE = 0.03; }
my_address[1] { VIEW = physical; CAPACITANCE = 0.01; }
my_address[2] { VIEW = physical; CAPACITANCE = 0.02; }
my_address [3:4] { ATTRIBUTE { COLUMN } CAPACITANCE = 0.04; }
my_address[3] { VIEW = physical; CAPACITANCE = 0.02; }
my_address[4] { VIEW = physical; CAPACITANCE = 0.02; }

}
6.5.3 PIN_GROUP statement

A pin group shall be defined as follows:

| Version 1.9.2 Advanced Library Format (ALF) Reference Manual 127

Modeling for Synthesis and Test Definitions for bus pins

pin_group ::=
PIN_GROUR index] pin_group_ identifier {
pin_items

MEMBERS {pins }
}

wherepin_items is defined in Section 11.11.

The pins in thevEMBERS$eld shall refer to previously defined pins. The range of the index, if
defined, shall match the number and range of pins insvwBERSeld.

Annotations within the scope of tlheN contained in th&lEMBERSeld shall be inherited by
thePIN_GROUPas long as their values are applicable for both the pin and the pin group. Values
of VIEW, INITIAL_VALUE , and arithmetic models such@sPACITANCEshall not be inherited,
since a particular value cannot apply at the same time to the pin and the pin group.

A pin group withviEw=functional ~ shall be treated like a bus pin in the functional netlist. It
shall appear in the netlist in place of the first defined pin withimenseR$eld.

Example 1:
PIN my_address_1 {DIRECTION = input; VIEW = physical; CAPACITANCE = 0.01;}
PIN my_address_2 {DIRECTION = input; VIEW = physical; CAPACITANCE = 0.02;}
PIN my_address_3 {DIRECTION = input; VIEW = physical; CAPACITANCE = 0.02;}
PIN my_address_4 {DIRECTION = input; VIEW = physical; CAPACITANCE = 0.02;}

PIN_GROUP [1:2] my_address_1 2 {
ATTRIBUTE { ROW }
CAPACITANCE = 0.03;
MEMBERS { my_address_1 my_address_2 }
}
PIN_GROUP [1:2] my_address_3_4{
ATTRIBUTE { COLUMN }
CAPACITANCE = 0.03;
MEMBERS { my_address_3 my_address_4}
}
PIN_GROUP [1:4] my_address {
VIEW = functional;
CAPACITANCE = 0.07;
MEMBERS { my_address_1 my_address_2 my_address_3 my_address_4 }

}
Pairs of complementary pins, differential pins in particular, are special cases of pin groups.

Example 2:

CELL my_flip-flop {
PIN CLK { DIRECTION=input; SIGNALTYPE=clock; POLARITY=rising_edge; }
PIN D { DIRECTION=input; SIGNALTYPE=data; }
PIN Q { DIRECTION=output; SIGNALTYPE=data; ATTRIBUTE { NON_INVERTED 1} }
PIN Qbar { DIRECTION=output; SIGNALTYPE=data; ATTRIBUTE { INVERTED } }
PIN_GROUP [0:1] Q_double_rail { RANGE {1: 2} MEMBERS { Q Qbar }}

128 Advanced Library Format (ALF) Reference Manual Version 1.9.2

Annotations for CLASS and VECTOR Modeling for Synthesis and Test

The pinsQ andQbar are complementary. Their valid set of data compri®eas=="d1 and
'b10==="d2 . The value%00==="d0 andbll==="d3 are invalid.

CELL my_differential_buffer {
PIN DIN { DIRECTION=input; ATTRIBUTE { DIFFERENTIAL NON_INVERTED }}
PIN DINN { DIRECTION=input; ATTRIBUTE { DIFFERENTIAL INVERTED } }
PIN DOUT { DIRECTION=output; ATTRIBUTE { DIFFERENTIAL NON_INVERTED } }
PIN DOUTN { DIRECTION=output; ATTRIBUTE { DIFFERENTIAL INVERTED } }
PIN_GROUP [0:1] DI { RANGE { 1 : 2} MEMBERS { DIN DINN } }
PIN_GROUP [0:1] DO { RANGE { 1 : 2} MEMBERS { DOUT DOUTN } }

}
The pinsDIN andDINN represent a pair of differential input pins. The pa&TandDOUTN
represent a pair of differential output pins.

6.6 Annotations for CLASS and VECTOR

This section defines the annotationsdonsSandvVECTOR

6.6.1 PURPOSE annotation

A CLASSIs a generic object which can be referenced inside another object. An object referenc-
ing a class inherits all children object of that class. In addition to this general reference, the
usage of the keywordLASSIn conjunction with a predefined prefix (e QQNNECT_CLASS
SWAP_CLASSRESTRICT_CLASS EXISTENCE_CLASS Or CHARACTERIZATION_CLASBalso car-

ries a specific semantic meaning in the context of its usage. Note the keyword <poefiss

is used for referencing a class, whereas the definition of the class always uses the keyword
CLASS Thus a class can have multiple purposes. With the growing number of usage models of
the class concept, it is useful to include the purpose definition in the class itself in order to
make it easier for specific tools to identify the classes of relevance for that tool.

A CLASSObject can contain theURPOSENNotation, which can take one or multiple values. A
VECTORentitled to inherit theURPOSENNOotation from theLASScan also contain theuR-
POSEannotation as follows.

vector_purpose_ assignment ::=
PURPOSE { purpose_ identifier { purpose_ identifier } }

vector_purpose identifier :: =
bist
| test
| timing
| power
| integrity

Version 1.9.2 Advanced Library Format (ALF) Reference Manual 129

Modeling for Synthesis and Test Annotations for CLASS and VECTOR

6.6.2 OPERATION annotation

TheOPERATIONstatement inside @eCTORshall be used to indicate the combined definition of
signal values or signal changes for certain operations which are not entirely controlled by a
single signal.

operation_ assignment ::=
OPERATION = operation_ identifier ;

An OPERATIONwithin the context of ®ECTORNdicates certain a function of a cell, such as a
memory write, or change to some state, such as test mode. Many functions are not controlled
by a single pin and are therefore not able to be defined by the sissaf TYPEalone. The
VECTORshall describe the complete operation, including the sequence of events on input and
expected output signals, such that one operation can be followed seamlessly by the next.

The following values shall be predefined:

operation_ identifier ::=
read

| write

| read_modify write

| write_through

| start

| end

| refresh

| load

| iddq

Their definitions are:

read read operation at one address

write: write operation at one address

read_modify_writeread followed by write of different value at same address

start first operation required in a particular mode

end last operation required in a particular mode

refresh operation required to maintain the contents of the memory without modifying it
load: operation for loading control registers

iddg: operation for supply current measurements in quiescent state
With exception of “iddq”, all values apply for only cells witELLTYPE=memory

TheEXISTENCE_CLASS(see Section 6.6.5) within the context ofecTORshall be used to
identify which operations can be combined in the same n@ERATION'S orthogonal to

130 Advanced Library Format (ALF) Reference Manual Version 1.9.2

Annotations for CLASS and VECTOR Modeling for Synthesis and Test

EXISTENCE_CLASS TheEXISTENCE_CLASSstatement is only necessary, if there is more than
one mode of operation.

Example 1:

CLASS normal_mode { PURPOSE = test; }
CLASS fast_page_mode { PURPOSE = test; }
VECTOR (! WE && (
?! addr -> 01 RAS -> 10 RAS ->
?! addr -> 01 CAS -> X? dout -> 10 CAS -> ?X dout

) A
OPERATION = read; EXISTENCE_CLASS = normal_mode;

}
VECTOR (WE && (

?!addr -> 01 RAS -> 10 RAS ->
?laddr -> ?? din -> 01 CAS -> 10 CAS

) A
OPERATION = write; EXISTENCE_CLASS = normal_mode;

}
VECTOR (! WE && (?! addr -> 01 CAS -> X? dout -> 10 CAS -> ?X dout)) {

OPERATION = read; EXISTENCE_CLASS = fast_page_mode;

}
VECTOR (WE && (?! addr -> ?? din -> 01 CAS -> 10 CAS)) {

OPERATION = write; EXISTENCE_CLASS = fast_page_mode;

}
VECTOR (?! addr -> 01 RAS -> 10 RAS) {

OPERATION = start; EXISTENCE_CLASS = fast_page_mode;
}

Note: The complete description of a “read” operation also contains the behavior after “read”
is disabled.

Example 2:

VECTOR (01 read_enb -> X? dout -> 10 read_enb -> ?X dout) {
OPERATION = read; // output goes to X in read-off

}

VECTOR (01 read_enb -> ?? dout -> 10 read_enb -> ?- dout) {
OPERATION = read; // output holds is value in read-off

}

6.6.3 LABEL annotation

LABEL = string ;
ensures SDF matching with conditional delays across Verilog, VITAL, etc.

6.6.4 EXISTENCE_CONDITION annotation

EXISTENCE_CONDITION = boolean_expression ;

For false-path analysis tools, the existence condition shall be used to eliminate the vector from
further analysis if, and only if, the existence condition evaluat€slkse For applications other

than false-path analysis, the existence condition shall be treated as if the boolean expression
was a co-factor to the vector itself. The default existence conditiones

Version 1.9.2 Advanced Library Format (ALF) Reference Manual 131

Modeling for Synthesis and Test Annotations for CLASS and VECTOR

Example:

VECTOR (01a->01z&(c|!d)){
EXISTENCE_CONDITION = Iscan_select;
DELAY { FROM { PIN=a; } TO { PIN=z; } /* data */ }

}
VECTOR (01a->01z & ('c|d)){

EXISTENCE_CONDITION = Iscan_select;
DELAY { FROM { PIN=a; } TO { PIN=z; } /* data */ }
}
Each vector contains state-dependent delay for the same timinglatanlfelect evaluates
True both vectors are eliminated from timing analysis.

6.6.5 EXISTENCE_CLASS annotation

EXISTENCE_CLASS = string ;

Reference to the same existence class by multiple vectors has the following effects:

A common mode of operation is established between those vectors, which can be used
for selective analysis, for instance mode-dependent timing analysis. The name of the
mode is the name of the class.

A common existence condition is inherited from that existence class, if there is one.

Example:

CLASS non_scan_mode {
EXISTENCE_CONDITION = Iscan_select;

}
VECTOR (01a->01z & (c|!d)){

EXISTENCE_CLASS = non_scan_mode;
DELAY { FROM { PIN=a; } TO { PIN=z; } /* data */ }

}
VECTOR (01a->01z & ('c|d)){

EXISTENCE_CLASS = non_scan_mode;
DELAY { FROM { PIN=a; } TO { PIN=z; } /* data */ }
}
Each vector contains state-dependent delay for the same timing arc. If the mode
non_scan_mode IS turned off or ifiscan_select evaluategrue both vectors are eliminated
from timing analysis.

6.6.6 CHARACTERIZATION_CONDITION annotation

CHARACTERIZATION_CONDITION = boolean_expression ;

For characterization tools, the characterization condition shall be treated as if the boolean
expression was a co-factor to the vector itself. For all other applications, the characterization
condition shall be disregarded. The default characterization condiflonds

132 Advanced Library Format (ALF) Reference Manual Version 1.9.2

ILLEGAL statement for VECTOR Modeling for Synthesis and Test

Example:

VECTOR (01a->01z & (c|!d)){
CHARACTERIZATION_CONDITION = ¢ & !d;
DELAY { FROM { PIN=a; } TO { PIN=z; } /* data */ }
}
The delay value for the timing arc applies for any of the following conditiorstd(),
(c & d),or(c & !d), since they all satisfyc(]| 'd). However, the only condition chosen for
delay characterization is & 'd).

6.6.7 CHARACTERIZATION_VECTOR annotation

CHARACTERIZATION_VECTOR = (vector_expression) ;

The characterization vector is provided for the case where the vector expression cannot be
constructed using the vector and a boolean co-factor. The use of the characterization vector is
restricted to characterization tools in the same way as the use of the characterization condi-
tion. Either a characterization condition or a characterization vector can be provided, but not
both. If none is provided, the vector itself shall be used by the characterization tool.

Example:

VECTOR (01 A -> 01 2) {
CHARACTERIZATION_VECTOR = ((01 A & 10 inv_A) -> (01 Z & 10 inv_2));

}

Analysis tools see the signalindz. The signalsnv_A andinv_z are visible to the
characterization tool only.

6.6.8 CHARACTERIZATION_CLASS annotation
CHARACTERIZATION_CLASS = string ;

Reference to the same characterization class by multiple vectors has the following effects:

A commonality is established between those vectors, which can be used for selective
characterization in a way defined by the library characterizer, for instance, to share the
characterization task between different teams or jobs or tools.

A common characterization condition or characterization vector is inherited from that
characterization class, if there is one.

6.7 ILLEGAL statement for VECTOR

For complex cells, especially multi-port memories, it is useful to define the behavior as a con-
sequence of illegal operations, for example when several ports try to access the same address.

A VECTORstatement shall contain the optionaEGAL statement, defined as follows:

illegal ::=
ILLEGAL [identifier] { illegal_items }

Version 1.9.2 Advanced Library Format (ALF) Reference Manual 133

Modeling for Synthesis and Test TEST statement

illegal_items ::=
illegal_item { illegal_item }
illegal_item ::=
all_purpose_item
| violation

whereall_purpose_item andviolation are defined in Section 11.7 and Section 11.16,
respectively.

Thevector_expression within theVECTORstatement describes a state or a sequence of
events which define an illegal operation. THeLATION statement describes the consequence
of such an illegal operation.

Example 1:

VECTOR ((addr_A == addr_B) && write_enable_A && write_enable B) {
ILLEGAL write_A_write_B {
VIOLATION {
MESSAGE = “write conflict between port A and B*;
MESSAGE_TYPE = error;
BEHAVIOR { data[addrA] = ‘bxxxxxxxx; }

}

Note: An illegal operation can be legalized by USMESSAGE_TYPE=INFORMATIQN
MESSAGE_TYPE=WARNING

This statement can also be used to define the behavior when an address is out of range. Some-
times the address space is not continuous, i.e., it can contain holes in the middle. In this case,
aMIN or MAxvalue for legal addresses would not be sufficient. On the other hand, a
boolean_expression can always exactly describe the legal and illegal address space.

Example 2:

VECTOR ((addr > *h3) && write_enb) {
ILLEGAL {
VIOLATION {
MESSAGE = “write address out of range®;
MESSAGE_TYPE = error;
BEHAVIOR { data[addr] = ‘bxxxxxxxx; }

6.8 TEST statement

A CELL can contain agsT statement, which is defined as follows:

test ;=
TEST{ behavior }

134 Advanced Library Format (ALF) Reference Manual Version 1.9.2

Physical bitmap for memory BIST Modeling for Synthesis and Test

The purpose is to describe the interface between an externally applied test algorithm and the
CELL. Thebehavior statement within th&EST statement uses the same syntax aseine-

ior statement within thBUNCTIONStatement. However, the set of used variables is different.
Both theTEST and therUNCTION statement shall be self-contained, complete and comple-
mentary to each other.

6.9 Physical bitmap for memory BIST

This section defines the physical bitmap for memory BIST. This is a particular case of the
usage of the TEST statement.

6.9.1 Definition of concepts
The physical architecture of a memory can be described by the following parameters:

BANK index A memory can be arranged in one or several banks, each of which constitutes a
two-dimensional array of rows and columns

ROW indexA row of memory cells within one bank shares the same row decoder line.

COLUMN indexA column of memory cells within one bank shares the same data bit line
and, if applicable, the same sense amplifier.

BANK index

.
&

ROW index A(\Q’ one ROW!
)

Figure 6-4: lllustration of a physical memory architecture, arranged in banks, rows, columns

The physical memory architecture is not evident from the functional description and the pins
involved in the functional description of the memory. Those pins are called logical pins, e.g.,
logical address and logical data.

A memory BIST tool needs to know which logical address and data corresponds to a physical
row, column, or bank in order to write certain bit patterns into the memory and read expected
bit patterns from the memory. Also, the tool needs to know whether the physical data in a spe-
cific location is inverted or not with respect to the corresponding logical data.

Version 1.9.2 Advanced Library Format (ALF) Reference Manual 135

Modeling for Synthesis and Test

Physical bitmap for memory BIST

. / AN logical
ﬂ\lgorlthm \ Wrapper / address
. _ physical row ins
write physical data || , P Memory
to row, column, bank hysical colum circuit
. logical
hysical bank data input under test
read physical data pins
from row, column, bank™® physical data logical
data output
K / ;/ pins

Figure 6-5: lllustration of the memory BIST concept

A mapper between physical rows, columns, banks, data and logical addresses, and data pins
shall be part of the library description of a memory cell.

The physical row, column, and bank indices can be modeled as virtual inputs to the memory
circuit. The data to be written to a physical memory location can also be modeled as a virtual
input. The data to be read from a physical memory location can be modeled as a virtual out-
put. Since every data that is written for the purpose of test also needs to be read, the data can
be modeled as a virtual bidirectional pin. A virtual pin is a pin witBw=none, i.e., the pin is

not visible in any netlist.

6.9.2

The special piRTTRIBUTE values shown in Table 6-33 shall be defined for memory BIST.

Definitions of pin ATTRIBUTE values for memory BIST

Table 6-33 : PIN attributes for memory BIST

Attribute item
ROW_INDEX

Description

pin is a bus with a contiguous range of values,
indicating a physical row of a memory

COLUMN_INDEX o . .
- pin is a bus with a contiguous range of values,

indicating a physical column of a memory

BANK_INDEX o . :

- pin is a bus with a contiguous range of values,

indicating a physical bank of a memory
DATA_INDEX I . .

- pin is a bus with a contiguous range of values,
indicating the bit position within a data bus of a
memory

DATA_VALUE

pin represents a value stored in a physical mempry
location

136 Advanced Library Format (ALF) Reference Manual Version 1.9.2

Physical bitmap for memory BIST Modeling for Synthesis and Test

These attributes apply to the pins of the BIST wrapper around the memory rather than to the
pins of the memory itself.

TheBEHAVIORstatement withirrEST shall involve the variables declaredrais s with
ATTRIBUTE ROW_INDEXCOLUMN_INDEXBANK_INDEX DATA_INDEX, Or DATA_VALUE

6.9.3 Explanatory example

One-dimensional arrays WihGNALTYPE=address (here:PIN[3:0] addr) shall be recog-
nized as address pins to be mapped, involving other one-dimensional arrapg WrBUTE
{ ROW_INDEX }(here:PIN[1:0] row)andATTRIBUTE { COLUMN_INDEX }here:PIN[3:0]
col). This memory has only one bank. Therefore, no one-dimensional arrapWitiBUTE
{ BANK_INDEX} exists here.

One-dimensional arrays WithGNALTYPE=data (here:PIN[3:0] Din andPIN[3:0] Dout)

shall be recognized as data pins to be mapped, involving other one-dimensional arrays with
ATTRIBUTE { DATA_INDEX } (here:PIN[1:0] dat) and scalar pins WitRTTRIBUTE {
DATA_VALUE } (here:PIN bit).

Note: Since the data buses are 4-bits wide, the data index is 2-bits wide, since 2=log2(4).
Base Example:

CELL my_memory {
PIN[3:0] addr { DIRECTION=input; SIGNALTYPE=address; }
PIN[3:0] Din { DIRECTION=input; SIGNALTYPE=data; }
PIN[3:0] Dout { DIRECTION=output; SIGNALTYPE=data, }
PIN[3:0] bits[0:15] { DIRECTION=none; VIEW=none; SCOPE=behavior; }
PIN write_enb { DIRECTION=input; SIGNALTYPE=write_enable;
POLARITY=high; ACTION=asynchronous;

}
PIN[1:0] dat { ATTRIBUTE { DATA_INDEX } DIRECTION=none; VIEW=none; }
PIN bit { ATTRIBUTE { DATA_VALUE } DIRECTION=both; VIEW=none; }
PIN[1:0] row {

ATTRIBUTE { ROW_INDEX } RANGE {0: 3}

DIRECTION=input; VIEW=none;

}
PIN[3:0] col {
ATTRIBUTE { COLUMN_INDEX } RANGE {0: 15}
DIRECTION=input; VIEW=none;
}
FUNCTION {
BEHAVIOR {
Dout = bits[addr];
@ (write_enb) { bits[addr] = Din; }
b}

[*different physical architectures are shown in the following examples*/

}

| Version 1.9.2 Advanced Library Format (ALF) Reference Manual 137

Modeling for Synthesis and Test Physical bitmap for memory BIST

Example 1

addr[3:2] 00 00 00 00 01 01 01 01 10 10 10 10 11 11 11 11
physical columN o 1 h2 3 *ha *h5 *h6 *h7 *h8 ho hA *hB hC "D "hE *hF
00 *ho D

D[1] D[2] D[3] D[O

[0] [0] DI[1] D[2] D[3] D[O] D[1] D[2] D[3] D[0] D[1] D[2] D[3]
01 ‘hl D[0] D[1] D[2] D[3] D[0] D[1] D[2] D[3] D[0] D[1] D[2] D[3] D[0] D[1] D[2] D[3]
10 ‘h2 D[0] D[1] D[2] D[3] D[0] D[1] D[2] D[3] D[0] D[1] D[2] D[3] D[0] D[1] D[2] D[3]
11 ‘h3 D[0] D[1] D[2] D[3] D[0] D[1] D[2] D[3] D[0] D[1] D[2] D[3] D[] D[1] D[2] D[3]
o =
o 2
R
5 g
© 2
<
o
TEST {
BEHAVIOR {
/I map row and column index to logical address
addr[1:0] = row[1:0];
addr[3:2] = col[3:2];
/I map column index to logical data index
dat[1:0] = col[1:0];
/I map physical data to input and output data
Din[dat] = bit;
bit = Dout[dat];
}
}
Example 2
addr[3;2] 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11
physical column o 1 h2 13 ha 15 h6 7 18 h9 hA B hC *hD *hE ‘hF
00 ‘ho D[0] D[0] D[0] D[0] D[1] D[1] D[1] D[1] D[2] D[2] D[2] D[2] D[3] D[3] D[3] D3]
01 ‘hl D[0] D[0] D[0] D[0] D[1] D[1] D[1] D[1] D[2] D[2] D[2] D[2] D[3] D[3] D[3] D[3]
10 ‘h2 D[0] D[0] D[0] D[0] D[1] D[1] D[1] D[1] D[2] D[2] D[2] D[2] D[3] D[3] D[3] D[3]
11 ‘h3 D[0] D[0] D[0] D[0] D[1] D[1] D[1] D[1] D[2] D[2] D[2] D[2] D[3] D[3] D[3] D3]
o =
a2
o —
g 9
© 2
<
o

138 Advanced Library Format (ALF) Reference Manual Version 1.9.2

Physical bitmap for memory BIST Modeling for Synthesis and Test

TEST {
BEHAVIOR {

/l map row and column index to logical address
addr[1:0] = row[1:0];
addr[3:2] = col[1:0];

/l map column index to logical data index
dat[1:0] = col[3:2];

/I map physical data to input and output data
Din[dat] = bit;
bit = Dout[dat];

}
Example 3

addr[3:2] 00 01 11 10 11 10 00 01 00 01 11 10

physical column o 1 h2 3 *ha h5 he 7 *h8 h9 hA hB *hC D *hE hF

00 ‘h0 D[0] D[0] D[1] D[1] D[0O]D[0O] D[1]D[1] !D[2]'D[2] D[2] D[2]
10 ‘h1 D[0] D[0] D[1] D[1] D[0] D[0] D[1] D[1] 'D[2]'D[2] D[2] D[2]
11 ‘h2 D[0] D[O] D[1] D[1] ID[0]'D[O] ID[1]'D[1] D[2] D[2] D[2] D[2]
01 ‘h3 D[0] D[O] D[1] D[1] ID[0]'D[0] ID[1]'D[1] D[2] D[2] D[2] D[2]
o =
o o
= =
s 8
© 2

e

o
TEST{

BEHAVIOR {

/I map row and column index to logical address
addr[0] = row[1];
addr[1] = row[0] " row[1]
addr[2] = col[0] ~ col[1] ~ col[2];
addr[3] = col[2] * col[3];
/I map column index to logical data index
dat[0] = col[1];
dat[1] = col[3];
/I map physical data to input and output data
Din[dat]=bit"(row[1]&col[2]&!col[3] | lrow[1]&!col[2]&col[3]);
bit=Dout[dat]*(row[1]&col[2]&!col[3] | row[1]&!col[2]&col[3]);

Notes:

1. This enables the description of a complete bitmap of a memory in a compact way.

Version 1.9.2 Advanced Library Format (ALF) Reference Manual 139

Modeling for Synthesis and Test Physical bitmap for memory BIST

2.

140

TherANGHeature is not restricted to BIST. It can be used to describe a valid contiguous
range on any bus. This alleviates the need for interpretMmraoRwith ILLEGAL

statement to get the valid range. However MbeTORwith ILLEGAL statement is still
necessary to describe the behavior of a device when illegal values are driven on a bus.

TheTEST statement witlBEHAVIORallows for generalization from memory BIST to

any test vector generation requirement, e.g., logic BIST. The only necessary additions
would be othePIN ATTRIBUTES describing particular features to be recognized by the
test vector generation algorithm for the target test algorithm.

Advanced Library Format (ALF) Reference Manual Version 1.9.2

Section 7
General Rules for Arithmetic Models

This chapter defines the general rules for arithmetic models.

7.1 Principles of arithmetic models

The purpose of arithmetic models is to specify calculable mathematical relationships between
objects representing physical quantities in the library. Arithmetic models are identified by
context-sensitive keywords, because how these quantities are measured, extracted, or
interpreted depends on the context in which the objects are placed.

The quantity identified by the keywo@hPACITANCECan serve as example. In the context of
aPIN, it represents pin capacitance. In the contextwiRE, it represents wire capacitance. In

the context of ®RULE it represents the calculation method for a capacitance formed by a layout
pattern described within the rule. The context-specific semantics of each arithmetic model are
specified in Section 8 for electrical models and Section 9 for physical models.

In certain cases, the context alone does not completely specify the semantics of an arithmetic
model. Auxiliary definitions within the arithmetic model are needed; these are represented by
using annotations or annotation containers.

A simple example is theNIT annotation, which is applicable for most arithmetic models. It
specifies the unit in terms of which the arithmetic model data is represented. The applicable
auxiliary objects for each arithmetic model are specified in Section 8 for electrical models and
Section 9 for physical models.

7.1.1 Global definitions for arithmetic models

In many cases, auxiliary definitions apply globally to all arithmetic models within a certain
context, for instance, theNIT can apply for allCAPACITANCEDbjects within a library. In order
to specify such global definitions, the arithmetic model construct can be used without data.

model_definition ::=

model_ keyword [identifier] { all_purpose_items }
This construct has the syntactical form ofaanotation_container (see Section 11.7).
7.1.2 Trivial arithmetic model

The simplest form of an arithmetic model contains just constant data.

trivial_model ::=
model_ keyword [identifier]
| model_keyword [identifier]

number ;
number { all_purpose_items }

Version 1.9.2 Advanced Library Format (ALF) Reference Manual 141

General Rules for Arithmetic Models Principles of arithmetic models

This construct has the syntactical form ofaanotation (see Section 11.7).

7.1.3 Arithmetic model using EQUATION

The arithmetic model data can be represented aQ@nTION In this case, AEADERIefines

the arguments of the equation. It is also possible to use other arithmetic models, which are
visible within the context of this arithmetic model, as arguments. Those arguments need not
appear in thelEADER

equation_based model ::=
model_ keyword [identifier] {
[all_purpose_items]
[equation_based header]
equation

}

equation_based header ::=
HEADER { model_keyword{ model_ keyword} }

| HEADER { model_definition { model_definition } }
equation ::=
EQUATION { arithmetic_expression }
The syntax ofrithmetic_expression is explained in Section 7.2.

7.1.4 Arithmetic model using TABLE

The arithmetic model data can be represented as a lookup table. In thisTe@sE, is
necessary for the data itself and for each argument.

table_based model ::=
model_ keyword [identifier] {
[all_purpose_items]
table_based header
table
[equation]

}

table_based_ header ::=
HEADER {table_model_definition { table_model_definition }

}
table_model_definition ::=
model_ keyword [identifier] { all_purpose_items table }
table ::=

TABLE { symbol { symbol } }
| TABLE { number { number} }

Tables containing symbols are only meant for lookup of discrete datapoints. Tables containing
numbers are for calculation and, eventually, interpolation of datapointsctee keyword

142 Advanced Library Format (ALF) Reference Manual Version 1.9.2

Principles of arithmetic models General Rules for Arithmetic Models

(see Section 8 and Section 9) defines whether symbols or numbers are legal for a particular
table.

The size of the table inside ttale_based_model shall be the product of the size of the
tables inside theble_header . In order to support interpolation, the numbers in each table
inside theable_header shall be in strictly monotonic ascending order. See Section 7.3 for

more details.

Thetable_model_definition can also be used outside the context ab&_header , very
much like amodel_definition . In this case, theodel_definition supplies the same
information as theable_model_definition , plus the additional information of a discrete set

of valid numbers applicable for the model.

For example, theviDTHOf a physical layout object can contain only a discrete set of legal
values. Those can be specified usingpb&_model_definition

However, the table in@ble_model_definition outsideatable_header shall not
substitute the tablesidethetable_header . The former defines a legal set of values, the latter
defines the table-lookup indices.

If all table data are numbers, thdle_based_model can also have an optional equation. This
equation is to be used when the argument data are out of interpolation range. Without the
equation, extrapolation shall be applied for data which are out of range.

7.1.5 Complex arithmetic model

A complex arithmetic model can be constructed by defining a nested arithmetic model within
another arithmetic model. The data of the inner arithmetic model is calculated first. Then the
result is applied for calculation of the data of the outer arithmetic model.

complex_model ::=

model_ keyword [identifier] {
[all_purpose_items]
HEADER { model { model } }
equation

}

model_ keyword {
all_purpose_items
HEADER { header_model { header_model } }
table
[equation]

}

header_model ::=

model_definition
table_model_definition
equation_based_model
table_based _model
header_table_model

header_table_model ::=
model_ keyword [identifier] {

| Version 1.9.2 Advanced Library Format (ALF) Reference Manual 143

General Rules for Arithmetic Models Arithmetic expressions

all_purpose_items
HEADER { symbol { symbol } }
TABLE { number { number} }

}

If any header_model is eithermodel_definition Or table_model_definition , then the
complex_model reduces to the previously defineglation_based_model and
table_based_model , respectively. In order to support a table ing&eeral_model , any
header_model shall be either able_model_definition ortable_based _model , and the
numbers in each table inside eaehder_model shall be strictly monotonically increasing.

Theheader_table_model construct can be used to associate symbols with numbers. For
example, process corners can be defined as discrete symbols and associated with process
derating factors. The numbers can be used in equations and for interpolation, whereas the
symbols cannot.

7.1.6 Containers for arithmetic models and submodels

Containers for arithmetic models can supplement the context-specific semantics of the
arithmetic model. Therefore, arithmetic models can be placed in the context of arithmetic
model containers, using the following construct.

model_container ::=
model_container_ keyword {
[all_purpose_items]
model_container_contents { model_container_contents }

}

model_container_contents ::=
model_container
| trivial_model
| complex_model
There is a dedicated setmbdel container keywords . In addition,model_keywords can
also be used asodel _container . keywords and dedicatedubmodel keywords can be used
asmodel_keywords . The number of levels in nested arithmetic model containers is restricted
by the set of allowed combinations betweetde! _container_ keywords , model_keywords
andsubmodel_ keywords (see Section 7.6).

7.2 Arithmetic expressions
Arithmetic expressions define the contents oE@WATION Variables used in theQUATIONare

theidentifiers of theheader_model , if present, or else theode/_ keywords of the
header_model

7.2.1 Syntax of arithmetic expressions

The syntax of arithmetic expressions is:

144 Advanced Library Format (ALF) Reference Manual Version 1.9.2

Arithmetic expressions General Rules for Arithmetic Models

arithmetic_expression ::=
(' arithmetic_expression)
| number
| [arithmetic_unary] identifier
| arithmetic_expression arithmetic_binary arithmetic_expression
| arithmetic_function_operator

(arithmetic_expression { , arithmetic_expression })
| boolean_expression ? arithmetic_expression :
{ boolean_expression ? arithmetic_expression S}
arithmetic_expression
Examples:

1.24

-Vvdd

Cl+C2

MAX (3.5*C , -Vdd/2 , 0.0)
(C > 10) ? Vdd**2 : 1/2*Vdd - 0.5*C

7.2.2 Arithmetic operators
Table 7-1, Table 7-2, and Table 7-3 list unary, binary, and function arithmetic operators.

Table 7-1 : Unary arithmetic operators

Operator Description

+ positive sign (for integer or number)

- negative sign (for integer or number)

Table 7-2 : Binary arithmetic operators

Operator Description

+ addition (integer or number)

- subtraction (integer or number)

* multiplication (integer or number)

/ division (integer or number)

*x exponentiation (integer or number)
) modulo division (integer or number)

Table 7-3 : Function arithmetic operators

Operator Description

LOG natural logarithm (argument is + integer or number)
EXP natural exponential (argument is integer or numbar)
ABS absolute value (argument is integer or number)

Version 1.9.2 Advanced Library Format (ALF) Reference Manual 145

General Rules for Arithmetic Models Construction of arithmetic models

Table 7-3 : Function arithmetic operators, continued

Operator Description
MIN minimum (all arguments are integer or number)
MAX maximum (all arguments are integer or number)

Function operators with one argument (sucl@s exp , andabs) or multiple arguments (such
asmin andmax) shall have their arguments within parenthesis, ®ig1.2,-4.3,0.8)

7.2.3 Operator priorities

The priority of binding operators to operands in arithmetic expressions shall be from strongest
to weakest in the following order:

unary arithmetic operato,(-)

1
2. exponentiation*{)

3. multiplication ¢), division (), modulo division @
4

addition ¢), subtraction-()

7.3 Construction of arithmetic models

Input variables, also callerguments of arithmetic modebgppear in thelEADEROf the model.
In the simplest case, tiHMEADERS just a list of arguments, each being a context-sensitive
keyword. The model itself is also defined with a context-sensitive keyword.

The model can be in equation form. All arguments of the equation shall be HEkBER The
ALF parser shall issue an error if tE®@UATIONUSeS an argument not defined in tHiPADERA
warning shall be issued if tEADERCONtains arguments not used in HEJATION

Example:
DELAY {

HEADER {
CAPACITANCE {...}
SLEWRATE {...}

}
EQUATION {
0.01 + 0.3*SLEWRATE + (0.6 + 0.1*SLEWRATE)*CAPACITANCE

}
}

If the model uses ®ABLE, then each argument in tHEADERalso needs a table defining the
format. The order of arguments decides how the index to each entry is calculated. The first
argument is the innermost index, the following arguments are outer indices.

146 Advanced Library Format (ALF) Reference Manual Version 1.9.2

Construction of arithmetic models General Rules for Arithmetic Models

DELAY {
HEADER {
CAPACITANCE {
TABLE {0.03 0.06 0.12 0.24}
}
SLEWRATE {
TABLE {0.1 0.3 0.9}
}
}
TABLE {
0.07 0.10 0.14 0.22
0.09 0.13 0.19 0.30
0.10 0.15 0.25 0.41

}

The first argumentAPACITANCEhas four entries. The second argungmwRATEHas three
entries. ThushELAYhas 4*3=12 entries. For readability, comments can be inserted in the table.

TABLE {
/[capacitance:0.03 0.06 0.12 0.24
I e slewrate:

0.070.100.140.22//0.1
0.090.130.190.30//0.3
0.100.150.250.41//0.9

}
Comments have no significance for the ALF parser nor does the arrangement of rows and
columns. Only the order of values is important for index calculation. The table can be made
more compact by removing newlines.

TABLE { 0.07 0.10 0.14 0.22 0.09 0.13 0.19 0.30 0.10 0.150.250.41}

For readability, the models and arguments can also have names, i.e., object IDs. For named
objects, the name is used for referencing, rather than the keyword.

DELAY rise_out{

HEADER {
CAPACITANCE c_out {...}
SLEWRATE fall_in {...}

}
EQUATION {

0.01 + 0.3 *fall_in + (0.6 + 0.1* fall_in) * c_out
}
}
The arguments of an arithmetic model can be arithmetic models themselves. In this way,
combinations of ABLE- andEQUATIONbased models can be used, for instance, in derating.

Analogous withFUNCTION bothEQUATIONandTABLE representation of an arithmetic model
are allowed. ThEQUATIONSS intended to be used when the values of the arguments fall out of
range, i.e., to avoid extrapolation.

Version 1.9.2 Advanced Library Format (ALF) Reference Manual 147

General Rules for Arithmetic Models Annotations for arithmetic models

7.4 Annotations for arithmetic models

Annotations and annotation containers described in this chapter are relevant for the semantic
interpretation of arithmetic models and their arguments.

Example:

DELAY=f(CAPACITANCE)
DELAYis the arithmetic modeAPACITANCHS the argument.

Arguments of arithmetic models have the form of annotation containers. They can also have
the form of arithmetic models themselves, in which case they represent nested arithmetic
models.

7.4.1 DEFAULT annotation

Default annotatiorpromotes use of the default value instead of the arithmetic model if the
arithmetic model is beyond the scope of the application tool.

DEFAULT =number ;

Restrictions can apply for the allowed typenahber . For instance, if the arithmetic model
allows onlynon_negative_number , then the default is restrictedrian_negative_number

7.4.2 UNIT annotation

Unit annotationassociates units with the value computed by the arithmetic model.

UNIT = string | non_negative_number ;
A unit specified by atring can take the values {ndicates a wild card) shown in Table 7-4.

Table 7-4 : UNIT annotation

Annotation string Description

f* orF* equivalent tolE-15
p* orP* equivalent tolE-12
n* orN* equivalent tolE-9
u* orU* equivalent tolE-6
m* or M* equivalent tolE-3
1* equivalent talE+0
k* orK* equivalent talE+3
meg* or MEG#? equivalent talE+6
g* orG* equivalent talE+9

a. or any uppercase/lowercase combination of these three characters

148 Advanced Library Format (ALF) Reference Manual Version 1.9.2

Annotations for arithmetic models General Rules for Arithmetic Models

Arithmetic models are context-sensitive, i.e., the units for their values can be determined from
the context. If th&JNIT annotation for such a context does not exist, default units are applied
to the value (see Section 7.6).

Example:

TIME { UNIT = ns; }
FREQUENCY { UNIT = gigahz; }

If the unit is a string, then only the first character (the first three characters in &= iof
interpreted. The reminder of the string can be used to define base units. Metric base units are
assumed, but not verified, in ALF.

There is no semantic difference between
unit = 1sec;
and
unit = 1volt;
Therefore, if the unit is specified as
unit = meg;
the interpretation isE+6. However, for
unit = 1meg;
the interpretation i$ and notLE+6.

Units in a non-metric system can only be specified with numbers, not with strings. For instance,
if the intent is to specify an inch instead of a meter as the base unit, the following specification
does not meet the intent:

unit = linch;
since the interpretation isand meters are assumed.
The correct way of specifying inch instead of meter is
unit = 25.4E-3;
since 1 inch is (approximately) 25.4 millimeters.

7.4.3 CALCULATION annotation

An arithmetic model in the context oh&ECTORCan have theALCULATIONannotation defined
as follows:

calculation_ annotation ::=

CALCULATION = calculation identifier :

calculation_ identifier ::=
absolute
| incremental

It shall specify whether the data of the model are to be used by themselves or in combination
with other data. The default &solute

Version 1.9.2 Advanced Library Format (ALF) Reference Manual 149

General Rules for Arithmetic Models Annotations for arithmetic models

Theincremental data from on&’ECTORShall be added tabsolute data from another
VECTORUNnder the following conditions:

The model definitions are compatible, i.e., measurement specifications shall be the same.
Units are allowed to be different.

Example: slewrate measurements at the same pin, same switching direction, and same
threshold values.

The model definitions for common arguments are compatible, i.e., the same range of values
for table-based models and measurement specifications are the same. Units can be differ-
ent.

Example: same values fderate_case and same threshold definitions for input slewrate.

The vector definitions are compatible, i.e, the&or_or_boolean_expression of the
VECTORcONtainingincremental data matches thector_or_boolean_expression

of thevVECTORcontainingabsolute data by removing all variables appearing exclusively
in the former expression.

Example:

VECTOR (01 A->01Z){
DELAY {
CALCULATION = absolute;
FROM{PIN=A;}TO{PIN=Z;}
HEADER {
CAPACITANCE load { PIN = Z; }
SLEWRATE slew { PIN = A; }

}
EQUATION { 0.5 + 0.3*slew + 1.2*load }

}
}
VECTOR (01 A&>01B&>012Z){
DELAY {
CALCULATION = incremental,
FROM{PIN=A;}TO{PIN=2Z;}
HEADER ({
SLEWRATE slew A {PIN=A;}
SLEWRATE slew B { PIN =B; }
TIME time_A B{FROM{PIN=A;}TO{PIN=B;}}

}
EQUATION {- 0.1 + (0.05+0.002*slew_A*slew_B)*time_A_B) }

}

Both models describe the rise-to-rise delay froto z. The second delay model describes the
incremental delay (here negative), when irgpawitches in a time window betwegrandz.

7.4.4 INTERPOLATION annotation

An argument of a table-based arithmetic model, i.e., a model HEKEBERCONtaining a
TABLE statement, can have tNrERPOLATIONannotation defined as follows:

150 Advanced Library Format (ALF) Reference Manual Version 1.9.2

Annotations for arithmetic models General Rules for Arithmetic Models

interpolation_ annotation ::=
INTERPOLATION = interpolation_ identifier ;

interpolation_ identifier ::=
fit
| linear
| floor
| ceiling

This also needs to specify the interpolation scheme for the values in-between the values of the
TABLE

. fit
the data points in the table are supposed to be part of a smooth curve. Linear
interpolation or other algorithms, e.g., cubic spline or polynomial regression can be
used to fit the data points into the curve.

- linear
the data points in the table are supposed to be part of a piece wise linear curve. Linear
interpolation shall be used.

. floor
the value to the left in the table, i.e., the smaller value is used.

. ceiling
the value to the right in the table, i.e., the larger value is used.

The defaultidit . For multi-dimensional tables, different interpolation schemes can be used
for each dimension.

Example:

my_model {
HEADER {
dimensionl { INTERPOLATION =fit; TABLE {124 8}
dimension2 { INTERPOLATION = floor; TABLE { 10 100 }
dimension3 { INTERPOLATION = ceiling; TABLE { 10 100 }

}
TABLE {
1735
10 20 60 40
50 30 20 100
0.80.40.20.9
}

}

Consider the following values:

Version 1.9.2 Advanced Library Format (ALF) Reference Manual 151

General Rules for Arithmetic Models Annotations for arithmetic models

dimensionl =6
=> following subtable is chosen:
3 5 /I interpolation between 3 and 5
60 40 /I or between 60 and 40
20 100 /I or between 20 and 100
0.20.9 /I or between 0.2 and 0.9
dimension2 = 50
=> following subtable is picked:
3 5 /I interpolation between 3 and 5
20 100 /I or between 20 and 100
dimension3 = 50
=> following subtable is picked:
20 100 [/l interpolation between 20 and 100

The following rules shall apply for each dimension of a table-based model:

For values outside the range of the table, extrapolation shall apply, using the table data points
at the leftmost or rightmost side, respectively, as reference.

If the value is smaller than the smallest, i.e. leftmost, data point in the table, the extrapolation
shall be calculated as if the value would fall in-between the leftmost and second leftmost
value.

If the value is greater than the greatest, i.e. rightmost, data point in the table, the extrapolation
shall be calculated as if the value would fall in-between the rightmost and second rightmost
value.

Example:

my_model Y {
HEADER {
my_argument X {
TABLE{O0O 2 4 8 }
/I X[0] X[1] X[2] X[3]
}

}
TABLE {0.5 0.6 1.0 1.5}

/1 Y[0] Y[1] Yi2] Vi3]
}

For linear interpolation, the following equation is used:

YIN+] =Y[N]

Y = YN+ ST XN XIN] £X <X[N+1]

If X < X[0], the values X[0], X[1], Y[O], Y[1] are plugged into the equation.
If X > X][3], the values X[2], X[3], Y[2], Y[3] are plugged into the equation.

The following figure illustrates a non-linear interpolation scheme with the goal of fitting 3
neighboring points into a smooth curve.

152 Advanced Library Format (ALF) Reference Manual Version 1.9.2

Containers for arithmetic models General Rules for Arithmetic Models

coocoorkPRrRREE
o~NmooRNWRU

Figure 7-1: Illustration of extrapolation rules

The curve based on the 3 rightmost or the 3 leftmost points, respectively, is used for extrapola-
tion to the right side or the left side, respectively.

7.5 Containers for arithmetic models

The keywords shown in Table 7-5 are defined for objects that can contain arithmetic models.

Table 7-5 : Unnamed containers for arithmetic models

Objects Description

FROM contains start point of timing measurement or timing constraint

TO contains end point of measurement or timing constraint

LIMIT contains arithmetic models for limit values

EARLY contains arithmetic models for timing measurements relevant for early signal
arrival time

LATE contains arithmetic models for timing measurements relevant for late signal
arrival time

TheLIMIT container is for general use. TRROMTO, EARLY, andLATE containers are only for
use within the context of timing models.

LIMIT container

A LIMIT container shall contain arithmetic models. The arithmetic models shall contain
submodels identified byiIN and/orMAX

Version 1.9.2 Advanced Library Format (ALF) Reference Manual 153

General Rules for Arithmetic Models Arithmetic submodels

Example:
PIN data_in {
LIMIT {
SLEWRATE { UNIT = ns; MIN = 0.05; MAX = 5.0;}
}
}
The minimum slewrate allowed at piata_in i1S0.05ns , the maximum i$.0 ns
PIN data_in {
LIMIT {
SLEWRATE {
UNIT = ns;
MAX {
HEADER { FREQUENCY { UNIT=megahz;} }
EQUATION { 250 / FREQUENCY }
}
}
}
}

The maximum allowed slewrate is frequency-dependent, e.g., the valegnss for 1GHz

7.6 Arithmetic submodels

Arithmetic submodels can be used to distinguish different measurement conditions for the
same model. The root of an arithmetic model can contain nested arithmetic submodels. The
header of an arithmetic model can contain nested arithmetic models, but not arithmetic
submodels.

The arithmetic submodels shown in Table 7-6 are generally applicable.

Table 7-6 : Generally applicable arithmetic submodels

Objects Description

MIN for measured or calculated data:
the data represents the minimal value / set of values within a statistical distribution

for data within LIMIT container:
the data represents the lower limit value / set of values

TYP for measured or calculated data:
the data represents the typical value / set of values within a statistical distribution

MAX for measured or calculated data:
the data represents the maximal value / set of values within a statistical distributi¢n

for data within LIMIT container:
the data represents the lower limit value / set of values

DEFAULT | for measured or calculated data:
the data represents the default value / set of values to be used per default

154 Advanced Library Format (ALF) Reference Manual Version 1.9.2

Arithmetic submodels General Rules for Arithmetic Models

The arithmetic submodels shown in Table 7-7 are only applicable in the context of electrical
modeling.

Table 7-7 : Submodels restricted to electrical modeling

Objects Description

HIGH applicable for electrical data measured at a lbgib state of a pin

LOW applicable for electrical data measured at a ltmyic state of a pin

RISE applicable for electrical data measured during a lémic to high transition of
apin

FALL applicable for electrical data measured during a Ibggh to low transition of
apin

The arithmetic submodels shown in Table 7-8 are only applicable in the context of physical
modeling.

Table 7-8 : Submodels restricted to physical modeling

Objects Description
HORIZONTAL applicable for layout measurements in horizontal direction
VERTICAL applicable for layout measurements in vertical direction

The semantics of the restricted submodels are explained in Section 8 and Section 9.

7.6.1 Semantics of MIN / TYP / MAX

MIN, TYP, andMAXindicate the data of the arithmetic model represent minimal, typical, or
maximal values within a statistical distribution. No correlation is assumed or implied between
MIN data,TYP data, oMAXdata across different arithmetic models.

Example:

DELAY {
FROM { PIN=A; } TO { PIN=Z; }
MIN = 0.34; TYP = 0.38; MAX = 0.45;

}

POWER {
MEASUREMENT = average; FREQUENCY = 1e6;
MIN = 1.2; TYP = 1.4; MAX = 1.5;

}

TheMIN value forbELAYcould simultaneously apply with th&N value forPOWERTypically,
the case with smaller delay is also the case with larger power consumption.

Within the scope of aIMIT containerMIN andMAXcontain the data for a lower or upper limit,
respectively. There shall be at least one limit, lower or upper, in each model, but not necessarily
both.

Version 1.9.2 Advanced Library Format (ALF) Reference Manual 155

General Rules for Arithmetic Models Arithmetic submodels

Example:

LIMIT {
SLEWRATE { PIN=A; MAX=5.0; }
VOLTAGE { PIN=VDD; MIN=1.6; MAX=2.0; }
}
MIN, MAX as an annotation inside a model or inside a model argument within the HEADER
define the validity range of the data. If MIN, MAX is not defined and the data is in a TABLE,
the boundaries of the data in the TABLE shall be considered as validity limits.

Example:

POWER {
HEADER {
SLEWRATE { PIN=A; MIN=0.01; MAX=5.0; TABLE {0.10.51.0}}
CAPACITANCE { PIN=Z; TABLE {0.00.4 0.8 1.6 } }

}
TABLE {0.20.30.60.4050.70.80.81.0151.51.6}

}
The data for POWER is valid for SLEWRATE in the range between 0.01 and 5.0 (via
extrapolation) and for CAPACITANCE in the range between 0.0 and 1.6.

7.6.2 Semantics of DEFAULT

Arithmetic submodels can be identified by, TYR, andMAXor context-restricted keywords.
For cases where the application tool cannot decide which qualifier applies, a supplementary
arithmetic submodel with the qualifiBEFAULTcan be used.

