
Advanced Library Format
for

ASIC Technology, Cells, & Blocks

containing Functional, Electrical, and Physical
Models for Design, Analysis, and Optimization

from RTL to Layout

Version 2.0

December 14, 2000

ii Advanced Library Format (ALF) Reference Manual Version 2.0

Copyright© 2000 by Accellera. All rights reserved.

No part of this work covered by the copyright hereon may be reproduced or used in any form or by any means --
- graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage and
retrieval systems --- without the prior approval of Accellera.

Additional copies of this manual may be purchased by contacting Accellera at the address shown below.

Notices

The information contained in this manual represents the definition of the Advanced Library Format (ALF) as
reviewed and released by Accellera in December 2000.

Accellera reserves the right to make changes to the ALF language and this manual in subsequent revisions and
makes no warranties whatsoever with respect to the completeness, accuracy, or applicability of the information
in this manual, when used for production design and/or development.

Accellera does not endorse any particular simulator or other CAE tool that is based on the Advanced Library
Format.

Suggestions for improvements to the Advanced Library Format and/or to this manual are welcome. They should
be sent to the ALF email reflector

alf@eda.org

or to the address below.

Information about Accellera and membership enrollment can be obtained by inquiring at the address below.

Published as: Advanced Library Format (ALF) Reference Manual
Version 2.0, December 2000.

Published by: Accellera
15466 Los Gatos Blvd., #109071
Los Gatos, CA 95032
Phone: (408) 358-9510
Fax: (408) 358-3910

Printed in the United States of America.

Verilog® is a registered trademark of Cadence Design Systems, Inc.

Version 2.0 Advanced Library Format (ALF) Reference Manual iii

The following individuals contributed to the creation, editing, and review of ALF 2.0

Jay Abraham Silicon Metrics

Mike Andrews Mentor Graphics ALF Co-Chairman

Tim Ayres Synopsys

Arun Balakrishnan, Ph.D. NEC Electronics

John Beatty IBM

Tom Belpasso Cadence Design Systems

Shir-Shen Chang, Ph.D. Synopsys

Joe Daniels Technical Editor

Gregory duFour Mentor Graphics

Timothy Ehrler Philips Semiconductors

Simon Favre Monterey Design Systems

Vassilios Gerousis, Ph.D. Infineon

Pierre Girouard LogicVision

Tim Jennings Philips Semiconductors

Joe Morrell IBM

Stephen Pateras, Ph.D. LogicVision

John Peters Philips Semiconductors

Wolfgang Roethig, Ph.D. NEC Electronics ALF Chairman and Principal Author

Dhaval Sejpal IBM

Anand Sethurami LSI Logic

Sergei Sokolov Sequence Technologies

Gopal Varshney Philips Semiconductors

Paul Zukowski IBM

iv Advanced Library Format (ALF) Reference Manual Version 2.0

The following individuals contributed to the creation, editing and review of ALF 1.0 and/or ALF 1.1.

Jay Abraham Silicon Integration Initiative

Mike Andrews Mentor Graphics Co-Chairman

Tim Ayres Synopsys - Viewlogic

Arun Balakrishnan NEC

Tim Baldwin Cadence - Ambit

John Beatty IBM

Victor Berman VI / IEEE

Dennis Brophy Mentor Graphics / OVI / IEEE

Jose De Castro LSI Logic

Renlin Chang Cadence

Shir-Shen Chang, Ph.D. Synopsys

Sanjay Churiwala Cadworx

Timothy Ehrler VLSI Technology

Ted Elkind Cadence

Paul Foster Avant!

Vassilios Gerousis, Ph.D. Siemens / OVI

Kevin Grotjohn LSI Logic

Mitch Heins Cadence - Ambit

Eric Howard Cadence

Tim Jennings Motorola

Timothy Jordan Motorola

Archie Lachner Mentor Graphics

Tai Le Avant!

Johnson Chan Limqueco Cadence - Ambit

Ta-Yung Liu Avant!

Saumendra Nath Mandal Duet Technologies

Hamid Rahmanian Mentor Graphics

Darshan Rauniyar Mentor Graphics

Wolfgang Roethig, Ph.D. NEC Chairman

Larry Rosenberg, Ph.D. Cadence / VSIA

Ambar Sarkar, Ph.D. Synopsys - Viewlogic

Itzhak Shapira Cadence

Jin-Sheng Shyr Toshiba

Sergei Sokolov Sente

Peter Suaris Mentor Graphics

Toru Toyoda NEC

Yatin Trivedi Seva Technologies Technical Editor

Devadas Varma Cadence - Ambit

David Wallace Mentor Graphics - Exemplar

Cary Wei Fujitsu

Frank Weiler Avant! / OVI

Jeff Wilson Mentor Graphics

Amir Zarkesh, Ph.D. TDT

Version 2.0 Advanced Library Format (ALF) Reference Manual v

Revision history:

1st draft 11/20/1996

2nd draft 12/20/1996

3rd draft 3/22/1997

4th draft 3/31/1997

5th draft 4/22/1997

6th draft 6/1/1997

7th draft 6/25/1997

8th draft 8/13/1997

9th draft 10/14/1997

Version 1.0 11/14/1997

Version 1.0, revision 1 3/20/1998

Version 1.0, revision 2 4/8/1998

Version 1.0, revision 3 5/15/1998

Version 1.0, revision 4 5/31/1998

Version 1.0, revision 5 6/15/1998

Version 1.0, revision 6 9/20/1998

Version 1.0, revision 7 11/15/1998

Version 1.0, revision 8 1/12/1999

Version 1.0, revision 9 2/5/1999

Version 1.0, revision 10 2/19/1999

Version 1.0, revision 11 3/12/1999

Version 1.1 4/6/1999

Version 1.1a, 1st draft 10/8/1999

Version 1.1a, 2nd draft 11/4/1999

Version 1.1a, 3rd draft 12/7/1999

Version 1.1a, 4thdraft 1/25/2000

Version 1.1a, 5th draft 2/28/2000

Version 1.1a, 6th draft 4/3/2000

Version 1.9.0 7/17/2000

Version 1.9.1 8/21/2000

Version 1.9.2 9/21/2000

vi Advanced Library Format (ALF) Reference Manual Version 2.0

Version 1.9.3 10/19/2000

Version 2.0 12/14/2000

Table of Contents

Version 2.0 Advanced Library Format (ALF) Reference Manual vii

1 Introduction. 1

1.1 Motivation 1
1.2 Goals 1
1.3 Target applications 2
1.4 Conventions 5
1.5 Organization of this manual 6

2 Characterization and Modeling. 7

2.1 Basic concepts 7
2.2 Performance modeling for characterization 8

2.2.1 Modeling for timing 8
2.2.2 Modeling for power 9
2.2.3 Modeling for signal integrity 11

2.3 Physical modeling for synthesis and test 12
2.3.1 Cell modeling 12
2.3.2 Wire modeling 12

2.4 Functional modeling 13
2.4.1 Combinational logic 13
2.4.2 Level-sensitive sequential logic 13
2.4.3 Edge-sensitive sequential logic 14
2.4.4 Vector-sensitive sequential logic 14

3 Object Model . 15

3.1 Syntax conventions 15
3.2 Generic objects 16

3.2.1 CONSTANT statement 17
3.2.2 ALIAS statement 17
3.2.3 INCLUDE statement 17
3.2.4 CLASS statement 17
3.2.5 ATTRIBUTE statement 18
3.2.6 TEMPLATE statement 18
3.2.7 PROPERTY statement 19
3.2.8 GROUP statement 19
3.2.9 KEYWORD statement 19

3.3 Library-specific objects 20
3.4 Arithmetic models 21

viii Advanced Library Format (ALF) Reference Manual Version 2.0

3.5 Geometric models 22
3.6 Library-specific singular objects 22
3.7 Relationships between objects 23
3.8 INFORMATION container 26
3.9 Relations between objects 27

3.9.1 Keywords for referencing objects used as annotation 28
3.9.2 Incremental definitions for VECTOR 29
3.9.3 Other incremental definitions 29

4 Library Organization . 31

4.1 Scoping rules 31
4.2 Use of multiple files 32

5 Functional Modeling . 33

5.1 Combinational functions 33
5.1.1 Combinational logic 33
5.1.2 Boolean operators on scalars 33
5.1.3 Boolean operators on words 34
5.1.4 Operator priorities 35
5.1.5 Datatype mapping 36
5.1.6 Rules for combinational functions 37
5.1.7 Concurrency in combinational functions 38

5.2 Sequential functions 39
5.2.1 Level-sensitive sequential logic 39
5.2.2 Edge-sensitive sequential logic 39
5.2.3 Unary operators for vector expressions 41
5.2.4 Basic rules for sequential functions 43
5.2.5 Concurrency in sequential functions 45
5.2.6 Initial values for logic variables 47

5.3 Higher-order sequential functions 48
5.3.1 Vector-sensitive sequential logic 48
5.3.2 Canonical binary operators for vector expressions 49
5.3.3 Complex binary operators for vector expressions 50
5.3.4 Operators for conditional vector expressions 53
5.3.5 Operators for sequential logic 54
5.3.6 Operator priorities 54
5.3.7 Using PINs in VECTORs 54

5.4 Modeling with vector expressions 55
5.4.1 Event reports 56
5.4.2 Event sequences 57
5.4.3 Scope and content of event sequences 58

Version 2.0 Advanced Library Format (ALF) Reference Manual ix

5.4.4 Alternative event sequences 60
5.4.5 Symbolic edge operators 61
5.4.6 Non-events 62
5.4.7 Compact and verbose event sequences 63
5.4.8 Unspecified simultaneous events within scope 64
5.4.9 Simultaneous event sequences 66
5.4.10 Implicit local variables 68
5.4.11 Conditional event sequences 69
5.4.12 Alternative conditional event sequences 71
5.4.13 Change of scope within a vector expression 72
5.4.14 Sequences of conditional event sequences 76
5.4.15 Incompletely specified event sequences 78
5.4.16 How to determine well-specified vector expressions 79

5.5 Variable declarations 80
5.5.1 BEHAVIOR 81
5.5.2 STATETABLE 81
5.5.3 Multi-dimensional variables 83
5.5.4 ROM initialization 84

5.6 Predefined models 85
5.6.1 Usage of PRIMITIVEs 85
5.6.2 Concept of user-defined and predefined primitives 85
5.6.3 Predefined combinational primitives 87
5.6.4 Predefined tristate primitives 91
5.6.5 Predefined multiplexor 93
5.6.6 Predefined flip-flop 94
5.6.7 Predefined latch 95
5.6.8 Parameterizeable cells 97

6 Modeling for Synthesis and Test . 101

6.1 Annotations and attributes for a CELL 101
6.1.1 CELLTYPE annotation 101
6.1.2 ATTRIBUTE within a CELL object 101
6.1.3 SWAP_CLASS annotation 103
6.1.4 RESTRICT_CLASS annotation 103
6.1.5 Independent SWAP_CLASS and RESTRICT CLASS 104
6.1.6 SWAP_CLASS with inherited RESTRICT_CLASS 105
6.1.7 SCAN_TYPE annotation 106
6.1.8 SCAN_USAGE annotation 106
6.1.9 BUFFERTYPE annotation 107
6.1.10 DRIVERTYPE annotation 107

x Advanced Library Format (ALF) Reference Manual Version 2.0

6.1.11 PARALLEL_DRIVE annotation 107
6.2 NON_SCAN_CELL statement 108
6.3 STRUCTURE statement 109
6.4 Annotations and attributes for a PIN 114

6.4.1 VIEW annotation 114
6.4.2 PINTYPE annotation 115
6.4.3 DIRECTION annotation 115
6.4.4 SIGNALTYPE annotation 116
6.4.5 ACTION annotation 120
6.4.6 POLARITY annotation 121
6.4.7 DATATYPE annotation 122
6.4.8 INITIAL_VALUE annotation 122
6.4.9 SCAN_POSITION annotation 122
6.4.10 STUCK annotation 122
6.4.11 SUPPLYTYPE 123
6.4.12 SIGNAL_CLASS 123
6.4.13 SUPPLY_CLASS 124
6.4.14 Driver CELL and PIN specification 125
6.4.15 DRIVETYPE annotation 125
6.4.16 SCOPE annotation 126
6.4.17 PULL annotation 126
6.4.18 ATTRIBUTE for PIN objects 126

6.5 Definitions for bus pins 127
6.5.1 RANGE for bus pins 127
6.5.2 Scalar pins inside a bus 128
6.5.3 PIN_GROUP statement 129

6.6 Annotations for CLASS and VECTOR 130
6.6.1 PURPOSE annotation 130
6.6.2 OPERATION annotation 131
6.6.3 LABEL annotation 133
6.6.4 EXISTENCE_CONDITION annotation 133
6.6.5 EXISTENCE_CLASS annotation 133
6.6.6 CHARACTERIZATION_CONDITION annotation 134
6.6.7 CHARACTERIZATION_VECTOR annotation 134
6.6.8 CHARACTERIZATION_CLASS annotation 135

6.7 ILLEGAL statement for VECTOR 135
6.8 TEST statement 136
6.9 Physical bitmap for memory BIST 136

6.9.1 Definition of concepts 136
6.9.2 Definitions of pin ATTRIBUTE values for memory BIST 138

Version 2.0 Advanced Library Format (ALF) Reference Manual xi

6.9.3 Explanatory example 138

7 General Rules for Arithmetic Models . 143

7.1 Principles of arithmetic models 143
7.1.1 Global definitions for arithmetic models 143
7.1.2 Trivial arithmetic model 143
7.1.3 Arithmetic model using EQUATION 144
7.1.4 Arithmetic model using TABLE 144
7.1.5 Complex arithmetic model 145
7.1.6 Containers for arithmetic models and submodels 146

7.2 Arithmetic expressions 146
7.2.1 Syntax of arithmetic expressions 146
7.2.2 Arithmetic operators 147
7.2.3 Operator priorities 148

7.3 Construction of arithmetic models 148
7.4 Annotations for arithmetic models 150

7.4.1 DEFAULT annotation 150
7.4.2 UNIT annotation 150
7.4.3 CALCULATION annotation 151
7.4.4 INTERPOLATION annotation 152

7.5 Containers for arithmetic models 155
7.6 Arithmetic submodels 156

7.6.1 Semantics of MIN / TYP / MAX 157
7.6.2 Semantics of DEFAULT 158

8 Electrical Performance Modeling . 161

8.1 Overview of modeling keywords 161
8.1.1 Timing models 161
8.1.2 Analog models 163
8.1.3 Supplementary models 164

8.2 Auxiliary statements for timing models 165
8.2.1 THRESHOLD definition 165
8.2.2 FROM and TO container 166
8.2.3 PIN annotation 166
8.2.4 EDGE_NUMBER annotation 166
8.2.5 Context of THRESHOLD definitions 169

8.3 Specification of timing models 171
8.3.1 Template for timing measurements / constraints 171
8.3.2 Partially defined timing measurements and constraints 173
8.3.3 Template for same-pin timing measurements / constraints 173
8.3.4 Absolute and incremental evaluation of timing models 174

xii Advanced Library Format (ALF) Reference Manual Version 2.0

8.3.5 RISE and FALL submodels 175
8.3.6 TIME 176
8.3.7 DELAY 176
8.3.8 RETAIN 176
8.3.9 SLEWRATE 177
8.3.10 SETUP 177
8.3.11 HOLD 177
8.3.12 NOCHANGE 178
8.3.13 RECOVERY 178
8.3.14 REMOVAL 178
8.3.15 SKEW between two signals 179
8.3.16 SKEW between multiple signals 179
8.3.17 PULSEWIDTH 180
8.3.18 PERIOD 180
8.3.19 JITTER 180

8.4 VIOLATION container 180
8.5 EARLY and LATE container 181
8.6 Environmental dependency for electrical data 181

8.6.1 PROCESS 182
8.6.2 DERATE_CASE 182
8.6.3 Lookup table without interpolation 182
8.6.4 Lookup table for process- or derating-case coefficients 183
8.6.5 TEMPERATURE 183

8.7 PIN-related arithmetic models for electrical data 183
8.7.1 Principles 183
8.7.2 CAPACITANCE, RESISTANCE, and INDUCTANCE 184
8.7.3 VOLTAGE and CURRENT 184
8.7.4 PIN-related timing models 184
8.7.5 Submodels for RISE, FALL, HIGH, and LOW 184
8.7.6 Context-specific semantics 185

8.8 Other PIN-related arithmetic models 187
8.8.1 DRIVE_STRENGTH 187
8.8.2 SWITCHING_BITS 188

8.9 Annotations for arithmetic models 188
8.9.1 MEASUREMENT annotation 189
8.9.2 TIME and FREQUENCY annotation 189
8.9.3 TIME to peak measurement 190
8.9.4 Rules for combinations of annotations 192

8.10 Waveform description 192
8.10.1 Principles 192

Version 2.0 Advanced Library Format (ALF) Reference Manual xiii

8.10.2 Annotations within a waveform 194
8.11 Arithmetic models for power calculation 194

8.11.1 Principles 194
8.11.2 POWER and ENERGY 195

8.12 Arithmetic models for hot electron calculation 196
8.12.1 Principles 196
8.12.2 FLUX and FLUENCE 196

8.13 Reliability calculation 197
8.13.1 TIME within the LIMIT construct 197
8.13.2 FREQUENCY within a LIMIT construct 198
8.13.3 Global LIMIT specifications 199
8.13.4 LIMIT and model specification in the same context 199
8.13.5 Model and argument specification in the same context 201

8.14 Noise calculation 201
8.14.1 NOISE_MARGIN definition 202
8.14.2 Representation of noise in a VECTOR 203
8.14.3 Context of NOISE_MARGIN 204
8.14.4 Noise propagation 206
8.14.5 Noise rejection 208

8.15 Interconnect parasitics and analysis 209
8.15.1 Principles of the WIRE statement 209
8.15.2 Statistical wireload models 210
8.15.3 Boundary parasitics 211
8.15.4 NODE declaration 213
8.15.5 Interconnect delay and noise calculation 216
8.15.6 SELECT_CLASS annotation for WIRE statement 217

9 Physical Modeling . 219

9.1 Overview 219
9.2 Arithmetic models in the context of layout 220
9.3 Statements for geometric transformation 223

9.3.1 SHIFT statement 223
9.3.2 ROTATE statement 223
9.3.3 FLIP statement 224
9.3.4 REPEAT statement 224
9.3.5 Summary of geometric transformations 225

9.4 ARTWORK statement 226
9.5 LAYER statement 227

9.5.1 Definition 227
9.5.2 PURPOSE annotation 228

xiv Advanced Library Format (ALF) Reference Manual Version 2.0

9.5.3 PITCH annotation 229
9.5.4 PREFERENCE annotation 229
9.5.5 Example 229

9.6 Geometric model statement 230
9.6.1 Definition 231
9.6.2 Predefined geometric models using TEMPLATE 233

9.7 PATTERN statement 235
9.7.1 Definition 235
9.7.2 SHAPE annotation 235
9.7.3 LAYER annotation 236
9.7.4 EXTENSION annotation 236
9.7.5 VERTEX annotation 236
9.7.6 PATTERN with geometric model 237
9.7.7 Example 237

9.8 VIA statement 237
9.8.1 Definition 237
9.8.2 USAGE annotation 238
9.8.3 Example 239
9.8.4 VIA reference 240

9.9 BLOCKAGE statement 240
9.9.1 Definition 240
9.9.2 Example 241

9.10 PORT statement 241
9.10.1 Definition 241
9.10.2 VIA reference 242
9.10.3 CONNECTIVITY rules for PORT and PIN 242
9.10.4 Reference of a declared PORT in a PIN annotation 243
9.10.5 VIEW annotation 244
9.10.6 LAYER annotation 244
9.10.7 ROUTING_TYPE 244

9.11 RULE statement 244
9.11.1 Definition 244
9.11.2 Width-dependent spacing 245
9.11.3 End-of-line rule 246
9.11.4 Redundant vias 247
9.11.5 Extraction rules 248
9.11.6 RULES within BLOCKAGE or PORT 248
9.11.7 VIA reference 249

9.12 SITE statement 249
9.12.1 Definition 249

Version 2.0 Advanced Library Format (ALF) Reference Manual xv

9.12.2 ORIENTATION_CLASS and SYMMETRY_CLASS 249
9.12.3 Example 250

9.13 ANTENNA statement 251
9.13.1 Definition 251
9.13.2 Layer-specific antenna rules 252
9.13.3 All-layer antenna rules 253
9.13.4 Cumulative antenna rules 254
9.13.5 Illustration 255

9.14 ARRAY Statement 256
9.14.1 Definition 256
9.14.2 PURPOSE annotation 256
9.14.3 Examples 257

9.15 CONNECTIVITY statement 258
9.15.1 Definition 258
9.15.2 CONNECT_RULE annotation 259
9.15.3 CONNECTIVITY modeled with BETWEEN statement 259
9.15.4 CONNECTIVITY modeled as lookup TABLE 260

9.16 Physical annotations for CELL 262
9.16.1 PLACEMENT_TYPE annotation 262
9.16.2 Reference of a SITE by a CELL 262

9.17 Physical annotations for PIN 263
9.17.1 CONNECT_CLASS annotation 263
9.17.2 SIDE annotation 263
9.17.3 ROW and COLUMN annotation 263
9.17.4 ROUTING_TYPE annotation 264

9.18 Physical annotations for arithmetic models 264
9.18.1 BETWEEN statement within DISTANCE, LENGTH 264
9.18.2 MEASUREMENT annotation for DISTANCE 265
9.18.3 REFERENCE annotation for DISTANCE 265
9.18.4 Reference to ANTENNA 266
9.18.5 Reference to PATTERN 267

10 Lexical Rules . 269

10.1 Cross-reference of lexical tokens 269
10.2 Characters 269

10.2.1 Character set 269
10.2.2 Whitespace characters 270
10.2.3 Reserved and non-reserved characters 270

10.3 Lexical tokens 271
10.3.1 Delimiters 271

xvi Advanced Library Format (ALF) Reference Manual Version 2.0

10.3.2 Comments 271
10.3.3 Numbers 272
10.3.4 Bit literals 272
10.3.5 Based literals 273
10.3.6 Edge literals 274
10.3.7 Quoted strings 274
10.3.8 Identifiers 275
10.3.9 Hierarchical identifier 276

10.4 Keywords 276
10.4.1 Keywords for objects 277
10.4.2 Keywords for operators 277
10.4.3 Context-sensitive keywords 277

10.5 Rules against parser ambiguity 277

11 Syntax Rules . 279

11.1 Cross-reference of BNF items 279
11.2 Assignments 284
11.3 Expressions 285
11.4 Instantiations 286
11.5 Literals 287
11.6 Operators 289
11.7 Auxiliary objects 290
11.8 Generic objects 291
11.9 CELL 293
11.10 LIBRARY 293
11.11 PIN 294
11.12 PRIMITIVE 295
11.13 SUBLIBRARY 295
11.14 VECTOR 295
11.15 WIRE 296
11.16 Arithmetic model 296
11.17 FUNCTION 298
11.18 TEST 299
11.19 Geometric Model 299
11.20 ARTWORK 299
11.21 LAYER 300
11.22 PATTERN 300
11.23 VIA 300
11.24 BLOCKAGE 301
11.25 PORT 301

Version 2.0 Advanced Library Format (ALF) Reference Manual xvii

11.26 RULE 301
11.27 SITE 301
11.28 ANTENNA 301
11.29 ARRAY 302
11.30 Connectivity 302

A Sample Applications . 303

B ALF/SDF Cross Reference. 355

C Phased-out Items. 373

xviii Advanced Library Format (ALF) Reference Manual Version 2.0

Version 2.0 Advanced Library Format (ALF) Reference Manual 1

Section 1

Introduction

1.1 Motivation

Designing digital integrated circuits has become an increasingly complex process. More
functions get integrated into a single chip, yet the cycle time of electronic products and
technologies has become considerably shorter. It would be impossible to successfully design a
chip of today’s complexity within the time-to-market constraints without extensive use of EDA
tools, which have become an integral part of the complex design flow. The efficiency of the
tools and the reliability of the results for simulation, synthesis, timing and power analysis,
layout and extraction rely significantly on the quality of available information about the cells
in the technology library.

New challenges in the design flow, especially signal integrity, arise as the traditional tools and
design flows hit their limits of capability in processing complex designs. As a result, new tools
emerge, and libraries are needed in order to make them work properly. Library creation
(generation) itself has become a very complex process and the choice or rejection of a
particular application (tool) is often constrained or dictated by the availability of a library for
that application. The library constraint can prevent designers from choosing an application
program that is best suited for meeting specific design challenges. Similar considerations can
inhibit the development and productization of such an application program altogether. As a
result, competitiveness and innovation of the whole electronic industry can stagnate.

In order to remove these constraints, an industry-wide standard for library formats, the
Advanced Library Format (ALF), is proposed. It enables the EDA industry to develop
innovative products and ASIC designers to choose the best product without library format
constraints. Since ASIC vendors have to support a multitude of libraries according to the
preferences of their customers, a common standard library is expected to significantly reduce
the library development cycle and facilitate the deployment of new technologies sooner.

1.2 Goals

The basic goals of the proposed library standard are:

• simplicity - library creation process needs to be easy to understand and not become a
cumbersome process only known by a few experts.

• generality - tools of any level of sophistication need to be able to retrieve necessary
information from the library.

• expandability - this needs to be done for early adoption and future enhancement
possibilities.

2 Advanced Library Format (ALF) Reference Manual Version 2.0

Introduction Target applications

• flexibility - the choice of keeping information in one library or in separate libraries
needs to be in the hand of the user not the standard.

• efficiency- the complexity of the design information requires the process of retrieving
information from the library does not become a bottleneck. The right trade-off between
compactness and verbosity needs to be established.

• ease of implementation - backward compatibility with existing libraries shall be
provided and translation to the new library needs to be an easy task.

• conciseness - unambiguous description and accuracy of contents shall be detailed.

• acceptance - there needs to be a preference for the new standard library over existing
libraries.

1.3 Target applications

The fundamental purpose of ALF is to serve as the primary database for all third-party
applications of ASIC cells. In other words, it is an elaborate and formalized version of the
databook.

In the early days, databooks provided all the information a designer needed for choosing a cell
in a particular application: Logic symbols, schematics, and a truth table provided the functional
specification for simple cells. For more complex blocks, the name of the cell (e.g.,
asynchronous ROM, synchronous 2-port RAM, or 4-bit synchronous up-down counters) and
timing diagrams conveyed the functional information. The performance characteristics of each
cell were provided by the loading characteristics, delay and timing constraints, and some
information about DC and AC power consumption. The designers chose the cell type according
to the functionality, estimated the performance of the design, and eventually re-implemented it
in an optimized way as necessary to meet performance constraints.

Design automation enabled tremendous progress in efficiency, productivity, and the ability to
deal with complexity, yet it did not change the fundamental requirements for ASIC design.
Therefore, ALF needs to provide models withfunctional information andperformance
information, primarily including timing and power. Signal integrity characteristics, such as
noise margin can also be included under performance category. Such information is typically
found in any databook for analog cells. At deep sub-micron levels, digital cells behave similar
to analog cells as electronic devices bound by physical laws and therefore are not infinitely
robust against noise.

Table 1-1 shows a list of applications used in ASIC design flow and their relationship to ALF.
The boundary between supported and not supported applications can be defined by thephysical
information provided by ALF. Information needed for area and performance estimation and
optimization, notably by synthesis and design planning tools, is provided by ALF. On the other
hand, layout information is considered to be available in complementary libraries such as LEF.

Note: ALF coverslibrary data, whereasdesign data needs to be provided in other formats.

Version 2.0 Advanced Library Format (ALF) Reference Manual 3

Target applications Introduction

Historically, a functional model was virtually identical to a simulation model. A functional
gate-level model was used by the proprietary simulator of the ASIC company and it was easy
to lump it together with a rudimentary timing model. Timing analysis was done through
dynamic functional simulation. However, with the advanced level of sophistication of both
functional simulation and timing analysis, this is no longer the case. The capabilities of the
functional simulators have evolved far beyond the gate-level and timing analysis has been
decoupled from simulation.

RTL design planning is an emerging application type aiming to produce "virtual prototypes"
of complex for system-on-chip (SOC) designs. RTL design planning is thought of as a
combination of some or all of RTL floorplanning and global routing, timing budgeting, power
estimation, and functional verification, as well as analysis of signal integrity, EMI, and thermal
effects. The library components for RTL design planning range from simple logic gates to
parameterizeable macro-functions, such as memories, logic building blocks, and cores.

From the point of view of library requirements, applications involved in RTL design planning
need functional, performance, and physical data. The functional aspect of design planning
includes RTL simulation and formal verification. The performance aspect covers timing and
power as primary issues, while signal integrity, EMI, and thermal effects are emerging issues.
The physical aspect is floorplanning. As stated previously, the functional and performance
models of components can be described in ALF.

ALF also covers the requirements for physical data, including layout. This is important for the
new generation of tools, where logical design merges with physical design. Also, all design
steps involve optimization for timing, power, signal integrity, i.e. electrical correctness and
physical correctness. EDA tools must be knowledgeable about an increasing number of design
aspects. For example, a place and route tool must consider congestion as well as timing,
crosstalk, electromigration, antenna rules etc. Therefore it is a logical step to combine the
functional, electrical and physical models needed by such a tool in a unified library.

Figure 1-1 shows how ALF provides information to various design tools.

Table 1-1 Target applications and models supported by ALF

Application Functional model Performance model Physical model

simulation derived from ALF N/A N/A

synthesis supported by ALF supported by ALF supported by ALF

design for test supported by ALF N/A N/A

design planning supported by ALF supported by ALF supported by ALF

timing analysis N/A supported by ALF N/A

power analysis N/A supported by ALF N/A

signal integrity N/A supported by ALF N/A

layout N/A N/A supported by ALF

4 Advanced Library Format (ALF) Reference Manual Version 2.0

Introduction Target applications

Figure 1-1: ALF and its target applications

The worldwide accepted standards for hardware description and simulation are VHDL and
Verilog. Both languages have a wide scope of describing the design at various levels of
abstraction: behavioral, functional, synthesizable RTL, and gate level. There are many ways to
describe gate-level functions. The existing simulators are implemented in such a way that some
constructs are more efficient for simulation run time than others. Also, how the simulation
model handles timing constraints is a trade-off between efficiency and accuracy. Developing
efficient simulation models which are functionally reliable (i.e., pessimistic for detecting
timing constraint violation) is a major development effort for ASIC companies.

Cell characterization tool

ALF

universal functional model

Simulation models

Test vector generator Model generator

Verilog & VHDL
Test vectors

 Verilog & VHDL

Simulators
Verilog & VHDL

Synthesis tool

universal universal

annotations
for synthesis

annotations
for scan

wireload

timing model power model

 Scan insertion tool

Vendor-specific or commercial EDA tool

Commercial EDA tool

models

Timing
analysis tool

Power
analysis tool

Signal integrity
analysis tool

universal
design limits

universal signal
integrity model

Place & Route
tool

layout
models

Version 2.0 Advanced Library Format (ALF) Reference Manual 5

Conventions Introduction

Hence, the use of a particular VHDL or Verilog simulation model as primary source of
functional description of a cell is not very practical. Moreover, the existence of two simulation
standards makes it difficult to pick one as a reference with respect to the other. The purpose of
a generic functional model is to serve as an absolute reference for all applications that require
functional information. Applications such as synthesis, which need functional information
merely for recognizing and choosing cell types, can use the generic functional model directly.
For other applications, such as simulation and test, the generic functional model enables
automated simulation model and test vector generation and verification, which has a
tremendous benefit for the ASIC industry.

With progress of technology, the set of physical constraints under which the design functions
have increased dramatically, along with the cost constraints. Therefore, the requirements for
detailed characterization and analysis of those constraints, especially timing and power in deep
submicron design, are now much more sophisticated. Only a subset of the increasing amount
of characterization data appears in today’s databooks.

ALF provides a generic format for all type of characterization data, without restriction to state-
of-the art timing models. Power models are the most immediate extension and they have been
the starter and primary driver for ALF.

Detailed timing and power characterization needs to take into account themode of operation
of the ASIC cell, which is related to the functionality. ALF introduces the concept ofvector-
based modeling, which is a generalization and a superset of today’s timing and power modeling
approaches. All existing timing and power analysis applications can retrieve the necessary
model information from ALF.

1.4 Conventions

The syntax for description of lexical and syntax rules uses following conventions.

::= definition of a syntax rule

| alternative definition

[item] an optional item

[item1 | item2 | ...]
optional item with alternatives

{item} optional item that can be repeated

{item1 | item2 | ... }
optional items with alternatives which can be repeated

item item in boldface font is taken verbatim

item item in italic is for explanation purpose only

The syntax for explanation of semantics of expressions uses the following conventions.

=== left side and right side expressions are equivalent

<item> a placeholder for an item in regular syntax

6 Advanced Library Format (ALF) Reference Manual Version 2.0

Introduction Organization of this manual

1.5 Organization of this manual

This document presents the Advanced Library Format (ALF), a new standard library format
for ASIC cells, blocks and cores, containing power, timing, functional, and physical
information.

The first chapter defines the motivation and goals of ALF.

The second chapter describes the underlying modeling concepts: functional modeling, cell
characterization for timing and power, and additional modeling features for synthesis and test.

The third chapter defines the object model.

The fourth chapter details the library organization within ALF.

The fifth chapter defines the formal constructs for functional modelling.

The sixth chapter defines supplementary constructs for synthesis and design for test.

The seventh chapter defines the general rules for arithmetic models.

The eight chapter defines electrical performance modeling, i.e., timing, power, signal integrity

The ninth chapter defines modeling for physical design.

The tenth chapter specifies the lexical rules.

The eleventh chapter specifies the syntactical rules.

The first appendix provides sample applications.

The second appendix provides an ALF/SDF cross-reference.

The third appendix contains old features which are phased out.

Version 2.0 Advanced Library Format (ALF) Reference Manual 7

Section 2

Characterization and Modeling

This chapter elaborates on the basics of cell modeling and characterization, which is the
primary source of library information.

2.1 Basic concepts

The functional models within an ASIC library describe functions and algorithms of hardware
components, as opposed to synthesizeable functions or algorithms. The functional modeling
language for the ASIC library is designed to make the description of existing hardware easy
and efficient. The scope here is different from a hardware description language (HDL) or a
programming language designed to specify functionality without other aspects of hardware
implementation.

Functional description provides boolean functions or truth tables, including state variables for
sequential logic. Boolean and arithmetic operators for scalars and vectors are also provided.
Combinational and sequential logic cells, macrocells (e.g., adders, multipliers, and
comparators), and atomic megacells (e.g., memories) can be modeled with these capabilities.

Vectors describe the stimuli for characterization. This encompasses both the concept of timing
arcs and logical conditions. An exhaustive set of vectors can be generated from functional
information, although the complexity of the exhaustive set precludes it from practical usage.
The characterizer makes a choice of the relevant subset for characterization.

Power characterization is a superset of timing characterization using the same set and range of
characterization variables: load, input slew rate, skew between multiple switching inputs,
voltage, and temperature. Characterization measurements, such as delay, output slew rate,
average current in time window, bounds of allowed skew for timing constraints, etc. can be
described as functions of the characterization variables, by using equations or lookup tables.
More complicated calculation algorithms cannot be described explicitly in the library, but can
be referenced using templates.

A core is not an atomic megacell, since it can be split up into smaller components. Templates
provide the capability of defining and reusing blocks consisting of atomic constructs or of other
blocks. Thus a hierarchical description of the complete core can be created in a simple and
efficient way.

Abstraction is required for the characterization of megacells: vectors describe events on buses
rather than on scalar pins; number and range of switching pins within a bus become additional
characterization variables. Characterization measurements are expandable and can be
extrapolated from scalar pin to bus.

8 Advanced Library Format (ALF) Reference Manual Version 2.0

Characterization and Modeling Performance modeling for characterization

2.2 Performance modeling for characterization

This section highlights modeling for timing, power, and signal integrity.

2.2.1 Modeling for timing

The timing models of cells consist of two types:delay modelsfor combinational and sequential
cells, andtiming constraint modelsfor sequential cells. Both types can be described by timing
arcs. A timing arc is a sequence of two events that can be described by a vector expression
“evente1 is followed by evente2”.

For example, a particular input to output delay of an inverting logic cell is identified by the
following timing arc:

01 A -> 10 Z

which reads “rising edge on inputA is followed by falling edge on outputZ”.

A setup constraint between data and clock input of a positive edge triggered flip-flop is
identified by the following timing arc:

01 D -> 01 CP

which reads “rising edge on inputD is followed by rising edge on inputCP”.

A crucial part in ASIC cell development is to characterize a model that describes the behavior
of each timing arc with sufficient accuracy in order to guarantee correct functional behavior
under all required operational conditions.

A delay model usually needs two output variables:

• the intrinsic delay, measured between a well-defined threshold value of the input signal
and a well-defined threshold value of the output signal, and

• the transitiondelay, measured between two well-defined threshold values of the output
signal. Hence the transition delay is a fraction of the total output transition time, also
calledslew rate or edge rate.

A timing constraint model needs one output variable:

A timing constraint is theminimum or maximum allowed elapsed time between two sig-
nals, measured between well-defined threshold values between those two signals. This
definition is similar to theintrinsic delay, except there is no input-output relationship
between the two signals. Both signals are usually inputs to the cell.

The actual values of transition times and load capacitances seen by each pin of a cell instance
are calculated by a delay predictor. Delay prediction can be separated into two tasks:

1. Acquisition of information on pin capacitance, then extracting or estimating layout
parasitics for each net and fitting those into the load characterization model (lumped C,
R, etc.).

2. Calculation of internal signal transition times based on the extracted internal load and
on load and transition times at the boundaries of the system.

Version 2.0 Advanced Library Format (ALF) Reference Manual 9

Performance modeling for characterization Characterization and Modeling

Lookup tables provide a general modeling capability without precluding any level of accuracy.

Equations can feature polynomial expressions, exponentials and logarithms, and arbitrary
transcendent functions. For practical purpose, only the four basic arithmetic operations (+, - ,
* , /) and exponentiation and logarithm are supported for standard models.

Some models can require transcendent functions or complicated algorithms that cannot be
expressed directly in equations. Other models and algorithms need protection from being
visible. In order to address needs that go beyond standard modeling features, a template-
reference scheme is used: any model which is not in table or equation format needs to be a
pointer to a customer-defined model, which can reside outside the library. All these are defined
further in Table 2-1.

Regardless of which type of model is chosen, there is a need to explicitly specify the meaning
of the variables and the units. The specification of variables and units can be made outside the
model and independent of the chosen model.

Since the set of variables shall not be restrictive in order to allow any enhancements (e.g., move
from a lumped capacitance to an RC model),context-sensitive keywords are proposed (e.g.,
load andslewrate). The application parser need not know the meaning of the context-
sensitive keyword, except it is used as a variable in a model and has some unit attached to it,
e.g., picofarad, nanosecond, etc.

2.2.2 Modeling for power

A power model is an extension of the delay model for each timing arc using a third variable:

thescaled average current, measured by integrating and scaling the total transient current
through the power supply of the cell for the specific timing arc or vector. The current mea-
surement can start anytime before the first event of the vector starts and can end anytime
after all transients of the vector have stabilized.

Variants of this model are scaled average power and energy, which are obtained by simple
scaling of average current measurements:

power = current * Vdd
energy = current * Vdd * integration time

Table 2-1 Modeling choices for cell characterization library

Type of model Features Purpose

table discrete points, multidimensional direct storage of characterization data,
direct accuracy control through mesh
granularity

equation expressions with +, -, *, /, exponent,
logarithm

analytical model, well-suited for optimi-
zation purpose, more compact than table,
also usable for arithmetic operations on
tabulated data (scale, add, subtract ..)

reference pointer to any type of model reuse of predefined model (which can be
table or equation), protection of user-
defined model

10 Advanced Library Format (ALF) Reference Manual Version 2.0

Characterization and Modeling Performance modeling for characterization

The set of vectors causing power consumption within a cell is a superset of those vectors
causing the cell output to switch. While only the vectors with switching output are needed for
delay characterization, more vectors are needed for accurate power characterization.

For example, consider a flip-flop, which consumes power at every edge of the clock, even if
the output does not switch. The vectors for delay and power characterization can be described
as follows:

01 CP -> 01 Q
01 CP -> 10 Q

The vectors for power characterization with only clock-switching can be described as follows:

01 CP && Q==D
10 CP && Q==D

TheD input having the same value as theQ output is a necessary and sufficient condition that
the output shall not switch at the rising edge ofCPand that the value transferred to the master
latch at the falling edge ofCP is the same as already stored. Hence, those two vectors capture
the actual power dissipation only within the clock buffers. Additional power vectors can be
defined to capture the power dissipation within the data buffers and the master latch etc.

For a 2-input AND gate with input pinsA, B and output pinZ, aglitch is observed if the event
01 A is detected and then the event10 B is detected before the input-to-output delay elapses.
It is possible to describe the glitch by a higher-order vector.

In dynamic simulation withtransport delay mode, the glitch would appear as follows:

01 A -> 10 B -> 01 Z -> 10 Z

Simulation featuringtransport delay mode with invalid-value-detectionwould exhibit the
glitch as follows:1

01 A -> 10 B -> 'b0'bX Z -> 'bX'b0 Z

Simulation withinertial delay mode would suppress the output transitions:

(01 A -> 10 B) && !Z

The last expression can be used for each of the three simulation modes, since!Z is alwaysTrue
from beginning to end of the sequence01 A -> 10 B , in particular at the time when the
sequence 01 A -> 10 B is detected.

Each way of expressing vectors can be derived from the cell functionality. The different
examples for delay vectors (i.e., timing arcs), power vectors, and glitch vectors emphasize the
rich potential of modeling capabilities using vector expressions.

State-dependent static power is also within the scope of vector-based power models. Static
power consumption is activated by a simulation model in the same way as level-sensitive logic
in functional modeling by a boolean expression, whereastransient power consumption is
activated similar to edge-sensitive logic by a vector expression.

The advantages of adding power models within each delay vector and providing extra power
vectors are the following:

1. Use based-edge literals to avoid parser ambiguity.

Version 2.0 Advanced Library Format (ALF) Reference Manual 11

Performance modeling for characterization Characterization and Modeling

• straightforward extension of delay characterization

• capable of yielding the most detailed and accurate model on gate-level

• each vector defines a comprehensive stimulus for power measurements

More abstract vector expressions are provided for power modeling of complex blocks, where
simplification is needed in order to deal with the complexity of characterization vectors.

2.2.3 Modeling for signal integrity

The concept of vector-based cell characterization with multiple variables also accommodates
the requirements for signal integrity modeling. Although signal integrity is closely related to
interconnect parasitics, i.e., extracteddesigninformation, data in the celllibrary needs to exist
in order to support signal integrity analysis.

• Crosstalk analysis needs characterization ofdriver resistanceon output pins andnoise
margin on input pins.

• IR drop and electromigration analysis on power supply lines needs characterization of
average currents for power analysis,RMS currents, andcurrent waveforms.

• Electromigration (EM) analysis within cells needs characterization ofcurrent limits. In
a direct evaluation approach, the current limits are checked against the actual currents.
The latter data comes from the characterization for power and IR drop. In an indirect
evaluation approach, the current limits can be expressed asfrequency-dependent load
limits and/orslewrate limits.

• Hot electron (HE) analysis within cells needs characterization offlux (charge density)
or fluence (accumulated charge density over time) and its respective limits for
performance degradation. In a direct evaluation approach, the flux or fluence limits are
checked against the actual flux or fluence, respectively. In an indirect evaluation
approach, the limits of performance degradation due to fluence can be expressed as
frequency-dependent load limits and/orslewrate limits, in the same way as for
electromigration.

The characterization vector set for driver resistance is a subset of delay characterization
vectors. In buffered cells, the driving input does not matter, since the driver resistance seen at
the output is the same. However, there is always a different driver resistance for rise and fall,
which is also dependent on process, voltage, and temperature.

Noise margin characterization is especially important for control and data pins of sequential
cells. The set of characterization vectors is complementary to the timing constraint
characterization vectors. For instance, noise margin on a clock pin is complementary to the
pulsewidth constraint. If pulsewidth corresponds to the smallest possible signal causing avalid
functional reaction, noise margin corresponds to the largest possible signal causingno
functional reaction.

The characterization vector set for IR drop and EM on power supply lines is essentially the
same as for power analysis, only the set of data per vector is richer. IR drop analysis can use

12 Advanced Library Format (ALF) Reference Manual Version 2.0

Characterization and Modeling Physical modeling for synthesis and test

average currents, peak currents, or current waveforms. EM analysis can use average, peak,
RMS, or a combination of the above.

The characterization vector set for EM and HE effect occurring within cells is very similar to
the characterization vector set for power analysis, depending whether a direct or indirect
evaluation approach is used.

In summary, modeling for crosstalk is a natural extension of modeling for timing, whereas IR
drop and EM and HE modeling are natural extensions of modeling for power.

2.3 Physical modeling for synthesis and test

This section highlights cell and wire modeling.

2.3.1 Cell modeling

Physical modeling of cells requires annotating cell properties (e.g., area, height, width, and
aspect ratio). The set of annotated properties give an application, such as synthesis, a choice to
pick one cell from a set of functionally equivalent cells, if one property is more desirable than
another one under given synthesis goals and constraints.

Cell pins can also have annotated properties, such as pin capacitance, voltage swing, switching
threshold, etc.

Most of the requirements for the modeling of test are already fulfilled by the functional model.
Declaration of pins and their direction (input, output, or bidirectional) is already a generic
requirement for cell modeling.

Scan insertion tools require specific annotations about cell and pin properties relevant for scan
test. They also require reference to equivalent non-scan cells. An equivalent non-scan cell is a
scan cell where all scan-specific hardware (e.g., a multiplexor or scan clock) is removed.

The variables used in the functional model shall have their counterpart in the pin declaration.
Only primary input pins can be primary inputs of functions, while primary output pins, internal
pins, or virtual pins can be primary or intermediate outputs of functions. Furthermore, test
vectors for fault coverage can be derived from the functional model in a formal way.

The remainder of the modeling for test requirements can be covered by annotations of cell
properties and cell pin properties. For instance, a cell can be labeled as a scan flip-flop and a
pin can be labeled as scan input or mode select pin.

2.3.2 Wire modeling

The purpose ofwire modelingis to get good estimates ofparasitic resistanceandcapacitance
as a function offanout. These estimates are technology-specific and they depend on metal
layer, sheet resistance, self-capacitance per unit wirelength, fringe capacitance per unit
wirelength, and via resistance for wires routed through multiple layers.

The wires can be represented as a collection of models, in a similar way as cells. For example,

Version 2.0 Advanced Library Format (ALF) Reference Manual 13

Functional modeling Characterization and Modeling

// wire with fanout < 5 routed in metal 1, 2
WIRE small_wire {

ATTRIBUTE { metal1 metal2 }
LIMIT { FANOUT { MAX = 5; } }
/* fill in data */

}
// wire with 10 < fanout < 20 routed in metal 1, 2, 3, 4, 5
WIRE big_wire {

ATTRIBUTE { metal1 metal2 metal3 metal4 metal5 }
LIMIT { FANOUT { MIN = 10; MAX = 20; } }
/* fill in data */

}

From a modeling standpoint, no particular language is required for performance modeling of
wires that is different from performance modeling of cells. The fanout shall be an input variable
and the capacitance and resistance are output variables. The values can be expressed either in
tables or in equations. Usually first order equations (with slope and intercept) are used for wire
modeling.

2.4 Functional modeling

This section highlights the usage of combination and sequential logic.

2.4.1 Combinational logic

Combinational logic can be described by continuous assignments of boolean values (True or
False) to output variables as a function of boolean values of input variables. Such functions can
be expressed in either equation or table format.2

Consider an arbitrary continuous assignment:

z = f(a 1 ..,.. a n)

In a dynamic or simulation context, the left-hand side (LHS) variablez is evaluated whenever
there is a change in one of the right-hand side (RHS) variablesai. No storage of previous states
is needed for dynamic simulation of combinational logic.

2.4.2 Level-sensitive sequential logic

In sequential logic, an output variablezj can also be a function of itself, i.e., of its previous
state. The sequential assignment has the form

zj = f(a 1 ..,.. a n , z 1 ..,.. z m)

The RHS cannot be evaluated continuously, since a change in the LHS as a result of a RHS
evaluation shall trigger a new RHS evaluation repeatedly, unless the variables attain stable
values. Modeling capabilities of sequential logic with continuous assignments are restricted to
systems with oscillating or self-stabilizing behavior.

See Section 5.2.1 for more details.

2. This standard uses the existing boolean syntax notation described in the ANSI C standard.

14 Advanced Library Format (ALF) Reference Manual Version 2.0

Characterization and Modeling Functional modeling

2.4.3 Edge-sensitive sequential logic

In order to modeledge-sensitive sequential logic, the concept of logical transitions and logical
states are introduced here.

If the triggering functiong is sensitive to logical transitions rather than to logical states, the
functiong evaluates toTrueonly for an infinitely small time, exactly at the moment when the
transition happens. The sole purpose ofg is to trigger an assignment to the output variable
through evaluation of the functionf exactly at this time.

Edge-sensitive logic requires storage of the previous output state and the input state (to detect
a transition). In fact, all implementations of edge-triggered flip-flops require at least two
storage elements. For instance, the most popular flip-flop architecture features a master latch
driving a slave latch.

See Section 5.2.2 for more details.

2.4.4 Vector-sensitive sequential logic

In order to model generalized higher order sequential logic, the concept of vector expressions
is introduced, an extension of the boolean expressions.

A vector expression describes sequences of logical events or transitions in addition to static
logical states. A vector expression represents a description of a logical stimulus without
timescale. It describes the order of occurrence of events.

The -> operator (followed by) can be used to generally describe a sequence of events or a
vector. For example, consider the following vector expression:

01 A -> 01 B

which reads “rising edge onA is followed by rising edge onB”.

A vector expression is evaluated by an event sequence detection function. Like a single event
or a transition, this function evaluatesTrueonly at an infinitesimally short time when the event
sequence is detected.

See Section 5.3.1 for more details.

Version 2.0 Advanced Library Format (ALF) Reference Manual 15

Syntax conventions Object Model

Section 3

Object Model

This section discusses the object model used by ALF and provides the syntax rules for all
objects. The syntax rules are provided in standard BNF form.

A library consists of one or moreobjects. Each object is defined by a keyword and an optional
name for the object and an optionalvalue of the object.

A keyword defines the type of the object. Section 3.2 and Section 3.3 define various types of
objects used in ALF and related keywords.

An optionalidentifier(also calledname) following the keyword defines thename of the object.
This name shall be used while referencing an object inside other objects in the library. If an
object is not referenced by name, then the object need not be named.

A literal defines an optional value associated with the object. Anexpressioncan be used when
the value of the object cannot be expressed as a literal.

An object can contain one or more objects. The containing object is called ahierarchical
object. The contained objects are calledchildren objects. The children objects are defined and
referenced inside curly braces ({}) in the description of the hierarchical object. An object
without children is called anatomic object.

Forward referencingof objects is not allowed. Therefore, all objects shall be defined before
they can be instantiated. This allows library parsers to be one-pass parsers.

3.1 Syntax conventions

In order to make ALF easy to parse, the syntax conventions follow the rules defined in Section
1.4. These should also be followed for future extensions of the grammar.

The first token of the object is the object type identifier, followed by a name (mandatory or
optional, depending on object type), followed by (mandatory or optional)= and value
assignment, followed by (mandatory or optional) children objects enclosed by curly braces.
Objects with more than one token (i.e., name and/or value) and without children are terminated
with a; .

Examples:

1. Unnamed object without value assignment:

MY_OBJECT_TYPE

or

MY_OBJECT_TYPE {
//fill in children objects

}

16 Advanced Library Format (ALF) Reference Manual Version 2.0

Object Model Generic objects

2. Unnamed object with value assignment:

MY_OBJECT_TYPE = my_object_value;

or

MY_OBJECT_TYPE = my_object_value {
//fill in children objects

}

3. Named object without value assignment:

MY_OBJECT_TYPE my_object_name;

or

MY_OBJECT_TYPE my_object_name {
//fill in children objects

}

4. Named object with value assignment:

MY_OBJECT_TYPE my_object_name = my_object_value;

or

MY_OBJECT_TYPE my_object_name = my_object_value {
//fill in children objects

}

The objects in ALF can be divided into the following categories:generic objects, library-
specific objects, arithmetic models, geometric models, andlibrary-specific singular objects.

3.2 Generic objects

A generic object can appear at every level in the library within any scope. The semantics of a
generic object need to be understood by any ALF compiler if the generic object is within the
scope of application for that compiler.

The objects shown in Figure 3-1 shall be considered generic objects:

Version 2.0 Advanced Library Format (ALF) Reference Manual 17

Generic objects Object Model

Figure 3-1: Generic objects

3.2.1 CONSTANT statement

A CONSTANT object is a named object with value assignment and without children objects.
The value is a number.

Example:

CONSTANT vdd = 3.3;

3.2.2 ALIAS statement

An ALIAS object is a named object with value assignment and without children objects. The
value is a string.

Example:

ALIAS RAMPTIME = SLEWRATE;

3.2.3 INCLUDE statement

An INCLUDE object is a named object without value assignment and without children. The
name is a quoted string containing the name of a file to be included.

Example:

INCLUDE “primitives.alf”;

Since the file name is a quoted string, any special symbols (like~ or *) are allowed within the
filename. The interpretation of those (e.g., as a file search path) is up to the application.

3.2.4 CLASS statement

A CLASS object is a named object with optional value assignments and children objects. The
name can be used by other objects to reference the class object.

template

generic object

property
group

alias
constant

class
attribute

is a

include is a
is a

is a

is a

is a
is a

is a

keyword

is a

18 Advanced Library Format (ALF) Reference Manual Version 2.0

Object Model Generic objects

Example:

CLASS my_class { ... }
...
MY_OBJECT_TYPE my_object {

CLASS = my_class;
} // my_object belongs to my_class

3.2.5 ATTRIBUTE statement

An ATTRIBUTE object is an unnamed object without value, but containing children objects.
The attribute object shall be the child object of another object. The children of the attribute
object are unnamed objects that can have other unnamed objects as children objects. The
purpose of an attribute object is to provide free association of objects with attributes when there
is no special category available for the attributes.

Examples:

CELL rr_8x128 {
ATTRIBUTE {ROM ASYNCHRONOUS STATIC}

}

PIN my_pin {
ATTRIBUTE { SCHMITT }

}

3.2.6 TEMPLATE statement

A TEMPLATE object is a named object with one or more children objects. Any valid ALF
object can be a child object of a template object. Identifiers enclosed between< and> are
recognized asplaceholders. When a template object is used, each of its placeholders shall be
referenced by order or by explicit name association.

Example:

TEMPLATE std_table {
CAPACITANCE {PIN=<pin1>; UNIT=pF; TABLE {0.02 0.04 0.08 0.16}}
SLEWRATE {PIN=<pin2>; UNIT=ns; TABLE {0.1 0.3 0.9}}

}

An instantiation of the above template object with explicit reference to placeholders by name:

std_table{pin1=out; pin2=in;}

An instantiation of the above template object with implicit reference to placeholders by order:

std_table{out in}

If a symbol within a placeholder appears more than once in the template definition, the order
for implicit reference is defined by the first appearance of the symbol. Explicit referencing
improves the readability and is the recommended usage.

A template instantiation can appear at any place within a hierarchical object, as long as the
template object contains the structure of valid objects inside. Hierarchical templates contain
other template objects.

Version 2.0 Advanced Library Format (ALF) Reference Manual 19

Generic objects Object Model

3.2.7 PROPERTY statement

A PROPERTY object is a named or an unnamedannotation container. It can be used at any
level in the library. It is used for arbitrary parameter-value assignment.

Example:

PROPERTY items {
parameter1=value1;
parameter2=value2;

}

A PROPERTY statement can also contain assignments with multiple values.

property ::=

PROPERTY [identifier] { property_items }

property_items ::=
property_item { property_item }

property_item ::=
unnamed_assignment

| multi_value_assignment

Example:

PROPERTY {
my_param1 = value1;
my_param2 { val1 val2 val3 }
my_param3 = value4;

}

3.2.8 GROUP statement

A GROUP object is a set of elements with commonality between them. Thus, the common
characteristics can be defined once for the group instead of being repeated for each element.

Example:

GROUP time_measurements = {DELAY SLEWRATE SKEW JITTER}

The statement

time_measurements { UNIT = ns; }

replaces the following statements:

DELAY { UNIT = ns; }
SLEWRATE { UNIT = ns; }
SKEW { UNIT = ns; }
JITTER { UNIT = ns; }

3.2.9 KEYWORD statement

The ALF language allows the use of customized context-sensitive keywords for certain pur-
poses. While the semantics of these custom keywords can only be known by the user of such

20 Advanced Library Format (ALF) Reference Manual Version 2.0

Object Model Library-specific objects

keywords, every ALF parser must have the capability to check the correct syntax of objects
involving custom keywords. Therefore the declaration of custom keywords using the KEY-
WORD statement shall be mandatory.

Generic objects shall be augmented by using theKEYWORD statement. TheKEYWORD statement
shall be defined as follows:

keyword_declaration ::=

KEYWORD context_sensitive_keyword = syntax_item_ identifier ;

The followingsyntax_item_ identifiers , which are a subset of the objects defined in Sec-
tion 11.8 are legal:

syntax_item_ identifier ::=

annotation
| annotation_container
| arithmetic_model
| arithmetic_submodel
| arithmetic_model_container
| vector_assignment

Example:

KEYWORD my_arithmetic_model = arithmetic_model;
KEYWORD my_annotation_for_capacitance = annotation;
KEYWORD my_annotation_for_resistance = annotation;
my_arithmetic_model {

HEADER {
CAPACITANCE { my_annotation_for_capacitance = foo; }
RESITANCE { my_annotation_for_resistance = bar; }

}
EQUATION { 10*CAPACITANCE + 0.5*RESISTANCE }

}

It is illegal to redefine intrinsic ALF keywords.

Example:

KEYWORD vector = arithmetic_model; // THIS IS ILLEGAL!!!

3.3 Library-specific objects

The library-specific objects define their nature and their relationship to each other by
containment rules. For example, a library can contain a cell, but a cell can not contain a library.
However, both the library and the cell can contain any generic object. A generic object defined
at the library level is visible inside the scope of that library and its children objects. A generic
object defined at the cell level is visible inside the scope of that cell and its children objects.
Eventually the definition at the cell level overrides the definition at the library level. As a
general rule, a generic object defined at the level of a complex object is visible inside the scope
of that object and its children objects. Redefinitions within a child object override the
definitions within a parent object.

Version 2.0 Advanced Library Format (ALF) Reference Manual 21

Arithmetic models Object Model

Figure 3-2: Library-specific objects

Multiple named library-specific objects may appear in a given context. For example, a library
may contain multiple cells, a cell may contain multiple pins etc. The objects, e.g. cells and pins
etc. must be distinguished by name.

3.4 Arithmetic models

An arithmetic model is an object that describes characterization data or a more abstract,
measurable relationship between physical quantities. The modeling language allows tabulated
data as well as linear and non-linear equations. The equations consist of arithmetic expressions
based on the symbols defined inIEEE 1364-1995.

library
sublibrary
cell
wire
pin

vector

library-specific

is a

object

primitive

pin group

layer
via
rule
antenna
array
site
connectivity
blockage
port

is a

is a

is a

is a

is a

is a

is a

is a

is a

is a

is a

is a

is a

is a

is a

is a

node

is a

22 Advanced Library Format (ALF) Reference Manual Version 2.0

Object Model Geometric models

Figure 3-3: Arithmetic model

3.5 Geometric models

A geometric model describes the form of an object in a physical library. It is in the context of
a pattern, which is associated with physical objects, such as via, blockage, port, rule. Patterns
and other physical objects can also be subjected to geometric transformations.

Figure 3-4: Geometric model and its context

3.6 Library-specific singular objects

Library-specific singular objects may only appear in one instance within a given context. For
instance, a cell may contain at most one function and one test description.

arithmetic model
containsco

nt
ain

s

table equation
header

contains contains

contains

arithmetic expressionus
es

geometric model contains coordinates

pattern

geometric transformation

via

blockage

port

rule

array artwork
contains containscontains

contains

contains

contains

contains

Version 2.0 Advanced Library Format (ALF) Reference Manual 23

Relationships between objects Object Model

Figure 3-5: Library-specific singular objects

An object called FUNCTION describes the functional specification of a digital circuit (or a
digital model of an analog or a mixed-signal circuit) in a canonical form. The modeling
language allows behavioral models as well as statetables and structural models with primitives.
The behavioral models contain boolean expressions, closely matchingIEEE 1364-1995. Since
boolean expressions are insufficient to describe sequential logic, ALF introduces new
operators and symbols that can be used in conjunction with boolean operators and symbols.
(see Section 5.3) Expressions that use both the IEEE operators and the new operators are called
vector expressions.

An object called TEST describes the specification for testing a digital circuit, using the same
constructs as FUNCTION. However, TEST describes a stimulus generator for the circuit,
whereas FUNCTION describes the circuit itself.

Figure 3-6: FUNCTION and TEST

3.7 Relationships between objects

The following figures describe the categories of objects and their relationships with each other.

Library-specific objects, arithmetic models, geometric models, and library-specific singular
objects may contain auxiliary objects, such as annotation and annotation container (see Section

non-scan cell

library-specific
singular object

test

function

artwork

is a

is a

is a

is a
range is a

function
containsco

nt
ain

s

statetablebehavior
uses vector expression

and/orboolean expression

test
contains

contains
structure

24 Advanced Library Format (ALF) Reference Manual Version 2.0

Object Model Relationships between objects

11.7). Annotations and annotation containers serve as semantic qualifiers for library-specific
objects, arithmetic models, geometric models, and library-specific singular objects.

Figure 3-7: Objects containing annotations or annotation containers

All the above mentioned objects may contain generic objects.

Figure 3-8: Objects containing generic objects

The following figures illustrate the relationship between objects in a library for functional and
electrical design and for physical design, respectively.

annotation container

annotation

library-specific object

geometric model

arithmetic model
contains

library-specific

contains

contains

contains

singular object
contains

contains

generic object

library-specific object
arithmetic model
library-specific singular object contains

containsannotation
annotation container

contains

contains

Version 2.0 Advanced Library Format (ALF) Reference Manual 25

Relationships between objects Object Model

Figure 3-9: Objects in a library for logical and electrical design and their relationships

A library for functional and electrical design may contain sublibraries, cells, primitives, wires.
Those cells which represent hierarchical blocks may also contain primitives and wires. Also,
cells may contain pins, pin groups and vectors. Each object in the library may arithmetic
models for electrical characteristics. In particular, electrical models which require a stimulus
for characterization shall be in the context of a vector, which describes the stimulus.

Certain objects may also contain library-specific singular objects: A cell may contain function,
test, and non-scan cell. A wire may contain node. A pin may contain range.

library

sublibrary

cell wire

pin or pin group

vector

arithmetic model

function
co

nt
ai

ns

co
nt

ai
ns

co
nt

ai
ns

co
nt

ai
ns

co
nt

ai
ns

co
nt

ai
ns

co
nt

ai
ns

co
nt

ai
ns

co
nt

ai
ns

contains

contains

contains

co
nt

ai
ns

primitive

co
nt

ai
ns

co
nt

ai
ns

co
nt

ai
ns

co
nt

ai
ns

co
nt

ai
ns

co
nt

ai
ns

contains

co
nt

ai
ns

co
nt

ai
ns

test

non-scan cell
contains

contains

range

node

co
nt

ai
ns

co
nt

ai
ns

26 Advanced Library Format (ALF) Reference Manual Version 2.0

Object Model INFORMATION container

Figure 3-10: Objects in a library for physical design and their relationships

A library for physical design may contain sublibraries, cells, layers, vias, general rules, antenna
rules, and arrays. Cells and vias may contain a reference to artwork. Cells may contain
blockages. Pins may contain ports. almost each library may contain arithmetic models for
physical characteristics. Library, sublibrary, cell and pin may also contain connectivity rules.

3.8 INFORMATION container

An INFORMATION container can be inside aLIBRARY, SUBLIBRARY, CELL, or WIRE. It can also
be inPRIMITIVE objects inside aLIBRARY or SUBLIBRARY, but not in the locally defined
primitives inside cells or functions. It can contain the annotations shown in Table 3-1.

library

sublibrary

cell

pin

arithmetic model

co
nt

ai
ns

co
nt

ai
ns

port

layer

via

rule

antenna

artwork

array

connectivity

co
nt

ai
ns

co
nt

ai
ns

contains

contains

contains
contains

contains

contains

blockage

co
nt

ai
ns

contains

co
nt

ai
ns

co
nt

ai
ns

co
nt

ain
s

contains

contains

contains

Version 2.0 Advanced Library Format (ALF) Reference Manual 27

Relations between objects Object Model

 Example:

LIBRARY major_ASIC_vendor {
INFORMATION {

version = “v2.1.0”;
title = “0.35 standard cell”;
product = p35sc;
author = “Major Asic Vendor, Inc.”;
datetime = “Wed Jul 23 13:50:12 MST 1997”;

}
}

3.9 Relations between objects

General referenceable objects within the scope of visibility areTEMPLATEandGROUP. Library-
specific referenceable objects arePINs,PRIMITIVE s, and arithmetic models. Figure 3-11
shows the relationships between these objects and where they can be referenced.

Table 3-1 : Information annotation container

Keyword Value type Description Examples

VERSION string version of the object containing
this INFORMATION block

“v1r3_2”
“1.3.2”

TITLE string title or comment related this object “0.2u StdCell Library”
“2-input NAND, 4x drive”
“3-layer metal, best case,
wireload model”

PRODUCT string product related to the object “vsc1083”
“vsm10rs111”
“0.2u technology family”

AUTHOR string originator or modifier of the object “user@system.com”
“Imn N. Gineer”
“An ASIC Vendor, Inc.”

DATETIME string date/time stamp related to the
object

“Wed Aug 19 08:13:01
MST 1998”
“July 4, 1998”

28 Advanced Library Format (ALF) Reference Manual Version 2.0

Object Model Relations between objects

Figure 3-11: Referencing rules for ALF objects

TheTEMPLATEandGROUPobjects are referenceable only by their respective instantiation. The
TEMPLATE definitions can contain instantiation of previously defined templates, which allows
construction of reusable objects.

The arithmetic models can be referenced by other arithmetic models, if they are contained
within each other. This allows hierarchical modeling and a mix of table- and equation-based
models.

ThePIN objects are referenced withinFUNCTIONandVECTORobjects and within any annotation
container inside the sameCELL object.

ThePRIMITIVE s are referenceable by aCELL, to define pins and functionality, within a
FUNCTION, to define functionality only, or within an annotation container, e.g.,SCAN.

To usePRIMITIVE s andPINs, see Section 5.6.1 and Section 5.3.7.

3.9.1 Keywords for referencing objects used as annotation

The object references shown in Table 3-2 can be used as annotations.

Table 3-2 : Object references as annotation

Keyword Value type Description

CELL string reference to a declared CELL object

PRIMITIVE string reference to a declared PRIMITIVE object

PIN string reference to a declared PIN object

CLASS string reference to a declared CLASS object

function

template

pin

group

referenceable by

vector
annotation container

arithmetic modelarithmetic model

template instantiation

group instantiationreferenceable by

referenceable by

referenceable by

function
primitive cell

annotation container
referenceable by

Version 2.0 Advanced Library Format (ALF) Reference Manual 29

Relations between objects Object Model

The syntax is:

object_keyword = string ;

3.9.2 Incremental definitions for VECTOR

In general, it is illegal to re-declare an ALF object (see Section 4.1, Rule 4). However, there
are objects which merely define the context for other objects. When objects are incrementally
added to the library, it is natural to re-declare the context as well.

Vector-specific timing, power, signal integrity characterization may be done by different
groups, each of which comes up with a set of vectors for the characterization domain. Some of
the vectors may be accidentally the same. Also, timing, power, signal integrity characteriza-
tion may be done in different releases of the library. In both scenarios, the “incremental vector
definitions” make the merging process easier.

Multiple instances of the sameVECTOR shall be legal for the purpose of incrementally adding
children objects. The first instance of theVECTOR shall be interpreted as a declaration. All fol-
lowing instances shall be interpreted as supplemental definitions of theVECTOR. The rule of
illegal re-declaration shall apply for the children objects within aVECTOR.

Example:

// the following is legal
VECTOR (01 A -> 01 Z) {

DELAY = 1 { FROM { PIN = A; } TO { PIN = Z; } }
}
VECTOR (01 A -> 01 Z) {

ENERGY = 25 ;
}

// the following is illegal
VECTOR (01 A -> 01 Z) {

DELAY = 1 { FROM { PIN = A; } TO { PIN = Z; } }
}
VECTOR (01 A -> 01 Z) {

DELAY = 2 { FROM { PIN = A; } TO { PIN = Z; } }
}

3.9.3 Other incremental definitions

Incremental definitions ofPROPERTY, ATTRIBUTE, LIBRARY, SUBLIBRARY shall also be legal.
Different teams may work on different parts of the library, or cells may be added incremen-
tally to the library. The “incremental definition” allows a standalone release of new cells
belonging into a particular LIBRARY or SUBLIBRARY.
Incremental definitions of PROPERTY, ATTRIBUTE are applicable for objects, for which
“incremental definitions” are allowed in the first place, since each incremental definition may
be accompanied by a new set of PROPERTY or ATTRIBUTE values.

30 Advanced Library Format (ALF) Reference Manual Version 2.0

Object Model Relations between objects

Version 2.0 Advanced Library Format (ALF) Reference Manual 31

Scoping rules Library Organization

Section 4

Library Organization

This section defines the scoping rules and use of multiple files within a library.

4.1 Scoping rules

The following scope rules shall apply to all library objects and their usage.

Rule 1: An object shall be defined before it is referenced.

Rule 2: An ALF object shall be known (referenceable) inside the parent object, inside all
objects defined after that object within the same parent object, and inside all the children of
those objects.

Rule 3: An object definition with only a keyword, but without an object identifier, implies the
content of this definition shall be applied to all objects identified by this keyword at the current
scope and the underlying levels of hierarchy.

Example:

LIBRARY my_library {
CAPACITANCE {UNIT = pF;} // default capacitance units for all
... // cells in my_library
CELL cell1 {

CAPACITANCE {UNIT = fF;} // capacitance units specific to cell1
PIN A {CAPACITANCE = 10.5;}
...

}
CELL cell2 {

PIN A {CAPACITANCE = 0.010;} // default capacitance units
...

}
}

Here, the capacitance of pinA of cell1 is 10.5 fF . The capacitance of pinA of cell2 is 0.010

pF.

Rule 4:An object shall not be defined again at the same level of scope. A definition of an object
is considered duplicate, if both keyword and object identifier are identical.

32 Advanced Library Format (ALF) Reference Manual Version 2.0

Library Organization Use of multiple files

Example:

It is illegal to write the following:

LIBRARY my_library {
CAPACITANCE {UNIT = fF;}
...
CELL cell1 {

pin A {CAPACITANCE = 10.5;}
...

}

CAPACITANCE {UNIT = pF;} // duplicate definition
CELL cell2 {

pin A {CAPACITANCE = 0.010;}
...

}
}

There are three possible ways capacitance units can be set tofF for some of the cells in the
library andpF for other cells in the same library:

1. Put each set of cells in a different sublibrary

2. Define templates for the different units and reference them appropriately

3. Define the units locally inside each cell

4.2 Use of multiple files

Sometimes it is inconvenient or impractical to include all of the data for a technology library
in a single file. TheINCLUDE keyword is used to compose a library from multiple files.

An INCLUDE statement can be used within any context, but any included file shall contain at
least a valid object definition to be considered a legal ALF file. It needs to begin with a
keyword, otherwise it can be ignored by a generic parser.

In general, the effect of using theINCLUDEstatement is to be considered equivalent to inserting
the contents of the included file at that point in the parent file.

For example, a top-level ALF library file can contain only the following statements, where
each file contains appropriate data to make up the entire library.

LIBRARY mylib {
INCLUDE “libdata.alf”;
INCLUDE “templates.alf”;
INCLUDE “cells.alf”;
INCLUDE “wiremodels.alf”;

}

A complete ALF library definition shall begin with theLIBRARY keyword. A list of cell
definitions shall not be considered a full, legal ALF library database.

Version 2.0 Advanced Library Format (ALF) Reference Manual 33

Section 5

Functional Modeling

This chapter specifies the functional modeling for synthesis, formal verification, and
simulation.

5.1 Combinational functions

This section defines the different types of combinational functions in ALF.

5.1.1 Combinational logic

Combinational logic can be described by continuous assignments of boolean values (True or
False) to output variables as a function of boolean values of input variables. Such functions can
be expressed in either boolean expression format or statetable format.

Let us consider an arbitrary continuous assignment

z = f(a 1 ..,.. a n)

In a dynamic or simulation context, the left-hand side (LHS) variablez is evaluated whenever
there is a change in one of the right-hand side (RHS) variablesai. No storage of previous states
is needed for dynamic simulation of combinational logic.

5.1.2 Boolean operators on scalars

Table 5-1, Table 5-2, and Table 5-3 list unary, binary, and ternary boolean operators on scalars.

Table 5-1 : Unary boolean operators

Operator Description

! , ~ logical inversion

Table 5-2 : Binary boolean operators

Operator Description

&&, & logical AND

|| , | logical OR

~^ logic equivalence (XNOR)

^ logic anti valence (XOR)

34 Advanced Library Format (ALF) Reference Manual Version 2.0

Functional Modeling Combinational functions

Combinational if-then-else clauses are constructed as follows:

<cond1>? <value1>: <cond2>? <value2>: <cond3>? <value3>: <default_value>

If cond1 evaluates to booleanTrue, thenvalue1 is the result; else ifcond2 evaluates to boolean
True, thenvalue2 is the result; else ifcond3 evaluates to booleanTrue, thenvalue3 is the
result; elsedefault_value is the result of this clause.

5.1.3 Boolean operators on words

Table 5-4 and Table 5-5 list unary and binary reduction operators on words (logic variables
with one or more bits). The result of an expression using these operators shall be a logic value.

Table 5-3 : Ternary operator

Operator Description

 ? boolean condition operator for construction of combi-
national if-then-else clause

 : boolean else operator for construction of combinational
if-then-else clause

Table 5-4 : Unary reduction operators

Operator Description

& AND all bits

~& NAND all bits

| OR all bits

~| NOR all bits

^ XOR all bits

~^ XNOR all bits

Table 5-5 : Binary reduction operators

Operator Description

 == equality for case comparison

 != non-equality for case comparison

 > greater

 < smaller

 >= greater or equal

 <= smaller or equal

Version 2.0 Advanced Library Format (ALF) Reference Manual 35

Combinational functions Functional Modeling

Table 5-6 and Table 5-7 list unary and binary bitwise operators. The result of an expression
using these operators shall be an array of bits.

The following arithmetic operators, listed in Table 5-8, are also defined for boolean operations
on words. The result of an expression using these operators shall be an extended array of bits.

The arithmetic operations addition, subtraction, multiplication, and division shall beunsigned
if all the operands have the datatypeunsigned. If any of the operands have the datatype signed,
the operation shall besigned. See Table 6-25 for theDATATYPE definitions.

5.1.4 Operator priorities

The priority of binding operators to operands in boolean expressions shall be from strongest to
weakest in the following order:

1. unary boolean operator (! , ~, &, ~&, | , ~| , ^ , ~^)

2. XNOR(~^), XOR (^), relational (>, <, >=, <=, ==, !=), shift (<<, >>)

3. AND (&, &&), NAND (~&), multiply (*), divide (/), modulus (%)

Table 5-6 : Unary bitwise operators

Operator Description

~ bitwise inversion

Table 5-7 : Binary bitwise operators

Operator Description

 & bitwise AND

 | bitwise OR

 ^ bitwise XOR

 ~^ bitwise XNOR

Table 5-8 : Binary operators

Operator Description

 << shift left

 >> shift right

 + addition

 - subtraction

 * multiplication

 / division

 % modulo division

36 Advanced Library Format (ALF) Reference Manual Version 2.0

Functional Modeling Combinational functions

4. OR (|, ||), NOR (~|), add (+), subtract (-)

5. ternary operators (?, :)

5.1.5 Datatype mapping

Logical operations can be applied to scalars and words. For that purpose, the values of the
operands are reduced to a system of three logic values in the following way:

H has the logic value1
L has the logic value0
W, Z, U have the logic valueX
A word has the logic value1, if the unary OR reduction of all bits results in1

A word has the logic value0, if the unary OR reduction of all bits results in0

A word has the logic valueX, if the unary OR reduction of all bits results inX

Case comparison operations can also be applied to scalars and words. For scalars, they are
defined in Table 5-9.

Table 5-9 : Case comparison operators

A B A==B A!=B A>B A<B

1 1 1 0 0 0

1 H 0 1 X X

1 0 0 1 1 0

1 L 0 1 1 0

1 W, U, Z, X 0 1 X 0

H 1 0 1 X X

H H 1 0 0 0

H 0 0 1 1 0

H L 0 1 1 0

H W, U, Z, X 0 1 X 0

0 1 0 1 0 1

0 H 0 1 0 1

0 0 1 0 0 0

0 L 0 1 X X

0 W, U, Z, X 0 1 0 X

L 1 0 1 0 1

L H 0 1 0 1

L 0 0 1 X X

L L 1 0 0 0

L W, U, Z, X 0 1 0 X

X X 1 0 X X

X U X X X X

X 0, 1, H, L, W, Z 0 1 X X

Version 2.0 Advanced Library Format (ALF) Reference Manual 37

Combinational functions Functional Modeling

For word operands, the operations> and< are performed after reducing all bits to the 3-value
system first and then interpreting the resulting number according to the datatype of the
operands. For example, if datatype issigned, 'b1111 is smaller than'b0000 ; if datatype is
unsigned, 'b1111 is greater than'b0000 . If two operands have the same value'b1111 and a
different datatype, the unsigned'b1111 is greater than the signed'b1111 .

The operations>= and<= are defined in the following way:

(a >= b) === (a > b) || (a == b)

(a <= b) === (a < b) || (a == b)

5.1.6 Rules for combinational functions

If a boolean expression evaluatesTrue, the assigned output value is1. If a boolean expression
evaluatesFalse, the assigned output value is0. If the value of a boolean expression cannot be
determined, the assigned output value isX. Assignment of values other than1, 0, or X needs to
be specified explicitly.

For evaluation of the boolean expression, input value'bH shall be treated as'b1 . Input value
'bL shall be treated as'b0 . All other input values shall be treated as'bX .

Examples:

In equation form, these rules can be expressed as follows.

BEHAVIOR {
Z = A;

}

is equivalent to

BEHAVIOR {
Z = A ? ’b1 : ’b0;

}

More explicitly, this is also equivalent to

BEHAVIOR {
Z = (A==’b1 || A==’bH)? ’b1 : (A==’b0 || A==’bL)? ’b0 : ’bX;

}

In table form, this can be expressed as follows:

W W 1 0 X X

W U X X X X

W 0, 1, H, L, X, Z 0 1 X X

Z Z 1 0 X X

Z U X X X X

Z 0, 1, H, L, X, W 0 1 X X

U 0, 1, H, L,
X,W, Z, U

X X X X

Table 5-9 : Case comparison operators, continued

A B A==B A!=B A>B A<B

38 Advanced Library Format (ALF) Reference Manual Version 2.0

Functional Modeling Combinational functions

STATETABLE {
A : Z;

? : (A);
}

which is equivalent to

STATETABLE {
A : Z;

0 : 0;
1 : 1;

}

More explicitly, this is also equivalent to

STATETABLE {
A : Z;

0 : 0;
L : 0;
1 : 1;
H : 1;
X : X;
W : X;
Z : X;
U : X;

}

5.1.7 Concurrency in combinational functions

Multiple boolean assignments in combinational functions are understood to be concurrent. The
order in the functional description does not matter, as each boolean assignment describes a
piece of a logic circuit. This is illustrated in Figure 5-1.

Figure 5-1: Concurrency for combinational logic

BEHAVIOR {
Q1 = <1st_boolean_expression(D1..Di)> ;
...
Qn = <nth_boolean_expression(D1..Di)> ;

}

Q1

Qn

D1 Di

nth boolean expression

1st boolean expression

Version 2.0 Advanced Library Format (ALF) Reference Manual 39

Sequential functions Functional Modeling

5.2 Sequential functions

This section defines the different types of sequential functions in ALF.

5.2.1 Level-sensitive sequential logic

In sequential logic, an output variablezj can also be a function of itself, i.e., of its previous
state. The sequential assignment has the form

zj = f(a 1 ..,.. a n , z 1 ..,.. z m)

The RHS cannot be evaluated continuously, since a change in the LHS as a result of a RHS
evaluation shall trigger a new RHS evaluation repeatedly, unless the variables attain stable
values. Modeling capabilities of sequential logic with continuous assignments are restricted to
systems with oscillating or self-stabilizing behavior.

However, using the concept oftriggering conditionsfor the LHS enables everything which is
necessary for modelinglevel-sensitive sequential logic. The expression of a triggered
assignment can look like this:

@ g(b 1 ..,.. b k) z j = f(a 1 ..,.. a n , z 1 ..,.. z m)

The evaluation off is activated whenever thetriggering functiong is True. The evaluation ofg
is self-triggered, i.e. at each time when an argument ofg changes its value. Ifg is a boolean
expression likef, we can model all types oflevel-sensitive sequential logic.

During the time wheng is True, the logic cell behaves exactly like combinational logic. During
the time wheng is False, the logic cell holds its value. Hence, one memory element per state
bit is needed.

5.2.2 Edge-sensitive sequential logic

In order to modeledge-sensitive sequential logic, notations for logical transitions and logical
states are needed.

If the triggering functiong is sensitive to logical transitions rather than to logical states, the
functiong evaluates toTrueonly for an infinitely small time, exactly at the moment when the
transition happens. The sole purpose ofg is to trigger an assignment to the output variable
through evaluation of the functionf exactly at this time.

Edge-sensitive logic requires storage of the previous output state and the input state (to detect
a transition). In fact, all implementations of edge-triggered flip-flops require at least two
storage elements. For instance, the most popular flip-flop architecture features a master latch
driving a slave latch.

Using transitions in the triggering function for value assignment, the functionality of a positive
edge triggered flip-flop can be described as follows in ALF:

@ (01 CP) {Q = D;}

which reads “at rising edge ofCP, assignQ the value ofD”.

If the flip-flop also has an asynchronous direct clear pin (CD), the functional description
consists of either two concurrent statements or two statements ordered by priority, as shown in
Figure 5-2.

40 Advanced Library Format (ALF) Reference Manual Version 2.0

Functional Modeling Sequential functions

Figure 5-2: Model of a flip-flop with asynchronous clear in ALF

The following two examples show corresponding simulation models in Verilog and VHDL.

Figure 5-3: Model of a flip-flop with asynchronous clear in Verilog

// concurrent style

@ (!CD) {Q = 0;}
@ (01 CP && CD) {Q = D;}

// priority (if-then-else) style

@ (!CD) {Q = 0;} : (01 CP) {Q = D;}

// full simulation model

always @(negedge CD or posedge CP) begin
if (! CD) Q <= 0;
else if (CP && !CP_last_value) Q <= D;
else Q <= 1’bx;

end
always @ (posedge CP or negedge CP) begin

if (CP===0 | CP===1’bx) CP_last_value <= CP ;
end

// simplified simulation model for synthesis

always @(negedge CD or posedge CP) begin
if (! CD) Q <= 0;
else Q <= D;

end

Version 2.0 Advanced Library Format (ALF) Reference Manual 41

Sequential functions Functional Modeling

Figure 5-4: Model of a flip-flop with asynchronous clear in VHDL

The following differences in modeling style can be noticed: VHDL and Verilog provide the list
of sensitive signals at the beginning of theprocess or always block, respectively. The
information of level-or edge-sensitivity shall be inferred byif -then -else statements inside
the block. ALF shows the level-or-edge sensitivity as well as the priority directly in the
triggering expression. Verilog has another particularity: The sensitivity list indicates whether
at least one of the triggering signals is edge-sensitive by the use ofnegedge or posedge .
However, it does not indicate which one, since either none or all signals shall havenegedge or
posedge qualifiers.

Furthermore,posedge is any transition with0 as initial stateor 1 as final state. A positive-edge
triggered flip-flop shall be inferred for synthesis, yet this flip-flop shall only work correctly if
both the initial state is0 andthe final state is1. Therefore, a simulation model for verification
needs to be more complex than the model in the synthesizeable RTL code.

In Verilog, the extra non-synthesizeable code needs to also reproduce the relevant previous
state of the clock signal, whereas VHDL has built-in support forlast_value of a signal.

5.2.3 Unary operators for vector expressions

A transition operation is defined using unary operators on a scalar net. The scalar constants (see
Figure 10-6) shall be used to indicate the start and end states of a transition on a scalar net.

bit bit // apply transition from bit value to bit value

// full simulation model

process (CP, CD) begin
if (CD = '0') then

Q <= '0';
elsif (CP'last_value = '0' and CP = '1' and CP'event) then

Q <= D;
elsif (CP'last_value = '0' and CP = 'X' and CP'event) then

Q <= ’X’;
elsif (CP'last_value = 'X' and CP = '1' and CP'event) then

Q <= ’X’;
end if;

end process;

// simplified simulation model for synthesis

process (CP, CD) begin
if (CD = '0') then

Q <= '0';
elsif (CP = '1' and CP'event) then

Q <= D;
end if;

end process;

42 Advanced Library Format (ALF) Reference Manual Version 2.0

Functional Modeling Sequential functions

For example,

01 is a transition from0 to 1.

No whitespace shall be allowed between the two scalar constants. The transition operators
shown in Table 5-10 shall be considered legal.

Unary operators for transitions can also appear in theSTATETABLE.

Transition operators are also defined on words (and can appear the inSTATETABLE as well):

' base word ' base word

In this context, the transition operator shall apply transition from first word value to second
word value.

For example,

'hA'h5 is a transition of a 4-bit signal from'b1010 to 'b0101 .

No whitespace shall be allowed betweenbase andword.

Table 5-10 : Unary vector operators on bits

Operator Description

01 signal toggles from0 to 1

10 signal toggles from1 to 0

00 signal remains0

11 signal remains1

0? signal remains0 or toggles from0 to arbitrary value

1? signal remains1 or toggles from1 to arbitrary value

?0 signal remains0 or toggles from arbitrary value to0

?1 signal remains1 or toggles from arbitrary value to1

?? signal remains constant or toggles between arbitrary values

0* a number of arbitrary signal transitions, including possibility of
constant value, with the initial value0

1* a number of arbitrary signal transitions, including possibility of
constant value, with the initial value1

?* a number of arbitrary signal transitions, including possibility of
constant value, with arbitrary initial value

*0 a number of arbitrary signal transitions, including possibility of
constant value, with the final value0

*1 a number of arbitrary signal transitions, including possibility of
constant value, with the final value1

*? a number of arbitrary signal transitions, including possibility of
constant value, with arbitrary final value

Version 2.0 Advanced Library Format (ALF) Reference Manual 43

Sequential functions Functional Modeling

The unary and binary operators for transition, listed in Table 5-11 and Table 5-12 respectively,
are defined on bits and words.

5.2.4 Basic rules for sequential functions

A sequential function is described in equation form by a boolean assignment with a condition
specified by a boolean expression or a vector expression. If the condition evaluates to1 (True),
the boolean assignment is activated and the assigned output values follows the rules for
combinational functions. If the vector expression evaluates to0 (False), the output variables
hold their assigned value from the previous evaluation.

For evaluation of a condition, the value'bH shall be treated asTrue, the value'bL shall be
treated asFalse. All other values shall be treated as the unknown value'bX .

Example:

The following behavior statement

BEHAVIOR {
@ (E) {Z = A;}

}

is equivalent to

BEHAVIOR {
@ (E==’b1 || E==’bH) {Z = A;}

}

The following statetable statement, describing the same logic function

STATETABLE {
E A : Z;

0 ? : (Z);
1 ? : (A);

}

is equivalent to

STATETABLE {
E A : Z;

0 ? : (Z);
L ? : (Z);
1 ? : (A);
H ? : (A);

}

Table 5-11 : Unary vector operators on bits or words

Operator Description

?- no transition occurs

?? apply arbitrary transition, including possibility of constant value

?! apply arbitrary transition, excluding possibility of constant value

?~ apply arbitrary transition with all bits toggling

44 Advanced Library Format (ALF) Reference Manual Version 2.0

Functional Modeling Sequential functions

For edge-sensitive and higher-order event sensitive functions, transitions from or to'bL shall
be treated like transitions from or to'b0 , and transitions from or to'bH shall be treated like
transitions from or to'b1 .

Not every transition can trigger the evaluation of a function. The set of vectors triggering the
evaluation of a function are calledactive vectors. From the set of active vectors, a set of
inactive vectors can be derived, which shall clearly not trigger the evaluation of a function.
There are is also a set of ambiguous vectors, which can trigger the evaluation of the function.

The set of active vectors is the set of vectors for which both observed states before and after
the transition are known to be logically equivalent to the corresponding states defined in the
vector expression.

The set of inactive vectors is the set of vectors for which at least one of the observed states
before or after the transition is known to be not logically equivalent to the corresponding states
defined in the vector expression.

Example:

For the following sequential function

@ (01 CP) { Z = A; }

the active vectors are

('b0'b1 CP)
('b0'bH CP)
('bL'b1 CP)
('bL'bH CP)

and the inactive vectors are

(’b1’b0 CP)
(’b1’bL CP)
(’b1’bX CP)
(’b1’bW CP)
(’b1’bZ CP)
(’bH’b0 CP)
(’bH’bL CP)
(’bH’bX CP)
(’bH’bW CP)
(’bH’bZ CP)
(’bX’b0 CP)
(’bX’bL CP)
(’bW’b0 CP)
(’bW’bL CP)
(’bZ’b0 CP)
(’bZ’bL CP)
(’bU’b0 CP)
(’bU’bL CP)

and the ambiguous vectors are

Version 2.0 Advanced Library Format (ALF) Reference Manual 45

Sequential functions Functional Modeling

(’b0’bX CP)
(’b0’bW CP)
(’b0’bZ CP)
(’bL’bX CP)
(’bL’bW CP)
(’bL’bZ CP)
(’bX’b1 CP)
(’bW’b1 CP)
(’bZ’b1 CP)
(’bX’bH CP)
(’bW’bH CP)
(’bZ’bH CP)
(’bX’bW CP)
(’bX’bZ CP)
(’bW’bX CP)
(’bW’bZ CP)
(’bZ’bX CP)
(’bZ’bW CP)
(’bU’bX CP)
(’bU’bW CP)
(’bU’bZ CP)

For vectors using exclusively based literals, the set of active vectors is the vector itself, the set
of inactive vectors is any vector with at least one different literal, and the set of ambiguous
vectors is empty.