Example:

PIN my_pin {
CAPACITANCE {
MIN { HEADER { ... } TABLE { ..
TYP { HEADER { ... } TABLE { ..
MAX { HEADER { ... } TABLE{ ... }
DEFAULT { HEADER { ... } TABLE

}

-}
3}
}
{..

)
}
}

Note: TheDEFAULTmModel can also degenerate to a single value; it represents a trivial
arithmetic model.

In certain cases, there is no supplementary submodel. Instead, one of the already defined sub-
models is used by default. For this casepheauLTannotation can be used to point to the
applicable keyword.

156 Advanced Library Format (ALF) Reference Manual Version 1.9.2

Arithmetic submodels General Rules for Arithmetic Models

Example:

PIN my_pin {
CAPACITANCE {
MIN { HEADER { ... } TABLE { ... } }
TYP { HEADER{ ... } TABLE{ ...} }
MAX { HEADER{ ... } TABLE{ ... } }
DEFAULT =TYP;

}

The trivial arithmetic model construct wihlEFAULTcan also be used for an argument in the
context of theHEADEROf an arithmetic model. This enables evaluation of the arithmetic model
in case the data of the argument can not be supplied by the application tool.

Example:

PIN my_pin {
CAPACITANCE {

HEADER { TEMPERATURE { DEFAULT=50; TABLE {050 100} } }
TABLE {0.05 0.07 0.10 } }

}
TheDEFAULTvalue of theCAPACITANCEhere i0.07 .

Version 1.9.2 Advanced Library Format (ALF) Reference Manual 157

General Rules for Arithmetic Models Arithmetic submodels

158 Advanced Library Format (ALF) Reference Manual Version 1.9.2

Section 8
Electrical Performance Modeling

8.1 Overview of modeling keywords

This section details the keywords used for performance modeling.

8.1.1 Timing models

The following tables show the set of keywords used for timing measurements and constraints.
All keywords have implied semantics that restrict their capability to describe general temporal
relations between arbitrary signals. For unrestricted purposes, the keywardhall be used.

Table 8-1 Timing measurements

Base Default

Keyword Value type units units Description

DELAY number Second| n (nano) | time between two threshold crossings
within two consecutive events on two ping.
A causal relationship between the two
events is implied.

RETAIN number Second| n (nano) | time when an output pin shall retain its
value after an event on the related input pin.
RETAIN appears always in conjunction
with DELAYfor the same two pins.

SLEWRATE non-negative | Second | n (hano) | time between two threshold crossings

number within one event on one pin.

Table 8-2 Timing constraints

Base Default
Keyword Value type units units Description
HOLD number Second| n (nano) | minimum time limit for hold between two
threshold crossings within two consecutive
events on two pins
NOCHANGE optionaf non- | Second | n (nano) | minimum time limit between two threshold
negative num- crossings within two arbitrary consecutive
ber events on one pin, in conjunction with
SETUPandHOLD
PERIOD non-negative | Second | n (nano) | minimum time limit between two identica
number events within a sequence of periodical
events

| Version 1.9.2 Advanced Library Format (ALF) Reference Manual 159

Electrical Performance Modeling Overview of modeling keywords

Table 8-2 Timing constraints, continued

Base Default

Keyword Value type units units Description

PULSEWIDTH | number Second| n (nano) | minimum time limit between two threshold
crossings within two consecutive and conp-
plementary events on one pin

RECOVERY number Second| n (nano) | minimum time limit for recovery between
two threshold crossings within two consequ-
tive events on two pins

REMOVAL number Second| n (nano) | minimum time limit for removal between

two threshold crossings within two consequ-
tive events on two pins

SETUP number Second| n (nano) | minimum time limit for setup between tw¢
threshold crossings within two consecutive
events on two pins

SKEW number Second

=}

(nano) | absolute value is maximum time limit
between two threshold crossings within two
consecutive events on two pins; the sign
indicates positive or negative direction

a. The associatédE TUPandHOLDmeasurements provide data. NOCHANGE itself need not provide

data.
Table 8-3 : Generalized timing measurements
Keyword Value type Base units Default units | Description
TIME number Second 1 (unit) time point for waveform
modeling, time span for]
average, RMS, and
peak modeling
FREQUENCY non-negative | Hz meg (mega) frequency
number
JITTER non-negative | Second n (nano) uncertainty of arrival
number time

160 Advanced Library Format (ALF) Reference Manual Version 1.9.2

Overview of modeling keywords

Electrical Performance Modeling

Table 8-4 : Normalized measurements

Base Default

Keyword Value type units units Description

THRESHOLD non-negative Normalized | 1 (unit) | fraction of signal voltage swing, specify-
number signal volt- ing a reference point for timing measure-
betweerD and | age swing ment data. The threshold is the voltage
1 for which the timing measurement is

taken.

NOISE_MARGIN | non-negative Normalized | 1 (unit) | fraction of signal voltage swing, specify-
number signal volt- ing the noise margin. The noise margin |s
betweerD and | age swing a deviation of the actual voltage from the
1 expected voltage for a specified signal

level

8.1.2

Analog models

This subsection defines the keywords for analog modeling.

Table 8-5 : Analog measurements

Keyword Value type Base units Default units | Description

CURRENT number Ampere m(milli) electrical current
drawn by the cell. A
pin can be specified
as annotatiof.

ENERGY number Joule p (pico) electrical energy
drawn by the cell,
including charge and
discharge energy, if
applicable.

POWER number Watt u (micro) electrical power
drawn by the cell,
including charge and
discharge power, if
applicable.

TEMPERATURE number o celsius 1 (unit) temperature

VOLTAGE number \Volt 1 (unit) voltage

FLUX non-negative | Coulomb per | 1 (unit) amount of hot elec-

number Square Meter trons in units of elec-
trical charge per gatg
oxide area

FLUENCE non-negative | Second times| 1 (unit) integral ofFLUXover

number Coulomb per time
Square Meter

a. If the annotate®IN hasPINTYPE=supply ,the CURRENTneasurement qualifies for
power analysis. In this case, the current includes charge/discharge current, if applicable.

Version 1.9.2

Advanced Library Format (ALF) Reference Manual

161

Electrical Performance Modeling Overview of modeling keywords

Table 8-6 : Electrical components

Default
Keyword Value type Base units units Description
CAPACITANCE | non-negative | Farad p (pico) pin, wire, load, or net capacitange
number
INDUCTANCE non-negative | Henry n (nano) pin, wire, load, or net inductancg
number
RESISTANCE non-negative | Ohm K (kilo) pin, wire, load, or net resistance
number
8.1.3 Supplementary models
This subsection defines the keywords for supplementary models.
Table 8-7 : Abstract measurements
Base Default
Keyword Value type units units Description
DRIVE_STRENGTH | non-negative | None 1 (unit) | drive strength of a pin, abstract measufe
number for (drive resistancé)
SIZE non-negative | None 1 (unit) | abstract cost function for actual or esti
number mated area of a cell or a block
Table 8-8 : Discrete measurements
Base Default
Keyword Value type units units Description
SWITCHING_BITS | non-negative | None 1 number of switching bits on a bus
number
FANOUT non-negative [None 1 number of receivers connected to a ne
number
FANIN non-negative | None 1 number of drivers connected to a net
number
CONNECTIONS non-negative | None 1 number of pins connected to a net, whefe
number CONNECTIONS FANIN+FANOUT

The actual values for discrete measurements are always integer numbers, however, estimated
values can be non-integer numbers (e.g., the average fanout of a#ét is

162 Advanced Library Format (ALF) Reference Manual Version 1.9.2

Auxiliary statements for timing models Electrical Performance Modeling

Table 8-9 describes the arguments for arithmetic models to describe environmental
dependency.

Table 8-9 : Environmental data

Annotation string Value type Description

DERATE_CASE string derating case, i.e., the combination of prg-
cess, supply voltage, and temperature

PROCESS string process corner

TEMPERATURE number environmental temperature

8.2 Auxiliary statements for timing models
This section details the auxiliary statements used for timing modeling.

8.2.1 THRESHOLD definition

The THRESHOLDepresents a reference voltage level for timing measurements, normalized to

the signal voltage swing and measured with respect to thedlegitage level, as shown in
Figure 8-1.

V(Iogic 1)
A
AV
AViise AVfan
L
V (logic 0) time
—
AV AV
thresholdjige) = —15¢ threshol = —fall
Arise) AV Ctall AV

Figure 8-1: THRESHOLD measurement definition

The voltage levels for logit ando represent a full voltage swing.

Different threshold data faISE andFALL can be specified or else the data shall apply for both
rising and falling transitions.

TheTHRESHOLBtatement has the form of an arithmetic model. If the submodel keywosds
andFALL are used, it has the form of an arithmetic model container.

Version 1.9.2 Advanced Library Format (ALF) Reference Manual 163

Electrical Performance Modeling Auxiliary statements for timing models

Examples:
THRESHOLD = 0.4;
THRESHOLD {RISE = 0.3; FALL =0.5;}
THRESHOLD { HEADER { TEMPERATURE {TABLE{ 0 50 100 }}} TABLE { 0.5 0.4 0.3}}

8.2.2 FROM and TO container

A FROMcontainer and @0 container shall be used inside timing measurements and timing
constraints. Depending on the semantics of the timing model (see Section 8.3), they can contain
aTHRESHOLBtatementRIN annotation, and/(@DGE_NUMBE&nnotation. The data in tlRROM

andTo containers define the measurement start and end point, respectively.

Example:

DELAY {
FROM {PIN = data_in; THRESHOLD { RISE = 0.4; FALL = 0.6} }
TO {PIN = data_out; THRESHOLD = 0.5;}

}
The delay is measured from pilata_in to pindata_out . The threshold fodata_in IS 0.4
for the rising signal andé for the falling signal. The threshold festa_out is0.5 , which
applies for both the rising and falling signals.

8.2.3 PIN annotation

If the timing measurements or timing constraints, respectively, apply semantically for two pins
(see Section 8.3.1), trrOMandTO containers shall each contain tha annotation.

Example:
DELAY {
FROM{PIN=A;}
TO{PIN=2Z;}

}
Otherwise, if the timing measurements or timing constraints apply semantically only to one pin
(see Section 8.3.3), tireN annotation shall be outside thROMor TO container.

Example:

SLEWRATE {
PIN=A;
}

8.2.4 EDGE_NUMBER annotation

The EDGE_NUMBE&nnotation within the context of a timing model shall specify the edge
where the timing measurement applies. The timing model shall be in the contexecfrar
TheEDGE_NUMBEShall have an unsigned value pointing to exactly one of subsequent
vector_single_event expressions applicable to the referenced pin.E0@E_NUMBEghall
be counted individually for each pin which appears invtheTOR starting with zeroq).

164 Advanced Library Format (ALF) Reference Manual Version 1.9.2

Auxiliary statements for timing models Electrical Performance Modeling

If the timing measurements or timing constraints, apply semantically to two pins (see Section
8.3.1), theeEDGE_NUMBE&nnotation shall be legal inside trROMOr TO container in
conjunction with the?IN annotation.

Example:

DELAY {
FROM { PIN = A ; EDGE_NUMBER = 0; }
TO {PIN =Z; EDGE_NUMBER = 0; }
}
Otherwise, if the timing measurements or timing constraints apply semantically only to one pin
| (see Section 8.3.3), tlEDGE_NUMBE&NNotation shall be legal outside tFOMIr TOcontainer
in conjunction with theeIN annotation.

Example:

SLEWRATE {
PIN = A ; EDGE_NUMBER = 0;
}
The default values foEDGE_NUMBE®&re specific for each timing model keyword (see Section
8.3).

The EDGE_NUMBE&nnotation is necessary for complex timing models involving multiple
| transitions on the same pin, as illustrated by the following figures and examples.

-
DELAY d1

Doppopol

Figure 8-2: Schematic of a pulse generator

out

| Version 1.9.2 Advanced Library Format (ALF) Reference Manual 165

Electrical Performance Modeling Auxiliary statements for timing models

EDGE_ﬁl\IUMBEF =0 EPGI.:r_NUMBE'f? =1 EDGEI_NUMBER =2

| |
in I [[
DELAY d1 ! ! >
| > | .
EDGE_NUMBER =0 | | time
| | I
out | | |
I | I
I I I
1 | |
EDGE_NUMBER =0 EDGE_NUMBER =1
Figure 8-3: Timing diagram of a pulse generator
VECTOR (01 in->01out->10o0ut){
DELAY d1 {
FROM { PIN = in; }
TO { PIN = out; EDGE_NUMBER = 0; }
}
DELAY d2 {
FROM { PIN = in; }
TO { PIN = out; EDGE_NUMBER =1; }
}
}
| | | | | | |
I I (. I I I
RAS | | | |
I [_] | | |
EDGE_NUMBER = DGE_NUMBER = 1
| EDGRNU 0 EDGE_NUMBE | |
CAS | setups1 hotbhr | I I
L gl Ly! SETUPIS2 \\| HOLD h2
I I I
| | - | I |
| | L EDGE_Il\IUMBER =0 E[DGE_N|UMBER =1
addr | o | | |
I [[\ [[I
I I I I
| | /| | | |
I
|

Figure 8-4: Timing diagram of a DRAM cycle

166 Advanced Library Format (ALF) Reference Manual Version 1.9.2

Auxiliary statements for timing models Electrical Performance Modeling

VECTOR(?! addr ->01 RAS ->10 RAS ->?! addr ->01 CAS ->10 CAS ->?! addr){
SETUP s1 {
FROM { PIN = addr; EDGE_NUMBER = 0; }
TO { PIN = RAS; EDGE_NUMBER = 0; }

}

HOLD h1 {
FROM { PIN = RAS; EDGE_NUMBER = 1; }
TO { PIN = addr; EDGE_NUMBER = 1; }

}

SETUP s2 {
FROM { PIN = addr; EDGE_NUMBER = 1; }
TO { PIN = CAS; EDGE_NUMBER = 0; }

}

HOLD h2 {

FROM { PIN = CAS; EDGE_NUMBER = 1; }
TO { PIN = addr; EDGE_NUMBER = 2; }

8.25 Context of THRESHOLD definitions

The THRESHOLBtatement can appear in the context BRavor TO container. In this case, it
specifies the applicable reference for the start and end point of the timing measurement,
respectively.

Example:

SLEWRATE {
FROM { THRESHOLD =0.2; }
TO { THRESHOLD =0.8;}

}

The THRESHOLBtatement can also appear in the contextif\a In this case, it specifies the
applicable reference for the start or end point of timing measurements indicatedhy the
annotation inside BROMor TOcontainer, unless BHRESHOL s specified explicitly inside the
FROMOY TO container.

If both theRISE andFALL thresholds are specified and the switching direction of the applicable
pin is clearly indicated in the context o¥BCTORtheRISE or FALL data shall be applied
accordingly.

Example:

PIN A{ THRESHOLD { RISE =0.3; FALL=0.5;}}
PIN Z { THRESHOLD =0.4; }
/Il other statements ...
VECTOR (01 A->102Z){
DELAY { FROM { PIN=A; } TO { PIN=Z; } }
/I the applicable threshold for A is 0.3
/I the applicable threshold for Z is 0.4

If thresholds are needed for exact definition of the model dat&RrbaandTocontainers shall
each contain an arithmetic model ftfRESHOLD

Version 1.9.2 Advanced Library Format (ALF) Reference Manual 167

Electrical Performance Modeling Auxiliary statements for timing models

A THRESHOLBtatement can also appear as argument of an arithmetic model for timing
measurements. In this case, it shall contamaannotation matching anothem annotation
in theFROMor TO container.

Example:
DELAY {
FROM { PIN = A; THRESHOLD = 0.5; }
TO{PIN=2Z;}

HEADER { THRESHOLD { PIN = Z; TABLE { 0.3 0.4 0.5} }
TABLE {1.23 1.451.78 }

}

/* The measurement reference for pin A is always 0.5. The delay from A to
Z is expressed as a function of the measurement reference for pin Z. */

FROMaNdTO containers witMHRESHOLmlefinitions, yet withouPIN annotations, can appear
within unnamed timing model definitions in the context MBCTORCELL, WIRE, SUBLIBRARY,
or LIBRARY object for the purpose of specifying global threshold definitions for all timing
models within scope of the definition. The following priorities apply:

THRESHOLDN theHEADEROf the timing model

THRESHOLDN theFROM or TO statement within the timing model
THRESHOLDor timing model definition in the context of the sawE®CTOR
THRESHOLDvithin thePIN definition

THRESHOLDor timing model definition in the context of the sag®. L or WIRE
THRESHOLDor timing model definition in the context of the saguBLIBRARY

THRESHOLDor timing model definition in the context of the sanmBRARY

© N o g > w dhPRE

THRESHOLDor timing model definition outsideBRARY

Example:

LIBRARY my_library {

DELAY {
FROM { THRESHOLD =0.4; }
TO {THRESHOLD =0.4; }

}

SLEWRATE {
FROM { THRESHOLD { RISE = 0.2; FALL =0.8;}}
TO {THRESHOLD {RISE=0.8; FALL=0.2;}}

}

CELL my_cell {
PIN A { DIRECTION=input; THRESHOLD { RISE = 0.3; FALL =0.5; } }
PIN Z { DIRECTION=output; }
VECTOR (01 A->102){

168 Advanced Library Format (ALF) Reference Manual Version 1.9.2

Specification of timing models Electrical Performance Modeling

DELAY { FROM { PIN=A; } TO { PIN=Z; } }
SLEWRATE {PIN = Z; }

}
}
/I delay is measured from A (threshold=0.3) to Z (threshold=0.4)
/I slewrate on Z is measured from threshold=0.8 to threshold=0.2.

8.3 Specification of timing models

Timing models shall be specified in the context ¥EaTORstatement.

8.3.1 TEMPLATE for timing measurements and timing constraints

The following templates show a general timing measurement and a general timing constraint
description, respectively, applicable for two pins.

TEMPLATE TIMING_MEASUREMENT
<timeKeyword> = <timeValue> {
FROM {
PIN=<fromPin>;
THRESHOLD=<fromThreshold>;
EDGE_NUMBER=<fromEdge>;

}
TO {
PIN=<toPin>;
THRESHOLD=<toThreshold>;
EDGE_NUMBER=<toEdge>;
}
}
}
TEMPLATE TIMING_CONSTRAINT
LIMIT {
<timeKeyword> {
FROM {
PIN=<fromPin>;
THRESHOLD=<fromThreshold>;
EDGE_NUMBER=<fromEdge>;
}
TO {
PIN=<toPin>;
THRESHOLD=<toThreshold>;
EDGE_NUMBER=<toEdge>;
}
MIN = <timeValueMin>;
MAX = <timeValueMax>;
}
}
}

For simplicity, trivial arithmetic models shown here. In gener&iEADERTABLE, or EQUATION
construct can be used for calculationofnevalue> , <timeValueMin> , Or <timeValueMax>

Version 1.9.2 Advanced Library Format (ALF) Reference Manual 169

Electrical Performance Modeling Specification of timing models

A particular timing constraint does not necessarily contain 4othvalueMin> and
<timeValueMax>

The<fromThreshold> and<toThreshold> can be globally predefined as explained in Section
8.2.4.

Thevector_expression in the context where thaimeKeyword> appears shall contain at
least two expressions of the tygetor_single_event with the<fromPin> and<toPin>
respectively, as operands. TdimmEdge> and<toEdge> point to their respective
vector_single_event , as shown in Figure 8-5.
<fromEdge> <fromEdge> + 1
<fromPin> _ _ _\/ <fromThreshold>
<toEdge> - 1 <toEdge>
<toPin> <toThreshold>

<timeValue> Ofr <timeValueMin> Or <timeValueMax>

Figure 8-5: General timing measurement or timing constraint

The direction of the respective transition shall be identified by the respegjivéiteral
i.e., the operator of the respectixsetor_single_event

The temporal order of the LHS and Ristor_single_event expressions within the
vector_expression is indicated by &ector_binary operator.

The implications on the range efimeVvalue> or <refPin> Or <timeValueMax> are shown in
Table 8-10.

Table 8-10 Range of time value depending on VECTOR

range of<timeValue> or
LHS operand RHS <timeValueMin> or <timeValueMax>
<fromPin> -> or~> <toPin> positive
<toPin> -> or~> <fromPin> negative
<fromPin> &> <toPin> positive or zero
<toPin> &> <fromPin> negative or zero
<fromPin> <> <toPin> positive or negative
<toPin> <> <fromPin> positive or negative
<fromPin> <&> <toPin> positive or negative or zero
<toPin> <&> <fromPin> positive or negative or zero

170 Advanced Library Format (ALF) Reference Manual Version 1.9.2

Specification of timing models Electrical Performance Modeling

Note: This table does not apply for models wikLCULATION=incremental . Incremental
values can always be positive, negative, or zero.

8.3.2 Partially defined timing measurements and constraints

A partially defined timing measurement or timing constraint contains oRRGastatement or

aTo statement, but not both. This construct can be used to specify measurements from any
point to a specific point (onlyois specified) or from a specific point to any point (OHROM

is specified).

This is summarized in Table 8-11.

Table 8-11 Partially specified timing measurements and constraints

DIRECTION of PIN | FROM or TO specified | Specified model applicable for

input FROM only cell timing arcs starting at this pin

input TO only interconnect timing arcs ending at this pin
output FROM only interconnect timing arcs starting at this pin
output TO only cell timing arcs ending at this pin

It is recommended to use the constructs for interconnect timing arcs only in conjunction with
CALCULATION=incremental . The<timeValue> |, <timeValueMin> , Or<timeValueMax> from

this model is added to theimevalue> , <timeValueMin>, Or <timeValueMax> from timing

arcs starting or ending at this pin, respectively. If the construct is used with
CALCULATION=absolute , the timing model can only be used if completely specified
interconnect timing models are not available and the result is not be accurate in general.

8.3.3 TEMPLATE for same-pin timing measurements and constraints

The following templates show a timing measurement and a timing constraint description,
respectively, applicable for the same pin.

TEMPLATE SAME_PIN_TIMING_MEASUREMENT
<timeKeyword> = <timeValue> {
PIN=<refPin>;
EDGE_NUMBER=<refEdge>;
FROM { THRESHOLD=<fromThreshold>; }
TO { THRESHOLD=<toThreshold>; }

Version 1.9.2 Advanced Library Format (ALF) Reference Manual 171

Electrical Performance Modeling Specification of timing models

TEMPLATE SAME_PIN_TIMING_CONSTRAINT
LIMIT {
<timeKeyword> {

PIN=<refPin>;
EDGE_NUMBER=<refEdge>;
FROM { THRESHOLD=<fromThreshold>; }
TO { THRESHOLD=<toThreshold>; }
MIN = <timeValueMin>;
MAX = <timeValueMax>;

}

Depending on thetimeKeyword> , the<timeValue> , <timeValueMin>, Or <timeValueMax>
is measured on the samefEdge> oOr betweenrrefEdge> and<refEdge> plus 1

Only the-> or~> operators are applicable between subsequent edges. Therefore, the
<timeValue> , <timeValueMin> , Or <timeValueMax> are positive by definition.

Note: The<fromThreshold> and<toThreshold> can be globally predefined as explainedin
Section 8.2.4. However, thieiRESHOLDN the context of &IN does not apply for
SAME_PIN_TIMING_MEASUREMENY SAME_PIN_TIMING_CONSTRAINTsince the
<refPin> is not within aFROMor TO statement.

8.34 Absolute and incremental evaluation of timing models

As mentioned in the previous sections, the calculation modef3MavG MEASUREMENT
TIMING_CONSTRAINT SAME_PIN_TIMING_MEASUREMENaNd
SAME_PIN_TIMING_CONSTRAINTan have the annotati@ALCULATION=absolute (the

default) orCALCULATION=incremental . These annotations are only relevant more than one
calculation model for the same timing arc exists.

Calculation models for the same timing arc v CULATION=absolute shall be within the
context of mutually exclusiveeECTOR. Thevector_expression specifies which model to use
under which condition.

Example:

VECTOR ((01A->01Z)&& B &!C){
DELAY { CALCULATION=absolute; FROM { PIN=A; } TO { PIN=Z; }
/* fill in HEADER, TABLE */ }

}
VECTOR ((01A->012)&& B&C){

DELAY { CALCULATION=absolute; FROM { PIN=A; } TO { PIN=Z; }
/* fill in HEADER, TABLE */ }

}
The vector§ (01 A->012)&8& B &!C) and((01A->012)&&'B&C) are
mutually exclusive. They describe the same timing arc with two mutually exclusive conditions.

In the case of RECTORcontaining a calculation model for a timing arc with
CALCULATION=incremental , there shall be anothgeCTORwith a calculation model for the
same timing arc wit@ALCULATION=absolute and both vectors shall be compatible. The
vector_expression of the latter shall necessarily be true whenvtieer_expression of
the former is true.

172 Advanced Library Format (ALF) Reference Manual Version 1.9.2

Specification of timing models Electrical Performance Modeling

Example:

VECTOR (01 A -> 01 Z) {
DELAY { CALCULATION=absolute; FROM { PIN=A; } TO { PIN=Z; }
/*fill in HEADER, TABLE */ }

}
VECTOR ((01A->012) && B &!C){

DELAY { CALCULATION=incremental; FROM { PIN=A; } TO { PIN=Z; }
/*fill in HEADER, TABLE */ }

}
VECTOR ((01 A ->012) && 'B&C){

DELAY { CALCULATION=incremental; FROM { PIN=A; } TO { PIN=Z; }
/*fill in HEADER, TABLE */ }

}
The vectorg (01 A > 01 2) & B & !IC) and((01 A -> 01 2) & 'B & C) are both
compatible with the vectgo1l A -> 01 z) and mutually exclusive with each other. The latter
describe the same timing arc with two mutually exclusive conditions. The former describes the
same timing arc without conditions. This modeling style is useful for timing analysis tools with
or without support for conditions. The vectors with conditions, if supported, add accuracy to
the calculation. However, the vector without conditions is always available for basic
calculation.

8.35 RISE and FALL submodels

For timing models in the context oECTORsubmodels forRISE andFALL are only applicable
if the vector_expression does not specify the switching direction of the referere@dand
EDGE_NUMBER his is the case, when symboliector_unary operators are used, i.e!,, ??,
?*, or*? instead ob1, 10, etc.

For SAME_PIN_TIMING_MEASUREMENT SAME_PIN_TIMING_CONSTRAINTtheRISE andFALL
submodels apply for thaefEdge> .

For a partially specifiedIMING_MEASUREMENGY TIMING_CONSTRAINT theRISE andFALL
submodels apply for theéromEdge> or <toEdge> , whichever is specified.

For a completely specifiedMING_MEASUREMENTT TIMING_CONSTRAINT it is not possible to
apply arISE andFALL submodel for botkfromEdge> and<toEdge> . Thevector_unary

operator shall specify the switching direction for at least one edge. If the switching direction
for both edges is unspecified, tRiSE andrFALL submodel shall apply for the@oEdge> .

Example:

VECTOR (01 CLK ->?1 Q) {
DELAY { FROM { PIN = CLK; } TO{ PIN = Q; }
RISE = 0.76; FALL = 0.58;
}
}

/['If Q is a scalar pin, the following construct is equivalent:
VECTOR (01 CLK->01 Q) {

DELAY =0.76 { FROM { PIN=CLK; } TO{PIN=Q; }}
}

| Version 1.9.2 Advanced Library Format (ALF) Reference Manual 173

Electrical Performance Modeling Specification of timing models

VECTOR (01 CLK->10Q) {
DELAY =0.58 { FROM { PIN =CLK; } TO{PIN=Q; } }
}

8.3.6 TIME

The<timeKeyword> TIME describes a generalVING_MEASUREMENJY TIMING_CONSTRAINT
without implying any particular relationship betwegtmEdge> and<toEdge> .

In generalzfromPin> and<toPin> refer to two different pins. However, it is legal for
<fromPin> and<toPin> to refer to the same pin.

The default value fotfromEdge> and<toEdge> shall beo.

8.3.7 DELAY

The<timeKeyword> DELAY describes aiMING_MEASUREMENMplying a causal relationship
betweerxfromEdge> and<toEdge> .

Usually,<fromPin> refers to an input pin anetoPin> refers to an output pin. However, it is
legal for<fromPin> and<toPin> to refer to an output pin.

The default value fotfromEdge> and<toEdge> shall beo, unless th®ELAYstatement appears
in conjunction with &RETAIN statement within the context of the sanEsTOR

8.3.8 RETAIN

The<timeKeyword> RETAIN describes aIMING_MEASUREMENMplying a causal relationship
betweerxfromEdge> and<toEdge> in the same way a3ELAY.

RETAIN is used to describe the elapsed time until the output changes its old value, whereas
DELAYis used to describe the elapsed time until the output settles to a stable new value, as
shown in Figure 8-6.

<fromEdge>

<fromPin> ><
[

<toPin>

<toEdge> <toEdge>

I

I

I
!
Figure 8-6: RETAIN and DELAY

WhenDELAYappears in conjunction WitRETAIN, the<fromEdge> for both measurements shall
be the same. ThaoEdge> for DELAYshall be thetoEdge> for RETAIN plus 1

174 Advanced Library Format (ALF) Reference Manual Version 1.9.2

Specification of timing models Electrical Performance Modeling

The default value fogfromEdge> and<toEdge> for RETAIN shall beo. The default value for
<toEdge> for DELAYshall bet.

8.3.9 SLEWRATE

The<timeKeyword> SLEWRATE describes &AME_PIN_TIMING _MEASUREMENTfOr
<timeValue> defining the duration of a signal transition or a fraction thereof.

ThesSLEWRATEpplies for thewrefEdge> on the<refPin> . The default value fotrefEdge>
shall beo.

8.3.10 SETUP

The <timeKeyword> SETUP describes &IMING_CONSTRAINTIOr <timeValueMin> defining
the minimum stable time required for the data signal ontteenPin> before it is sampled by
the strobe signal on th&Pin> .

The<fromPin> usually is an input pin witBIGNALTYPE=data . The<toPin> is an input pin
with SIGNALTYPE=clock .

The default value fotfromEdge> and<toEdge> for SETUPshall beo.

8.3.11 HOLD

The<timeKeyword> HOLD describes &IMING_CONSTRAINTOr <timeValueMin> defining the
minimum stable time required for the data signal orxtbrein> after it is sampled by the
strobe signal on the&fromPin> .

The<toPin> usually is an input pin witBIGNALTYPE=data . The<fromPin> is an input pin
with SIGNALTYPE=clock .

The default value fotfromEdge> shall beo. The default value fottoEdge> shall beo,
unlessHOLDappears in conjunction witETUPIn the context of the sanwECTORIn that
case, the default value fetoEdge> shall bet. All of this is depicted in Figure 8-7.

<toE|dqe>

<from|Edge>

strobe I
| SETUP | |
I
I

data | <froml§dge>
! HOLD
|

Figure 8-7: SETUP and HOLD

| Version 1.9.2 Advanced Library Format (ALF) Reference Manual 175

Electrical Performance Modeling Specification of timing models

The<timeValueMin> for SETUPOr the<timeVvalueMin> for HOLDwith respect to the same
strobe can be negative. However, the sum of both values shall be positive. The sum represents
the minimum duration of a valid data signal around a strobe signal.

8.3.12 NOCHANGE

The<timeKeyword> NOCHANGE describes @AME_PIN_TIMING_CONSTRAINTefining the
requirement for a stable signal on a pin subjectesEtouPandHOLDon subsequent edges of a
strobe signal., as shown in Figure 8-8.

. <toEd9e> <from|Edqe> .
strobe >
| SETUP | | HOLD |
<fromf£dge> | | <toE|dge>
I I I I
data i i
/\ . NOCHANGE | ,
<refEdge>

Figure 8-8: NOCHANGE, SETUP, and HOLD

TheNOCHANGHpplies between theefEdge> and the subsequent edge, keefEdge>
plus 1on the<refPin> . The default value fotrefEdge> shall beo.

WhenNOCHANGEppears in conjunction witETuPandHOLDwithin the context of the same
VECTORthe default value fotfromEdge> and<toEdge> of SETUPshall beo and the default
value for<fromEdge> and<toEdge> of HOLDshall bet.

8.3.13 RECOVERY

The<timeKeyword> RECOVERY describes aiIMING CONSTRAINTIOr <timeValueMin>
defining the minimum stable time required for an asynchronous control signal on the
<fromPin> t0 be inactive before a strobe signal ondfein> can be active.

The<fromPin> usually is an input pin WitlSIGNALTYPE=set|clear . The<toPin> is an input
pin with SIGNALTYPE=clock .

The default value fotfromEdge> and<toEdge> for RECOVERghall beo.

8.3.14 REMOVAL

The<timeKeyword> REMOVAL describes &IMING_CONSTRAINTIOr <timeValueMin> defining
the minimum stable time required for an asynchronous control signal cmothie> to remain
active after overriding a strobe signal on ¢hempin>

The<toPin> usually is an input pin witlSIGNALTYPE=set|clear . The<fromPin> is an input
pin with SIGNALTYPE=clock .

176 Advanced Library Format (ALF) Reference Manual Version 1.9.2

Specification of timing models Electrical Performance Modeling

The default value fotfromEdge> and<toEdge> for REMOVAIshall beo.

REMOVAIcan appear in conjunction wiHECOVERWithin the context of the sanwECTORas
shown in Figure 8-9.

<toEdge>
<fromEdge> ! '
strobe | I
| RECOVERY | |
| <fromedge> <toE|dqe>
I I I
async. control
' REMOVAL

1
& same edge, shifted ‘/J

Figure 8-9: RECOVERY and REMOVAL

The<timeValueMin> for RECOVERYWr the<timeVvalueMin> for REMOVAlwith respect to the

same strobe can be negative. However, the sum of both values shall be positive. The sum
represents the time window around the clock signal when the asynchronous control signal shall
not switch.

8.3.15 SKEW between two signals

The<timeKeyword> SKEW describes &IMING_CONSTRAINTOr <timeValueMax> defining the
maximum allowed time separation betwe&nmEdge> oOn<fromPin> and<toEdge> oOn
<toPin> .

The default value fotfromEdge> and<toEdge> for SKEWshall beo.

8.3.16 SKEW between multiple signals

SKEWcan also describe the maximum time distortion between signals on multiple pins. In this
case, a list of pins appears in form of a multi-value annotatioFR®®Dr TO containers can
be used here.

Example:

SKEW {
PIN { <pinList>}
EDGE_NUMBER { <edgelList>}
<skewData>

}

The default foEDGE_NUMBER SKEWOr multiple signals shall be a list o$.

Version 1.9.2 Advanced Library Format (ALF) Reference Manual 177

Electrical Performance Modeling VIOLATION container

A special case of multiple pins is a single bus. In this casenthe@med_assignment
syntax is also valid as alternative to thalti_value assignment syntax (see Section
8.15.3).

Example:

SKEW { PIN = my_bus_pin[8:1]; }
or

SKEW { PIN { my_bus_pin[8:1] } }

8.3.17 PULSEWIDTH

The<timeKeyword> PULSEWIDTH describes SAME_PIN_TIMING_CONSTRAINTfor
<timeValueMin> defining the minimum duration of the signal before changing state.

ThePULSEWIDTHstatement is applicable for both input and output pins. In the case of an input
pin, it represents a timing check against the minimum duration. In case of an output pin, it rep-
resents the minimum possible duration of the signal.

ThePULSEWIDTHapplies between theefEdge> and the subsequent edge, kefEdge>
plus 1on the<refPin> . The default value fotrefEdge> shall beo.

8.3.18 PERIOD

The<timeKeyword> PERIOD describes SAME_PIN_TIMING_CONSTRAINTfor

<timeValueMin> defining the minimum time between subsequent repetitions of a signal.
Because of periodicityfromThreshold> and<toThreshold> are not required. Therefore,
FROMaNndTO statements do not appear.

If the VECTORdescribes a completely specified event sequenet®in> and<refEdge> are
not requiredPERIOD applies for the complete event sequence. IV#@ETORIescribes a
partially specified event sequence, involving theoperatorgrefPin> and<refEdge> are
required.

8.3.19 JITTER

The<timeKeyword> JITTER describes &SAME_PIN_TIMING _MEASUREMENTDY <timeValue>
defining the actual uncertainty of arrival time for a periodical signal at a pin.

TheJITTER applies for thewrefEdge> on the<refPin> . The default value fotrefEdge> shall
beo. Threshold definitions, i.esfromThreshold> or <toThreshold> do not apply.

A limit for tolerable jitter at a pin can be expressed usingliveT construct, as shown in the
template forSAME_PIN_TIMING_CONSTRAINT

8.4 VIOLATION container

A VIOLATION statement can appear withinlanEGAL statement (see Section 6.7) and also
within aTIMING_CONSTRAINTOr aSAME_PIN_TIMING_CONSTRAINTTheVIOLATION statement
can contain theEHAVIORobject (see Section 11.17), since the behavior in case of timing

178 Advanced Library Format (ALF) Reference Manual Version 1.9.2

EARLY and LATE container Electrical Performance Modeling

constraint violation cannot be described inkh&8ICTION TheVIOLATION statement can also
contain the annotations shown in Table 8-12.

Table 8-12 : Annotations within VIOLATION

Keyword Value type Description
MESSAGE_TYPE string specifies the type of the message. It can be pne
of information , warning , Orerror
MESSAGE string specifies the message itself.
Example:
VECTOR (01 d <&> 01 cp) {
SETUP {
VIOLATION {

MESSAGE_TYPE = error;
MESSAGE = “setup violation 01 d <&> 01 cp*;
BEHAVIOR {q = 'bx;}

8.5 EARLY and LATE container

TheEARLYandLATE containers define the boundaries of timing measurements in one single
analysis. They only apply @ELAYandSLEWRATEBoth of them need to appear in both con-
tainers.

The quadruple

EARLY {
DELAY { FROM {..} TO { ...} /* data */ }
SLEWRATE { /* data */ }

LATE {

DELAY { FROM {..} TO { ...} /* data */ }
SLEWRATE { /* data */ }

is used to calculate the envelope of the timing waveform atdpeint of a delay arc with
respect to the timing waveform at theonmpoint of a delay arc.

TheEARLY DELAYis a smaller number (or a set of smaller numbers) thartfeDELAY.

However, theEARLY SLEWRATHS not necessarily smaller than therE SLEWRATE since the
SLEWRAT®f theEARLYsignal can be larger than tReEWRAT®f theLATE signal.

8.6 Environmental dependency for electrical data

This section defines the environmental dependencies for electrical data.

Version 1.9.2 Advanced Library Format (ALF) Reference Manual 179

Electrical Performance Modeling Environmental dependency for electrical data

8.6.1 PROCESS
The following identifiers can be used as predefined process corners:
2n?p process definition with transistor strength
where? can be
s strong
w weak

The possible process name combinations are shown in Table 8-13.

Table 8-13 : Predefined process names

Process name Description
snsp strong NMOS, strong PMOS
snwp strong NMOS, weak PMOS
wnsp weak NMOS, strong PMOS
wnwp weak NMOS, weak PMOS
8.6.2 DERATE_CASE
The following identifiers can be used as predefined derating cases:
nom nominal case
bc? prefix for best case
wc? prefix for worst case
where? can be
com suffix for commercial case
ind suffix for industrial case
mil suffix for military case

The possible derating case combinations are defined in Table 8-14.

Table 8-14 : Predefined derating cases

Derating case Description

bccom best case commercial
bcind best case industrial
bemil best case military
wccom worst case commercial
wecind worst case military
wemil worst case military

8.6.3

ThePROCES®rDERATE_CASEan be used in BABLEwithin theHEADEPROf an arithmetic model
for electrical data, e.gDELAY. Data can not be interpolated in the dimension of this table.

Lookup table without interpolation

180 Advanced Library Format (ALF) Reference Manual

Version 1.9.2

PIN-related arithmetic models for electrical data Electrical Performance Modeling

Example:

DELAY {
UNIT = ns;
HEADER {
PROCESS { TABLE { nom snsp wnwp } }

}
TABLE {0.4 0.3 0.6}

}

Here , theDELAYiS0.4 ns for nominal proces®,3 ns forsnsp,ando.6 ns forwnwp. A delay
“in-between”snsp andwnwp can not be interpolated.

8.6.4 Lookup table for process- or derating-case coefficients

A nested arithmetic model construct can be used to describe lookup tables for coefficients,
based oPROCES®r DERATE_CASEThese coefficients can be used irsByuATIONO calculate
electrical data, e.gRELAY.

Example:

DELAY {
UNIT = ns;
HEADER {
PROCESS { HEADER { nom snsp wnwp } TABLE {0.0 -0.25 0.5} }
}

EQUATION { (1 + PROCESS)*0.4 }
}

The equation uses tiRROCESSo0efficiento.0 for nominal ,-0.25 forsnsp,ando.5 for wnwp.
Therefore th@®ELAYiS0.4 ns for the nominal process,3 ns forsnsp, ando.6 ns for wnwp.
Conceivably, th@ELAYcan be calculated for any value of the coefficient.

8.6.5 TEMPERATURE

TEMPERATUREanN be used as argument in HEADEROf an arithmetic model for timing or
electrical data. It can also be used as an arithmetic modebRRATE_CASES argument, in
order to describe what temperature applies for the specified derating case.

8.7 PIN-related arithmetic models for electrical data

This section details theiN arithmetic models for electrical data.

8.7.1 Principles

Arithmetic models for electrical data can be associated with a pin of a cell. Their meaning is
illustrated in Figure 8-10.

Version 1.9.2 Advanced Library Format (ALF) Reference Manual 181

Electrical Performance Modeling PIN-related arithmetic models for electrical data

source sink
current node resistance inductance node cyrrent
—> 4—
voltage voltage

capacitance

Figure 8-10: General representation of electrical models around a pin

A pin is represented as a source node and a sink node. For pimsREHTION=input , the
source node is externally accessible. For pins sulECTION=output , the sink node is
externally accessible.

8.7.2 CAPACITANCE, RESISTANCE, and INDUCTANCE

RESISTANCEandINDUCTANCEapply between the source and sink n@iACITANCEapplies
between the sink node and ground. By default, the values for resistance, inductance and
capacitance shall be ze®).(

8.7.3 VOLTAGE and CURRENT

VOLTAGEAaNdCURRENTan be measured at either source or sink node, depending on which node

is externally accessible. However, a voltage source can only be connected to a source node. The
sense of measurement for voltage shall be from the node to ground. The sense of measurement
for current shall bento the node.

8.7.4 PIN-related timing models

SAME_PIN_TIMING_MEASUREMENMASAME_PIN_TIMING_CONSTRAINT (see Section 8.3 and
Section 8.7.6) are pin-related timing models. They are defined with reference to the externally
accessible node.

8.75 Submodels for RISE, FALL, HIGH, and LOW

RISE andFALL contain data characterized in transient measuremégts andLowcontain
data characterized in static measurements.

<modelKeyword> { RISE=<modelValueRise>; FALL=<modelValueFall>; }
<modelKeyword> { HIGH=<modelValueHigh>; LOW=<modelValueLow>; }

It is generally not required that bothsE andFALL or bothHIGH andLOwrespectively, appear
as an arithmetic submodel.

HIGH andLowgualify states with the logic valueando, respectivelyRISE andFALL qualify
transitions between states with initial logic vatuand1, respectively and final valuasand

182 Advanced Library Format (ALF) Reference Manual Version 1.9.2

PIN-related arithmetic models for electrical data Electrical Performance Modeling

| 0, respectively. For other states and their mapping to logic values, see Section 5.1.5. If the
arithmetic model is within the scope of a vector which describes the logic values without
ambiguity, the use afISE andFALL orHIGH andLowdoes not apply.

HIGH, LOWRISE, andrFALL apply for all pin-related arithmetic models with the following
exceptions:

RISE andFALL do not apply fOVOLTAGE
HIGH andLowdo not apply fOISAME_PIN_TIMING_MEASUREMENNd
SAME_PIN_TIMING_CONSTRAINT.

Note: For states that cannot be mapped to logico, RISE andFALL , orHIGH andLOwW
cannot be used. The usevadCTORvith unambiguous description of the relevant states
is mandatory in such cases.

8.7.6 Context-specific semantics

An arithmetic model fovOLTAGE CURRENTSLEWRATERESISTANCE INDUCTANCEand
CAPACITANCEcan be associated wittPan in one of the following ways.

1. A model in the context of BN
Example:

PIN my_pin {
CAPACITANCE = 0.025;

2. A model in the context of @ELL, WIRE, or VECTORWith PIN annotation

Example:

VOLTAGE = 1.8 { PIN =my_pin; }
The model in the context ofFaN shall be used if the data is completely confined to the pin.
That means, no argument of the model shall make reference to any pin, since such reference
implies an external dependency. A model with dependency only on environmental data not

associated with a pin (e.gEMPERATURPPROCESSandDERATE_CASJEcan be described within
the context of theIN.

A model with dependency on external data applied to a pin (e.g., load capacitance) shall be
described outside the context of th®, using aPIN annotation. In particular, if the model
involves a dependency on logic state or logic transition of ethey, the model shall be
described within the context ofV&CTOR

Figure 8-11 illustrates electrical models associated with input and output pins.

| Version 1.9.2 Advanced Library Format (ALF) Reference Manual 183

Electrical Performance Modeling PIN-related arithmetic models for electrical data

external driver Input pin output pin external load
current source sink source sink current
NIl N —
voltag - - voltage -

Figure 8-11: Electrical models associated with input and output pins

Table 8-15 and Table 8-16 define how models are associated with the pin, depending on the
context.

Table 8-15 Direct association of models with a PIN

Model in context of CELL, WIRE,
Model Model in context of PIN and VECTOR with PIN annotation

CAPACITANCE pin self-capacitance externally controlled capacitance at the
pin, e.g., voltage-dependent

INDUCTANCE pin self-inductance externally controlled inductance at the
pin, e.g., voltage-dependent

RESISTANCE pin self-resistance externally controlled resistance at the
pin, e.g., voltage-dependent, in the con-
text of aVECTORor timing-arc spe-
cific driver resistance

VOLTAGE operational voltage measured at pin externally controlled voltage at the pin
CURRENT operational current measured into pin externally controlled current into gin
SAME_PIN_TIMING _ | for model definition, default, etc.; in context ofVECTORor timing arc,
MEASUREMENT not for the timing arc other context for definition, default, etc.
SAME_PIN_TIMING_ | for model definition, default, etc.; in context ofVECTORor timing arc,
CONSTRAINT not for the timing arc other context for definition, default, etc.

Table 8-16 External association of models with a PIN

LIMIT within PIN or with PIN Model argument with PIN
Model / Context annotation annotation
CAPACITANCE min or max limit for applicable load load for model characterization
INDUCTANCE min or max limit for applicable load load for model characterization
RESISTANCE min or max limit for applicable load load for model characterization
VOLTAGE min or max limit for applicable voltage voltage for model characterization

184 Advanced Library Format (ALF) Reference Manual Version 1.9.2

Other PIN-related arithmetic models Electrical Performance Modeling

Table 8-16 External association of models with a PIN, continued

LIMIT within PIN or with PIN Model argument with PIN
Model / Context annotation annotation
CURRENT min or max limit for applicable current current for model characterizatjon
SAME_PIN_TIMING_ | currently applicable for min or max limit| stimulus withSLEWRAT Eor
MEASUREMENT for SLEWRATE model characterization
SAME_PIN_TIMING_ _ | N/A, since the keyword means a min or| N/A
CONSTRAINT max limit by itself
Example:
CELL my_cell {

PIN pinl { DIRECTION=input; CAPACITANCE = 0.05; }
PIN pin2 { DIRECTION=output; LIMIT { CAPACITANCE { MAX=1.2;}}}
PIN pin3 { DIRECTION=input; }
PIN pin4 { DIRECTION=input; }
CAPACITANCE {
PIN=pin3;
HEADER { VOLTAGE { PIN=pin4; } }
EQUATION { 0.25 + 0.34*VOLTAGE }

}

The capacitance giin1 is0.05 . The maximum allowed load capacitancepp2 is1.2 . The
capacitance opin3 depends on the voltage on pin4.

8.8 Other PIN-related arithmetic models

This section details some otheN -related arithmetic models.

8.8.1 DRIVE_STRENGTH

DRIVE_STRENGTHS a unit-less, abstract measure for the drivability ef\a. It can be used as

a substitute of driveRESISTANCE The higher th®RIVE_STRENGTHthe lower the driver
RESISTANCE However DRIVE_STRENGTHan only be used within a coherent system of
calculation models, since it does not represent an absolute quantity, as opRE8GTANCE

For example, the weakest driver of a library can have drive strength 1, the next stronger driver
can have drive strength 2 and so forth. This does not necessarily mean the resistance of the
stronger driver is exactly half of the resistance of the weaker driver.

An arithmetic model for conversion frobRIVE_STRENGTHO RESISTANCECan be given to
relate the quantitpRIVE_STRENGTHacross technology libraries.

Example:

SUBLIBRARY high_speed_library {
RESISTANCE {
HEADER { DRIVE_STRENGTH } EQUATION { 800 / DRIVE_STRENGTH }

}

| Version 1.9.2 Advanced Library Format (ALF) Reference Manual 185

Electrical Performance Modeling Annotations for arithmetic models

CELL high_speed_std_driver {
PIN Z { DIRECTION = output; DRIVE_STRENGTH =1, }
}
}
SUBLIBRARY low_power_library {

RESISTANCE {
HEADER { DRIVE_STRENGTH } EQUATION { 1600 / DRIVE_STRENGTH }

}
CELL low_power_std_driver {

PIN Z { DIRECTION = output; DRIVE_STRENGTH =1, }
}
}
Drive strength 1 in the high speed library corresponds to 800 ohm. Drive strength 1 in the low
power library corresponds to 1600 ohm.

Note: Any particular arithmetic model f®RESISTANCEIN either library shall locally override
the conversion formula from drive strength to resistance.