Therefore, ALF does not provide a default behavior for ambiguous vectors, since the behavior
for each vector can be explicitly defined in vectors using based literals.

5.2.5 Concurrency in sequential functions

The principle of concurrency applies also for edge-sensitive sequential functions, where the
triggering condition is described by a vector expression rather than a boolean expression. In
edge-sensitive logic, the target logic variable for the boolean assignment (LHS) can also be an
operand of the boolean expression defining the assigned value (RHS). Concurrency implies
that the RHS expressions are evaluated immediatelybeforethe triggering edge, and the values
are assigned to the LHS variables immediatelyafter the triggering edge. This is illustrated in
Figure 5-5.

46 Advanced Library Format (ALF) Reference Manual Version 2.0

Functional Modeling Sequential functions

Figure 5-5: Concurrency for edge-sensitive sequential logic

Statements with multiple concurrent conditions for boolean assignments can also be used in
sequential logic. In that case conflicting values can be assigned to the same logic variable. A
default conflict resolution is not provided for the following reasons:

• Conflict resolution might not be necessary, since the conflicting situation is prohibited by
specification.

• For different types of analysis (e.g., logic simulation), a different conflict resolution
behavior might be desirable, while the physical behavior of the circuit shall not change.
For instance, pessimistic conflict resolution always assignsX, more accurate conflict reso-
lution first checks whether the values are conflicting. Different choices can be motivated
by a trade-off in analysis accuracy and runtime.

• If complete library control over analysis is desired, conflict resolution can be specified
explicitly.

Example:

BEHAVIOR {
@ (<condition_1>) { Q = <value_1>; }
@ (<condition_2>) { Q = <value_2>; }

}

Explicit pessimistic conflict resolution can be described as follows:

BEHAVIOR {
@ (<condition_1> && <condition_2>) { Q = ’bX; }
@ (<condition_1> && ! <condition_2>) { Q = <value_1>; }
@ (<condition_2> && ! <condition_1>) { Q = <value_2>; }

}

Explicit accurate conflict resolution can be described as follows:

BEHAVIOR {
@ (<vector_expression(E1..Em)>) {

Q1 =
<1st_boolean_expression(D1..Di)> ;

...
Qn =

<nth_boolean_expression(D1..Di)> ; } }

Q1

Qn

D1 Di

1st boolean expression

nth boolean expression

vector
expression

E1 Em

d q

d q

Version 2.0 Advanced Library Format (ALF) Reference Manual 47

Sequential functions Functional Modeling

BEHAVIOR {
@ (<condition_1> && <condition_2>) {

Q = (<value_1>==<value_2>)? <value_1> : ’bX;
}
@ (<condition_1> && ! <condition_2>) { Q = <value_1>; }
@ (<condition_2> && ! <condition_1>) { Q = <value_2>; }

}

Since the conditions are now rendered mutually exclusive, equivalent descriptions with priority
statements can be used. They are more elegant than descriptions with concurrent statements.

BEHAVIOR {
@ (<condition_1> && <condition_2>) {

Q = <conflict_resolution_value>;
}
: (<condition_1>) { Q = <value_1>; }
: (<condition_2>) { Q = <value_2>; }

}

Given the various explicit description possibilities, the standard does not prescribe a default
behavior. The model developer has the freedom of incomplete specification.

5.2.6 Initial values for logic variables

Per definition, all logic variables in a behavioral description have the initial valueU which
means “uninitialized”. This value cannot be assigned to a logic variable, yet it can be used in a
behavioral description in order to assign other values thanU after initialization.

Example:

BEHAVIOR {
@ (Q1 == ’bU) { Q1 = ’b1 ; }
@ (Q2 == ’bU) { Q2 = ’b0 ; }
// followed by the rest of the behavioral description

}

A template can be used to make the intent more obvious, for example:

TEMPLATE VALUE_AFTER_INITIALIZATION {
@ (<logic_variable> == ’b U) { <logic_variable> = <initial_value>

; }
}
BEHAVIOR {

VALUE_AFTER_INITIALIZATION (Q1 ’b1’)
VALUE_AFTER_INITIALIZATION (Q2 ’b0’)
// followed by the rest of the behavioral description

}

Logic variables in a vector expression shall be declared asPINs. It is possible to annotate initial
values directly to a pin. Such variables shall never take the valueU. Therefore vector
expressions involvingU for such variables (see the previous example) are meaningless.

Example:

PIN Q1 { INITIAL_VALUE = ’b1 ; }
PIN Q2 { INITIAL_VALUE = ’b0 ; }

48 Advanced Library Format (ALF) Reference Manual Version 2.0

Functional Modeling Higher-order sequential functions

5.3 Higher-order sequential functions

This section defines the different types of higher-order sequential functions in ALF.

5.3.1 Vector-sensitive sequential logic

Vector expressions can be used to model generalized higher order sequential logic; they are an
extension of the boolean expressions. Avector expression describes sequences of logical
events or transitions in addition to static logical states. A vector expression represents a
description of a logical stimulus without timescale. It describes the order of occurrence of
events.

The -> operator(followed by) gives a general capability of describing a sequence of events or
a vector. For example, consider the following vector expression:

01 A -> 01 B

which reads “rising edge onA is followed by rising edge onB”.

A vector expression is evaluated by an event sequence detection function. Like a single event
or a transition, this function evaluatesTrue only at an infinitely short time when the event
sequence is detected, as shown in Figure 5-6.

Figure 5-6: Example of event sequence detection function

The event sequence detection mechanism can be described as a queue that sorts events
according to their order of arrival. The event sequence detection function evaluatesTrue at
exactly the time when a new event enters the queue and forms the required sequence, i.e.,the
sequence specified by the vector expression with its preceding events.

A

B

g(A, B) = (01 A -> 01 B)

co
nt

en
ts

 o
f

ev
en

t q
ue

ue last
event

2nd last
event

01 A 10 A01 B 10 B 01 B10 A01 A

01 A 10 A01 B 10 B 10 A01 AX

X

X

sequence(01 A -> 01 B) detected

Version 2.0 Advanced Library Format (ALF) Reference Manual 49

Higher-order sequential functions Functional Modeling

A vector-sensitive sequential logic can be called(N+1) order sequential logic, whereN is the
number of events to be stored in the queue. The implementation of(N+1) order sequential logic
requiresN memory elements for the event queue and one memory element for the output itself.

A sequence of events can also be gated with static logical conditions. In the example,

(01 CP -> 10 CP) && CD

the pinCDshall havestate 1 from some time before the rising edge atCP to some time after
the falling edge ofCP. The pinCDcan not go low (state 0) after the rising edge ofCPand go
high again before the falling edge ofCPbecause this would insert events into the queue and the
sequence “rising edge onCP followed by falling edge onCP” would not be detected.

The formal calculation rules for general vector expressions featuring both states and transitions
are detailed in Section 5.3.2 and Section 5.3.3.

The concept of vector expression supports functional modeling of devices featuring digital
communication protocols with arbitrary complexity.

5.3.2 Canonical binary operators for vector expressions

The following canonical binary operators are necessary to define sequences of transitions:

• vector_followed_by for completely specified sequence of events
• vector_and for simultaneous events
• vector_or for alternative events
• vector_followed_by for incompletely specified sequence of events

The symbols for the boolean operators forAND andOR are overloaded forvector_and and
vector_or , respectively. The new symbols for thevector_followed_by operators are shown
in Table 5-12.

Per definition, the-> and ~> operators shall not be commutative, whereas the&& and||

operators on events shall be commutative.

01 a && 01 b === 01 b && 01 a

01 a || 01 b === 01 b || 01 a

The-> and~> operators shall be freely associative.

Table 5-12 : Canonical binary vector operators

Operator Operands
LHS, RHS
commutative Description

-> 2 vector
expressions

no Left-hand side (LHS) transitionis followed byRight-hand
side (RHS) transition, no transition can occur in-between

 &&, & 2 vector
expressions

yes LHSand RHS transitionoccur simultaneously

 ||, | 2 vector
expressions

yes LHSor RHS transitionoccur alternatively

~> 2 vector
expressions

no Left-hand side (LHS) transitionis followed byRight-hand
side (RHS) transition, other transitions can occur in-between

50 Advanced Library Format (ALF) Reference Manual Version 2.0

Functional Modeling Higher-order sequential functions

01 a -> 01 b -> 01 c === (01 a -> 01 b) -> 01 c === 01 a -> (01 b -> 01 c)

01 a ~> 01 b ~> 01 c === (01 a ~> 01 b) ~> 01 c === 01 a ~> (01 b ~> 01 c)

The&& operator is defined for single events and for event sequences with the same number of
-> operators each.

(01 A1 .. -> ... 01 AN) & (01 B1 .. -> ... 01 BN)
===
01 A1 & 01 B1 ... -> ... 01 AN & 01 BN

The || operator reduces the set of edge operators (unary vector operators) to canonical and non-
canonical operators.

(?? a) === (?! a)||(?- a) //a does or does not change its value

Hence?? is non-canonical, since it can be defined by other operators.

If <value1><value2> is an edge operator consisting of two based literalsvalue1 andvalue2

andword is an expression which can take the valuevalue1 or value2 , then the following
vector expressions are considered equivalent:

<value1><value2> <word>
=== 10 (<word> == <value1>) && 01 (<word> == <value2>)
=== 01 (<word> != <value1>) && 01 (<word> == <value2>)
=== 10 (<word> == <value1>) && 10 (<word> != <value2>)
=== 01 (<word> != <value1>) && 10 (<word> != <value2>)

// all expressions describe the same event:
// <word> makes a transition from <value1> to <value2>

Hence vector expressions with edge operators using based literals can be reduced to vector
expressions using only the edge operators01 and10.

5.3.3 Complex binary operators for vector expressions

Table 5-13 defines the complex binary operators for vector operators.

The following expressions shall be considered equivalent:

(01 a <-> 01 b) === (01 a -> 01 b)||(01 b -> 01 a)

(01 a &> 01 b) === (01 a -> 01 b)||(01 a && 01 b)

(01 a <&> 01 b) === (01 a -> 01 b)||(01 b -> 01 a)||(01 a && 01 b)

By their symmetric definition, the<-> and<&> operators are commutative.

Table 5-13 : Complex binary vector operators

Operator Operands
LHS, RHS
commutative Description

<-> 2 vector
expressions

yes LHS transition follows or is followed by RHS transition

&> 2 vector
expressions

no LHS transitionis followed by or occurs simultaneously
with RHS transition

<&> 2 vector
expressions

yes LHS transitionfollows or is followed by or occurs simulta-
neously with RHS transition

Version 2.0 Advanced Library Format (ALF) Reference Manual 51

Higher-order sequential functions Functional Modeling

01 a <-> 01 b === 01 b <-> 01 a

01 a <&> 01 b === 01 b <&> 01 a

The commutative complex binary vector operators are defined in Table 5-12. The commuta-
tivity rules are only defined for two operands:

• commutative “followed by”:

vect_expr1 <-> vect_expr2 ===
vect_expr1 -> vect_expr2 // vect_expr1 occurs first

| vect_expr2 -> vect_expr1 // vect_expr2 occurs first

• commutative “followed by or simultaneously occurring”:

vect_expr1 <&> vect_expr2 ===
vect_expr1 -> vect_expr2 // vect_expr1 occurs first

| vect_expr2 -> vect_expr1 // vect_expr2 occurs first
| vect_expr1 && vect_expr2 // both occur simultaneously

5.3.3.1 Extension to N operands

This section defines how to useN operands.

A complex_vector_expression of the form

vector_expression { <-> vector_expression }

shall be commutative for all operands. Thecomplex_vector_expression describes
alternative event sequences in which the temporal order of each constituent
vector_expression is completely permutable, excluding simultaneous occurrence of each
constituentvector_expression .

A complex_vector_expression of the form

vector_expression { <&> vector_expression }

shall be commutative for all operands. Thecomplex_vector_expression describes
alternative event sequences in which the temporal order of each constituent
vector_expression is completely permutable, including simultaneous occurrence of each
constituentvector_expression .

Example:

01 A <-> 01 B <-> 01 C ===
01 A -> 01 B -> 01 C

| 01 B -> 01 C -> 01 A
| 01 C -> 01 A -> 01 B
| 01 C -> 01 B -> 01 A
| 01 B -> 01 A -> 01 C
| 01 A -> 01 C -> 01 B

52 Advanced Library Format (ALF) Reference Manual Version 2.0

Functional Modeling Higher-order sequential functions

01 A <&> 01 B <&> 01 C ===
01 A -> 01 B -> 01 C

| 01 B -> 01 C -> 01 A
| 01 C -> 01 A -> 01 B
| 01 C -> 01 B -> 01 A
| 01 B -> 01 A -> 01 C
| 01 A -> 01 C -> 01 B
| 01 A && 01 B -> 01 C
| 01 A -> 01 B && 01 C
| 01 B && 01 C -> 01 A
| 01 B -> 01 C && 01 A
| 01 C && 01 A -> 01 B
| 01 C -> 01 A && 01 B
| 01 A && 01 B && 01 C

5.3.3.2 Boolean rules

The following rule applies for a booleanAND operation with three operands:

rule 1:
A & B & C === (A & B) & C | A & (B & C)

A corresponding rule also applies to the commutative followed-by operation with three oper-
ands:

rule 2:
01 A <-> 01 B <-> 01 C ===

(01 A <-> 01 B) <-> 01 C
| 01 A <-> (01 B <-> 01 C)

The alternative boolean expressions(A & B) & C andA & (B & C) in rule 1 are equivalent.
Therefore, rule 1 can be reduced to the following:

rule 3:
A & B & C === (A & B) & C === (B & C) & A

A corresponding rule doesnot apply to complex vector operands, since each expression with
associated operands generates only a subset of permutations:

(01 A <-> 01 B) <-> 01 C ===
((01 A <-> 01 B) -> 01 C)

| (01 C -> (01 A <-> 01 B)) ===
01 A -> 01 B -> 01 C

| 01 B -> 01 A -> 01 C
| 01 C -> 01 A -> 01 B
| 01 C -> 01 B -> 01 A

The permutations

01 A -> 01 C -> 01 B
01 B -> 01 C -> 01 A

are missing.

Version 2.0 Advanced Library Format (ALF) Reference Manual 53

Higher-order sequential functions Functional Modeling

01 A <-> (01 B <-> 01 C) ===
(01 A -> (01 B <-> 01 C))

| ((01 B <-> 01 C) -> 01 A) ===
01 A -> 01 B -> 01 C

| 01 A -> 01 C -> 01 B
| 01 B -> 01 C -> 01 A
| 01 C -> 01 B -> 01 A

The permutations

| 01 B -> 01 A -> 01 C
| 01 C -> 01 A -> 01 B

are missing.

5.3.4 Operators for conditional vector expressions

The definitions of the&&, ?, and: operators are also overloaded to describe aconditional vector
expression (involving boolean expressions and vector expressions), as shown in Table 5-14.
The clauses are boolean expressions; while vector expressions are subject to those clauses.

An example for conditional vector expression using&& is given below:

(01 a && !b) // a rises while b==0

The order of the operands in a conditional vector expression using&& shall not matter.

<vector_exp> && <boolean_exp> === <boolean_exp> && <vector_exp>

The&&operator is still commutative in this case, although one operand is a boolean expression
defining a static state, the other operand is a vector expression defining an event or a sequence
of events. However, since the operands are distinguishable per se, it is not necessary to impose
a particular order of the operands.

An example for conditional vector expression using? and: is given below.

Table 5-14 : Operators for conditional vector expressions

Operator Operands
LHS, RHS
commutative Description

&&, & 1 vector
expression,
1 boolean
expression

yes boolean expression (LHS or RHS) isTruewhile sequence
of transitions, defined by vector expression (RHS or LHS)
occurs

 ? 1 vector
expression,
1 boolean
expression

no boolean condition operator for construction of if-then-else
clause involving vector expressions

 : 1 vector
expression,
1 boolean
expression

no boolean else operator for construction of if-then-else
clause involving vector expressions

54 Advanced Library Format (ALF) Reference Manual Version 2.0

Functional Modeling Higher-order sequential functions

!b ? 01 a : c ? 10 b : 01 d
===
!b & 01 a | !(!b) & c & 10 b | !(!b) & !c & 01 d

This example shows how a conditional vector expression using ternary operators can be
expressed with alternative conditional vector expressions.

A conditional vector expression can be reduced to a non-conditional vector expression in some
cases (see Section 5.4.11).

Every binary vector operator can be applied to a conditional vector expression.

5.3.5 Operators for sequential logic

Table 5-15 defines the complex binary operators for vector operators.

Sequential assignments are constructed as follows:

@ (<trigger1>) { <action1> } : (<trigger2>) { <action2> } :
 (<trigger3>) { <action3> }

If trigger1 event is detected, thenaction1 is performed; else iftrigger2 event is detected,
thenaction2 is performed; else iftrigger3 event is detected, thenaction3 is performed as
a result of this clause.

5.3.6 Operator priorities

The priority of binding operators to operands in non-conditional vector expressions shall be
from strongest to weakest in the following order:

1. unary vector operators (edge literals)

2. complex binary vector operators (<-> , &>, <&>)

3. vectorAND (&, &&)

4. vector_followed_by operators (-> , ~>)

5. vectorOR (| , ||)

5.3.7 Using PINs in VECTORs

A VECTOR defines state, transition, or sequence of transitions of pins that are controllable and
observable for characterization.

Table 5-15 : Operators for sequential logic

Operator Description

 @ sequentialif operator, followed by a boolean logic expression (for
level-sensitive assignment) or by a vector expression (for edge-sen-
sitive assignment)

 : sequentialelse if operator, followed by a boolean logic expres-
sion (for level-sensitive assignment) or by a vector expression (for
edge-sensitive assignment) with lower priority

Version 2.0 Advanced Library Format (ALF) Reference Manual 55

Modeling with vector expressions Functional Modeling

Within aCELL, the set ofPINs withSCOPE=behavior or SCOPE=measureor SCOPE=both is the
default set of variables in the event queue for vector expressions relevant forBEHAVIOR or
VECTOR statements or both, respectively.

For detection of a sequence of transitions it is necessary to observe the set of variables in the
event queue. For instance, if the set of pins consists ofA, B, C, D, the vector expression

 (01 A -> 01 B)

implies no transition onA, B, C, D occurs between the transitions01 A and01 B .

The default set of pins applies only for vector expressions without conditions. The conditional
eventANDoperator limits the set of variables in the event queue. In this case, only the state of
the condition and the variables appearing in the vector expression are observed.

Example:

(01 A -> 01 B) && (C | D)

No transition onA, B occurs between01 A and01 B, and(C | D) needs to stayTruein-between
01 A and01 B as well. However,CandDcan change their values as long as(C | D) is satisfied.

5.4 Modeling with vector expressions

Vector expressions provide a formal language to describe digital waveforms. This capability
can be used for functional specification, for timing and power characterization, and for timing
and power analysis.

In particular, vector expressions add value by addressing the following modeling issues:

• Functional specification: complex sequential functionality, e.g., bus protocols.
• Timing analysis: complex timing arcs and timing constraints involving more than two sig-

nals.
• Power analysis: temporal and spatial correlation between events relevant for power con-

sumption.
• Circuit characterization and test: specification of characterization and/or test vectors for

particular timing, power, fault, or other measurements within a circuit.

Like boolean expressions, vector expressions provide the means for describing the
functionality of digital circuits in various contexts without being self-sufficient. Vector
expressions enrich this functional description capability by adding a “dynamic” dimension to
the otherwise “static” boolean expressions.

The following subsections explain the semantics of vector expressions step-by-step. The vector
expression concept is explained using terminology from simulation event reports. However,
the application of vector expressions is not restricted to post-processing event reports.

Some application tools (e.g., power analysis tools) can actually evaluate vector expressions
during post-processing of event reports from simulation. Other application tools, especially
simulation model generators, need to respect the causality between the triggering events and
the actions to be triggered. While it is semantically impossible to describe cause and effect in
the same vector expression for the purpose of functional modeling, both cause and effect can
appear in a vector expression used for a timing arc description.

56 Advanced Library Format (ALF) Reference Manual Version 2.0

Functional Modeling Modeling with vector expressions

ALF does not make assumption about the physical nature of the event report. Vector
expressions can be applied to an actual event report written in a file, to an internal event queue
within a simulator, or to a hypothetical event report which is merely a mathematical concept.

5.4.1 Event reports

This section describes the terminology of event reports from simulation, which is used to
explain the concept of ALF vector expressions. The intent of ALF vector expressions is not to
replace existing event report formats. Non-pertinent details of event report formats are not
described here.

Simulation events (e.g., from Verilog or VHDL) can be reported in a value change dump
(VCD) file, which has the following general form:

<time1>
<variableA> <stateU>
<variableB> <stateV>
...

<time2>
<variableC> <stateW>
<variableD> <stateX>
...

<time3> ...

The set of variables for which simulation events are reported, i.e., thescopeof the event report
needs to be defined beforehand. Each variable also has a definition for theset of states it can
take. For instance, there can be binary variables, 16-bit integer variables, 1-bit variables with
drive-strength information, etc. Furthermore, the initial state of each variable shall be defined
as well. In an ALF context, the termssignalandvariableare used interchangeably. In VHDL,
the corresponding term issignal. In Verilog, there is no single corresponding term. Allinput ,
output , wire , andreg variables in Verilog correspond to asignal in VHDL.

The time values<time1> , <time2> , <time3> , etc. shall be in increasing order. The order in
which simultaneous events are reported does not matter. The number of time points and the
number of simultaneous events at a certain time point are unlimited.

In the physical world, each event or change of state of a variable takes a certain amount of time.
A variable cannot change its state more than once at a given point in time. However, in
simulation, this time can be smaller than the resolution of the time scale or even zero (0).
Therefore, a variable can change its state more than once at a given point in simulation time.
Those events are, strictly speaking, not simultaneous. They occur in a certain order, separated
by an infinitely small delta-time. Multiple simultaneous events of the same variable are not
reported in the VCD. Only the final state of each variable is reported.

A VCD file is the most compact format that allows reconstruction of entire waveforms for a
given set of variables. A more verbose form is the test pattern format.

<TIME> <variableA> <variableB> <variableC> <variableD>
<time1> <stateU> <stateV>
<time2> <stateU> <stateV> <stateW> <stateX>
<time3>

Version 2.0 Advanced Library Format (ALF) Reference Manual 57

Modeling with vector expressions Functional Modeling

The test pattern format reports the state of each variable at every point in time, regardless of
whether the state has changed or not. Previous and following states are immediately available
in the previous and next row, respectively. This makes the test pattern format more readable
than the VCD and well-suited for taking a snapshot of events in a time window.

An example of an event report in VCD format:

// initial values
A 0 B 1 C 1 D X E 1
// event dump
109 A 1 D 0
258 B 0
573 C 0
586 A 0
643 A 1
788 A 0 B 1 C 1
915 A 1
1062 E 0
1395 B 0 C 0
1640 A 0 D 1
// end of event dump

An example of an event report in test pattern format:

time A B C D E
0 0 1 1 X 1
109 1 1 1 0 1
258 1 0 1 0 1
573 1 0 0 0 1
586 0 0 0 0 1
643 1 0 0 0 1
788 0 1 1 0 1
915 1 1 1 0 1
1062 1 1 1 0 0
1395 1 0 0 0 0
1640 0 0 0 1 0

Both VCD and test pattern formats represent the same amount of information and can be
translated into each other.

5.4.2 Event sequences

For specification of a functional waveform (e.g., the write cycle of a memory), it is not practical
to use an event report format, such as a VCD or test pattern format. In such waveforms, there
is no absolute time. And the relative time, for example, the setup time between address change
and write enable change, can vary from one instance to the other.

The main purpose ofvector_expressions is waveform specification capability. The
following operators can be used:

• vector_unary (also callededge operator or unary vector operator)
The edge operator is a prefix to a variable in a vector expression. It contains a pair of
states, the first being the previous state, the second being the new state. Edge operators can
describe a change of state or no change of state.

58 Advanced Library Format (ALF) Reference Manual Version 2.0

Functional Modeling Modeling with vector expressions

• vector_and (also calledsimultaneous event operator)
This operator uses the overloaded symbol& or && interchangeably. The& operator is the
separator between simultaneously occurring events

• vector_followed_by (also calledfollowed-by operator)
The “immediately followed-by operator” using the symbol-> is treated first. The-> oper-
ator is the separator between consecutively occurring events.

These operators are necessary and sufficient to describe the following subset of
vector_expressions :

• vector_single_event

A change of state in a single variable, for example:
01 A

• vector_event

A simultaneous change of state in one or more variables, for example:
01 A & 10 B

• vector_event_sequence

Subsequently occurring changes of state in one or more variables, for example:
01 A & 10 B -> 10 A

Thevector_and operator has a higher binding priority than thevector_followed_by

operator.

We can now express the pattern of the sample event report in avector_event_sequence

expression:

01 A & X0 D -> 10 B -> 10 C -> 10 A -> 01 A
-> 10 A & 01 B & 01 C -> 01 A -> 10 E -> 10 B & 10 C -> 10 A & 01 D

We can define thelength of avector_event_sequence expression as the number of
subsequent events described in thevector_event_sequence expression. The length is equal
to the number of-> operators plus one (1).

Although the vector expression format contains an inherent redundancy, since the old state of
each variable is always the same as the new state of the same variable in a previous event, it is
more human-readable, especially for waveform description. On the other hand, it is more
compact than the test pattern format. For short event sequences, it is even more compact than
the VCD, since it eliminates the declaration of initial values. To be accurate, for variables with
exactly one event the vector expression is more compact than the VCD. For variables with
more than one event the VCD is more compact than the vector expression. In summary, the
vector expression format offers readability similar to the test pattern format and compactness
close to the VCD format.

5.4.3 Scope and content of event sequences

Thescopeapplicable to a vector expression defines the set of variables in the event report. The
contentof a vector expression is the set of variables that appear in the vector expression itself.
The content of a vector expression shall be a subset of variables within scope.

• PINs with the annotationSCOPE = BEHAVIOR are applicable variables for vector expres-
sions within the context ofBEHAVIOR.

Version 2.0 Advanced Library Format (ALF) Reference Manual 59

Modeling with vector expressions Functional Modeling

• PINs with the annotationSCOPE = MEASUREare applicable variables for vector expressions
within the context ofVECTOR.

• PINs with the annotationSCOPE = BOTHare applicable variables for all vector expressions.

A vector_event_sequence expression is an event pattern without time, containing only the
variables within its own content. This event pattern is evaluated against the event report
containing all variables within scope. The vector expression isTrue when the event pattern
matches the event report.

Example:

time A B C D E // scope is A, B, C, D, E
0 0 1 1 X 1
109 1 1 1 0 1
258 1 0 1 0 1
573 1 0 0 0 1
586 0 0 0 0 1
643 1 0 0 0 1
788 0 1 1 0 1
915 1 1 1 0 1
1062 1 1 1 0 0
1395 1 0 0 0 0
1640 0 0 0 1 0

Consider the following vector expressions in the context of the sample event report:

01 A //(1) content is A

//event pattern expressed by (1):
// A
// 0
// 1

(1) is True at time 109, time 643, and time 915.

10 B -> 10 C //(2) content is B, C

//event pattern expressed by (2):
// B C
// 1 1
// 0 1
// 0 0

(2) is True at time 573.

10 A -> 01 A //(3) content is A

//event pattern expressed by (3):
// A
// 1
// 0
// 1

(3) is True at time 643 and time 915.

01 D //(4) content is D

60 Advanced Library Format (ALF) Reference Manual Version 2.0

Functional Modeling Modeling with vector expressions

//event pattern expressed by (4):
// D
// 0
// 1

(4) is True at time 1640.

01 A -> 10 C //(5) content is A, C

//event pattern expressed by (5):
// A C
// 0 1
// 1 1
// 1 0

(5) is not beTrue at any time, since the event pattern expressed by(5) does not match the
event report at any time.

5.4.4 Alternative event sequences

The following operator can be used to describe alternative events:

vector_or , also calledevent-or operator or alternative-event operator, using the over-
loaded symbol| or || interchangeably. The| operator is the separator between alternative
events or alternative event sequences.

In analogy to boolean operators,| has a lower binding priority than& and-> . Parentheses can
be used to change the binding priority.

Example:

(01 A -> 01 B) | 10 C === 01 A -> 01 B | 10 C
01 A -> (01 B | 10 C) === 01 A -> 01 B | 01 A -> 10 C

Consider the following vector expressions in the context of the sample event report:

01 A | 10 C //(6)

//event pattern expressed by (6):
// A
// 0
// 1

//alternative event pattern expressed by (6):
// C
// 1
// 0

(6) is True at time 109, time 573, time 643, time 915, and time 1395.

10 B -> 10 C | 10 A -> 01 A //(7)

//event pattern expressed by (7):
// B C
// 1 1
// 0 1
// 0 0

Version 2.0 Advanced Library Format (ALF) Reference Manual 61

Modeling with vector expressions Functional Modeling

//alternative event pattern expressed by (7):
// A
// 1
// 0
// 1

(7) is True at time 573, time 643, and time 915.

01 D | 10 B -> 10 C //(8)

//event pattern expressed by (8):
// D
// 0
// 1

//alternative event pattern expressed by (8):
// B C
// 1 1
// 0 1
// 0 0

(8) is True at time 573 and time 1640.

10 B -> 10 C | 10 A //(9)

//event pattern expressed by (9):
// B C
// 1 1
// 0 1
// 0 0

//alternative event pattern expressed by (9):
// A
// 1
// 0

(9) is True at time 573, time 586, time 788, and time 1640.

The following operators provide a more compact description of certain alternative event
sequences:

• &> events occur simultaneously or follow each other in the order RHS after LHS
• <-> a LHS event followed by a RHS event or a RHS event followed by a LHS event
• <&> events occur simultaneously or follow each other in arbitrary order

Example:

01 A &> 01 C === 01 A & 01 C | 01 A -> 01 C
01 A <-> 01 C === 01 A -> 01 C | 01 C -> 01 A
01 A <&> 01 C === 01 A <-> 01 C | 01 A & 01 C

The binding priority of these operators is higher than of& and-> .

5.4.5 Symbolic edge operators

Alternative events of the same variable can be described in a even more compact way through
the use of edge operators with symbolic states. The symbol? stands for “any state”.

• edge operator with? as the previous state:
transition from any state to the defined new state

62 Advanced Library Format (ALF) Reference Manual Version 2.0

Functional Modeling Modeling with vector expressions

• edge operator with? as the next state:
transition from the defined previous state to any state.

Both edge operators include the possibility no transition occurred at all, i.e., the previous and
the next state are the same. This situation can be explicitly described with the following
operator:

edge operator with next state = previous state, also callednon-event operator
The operand stays in the state defined by the operator.

The following symbolic edge operators also can be used:

• ?- no transition on the operand
• ?! transition from any state to any state different from the previous state
• ?? transition from any state to any state or no transition on the operand
• ?~ transition from any state to its bitwise complementary state

Example: LetA be a logic variable with the possible states1, 0, andX.

?0 A === 00 A | 10 A | X0 A
?1 A === 01 A | 11 A | X1 A
?X A === 0X A | 1X A | XX A
0? A === 00 A | 01 A | 0X A
1? A === 10 A | 11 A | 1X A
X? A === X0 A | X1 A | XX A
?! A === 01 A | 0X A | 10 A | 1X A | X0 A | X1 A
?~ A === 01 A | 10 A | XX A
?? A === 00 A | 01 A | 0X A | 10 A | 11 A | 1X A | X0 A | X1 A | XX A
?- A === 00 A | 11 A | XX A

For variables with more possible states (e.g., logic states with different drive strength and
multiple bits) the explicit description of alternative events is quite verbose. Therefore the
symbolic edge operators are useful for a more compact description.

This completes the set ofvector_binary operators necessary for the description of a subset
of vector_expressions calledvector_complex_event expressions. Allvector_binary

operators have twovector_complex_event expressions as operands. The set of
vector_event_sequence expressions is a subset ofvector_complex_event expressions.
Everyvector_complex_event expression can be expressed in terms of alternative
vector_event_sequence expressions. The latter could be calledminterms, in analogy to
boolean algebra.

5.4.6 Non-events

A vector_single_event expression involving a non-event operator is called anon-event. A
rigorous definition is required forvector_complex_event expressions containing non-events.
Consider the following example of a flip-flop with clock inputCLK and data outputQ.

01 CLK -> 01 Q // (i)
01 CLK -> 00 Q // (ii)

The vector expression(i) describes the situation where the output switches from0 to 1 after
the rising edge of the clock. The vector expression(ii) describes the situation where the
output remains at0 after the rising edge of the clock.

Version 2.0 Advanced Library Format (ALF) Reference Manual 63

Modeling with vector expressions Functional Modeling

How is it possible to decide whether(i) or (ii) is True, without knowing the delay between
CLK andQ? The only way is to wait until any event occurs after the rising edge ofCLK. If the
event is not onQ and the state ofQ is 0 during that event, then(ii) is True.

Hence, a non-event isTrueevery time when another event happens and the state of the variable
involved in the non-event satisfies the edge operator of the non-event.

Example:

time A B C D E
0 0 1 1 X 1
109 1 1 1 0 1
258 1 0 1 0 1
573 1 0 0 0 1
586 0 0 0 0 1
643 1 0 0 0 1
788 0 1 1 0 1
915 1 1 1 0 1
1062 1 1 1 0 0
1395 1 0 0 0 0
1640 0 0 0 1 0

The test pattern format represents an event, for example01 A , in no different way than a non-
event, for example11 E. This non-event isTrueat times 109, 258, 573, 586, 643, 788, and 915;
in short, every time when an event happens whileE is constant1.

5.4.7 Compact and verbose event sequences

A vector_event_sequence expression in a compact form can be transformed into a verbose
form by padding up everyvector_event expression with non-events. The next state of each
variable within avector_event expression shall be equal to the previous state of the same
variable in the subsequentvector_event expression.

Example:

01 A -> 10B === 01 A & 11 B -> 11 A & 10 B

A vector expression for a complete event report in compact form resembles the VCD, whereas
the verbose form looks like the test pattern.

// compact form
01 A & X0 D -> 10 B -> 10 C -> 10 A -> 01 A
-> 10 A & 01 B & 01 C -> 01 A -> 10 E
-> 10 B & 10 C -> 10 A & 01 D
===
// verbose form
?0 A & ?1 B & ?1 C & ?X D & ?1 E->
01 A & 11 B & 11 C & X0 D & 11 E->
11 A & 10 B & 11 C & 00 D & 11 E->
11 A & 00 B & 10 C & 00 D & 11 E->

64 Advanced Library Format (ALF) Reference Manual Version 2.0

Functional Modeling Modeling with vector expressions

10 A & 00 B & 00 C & 00 D & 11 E->
01 A & 00 B & 00 C & 00 D & 11 E->
10 A & 01 B & 01 C & 00 D & 11 E->
01 A & 11 B & 11 C & 00 D & 11 E->
11 A & 11 B & 11 C & 00 D & 10 E->
11 A & 10 B & 10 C & 00 D & 00 E->
10 A & 00 B & 00 C & 01 D & 00 E

The transformation rule needs to be slightly modified in case the compact form contains a
vector_event expression consisting only of non-events. By definition, the non-event isTrue
only if a real event happens simultaneously with the non-event. Padding up avector_event

expression consisting of non-events with other non-events make this impossible. Rather, this
vector_event expression needs to be padded up with unspecified events, using the??

operator. Eventually, unspecified events can be further transformed into partly specified
events, if a former or future state of the involved variable is known.

Example:

01 A -> 00 B
=== 01 A & 00 B -> ?? A & 00 B

In the first transformation step, the unspecified event?? A is introduced.

01 A & 00 B -> ?? A & 00 B
=== 01 A & 00 B -> 1? A & 00 B

In the second step, this event becomes partly specified.?? A is bound to be1? A due to the
previous event onA.

5.4.8 Unspecified simultaneous events within scope

Variables which are within the scope of the vector expression yet do not appear in the vector
expression, can be used to pad up the vector expression with unspecified events as well. This
is equivalent to omitting them from the vector expression.

Example:

01 A -> 10 B // let us assume a scope containing A, B, C, D, E
===
01 A & 10 B & ?? C & ?? D & ?? E -> 11 A & 10 B & ?? C & ?? D & ?? E

This definition allows unspecified events to occursimultaneously with specified events or
specified non-events. However, it disallows unspecified events to occurin-between specified
events or specified non-events.

At first sight, this distinction seems to be arbitrary. Why not disallow unspecified events
altogether? Yet there are several reasons why this definition is practical.

If a vector expression disallows simultaneously occurring unspecified events, the application
tool has the burden not only to match the pattern of specified events with the event report but
also to check whether the other variables remain constant. Therefore, it is better to specify this
extra pattern matching constraint explicitly in the vector expression by using the?- operator.

There are many cases where it actually does not matter whether simultaneously occurring
unspecified events are allowed or disallowed:

Version 2.0 Advanced Library Format (ALF) Reference Manual 65

Modeling with vector expressions Functional Modeling

• Case 1: Simultaneous events are impossible by design of the flip-flop. For instance, in a
flip-flop it is impossible for a triggering clock edge01 CK and a switch of the data output
? Q to occur at the same time. Therefore, such events can not appear in the event report. It
makes no difference whether01 CK & ?- Q , 01 CK & ?? Q , or 01 CK is specified. The
only occurring event pattern is01 CK & ?- Q and this pattern can be reliably detected by
specifying01 CK .

• Case 2: Simultaneous events are prohibited by design. For instance, in a flip-flop with a
positive setup time and positive hold time, the triggering clock edge01 CK and a switch of
the data input?! D is a timing violation. A timing checker tool needs the violating pattern
specified explicitly, i.e.,01 CK & ?! D . In this context, it makes sense to specify the non-
violating pattern also explicitly, i.e.,01 CK & ?- D . The pattern01 CK by itself is not
applicable.

• Case 3: Simultaneous events do not occur in correct design. For instance, power analysis
of the event01 CK needs no specification of?! D or ?- D . In the analysis of an event
report with timing violations, the power analysis is less accurate anyway. In the analysis of
the event report for the design without timing violation, the only occurring event pattern is

01 CK & ?- D and this pattern can be reliably detected by specifying01 CK .1

• Case 4: The effects of simultaneous events are not modeled accurately. This is the case in
static timing analysis and also to some degree in dynamic timing simulation. For instance,
a NAND gate can have the inputsA andB and the outputZ. The event sequence exercising
the timing arc01 A -> 10 Z can only happen ifB is constant1. No event onB can happen
in-between01 A and10 Z. Likewise, the timing arc01 B -> 10 Z can only happen ifA
is constant1 and no event happens in-between01 B and10 Z . The timing arc with simul-
taneously switching inputs is commonly ignored. A tool encountering the scenario01 A &

01 B -> 10 Z has no choice other than treating it arbitrarily as01 A -> 10 Z or as01 B

-> 10 Z .
• Case 5: The effects of simultaneous events are modeled accurately. Here it makes sense to

specify all scenarios explicitly, e.g.,01 A & ?- B -> 10 Z , 01 A &?! B -> 10 Z , ?- A

& 01 B -> 10 Z , etc., whereas the patterns01 A -> 10 Z and01 B -> 10 Z by them-
selves apply only for less accurate analysis (seeCase 4).

There is also a formal argument why unspecified events on a vector expression need to be
allowed rather than disallowed. Consider the following vector expressions within the scope of
two variables A and B.

01 A // (i)
01 B // (ii)
01 A & 01 B // (iii)

The natural interpretation here is(iii) === (i) & (ii) . This interpretation is only possible
by allowing simultaneously occurring unspecified events.

Allowing simultaneously occurring unspecified events, the vector expressions(i) and(ii) ,
respectively, are interpreted as follows:

1. The power analysis tool relates to a timing constraint checker in a similar way as a parasitic extraction tool
relates to a DRC tool. If the layout has DRC violations, for instance shorts between nets, the parasitic extraction
tool shall report inaccurate wire capacitance for those nets. After final layout, the DRC violations shall be gone
and the wire capacitance shall be accurate.

66 Advanced Library Format (ALF) Reference Manual Version 2.0

Functional Modeling Modeling with vector expressions

01 A & ?? B // (i’)
?? A & 01 B // (ii’)

Disallowing simultaneously occurring unspecified events, the vector expressions(i) and
(ii) , respectively, are interpreted as follows:

01 A & ?- B // (i’’)
?- A & 01 B // (ii’’)

The vector expressions(i’) and(ii’) are compatible with(iii) , whereas(i’’) and
(ii’’) are not.

5.4.9 Simultaneous event sequences

The semantic meaning of the “simultaneous event operator” can be extended to describe
simultaneously occurringevent sequences, by using the following definition:

(01 A#1 .. -> ... 01 A#N) & (01 B#1 .. -> ... 01 B#N)
=== 01 A#1 & 01 B#1 ... -> ... 01 A#N & 01 B#N

This definition is analogous to scalar multiplication of vectors with the same number of indices.
The number of indices corresponds to the number ofvector_event expressions separated by
-> operators. If the number of-> in both vector expressions is not the same, the shorter vector
expression can be left-extended with unspecified events, using the?? operator, in order to align
both vector expressions.

Example:

(01 A -> 01 B -> 01 C) & (01 D -> 01 E)
=== (01 A -> 01 B -> 01 C) & (?? D -> 01 D -> 01 E)
=== 01 A & ?? D -> 01 B & 01 D -> 01 C & 01 E
=== 01 A -> 01 B & 01 D -> 01 C & 01 E

The easiest way to understand the meaning of “simultaneous event sequences” is to consider
the event report in test pattern format. If eachvector_event_sequence expression matches
the event report in the same time window, then the event sequences happen simultaneously.

time A B C D E
0 0 1 1 X 1
109 1 1 1 0 1
258 1 0 1 0 1
573 1 0 0 0 1
586 0 0 0 0 1
643 1 0 0 0 1
788 0 1 1 0 1
915 1 1 1 0 1
1062 1 1 1 0 0
1395 1 0 0 0 0
1640 0 0 0 1 0

Example:

01 A -> 10 B === 01 A & 11 B -> 11 A & 10 B // (10a)

Version 2.0 Advanced Library Format (ALF) Reference Manual 67

Modeling with vector expressions Functional Modeling

// event pattern expressed by (10a):
// A B
// 0 1
// 1 1
// 1 0

X0 D -> 00 D // (10b)

// event pattern expressed by (10b):
// D
// X
// 0
// 0

(01 A -> 10 B) & (X0 D -> 00 D) // (10) === (10a)&(10b)

Both (10a) and(10b) areTrue at time 258. Therefore(10) is True at time 258.

10 C
=== ?? C -> ?? C -> 10 C
=== ?? C -> ?1 C -> 10 C // (11a)

// event pattern expressed by (11a):
// C
// ?
// ?
// 1
// 0

(11a) is left-extended to match the length of the following(11b) .

01 A -> 00 D -> 11 E ===
 01 A & 00 D & ?? E
-> ?? A & 00 D & ?? E
-> ?? A & ?? D & 11 E
===
 01 A & 00 D & ?? E
-> 1? A & 00 D & ?1 E
-> ?? A & 0? D & 11 E // (11b)

// event pattern expressed by (11b):
// A D E
// 0 0 ?
// 1 0 ?
// ? 0 1
// ? ? 1

(11b) contains explicitly specified non-events. The non-event00 D calls for the unspecified
events?? A and?? E. The non-event00 E calls for the unspecified events?? A and?? D. By
propagating well-specified previous and next states to subsequent events, some unspecified
events become partly specified.

10 C & (01 A -> 00 D -> 11 E) // (11) === (11a)&(11b)

(11a) is True at time 573 and time 1395.(11b) is True at time 573 and time 915. Therefore,
(11) is True at time 573.

68 Advanced Library Format (ALF) Reference Manual Version 2.0

Functional Modeling Modeling with vector expressions

5.4.10 Implicit local variables

Until now, vector expressions are evaluated against an event report containing all variables
within the scope of a cell. It is practical for the application to work with only one event report
per cell or, at most, two event reports if the set of variables forBEHAVIOR (scope=behavior)
andVECTOR (scope=measure) is different. However, for complex cells and megacells, it is
sometimes necessary to change the scope of event observation, depending on operation modes.
Different modes can require a different set of variables to be observed in different event reports.

The following definition allows toextend the scope of a vector expression locally:

Edge operators apply not only to variables, but also to boolean expressions involving those
variables. Those boolean expressions representimplicit local variables that are visible
only within the vector expression where they appear.

Suppose the local variables(A & B) , (A | B) are inserted into the event report:

time A B C D E A&B A|B
0 0 1 1 X 1 0 1
109 1 1 1 0 1 1 1
258 1 0 1 0 1 0 1
573 1 0 0 0 1 0 1
586 0 0 0 0 1 0 0
643 1 0 0 0 1 0 1
788 0 1 1 0 1 0 1
915 1 1 1 0 1 1 1
1062 1 1 1 0 0 1 1
1395 1 0 0 0 0 0 1
1640 0 0 0 1 0 0 0

Example:

01 (A & B) // (12)

// event pattern expressed by (12):
// A&B
// 0
// 1

(12) is True at time 109 and time 915.