8.8.2 SWITCHING_BITS

The quantitysWITCHING_BITS applies only for bus pins. The range is frorto the width of

the bus. Usually, the quantiBwITCHING_BITSis not calculated by an arithmetic model, since

the number of switching bits on a bus depends on the functional specification rather than the
electrical specification. HowevesWITCHING_BITS can be used as argument in teADEROf

an arithmetic model to calculate electrical quantities, for instance, energy consumption.

Example:

CELL my_rom {
PIN [3:0] addr { DIRECTION=input; SIGNALTYPE=address; }
PIN [7:0] dout { DIRECTION=output; SIGNALTYPE=data; }
VECTOR (?! addr -> ?! dout) {
ENERGY {
HEADER {
SWITCHING_BITS addr_bits { PIN = addr; }
SWITCHING_BITS dout_bits { PIN = dout; }

}
EQUATION { 0.45*LOG(addr_bits) + 2.6*dout_bits }

}
}

The energy consumption efy_rom depends on the number of switching data bits and on the
logarithm of the number of switching address bits.

8.9 Annotations for arithmetic models

This section defines the annotations for arithmetic models.

186 Advanced Library Format (ALF) Reference Manual Version 1.9.2

Annotations for arithmetic models Electrical Performance Modeling

8.9.1 MEASUREMENT annotation

Arithmetic models describing analog measurements (see Table 8-5) can MBXSWBREMENT
annotation. This annotation indicates the type of measurement used for the computation in
arithmetic model.

MEASUREMENTstring ;
The string can take the values shown in Table 8-17.

Table 8-17 : MEASUREMENT annotation

Annotation string Description

transient measurement is a transient value

static measurement is a static value

average measurement is an average value

rms measurement is an root mean square value
peak measurement is a peak value

Their mathematical definitions are shown in Figure 8-12.

(t=T) (t=T)

transient J’ dE(t) average J‘ E(t)dt
(t=0) (=0
T
static E = constant
rms (t=T)
[E(t)°dt
peak max| § 9|) OsgnE(t) t=T fﬂ)_l_—

Figure 8-12: Mathematical definitions for MEASUREMENT annotations

Examples:

transient measurement B ERGY

static measurement ¥DLTAGE CURRENTandPOWER
average measurement\@GdL TAGE CURRENTandPOWER
rms measurement ®0OLTAGE CURRENTaNndPOWER
peak measurement @OLTAGE CURRENTandPOWER

8.9.2 TIME and FREQUENCY annotation

Arithmetic models with certain values MEASUREMENANNotation can also haegher TIME
or FREQUENCW®S annotations.

Version 1.9.2 Advanced Library Format (ALF) Reference Manual 187

Electrical Performance Modeling Annotations for arithmetic models

The semantics are defined in Table 8-18.

Table 8-18 : Semantic interpretation of MEASUREMENT, TIME, or FREQUENCY annotation

MEASUREMENT Semantic meaning of TIME Semantic meaning of FREQUENCY

annotation annotation annotation

transient integration of analog measurement ig integration of analog measurement ig
done during that time window repeated with that frequency

static N/A N/A

average average value is measured over that| average value measurement is repeated
time window with that frequency

rms root-mean-square value is measured root-mean-square measurement is
over that time window repeated with that frequency

peak peak value occurs at that time (only | observation of peak value is repeate
within context o VECTOIR with that frequency

In the case odverage andrms , the interpretatioFREQUENCY =1/ TIME is valid. Either
one of these annotations shall be mandatory. The valuegfage measurements and for
rms measurements scale linearly WHREQUENC®&Nd1 / TIME , respectively.

In the case ofansient andpeak , the interpretatioFREQUENCY =1/ TIME is not valid.
Either one of these annotations shall be optional. The values do not necessarily scai®vith
or FREQUENCYTheTIME or FREQUENC®@Nnotations fotransient ~ measurements are purely
informational.

8.9.3 TIME to peak measurement

For a model in the context oVECTORWith apeak measurement, thBME annotation shall
define the time between a reference event withinitlaer_expression and the instant when
the peak value occurs.

For that purpose, either tRreonor theTo statement shall be used in the context ofriive
annotation, containingrRIN annotation and, if necessaryflaRESHOLRNd/or alEDGE_NUMBER
annotation.

If the FROMstatement is used, the start point shall be the reference event and the end point shall
be the occurrence time of the peak, as shown in Figure 8-13.

188 Advanced Library Format (ALF) Reference Manual Version 1.9.2

Annotations for arithmetic models Electrical Performance Modeling

<frorquqe>

<fromPin> fromThreshold>

|
|
TIME >
MEASUREMENT = peak :
|

___|_<modelvalue>
I
|

Figure 8-13: lllustration of time to peak using FROM statement

If the TOstatement is used, the start point shall be the occurrence time of the peak and the end
point shall be the reference event, as shown in Figure 8-14.

<to|T:dqe>

<toPin> <toThreshold>

|
|

TIME ’:
[MEASUREMENT = peak
|

<modelValue> |
I
|

Figure 8-14: lllustration of time to peak using TO statement

Example:

VECTOR (01A->01B->10B){
CURRENT peakl =10.8 {
PIN = Vvdd;
MEASUREMENT = peak;
TIME = 3.0 { UNIT=ns; FROM { PIN=A; EDGE_NUMBER=0; } }

}
CURRENT peak2 =12.3 {

PIN = Vvdd;

MEASUREMENT = peak;

TIME = 2.0 { UNIT=ns; TO { PIN=B; EDGE_NUMBER=1; } }
}

}
Here, the peak with magnitude.8 occurs3 nanoseconds after the eventa .

The peak with magnitude.3 occurs2 nanoseconds before the evems .

Version 1.9.2 Advanced Library Format (ALF) Reference Manual 189

Electrical Performance Modeling Waveform description

894 Rules for combinations of annotations

Cumulative values of arithmetic models can be calculated for models which are cumulative in
nature (e.g.ENERGYor POWEROr by the usage afALCULATION=incremental (€.g.,CURRENT

or VOLTAGE. TheMEASUREMENannotation can be used in conjunction with the calculation of
cumulative values under the following restrictions:

Data withMEASUREMENT=averagefor each model can be combined, providedthee
annotation value is the same.

Data withMEASUREMENT=pealor each model can be combined, providedTtive
annotation or a complementarye model within the same context specify that the
peak values can occur at the same time.

Data withMEASUREMENT=rm$or each model can not be combined.
Data with differenMEASUREMEN@NNoOtations can not be combined.
Data withMEASUREMENT=transient|static can be combined with each other.

All data that can be combined under the abovementioned restrictions, must be in a compatible
context, e.g., mutually non-exclusive VECTORs within a CELL.

8.10 Waveform description

This section specifies waveform descriptions.

8.10.1 Principles

In order to describe an arithmetic model representing a waveformg, shall be an argument
in theHEADEROther arguments can appear in HEADERas well. The model can be described
as arABLE or EQUATION

Example forTABLE

VOLTAGE {
HEADER ({
TIME {
UNIT = ns;
INTERPOLATION=linear;
TABLE {0.0 1.0 1.5 2.0 3.0}
}
}
TABLE {0.0 0.0 5.0 0.0 0.0}
}

Example fOlEQUATION

VOLTAGE {
HEADER {
TIME { UNIT = ns; }
}

190 Advanced Library Format (ALF) Reference Manual Version 1.9.2

Waveform description Electrical Performance Modeling

EQUATION {
(TIME<1.0)?0:
(TIME < 1.5) ? 5.0%(TIME - 1.0) :
(TIME < 2.0) ? 5.0%(2.0 - TIME) :
0.0

}
Both models describe the same piece-wise linear waveform, as shown in Figure 8-15.

5.0
VOLTAGE
0.0 TIME

0.0 1.0 15 20 3.0

Figure 8-15: lllustration of a piece-wise linear waveform

If the model is within the context of @ECTOReither theFROMor theTO statement can be used
in the context of IME, pointing to a reference event which occursige =0 relative to the
waveform description. See Section 8.9 for the definition of start and end points of
measurements.

Example:

VECTOR (01A->01B->10B){
VOLTAGE {
HEADER {
TIME {
FROM { PIN = B; EDGE_NUMBER =1, }
TABLE{0.0 1.0 1.5 2.0 3.0}
/I alternative description:
1 TO{PIN =B; EDGE_NUMBER =1, }
1 TABLE {-3.0 -2.0 -1.5 -1.0 0.0}
}
}
TABLE {0.0 0.0 5.0 0.0 0.0}

}

Note: Useth&romtatement. If th@ostatement is usediME is measured backwards, which
is counter-intuitive. For dynamic analysis, use the last event in the
vector_expression as the reference. Otherwise, the analysis tool remembers the
occurrence time of previous events in order to place the waveform into the context of
absolute time.

Version 1.9.2 Advanced Library Format (ALF) Reference Manual 191

Electrical Performance Modeling Arithmetic models for power calculation

8.10.2 Annotations within a waveform

The MEASUREMENANnotationransient shall apply as a default for waveforms.

TheFREQUENC#NNotation can be used to specify a repetition frequency of the waveform. The
following boundary restrictions are imposed in order to make the waveform repeatable:

The initial value and the final value of waveform shall be the same.

The extrapolation beyond the initial and the final value of the waveform shall yield the
same result. Thus, the first, second, last, and second-to-last point of the waveform shall
be the same.

The time window between the first and the last measurement shall be smaller or equal to
1/ FREQUENCY .

This is illustrated in Figure 8-16.

E[0]

I [I TIME
l*r[01 T[1] T[M-1] T['V” >
~ (TIM] - T[0) >

- |

1/ FREQUENCY

Figure 8-16: TIME and FREQUENCY in a waveform

8.11 Arithmetic models for power calculation

This section defines the arithmetic models used for power calculation.

8.11.1 Principles

The purpose of power calculation is to evaluate the electrical power supply demand and
electrical power dissipation of an electronic circuit. In general, both power supply demand and
power dissipation are the same, due to the energy conservation law. However, there are
scenarios where power is supplied and dissipated locally in different places. The power models
in ALF shall be specified in such a way that the total power supply and dissipation of a circuit
adds up correctly to the same number.

Example: A capacitoc is charged frond volt to v volt by a switched DC source. The energy
supplied by the source @&zv2 The energy stored in the capacitot/isc*v 2. Hence the

192 Advanced Library Format (ALF) Reference Manual Version 1.9.2

Arithmetic models for power calculation Electrical Performance Modeling

dissipated energy is alg¢e*C*v 2, Later the capacitor is discharged framolt to 0 volt. The
supplied energy is. The dissipated energy ig*c*v 2. A supply-oriented power model can
associate the energy= (:*v2 with the charging event arg=0 with the discharging event. The

total energy i€= E1+E2—C*V A dissipation-oriented power model can associate the energy
Ez=1/2*C*V 2 with both the charging and discharging event. The total energy is also

E=2*E 3= crV2,

In many cases, it is not so easy to decide when and where the power is supplied and where it is
dissipated. The choice between a supply-oriented and dissipation-oriented model or a mixture
of both is subjective. Hence the ALF language provides no means to specify, which modeling

approach is used. The choice is up to the model developer, as long as the energy conservation
law is respected.

8.11.2 POWER and ENERGY

POWERNd/orENERGYMOdels shall be in the context o€aLL or within avECTORThe total
energy and/or power of a cell shall be calculated by combining the data of all models within
the scope of theELL or thevECTOR within the cell.

The data forpOWERNd/OrENERGYshall be positive when energy is actually supplied to the
CELL and/or dissipated within thgELL. The data shall be negative when energy is actually
supplied or restored by tieELL.

Table 8-19 shows the mathematical relationship between ENERGY and POWER and the
applicable MEASUREMENT annotations.

Table 8-19 Relations between ENERGY and POWER

MEASUREMENT MEASUREMENT | Formula to calculate Formula to calculate
for ENERGY for POWER POWER from ENERGY ENERGY from POWER
transient transient

EENERGY J’POWERdt

dt
transient average

ENERGY POWER JTIME
TIME
transient peak N/A
maxa—ENERGY‘
transient rms N/A
1 —d
TE EJ'Q:EENERGYEZ dt

Version 1.9.2 Advanced Library Format (ALF) Reference Manual 193

Electrical Performance Modeling Arithmetic models for hot electron calculation

Table 8-19 Relations between ENERGY and POWER, continued

MEASUREMENT MEASUREMENT | Formula to calculate Formula to calculate
for ENERGY for POWER POWER from ENERGY ENERGY from POWER
N/A static N/A
POWERLTIME
static N/A 0 N/A

To establish a meaningful relationship between energy and power, the measurement for energy
shall betransient . A static measurement for energy is conceivable, modeling a state with
constant energy, but no power is dissipated during such a statéeic A measurement for

power models a state during which constant power dissipation occurs. Although it is not
meaningful to describe an energy model for such a state, it is conceivable to calculate the
energy by multiplying the power with the duration of the state. A 1-to-1 correspondence
between power and energy can be establishaehfetent andaverage power

measurements, modeling instantaneous and average power, respectively. Therefore, it is
redundant to specify both energy and power in such case.pd#&oandrms power can be
conceivably calculated from a transient energy or power waveform, but transient energy can
not be calculated from@eak orrms power measurement.

8.12 Arithmetic models for hot electron calculation

This section defines arithmetic models for hot electron calculation.

8.12.1 Principles

The purpose of hot electron calculation is to evaluate the damage done to the performance of
an electronic device due to the hot electron effect. The hot electron effect consists in
accumulation of electrons trapped in the gate oxide of a transistor. The more electrons are
trapped, the more the device slows down. At a certain point, the performance specification no
longer is met and the device is considered to be damaged.

8.12.2 FLUX and FLUENCE

FLUXand/orFLUENCEMOodels shall be in the context oE&LL or within avECTORTotal fluence
and/or flux of a cell shall be calculated by combining the data of all models within the scope
of theCELL or thevECTOR within the cell.

Both FLUXandFLUENCEare measures for hot electron damamgelX relates taFLUENCEN the
same way aBOWERelates tENERGY

194 Advanced Library Format (ALF) Reference Manual Version 1.9.2

Reliability calculation Electrical Performance Modeling

Table 8-20 shows the mathematical relationship betwesaNCEndFLUXand the applicable
MEASUREMENaNnotations.

Table 8-20 Relations between FLUENCE and FLUX

MEASUREMENT MEASUREMENT | Formula to calculate Formula to calculate
for FLUENCE for FLUX FLUX from FLUENCE FLUENCE from FLUX
transient transient
gFLUEN(:E IFLUX dt
dt
transient average
FLUENCE FLUX [TIME
TIME
N/A static N/A
FLUX [TIME
static N/A 0 N/A

Since hot electron damage is purely cumulative, the only meaningitt UREMENINNOtations
aretransient , average , andstatic

8.13 Reliability calculation

In general, reliability is modeled by arithmetic models using.tiig& construct.

8.13.1 TIME within the LIMIT construct

Within aLIMIT constructTIME can be used in the following ways:

1. TIME itself is subjected toamIT (see Section 8.14.2)

2. TIME is the argument of a model subjected tovat

WhenTIME is used as argument of a model within t@IT construct, it shall mean the amount
of time during which the device is exposed to the quantity modeled withinthe construct.
This amount of time is also calledifetime

Example:

LIMIT {
CURRENT {
PIN = my_pin;
MEASUREMENT = static;

Version 1.9.2 Advanced Library Format (ALF) Reference Manual 195

Electrical Performance Modeling Reliability calculation

MAX {
HEADER { TIME TEMPERATURE }
EQUATION { 6.5*EXP(-10/(TEMPERATURE+273))*TIME**(-0.3) }

}
}
The limit for maximum current depends on the temperature and the expected lifetime of the
device.

8.13.2 FREQUENCY within a LIMIT construct

Within aLIMIT constructFREQUENCY¥an be used in the following ways:

1. FREQUENCHtself is subjected to amiT

2. FREQUENCY the argument of a model subjected tovaT

FREQUENCYan be subjected toLamiT within the context of FECTORTheLIMIT construct
specifies an upper and/or lower limit for the repetition frequency of the event sequence
described by theector_expression

Example:

VECTOR (01 A->0127){
LIMIT {
FREQUENCY {
MAX {
HEADER {
SLEWRATE { PIN = A; TABLE{0.10.51.05.0}}
CAPACITANCE { PIN=Z; TABLE{0.10.41.6}}
}
TABLE {
200 190 180 120
150 150 145 130
80 80 80 70

}
}

The maximum allowed switching frequency for a rising edge, dollowed by a rising edge
onz, depends on the slewrate mand the load capacitance on

A LIMIT for a quantity withmEASUREMENaNNotatioraverage , rms, Orpeak can be frequency-
dependent. TheEREQUENC$pecifies the repetition frequency for the measurement.

Example:

LIMIT {
CURRENT {
PIN = Vvdd;
MEASUREMENT = average;

196 Advanced Library Format (ALF) Reference Manual Version 1.9.2

Reliability calculation Electrical Performance Modeling

MAX {
HEADER { FREQUENCY TIME TEMPERATURE }
EQUATION {
(FREQUENCY<1)? 6.5*EXP(-10/(TEMPERATURE+273))*TIME**(-0.3) :
7.8*EXP(-9/(TEMPERATURE+273))*TIME**(-0.2) :

}
}

The limit for average current is specified for low frequencies (< 1MHz) and for higher
frequencies. In both cases, the limit depends on temperature and lifetime.

8.13.3 Global LIMIT specifications

Global limits can be specified for electrical quantities, even if they are relateHLics, PINS,
or VECTORs Such global limits apply, unless local limits are specified within the context of
CELLS, PINS, OrVECTOR. The priorities are given below.

LIMIT within the context of th#ECTOR

LIMIT within the context of &N (if theLIMIT in theVECTORhasPIN annotation)
LIMIT within the context of theELL

LIMIT within the context of th6UBLIBRARY

LIMIT within the context of thelBRARY

S A

LIMIT outsideLIBRARY

The arguments in theEADEROf theLIMIT model can only be items that are visible within the
scope of theIMIT model. In particular, arguments withN annotations are only legal for
LIMIT models in the context of GELL or avVECTORwithin theCELL.

8.13.4 LIMIT specification and model specification in the same context

An arithmetic model for a physical quantity and a limit specification for the same physical
guantity can appear within the same context, for example, an arithmetic moeleJfcICE
calculation and amIT for FLUENCEWithin the context of ECTORIn such a case, the
calculated quantity shall be checked against the limit of the quantity within that context.

Onthe other hand, if multiple arithmetic models are given within the context for which the limit
applies, the limit shall be checked against the combination of all arithmetic models in the case
of cumulative quantities, or against the minimum or maximum calculated value in the case of
non-cumulative or mutually exclusive quantities.

For example, aMIT for FLUENCEcan be given in the context otaLL. Calculation models
for FLUENCEcan be given for multipl&# ECTOR within the context of theELL. TheLIMIT for
FLUENCEshall be checked against the accumulategNCEcalculated for aVECTOR.

Version 1.9.2 Advanced Library Format (ALF) Reference Manual 197

Electrical Performance Modeling Reliability calculation

Example:

CELL my_cell {
PIN A { DIRECTION = input; }
PIN B { DIRECTION = input; }
PIN C { DIRECTION = input; }
PIN Z { DIRECTION = output; }
LIMIT { FLUENCE { MAX = 1e20; } }}
VECTOR (01 A->102Z){
FLUENCE = 1e-5;
}
VECTOR (01 B ->102Z){
FLUENCE = 1e-5;
}
VECTOR (01 C->102Z){
FLUENCE = 1e-6;
LIMIT { FLUENCE { MAX = 1e18; } }
}
}

The fluence limit for the cell is reached after®P@ccurrences ofECTOR (01 A -> 10 Z)
Or VECTOR (01 B->102) counted together.

The fluence limit for the/ECTOR (01 C -> 10 z) is reached after £§ occurrences of that
vector.

An example for a non-cumulative quantitySsEWRATETheVECTOR in the context of which
SLEWRATHES modeled describe timing arcs with mutually exclusive conditions. Therefore, if a
minimum or maximum.IMIT for SLEWRATEHS given for &IN in the context of &@ELL, this
SLEWRATEhall be checked against the minimum or maximum value of any calculated
SLEWRATEpplicable to thapiN.

Example:

CELL my_cell {
PIN A { DIRECTION = input; }
PIN B { DIRECTION = input; }
PIN C { DIRECTION = input; }
PIN Z { DIRECTION = output; LIMIT { SLEWRATE { MAX =5;1}}}
VECTOR (01 A->102Z){
SLEWRATE { PIN = Z; /*fill in HEADER, TABLE */ }
}
VECTOR (01B->102Z){
SLEWRATE { PIN = Z; /*fill in HEADER, TABLE */ }
}
VECTOR (01 C->102Z){
SLEWRATE { PIN = Z; /*fill in HEADER, TABLE */ }

}
}

Here the slewrate on pincalculated in the context of any vector is checked against the same
maximum limit.

198 Advanced Library Format (ALF) Reference Manual Version 1.9.2

Noise calculation Electrical Performance Modeling

8.13.5 Model specification and argument specification in the same context

An cumulative quantity can also be an argument irHDEROf an arithmetic model. If the
model for calculation of that quantity is within the same context as the argument of the other
model, then the value of the calculated quantity shall be used. Otherwise, the value of the
accumulated quantity shall be used.

For examplesLEWRATEan be modeled as a functionFefJENCEN the context of ECTOR

If a calculation model foFLUENCEappears in the context of the saveeTORthe value for
FLUENCEshall be used for th®@.EWRATEalculation. On the other hand, if there is no
calculation model foFLUENCHN the context of the sam&ECTORbut there is one in the context
of othervECTOR, then the accumulated valueroefJENCEfrom the other calculation models
shall be used fasLEWRATEalculation.

Example:

CELL my_cell {

PIN A { DIRECTION = input; }

PIN B { DIRECTION = input; }

PIN C { DIRECTION = input; }

PIN Z { DIRECTION = output; }

VECTOR ((01 A|01B)->102Z) { FLUENCE = 1e-5;}

VECTOR (01 A->102Z){
SLEWRATE { CALCULATION=incremental; PIN = Z;

HEADER { FLUENCE } EQUATION { 1e-8 * FLUENCE }

}

}

VECTOR (01B->102){
SLEWRATE { CALCULATION=incremental; PIN = Z;
HEADER { FLUENCE } EQUATION { 1e-8 * FLUENCE }
}
}

VECTOR (01 C->10Z){
FLUENCE = le-6;
SLEWRATE { CALCULATION=incremental; PIN = Z;
HEADER { FLUENCE } EQUATION { 1e-9 * FLUENCE }
}

}
}

After 1012 = 10P*108 occurrences ofECTOR ((01 A |01 B) -> 10 Z) , the slewrate at
pin z for VECTOR (01 A -> 10 Z) andVECTOR (01 B -> 10 Z) is increased by unit.
After 10'° = 1102 occurrences ofECTOR (01 C ->102) , the slewrate at pin for
VECTOR (01 C->102Z) is increased by unit.

8.14 Noise calculation

This section details the noise calculation definitions.

Version 1.9.2 Advanced Library Format (ALF) Reference Manual 199

Electrical Performance Modeling Noise calculation

8.14.1 NOISE_MARGIN definition

Noise margins defined as the maximal allowed difference between the ideal signal voltage
under a well-specified operation condition and the actual signal voltage normalized to the ideal
voltage swing. This is illustrated in Figure 8-17.

V' ideal (logic 1) AV, { A noise marginhign) = AX—\;
Vimin(ogicyy ~— — — — — -
v ' AV

maxfogle - — — Vg _5] noise marginioy) = Yo
V ideal (logic 0) y av

Figure 8-17: Definition of noise margin

Noise margin is measured at a signal input pin of a digital cell. The teteas signal voltage
andactual signal voltag@apply from the standpoint of that particular pin. In CMOS
technology, the ideal signal voltage at a pin is the actual supply voltage of the cell, which is not
necessarily identical to the nominal supply voltage of the chip.

TheNOISE_MARGINstatement has the form of an arithmetic model. If the submodel keywords
HIGH andLoware used, it has the form of an arithmetic model container.

Examples:
NOISE_MARGIN = 0.3;
NOISE_MARGIN { HIGH = 0.2; LOW =0.4;}

NOISE_MARGIN {
HEADER { TEMPERATURE { TABLE { 050 100} } }
TABLE {0.40.30.2}

}
NOISE_MARGINcan be related to signabLTAGEbY using the following statement:

VOLTAGE {
LOW = 0;
HIGH = 2.5;

}

NOISE_MARGIN {
LOW =0.4;
HIGH =0.3;

}

}

In this example, the valid signal voltage levels are bound by 1 veok wolt * 0.4 for logic
0 and 1.75 volt 2.5 volt * (1 - 0.3) for logic1.

200 Advanced Library Format (ALF) Reference Manual Version 1.9.2

Noise calculation Electrical Performance Modeling

8.14.2 Representation of noise in a VECTOR

In order to describe timing diagrams involving noisy signals, the symbolic statece
Section 5.4.13) shall be used. This state represents arbitrary transitions between arbitrary
states, which corresponds to the nature of noise, as shown in Figure 8-18.

possible real waveform

peak voltage

+ | —_Pulse duration I

symbolic timing diagram

Figure 8-18: Timing diagram of a noisy signal

The signal can be above or below noise margin during the statbit it shall be within noise
margin during the stateor 1. During the state*”, the signal is bound by an envelope defined
by the pulse duration and the peak voltage.

A description of the noisy signal is given in the following template:

VECTOR (0* my_pin ->*0 my_pin) {

TIME = <pulse_duration> {

FROM { PIN=my_pin; EDGE_NUMBER=0; }
TO {PIN=my_pin; EDGE_NUMBER=1; }

}

VOLTAGE = <peak_voltage> {
CALCULATION = incremental;
MEASUREMENT = peak;

PIN = my_pin;

}

}

TheVECTORIescribes the symbolic timing diagram. TheIE statement specifies the duration

of the pulse. Th&OLTAGEStatement specifies the peak voltage. The annotation
CALCULATION=incremental ~ specifies that the voltage is measured from the nominal signal
voltage level rather than from an absolute reference level and that noise voltage can add up.

It is also necessary to specify whether a noisy signal (which can oscillate above and below the

noise margin) is considered as one symbolic noise pulse or separated into multiple symbolic
noise pulses.

Version 1.9.2 Advanced Library Format (ALF) Reference Manual 201

Electrical Performance Modeling Noise calculation

TheLMIT statement forIME shall be used for that purpose, as shown in the following
example and illustrated by the timing diagram shown in Figure 8-19.

VECTOR (*0 my_pin -> 0* my_pin) {
LIMIT {
TIME {
FROM { PIN = my_pin; EDGE_NUMBER = 0; }
TO {PIN=my_pin; EDGE_NUMBER =1;}
MIN = <minimum_pulse_separation> ;

possible real waveform !

symbolic timing diagram !

pulse separation

gt

L

Figure 8-19: Separation between two noise pulses

When the minimum pulse separation is not met, consecutive noise pulses shall be symbolically
merged into one pulse.

8.14.3 Context of NOISE_MARGIN

NOISE_MARGINiS a pin-related quantity. It can appear either in the contexeiof atatement
or in the context of ECTORStatement witlPIN annotation. It can also appear in the global
context of aCELL, SUBLIBRARY, Or LIBRARY statement.

If a NOISE_MARGINstatement appears in multiple contexts, the following priorities apply:

1. NOISE_MARGINwith PIN annotation in the context of theeCTOR NOISE_MARGINwith
PIN annotation in the context of tlELL, or NOISE_MARGININ the context of theiN

2. NOISE_MARGINwithoutPIN annotation in the context of tieELL
3. NOISE_MARGINiIn the context of th6UBLIBRARY

4. NOISE_MARGININ the context of thelBRARY

202 Advanced Library Format (ALF) Reference Manual Version 1.9.2

Noise calculation Electrical Performance Modeling

5. NOISE_MARGINoutside the IBRARY

If the noise margin is constant or depends only on environmental quantities)bie MARGIN
statement shall appear within the context ofpie. The noise margin shall relate to the signal
VOLTAGHevels applicable for that pin.
Example:
PIN my_signal_pin {
PINTYPE = digital;
DIRECTION = input;
VOLTAGE { LOW =0; HIGH = 2.5;}
NOISE_MARGIN { LOW = 0.4; HIGH = 0.3; }
}
If the noise margin depends on electrical quantities related to other pins, e.g., the supply
voltage, theNOISE_MARGINstatement shall haveraN annotation and appear in the context of
the CELL.

Example:

CELL my_cell {
PIN my_signal_pin { PINTYPE = digital; DIRECTION = input; }
PIN my_power_pin { PINTYPE = supply; SUPPLYTYPE = power; }
PIN my_ground_pin { PINTYPE = supply; SUPPLYTYPE = ground; }
NOISE_MARGIN {
PIN = my_signal_pin;
HEADER {
VOLTAGE vdd { PIN = my_power_pin; }
VOLTAGE vss { PIN = my_ground_pin; }

}
EQUATION { 0.16 * (vdd - vss) }

}
If the noise margin depends on the logical states and/or the timing of other pins, the
NOISE_MARGINstatement shall haveraN annotation and appear in the context gEaTOR
describing the state-and/or timing dependency.

Example for state-dependent noise margin:

CELL my_latch {
PIN Q { DIRECTION = output; SIGNALTYPE = data; }
PIN D { DIRECTION = input; SIGNALTYPE = data; }
PIN CLK { DIRECTION = input; SIGNALTYPE = clock; POLARITY = high; }
VECTOR (CLK && ! D) { NOISE_MARGIN =0.4{PIN=D; }}
VECTOR (CLK && D) { NOISE_MARGIN =0.3{PIN=D; }}

}
Here, the pirbis only noise-sensitive whetLK s high. No noise margin is given for the case
whencCLK is low.

In the case of timing-dependency, tletor_expression shall indicate the time window
where noise is allowed and not allowed for the applicable pin. The symbolic {&te Section
5.4.13) shall be used to indicate a noisy signal.

Version 1.9.2 Advanced Library Format (ALF) Reference Manual 203

Electrical Performance Modeling Noise calculation

Example for timing-dependent noise margin:

VECTOR (*? D -> 10 CLK -> 2* D) {

TIME T1=0.35 {
FROM { PIN = D; EDGE_NUMBER =0; }
TO {PIN = CLK; EDGE_NUMBER =0; }

}

TIME T2 = 0.28 {
FROM { PIN = CLK; EDGE_NUMBER = 0; }
TO {PIN=D; EDGE_NUMBER = 1;}

}

NOISE_MARGIN = 0.44 { PIN = D; }

}
This example corresponds to the timing diagram shown in Figure 8-20.

T2 (hoid) |
I
| Y

[
noise margin
D L — — — HOIse e ain_|
oy A
| noise margln |
A |

noise-sensitive time window

CLK

Figure 8-20: Example for timing-dependent noise margin

Noise on pirDis allowedo.35 time-units before and.28 time-units after the falling edge of
CLK. During the time window in-between, the noise margmn4s .

8.14.4 Noise propagation

Noise propagatiofrom input to output can be modeled in a similar way as signal propagation,
using the concept of timing arcs. This is illustrated in Figure 8-21.

204 Advanced Library Format (ALF) Reference Manual Version 1.9.2

Noise calculation Electrical Performance Modeling

start time end time start time end time
@ input @ input . @ output @ output
| : timing arc I [

I I
peak voltage l /\

; | |
@ input input output peak voltage
pin pin @ output

Figure 8-21: Principle of noise propagation

The principle ofsignal propagations to calculate the output arrival time and slewrate from the
input arrival time and slewrate. In a more abstract way, two points in time propagate from input
to output. The same principle applies for noise propagation. Two points in time, start and end
time of the noise waveform, propagate from input to output. In addition, the noise peak voltage
also propagates from input to output. This is illustrated in Figure 8-22.

arrival time arrival time
@ inpl)ut @ oultput

timing arc
I I
| input output |
| | pin pin | |
| I I

l—p ———p
slewrate delay = arrival time @ output slewrate
@ input Y= P @ output

- arrival time @ input

Figure 8-22: Principle of signal propagation

A VECTORshall be used to describe the timing of the noise waveform. Again, the symbolic state
* (see Section 5.4.13) shall be used to indicate a noisy signal.

Example:

CELL my_cell {

PIN A { DIRECTION = input; }

PIN Z { DIRECTION = output; }

VECTOR (0*A->*0A<&>0*Z->*02Z){

DELAY T1 {

FROM { PIN = A; EDGE_NUMBER = 0; }
TO {PIN=2Z; EDGE_NUMBER =0;}
/*fillin HEADER, TABLE or EQUATION */

Version 1.9.2 Advanced Library Format (ALF) Reference Manual 205

Electrical Performance Modeling Noise calculation

DELAY T2 {
FROM { PIN = A; EDGE_NUMBER =1, }
TO {PIN=Z; EDGE_NUMBER =1, }
/*fill in HEADER, TABLE or EQUATION */

}

VOLTAGE { PIN = Z; MEASUREMENT = peak;
/*fill in HEADER, TABLE or EQUATION */

}
}

This example corresponds to the timing diagram shown in Figure 8-23.

______ peak voltage @ A

input pin A
Lh
- > I
pulse duration @ A |
I
_ | peak voltage @ Z
output pin Z T1) - T

Figure 8-23: Example of noise propagation

The input to output delay of the leading edge of the noise pulse can depend on the peak voltage
at pinA, the load capacitance at ginand other electrical quantities. In addition, the input to
output delay of the trailing edge of the noise pulse as well as the peak voltagezatgriralso
depend on the duration of the pulse atfin

Note: The time measurement from start to end of the noise pulse shall be represented by the
keywordTIME (no causality between start and end time), whereas the time
measurement from input to output shall be represented by the keyproad(causality
between input and output arrival time).

8.14.5 Noise rejection

Noise rejection is a limit case for noise propagation, when the output peak voltage is so low the
noise is considered rejected. In this case, the input peak voltage can still be above noise margin,
whereas the output peak voltage is way below noise margin.

Example:

CELL my_cell {
PIN A { DIRECTION = input; }
PIN Z { DIRECTION = output; }
VECTOR (0*A->*0A->002Z) {

206 Advanced Library Format (ALF) Reference Manual Version 1.9.2

Interconnect parasitics and analysis Electrical Performance Modeling

LIMIT {
VOLTAGE {
PIN = A; MEASUREMENT = peak;
MAX { /* fill in HEADER, TABLE or EQUATION */ }

}
}

Note: Thevector_expression 00 Z says explicitly a transition at pmdoesnot happen.
This example corresponds to the timing diagram shown in Figure 8-24.

______ peak voltage @ A
input pin A

pulse duration @ A

_ peak voltage @ Z
output pin Z is considered zero

Figure 8-24: Example of noise rejection

The peak voltage limit for noise rejection can depend on the duration of the noise pulse at pin
A and other electrical quantities, e.g., the load capacitance atlpitme peak voltage limit

does not depend on the duration of the noise pulseytheE_MARGINstatement shall be used
rather than the vector-specifioviT construct for noise rejection.

8.15 Interconnect parasitics and analysis

This section defines interconnect parasitics and analysis.

8.15.1 Principles of the WIRE statement

Parasitic descriptions shall be in the context wirE statement. The following fundamental
modeling styles are supported.

Statistical wireload models
Boundary parasitics

Statistical wireload models as well as interconnect analysis calculation models can be used
within the context of alIBRARY, SUBLIBRARY, or CELL statement. The latter applies only for
cells withCELLTYPE=block , i.e., hierarchical cells. Boundary parasitics apply exclusively for
hierarchical cells. Statistical wireload models can be mixed with boundary parasitics within the
samewIRE statement.

Version 1.9.2 Advanced Library Format (ALF) Reference Manual 207

Electrical Performance Modeling Interconnect parasitics and analysis

Interconnect analysis models shall also be defined withilrREstatement. However, they
shall not be mixed with statistical wireload models or boundary parasitic descriptions.

The purpose of interconnect analysis is to calculate electrical quantities REINASLE-
WRATEand noise/OLTAGHN the context of a netlist consisting of electrical components, such
aSCAPACITANCERESISTANCE andINDUCTANCE

As opposed to boundary parasitics, where the components are connected to physical nodes
and pins of a cell, the components represent an abstract network targeted for analysis. The
interconnect analysis model specifies a directive for reducing the parasitic extraction/delay
calculation tool to an arbitrary network. In addition, the model specifies the calculation mod-
els for delay, noise, etc. in the context of the reduced network.

8.15.2 Statistical wireload models

A statistical wireload model is a collection of arithmetic models for estimated the electrical
guantitieSCAPACITANCERESISTANCE andINDUCTANCE representing the interconnect load
and estimatedREAandsSIZE of the interconnect nets.

These arithmetic models shall havemim annotation. Only environmental quantities such as
PROCESSDERATE_CASEandTEMPERATUREhall be allowed as arguments in HEADER

In addition, the quantitieSsREA SIZE , FANOUTFANIN, andCONNECTIONSre allowed as
arguments in theEADER

FANOUTandFANIN represent the number of receiver pins and driver pins, respectively,
connected to the netONNECTIONSs the total number of pins connected to the net.
CONNECTION®quals to the sum eRANOUTandFANIN.

AREArepresents a physically measurable area of an object, whaprEasepresents an abstract
symbolic quantity or cost function for area. WheREAor SIZE is used as argument within the
HEADERIt shall represent the total area or size, respectively, allocated for place and route of the
block for which the wireload model applies. An arithmetic model givernREAor SIZE itself

shall represent the estimated or actual area or size, respectively, of the object in the context of
which the model appearseLL andwIRE are applicable objects feaREAor SIZE models.

In order to conversizE to AREA(analogous to convertimRIVE_STRENGTHO RESISTANCE

see Section 8.8.1), an arithmetic model$®E with AREAas an argument can be used outside
thewIREstatement. Arithmetic models feizE inside thewIREstatement shall be interpreted
as a calculation model rather than a conversion model.

The total area or size of a block shall be larger or equal to the area or size, respectively, of all
objects within the block, i.e., cells and wires.

Note: The area or size of a block is design-specific data, whereas the area or size of cells and
wires is given in the library.

Example:

LIBRARY my_library {
WIRE my_wIm {
CAPACITANCE {

208 Advanced Library Format (ALF) Reference Manual Version 1.9.2

Interconnect parasitics and analysis Electrical Performance Modeling

HEADER {
CONNECTIONS { TABLE{23451020}}
AREA { TABLE { 1000 10000 100000 } }

}
TABLE {

0.03 0.06 0.08 0.10 0.15 0.25
0.050.100.150.18 0.25 0.35
0.10 0.18 0.25 0.32 0.50 0.65

}

}

AREA {
HEADER {

CONNECTIONS { TABLE{23451020}}
AREA { TABLE { 1000 10000 100000 } }

}
TABLE {

030608101525
051015182535
1.01.8253.25.06.5

}
}
CELL my_cell {
AREA = 1.5;
PIN my_input { DIRECTION = input; CAPACITANCE =0.1;}
PIN my_output { DIRECTION = output; CAPACITANCE = 0.0; }

}
A net routed in a block ofREA=10000, driven by an instance aefy_cell connecting to five
receivers (i.e.CONNECTIONS=| each of which is an instancero§_cell , shall have an
estimated capacitance of 0.18+4*0.0.58 and wire area af.8 . The five cell instances
together shall have an areardf .

Note: CAPACITANCERESISTANCE andAREAcan each be independent arithmetic models
within thewIRE statement. No multiplication factor between area and capacitance or
between area and resistance is assumed.

8.15.3 Boundary parasitics

Boundary parasitics for@eLL can be given within &/IREstatement in the context of tixELL.
The parasitics shall be identified by arithmetic modelsARACITANCERESISTANCE and
INDUCTANCECcONtaining alODEannotation.

The syntax is as follows:

two_node_ multi_value_assignment ::=
NODE { node_ identifier node_ identifier }

four_node_ multi_value_assignment ::=
NODE { node_identifier node_ identifier node_ identifier
node_ identifier }

Version 1.9.2 Advanced Library Format (ALF) Reference Manual 209

Electrical Performance Modeling Interconnect parasitics and analysis

wherenode identifier is one of the following:
a simpleidentifier , referring to a declareriN of theCELL.
a hierarchical_identifier , referring to a declareelorTof aPIN of theCELL (see Sec-
tion 9.10.4)
a simpleidentifier , referring to a declaredoDEof theWIRE (see Section 8.15.4)
a simpleidentifier , hot referring to a declared object. This can be used for connectivity

inside thewIRE only.

Thetwo_node_ multi_value_assignment applies for capacitance, resistance, and self-
inductance. These components imply the following relationship between voltage and current
across the nodes:

VOLTAGE(nodel, node2)= RESISTANCE(nodel, node?) CURRENT(nodel, node2)

CURRENT(nodel, node2Fr CAPACITANCE(nodel, nod%VOLTAGE(nodel, node2)

VOLTAGE(nodel, node2= INDUCTANCE(nodel, nod%CURRENT(nodel, node2)

The four_node_ multi_value_assignment applies for mutual inductance. This component
implies the following relationship between voltage and current across the nodes:

VOLTAGE(nodel, node2~= INDUCTANCE(nodel, node2, node3, noEa‘gAtL)ZURRENT(nodeS, node4)

Note: BothPIN assignments (e.gPJN=A;) andNODEassignments (e.g0NODE{ A B }) can
refer toPINs orPORB. The fundamental semantic difference betwermassignment
and aNODEassignment is the PIN assignment within an object defines the object is
appliedor measuredt thePIN or PORT (e.g.,DELAY andSLEWRATH; theNODE
assignment within an object defines the object is fundamertafipectedvith thePIN
or PORTIN the same way an object insidels is also fundamentally connected with
thePIN. Therefore, th€ APACITANCEWith NODEassignment is a more detailed way of
describing aCAPACITANCEOf aPIN, whereas @APACITANCEwith PIN assignment
describes a load capacitance, which is applied externally to the pin.

A CELL can contain aviREstatement describing boundary parasitics as wetliastatements
containing arithmetic models f@APACITANCERESISTANCE Or INDUCTANCEIN this case the

latter shall be considered as a reduced form of the former. An analysis tool shall either use the
set of components inside then or inside thenvIRE but not a combination of both.

Example:

CELL my_cell {
PIN A { PINTYPE = digital; CAPACITANCE = 4.8; RESISTANCE = 37.9;
PORT p1 { VIEW = physical; } // see Section 9.10
PORT p2 { VIEW = none; } // see Section 9.10

210 Advanced Library Format (ALF) Reference Manual Version 1.9.2

Interconnect parasitics and analysis Electrical Performance Modeling

PIN B { PINTYPE = digital; CAPACITANCE = 2.6; }

PIN gnd { PINTYPE = supply; SUPPLYTYPE = ground; }

WIRE my_boundary_parasitics {
CAPACITANCE = 1.3{ NODE { A.pl gnd }}
CAPACITANCE = 2.8 { NODE { A.p2 gnd } }
RESISTANCE =65 { NODE { A.p1 A.p2}}
CAPACITANCE = 0.7 {NODE { Ap1B}}
CAPACITANCE =1.9{NODE {Bgnd }}

}

This example corresponds to the netlist shown in Figure 8-25.

distributed parasitics in WIRE ~ Jumped parasitics in PIN

A.pl A.p2 A 379=65*2.8/4.8

__48=07+13+28

0.7 ___ 13 | 2.8

—__109 _ 26=07+19

Figure 8-25: Example of boundary parasitic description

The distributed parasitics in th@REstatement can be reduced to the lumped parasitics in the
PIN statement.

8.15.4 NODE declaration

The nodes used for interconnect analysis shall be declared withinRlBstatement, using
the following syntax.

node ::=
NODE node _identifier { all_purpose_items }

TheNODETYPEINNotation and thRODE_CLAS@nnotation also specifically apply tolaDE

nodetype annotation ::=
NODETYPE =nodetype_ identifier ;

nodetype identifier ::=
ground
| power
| source

Version 1.9.2 Advanced Library Format (ALF) Reference Manual 211

Electrical Performance Modeling

The arithmetic models for electrical components which are part of the network shall have
names andioDEannotations, referring either to the pre-declared nodes or to internal nodes

| sink
| driver
| receiver

Interconnect parasitics and analysis

A driver nodeis the interface between a cell output pin and interconnect

A receiver nodes the interface between interconnect and a cell input pin

A source nodés a virtual start point of signal propagation; it can be collapsed with a

driver node

A sink nodes a virtual end point of signal propagation; it can be collapsed with a

receiver node

A power nodeprovides the current for rising signals at the source/driver side and a

reference for logic high signals at the sink/receiver side

A ground nodeprovides the current for falling signals at the source/driver side and a

reference for logic low signals at the sink/receiver side

which need not be declared.

Example:

WIRE my_interconnect_model {

}

NODE nO { NODETYPE = source; }
NODE n2 { NODETYPE = driver; }
NODE n4 { NODETYPE = receiver; }
NODE n5 { NODETYPE =sink; }
NODE vdd { NODETYPE = power; }
NODE vss { NODETYPE = ground; }
RESISTANCE R1 {NODE {n0On1}}
RESISTANCE R2 {NODE {n1n2}}
RESISTANCE R3 {NODE {n2n3}}
RESISTANCE R4 {NODE {n3 n4}}
RESISTANCE R5 { NODE {n4 n5}}
CAPACITANCE C1{NODE {nlvss}}
CAPACITANCE C2 { NODE { n2 vss } }
CAPACITANCE C3{ NODE {n3vss }}
CAPACITANCE C4 { NODE { n4 vss } }
CAPACITANCE C5 { NODE { n5 vss } }

This example is illustrated in Figure 8-26.

212

Advanced Library Format (ALF) Reference Manual

Version 1.9.2

Interconnect parasitics and analysis Electrical Performance Modeling

power power
driver_cell receiver_cell
squrce driver receiver sink
C\‘ R1 R2 R3 R4 R5
/\/ ni /\/ n2 /\/ n3 /\/ n4 /\/ 5
n0
C1 Cc2 C3 C4 C5 [
ground ground

Figure 8-26: Example for interconnect description

TheNODE_CLAS®nnotation is optional and orthogonal to K@DETYPENNotation.

node class annotation ::=
NODE_CLASS =node _class_ identifier ;

TheNODE_cCLAS@nnotation shall refer to a pre-declac@dsswithin thewIRE statement to
indicate which node belongs to which device in the case of separate power supplies.

Example:

WIRE my_interconnect_model {
CLASS driver_cell;
CLASS receiver_cell;
NODE n0 { NODETYPE = source; NODE_CLASS = driver_cell; }
NODE n2 { NODETYPE = driver; NODE_CLASS = driver_cell; }
NODE n4 { NODETYPE = receiver; NODE_CLASS = receiver_cell; }
NODE n5 { NODETYPE =sink; NODE_CLASS = receiver_cell; }

NODE vddl1 { NODETYPE = power; NODE_CLASS = driver_cell; }
NODE vss1 { NODETYPE = ground; NODE_CLASS = driver_cell; }
NODE vdd2 { NODETYPE = power; NODE_CLASS = receiver_cell; }
NODE vss2 { NODETYPE = ground; NODE_CLASS = receiver_cell; }

}

If NODE_CLASSs not specified, the nodes witlDDETYPE=power|ground are supposed to be
global. The DC-connected nodes WNDDETYPE=driver|[source =~ andNODETYPE-=receiver|
sink are supposed to belong to the same device.

Version 1.9.2 Advanced Library Format (ALF) Reference Manual 213

Electrical Performance Modeling Interconnect parasitics and analysis

8.15.5 Interconnect delay and noise calculation

Calculation models fobELAYandSLEWRATEanN be described in the context of BCTORNSIde
aWIRE ThePIN assignments in these models shall refer to pre-deckoed inside theviRE

Example:

WIRE my_interconnect_model {
/* node declarations */
/* electrical component declarations */
VECTOR ((01 n0O ~> 01 n5) | (10 n0 ~>10n5)) {
/* DELAY model */
/* SLEWRATE model */

}

The pre-declared electrical components which are part of the network can be used within an
EQUATIONwithout being re-declared in tiEADEROf the model.

Example:

DELAY {
FROM {PIN =n0; } TO { PIN = n5; }
EQUATION {
R1*(C1+C2+C3+C4+C5) + R2*(C2+C3+C4+C5)
+ R3*(C3+C4+C5) + R4*(C4+C5) + R5*C5

}
External components or stimuli which are not part of the network shall be declared in the
HEADERAIsO, all arguments forABLE-based models shall be in thREADERTo avoid re-
declaration of pre-declared componentsEQoATIONshall also be used for those arguments
in theHEADERWhich refer to pre-declared components.

Example:

SLEWRATE {
PIN = n5;
HEADER {
SLEWRATE { PIN = n0; TABLE {/* numbers */} }
RESISTANCE { EQUATION { R1+R2+R3+R4+R5 } TABLE {/* numbers */} }
CAPACITANCE { EQUATION { C1+C2+C3+C4+C5 } TABLE {/* numbers */} }

}
TABLE { /* numbers */ }

}
In order to model crosstalk delay and noise, at least two driver and receiver nodes are required.
The symbolic state*” (see Section 5.4.13) shall be used to indicate the signal subjected to
noise.

Example:

WIRE interconnect_model_with_coupling {
NODE aggressor_source { NODETYPE = driver; }
NODE victim_source { NODETYPE = driver; }
NODE aggressor_sink { NODETYPE = receiver; }
NODE victim_sink { NODETYPE = receiver; }

214 Advanced Library Format (ALF) Reference Manual Version 1.9.2

Interconnect parasitics and analysis Electrical Performance Modeling

NODE vdd { NODETYPE = power; }
NODE gnd { NODETYPE = ground; }
CAPACITANCE cc { NODE {aggressor_sink victim_sink}}
CAPACITANCE cv { NODE {victim_sink gnd }}
RESISTANCE rv { NODE {victim_source victim_sink}}
VECTOR (01 aggressor_sink -> ?* victim_sink -> *? victim_sink) {
/* xtalk noise model */
}
VECTOR (
(01 aggressor_source <&> 01 victim_source)
-> 01 aggressor_sink -> 01 victim_sink
) {
/* xtalk DELAY model */
}
}

Example for noise model:

VOLTAGE {
PIN = victim_sink;
MEASUREMENT = peak;
CALCULATION = incremental;
HEADER {
SLEWRATE tra { PIN = aggressor_sink; }
VOLTAGE va { NODE {vdd gnd}}

}
EQUATION { (1-EXP(-tra/(rv*cv)))*va*rv*ccitra }

}
Example for delay model:

DELAY {
FROM { PIN = victim_source; } TO { PIN = victim_sink; }
CALCULATION = incremental;
HEADER {
SLEWRATE tra { PIN = aggressor_sink; }
SLEWRATE trv { PIN = victim_source; }

}
EQUATION { (1-EXP(-tra/(rv*cv)))*rv*cc*trv/tra }

}
ThevoLTAGENodel applies for a rising aggressor signal while the victim signal is stable. The
DELAYmodel applies for rising victim signal simultaneous with or followed by a rising
aggressor signal at the coupling point. VieeToORmplicitly defines the time window of
interaction between aggressor and victim; interaction occurs only if the aggressor signal at the
coupling point intervenes during the propagation of the victim signal from its source to the
coupling point. BothvOLTAGEandDELAYrepresent incremental numbers.

8.15.6 SELECT_CLASS annotation for WIRE statement

A sophisticated tool can support more than one interconnect model. Each calculation model can
have its “netlist” with the appropriate validity range of the RC components. For instance, a
lumped model can be used for short nets and a distributed model can be used for longer nets.

Version 1.9.2 Advanced Library Format (ALF) Reference Manual 215

Electrical Performance Modeling

Also, models with different accuracy for the same net can be defined. For instance, the lumped

Interconnect parasitics and analysis

model can be used for estimation purpose and the distributed model for signoff.

For this purpose, classes can be defined to select a set of models. The selection shall be defined
by the user, in a similar way as a user can select wireload models for pre-layout parasitic

estimation. The selected class shall be indicated bgeth®eCT_CLASSannotation within the
WIRE statement.

Example:

216

LIBRARY my_library {

CLASS estimation;

CLASS verification;

WIRE rough_model_for_short_nets {
SELECT_CLASS = estimation; /* etc.*/

}

WIRE detailed_model_for_short_nets {
SELECT_CLASS = verification; /* etc.*/

}

WIRE rough_model_for_long_nets {
SELECT_CLASS = estimation; /* etc.*/

}

WIRE detailed_model_for_long_nets {
SELECT_CLASS = verification; /* etc.*/

}

Advanced Library Format (ALF) Reference Manual

Version 1.9.2

9.1

Overview

Section 9

Physical Modeling

Table 9-1 summarizes the ALF statements for physical modeling.

Table 9-1 Statements in ALF describing physical objects

—

ist-

Statement Scope Comment

LAYER LIBRARY description of a plane provided for physical objects cong
SUBLIBRARY ing of electrically conducting material

VIA LIBRARY, description of a physical object for electrical connection
SUBLIBRARY between layers

SITE LIBRARY, placement grid for a class of physically placeable objects
SUBLIBRARY

BLOCKAGE CELL physical object on a layer, forming an obstruction agains

placing or routing other objects
PORT PIN physical object on a layer, providing electrical connections
to a pin

PATTERN VIA RULE physical object on a layer, described for the purpose of
BLOCKAGHPORT defining relationships with other physical objects

RULE LIBRARY set of rules defining calculable relationships between physi-
SUBLIBRARY cal objects
CELL, PIN

ANTENNA LIBRARY set of rules defining restrictions for physical size of electri-
SUBLIBRARY cally connected objects for the purpose of manufacturing
CELL

ARTWORK VIACELL reference to an imported object from GDS2

ARRAY LIBRARY description of a regular grid for placement, global and
SUBLIBRARY detailed routing

geometric PATTERN description of the geometric form of a physical object

model

REPEAT physical object algorithm to replicate a physical object in a regular way

SHIFT physical object specification to shift a physical object in x/y direction

FLIP physical object specification to flip a physical object around an axis

ROTATE physical object specification to rotate a physical object around an axis

BETWEEN CONNECTIVITY | reference to objects with a relation to each other
DISTANCE

Version 1.9.2 Advanced Library Format (ALF) Reference Manual

217

Physical Modeling Arithmetic models in the context of layout

9.2 Arithmetic models in the context of layout

Table 9-2 shows keywords for arithmetic models in the context of layout.

Table 9-2 Arithmetic models for layout data

Base Default

Keyword Value type units units Description
SIZE non-negative num- | N/A 1 abstract, unitless measurement for the sfze
ber of a physical object
AREA non-negative num- | Square| p (pico) | area in square microns (pico = migyo
ber Meter
DISTANCE non-negative num- | Meter | u (micro) | distance between two points in microns
ber
HEIGHT positive number Meter | u (micro) | y- dimension of a placeable object
(e.g., cell or block)
z- dimension of a routeable object (e.g.,
pattern on routing layer), representing the
absolute height above substrate
LENGTH positive number Meter | u (micro) | x-, or y- dimension of a routeable object]
(e.g., pattern on routing layer) measured|in
routing direction
WIDTH positive number Meter| u (micro) | x-dimension of a placeable object
(e.g., cell or block)
x- or y- dimension of a routeable object
(e.g., pattern on routing layer) measured|in
orthogonal direction to the route
PERIMETER | positive number Meter | u (micro) | circumference of a physical object
THICKNESS | positive number Meter| u (micro) | z- dimension of a manufacturable physidal

object, representing the distance betwegn
the bottom of the object above and the tpp
of the object below

OVERHANG | non-negative num- | Meter | u (micro) | distance between the edges of two overlpp-
ber ping physical objects

EXTENSION | non-negative num- | Meter | u (micro) | distance between the center and the ouger
ber edge of a physical object

Table 9-3 through Table 9-12 summarize the semantic meanings of arithmetic model key-
words in the context of layout.

218 Advanced Library Format (ALF) Reference Manual Version 1.9.2

Arithmetic models in the context of layout

Table 9-3 Semantic meaning of SIZE

2]

Context Meaning
CELL abstract measure for size of the cell, cost function for design implementation
WIRE - as a modelABLE or EQUATION:
abstract measure for the size of the wire itself
- as argument of a moddEADER
abstract measure for size of the block for which the wireload model applies,
can be calculated by combining the size of all cells and all wires in the block
ANTENNA abstract measure for size of the antenna for which the antenna rule applies
Table 9-4 Semantic meaning of WIDTH
Context Meaning
CELL, SITE horizontal distance between cell or site boundaries, respectively
WIRE as argument of a moddiEADER
horizontal distance between block boundaries for which wireload model applie
LAYER width of a wire, orthogonal to routing direction
ANTENNA
Table 9-5 Semantic meaning of HEIGHT
Context Meaning
CELL, SITE vertical distance between cell or site boundaries, respectively
WIRE as argument of a moddEADER
vertical distance between block boundaries for which wireload model applies
LAYER distance from top of ground plane to bottom of wire
Table 9-6 Semantic meaning of LENGTH
Context Meaning
WIRE estimated routing length of a wire in a wireload model
LAYER actual routing length of a wire in layout
ANTENNA
Version 1.9.2 Advanced Library Format (ALF) Reference Manual 219

Physical Modeling

Physical Modeling

Arithmetic models in the context of layout

Table 9-7 Semantic meaning of AREA

object

Context Meaning
CELL physical area of the cell, product of width and height of a rectangular cell
WIRE - as a modelABLE or EQUATION:
physical area of the wire itself
- as argument of a moddEADER
physical area of the block for which wireload model applies,
product of width and height of rectangular block
LAYER VIA, physical area of a placeable or routeable object, measured in the x-y plane
ANTENNA
Table 9-8 Semantic meaning of PERIMETER
Context Meaning
CELL perimeter of the cell, twice the sum of height and width for rectangular cell
WIRE - as a modelABLE or EQUATION:
perimeter the wire itself
- as argument of a modd EADER
perimeter of the block for which wireload model applies,
twice the sum of height and width for rectangular block
LAYER, VIA, | perimeter of a placeable or routeable object, measured in the x-y plane
ANTENNA
Table 9-9 Semantic meaning of DISTANCE
Context Meaning
RULE distance between objects for which the rule applies
Table 9-10 Semantic meaning of THICKNESS
Context Meaning
LAYER distance between top and bottom of a physical object, orthogonal to the x-y plane
ANTENNA
Table 9-11 Semantic meaning of OVERHANG
Context Meaning
RULE distance between the outer border of an object and the outer border of another
inside the first one
220 Advanced Library Format (ALF) Reference Manual Version 1.9.2

Statements for geometric transformation Physical Modeling

Table 9-12 Semantic meaning of EXTENSION

Context Meaning

LAYER VIA, | distance between the border of the original object and the border of the same pbject
RULE after enlargement

geometric

model

9.3 Statements for geometric transformation

This section defineSHIFT, ROTATE FLIP, andREPEAT

9.3.1 SHIFT statement

ThesHIFT statement defines the horizontal and vertical offset measured between the coordi-
nates of the geometric model and the actual placement of the object. Eventually, a layout tool
only supports integer numbers. The numbers are in units of DISTANCE.

shift_ annotation_container ::=

SHIFT { horizontal_or_vertical_ annotations }
horizontal_or_vertical _ annotations ::=
horizontal annotation
| vertical annotation
| horizontal_ annotation vertical_ annotation
horizontal _ annotation ::=

HORIZONTAL = number ;

vertical annotation ::=
VERTICAL = number ;

If only one annotation is given, the default value for the other oelisthe SHIFT statement
is not given, both values defaultdo

9.3.2 ROTATE statement

Therotate_ annotation statement defines the angle of rotation in degrees measured
between the orientation of the object described by the coordinates of the geometric model and
the actual placement of the object measured in counter-clockwise direction, specified by a
number between and360. Eventually, a layout tool can only support angles which are multi-
ple of 90 degrees. The defaulbis

rotate_ annotation ::=
ROTATE = number ;

The object shall rotate around its origin.

Version 1.9.2 Advanced Library Format (ALF) Reference Manual 221

Physical Modeling Statements for geometric transformation

9.3.3 FLIP statement

Theflip_ annotation describes a transformation of the specified coordinates by flipping the
object around an axis specified by a number betwestd180. The number represents the
angle of the flipping direction in degrees. Eventually, a layout tool can only support angles
which are multiple of 90 degrees. The axis is orthogonal to the flipping direction. The axis
shall go through the origin of the object.

flip_ annotation ::=
FLIP = number ;

Example:

FLIP=0 means flip in horizontal direction, axis is vertical.
FLIP=90 means flip in vertical direction, axis is horizontal.

9.34 REPEAT statement
TheREPEATstatement shall be defined as follows:

repeat ::=
REPEAT = unsigned] {
shift_ annotation_container
[repeat]

}

The purpose of thREPEATStatement is to describe the replication of a physical object in a
regular way, for examplgITE (see Section 9.12). TIREPEATStatement can also appear
within ageometric_model

Theunsigned number defines the total number of replications. The numbesans, the
object appears just once. If this number is not givenRribrEATStatement defines a rule for an
arbitrary number of replications.

REPEATStatements can also be nested.

Examples:

The following example replicates an object three times along the horizontal axis in a distance
of 7 units.

REPEAT = 3 {
SHIFT { HORIZONTAL = 7; }

}
The following example replicates an object five times along a 45-degree axis.

REPEAT =5{
SHIFT { HORIZONTAL = 4; VERTICAL = 4; }

}

222 Advanced Library Format (ALF) Reference Manual Version 1.9.2

Statements for geometric transformation Physical Modeling

The following example replicates an object two times along the horizontal axis and four times
along the vertical axis.

REPEAT = 2{
SHIFT { HORIZONTAL = 5; }
REPEAT = 4{
SHIFT { VERTICAL = 6; }
}
}

Note: The order of nestarEPEATStatements does not matter. The following example gives
the same result as the previous example.

REPEAT =4 {
SHIFT { VERTICAL = 6; }
REPEAT =2 {
SHIFT { HORIZONTAL = 5; }
}
}
9.35 Summary of geometric transformations

geometric_transformations ::=
geometric_transformation { geometric_transformation }

geometric_transformation ::=
shift_ annotation_container
| rotate_ annotation
| flip_ annotation
| repeat

Rules and restrictions:

» A physical object can containgaometric_transformation statement of any kind, but no
more than one of a specific kind.

* Thegeometric_transformation statements shall apply to akometric_models ~ within
the context of the object.

* Thegeometric_transformation statements shall refer to the origin of the object, i.e., the
point with coordinateg 0 0 } . Therefore, the result of a combined transformation shall be
independent of the order in which each individual transformation is applied.

These are demonstrated in Figure 9-1.

Version 1.9.2 Advanced Library Format (ALF) Reference Manual 223

Physical Modeling ARTWORK statement

FLIP - ROTATE _____ . SHIFT
— : : — N —
\ \ | |
] o °
\ \ | |
| | | |
| Lo | |
\ T "
® @ o o | E |
|
______ | I \
;________,l :
\ |
\ |
legend: @ origin of the object \

Figure 9-1: lllustration of FLIP, ROTATE, and SHIFT

94 ARTWORK statement

The ARTWORKtatement shall be defined as follows:

artwork ::=
ARTWORK =artwork_ identifier {
[geometric_transformations]
{ pin_assignments }

}

The ARTWORKtatement creates a reference between the cell in the library and the original cell
imported from a physical layout database (e.g., GDS2).

Thegeometric_transformations define the operations for transformation from the artwork
geometry to the actual cell geometry. In other words, the artwork is considered as the original
object whereas the cell is the transformed object.

The imported cell can have pins with different names. The LHS @irth&signments
describes the pin names of the original cell, the RHS describes the pin names of the cell in this
library. See Section 11.4 for the syntaxof assignments

Example:

CELL my_cell {

PIN A { /*fill in pin items */ }

PIN Z { /*fill in pin items */ }

ARTWORK =\GDS23$!@#$ {
SHIFT { HORIZONTAL = 0; VERTICAL = 0; }
ROTATE = 0;
\GDS2$!@#$A = A;
\GDS2$!@#$B = B;

224 Advanced Library Format (ALF) Reference Manual Version 1.9.2

LAYER statement Physical Modeling
9.5 LAYER statement
This section defines the\YERstatements.
9.5.1 Definition
TheLAYERstatement shall be defined as follows:
layer ::=
LAY ERidentifier { layer_items }
layer_items ::=
layer_item { layer_item }
layer_item ::=
all_purpose_item
| arithmetic_model
| arithmetic_model_container
The syntax and semanticsatif purpose_item , arithmetic_model_container , and
| arithmetic_model are defined in Section 11.7 and Section 11.16.
Specific items applicable faaYERare listed in Table 9-3.
Table 9-13 Items for LAYER description
Item Applies for layer Usable ALF statement Comment
Il PURPOSE = <identifier> .
| PUIROSE 2 : ceniet see Section 9.5.2
ropert routing, cut, master PROPERTY {
| Propery Hing. <4 ' td see Section 3.2.7
t densit ting, cut LIMIT { CURRENT .
current density | routing, cu { see Section 7.5,
limit {..MAX{..}} - .
Section 8.1.2, Section
7.6.1, Section 8.9.1,
and Section 9.5.5
resistance routing, cut RESISTANCE{
' Hiing. e el see Section 8.7.2 and
Section 9.5.5
it ti CAPACITANCE({... .
capactiance routing bt see Section 8.7.2 and
Section 9.5.5
default width or | routing WIDTH { DEFAULT = .
minimum width <number>; } see _SeCtlon 7.1.4.,
Section 9.2, and
Section 9.5.5
manufacturing | routing WIDTH { MIN = <number>;

tolerance for
width

TYP = <number>;
MAX = <number>; }

see Section 7.6.1,
Section 8.9.1, and
Section 9.5.5

| Version 1.9.2

Advanced Library Format (ALF) Reference Manual

225

Physical Modeling LAYER statement

Table 9-13 Items for LAYER description, continued

Item Applies for layer Usable ALF statement Comment

default wire routing EXTENSION { DEFAULT = .

extension <number>; } see _Sectlon 9.7.4 and
Section 9.5.5

height routing, cut, masten HEIGHT = <number>; .

g g see Section 9.2

thickness routing, cut, master THICKNESS = <number>; .
see Section 9.2

preferred rout- | routing PREFERENCE .

ing direction see Section 9.5.4

Note: Rules involving relationships between objects within one or several layers is described
in the RULE statement (see Section 9.11).

9.5.2 PURPOSE annotation
The purpose of each layer shall be identified usingtifPOSENNnotation.

layer_purpose assignment :;=
PURPQOSE = Jayer purpose_identifier ;

layer_purpose _identifier ::=
routing

cut

substrate
dielectric
reserved

| abstract

The identifiers have the following definitions:

routing: layer provides electrical connections within one plane
cut layer provides electrical connections between planes
substrate layer(s) at the bottom

dielectric provides electrical isolation between planes
reservedlayer is for proprietary use only

abstract not a manufacturable layer, used for description of boundaries between
objects

LAYERstatements shall be in sequential order defined by the manufacturing process, starting
bottom-up in the following sequence: one or multiple substrate layers, followed by alternating

cut and routing layers, then the dielectric layer. Abstract layers can appear at the end of the

sequence.

226 Advanced Library Format (ALF) Reference Manual Version 1.9.2

LAYER statement Physical Modeling

953 PITCH annotation

ThePITCH annotation identifies the routing pitch for a layer VAtltRPOSE=routing .

pitch_ annotation ::=
PITCH = non_negative_number ;

The pitch is measured between the center of two adjacent parallel wires routed on the layer.

954 PREFERENCE annotation
The PREFERENCENNOtation foLAYERshall have the following form:

routing_preference annotation ::=
PREFERENCE =routing_preference identifier ;

routing_preference identifier ::=
horizontal
| vertical

The purpose is to indicate the preferred routing direction.

9.5.5 Example

This example contains a default width (the synta igurpose_item), resistance, capaci-
tance, and current limits (the syntaxaishmetic_model) for arbitrary wires in a routing

layer. Since width and thickness are arguments of the models, special wires and fat wires are
also taken into account.

LAYER metall {

PURPOSE = routing;

PREFERENCE { HORIZONTAL = 0.75; VERTICAL = 0.25; }

WIDTH { DEFAULT = 0.4; MIN = 0.39; TYP = 0.40; MAX =0.41;}

THICKNESS { DEFAULT =0.2; MIN =0.19; TYP = 0.20; MAX =0.21; }

EXTENSION { DEFAULT =0; }

RESISTANCE {
HEADER { LENGTH WIDTH THICKNESS TEMPERATURE }
EQUATION {

0.5*(LENGTH/(WIDTH*THICKNESS))
(1.0+0.01(TEMPERATURE-25))
}
}
CAPACITANCE {
HEADER { AREA PERIMETER }
EQUATION { 0.48*AREA + 0.13*PERIMETER*THICKNESS }
}
LIMIT {
CURRENT ac_limit_for_avg {
UNIT = mAmp ;
MEASUREMENT = average ;
HEADER ({

| Version 1.9.2 Advanced Library Format (ALF) Reference Manual 227

Physical Modeling Geometric model statement

WIDTH { UNIT = uM; TABLE { 0.4 0.8} }
FREQUENCY { UNIT = megHz; { 1 100 } }
THICKNESS { UNIT = uM; TABLE {0.20.4 } }

}
TABLE {
2.0e-6 4.0e-6 1.5e-6 3.0e-6
4.0e-6 8.0e-6 3.0e-6 6.0e-6
}
}
CURRENT ac_limit_for_rms {
UNIT = mAmp ;
MEASUREMENT =rms ;
HEADER ({
WIDTH { UNIT = uM; TABLE {0.4 0.8} }
FREQUENCY { UNIT = megHz; {1100} }
THICKNESS { UNIT =uM; TABLE {0.20.4}}
}
TABLE {
4.0e-6 7.0e-6 4.5e-6 7.5e-6
8.0e-6 14.0e-6 9.0e-6 15.0e-6
}
}
CURRENT ac_limit_for_peak {
UNIT = mAmp ;
MEASUREMENT = peak ;
HEADER ({
WIDTH { UNIT = uM; TABLE {0.4 0.8} }
FREQUENCY { UNIT = megHz; {1100} }
THICKNESS { UNIT = uM; TABLE {0.20.4}}
}
TABLE {
6.0e-6 10.0e-6 5.9e-6 9.9e-6
12.0e-6 20.0e-6 11.8e-6 19.8e-6
}
}
CURRENT dc_limit {
UNIT = mAmp ;
MEASUREMENT = static ;
HEADER ({
WIDTH { UNIT = uM; TABLE {0.4 0.8} }
THICKNESS { UNIT = uM; TABLE {0.20.4}}
}
TABLE { 2.0e-6 4.0e-6 4.0e-6 8.0e-6 }
}

9.6 Geometric model statement

This section defines the geometric model statement and how to predefine commonly used
objects (USINGEMPLATE.

228 Advanced Library Format (ALF) Reference Manual Version 1.9.2

Geometric model statement Physical Modeling

9.6.1 Definition
The geometric model statement shall be defined as follows:

geometric_model ::=
geometric_model identifier
[geometric_model_name_ identifier] {
all_purpose_items
coordinates

}

| geometric_model template_instantiation

geometric_models ::=
geometric_model { geometric_model }

geometric_model_identifier ::=
DOT
| POLYLINE

| RING
| POLYGON

coordinates ::=
COORDINATES { x_number y number{ x_number y number} }

A point is a pair ok_number andy_number.
A DOTis 1 point.
A POLYLINE is defined by>1 connected points, forming an open object.

A RING is defined byw>1 connected points, forming a closed object, i.e., the last point is
connected with first point. The object occupies the edges of the enclosed space.

A POLYGOI defined byN>1 connected points, forming a closed object, i.e., the last point is
connected with first point. The object occupies the entire enclosed space.

All of these are depicted in Figure 9-2.

POLYLINE RING POLYGON

Figure 9-2: Illustration of geometric models

Version 1.9.2 Advanced Library Format (ALF) Reference Manual 229

Physical Modeling Geometric model statement

See Section 9.3.4 for the definition of thpeat statement.

The point_to_point_ annotation applies folPOLYLINE, RING, andPOLYGON

It specifies how the connections between points is made. The detauaiyis , which
defines a straight connection (see Figure 9-3). The valtiénear specifies a connection
by moving in the x-direction first and then moving in the y-direction (see Figure 9-4). This
enables a non-redundant specification of rectilinear objects ngingpints instead afl

points.

point_to_point_ annotation ::=

POINT_TO_POINT = point_to_point_ identifier ;

point_to_point_ identifier ::=
straight
| rectilinear

Y-axis A straight connection straight connection
9 T from (-1/8) to (-1/5) [from (3/8) to (-1/8)
8 X X
7
6 straight connection
5 . « from (-3/5) to (3/8)
4
3 straig;t connection
5 from (-1/5) to (3/5)
1

>
5 -4 -3 -2 -101 2 3 4 5 X-axis

Figure 9-3: lllustration of straight point-to-point connection

230 Advanced Library Format (ALF) Reference Manual Version 1.9.2

Geometric model statement Physical Modeling

Y-axis
A rectilinear connection from (-3/8) to (-1/5)

X

X

rectilinear connection from (-1/5) to (3/8)

P N W~ 01O N 00 ©

5 4 -3 -2 -1 01 2 3 4 5 X-axis

Figure 9-4: lllustration of rectilinear point-to-point connection

Example:

POLYGON {
POINT_TO_POINT = straight;
COORDINATES {-153538-18}

}

POLYGON {
POINT_TO_POINT = rectilinear;
COORDINATES{-1538}

}

Both objects describe the same rectangle.

9.6.2 Predefined geometric models using TEMPLATE

The TEMPLATEconstruct (see Section 3.2.6) can be used to predefine some commonly used
objects.

The templates RECTANGLE and LINE shall be predefined as follows:

TEMPLATE RECTANGLE {
POLYGON {
POINT_TO_POINT = rectilinear;
COORDINATES { <left> <bottom> <right> <top> }

Version 1.9.2 Advanced Library Format (ALF) Reference Manual 231

Physical Modeling Geometric model statement

TEMPLATE LINE {
POLYLINE {
POINT_TO_POINT = straight;
COORDINATES { <x_start> <y_start> <x_end> <y_end> }

}

The following example shows the instantiation of predefined templates.

/I same rectangle as in previous example
RECTANGLE {left = -1; bottom = 5; right = 3; top = 8; }
Ilor

RECTANGLE {-1538}

/I diagonals through the rectangle

LINE {x_start=-1;y start=5;x_end=3;y end=8;}
LINE {x_start=3;y start=5;x end=-1;y end=8;}
Ilor

LINE{-1538}

LINE{35-18}

The definitions for predefined templates are fixed. Therefore the keywords RECTANGLE and
LINE are reserved. On the other hand, the definitions for user-defined templates are only
known by the library supplied by the user.

The following example shows some user-defined templates.

TEMPLATE HORIZONTAL_LINE {
POLYLINE {
POINT_TO_POINT = straight;
COORDINATES { <left> <y> <right> <y>}

}
}
TEMPLATE VERTICAL_LINE {
POLYLINE {
POINT_TO_POINT = straight;
COORDINATES { <x> <bottom> <x> <top> }
}
}

The following example shows the instantiation of user-defined templates.

/I lines bounding the rectangle
HORIZONTAL_LINE {y =5; left =-1; right = 3; }
HORIZONTAL_LINE {y = 8; left =-1; right = 3; }
VERTICAL_LINE { x = -1; bottom = 5; top = 8; }
VERTICAL_LINE { x = 3; bottom = 5; top = 8; }
/lor

HORIZONTAL_LINE {5-13}
HORIZONTAL_LINE {8-13}
VERTICAL_LINE{-158}
VERTICAL_LINE{358}

232 Advanced Library Format (ALF) Reference Manual Version 1.9.2

PATTERN statement Physical Modeling

9.7 PATTERN statement

This section defines tiATTERNStatement and its annotations.

9.7.1 Definition

ThePATTERNstatement shall be defined as follows:

pattern ::=
PATTERN identifier] {
[all purpose_items]
[geometric_models]
[geometric_transformations |
}

9.7.2 SHAPE annotation
ThesHAPEannotation is defined as follows

shape_ assignment ::=
SHAPE = shape_ identifier)

shape_ identifier ::=
line

| tee

| Cross

| jog

| corner

| end

SHAPEapplies only for @ATTERNIN a routing layer, as shown in Figure 9-5. The default is
line

line jog

end

B &
tee j corner
+ cross ?

Figure 9-5: Routing layer shapes

Version 1.9.2 Advanced Library Format (ALF) Reference Manual 233

Physical Modeling PATTERN statement

line andjog represent routing segments, which can have an indivigned THandwIDTH
TheLENGTHbetweerrouting segments is defined as the common run lengthbiSmaNcE
betweerrouting segments is measured orthogonal to the routing direction.

tee , cross , andcorner represent intersections between routing segmendstepresents the
end of a routing segment. Therefore, they have points rather than lines as references. The
points can have aaXTENSION TheDISTANCEbetween points can be measured straight or by
USINgGHORIZONTALaNdVERTICAL.

9.7.3 LAYER annotation

Thelayer_ annotation defines the layer where the object resides. The layer shall have been
declared before.

layer_ annotation ::=
LAYER = Jayer_identifier :

974 EXTENSION annotation

Theextension_ annotation specifies the value by which the drawn object is extended at all
sides.

extension_ annotation ::=

EXTENSION = non_negative_number ;

The default value oéxtension annotation IS 0.

975 VERTEX annotation

Thevertex_ annotation shall appear only in conjunction with tleetension_ annotation
It specifies the form of the extended object, as shown in Figure 9-6.

vertex _ annotation ::=

VERTEX = vertex_ identifier :

vertex_ identifier ::=
round
| straight

The default value ofertex annotation is straight

234 Advanced Library Format (ALF) Reference Manual Version 1.9.2

VIA statement Physical Modeling

N\
\ N
EXTENSION =1 AN N\

\ S

VERTEX = straight VERTEX = round

Figure 9-6: lllustration of VERTEX annotation

9.7.6 PATTERN with geometric model

A geometric_model describes the form of a physical object; it does not describe a physical
object itself. Thejeometric_model shall be in the context ofRATTERN

A pattern can contaigeometric_model Statements, geometric transformation statements
(see Section 9.3.5), anad purpose_items (see Section 11.7).

9.7.7 Example

PATTERN {
LAYER = metall;
EXTENSION = 1;
DOT { COORDINATES {510}}

}

This object is effectively a square, with a lower left corres,{=9) and upper right corner
(x=6,y=11).

9.8 VIA statement

This section defines thaA statement and its annotations.

98.1 Definition
TheviA statement shall be defined as follows:

via .=
VIA [identifier] { via_items }

Version 1.9.2 Advanced Library Format (ALF) Reference Manual 235

Physical Modeling VIA statement

via_items ::=

via_item { via_item }
via_item ::=

all_purpose_item

| pattern
| arithmetic_model

TheVviA statement shall contain at least three patterns, referring to the cut layer and two adja-
cent routing layers. Stacked vias can contain more than three patterns.

Theall_purpose_items andarithmetic_models for viA are listed in Table 9-14.

Table 9-14 Items for VIA description

ltem Usable ALF statement Comment
property PROPERTY

see Section 3.2.7

resistance RESISTANCE .
see Section 8.7.2

GDS2 ref ARTWORK - i
reterence see Section 9.4 and Section 9.8.3

usage USAGE

see Section 9.8.2 and Section 9.8.3

9.8.2 USAGE annotation
TheusAaGEannotation for &IA shall have one of the following mutually exclusive values.

usage_annotation ::=
USAGE = usage _ identifier :

usage _identifier ::=
default
| non_default
| partial_stack
| full_stack

The identifiers have the following definitions:

default via can be used per default
non_defaultvia can only be used if authorized br@aLE

partial_stack via contains 3 patterns: lower and upper routing layer and cut layer in-
between. It can only be used to build stacked vias. The bottom of a stack can be a
default Or anon_default via.

full_stack via contains 2N+1 patterns (N>1). It describes the full stack from bottom to
top.

236 Advanced Library Format (ALF) Reference Manual Version 1.9.2

VIA statement Physical Modeling

9.8.3 Example

VIA via_with_two_contacts_in_x_direction {
ARTWORK = GDS2_name_of _my_via {
SHIFT { HORIZONTAL = -2; VERTICAL =-3; }
ROTATE = 180;
}
PATTERN via_contacts {
LAYER=cut_1_2;
RECTANGLE {1133}
REPEAT =2 {
SHIFT{ HORIZONTAL =4, }
REPEAT =1
SHIFT { VERTICAL = 4; }
Pl
PATTERN lower_metal {
LAYER =metal_1;
RECTANGLE {0084}
}
PATTERN upper_metal {
LAYER = metal_2 ;
RECTANGLE {0084}

}

A TEMPLATE(see Section 3.2.6) can be used to define a construction rule for a via.

TEMPLATE my_via_rule
VIA <via_rule_name> {

PATTERN via_contacts {
LAYER=cut 1 _2;
RECTANGLE {1133}
REPEAT = <x_repeat> {

SHIFT{ HORIZONTAL =4; }
REPEAT =<y repeat>{
SHIFT { VERTICAL = 4; }
Py}

PATTERN lower_metal {
LAYER = metal_1;
RECTANGLE { 0 0 <x_cover> <y _cover>}

}

PATTERN upper_metal {
LAYER = metal_2 ;
RECTANGLE { 0 0 <x_cover> <y _cover>}

}

A static instance of theEMPLATEcan be used to create the same via as in the first example
(except for the reference to GDS2):

Version 1.9.2 Advanced Library Format (ALF) Reference Manual 237

Physical Modeling

my_via_rule {
via_rule_name = via_with_two_contacts_in_x_direction;
X_cover = 8;
y_cover = 4;
X_repeat = 2;
y_repeat =1;
}

BLOCKAGE statement

A dynamic instance of thHEEMPLATE(see Section 5.6.8) can be used to create a via rule.

my_via_rule = dynamic {
via_rule_name = via_with_NxM_contacts;
X_cover = 8;
y_cover = 4;
X_repeat {
HEADER { x_cover { TABLE{481216}}}
TABLE{1234}

}

y_repeat {
HEADER {y cover { TABLE{4812161}}}
TABLE{1234}

}

}

Instead of defining fixed values for the placeholders, here the mathematical relationships
between the placeholders are defined, which can generate a via rule for any set of values.

984 VIA reference

Certain physical objects can contain a reference to one or more vias, using the following

statement.

via_reference ::=
VIA{ via_instantiations }

via_instantiations ::=
via_instantiation { via_instantiation }

via_instantiation ::=
via_ identifier { geometric_transformations }
Thevia_ identifier shall be the name of an already defined.

Example for a via reference irP@RT see Section 9.10.

9.9 BLOCKAGE statement

This section defines thEL.OCKAGBtatement and its use.

99.1 Definition

TheBLOCKAGKtatement shall be defined as follows:

238 Advanced Library Format (ALF) Reference Manual

Version 1.9.2

PORT statement Physical Modeling

blockage ::=
BLOCKAGIEidentifier] {
[all_purpose_items]
[patterns]
}

See Section 11.7 for applicakié purpose_items

9.9.2 Example

CELL my_cell {
BLOCKAGE my_blockage {
PATTERN p1 {
LAYER = metall,;
RECTANGLE{-1538}
RECTANGLE {61238}

}
PATTERN p2 {

LAYER = metal2;
RECTANGLE {-1538}

}

The BLOCKAGEONSIsts of two rectangles coveringtall and one rectangle covering
metal2 .

9.10 PORT statement

This section defines tirORTstatement and its use.

9.10.1 Definition
A port is a collection of geometries within a pin, representing electrically equivalent points.

ThePoORTstatement shall be defined as follows:

port ;=
PORT port_ identifier :
| PORT [port_ identifier] {

[all_purpose_items]
[patterns]
[via_reference]

}

A numerical digit can be used as the first charactewin identifier . In this case the num-

ber shall be proceeded by the escape character (see Section 10.3.8) in the declaration of the
PORT

Version 1.9.2 Advanced Library Format (ALF) Reference Manual 239

Physical Modeling PORT statement

ThepPoORTstatement is legal within the context oPan statement. For this purpose, the syntax
for pin_item (see Section 11.11) shall be augmented as follows:

pin_item ::=
all_purpose_item
| arithmetic_model
| port

A pin can have either reORTstatement, an arbitrary numberraiRTstatements with a
port_ identifier , Or exactly on®@ORTstatement without gort_ identifier

9.10.2 VIA reference

A PORTcan contain a reference to one or more vias by usingisheference ~ statement (see
Section 9.8.4).

Example:

VIA my_via { /* put via definition here */ }

/I later in the same library
CELL my_cell {
PIN my_pin {
PORT my_port {
VIA {
my_via { SHIFT { HORIZONTAL = 1.0 ; VERTICAL=2.0;}}
my_via { SHIFT { HORIZONTAL =5.0 ; VERTICAL=8.0;}}

}
}

TheVIA my via Iisinstantiated twice in theORT my_port within thePIN my_pin of theCELL
my_cell . The origin of the instantiated vias is shifted with respect to the origin of the cell, as
specified by thesHIFT statements.

9.10.3 CONNECTIVITY rules for PORT and PIN

By default, all connections to a pin shall be made to the same port. Different ports of a pin
shall not be connected externally. Those defaults can be overridden by using connectivity
rules for ports within a pin.

Pins of the same cell shall not be shorted externally by default. This default can also be over-
ridden by using connectivity rules for pins within a cell.

Example:

PIN A {
PORT P1 { VIEW=physical; }
}

240 Advanced Library Format (ALF) Reference Manual Version 1.9.2

PORT statement Physical Modeling

PIN B {
PORT Q1 { VIEW=physical; }
PORT Q2 { VIEW=physical; }
PORT Q3 { VIEW=physical; }
CONNECTIVITY {
CONNECT_RULE = can_short;
BETWEEN { Q1 Q3 }
}
CONNECTIVITY {
CONNECT_RULE = cannot_short;
BETWEEN { Q1 Q2 }
}
CONNECTIVITY {
CONNECT_RULE = cannot_short;
BETWEEN { Q2 Q3 }
}
}
CONNECTIVITY {
CONNECT_RULE = must_short;
BETWEEN {AB}

}

The router can make external connections betwpaemdQ3, but not betwee1 andQ2 or
betweermQ2 andQs3, respectively. The router shall make an external connection betren
and any port oB (B.Q1, B.Q2, 0rB.Q3).

9.10.4 Reference of a declared PORT in a PIN annotation

In the context of timing modeling,FORTcan have the semantic meaning @iN. For exam-
ples,PORB can be used &ronvand/orTopoints of delay measurements -- use a reference by
a hierarchical_identifier

Example:

CELL my_cell {

PIN A {
DIRECTION = input;
PORT p1;
PORT p2;

}

PIN Z {
DIRECTION = output;

}
VECTOR (01 A->01Z){

DELAY {
FROM { PIN = A.p1;}
TO{PIN=Z;}

Version 1.9.2 Advanced Library Format (ALF) Reference Manual 241

Physical Modeling RULE statement

}

DELAY {
FROM { PIN = A.p2; }
TO{PIN=Z;}

}
9.10.5 VIEW annotation

A subset of values for thelEw annotation inside BIN (see Section 6.4.1) shall be applicable
for aPORTas well.

port_view_ annotation ::=
VIEW = port view_identifier ;

port_view_ identifier ::=
physical
| none

VIEW=physical shall qualify theeORTas a real port with the possibility to connect a routing
wire to it.

VIEW=none shall qualify theeORTas a virtual port for modeling purpose only.

9.10.6 LAYER annotation

Thelayer_ annotation can appear insideRDRT(see Section 9.10).

9.10.7 ROUTING_TYPE

A PORTcan inherit theROUTING_TYPHrom itsPIN or it can have its OWROUTING_TYPENNO-
tation.

9.11 RULE statement

This section defines tiRULEstatement and its use.

9.11.1 Definition
TheRULEstatement shall be defined as follows:

rule ::=
RULE] identifier] { rule_items }

rule_items ::=
rule_item { rule_item }

242 Advanced Library Format (ALF) Reference Manual Version 1.9.2

RULE statement

rule_item ::=
pattern
| all_purpose_item
| arithmetic_model

Theall_purpose_items for RULE are listed in Table 9-15.

Table 9-15 Items for RULE description

Physical Modeling

Iltem Usable ALF statement Comment

rule is for same netf CONNECTIVITY
or different nets

see Section 9.10.3 and

Section 9.15
spacing rule LIMIT { DISTANCE ... } see Section 7.5 and
Section 9.11.2
overhang rule LIMIT { OVERHANG ... }

see Section 7.5 and
Section 9.11.3

The rules for spacing and overlap, respectively, shall be expressed usingtheonstruct

with DISTANCEandOVERHANG@espectively, as keywords for the arithmetic models (see Sec-
tion 7.5 and Section 7.6.1). The keyworf3RIZONTALANdVERTICAL shall be introduced as
qualifiers for arithmetic submodels (see Section 7.6) to distinguish rules for different routing
directions. If these qualifiers are not used, the rule shall apply in any routing direction.

9.11.2 Width-dependent spacing

An example of width-dependent spacing is:

RULE width_and_length_dependent_spacing {
PATTERN segmentl { LAYER = metal_1; SHAPE = line; }
PATTERN segment2 { LAYER = metal_1; SHAPE = line; }
CONNECTIVITY {
CONNECT_RULE = cannot_short;
BETWEEN { segmentl segment?2 }
}
LIMIT {
DISTANCE { BETWEEN { segmentl segment2 }
MIN {
HEADER {
WIDTH w1 {
PATTERN = segmentl,
/* TABLE, if applicable */
}
WIDTH w2 {
PATTERN = segment2,;
/* TABLE, if applicable */
}
LENGTH common_run {
BETWEEN { segmentl segment2 }
/* TABLE, if applicable */

Version 1.9.2 Advanced Library Format (ALF) Reference Manual

243

Physical Modeling RULE statement

}
/* EQUATION or TABLE */

}
MAX { /* some technology have MAX spacing rules */ }

}

Spacing rules dependent on routing direction can be expressed as follows:

LIMIT {
DISTANCE { BETWEEN { segmentl segment2 }
HORIZONTAL {
MIN { /* HEADER, EQUATION or TABLE */}
}
VERTICAL {
MIN { /* HEADER, EQUATION or TABLE */}

}
}

9.11.3 End-of-line rule

End-of-line rules can be expressed as follows:

RULE lonely_via {
PATTERN via_lower { LAYER = metal_1; SHAPE =line; }
PATTERN via_cut {LAYER=cut 1 2;}
PATTERN via_upper { LAYER = metal_2; SHAPE =end; }
PATTERN adjacent { LAYER = metal_2; SHAPE = line; }
CONNECTIVITY {
CONNECT_RULE = must_short;
BETWEEN { via_lower via_cut via_upper }
}
CONNECTIVITY {
CONNECT_RULE = cannot_short;
BETWEEN { via_upper adjacent }
}
LIMIT {
OVERHANG {
BETWEEN { via_cut via_upper }
MIN {
HEADER {
DISTANCE {
BETWEEN { via_cut adjacent }
/* TABLE, if applicable */
}
}
/* TABLE or EQUATION */

244 Advanced Library Format (ALF) Reference Manual Version 1.9.2

RULE statement

Overhang dependent on routing direction can be expressed as follows:

LIMIT {
OVERHANG { BETWEEN { via_cut via_upper }
HORIZONTAL {
MIN { /* HEADER, EQUATION or TABLE */}
}
VERTICAL {
MIN { /* HEADER, EQUATION or TABLE */}

}
}

9.11.4 Redundant vias

Rules for redundant vias can be expressed as follows:

RULE constraint_for_redundant_vias {
PATTERN via_lower { LAYER = metal_1;}
PATTERN via_cut {LAYER=cut 1 2;}
PATTERN via_upper { LAYER = metal_2; }
CONNECTIVITY {

CONNECT_RULE = must_short;
BETWEEN { via_lower via_cut via_upper }
}
LIMIT {
WIDTH {
PATTERN = via_cut;
MIN = 3; MAX = 5;
}
DISTANCE {
BETWEEN { via_cut }
MIN = 1; MAX = 2;
}
OVERHANG {
BETWEEN { via_lower via_cut }
MIN = 2; MAX = 4;
}
OVERHANG {
BETWEEN { via_upper via_cut }
MIN = 2; MAX = 4;

}

9.11.5 Extraction rules

Extraction rules can be expressed as follows:

Version 1.9.2 Advanced Library Format (ALF) Reference Manual

Physical Modeling

245

Physical Modeling RULE statement

RULE parallel_lines_same_layer {
PATTERN segmentl { LAYER = metal_1; SHAPE = line; }
PATTERN segment2 { LAYER = metal_1; SHAPE = line; }
CAPACITANCE {
BETWEEN { segmentl segment2 }
HEADER {
DISTANCE {
BETWEEN { segmentl segment2 }
/* TABLE, if applicable */
}
LENGTH {
BETWEEN { segmentl segment2 }
/* TABLE, if applicable */
}
}
/* EQUATION or TABLE */
}

9.11.6 RULES within BLOCKAGE or PORT

General width-dependent spacing rules can not apply to blockages which are abstractions of
smaller blockages collapsed together. The spacing rule between the constituents of the
blockage and their neighboring objects shall be applied instead.

For example, a blockage can consist of two parallel wires in vertical directiefitat1 and
distance=1 . They can be collapsed to form a blockageiedh=3 . Left and right of the
blockage, the spacing rule shall be based on the width of the constituent wires) {netead
of the width of the blockage (i.e).

Therefore, it shall be legal withinRULEStatement to appear within the context @LaCKAGE
or PORTand reference RATTERNwhich has been defined within the context ofah@CKAGE
or PORT

Example:

CELL my_cell {
BLOCKAGE my_blockage {
PATTERN my_pattern {
LAYER = metall,;
RECTANGLE {508 10}
}
RULE for_my_pattern {
PATTERN my_metall { LAYER = metall; }
LIMIT {
DISTANCE {
BETWEEN { my_metall my_pattern }
MIN = 1;

246 Advanced Library Format (ALF) Reference Manual Version 1.9.2

SITE statement Physical Modeling

It shall also be legal to define the spacing rule, which normally would be insigelitbe
statement, directly within the context oPATTERNusIng theLIMIT construct and the
arithmetic model foDISTANCE This arithmetic model shall not contairBa TWEEtatement.
The spacing rule shall apply between pa@ TERNand any external object on the same layer.

Example:

CELL my_cell {
BLOCKAGE my_blockage {
PATTERN p1 {
LAYER = metall,
RECTANGLE {50810}
LIMIT { DISTANCE { MIN = 1; } }

}

9.11.7 VIA reference

A RULEcan contain a reference to one or more vias, usingithesference ~ Statement (see
Section 9.8.4).

9.12 SITE statement

This section defines th®TE statement and its use.

9.12.1 Definition
ThesITE statement shall be defined as follows:

site ::=
SITE site_ identifier { all_purpose_items }

Thewidth_ annotation ~ andheight_ annotation (See Section 9.2) are mandatory.

9.12.2 ORIENTATION_CLASS and SYMMETRY_CLASS

A set ofcLASSstatements shall be used to define a set of legal orientations applicable to a
SITE . Both theCLASSand thesITE statements shall be within the context of the same
LIBRARY Or SUBLIBRARY

orientation _ class ::=
CLASS orientation_class_ identifier {
[geometric_transformations]

To refer to a predefined orientation class, us@tENTATION_CLASSstatement within a
SITE and/or aCELL. ORIENTATIONOf a CELL means the orientation of the cell itsedfRIENTA-
TION of aSITE means the orientation of rows that can be created using that site.

Version 1.9.2 Advanced Library Format (ALF) Reference Manual 247

Physical Modeling SITE statement

orientation_class__ multivalue_annotation ::=
ORIENTATION { orientation_class identifiers }

TheSYMMETRY_CLASstatement shall be used fosi@e to indicate symmetry between legal
orientations. MultiplesyMMETRgtatements shall be legal to enumerate all possible combina-
tions in case they cannot be described within a seMETRgtatement.

symmetry class_ multivalue_annotation ::=

SYMMETRY _CLASS {orientation_class_ identifiers }

Legal orientation of a cell within a site shall be defined as the intersection of legal cell orienta-
tion and legal site orientation. If there is a set of common legal orientations for both cell and
site without symmetry, the orientation of cell instance and site instance shall match.

If there is a set of common legal orientations for both cell and site with symmetry, the cell can
be placed on the side using any orientation within that set.

Case 1 no symmetry

Site has legal orientatiomsandB. Cell has legal orientatiomsandB. When the site is instan-
tiated in thea orientation, the cell shall be placed in therientation.

Case 2symmetry

Site has legal orientatiomsandB and symmetry betweexandB. Cell has legal orientations
A andB. When the site is instantiated in therientation, the cell can be placed in ther B
orientation.

9.12.3 Example

LIBRARY my_library {
CLASS north { ROTATE =0; }
CLASS flip_north { ROTATE =0; FLIP = 0; }
CLASS south { ROTATE = 180; }
CLASS flip_south { FLIP = 90; }

SITE Sitel {
ORIENTATION_CLASS { north flip_north }

}

SITE Site2 {
ORIENTATION_CLASS { north flip_north south flip_south}
SYMMETRY_CLASS { north flip_north }
SYMMETRY_CLASS { south flip_south }

}

CELL Celll {
SITE { Sitel Site2 }

248 Advanced Library Format (ALF) Reference Manual Version 1.9.2

ANTENNA statement Physical Modeling

ORIENTATION_CLASS { north flip_north }

}
CELL Cell2 {

SITE { Site2 }

ORIENTATION_CLASS { north south }
}

}
Celll can be placed osite1 . The orientation oitel andcelll shall match because there
IS no symmetry betweetorth andflip_north in Sitel .

Celll can be placed osite2 , providedsite2 is instantiated in theorth or flip_north
orientation. The orientation efte2 andcelll need not match because of the symmetry
betweemorth andflip_north in Site2 .

Cell2 can be placed osite2 , providedsite2 is instantiated in theorth Or south
orientation. The orientation @fte2 andcell2 shall match because there is no symmetry
betweemorth andsouth in Site2 .

9.13 ANTENNA statement

This section defines th&TE statement and its use.

9.13.1 Definition
The ANTENNAstatement shall be defined as follows:

antenna ::=
ANTENNA[antenna_ identifier] { antenna_items }

antenna_items ::=
antenna_item { antenna_item }

antenna_item ::=
all_purpose_item
| arithmetic_model
| arithmetic_model_container

The syntax and semanticsatif purpose_item , arithmetic_model_container , and
arithmetic_model are already defined in defined in Section 11.7 and Section 11.16.

Version 1.9.2 Advanced Library Format (ALF) Reference Manual 249

Physical Modeling ANTENNA statement

The items applicable foxXNTENNAare shown in Table 9-16.

Table 9-16 Items for ANTENNA description

Item Usable ALF statement Scope Comment

maximum allowed | LIMIT { SIZE { LIBRARY, . .

antenna size MAX{..}}} SUBLIBRARY | S€e Section 7.5, Section
CELL, PIN 8.1.2, Section 7.6.1,

Section 8.9.1, and
Section 9.13.2

calculation method| SIZE { HEADER LIBRARY, Section 8.1.3 q
for antenna size | {...} TABLE { ...} SUBLIBRARY | S€€ >ecliono.l.5, an
or Section 9.13.2
SIZE [id] { HEADER {
... } EQUATION {
o}
argumentvalues for, argument= value; CELL, PIN .
antenna size calcu1 or see Sectlon 11.2and
lation argument value{ ...} Section 9.13.2

The use of the keywordizE (see Section 8.1.3) in the contextaMTENNAS proposed to rep-

resent an abstract, dimensionless model of the antenna size. It is related to the area of the net
which forms the antenna, but it is not necessary a measure of area. It can be a measure of area
ratio as well. However, the arguments of the calculation function for ansermahall be
measurable data, suchABEA PERIMETER LENGTH THICKNESS WIDTH andHEIGHT of metal
segments connected to the net. The argument also need an annotation defining the applicable
LAYERfor the metal segments.