10 (A | B) // (13)

// event pattern expressed by (13):
// A|B
// 1
// 0

(13) is True at time 586 and time 1640.

01 (A & B) -> 10 B // (14)

// event pattern expressed by (14):
// B A&B
// 1 0
// 1 1
// 0 1

Version 2.0 Advanced Library Format (ALF) Reference Manual 69

Modeling with vector expressions Functional Modeling

(14) is True at time 258.

10 (A & B) & 10 B -> 10 C // (15)

// event pattern expressed by (15):
// B C A&B
// 1 1 1
// 0 1 0
// 0 0 0

(15) is True at time 573.

10 (A & B) -> 10 (A | B) // (16)

// event pattern expressed by (16):
// A&B A|B
// 1 1
// 0 1
// 0 0

(16) is True at time 1640.

5.4.11 Conditional event sequences

The following definitionrestricts the scope of a vector expression locally:

vector_boolean_and , also calledconditional event operator
This operator is defined between a vector expression and a boolean expression, using the
overloaded symbol& or &&. The scope of the vector expression is restricted to the variables
and eventual implicit local variables appearing within that vector expression. The boolean
expression shall beTrue during the entire vector expression. The boolean expression is

called theExistence Condition of the vector expression.2

Vector expressions using thevector_boolean_and operator are called
vector_conditional_event expressions. Scope and contents of such expressions are
identical, as opposed to non-conditionalvector_complex_event expressions, where the
content is a subset of the scope.

Example:

(10 (A & B) -> 10 (A | B)) & !D // (17)

// event pattern expressed by (17):
// A&B A|B
// 1 1
// 0 1
// 0 0

2. An Existence Condition can also appear as annotation to aVECTORobject instead of appearing in the
vector expression. This enables recognition of existence conditions by application tools which can
not evaluate vector expressions (e.g., static timing analysis tools). However, for tools that can evalu-
ate vector expressions, there is no difference between existence condition as a co-factor in the vector
expression or as an annotation.

70 Advanced Library Format (ALF) Reference Manual Version 2.0

Functional Modeling Modeling with vector expressions

// event report without C, E:
time A B D A&B A|B
0 0 1 X 0 1
109 1 1 0 1 1
258 1 0 0 0 1
586 0 0 0 0 0
643 1 0 0 0 1
788 0 1 0 0 1
915 1 1 0 1 1
1062 1 1 0 1 1
1395 1 0 0 0 1
1640 0 0 1 0 0

(17) contains the samevector_complex_event expression as(16) . However, although(16)

is notTrueat time 586,(17) is Trueat time 586, since the scope of observation is narrowed to
A, B, A&B, andA|B by the existence condition!D , which is staticallyTrue while the specified
event sequence is observed.

Within, and only within, the narrowed scope of thevector_conditional_event expression,
(17) can be considered equivalent to the following:

(10 (A & B) -> 10 (A | B)) & !D
===
(10 (A & B) -> 10 (A | B)) & (11 (!D) -> 11 (!D))
===
10 (A & B) & 11 (!D) -> 10 (A | B) & 11 (!D)

The transformation consists of the following steps:

1. Transform the boolean condition into a non-event.
For example,!D becomes11 (!D) .

2. Left-extend thevector_single_event expression containing the non-event in order to
match the length of thevector_complex_event expression.
For example,11 (!D) becomes11 (!D) -> 11 (!D) to match the length of
10 (A & B) -> 10 (A | B) .

3. Apply scalar multiplication rule for simultaneously occurring event sequences.

Thus, avector_conditional_event expression can be transformed into an equivalent
vector_complex_event expression, but the change of scope needs to be kept in mind. An
operator which can express the change of scope in the vector expression language is defined in
Section 5.4.13. This can make the transformation more rigorous.

Regardless of scope, the transformation fromvector_conditional_event expression to
vector_complex_event expression also provides the means of detecting ill-specified
vector_conditional_event expressions.

Example:

(10 A -> 01 B -> 01 A) & A
===
10 A & 11 A -> 01 B & 11 A -> 01 A & 11 A

Version 2.0 Advanced Library Format (ALF) Reference Manual 71

Modeling with vector expressions Functional Modeling

The first expression10 A & 11 A and the third expression01 A & 11 A within the
vector_complex_event expression are contradictory. Hence, the
vector_conditional_event expression can never beTrue.

5.4.12 Alternative conditional event sequences

All vector_binary operators, in particular thevector_or operator, can be applied to
vector_conditional_event expressions as well as tovector_complex_event expressions.

Consider again the event report:

time A B C D E
0 0 1 1 X 1
109 1 1 1 0 1
258 1 0 1 0 1
573 1 0 0 0 1
586 0 0 0 0 1
643 1 0 0 0 1
788 0 1 1 0 1
915 1 1 1 0 1
1062 1 1 1 0 0
1395 1 0 0 0 0
1640 0 0 0 1 0

Concurrent alternativevector_conditional_event expressions can be paraphrased in the
following way:

IF <boolean_expression 1> THEN <vector_expression 1>

OR IF <boolean_expression 2> THEN <vector_expression 2>

... OR IF <boolean_expression N> THEN <vector_expression N>

The conditions can beTruewithin overlapping time windows and thus the vector expressions
are evaluated concurrently. Thevector_boolean_and operator andvector_or operator
describe such vector expressions.

Example:

C&(01 A -> 10 B) | !D&(10 B -> 10 A) | E&(10 B -> 10 C) // (18)

// Event pattern expressed by (18):
// A B C
// 0 1 1
// 1 1 1
// 1 0 1

(18) is True at time 258 because ofC & (01 A -> 10 B) .

// Alternative event pattern expressed by (18):
// A B D
// 1 1 0
// 1 0 0
// 0 0 0

(18) is alsoTrue at time 586 because of!D & (10 B -> 10 A) .

// Alternative event pattern expressed by (18):
// B C E
// 1 1 1

72 Advanced Library Format (ALF) Reference Manual Version 2.0

Functional Modeling Modeling with vector expressions

// 0 1 1
// 0 0 1

(18) is alsoTrue at time 573 because ofE & (10 B -> 10 C) .

Prioritized alternativevector_conditional_event expressions can be paraphrased in the
following way:

IF <boolean_expression 1> THEN <vector_expression 1>

ELSE IF <boolean_expression 2> THEN <vector_expression 2>

... ELSE IF <boolean_expression N> THEN <vector_expression N>

(optional) ELSE <vector_expression default >

Only the vector expression with the highest priorityTrue condition is evaluated. The
vector_boolean_cond operator andvector_boolean_else operator are used in ALF to
describe such vector expressions.

Example:

C? (01 A -> 10 B): !D? (10 B -> 10 A): E? (10 B -> 10 C) // (19)

The prioritized alternativevector_conditional_event expression can be transformed into
concurrent alternativevector_conditional_event expression as shown:

C ? (01 A -> 10 B) : !D ? (10 B -> 10 A) : E ? (10 B -> 10 C)
===
C & (01 A -> 10 B)
| !C & !D & (10 B -> 10 A)
| !C & !(!D) & E & (10 B -> 10 C)

(19) is Trueat time 258 because ofC & (01 A -> 10 B) , but not at time 586 because of higher
priority C while !D & (10 B -> 10 A) , nor at time 573 because of higher priority!D while
E & (10 B -> 10 C) .

5.4.13 Change of scope within a vector expression

Conditions on vector expressions redefine the scope of vector expressions locally. The
following definition can be used to change the scope even within a part of a vector expression.
For this purpose, the symbolic state* can be used, which means “don’t care about events”. This
is different from the symbolic state? which means “don’t care about state”. When the state of
a variable is* , arbitrary events occurring on that variable are disregarded.

• Edge operator with* as next state:
The variable to which the operator applies is no longer within the scope of the vector
expression.

• Edge operator with* as previous state:
The variable to which the edge operator applies is now within the scope of the vector
expression.

As opposed to?, * stands for an infinite variety of possibilities.

Example:

Let A be a logic variable with the possible states1, 0, andX.

Version 2.0 Advanced Library Format (ALF) Reference Manual 73

Modeling with vector expressions Functional Modeling

*0 A ===
00 A | 10 A | X0 A
| 00 A -> 00 A | 10 A -> 00 A | X0 A -> 00 A
| 01 A -> 10 A | 11 A -> 10 A | X1 A -> 10 A
| 0X A -> X0 A | 1X A -> X0 A | XX A -> X0 A
| 00 A -> 00 A -> 00 A | ...

0* A ===
00 A | 01 A | 0X A
| 00 A -> 00 A | 00 A -> 01 A | 00 A -> 0X A
| 01 A -> 10 A | 01 A -> 11 A | 01 A -> 1X A
| 0X A -> X0 A | 0X A -> X1 A | 0X A -> XX A
| 00 A -> 00 A -> 00 A | ...

A vector expression with an infinite variety of possible event sequences cannot be directly
matched with an event report. However, there are feasible ways to implement event sequence
detection involving* . In principle, there is a “static” and “dynamic” way. The following parts
of the vector expression are separated by* sub-sequences of events.

• “Static” event sequence detection with* :
The event report with all variables can be maintained, but certain variables are masked for
the purpose of detection of certain sub-sequences.

• “Dynamic” event sequence detection with* :
The event report shall contain the set of variables necessary for detection of a relevant sub-
sequence. When such a sub-sequence is detected, the set of variables in the event report
shall change until the next sub-sequence is detected, etc.

Examples:

01 A -> 1* B -> 10 C // (20)

// Event pattern expressed by (20):
// A B C
// 0 1 1
// 1 1 1
// 1 * 1
// 1 * 0

// pattern for 1st sub-sequence:
// A B C
// 0 1 1
// 1 1 1
// 1 * 1

// pattern for 2nd sub-sequence:
// A B C
// 1 * 1
// 1 * 0

The event report with masking relevant for(20) :

time A B C D E
0 0 1 1 X 1
109 1 1 1 0 1
258 1 * 1 0 1 // detection of 1st sub-sequence
573 1 * 0 0 1 // detection of 2nd sub-sequence

74 Advanced Library Format (ALF) Reference Manual Version 2.0

Functional Modeling Modeling with vector expressions

586 0 0 0 0 1
643 1 0 0 0 1
788 0 1 1 0 1
915 1 1 1 0 1
1062 1 * 1 0 0 // detection of 1st sub-sequence
1395 1 * 0 0 0 // detection of 2nd sub-sequence
1640 0 0 0 1 0

(20) is True at time 573 and time 1395. The first sub-sequence01 A -> 1* B is detected at
time 258, since * maps to any state. From time 258 onwards,B is masked. The second sub-
sequence10 C is detected at time 573. From time 573 onwards,B is unmasked. The first sub-
sequence is detected again at time 1062. The second sub-sequence is detected again at time
1395.

01 A & 1* E -> 10 C // (21)

// Event pattern expressed by (21):
// A C E
// 0 1 1
// 1 1 *
// 1 0 *

// pattern for 1st sub-sequence:
// A C E
// 0 1 1
// 1 1 *

// pattern for 2nd sub-sequence:
// A C E
// 1 1 *
// 1 0 *

The event report with masking relevant for(21) :

time A B C D E
0 0 1 1 X 1
109 1 1 1 0 * // detection of 1st sub-sequence
258 1 0 1 0 * // abortion of detection process
573 1 0 0 0 1
586 0 0 0 0 1
643 1 0 0 0 1
788 0 1 1 0 1
915 1 1 1 0 * // detection of 1st sub-sequence
1062 1 1 1 0 * // disregard event out of scope
1395 1 0 0 0 0 // detection of 2nd sub-sequence
1640 0 0 0 1 0

(21) isTrue at time 1395. The first sub-sequence01 A & 1* E is detected at time 109. From
time 109 onwards,E is masked. The event onB at time 258 aborts continuation of the detection
process and triggers restart from the beginning. The first sub-sequence is detected again at time
915. From time 915 onwards,E is masked. The event at time 1062 is therefore out of scope.
The second sub-sequence10 C is detected at time 1395.

01 A -> *1 B -> 10 B & 10 C // (22)

Version 2.0 Advanced Library Format (ALF) Reference Manual 75

Modeling with vector expressions Functional Modeling

// Event pattern expressed by (22):
// A B C
// 0 * 1
// 1 * 1
// 1 1 1
// 1 0 0

// pattern for 1st sub-sequence:
// A B C
// 0 * 1
// 1 * 1

// pattern for 2nd sub-sequence:
// A B C
// 1 * 1
// 1 1 1
// 1 0 0

The event report with masking relevant for(22) :

time A B C D E
0 0 1 1 X 1
109 1 1 1 0 1 // detection of 1st sub-sequence
258 1 0 1 0 1 // abort
573 1 * 0 0 1
586 0 * 0 0 1
643 1 * 0 0 1
788 0 * 1 0 1
915 1 * 1 0 1 // detection of 1st sub-sequence
1062 1 1 1 0 0 // continue
1395 1 0 0 0 0 // detection of 2nd sub-sequence
1640 0 0 0 1 0

(22) is Trueat time 1395. The first sub-sequence01 A is detected at time 109. Therefore,B is
unmasked. SinceB=0 at time 258, the attempt to detect the second sub-sequence is aborted and
the detection process restarts from the beginning. The first sub-sequence01 A is detected again
at time 109. The second sub-sequence*1 B -> 10 B & 10 C is detected at time 1395.

01 A -> 1? A & 0* B & 1* E -> 10 C // (23)

// Event pattern expressed by (23):
// A B C E
// 0 0 1 1
// 1 0 1 1
// 1 * 1 *
// 1 * 0 *

// pattern for 1st sub-sequence:
// A B C E
// 0 0 1 1
// 1 0 1 1
// ? * 1 *

// pattern for 2nd sub-sequence:
// A B C E
// ? * 1 *
// ? * 0 *

76 Advanced Library Format (ALF) Reference Manual Version 2.0

Functional Modeling Modeling with vector expressions

The event report with masking relevant for (23):

time A B C D E
0 0 1 1 X 1
109 1 1 1 0 1
258 1 0 1 0 1
573 1 0 0 0 1
586 0 0 0 0 1
643 1 0 0 0 1
788 0 * 1 0 * // detection of 1st sub-sequence
915 1 * 1 0 * // abort
1062 1 1 1 0 0
1395 1 0 0 0 0
1640 0 0 0 1 0

(23) is notTrueat any time. The first sub-sequence is detected at time 788. The event at time
915 does not match the expected second sub-sequence.

5.4.14 Sequences of conditional event sequences

The symbol* can be used to describe the scope of a vector expression directly in the vector
expression language. This is particularly useful for sequences ofvector_conditional_event

expressions.

In reusing(17) as example:

(10 (A & B) -> 10 (A | B)) & !D

the scope of the sample event report contains contain the variablesA, B, C, D, andE. The
vector_conditional_event expression(17) contains only the variablesA, B, andD and the
implicit local variablesA&B andA|B . Therefore, the global variablesC andE are out of scope
within (17) . The implicit local variablesA&B andA|B are in scope within, and only within,
(17) .

Now consider asequenceof vector_conditional_event expressions, where variables move
in and out of scope. With the following formalism, it is possible to transform such a sequence
into an equivalentvector_complex_event expression, allowing for a change of scope within
eachvector_conditional_event expression.

<vector_conditional_event#1> .. -> .. <vector_conditional_event#N>

where

<vector_conditional_event#i>
=== <vector_complex_event#i> & <boolean_expression#i>// 1 < i < N

The principle is to decompose eachvector_conditional_event expression into a sequence
of three vector expressionsprefix, kernel, andpostfixand then to reassemble the decomposed
expressions.

<vector_conditional_event#i>
=== <prefix#i> -> <kernel#i> -> <postfix#i>// 1 < i < N

1. Define the prefix for eachvector_conditional_event expression.
Theprefix is avector_event expression defining all implicit local variables.

Version 2.0 Advanced Library Format (ALF) Reference Manual 77

Modeling with vector expressions Functional Modeling

Example:

*? (A&B) & *? (A|B)

2. Define the kernel for eachvector_conditional_event expression.
Thekernel is thevector_complex_event expression equivalent to the
vector_conditional_event expression.

<vector_complex_event#i> & <boolean_expression#i>
=== <vector_complex_event#i>
& (11 <boolean_expression#i> ..->.. 11 <boolean_expression#i>)

The kernel can consist of one or several alternativevector_event_sequence expressions.
Within eachvector_event_sequence expression, the same set of global variables are
pulled out of scope at the firstvector_event expression and pushed back in scope at the
lastvector_event expression.
Example:

?* C & ?* E // global variables out of scope
& 10 (A & B) & 11 (!D) -> 10 (A | B) & 11 (!D)
& *? C & *? E // global variables back in scope

3. Define the postfix for eachvector_conditional_event expression.
Thepostfix is avector_event expression removing all implicit local variables.

Example:

?* (A&B) & ?* (A|B)

4. Join the subsequentvector_complex_event expressions with thevector_and

operator between prefix#i+1and kernel#i and also between postfix#i and kernel#i+1.

.. <vector_conditional_event#i> -> <vector_conditional_event#i+1>
..

=== .. <prefix#i>
-> <postfix#i-1> & <kernel#i> & <prefix#i+1>
-> <postfix#i> & <kernel#i+1> & <prefix#i+2>
-> <postfix#i+1> ..

The complete example:

(10 (A & B) -> 10 (A | B)) & !D
===
*? (A&B) & *? (A|B)
-> ?* C & ?* E
& 10 (A & B) & 11 (!D) -> 10 (A | B) & 11 (!D)
& *? C & *? E
-> ?* (A&B) & ?* (A|B)

Note: The in-and-out-of-scope definitions for global variables are within the kernel, whereas
the in-and-out-of-scope definitions for global variables are within the prefix and
postfix. In this way, the resultingvector_complex_event expression contains the
same uninterrupted sequence of events as the original sequence of
vector_conditional_event expressions.

78 Advanced Library Format (ALF) Reference Manual Version 2.0

Functional Modeling Modeling with vector expressions

5.4.15 Incompletely specified event sequences

So far the vector expression language has provided support forcompletely specified event
sequences and also the capability to put variables temporarily in and out of scope for event
observation. As opposed to changing the scope of event observation,incompletely specified
event sequencesrequire continuous observation of all variables while allowing the occurrence
of intermediate events between the specified events. The following operator can be used for
that purpose:

vector_followed_by , also calledfollowed-by operator, using the symbol~>.
The~> operator is the separator between consecutively occurring events, with possible
unspecified events in-between.

Detection of event sequences involving~> requires detection of the sub-sequence before~>,
setting a flag, detection of the sub-sequence after~>, and clearing the flag.

This can be illustrated with a sample event report:

time A B C D E
0 0 1 1 X 1
109 1 1 1 0 1 // 01 A detected, set flag
258 1 0 1 0 1
573 1 0 0 0 1 // 10 C detected, clear flag
586 0 0 0 0 1
643 1 0 0 0 1 // 01 A detected, set flag
788 0 1 1 0 1
915 1 1 1 0 1 // 01 A detected again
1062 1 1 1 0 0
1395 1 0 0 0 0 // 10 C detected, clear flag
1640 0 0 0 1 0

Example:

01 A ~> 10 C // (24)
// as opposed to previous example (5):01 A -> 10 C

(24) is Trueat time 573 because of01 A at time 109 and10 C at time 573. It isTrueagain at
time 1395 because of01 A at time 643 and10 C at 1395. On the other hand,(5) is neverTrue
because there are always events in-between01 A and10 C .

Vector expressions consisting ofvector_event expressions separated by-> or by~> are
calledvector_event_sequence expressions, using the same syntax rules for the two different
vector_followed_by operators. Consequently, all vector expressions involving
vector_event_sequence expressions andvector_binary operators are called
vector_complex_event expressions.

However, only a subset of the semantic transformation rules can be applied to vector
expressions containing~>.

Associative rule applies for both-> and~>.

(01 A ~> 01 B) ~> 01 C === 01 A ~> (01 C ~> 01 B ~> 01 C)

(01 A -> 01 B) -> 01 C === 01 A -> (01 C -> 01 B -> 01 C)

(01 A ~> 01 B) -> 01 C === 01 A ~> (01 C ~> 01 B -> 01 C)

(01 A -> 01 B) ~> 01 C === 01 A -> (01 C -> 01 B ~> 01 C)

Version 2.0 Advanced Library Format (ALF) Reference Manual 79

Modeling with vector expressions Functional Modeling

Distributive rule applies for both-> and~>.

(01 A | 01 B) -> 01 C === 01 A ~> 01 C | 01 B -> 01 C

(01 A | 01 B) ~> 01 C === 01 A ~> 01 C | 01 B ~> 01 C

(01 A | 01 B) -> 01 C === 01 A ~> 01 C | 01 B -> 01 C

Scalar multiplication rule applies only for-> . The transformation involving~> is more
complicated.

(01 A -> 01 B) & (01 C -> 01 D)
=== (01 A & 01 C) -> (01 B & 01 D)

(01 A ~> 01 B) & (01 C -> 01 D)
=== (01 A & 01 C) -> (01 B & 01 D)
| 01 A ~> 01 C -> (01 B & 01 D)

(01 A ~> 01 B) & (01 C ~> 01 D)
=== (01 A & 01 C) ~> (01 B & 01 D)
| 01 A ~> 01 C ~> (01 B & 01 D)
| 01 C ~> 01 A ~> (01 B & 01 D)

Transformation ofvector_conditional_event expressions intovector_complex_event

expressions applies only for-> .

(01 A -> 01 B) & C
=== 01 A & 11 C -> 01 B & 11 C

(01 A ~> 01 B) & C
 === 01 A & 11 C ~> 01 B & 11 C

Since the~> operator allows intermediate events, there is no way to express the continuously
True conditionC.

5.4.16 How to determine well-specified vector expressions

By defining semantics for

alternativevector_event_sequence expressions

and establishing calculation rules for

transformingvector_complex_event expressions into alternative
vector_event_sequence expressions

and for

transforming alternativevector_conditional_event expressions into alternative
vector_complex_event expressions,

semantics are now defined for all vector expressions.

The calculation rules also provide means to determine whether a vector expression is well-
specified or ill-specified. An ill-specified vector expression is contradictory in itself and can
therefore never beTrue.

Once a vector expression is reduced to a set of alternativevector_event_sequence

expressions, two criteria define whether a vector expression is well-defined or not.

80 Advanced Library Format (ALF) Reference Manual Version 2.0

Functional Modeling Variable declarations

• Compatibility between subsequent events on the same variable:
The next state of earlier event shall be compatible with previous state of later event. This
check applies only if no~> operator is found between the events.

• Compatibility between simultaneous events on the same variable:
Both the previous and next state of both events shall be compatible. Such events com-
monly occur as intermediate calculation results within vector expression transformation.

The following compatibility rules apply:

• ? is compatible with any other state. If the other state is* , the resulting state is?. Other-
wise, the resulting state is the other state.

• * is compatible with any other state. The resulting state is the other state.
• Any other state is only compatible with itself.

Examples:

01 A -> 01 B -> 10 A

The next state of01 A is compatible with the previous state of10 A .

0X A -> 01 B -> 10 A

The next state of0X A is not compatible with the previous state of10 A .

0X A ~> 01 B -> 10 A

Compatibility check does not apply, since intermediate events are allowed.

01 A & 10 A

Both the previous and next state ofA are contradictory; this results in an impossible event.

?1 A & 1? A

Both previous and next state ofA are compatible; this results in the non-event11 A .

5.5 Variable declarations

Inside aCELLobject, thePIN objects with thePINTYPE digital define variables forFUNCTION

objects inside the sameCELL. A primary input variableinside aFUNCTIONshall be declared as
a PIN with DIRECTION=input or both (sinceDIRECTION=both is a bidirectional pin).
However, it is not required that all declared pins are used in the function. Output variables
inside aFUNCTION need not be declared pins, since they are implicitly declared when they
appear at the left-hand side (LHS) of an assignment.

Example:

CELL my_cell {
PIN A {DIRECTION = input;}
PIN B {DIRECTION = input;}
PIN C {DIRECTION = output;}

Version 2.0 Advanced Library Format (ALF) Reference Manual 81

Variable declarations Functional Modeling

FUNCTION {
BEHAVIOR {

D = A && B;
C = !D;

}
}

}

C andD are output variables that need not be declared prior to use. After implicit declaration,
D is reused as an input variable.A andB are primary input variables.

5.5.1 BEHAVIOR

InsideBEHAVIOR, variables that appear at the LHS of an assignment conditionally controlled
by a vector expression, as opposed to an unconditional continuous assignment, hold their
values, when the vector expression evaluatesFalse. Those variables are considered to have
latch-type behavior.

Examples:

BEHAVIOR {
@(G){

Q = D; // both Q and QN have latch-type behavior
QN = !D;

}
}

BEHAVIOR {
@(G){

Q = D; // only Q has latch-type behavior
}
QN = !Q;

}

5.5.2 STATETABLE

The functional description can be supplemented by aSTATETABLE, the first row of which
contains the arguments that are object IDs of the declaredPINs. The arguments appear in two
fields, the first is input and the second is output. The fields are separated by a: . The rows are
separated by a; . The arguments can appear in both fields if thePINs have attribute
direction=output or direction=both . If direction=output , then the argument has latch-
type behavior. The argument on the input field is considered previous state and the argument
on the output field is considered the next state. Ifdirection=both , then the argument on the
input field applies for input direction and the argument on the output field applies for output
direction of the bidirectionalPIN .

Example:

CELL ff_sd {
PIN q {DIRECTION=output;}
PIN d {DIRECTION=input;}
PIN cp {DIRECTION=input;

 SIGNALTYPE=clock;
 POLARITY=rising_edge;}

82 Advanced Library Format (ALF) Reference Manual Version 2.0

Functional Modeling Variable declarations

PIN cd {DIRECTION=input; SIGNALTYPE=clear; POLARITY=low;}
PIN sd {DIRECTION=input; SIGNALTYPE=set; POLARITY=low;}
FUNCTION {

BEHAVIOR {
@(!cd) {q = 0;} :(!sd) {q = 1;} :(01 cp) {q = d;}

}
STATETABLE {

cd sd cp d q : q ;
0 ? ?? ? ? : 0 ;
1 0 ?? ? ? : 1 ;
1 1 1? ? 0 : 0 ;
1 1 ?0 ? 1 : 1 ;
1 1 1? ? 0 : 0 ;
1 1 ?0 ? 1 : 1 ;
1 1 01 ? ? :(d);

}
}

}

If the output variable with latch-type behavior depends only on the previous state of itself, as
opposed to the previous state of other output variables with latch-type behavior, it is not
necessary to use that output variable in the input field. This allows a more compact form of the
STATETABLE.

Example:

STATETABLE {
cd sd cp d : q ;
0 ? ?? ? : 0 ;
1 0 ?? ? : 1 ;
1 1 1? ? :(q);
1 1 ?0 ? :(q);
1 1 01 ? :(d);

}

A generic ALF parser shall make the following semantic checks:

• Are all variables of aFUNCTIONdeclared either by declaration asPIN names or through
assignment?

• Does theSTATETABLE exclusively contain declaredPINs?

• Is the format of theSTATETABLE, i.e., the number of elements in each field of each row,
consistent?

• Are the values consistently either state or transition digits?

• Is the number of digits in eachTABLE entry compatible with the signal bus width?

A more sophisticated checker for complete verification of logical consistency of aFUNCTION

given in both equation and tabular representation is out of scope for a generic ALF parser,
which checks only syntax and compliance to semantic rules. However, formal verification
algorithms can be implemented in special-purpose ALF analyzers or model generators/
compilers.

Version 2.0 Advanced Library Format (ALF) Reference Manual 83

Variable declarations Functional Modeling

5.5.3 Multi-dimensional variables

A group of pins of a cell can be logically considered together by declaring aPIN with a range.
A pin can be declared with one dimension or two dimensions. For example,

PIN A ; // declares a scalar pin A
PIN [1:8] A1 ; // declares pin A1 with bits numbered 1

// through 8
PIN [1:8] A2[1:4] ;// declares pin A2 with two dimensions

When a pin is declared with one dimension, the left number in the range shall specify the most
significant bit number and the right number shall specify the least significant bit number. If the
pin is declared with two dimensions, the second dimension shall specify the index of the first
and the last rows of the two-dimension pin object.

A PIN object can be referenced in one of the four forms:

• Individual bit - the pin name shall be followed by an index of the bit.

• Contiguous group of bits - the pin name shall be followed by the contiguous range of
bits. The most significant and least significant bit numbers shall follow the same
relationship as given in the declaration.

• EntirePIN object - only the pin name shall be used. It shall be illegal to reference the
entire two-dimension pin object in any operation.

• One row of aPIN object - for a two-dimension pin object, the name of the pin shall be
followed by the row index of that pin. It shall be illegal to reference the individual bit
or a group of bits of a two-dimension pin object directly in an operation.

When aPIN object is referenced on the left-hand side of an assignment, the result of the right-
hand side expression is copied from the least significant bit towards the most significant bit. If
the right-hand side value has lesser number of bits than the referencedPIN object in an
assignment, the right-hand side value shall be zero-extended to fill the remaining bits of the
referencedPIN object. If the right-hand side value has more bits than the referencedPIN object
in an assignment, the right-hand side value shall be truncated to the size of the referencedPIN

object.

Example:

pin [1:8] A1;
pin [1:8] A2[1:32] ;

A1[8] = 'b0 ;
A1[1:6] = 'o75 ; // is equivalent to A1[1:6] = 'b111_101
A1[1:5] = 'o75 ; // is equivalent to A1[1:5] = 'b11_101,

// left most bit is truncated
A2[18] = 'h5 ; // is equivalent to A2[18] = 'b0000_0101

// entire row 18 of A2 is assigned a value.

Two-dimensionPIN objects shall be referenced with the row index. It shall be illegal to directly
reference an individual bit or a contiguous group of bits of a two-dimensionPIN object. It shall
be illegal to reference the entirePIN object as a two-dimensionPIN object.

84 Advanced Library Format (ALF) Reference Manual Version 2.0

Functional Modeling Variable declarations

Example:

pin [1:8] A2[1:32] ;
pin [1:8] B1 ;
pin C ;

// legal references and assignments

A2[10] = 'h45 ; // assign 'h45 to row 10 of A2 ('b0100_0101)
B1 = A2[10] ; // copies whole row A2[10] to B1
C = B1[3] ; // c = 'b0

// Illegal references and assignments
// B1[3] = A2[10][3] ;illegal reference to bit 3 of A2[10]
// A2 = B1 ; illegal reference to entire A2

It shall be legal to use identifiers as an index, but expressions shall not be permitted.

Example:

pin [4:1] ADDR;

ADDR = 'd 10;
A2[ADDR] = 'h45 ; // assign 'h45 to row 10 of A2 ('b0100_0101)

// A2[ADDR+1] = 'h45 ; illegal

5.5.4 ROM initialization

TheSTATETABLE statement can be used to describe the contents of a ROM, as far as this con-
tent is fixed in the library.

Example:

CELL my_rom {
CELLTYPE = memory;
ATTRIBUTE { rom asynchronous }
PIN[1:2] addr { DIRECTION = input; SIGNALTYPE = address; }
PIN[3:0] dout { DIRECTION = output; SIGNALTYPE = data; }
PIN[3:0] mem[1:4] { DIRECTION=none; VIEW=none; SIGNALTYPE=data; }
FUNCTION {

BEHAVIOR { dout = mem[addr]; }
STATETABLE {

addr: mem ;
‘h0: ‘h5 ;
‘h1: ‘hA ;
‘h2: ‘h5 ;
‘h3: ‘hA ;

}
}

}

For flexibility, a separate included file can be used:

Version 2.0 Advanced Library Format (ALF) Reference Manual 85

Predefined models Functional Modeling

CELL my_rom {
CELLTYPE = memory;
ATTRIBUTE { rom asynchronous }
PIN[1:2] addr { DIRECTION = input; SIGNALTYPE = address; }
PIN[3:0] dout { DIRECTION = output; SIGNALTYPE = data; }
PIN[3:0] mem[1:4] { DIRECTION=none; VIEW=none; SIGNALTYPE=data; }
FUNCTION {

BEHAVIOR { dout = mem[addr]; }
INCLUDE “rom_initialization_file.alf” ;
}

}
}

The contents of the included filerom_initialization_file.alf are:

STATETABLE {
addr: mem ;
‘h0: ‘h5 ;
‘h1: ‘hA ;
‘h2: ‘h5 ;
‘h3: ‘hA ;

}

5.6 Predefined models

This section defines the use of predefined models in ALF.

5.6.1 Usage of PRIMITIVEs

A PRIMITIVE referenced in aCELL can replace the complete set ofPIN andFUNCTION

definition.PINs can be declared before the reference to thePRIMITIVE , in order to provide
supplementary annotations that cannot be inherited from thePRIMITIVE . However, theCELL

shall be pin-compatible with thePRIMITIVE .

If the PRIMITIVE or aCELL is referenced in an annotation container such asSCAN, only the
subset ofPINs used in the non-scan cell shall be compatible with thePINs of the cell.

The pin names can be referenced by order or by name. In the latter case, the LHS is the pin
name of the referencedPRIMITIVE or CELL (e.g., the non-scan cell), the RHS is the pin name
of the actual cell. A constant logic value can also appear at the LHS or RHS, indicating a pin
needs to be tied to a constant value. If this information is already specified in an annotation
inside thePIN object itself, referencing between a pin name and a constant value is not
necessary.

PRIMITIVE s can also be instantiated insideBEHAVIOR.

5.6.2 Concept of user-defined and predefined primitives

Primitives are described in ALF syntax. Primitives are generic cells containingPIN and
FUNCTION objects only, i.e., no characterization data. The primitives are used for structural
functional modeling.

86 Advanced Library Format (ALF) Reference Manual Version 2.0

Functional Modeling Predefined models

Example:

PRIMITIVE MY_PRIMITIVE {
PIN x { ... }
PIN y { ... }
PIN z { ... }
FUNCTION { ... }

}

CELL MY_CELL {
PIN a { ... }
PIN b { ... }
PIN c { ... }
FUNCTION {

BEHAVIOR { MY_PRIMITIVE { x=a; y=b; z=c; } }
}
...

}

 Extensible primitives, i.e., primitives with variable number of pins can be modeled using a
TEMPLATE.

Example:

TEMPLATE EXTENSIBLE_PRIMITIVE{
PRIMITIVE <primitive_name> {

PIN [0:<max_index>] pin_name { ... }
...

}
}

// instantiation of the template creates a primitive
EXTENSIBLE_PRIMITIVE {

primitive_name = MY_EXTENSIBLE_PRIMITIVE;
max_index = 2;

}

The set of statements above is equivalent to the following statement:

PRIMITIVE MY_EXTENSIBLE_PRIMITIVE {
PIN [0:2] pin_name { ... }

...
}

The primitive can be used as shown in the following example:

CELL MY_MEGACELL {
PIN a { ... }
PIN b { ... }
PIN c { ... }
FUNCTION {

BEHAVIOR {
// reference to the primitive
MY_EXTENSIBLE_PRIMITIVE {

pin_name[0] = a;

Version 2.0 Advanced Library Format (ALF) Reference Manual 87

Predefined models Functional Modeling

pin_name[1] = b;
pin_name[2] = c;

}
}

}
...

}

Primitives can be freely defined by the user. For convenience, ALF provides a set of predefined
primitives with the reserved prefixALF_ in their name, which cannot be used by user-defined
primitives.

For allPINs of predefined primitives, the following annotations are defined by default:

VIEW = functional;
SCOPE = behavioral;

For predefined extensible primitives, a placeholder can be directly in thePRIMITIVE definition:

PRIMITIVE ALF_EXTENSIBLE_PRIMITIVE {
PIN [0:<max_index>] pin_name { ... }

...
}

This is equivalent to the following more verbose set of statements:

TEMPLATE EXTENSIBLE_PRIMITIVE{
PRIMITIVE <primitive_name> {

PIN [0:<max_index>] pin_name { ... }
...

}
}

EXTENSIBLE_PRIMITIVE {
primitive_name = ALF_EXTENSIBLE_PRIMITIVE;
max_index = <max_index>;

}

5.6.3 Predefined combinational primitives

This section defines the use of predefined combinational primitives.

5.6.3.1 One input, multiple output primitives

There are two combinational primitives with one input pin and multiple output pins:

ALF_BUF andALF_NOT

A GROUP statement is used to define the behavior of all output pins in one statement.

The output pins are indexed starting with0. If 0 is the only index used, the index can be omitted
when referencing the output pin, e.g.,out refers toout[0] .

88 Advanced Library Format (ALF) Reference Manual Version 2.0

Functional Modeling Predefined models

PRIMITIVE ALF_BUF {
GROUP index {0:<max_index>}
PIN[0:<max_index>] out {

DIRECTION = output ;
}
PIN in {

DIRECTION = input ;
}

FUNCTION {
BEHAVIOR {

out[index] = in;
}

}
}

Figure 5-7: Primitive model of ALF_BUF

PRIMITIVE ALF_NOT {
GROUP index {0:<max_index>}
PIN[0:<max_index>] out {

DIRECTION = output ;
}
PIN in {

DIRECTION = input ;
}
FUNCTION {

BEHAVIOR {
out[index] = !in;

}
}

}

Figure 5-8: Primitive model of ALF_NOT

5.6.3.2 One output, multiple input primitives

There are six combinational primitives with one output pin and multiple input pins:

ALF_AND, ALF_NAND, ALF_OR, ALF_NOR, ALF_XOR, andALF_XNOR

The input pins are indexed starting with0. If 0 is the only index used, the index can be omitted
when referencing the input pin, e.g.,in refers toin[0] .

Version 2.0 Advanced Library Format (ALF) Reference Manual 89

Predefined models Functional Modeling

PRIMITIVE ALF_AND {
PIN out {

DIRECTION = output;
}
PIN[0:<max_index>] in {

DIRECTION = input;
}
FUNCTION {

BEHAVIOR {
out = & in;

}
}

}

Figure 5-9: Primitive model of ALF_AND

PRIMITIVE ALF_NAND {
PIN out {

DIRECTION = output;
}
PIN[0:<max_index>] in {

DIRECTION = input;
}
FUNCTION {

BEHAVIOR {
out = ~& in;

}
}

}

Figure 5-10: Primitive model of ALF_NAND

PRIMITIVE ALF_OR {
PIN out {

DIRECTION = output;
}
PIN[0:<max_index>] in {

DIRECTION = input;
}
FUNCTION {

BEHAVIOR {
out = | in;

}
}

}

Figure 5-11: Primitive model of ALF_OR

90 Advanced Library Format (ALF) Reference Manual Version 2.0

Functional Modeling Predefined models

PRIMITIVE ALF_NOR {
PIN out {

DIRECTION = output;
}
PIN[0:<max_index>] in {

DIRECTION = input;
}
FUNCTION {

BEHAVIOR {
out = ~| in;

}
}

}

Figure 5-12: Primitive model of ALF_NOR

PRIMITIVE ALF_XOR {
PIN out {

DIRECTION = output;
}
PIN[0:<max_index>] in {

DIRECTION = input;
}
FUNCTION {

BEHAVIOR {
out = ^in;

}
}

}

Figure 5-13: Primitive model of ALF_XOR

PRIMITIVE ALF_XNOR {
PIN out {

DIRECTION = output;
}
PIN[0:<max_index>] in {

DIRECTION = input;
}
FUNCTION {

BEHAVIOR {
out = ~^in;

}
}

}

Figure 5-14: Primitive model of ALF_XNOR

Version 2.0 Advanced Library Format (ALF) Reference Manual 91

Predefined models Functional Modeling

5.6.4 Predefined tristate primitives

There are four tristate primitives:

ALF_BUFIF1 , ALF_BUFIF0 , ALF_NOTIF1, andALF_NOTIF0

PRIMITIVE ALF_BUFIF1 {
PIN out {

DIRECTION = output;
ENABLE_PIN = enable;
ATTRIBUTE {TRISTATE}

}
PIN in {

DIRECTION = input;
}
PIN enable {

DIRECTION = input;
SIGNALTYPE = out_enable;

}

FUNCTION {
BEHAVIOR {

out = (enable)? in : 'bZ;
}
STATETABLE {

enable in : out;
 0 ? : Z;
 1 ? : (in);

}
}

}

Figure 5-15: Primitive model of ALF_BUFIF1

PRIMITIVE ALF_BUFIF0 {
PIN out {

DIRECTION = output;
ENABLE_PIN = enable;
ATTRIBUTE {TRISTATE}

}
PIN in {

DIRECTION = input;
}
PIN enable {

DIRECTION = input;
SIGNALTYPE = out_enable;

}
FUNCTION {

BEHAVIOR {
out = (!enable)? in : 'bZ;

}

92 Advanced Library Format (ALF) Reference Manual Version 2.0

Functional Modeling Predefined models

STATETABLE {
enable in : out;
 1 ? : Z;
 0 ? : (in);

}
}

}

Figure 5-16: Primitive model of ALF_BUFIF0

PRIMITIVE ALF_NOTIF1 {
PIN out {

DIRECTION = output;
ENABLE_PIN = enable;
ATTRIBUTE {TRISTATE}

}
PIN in {

DIRECTION = input;
}

PIN enable {
DIRECTION = input;
SIGNALTYPE = out_enable;

}
FUNCTION {

BEHAVIOR {
out = (enable)? !in : 'bZ;

}
STATETABLE {

enable in : out;
 0 ? : Z;
 1 ? : (!in);

}
}

}

Figure 5-17: Primitive model of ALF_NOTIF1

PRIMITIVE ALF_NOTIF0 {
PIN out {

DIRECTION = output;
ENABLE_PIN = enable;
ATTRIBUTE {TRISTATE}

}
PIN in {

DIRECTION = input;
}
PIN enable {

DIRECTION = input;
SIGNALTYPE = out_enable;

}

Version 2.0 Advanced Library Format (ALF) Reference Manual 93

Predefined models Functional Modeling

FUNCTION {
BEHAVIOR {

out = (!enable)? !in : 'bZ;
}
STATETABLE {

enable in : out;
 1 ? : Z;
 0 ? : (!in);

}
}

}

Figure 5-18: Primitive model of ALF_NOTIF0

5.6.5 Predefined multiplexor

The predefined multiplexor has a known output value if either the select signal and the selected
data inputs are known or both data inputs have the same known value while the select signal is
unknown.

PRIMITIVE ALF_MUX {
PIN Q {

DIRECTION = output;
SIGNALTYPE = data;

}
PIN[1:0] D {

DIRECTION = input;
SIGNALTYPE = data;

}
PIN S {

DIRECTION = input;
SIGNALTYPE = select;

}
FUNCTION {

BEHAVIOR {
Q = (S || (d[0] ~^ d[1]))? d[1] : d[0];

}
STATETABLE {

D[0] D[1] S : Q ;
? ? 0 : (D[0]);
? ? 1 : (D[1]);
0 0 ? : 0;
1 1 ? : 1;

}
}

}

Figure 5-19: Primitive model of ALF_MUX

94 Advanced Library Format (ALF) Reference Manual Version 2.0

Functional Modeling Predefined models

5.6.6 Predefined flip-flop

A dual-rail output D-flip-flop with asynchronous set and clear pins is a generic edge-sensitive
sequential device. Simpler flip-flops can be modeled using this primitive by setting input pins
to appropriate constant values. More complex flip-flops can be modeled by adding
combinational logic around the primitive.

A particularity of this model is the use of the last two pinsQ_CONFLICT andQN_CONFLICT,
which are virtual pins. They specify the state ofQ andQN in the eventCLEAR andSET become
active simultaneously.

PRIMITIVE ALF_FLIPFLOP {
PIN Q {

DIRECTION = output;
SIGNALTYPE = data;
POLARITY = non_inverted;

}

PIN QN {
DIRECTION = output;
SIGNALTYPE = data;
POLARITY = inverted;

}
PIN D {

DIRECTION = input;
SIGNALTYPE = data;

}
PIN CLOCK {

DIRECTION = input;
SIGNALTYPE = clock;
POLARITY = rising_edge;

}
PIN CLEAR {

DIRECTION = input;
SIGNALTYPE = clear;
POLARITY = high;
ACTION = asynchronous;

}
PIN SET {

DIRECTION = input;
SIGNALTYPE = set;
POLARITY = high;
ACTION = asynchronous;

}
PIN Q_CONFLICT {

DIRECTION = input;
VIEW = none;

}
PIN QN_CONFLICT {

DIRECTION = input;
VIEW = none;

}
FUNCTION {

ALIAS QX = Q_CONFLICT;

Version 2.0 Advanced Library Format (ALF) Reference Manual 95

Predefined models Functional Modeling

ALIAS QNX = QN_CONFLICT;
BEHAVIOR {

@ (CLEAR && SET) {
Q = QX;
QN = QNX;

}
: (CLEAR) {

Q = 0;
QN = 1;

}
: (SET) {

Q = 1;
QN = 0;

}
: (01 CLOCK) { // edge-sensitive behavior

Q = D;
QN = !D;

}
}
STATETABLE {

D CLOCK CLEAR SET QX QNX : Q QN ;
? ?? 1 1 ? ? : (QX) (QNX);
? ?? 0 1 ? ? : 1 0 ;
? ?? 1 0 ? ? : 0 1 ;
? 1? 0 0 ? ? : (Q) (QN) ;
? ?0 0 0 ? ? : (Q) (QN) ;
? 01 0 0 ? ? : (D) (!D) ;

}
}

}

Figure 5-20: Primitive model of ALF_FLIPFLOP

5.6.7 Predefined latch

The dual-rail D-latch with set and clear pins has the same functionality as the flip-flop, except
the level-sensitive clock (ENABLE pin) is used instead of the edge-sensitive clock.