A process technology can have more than one antenna rule calculation method. In this case,
the antenna_ identifier iIs mandatory for each rule.

Antenna rules apply for routing and cut layers connected to poly silicon and eventually to dif-
fusion. TheCONNECT_RULS&tatement in conjunction with treETWEENStatement shall be used

to specify the connected layers. Connectivity shall only be checked up to the highest layer
appearing in theONNECT_RULEtatement. Connectivity through higher layers shall not be
taken into account, since such connectivity does not yet exist in the state of manufacturing
process when the antenna effect occurs.

9.13.2 Layer-specific antenna rules

Antenna rules can be checked individually for each layer. In this casezthenodel con-

tains only two or three argumentsREAOf the layer or perimeter (calculated from thEeNGTH
andwIDTH of the layer causing the antenna effect, the area of poly silicon, and, eventually, the
area of diffusion.

250 Advanced Library Format (ALF) Reference Manual Version 1.9.2

ANTENNA statement Physical Modeling

Example:

ANTENNA individual_m1 {
LIMIT { SIZE { MAX = 1000; } }
SIZE {
CONNECTIVITY {
CONNECT_RULE = must_short; BETWEEN { metall poly }
}
CONNECTIVITY {
CONNECT_RULE = cannot_short; BETWEEN { metall diffusion }
}
HEADER {
AREA al { LAYER = metall; }
AREA a0 { LAYER = poly; }

}
EQUATION {al/a0}

}
ANTENNA individual_m2 {
LIMIT { SIZE { MAX = 1000; } }
SIZE {
CONNECTIVITY {
CONNECT_RULE = must_short; BETWEEN { metal2 poly }
}
CONNECTIVITY {
CONNECT_RULE = cannot_short; BETWEEN { metal2 diffusion }
}
HEADER {
AREA a2 { LAYER = metal2; }
AREA a0 { LAYER = poly; }

}
EQUATION {a2/a0}

}
9.13.3 All-layer antenna rules

Antenna rules can also be checked globally for all layers. In that casezghmodel con-
tains area or perimeter of all layers as additional arguments.

Example:

ANTENNA global_m2_m1 {
LIMIT { SIZE { MAX = 2000; } }
SIZE {
CONNECTIVITY {
CONNECT_RULE = must_short;
BETWEEN { metal2 metall poly }
}
CONNECTIVITY {
CONNECT_RULE = cannot_short;
BETWEEN { metal2 diffusion }

}
HEADER {

| Version 1.9.2 Advanced Library Format (ALF) Reference Manual 251

Physical Modeling ANTENNA statement

AREA a2 { LAYER = metall; }
AREA al { LAYER = metall; }
AREA a0 { LAYER = poly; }

}
EQUATION { (a2 + al)/ a0}

}

9.13.4 Cumulative antenna rules

Antenna rules can also be checked by accumulating the individual effect. In that case, the
SIze model can be represented as a nested arithmetic model, each of which contain the model
of the individual effect.

Example:

ANTENNA accumulate_m2_m1 {
LIMIT { SIZE { MAX = 3000; } }
SIZE {
HEADER {
SIZE ratiol {
CONNECTIVITY {
CONNECT_RULE = must_short;
BETWEEN { metall poly }
}
CONNECTIVITY {
CONNECT_RULE = cannot_short;
BETWEEN { metall diffusion }
}
HEADER {
AREA al { LAYER = metall; }
AREA a0 { LAYER = poly; }

}
EQUATION {al/a0}

}
SIZE ratio2 {

CONNECTIVITY {
CONNECT_RULE = must_short;
BETWEEN { metal2 poly }

}

CONNECTIVITY {
CONNECT_RULE = cannot_short;
BETWEEN { metal2 diffusion }

}

HEADER {

AREA a2 { LAYER = metal2; }
AREA a0 { LAYER = poly; }

252 Advanced Library Format (ALF) Reference Manual Version 1.9.2

ANTENNA statement Physical Modeling

}
EQUATION {a2 /a0 }

}
}
EQUATION { ratiol + ratio2 }
}

Note the argument® inratiol andratio2 can are not the same.rkiiol , a0 represents
the area of poly silicon connectedrtetall in a net. Inratio2 , a0 represents the area of poly
silicon connected tmetal2 in a net, where the connection can be established through more

than one subnet imnetall .

9.13.5 lllustration

Consider the structure shown in Figure 9-7.

Metal2 - — — — — — — _ _] A8 | — — —] A | - - __
Metall - — — — — — _] A5 | — — [A6 |- — — —] AT | — -
Poy __ 1 A1 | ——] A2 |—_— _— _.| A3 | -1 A4 | — -

Figure 9-7: Metal-poly illustration

Checking this structure against the rules in the examples yields the following results:

individual_m1.:
1000 > A5/ (A1+A2)
1000 > A6/ A3
1000 > A7/ A4
individual_m2:
1000 > (A8+A9) / (A1+A2+A3+A4)

global_m2_m1:
2000 > (A8+A9+AL+AB+AT) | (A1+A2+A3+A4)

accumulate_m2_m1.:
3000 > (A8+A9) / (A1+A2+A3+A4) + A5/ (A1+A2)
3000 > (A8+A9) / (A1+A2+A3+A4) + A6 / A3
3000 > (A8+A9) / (AL+A2+A3+A4) + A7 | A4

Version 1.9.2 Advanced Library Format (ALF) Reference Manual 253

Physical Modeling ARRAY Statement

9.14 ARRAY Statement

This section defines therRRAYstatement and its use.

9.14.1 Definition

The ARRAYstatement shall be defined as follows:

array =
ARRAY identifier {
all_purpose_items
geometric_transformations
}
Thegeometric_transformations define the locations of the starting points within the array

and the number of repetitions of the components of the array. Details are defined in the next
section.

9.14.2 PURPOSE annotation
Each array shall haveraJRPOSEISSIgNnMent.

array_purpose_ assignment ::=
PURPOSE = array purpose_ identifier :

array_purpose_ identifier :: =
floorplan
| placement
| global
| routing

An array with purposéoorplan or placement shall have a reference t@aE and a
shift_ annotation_container , rotate_ annotation , and eventually @ip_ annotation
to define the location and orientation of $1€E in the context of the array.

An array with purposeouting shall have a reference to one or more routkngERs and a
shift_ annotation_container to define the location of the starting point.

An array with purposglobal shall have &hift. annotation_container to define the
location of the starting point.

254 Advanced Library Format (ALF) Reference Manual Version 1.9.2

ARRAY Statement Physical Modeling

9.14.3 Examples

Example 1:

width=100

100

my_site

height

R/ DN W A ol

ARRAY grid_for_my_site {
PURPOSE = placement;
SITE = my_site;
SHIFT { HORIZONTAL = 50; VERTICAL = 50; }
REPEAT =7 {

SHIFT { HORIZONTAL = 100; }
REPEAT =5 {

SHIFT { VERTICAL =5; }
}

}
Example 2:

—>
horizontal route

? vertical route

Version 1.9.2 Advanced Library Format (ALF) Reference Manual 255

Physical Modeling CONNECTIVITY statement

ARRAY grid_for_detailed_routing {
PURPOSE = routing;
LAYER { metall metal2 metal3 }
SHIFT { HORIZONTAL = 100; VERTICAL =50; }

REPEAT =7 {
SHIFT { VERTICAL = 100; }
REPEAT =8 {

SHIFT { HORIZONTAL = 100; }

}

}

}
Example 3:

o
B
I I I I
BEE S Sh
I I I I
| ok sk e

I I I

ARRAY grid_for_global_routing {
PURPOSE = global;
SHIFT { HORIZONTAL = 100; VERTICAL =100; }
REPEAT =3 {
SHIFT { VERTICAL = 150; }
REPEAT =4{
SHIFT { HORIZONTAL = 100; }

}

9.15 CONNECTIVITY statement

This section defines theONNECTIVITY statement and its use.

9.15.1 Definition
A CONNECTIVITY statement shall have the following form:

connectivity ::=

CONNECTIVITY[identifier] {

connect_rule_ annotation
between_ multi_value_assignment

256 Advanced Library Format (ALF) Reference Manual

Version 1.9.2

CONNECTIVITY statement Physical Modeling

CONNECTIVITY] identifier] {
connect_rule_ annotation
table_based model

}

9.15.2 CONNECT_RULE annotation

Theconnect_rule annotatiooan be only inside @NNECTIVITY object. It specifies the
connectivity requirement.

CONNECT_RULE string :
which can take the values shown in Table 9-17.

Table 9-17 : CONNECT_RULE annotation

Annotation string Description

must_short electrical connection required
can_short electrical connection allowed
cannot_short electrical connection disallowed

It is not necessary to specify more than one rule between a given set of objects. If one rule is
specified to b8rue the logical value of the other rules can be implied shown in Table 9-18.

Table 9-18 : Implications between connect rules

must_short cannot_short can_short
False False True
False True False
True False N/A

9.15.3 CONNECTIVITY modeled with BETWEEN statement
The BETWEENtatement specifies the objects for which the connectivity applies.

between_ multi_value_assignment ::=

BETWEEN { identifiers }

If the BETWEENStatement contains only one identifier, thandb&NECTIVITY shall apply
between multiple instances of the same object.

Version 1.9.2 Advanced Library Format (ALF) Reference Manual 257

Physical Modeling CONNECTIVITY statement

Example:

CLASS analog_power;

CLASS analog_ground;

CLASS digital_power;

CLASS digital_ground;

CONNECTIVITY Aground { // connect all members of CLASS analog_ground
CONNECT_RULE = must_short;

BETWEEN { analog_ground }

}

CONNECTIVITY Dground { // connect all members of CLASS digital_ground
CONNECT_RULE = must_short;

BETWEEN { digital_ground }

}

CONNECTIVITY Apower { // connect all members of CLASS analog_power
CONNECT_RULE = must_short;

BETWEEN { analog_power }

}

CONNECTIVITY Dpower { // connect all members of CLASS digital_power
CONNECT_RULE = must_short;

BETWEEN { digital_power }

}

CONNECTIVITY Aground2Dground {
CONNECT_RULE = must_short;

BETWEEN { analog_ground digital_ground }

}

CONNECTIVITY Apower2Dpower {
CONNECT_RULE = can_short;

BETWEEN { analog_power digital_power }

}

CONNECTIVITY Apower2Aground {
CONNECT_RULE = cannot_short;
BETWEEN { analog_power analog_ground }

}

CONNECTIVITY Apower2Dground {
CONNECT_RULE = cannot_short;
BETWEEN { analog_power digital_ground }

}

CONNECTIVITY Dpower2Aground {
CONNECT_RULE = cannot_short;
BETWEEN { digital_power analog_ground }

}

CONNECTIVITY Dpower2Dground {
CONNECT_RULE = cannot_short;
BETWEEN { digital_power digital_ground }

}

9.15.4 CONNECTIVITY modeled as lookup TABLE

Connectivity can also be described as a lookup table model. This description is usually more
compact than the description using HETWEENtatements.

258 Advanced Library Format (ALF) Reference Manual Version 1.9.2

CONNECTIVITY statement

The connectivity model can have the arguments shown in Table 9-19HEADER

Table 9-19 : Arguments for connectivity

Argument Value type Description
DRIVER string argument of connectivity function
RECEIVER string argument of connectivity function

Each argument shall contairrasLE.

Physical Modeling

The connectivity model specifies the allowed and disallowed connections amongst drivers or
receivers in one-dimensional tables or between drivers and receivers in two-dimensional
tables.The boolean literals in the table refer tocGRNNECT_RULE&Ss shown in Table 9-20.

Table 9-20 : Boolean literals in non-interpolateable tables

Boolean literal Description

1 CONNECT_RULETrue

0 CONNECT_RULiEFalse

? CONNECT_RULdoes not apply
Example:

CLASS analog_power;
CLASS analog_ground;
CLASS digital_power;
CLASS digital_ground;
CONNECTIVITY all_must_short {
CONNECT_RULE = must_short;
HEADER {
RECEIVER r1 {
TABLE {analog_ground analog_power digital_ground digital_power}
}
RECEIVER r2 {
TABLE {analog_ground analog_power digital_ground digital_power}

}
}
TABLE {
1010
0100
1010
0001
}
/*
The following table would apply, if the CONNECT_RULE was "cannot_short":
TABLE {
0101
1010
0101
1010
}

The following table would apply, if the CONNECT_RULE was "can_short":

Version 1.9.2 Advanced Library Format (ALF) Reference Manual

259

Physical Modeling Physical annotations for CELL

TABLE {
20720
0207
20720
0207

*/

9.16 Physical annotations for CELL

This section defines the physical annotations fOEIaL.

9.16.1 PLACEMENT_TYPE annotation
A CELL can contain the followingLACEMENT_TYPBtatement:

placement type assignment ::=
PLACEMENT _TYPE =placement type_identifier :

placement type identifier ::=
pad
| core
| ring
| block
| connector

The identifiers have the following definitions:

pad 1/0O pad, to be placed in the 1/O rows

core regular macro, to be placed in the core rows
block hierarchical block with regular power structure
ring: macro with built-in power structure

connector macro at the end of core rows connecting with power or ground

9.16.2 Reference of a SITE by a CELL

A CELL can point to one or more legal placem&me s.

Example:

CELL my_cell {
SITE { my_site /* fill in other sites, if applicable */ }
/*fill in contents of cell definition */

260 Advanced Library Format (ALF) Reference Manual Version 1.9.2

Physical annotations for PIN Physical Modeling

9.17 Physical annotations for PIN

This section defines the physical annotations feiNa

9.17.1 CONNECT_CLASS annotation

CONNECT_CLASS { class_ identifiers }
annotates a declared class object for connectivity determination.
Connectivity rules involving those classes shall apply for the pin.

9.17.2 SIDE annotation

SIDE = string ;
which can take the values shown in Table 9-21.

Table 9-21 : SIDE annotations for a PIN object

Annotation string Description

left pin is on the left side
right pin is on the right side
top pin is at the top
bottom pin is at the bottom

9.17.3 ROW and COLUMN annotation

The following annotation shall be used for a pin in order to indicate the location of the pin
within a placement row or column:

row_ assignment o=

ROW = unsigned ;

column_ assignment ::=
COLUMN =unsigned ;

whererow_assignment applies for pins witlSIDE = right | left and
column_ assignment applies for pins wittSIDE =top | bottom .

For bus pinsjow_assignment andcolumn_ assignment shall have the form of
multi_value_assignment S.

row_multi_value_assignment ::=
ROW { unsigned { unsigned } }

column_ multi_value_assignment ::=
COLUMN { unsigned { unsigned } }

| Version 1.9.2 Advanced Library Format (ALF) Reference Manual 261

Physical Modeling Physical annotations for arithmetic models

9.17.4 ROUTING_TYPE annotation
A PIN can contain the followingOUTING_TYPEstatement:

routing_type_ assignment ::=
ROUTING_TYPE = routing_type_identifier :

routing_type identifier ::=
regular
| abutment
| ring
| feedthrough

The identifiers have the following definitions:

regular. connection by regular routing
abutmentconnection by abutment, no routing
ring: pin forms a ring around the block with connection allowed to any point of the ring

feedthroughboth ends of the pin align and can be used for connection

9.18 Physical annotations for arithmetic models

This section defines the physical annotations for arithmetic models.

9.18.1 BETWEEN statement within DISTANCE

The BETWEENtatement withimISTANCE shall identify the objects for which the distance
measurement applies.

between_ multi_value_assignment ::=
BETWEEN { identifiers }

If the BETWEENtatement contains only one identifier, thantitsg ANCE shall apply between
multiple instances of the same object.

9.18.2 MEASUREMENT annotation for DISTANCE
The following statement shall specify how the distance between objects is measured.

distance_measurement_ assignment ::=
MEASUREMENT =istance_measurement_ identifier X

distance_measurement_ identifier ::=
straight
| horizontal
| vertical
| manhattan

262 Advanced Library Format (ALF) Reference Manual Version 1.9.2

Physical annotations for arithmetic models Physical Modeling

The default isstraight

The mathematical definitions for distance measurements between two points with differential
coordinateg\x andAy are:

straight distance =2 + Ay?)1/2
horizontal distance Ax
vertical distance Ay

manhattan distance&x + Ay

9.18.3 REFERENCE annotation for DISTANCE

Thereference_ annotation shall specify the reference for distance measurements between
objects, as shown in Figure 9-8.

reference_ annotation ::=

REFERENCE =reference_ identifier :

reference identifier ::=
center
| origin
| edge
The default shall bedge . The valuecenter is only applicable for objects with
EXTENSION, whereas the val@glge is applicable for any physical object. The value
origin is only applicable for objects with specified coordinates.

object 1 object 2 object 1 object 2
DISTANCE DISTANCE
- -t L
REFERENCE = edge REFERENCE = center

Figure 9-8: lllustration of REFERENCE for DISTANCE

9.18.4 Reference to ANTENNA within SIZE, AREA, and PERIMETER

In hierarchical design,RIN with physicalPOR® can be abstracted. Therefore, an arithmetic
model for size, area, perimeter etc. relevant for certain antenna rules can be precalculated. The

Version 1.9.2 Advanced Library Format (ALF) Reference Manual 263

Physical Modeling Physical annotations for arithmetic models

following statement within the arithmetic model enables references to the set of antenna rules
for which the arithmetic model applies.

antenna_reference_ multi_value_assignment ::=
ANTENNA { antenna_identifiers }

Example:

CELL celll {
PIN pinl {
AREA poly_area = 1.5 {
LAYER = poly;
ANTENNA { individual_m1 individual_vial }
}
AREA m1_area=1.0{
LAYER = metall,;
ANTENNA { individual_m1 }
}
AREA vial_area = 0.5 {
LAYER = vial;
ANTENNA { individual_vial }

}

The areaoly_area is used in the rulésdividual m1 andindividual_vial
The areanl_area is used in the ruiledividual_m1 only.
The areaial_area is used in the ruladividual_vial only.

The case with diffusion is illustrated in the following example:

CELL my_diode {
CELLTYPE = special; ATTRIBUTE { DIODE }
PIN my_diode_pin {
AREA = 3.75{
LAYER = diffusion;
ANTENNA { rulel_for_diffusion rule2_for_diffusion }

264 Advanced Library Format (ALF) Reference Manual Version 1.9.2

Section 10
Lexical Rules

This section discusses the lexical rules.

10.1 Cross-reference of lexical tokens

Table 10-1 cross-references the lexical tokens used in ALF.

Table 10-1 : Cross-reference of lexical tokens

Lexical token Section Lexical token Section
alphabetic_bit_literal 10.3.4 integer 10.3.3
any_character 10.2.3 nonescaped_identifien 10.3.8
based_literal 10.3.5 non_negative_number 10.3.3
binary base 10.3.5 nonreserved_character 10.2.3
binary_digit 10.35 number 10.3.3
bit_edge_literal 10.3.6 numeric_bit_literal 10.34
bit_literal 10.3.4 octal_base 10.3.5
block_comment 10.3.2 octal_digit 10.3.5
comment 10.3.2 placeholder_identifier 10.3.8
decimal_base 10.35 guoted_string 10.3.7
delimiter 10.3.1 reserved_character 10.2.3
digit 10.2.3 sign 10.3.3
dont_care_literal 10.3.4 single_line_comment 10.3.2
edge_literal 10.3.6 symbolic_edge_literal 10.3.6
escape_character 10.2.3 unsigned 10.3.3
escaped_identifier 10.3.8 whitespace 10.2.2
hex_base 10.3.5 word_edge_literal 10.3.6
hex_digit 10.3.5

10.2 Characters

This section defines the use of characters in ALF.

10.2.1 Character set

Each graphic character corresponds to a unique code of the 1ISO eight-bit coded character set
[ISO 8859-1 : 1987(E)] and is represented (visually) by a graphical symbol.

Version 1.9.2 Advanced Library Format (ALF) Reference Manual 265

Lexical Rules Characters

10.2.2 Whitespace characters

The characters shown in Figure 10-1shall be considengdspace characters

Character ASCII code (hex)
space 20

vertical tab 0B

horizontal tab 09

line feed (new line) OA

carriage return oD

form feed oC

Figure 10-1: List of whitespace characters

Comments are also considered white space (see Section 10.3.2).

A whitespace character shall be ignored except when it separates other lexical tokens or when
it appears in a quoted string.

10.2.3 Reserved and non-reserved characters

The ASCII character set shall be divided in three categories: whitespace (see Section 10.2.2),
reserved characters, and non-reserved characters. The reserved characters are symbols that
make up punctuation marks and operators. The non-reserved characters shall be used for
creating identifiers and numbers. Both are shown in Figure 10-2.

reserved_character ::=
&l [1 Mo~ 1 -1 L % ? N = <] >
G T 1 T T A 2 R A Y IO e A

nonreserved_character ::=

letter | digit |] % #

letter ::=
al bl c| dj el f| gl hy i| j| k| I'| m
| n| ol pl q| r| s| t| u|l v|] w| X| y| z
| Al Bl C| DI EI FI G H | J] K| LI M
| NI O P Q R| S| T| Ul VI W X| Y| Z

digit ::=
0| 1] 2| 3 4 | 5 6 | 7| 8 | 9

escape_character ::=
\

any_character ::=

reserved_character
| nonreserved_character

266 Advanced Library Format (ALF) Reference Manual Version 1.9.2

Lexical tokens Lexical Rules

| escape_character
| whitespace

Figure 10-2: Reserved and non-reserved characters

ALF treats uppercase and lowercase characters as the same characters. In other words, ALF is
acase-insensitive language

Notes:

The characters and# can be reserved in other languages, such as VERILOG. Therefore,

if translation from ALF into VERILOG is required, these characters shall not be used for
items which need to be translated, e.g., the names of cells and pins.

Other languages can be case-sensitive, such as VERILOG. Therefore, if translation from
ALF into VERILOG is required, the case of the name used in the declaration of the object,
e.g., the name of a cell or a pin, shall always be preserved as a reference. For example, if
the name of a cell is declared &8yCell", reference to the cell can be made as

"MYCELL " or "mycell". However, it shall always be translated into VERILOG as
"MyCell".

10.3 Lexical tokens

The ALF source text files shall be a stream of lexical tokens. Each lexical token is either a
delimiter, acommentabit literal, abased literal anedge litera] anumber aquoted stringor
anidentifier.

10.3.1 Delimiters

A delimiteris either a reserved character or one of the following compound operators, each
composed of two or three adjacent reserved characters, as shown in Figure 10-3.

delimiter ::=
reserved_character
| &&| ~&| [| ~| | ~"| = =] ®= | >=| <=
| 2V ?~] ?-] ??| > | <> | &> <&>| >>| <<

Figure 10-3: Tokens that make up delimiters

Each special character in a single character delimiter list shall be a single delimiter unless this
character is used as a character in a compound operator or as a character in a quoted string.

10.3.2 Comments

ALF has two forms to introduce comments, as shown in Figure 10-4.
A single-line commerghall start with the two characters and end with a new line.

Version 1.9.2 Advanced Library Format (ALF) Reference Manual 267

Lexical Rules Lexical tokens

A block commenrghall start with* and end witht/ . Comments shall not be nested. The single-
line comment token shall not have any special meaning in a block comment.

comment ::=

single_line_comment
| block_comment

Figure 10-4: Single-line and block comments

10.3.3 Numbers

Constant numbers can be specified as integer or real, as shown in Figure 10-5.

sign + | -
unsigned ::= digit { __ | digit}
integer ::= [sign] unsigned

non_negative_number ;:=

unsigned [. unsigned]
| unsigned [. unsigned] E [sign] unsigned
number ::=

[sign] non_negative_number
Figure 10-5: Integer and real numbers

Theintegeris a decimal integer constant.

10.3.4 Bit literals

A bit literal shall represent a single bit constant, as shown in Table 10-2.

bit_literal ::=
numeric_bit_literal
| alphabetic_bit_literal
| dont_care_literal
| random_literal

numeric_bit_literal ::= 0] 1

alphabetic_bit_literal ::=
X| Z| L| H| U W

| x| z| 1| h| u] w
dont_care_literal ::= ?
random_literal ::= *

268 Advanced Library Format (ALF) Reference Manual Version 1.9.2

Lexical tokens Lexical Rules

Table 10-2 : Single bit constants

Literal Description

0 value is logic zero

1 value is logic one

Xor x value is unknown

Lor | value is logic zero with weak drive strength
Hor h value is logic one with weak drive strength
Wor w value is unknown with weak drive strength
Zor z value is high-impedance

Uor wu value is uninitialized

? value is any of the above, yet stable

* value may randomly change

10.3.5 Based literals

A based literals a constant expressed in a form that specifies the base explicitly. The base can
be specified irbinary, octal, decimalor hexadecimaformat, as shown in Figure 10-6.

based_literal ::=
binary _base { __| binary_digit }
| octal_base { __| octal_digit }
| decimal_base { __ | digit }
| hex_base { __| hex_digit }

binary_base ::=
IB | Ib

octal_base ::=
IO | I0

decimal_base ::=
ID | Id

hex_base ::=
IH | Ih

binary_digit ::=
bit_literal

octal_digit ::=
binary_digit | 2| 3| 4|, 5| 6| 7

Version 1.9.2 Advanced Library Format (ALF) Reference Manual 269

Lexical Rules Lexical tokens

hex_digit ::=
octal_digit | 8| 9/ A| B C|DIE|F|a|bjc|d]e]f

Figure 10-6: Based constants

The underscorg) shall be legal anywhere in the number, except as the first character and this
character is ignored. This feature can be used to break up long numbers for readability
purposes. No white space shall be allowed between base and digit token in a based literal.

When an alphabetic bit literal is used as an octal digit, it shall represent three repeated bits with
the same literal. When an alphabetic bit literal is used as a hex digit, it shall represent four
repeated bits with the same literal.

For example,
'02xwO0u iS same as 'b010_xxx_www_000_uuu
'hLux is same as 'bLLLL_uuuu_Xxxxx

10.3.6 Edge literals

An edge literalshall be constructed by two bit literals or two based literals, as shown in
Figure 10-7. It shall describe the transition of a signal from one discrete value to another. No
white space shall be allowed within (between) the two literals. An underscore can be used.

edge_literal ::=
bit_edge_literal
| word_edge_literal
| symbolic_edge_literal

bit_edge_literal ::=
bit_literal bit_literal

word_edge_literal ::=
based_literal based_literal

symbolic_edge_literal::=
”? | >~] ?-

Figure 10-7: Edge literals

10.3.7 Quoted strings

The quoted stringshall be a sequence of zero or more characters enclosed between two
guotation marks'() and contained on a single line, as shown in Figure 10-8. Charestape
codesare used inside the string literal to represent some common special characters.

270 Advanced Library Format (ALF) Reference Manual Version 1.9.2

Lexical tokens Lexical Rules

guoted_string ::=
" {any_character} "

Figure 10-8: A quoted string

The characters which can follow the backslashand their meanings are listed in Table 10-3.

Table 10-3 : Special characters in quoted strings

Symbol ASCII Code Meaning
(octal)
\g 007 alert/bell
\h 010 backspace
\t 011 horizontal tab
\n 012 new line
\v 013 vertical tab
\f 014 form feed
\r 015 carriage return
\" 042 double quotation mark
\ 134 backslash
\ddd 3-digit octal value of ASCII characte

A non-quoted string can not contain any reserved character. Therefore, use of a quoted string
is necessary when referencing file names (which typically contain a)ddtgracter).

10.3.8 Identifiers

Identifiersare used in ALF as names of objects, reserved words, and context-sensitive
keywords. An identifier shall be any sequence of letters, digits, undersgoenfl dollar sign

($) character. If an identifier is constructed from one or more non-reserved characters, it is
callednon-escaped identifieA digit shall not be allowed as first character of a non-escaped
identifier.

nonescaped_identifier ::=
nonreserved_character { nonreserved_character }

A sequence of characters starting withestape_character is called arescaped identifier
The escaped identifier legalizes the use @ as first character of an identifier and the use
of reserved_character anywhere in an identifier. Or it can be used to prevent the
misinterpretation of an identifier as a keyword. The escape character shall be followed by at
least one non-white space character to form an escaped identifier. The escaped identifier shall
contain all characters up to first white space character.

escaped_identifier ::=
escape_character escaped_characters

escaped_characters ::=
escaped_character { escaped_character }

Version 1.9.2 Advanced Library Format (ALF) Reference Manual 271

Lexical Rules Keywords

escaped_character ::=
nonreserved_character
| reserved_character
| escape_character

A placeholder identifieshall be a non-escaped identifier between the less-than chasicter (
and the greater-than charactey. No whitespace or delimiters are allowed between the non-
escaped identifier and the placeholder charactessd>). The placeholder identifier is used

in template objects as a formal parameter, which is replaced by the actual parameter in template
instantiation.

placeholder_identifier ::=
< nonescaped_identifier >

Identifiers are treated in a case-insensitive way. They can be used in the definition of objects
and in reference to already defined objects. A parser should preserve the case of an identifier
in the definition of an object, since a downstream application could be case-sensitive.

10.3.9 Hierarchical identifier
A hierarchical identifier shall be defined as follows:

hierarchical_identifier ::=
identifier . {identifier . }identifier

with no whitespace in-between.

The dot () shall take precedence over #eeape_character . In order to escape the dot, the
escape_character shall be placed directly in front of it.

Examples:
\id1.id2 //Only id1 is escaped.
id1\.id2 //Only the dot is escaped.
id1.\id2 //Only id2 is escaped.

10.4 Keywords

Keywords are case-insensitive non-escaped identifiers. For clarity, this document uses
uppercase letters for keywords and lowercase letters elsewhere, unless otherwise mentioned.

Keywords are reserved for use as object identifiers, not for general symbols. To use an
identifier that conflicts with the list of keywords, use the escape character, e.g., to declare a pin
that is called’IN, use the form:

PIN \PIN {..}

A keyword can either beraserved keywor¢also callechard keywordl or acontext-sensitive
keyword(also callecsoft keywor)l The hard keywords have fixed meaning and shall be
understood by any parser of ALF. The soft keywords might be understood only by specific

272 Advanced Library Format (ALF) Reference Manual Version 1.9.2

Rules against parser ambiguity Lexical Rules

applications. For example, a parser for a timing analysis application can ignore objects that
contain power related information described using soft keywords.

10.4.1 Keywords for objects

The keywords shown in Figure 10-9 are used to identify object types:

ALIAS ATTRIBUTE BEHAVIOR CELL

CLASS CONSTANT EQUATION FUNCTION
GROUP HEADER INCLUDE LIBRARY
PIN PRIMITIVE PROPERTY STATETABLE
SUBLIBRARY TABLE TEMPLATE VECTOR
WIRE

Figure 10-9: Keywords for objects

10.4.2 Keywords for operators

The keywords shown in Figure 10-10 are used for built-in arithmetic functions:

ABS absolute value

EXP natural exponential function
LOG natural logarithm

MIN minimum

MAX maximum

Figure 10-10: Keywords for built-in arithmetic functions

10.4.3 Context-sensitive keywords

In order to address the need of extensible modeling, ALF provides a predefinedigaitoof
context-sensitive keywords. Additional private context-sensitive keywords can be introduced
as long as they do not have the same name as any existing public keyword.

The public context-sensitive keywords and their semantic meaning are defined in Section 5.6.
This set can be extended to include private context-sensitive keywords.

10.5 Rules against parser ambiguity

The following rules shall apply when resolving ambiguity in parsing ALF source:

In a context where bothit_literal andidentifier are legal syntax items,
nonescaped_identifier shall take priority ovetilphabetic_bit_literal
In a context where bothit_literal andnumber are legal syntax itemaumber shall

take priority ovemnhumeric_bit_literal

In a context where bo#uge_literal andidentifier are legal syntax items,
identifier shall take priority ovedit_edge_literal

Version 1.9.2 Advanced Library Format (ALF) Reference Manual 273

Lexical Rules Rules against parser ambiguity

- Inacontextwhere botédge_literal andnumber are legal syntax itemsymber shall
take priority ovebit_edge_literal

In such contextsased_literal shall be used instead lof literal

274 Advanced Library Format (ALF) Reference Manual Version 1.9.2

Section 11
Syntax Rules

This section discusses the syntactical rules. The formal syntax of ALF language is described
using Backus-Naur Form (BNF).

11.1 Cross-reference of BNF items

A BNF item with a singular name is defined in the same section as the BNF item with the plural
name. A plural item name implies one or more items with the corresponding singular name.

Table 11-1 : Cross-reference of BNF items with short semantic explanation

BNF item Section Short semantic explanation

alias 11.8 statement defining an alias

all_purpose_item(s) 11.7 item(s) that can appear inside any hierarchical objgct

annotation 11.7 parameter-value assignment inside an object, may be
nested

annotation_container 11.7 unnamed object containing annotations

antenna new statement describing a set of process antenna rules

arithmetic_assignment 11.2 statement assigning an arithmetic expression to a Vfariable

arithmetic_binary 11.6 arithmetic operator requiring two operands

arithmetic_expression 11.3 expression involving arithmetic operations

arithmetic_function_operator 11.6 arithmetic operator prefixing a list of arguments

arithmetic_model(s) 11.16 statement(s) for description of characterization data
using single numbers, tables or equations

arithmetic_model_item(s) 11.16 statement(s) inside arithmetic model statement

arithmetic_model_container 11.16 unnamed object containing arithmetic models

arithmetic_submodel(s) 11.16 statement(s) inside an arithmetic model statement for cat-
egorizing the characterization data

arithmetic_submodel_item(s) 11.16 statement(s) inside arithmetic submodel statemen

arithmetic_unary 11.6 arithmetic operator requiring one operand

array new statement describing a regular floorplan or placement or
routing definition in gate array technology

artwork new statement making reference between the cell in the
library and the corresponding description in the layou
(GDS2) database

assignment 11.2 terminated statement for single value assignment tg an
object

Version 1.9.2 Advanced Library Format (ALF) Reference Manual 275

Syntax Rules

Cross-reference of BNF items

276

Table 11-1 : Cross-reference of BNF items with short semantic explanation, continued

BNF item Section Short semantic explanation

assignment_base 11.2 unterminated statement for single value assignmerjt to an
object

attribute 11.8 statement associating attributes to an object

attribute_item(s) 11.8 item(s) inside an attribute statement

behavior 11.17 statement describing the logic function of a digital dr-
cuit in a behavioral language

behavior_item(s) 11.17 item(s) inside a behavior statement

blockage new statement describing routing obstructions

boolean_and 11.6 boolean AND operator

boolean_arithmetic 11.6 operator for boolean arithmetic

boolean_binary 11.6 boolean operator requiring two operands

boolean_case compare 11.6 binary boolean operator for magnitude comparisop

boolean_cond 11.6 boolean postfix operator evaluating the preceding Hool-
ean expression (if-clause)

boolean_else 11.6 boolean infix operator separating if-and else-clausds

boolean_expression 11.3 expression involving boolean operations

boolean_logic_compare 11.6 binary boolean operator for logic comparison

boolean_or 11.6 boolean OR operator

boolean_unary 11.6 boolean operator requiring one operand

cell(s) 11.9 statement(s) describing the entire model of a digital pr
analog circuit

cell_item(s) 11.9 item(s) inside a cell statement

cell_instantiation 11.4 statement inside a cell, describing a reference to anfother
cell with pin-to-pin correspondence

class 11.8 statement describing a class for the use of referenc¢ and
inheritance by other objects

class_item(s) 11.7 item(s) inside a class statement, which will be inherjted
by any object referring to the class

connectivity new statement describing a set of electrical connectivity ryles

constant 11.8 statement defining a numeric constant

context_sensitive_keyword 115 identifier of an object for which the semantic meanjng is
established by its context

coordinates new statement containing numbers representing the coordi-
nates of reference points within a physical object

dynamic_instantiation_item(s) 114 item(s) inside a dynamic instantiation of a templatg

edge_literal(s) 115 symbol(s) describing a transition between two statep

equation 11.16 statement inside arithmetic model containing an arith-
metic expression for the calculation of characterization
data

from 11.16 statement inside arithmetic model defining start poinf of
timing measurement

Advanced Library Format (ALF) Reference Manual Version 1.9.2

Cross-reference of BNF items Syntax Rules

Table 11-1 : Cross-reference of BNF items with short semantic explanation, continued

BNF item Section Short semantic explanation

function 11.17 statement describing the logic function of a circuit infa
canonical way, using behavior and/or statetable staterhent

generic_object 11.7 statement with the sole purpose of being used by other
objects

geometric_model(s) new statement(s) describing the form of a physical object

geometric_transformation(s) new statement(s) describing shift, rotate, flip or repetition of a
physical object

group 11.8 statement allowing expansion of one object to multigle
objects

header 11.16 statement inside arithmetic model containing a list df
parameters of the arithmetic model

identifier(s) 11.5 literal(s) defining a keyword or a name or a string value

include 11.8 statement defining the inclusion of a file

index 115 symbol defining an integer or a range of integers for fthe
use as indices

layer new statement describing the stackup information in a tech-
nology library

layer_item(s) new statement(s) inside a layer statement

library (libraries) 11.10 statement(s) describing the entire contents of a librgry

keyword_declaration 11.8 statement declaring a new keyword

library_item(s) 11.10 item(s) inside a library statement

library_specific_object 11.7 statement describing an object which is part of the

library. Multiple statements describing objects of the
same type may appear within a given context.

library specific_singular_object] 11.7 statement describing an object which is part of the
library. Only one statement describing an object of a $pe-
cific type may appear within a given context.

logic_assignment(s) 11.2 statement(s) assigning a logic expression to a logig vari-
able

logic_value(s) 11.5 variable(s) or constant logic value(s)

logic_constant(s) 115 constant logic value(s)

logic_variable(s) 11.5 variable(s) containing a logic value

multi_value_assignment 11.2 statement for assignment of multiple values to an gbject

named_assignment 11.2 terminated statement for single value assignment fo a
named object

named_assignment_base 11.2 unterminated statement for single value assignmént to a
named object

named_cell_instantiation(s) 114 statement(s) describing a reference to another cel| with
pin-to-pin correspondence and instance name

node 11.15 statement declaring a node in a physical wireload mpodel

non_scan_cell 11.9 statement inside a cell making reference to the cell§

which can be replaced by this cell in scan design

Version 1.9.2 Advanced Library Format (ALF) Reference Manual 277

Syntax Rules

Cross-reference of BNF items

Table 11-1 : Cross-reference of BNF items with short semantic explanation, continued

BNF item Section Short semantic explanation

number(s) 11.5 integer or floating point number(s)

pattern new statement describing a physical object

pin(s) 11.11 statement(s) describing a pin inside a cell

pin_group 11.11 statement defining a group of pins that can henceforth be
referenced as a bus

pin_instantiation 114 statement inside a bus pin containing information pérti-
nent to a subset of pins within that bus

pin_item(s) 11.11 item(s) inside a pin statement

pin_assignment(s) 11.2 statement(s) defining a correspondence between two pins
or between a pin and a constant logic value

port new statement describing an electrical connection point
within a pin

primitive(s) 11.12 statement(s) describing a technology-independent cgll

primitive_instantiation 11.4 statement inside a behavior statement for logic fungtion
description by reference to a primitive

primitive_item(s) 11.12 item(s) inside a primitive statement

property 11.8 statement describing private properties without stanglard-
ized semantics

property_item(s) 11.8 item(s) inside a property statement

range 11.7 definition of a contiguous range of integer numbers

repeat new statement defining how to duplicate a physical object
several times

rule(s) new statement describing a set of design or extraction rulgs

sequential_else_if 11.6 operator indicating a lower-priority logic state or event
sequence

sequential_if 11.6 operator indicating a top-priority logic state or event
sequence

sequential_logic_statement 11.2 statement inside a behavior statement for logic fufction
description with storage elements

site new statement describing a legal placement site

source_text 11.7 contents of a self-sufficient file in ALF

statetable(s) 11.17 statement(s) describing the logic function of a digital cir-
cuit in table format

statetable_body 11.17 list of values inside a statetable

statetable_header 11.17 list of variables inside a statetable

statetable_value(s) 11.5 literal(s) inside a statetable

string 11.5 identifier consisting of a restricted set of characters gr
quoted string containing arbitrary characters

structure 11.17 statement(s) describing the structure of a cell in form|of a
netlist

Advanced Library Format (ALF) Reference Manual Version 1.9.2

278

Cross-reference of BNF items

Table 11-1 : Cross-reference of BNF items with short semantic explanation,

Syntax Rules

continued

BNF item Section Short semantic explanation

sublibrary (sublibraries) 11.13 statement(s) describing the contents of a sub-librany
inside a library

table 11.16 statement inside arithmetic model containing a list o
characterization data

table_item(s) 11.16 item(s) inside a table statement

template 11.8 statement defining an object with placeholders

template_instantiation 114 statement referring to a template and filling the plage-
holders

template_item(s) 11.8 statement(s) inside a template statement

test new statement containing information about the test algorithm
applicable to the cell

to 11.16 statement inside arithmetic model defining end point|of
timing measurement

unnamed_assignment(s) 11.2 terminated statement(s) for single value assignmeft to an
unnamed object

unnamed_assignment_base 11.2 unterminated statement for single value assignmgnt to an
unnamed object

unnamed_cell_instantiation(s) 114 statement(s) describing a reference to another celf with
pin-to-pin correspondence without instance name

value(s) lexical number(s) or string(s) or logic value(s)

vector(s) 11.14 statement(s) describing event sequence and data fof char-
acterization of a circuit

vector_and 11.6 operator used for description of simultaneous eventg or
simultaneous event sequences

vector_binary 11.6 operator requiring two operands used for descriptiofn of
event sequences

vector_boolean_and 11.6 operator used for description of event sequences With
condition, one operand is an expression describing a
complex event, other operand is a boolean expressioh

vector_boolean_cond 11.6 condition operator indicating if-clause

vector_boolean_else 11.6 condition operator separating if-and else-clauses

vector_complex_event 11.3 expression describing complex event sequences without
condition

vector_conditional_event 11.3 expression describing complex event sequences with
condition

vector_event_sequence 11.3 expression describing one event sequence

vector_expression 11.3 expression describing complex event sequences

vector_followed_by 11.6 operator used for description of subsequent events

vector_item(s) 11.14 item(s) inside a vector statement

vector_event 11.3 expression describing one single event or multiple 4imul-
taneous events

vector_or_boolean_expression 11.3 a vector expression or a boolean expression

Version 1.9.2 Advanced Library Format (ALF) Reference Manual 279

Syntax Rules Assignments
Table 11-1 : Cross-reference of BNF items with short semantic explanation, continued

BNF item Section Short semantic explanation

vector_expression 11.3 expression describing complex event sequences

vector_single_event 11.3 expression describing one single event

vector_unary 11.6 operator requiring one operand used for description| of
event sequences

via new statement describing the construction of electrical con-
nections accross layers

via_instantiation(s) 11.4 statement describing the correspondence between the
model and the instance of a via

via_item(s) new statement(s) inside a via statement

via_reference new statement containing via_instantiation statements

violation 11.16 statement inside arithmetic model defining consequences
of timing violation or illegal operation

wire(s) 11.15 statement(s) describing a wireload model

wire_item(s) 11.15 item(s) inside a wire statement

11.2 Assignments
unnamed_assignment_base ::=
context_sensitive_keyword = value

280

unnamed_assignment ::=
unnamed_assignment_base ;

unnamed_assignments ;=
unnamed_assignment { unnamed_assignment }

named_assignment_base ::=
context_sensitive_keyword identifier = value

named_assignment ::=
named_assignment_base ;

named_assignments ::=
named_assignment { named_assignment }

assignment_base ::=
named_assignment_base
| unnamed_assignment_base

multi_value_assignment ::=
identifier { values }

assignment ::=
named_assignment

Advanced Library Format (ALF) Reference Manual

Version 1.9.2

Expressions

| unnamed_assignment
| multi_value_assignment

pin_assignment ::=
pin_ identifier [index] pin_ identifier [index]
| pin_ identifier [index] logic_constant ;
| logic_constant = pin_ identifier [index] ;

pin_assignments ::=
pin_assignment { pin_assignment }

arithmetic_assignment ::=
identifier = arithmetic_expression ;

11.3 Expressions

arithmetic_expression ::=
(' arithmetic_expression)
| number
| [arithmetic_unary] identifier

| arithmetic_expression arithmetic_binary
arithmetic_expression
|arithmetic_function_operator

(arithmetic_expression { , arithmetic_expression }
| boolean_expression ? arithmetic_expression :
{ boolean_expression ? arithmetic_expression

arithmetic_expression

boolean_expression ::=
(boolean_expression)

| logic_constant

| logic_variable

| boolean_unary boolean_expression

| boolean_expression boolean_binary boolean_expression

| boolean_expression
boolean_cond boolean_expression boolean_else
{ boolean_expression boolean_cond boolean_else }
boolean_expression

vector_single_event ::=
(vector_single_event)
| vector_unary boolean_expression

vector_event ;=
(' vector_event)
| vector_single_event
| vector_event vector_and vector_event

vector_event_sequence ::=
(vector_event_sequence)

Version 1.9.2 Advanced Library Format (ALF) Reference Manual

Syntax Rules

281

Syntax Rules Instantiations

| vector_event
| vector_event_sequence vector_followed_by vector_event_sequence

vector_complex_event ::=
(vector_complex_event)
| vector_event_sequence
| vector_complex_event vector_binary vector_complex_event

vector_conditional_event ::=
vector_expression vector_boolean_and boolean_expression
| boolean_expression vector_boolean_and vector_expression
| boolean_expression vector_boolean_cond vector_expression
vector_boolean_else
{ boolean_expression vector_boolean_cond vector_expression
vector_boolean_else } vector_expression

vector_expression ::=
(' vector_expression)
| vector_complex_event
| vector_conditional_event
| vector_expression vector_binary vector_expression

vector_or_boolean_expression ::=
vector_expression
| boolean_expression

11.4 Instantiations

cell_instantiation ::=
unnamed_cell_instantiation
| named_cell_instantiation

unnamed_cell_instantiations ::=
unnamed_cell_instantiation { unnamed_cell_instantiation }

unnamed_cell_instantiation ::=
cell _identifier { logic_values }
| cell _identifier { pin_assignments }

named_cell_instantiations ::=
named_cell_instantiation { named_cell_instantiation }

named_cell_instantiation ::=
cell_ identifier instance_ identifier { logic_values }
| cell_ identifier instance_ identifier { pin_assignments }

pin_instantiation ::=

pin_ identifier [index] {
pin_items

282 Advanced Library Format (ALF) Reference Manual Version 1.9.2

Literals

primitive_instantiation ::=
primitive _identifier [identifier] { logic_values

Syntax Rules

}

| primitive _identifier [identifier] { logic_assignments }

| primitive _identifier [identifier] { pin_assignments

template_instantiation ::=
template _ identifier ;
template_ identifier [= static] { values }

template_ identifier = dynamic{ values }

|
| template_ identifier [= static] { all_purpose_items
|
|

}

template_ identifier = dynamic{ dynamic_instantiation_items }

dynamic_instantiation_items ::=
dynamic_instantiation_item { dynamic_instantiation_item }

dynamic_instantiation_item ::=
all_purpose_item
| arithmetic_model
| arithmetic_assignment

via_instantiations ::=
via_instantiation { via_instantiation }

via_instantiation ::=
via_ identifier { geometric_transformations }

11.5 Literals

context_sensitive_keyword ::=
nonescaped_identifier

edge_literal ::=
bit_edge_literal
| word_edge_literal
| symbolic_edge_literal

edge_literals::=
edge_literal { edge_literal }

identifier ::=
nonescaped_identifier
| escaped_identifier
| placeholder_identifier

identifiers ::=
identifier { identifier }

index ::=

[unsigned]
| [unsigned : unsigned]

Version 1.9.2 Advanced Library Format (ALF) Reference Manual

283

Syntax Rules Operators

| [identifier]
| [identifier . identifier]

logic_value ::=
logic_constant
| logic_variable

logic_values ::=
logic_value { logic_value }

logic_constant ::=
bit_literal
| based_literal

logic_constants ::=
logic_constant { logic_constant }

statetable_value ::=
logic_constant
| edge_literal
| ([!]logic_variable)

statetable_values ::=
statetable_value { statetable value }

logic_variable ::=
pin_ identifier [index]

logic_variables ::=
logic_variable { logic_variable }

numbers ::=
number { number }

string ::=
guoted_string
| identifier
value ::=
number
| string
| logic_value

values ::=
value { value }

11.6 Operators

arithmetic_unary ::=
+| -

284 Advanced Library Format (ALF) Reference Manual Version 1.9.2

Operators Syntax Rules

arithmetic_binary ::=
- KL %

arithmetic_function_operator ::=
abs

| exp

| log

| min

| max

boolean_unary ::=
P~ & ~& |1~ 1~ "

boolean_and ::=
&l &&

boolean_or ::=

boolean_logic_compare ::=
N | ~N\

boolean_case_compare ::=
I= | == >=| <=| >| <

boolean_arithmetic ::=
-1 1 Lo > <<

boolean_binary ::=
boolean_and
| boolean_or
| boolean_logic_compare
| boolean_case_compare
| boolean_arithmetic

boolean_cond ::=
I)

boolean_else ::=
vector_unary ::=
edge_literal

vector_and ::=

& &&

vector_or ::=

Version 1.9.2 Advanced Library Format (ALF) Reference Manual 285

Syntax Rules Auxiliary objects

vector_followed_hy ::=
> ~>

vector_binary ::=
vector_and
| vector_or
| vector_followed_by
| <->
| &>
| <&>

vector_boolean_and ::=

& &&

vector_boolean_cond ::=
?

vector_boolean_else ::=

sequential_if ::=

@

sequential_else_if ::=

See Section 5.1.2, Section 5.1.3, and Section 7.2.2 for the semantics of these operators.

11.7 Auxiliary objects

all_purpose_item ::=
annotation
| annotation_container
| generic_object
| template_instantiation

all_purpose_items ::=
all_purpose_item { all_purpose_item }

annotation ::=
assignment
| assignment_base { all_purpose_items }

annotation_container ::=
context_sensitive_keyword { all_purpose_items }

generic_object ::=
alias
| attribute
| constant
| class

286 Advanced Library Format (ALF) Reference Manual Version 1.9.2

Generic objects

| group
| include

| keyword_declaration

| property
| template

library_specific_object ::=
cell
| library
| node
| pin
| pin_group
| primitive
| sublibrary
| vector
| wire
| antenna
| array
| blockage
| connectivity
| layer
| port
| rule
| site
| via

library_specific_singular_object ::=
| function
| non_scan_cell
| test
| range
| artwork

source_text ::=
ALF _REVISION version_ string library

11.8 Generic objects

alias ::=

ALIAS identifier = identifier X
attribute ::=

ATTRIBUTE { attribute_items }

attribute_item ::=
identifier [{ unnamed_assignments }]

attribute_items ::=
attribute_item { attribute_item }

Version 1.9.2 Advanced Library Format (ALF) Reference Manual

Syntax Rules

287

Syntax Rules Generic objects

class ::=
CLASS identifier :
| CLASSidentifier { class_items }

class_item ::=
all_purpose_item
| logic_assignment
| vector_assignment

class_items ::=
class_item { class_item }

constant ::=

CONSTANT identifier = number

| CONSTANTdentifier = logic_constant ;
group ::=

GROUPgroup_ identifier { identifiers }

| GROUPgroup_ identifier { numbers }

| GROUPgroup_ identifier { edge._literals }

| GROUPgroup_ identifier { logic_constants }

| GROUPgroup_ identifier { logic_variables }

| GROUPgroup_ identifier { integer : integer }
include ::=

INCLUDE quoted_string ;

keyword_declaration ::=

KEYWOREntext_sensitive_keyword = syntax_item_ identifier X
property ::=
PROPERTY [identifier] { property_items }

property_items ::=
property_item { property_item }

property_item ::=
unnamed_assignment
| multi_value_assignment

template ::=
TEMPLATE template_ identifier { template_items }

template_item ::=
all_purpose_item
| library_specific_object
| library_specific_singular_object
| arithmetic_model
| arithmetic_model_container
| header
| table

288 Advanced Library Format (ALF) Reference Manual Version 1.9.2

CELL

| equation
| behavior_item
| geometric_model

template_items ::=
template_item { template_item }

11.9 CELL

cell ::=
CELL cell_ identifier { cell_items }
| CELL cell_ identifier ;
| cell_ template_instantiation

cell_item ::=
all_purpose_item
| pin
| pin_group
| primitive
| function
| non_scan_cell
| test
| arithmetic_model
| vector
| wire
| blockage
| artwork
| connectivity

cell_items ::=
cell_item {cell_item}

non_scan_cell ::=

NON_SCAN_CELL {innamed_cell_instantiations }

11.10 LIBRARY

library ::=
LIBRARY library identifier { library_items [sublibraries]
| LIBRARY library identifier ;
| library template_instantiation

libraries ::=
library { library }

library_item ::=
all_purpose_item
| arithmetic_model
| cell
| primitive

Version 1.9.2 Advanced Library Format (ALF) Reference Manual

Syntax Rules

289

Syntax Rules PIN

| wire

| layer

| via

| rule

| antenna

| array

| site

| connectivity

library_items ::=
library_item { library_item }

11.11 PIN

pin ::=
PIN [index] pin_ identifier { pin_items }
PIN [index] pin_ identifier ;
| pin_ template_instantiation
pins ::=
pin { pin }
pin_item ::=

all_purpose_item
| arithmetic_model
| range
| port
| connectivity

pin_items ::=
pin_item { pin_item }

pin_group ::=
PIN_GROUR index] pin_group_ identifier {
pin_items
MEMBERS {pins }
}
range ::=

RANGE { unsigned : unsigned }

11.12 PRIMITIVE

primitive ::=
PRIMITIVE primitive_ identifier { primitive_items }
| PRIMITIVE primitive_ identifier ;
| primitive_ template_instantiation

primitives ::=
primitive { primitive }

290 Advanced Library Format (ALF) Reference Manual Version 1.9.2

SUBLIBRARY

primitive_item ::=
all_purpose_item
| pin
| function
primitive_items ::=
primitive_item { primitive_item }

11.13 SUBLIBRARY

sublibrary ::=
SUBLIBRARY library identifier
| SUBLIBRARY library_identifier
| sublibrary template_instantiation

sublibraries ::=
sublibrary { sublibrary }

11.14 VECTOR

vector ::=

VECTOR (vector_or_boolean_expression
| VECTOR (vector_or_boolean_expression

| vector_ template_instantiation

vector_item ::=
all_purpose_item
| arithmetic_model
| logic_assignment
| vector_assignment

vector_items ::=
vector_item { vector_item }

vector_assignment ::=
context_sensitive_keyword

11.15 WIRE

wire ::=
WIRE wire_ identifier { wire_items
| WIRE wire_ identifier :
| wire_ template_instantiation
wire_item ::=
all_purpose_item
| node

| arithmetic_model

{ library_items }

)
)

= (vector_expression

{ vector_items

)

Version 1.9.2 Advanced Library Format (ALF) Reference Manual

Syntax Rules

}

291

Syntax Rules Arithmetic model

wire_items ::=
wire_item { wire_item }

node ::=
NODE node _identifier { all_purpose_items }

11.16 Arithmetic model

arithmetic_model ::=

context_sensitive_keyword [identifier] = value ;
| context_sensitive_keyword [identifier]
[=value] { arithmetic_model_items }
| arithmetic_model _ template_instantiation

arithmetic_models ::=
arithmetic_model { arithmetic_model }

arithmetic_model_item ::=
all_purpose_item

| from

| to

| violation

| header

| table

| equation

| arithmetic_submodel

arithmetic_model_items ::=
arithmetic_model_item { arithmetic_model_item }

arithmetic_model_container ::=
context_sensitive_keyword { arithmetic_models }

arithmetic_submodel ::=
context_sensitive_keyword = value ;
| context_sensitive_keyword
[=value] { arithmetic_submodel_items }
| context_sensitive_keyword { arithmetic_submodels }
| arithmetic_submodel _ template_instantiation

arithmetic_submodels ::=
arithmetic_submodel { arithmetic_submodel }

arithmetic_submodel_item ::=
all_purpose_item
| header
| table
| equation

arithmetic_submodel_items ::=
arithmetic_submodel_item { arithmetic_submodel_item }

292 Advanced Library Format (ALF) Reference Manual

Version 1.9.2

FUNCTION
header ::=
HEADER { all_purpose_items] arithmetic_models
| header_ template_instantiation
table ::=
TABLE { table_items }
| table template_instantiation
table_item ::=
number
| identifier
table_items ::=

table_item { table_item }

equation ::=
EQUATION {arithmetic_expression }
| equation_ template_instantiation
violation ::=
VIOLATION {
[message type assignment]
[message assignment]
[behavior]
}
from ::=
FROM {
[pin_ assignment]
[edge_assignment]
[threshold_ arithmetic_model]
}
to ::=
TO {
[pin_ assignment]
[edge assignment]
[threshold _ arithmetic_model]
}

11.17 FUNCTION

function ::=
FUNCTION identifier]

{ [all_purpose_items] [behavior] [structure] [statetables] }
| function_ template_instantiation

structure ::=

STRUCTURE {named_cell_instantiations }

Version 1.9.2 Advanced Library Format (ALF) Reference Manual

Syntax Rules

293

Syntax Rules TEST

statetable ::=
STATETABLE] identifier] { statetable_header statetable_body }

statetables ::=
statetable { statetable }

statetable_body ::=
statetable_values . statetable values ;
{ statetable_values . statetable_values ;)

statetable _header ::=

logic_variables . logic_variables ;
behavior ::=
BEHAVIOR identifier] { behavior_items }

behavior_item ::=
logic_assignment
| sequential_logic_statement
| primitive_instantiation

behavior_items ::=
behavior_item { behavior_item }

logic_assignment ::=
identifier [index] = boolean_expression ;

logic_assignments ::=
logic_assignment { logic_assignment }

sequential_logic_statement ::=

sequential_if (' vector_or_boolean_expression)
{ logic_assignments }
{ sequential_else_if (vector_or_boolean_expression)
{ logic_assignments }}

11.18 TEST

test ;=
TEST{ behavior }

11.19 Geometric Model

geometric_model ::=
geometric_model identifier
[geometric_model_name_ identifier] {
all_purpose_items
coordinates }
geometric_model template_instantiation

294 Advanced Library Format (ALF) Reference Manual Version 1.9.2

ARTWORK Syntax Rules

geometric_models ::=
geometric_model { geometric_model }

coordinates ::=
COORDINATES { x_number y number{ x_number y number} }

geometric_transformations ::=
geometric_transformation { geometric_transformation }

geometric_transformation ::=
shift_ annotation_container
| rotate_ assignment
| flip_ assignment
| repeat

repeat ::=
REPEAT = unsigned] {
shift_ annotation_container
[repeat]

11.20 ARTWORK

artwork ::=
ARTWORK =artwork_ identifier {
[geometric_transformations]
{ pin_assignments }

11.21 LAYER

layer ::=

LAY ERidentifier { layer_items }
layer_items ::=

layer_item { layer_item }
layer_item ::=

all_purpose_item
| arithmetic_model
| arithmetic_model_container

11.22 PATTERN

pattern ::=
PATTERN identifier] {
[all purpose_items]
[geometric_models]

Version 1.9.2 Advanced Library Format (ALF) Reference Manual

295

Syntax Rules

[geometric_transformations]

11.23 VIA

via ::=
VIA [identifier] { via_items }
via_items ::=
via_item { via_item }
via_item ::=
all_purpose_item
| pattern
| artwork

| arithmetic_model

via_reference ::=
VIA{ via_instantiations }

11.24 BLOCKAGE

blockage ::=
BLOCKAGIEidentifier] {
[all_purpose_items]
[patterns]
[rules]

11.25 PORT

port ;=
PORT port_ identifier ;
| PORT [port_ identifier] {
[all_purpose_items]
[patterns]
[rules]
[via_reference]

11.26 RULE

rule ::=
RULE] identifier | { rule_items }

rules ::=rule { rule }

296 Advanced Library Format (ALF) Reference Manual

VIA

Version 1.9.2

SITE

rule_items ::=
rule_item { rule_item }

rule_item ::=
pattern

| all_purpose_item
| arithmetic_model

11.27 SITE

site ;=
SITE site_ identifier { all_purpose_items

11.28 ANTENNA

antenna ::=

ANTENNA[antenna_ identifier] { antenna_items

antenna_items ::=
antenna_item { antenna_item }

antenna_item ::=
all_purpose_item
| arithmetic_model
| arithmetic_model_container

11.29 ARRAY

array ;=
ARRAY identifier {
all_purpose_items
geometric_transformations

11.30 Connectivity

connectivity ::=

CONNECTIVITYT identifier] {
connect_rule_ assignment
between_ multi_value_assignment

}

CONNECTIVITYT identifier] {
connect_rule_ assignment
header table

}

Version 1.9.2 Advanced Library Format (ALF) Reference Manual

}

Syntax Rules

297

Syntax Rules Connectivity

298 Advanced Library Format (ALF) Reference Manual Version 1.9.2

Appendix A
Sample Applications

This section shows various examples of library elements modeled using ALF.

A.1 Truth table versus boolean equation

A combinational logic cell and a sequential logic cell are shown below using two different
constructs - truth table and boolean equation.

Al.l NAND gate

A two-inputNANDgate library cell can be modeled as shown below. AibecTIONOf the cell
can be modeled either aSBATETABLEOr asBEHAVIORUSING a boolean equation.

Modeling aNANDgate using a truth table:

CELL ND2 { /* 2 input NAND gate */
PIN a {DIRECTION=input;}
PIN b {DIRECTION=input;}
PIN z {DIRECTION=output;}

FUNCTION {
STATETABLE {
ab:z;
0?2:1;
17?:(b);

}
)

Modeling aNANDgate using a boolean expression:

CELL ND2 { /* 2 input NAND gate */
PIN a {DIRECTION=input;}
PIN b {DIRECTION=input;}
PIN z {DIRECTION=output;}

FUNCTION {
BEHAVIOR {
z=!(a &b);
}
)
Al2 Flip-flop

A flip-flop with asynchronous set and clear signals is shown below using a truth table.

Version 1.9.2 Advanced Library Format (ALF) Reference Manual 299

Sample Applications

CELL FLIPFLOP {
PIN CLEAR {DIRECTION=input; SIGNALTYPE=clear; POLARITY=low;}
PIN SET {DIRECTION=input; SIGNALTYPE=set; POLARITY=low;}
PIN CLOCK {DIRECTION=input; SIGNALTYPE=clock; POLARITY=rising_edge;}
PIN D {DIRECTION=input;}
PIN Q {DIRECTION=output;}

FUNCTION {
...[* One of the descriptions below go here */
}
}
STATETABLE {
CLEARSETCLOCK DQ:Q;
0 ? ?? ?27?:0;
1 0 ?? ?27:1;
1 1 01 ?27?:(d);
1 1 1?7 ?27?2:(q);
1 1 20 ?27?:(q);
}
Modeling a flip-flop with asynchronous set and clear using a boolean expression:
BEHAVIOR {

@(ICLEAR) {Q = 0;} : (!SET) {Q = 1;} : (01 CLOCK) {Q = D;}
}

A.2 Use of primitives

The functionality of a cell can be described using instances of other cells.

A2.1 D-flip-flop with asynchronous clear

Modeling aD- flip-flop with asynchronous clear:

CELL d_flipflop_clr {
PIN cd {DIRECTION=input; SIGNALTYPE=clear; POLARITY=low;}
PIN cp {DIRECTION=input; SIGNALTYPE=clock; POLARITY=rising_edge;}
PIN d {DIRECTION=input;}
PIN q {DIRECTION=output;}
FUNCTION {
...[* One of the descriptions below go here */

}

}
Explicit description does not use instances of other cells defined in the library:
BEHAVIOR {
@(0lcp &cd){g=d;}
@('cd) {q = 0}
}

Use of primitives permit the derivation of new cells from other cells. Below, a D-flip-flop with
asynchronous clear is derived from a predefimegd FLIPFLOP with asynchronous set and
clear (see Section A.1.2):

300 Advanced Library Format (ALF) Reference Manual Version 1.9.2

Sample Applications

BEHAVIOR {
ALF_FLIPFLOP {CLOCK=cp; D=d; Q=q; SET="00; CLEAR=!cd;}
}

A.2.2 JK-flipflop

This example shows three ways of modeling a JK-flip-flop.

CELL jk_flipflop {
PIN cp {DIRECTION=input; SIGNALTYPE=clock; POLARITY=rising_edge;}
PIN j {DIRECTION=input;}
PIN k {DIRECTION=input;}
PIN q {DIRECTION=output;}
FUNCTION {
...[* One of the descriptions below go here */
}
}

Explicit description:

BEHAVIOR {
d=
(j &k)?0:
(j &k)?1:
(] &Kk)?(a):
(&'k)?(q):
'bx ;
@(01 cp) {q = d;}

Use of primitives (using predefinedF_mMuXxandALF_FLIPFLOP):
BEHAVIOR {
ALF_MUX {Q=d; D[0]=j; D[1]="k; S=q;}
ALF_FLIPFLOP {CLOCK=cp; D=d; Q=q; SET='00; CLEAR='b0;}

}
Use of a hybrid form (boolean expressions within primitive instantiation):
BEHAVIOR {
ALF_FLIPFLOP {CLOCK=cp; D=(q ? 'k : j); Q=q; SET="b0; CLEAR='b0;}
}
Use of a truth table:
STATETABLE {
cpjka:(q);
01007?:(q);
01017?:0;
01107?:1;
01117?:(q);
1?7?27?27?:(9);
?20?7?27?:(0);
}
A.2.3 D-flip-flop with synchronous load and clear

This example shows two different models of a synchronous D-flip-flop.

Version 1.9.2 Advanced Library Format (ALF) Reference Manual 301

Sample Applications

CELL d_flipflop_Id_clr {
PIN cs {DIRECTION=input; SIGNALTYPE=clear;
POLARITY=low; ACTION=synchronous;}
PIN Is {DIRECTION=input;}
PIN cp {DIRECTION=input; SIGNALTYPE=clock; POLARITY=rising_edge;}
PIN d {DIRECTION=input;}
PIN q {DIRECTION=output;}
FUNCTION{ ... }

}
Explicit description:
BEHAVIOR {
dl=(ls)?d:q;
d2=d1 &cs;
@(01cp) {q=d2}
}
Use of primitives:
BEHAVIOR {
ALF_MUX {Q=d1; DO=q; D1=d; SELECT=Is;}/* Connection by pin nhame */
ALF_AND {d2 d1 cs} /* Connection by pin order */
ALF_FLIPFLOP {CLOCK=cp; D=d2; Q=q; SET='b0; CLEAR='bO; }
}

A24 D-flip-flop with input multiplexor

This example shows three different modeling styles for a D-flip-flop with input multiplexor,
asynchronous set, and asynchronous clear:

CELL d_flipflop_mux_set_clr {
PIN sel {DIRECTION=input;}
PIN sd {DIRECTION=input; SIGNALTYPE=set; POLARITY=low;}
PIN cd {DIRECTION=input; SIGNALTYPE=clear; POLARITY=low;}
PIN cp {DIRECTION=input; SIGNALTYPE=clock; POLARITY=rising_edge;}
PIN d1 {DIRECTION=input;}
PIN d2 {DIRECTION=input;}
PIN q {DIRECTION=output;}
FUNCTION { /* fill in BEHAVIOR */ }

}
Explicit description:
BEHAVIOR {
@('cd) {q = 0}
@('sd &cd){q=1;}
@(01lcp &cd &sd){q=-sel?dl:d2;}
}
More efficient description can be created usingf-éimen-elsestyle:
BEHAVIOR {
@(lcd) {q = 0}
((Isd) {g =13}
:(01cp){g=sel?dl:d2;}
}

302 Advanced Library Format (ALF) Reference Manual Version 1.9.2

Sample Applications

Use of primitive:
BEHAVIOR {
ALF_FLIPFLOP {CLOCK=cp; D=(sel ? di: d2); Q=q; SET=!sd; CLEAR=!cd;}
}
The use of almLF_MUXprimitive is eliminated here by using an assignment expression o the
input in theALF_FLIPFLOP instance.

A.25 D-latch

This example shows a level-sensitive cell in two different styles.

CELL d_latch {
PIN g {DIRECTION=input; SIGNALTYPE=clock; POLARITY=high;}
PIN d {DIRECTION=input;}
PIN q {DIRECTION=output;}
FUNCTION{ ... }

}
Explicit description:

BEHAVIOR {
\ @(9){q=d3}

Use of primitive:

BEHAVIOR {
ALF_LATCH {ENABLE=g; D=d; Q=q; SET='b0; CLEAR='00;}
}

A.2.6 SR-latch

The example below shows how some of the input pins can be left unconnected if they represent
a “don’t care” situation.

CELL sr_latch {
PIN sn {DIRECTION=input; SIGNALTYPE=set; POLARITY=low;}
PIN rn {DIRECTION=input; SIGNALTYPE=clear; POLARITY=low;}
PIN q {DIRECTION = output;}
PIN gn {DIRECTION = output;}
FUNCTION{ ... }

}
Explicit description:

BEHAVIOR {
@ ('sn) {g ="'bl; gn =!rn;}
@ (') {gn ="b1; g =!sn;}
}

Use of primitive:

BEHAVIOR {
ALF_LATCH {ENABLE='b0; Q=q; SET=!Isn; CLEAR=!rn;}
}

Version 1.9.2 Advanced Library Format (ALF) Reference Manual 303

Sample Applications

Since theENABLEpIn is always set to, the connection ab pin is irrelevant. Even ibis
considerecbX or'bz , the behavior shall not change.

A.2.7

JTAG BSR

The following example shows a JTAG BSR cell with built-in scan chain.
CELL F10_18{

}

A.2.8

PIN SysOut {DIRECTION = output;}
PIN TDO {DIRECTION = output; SIGNALTYPE = scan_data;}
PIN Sysin {DIRECTION = input;}
PIN TDI {DIRECTION = input; SIGNALTYPE = scan_data;}
PIN Shift {DIRECTION = input; SIGNALTYPE = scan_enable;}
PIN CIk {DIRECTION = input; POLARITY = rising_edge;
SIGNALTYPE = master_clock;}
PIN Update {DIRECTION = input; POLARITY = rising_edge;
SIGNALTYPE = slave_clock;}
PIN Mode {DIRECTION = input; SIGNALTYPE = select;}
PIN STATEO { // This state is on the scan chain
SCAN_POSITION = 1; DIRECTION = output; VIEW = none;}
PIN STATEL {// NOT on scan chain (just update latch)
DIRECTION = output; VIEW = none;}
FUNCTION {
BEHAVIOR {
@ (01 CIk) {STATEO = Shift ? TDI : SysIn;}
@ (01 Update) {STATE1 = STATEO;}
TDO = STATEQ;
SysOut = Mode ? STATEL : Sysin;

Combinational scan cell

The following example shows a combinational scan cell with a reused primitive.
LIBRARY major_ASIC_vendor {

304

INFORMATION {
version =v2.1.0;
title = “0.35 standard cell”;
product = p35sc;
author = “Major Asic Vendor, Inc.”;
datetime = “Wed Jul 23 13:50:12 MST 19977,

}

CELL ND3A {
INFORMATION {
version = v6.0;
titte = “3 input nand”;
product = p35sc_lib;
author = “Joe Cell Designer”;
datetime = “Tue Apr 1 01:39:47 PST 1997";

Advanced Library Format (ALF) Reference Manual

Version 1.9.2

Sample Applications

PIN Z {DIRECTION=output;}
PIN A {DIRECTION=input;}
PIN B {DIRECTION=input;}
PIN C {DIRECTION=input;}
FUNCTION {

BEHAVIOR {

ALF_NAND {Z AB C}

}
}
/*fill in timing and power data for ND3A cell */

}

CELL ND3B {

PIN Z {DIRECTION=output;}
PIN A {DIRECTION=input;}
PIN B {DIRECTION=input;}
PIN C {DIRECTION=input;}
FUNCTION {

BEHAVIOR {

ALF_NAND {Z AB C}

}
}
/*fill in timing and power data for ND3B cell */

}

CELL SCAN_ND4 {
PIN Z {DIRECTION=output;}
PIN A {DIRECTION=input;}
PIN B {DIRECTION=input;}
PIN C {DIRECTION=input;}
PIN D {DIRECTION=input; SIGNALTYPE=scan_enable;}

SCAN_TYPE = control_0;
NON_SCAN_CELL = ALF_NAND {Z AB C}
FUNCTION {
BEHAVIOR {
Z=!(A &B &C &D);
}

}

A.2.9 Scan flip-flop

The following example shows a scan flip-flop using the gemercFLIPFLOP primitive.
LIBRARY major_ASIC_vendor {

CELL F614 {
PIN HO1 {DIRECTION = input; SIGNALTYPE = data;}
PIN HO2 {DIRECTION = input; SIGNALTYPE = clock;}
PIN HO3 {DIRECTION = input; SIGNALTYPE = clear; POLARITY = high;}
PIN HO4 {DIRECTION = input; SIGNALTYPE = set; POLARITY = high;}

Version 1.9.2 Advanced Library Format (ALF) Reference Manual 305

Sample Applications

PIN NO1 {DIRECTION = output;}
PIN NO2 {DIRECTION = output;}
FUNCTION {
BEHAVIOR {
ALF_FLIPFLOP {
D=H01; CLOCK=H02; CLEAR=HO03; SET=H04;
Q=NO01; QN=N02; Q_CONFLICT="bX; QN_CONFLICT="bX;

}

CELL S000 {
PIN HO1 {DIRECTION = input; SIGNALTYPE = scan_data;}
PIN HO2 {DIRECTION = input; SIGNALTYPE = clock;}
PIN HO3 {DIRECTION = input; SIGNALTYPE = scan_enable;
POLARITY = low;}
PIN HO4 (DIRECTION = input; SIGNALTYPE = set; POLARITY = high;}
PIN HO5 {DIRECTION = input; SIGNALTYPE = clear; POLARITY = high;}
PIN HO6 {DIRECTION = input; SIGNALTYPE = data;}
PIN NO1 {DIRECTION = output; SIGNALTYPE = data;}
PIN NO2 {DIRECTION = output;}
FUNCTION{

BEHAVIOR{ // flipflop_d is an implicitly defined internal pin
ALF_MUX {Q=flipflop_d; DO=H06; D1=H01; SELECT=H03;}
ALF_FLIPFLOP {

D=flipflop_d; CLOCK=H02; CLEAR=HO05; SET=H04;
Q=NO01; QN=NO02; Q_CONFLICT="bX; QN_CONFLICT="bX;

}
}
SCAN_TYPE = muxscan;
NON_SCAN_CELL = ALF_FLIPFLOP {D=H06; CLOCK=H02; CLEAR=HO05; SET=H04;
Q=NO01; QN=NO02; Q_CONFLICT="bX;
QN_CONFLICT="bX; 'b0=H03; 'b0=HO01;}
} /1 HO3 and HO1 have no corresponding pin in ALF_FLIPFLOP

}

A.2.10 Quad D-flip-flop

The following example shows a quad D-flip-flop with and without built-in scan chain.

LIBRARY major_ASIC_vendor {
PRIMITIVE FFX4 {
PIN CK { DIRECTION = input; }
PIN DO { DIRECTION = input; }
PIN D1 { DIRECTION = input; }
PIN D2 { DIRECTION = input; }
PIN D3 { DIRECTION = input; }
PIN QO { DIRECTION = output; }
PIN Q1 { DIRECTION = output; }
PIN Q2 { DIRECTION = output; }
PIN Q3 { DIRECTION = output; }

306 Advanced Library Format (ALF) Reference Manual Version 1.9.2

Sample Applications

FUNCTION {
BEHAVIOR {
ALF_FLIPFLOP {Q=Q0; D=D0; CLOCK=CK; SET='b0; CLEAR='b0;}
ALF_FLIPFLOP {Q=Q1; D=D1; CLOCK=CK; SET='b0; CLEAR='b0;}
ALF_FLIPFLOP {Q=Q2; D=D2; CLOCK=CK; SET='b0; CLEAR='b0;}
ALF_FLIPFLOP {Q=Q3; D=D3; CLOCK=CK; SET='b0; CLEAR='b0;}

}
}
CELL SCAN_FFX4 {
PIN OUTO {DIRECTION = output;}
PIN OUT1 {DIRECTION = output;}
PIN OUT2 {DIRECTION = output;}
PIN OUT3 {DIRECTION = output;}
PIN SO {DIRECTION = output; SIGNALTYPE = scan_data;}
PIN INO {DIRECTION = input; SIGNALTYPE = data;}
PIN IN1 {DIRECTION = input; SIGNALTYPE = data;}
PIN IN2 {DIRECTION = input; SIGNALTYPE = data;}
PIN IN3 {DIRECTION = input; SIGNALTYPE = data;}
PIN CLK {DIRECTION = input; SIGNALTYPE = clock;}
PIN SI {DIRECTION = input; SIGNALTYPE = scan_data;}
PIN SE {DIRECTION = input; SIGNALTYPE = scan_enable;}
PIN STATEO {SCAN_POSITION = 1; DIRECTION = output; VIEW = none;}
PIN STATE1 {SCAN_POSITION = 2; DIRECTION = output; VIEW = none;}
PIN STATE2 {SCAN_POSITION = 3; DIRECTION = output; VIEW = none;}
PIN STATE3 {SCAN_POSITION = 4; DIRECTION = output; VIEW = none;}
FUNCTION {
BEHAVIOR {
OUTO = STATEO; OUT1 = STATEL; OUT2 = STATE2; OUT3 = STATES;
SO = ISTATES;
@(01 CLK) {
STATEO = SE ? !SI : INO;
STATEL = SE ? ISTATEO : IN1,;
STATE2 = SE ? ISTATEL : IN2;
STATE3 = SE ? ISTATE2 : IN3;

}
}
SCAN_TYPE = muxscan;

NON_SCAN_CELL = FFX4 {CLK INO IN1 IN2 IN3 OUTO OUT1 OUT2 OUT3}
} // this example shows referencing by order

A.3 Templates and vector-specific models

This section describes how to use templates and vector-specific models.

A.3.1 Vector-specific delay and power tables

In this example, the use of vector specific models for input-to-output delay, output slewrate,
and switching energy is shown.

Version 1.9.2 Advanced Library Format (ALF) Reference Manual 307

Sample Applications

CELL nand2 {
PIN a {DIRECTION = input; CAPACITANCE = 0.02 {UNIT = pF;}}

PIN b {DIRECTION = input; CAPACITANCE = 0.02 {UNIT = pF;}}
PIN z {DIRECTION = output;}
FUNCTION {

BEHAVIOR {z = !(a &b);}

}
VECTOR (10 a -> 01 z){ [* Vector specific characterization */
DELAY {
UNIT = ns;

FROM {PIN = a; THRESHOLD = 0.4;}
TO {PIN = z; THRESHOLD = 0.6;}
HEADER ({
CAPACITANCE {
PIN = z; UNIT = pF;
TABLE {0.01 0.02 0.04 0.08 0.16}
}
SLEWRATE {
PIN = a; UNIT = ns;
FROM {THRESHOLD = 0.5;}
TO {THRESHOLD =0.3;}
TABLE {0.1 0.3 0.9}
}
}
TABLE {
0.10.20.40.81.6
0.20.305091.7
0.4050.71.11.9
}
}
SLEWRATE {
PIN = z; UNIT = ns;
FROM {THRESHOLD = 0.3;}
TO {THRESHOLD = 0.5;}
HEADER ({
CAPACITANCE {
PIN = z; UNIT = pF;
TABLE {0.01 0.02 0.04 0.08 0.16}
}
SLEWRATE {
PIN = a; UNIT = ns;
FROM {THRESHOLD = 0.5;}
TO {THRESHOLD =0.3;}
TABLE {0.1 0.3 0.9}
}
}
TABLE {
0.10.20.40.81.6
0.10.20.40.81.6
0.2040.61.01.8
}
}
ENERGY {
UNIT = pJ;

308 Advanced Library Format (ALF) Reference Manual

Version 1.9.2

Sample Applications

HEADER {
CAPACITANCE {
PIN = z; UNIT = pF;
TABLE {0.01 0.02 0.04 0.08 0.16}

}
SLEWRATE {
PIN = a; UNIT = ns;
FROM {THRESHOLD = 0.5;}
TO {THRESHOLD =0.3;}
TABLE {0.1 0.3 0.9}
}
}
TABLE {
0.21 0.32 0.64 0.98 1.96
0.22 0.33 0.65 0.99 1.97
0.310.420.74 1.08 2.06
}
}
}
VECTOR (01 a -> 10 z){
DELAY {...}
SLEWRATE{ ...}
ENERGY {... }
}
VECTOR (10 b -> 01 z){
DELAY {...}
SLEWRATE{ ...}
ENERGY {... }
}
VECTOR (01 b -> 10 z){
DELAY {...}
SLEWRATE{ ...}
ENERGY {... }

}

A.3.2 Use of TEMPLATE

Notice the header for the delay, ramptime, and energy models was the same in the example in
Section A.3.1. Therefore, creating a template definition can eliminate duplicate information,
reduce the possibility of inadvertent errors, and make the models compact. For example, a
header template can be created as shown below:

| Version 1.9.2 Advanced Library Format (ALF) Reference Manual 309

Sample Applications

TEMPLATE std_header_2d {
HEADER {
CAPACITANCE {
PIN = <out_pin>; UNIT = pF;
TABLE {0.01 0.02 0.04 0.08 0.16}

}

SLEWRATE {
PIN = <in_pin>; UNIT = ns;
FROM {THRESHOLD {RISE = 0.3; FALL = 0.5;} }
TO {THRESHOLD {RISE = 0.5; FALL = 0.3;} }
TABLE {0.1 0.3 0.9}

}

}
The use offEMPLATEeliminates the repetition of header information by rewriting the previous
example (only the first vector) as shown below.

DELAY {
UNIT = ns;
THRESHOLD {RISE=0.4; FALL=0.6;}
FROM {PIN = a;}
TO {PIN = z;}
std_header_2d { [* Template is used */
in_pin = a;
out_pin = z;
}
TABLE {
0.10.20.40.81.6
0.20.30.5091.7
04050.71.119

}
}
SLEWRATE {
PIN = z; UNIT = ns;
FROM {THRESHOLD {RISE = 0.3; FALL =0.5;} }
TO {THRESHOLD {RISE = 0.5; FALL =0.3;} }
std_header_2d { [* Template is used */
in_pin = a;
out_pin = z;
}
TABLE {
0.10.20.4081.6
0.10.20.4081.6
0.20.40.61.01.8
}
}
ENERGY {
UNIT = pJ;
std_header_2d { [* Template is used */
in_pin = a;
out_pin = z;

310 Advanced Library Format (ALF) Reference Manual Version 1.9.2

Sample Applications

TABLE {
0.210.320.64 0.98 1.96
0.22 0.33 0.65 0.99 1.97
0.310.42 0.74 1.08 2.06

}
Note the entire characterization model for CElahd2 is the same for each vector (i.e., pair
of input and output pins), so further efficiency can be achieved by defining the characterization
model itself as a template. This template definition uses the instantiation of the previously
defined header template.

TEMPLATE std_char_2d {
DELAY {
UNIT = ns;
THRESHOLD {RISE=0.4; FALL=0.6;}
FROM {PIN = <in_pin>; }
TO {PIN = <out_pin>; }
std_header_2d {
in_pin = <input_pin>;
out_pin = <output_pin>;
}
TABLE <delay_data>
}
SLEWRATE {
PIN = <out_pin>; UNIT = ns;
FROM {THRESHOLD {RISE = 0.3; FALL = 0.5;} }
TO {THRESHOLD {RISE = 0.5; FALL =0.3;} }
std_header_2d {
in_pin = <input_pin>;
out_pin = <output_pin>;
}
TABLE <slewrate_data>
}
ENERGY {
UNIT = pJ;
std_header_2d {
in_pin = <input_pin>;
out_pin = <output_pin>;
}
TABLE <energy_data>

}
Now only the delay, slewrate, and energy models contain specific data that is different for each
vector. All repetitive information is in the template definition. The characterization model can
be rewritten compactly as shown below:

Version 1.9.2 Advanced Library Format (ALF) Reference Manual 311

Sample Applications

std_char_2d {
in_pin = a;
out_pin = z;
delay_data {
0.10.20.40.81.6
0203050917
04050.71.119

slewrate_data {
0.10.20.4081.6
0.10.20.4081.6
0.20.40.61.01.8

}

energy_data {
0.21 0.32 0.64 0.98 1.96
0.22 0.33 0.65 0.99 1.97
0.310.42 0.74 1.08 2.06

}

A.3.3 Vector description styles for timing arcs

In previous examples, the vectors were specified as timing arcs. This is not ambiguous, since
the sequence of transitions can only happen under one test condition.

VECTOR (10 a -> 01 z){
std_char_ 2d{...}
}

VECTOR (01 a -> 10 z){
std_char_ 2d{...}
}

VECTOR (10 b -> 01 z){
std_char_ 2d{...}
}

VECTOR (01 b -> 10 z){
std_char_ 2d{...}
}

An alternate way of describing the above vectors is to specify the input transition and the state
of the other input(s) which control the output transition.

VECTOR (10 a && b){
std_char_2d {...}

}

VECTOR (01 a && b){
std_char_2d {...}

}

VECTOR (10 b && a){
std_char_2d {...}

}

VECTOR (01 b && a){
std_char_2d {...}

}

312 Advanced Library Format (ALF) Reference Manual Version 1.9.2

Sample Applications

| A more concise method of vector description is to specify both output transition and input
state(s) together with the input transition.

VECTOR (10 a -> 01 z && b){
std_char_ 2d{...}

}

VECTOR (01 a -> 10 z && b){
std_char_ 2d{...}

}

VECTOR (10 b -> 01 z && a){
std_char 2d{...}

}

VECTOR (01 b -> 10 z && a){
std_char_2d{...}

}

In the non-redundant specification, either the input state or the output transition can be derived
from the functional description.

A3.4 Vectors for delay, power, and timing constraints

A D-flip-flop model without the set and clear signals is shown below. This model has vectors
with a specific purpose: some for delay and power, some for power only (output is not
switching), and some for timing constraints. However, each vector has the same structure,
although the input variables change. The vectors for delay and power model require two-
dimensional tables with load capacitance and input ramptime as variables, the vectors for
power model require one-dimensional tables with input ramptime as variable, and the vectors
for time constraints require 2-dimensional tables with ramptime on two inputs as variables.

CELL d_flipflop {
| PIN cp {DIRECTION = input; SIGNALTYPE = clock; POLARITY = rising_edge;}
PIN d {DIRECTION = input;}
PIN g {DIRECTION = output;}
FUNCTION {
BEHAVIOR { @(01 cp){g=d;}}
}
VECTOR (01 cp->01q){
[* fill in arithmetic models for delay and power */
}
VECTOR (01 cp->10q){
/* fill in arithmetic models for delay and power */
}
VECTOR (01 cp && d ==q) {
[* fill in arithmetic model for power */
}
VECTOR (10 cp && d ==q) {
[* fill in arithmetic model for power */
}
VECTOR (10 cp && d =) {
[* fill in arithmetic model for power */
}
VECTOR (01 d && !cp) {
[* fill in arithmetic model for power */

}

| Version 1.9.2 Advanced Library Format (ALF) Reference Manual 313

Sample Applications

VECTOR (10 d && lcp) {
[* fill in arithmetic model for power */

}
VECTOR (01 d && cp) {

/* fill in arithmetic model for power */

}
VECTOR (10 d && cp) {

[* fill in arithmetic model for power */

}
VECTOR (01 d <&> 01 cp)
SETUP {
/*fill in arithmetic model for setup time constraint */
VIOLATION {
BEHAVIOR {qg = 'bx;}
MESSAGE_TYPE = error,
MESSAGE = “setup violation 01 d <-> 01 cp*;
}
}
HOLD {
/*fill in arithmetic model for hold time constraint */
VIOLATION {
BEHAVIOR {qg = 'bx;}
MESSAGE_TYPE = error,
MESSAGE = "hold violation 01 d <-> 01 cp*;
}
}
VECTOR (10 d <&> 01 cp)
SETUP {
/*fill in arithmetic model for setup time constraint */
VIOLATION {
BEHAVIOR {qg = 'bx;}
MESSAGE_TYPE = error,
MESSAGE = “setup violation 10 d <-> 01 cp*;
}
}
HOLD {
/*fill in arithmetic model for hold time constraint */
VIOLATION {
BEHAVIOR {qg = 'bx;}
MESSAGE_TYPE = error,
MESSAGE = “hold violation 10 d <-> 01 cp*;
}
}
}

A.4 Combining tables and equations

This section describes how to combine tables and equations.

314 Advanced Library Format (ALF) Reference Manual

Version 1.9.2

Sample Applications

A4l Table versus equation

The following examples show the usagaaBLE andEQUATIONIN the model.
An example using a table:

CURRENT {
PIN = VDD;
UNIT = mA,;
TIME = 30 {UNIT = ns;}
MEASUREMENT = average,;
HEADER ({
CAPACITANCE {
PIN = z; UNIT = pF;
TABLE {0.02 0.04 0.08 0.16}
}
SLEWRATE {
PIN = a; UNIT = ns;
TABLE {0.1 0.3 0.9}
}
}
TABLE {
0.0011 0.0021 0.0041 0.0081
0.0013 0.0023 0.0043 0.0083
0.0019 0.0029 0.0049 0.0089

}
The equivalent example using an equation:

CURRENT {
PIN = VDD; UNIT = mA,;
TIME = 30 {UNIT = ns;}
MEASUREMENT = average,;
HEADER ({
CAPACITANCE {PIN = z; UNIT = pF;}
SLEWRATE {PIN = a; UNIT = ns;}

}
EQUATION { 0.05*CAPACITANCE + 0.001*SLEWRATE }

}
If the model uses aPQUATION then each argument shall appear inHBeDERIf the model
uses aABLE, then theHEADERshall contain aABLEfor each argument. The number of values
in the main table and the indexing scheme is defined by the order and the number of values in
each table inside the header.

A.4.2 Cell with multiple output pins

The following example shows how to use combinations of tables and equations for efficient
modeling of energy consumption of a cell with two (buffered) outputs. When two outputs are
switching and are triggered by the same input, the dynamic energy consumption depends on
ramptime of the input signal and load capacitance on each output.

Instead of creating a three-dimensional table, 2 two-dimensional tables are used, which varies
the load capacitance at one output and keepsload at the other output. The equation

Version 1.9.2 Advanced Library Format (ALF) Reference Manual 315

Sample Applications

calculates the energy for both outputs switching by adding the values from each table together
for the applicable load capacitance and by subtracting a corresponding correction term. The
result is exact for cells with buffered outputs.

As shown in the example below, an arithmetic model becomes a named object if several objects
of the same type occur within the same scope (ENERGY. For named objects, the equation
uses the object name instead of the object type.

VECTOR (01 ci->(01co<->105s) &a){
ENERGY {
UNIT = pJ;
HEADER {
ENERGY energy_co{ /l named object
UNIT = pJ;
HEADER {
CAPACITANCE {
PIN = co; UNIT = pF;
TABLE{...}
}
SLEWRATE {
PIN = ci; UNIT = ns;
TABLE{...}
}
}
TABLE{...}
}
ENERGY energy_s{ /l named object
UNIT = pJ;
HEADER {
CAPACITANCE {
PIN = s; UNIT = pF;
TABLE{...}
}
SLEWRATE {
PIN = ci; UNIT = ns;
TABLE{...}
}
}
TABLE{...}
}
ENERGY energy_noload { /l named object
UNIT = pJ;
HEADER {
SLEWRATE {
PIN = ci; UNIT = ns;
TABLE{...}
}
}
TABLE{...}
}

}
EQUATION { energy_co + energy_s - energy_noload }

316 Advanced Library Format (ALF) Reference Manual Version 1.9.2

Sample Applications

A.4.3 PVT derating

Combinations of tables and equations can also be used for derating with respect to voltage and
temperature, since those variables can add more dimensions to a purely table-based model.

In this example, thBELAYObjects are named, since there is both a nominal and a derated
DELAY.

DELAY rise_out{
HEADER {

PROCESS {
HEADER {nom snsp snwp wnsp wnwp}
TABLE {0.0 -0.1 -0.2 +0.3 +0.2}

}

VOLTAGE {//fill in any annotations

}

TEMPERATURE {//fill in any annotations

}
DELAY nom_rise_out {

HEADER {
CAPACITANCE {
TABLE {0.03 0.06 0.12 0.24}
}
SLEWRATE {
TABLE {0.1 0.3 0.9}
}
}
TABLE {

0.07 0.10 0.14 0.22
0.090.130.190.30
0.100.150.250.41

}
}
EQUATION {
nom_rise_out
* (1 + PROCESS)
* (1 + (TEMPERATURE - 25)*0.001)
* (1 + (VOLTAGE - 3.3)*(-0.3))

}

TheHEADERN theprocess 0bject contains exclusively named varialgtesn, snsp , etc),
similar to the truth table of RUNCTIONconNtaining only pin names. Therefore, tA@LE is
expected to have as many entries asHBeDERTheTABLEInsidenom_rise_out shall follow
the format defined by eaaBLEInside the declarations @kd andramptime . Other declared
objects in thedEADERare ignored for th&ABLE format if they do not have ®BLE inside
themselves.

For convenience, the derating equation can be defined as a template for future reuse.

Version 1.9.2 Advanced Library Format (ALF) Reference Manual 317

Sample Applications

TEMPLATE std_derating {
EQUATION {
<variable>
* (1 + <Kp>)
* (1 + (TEMPERATURE - 25)*<Kt>)
* (1 + (VOLTAGE - 3.3)*<Kv>)

}
Instantiation of the template in the model:

DELAY rise_out{
HEADER {
PROCESS {
HEADER {nom snsp snwp wnsp wnwp}
TABLE {0.0 -0.1 -0.2 +0.3 +0.2}
}
VOLTAGE { ... }
TEMPERATURE{ ... }
DELAY nom_rise_out {
HEADER {
CAPACITANCE {TABLE{ ... }}
SLEWRATE {TABLE { ... }}

}
TABLE{ ...}

}

std_derating {
variable = nom_rise_out ;
Kp = PROCESS ;
Kt=10.001;
Kv =-0.3;

}

Itis possible to express voltage, temperature and delay with the derating case as an independent
variable:

VOLTAGE {
HEADER { DERATE_CASE { TABLE {nom bccom wcmil} } }
TABLE {3.3 3.5 2.8}
}
TEMPERATURE {
HEADER { DERATE_CASE { TABLE {nom bccom wcmil} } }
TABLE {25 0 125}
}
DELAY {
HEADER {
DERATE_CASE {
HEADER {nom bccom wcmil}
TABLE {0 -0.0835 0.265}
}
PROCESS
HEADER {nom snsp snwp wnsp wnwp}
TABLE {0.0 -0.1 -0.2 +0.3 +0.2}

318 Advanced Library Format (ALF) Reference Manual Version 1.9.2

Sample Applications

DELAY nom_rise_out{ ... }

}
EQUATION {

nom_rise_out

* (1 + PROCESS)

* (1 + DERATE_CASE)
}

Another possibility is a completely tabulated model, where the process and derating identifiers
can be directly used as table items.

DELAY {
HEADER {
DERATE_CASE {
TABLE {nom bccom wcmil}
}

PROCESS
TABLE {nom snsp snwp wnsp wnwp}
}

TABLE {
/I 3*5 = 15 values
}

A.5 Use of annotations

This section describes how to use annotations.

A5.1 Annotations for a PIN
Direct annotation:

PIN data_in {DIRECTION = input; THRESHOLD = 0.35; CAPACITANCE = 0.010;}
Using annotation containers:

PIN data_in {
DIRECTION = input;
THRESHOLD = 0.35;
CAPACITANCE = 0.010; {
UNIT = pF; MEASUREMENT = average;
MIN =0.009; TYP = 0.010; MAX = 0.012;

}
LIMIT {

SLEWRATE {UNIT=ns;MAX=3.0;}
VOLTAGE {MAX=3.5; MIN=-0.2;}

}

The input pindata_in has a non-linear capacitance that was characterized by using an average
measurement (as opposed to RMS or peak measurements). Different measurements yield
average capacitances betweao9 pF ando.012 pF ; the typical average capacitance is

0.010 pF . The slewrate applied to the pin shall not exceeds . The voltage swing shall

not exceed the lower bound-of2v and the upper bound 8 v .

Version 1.9.2 Advanced Library Format (ALF) Reference Manual 319

Sample Applications

CAPACITANCE {UNIT = pF;}

PIN data_out {
DIRECTION = output; CAPACITANCE = 0.002;
LIMIT {CAPACITANCE {MAX = 0.96;} }

}

The output pirdata_out has a capacitance 00002 pF . The maximum load capacitance that
can be applied to the pin0V6 pF

A.5.2 Annotations for a timing arc

Specifications for a particular timing arc which references specific pins:

DELAY {
UNIT = ns;
FROM {PIN = data_in; THRESHOLD = 0.4;}
TO {PIN = data_out; THRESHOLD = 0.6;}
}
SLEWRATE {
PIN = data_out; UNIT = ns;
FROM {THRESHOLD = 0.3;}
TO {THRESHOLD = 0.5;}

}
Specifications for a generic timing arc which does not reference specific pins, but where the
values for both switching directions are defined:
DELAY {
UNIT = ns;
THRESHOLD {RISE=0.4; FALL=0.6;}
}

SLEWRATE {
UNIT = ns;
FROM {THRESHOLD {RISE=0.3; FALL=0.5;}}
TO {THRESHOLD {RISE=0.5; FALL=0.3;}}

}
Ab5.3 Creating self-explaining annotations
Self-explaining annotations can be created usSEMPLATE
Example:

The number of connections allowed for each pin:

TEMPLATE must_connect {
LIMIT {CONNECTION {MIN = 1;}}
}

TEMPLATE can_float {
LIMIT {CONNECTION {MIN = 0;}}
}

TEMPLATE no_connection {
LIMIT {CONNECTION {MAX = 0;}}
}

320 Advanced Library Format (ALF) Reference Manual Version 1.9.2

Sample Applications

CELL a_flipflop {
PIN q {must_connect DIRECTION=output;}
PIN gn {can_float DIRECTION=output;}
PIN qgi {no_connection DIRECTION=output;}

A.6 Providing a fall-back position for applications
(using DEFAULT)

ALF’s modeling capabilities address the needs for all types of applications. However, ALF
shall also work for applications that use only a subset of information. Capability can be
modelled using ®EFAULTto control a subset of information. The information provided by
DEFAULTcan be strictly ignored by applications that understand the full information.

A particular application might not be able to use three-dimensional tables or understand certain
models.DEFAULTvalues can be provided for each model.