PRIMITIVE ALF_LATCH {
PIN Q {

DIRECTION = output;
SIGNALTYPE = data;
POLARITY = non_inverted;

}
PIN QN {

DIRECTION = output;
SIGNALTYPE = data;
POLARITY = inverted;

}
PIN D {

DIRECTION = input;
SIGNALTYPE = data;

}

96 Advanced Library Format (ALF) Reference Manual Version 2.0

Functional Modeling Predefined models

PIN ENABLE {
DIRECTION = input;
SIGNALTYPE = clock;
POLARITY = high;

}
PIN CLEAR {

DIRECTION = input;
SIGNALTYPE = clear;
POLARITY = high;
ACTION = asynchronous;

}
PIN SET {

DIRECTION = input;
SIGNALTYPE = set;
POLARITY = high;
ACTION = asynchronous;

}

PIN Q_CONFLICT {
DIRECTION = input;
VIEW = none;

}
PIN QN_CONFLICT {

DIRECTION = input;
VIEW = none;

}
FUNCTION {

ALIAS QX = Q_CONFLICT;
ALIAS QNX = QN_CONFLICT;
BEHAVIOR {

@ (CLEAR && SET) {
Q = QX;
QN = QNX;

}
: (CLEAR) {

Q = 0;
QN = 1;

}
: (SET) {

Q = 1;
QN = 0;

}
: (ENABLE) { // level-sensitive behavior

Q = D;
QN = !D;

}
}
STATETABLE {

D ENABLE CLEAR SET QX QNX : Q QN ;
? ? 1 1 ? ? : (QX) (QNX);

Version 2.0 Advanced Library Format (ALF) Reference Manual 97

Predefined models Functional Modeling

? ? 0 1 ? ? : 1 0 ;
? ? 1 0 ? ? : 0 1 ;
? 0 0 0 ? ? : (Q) (QN) ;
? 1 0 0 ? ? : (D) (!D) ;

}
}

}

Figure 5-21: Primitive model of ALF_LATCH

5.6.8 Parameterizeable cells

The concept of describing primitives with variable bus size shall be extended to parameterize-
able cells. Dynamic template instantiations can be used for that purpose.

Template definitions can incorporate any type of object. Placeholders in the template defini-
tion are the equivalent of parameters. Hence, the definition of parameterizeable cells is already
supported within the support of general template definitions.

In astatic template instantiation, which is identified by the name of the template and by the
optional value assignmentstatic , placeholders are replaced by fixed values or by complex
objects containing fixed values. Non-referenced placeholders stay in place and eventually
result in semantically unrecognizable objects, which cannot be processed by downstream
applications. Such unrecognizable objects shall be disregarded.

In adynamic template instantiation, which is identified by the name of the template and by the
mandatory value assignmentdynamic , some placeholders can not be replaced. Those place-
holders are application parameters. The template definition can already contain certain rela-
tionships between parameters (e.g., arithmetic model and its arguments in the header).
Therefore the template instantiation determines which parameters need application values in
order to calculate values for other parameters.

Going one step further, even the relationship between parameters can be defined in the
dynamic template instantiation rather than in the template definition. In this case, the identifi-
ers inside the placeholders become variables for arithmetic assignments. This definition of
variables shall only be recognized within the context of the dynamic template instantiation.

Arithmetic assignments provide a shorter syntax for equation-based arithmetic models where
only placeholder-parameters are involved.

param1 = 1.5 + 0.4 * param2 ** 3 - 2.7 / param3

is equivalent to

param1 {
HEADER { param2 param3 }
EQUATION { 1.5 + 0.4 * param2 ** 3 - 2.7 / param3 }

}

98 Advanced Library Format (ALF) Reference Manual Version 2.0

Functional Modeling Predefined models

For table-based models or for models where the arguments have children objects attached to
them, the verbose syntax withHEADER needs to be used.

Example:

TEMPLATE adder {
CELL <cellname> {

PIN [<bitwidth> : 1] A { DIRECTION = input; }
PIN [<bitwidth> : 1] B { DIRECTION = input; }
PIN Cin { DIRECTION = input; }
PIN [<bitwidth> : 1] S { DIRECTION = output; }
PIN Cout { DIRECTION = output; }
FUNCTION {

BEHAVIOR {
S = A + B + Cin;
Cout = (A + B + Cin >= (‘b1 << (<bitwidth> - 1)));

}
}
AREA = <areavalue>;
VECTOR (?! Cin -> ?! Cout) {

DELAY {
HEADER {

CAPACITANCE {PIN = Cout; }
SLEWRATE {PIN = Cin; }

}
EQUATION { <D0> + <D1>*CAPACITANCE + <D2>*SLEWRATE }

}
}

}
}

The template is used for instantiation of a hard macro:

adder { /* a hard macro */
cellname = ripple_carry_adder_16_bit;
bitwidth = 16;
areavalue = 500;
// D0, D1, D2 are undefined. DELAY cannot be calculated.

}

The static instantiation of the hard macro is equivalent to the following static object:

CELL ripple_carry_adder_16_bit {
PIN [16 : 1] A { DIRECTION = input; }
PIN [16 : 1] B { DIRECTION = input; }
PIN Cin { DIRECTION = input; }
PIN [16 : 1] S { DIRECTION = output; }
PIN Cout { DIRECTION = output; }

FUNCTION {
BEHAVIOR {

S = A + B + Cin;
Cout = (A + B + Cin >= ’b1000000000000000);

}
}
AREA = 500 ;

Version 2.0 Advanced Library Format (ALF) Reference Manual 99

Predefined models Functional Modeling

VECTOR (?! Cin -> ?! Cout) {
// DELAY {
// HEADER {
// CAPACITANCE {PIN = Cout; }
// SLEWRATE {PIN = Cin; }
// }
// EQUATION { <D0> + <D1>*CAPACITANCE + <D2>*SLEWRATE }
// }

}
}

Now the template is used for instantiation of a soft macro:

adder = dynamic { /* a soft macro */
cellname = ripple_carry_adder_N_bit;
areavalue = 20 + 30 * bitwidth;
}
D0 {

HEADER { AREA { TABLE { 10 20 30 } } }
TABLE { 15.6 34.3 50.7 }

}
D1 = 0.29;
D2 = 0.08;

}

The dynamic instantiation of the soft macro results in an object for which certain data depend
on the runtime-values of the placeholder-parameters, as indicated initalic below. The
calculation method for such data, however, can be compiled statically (e.g., the equation for
AREA is a function of bitwidth and the lookup table forD0 is a function ofAREA).

CELL ripple_carry_adder_N_bit {
PIN [bitwidth : 1] A { DIRECTION = input; }
PIN [bitwidth : 1] B { DIRECTION = input; }
PIN Cin { DIRECTION = input; }
PIN [bitwidth : 1] S { DIRECTION = output; }
PIN Cout { DIRECTION = output; }

FUNCTION {
BEHAVIOR {

S = A + B + Cin;
Cout = (A + B + Cin >= (‘b1 << (bitwidth - 1)));

}
}

AREA = 20 + 30 * bitwidth ;

VECTOR (?! Cin -> ?! Cout) {
DELAY {

HEADER {
CAPACITANCE {PIN = Cout; }
SLEWRATE {PIN = Cin; }
D0 {

100 Advanced Library Format (ALF) Reference Manual Version 2.0

Functional Modeling Predefined models

HEADER { AREA { TABLE { 10 20 30 } } }
TABLE { 15.6 34.3 50.7 }

}
}
EQUATION { D0 + 0.29*CAPACITANCE + 0.08*SLEWRATE }

}
}

}

Version 2.0 Advanced Library Format (ALF) Reference Manual 101

Section 6

Modeling for Synthesis and Test

6.1 Annotations and attributes for a CELL

This section defines variousCELL annotations and attributes.

6.1.1 CELLTYPE annotation

CELLTYPEclassifies the functionality of cells into broad categories. This is useful for informa-
tion purpose, for tools which do not need the exact specification of functionality, and for tools
which can interpret the exact specification of functionality only for certain categories of cells.
The exact specification of the functionality is described in theFUNCTION statement.

CELLTYPE = string ;

which can take the values shown in Table 6-1.

6.1.2 ATTRIBUTE within a CELL object

An ATTRIBUTE within aCELL classifies the functionality given byCELLTYPE in more detail.

Table 6-1 : CELLTYPE annotations for a CELL object

Annotation string Description

buffer cell is a buffer, inverting or non-inverting

combinational cell is a combinational logic element

multiplexor cell is a multiplexor

flipflop cell is a flip-flop

latch cell is a latch

memory cell is a memory or a register file

block cell is a hierarchical block, i.e., a complex element which can
be represented as a netlist. All instances of the netlist are
library elements, i.e., there is aCELL model for each of them
in the library.

core cell is a core, i.e., a complex element which can be repre-
sented as a netlist. At least one instance of the netlist is not a
library element, i.e., there is noCELL model, but aPRIMI-
TIVE model for that instance.

special cell is a special element, which can only be used in certain
application contexts not describable by theFUNCTION state-
ment. Examples: busholders, protection diodes, and fillcells.

102 Advanced Library Format (ALF) Reference Manual Version 2.0

Modeling for Synthesis and Test Annotations and attributes for a CELL

The attributes shown in Table 6-2 can be used within aCELL with CELLTYPE=memory.

The attributes shown in Table 6-3 can be used within aCELL with CELLTYPE=block .

The attributes shown in Table 6-4 can be used within aCELL with CELLTYPE=core .

Table 6-2 : Attributes within a CELL with CELLTYPE=memory

Attribute item Description

RAM Random Access Memory

ROM Read Only Memory

CAM Content Addressable Memory

static static memory (e.g., static RAM)

dynamic dynamic memory (e.g., dynamic RAM)

asynchronous asynchronous memory

synchronous synchronous memory

Table 6-3 : Attributes within a CELL with CELLTYPE=block

Attribute item Description

counter cell is a complex sequential cell going through a predefined
sequence of states in its normal operation mode where each
state represents an encoded control value.

shift_register cell is a complex sequential cell going through a predefined
sequence of states in its normal operation mode, where each
subsequent state can be obtained from the previous one by a
shift operation. Each bit represents a data value.

adder cell is an adder, i.e., a combinational element performing an
addition of two operands.

subtractor cell is a subtractor, i.e., a combinational element performing a
subtraction of two operands.

multiplier cell is a multiplier, i.e., a combinational element performing a
multiplication of two operands.

comparator cell is a comparator, i.e., a combinational element comparing
the magnitude of two operands.

ALU cell is an arithmetic logic unit, i.e., a combinational element
combining the functionality of adder, subtractor, comparator
in a selectable way.

Table 6-4 : Attributes within a CELL with CELLTYPE=core

Attribute item Description

PLL CELL is a phase-locked loop

DSP CELL is a digital signal processor

CPU CELL is a central processing unit

GPU CELL is a graphical processing unit

Version 2.0 Advanced Library Format (ALF) Reference Manual 103

Annotations and attributes for a CELL Modeling for Synthesis and Test

The attributes shown in Table 6-5 can be used within aCELL with CELLTYPE=special .

6.1.3 SWAP_CLASS annotation

SWAP_CLASS = string ;

The value is the name of a declaredCLASS. Multi-value annotation can be used. Cells referring
to the sameCLASS can be swapped for certain applications.

Cell-swapping is only allowed under the following conditions:

• theRESTRICT_CLASS annotation (see Section 6.1.4) authorizes usage of the cell
• the cells to be swapped are compatible from an application standpoint (functional compat-

ibility for synthesis and physical compatibility for layout)

6.1.4 RESTRICT_CLASS annotation

RESTRICT_CLASS = string ;

The value is the name of a declaredCLASS. Multi-value annotation can be used. Cells referring
to a particular class can be used in design tools identified by the value. The restricted
annotations are shown in Table 6-6.

Table 6-5 : Attributes within a CELL with CELLTYPE=special

Attribute item Description

busholder CELL enables a tristate bus to hold its last value before all
drivers went into high-impedance state (detail seeFUNCTION
statement)

clamp CELL connects a net to a constant value (logic value and drive
strength seeFUNCTION statement)

diode CELL is a diode (noFUNCTION statement)

capacitor CELL is a capacitor (noFUNCTION statement)

resistor CELL is a resistor (noFUNCTION statement)

inductor CELL is an inductor (noFUNCTION statement)

fillcell CELL is merely used to fill unused space in layout (noFUNC-
TION statement)

Table 6-6 : Predefined values for RESTRICT_CLASS

Annotation string Description

synthesis use restricted to logic synthesis

scan use restricted to scan synthesis

datapath use restricted to datapath synthesis

clock use restricted to clock tree synthesis

layout use restricted to layout, i.e., place & route

104 Advanced Library Format (ALF) Reference Manual Version 2.0

Modeling for Synthesis and Test Annotations and attributes for a CELL

User-defined values are also possible. If a cell has no or only unknown values for
RESTRICT_CLASS, the application tool shall not modify any instantiation of that cell in the
design. However, the cell shall still be considered for analysis.

6.1.5 Independent SWAP_CLASS and RESTRICT CLASS

SWAP_CLASS and RESTRICT_CLASS may be defined for cells, independent of each other.
In this case, the set of cells that can be swapped with each other is the set of cells with a non-
empty intersection of both SWAP_CLASS and RESTRICT_CLASS.

Example:

CLASS foo;
CLASS bar;
CLASS whatever;
CLASS my_tool;
CELL cell1 {

SWAP_CLASS { foo bar }
RESTRICT_CLASS { synthesis datapath }

}
CELL cell2 {

SWAP_CLASS { foo whatever }
RESTRICT_CLASS { synthesis scan my_tool }

}

The cellscell1 andcell2 can be used for synthesis, where they can be swapped which each
other. Cellcell1 can be also used for datapath. Cellcell2 can be also used for scan insertion
and for the user-defined applicationmy_tool . Figure 6-1 depicts this scenario.

Figure 6-1: Illustration of independent SWAP_CLASS and RESTRICT_CLASS

foo

bar

whatever

synthesis

datapath scan

my_tool

SWAP_CLASS
for cell1

SWAP_CLASS
for cell2

RESTRICT_CLASS
for cell1 RESTRICT_CLASS

for cell2

non-empty intersection

Version 2.0 Advanced Library Format (ALF) Reference Manual 105

Annotations and attributes for a CELL Modeling for Synthesis and Test

6.1.6 SWAP_CLASS with inherited RESTRICT_CLASS

The definition of a CLASS may contain a RESTRICT_CLASS annotation. In this case, the
RESTRICT_CLASS is inherited by the SWAP_CLASS. Cells can only be swapped if the
intersection of their SWAP_CLASS and the inherited RESTRICT_CLASS is non-empty.

Example :

A combination ofSWAP_CLASS andRESTRICT_CLASS can be used to emulate the concept of
“logically equivalent cells” and “electrically equivalent cells”. A synthesis tool needs to know
about “logically equivalent cells” for swapping. A layout tool needs to know about “electrically
equivalent cells” for swapping.

CLASS all_nand2 { RESTRICT_CLASS { synthesis } }
CLASS all_high_power_nand2 { RESTRICT_CLASS { layout } }
CLASS all_low_power_nand2 { RESTRICT_CLASS { layout } }

CELL cell1 {
SWAP_CLASS { all_nand2 all_low_power_nand2 }

}
CELL cell2 {

SWAP_CLASS { all_nand2 all_high_power_nand2 }
}
CELL cell3 {

SWAP_CLASS { all_low_power_nand2 }
}
CELL cell4 {

SWAP_CLASS { all_high_power_nand2 }
}

all_nand2 encompasses a set of logically equivalent cells.
all_high_power_nand2 encompasses a set of electrically equivalent cells.
all_low_power_nand2 encompasses another set of electrically equivalent cells.

The synthesis tool can swapcell1 with cell2 . The layout tool can swapcell1 with cell3

andcell2 with cell4 . Figure 6-2 depicts this scenario.

106 Advanced Library Format (ALF) Reference Manual Version 2.0

Modeling for Synthesis and Test Annotations and attributes for a CELL

Figure 6-2: Illustration of SWAP_CLASS with inherited RESTRICT_CLASS

6.1.7 SCAN_TYPE annotation

SCAN_TYPE = string ;

can take the values shown in Table 6-7.

See Section A.3 for examples.

6.1.8 SCAN_USAGE annotation

SCAN_USAGE = string ;

Table 6-7 : SCAN_TYPE annotations for a CELL object

Annotation string Description

muxscan a multiplexor for normal data and scan data

clocked a special scan clock

lssd combination between flip-flop and latch with special clocking
(level sensitive scan design)

control_0 combinational scan cell, controlling pin shall be0 in scan mode

control_1 combinational scan cell, controlling pin shall be1 in scan mode

all_nand2 synthesis

layout

SWAP_CLASS
for cell1

SWAP_CLASS
for cell2

inherited RESTRICT_CLASS

non-empty intersection

all_low_power_nand2

all_high_power_nand2 layout

SWAP_CLASS
for cell4

SWAP_CLASS
for cell3

between cell2 and cell4
non-empty intersection
between cell1 and cell3

non-empty intersection
between cell1 and cell2

Version 2.0 Advanced Library Format (ALF) Reference Manual 107

Annotations and attributes for a CELL Modeling for Synthesis and Test

can take the values shown in Table 6-8.

The SCAN_USAGE applies for a special cell which is designed to be the primary input, output
or intermediate stage of a scan chain. It also applies for macro blocks with connected scan
chains in case there are particular scan-ordering requirements.

6.1.9 BUFFERTYPE annotation

BUFFERTYPE = string ;

can take the values shown in Table 6-9.

6.1.10 DRIVERTYPE annotation

DRIVERTYPE = string ;

can take the values shown in Table 6-10.

Note: DRIVERTYPE applies only for cells withBUFFERTYPE = input | output | inout .

6.1.11 PARALLEL_DRIVE annotation

PARALLEL_DRIVE = unsigned ;

specifies the number of parallel drivers. Must be greater than zero. Default is 1.

Table 6-8 : SCAN_USAGE annotations for a CELL object

Annotation string Description

input primary input in a chain of cells

output primary output in a chain of cells

hold holds intermediate value in the scan chain

Table 6-9 : BUFFERTYPE annotations for a CELL object

Annotation string Description

input cell has at least one external (off-chip) input pin

output cell has at least one external (off-chip) output pin

inout cell has at least one external (off-chip) bidirectional pin

internal cell has only internal (on-chip) pins

Table 6-10 DRIVERTYPE annotations for a CELL object

Annotation string Description

predriver cell is a predriver, i.e., the core part of an IO buffer

slotdriver cell is a slotdriver, i.e., the pad of an IO buffer with off-chip connection

both cell is both a predriver and a slot driver, i.e., a complete IO buffer

108 Advanced Library Format (ALF) Reference Manual Version 2.0

Modeling for Synthesis and Test NON_SCAN_CELL statement

6.2 NON_SCAN_CELL statement

non_scan_cell ::=

NON_SCAN_CELL {non_scan_ cell_instantiations }

non_scan_ cell_instantiations ::=
non_scan_ cell_instantiation { non_scan_ cell_instantiation }

non_scan_ cell_instantiation ::=

cell _identifier { pin_assignments }
| primitive _identifier { pin_assignments }

In case of a single non-scan cell, the following syntax shall also be valid:

NON_SCAN_CELL =non_scan_ cell_instantiation

This statement shall define non-scan cell equivalency to the scan cell in which this annotation
is contained. A cell instantiation form is used to reference the library cell that defines the non-
scan functionality of the current cell. If no such cell is available or defined, or if an explicit
reference to such a cell is not desired, then a primitive instantiation form can reference a
primitive, either ALF- or user- defined, for such use. In either case, constant values can appear
on either the left-hand side or right-hand side of the pin connectivity relationships. A constant
on the left-hand side defines the value the scan cell pins (appearing on the right-hand side) shall
have in order for the primitive to perform with the same functionality as does the instantiated
reference. A statement containing multiple non-scan cells shall indicate a choice between
alternative non-scan cells.

Example:

CELL my_flip_flop {
PIN q { DIRECTION=output; }
PIN d { DIRECTION=input; }
PIN clk {DIRECTION=input; SIGNALTYPE=clock; POLARITY=rising_edge;}
PIN clear { DIRECTION=input; SIGNALTYPE=clear; POLARITY=low; }
// followed by function, vectors etc.

}

CELL my_other_flip_flop {
// declare the pins
// followed by function, vectors etc.

}

CELL my_scan_flip_flop {
PIN data_out { DIRECTION=output; }
PIN data_in { DIRECTION=input; }
PIN clock { DIRECTION=input; }
PIN scan_in { DIRECTION=input; }
PIN scan_sel { DIRECTION=input; }
NON_SCAN_CELL {

my_flip_flop {
q = data_out;
d = data_in;
clk = clock;
clear = 'b1; // scan cell has no clear

Version 2.0 Advanced Library Format (ALF) Reference Manual 109

STRUCTURE statement Modeling for Synthesis and Test

'b0 = scan_in; // non-scan cell has no scan_in
'b0 = scan_sel; // non-scan cell has no scan_sel

}
my_other_flip_flop {
// put in the pin assignments
}

}

// followed by function, vectors etc.
}

Note: Both scan cells and the referenced non-scan cells must have at least the
RESTRICT_CLASS value “scan”.

Note: In this example, the non-scan cell has a CLEAR pin and the scan cell has not. Therefore
the scan cell can replace the non-scan cell only if the instance of the non-scan cell has
the CLEAR pin tied to ‘b1. This situation is rather exceptional. In practice, the scan cell
should have a true superset of non-scan cell functionality.

6.3 STRUCTURE statement

An optionalSTRUCTUREstatement shall be legal in the context of aFUNCTION. The purpose of
theSTRUCTURE statement is to describe the structure of a complex cell composed of atomic
cells, for example I/O buffers, LSSD flip-flops, or clock trees.

TheSTRUCTURE statement shall be legal inside theFUNCTION statement (see Section 11.17):

structure ::=

STRUCTURE { named_cell_instantiations }

named_cell_instantiations ::=
named_cell_instantiation { named_cell_instantiation }

named_cell_instantiation ::=

cell_ identifier instance_ identifier { logic_values }
| cell_ identifier instance_ identifier { pin_instantiations }

TheSTRUCTURE statement shall describe a netlist of components inside theCELL. TheSTRU-

CURE statement shall not be a substitute for theBEHAVIOR statement. If aFUNCTION contains
only aSTRUCTURE statement and noBEHAVIOR statement, a behavior description for that par-
ticular cell shall be meaningless (e.g., fillcells, diodes, vias, or analog cells).

Timing and power models shall be provided for theCELL, if such models are meaningful.
Application tools are not expected to use function, timing, or power models from the instanti-
ated components as a substitute of a missing function, timing, or power model at the top-level.
However, tools performing characterization, construction, or verification of a top-level model
shall use the models of the instantiated components for this purpose.

Test synthesis applications can use the structural information in order to define a one-to-many
mapping for scan cell replacement, such as where a single flip-flop is replaced by a pair of

110 Advanced Library Format (ALF) Reference Manual Version 2.0

Modeling for Synthesis and Test STRUCTURE statement

master/slave latches. A macro cell can be defined whose structure is a netlist containing the
master and slave latch and this shall contain theNON_SCAN_CELL annotation to define which
sequential cells it is replacing. No timing model is required for this macro cell, since it should
be treated as a transparent hierarchy level in the design netlist after test synthesis.

Notes:

1. Everyinstance_ identifier within aSTRUCTURE statement shall be different from
each other.

2. TheSTRUCTURE statement provides a directive to the application (e.g., synthesis and
DFT) as to how theCELL is implemented. ACELL referenced in
named_cell_instantiation can be replaced by anotherCELL within the same
SWAP_CLASS andRESTRICT_CLASS (recognized by the application).

3. Thecell_ identifier within aSTRUCTURE statement can refer to actual cells as well
as to primitives. The usage of primitives is recommended in fault modeling for DFT.

4. BEHAVIORstatements also provide the possibility of instantiating primitives. However,
those instantiations are for modeling purposes only; they do not necessarily match a
physical structure. TheSTRUCTURE statement always matches a physical structure.

Example 1:

iobuffer = pre buffer + main buffer

CELL my_main_driver {
DRIVERTYPE = slotdriver ;
BUFFERTYPE = output ;
PIN i { DIRECTION = input; }
PIN o { DIRECTION = output; }
FUNCTION { BEHAVIOR { o = i ; } }

}

CELL my_pre_driver {
DRIVERTYPE = predriver ;
BUFFERTYPE = output ;
PIN i { DIRECTION = input; }
PIN o { DIRECTION = output; }
FUNCTION { BEHAVIOR { o = i ; } }

}

CELL my_buffer {
DRIVERTYPE = both ;
BUFFERTYPE = output ;
PIN A { DIRECTION = input; }
PIN Z { DIRECTION = output; }
PIN Y { VIEW = physical; }
FUNCTION {

Version 2.0 Advanced Library Format (ALF) Reference Manual 111

STRUCTURE statement Modeling for Synthesis and Test

BEHAVIOR { Z = A ; }
STRUCTURE {

my_pre_driver pre { A Y }// pin by order
my_main_driver main { i=Y; o=Z; }// pin by name

}
}

}

Example 2:

lssd flip-flop = latch + flip-flop + mux

CELL my_latch {
RESTRICT_CLASS { synthesis scan }
PIN enable { DIRECTION = input; }
PIN d { DIRECTION = input; }
PIN d { DIRECTION = output; }
FUNCTION { BEHAVIOR {

@ (enable) { q = d ; }
} }

}

CELL my_flip-flop {
RESTRICT_CLASS { synthesis scan }
PIN clock { DIRECTION = input; }
PIN d { DIRECTION = input; }
PIN q { DIRECTION = output; }
FUNCTION { BEHAVIOR {

@ (01 clock) { q = d ; }
} }

}

CELL my_mux {
RESTRICT_CLASS { synthesis scan }
PIN dout { DIRECTION = output; }
PIN din0 { DIRECTION = input; }
PIN din1 { DIRECTION = input; }
PIN select { DIRECTION = input; }
FUNCTION { BEHAVIOR {

dout = select ? din1 : din0 ;
} }

}

CELL my_lssd_flip-flop {
RESTRICT_CLASS { scan }
CELLTYPE = block;
SCAN_TYPE = lssd;
PIN clock { DIRECTION = input; }
PIN master_clock { DIRECTION = input; }
PIN slave_clock { DIRECTION = input; }
PIN scan_data { DIRECTION = input; }
PIN din { DIRECTION = input; }
PIN dout { DIRECTION = output; }
PIN scan_master { VIEW = physical; }
PIN scan_slave { VIEW = physical; }
PIN d_internal { VIEW = physical; }
FUNCTION { BEHAVIOR {

112 Advanced Library Format (ALF) Reference Manual Version 2.0

Modeling for Synthesis and Test STRUCTURE statement

@ (master_clock) {
scan_data_master = scan_data ;

}
@ (slave_clock & ! clock) {

dout = scan_data_master ;
} : (01 clock) {

dout = din ;
} }
STRUCTURE {

my_latch U0 {
enable = master_clock;
din = scan_data;
dout = scan_data_master;

}
my_flip-flop U1 {

clock = clock;
d = din;
q = d_internal;

}
my_mux U2 {

select = slave_clock;
din1 = scan_data_master;
din0 = dout;
dout = scan_data_slave;

}
my_mux U3 {

select = clock;
din1 = d_internal;
din0 = scan_data_slave;
dout = dout;

} }
}
NON_SCAN_CELL {

my_flip_flop {
clock = clock;
d = din;
q = dout;
'b0 = slave_clock;

}
}

}

Example 3:

clock tree = chains of clock buffers

CELL my_root_buffer {
RESTRICT_CLASS { clock }
PIN i0 { DIRECTION = input; }
PIN o0 { DIRECTION = output; }
FUNCTION { BEHAVIOR { o0 = i0 ; } }

}

Version 2.0 Advanced Library Format (ALF) Reference Manual 113

STRUCTURE statement Modeling for Synthesis and Test

CELL my_level1_buffer {
RESTRICT_CLASS { clock }
PIN i1 { DIRECTION = input; }
PIN o1 { DIRECTION = output; }
FUNCTION { BEHAVIOR { o1 = i1 ; } }

}

CELL my_level2_buffer {
RESTRICT_CLASS { clock }
PIN i2 { DIRECTION = input; }
PIN o2 { DIRECTION = output; }
FUNCTION { BEHAVIOR { o2 = i2 ; } }

}

CELL my_level3_buffer {
RESTRICT_CLASS { clock }
PIN i3 { DIRECTION = input; }
PIN o3 { DIRECTION = output; }
FUNCTION { BEHAVIOR { o3 = i3 ; } }

}

CELL my_tree_from_level2 {
RESTRICT_CLASS { clock }
PIN in { DIRECTION = input; }
PIN out { DIRECTION = output; }
PIN[1:2] level3 { DIRECTION = output; }
FUNCTION {

BEHAVIOR { out = in ; }
STRUCTURE {

my_level2_buffer U1 { i2=in; o2=out; }
my_level3_buffer U2 { i3=out; o3=level3[1]; }
my_level3_buffer U3 { i3=out; o3=level3[2]; }

}
}

}

CELL my_tree_from_level1 {
RESTRICT_CLASS { clock }
PIN in { DIRECTION = input; }
PIN out { DIRECTION = output; }
PIN[1:4] level2 { DIRECTION = output; }
FUNCTION {

BEHAVIOR { out = in ; }
STRUCTURE {

my_level1_buffer U1 { i1=in; o1=out; }
my_tree_from_level2 U2 { i2=out; o2=level2[1]; }
my_tree_from_level2 U3 { i2=out; o2=level2[2]; }
my_tree_from_level2 U4 { i2=out; o2=level2[3]; }
my_tree_from_level2 U5 { i2=out; o2=level2[4]; }

}
}

}

114 Advanced Library Format (ALF) Reference Manual Version 2.0

Modeling for Synthesis and Test Annotations and attributes for a PIN

CELL my_tree_from_root {
RESTRICT_CLASS { clock }
PIN in { DIRECTION = input; }
PIN out { DIRECTION = output; }
PIN[1:4] level1 { DIRECTION = output; }
FUNCTION {

BEHAVIOR { out = in ; }
STRUCTURE {

my_root_buffer U1 { i0=in; o0=out; }
my_tree_from_level1 U2 { i1=o; o1=level1[1]; }
my_tree_from_level1 U3 { i1=o; o1=level1[2]; }
my_tree_from_level1 U4 { i1=o; o1=level1[3]; }
my_tree_from_level1 U5 { i1=o; o1=level1[4]; }

}
}

}

Example 4:

Multiplexor, showing the conceptional difference between BEHAVIOR and STRUCTURE.

CELL my_multiplexor {
PIN a { DIRECTION = input; }
PIN b { DIRECTION = input; }
PIN s { DIRECTION = input; }
PIN y { DIRECTION = output; }
FUNCTION {

BEHAVIOR {
// s_a and s_b are virtual internal nodes

ALF_AND { out = s_a; in[0] = !s; in[1] = a; }
ALF_AND { out = s_b; in[0] = s; in[1] = b; }
ALF_OR { out = y; in[0] = s_a; in[1] = s_b; }

}
STRUCTURE {

// sbar, sel_a, sel_b are physical internal nodes
ALF_NOT { out = sbar; in = s; }
ALF_NAND { out = sel_a; in[0] = sbar; in[1] = a; }
ALF_NAND { out = sel_b; in[0] = s; in[1] = b; }
ALF_NAND { out = y; in[0] = sel_a; in[1] = sel_b; }

}
}

}

6.4 Annotations and attributes for a PIN

This section defines variousPIN annotations and attributes.

6.4.1 VIEW annotation

VIEW = string ;

annotates the view where the pin appears, which can take the values shown in Table 6-11.

Version 2.0 Advanced Library Format (ALF) Reference Manual 115

Annotations and attributes for a PIN Modeling for Synthesis and Test

6.4.2 PINTYPE annotation

PINTYPE = string ;

annotates the type of the pin, which can take the values shown in Table 6-12.

6.4.3 DIRECTION annotation

DIRECTION = string ;

annotates the direction of the pin, which can take the values shown in Table 6-13.

Table 6-14 gives a more detailed semantic interpretation for usingDIRECTION in combination
with PINTYPE.

Table 6-11 : VIEW annotations for a PIN object

Annotation string Description

functional pin appears in functional netlist

physical pin appears in physical netlist

both (default) pin appears in both functional and physical netlist

none pin does not appear in netlist

Table 6-12 : PINTYPE annotations for a PIN object

Annotation string Description

digital (default) digital signal pin

analog analog signal pin

supply power supply or ground pin

Table 6-13 : DIRECTION annotations for a PIN object

Annotation string Description

input input pin

output output pin

both bidirectional pin

none no direction can be assigned to the pin

Table 6-14 : DIRECTION in combination with PINTYPE

DIRECTION PINTYPE=digital PINTYPE=analog PINTYPE=supply

input pin receives a digital signal pin receives an analog signal pin is a power sink

output pin drives a digital signal pin drives an analog signal pin is a power source

116 Advanced Library Format (ALF) Reference Manual Version 2.0

Modeling for Synthesis and Test Annotations and attributes for a PIN

For pins with PINTYPE=supply, the DIRECTION describes an electrical characteristic rather
than a functional characteristic, since there is no functional definition for DIRECTION. For
pins with PINTYPE=digital or analog, the functional definition of DIRECTION actually
matches the electrical definition.

Examples:

• The power and ground pins of regular cells shall haveDIRECTION=input .

• A level converter cell shall have a power supply pin withDIRECTION=input and
another power supply pin withDIRECTION=output .

• A level converter can have separate ground pins on the input and output side or a
common ground pin withDIRECTION=both .

• The power and ground pins of a feed through cell shall haveDIRECTION=none.

6.4.4 SIGNALTYPE annotation

SIGNALTYPE classifies the functionality of a pin. The currently defined values apply for pins
with PINTYPE=DIGITAL .

Conceptually, a pin withPINTYPE = ANALOG can also have aSIGNALTYPE annotation. How-
ever, no values are currently defined.

SIGNALTYPE = string ;

annotates the type of the signal connected to the pin.

The fundamentalSIGNALTYPE values are defined in Table 6-15.

both pin drives or receives a digi-
tal signal, depending on the
operation mode

pin drives or receives an
analog signal, depending on
the operation mode

pin is both power sink
and source

none pin represents either an
internal digital signal with
no external connection or a
feed through

pin represents either an
internal analog signal with
no external connection or a
feed through

pin represents either an
internal power pin with
no external connection or
a feed through

Table 6-15 : Fundamental SIGNALTYPE annotations for a PIN object

Annotation string Description

data (default) general data signal, i.e., a signal that carries information to be
transmitted, received, or subjected to logic operations within
theCELL.

address address signal of a memory, i.e., an encoded signal, usually a
bus or part of a bus, driving an address decoder within the
CELL.

Table 6-14 : DIRECTION in combination with PINTYPE, continued

DIRECTION PINTYPE=digital PINTYPE=analog PINTYPE=supply

Version 2.0 Advanced Library Format (ALF) Reference Manual 117

Annotations and attributes for a PIN Modeling for Synthesis and Test

“Flipflop”, “latch”, “multiplexor”, and “memory” can be standalone cells or embedded in
larger cells. In the former case, the celltype isflipflop , latch , multiplexor , andmemory,
respectively. In the latter case, the celltype isblock or core .

Composite values forSIGNALTYPE shall be constructed using one or more prefixes in
combination with certain fundamental values, separated by the underscore (_) character, as
shown in Table 6-16 through Table 6-20.

The scheme for this is shown in Figure 6-3.

control general control signal, i.e., an encoded signal that controls at
least two modes of operation of theCELL, eventually in con-
junction with other signals. The signal value is allowed to
change during real-time circuit operation.

select select signal of a multiplexor, i.e., a decoded or encoded sig-
nal that selects the data path of a multiplexor or de-multi-
plexor within theCELL. Each selected signal has the same
SIGNALTYPE.

enable general enable signal, i.e., a decoded signal which enables and
disables a set of operational modes of theCELL, eventually in
conjunction with other signals. The signal value is expected to
change during real-time circuit operation.

tie the signal needs to be tied to a fixed value statically in order to
define a fixed or programmable mode of operation of the
CELL, eventually in conjunction with other signals. The sig-
nal value is not allowed to change during real-time circuit
operation.

clear clear signal of a flip-flop or latch, i.e., a signal that controls
the storage of the value0 within theCELL.

set set signal of a flip-flop or latch, i.e., a signal that controls the
storage of the value1 within theCELL.

clock clock signal of a flip-flop or latch, i.e., a timing-critical signal
that triggers data storage within theCELL.

Table 6-15 : Fundamental SIGNALTYPE annotations for a PIN object, continued

Annotation string Description

118 Advanced Library Format (ALF) Reference Manual Version 2.0

Modeling for Synthesis and Test Annotations and attributes for a PIN

Figure 6-3: Construction scheme for composite SIGNALTYPE values

Table 6-16 : Composite SIGNALTYPE annotations based on DATA

Annotation string Description

scan_data data signal for scan mode

test_data data signal for test mode

bist_data data signal inBIST mode

Table 6-17 : Composite SIGNALTYPE annotations based on ADDRESS

Annotation string Description

test_address address signal for test mode

bist_address address signal forBIST mode

Table 6-18 : Composite SIGNALTYPE annotations based on CONTROL

Annotation string Description

load_control control signal for switching between
load mode and normal mode

scan_control control signal for switching between
scan mode and normal mode

test_control control signal for switching between test
mode and normal mode

data

address

clock

control

enableread

write

master

slave

out
test

scan

bist

load

Version 2.0 Advanced Library Format (ALF) Reference Manual 119

Annotations and attributes for a PIN Modeling for Synthesis and Test

bist_control control signal for switching between
BIST mode and normal mode

read_write_control control signal for switching between
read and write operation

test_read_write_control control signal for switching between
read and write operation in test mode

bist_read_write_control control signal for switching between
read and write operation inBIST mode

Table 6-19 : Composite SIGNALTYPE annotations based on ENABLE

Annotation string Description

load_enable signal enables load operation in a counter or a shift register

out_enable signal enables the output stage of an arbitrary cell

scan_enable signal enables scan mode of a flip-flop or latch only

scan_out_enable signal enables the output of a flip-flop or latch in scan mode only

test_enable signal enables test mode only

bist_enable signal enablesBIST mode only

test_out_enable signal enables the output stage in test mode only

bist_out_enable signal enables the output stage inBIST mode only

read_enable signal enables the read operation of a memory

write_enable signal enables the write operation of a memory

test_read_enable signal enables the read operation in test mode only

test_write_enable signal enables the write operation in test mode only

bist_read_enable signal enables the read operation inBIST mode only

bist_write_enable signal enables the write operation inBIST mode only

Table 6-20 : Composite SIGNALTYPE annotations based on CLOCK

Annotation string Description

scan_clock signal is clock of a flip-flop or latch in scan mode

master_clock signal is master clock of a flip-flop or latch

slave_clock signal is slave clock of a flip-flop or latch

scan_master_clock signal is master clock of a flip-flop or latch in scan mode

scan_slave_clock signal is slave clock of a flip-flop or latch in scan mode

read_clock clock signal triggers the read operation in a synchronous memory

write_clock clock signal triggers the write operation in a synchronous memory

Table 6-18 : Composite SIGNALTYPE annotations based on CONTROL

Annotation string Description

120 Advanced Library Format (ALF) Reference Manual Version 2.0

Modeling for Synthesis and Test Annotations and attributes for a PIN

6.4.5 ACTION annotation

ACTION = string ;

annotates the action of the signal, which can take the values shown in Table 6-21.

TheACTION annotation applies only to pins with certainSIGNALTYPE values, as shown in
Table 6-22. The rule applies also to any compositeSIGNALTYPE values based on the
fundamental values.

read_write_clock clock signal triggers both read and write operation in a synchronous
memory

test_clock signal is clock in test mode

test_read_clock clock signal triggers the read operation in a synchronous memory in
test mode

test_write_clock clock signal triggers the write operation in a synchronous memory
in test mode

test_read_write_clock clock signal triggers both read and write operation in a synchronous
memory in test mode

bist_clock signal is clock inBIST mode

bist_read_clock clock signal triggers the read operation in a synchronous memory in
BIST mode

bist_write_clock clock signal triggers the write operation in a synchronous memory
in BIST mode

bist_read_write_clock clock signal triggers both read and write operation in a synchronous
memory inBIST mode

Table 6-21 : ACTION annotations for a PIN object

Annotation string Description

synchronous signal acts in synchronous way, i.e., self-triggered

asynchronous signal acts in asynchronous way, i.e., triggered by a signal
with SIGNALTYPE CLOCK or a compositeSIGNALTYPE
with postfix_CLOCK.

Table 6-22 : ACTION applicable in conjunction with fundamental SIGNALTYPE values

fundamental SIGNALTYPE applicable ACTION

data N/A

address N/A

control synchronous or asynchronous

select N/A

enable synchronous or asynchronous

Table 6-20 : Composite SIGNALTYPE annotations based on CLOCK

Annotation string Description

Version 2.0 Advanced Library Format (ALF) Reference Manual 121

Annotations and attributes for a PIN Modeling for Synthesis and Test

6.4.6 POLARITY annotation

POLARITY = string ;

annotates the polarity of the pin signal.

The polarity of an input pin (i.e.,DIRECTION = input;) takes the values shown in Table 6-23.

ThePOLARITY annotation applies only to pins with certainSIGNALTYPE values, as shown
iTable 6-24. The rule applies also to any compositeSIGNALTYPE values based on the
fundamental values.

Signals with composite signaltypesmode_CLOCK can have a single polarity or mode-specific
polarities.

tie N/A

clear synchronous or asynchronous

set synchronous or asynchronous

clock N/A, but the presence ofSIGNALTYPE=clock conditions
the validity ofACTION=synchronous for other signals

Table 6-23 : POLARITY annotations for a PIN

Annotation string Description

high signal active high or to be driven high

low signal active low or to be driven low

rising_edge signal sensitive to rising edge

falling_edge signal sensitive to falling edge

double_edge signal sensitive to any edge

Table 6-24 : POLARITY applicable in conjunction with fundamental SIGNALTYPE values

fundamental SIGNALTYPE applicable POLARITY value

data N/A

address N/A

control mode-specifichigh or low for composite signaltype

select N/A

enable Mandatoryhigh or low

tie Optionalhigh or low

clear Mandatoryhigh or low

set Mandatoryhigh or low

clock Mandatoryhigh , low , rising_edge , falling_edge , or
double_edge , can be mode-specific for composite signaltype.

Table 6-22 : ACTION applicable in conjunction with fundamental SIGNALTYPE values

fundamental SIGNALTYPE applicable ACTION

122 Advanced Library Format (ALF) Reference Manual Version 2.0

Modeling for Synthesis and Test Annotations and attributes for a PIN

Example:

PIN rw {
SIGNALTYPE = READ_WRITE_CONTROL;
POLARITY { READ=high; WRITE=low; }

}

PIN rwc {
SIGNALTYPE = READ_WRITE_CLOCK;
POLARITY { READ=rising_edge; WRITE=falling_edge; }

}

6.4.7 DATATYPE annotation

DATATYPE =string ;

annotates the datatype of the pin, which can take the values shown in Table 6-25.

DATATYPE is only relevant for bus pins.

6.4.8 INITIAL_VALUE annotation

INITIAL_VALUE = logic_constant ;

shall be compatible with the buswidth andDATATYPE of the signal.

INITIAL_VALUE is used for a downstream behavioral simulation model, as far as the simulator
(e.g., a VITAL-compliant simulator) supports the notion of initial value.

6.4.9 SCAN_POSITION annotation

SCAN_POSITION = unsigned ;

annotates the position of the pin in scan chain, starting with1. Value 0 (default) indicates that
the PIN is not on the scan chain. See Section A.3.1 and Section A.3.4 for examples.

6.4.10 STUCK annotation

STUCK = string ;

annotates the stuck-at fault model as shown in Table 6-26.

Table 6-25 : DATATYPE annotations for a PIN object

Annotation string Description

signed result of arithmetic operation is signed 2’s complement

unsigned result of arithmetic operation is unsigned

Table 6-26 : STUCK annotations for a PIN object

Annotation string Description

stuck_at_0 pin can have stuck-at-0 fault

stuck_at_1 pin can have stuck-at-1 fault

Version 2.0 Advanced Library Format (ALF) Reference Manual 123

Annotations and attributes for a PIN Modeling for Synthesis and Test

6.4.11 SUPPLYTYPE

A PIN with PINTYPE = SUPPLY shall have aSUPPLYTYPE annotation.

supplytype_ assignment ::=

SUPPLYTYPE = supplytype_ identifier ;

supplytype_ identifier ::=

power
| ground
| reference

6.4.12 SIGNAL_CLASS

The following new keyword for class reference shall be defined:

SIGNAL_CLASS
A PIN referring to the sameSIGNAL_CLASS belong to the same set of pins related to spe-
cific data transaction operations, such as read or write operations. This set of pins is com-
monly called “logical port”. For example, theADDRESS, WRITE_ENABLE, andDATApin of a
“logical port” of a memory have the sameSIGNAL_CLASS.
However, the term PORT in ALF is used to define a “physical port” (see Section 9.10)
rather than a “logical port”.
SIGNAL_CLASS applies to aPIN with PINTYPE=DIGITAL | ANALOG.
SIGNAL_CLASS is orthogonal toSIGNALTYPE.

both (default) pin can have both stuck-at-0 and stuck-at-1 faults

none pin can not have stuck-at faults

Table 6-26 : STUCK annotations for a PIN object

Annotation string Description

124 Advanced Library Format (ALF) Reference Manual Version 2.0

Modeling for Synthesis and Test Annotations and attributes for a PIN

Example:

CLASS portA;
CLASS portB;
CELL my_memory {

PIN[1:4] addrA { DIRECTION = input;
SIGNALTYPE = address;
SIGNAL_CLASS = portA;

}
PIN[7:0] dataA { DIRECTION = output;

SIGNALTYPE = data;
SIGNAL_CLASS = portA;

}
PIN[1:4] addrB { DIRECTION = input;

SIGNALTYPE = address;
SIGNAL_CLASS = portB;

}
PIN[7:0] dataB { DIRECTION = input;

SIGNALTYPE = data;
SIGNAL_CLASS = portB;

}
PIN weB { DIRECTION = input;

SIGNALTYPE = write_enable;
SIGNAL_CLASS = portB;

}
}

Note: The combination ofSIGNAL_CLASS andSIGNALTYPE identifies the port type.CLASS

portA represents a read port, since it consists of aPIN with SIGNALTYPE = address

and aPIN with SIGNALTYPE = data andDIRECTION = output . CLASS portB

represents a write port, since it consists of aPIN with SIGNALTYPE = address , aPIN

with SIGNALTYPE = data andDIRECTION = input , and aPIN with SIGNALTYPE =

write_enable .

6.4.13 SUPPLY_CLASS

The following new keyword for class reference shall be defined:

SUPPLY_CLASS
a PIN referring to the sameSUPPLY_CLASS belongs to the same power terminal.
For example, digitalVDD and digitalVSS have the sameSUPPLY_CLASS.
SUPPLY_CLASS applies to not only to aPIN with PINTYPE=SUPPLY, but also to aPIN with
PINTYPE=DIGITAL or PINTYPE=ANALOGin order to indicate the related set of power supply
pins. For instance there may be signal pins related to digital power supply and others
related to analog power supply within the same cell.
SUPPLY_CLASS is orthogonal toSUPPLYTYPE.

Example:

CELL my_adc {
CLASS dig;

Version 2.0 Advanced Library Format (ALF) Reference Manual 125

Annotations and attributes for a PIN Modeling for Synthesis and Test

CLASS ana;
PIN vdd_dig { PINTYPE=supply; SUPPLYTYPE=power; SUPPLY_CLASS=dig; }
PIN vss_dig { PINTYPE=supply; SUPPLYTYPE=ground; SUPPLY_CLASS=dig; }
PIN vdd_ana { PINTYPE=supply; SUPPLYTYPE=power; SUPPLY_CLASS=ana; }
PIN vss_ana { PINTYPE=supply; SUPPLYTYPE=ground; SUPPLY_CLASS=ana; }
PIN din { PINTYPE=analog; SUPPLY_CLASS=ana; }
PIN[7:0] dout { PINTYPE=digital; SUPPLY_CLASS=dig; }

}

6.4.14 Driver CELL and PIN specification

The keywordsCELL andPIN can be used as references to existing objects to define a driver
cell and pin in a macro, i.e., a cell withCELLTYPE=block .

Example:

// this is a standard ASIC cell
CELL my_inv {

CELLTYPE = buffer;
PIN in { DIRECTION = input; }
PIN out { DIRECTION = output; }

}

// this is a macro, synthesized from standard ASIC cells
CELL my_macro {

CELLTYPE = block;
PIN my_output {

DIRECTION = output;
CELL = my_inv { PIN = out; }

}
/* fill in other pins and stuff */

}

6.4.15 DRIVETYPE annotation

DRIVETYPE = string ;

annotates the drive type for the pin, which can take the values shown in Table 6-27.

Table 6-27 : DRIVETYPE annotations for a PIN object

Annotation string Description

cmos (default) standard cmos signal

nmos nmos or pseudo nmos signal

pmos pmos or pseudo pmos signal

nmos_pass nmos passgate signal

pmos_pass pmos passgate signal

cmos_pass cmos passgate signal, i.e., the full transmission gate

ttl TTL signal

open_drain open drain signal

open_source open source signal

126 Advanced Library Format (ALF) Reference Manual Version 2.0

Modeling for Synthesis and Test Annotations and attributes for a PIN

6.4.16 SCOPE annotation

SCOPE = string ;

annotates the modeling scope of a pin, which can take the values shown in Table 6-28.

6.4.17 PULL annotation

PULL = string ;

annotates the pull type for the pin, which can take the values shown in Table 6-29.

6.4.18 ATTRIBUTE for PIN objects

The attributes shown in Table 6-30 can be used within aPIN object.

Table 6-28 : SCOPE annotations for a PIN object

Annotation string Description

behavior the in is used for modeling functional behavior and events on
the pin are monitored for vector expressions inBEHAVIOR
statements

measure measurements related to the pin can be described, e.g., timing
or power characterization, and events on the pin are monitored
for vector expressions inVECTOR statements

both (default) the pin is used for functional behavior as well as for character-
ization measurements

none no model; only the pin exists

Table 6-29 : PULL annotations for a PIN object

Annotation string Description

up pullup device connected to pin

down pulldown device connected to pin

both pullup and pulldown device connected to pin

none (default) no pull device

Table 6-30 : Attributes within a PIN object

Attribute item Description

SCHMITT Schmitt trigger signal

TRISTATE tristate signal

XTAL crystal/oscillator signal

PAD pad going off-chip

Version 2.0 Advanced Library Format (ALF) Reference Manual 127

Definitions for bus pins Modeling for Synthesis and Test

The attributes shown in Table 6-31 are only applicable for pins within cells with
CELLTYPE=memory and certain values ofSIGNALTYPE.

The attributes shown in Table 6-32 are only applicable for pins representing double-rail
signals.

The following restrictions apply for double-rail signals:

• ThePINTYPE, SIGNALTYPE, andDIRECTION of both pins shall be the same.

• OnePIN shall have the attributeINVERTED, the otherNON_INVERTED.

• Either both pins or no pins shall have the attributeDIFFERENTIAL.

• POLARITY, if applicable, shall be complementary as follows:
HIGH is paired withLOW

RISING_EDGE is paired withFALLING_EDGE

DOUBLE_EDGE is paired withDOUBLE_EDGE

6.5 Definitions for bus pins

This section defines how to specify bus pins and group pins.

6.5.1 RANGE for bus pins

A one-dimensional bus pin can contain aRANGE statement, defined as follows:

Table 6-31 : Attributes for pins of a memory

Attribute item SIGNALTYPE Description

ROW_ADDRESS_STROBE clock samples the row address of the memory

COLUMN_ADDRESS_STROBE clock samples the column address of the memory

ROW address selects an addressable row of the memory

COLUMN address selects an addressable column of the memory

BANK address selects an addressable bank of the memory

Table 6-32 : Attributes for pins representing double-rail signals

Attribute item Description

INVERTED represents the inverted value within a pair of signals
carrying complementary values

NON_INVERTED represents the non-inverted value within a pair of
signals carrying complementary values

DIFFERENTIAL signal is part of a differential pair, i.e., both the
inverted and non-inverted values are always
required for physical implementation

128 Advanced Library Format (ALF) Reference Manual Version 2.0

Modeling for Synthesis and Test Definitions for bus pins

range ::=

RANGE { unsigned : unsigned }

TheRANGEstatement applies only if the range of valid indices is contiguous. The range is lim-
ited by the width of the bus. The possible range for a N-bit wide bus is between0 and2N. The
possible range of values shall also be the default range.

Example:

A 4-bit wide bus has the following possible range of indices: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
12, 13, 14, 15.

RANGE { 3 : 13 } specifies the indices0, 1, 2, 14, and15 are invalid.

In the case where non-contiguous indices are valid, for example 1, 2, 3, 5, 6, 7, 9, 10, 11, 13,
14, 15, theRANGE statement does not apply.

6.5.2 Scalar pins inside a bus

A PIN declared as a bus shall contain the optionalpin_instantiation statement, defined as
follows:

pin_instantiation ::=

pin_ identifier [index] {
pin_items

}

whereindex andpin_items are defined in Section 11.5 and Section 11.11, respectively.

A pin_instantiation statement can also refer to a part of the bus.

Annotations within the scope of thePIN or a higher-levelpin_instantiation shall be inher-
ited by a lower-levelpin_instantiation (see Section 6.4), as long as their values are appli-
cable for both the bus and each scalar pin within the bus. Values ofVIEW, INITIAL_VALUE , and
arithmetic models such asCAPACITANCEshall not be inherited, since a particular value cannot
apply at the same time to the bus and to its scalar pins.

Example:

Version 2.0 Advanced Library Format (ALF) Reference Manual 129

Definitions for bus pins Modeling for Synthesis and Test

PIN [1:4] my_address {
DIRECTION = input;
SIGNALTYPE = address;
VIEW = functional;
CAPACITANCE = 0.07;
my_address [1:2] { ATTRIBUTE { ROW } CAPACITANCE = 0.03; }

my_address[1] { VIEW = physical; CAPACITANCE = 0.01; }
my_address[2] { VIEW = physical; CAPACITANCE = 0.02; }
my_address [3:4] { ATTRIBUTE { COLUMN } CAPACITANCE = 0.04; }
my_address[3] { VIEW = physical; CAPACITANCE = 0.02; }
my_address[4] { VIEW = physical; CAPACITANCE = 0.02; }

}
}

6.5.3 PIN_GROUP statement

A pin group shall be defined as follows:

pin_group ::=

PIN_GROUP [index] pin_group_ identifier {
pin_items

MEMBERS { pins }
}

wherepin_items is defined in Section 11.11.

The pins in theMEMBERSfield shall refer to previously defined pins. The range of the index, if
defined, shall match the number and range of pins in theMEMBERS field.

Annotations within the scope of thePIN contained in theMEMBERS field shall be inherited by
thePIN_GROUP, as long as their values are applicable for both the pin and the pin group. Values
of VIEW, INITIAL_VALUE , and arithmetic models such asCAPACITANCE shall not be inherited,
since a particular value cannot apply at the same time to the pin and the pin group.

A pin group withVIEW=functional shall be treated like a bus pin in the functional netlist. It
shall appear in the netlist in place of the first defined pin within theMEMBERS field.

Example 1:

PIN my_address_1 {DIRECTION = input; VIEW = physical; CAPACITANCE = 0.01;}
PIN my_address_2 {DIRECTION = input; VIEW = physical; CAPACITANCE = 0.02;}
PIN my_address_3 {DIRECTION = input; VIEW = physical; CAPACITANCE = 0.02;}
PIN my_address_4 {DIRECTION = input; VIEW = physical; CAPACITANCE = 0.02;}
PIN_GROUP [1:2] my_address_1_2 {

ATTRIBUTE { ROW }
CAPACITANCE = 0.03;
MEMBERS { my_address_1 my_address_2 }

}
PIN_GROUP [1:2] my_address_3_4 {

ATTRIBUTE { COLUMN }
CAPACITANCE = 0.03;

130 Advanced Library Format (ALF) Reference Manual Version 2.0

Modeling for Synthesis and Test Annotations for CLASS and VECTOR

MEMBERS { my_address_3 my_address_4 }
}
PIN_GROUP [1:4] my_address {

VIEW = functional;
CAPACITANCE = 0.07;
MEMBERS { my_address_1 my_address_2 my_address_3 my_address_4 }

}

Pairs of complementary pins, differential pins in particular, are special cases of pin groups.

Example 2:

CELL my_flip-flop {
PIN CLK { DIRECTION=input; SIGNALTYPE=clock; POLARITY=rising_edge; }
PIN D { DIRECTION=input; SIGNALTYPE=data; }
PIN Q { DIRECTION=output; SIGNALTYPE=data; ATTRIBUTE { NON_INVERTED } }
PIN Qbar { DIRECTION=output; SIGNALTYPE=data; ATTRIBUTE { INVERTED } }
PIN_GROUP [0:1] Q_double_rail { RANGE { 1 : 2 } MEMBERS { Q Qbar } }

}

The pinsQ andQbar are complementary. Their valid set of data comprises’b01===’d1 and
’b10===’d2 . The values’b00===’d0 and’b11===’d3 are invalid.

CELL my_differential_buffer {
PIN DIN { DIRECTION=input; ATTRIBUTE { DIFFERENTIAL NON_INVERTED } }
PIN DINN { DIRECTION=input; ATTRIBUTE { DIFFERENTIAL INVERTED } }
PIN DOUT { DIRECTION=output; ATTRIBUTE { DIFFERENTIAL NON_INVERTED } }
PIN DOUTN { DIRECTION=output; ATTRIBUTE { DIFFERENTIAL INVERTED } }
PIN_GROUP [0:1] DI { RANGE { 1 : 2 } MEMBERS { DIN DINN } }
PIN_GROUP [0:1] DO { RANGE { 1 : 2 } MEMBERS { DOUT DOUTN } }

}

The pinsDIN andDINN represent a pair of differential input pins. The pinsDOUT andDOUTN

represent a pair of differential output pins.

6.6 Annotations for CLASS and VECTOR

This section defines the annotations forCLASS andVECTOR.

6.6.1 PURPOSE annotation

A CLASSis a generic object which can be referenced inside another object. An object referenc-
ing a class inherits all children object of that class. In addition to this general reference, the
usage of the keywordCLASS in conjunction with a predefined prefix (e.g.,CONNECT_CLASS,
SWAP_CLASS, RESTRICT_CLASS, EXISTENCE_CLASS, or CHARACTERIZATION_CLASS) also car-
ries a specific semantic meaning in the context of its usage. Note the keyword <prefix>_CLASS

is used for referencing a class, whereas the definition of the class always uses the keyword
CLASS. Thus a class can have multiple purposes. With the growing number of usage models of
the class concept, it is useful to include the purpose definition in the class itself in order to
make it easier for specific tools to identify the classes of relevance for that tool.

Version 2.0 Advanced Library Format (ALF) Reference Manual 131

Annotations for CLASS and VECTOR Modeling for Synthesis and Test

A CLASSobject can contain thePURPOSEannotation, which can take one or multiple values. A
VECTOR entitled to inherit thePURPOSE annotation from theCLASS can also contain thePUR-

POSE annotation as follows.

vector_purpose_ assignment ::=

PURPOSE { purpose_ identifier { purpose_ identifier } }

vector_purpose_ identifier :: =

bist
| test
| timing
| power
| integrity

6.6.2 OPERATION annotation

TheOPERATIONstatement inside aVECTORshall be used to indicate the combined definition of
signal values or signal changes for certain operations which are not entirely controlled by a
single signal.

operation_ assignment ::=

OPERATION = operation_ identifier ;

An OPERATION within the context of aVECTOR indicates certain a function of a cell, such as a
memory write, or change to some state, such as test mode. Many functions are not controlled
by a single pin and are therefore not able to be defined by the use ofSIGNALTYPE alone. The
VECTOR shall describe the complete operation, including the sequence of events on input and
expected output signals, such that one operation can be followed seamlessly by the next.

The following values shall be predefined:

operation_ identifier ::=

read
| write
| read_modify_write
| write_through
| start
| end
| refresh
| load
| iddq

Their definitions are:

• read: read operation at one address

• write: write operation at one address

• read_modify_write: read followed by write of different value at same address

132 Advanced Library Format (ALF) Reference Manual Version 2.0

Modeling for Synthesis and Test Annotations for CLASS and VECTOR

• start: first operation required in a particular mode

• end: last operation required in a particular mode

• refresh: operation required to maintain the contents of the memory without modifying it

• load: operation for loading control registers

• iddq: operation for supply current measurements in quiescent state

With exception of “iddq”, all values apply for only cells withCELLTYPE=memory.

TheEXISTENCE_CLASS (see Section 6.6.5) within the context of aVECTOR shall be used to
identify which operations can be combined in the same mode.OPERATION is orthogonal to
EXISTENCE_CLASS. TheEXISTENCE_CLASS statement is only necessary, if there is more than
one mode of operation.

Example 1:

CLASS normal_mode { PURPOSE = test; }
CLASS fast_page_mode { PURPOSE = test; }
VECTOR (! WE && (

?! addr -> 01 RAS -> 10 RAS ->
?! addr -> 01 CAS -> X? dout -> 10 CAS -> ?X dout

)) {
OPERATION = read; EXISTENCE_CLASS = normal_mode;

}
VECTOR (WE && (

?! addr -> 01 RAS -> 10 RAS ->
?! addr -> ?? din -> 01 CAS -> 10 CAS

)) {
OPERATION = write; EXISTENCE_CLASS = normal_mode;

}
VECTOR (! WE && (?! addr -> 01 CAS -> X? dout -> 10 CAS -> ?X dout)) {

OPERATION = read; EXISTENCE_CLASS = fast_page_mode;
}
VECTOR (WE && (?! addr -> ?? din -> 01 CAS -> 10 CAS)) {

OPERATION = write; EXISTENCE_CLASS = fast_page_mode;
}
VECTOR (?! addr -> 01 RAS -> 10 RAS) {

OPERATION = start; EXISTENCE_CLASS = fast_page_mode;
}

Note: The complete description of a “read” operation also contains the behavior after “read”
is disabled.

Example 2:

VECTOR (01 read_enb -> X? dout -> 10 read_enb -> ?X dout) {
OPERATION = read; // output goes to X in read-off

}

VECTOR (01 read_enb -> ?? dout -> 10 read_enb -> ?- dout) {
OPERATION = read; // output holds is value in read-off

}

Version 2.0 Advanced Library Format (ALF) Reference Manual 133

Annotations for CLASS and VECTOR Modeling for Synthesis and Test

6.6.3 LABEL annotation

LABEL = string ;

ensures SDF matching with conditional delays across Verilog, VITAL, etc.

See end of Section B.3 for an example.

6.6.4 EXISTENCE_CONDITION annotation

EXISTENCE_CONDITION = boolean_expression ;

For false-path analysis tools, the existence condition shall be used to eliminate the vector from
further analysis if, and only if, the existence condition evaluates toFalse. For applications other
than false-path analysis, the existence condition shall be treated as if the boolean expression
was a co-factor to the vector itself. The default existence condition isTrue.

Example:

VECTOR (01 a -> 01 z & (c | !d)) {
EXISTENCE_CONDITION = !scan_select;
DELAY { FROM { PIN=a; } TO { PIN=z; } /* data */ }

}
VECTOR (01 a -> 01 z & (!c | d)) {

EXISTENCE_CONDITION = !scan_select;
DELAY { FROM { PIN=a; } TO { PIN=z; } /* data */ }

}

Each vector contains state-dependent delay for the same timing arc. If!scan_select evaluates
True, both vectors are eliminated from timing analysis.

6.6.5 EXISTENCE_CLASS annotation

EXISTENCE_CLASS = string ;

Reference to the same existence class by multiple vectors has the following effects:

• A common mode of operation is established between those vectors, which can be used
for selective analysis, for instance mode-dependent timing analysis. The name of the
mode is the name of the class.

• A common existence condition is inherited from that existence class, if there is one.

Example:

134 Advanced Library Format (ALF) Reference Manual Version 2.0

Modeling for Synthesis and Test Annotations for CLASS and VECTOR

CLASS non_scan_mode {
EXISTENCE_CONDITION = !scan_select;

}
VECTOR (01 a -> 01 z & (c | !d)) {

EXISTENCE_CLASS = non_scan_mode;
DELAY { FROM { PIN=a; } TO { PIN=z; } /* data */ }

}
VECTOR (01 a -> 01 z & (!c | d)) {

EXISTENCE_CLASS = non_scan_mode;
DELAY { FROM { PIN=a; } TO { PIN=z; } /* data */ }

}

Each vector contains state-dependent delay for the same timing arc. If the mode
non_scan_mode is turned off or if!scan_select evaluatesTrue, both vectors are eliminated
from timing analysis.

6.6.6 CHARACTERIZATION_CONDITION annotation

CHARACTERIZATION_CONDITION = boolean_expression ;

For characterization tools, the characterization condition shall be treated as if the boolean
expression was a co-factor to the vector itself. For all other applications, the characterization
condition shall be disregarded. The default characterization condition isTrue.

Example:

VECTOR (01 a -> 01 z & (c | !d)) {
CHARACTERIZATION_CONDITION = c & !d;
DELAY { FROM { PIN=a; } TO { PIN=z; } /* data */ }

}

The delay value for the timing arc applies for any of the following conditions: (c & !d),
(c & d), or (!c & !d), since they all satisfy (c | !d) . However, the only condition chosen for
delay characterization is (c & !d).

6.6.7 CHARACTERIZATION_VECTOR annotation

CHARACTERIZATION_VECTOR = (vector_expression) ;

The characterization vector is provided for the case where the vector expression cannot be
constructed using the vector and a boolean co-factor. The use of the characterization vector is
restricted to characterization tools in the same way as the use of the characterization condi-
tion. Either a characterization condition or a characterization vector can be provided, but not
both. If none is provided, the vector itself shall be used by the characterization tool.

Example:

VECTOR (01 A -> 01 Z) {
CHARACTERIZATION_VECTOR = ((01 A & 10 inv_A) -> (01 Z & 10 inv_Z));

}

Version 2.0 Advanced Library Format (ALF) Reference Manual 135

ILLEGAL statement for VECTOR Modeling for Synthesis and Test

Analysis tools see the signalsA andZ. The signalsinv_A andinv_Z are visible to the
characterization tool only.

6.6.8 CHARACTERIZATION_CLASS annotation

CHARACTERIZATION_CLASS = string ;

Reference to the same characterization class by multiple vectors has the following effects:

• A commonality is established between those vectors, which can be used for selective
characterization in a way defined by the library characterizer, for instance, to share the
characterization task between different teams or jobs or tools.

• A common characterization condition or characterization vector is inherited from that
characterization class, if there is one.

6.7 ILLEGAL statement for VECTOR

For complex cells, especially multi-port memories, it is useful to define the behavior as a con-
sequence of illegal operations, for example when several ports try to access the same address.

A VECTOR statement shall contain the optionalILLEGAL statement, defined as follows:

illegal ::=

ILLEGAL [identifier] { illegal_items }

illegal_items ::=
illegal_item { illegal_item }

illegal_item ::=
all_purpose_item

| violation

whereall_purpose_item andviolation are defined in Section 11.7 and Section 11.16,
respectively.

Thevector_expression within theVECTOR statement describes a state or a sequence of
events which define an illegal operation. TheVIOLATION statement describes the consequence
of such an illegal operation.

Example 1:

VECTOR ((addr_A == addr_B) && write_enable_A && write_enable_B) {
ILLEGAL write_A_write_B {

VIOLATION {
MESSAGE = “write conflict between port A and B“;
MESSAGE_TYPE = error;
BEHAVIOR { data[addrA] = ‘bxxxxxxxx; }

}
}

}

136 Advanced Library Format (ALF) Reference Manual Version 2.0

Modeling for Synthesis and Test TEST statement

Note: An illegal operation can be legalized by usingMESSAGE_TYPE=INFORMATION or
MESSAGE_TYPE=WARNING.

This statement can also be used to define the behavior when an address is out of range. Some-
times the address space is not continuous, i.e., it can contain holes in the middle. In this case,
a MIN or MAX value for legal addresses would not be sufficient. On the other hand, a
boolean_expression can always exactly describe the legal and illegal address space.

Example 2:

VECTOR ((addr > ‘h3) && write_enb) {
ILLEGAL {

VIOLATION {
MESSAGE = “write address out of range“;
MESSAGE_TYPE = error;
BEHAVIOR { data[addr] = ‘bxxxxxxxx; }

}
}

}

6.8 TEST statement

A CELL can contain aTEST statement, which is defined as follows:

test ::=

TEST { behavior }

The purpose is to describe the interface between an externally applied test algorithm and the
CELL. Thebehavior statement within theTEST statement uses the same syntax as thebehav-

ior statement within theFUNCTION statement. However, the set of used variables is different.
Both theTEST and theFUNCTION statement shall be self-contained, complete and comple-
mentary to each other.

6.9 Physical bitmap for memory BIST

This section defines the physical bitmap for memory BIST. This is a particular case of the
usage of the TEST statement.

6.9.1 Definition of concepts

The physical architecture of a memory can be described by the following parameters:

BANK index: A memory can be arranged in one or several banks, each of which constitutes a
two-dimensional array of rows and columns

ROW index: A row of memory cells within one bank shares the same row decoder line.

Version 2.0 Advanced Library Format (ALF) Reference Manual 137

Physical bitmap for memory BIST Modeling for Synthesis and Test

COLUMN index: A column of memory cells within one bank shares the same data bit line
and, if applicable, the same sense amplifier.

Figure 6-4: Illustration of a physical memory architecture, arranged in banks, rows, columns

The physical memory architecture is not evident from the functional description and the pins
involved in the functional description of the memory. Those pins are called logical pins, e.g.,
logical address and logical data.

A memory BIST tool needs to know which logical address and data corresponds to a physical
row, column, or bank in order to write certain bit patterns into the memory and read expected
bit patterns from the memory. Also, the tool needs to know whether the physical data in a spe-
cific location is inverted or not with respect to the corresponding logical data.

Figure 6-5: Illustration of the memory BIST concept

A mapper between physical rows, columns, banks, data and logical addresses, and data pins
shall be part of the library description of a memory cell.

COLUMN index

ROW index

BANK index

on
e

C
O

LU
M

N

on
e

BANK

one ROW

WrapperAlgorithm

logical

Memory
physical row

physical column

physical data

physical bank

logical
address
pins

data input
pins

logical
data output
pins

circuit
write physical data
to row, column, bank

read physical data
from row, column, bank

under test

138 Advanced Library Format (ALF) Reference Manual Version 2.0

Modeling for Synthesis and Test Physical bitmap for memory BIST

The physical row, column, and bank indices can be modeled as virtual inputs to the memory
circuit. The data to be written to a physical memory location can also be modeled as a virtual
input. The data to be read from a physical memory location can be modeled as a virtual out-
put. Since every data that is written for the purpose of test also needs to be read, the data can
be modeled as a virtual bidirectional pin. A virtual pin is a pin withVIEW=none, i.e., the pin is
not visible in any netlist.

6.9.2 Definitions of pin ATTRIBUTE values for memory BIST

The special pinATTRIBUTE values shown in Table 6-33 shall be defined for memory BIST.

These attributes apply to the pins of the BIST wrapper around the memory rather than to the
pins of the memory itself.

TheBEHAVIOR statement withinTEST shall involve the variables declared asPINs with
ATTRIBUTE ROW_INDEX, COLUMN_INDEX, BANK_INDEX, DATA_INDEX, or DATA_VALUE.

6.9.3 Explanatory example

One-dimensional arrays withSIGNALTYPE=address (here:PIN[3:0] addr) shall be recog-
nized as address pins to be mapped, involving other one-dimensional arrays withATTRIBUTE

{ ROW_INDEX } (here:PIN[1:0] row) andATTRIBUTE { COLUMN_INDEX }(here:PIN[3:0]

col). This memory has only one bank. Therefore, no one-dimensional array withATTRIBUTE

{ BANK_INDEX } exists here.

One-dimensional arrays withSIGNALTYPE=data (here:PIN[3:0] Din andPIN[3:0] Dout)
shall be recognized as data pins to be mapped, involving other one-dimensional arrays with
ATTRIBUTE { DATA_INDEX } (here:PIN[1:0] dat) and scalar pins withATTRIBUTE {

DATA_VALUE } (here:PIN bit).

Note: Since the data buses are 4-bits wide, the data index is 2-bits wide, since 2=log2(4).

Table 6-33 : PIN attributes for memory BIST

Attribute item Description

ROW_INDEX
pin is a bus with a contiguous range of values,
indicating a physical row of a memory

COLUMN_INDEX
pin is a bus with a contiguous range of values,
indicating a physical column of a memory

BANK_INDEX
pin is a bus with a contiguous range of values,
indicating a physical bank of a memory

DATA_INDEX
pin is a bus with a contiguous range of values,
indicating the bit position within a data bus of a
memory

DATA_VALUE
pin represents a value stored in a physical memory
location

Version 2.0 Advanced Library Format (ALF) Reference Manual 139

Physical bitmap for memory BIST Modeling for Synthesis and Test

Base Example:

CELL my_memory {
PIN[3:0] addr { DIRECTION=input; SIGNALTYPE=address; }
PIN[3:0] Din { DIRECTION=input; SIGNALTYPE=data; }
PIN[3:0] Dout { DIRECTION=output; SIGNALTYPE=data; }
PIN[3:0] bits[0:15] { DIRECTION=none; VIEW=none; SCOPE=behavior; }
PIN write_enb { DIRECTION=input; SIGNALTYPE=write_enable;

POLARITY=high; ACTION=asynchronous;
}
PIN[1:0] dat { ATTRIBUTE { DATA_INDEX } DIRECTION=none; VIEW=none; }
PIN bit { ATTRIBUTE { DATA_VALUE } DIRECTION=both; VIEW=none; }
PIN[1:0] row {

ATTRIBUTE { ROW_INDEX } RANGE { 0: 3 }
DIRECTION=input; VIEW=none;

}
PIN[3:0] col {

ATTRIBUTE { COLUMN_INDEX } RANGE { 0 : 15 }
DIRECTION=input; VIEW=none;

}
FUNCTION {

BEHAVIOR {
Dout = bits[addr];
@ (write_enb) { bits[addr] = Din; }

} }
/*different physical architectures are shown in the following examples*/
}

140 Advanced Library Format (ALF) Reference Manual Version 2.0

Modeling for Synthesis and Test Physical bitmap for memory BIST

Example 1

TEST {
BEHAVIOR {

// map row and column index to logical address
addr[1:0] = row[1:0];
addr[3:2] = col[3:2];

// map column index to logical data index
dat[1:0] = col[1:0];

// map physical data to input and output data
Din[dat] = bit;
bit = Dout[dat];

}
}

Example 2

ph
ys

ic
al

 r
ow

‘h0

‘h1

‘h2

‘h3

physical column

D[0] D[1] D[2] D[3] D[0] D[1] D[2] D[3] D[0] D[1] D[2] D[3] D[0] D[1] D[2] D[3]

D[0] D[1] D[2] D[3] D[0] D[1] D[2] D[3] D[0] D[1] D[2] D[3] D[0] D[1] D[2] D[3]

D[0] D[1] D[2] D[3] D[0] D[1] D[2] D[3] D[0] D[1] D[2] D[3] D[0] D[1] D[2] D[3]

D[0] D[1] D[2] D[3] D[0] D[1] D[2] D[3] D[0] D[1] D[2] D[3] D[0] D[1] D[2] D[3]

‘h0 ‘h1 ‘h2 ‘h3 ‘h4 ‘h5 ‘h6 ‘h7 ‘h8 ‘h9 ‘hA ‘hB ‘hC ‘hD ‘hE ‘hF

00

01

10

11

00 00 00 00 01 01 01 01 10 10 10 10 11 11 11 11addr[3:2]

ad
dr

[1
:0

]

ph
ys

ic
al

 r
ow

‘h0

‘h1

‘h2

‘h3

physical column

D[0] D[0] D[0] D[0] D[1] D[1] D[1] D[1] D[2] D[2] D[2] D[2] D[3] D[3] D[3] D[3]

D[0] D[0] D[0] D[0] D[1] D[1] D[1] D[1] D[2] D[2] D[2] D[2] D[3] D[3] D[3] D[3]

D[0] D[0] D[0] D[0] D[1] D[1] D[1] D[1] D[2] D[2] D[2] D[2] D[3] D[3] D[3] D[3]

 D[0] D[0] D[0] D[0] D[1] D[1] D[1] D[1] D[2] D[2] D[2] D[2] D[3] D[3] D[3] D[3]

‘h0 ‘h1 ‘h2 ‘h3 ‘h4 ‘h5 ‘h6 ‘h7 ‘h8 ‘h9 ‘hA ‘hB ‘hC ‘hD ‘hE ‘hF

00

01

10

11

00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11addr[3:2]

ad
dr

[1
:0

]

Version 2.0 Advanced Library Format (ALF) Reference Manual 141

Physical bitmap for memory BIST Modeling for Synthesis and Test

TEST {
BEHAVIOR {

// map row and column index to logical address
addr[1:0] = row[1:0];
addr[3:2] = col[1:0];

// map column index to logical data index
dat[1:0] = col[3:2];

// map physical data to input and output data
Din[dat] = bit;
bit = Dout[dat];

}
}

Example 3

TEST {
BEHAVIOR {

// map row and column index to logical address
addr[0] = row[1];
addr[1] = row[0] ^ row[1]
addr[2] = col[0] ^ col[1] ^ col[2];
addr[3] = col[2] ^ col[3];

// map column index to logical data index
dat[0] = col[1];
dat[1] = col[3];

// map physical data to input and output data
Din[dat]=bit^(row[1]&col[2]&!col[3] | !row[1]&!col[2]&col[3]);
bit=Dout[dat]^(row[1]&col[2]&!col[3] | !row[1]&!col[2]&col[3]);

}
}

Notes:

1. This enables the description of a complete bitmap of a memory in a compact way.

ph
ys

ic
al

 r
ow

‘h0

‘h1

‘h2

‘h3

physical column

D[0] D[0] D[1] D[1] D[0] D[0] D[1] D[1] !D[2]!D[2] !D[3]!D[3] D[2] D[2] D[3] D[3]

D[0] D[0] D[1] D[1] D[0] D[0] D[1] D[1] !D[2]!D[2] !D[3]!D[3] D[2] D[2] D[3] D[3]

D[0] D[0] D[1] D[1] !D[0]!D[0] !D[1]!D[1] D[2] D[2] D[3] D[3] D[2] D[2] D[3] D[3]

 D[0] D[0] D[1] D[1] !D[0]!D[0] !D[1]!D[1] D[2] D[2] D[3] D[3] D[2] D[2] D[3] D[3]

‘h0 ‘h1 ‘h2 ‘h3 ‘h4 ‘h5 ‘h6 ‘h7 ‘h8 ‘h9 ‘hA ‘hB ‘hC ‘hD ‘hE ‘hF

00

10

11

01

00 01 11 10 11 10 00 01 00 01 11 10 11 10 00 01addr[3:2]

ad
dr

[1
:0

]

142 Advanced Library Format (ALF) Reference Manual Version 2.0

Modeling for Synthesis and Test Physical bitmap for memory BIST

2. TheRANGEfeature is not restricted to BIST. It can be used to describe a valid contiguous
range on any bus. This alleviates the need for interpreting aVECTOR with ILLEGAL

statement to get the valid range. However, theVECTOR with ILLEGAL statement is still
necessary to describe the behavior of a device when illegal values are driven on a bus.

3. TheTEST statement withBEHAVIOR allows for generalization from memory BIST to
any test vector generation requirement, e.g., logic BIST. The only necessary additions
would be otherPIN ATTRIBUTEs describing particular features to be recognized by the
test vector generation algorithm for the target test algorithm.

Version 2.0 Advanced Library Format (ALF) Reference Manual 143

Section 7

General Rules for Arithmetic Models

This chapter defines the general rules for arithmetic models.

7.1 Principles of arithmetic models

The purpose of arithmetic models is to specify calculable mathematical relationships between
objects representing physical quantities in the library. Arithmetic models are identified by
context-sensitive keywords, because how these quantities are measured, extracted, or
interpreted depends on the context in which the objects are placed.

The quantity identified by the keywordCAPACITANCE can serve as example. In the context of
aPIN , it represents pin capacitance. In the context of aWIRE, it represents wire capacitance. In
the context of aRULE, it represents the calculation method for a capacitance formed by a layout
pattern described within the rule. The context-specific semantics of each arithmetic model are
specified in Section 8 for electrical models and Section 9 for physical models.

In certain cases, the context alone does not completely specify the semantics of an arithmetic
model. Auxiliary definitions within the arithmetic model are needed; these are represented by
using annotations or annotation containers.

A simple example is theUNIT annotation, which is applicable for most arithmetic models. It
specifies the unit in terms of which the arithmetic model data is represented. The applicable
auxiliary objects for each arithmetic model are specified in Section 8 for electrical models and
Section 9 for physical models.

7.1.1 Global definitions for arithmetic models

In many cases, auxiliary definitions apply globally to all arithmetic models within a certain
context, for instance, theUNIT can apply for allCAPACITANCEobjects within a library. In order
to specify such global definitions, the arithmetic model construct can be used without data.

model_definition ::=

model_ keyword [identifier] { all_purpose_items }

This construct has the syntactical form of anannotation_container (see Section 11.7).

7.1.2 Trivial arithmetic model

The simplest form of an arithmetic model contains just constant data.

trivial_model ::=

model_ keyword [identifier] = number ;
| model_ keyword [identifier] = number { all_purpose_items }

144 Advanced Library Format (ALF) Reference Manual Version 2.0

General Rules for Arithmetic Models Principles of arithmetic models

This construct has the syntactical form of anannotation (see Section 11.7).

7.1.3 Arithmetic model using EQUATION

The arithmetic model data can be represented as anEQUATION. In this case, aHEADER defines
the arguments of the equation. It is also possible to use other arithmetic models, which are
visible within the context of this arithmetic model, as arguments. Those arguments need not
appear in theHEADER.

equation_based_ model ::=

model_ keyword [identifier] {
[all_purpose_items]
[equation_based_ header]
equation

}

equation_based_ header ::=

HEADER { model_ keyword { model_ keyword } }
| HEADER { model_definition { model_definition } }

equation ::=

EQUATION { arithmetic_expression }

The syntax ofarithmetic_expression is explained in Section 7.2.

7.1.4 Arithmetic model using TABLE

The arithmetic model data can be represented as a lookup table. In this case, aTABLE is
necessary for the data itself and for each argument.

table_based_ model ::=

model_ keyword [identifier] {
[all_purpose_items]
table_based_ header
table
[equation]

}

table_based_ header ::=

HEADER { table_model_definition { table_model_definition }

}

table_model_definition ::=

model_ keyword [identifier] { all_purpose_items table }

table ::=

TABLE { symbol { symbol } }
| TABLE { number { number } }

Tables containing symbols are only meant for lookup of discrete datapoints. Tables containing
numbers are for calculation and, eventually, interpolation of datapoints. Themodel_ keyword

Version 2.0 Advanced Library Format (ALF) Reference Manual 145

Principles of arithmetic models General Rules for Arithmetic Models

(see Section 8 and Section 9) defines whether symbols or numbers are legal for a particular
table.

The size of the table inside thetable_based_model shall be the product of the size of the
tables inside thetable_header . In order to support interpolation, the numbers in each table
inside thetable_header shall be in strictly monotonic ascending order. See Section 7.3 for
more details.

Thetable_model_definition can also be used outside the context of atable_header , very
much like amodel_definition . In this case, themodel_definition supplies the same
information as thetable_model_definition , plus the additional information of a discrete set
of valid numbers applicable for the model.

For example, theWIDTH of a physical layout object can contain only a discrete set of legal
values. Those can be specified using atable_model_definition .

However, the table in atable_model_definition outside a table_header shall not
substitute the tableinsidethetable_header . The former defines a legal set of values, the latter
defines the table-lookup indices.

If all table data are numbers, thetable_based_model can also have an optional equation. This
equation is to be used when the argument data are out of interpolation range. Without the
equation, extrapolation shall be applied for data which are out of range.

7.1.5 Complex arithmetic model

A complex arithmetic model can be constructed by defining a nested arithmetic model within
another arithmetic model. The data of the inner arithmetic model is calculated first. Then the
result is applied for calculation of the data of the outer arithmetic model.

complex_model ::=

model_ keyword [identifier] {
[all_purpose_items]

HEADER { model { model } }
equation

}
| model_ keyword {

all_purpose_items

HEADER { header_model { header_model } }
table
[equation]

}

header_model ::=
model_definition

| table_model_definition
| equation_based_model
| table_based_model
| header_table_model

header_table_model ::=

model_ keyword [identifier] {

146 Advanced Library Format (ALF) Reference Manual Version 2.0

General Rules for Arithmetic Models Arithmetic expressions

all_purpose_items

HEADER { symbol { symbol } }
TABLE { number { number } }

}

If any header_model is eithermodel_definition or table_model_definition , then the
complex_model reduces to the previously definedequation_based_model and
table_based_model , respectively. In order to support a table in thegeneral_model , any
header_model shall be either atable_model_definition or table_based_model , and the
numbers in each table inside eachheader_model shall be strictly monotonically increasing.

Theheader_table_model construct can be used to associate symbols with numbers. For
example, process corners can be defined as discrete symbols and associated with process
derating factors. The numbers can be used in equations and for interpolation, whereas the
symbols cannot.

7.1.6 Containers for arithmetic models and submodels

Containers for arithmetic models can supplement the context-specific semantics of the
arithmetic model. Therefore, arithmetic models can be placed in the context of arithmetic
model containers, using the following construct.

model_container ::=

model_container_ keyword {
[all_purpose_items]
model_container_contents { model_container_contents }

}

model_container_contents ::=
model_container

| trivial_model
| complex_model

There is a dedicated set ofmodel_container_ keywords . In addition,model_ keywords can
also be used asmodel_container_ keywords and dedicatedsubmodel_ keywords can be used
asmodel_ keywords . The number of levels in nested arithmetic model containers is restricted
by the set of allowed combinations betweenmodel_container_ keywords , model_ keywords

andsubmodel_ keywords (see Section 7.6).

7.2 Arithmetic expressions

Arithmetic expressions define the contents of anEQUATION. Variables used in theEQUATIONare
the identifiers of theheader_model , if present, or else themodel_ keywords of the
header_model .

7.2.1 Syntax of arithmetic expressions

The syntax of arithmetic expressions is:

Version 2.0 Advanced Library Format (ALF) Reference Manual 147

Arithmetic expressions General Rules for Arithmetic Models

arithmetic_expression ::=

(arithmetic_expression)
| number
| [arithmetic_unary] identifier
| arithmetic_expression arithmetic_binary arithmetic_expression
| arithmetic_function_operator

(arithmetic_expression { , arithmetic_expression })

| boolean_expression ? arithmetic_expression :
{ boolean_expression ? arithmetic_expression : }
arithmetic_expression

Examples:

1.24

- Vdd

C1 + C2

MAX (3.5*C , -Vdd/2 , 0.0)

(C > 10) ? Vdd**2 : 1/2*Vdd - 0.5*C

7.2.2 Arithmetic operators

Table 7-1, Table 7-2, and Table 7-3 list unary, binary, and function arithmetic operators.

Table 7-1 : Unary arithmetic operators

Operator Description

+ positive sign (for integer or number)

- negative sign (for integer or number)

Table 7-2 : Binary arithmetic operators

Operator Description

+ addition (integer or number)

- subtraction (integer or number)

* multiplication (integer or number)

/ division (integer or number)

** exponentiation (integer or number)

% modulo division (integer or number)

Table 7-3 : Function arithmetic operators

Operator Description

LOG natural logarithm (argument is + integer or number)

EXP natural exponential (argument is integer or number)

ABS absolute value (argument is integer or number)

148 Advanced Library Format (ALF) Reference Manual Version 2.0

General Rules for Arithmetic Models Construction of arithmetic models

Function operators with one argument (such aslog , exp , andabs) or multiple arguments (such
asmin andmax) shall have their arguments within parenthesis, e.g., min(1.2,-4.3,0.8) .

7.2.3 Operator priorities

The priority of binding operators to operands in arithmetic expressions shall be from strongest
to weakest in the following order:

1. unary arithmetic operator (+, -)

2. exponentiation (**)

3. multiplication (*), division (/), modulo division (%)

4. addition (+), subtraction (-)

7.3 Construction of arithmetic models

Input variables, also calledarguments of arithmetic models, appear in theHEADERof the model.
In the simplest case, theHEADER is just a list of arguments, each being a context-sensitive
keyword. The model itself is also defined with a context-sensitive keyword.

The model can be in equation form. All arguments of the equation shall be in theHEADER. The
ALF parser shall issue an error if theEQUATIONuses an argument not defined in theHEADER. A
warning shall be issued if theHEADER contains arguments not used in theEQUATION.

Example:

DELAY {
...
HEADER {

CAPACITANCE {...}
SLEWRATE {...}

}
EQUATION {

0.01 + 0.3*SLEWRATE + (0.6 + 0.1*SLEWRATE)*CAPACITANCE
}

}

If the model uses aTABLE, then each argument in theHEADER also needs a table defining the
format. The order of arguments decides how the index to each entry is calculated. The first
argument is the innermost index, the following arguments are outer indices.

MIN minimum (all arguments are integer or number)

MAX maximum (all arguments are integer or number)

Table 7-3 : Function arithmetic operators, continued

Operator Description

Version 2.0 Advanced Library Format (ALF) Reference Manual 149

Construction of arithmetic models General Rules for Arithmetic Models

DELAY {
HEADER {

CAPACITANCE {
TABLE {0.03 0.06 0.12 0.24}

}
SLEWRATE {

TABLE {0.1 0.3 0.9}
}

}
TABLE {

0.07 0.10 0.14 0.22
0.09 0.13 0.19 0.30
0.10 0.15 0.25 0.41

}
}

The first argumentCAPACITANCE has four entries. The second argumentSLEWRATE has three
entries. Thus,DELAYhas 4*3=12 entries. For readability, comments can be inserted in the table.