Example:

DELAY {
HEADER {
SLEWRATE {
PIN = a; UNIT = 1e-9;
TABLE {0.5 1.0 1.5}
DEFAULT = 1.0;
}
CAPACITANCE {
PIN = z; UNIT = 1e-12;
TABLE {0.1 0.2 0.3 0.4}
DEFAULT =0.1;
}
VOLTAGE {
PIN = vdd; UNIT = 1;
TABLE {3.0 3.3 3.6}
DEFAULT =3.3;
}
}
TABLE {
/[arrangement of whitespaces and comments
/l'is only for readability
/I parser sees just a sequence of 3x4x3=36 numbers

/I[slewrate 0.5 1.0 1.5 capacitance voltage
1/ + +
020811 /01 3.0
041012 /0.2
071214 /103
091518 /04

010712 /01 3.3
030913 /0.2

| Version 1.9.2 Advanced Library Format (ALF) Reference Manual 321

Sample Applications

061115 //03
081317 //0.4

010610 /01 3.6
020811 /0.2
041013 //03
071216 //0.4

}

An application that does not understarnol TAGEshall extract the following information from
this example:

DELAY {
HEADER {
SLEWRATE {
PIN = a; UNIT = 1e-9;
TABLE {0.51.0 1.5}
}
CAPACITANCE {
PIN = z; UNIT = 1e-12;
TABLE {0.1 0.2 0.3 0.4}
}
}
TABLE {
/lslewrate 051.01.5 capacitance voltage
// + +
0.10.71.2 /10.1 3.3
0.3091.3 /0.2
061115 110.3
0.81.31.7 110.4
}
}
An application that does not understasidWRATBhall extract only the following information:
DELAY {
HEADER {
CAPACITANCE {
UNIT = 1e-12;
PIN = z;
TABLE {0.1 0.2 0.3 0.4}
}
}
TABLE {
/I[slewrate 1.0 capacitance voltage
// + +
0.7 /0.1 3.3
09 /0.2
1.1 /03
1.3 /04
}

322 Advanced Library Format (ALF) Reference Manual Version 1.9.2

Sample Applications

A.7 Bus modeling

This section describes how to model buses.

A.7.1 Tristate driver

Bus drivers are usually tristate buffers, which have straightforward functional models. If both
the input signal and enable signal have well-defined logic states, the output is diten to
'b0 , or'bz ; otherwise it is driven tx .

CELL tristate_buffer {
PIN a {DIRECTION = input; SIGNALTYPE = data;}
PIN e {DIRECTION = input; SIGNALTYPE = out_enable;}
PIN z {DIRECTION = output; SIGNALTYPE = data;
ATTRIBUTE f{tristate} }
FUNCTION {
BEHAVIOR {
Z=
(e &a)?'bl:
(e &'a) ? 'b0:
(le) ? 'bz:
'bx;

}
}

A different model can be used for transmission-gate type of buffers, which also passes the high
impedance state from input to output.

BEHAVIOR {
zZ=
(e)?a:
(‘e) ? 'bz:
'bx;
}
}

The drive strength information of tristate buffers is also needed to model a bus contention. This
is easily achieved by annotating a pin property, using a context-sensitive keyword.

CELL tristate_buffer {
PIN z {DIRECTION = output; DRIVE_STRENGTH = 4;ATTRIBUTE ({tristate}}

}

The pin-propertypRIVE_STRENGTHan take an arbitrary positive integer or a real number. In
general, greater values override smaller values andReve_STRENGTH=0s equivalent to

BEHAVIOR {z='bz}.

ALF does not assume a particular set of legal drive strengths. The scale and granularity is left
to the discretion of the ASIC vendor (user).

Version 1.9.2 Advanced Library Format (ALF) Reference Manual 323

Sample Applications

Modeling of state-dependent drive strength is achieved by annotating drive strength within a
vector rather than within a pin. The following example shows a buffer witbng-0 and
weak-1 drive.

CELL tristate_buffer {
PIN z {DIRECTION = output; ATTRIBUTE {tristate}}

VECTOR (z==0) {
DRIVE_STRENGTH = 4; {PIN = z;}
}
VECTOR (z==1) {
DRIVE_STRENGTH = 2; {PIN = z;}
}
}

The bus itself is not described by an ALF model, since the bus is a design construct rather than
alibrary cell. A simulation model (Verilog or VHDL) can handle the bus contention. However,
since buses can also be embedded within a core cell, the functional model of the core need a
functional model of that bus as well.

A7.2 Bus with multiple drivers

The following example shows a bus with three drivers of equal strength. The output is the
resolved value of the bus.

CELL bus3 {

PIN z1 {DIRECTION = input;}

PIN z2 {DIRECTION = input;}

PIN z3 {DIRECTION = input;}

PIN z {DIRECTION = output;}

FUNCTION {

BEHAVIOR {
Z=
((z2=="bz || z2==21) && z3=="bz)? z1:
((z3=="bz || z3==22) && z1=="bz)? z2:
((z1=="bz || z1==23) && z2=="bz)? z3:
(z1=="bl && z2=="b1 && z3=="b1)? 'bl:
(z1=="b0 && z2=="b0 && z3=='b0)? 'b0:
'bx;

}
}

The following example shows a bus with two drivers of equal strength and one driver with
weaker strength (e.g., a busholder).

CELL bus2siw {
PIN z_strongl {DIRECTION = input;}
PIN z_strong2 {DIRECTION = input;}
PIN z_weak {DIRECTION = input;}

PIN z {DIRECTION = output;}
FUNCTION {
BEHAVIOR {

324 Advanced Library Format (ALF) Reference Manual Version 1.9.2

Sample Applications

Z=
(z_strongl=="b1 && z_strong2=="b1)? 'b1l:
(z_strong1=="b0 && z_strong2=="b0)? 'b0:
(z_strongl=="bz && z_strong2=='bz)? z_weak:

'bx;

}

A.7.3 Busholder

A busholdeis a cell that retains the previous value of a tristate bus when all drivers go to high
impedance. This device has only one external pin, which is bidirectional. The input to this
bidirectional pin is the resolved value of the bus.

CELL busholder {
PIN a {DIRECTION = both;}
PIN z {DIRECTION = output; VIEW = none;}
FUNCTION {
BEHAVIOR {
a=lz
@(a==0) {z = 1;}
@(a==1) {z=0;}
@(a=='bx) {z = 'bx;}

}
}

In order to understand the functionality of a bidirectional pin, the pin can be split conceptually
into an input pin and an output pin as shown below.

CELL busholder_explicit {
PIN a_in {DIRECTION = input;}
PIN a_out {DIRECTION = output;}
PIN z {DIRECTION = output; VIEW = none;}
FUNCTION {
BEHAVIOR {
a_out =1z;
@(a_in==0) {z =1;}
@(a_in==1) {z=0;}
@(a_in=="bx) {z = 'bx;}

}
}

The function of this device is well definedaf out==a_in for all cases where in!='bz . In
the case 0f_in=="bz, a_out cantake any value. Thisis a general modeling rule for functions
with bidirectional pins.

A.8 Wire models

This section describes how to model wire models.

Version 1.9.2 Advanced Library Format (ALF) Reference Manual 325

Sample Applications

A.8.1 Basic wire model

This example shows two wire models, using tables and equations. The equation is used outside
the defined table range. If no equation was defined, the table is extrapolated.

WIRE small_wire {
CAPACITANCE {
UNIT = pF;
HEADER {
CONNECTIONS {
TABLE {2 34 5}
}
}
TABLE {0.05 0.09 0.13 0.17}
EQUATION {CONNECTIONS * 0.04 - 0.03}
}
RESISTANCE {
UNIT = mOHM,;
HEADER {
CONNECTIONS {
TABLE {2 34 5}
}
}
TABLE {7.5 10.0 12.5 15.0}
EQUATION {CONNECTIONS * 2.5 + 2.5}

}

WIRE large_wire {
CAPACITANCE {
UNIT = pF;
HEADER {
CONNECTIONS {
TABLE {2 3 4}
}
}
TABLE {0.10 0.16 0.22}
EQUATION {CONNECTIONS * 0.06 - 0.2}
}
RESISTANCE {
UNIT = mOhm;
HEADER {
CONNECTIONS {
TABLE {2 3 4}
}
}
TABLE {10.0 12.5 15.0}
EQUATION {CONNECTIONS * 2.5 + 5.0}

326 Advanced Library Format (ALF) Reference Manual Version 1.9.2

Sample Applications

A.8.2 Wire select model

Since a library can contain multiple wire models, it is necessary to specify which model needs
to be selected for an application. The annotations inside each wire model can be used for this
purpose.

WIRE small_wire {
LIMIT {AREA {UNIT=1e-6; MAX=25;}}

}

WIRE large_wire {
LIMIT {AREA {UNIT=1e-6; MIN=25; MAX=100;}}

}

If the area covering the routing space is smaller than Z5thesmall_wire model shall be
chosen. If the area covering the routing space is between 3mma00mm, thelarge_wire
model is chosen. The unit for area is 1fnm

To enable customized wire model selection, more annotations usingAtekeyword can
also be introduced.

A.9 Megacell modeling

This section describes how to model megacells.

A9.1 Expansion of timing arcs

GROUFRan be used for sets of numbers or for a continuous range of numbers. This can be useful
for defining timing arcs between all bits of two vectors. For example,

GROUP adr_bits {1 2 3}
GROUP data_bits {1 2}
VECTOR (01 adr[adr_bits] -> 01 dout[data_bits]) { ... }

replaces the following statements:

VECTOR (01 adr[1] -> 01 dout[1]) { ...
VECTOR (01 adr[2] -> 01 dout[1]) { ...
VECTOR (01 adr[3] -> 01 dout[1]) { ...
VECTOR (01 adr[1] -> 01 dout[2]) { ...
VECTOR (01 adr[2] -> 01 dout[2]) { ...
VECTOR (01 adr[3] -> 01 dout[2]) { ...

The following example shows bit-wise expansion of two vectors:

GROUP data_bits {1 2}
VECTOR (01 din[data_bits] -> 01 dout[data_bits]) { ... }

This replaces the following statements:

VECTOR (01 din[1] -> 01 dout[1]) { ... }
VECTOR (01 din[2] -> 01 dout[2]) { ... }

e e e o

Version 1.9.2 Advanced Library Format (ALF) Reference Manual 327

Sample Applications

Example for byte-wise (or sub-word-wise) expansion:

GROUP low_byte {1 2}

GROUP high_byte {3 4}

VECTOR (01 we[0] -> 01 din[low_byte]) { ... }
VECTOR (01 we[1] -> 01 din[high_byte]) { ... }

This replaces the following statements:

VECTOR (01 we[0] -> 01 din[1]) { ... }
VECTOR (01 we[0] -> 01 din[2]) { ... }
VECTOR (01 we[1] -> 01 din[3]) { ... }
VECTOR (01 we[1] -> 01 din[4]) { ... }

A.9.2 Two-port memory

The memory model example below shows the use of abstract transition operators on words in
various vectors. This example also contains some vectors with distinction between events on
row and column address lines.

CELL async_1write_1read_ram {
GROUP col {1:0}
GROUP row {4:2}
GROUP all {row col}
GROUP byte{7:0}
GROUP * {0:31}
PIN enable_write {DIRECTION = input}
PIN [4:0] adr_write {DIRECTION = input}
PIN [4:0] adr_read {DIRECTION = input}
PIN [7:0] data_write {DIRECTION = input}
PIN [7:0] data_read {DIRECTION = output}
PIN [7:0] data_store [0:31] {DIRECTION = output VIEW = none}

FUNCTION {
BEHAVIOR {
data_read = data_store[adr_read];
@(enable_write) {data_store[adr_write] = data_write;}

}
VECTOR
(?! adr_read[col] -> ?? data_read[byte]) {
/* fill in arithmetic models for delay and power */
}

VECTOR
(?! adr_read[row] -> ?? data_read[byte]) {

/* fill in arithmetic models for delay and power */
}

VECTOR

((?'adr_read[col] && ?'adr_read[row]) -> ?? data_read[byte]){
[* fill in arithmetic models for delay and power */

}

VECTOR (01 enable_write -> ?? data_read[byte]) {
/* fill in arithmetic models for delay and power */
}

328 Advanced Library Format (ALF) Reference Manual Version 1.9.2

Sample Applications

VECTOR (?! data_write[byte] -> ?? data_read[byte]) {
/* fill in arithmetic models for delay and power */

}

VECTOR (?! adr_write[col]) {
/* fill in arithmetic models for power */

}

VECTOR (?! adr_write[row]) {
/* fill in arithmetic models for power */

}

VECTOR (?! adr_write[row] && ?! adr_write[col]) {
/* fill in arithmetic models for power */

}

VECTOR (01 enable_write) {
/* fill in arithmetic models for power */

}

VECTOR (10 enable_write) {
/* fill in arithmetic models for power */

}

VECTOR (?! data_write[byte] && !enable_write) {
/* fill in arithmetic models for power */

}

VECTOR (?! data_write[byte] && enable_write) {
/* fill in arithmetic models for power */

}
}
VECTOR (?! adr_write[all] <-> 01 enable_write) {
SETUP {
VIOLATION {

BEHAVIOR { data_store[*] = "bxxxxxxxx; }
MESSAGE_TYPE = error,
MESSAGE =
"setup violation: changing 'adr_write' -> rising ‘enable_write’,
memory -> 'X";
}
FROM { pin = adr_write; }
TO { pin = enable_write; }
/*fill in header, table or equation */

}

}

VECTOR (10 enable_write <-> ?! adr_write[all]) {
HOLD {

VIOLATION {
BEHAVIOR { data_store[*] = "bxxxxxxxx; }
MESSAGE_TYPE = error,
MESSAGE =
"hold violation: falling ‘enable_write' -> changing 'adr_write',
memory -> 'X";
}
FROM { pin = enable_write; }
TO { pin = adr_write; }
/*fill in header, table or equation */

| Version 1.9.2 Advanced Library Format (ALF) Reference Manual 329

Sample Applications

VECTOR (?! data_write[byte] <-> 10 enable_write) {
SETUP {
VIOLATION {
BEHAVIOR { data_store[adr_write] = 'DXXXXXXXX; }
MESSAGE_TYPE = error,
MESSAGE =
"setup violation: changing 'data_write' -> falling ‘enable_write’,
memory[adr_write] -> 'X";
}
FROM { pin = data_write; }
TO { pin = enable_write; }
/*fill in header, table or equation */
}
HOLD {
VIOLATION {
BEHAVIOR { data_store[adr_write] = 'DXXXXXXXX; }
MESSAGE_TYPE = error,
MESSAGE =
"hold violation: falling ‘'enable_write' -> changing ‘data_write’,
memory[adr_write] -> 'X";
}
FROM { pin = enable_write; }
TO { pin = data_write; }
/*fill in header, table or equation */
}
}
VECTOR (01 enable_write -> 10 enable_write) {
PULSEWIDTH {
VIOLATION {
MESSAGE_TYPE = error,
MESSAGE = "pulsewidth violation: high ‘enable_write™;
}
PIN = enable_write;
/*fill in header, table or equation */
}
}
VECTOR (10 enable_write -> 01 enable_write) {
PULSEWIDTH {
VIOLATION {
MESSAGE_TYPE = error,
MESSAGE = "pulsewidth violation: low 'enable_write™;
}
PIN = enable_write;
/*fill in header, table or equation */

}

The energy consumption for each operation depends on the number of switching bits of the bus.
Therefore, the model for power inside a particular vector can look like this:

330 Advanced Library Format (ALF) Reference Manual Version 1.9.2

Sample Applications

VECTOR (?! data_write && enable_write) {
ENERGY {
UNIT = pJ;
HEADER {switching_bits {PIN = data_write;}}
EQUATION {1.3 * switching_bits}

}

The rule that the address on a write port shall not change during write-enable high can be
incorporated easily in the functional model. A pessimistic model assumes the whole memory
content shall become unknown if such an illegal address change occurs.

BEHAVIOR {
data_read = data_store[adr_read];
@(enable_write) {data_store[adr_write] = data_write;}
@('?adr_write && enable_write)
{data_store[*] = "bxxxxxxxx;}

A.9.3 Three-port memory

Functional models of more complex memories are also straightforward. The conflicts of
writing to one memory location simultaneously from different ports can be modeled in a
pessimistic way as follows:

CELL async_2write_1read_ram {
PIN enb_writel {DIRECTION = input;}
PIN enb_write2 {DIRECTION = input;}
PIN [4:0] adr_writel {DIRECTION = input;}
PIN [4:0] adr_write2 {DIRECTION = input;}
PIN [4:0] adr_read {DIRECTION = input;}
PIN [7:0] data_writel {DIRECTION = input;}
PIN [7:0] data_write2 {DIRECTION = input;}
PIN [7:0] data_read {DIRECTION = output;}
PIN [7:0] data_store [0:31] {DIRECTION = output; VIEW = none;}
FUNCTION {
BEHAVIOR {
data_read = data_store[adr_read];
| @(enb_writel & !enb_write2)
{data_store[adr_writel] = data_writel;}
| @(enb_write2 & !enb_writel)
{data_store[adr_write2] = data_write2;}
| @(enb_writel & enb_write2 && adr_writel!=adr_write2) {
data_store[adr_writel] = data_writel;
data_store[adr_write2] = data_write2;
}
| @(enb_writel & enb_write2 && adr_writel==adr_write2) {
data_store[adr_writel] =
(data_writel==data_write2)? data_write1:8'bx;
data_store[adr_write2]
(data_write2==data_writel)? data_write2:8'bx;

| Version 1.9.2 Advanced Library Format (ALF) Reference Manual 331

Sample Applications

}

A9.4 Annotation for pins of a bus
Annotations of numeric values to a bus apply to the total bus, not to each individual pin.

Example:

PIN [1:4] my_bus_pin {
CAPACITANCE =0.04 ;
}

The total bus pin capacitancenig ; the capacitance values on each individual pin are not
defined.

The individual pin capacitance can be defined as follows:

PIN [1:4] my_bus_pin {
CAPACITANCE c1 = 0.01 { PIN = my_bus_pin[1]; }
CAPACITANCE c2 = 0.01 { PIN = my_bus_pin[2]; }
CAPACITANCE c3 = 0.01 { PIN = my_bus_pin[3]; }
CAPACITANCE c4 = 0.01 { PIN = my_bus_pin[4]; }
}

A.9.5 Skew for simultaneously switching signals on a bus

Vectors with simultaneously switching bits on a bus can contain a specification of the allowed
skew in order to be still considered as simultaneously switching bits.

Example:

PIN [1:3] address;
VECTOR (?! address)
SKEW {
PIN = address;
/*fill in data */

}

SKEwapplied to a bus pin is the maximal allowed time window between the earliest and latest
edge within simultaneously switching signals of a bus.

The multiple value annotation feature allows the definition of a group of pins equivalent to a
bus forskewmodeling in the following way:

PIN A;

PIN [1:4] B;

VECTOR (?! A && ?! B)
SKEW { PIN { A B[2:3] } }

}

332 Advanced Library Format (ALF) Reference Manual Version 1.9.2

Sample Applications

SKEwapplies to the group of pimsB[2] , andB[3] . The following example is semantically
different, since this results in expansion of each object where the group is instantiated:

PIN A;
PIN [1:4] B;
GROUP my_group { A B[2] B[3] }
VECTOR (?! my_group)
SKEW { PIN = my_group; }
}

The expansion yields the following:

PIN A;
PIN [1:4] B;
VECTOR (?! A)
SKEW {PIN=A}
}
VECTOR (?! B[2])
SKEW {PIN=B[2] ; }
}
VECTOR (?! B[3])
SKEW { PIN =B[3] ; }
}

See Section B.2.7 for the definitiongdEWoOr scalar pins.

A.10 Special cells

This section describes how to model special cells.

A.10.1 Pulse generator
The following cell generates a one-shot pulseaf duration when enable goes high.

CELL one_shot {
PIN enable {DIRECTION = input;}
PIN q {DIRECTION = output;}
FUNCTION {
BEHAVIOR {
@(01 enable) {g = 1;}
@(a) {a =03}
}
}
VECTOR (01 q->10q){
DELAY = 1.0 {UNIT = ns;}
}
}

A.10.2 VCO
The following cell is a voltage controlled oscillator with 50% duty cycle and enable.

| Version 1.9.2 Advanced Library Format (ALF) Reference Manual 333

Sample Applications

CELL vco {
PIN enable {DIRECTION = input; PINTYPE = digital;}
PIN v_in {DIRECTION = input; PINTYPE = analog;}
PIN q {DIRECTION = output; PINTYPE = digital;}
FUNCTION {
BEHAVIOR {
@('enable) {g =0;}
@('g & enable) {q=1;}
@(g &enable) {q=0;}

}
}
TEMPLATE voltage_controlled_delay {
DELAY {
UNIT = ns;
HEADER ({
voltage {
PIN = v_in;
TABLE {0.51.01.52.0 2.5 3.0}
}
}
TABLE {10.00 5.00 3.33 2.50 2.00 1.67}
}
}

VECTOR (01 q->10q)
voltage_controlled_delay

}
VECTOR (10 g -> 01 q)

voltage_controlled_delay

}
}

The template shown above can also be written as an equation to map voltage to frequency:
TEMPLATE voltage_controlled_delay {
DELAY {
UNIT = ns;
HEADER {voltage {PIN = v_in;}}
EQUATION {5.0 / voltage}

A.11 Core modeling (using a digital filter)

This example illustrates the potential of ALF for modeling complex blocks. It shows a digital
filter performing the following operation

dout(t) = state(t) + b1 * state(t-1) + b2 * state(t-2)
state(t) = din(t) - al * state(t-1) - a2 * state(t-2)

This second order infinite impulse responBR) filter is implemented with a single multiplier
and a single adder/subtractor in a way that a aew is produced every four clock cycles. The
variable coefficiental, a2, b1, andb2 are stored in a dual port RAM.

334 Advanced Library Format (ALF) Reference Manual Version 1.9.2

Sample Applications

The model uses templates for the functional blocks of a two-bit counter used as the controller
for memory access and I/O operation, a RAM for coefficient storage, and the filter itself. They
are instantiated as a structural netlist in the top module.

The use of templates is more general than the use of primitives, since not all basic blocks of the
core might be supported as primitives.

LIBRARY core_lib {
TEMPLATE CNT2 {
BEHAVIOR {
@ ('<cd>) {<cnt> = 2'b0;}
: (01 <cp>) {<cnt> = <start> ? 2'00 : <cnt> + 1;}

}
}
TEMPLATE RAM16X4 {
BEHAVIOR {
<dout> = <dmem>[<r_adr>];
@ (<we>) {<dmem>[<w_adr>] = <din>;}
}
}
TEMPLATE IIR2 {
BEHAVIOR {
sum =
(<cntrl>=='d0)? <din> - product :
(<cntrl>=='d1)? accu - product :
(<cntrl>=='d2)? accu + product :
(<cntrl>=='d3)? accu + product;
@ (<cd>) {
product = 16'b0;
accu = 16'b0;
}
: (01 <cp>){
product =
(<cntrl>=='d0)? coeff * state2 :
(<cntrl>=='d1)? coeff * statel :
(<cntrl>=='d2)? coeff * state2 :
(<cntrl>=='d3)? coeff * statel :
16'bX;
accu = sum;
}
@ (<cd>) {
<dout> = 16'b0;
statel = 16'b0;
state2 = 16'b0;
}
: (01 <cp> && <cntrl>=="d0){
state2 = statel,;
statel = accu;
<dout> = accu;
}
}
}

Version 1.9.2 Advanced Library Format (ALF) Reference Manual 335

Sample Applications

CELL digital_filter {
PIN [15:0] data_out {DIRECTION = output;}
PIN [15:0] data_in {DIRECTION = input;}
PIN [1:0] index_coeff {DIRECTION = input;}
PIN write_coeff {DIRECTION = input;}
PIN [15:0] coeff_in {DIRECTION = input;}
PIN [15:0] coeff_out {DIRECTION = output; VIEW = none;}
PIN [15:0] coeff_array [1:4] {DIRECTION = output; VIEW = none;}
PIN data_strobe {DIRECTION = input;}
PIN [1:0] count {DIRECTION = output VIEW = none;}
PIN clock {DIRECTION = input;}
PIN reset {DIRECTION = input;}
FUNCTION {
IIR2 { din=data_in; dout=data_out; coeff=coeff_out;
cp=clock; cd=reset; cntrl = count;}
CNT2{ start=data_strobe; cnt=count; ck=clock; cd=reset;}
RAM16X4{ we=write_coeff; din=coeff_in; dout=coeff_out;
dmem=coeff_array; r_adr=count; w_adr=index_coeff;}

A.12 Connectivity

Connectivity information can be specified within the definition of the ALF language format as
described below. A connectivity object always contains a rule specifying the type of
connections (e.g., must short, can short, or cannot short) and a table. If no header is given, then
the table contains the pins or pin classes subject to the connectivity rule. If a header is given,
then the table contains the values of the connectivity function between arguments in the header.
There shall be a table inside each connectivity argument, containing the pins or pin classes
subject to the connectivity rule. Valid argumentszre/ER and/orRECEIVER Valid values

are the boolean digitg 1, and?. The valuel implies the connection rule Bue, the value

implies the connection rule ialse the value? implies a “don’t care” situation with the
connection rule.

A.12.1 External connections between pins of a cell

The following example shows how to specify required and disallowed interconnections
external to a cell.

CELL pll{

PIN vdd_ana {PINTYPE=supply;}

PIN vdd_dig {PINTYPE=supply;}

PIN vss_ana {PINTYPE=supply;}

PIN vss_dig {PINTYPE=supply;}

CONNECTIVITY common_ground {
CONNECT_RULE = must_short;
TABLE {vss_ana vss_dig}

336 Advanced Library Format (ALF) Reference Manual Version 1.9.2

Sample Applications

CONNECTIVITY separate_supply {
CONNECT_RULE = cannot_short;
TABLE {vdd_ana vdd_dig}

}

A.12.2 Allowed connections for classes of pins

The following example defines allowable pin interconnections. The constants for the desired
connectivity classes, the grouping of these classes, and the allowable class connectivity table
are first defined at the library level. The non-zero values within the matrix specify allowable
connectivity of indexed classes. The connectivity classes for pins are then specified with the
pin annotation sections.

LIBRARY example_library {

CLASS default_class;
CLASS clock_class;
CLASS enable_class;
CLASS reset_class;
CLASS tristate_class;

TEMPLATE drivers {
default_class
clock class
enable_class
reset_class
tristate_class

}

TEMPLATE receivers {
default_class
clock class
enable_class
reset_class

}

CONNECTIVITY driver_to_driver {
CONNECT_RULE = can_short;
HEADER {

DRIVER {TABLE {drivers}}

}

TABLE {// def clk enb rst tri
00001

}

}
CONNECTIVITY receiver_to_receiver {

CONNECT_RULE = can_short;
HEADER {
RECEIVER {TABLE {receivers}}

}

TABLE {// def clk enb rst
1111

}

| Version 1.9.2 Advanced Library Format (ALF) Reference Manual 337

Sample Applications

CONNECTIVITY driver_to_receiver {
CONNECT_RULE = can_short;
HEADER {
DRIVER {TABLE {drivers}}
RECEIVER {TABLE {receivers}}
}
TABLE {// def clk enb rst tri // driver/receiver
1 1 1 1 O /I def
0 1 0 0 0 /lclk
0 0 1 0 0 /lenb
0 0O O 1 0 /lrst

}

The above table specifies the applicable connectivity from each class to itself, as well as from
each class to theefault_class , except for theristate_class class (which can only

connect to itself). While any class can connect todéfeult_class , thedefault_class can

only connect to itself.

Once the library level connectivity is defined, connection class specifications are defined for
each pin within cells. The default integer value forc¢hessannotation i®, which
corresponds to the constant declaration valueefault_class

CELL d_flipflop_clr {
PIN cd {DIRECTION = input; SIGNALTYPE = clear;
POLARITY = low; CONNECT_CLASS =reset_class;}
PIN cp {DIRECTION = input; SIGNALTYPE = clock;
POLARITY =rising_edge; CONNECT_CLASS = clock_class;}
PIN d {DIRECTION = input;}
PIN q {DIRECTION = output; CONNECT_CLASS = default_class;}
}
CELL d_latch {
PIN g {DIRECTION = input; SIGNALTYPE = enable;
POLARITY = high; CONNECT_CLASS = enable_class;}
PIN d {DIRECTION = input; CONNECT_CLASS = default_class;}
PIN q {DIRECTION = output; CONNECT_CLASS = default_class;}

}

CELL tristate_buffer {
PIN a {DIRECTION = input;}
PIN enable {DIRECTION = input; CONNECT_CLASS = enable_class;}
PIN z {DIRECTION = output; CONNECT_CLASS = tristate_class;}

}

Net-specific connectivity, as opposed to the pin-specific connectivity shown above, is also
possible within the syntax of the language, sinceAssis not restricted to pins. Specific
applications can assign all pins of a specific type, as well as nets like power and ground rails
to a defined class. This class can be used within the connectivity tables to allow or disallow
certain connectivity.

For example, iddrail_class is defined as a net-specific connectivity class, then a specific
pin can be disallowed from connecting to any net irvildesil_class connectivity class.

338 Advanced Library Format (ALF) Reference Manual Version 1.9.2

Sample Applications

CLASS vddrail_class

CELL inverter {
PIN in_pin {DIRECTION = input; SIGNALTYPE = clear;
POLARITY = low; CONNECT_CLASS = reset_class;}
CONNECTIVITY dont_tie {
CONNECT_RULE = cannot_short;
TABLE {in_pin vddrail_class}

A.13 Signal integrity

This section describes how to model signal integrity.

A.13.1 I/V curves

I/V curves describe the driven or drawn current at a pin as a function of the voltage at one or
several pins. The following example describes the output current of a buffer as a function of
the input and output voltage with a two-dimensional lookup table.

CELL simple_buffer {
PIN z { DIRECTION = output; }
PIN a { DIRECTION = input; }
/I current @ z dependent on voltage @ z and @ a

CURRENT {

PIN = z;

UNIT = ma;

HEADER ({

VOLTAGE vout {
PIN = z;
TABLE {0.00.51.01.52.02.53.0}
}
VOLTAGE vin {
PIN = a;
TABLE {0.0 1.0 2.0 3.0}
}

}

TABLE {
5.05.0484.23.21.60.0
25150.2-0.4-1.8-2.7-3.5
1.20.1-1.3-1.9-25-3.8-4.6
0.0-2.0-3.8-4.7-5.5-6.2-6.3

}

/I fill in function, vector and other stuff

}
An equation can also be used instead of a lookup table, for example:

Version 1.9.2 Advanced Library Format (ALF) Reference Manual 339

Sample Applications

CURRENT {
PIN = z;
UNIT = ma;
HEADER ({
VOLTAGE vout {
PIN = z;
}
VOLTAGE vin {
PIN = a;
}
}
EQUATION {
(1 - exp(6.3 - 2.4*vout))*exp(0.9 - 0.3*vin)
- (1 - exp(3.2*vout))*exp(0.3*vin)

A buffer can have programmable drive strength controlled by the state of additional input pins.
State-dependent I/V curves can be described by vector-spagHRENTnOdeIS.

CELL programmable_drive_strength_buffer {

PIN z { DIRECTION = output; }

PIN a { DIRECTION = input; }

/I control pins for drive strength

PIN p1 { DIRECTION = input; }

PIN p2 { DIRECTION = input; }
VECTOR (!pl & 'p2) {

CURRENT {
/I fill in the model

}
}
VECTOR ('pl & p2) {
CURRENT {
/I fill in the mode
}
}
VECTOR (pl & 'p2) {
CURRENT {
/I fill in the mode
}
}
VECTOR (pl & p2){
CURRENT {
/I fill in the mode
}
}

}
It is also possible to describe other analog cell characteristics (state-dependent or state-
independent), for instance, voltage versus voltage, frequency versus voltage, or current versus
temperature, in the same way.

340 Advanced Library Format (ALF) Reference Manual Version 1.9.2

Sample Applications

A.13.2 Driver resistance

Driver resistance is used to model the transient behavior of signals especially for crosstalk. The
drivers are modeled by voltage sources and driver resistances, as illustrated in Figure A-1.

real driver

~—~

interconnec
circuitry

interconnect
circuitry

Vin(t)
Vout(t)

Figure A-1: Modeling driver resistance

The idea here is to use linear circuit theory for the analysis of multiple drivers interacting with
coupled RC-interconnect networks. In reality, the drivers have non-linear resistance. The linear
resistance is a model of the non-linear resistance with the best-fitting linear resistance.
Therefore, the driver resistance is state-dependent and eventually also load- and slewrate
dependent, because the best-fitting value for driver resistance is different for different states
and different ranges of load and slewrates.

The following example shows a buffer featuring different driver resistance values for static low
and high states, and tables of slewrate- and load-dependent transient driver resistance values
for rise and fall transitions.

cell simple_buffer {
PIN z { DIRECTION = output; }
PIN a { DIRECTION = input; }
/I state-dependent static driver resistance
VECTOR (!2) {
RESISTANCE = 0.7k { PIN = z; }
}
VECTOR (z) {
RESISTANCE = 1.2k { PIN = z; }

}

/I slew & load dependent transient driver resistance
VECTOR (01 a->01z) {
RESISTANCE {
PIN = z;
UNIT = kohm;
HEADER {
CAPACITANCE {
PIN = z;
UNIT = pfarad;

| Version 1.9.2 Advanced Library Format (ALF) Reference Manual 341

Sample Applications

TABLE {0.1 0.4 1.6}

}
SLEWRATE {
PIN = a;
UNIT = nsec;
TABLE { 0.5 1.5}
}

TABLE{14 13 13 16 14 13}

}

}

VECTOR (10 a -> 10 2) {
RESISTANCE {

PIN = z;
UNIT = kohm;
HEADER ({
CAPACITANCE {
PIN = z;
UNIT = pfarad;
TABLE{0.1 0.4 16}
}
SLEWRATE {
PIN = a;
UNIT = nsec;

TABLE {0.5 1.5}

}
TABLE{0.9 0.8 0.8 1.1 0.9 0.8}

}
The transient driver resistance can also be state-dependent, for example, in the case of a buffer
with programmable drive-strength.

CELL programmable_drive_strength_buffer {

PIN z { DIRECTION = output; }

PIN a { DIRECTION = input; }

/Il control pins for drive strength

PIN p1 { DIRECTION = input; }

PIN p2 { DIRECTION = input; }

/I state-dependent static driver resistance

VECTOR (!1z & 'p1 & 'p2){
RESISTANCE = 0.7k { PIN = z; }

}

VECTOR (!z &!'p1 & p2){
RESISTANCE = 0.6k { PIN = z;}

}

VECTOR (!1z & pl & !p2){
RESISTANCE = 0.5k { PIN = z; }

}

VECTOR (1z & p1 & !p2){
RESISTANCE = 0.4k { PIN=z;}

}

VECTOR (z & Ip1l & !p2) {
RESISTANCE = 1.2k { PIN=z;}

}

342 Advanced Library Format (ALF) Reference Manual Version 1.9.2

Sample Applications

VECTOR (z & 'pl & p2) {
RESISTANCE = 1.0k { PIN=z;}
}
VECTOR (z & p1 & 'p2) {
RESISTANCE = 0.8k { PIN=z;}
}
VECTOR (z & pl1 & p2) {
RESISTANCE = 0.6k { PIN=z;}
}
/I slew & load and state dependent transient driver resistance
VECTOR (01 a->01z && 'pl & Ip2) {
RESISTANCE {
/I fill in the model
}
VECTOR (01 a->01z && 'pl & p2){
RESISTANCE {
/I fill in the model
}
VECTOR (01 a->01z && pl &!p2){
RESISTANCE {
/I fill in the model
}
VECTOR (01a->01z && pl &p2){
RESISTANCE {
/I fill in the model
}
VECTOR (10 a-> 10z && 'pl & Ip2) {
RESISTANCE {
/I fill in the model
}
VECTOR (10 a-> 10z && 'pl & p2) {
RESISTANCE {
/I fill in the model
}
VECTOR (10a-> 102z && pl & !p2){
RESISTANCE {
/I fill in the model
}
VECTOR (10 a-> 10z && pl &p2){
RESISTANCE {
/I fill in the model

}

The model for transient driver resistance has the same form as a slewrate- and load-dependent
model for delay. Voltage-, process-, and temperature-dependent driver resistance can also be
modeled in the same way as voltage-, process-, and temperature-dependent delay.

A.14 Resistance and capacitance on a pin

This section describes how to model pin resistance and capacitance.

Version 1.9.2 Advanced Library Format (ALF) Reference Manual 343

Sample Applications

A.14.1 Self-resistance and capacitance on input pin

A pin resistancas a resistance insidePaN object.

PIN <pin_identifier> {
DIRECTION = input;
RESISTANCE = <resistance_value>;
CAPACITANCE = <capacitance_value>;

}
The pin resistance is in series with the pin capacitance, as shown in Figure A-2.

pin resistance

input pin ~ pin capacitance

Figure A-2: Resistance and capacitance on a pin

A.14.2 Pullup and pulldown resistance on input pin

A pullup or pulldown resistance, or a combination of both on an input pin, can be described as
follows:

PIN <pin_identifier> {
DIRECTION = input;
PULL = < up | down | both > {
VOLTAGE = <voltage_value>;
RESISTANCE = <resistance_value>;

}
The pullup/pulldown resistance is in series with a clamp voltage, as shown in Figure A-3.

pullup or pulldown resistance

input pin clamp voltage

Figure A-3: Pullup or pulldown resistance

In the case of a pullup/pulldown combination, the resistance and voltage represent the
Thevenin equivalent resistance and voltage, respectively, as shown in Figure A-4.

344 Advanced Library Format (ALF) Reference Manual Version 1.9.2

Sample Applications

pullup equivalent resistance
resistance R =R1*R0O/ (R1 + RO)
R1 Thevenin
Equivalent
. .
input pin pulldown Input pin
resistance
RO
VO equivalent voltage

V = (V1*RO + VO*R1) / (R1 + RO)

Figure A-4: Thevenin equivalent resistance

A.14.3 Pin and load resistance and capacitance on an output pin

The driver resistance (see Section A.13.2) can also be represented as a pin capacitance of an
output pin, where there is no state dependency.
PIN <pin_identifier> {
DIRECTION = output;
CAPACITANCE = <capacitance_value>;
RESISTANCE {

RISE = <rise_resistance_value>;
FALL = <rise_resistance_value>;

}
}
Note the distinction of capacitance and resistance of the pin itself and capacitance and
resistance applied as load to the pin in Figure A-5. The load capacitance and resistance are
specified in a characterization vector (see Section A.3).

pin resistance . load resistance
output pin
A%S
driver signa _____pincapacitance ____ load capacitance
(rise or fall)

Figure A-5: Resistance and capacitance on an output pin

Version 1.9.2 Advanced Library Format (ALF) Reference Manual 345

Sample Applications

346 Advanced Library Format (ALF) Reference Manual Version 1.9.2

Appendix B
ALF/SDF Cross Reference

This section provides a cross reference between the representation of timing data in ALF and
SDF. In general, ALF is used as a characterization library, which is the input to a delay
calculator, whereas SDF is the output from a delay calculator. Therefore, ALF typically
contains tables or equations (i.e., arithmetic models) for timing data, whereas SDF contains a
discrete set of data in fixed format. However, in an ALF representation of timing shells for
cores, which are typically represented in SDF today, the ALF library contains the same data as
the SDF.

The specification of the stimulus for a particular timing measurement (i.e., the timing diagram)
is pertinent to both ALF and SDF. In ALF, timing diagrams are directly described in the vector
expression language, and the timing measurements are always specified in relation to a
particular timing vector. In SDF, timing diagrams are partly described in the language and
partly implied by the keyword for timing measurements. Therefore SDF needs a larger set of
keywords than ALF for the same description capability.

B.1 SDF delays

This section details the different types of SDF delays.

B.1.1 SDF DELAY for IOPATH and INTERCONNECT

A DELAYis a measurement of the time needed for a signal to travel from one port to another
port. In ALF, delay measurements are described in a uniform language, independent of whether
A andz are the input and output port of the same cell, respectively, the driver and receiver
connected to the same net, or both outputs of a cell. Therefore, the SDF keyamxas and
INTERCONNEChave no counterpart in ALF.
VECTOR (01 A -> 01 Z) {
DELAY {
FROM {PIN = A}
TO {PIN =2}
/*fill in data */
}
}

This ALF VECTORJescribes the sequence of events shown in Figure B-1:
rising edge at A followed by rising edge at Z
TheFrROMaNdTO pin annotations define the sense of measuremeDEfayY.

Version 1.9.2 Advanced Library Format (ALF) Reference Manual 347

ALF/SDF Cross Reference

| |

A |
A |

|
: delay |

Figure B-1: Measurement of SDF IOPATH or INTERCONNECT delay

As opposed to SDF, where input ports ofl@rATH can have an edge specification and output
ports can not, the vector expression language in ALF always contains the specification of the
edge:

rising edge = “01”, falling edge = “10”, any edge = “?!".

B.1.2 SDF PATHPULSE
A PATHPULSHN SDF defines the smallest pulse that can appear at a port in form of

a full-swing pulse
a pulse to X.

The equivalent model in ALF uses two vectors in conjunction with the keywotg$EwWIDTH

The ALF keywords are of more general use than the SOHPULSEkeyword, which is just
for one specific use.

VECTOR (01 Z -> 10 2) {
PULSEWIDTH {
PIN = Z;
/* fill in data */

}

This ALF VECTORJescribes the sequence of events shown in Figure B-2:

rising edge at Z followed by falling edge at Z
The smallest possible full-swing pulse applies atzpin

1. The same keyworBULSEWIDTHs also used for a timing constraint in ALF. The semantic meaning
in both usage cases is consist@tl SEWIDTH =smallest possible pulse at output or smallest
allowed pulse at inpufTherefore, the usage of the same keyword is justified.

348 Advanced Library Format (ALF) Reference Manual Version 1.9.2

ALF/SDF Cross Reference

| |
z A N
: pulsewidth :

Figure B-2: Measurement of SDF PATHPULSE full-swing

VECTOR ('b0'bX Z -> 'bX'b0 Z) {
PULSEWIDTH {
PIN = Z;
/*fill in data */
}
}

This ALF VECTORJescribes the sequence of events shown in Figure B-3:
rising edge at Z from 0O to X followed by falling edge at Z from X to 0.
The smallest possible pulsex@pplies at pirz.

I I
Z IXXXXXXXXXX
—

' pulsewidth '

Figure B-3: Measurement of SDF PATHPULSE to X

VECTOR (01 A->10B ->01Z->10 2){
PULSEWIDTH {
PIN = Z;
/* fill in data */
}
}

This ALF VECTORJescribes the sequence of events shown in Figure B-4:

rising edge at A followed by falling edge at B followed by rising edge at Z followed by fall-
ing edge at Z

This is a detailed specification of the pulse itself atzpias well as of the triggering input
signalsA ands.

Version 1.9.2 Advanced Library Format (ALF) Reference Manual 349

ALF/SDF Cross Reference

| |
Z A N
! pulsewidth !

Figure B-4: Measurement of SDF PATHPULSE with triggering inputs

B.1.3 SDF RETAIN delays

A RETAIN delay in SDF is a measurement of the time when an output signal shall retain its
value after a change at a related input signal occurs. It appears always in conjunction with a
IOPATH delay, which is the time for which an output shall stabilize after changing its value.

RETAIN is mainly used for asynchronous memories, where decoder glitches can appear at the
data output port.

VECTOR (01 A -> 21 2) {
RETAIN {
FROM {PIN = A;}
TO {PIN = Z;}
/* fill in data */
}
DELAY {
FROM {PIN = A;}
TO {PIN = Z;}
/* fill in data */
}
}

This ALF VECTORJescribes the sequence of events shown in Figure B-5:

rising edge at A followed by any edge at Z

The intermediate events atoccurring eventually between retain and delay time, are not
specified.

A [[
/ retain |

delay | »!

Figure B-5: RETAIN and IOPATH delay

350 Advanced Library Format (ALF) Reference Manual Version 1.9.2

ALF/SDF Cross Reference

B.1.4 SDF PORT delays

A PORTdelay in SDF is a delay measurement with unspecified start point, since the start point
is going to be established by a connection to a driver in the design and not in the library.

VECTOR (01 A) {
DELAY {
TO {PIN = A}
/*fill in data */
}
}

This ALF VECTORJescribes the event shown in Figure B-6:
rising edge at A.

The absence of BROMin defines the absence of a start point, which corresponds to the exact
meaning oPORTIN SDF.

| delay I

Figure B-6: SDF PORT delay

ALF also has the capability of describing a delay measurement with unspecified end point.

VECTOR (01 2) {
DELAY {
FROM {PIN = Z;}
/*fill in data */
}
}
Hence, ALF provides the description capability for both a delay from unspecified driver to
specified receiver and a delay from specified driver to unspecified receiver.

B.1.5 SDF DEVICE delays

A DEVICE delay in SDF is a delay that applies from all input ports of a device to one specific
output port or to all output ports by default.

The ALF vector expression language has no notion of “all input ports of a device”. ALF has a
more general capability of declaring groups of pins and define delays from group to group or
from group to pin or from pin to group.

Version 1.9.2 Advanced Library Format (ALF) Reference Manual 351

ALF/SDF Cross Reference

GROUP any_input{ AB}
GROUP any_output{Y Z}
VECTOR (01 any_input -> 01 any_output) {
DELAY {
FROM {PIN = any_input;}
TO {PIN = any_output;}
/*fill in data */
}
}

This ALF VECTORdescribes the event
rising edge at any_input (i.e., A or B) followed by rising edge at any_output (i.e., Y or Z)
This construct is equivalent to the following four vectors:

VECTOR (01 A->01Y){
DELAY {
FROM {PIN = A}
TO{PIN=Y;}
/% fill in data */
}
}
VECTOR (01 B->01Y){
DELAY {
FROM {PIN = B;}
TO{PIN=Y;}
/* same data */
}
}
VECTOR (01 A->012){
DELAY {
FROM {PIN = A}
TO {PIN = Z;}
/* same data */
}
}
VECTOR (01 B ->01 2){
DELAY {
FROM {PIN = B;}
TO {PIN = Z;}
/* same data */

B.2 SDF timing constraints

This section details the different types of SDF timing constraints.

B.2.1 SDF SETUP

A SETUPIn SDF is the minimal time required for a data signal to arrive before the sampling
edge of a clock signal in order to be sampled correctly.

352 Advanced Library Format (ALF) Reference Manual Version 1.9.2

ALF/SDF Cross Reference

VECTOR (?! din -> 01 clK) {
SETUP {
FROM {PIN = din;}
TO {PIN = clk;}
/*fill in data */
}
}

This ALF VECTORJescribes the sequence of events shown in Figure B-7:
any edge at din followed by rising edge at clk.

TheFrROMandTOpINn annotations define the sense of measuremers=HOUR Since setup time
is measured in positive sense from data to cldiek,is the data pin andk is the clock pin.

am X |

' setu |
clk | P
|

Figure B-7: Measurement of SDF SETUP

B.2.2 SDF HOLD

A HoLDin SDF is the minimal non-negative time required for a data signal to stay at its value
after the sampling edge of a clock signal in order to be sampled correctly.

VECTOR (01 clk -> ?! din) {
HOLD {
FROM {PIN = clk;}
TO {PIN = din;}
/*fill in data */
}
This ALF VECTORIescribes the sequence of events as shown in Figure B-8:

rising edge at clk followed by any edge at din.

TheFrROMandTOpin annotations define the sense of measurememrtdob Since hold time is
measured in positive sense from clock to daka,is the clock pin andin is the data pin.

Version 1.9.2 Advanced Library Format (ALF) Reference Manual 353

ALF/SDF Cross Reference

din i >|<

clk)I/ !

Figure B-8: Measurement of SDF HOLD

B.2.3 SDF SETUPHOLD

A SETUPHOLDN SDF is a combination gfETUPandHOLD In this combination, eithe8ETUP

or HoLDcan be a negative value, but the sum of both values, which represents the minimal
pulsewidth of the data in order to be sampled correctly, shall be nhon-negative. The time from
the leading data edge to the sampling clock edgeTsr The time from the sampling clock
edge to the trailing data edgeHiSLD

VECTOR // for SETUPHOLD
(?'din->01clk->?'din //setup & hold both positive
| O01clk->?!din->?!din //negative setup, positive hold
| ?din->?!din->01clk //positive setup, negative hold

) {

SETUP {
FROM {PIN = din;
TO {PIN = clk;}
/* fill in data */

}

HOLD {
FROM {PIN = clk;}
TO {PIN =din;}

I fill in data */
}
}

These ALFVECTOR describe the alternative sequences of events shown in Figure B-9:

any edge at din followed by rising edge at clk followed by any edge at din
or rising edge at clk followed by any edge at din followed by any edge at din
or any edge at din followed by any edge at din followed by rising edge at clk.

The FROMandTO pin annotations define the sense of measuremestfyPandHOLD
respectively, in the same way as if they were specified in separate vectors.

354 Advanced Library Format (ALF) Reference Manual Version 1.9.2

ALF/SDF Cross Reference

| | |
din >< minimal data pulse ><
| T |

| ! !
: setup | hold |

clk I

Figure B-9: Measurement of SDF SETUPHOLD

B.2.4 SDF RECOVERY

A RECOVERYN SDF is the minimal time required for a higher priority asynchronous control
signal to be released before a lower priority clock signal in order to allow the clock to be in
control.

VECTOR (01 clearbar -> 01 clk) {
RECOVERY {
FROM {PIN = clearbar;}
TO {PIN = clk;}
}

This ALF VECTORJescribes the sequence of events shown in Figure B-10:
rising edge at clearbar followed by rising edge at clk

TheFROMaANATO pin annotations define the sense of measuremeREfDVERYSince

recovery time is measured in positive sense from the higher priority asynchronous control
signal to the lower priority clockjearbar is the asynchronous control pin ad is the

clock pin.

clearbar / I
I I

| recovery,

clk

Figure B-10: Measurement of SDF RECOVERY

B.2.5 SDF REMOVAL

A REMOVAILN SDF is the minimal time required for a higher priority asynchronous control
signal to stay active after a lower priority clock signal in order to keep overriding the clock.

Version 1.9.2 Advanced Library Format (ALF) Reference Manual 355

ALF/SDF Cross Reference

VECTOR (01 clk -> 01 clearbar) {
REMOVAL {
FROM {PIN = clk;}
TO {PIN = clearbar;}
}

This ALF VECTORJescribes the sequence of events shown in Figure B-11:
rising edge at clk followed by rising edge at clearbar

TheFrROMandTOpIN annotations define the sense of measuremeRHBIOVALSINce removal
time is measured in positive sense from the lower priority clock to the higher priority
asynchronous control signalk is the clock pin andearbar is the asynchronous control

pin.

clearbar [[
| A
I removal |

clk /l(:

Figure B-11: Measurement of SDF REMOVAL

B.2.6 SDF RECREM

A RECRENN SDF is a combination ®fECOVER®NAREMOVALIN this combination, either
RECOVERWr REMOVAIcan be negative, but the sum of both shall be non-negative. The sum of
RECOVER@NAREMOVALepresents the width of the “forbidden zone” for the phase between the
higher priority and the lower priority signal. The boundary to the l&fe@OVER®N the
boundary to the right BEMOVAL

In a characterization vector fBECREMeither theRECOVERYr theREMOVAIleffect can be
observed, depending on the phase relationship between the signals. This is different from
SETUPHOLDPwhere the effects of boBETUPandHOLDcan be observed in the same
characterization vector.

VECTOR // for RECREM
(01 clearbar -> 01 clk// pos. recovery or neg. removal
| 01clk->01 clearbar// neg. recovery or pos. removal
)
RECOVERY{
FROM {PIN = clearbar;}
TO {PIN = clk;}
[*fill in data */

356 Advanced Library Format (ALF) Reference Manual Version 1.9.2

ALF/SDF Cross Reference

REMOVAL {
FROM {PIN = clk;}
TO {PIN = clearbar;}
/*fill in data */
}
}

These ALFVECTOR describe the alternative sequences of events shown in Figure B-12:

rising edge at clearbar followed by rising edge at clk
or rising edge at clk followed by rising edge at clearbar

TheFrRoOMandTOpin annotations define the sense of measureme®HOOVER@NAREMOVAL
respectively, in the same way as if they were specified in separate vectors.

clearbar /'(forbidden zone /

I | removal |

| recovery, |

T

clk | / |
| |

Figure B-12: Measurement of SDF RECREM

B.2.7 SDF SKEW

A skewin SDF is the maximum allowed difference in arrival time between signals. The
allowed region for the phase between signals is bound by@erto the left andsKEWO the
right for positiveSKEw or by SKEWO the left and zer@) to the right for negativeKew

VECTOR (01 clkl <&> 01 clk2) {// pos. or neg. or zero skew
SKEW {
FROM {PIN = clk1;}
TO {PIN = clk2;}
*fill in data */
}
}

These ALFVECTOR describe the alternative sequences of events shown in Figure B-13:
rising edge at clkl followed by rising edge at clk2

or rising edge at clk2 followed by rising edge at clk1
or rising edge at clk2 simultaneously with rising edge at clk1

This is the most general case, where the skew can be positive, negative, @y zexcross the
characterization space. TRROMandTO pin annotations define the sense of measurement for
SKEW

Version 1.9.2 Advanced Library Format (ALF) Reference Manual 357

ALF/SDF Cross Reference

clkl

[
| skew (if positive value)
I

clk2

|
I
I
I
I I
| /éllowed zon
[[
I

skew (if negative value)

clk2)ﬂlowed ZOI’IQJ|/

Figure B-13: Measurement of SDF SKEW

B.2.8 SDF WIDTH

VECTOR (01 clk -> 10 clk) {// high pulse
PULSEWIDTH {
PIN = clk;
/*fill in data */
}
}

This ALF VECTORdescribes the sequence of events shown in Figure B-14:

rising edge at clk followed by falling edge at.clk
The pulsewidth applies to the positive phase of the siginal

clk

> |

——
i pulsewidth |

pulsewidth

Figure B-14: Measurement of SDF WIDTH

VECTOR (10 clk -> 01 clk) {// low pulse
PULSEWIDTH {
PIN = clk;
/*fill in data */
}
}

This ALF VECTORJescribe the sequence of events:
falling edge at clk followed by rising edge at.clk
The pulsewidth applies to the negative phase of the sitgnal

358 Advanced Library Format (ALF) Reference Manual

Version 1.9.2

ALF/SDF Cross Reference

VECTOR (01 clk -> 10 clk | 10 clk -> 01 clk) {// high or low pulse
PULSEWIDTH {
PIN = clk;
/*fill in data */
}
}

These ALFVECTOR describe the alternative sequences of events shown in Figure B-14:

rising edge at clk followed by falling edge at clk
or falling edge at clk followed by rising edge at.clk

The pulsewidth applies to both phases of the sigkal

B.2.9 SDF PERIOD

VECTOR (01 clk -> 10 clk -> 01 clk) {
PERIOD {
PIN = clk;
/* fill in data */
}
}

This ALF VECTORJescribes the sequence of events shown in Figure B-15:
rising edge at clk followed by falling edge at clk followed by rising edge .at clk
Thus the period is measured between two consecutive rising edges at thelksignal

clk

I
>

period

Figure B-15: Measurement of SDF PERIOD

B.2.10 SDF NOCHANGE

VECTOR (?! addr -> 10 write -> 01 write -> ?! addr) {
SETUP {
FROM {PIN = addr;}
TO {PIN = write;}
/*fill in data */
HOLD {
FROM {PIN = write;}
TO {PIN = addr;}
/*fill in data */ }
NOCHANGE {
PIN = addr;
/* fill in optional data */
}
}

This ALF VECTORJescribes the sequence of events shown in Figure B-16:

Version 1.9.2 Advanced Library Format (ALF) Reference Manual 359

ALF/SDF Cross Reference

any edge at addr followed by falling edge at write followed by rising edge at write fol-
lowed by any edge at addr

ThesSeTUPtime is measured from the first edgeddr to the first edge atrite . TheHOLD

time is measured from the second edgeriat to the second edge atdr . The signahddr

can not change between the start time ofsthep measurement until the end time of tied
measurement. ALF allows the specification of an additional measurement between the first and
second edge of the signal (subjectitotCcHANGEHOweVer, this additional measurement can not

be directly translated into SDF (and would be for characterization and future purposes only).

| | |
| | nochange | ™
. | i i |

adr X | | X

| setup I I hold >I
| | |
write | \ / I
| |

[[
Figure B-16: Detection of SDF NOCHANGE

B.3 SDF conditions and labels for delays and
timing constraints

Conditions fonOPATH timing arcs in SDF apply to the entire timing arc. The condition is
evaluated during the event on the “from” port (i.e., an input pin) and the event on the “to” port
(i.e., an output pin) is scheduled consequently.

Conditions for timing constraints in SDF can be defined individually for each port. The
condition associated with tistart pointof the timing constraint (i.edata for SETUP and
clock for HOLD is called thestamp conditionThe condition associated with teed pointof
the timing constraint (i.ecjock for SETUPanddata for HOLD is called theeheck condition

The use oBETUPHOLDNStead of the combination eETuPandHOLDor RECREMNStead the
combination oRECOVER®WNAREMOVAILN SDF imposes restrictions in the definition of
conditions. Where the use of two individual timing constraints allows the definition of four
conditions (two stamp and two check), the use of one combined timing constraint allows only
the definition of two conditions (one stamp and one check).

The ALF vector expression language can be used to specify conditions during the sequence of
events in a more general way than SDF.

Some more examples in ALF:
VECTOR (C & (01 A ->01 B))

Some alternative specification options:
VECTOR (?1 C->01A->01B->1? C)// verbose

360 Advanced Library Format (ALF) Reference Manual Version 1.9.2

ALF/SDF Cross Reference

VECTOR (?1 C->01 A->01B)// C shall be true before start
VECTOR (01 A->01B->1? C) // C shall be true until the end
These ALFVECTOR describe the sequence of events shown in Figure B-17:

rising edge at A is followed by rising edge at B, C is true before rising edge of A until after
rising edge of B

Either of the pseudo-eventsi(C or 1? C) at the boundary can be omitted, since either one of
them is sufficient to specify the conditiarshall beTrue during the entire event sequence.

C don'’t care don'’t care

Figure B-17: Condition during sequence of two events

VECTOR ((C&01A)->01B)
alternative specification options:
VECTOR (?1C->01A->1?C->01B)
VECTOR (01 A->1?C->01B)
These ALFVECTOR describe the sequence of events shown in Figure B-18:

rising edge at A is followed by rising edge at B, C is true before rising edge of A until after
rising edge of A

A

C don'’t care don'’t care

Figure B-18: Condition during leading event

VECTOR (01 A -> (C & 01 B))

Version 1.9.2 Advanced Library Format (ALF) Reference Manual 361

ALF/SDF Cross Reference

alternative syntax:
VECTOR (01A->?1C->01B->1?C)
This ALF VECTORJescribes the sequence of events shown in Figure B-19:

rising edge at A is followed by rising edge at B, C is true before rising edge of B until after
rising edge of B

A

C don'’t care don'’t care

Figure B-19: Condition during trailing event

A SETUPHOLIwith scoNIstamp condition) andcoN{check condition) in SDF can be
described in ALF in the following way (and depicted in Figure B-20):

VECTOR (?! din -> ?1 ccond -> 01 clk -> 1? scond -> ?! din) {

SETUP {
FROM {PIN = din;
TO {PIN = clk;}
/*fill in data */
}
HOLD {
FROM {PIN = clk;}
TO {PIN =din;}
/*fill in data */
}
}
A more verbose specification of the vector is:
VECTOR (

?1 scond // scond shall be true at the beginning
-> ?ldin // din toggles
-> ?1 ccond // last chance for ccond to become true
-> 01clk //rising edge at clk
-> 17? scond // scond gets a break
-> ?ldin // din toggles
-> 1? ccond // ccond gets a break at last

The optional condition label in SDF has its counterpart in ALF (see Section 6.6.3). As in SDF,
the use and interpretation of this label is defined by the application tool and not by the standard.

362 Advanced Library Format (ALF) Reference Manual Version 1.9.2

ALF/SDF Cross Reference

| | |
din >|< minimal data pulse)|<

| ! !
: setup | hold !

clk I

scond don’t care ?for setup ?for hold don't care

ccond don’t care don't care

?for setup ? for hold

Figure B-20: SETUPHOLD with SCOND and CCOND

Version 1.9.2 Advanced Library Format (ALF) Reference Manual 363

ALF/SDF Cross Reference

364 Advanced Library Format (ALF) Reference Manual Version 1.9.2

Phased-out Items

Appendix C
Phased-out Items

This section contains all items from the ALF 1.1 spec., which are phased out for ALF 2.0,
because they are considered obsolete.

C.1 Polarity for output pin

The polarity of an output pin (i.©IRECTION = output;) can take the following values:

Table C-1 POLARITY (output) annotations for a PIN object (phased out)

Annotation string Description

inverted polarity change between input and output
non_inverted no polarity change between input and output
both polarity may change or not (e.g. XOR) (default
none polarity has no meaning(e.g. analog signal)

Reason for phase-out

Not required by any tool today. Applies to very few signals in a library (e.g. inverted and non-
inverted output of flipflop). Different semantics than polarity for input signal, therefore
potentially confusing.

Substitution

Use attributes for pins representing double-rail signals (see Section 6.4.18).
Example

old style:

CELL my_flipflop {
PIN Q { DIRECTION = output; POLARITY = non_inverted; }
PIN Qbar { DIRECTION = output; POLARITY = inverted,; }
/* other pins and stuff */

}
new style:

Version 1.9.2 Advanced Library Format (ALF) Reference Manual 365

Phased-out Items

CELL my_flipflop {
PIN Q { DIRECTION = output; ATTRIBUTE { non_inverted } }
PIN Qbar { DIRECTION = output; ATTRIBUTE { inverted } }
/* optional */ PIN_GROUP [0:1] Q_double_rail { MEMBERS Q Qbar } }
/* other pins and stuff */

C.2 ENABLE_PIN annotation

ENABLE_PIN = string ;
references an output enable pin (i.e., a pin ®IGNALTYPE = out_enable;).
Reason for phase-out

This annotation is phased out, since it provides only a very limited capability to describe a
relationship between two pins, which is normally not described as an annotation for a pin.
Relationships between pins can be described using VECTOR, supplemented by new features
in ALF 2.0. Also, the ENABLE_PIN can make a reference to a pin which may not yet be
declared. This clashes with the general rule: an object shall not be referenced before it is
declared.

Substitution

The ENABLE_PIN can be infered according to the following rules:

For cells WithCELLTYPE = buffer | combinational | latch | flipflop the following

rule applies:

e For a PIN WithSIGNALTYPE = data andDIRECTION = output | both , the PIN with
SIGNALTYPE = out_enable is the enable-pin.

* For a PIN WithSIGNALTYPE = scan_data andDIRECTION = output | both , the PIN

with SIGNALTYPE = scan_out_enable Is the enable-pin.
For cells withCELLTYPE = memory the following rule applies:

* For a PIN withSIGNALTYPE =data andDIRECTION = output | both , the PIN with
SIGNALTYPE = read_enable is the enable-pin.

e For a PIN wWithSIGNALTYPE =test_ data ~ andDIRECTION = output | both , the PIN
with SIGNALTYPE = test_read_enable is the enable-pin.

Port-specific enable-pins in multiport memories must have the SEBNaL_CLASSas the
related output pin.

366 Advanced Library Format (ALF) Reference Manual Version 1.9.2

C.3 ATTRIBUTE with POLARITY annotation

Phased-out Items

The following attributes within a PIN object can also he@eARITY annotation:

Table C-2 Attributes with POLARITY annotation (phased out)

Attribute item Description

TIE signal that needs to be tied to a fixed value
READ read enable mode

WRITE write enable mode

Reason for phase-out

Not a very concise modeling style. Also, this is the only case where ATTRIBUTE contains
non-atomic objects. By removing this special case, ATTRIBUTE will contain only atomic

objects, which simplifies the datamodel.
Substitution

Use mode-specific polarity for signal with composite signaltype based on fundamental

signaltype “control” (see Section 6.4.4 and Section 6.4.6).
Example
old style:

PIN rw {
ATTRIBUTE {
WRITE { POLARITY = high; }
READ {POLARITY =low ;}
}
}

new style:

PIN rw {
SIGNALTYPE = read_write_control;
POLARITY {
WRITE = high;
READ = low;

C.4 OFF_STATE annotation

OFF_STATE = string ;
which can be:

Version 1.9.2 Advanced Library Format (ALF) Reference Manual

367

Phased-out Items

Table C-3 OFF_STATE annotations for a PIN object

Annotation string Description
inverted pin is inverted when in off state
non_inverted pin is not inverted when in off state

Reason for phase-out
The purpose of this feature is not clear. No practical example could be found.

C.5 SCAN annotation container

A SCAN container may be used inside a CELL or a PIN object and may contain annotations
which are allowed inside a CELL or a PIN object for limiting the scope of those annotations.

Example:
PIN clkl { signaltype = master_clock; SCAN {signaltype = slave_clock;} }

PIN clk2 { SCAN {signaltype = master_clock;} }

In normal modeclkl is master clockclk2 is unused. In scan modek?2 is master clock,
clkl is slave clock.

Reason for phase-out

This feature is not required for DFT, since all DFT items are already identified by dedicated
keywords. The example above is unrealistic.

C.6 PRIMITIVE definition in FUNCTION

BNF in ALF 1.1, chapter 3.4.16

function ::=
FUNCTION identifier] {
[all_purpose_items]
[primitives]
[behavior]
[statetables]
}

Proposed change: remoM&imitives]
Reason for change

PRIMITIVE definitions must contain a FUNCTION statement themselves. Therefore, the
possibility of having PRIMITIVE inside FUNCTION and FUNCTION inside PRIMITIVE
bears the potential risk of circular reference in the datamodel.

368 Advanced Library Format (ALF) Reference Manual Version 1.9.2

Phased-out Items

Substitution
use PRIMITIVE definitions inside the CELL which contains the FUNCTION.

Version 1.9.2 Advanced Library Format (ALF) Reference Manual 369

Phased-out Items

370 Advanced Library Format (ALF) Reference Manual Version 1.9.2

Index

Symbols CURRENT 161
(N+1) order sequential logic 49 DELAY 159
-> operator 14, 48 DERATE_CASE 163
2-270 DISTANCE 218
21270 DRIVE_STRENGTH 161, 162
2?2 270 DRIVER 259
2~ 270 ENERGY 161
@ 39 FANIN 162
FANOUT 162
Numerics FREQUENCY 160
2-dimensional tables 313 HEIGHT 218
HOLD 159
A JITTER 160
ABS 145 LENGTH 218
abs 285 NOCHANGE 159
abstract transition operators 328 PERIOD 159
active vectors 44 POWER 161
ALF_AND 88, 89, 302 PROCESS 163
ALF_BUF 87, 88 PULSEWIDTH 160
ALF_BUFIF0 91 RECEIVER 259
ALF _BUFIF1 91 RECOVERY 160
ALF_FLIPFLOP 94, 300 REMOVAL 160
ALF_LATCH 95 RESISTANCE 162
ALF_MUX 93, 301 SETUP 160
ALF_NAND 88, 89 SKEW 160
ALF_NAND?2 299 SLEWRATE 159
ALF_NOR 88, 90 SWITCHING_BITS 162
ALF_NOT 87, 88 TEMPERATURE 161
ALF_NOTIF0 91, 92 THRESHOLD 161
ALF_NOTIF1 91, 92 TIME 160
ALF_OR 88, 89 VOLTAGE 161
ALF_XNOR 88, 90 WIDTH 218
ALF_XOR 88, 90 arithmetic models 148
ALIAS 17 average 187
alias 287 can_short 257
all_purpose_items 286 cannot_short 257
alphabetic_bit_literal 268 CONNECT_RULE 257
annotated properties 12 DEFAULT 148
annotation 286 MEASUREMENT 187
arithmetic model tables must_short 257
AREA 218 peak 187
CAPACITANCE 162 rms 187
CONNECTIONS 162 static 187

Version 1.9.2 Advanced Library Format (ALF) Reference Manual Index-371

transient 187
UNIT 148

CELL
BUFFERTYPE 107
CELLTYPE 101
DRIVERTYPE 107
NON_SCAN_CELL 107, 289
PARALLEL_DRIVE 107
SCAN_TYPE 106
SCAN_USAGE 106

cell buffertype
inout 107
input 107
internal 107
output 107

cell celltype
block 101
buffer 101
combinational 101
core 101
flipflop 101
latch 101
memory 101
multiplexor 101
special 101

cell drivertype
both 107
predriver 107
slotdriver 107

cell scan_type
clocked 106
control_0 106
control_1 106
Issd 106
muxscan 106

cell scan_usage
hold 107
input 107
output 107

default 148

from 153

information
AUTHOR 27
DATETIME 27
PRODUCT 27

TITLE 27
VERSION 27

limit 153

object reference
cell 28
pin 28
primitive 28

PIN
ACTION 119
CONNECT_CLASS 261
DATATYPE 121
DIRECTION 115
DRIVETYPE 124
ENABLE_PIN 366
OFF_STATE 367
ORIENTATION 261
POLARITY 120
PULL 125
SCAN_POSITION 122
SCOPE 124
SIGNALTYPE 116
STUCK 122
VIEW 114

pin
PINTYPE 115

pin action
asynchronous 120
synchronous 120

pin datatype
signed 121
unsigned 121

pin direction
both 115, 116
input 115
none 115, 116
output 115

pin drivetype
cmos 124
cmos_pass 124
nmos 124
nmos_pass 124
open_drain 124
open_source 124
pmos 124
pmos_pass 124
ttl 124

Index-372 Advanced Library Format (ALF) Reference Manual Version 1.9.2

pin off_state
inverted 368
non_inverted 368
pin orientation
bottom 261
left 261
right 261
top 261
pin pintype
analog 115
digital 115
supply 115
pin polarity
both 365
double_edge 120
falling_edge 120
high 120
inverted 365
low 120
non_inverted 365
none 365
rising_edge 120
pin pull
both 125
down 125
none 125
up 125
pin scope
behavior 125
both 125
measure 125
none 125
pin signaltype

Version 1.9.2

clear 117, 120, 121
clock 117, 120, 121

control 116, 118, 119, 120, 121

data 116, 120, 121
enable 117, 120, 121
master_clock 119
out_enable 118
scan_clock 119
scan_data 118
scan_enable 118
scan_out_enable 118
select 117, 120, 121

set 117, 120, 121
slave clock 119
pin stuck
both 122
none 122
stuck_at_0 122
stuck_at_1 122
pin view
both 115
functional 115
none 115
physical 115
to 153
VECTOR
LABEL 131, 132, 133
violation
MESSAGE 179
MESSAGE_TYPE 179
annotation container 19, 152
annotation_container 286
annotations 319
PIN 319
pin 337
self-explaining 320
timing arc 320
anotation
object reference
class 28
any_character 266
arithmetic models 16
arithmetic operations 9
arithmetic operators
binary 145
function 145
unary 145
arithmetic_binary_operator 285
arithmetic_expression 281
arithmetic_function_operator 285
arithmetic_model 292
arithmetic_model_template_instantiation
292
arithmetic_unary_operator 284
assignment_base 280
async_2write_1read _ram 331
atomic megacell 7
atomic object 15

Advanced Library Format (ALF) Reference Manual Index-373

ATTRIBUTE 18
attribute 287
CELL 102, 103
cell
asynchronous 102
CAM 102
dynamic 102
RAM 102
ROM 102
static 102
synchronous 102
PIN 125
pin
PAD 125
SCHMITT 125
TRISTATE 125
XTAL 125
pin polarity
READ 367
TIE 367
WRITE 367
attribute _items 287
average 315

B

based literal 269
based _literal 269
BEHAVIOR 299
behavior 294
behavior_body 294
bidirectional pin 325
binary 269
Binary operators
arithmetic 145
bitwise 35
boolean, scalars 33
reduction 34
vector 49, 50, 53
binary base 269
binary_digit 269
bit 268
bit_edge_literal 270
bit_literal 268
Bitwise operators
binary 35
unary 35

Index-374

Advanced Library Format (ALF) Reference Manual

block comment 268
Boolean Equatio 299
boolean functions 7
boolean operators

binary 33

unary 33
boolean_and_operator 285
boolean_arithmetic_operator 285
boolean_binary_operator 285
boolean_case_compare_operator 285
boolean_condition_operator 285
boolean_else operator 285
boolean_expression 281
boolean_logic_compare_operator 285
boolean_or_operator 285
boolean_unary_operator 285
both 325
bus contention 323
bus modeling 323
bus with multiple drivers 324
busholder 324

C

can_float 320
CAPACITANCE 308, 326
case-insensitive langauge 267
cell 289
cell modeling 12
cell_identifier 282, 289
cell_instantiation 282
cell_items 289
cell_template_instantiation 289
characterization 5, 7

power 7, 10

timing 7
characterization model 311
Characterization Modeling 8
characterization variables 7
children object 15
CLASS 17, 337
class 288

connectivity 337
combinational logic 13, 33
combinational primitives 87
combinational scan cell 304
combinational_assignments 294

Version 1.9.2

comment 267

block 268

long 268

short 267

single-line 267
comments

nested 268
compound operators 267
CONNECT_RULE 337
CONNECTION 320
connections

allowed 337

disallowed 336

external 336
CONNECTIVITY 337
connectivity 336

class 337

net-specific 338

pin-specific 338
connectivity class 337
CONSTANT 17
constant 288
constant numbers 268
constraints

delay 313

power 313

timing 313
context_sensitive_keyword 283
context-sensitive keyword 272, 323
context-sensitive keywords 9
core 7
core cell 324
core modeling 334

D

d_flipflop_clr 300
d_flipflop_Id_clr 302
d_flipflop_mux_set_clr 302
d_latch 303
decimal 269
decimal_base 269
deep submicron 5
DEFAULT 321
default annotation 148
delay mode

inertial 10

Version 1.9.2

Advanced Library Format (ALF) Reference Manual

invalid-value-detection 10
transport 10
delay models 8
delay predictor 8
delimiter 267
derating 317
derating equation 317
digit 269
digital filter 334
digital_filter 336
DRIVE_STRENGTH 323
DRIVER 337

E

edge literal 270
edge rate 8
edge_literal 270
edge_literals 283
edge-sensitive sequential logic 14, 39
elapsed time 8
ENERGY 316
energy 9
equation 293
equation_template_instantiation 293
escape codes 270
escape_character 266
escaped identifier 271
escaped_identifier 271
event sequence detection 48
EXP 145
exp 285
expansion

bit-wise 327

bytewise 328
expansion of vectors 327
exponentiation 9
extensible primitives 86
external connections 336

F

fanout 12

Flipflop 94

flipflop 299

forward referencing 15
fringe capacitance 12
FUNCTION 299

Index-375

function 293

exponentiation 9

logarithm 9
Function operators

arithmetic 145
function_template_instantiation 293
functional model 5
functional modeling 13
functional models 7

G

generic objects 16
generic_object 286
glitch 10

GROUP 19, 327
group 288
group_identifier 288

H

hard keyword 272

hardware description language 7
HDL 7

header 293
header_template_instantiation 293
hex_base 269

hex_digit 269

hexadecimal 269

hierarchical object 15

identifier 15, 267
Identifiers 271
identifiers 283
inactive vectors 44
INCLUDE 17, 32
include 288

index 283

inertial delay mode 10
infinite impulse response filter 334
INFORMATION 304
integer 268

internal load 8
intrinsic delay 8

J
JK-flipflop 301

Index-376 Advanced Library Format (ALF) Reference Manual

JTAG BSR cell 304

K

keyword 15

Keywords
context-sensitive 273
generic objects 273
operators 273

keywords
context-sensitive 9

L

Latch 95

layout parasitics 8
level-sensitive cell 303
level-sensitive sequential logic 39
libraries 289

LIBRARY 304

library 15

Library creation 1
library_identifier 291
library_items 290
library_specific_object 287
library_template_instantiation 289
library-specific objects 16
LIMIT 320

literal 15, 267

load characterization model 8
LOG 145

log 285

logarithm 9

logic_literals 284
logic_values 284
logic_variables 284

M

macrocells 7

MAX 146

max 285
MEASUREMENT 315
megacell modeling 327
megacells 7

metal layer 12

MIN 146

min 285

mode of operation 5

Version 1.9.2

modeling
bus 323
cell 12
characterization 8
cores 334
functional 13
megacell 327
physical 12
power 9
synthesis 12
test 12
timing 8
wire 12
wireload 325
multiplexor 93
must_connect 320
muxscan 306

N

named_assignment 280
named_assignment_base 280

NAND gate 299
nested comments 268
no_connection 320

non_negative_number 268
NON_SCAN_CELL 305
non-escaped identifier 271
nonescaped_identifier 271
nonreserved_character 266

non-scan cells 12
Number 268

number 268

numbers 284
numeric_bit_literal 268

O
objects 15, 289
octal 269
octal_base 269
octal_digit 269
one_shot 333
one-pass parser 15
operation mode 5
operator
-> 14, 48
followed by 14, 48

Version 1.9.2

operators
arithmetic 145
boolean, scalars 33
boolean, words 34
signed 35
unsigned 35

output ramptime 307

P

parasitic capacitance 12
parasitic resistance 12
physical modeling 12
pin_assignments 281
pin_identifier 290
pin_items 290
pin_template_instantiation 290
pins 290
placeholder identifier 272
placeholder_identifier 272
placeholders 18
power 9
Power characterization 7
power characterization 10
power constraint 5
power dissipation 10
Power model 5
power modeling 9
predefined derating cases 180, 188

bccom 180

bcind 180

bcmil 180

wccom 180

wcind 180

wcmil 180
predefined process names 180

snsp 180

snwp 180

wnsp 180

wnwp 180
primitive 300
primitive_identifier 283, 290
primitive_instantiation 283
primitive_items 291
primitive_template_instantiation 290
primitives 290
private keywords 273

Advanced Library Format (ALF) Reference Manual Index-377

PROCESS 317
PROPERTY 19
property 288

public keywords 273
pulse generator 333
PVT Derating 317

Q

Q_CONFLICT 94
QN_CONFLICT 94
guad D-Flipflop 306
quoted string 266, 270
quoted_string 271

R

RAM16X4 336
real 268
Reduction operators
binary 34
unary 34
reserved keyword 272
reserved_character 266
RESISTANCE 326
RTL 4

S

scaled average current 9
scaled average power 9
scan cell

combinational 304
scan chai 304
Scan Flipflop 305
Scan insertion 12
scan test 12
scan_data 306
scan_enable 306
SCAN_FFX4 307
SCAN_ND4 305
SCAN_TYPE 305
self capacitanc 12

self-explaining annotations 320

sequential logic
edge-sensitive 14, 39
level-sensitive 39
N+1 order 49
vector-sensitive 14, 48

Index-378

sequential_assignment 294
sheet resistance 12

sign 268

signed operators 35
simulation model 5
single-line comment 267
slew rate 8

SLEWRATE 308, 322

soft keyword 272
source_text 287

sr_latch 303
state-dependent drive strength 324
STATETABLE 299
statetable 294

statetable body 294

static power 10
std_derating 318
std_header_2d 310

string 284

sublibraries 291
sublibrary_template_instantiation 291
switching energy 307
symbolic_edge_literal 270

T

TABLE 308

table 293

table items 293
table_template_instantiation 293
TEMPERATURE 317
TEMPLATE 18, 310
template 288, 307
template definition 309
template_identifier 288
template_instantiation 283
template-reference scheme 9
Ternary operator 34
Three-port Memory 331
timing arc 320

timing characterization 7
timing constraint model 8
timing constraint models 8
timing constraints 5, 313
timing modeling 8

timing models 5
transcendent functions 9

Advanced Library Format (ALF) Reference Manual Version 1.9.2

transient power 10

transition delay 8

transmission-gate 323

transport delay mode 10
invalid-value-detection 10

triggering conditions 39

triggering function 39

tristate driver 323

tristate primitives 91

tristate_buffer 323

Truth Table 299

truth table 7

Two-port memory 328

U
Unary operator
bitwise 35
Unary operators
arithmetic 145
boolean, scalar 33
reduction 34
Unary vector operators 42
unnamed_assignment 280
unnamed_assignment_base 280
unnamed_assignments 280
unsigned 268
unsigned operators 35

V

VCO 333
VECTOR 308
vector 291
vector expression 14, 48
Vector operators

binary 49, 50

unary, bits 42

unary, words 43
vector_elsif_operator 286
vector_expression 282, 291
vector_if_operator 286
vector_items 291

vector_template_instantiation 291

vector_unary_operator 285
vector-based modeling 5

Vector-Sensitive Sequential Logic 14, 48

vector-specific model 307

Verilog 4, 40

VHDL 4, 40

via resistance 12
VIOLATION 314

virtual pins 12, 94

VOLTAGE 317, 322
voltage_controlled_delay 334

W

whitespace 267

whitespace characters 266
wildcard_literal 268

wire 291

wire modeling 12

wire select model 327
wire_identifier 291

wire_items 292
wire_template_instantiation 291
word_edge_literal 270

Version 1.9.2 Advanced Library Format (ALF) Reference Manual

Index-380 Advanced Library Format (ALF) Reference Manual Version 1.9.2

	Introduction
	1.1 Motivation
	1.2 Goals
	1.3 Target applications
	1.4 Conventions
	1.5 Organization of this manual

	Characterization and Modeling
	2.1 Basic concepts
	2.2 Performance modeling for characterization
	2.2.1 Modeling for timing
	2.2.2 Modeling for power
	2.2.3 Modeling for signal integrity

	2.3 Physical modeling for synthesis and test
	2.3.1 Cell modeling
	2.3.2 Wire modeling

	2.4 Functional modeling
	2.4.1 Combinational logic
	2.4.2 Level-sensitive sequential logic
	2.4.3 Edge-sensitive sequential logic
	2.4.4 Vector-sensitive sequential logic

	Object Model
	3.1 Syntax conventions
	3.2 Generic objects
	3.2.1 CONSTANT statement
	3.2.2 ALIAS statement
	3.2.3 INCLUDE statement
	3.2.4 CLASS statement
	3.2.5 ATTRIBUTE statement
	3.2.6 TEMPLATE statement
	3.2.7 PROPERTY statement
	3.2.8 GROUP statement
	3.2.9 KEYWORD statement

	3.3 Library-specific objects
	3.4 Arithmetic models
	3.5 Geometric models
	3.6 Library-specific singular objects
	3.7 Relationships between objects
	3.8 INFORMATION container
	3.9 Relations between objects
	3.9.1 Keywords for referencing objects used as annotation
	3.9.2 Incremental definitions for VECTOR
	3.9.3 Other incremental definitions

	Library Organization
	4.1 Scoping rules
	4.2 Use of multiple files

	Functional Modeling
	5.1 Combinational functions
	5.1.1 Combinational logic
	5.1.2 Boolean operators on scalars
	5.1.3 Boolean operators on words
	5.1.4 Operator priorities
	5.1.5 Datatype mapping
	5.1.6 Rules for combinational functions
	5.1.7 Concurrency in combinational functions

	5.2 Sequential functions
	5.2.1 Level-sensitive sequential logic
	5.2.2 Edge-sensitive sequential logic
	5.2.3 Unary operators for vector expressions
	5.2.4 Basic rules for sequential functions
	5.2.5 Concurrency in sequential functions
	5.2.6 Initial values for logic variables

	5.3 Higher-order sequential functions
	5.3.1 Vector-sensitive sequential logic
	5.3.2 Canonical binary operators for vector expressions
	5.3.3 Complex binary operators for vector expressions
	5.3.3.1 Extension to N operands
	5.3.3.2 Boolean rules

	5.3.4 Operators for conditional vector expressions
	5.3.5 Operators for sequential logic
	5.3.6 Operator priorities
	5.3.7 Using PINs in VECTORs

	5.4 Modeling with vector expressions
	5.4.1 Event reports
	5.4.2 Event sequences
	5.4.3 Scope and content of event sequences
	5.4.4 Alternative event sequences
	5.4.5 Symbolic edge operators
	5.4.6 Non-events
	5.4.7 Compact and verbose event sequences
	5.4.8 Unspecified simultaneous events within scope
	5.4.9 Simultaneous event sequences
	5.4.10 Implicit local variables
	5.4.11 Conditional event sequences
	5.4.12 Alternative conditional event sequences
	5.4.13 Change of scope within a vector expression
	5.4.14 Sequences of conditional event sequences
	5.4.15 Incompletely specified event sequences
	5.4.16 How to determine well-specified vector expressions

	5.5 Variable declarations
	5.5.1 BEHAVIOR
	5.5.2 STATETABLE
	5.5.3 Multi-dimensional variables
	5.5.4 ROM initialization

	5.6 Predefined models
	5.6.1 Usage of PRIMITIVEs
	5.6.2 Concept of user-defined and predefined primitives
	5.6.3 Predefined combinational primitives
	5.6.3.1 One input, multiple output primitives
	5.6.3.2 One output, multiple input primitives

	5.6.4 Predefined tristate primitives
	5.6.5 Predefined multiplexor
	5.6.6 Predefined flip-flop
	5.6.7 Predefined latch
	5.6.8 Parameterizeable cells

	Modeling for Synthesis and Test
	6.1 Annotations and attributes for a CELL
	6.1.1 CELLTYPE annotation
	6.1.2 ATTRIBUTE within a CELL object
	6.1.3 SWAP_CLASS annotation
	6.1.4 RESTRICT_CLASS annotation
	6.1.5 Independent SWAP_CLASS and RESTRICT CLASS
	6.1.6 SWAP_CLASS with inherited RESTRICT_CLASS
	6.1.7 SCAN_TYPE annotation
	6.1.8 SCAN_USAGE annotation
	6.1.9 BUFFERTYPE annotation
	6.1.10 DRIVERTYPE annotation
	6.1.11 PARALLEL_DRIVE annotation

	6.2 NON_SCAN_CELL statement
	6.3 STRUCTURE statement
	6.4 Annotations and attributes for a PIN
	6.4.1 VIEW annotation
	6.4.2 PINTYPE annotation
	6.4.3 DIRECTION annotation
	6.4.4 SIGNALTYPE annotation
	6.4.5 ACTION annotation
	6.4.6 POLARITY annotation
	6.4.7 DATATYPE annotation
	6.4.8 INITIAL_VALUE annotation
	6.4.9 SCAN_POSITION annotation
	6.4.10 STUCK annotation
	6.4.11 SUPPLYTYPE
	6.4.12 SIGNAL_CLASS
	6.4.13 SUPPLY_CLASS
	6.4.14 Driver CELL and PIN specification
	6.4.15 DRIVETYPE annotation
	6.4.16 SCOPE annotation
	6.4.17 PULL annotation
	6.4.18 ATTRIBUTE for PIN objects

	6.5 Definitions for bus pins
	6.5.1 RANGE for bus pins
	6.5.2 Scalar pins inside a bus
	6.5.3 PIN_GROUP statement

	6.6 Annotations for CLASS and VECTOR
	6.6.1 PURPOSE annotation
	6.6.2 OPERATION annotation
	6.6.3 LABEL annotation
	6.6.4 EXISTENCE_CONDITION annotation
	6.6.5 EXISTENCE_CLASS annotation
	6.6.6 CHARACTERIZATION_CONDITION annotation
	6.6.7 CHARACTERIZATION_VECTOR annotation
	6.6.8 CHARACTERIZATION_CLASS annotation

	6.7 ILLEGAL statement for VECTOR
	6.8 TEST statement
	6.9 Physical bitmap for memory BIST
	6.9.1 Definition of concepts
	6.9.2 Definitions of pin ATTRIBUTE values for memory BIST
	6.9.3 Explanatory example

	General Rules for Arithmetic Models
	7.1 Principles of arithmetic models
	7.1.1 Global definitions for arithmetic models
	7.1.2 Trivial arithmetic model
	7.1.3 Arithmetic model using EQUATION
	7.1.4 Arithmetic model using TABLE
	7.1.5 Complex arithmetic model
	7.1.6 Containers for arithmetic models and submodels

	7.2 Arithmetic expressions
	7.2.1 Syntax of arithmetic expressions
	7.2.2 Arithmetic operators
	7.2.3 Operator priorities

	7.3 Construction of arithmetic models
	7.4 Annotations for arithmetic models
	7.4.1 DEFAULT annotation
	7.4.2 UNIT annotation
	7.4.3 CALCULATION annotation
	7.4.4 INTERPOLATION annotation

	7.5 Containers for arithmetic models
	7.6 Arithmetic submodels
	7.6.1 Semantics of MIN / TYP / MAX
	7.6.2 Semantics of DEFAULT

	Electrical Performance Modeling
	8.1 Overview of modeling keywords
	8.1.1 Timing models
	8.1.2 Analog models
	8.1.3 Supplementary models

	8.2 Auxiliary statements for timing models
	8.2.1 THRESHOLD definition
	8.2.2 FROM and TO container
	8.2.3 PIN annotation
	8.2.4 EDGE_NUMBER annotation
	8.2.5 Context of THRESHOLD definitions

	8.3 Specification of timing models
	8.3.1 TEMPLATE for timing measurements and timing constraints
	8.3.2 Partially defined timing measurements and constraints
	8.3.3 TEMPLATE for same-pin timing measurements and constraints
	8.3.4 Absolute and incremental evaluation of timing models
	8.3.5 RISE and FALL submodels
	8.3.6 TIME
	8.3.7 DELAY
	8.3.8 RETAIN
	8.3.9 SLEWRATE
	8.3.10 SETUP
	8.3.11 HOLD
	8.3.12 NOCHANGE
	8.3.13 RECOVERY
	8.3.14 REMOVAL
	8.3.15 SKEW between two signals
	8.3.16 SKEW between multiple signals
	8.3.17 PULSEWIDTH
	8.3.18 PERIOD
	8.3.19 JITTER

	8.4 VIOLATION container
	8.5 EARLY and LATE container
	8.6 Environmental dependency for electrical data
	8.6.1 PROCESS
	8.6.2 DERATE_CASE
	8.6.3 Lookup table without interpolation
	8.6.4 Lookup table for process- or derating-case coefficients
	8.6.5 TEMPERATURE

	8.7 PIN-related arithmetic models for electrical data
	8.7.1 Principles
	8.7.2 CAPACITANCE, RESISTANCE, and INDUCTANCE
	8.7.3 VOLTAGE and CURRENT
	8.7.4 PIN-related timing models
	8.7.5 Submodels for RISE, FALL, HIGH, and LOW
	8.7.6 Context-specific semantics

	8.8 Other PIN-related arithmetic models
	8.8.1 DRIVE_STRENGTH
	8.8.2 SWITCHING_BITS

	8.9 Annotations for arithmetic models
	8.9.1 MEASUREMENT annotation
	8.9.2 TIME and FREQUENCY annotation
	8.9.3 TIME to peak measurement
	8.9.4 Rules for combinations of annotations

	8.10 Waveform description
	8.10.1 Principles
	8.10.2 Annotations within a waveform

	8.11 Arithmetic models for power calculation
	8.11.1 Principles
	8.11.2 POWER and ENERGY

	8.12 Arithmetic models for hot electron calculation
	8.12.1 Principles
	8.12.2 FLUX and FLUENCE

	8.13 Reliability calculation
	8.13.1 TIME within the LIMIT construct
	8.13.2 FREQUENCY within a LIMIT construct
	8.13.3 Global LIMIT specifications
	8.13.4 LIMIT specification and model specification in the same context
	8.13.5 Model specification and argument specification in the same context

	8.14 Noise calculation
	8.14.1 NOISE_MARGIN definition
	8.14.2 Representation of noise in a VECTOR
	8.14.3 Context of NOISE_MARGIN
	8.14.4 Noise propagation
	8.14.5 Noise rejection

	8.15 Interconnect parasitics and analysis
	8.15.1 Principles of the WIRE statement
	8.15.2 Statistical wireload models
	8.15.3 Boundary parasitics
	8.15.4 NODE declaration
	8.15.5 Interconnect delay and noise calculation
	8.15.6 SELECT_CLASS annotation for WIRE statement

	Physical Modeling
	9.1 Overview
	9.2 Arithmetic models in the context of layout
	9.3 Statements for geometric transformation
	9.3.1 SHIFT statement
	9.3.2 ROTATE statement
	9.3.3 FLIP statement
	9.3.4 REPEAT statement
	9.3.5 Summary of geometric transformations

	9.4 ARTWORK statement
	9.5 LAYER statement
	9.5.1 Definition
	9.5.2 PURPOSE annotation
	9.5.3 PITCH annotation
	9.5.4 PREFERENCE annotation
	9.5.5 Example

	9.6 Geometric model statement
	9.6.1 Definition
	9.6.2 Predefined geometric models using TEMPLATE

	9.7 PATTERN statement
	9.7.1 Definition
	9.7.2 SHAPE annotation
	9.7.3 LAYER annotation
	9.7.4 EXTENSION annotation
	9.7.5 VERTEX annotation
	9.7.6 PATTERN with geometric model
	9.7.7 Example

	9.8 VIA statement
	9.8.1 Definition
	9.8.2 USAGE annotation
	9.8.3 Example
	9.8.4 VIA reference

	9.9 BLOCKAGE statement
	9.9.1 Definition
	9.9.2 Example

	9.10 PORT statement
	9.10.1 Definition
	9.10.2 VIA reference
	9.10.3 CONNECTIVITY rules for PORT and PIN
	9.10.4 Reference of a declared PORT in a PIN annotation
	9.10.5 VIEW annotation
	9.10.6 LAYER annotation
	9.10.7 ROUTING_TYPE

	9.11 RULE statement
	9.11.1 Definition
	9.11.2 Width-dependent spacing
	9.11.3 End-of-line rule
	9.11.4 Redundant vias
	9.11.5 Extraction rules
	9.11.6 RULES within BLOCKAGE or PORT
	9.11.7 VIA reference

	9.12 SITE statement
	9.12.1 Definition
	9.12.2 ORIENTATION_CLASS and SYMMETRY_CLASS
	9.12.3 Example

	9.13 ANTENNA statement
	9.13.1 Definition
	9.13.2 Layer-specific antenna rules
	9.13.3 All-layer antenna rules
	9.13.4 Cumulative antenna rules
	9.13.5 Illustration

	9.14 ARRAY Statement
	9.14.1 Definition
	9.14.2 PURPOSE annotation
	9.14.3 Examples

	9.15 CONNECTIVITY statement
	9.15.1 Definition
	9.15.2 CONNECT_RULE annotation
	9.15.3 CONNECTIVITY modeled with BETWEEN statement
	9.15.4 CONNECTIVITY modeled as lookup TABLE

	9.16 Physical annotations for CELL
	9.16.1 PLACEMENT_TYPE annotation
	9.16.2 Reference of a SITE by a CELL

	9.17 Physical annotations for PIN
	9.17.1 CONNECT_CLASS annotation
	9.17.2 SIDE annotation
	9.17.3 ROW and COLUMN annotation
	9.17.4 ROUTING_TYPE annotation

	9.18 Physical annotations for arithmetic models
	9.18.1 BETWEEN statement within DISTANCE
	9.18.2 MEASUREMENT annotation for DISTANCE
	9.18.3 REFERENCE annotation for DISTANCE
	9.18.4 Reference to ANTENNA within SIZE, AREA, and PERIMETER

	Lexical Rules
	10.1 Cross-reference of lexical tokens
	10.2 Characters
	10.2.1 Character set
	10.2.2 Whitespace characters
	10.2.3 Reserved and non-reserved characters

	10.3 Lexical tokens
	10.3.1 Delimiters
	10.3.2 Comments
	10.3.3 Numbers
	10.3.4 Bit literals
	10.3.5 Based literals
	10.3.6 Edge literals
	10.3.7 Quoted strings
	10.3.8 Identifiers
	10.3.9 Hierarchical identifier

	10.4 Keywords
	10.4.1 Keywords for objects
	10.4.2 Keywords for operators
	10.4.3 Context-sensitive keywords

	10.5 Rules against parser ambiguity

	Syntax Rules
	11.1 Cross-reference of BNF items
	11.2 Assignments
	11.3 Expressions
	11.4 Instantiations
	11.5 Literals
	11.6 Operators
	11.7 Auxiliary objects
	11.8 Generic objects
	11.9 CELL
	11.10 LIBRARY
	11.11 PIN
	11.12 PRIMITIVE
	11.13 SUBLIBRARY
	11.14 VECTOR
	11.15 WIRE
	11.16 Arithmetic model
	11.17 FUNCTION
	11.18 TEST
	11.19 Geometric Model
	11.20 ARTWORK
	11.21 LAYER
	11.22 PATTERN
	11.23 VIA
	11.24 BLOCKAGE
	11.25 PORT
	11.26 RULE
	11.27 SITE
	11.28 ANTENNA
	11.29 ARRAY
	11.30 Connectivity

	Sample Applications
	A.1 Truth table versus boolean equation
	A.1.1 NAND gate
	A.1.2 Flip-flop
	A.2 Use of primitives
	A.2.1 D-flip-flop with asynchronous clear
	A.2.2 JK-flipflop
	A.2.3 D-flip-flop with synchronous load and clear
	A.2.4 D-flip-flop with input multiplexor
	A.2.5 D-latch
	A.2.6 SR-latch
	A.2.7 JTAG BSR
	A.2.8 Combinational scan cell
	A.2.9 Scan flip-flop
	A.2.10 Quad D-flip-flop
	A.3 Templates and vector-specific models
	A.3.1 Vector-specific delay and power tables
	A.3.2 Use of TEMPLATE
	A.3.3 Vector description styles for timing arcs
	A.3.4 Vectors for delay, power, and timing constraints
	A.4 Combining tables and equations
	A.4.1 Table versus equation
	A.4.2 Cell with multiple output pins
	A.4.3 PVT derating
	A.5 Use of annotations
	A.5.1 Annotations for a PIN
	A.5.2 Annotations for a timing arc
	A.5.3 Creating self-explaining annotations
	A.6 Providing a fall-back position for applications (using DEFAULT)
	A.7 Bus modeling
	A.7.1 Tristate driver
	A.7.2 Bus with multiple drivers
	A.7.3 Busholder
	A.8 Wire models
	A.8.1 Basic wire model
	A.8.2 Wire select model
	A.9 Megacell modeling
	A.9.1 Expansion of timing arcs
	A.9.2 Two-port memory
	A.9.3 Three-port memory
	A.9.4 Annotation for pins of a bus
	A.9.5 Skew for simultaneously switching signals on a bus
	A.10 Special cells
	A.10.1 Pulse generator
	A.10.2 VCO
	A.11 Core modeling (using a digital filter)
	A.12 Connectivity
	A.12.1 External connections between pins of a cell
	A.12.2 Allowed connections for classes of pins
	A.13 Signal integrity
	A.13.1 I/V curves
	A.13.2 Driver resistance
	A.14 Resistance and capacitance on a pin
	A.14.1 Self-resistance and capacitance on input pin
	A.14.2 Pullup and pulldown resistance on input pin
	A.14.3 Pin and load resistance and capacitance on an output pin
	ALF/SDF Cross Reference
	B.1 SDF delays
	B.1.1 SDF DELAY for IOPATH and INTERCONNECT
	B.1.2 SDF PATHPULSE
	B.1.3 SDF RETAIN delays
	B.1.4 SDF PORT delays
	B.1.5 SDF DEVICE delays
	B.2 SDF timing constraints
	B.2.1 SDF SETUP
	B.2.2 SDF HOLD
	B.2.3 SDF SETUPHOLD
	B.2.4 SDF RECOVERY
	B.2.5 SDF REMOVAL
	B.2.6 SDF RECREM
	B.2.7 SDF SKEW
	B.2.8 SDF WIDTH
	B.2.9 SDF PERIOD
	B.2.10 SDF NOCHANGE
	B.3 SDF conditions and labels for delays and timing constraints
	Phased-out Items
	C.1 Polarity for output pin
	C.2 ENABLE_PIN annotation
	C.3 ATTRIBUTE with POLARITY annotation
	C.4 OFF_STATE annotation
	C.5 SCAN annotation container
	C.6 PRIMITIVE definition in FUNCTION