TABLE {
//capacitance:0.03 0.06 0.12 0.24
// ------------------- slewrate:

 0.07 0.10 0.14 0.22 // 0.1
 0.09 0.13 0.19 0.30 // 0.3
 0.10 0.15 0.25 0.41 // 0.9

}

Comments have no significance for the ALF parser nor does the arrangement of rows and
columns. Only the order of values is important for index calculation. The table can be made
more compact by removing newlines.

TABLE { 0.07 0.10 0.14 0.22 0.09 0.13 0.19 0.30 0.10 0.15 0.25 0.41 }

For readability, the models and arguments can also have names, i.e., object IDs. For named
objects, the name is used for referencing, rather than the keyword.

DELAY rise_out{
...
HEADER {

CAPACITANCE c_out {...}
SLEWRATE fall_in {...}

}
EQUATION {

0.01 + 0.3 * fall_in + (0.6 + 0.1* fall_in) * c_out
}

}

The arguments of an arithmetic model can be arithmetic models themselves. In this way,
combinations ofTABLE- andEQUATION-based models can be used, for instance, in derating.

Analogous withFUNCTION, bothEQUATION andTABLE representation of an arithmetic model
are allowed. TheEQUATIONis intended to be used when the values of the arguments fall out of
range, i.e., to avoid extrapolation.

150 Advanced Library Format (ALF) Reference Manual Version 2.0

General Rules for Arithmetic Models Annotations for arithmetic models

7.4 Annotations for arithmetic models

Annotations and annotation containers described in this chapter are relevant for the semantic
interpretation of arithmetic models and their arguments.

Example:

DELAY=f(CAPACITANCE)

DELAY is the arithmetic model,CAPACITANCE is the argument.

Arguments of arithmetic models have the form of annotation containers. They can also have
the form of arithmetic models themselves, in which case they represent nested arithmetic
models.

7.4.1 DEFAULT annotation

Default annotation promotes use of the default value instead of the arithmetic model if the
arithmetic model is beyond the scope of the application tool.

DEFAULT = number ;

Restrictions can apply for the allowed type ofnumber . For instance, if the arithmetic model
allows onlynon_negative_number , then the default is restricted tonon_negative_number .

7.4.2 UNIT annotation

Unit annotation associates units with the value computed by the arithmetic model.

UNIT = string | non_negative_number ;

A unit specified by astring can take the values (* indicates a wild card) shown in Table 7-4.

Table 7-4 : UNIT annotation

Annotation string Description

f* or F* equivalent to1E-15

p* or P* equivalent to1E-12

n* or N* equivalent to1E-9

u* or U* equivalent to1E-6

m* or M* equivalent to1E-3

1* equivalent to1E+0

k* or K* equivalent to1E+3

meg* or MEG*a

a. or any uppercase/lowercase combination of these three characters

equivalent to1E+6

g* or G* equivalent to1E+9

Version 2.0 Advanced Library Format (ALF) Reference Manual 151

Annotations for arithmetic models General Rules for Arithmetic Models

Arithmetic models are context-sensitive, i.e., the units for their values can be determined from
the context. If theUNIT annotation for such a context does not exist, default units are applied
to the value (see Section 7.6).

Example:

TIME { UNIT = ns; }
FREQUENCY { UNIT = gigahz; }

If the unit is a string, then only the first character (the first three characters in case ofMEG) is
interpreted. The reminder of the string can be used to define base units. Metric base units are
assumed, but not verified, in ALF.

There is no semantic difference between

unit = 1sec;

and

unit = 1volt;

Therefore, if the unit is specified as

unit = meg;

the interpretation is1E+6. However, for

unit = 1meg;

the interpretation is1 and not1E+6.

Units in a non-metric system can only be specified with numbers, not with strings. For instance,
if the intent is to specify an inch instead of a meter as the base unit, the following specification
does not meet the intent:

unit = 1inch;

since the interpretation is1 and meters are assumed.

The correct way of specifying inch instead of meter is

unit = 25.4E-3;

since 1 inch is (approximately) 25.4 millimeters.

7.4.3 CALCULATION annotation

An arithmetic model in the context of aVECTORcan have theCALCULATIONannotation defined
as follows:

calculation_ annotation ::=

CALCULATION = calculation_ identifier ;

calculation_ identifier ::=

absolute
| incremental

It shall specify whether the data of the model are to be used by themselves or in combination
with other data. The default isabsolute .

152 Advanced Library Format (ALF) Reference Manual Version 2.0

General Rules for Arithmetic Models Annotations for arithmetic models

The incremental data from oneVECTOR shall be added toabsolute data from another
VECTOR under the following conditions:

• The model definitions are compatible, i.e., measurement specifications shall be the same.
Units are allowed to be different.
Example: slewrate measurements at the same pin, same switching direction, and same
threshold values.

• The model definitions for common arguments are compatible, i.e., the same range of values
for table-based models and measurement specifications are the same. Units can be differ-
ent.
Example: same values forderate_case and same threshold definitions for input slewrate.

• The vector definitions are compatible, i.e, thevector_or_boolean_expression of the
VECTOR containingincremental data matches thevector_or_boolean_expression

of theVECTORcontainingabsolute data by removing all variables appearing exclusively
in the former expression.

Example:

VECTOR (01 A -> 01 Z) {
DELAY {

CALCULATION = absolute;
FROM { PIN = A; } TO { PIN = Z; }
HEADER {

CAPACITANCE load { PIN = Z; }
SLEWRATE slew { PIN = A; }

}
EQUATION { 0.5 + 0.3*slew + 1.2*load }

}
}
VECTOR (01 A &> 01 B &> 01 Z) {

DELAY {
CALCULATION = incremental;
FROM { PIN = A; } TO { PIN = Z; }
HEADER {

SLEWRATE slew_A { PIN = A; }
SLEWRATE slew_B { PIN = B; }
TIME time_A_B { FROM { PIN = A; } TO { PIN = B; } }

}
EQUATION {- 0.1 + (0.05+0.002*slew_A*slew_B)*time_A_B) }

}
}

Both models describe the rise-to-rise delay fromA to Z. The second delay model describes the
incremental delay (here negative), when inputB switches in a time window betweenA andZ.

7.4.4 INTERPOLATION annotation

An argument of a table-based arithmetic model, i.e., a model in theHEADER containing a
TABLE statement, can have theINTERPOLATION annotation defined as follows:

Version 2.0 Advanced Library Format (ALF) Reference Manual 153

Annotations for arithmetic models General Rules for Arithmetic Models

interpolation_ annotation ::=

INTERPOLATION = interpolation_ identifier ;

interpolation_ identifier ::=

fit
| linear
| floor
| ceiling

This also needs to specify the interpolation scheme for the values in-between the values of the
TABLE.

• fit
the data points in the table are supposed to be part of a smooth curve. Linear
interpolation or other algorithms, e.g., cubic spline or polynomial regression can be
used to fit the data points into the curve.

• linear
the data points in the table are supposed to be part of a piece wise linear curve. Linear
interpolation shall be used.

• floor
the value to the left in the table, i.e., the smaller value is used.

• ceiling
the value to the right in the table, i.e., the larger value is used.

The default isfit . For multi-dimensional tables, different interpolation schemes can be used
for each dimension.

Example:

my_model {
HEADER {

dimension1 { INTERPOLATION = fit; TABLE { 1 2 4 8 }
dimension2 { INTERPOLATION = floor; TABLE { 10 100 }
dimension3 { INTERPOLATION = ceiling; TABLE { 10 100 }

}
TABLE {

1 7 3 5
10 20 60 40
50 30 20 100
0.8 0.4 0.2 0.9

}
}

Consider the following values:

154 Advanced Library Format (ALF) Reference Manual Version 2.0

General Rules for Arithmetic Models Annotations for arithmetic models

dimension1 = 6
=> following subtable is chosen:

3 5 // interpolation between 3 and 5
60 40 // or between 60 and 40
20 100 // or between 20 and 100
0.20.9 // or between 0.2 and 0.9

dimension2 = 50
=> following subtable is picked:

3 5 // interpolation between 3 and 5
20 100 // or between 20 and 100

dimension3 = 50
=> following subtable is picked:

20 100 // interpolation between 20 and 100

The following rules shall apply for each dimension of a table-based model:

For values outside the range of the table, extrapolation shall apply, using the table data points
at the leftmost or rightmost side, respectively, as reference.

If the value is smaller than the smallest, i.e. leftmost, data point in the table, the extrapolation
shall be calculated as if the value would fall in-between the leftmost and second leftmost
value.

If the value is greater than the greatest, i.e. rightmost, data point in the table, the extrapolation
shall be calculated as if the value would fall in-between the rightmost and second rightmost
value.

Example:

my_model Y {
HEADER {

my_argument X {
TABLE { 0 2 4 8 }
// X[0] X[1] X[2] X[3]

}
}
TABLE { 0.5 0.6 1.0 1.5 }
// Y[0] Y[1] Y[2] Y[3]

}

For linear interpolation, the following equation is used:

If X < X[0], the values X[0], X[1], Y[0], Y[1] are plugged into the equation.

If X > X[3], the values X[2], X[3], Y[2], Y[3] are plugged into the equation.

The following figure illustrates a non-linear interpolation scheme with the goal of fitting 3
neighboring points into a smooth curve.

Y Y[N]
Y[N+1] Y[N]–
X[N+1] X[N]–
------------------------------------- X⋅+= X[N] X X[N+1]≤ ≤

Version 2.0 Advanced Library Format (ALF) Reference Manual 155

Containers for arithmetic models General Rules for Arithmetic Models

Figure 7-1: Illustration of extrapolation rules

The curve based on the 3 rightmost or the 3 leftmost points, respectively, is used for extrapola-
tion to the right side or the left side, respectively.

7.5 Containers for arithmetic models

The keywords shown in Table 7-5 are defined for objects that can contain arithmetic models.

TheLIMIT container is for general use. TheFROM, TO, EARLY, andLATE containers are only for
use within the context of timing models.

LIMIT container

A LIMIT container shall contain arithmetic models. The arithmetic models shall contain
submodels identified byMIN and/orMAX.

Table 7-5 : Unnamed containers for arithmetic models

Objects Description

FROM contains start point of timing measurement or timing constraint

TO contains end point of measurement or timing constraint

LIMIT contains arithmetic models for limit values

EARLY contains arithmetic models for timing measurements relevant for early signal
arrival time

LATE contains arithmetic models for timing measurements relevant for late signal
arrival time

X0 1 2 3 4 5 6 7 8

1.5
1.4
1.3
1.2
1.1
1.0
0.9
0.8
0.7
0.6
0.5

Y

X

X

X
X

X

X

X
X

156 Advanced Library Format (ALF) Reference Manual Version 2.0

General Rules for Arithmetic Models Arithmetic submodels

Example:

PIN data_in {
LIMIT {

SLEWRATE { UNIT = ns; MIN = 0.05; MAX = 5.0;}
}

}

The minimum slewrate allowed at pindata_in is 0.05 ns , the maximum is5.0 ns .

PIN data_in {
LIMIT {

SLEWRATE {
UNIT = ns;
MAX {

HEADER { FREQUENCY { UNIT=megahz;} }
EQUATION { 250 / FREQUENCY }

}
}

}
}

The maximum allowed slewrate is frequency-dependent, e.g., the value is0.25ns for 1GHz.

7.6 Arithmetic submodels

Arithmetic submodels can be used to distinguish different measurement conditions for the
same model. The root of an arithmetic model can contain nested arithmetic submodels. The
header of an arithmetic model can contain nested arithmetic models, but not arithmetic
submodels.

The arithmetic submodels shown in Table 7-6 are generally applicable.

Table 7-6 : Generally applicable arithmetic submodels

Objects Description

MIN for measured or calculated data:
the data represents the minimal value / set of values within a statistical distribution

for data within LIMIT container:
the data represents the lower limit value / set of values

TYP for measured or calculated data:
the data represents the typical value / set of values within a statistical distribution

MAX for measured or calculated data:
the data represents the maximal value / set of values within a statistical distribution

for data within LIMIT container:
the data represents the lower limit value / set of values

DEFAULT for measured or calculated data:
the data represents the default value / set of values to be used per default

Version 2.0 Advanced Library Format (ALF) Reference Manual 157

Arithmetic submodels General Rules for Arithmetic Models

The arithmetic submodels shown in Table 7-7 are only applicable in the context of electrical
modeling.

The arithmetic submodels shown in Table 7-8 are only applicable in the context of physical
modeling.

The semantics of the restricted submodels are explained in Section 8 and Section 9.

7.6.1 Semantics of MIN / TYP / MAX

MIN, TYP, andMAX indicate the data of the arithmetic model represent minimal, typical, or
maximal values within a statistical distribution. No correlation is assumed or implied between
MIN data,TYP data, orMAX data across different arithmetic models.

Example:

DELAY {
FROM { PIN=A; } TO { PIN=Z; }
MIN = 0.34; TYP = 0.38; MAX = 0.45;

}
POWER {

MEASUREMENT = average; FREQUENCY = 1e6;
MIN = 1.2; TYP = 1.4; MAX = 1.5;

}

TheMIN value forDELAYcould simultaneously apply with theMIN value forPOWER. Typically,
the case with smaller delay is also the case with larger power consumption.

Within the scope of aLIMIT container,MIN andMAXcontain the data for a lower or upper limit,
respectively. There shall be at least one limit, lower or upper, in each model, but not necessarily
both.

Table 7-7 : Submodels restricted to electrical modeling

Objects Description

HIGH applicable for electrical data measured at a logichigh state of a pin

LOW applicable for electrical data measured at a logiclow state of a pin

RISE applicable for electrical data measured during a logiclow to high transition of
a pin

FALL applicable for electrical data measured during a logichigh to low transition of
a pin

Table 7-8 : Submodels restricted to physical modeling

Objects Description

HORIZONTAL applicable for layout measurements in horizontal direction

VERTICAL applicable for layout measurements in vertical direction

158 Advanced Library Format (ALF) Reference Manual Version 2.0

General Rules for Arithmetic Models Arithmetic submodels

Example:

LIMIT {
SLEWRATE { PIN=A; MAX=5.0; }
VOLTAGE { PIN=VDD; MIN=1.6; MAX=2.0; }

}

MIN, MAX as an annotation inside a model or inside a model argument within the HEADER
define the validity range of the data. If MIN, MAX is not defined and the data is in a TABLE,
the boundaries of the data in the TABLE shall be considered as validity limits.

Example:

POWER {
HEADER {

SLEWRATE { PIN=A; MIN=0.01; MAX=5.0; TABLE { 0.1 0.5 1.0 } }
CAPACITANCE { PIN=Z; TABLE { 0.0 0.4 0.8 1.6 } }

}
TABLE { 0.2 0.3 0.6 0.4 0.5 0.7 0.8 0.8 1.0 1.5 1.5 1.6 }

}

The data for POWER is valid for SLEWRATE in the range between 0.01 and 5.0 (via
extrapolation) and for CAPACITANCE in the range between 0.0 and 1.6.

7.6.2 Semantics of DEFAULT

Arithmetic submodels can be identified byMIN, TYP, andMAX or context-restricted keywords.
For cases where the application tool cannot decide which qualifier applies, a supplementary
arithmetic submodel with the qualifierDEFAULT can be used.

Example:

PIN my_pin {
CAPACITANCE {

MIN { HEADER { ... } TABLE { ... } }
TYP { HEADER { ... } TABLE { ... } }
MAX { HEADER { ... } TABLE { ... } }
DEFAULT { HEADER { ... } TABLE { ... } }

}
}

Note: TheDEFAULT model can also degenerate to a single value; it represents a trivial
arithmetic model.

In certain cases, there is no supplementary submodel. Instead, one of the already defined sub-
models is used by default. For this case, theDEFAULT annotation can be used to point to the
applicable keyword.

Version 2.0 Advanced Library Format (ALF) Reference Manual 159

Arithmetic submodels General Rules for Arithmetic Models

Example:

PIN my_pin {
CAPACITANCE {

MIN { HEADER { ... } TABLE { ... } }
TYP { HEADER { ... } TABLE { ... } }
MAX { HEADER { ... } TABLE { ... } }
DEFAULT = TYP;

}
}

The trivial arithmetic model construct withDEFAULT can also be used for an argument in the
context of theHEADERof an arithmetic model. This enables evaluation of the arithmetic model
in case the data of the argument can not be supplied by the application tool.

Example:

PIN my_pin {
CAPACITANCE {

HEADER { TEMPERATURE { DEFAULT=50; TABLE { 0 50 100 } } }
TABLE { 0.05 0.07 0.10 } }

}
}

TheDEFAULT value of theCAPACITANCE here is0.07 .

160 Advanced Library Format (ALF) Reference Manual Version 2.0

General Rules for Arithmetic Models Arithmetic submodels

Version 2.0 Advanced Library Format (ALF) Reference Manual 161

Section 8

Electrical Performance Modeling

8.1 Overview of modeling keywords

This section details the keywords used for performance modeling.

8.1.1 Timing models

The following tables show the set of keywords used for timing measurements and constraints.
All keywords have implied semantics that restrict their capability to describe general temporal
relations between arbitrary signals. For unrestricted purposes, the keywordTIME shall be used.

Table 8-1 Timing measurements

Keyword Value type
Base
units

Default
units Description

DELAY number Second n (nano) time between two threshold crossings
within two consecutive events on two pins.
A causal relationship between the two
events is implied.

RETAIN number Second n (nano) time when an output pin shall retain its
value after an event on the related input pin.
RETAIN appears always in conjunction
with DELAY for the same two pins.

SLEWRATE non-negative
number

Second n (nano) time between two threshold crossings
within one event on one pin.

Table 8-2 Timing constraints

Keyword Value type
Base
units

Default
units Description

HOLD number Second n (nano) minimum time limit for hold between two
threshold crossings within two consecutive
events on two pins

NOCHANGE optionala non-
negative num-
ber

Second n (nano) minimum time limit between two threshold
crossings within two arbitrary consecutive
events on one pin, in conjunction with
SETUP andHOLD

PERIOD non-negative
number

Second n (nano) minimum time limit between two identical
events within a sequence of periodical
events

162 Advanced Library Format (ALF) Reference Manual Version 2.0

Electrical Performance Modeling Overview of modeling keywords

PULSEWIDTH number Second n (nano) minimum time limit between two threshold
crossings within two consecutive and com-
plementary events on one pin

RECOVERY number Second n (nano) minimum time limit for recovery between
two threshold crossings within two consecu-
tive events on two pins

REMOVAL number Second n (nano) minimum time limit for removal between
two threshold crossings within two consecu-
tive events on two pins

SETUP number Second n (nano) minimum time limit for setup between two
threshold crossings within two consecutive
events on two pins

SKEW number Second n (nano) absolute value is maximum time limit
between two threshold crossings within two
consecutive events on two pins; the sign
indicates positive or negative direction

a. The associatedSETUPandHOLDmeasurements provide data. NOCHANGE itself need not provide
data.

Table 8-3 : Generalized timing measurements

Keyword Value type Base units Default units Description

TIME number Second 1 (unit) time point for waveform
modeling, time span for
average, RMS, and
peak modeling

FREQUENCY non-negative
number

Hz meg (mega) frequency

JITTER non-negative
number

Second n (nano) uncertainty of arrival
time

Table 8-2 Timing constraints, continued

Keyword Value type
Base
units

Default
units Description

Version 2.0 Advanced Library Format (ALF) Reference Manual 163

Overview of modeling keywords Electrical Performance Modeling

8.1.2 Analog models

This subsection defines the keywords for analog modeling.

Table 8-4 : Normalized measurements

Keyword Value type
Base
units

Default
units Description

THRESHOLD non-negative
number
between0 and
1

Normalized
signal volt-
age swing

1 (unit) fraction of signal voltage swing, specify-
ing a reference point for timing measure-
ment data. The threshold is the voltage
for which the timing measurement is
taken.

NOISE_MARGIN non-negative
number
between0 and
1

Normalized
signal volt-
age swing

1 (unit) fraction of signal voltage swing, specify-
ing the noise margin. The noise margin is
a deviation of the actual voltage from the
expected voltage for a specified signal
level

Table 8-5 : Analog measurements

Keyword Value type Base units Default units Description

CURRENT number Ampere m (milli) electrical current
drawn by the cell. A
pin can be specified

as annotation.a

a. If the annotatedPIN hasPINTYPE=supply , theCURRENTmeasurement qualifies for
power analysis. In this case, the current includes charge/discharge current, if applicable.

ENERGY number Joule p (pico) electrical energy
drawn by the cell,
including charge and
discharge energy, if
applicable.

POWER number Watt u (micro) electrical power
drawn by the cell,
including charge and
discharge power, if
applicable.

TEMPERATURE number o Celsius 1 (unit) temperature

VOLTAGE number Volt 1 (unit) voltage

FLUX non-negative
number

Coulomb per
Square Meter

1 (unit) amount of hot elec-
trons in units of elec-
trical charge per gate
oxide area

FLUENCE non-negative
number

Second times
Coulomb per
Square Meter

1 (unit) integral ofFLUXover
time

164 Advanced Library Format (ALF) Reference Manual Version 2.0

Electrical Performance Modeling Overview of modeling keywords

8.1.3 Supplementary models

This subsection defines the keywords for supplementary models.

The actual values for discrete measurements are always integer numbers, however, estimated
values can be non-integer numbers (e.g., the average fanout of a net is2.4).

Table 8-6 : Electrical components

Keyword Value type Base units
Default
units Description

CAPACITANCE non-negative
number

Farad p (pico) pin, wire, load, or net capacitance

INDUCTANCE non-negative
number

Henry n (nano) pin, wire, load, or net inductance

RESISTANCE non-negative
number

Ohm K (kilo) pin, wire, load, or net resistance

Table 8-7 : Abstract measurements

Keyword Value type
Base
units

Default
units Description

DRIVE_STRENGTH non-negative
number

None 1 (unit) drive strength of a pin, abstract measure

for (drive resistance)-1

SIZE non-negative
number

None 1 (unit) abstract cost function for actual or esti-
mated area of a cell or a block

Table 8-8 : Discrete measurements

Keyword Value type
Base
units

Default
units Description

SWITCHING_BITS non-negative
number

None 1 number of switching bits on a bus

FANOUT non-negative
number

None 1 number of receivers connected to a net

FANIN non-negative
number

None 1 number of drivers connected to a net

CONNECTIONS non-negative
number

None 1 number of pins connected to a net, where
CONNECTIONS = FANIN+FANOUT

Version 2.0 Advanced Library Format (ALF) Reference Manual 165

Auxiliary statements for timing models Electrical Performance Modeling

Table 8-9 describes the arguments for arithmetic models to describe environmental
dependency.

8.2 Auxiliary statements for timing models

This section details the auxiliary statements used for timing modeling.

8.2.1 THRESHOLD definition

TheTHRESHOLD represents a reference voltage level for timing measurements, normalized to
the signal voltage swing and measured with respect to the logic0 voltage level, as shown in
Figure 8-1.

Figure 8-1: THRESHOLD measurement definition

The voltage levels for logic1 and0 represent a full voltage swing.

Different threshold data forRISE andFALL can be specified or else the data shall apply for both
rising and falling transitions.

TheTHRESHOLDstatement has the form of an arithmetic model. If the submodel keywordsRISE

andFALL are used, it has the form of an arithmetic model container.

Table 8-9 : Environmental data

Annotation string Value type Description

DERATE_CASE string derating case, i.e., the combination of pro-
cess, supply voltage, and temperature

PROCESS string process corner

TEMPERATURE number environmental temperature

V (logic 1)

V (logic 0)

∆Vrise ∆Vfall

time

threshold (rise) =
∆Vrise

∆V
threshold (fall) =

∆Vfall

∆V

∆V

166 Advanced Library Format (ALF) Reference Manual Version 2.0

Electrical Performance Modeling Auxiliary statements for timing models

Examples:

THRESHOLD = 0.4;

THRESHOLD { RISE = 0.3; FALL = 0.5; }

THRESHOLD { HEADER { TEMPERATURE {TABLE{ 0 50 100 }}} TABLE { 0.5 0.4 0.3}}

8.2.2 FROM and TO container

A FROM container and aTO container shall be used inside timing measurements and timing
constraints. Depending on the semantics of the timing model (see Section 8.3), they can contain
aTHRESHOLDstatement,PIN annotation, and/orEDGE_NUMBERannotation. The data in theFROM

andTO containers define the measurement start and end point, respectively.

Example:

DELAY {
FROM {PIN = data_in; THRESHOLD { RISE = 0.4; FALL = 0.6;} }
TO {PIN = data_out; THRESHOLD = 0.5;}

}

The delay is measured from pindata_in to pin data_out . The threshold fordata_in is 0.4

for the rising signal and0.6 for the falling signal. The threshold fordata_out is 0.5 , which
applies for both the rising and falling signals.

8.2.3 PIN annotation

If the timing measurements or timing constraints, respectively, apply semantically for two pins
(see Section 8.3.1), theFROMand TO containers shall each contain thePIN annotation.

Example:

DELAY {
FROM { PIN = A ; }
TO { PIN = Z ; }

}

Otherwise, if the timing measurements or timing constraints apply semantically only to one pin
(see Section 8.3.3), thePIN annotation shall be outside theFROMor TO container.

Example:

SLEWRATE {
PIN = A ;

}

8.2.4 EDGE_NUMBER annotation

TheEDGE_NUMBER annotation within the context of a timing model shall specify the edge
where the timing measurement applies. The timing model shall be in the context of aVECTOR.
TheEDGE_NUMBER shall have an unsigned value pointing to exactly one of subsequent
vector_single_event expressions applicable to the referenced pin. TheEDGE_NUMBER shall
be counted individually for each pin which appears in theVECTOR, starting with zero (0).

Version 2.0 Advanced Library Format (ALF) Reference Manual 167

Auxiliary statements for timing models Electrical Performance Modeling

If the timing measurements or timing constraints, apply semantically to two pins (see Section
8.3.1), theEDGE_NUMBER annotation shall be legal inside theFROM or TO container in
conjunction with thePIN annotation.

Example:

DELAY {
FROM { PIN = A ; EDGE_NUMBER = 0; }
TO { PIN = Z ; EDGE_NUMBER = 0; }

}

Otherwise, if the timing measurements or timing constraints apply semantically only to one pin
(see Section 8.3.3), theEDGE_NUMBERannotation shall be legal outside theFROMor TOcontainer
in conjunction with thePIN annotation.

Example:

SLEWRATE {
PIN = A ; EDGE_NUMBER = 0;

}

The default values forEDGE_NUMBERare specific for each timing model keyword (see Section
8.3).

TheEDGE_NUMBER annotation is necessary for complex timing models involving multiple
transitions on the same pin, as illustrated by the following figures and examples.

Figure 8-2: Schematic of a pulse generator

in

out

DELAY d1

DELAY d2

168 Advanced Library Format (ALF) Reference Manual Version 2.0

Electrical Performance Modeling Auxiliary statements for timing models

Figure 8-3: Timing diagram of a pulse generator

VECTOR (01 in -> 01 out -> 10 out) {
DELAY d1 {

FROM { PIN = in; }
TO { PIN = out; EDGE_NUMBER = 0; }

}
DELAY d2 {

FROM { PIN = in; }
TO { PIN = out; EDGE_NUMBER = 1; }

}
}

Figure 8-4: Timing diagram of a DRAM cycle

in

out

DELAY d1

DELAY d2
time

EDGE_NUMBER = 0 EDGE_NUMBER = 1

EDGE_NUMBER = 0

RAS

CAS

addr

SETUP s1 HOLD h1
SETUP s2 HOLD h2

EDGE_NUMBER = 0 EDGE_NUMBER = 1

EDGE_NUMBER = 0 EDGE_NUMBER = 1

EDGE_NUMBER = 0 EDGE_NUMBER = 1 EDGE_NUMBER = 2

Version 2.0 Advanced Library Format (ALF) Reference Manual 169

Auxiliary statements for timing models Electrical Performance Modeling

VECTOR(?! addr ->01 RAS ->10 RAS ->?! addr ->01 CAS ->10 CAS ->?! addr){
SETUP s1 {

FROM { PIN = addr; EDGE_NUMBER = 0; }
TO { PIN = RAS; EDGE_NUMBER = 0; }

}
HOLD h1 {

FROM { PIN = RAS; EDGE_NUMBER = 1; }
TO { PIN = addr; EDGE_NUMBER = 1; }

}
SETUP s2 {

FROM { PIN = addr; EDGE_NUMBER = 1; }
TO { PIN = CAS; EDGE_NUMBER = 0; }

}
HOLD h2 {

FROM { PIN = CAS; EDGE_NUMBER = 1; }
TO { PIN = addr; EDGE_NUMBER = 2; }

}
}

8.2.5 Context of THRESHOLD definitions

TheTHRESHOLD statement can appear in the context of aFROM or TO container. In this case, it
specifies the applicable reference for the start and end point of the timing measurement,
respectively.

Example:

SLEWRATE {
FROM { THRESHOLD = 0.2; }
TO { THRESHOLD = 0.8; }

}

TheTHRESHOLDstatement can also appear in the context of aPIN . In this case, it specifies the
applicable reference for the start or end point of timing measurements indicated by thePIN

annotation inside aFROMor TOcontainer, unless aTHRESHOLDis specified explicitly inside the
FROM or TO container.

If both theRISE andFALL thresholds are specified and the switching direction of the applicable
pin is clearly indicated in the context of aVECTOR, theRISE or FALL data shall be applied
accordingly.

Example:

PIN A { THRESHOLD { RISE = 0.3; FALL = 0.5; } }
PIN Z { THRESHOLD = 0.4; }
// other statements ...
VECTOR (01 A -> 10 Z) {

DELAY { FROM { PIN=A; } TO { PIN=Z; } }
// the applicable threshold for A is 0.3
// the applicable threshold for Z is 0.4

If thresholds are needed for exact definition of the model data, theFROMandTOcontainers shall
each contain an arithmetic model forTHRESHOLD.

170 Advanced Library Format (ALF) Reference Manual Version 2.0

Electrical Performance Modeling Auxiliary statements for timing models

A THRESHOLD statement can also appear as argument of an arithmetic model for timing
measurements. In this case, it shall contain aPIN annotation matching anotherPIN annotation
in theFROM or TO container.

Example:

DELAY {
FROM { PIN = A; THRESHOLD = 0.5; }
TO { PIN = Z; }
HEADER { THRESHOLD { PIN = Z; TABLE { 0.3 0.4 0.5 } }
TABLE { 1.23 1.45 1.78 }

}
/* The measurement reference for pin A is always 0.5. The delay from A to
Z is expressed as a function of the measurement reference for pin Z. */

FROM andTO containers withTHRESHOLD definitions, yet withoutPIN annotations, can appear
within unnamed timing model definitions in the context of aVECTOR, CELL, WIRE, SUBLIBRARY,
or LIBRARY object for the purpose of specifying global threshold definitions for all timing
models within scope of the definition. The following priorities apply:

1. THRESHOLD in theHEADER of the timing model

2. THRESHOLD in theFROM or TO statement within the timing model

3. THRESHOLD for timing model definition in the context of the sameVECTOR

4. THRESHOLD within thePIN definition

5. THRESHOLD for timing model definition in the context of the sameCELL or WIRE

6. THRESHOLD for timing model definition in the context of the sameSUBLIBRARY

7. THRESHOLD for timing model definition in the context of the sameLIBRARY

8. THRESHOLD for timing model definition outsideLIBRARY

Example:

LIBRARY my_library {
DELAY {

FROM { THRESHOLD = 0.4; }
TO { THRESHOLD = 0.4; }

}
SLEWRATE {

FROM { THRESHOLD { RISE = 0.2; FALL = 0.8; } }
TO { THRESHOLD { RISE = 0.8; FALL = 0.2; } }

}
CELL my_cell {

PIN A { DIRECTION=input; THRESHOLD { RISE = 0.3; FALL = 0.5; } }
PIN Z { DIRECTION=output; }
VECTOR (01 A -> 10 Z) {

Version 2.0 Advanced Library Format (ALF) Reference Manual 171

Specification of timing models Electrical Performance Modeling

DELAY { FROM { PIN=A; } TO { PIN=Z; } }
SLEWRATE { PIN = Z; }

}
}

}
// delay is measured from A (threshold=0.3) to Z (threshold=0.4)
// slewrate on Z is measured from threshold=0.8 to threshold=0.2.

8.3 Specification of timing models

Timing models shall be specified in the context of aVECTOR statement.

8.3.1 Template for timing measurements / constraints

The following templates show a general timing measurement and a general timing constraint
description, respectively, applicable for two pins.

TEMPLATETIMING_MEASUREMENT {
<timeKeyword> = <timeValue> {

FROM {
PIN=<fromPin>;
THRESHOLD=<fromThreshold>;
EDGE_NUMBER=<fromEdge>;

}
TO {

PIN=<toPin>;
THRESHOLD=<toThreshold>;
EDGE_NUMBER=<toEdge>;

}
}

}

TEMPLATETIMING_CONSTRAINT {
LIMIT {

<timeKeyword> {
FROM {

PIN=<fromPin>;
THRESHOLD=<fromThreshold>;
EDGE_NUMBER=<fromEdge>;

}
TO {

PIN=<toPin>;
THRESHOLD=<toThreshold>;
EDGE_NUMBER=<toEdge>;

}
MIN = <timeValueMin>;
MAX = <timeValueMax>;

}
}

}

For simplicity, trivial arithmetic models shown here. In general, aHEADER, TABLE, orEQUATION

construct can be used for calculation of<timeValue> , <timeValueMin> , or <timeValueMax> .

172 Advanced Library Format (ALF) Reference Manual Version 2.0

Electrical Performance Modeling Specification of timing models

A particular timing constraint does not necessarily contain both<timeValueMin> and
<timeValueMax> .

The<fromThreshold> and<toThreshold> can be globally predefined as explained in Section
8.2.4.

Thevector_expression in the context where the<timeKeyword> appears shall contain at
least two expressions of the typevector_single_event with the<fromPin> and<toPin> ,
respectively, as operands. The<fromEdge> and<toEdge> point to their respective
vector_single_event , as shown in Figure 8-5.

Figure 8-5: General timing measurement or timing constraint

The direction of the respective transition shall be identified by the respectiveedge_literal ,
i.e., the operator of the respectivevector_single_event .

The temporal order of the LHS and RHSvector_single_event expressions within the
vector_expression is indicated by avector_binary operator.

The implications on the range of<timeValue> or <refPin> or <timeValueMax> are shown in
Table 8-10.

Table 8-10 Range of time value depending on VECTOR

LHS operand RHS

range of<timeValue> or
<timeValueMin> or <timeValueMax>

<fromPin> -> or ~> <toPin> positive

<toPin> -> or ~> <fromPin> negative

<fromPin> &> <toPin> positive or zero

<toPin> &> <fromPin> negative or zero

<fromPin> <-> <toPin> positive or negative

<toPin> <-> <fromPin> positive or negative

<fromPin> <&> <toPin> positive or negative or zero

<toPin> <&> <fromPin> positive or negative or zero

<fromPin>

<toPin>

<fromThreshold>

<toThreshold>

<timeValue> or <timeValueMin> or <timeValueMax>

<fromEdge> <fromEdge> + 1

<toEdge> - 1 <toEdge>

Version 2.0 Advanced Library Format (ALF) Reference Manual 173

Specification of timing models Electrical Performance Modeling

Note: This table does not apply for models withCALCULATION=incremental . Incremental
values can always be positive, negative, or zero.

8.3.2 Partially defined timing measurements and constraints

A partially defined timing measurement or timing constraint contains only aFROMstatement or
a TO statement, but not both. This construct can be used to specify measurements from any
point to a specific point (onlyTO is specified) or from a specific point to any point (onlyFROM

is specified).

This is summarized in Table 8-11.

It is recommended to use the constructs for interconnect timing arcs only in conjunction with
CALCULATION=incremental . The<timeValue> , <timeValueMin> , or<timeValueMax> from
this model is added to the<timeValue> , <timeValueMin>, or <timeValueMax> from timing
arcs starting or ending at this pin, respectively. If the construct is used with
CALCULATION=absolute , the timing model can only be used if completely specified
interconnect timing models are not available and the result is not be accurate in general.

8.3.3 Template for same-pin timing measurements / constraints

The following templates show a timing measurement and a timing constraint description,
respectively, applicable for the same pin.

TEMPLATESAME_PIN_TIMING_MEASUREMENT {
<timeKeyword> = <timeValue> {

PIN=<refPin>;
EDGE_NUMBER=<refEdge>;
FROM { THRESHOLD=<fromThreshold>; }
TO { THRESHOLD=<toThreshold>; }

}
}

Table 8-11 Partially specified timing measurements and constraints

DIRECTION of PIN FROM or TO specified Specified model applicable for

input FROM only cell timing arcs starting at this pin

input TO only interconnect timing arcs ending at this pin

output FROM only interconnect timing arcs starting at this pin

output TO only cell timing arcs ending at this pin

174 Advanced Library Format (ALF) Reference Manual Version 2.0

Electrical Performance Modeling Specification of timing models

TEMPLATESAME_PIN_TIMING_CONSTRAINT {
LIMIT {

<timeKeyword> {
PIN=<refPin>;
EDGE_NUMBER=<refEdge>;
FROM { THRESHOLD=<fromThreshold>; }
TO { THRESHOLD=<toThreshold>; }
MIN = <timeValueMin>;
MAX = <timeValueMax>;

}
}

}

Depending on the<timeKeyword> , the<timeValue> , <timeValueMin>, or <timeValueMax>

is measured on the same<refEdge> or between<refEdge> and<refEdge> plus 1.
Only the-> or ~> operators are applicable between subsequent edges. Therefore, the
<timeValue> , <timeValueMin> , or <timeValueMax> are positive by definition.

Note: The<fromThreshold> and<toThreshold> can be globally predefined as explained in
Section 8.2.4. However, theTHRESHOLD in the context of aPIN does not apply for
SAME_PIN_TIMING_MEASUREMENT or SAME_PIN_TIMING_CONSTRAINT, since the
<refPin> is not within aFROM or TO statement.

8.3.4 Absolute and incremental evaluation of timing models

As mentioned in the previous sections, the calculation models forTIMING_MEASUREMENT,
TIMING_CONSTRAINT, SAME_PIN_TIMING_MEASUREMENT, and
SAME_PIN_TIMING_CONSTRAINT can have the annotationCALCULATION=absolute (the
default) orCALCULATION=incremental . These annotations are only relevant more than one
calculation model for the same timing arc exists.

Calculation models for the same timing arc withCALCULATION=absolute shall be within the
context of mutually exclusiveVECTORs. Thevector_expression specifies which model to use
under which condition.

Example:

VECTOR ((01 A -> 01 Z) && B & !C) {
DELAY { CALCULATION=absolute; FROM { PIN=A; } TO { PIN=Z; }
/* fill in HEADER, TABLE */ }

}
VECTOR ((01 A -> 01 Z) && !B & C) {

DELAY { CALCULATION=absolute; FROM { PIN=A; } TO { PIN=Z; }
/* fill in HEADER, TABLE */ }

}

The vectors((01 A -> 01 Z) && B & !C) and((01 A -> 01 Z) && !B & C) are
mutually exclusive. They describe the same timing arc with two mutually exclusive conditions.

In the case of aVECTOR containing a calculation model for a timing arc with
CALCULATION=incremental , there shall be anotherVECTOR with a calculation model for the
same timing arc withCALCULATION=absolute and both vectors shall be compatible. The
vector_expression of the latter shall necessarily be true when thevector_expression of
the former is true.

Version 2.0 Advanced Library Format (ALF) Reference Manual 175

Specification of timing models Electrical Performance Modeling

Example:

VECTOR (01 A -> 01 Z) {
DELAY { CALCULATION=absolute; FROM { PIN=A; } TO { PIN=Z; }
/* fill in HEADER, TABLE */ }

}
VECTOR ((01 A -> 01 Z) && B & !C) {

DELAY { CALCULATION=incremental; FROM { PIN=A; } TO { PIN=Z; }
/* fill in HEADER, TABLE */ }

}
VECTOR ((01 A -> 01 Z) && !B & C) {

DELAY { CALCULATION=incremental; FROM { PIN=A; } TO { PIN=Z; }
/* fill in HEADER, TABLE */ }

}

The vectors((01 A -> 01 Z) && B & !C) and((01 A -> 01 Z) && !B & C) are both
compatible with the vector(01 A -> 01 Z) and mutually exclusive with each other. The latter
describe the same timing arc with two mutually exclusive conditions. The former describes the
same timing arc without conditions. This modeling style is useful for timing analysis tools with
or without support for conditions. The vectors with conditions, if supported, add accuracy to
the calculation. However, the vector without conditions is always available for basic
calculation.

8.3.5 RISE and FALL submodels

For timing models in the context of aVECTOR, submodels forRISE andFALL are only applicable
if the vector_expression does not specify the switching direction of the referencedPIN and
EDGE_NUMBER. This is the case, when symbolicvector_unary operators are used, i.e.,?! , ??,
?* , or *? instead of01, 10, etc.

ForSAME_PIN_TIMING_MEASUREMENTor SAME_PIN_TIMING_CONSTRAINT, theRISE andFALL

submodels apply for the<refEdge> .

For a partially specifiedTIMING_MEASUREMENT or TIMING_CONSTRAINT, theRISE andFALL

submodels apply for the<fromEdge> or <toEdge> , whichever is specified.

For a completely specifiedTIMING_MEASUREMENTor TIMING_CONSTRAINT, it is not possible to
apply aRISE andFALL submodel for both<fromEdge> and<toEdge> . Thevector_unary

operator shall specify the switching direction for at least one edge. If the switching direction
for both edges is unspecified, theRISE andFALL submodel shall apply for the<toEdge> .

Example:

VECTOR (01 CLK -> ?! Q) {
DELAY { FROM { PIN = CLK; } TO { PIN = Q; }

RISE = 0.76; FALL = 0.58;
}

}

// If Q is a scalar pin, the following construct is equivalent:
VECTOR (01 CLK -> 01 Q) {

DELAY = 0.76 { FROM { PIN = CLK; } TO { PIN = Q; } }
}

176 Advanced Library Format (ALF) Reference Manual Version 2.0

Electrical Performance Modeling Specification of timing models

VECTOR (01 CLK -> 10 Q) {
DELAY = 0.58 { FROM { PIN = CLK; } TO { PIN = Q; } }

}

8.3.6 TIME

The<timeKeyword> TIME describes a generalTIMING_MEASUREMENTor TIMING_CONSTRAINT

without implying any particular relationship between<fromEdge> and<toEdge> .

In general,<fromPin> and<toPin> refer to two different pins. However, it is legal for
<fromPin> and<toPin> to refer to the same pin.

The default value for<fromEdge> and<toEdge> shall be0.

8.3.7 DELAY

The<timeKeyword> DELAY describes aTIMING_MEASUREMENTimplying a causal relationship
between<fromEdge> and<toEdge> .

Usually,<fromPin> refers to an input pin and<toPin> refers to an output pin. However, it is
legal for<fromPin> and<toPin> to refer to an output pin.

The default value for<fromEdge> and<toEdge> shall be0, unless theDELAYstatement appears
in conjunction with aRETAIN statement within the context of the sameVECTOR.

8.3.8 RETAIN

The<timeKeyword> RETAIN describes aTIMING_MEASUREMENTimplying a causal relationship
between<fromEdge> and<toEdge> in the same way asDELAY.

RETAIN is used to describe the elapsed time until the output changes its old value, whereas
DELAY is used to describe the elapsed time until the output settles to a stable new value, as
shown in Figure 8-6.

Figure 8-6: RETAIN and DELAY

WhenDELAYappears in conjunction withRETAIN, the<fromEdge> for both measurements shall
be the same. The<toEdge> for DELAY shall be the<toEdge> for RETAIN plus 1.

<fromPin>

<toPin>

RETAIN

DELAY

<toEdge> <toEdge>

<fromEdge>

Version 2.0 Advanced Library Format (ALF) Reference Manual 177

Specification of timing models Electrical Performance Modeling

The default value for<fromEdge> and<toEdge> for RETAIN shall be0. The default value for
<toEdge> for DELAY shall be1.

8.3.9 SLEWRATE

The<timeKeyword> SLEWRATE describes aSAME_PIN_TIMING_MEASUREMENT for
<timeValue> defining the duration of a signal transition or a fraction thereof.

TheSLEWRATE applies for the<refEdge> on the<refPin> . The default value for<refEdge>

shall be0.

8.3.10 SETUP

The<timeKeyword> SETUP describes aTIMING_CONSTRAINT for <timeValueMin> defining
the minimum stable time required for the data signal on the<fromPin> before it is sampled by
the strobe signal on the<toPin> .

The<fromPin> usually is an input pin withSIGNALTYPE=data . The<toPin> is an input pin
with SIGNALTYPE=clock .

The default value for<fromEdge> and<toEdge> for SETUP shall be0.

8.3.11 HOLD

The<timeKeyword> HOLD describes aTIMING_CONSTRAINTfor <timeValueMin> defining the
minimum stable time required for the data signal on the<toPin> after it is sampled by the
strobe signal on the<fromPin> .

The<toPin> usually is an input pin withSIGNALTYPE=data . The<fromPin> is an input pin
with SIGNALTYPE=clock .

The default value for<fromEdge> shall be0. The default value for<toEdge> shall be0,
unlessHOLD appears in conjunction withSETUP in the context of the sameVECTOR. In that
case, the default value for<toEdge> shall be1. All of this is depicted in Figure 8-7.

Figure 8-7: SETUP and HOLD

SETUP

HOLD

<toEdge>

<toEdge>

<fromEdge>

<fromEdge>data

strobe

178 Advanced Library Format (ALF) Reference Manual Version 2.0

Electrical Performance Modeling Specification of timing models

The<timeValueMin> for SETUP or the<timeValueMin> for HOLD with respect to the same
strobe can be negative. However, the sum of both values shall be positive. The sum represents
the minimum duration of a valid data signal around a strobe signal.

8.3.12 NOCHANGE

The<timeKeyword> NOCHANGE describes aSAME_PIN_TIMING_CONSTRAINT defining the
requirement for a stable signal on a pin subjected toSETUPandHOLDon subsequent edges of a
strobe signal., as shown in Figure 8-8.

Figure 8-8: NOCHANGE, SETUP, and HOLD

TheNOCHANGE applies between the<refEdge> and the subsequent edge, i.e.,<refEdge>

plus 1 on the<refPin> . The default value for<refEdge> shall be0.

WhenNOCHANGE appears in conjunction withSETUP andHOLD within the context of the same
VECTOR, the default value for<fromEdge> and<toEdge> of SETUPshall be0 and the default
value for<fromEdge> and<toEdge> of HOLD shall be1.

8.3.13 RECOVERY

The<timeKeyword> RECOVERY describes aTIMING_CONSTRAINT for <timeValueMin>

defining the minimum stable time required for an asynchronous control signal on the
<fromPin> to be inactive before a strobe signal on the<toPin> can be active.

The<fromPin> usually is an input pin withSIGNALTYPE=set|clear . The<toPin> is an input
pin with SIGNALTYPE=clock .

The default value for<fromEdge> and<toEdge> for RECOVERY shall be0.

8.3.14 REMOVAL

The<timeKeyword> REMOVAL describes aTIMING_CONSTRAINTfor <timeValueMin> defining
the minimum stable time required for an asynchronous control signal on the<toPin> to remain
active after overriding a strobe signal on the<fromPin> .

The<toPin> usually is an input pin withSIGNALTYPE=set|clear . The<fromPin> is an input
pin with SIGNALTYPE=clock .

SETUP HOLD

<toEdge>

<toEdge><fromEdge>

<fromEdge>

data

strobe

NOCHANGE
<refEdge>

Version 2.0 Advanced Library Format (ALF) Reference Manual 179

Specification of timing models Electrical Performance Modeling

The default value for<fromEdge> and<toEdge> for REMOVAL shall be0.

REMOVAL can appear in conjunction withRECOVERY within the context of the sameVECTOR, as
shown in Figure 8-9.

Figure 8-9: RECOVERY and REMOVAL

The<timeValueMin> for RECOVERY or the<timeValueMin> for REMOVAL with respect to the
same strobe can be negative. However, the sum of both values shall be positive. The sum
represents the time window around the clock signal when the asynchronous control signal shall
not switch.

8.3.15 SKEW between two signals

The<timeKeyword> SKEW describes aTIMING_CONSTRAINTfor <timeValueMax> defining the
maximum allowed time separation between<fromEdge> on<fromPin> and<toEdge> on
<toPin> .

The default value for<fromEdge> and<toEdge> for SKEW shall be0.

8.3.16 SKEW between multiple signals

SKEWcan also describe the maximum time distortion between signals on multiple pins. In this
case, a list of pins appears in form of a multi-value annotation. NoFROM or TO containers can
be used here.

Example:

SKEW {
PIN { <pinList> }
EDGE_NUMBER { <edgeList> }
<skewData>

}

The default forEDGE_NUMBER in SKEW for multiple signals shall be a list of0s.

RECOVERY

REMOVAL

<toEdge>

<toEdge>

<fromEdge>

<fromEdge>

async. control

strobe

same edge, shifted

180 Advanced Library Format (ALF) Reference Manual Version 2.0

Electrical Performance Modeling VIOLATION container

A special case of multiple pins is a single bus. In this case, theunnamed_assignment
syntax is also valid as alternative to themulti_value_assignment syntax (see Section
8.15.3).

Example:

SKEW { PIN = my_bus_pin[8:1]; }

or

SKEW { PIN { my_bus_pin[8:1] } }

8.3.17 PULSEWIDTH

The<timeKeyword> PULSEWIDTH describes aSAME_PIN_TIMING_CONSTRAINT for
<timeValueMin> defining the minimum duration of the signal before changing state.

ThePULSEWIDTHstatement is applicable for both input and output pins. In the case of an input
pin, it represents a timing check against the minimum duration. In case of an output pin, it rep-
resents the minimum possible duration of the signal.

ThePULSEWIDTH applies between the<refEdge> and the subsequent edge, i.e.,<refEdge>

plus 1 on the<refPin> . The default value for<refEdge> shall be0.

8.3.18 PERIOD

The<timeKeyword> PERIOD describes aSAME_PIN_TIMING_CONSTRAINT for
<timeValueMin> defining the minimum time between subsequent repetitions of a signal.
Because of periodicity,<fromThreshold> and<toThreshold> are not required. Therefore,
FROM andTO statements do not appear.

If the VECTORdescribes a completely specified event sequence,<refPin> and<refEdge> are
not required.PERIOD applies for the complete event sequence. If theVECTOR describes a
partially specified event sequence, involving the~> operator,<refPin> and<refEdge> are
required.

8.3.19 JITTER

The<timeKeyword> JITTER describes aSAME_PIN_TIMING_MEASUREMENTfor <timeValue>

defining the actual uncertainty of arrival time for a periodical signal at a pin.

TheJITTER applies for the<refEdge> on the<refPin> . The default value for<refEdge> shall
be0. Threshold definitions, i.e.,<fromThreshold> or <toThreshold> do not apply.

A limit for tolerable jitter at a pin can be expressed using theLIMIT construct, as shown in the
template forSAME_PIN_TIMING_CONSTRAINT.

8.4 VIOLATION container

A VIOLATION statement can appear within anILLEGAL statement (see Section 6.7) and also
within aTIMING_CONSTRAINTor aSAME_PIN_TIMING_CONSTRAINT. TheVIOLATION statement
can contain theBEHAVIOR object (see Section 11.17), since the behavior in case of timing

Version 2.0 Advanced Library Format (ALF) Reference Manual 181

EARLY and LATE container Electrical Performance Modeling

constraint violation cannot be described in theFUNCTION. TheVIOLATION statement can also
contain the annotations shown in Table 8-12.

Example:

VECTOR (01 d <&> 01 cp) {
SETUP {

VIOLATION {
MESSAGE_TYPE = error;
MESSAGE = “setup violation 01 d <&> 01 cp“;
BEHAVIOR {q = 'bx;}

}
}

}

8.5 EARLY and LATE container

TheEARLY andLATE containers define the boundaries of timing measurements in one single
analysis. They only apply toDELAY andSLEWRATE. Both of them need to appear in both con-
tainers.

The quadruple

EARLY {
DELAY { FROM {...} TO { ...} /* data */ }
SLEWRATE { /* data */ }

LATE {
DELAY { FROM {...} TO { ...} /* data */ }
SLEWRATE { /* data */ }

is used to calculate the envelope of the timing waveform at theTO point of a delay arc with
respect to the timing waveform at theFROM point of a delay arc.

TheEARLY DELAY is a smaller number (or a set of smaller numbers) than theLATE DELAY.
However, theEARLY SLEWRATE is not necessarily smaller than theLATE SLEWRATE, since the
SLEWRATE of theEARLY signal can be larger than theSLEWRATE of theLATE signal.

8.6 Environmental dependency for electrical data

This section defines the environmental dependencies for electrical data.

Table 8-12 : Annotations within VIOLATION

Keyword Value type Description

MESSAGE_TYPE string specifies the type of the message. It can be one
of information , warning , or error .

MESSAGE string specifies the message itself.

182 Advanced Library Format (ALF) Reference Manual Version 2.0

Electrical Performance Modeling Environmental dependency for electrical data

8.6.1 PROCESS

The following identifiers can be used as predefined process corners:

?n?p process definition with transistor strength

where? can be

s strong
w weak

The possible process name combinations are shown in Table 8-13.

8.6.2 DERATE_CASE

The following identifiers can be used as predefined derating cases:

nom nominal case
bc? prefix for best case
wc? prefix for worst case

where? can be

com suffix for commercial case
ind suffix for industrial case
mil suffix for military case

The possible derating case combinations are defined in Table 8-14.

8.6.3 Lookup table without interpolation

ThePROCESSorDERATE_CASEcan be used in aTABLEwithin theHEADERof an arithmetic model
for electrical data, e.g.,DELAY. Data can not be interpolated in the dimension of this table.

Table 8-13 : Predefined process names

Process name Description

snsp strong NMOS, strong PMOS

snwp strong NMOS, weak PMOS

wnsp weak NMOS, strong PMOS

wnwp weak NMOS, weak PMOS

Table 8-14 : Predefined derating cases

Derating case Description

bccom best case commercial

bcind best case industrial

bcmil best case military

wccom worst case commercial

wcind worst case military

wcmil worst case military

Version 2.0 Advanced Library Format (ALF) Reference Manual 183

PIN-related arithmetic models for electrical data Electrical Performance Modeling

Example:

DELAY {
UNIT = ns;
HEADER {

PROCESS { TABLE { nom snsp wnwp } }
}
TABLE { 0.4 0.3 0.6 }

}

Here , theDELAYis 0.4 ns for nominal process,0.3 ns for snsp , and0.6 ns for wnwp. A delay
“in-between”snsp andwnwp can not be interpolated.

8.6.4 Lookup table for process- or derating-case coefficients

A nested arithmetic model construct can be used to describe lookup tables for coefficients,
based onPROCESSor DERATE_CASE. These coefficients can be used in anEQUATIONto calculate
electrical data, e.g.,DELAY.

Example:

DELAY {
UNIT = ns;
HEADER {

PROCESS { HEADER { nom snsp wnwp } TABLE {0.0 -0.25 0.5} }
}
EQUATION { (1 + PROCESS)*0.4 }

}

The equation uses thePROCESScoefficient0.0 for nominal , -0.25 for snsp , and0.5 for wnwp.
Therefore theDELAYis 0.4 ns for the nominal process,0.3 ns for snsp , and0.6 ns for wnwp.
Conceivably, theDELAY can be calculated for any value of the coefficient.

8.6.5 TEMPERATURE

TEMPERATURE can be used as argument in theHEADER of an arithmetic model for timing or
electrical data. It can also be used as an arithmetic model withDERATE_CASE as argument, in
order to describe what temperature applies for the specified derating case.

8.7 PIN-related arithmetic models for electrical data

This section details thePIN arithmetic models for electrical data.

8.7.1 Principles

Arithmetic models for electrical data can be associated with a pin of a cell. Their meaning is
illustrated in Figure 8-10.

184 Advanced Library Format (ALF) Reference Manual Version 2.0

Electrical Performance Modeling PIN-related arithmetic models for electrical data

Figure 8-10: General representation of electrical models around a pin

A pin is represented as a source node and a sink node. For pins withDIRECTION=input , the
source node is externally accessible. For pins withDIRECTION=output , the sink node is
externally accessible.

8.7.2 CAPACITANCE, RESISTANCE, and INDUCTANCE

RESISTANCE andINDUCTANCE apply between the source and sink node.CAPACITANCE applies
between the sink node and ground. By default, the values for resistance, inductance and
capacitance shall be zero (0).

8.7.3 VOLTAGE and CURRENT

VOLTAGEandCURRENTcan be measured at either source or sink node, depending on which node
is externally accessible. However, a voltage source can only be connected to a source node. The
sense of measurement for voltage shall be from the node to ground. The sense of measurement
for current shall beinto the node.

8.7.4 PIN-related timing models

SAME_PIN_TIMING_MEASUREMENT andSAME_PIN_TIMING_CONSTRAINT (see Section 8.3 and
Section 8.7.6) are pin-related timing models. They are defined with reference to the externally
accessible node.

8.7.5 Submodels for RISE, FALL, HIGH, and LOW

RISE andFALL contain data characterized in transient measurements.HIGH andLOW contain
data characterized in static measurements.

<modelKeyword> { RISE=<modelValueRise>; FALL=<modelValueFall>; }

<modelKeyword> { HIGH=<modelValueHigh>; LOW=<modelValueLow>; }

It is generally not required that bothRISE andFALL or bothHIGH andLOW, respectively, appear
as an arithmetic submodel.

HIGH andLOW qualify states with the logic value1 and0, respectively.RISE andFALL qualify
transitions between states with initial logic value0 and1, respectively and final values1 and

source

resistance

capacitance

inductance

sink

voltage

node node currentcurrent

voltage

Version 2.0 Advanced Library Format (ALF) Reference Manual 185

PIN-related arithmetic models for electrical data Electrical Performance Modeling

0, respectively. For other states and their mapping to logic values, see Section 5.1.5. If the
arithmetic model is within the scope of a vector which describes the logic values without
ambiguity, the use ofRISE and FALL or HIGH andLOW does not apply.

HIGH, LOW, RISE, andFALL apply for all pin-related arithmetic models with the following
exceptions:

RISE andFALL do not apply forVOLTAGE.
HIGH andLOW do not apply forSAME_PIN_TIMING_MEASUREMENT and
SAME_PIN_TIMING_CONSTRAINT .

Note: For states that cannot be mapped to logic1 or 0, RISE and FALL , or HIGH and LOW

cannot be used. The use ofVECTORwith unambiguous description of the relevant states
is mandatory in such cases.

8.7.6 Context-specific semantics

An arithmetic model forVOLTAGE, CURRENT, SLEWRATE, RESISTANCE, INDUCTANCE, and
CAPACITANCE can be associated with aPIN in one of the following ways.

1. A model in the context of aPIN

Example:

PIN my_pin {
CAPACITANCE = 0.025;

2. A model in the context of aCELL, WIRE, or VECTOR with PIN annotation

Example:

VOLTAGE = 1.8 { PIN = my_pin; }

The model in the context of aPIN shall be used if the data is completely confined to the pin.
That means, no argument of the model shall make reference to any pin, since such reference
implies an external dependency. A model with dependency only on environmental data not
associated with a pin (e.g.,TEMPERATURE, PROCESS, andDERATE_CASE) can be described within
the context of thePIN .

A model with dependency on external data applied to a pin (e.g., load capacitance) shall be
described outside the context of thePIN , using aPIN annotation. In particular, if the model
involves a dependency on logic state or logic transition of otherPINs, the model shall be
described within the context of aVECTOR.

Figure 8-11 illustrates electrical models associated with input and output pins.

186 Advanced Library Format (ALF) Reference Manual Version 2.0

Electrical Performance Modeling PIN-related arithmetic models for electrical data

Figure 8-11: Electrical models associated with input and output pins

Table 8-15 and Table 8-16 define how models are associated with the pin, depending on the
context.

Table 8-15 Direct association of models with a PIN

Model Model in context of PIN
Model in context of CELL, WIRE,
and VECTOR with PIN annotation

CAPACITANCE pin self-capacitance externally controlled capacitance at the
pin, e.g., voltage-dependent

INDUCTANCE pin self-inductance externally controlled inductance at the
pin, e.g., voltage-dependent

RESISTANCE pin self-resistance externally controlled resistance at the
pin, e.g., voltage-dependent, in the con-
text of aVECTOR for timing-arc spe-
cific driver resistance

VOLTAGE operational voltage measured at pin externally controlled voltage at the pin

CURRENT operational current measured into pin externally controlled current into pin

SAME_PIN_TIMING_
MEASUREMENT

for model definition, default, etc.;
not for the timing arc

in context ofVECTOR for timing arc,
other context for definition, default, etc.

SAME_PIN_TIMING_
CONSTRAINT

for model definition, default, etc.;
not for the timing arc

in context ofVECTOR for timing arc,
other context for definition, default, etc.

Table 8-16 External association of models with a PIN

Model / Context
LIMIT within PIN or with PIN
annotation

Model argument with PIN
annotation

CAPACITANCE min or max limit for applicable load load for model characterization

INDUCTANCE min or max limit for applicable load load for model characterization

RESISTANCE min or max limit for applicable load load for model characterization

VOLTAGE min or max limit for applicable voltage voltage for model characterization

input pin output pin

source sink sinksource

voltage

current

voltage

current

external loadexternal driver

Version 2.0 Advanced Library Format (ALF) Reference Manual 187

Other PIN-related arithmetic models Electrical Performance Modeling

Example:

CELL my_cell {
PIN pin1 { DIRECTION=input; CAPACITANCE = 0.05; }
PIN pin2 { DIRECTION=output; LIMIT { CAPACITANCE { MAX=1.2; } } }
PIN pin3 { DIRECTION=input; }
PIN pin4 { DIRECTION=input; }
CAPACITANCE {

PIN=pin3;
HEADER { VOLTAGE { PIN=pin4; } }
EQUATION { 0.25 + 0.34*VOLTAGE }

}
}

The capacitance onpin1 is 0.05 . The maximum allowed load capacitance onpin2 is 1.2 . The
capacitance onpin3 depends on the voltage on pin4.

8.8 Other PIN-related arithmetic models

This section details some otherPIN -related arithmetic models.

8.8.1 DRIVE_STRENGTH

DRIVE_STRENGTHis a unit-less, abstract measure for the drivability of aPIN . It can be used as
a substitute of driverRESISTANCE. The higher theDRIVE_STRENGTH, the lower the driver
RESISTANCE. However,DRIVE_STRENGTH can only be used within a coherent system of
calculation models, since it does not represent an absolute quantity, as opposed toRESISTANCE.
For example, the weakest driver of a library can have drive strength 1, the next stronger driver
can have drive strength 2 and so forth. This does not necessarily mean the resistance of the
stronger driver is exactly half of the resistance of the weaker driver.

An arithmetic model for conversion fromDRIVE_STRENGTH to RESISTANCE can be given to
relate the quantityDRIVE_STRENGTH across technology libraries.

Example:

SUBLIBRARY high_speed_library {
RESISTANCE {

HEADER { DRIVE_STRENGTH } EQUATION { 800 / DRIVE_STRENGTH }
}

CURRENT min or max limit for applicable current current for model characterization

SAME_PIN_TIMING_
MEASUREMENT

currently applicable for min or max limit
for SLEWRATE

stimulus withSLEWRATE for
model characterization

SAME_PIN_TIMING_
CONSTRAINT

N/A, since the keyword means a min or
max limit by itself

N/A

Table 8-16 External association of models with a PIN, continued

Model / Context
LIMIT within PIN or with PIN
annotation

Model argument with PIN
annotation

188 Advanced Library Format (ALF) Reference Manual Version 2.0

Electrical Performance Modeling Annotations for arithmetic models

CELL high_speed_std_driver {
PIN Z { DIRECTION = output; DRIVE_STRENGTH = 1; }

}
}
SUBLIBRARY low_power_library {

RESISTANCE {
HEADER { DRIVE_STRENGTH } EQUATION { 1600 / DRIVE_STRENGTH }

}
CELL low_power_std_driver {

PIN Z { DIRECTION = output; DRIVE_STRENGTH = 1; }
}

}

Drive strength 1 in the high speed library corresponds to 800 ohm. Drive strength 1 in the low
power library corresponds to 1600 ohm.

Note: Any particular arithmetic model forRESISTANCEin either library shall locally override
the conversion formula from drive strength to resistance.

8.8.2 SWITCHING_BITS

The quantitySWITCHING_BITS applies only for bus pins. The range is from0 to the width of
the bus. Usually, the quantitySWITCHING_BITS is not calculated by an arithmetic model, since
the number of switching bits on a bus depends on the functional specification rather than the
electrical specification. However,SWITCHING_BITS can be used as argument in theHEADERof
an arithmetic model to calculate electrical quantities, for instance, energy consumption.

Example:

CELL my_rom {
PIN [3:0] addr { DIRECTION=input; SIGNALTYPE=address; }
PIN [7:0] dout { DIRECTION=output; SIGNALTYPE=data; }
VECTOR (?! addr -> ?! dout) {

ENERGY {
HEADER {

SWITCHING_BITS addr_bits { PIN = addr; }
SWITCHING_BITS dout_bits { PIN = dout; }

}
EQUATION { 0.45*LOG(addr_bits) + 2.6*dout_bits }

}
}

}

The energy consumption ofmy_rom depends on the number of switching data bits and on the
logarithm of the number of switching address bits.

8.9 Annotations for arithmetic models

This section defines the annotations for arithmetic models.

Version 2.0 Advanced Library Format (ALF) Reference Manual 189

Annotations for arithmetic models Electrical Performance Modeling

8.9.1 MEASUREMENT annotation

Arithmetic models describing analog measurements (see Table 8-5) can have aMEASUREMENT

annotation. This annotation indicates the type of measurement used for the computation in
arithmetic model.

MEASUREMENT = string ;

The string can take the values shown in Table 8-17.

Their mathematical definitions are shown in Figure 8-12.

Figure 8-12: Mathematical definitions for MEASUREMENT annotations

Examples:

transient measurement ofENERGY

static measurement ofVOLTAGE, CURRENT, andPOWER

average measurement ofVOLTAGE, CURRENT, andPOWER

rms measurement ofVOLTAGE, CURRENT, andPOWER

peak measurement ofVOLTAGE, CURRENT, andPOWER

8.9.2 TIME and FREQUENCY annotation

Arithmetic models with certain values ofMEASUREMENT annotation can also haveeitherTIME

or FREQUENCY as annotations.

Table 8-17 : MEASUREMENT annotation

Annotation string Description

transient measurement is a transient value

static measurement is a static value

average measurement is an average value

rms measurement is an root mean square value

peak measurement is a peak value

max E t()() E t()sgn⋅ t T=

E t()d

t 0=()

t T=()

∫ E t() td

t 0=()

t T=()

∫
T

E t()2
td

t 0=()

t T=()

∫
T

E constant=

transient

static

average

rms

peak

190 Advanced Library Format (ALF) Reference Manual Version 2.0

Electrical Performance Modeling Annotations for arithmetic models

The semantics are defined in Table 8-18.

In the case ofaverage and rms , the interpretationFREQUENCY = 1 / TIME is valid. Either
one of these annotations shall be mandatory. The values foraverage measurements and for
rms measurements scale linearly withFREQUENCY and1 / TIME , respectively.

In the case oftransient and peak , the interpretationFREQUENCY = 1 / TIME is not valid.
Either one of these annotations shall be optional. The values do not necessarily scale withTIME

or FREQUENCY. TheTIME or FREQUENCY annotations fortransient measurements are purely
informational.

8.9.3 TIME to peak measurement

For a model in the context of aVECTOR, with apeak measurement, theTIME annotation shall
define the time between a reference event within thevector_expression and the instant when
the peak value occurs.

For that purpose, either theFROM or theTO statement shall be used in the context of theTIME

annotation, containing aPIN annotation and, if necessary, aTHRESHOLDand/or anEDGE_NUMBER

annotation.

If the FROMstatement is used, the start point shall be the reference event and the end point shall
be the occurrence time of the peak, as shown in Figure 8-13.

Table 8-18 : Semantic interpretation of MEASUREMENT, TIME, or FREQUENCY annotation

MEASUREMENT
annotation

Semantic meaning of TIME
annotation

Semantic meaning of FREQUENCY
annotation

transient integration of analog measurement is
done during that time window

integration of analog measurement is
repeated with that frequency

static N/A N/A

average average value is measured over that
time window

average value measurement is repeated
with that frequency

rms root-mean-square value is measured
over that time window

root-mean-square measurement is
repeated with that frequency

peak peak value occurs at that time (only
within context ofVECTOR)

observation of peak value is repeated
with that frequency

Version 2.0 Advanced Library Format (ALF) Reference Manual 191

Annotations for arithmetic models Electrical Performance Modeling

Figure 8-13: Illustration of time to peak using FROM statement

If the TOstatement is used, the start point shall be the occurrence time of the peak and the end
point shall be the reference event, as shown in Figure 8-14.

Figure 8-14: Illustration of time to peak using TO statement

Example:

VECTOR (01 A -> 01 B -> 10 B) {
CURRENT peak1 = 10.8 {

PIN = Vdd;
MEASUREMENT = peak;
TIME = 3.0 { UNIT=ns; FROM { PIN=A; EDGE_NUMBER=0; } }

}
CURRENT peak2 = 12.3 {

PIN = Vdd;
MEASUREMENT = peak;
TIME = 2.0 { UNIT=ns; TO { PIN=B; EDGE_NUMBER=1; } }

}
}

Here, the peak with magnitude10.8 occurs3 nanoseconds after the event01 A .

The peak with magnitude12.3 occurs2 nanoseconds before the event10 B .

TIME

<fromPin> <fromThreshold>

<fromEdge>

<modelValue>
MEASUREMENT = peak

TIME

<toPin> <toThreshold>

<toEdge>

MEASUREMENT = peak

<modelValue>

192 Advanced Library Format (ALF) Reference Manual Version 2.0

Electrical Performance Modeling Waveform description

8.9.4 Rules for combinations of annotations

Cumulative values of arithmetic models can be calculated for models which are cumulative in
nature (e.g.,ENERGYor POWER) or by the usage ofCALCULATION=incremental (e.g.,CURRENT

or VOLTAGE). TheMEASUREMENTannotation can be used in conjunction with the calculation of
cumulative values under the following restrictions:

• Data withMEASUREMENT=averagefor each model can be combined, provided theTIME

annotation value is the same.

• Data withMEASUREMENT=peakfor each model can be combined, provided theTIME

annotation or a complementaryTIME model within the same context specify that the
peak values can occur at the same time.

• Data withMEASUREMENT=rmsfor each model can not be combined.

• Data with differentMEASUREMENTannotations can not be combined.

• Data withMEASUREMENT=transient|static can be combined with each other.

All data that can be combined under the above mentioned restrictions, must be in a compatible
context, e.g., mutually non-exclusive VECTORs within a CELL.

8.10 Waveform description

This section specifies waveform descriptions.

8.10.1 Principles

In order to describe an arithmetic model representing a waveform,TIME shall be an argument
in theHEADER. Other arguments can appear in theHEADERas well. The model can be described
as aTABLE or EQUATION.

Example forTABLE:

VOLTAGE {
HEADER {

TIME {
UNIT = ns;
INTERPOLATION=linear;
TABLE { 0.0 1.0 1.5 2.0 3.0 }

}
}
TABLE { 0.0 0.0 5.0 0.0 0.0 }

}

Example forEQUATION:

VOLTAGE {
HEADER {

TIME { UNIT = ns; }
}

Version 2.0 Advanced Library Format (ALF) Reference Manual 193

Waveform description Electrical Performance Modeling

EQUATION {
(TIME < 1.0) ? 0 :
(TIME < 1.5) ? 5.0*(TIME - 1.0) :
(TIME < 2.0) ? 5.0*(2.0 - TIME) :
0.0

}
}

Both models describe the same piece-wise linear waveform, as shown in Figure 8-15.

Figure 8-15: Illustration of a piece-wise linear waveform

If the model is within the context of aVECTOR, either theFROMor theTOstatement can be used
in the context ofTIME, pointing to a reference event which occurs atTIME = 0 relative to the
waveform description. See Section 8.9 for the definition of start and end points of
measurements.

Example:

VECTOR (01 A -> 01 B -> 10 B) {
VOLTAGE {

HEADER {
TIME {

FROM { PIN = B; EDGE_NUMBER = 1; }
TABLE { 0.0 1.0 1.5 2.0 3.0 }

// alternative description:
// TO { PIN = B; EDGE_NUMBER = 1; }
// TABLE { -3.0 -2.0 -1.5 -1.0 0.0 }

}
}
TABLE { 0.0 0.0 5.0 0.0 0.0 }

}
}

Note: Use theFROMstatement. If theTOstatement is used,TIME is measured backwards, which
is counter-intuitive. For dynamic analysis, use the last event in the
vector_expression as the reference. Otherwise, the analysis tool remembers the
occurrence time of previous events in order to place the waveform into the context of
absolute time.

TIME

0.0 1.0 1.5 2.0 3.0

0.0

5.0

VOLTAGE

194 Advanced Library Format (ALF) Reference Manual Version 2.0

Electrical Performance Modeling Arithmetic models for power calculation

8.10.2 Annotations within a waveform

TheMEASUREMENT annotationtransient shall apply as a default for waveforms.

TheFREQUENCYannotation can be used to specify a repetition frequency of the waveform. The
following boundary restrictions are imposed in order to make the waveform repeatable:

• The initial value and the final value of waveform shall be the same.

• The extrapolation beyond the initial and the final value of the waveform shall yield the
same result. Thus, the first, second, last, and second-to-last point of the waveform shall
be the same.

• The time window between the first and the last measurement shall be smaller or equal to
1 / FREQUENCY .

This is illustrated in Figure 8-16.

Figure 8-16: TIME and FREQUENCY in a waveform

8.11 Arithmetic models for power calculation

This section defines the arithmetic models used for power calculation.

8.11.1 Principles

The purpose of power calculation is to evaluate the electrical power supply demand and
electrical power dissipation of an electronic circuit. In general, both power supply demand and
power dissipation are the same, due to the energy conservation law. However, there are
scenarios where power is supplied and dissipated locally in different places. The power models
in ALF shall be specified in such a way that the total power supply and dissipation of a circuit
adds up correctly to the same number.

Example: A capacitorC is charged from0 volt to V volt by a switched DC source. The energy
supplied by the source isC*V2. The energy stored in the capacitor is1/2*C*V 2. Hence the

1 / FREQUENCY

TIME

T[0] T[M]T[M-1]T[1]

(T[M] - T[0])

E[0] E[M]E[M-1]E[1]

Version 2.0 Advanced Library Format (ALF) Reference Manual 195

Arithmetic models for power calculation Electrical Performance Modeling

dissipated energy is also1/2*C*V 2. Later the capacitor is discharged fromV volt to 0 volt. The
supplied energy is0. The dissipated energy is1/2*C*V 2. A supply-oriented power model can
associate the energyE1=C*V2 with the charging event andE2=0 with the discharging event. The
total energy isE=E1+E2=C*V2. A dissipation-oriented power model can associate the energy
E3=1/2*C*V 2 with both the charging and discharging event. The total energy is also
E=2*E 3=C*V2.

In many cases, it is not so easy to decide when and where the power is supplied and where it is
dissipated. The choice between a supply-oriented and dissipation-oriented model or a mixture
of both is subjective. Hence the ALF language provides no means to specify, which modeling
approach is used. The choice is up to the model developer, as long as the energy conservation
law is respected.

8.11.2 POWER and ENERGY

POWER and/orENERGY models shall be in the context of aCELL or within aVECTOR. The total
energy and/or power of a cell shall be calculated by combining the data of all models within
the scope of theCELL or theVECTORs within the cell.

The data forPOWER and/orENERGY shall be positive when energy is actually supplied to the
CELL and/or dissipated within theCELL. The data shall be negative when energy is actually
supplied or restored by theCELL.

Table 8-19 shows the mathematical relationship between ENERGY and POWER and the
applicable MEASUREMENT annotations.

Table 8-19 Relations between ENERGY and POWER

MEASUREMENT
for ENERGY

MEASUREMENT
for POWER

Formula to calculate
POWER from ENERGY

Formula to calculate
ENERGY from POWER

transient transient

transient average

transient peak N/A

transient rms N/A

td
d

ENERGY POWER td∫

ENERGY
TIME

------------------ POWER TIME⋅

max
td

d
ENERGY 

 

1
TIME

td
d

ENERGY 
  2

td∫⋅

196 Advanced Library Format (ALF) Reference Manual Version 2.0

Electrical Performance Modeling Arithmetic models for hot electron calculation

To establish a meaningful relationship between energy and power, the measurement for energy
shall betransient . A static measurement for energy is conceivable, modeling a state with
constant energy, but no power is dissipated during such a state. Astatic measurement for
power models a state during which constant power dissipation occurs. Although it is not
meaningful to describe an energy model for such a state, it is conceivable to calculate the
energy by multiplying the power with the duration of the state. A 1-to-1 correspondence
between power and energy can be established fortransient andaverage power
measurements, modeling instantaneous and average power, respectively. Therefore, it is
redundant to specify both energy and power in such case. Also,peak andrms power can be
conceivably calculated from a transient energy or power waveform, but transient energy can
not be calculated from apeak or rms power measurement.

8.12 Arithmetic models for hot electron calculation

This section defines arithmetic models for hot electron calculation.

8.12.1 Principles

The purpose of hot electron calculation is to evaluate the damage done to the performance of
an electronic device due to the hot electron effect. The hot electron effect consists in
accumulation of electrons trapped in the gate oxide of a transistor. The more electrons are
trapped, the more the device slows down. At a certain point, the performance specification no
longer is met and the device is considered to be damaged.

8.12.2 FLUX and FLUENCE

FLUXand/orFLUENCEmodels shall be in the context of aCELLor within aVECTOR. Total fluence
and/or flux of a cell shall be calculated by combining the data of all models within the scope
of theCELL or theVECTORs within the cell.

BothFLUXandFLUENCEare measures for hot electron damage.FLUX relates toFLUENCEin the
same way asPOWER relates toENERGY.

N/A static N/A

static N/A 0 N/A

Table 8-19 Relations between ENERGY and POWER, continued

MEASUREMENT
for ENERGY

MEASUREMENT
for POWER

Formula to calculate
POWER from ENERGY

Formula to calculate
ENERGY from POWER

POWER TIME⋅

Version 2.0 Advanced Library Format (ALF) Reference Manual 197

Reliability calculation Electrical Performance Modeling

Table 8-20 shows the mathematical relationship betweenFLUENCEandFLUXand the applicable
MEASUREMENT annotations.

Since hot electron damage is purely cumulative, the only meaningfulMEASUREMENTannotations
aretransient , average , andstatic .

8.13 Reliability calculation

In general, reliability is modeled by arithmetic models using theLIMIT construct.

8.13.1 TIME within the LIMIT construct

Within aLIMIT construct,TIME can be used in the following ways:

1. TIME itself is subjected to aLIMIT (see Section 8.14.2)

2. TIME is the argument of a model subjected to aLIMIT

WhenTIME is used as argument of a model within theLIMIT construct, it shall mean the amount
of time during which the device is exposed to the quantity modeled within theLIMIT construct.
This amount of time is also called alifetime.

Example:

LIMIT {
CURRENT {

PIN = my_pin;
MEASUREMENT = static;

Table 8-20 Relations between FLUENCE and FLUX

MEASUREMENT
for FLUENCE

MEASUREMENT
for FLUX

Formula to calculate
FLUX from FLUENCE

Formula to calculate
FLUENCE from FLUX

transient transient

transient average

N/A static N/A

static N/A 0 N/A

td
d

FLUENCE FLUX td∫

FLUENCE
TIME

-------------------- FLUX TIME⋅

FLUX TIME⋅

198 Advanced Library Format (ALF) Reference Manual Version 2.0

Electrical Performance Modeling Reliability calculation

MAX {
HEADER { TIME TEMPERATURE }
EQUATION { 6.5*EXP(-10/(TEMPERATURE+273))*TIME**(-0.3) }

}
}

}

The limit for maximum current depends on the temperature and the expected lifetime of the
device.

8.13.2 FREQUENCY within a LIMIT construct

Within aLIMIT construct,FREQUENCY can be used in the following ways:

1. FREQUENCY itself is subjected to aLIMIT

2. FREQUENCY is the argument of a model subjected to aLIMIT

FREQUENCY can be subjected to aLIMIT within the context of aVECTOR. TheLIMIT construct
specifies an upper and/or lower limit for the repetition frequency of the event sequence
described by thevector_expression .

Example:

VECTOR (01 A -> 01 Z) {
LIMIT {

FREQUENCY {
MAX {

HEADER {
SLEWRATE { PIN = A; TABLE { 0.1 0.5 1.0 5.0 } }
CAPACITANCE { PIN = Z; TABLE { 0.1 0.4 1.6 } }

}
TABLE {

200 190 180 120
150 150 145 130
 80 80 80 70

}
}

}
}

}

The maximum allowed switching frequency for a rising edge onA, followed by a rising edge
on Z, depends on the slewrate onA and the load capacitance onZ.

A LIMIT for a quantity withMEASUREMENTannotationaverage , rms , orpeak can be frequency-
dependent. TheFREQUENCY specifies the repetition frequency for the measurement.

Example:

LIMIT {
CURRENT {

PIN = Vdd;
MEASUREMENT = average;

Version 2.0 Advanced Library Format (ALF) Reference Manual 199

Reliability calculation Electrical Performance Modeling

MAX {
HEADER { FREQUENCY TIME TEMPERATURE }
EQUATION {

(FREQUENCY<1)? 6.5*EXP(-10/(TEMPERATURE+273))*TIME**(-0.3) :
7.8*EXP(-9/(TEMPERATURE+273))*TIME**(-0.2) :

}
}

}
}

The limit for average current is specified for low frequencies (< 1MHz) and for higher
frequencies. In both cases, the limit depends on temperature and lifetime.

8.13.3 Global LIMIT specifications

Global limits can be specified for electrical quantities, even if they are related toCELLs,PINs,
or VECTORs. Such global limits apply, unless local limits are specified within the context of
CELLs,PINs, orVECTORs. The priorities are given below.

1. LIMIT within the context of theVECTOR

2. LIMIT within the context of aPIN (if the LIMIT in theVECTOR hasPIN annotation)

3. LIMIT within the context of theCELL

4. LIMIT within the context of theSUBLIBRARY

5. LIMIT within the context of theLIBRARY

6. LIMIT outsideLIBRARY

The arguments in theHEADERof theLIMIT model can only be items that are visible within the
scope of theLIMIT model. In particular, arguments withPIN annotations are only legal for
LIMIT models in the context of aCELL or aVECTOR within theCELL.

8.13.4 LIMIT and model specification in the same context

An arithmetic model for a physical quantity and a limit specification for the same physical
quantity can appear within the same context, for example, an arithmetic model forFLUENCE

calculation and aLIMIT for FLUENCE within the context of aVECTOR. In such a case, the
calculated quantity shall be checked against the limit of the quantity within that context.

On the other hand, if multiple arithmetic models are given within the context for which the limit
applies, the limit shall be checked against the combination of all arithmetic models in the case
of cumulative quantities, or against the minimum or maximum calculated value in the case of
non-cumulative or mutually exclusive quantities.

For example, aLIMIT for FLUENCE can be given in the context of aCELL. Calculation models
for FLUENCEcan be given for multipleVECTORs within the context of theCELL. TheLIMIT for
FLUENCE shall be checked against the accumulatedFLUENCE calculated for allVECTORs.

200 Advanced Library Format (ALF) Reference Manual Version 2.0

Electrical Performance Modeling Reliability calculation

Example:

CELL my_cell {
PIN A { DIRECTION = input; }
PIN B { DIRECTION = input; }
PIN C { DIRECTION = input; }
PIN Z { DIRECTION = output; }
LIMIT { FLUENCE { MAX = 1e20; } } }
VECTOR (01 A -> 10 Z) {

FLUENCE = 1e-5;
}
VECTOR (01 B -> 10 Z) {

FLUENCE = 1e-5;
}
VECTOR (01 C -> 10 Z) {

FLUENCE = 1e-6;
LIMIT { FLUENCE { MAX = 1e18; } }

}
}

The fluence limit for the cell is reached after 1025 occurrences ofVECTOR (01 A -> 10 Z)

or VECTOR (01 B -> 10 Z) counted together.
The fluence limit for theVECTOR (01 C -> 10 Z) is reached after 1024 occurrences of that
vector.

An example for a non-cumulative quantity isSLEWRATE. TheVECTORs in the context of which
SLEWRATEis modeled describe timing arcs with mutually exclusive conditions. Therefore, if a
minimum or maximumLIMIT for SLEWRATE is given for aPIN in the context of aCELL, this
SLEWRATE shall be checked against the minimum or maximum value of any calculated
SLEWRATE applicable to thatPIN .

Example:

CELL my_cell {
PIN A { DIRECTION = input; }
PIN B { DIRECTION = input; }
PIN C { DIRECTION = input; }
PIN Z { DIRECTION = output; LIMIT { SLEWRATE { MAX = 5; } } }
VECTOR (01 A -> 10 Z) {

SLEWRATE { PIN = Z; /* fill in HEADER, TABLE */ }
}
VECTOR (01 B -> 10 Z) {

SLEWRATE { PIN = Z; /* fill in HEADER, TABLE */ }
}
VECTOR (01 C -> 10 Z) {

SLEWRATE { PIN = Z; /* fill in HEADER, TABLE */ }
}

}

Here the slewrate on pinZ calculated in the context of any vector is checked against the same
maximum limit.

Version 2.0 Advanced Library Format (ALF) Reference Manual 201

Noise calculation Electrical Performance Modeling

8.13.5 Model and argument specification in the same context

An cumulative quantity can also be an argument in theHEADER of an arithmetic model. If the
model for calculation of that quantity is within the same context as the argument of the other
model, then the value of the calculated quantity shall be used. Otherwise, the value of the
accumulated quantity shall be used.

For example,SLEWRATE can be modeled as a function ofFLUENCE in the context of aVECTOR.
If a calculation model forFLUENCE appears in the context of the sameVECTOR, the value for
FLUENCE shall be used for theSLEWRATE calculation. On the other hand, if there is no
calculation model forFLUENCEin the context of the sameVECTOR, but there is one in the context
of otherVECTORs, then the accumulated value ofFLUENCE from the other calculation models
shall be used forSLEWRATE calculation.

Example:

CELL my_cell {
PIN A { DIRECTION = input; }
PIN B { DIRECTION = input; }
PIN C { DIRECTION = input; }
PIN Z { DIRECTION = output; }
VECTOR ((01 A | 01 B) -> 10 Z) { FLUENCE = 1e-5; }
VECTOR (01 A -> 10 Z) {

SLEWRATE { CALCULATION=incremental; PIN = Z;
HEADER { FLUENCE } EQUATION { 1e-8 * FLUENCE }

}
}

VECTOR (01 B -> 10 Z) {
SLEWRATE { CALCULATION=incremental; PIN = Z;

HEADER { FLUENCE } EQUATION { 1e-8 * FLUENCE }
}

}
VECTOR (01 C -> 10 Z) {

FLUENCE = 1e-6;
SLEWRATE { CALCULATION=incremental; PIN = Z;

HEADER { FLUENCE } EQUATION { 1e-9 * FLUENCE }
}

}
}

After 1013 = 105*108 occurrences ofVECTOR ((01 A | 01 B) -> 10 Z) , the slewrate at
pin Z for VECTOR (01 A -> 10 Z) andVECTOR (01 B -> 10 Z) is increased by1 unit.
After 1015 = 106*109 occurrences ofVECTOR (01 C -> 10 Z) , the slewrate at pinZ for
VECTOR (01 C -> 10 Z) is increased by1 unit.

8.14 Noise calculation

This section details the noise calculation definitions.

202 Advanced Library Format (ALF) Reference Manual Version 2.0

Electrical Performance Modeling Noise calculation

8.14.1 NOISE_MARGIN definition

Noise margin is defined as the maximal allowed difference between the ideal signal voltage
under a well-specified operation condition and the actual signal voltage normalized to the ideal
voltage swing. This is illustrated in Figure 8-17.

Figure 8-17: Definition of noise margin

Noise margin is measured at a signal input pin of a digital cell. The termsideal signal voltage
andactual signal voltage apply from the standpoint of that particular pin. In CMOS
technology, the ideal signal voltage at a pin is the actual supply voltage of the cell, which is not
necessarily identical to the nominal supply voltage of the chip.

TheNOISE_MARGINstatement has the form of an arithmetic model. If the submodel keywords
HIGH andLOW are used, it has the form of an arithmetic model container.

Examples:

NOISE_MARGIN = 0.3;

NOISE_MARGIN { HIGH = 0.2; LOW = 0.4; }

NOISE_MARGIN {
HEADER { TEMPERATURE { TABLE { 0 50 100 } } }
TABLE { 0.4 0.3 0.2 }

}

NOISE_MARGIN can be related to signalVOLTAGE by using the following statement:

VOLTAGE {
LOW = 0;
HIGH = 2.5;

}
NOISE_MARGIN {

LOW = 0.4;
HIGH = 0.3;

}
}

In this example, the valid signal voltage levels are bound by 1 volt =2.5 volt * 0.4 for logic
0 and 1.75 volt =2.5 volt * (1 - 0.3) for logic 1.

V ideal (logic 0)

V ideal (logic 1)

V min (logic 1)

V max (logic 0)

∆V1

∆V0

∆V

noise margin (high) =

noise margin (low) =

∆V1

∆V

∆V

∆V0

Version 2.0 Advanced Library Format (ALF) Reference Manual 203

Noise calculation Electrical Performance Modeling

8.14.2 Representation of noise in a VECTOR

In order to describe timing diagrams involving noisy signals, the symbolic state “* ” (see
Section 5.4.13) shall be used. This state represents arbitrary transitions between arbitrary
states, which corresponds to the nature of noise, as shown in Figure 8-18.

Figure 8-18: Timing diagram of a noisy signal

The signal can be above or below noise margin during the state “* ”, but it shall be within noise
margin during the state0 or 1. During the state “* ”, the signal is bound by an envelope defined
by the pulse duration and the peak voltage.

A description of the noisy signal is given in the following template:

VECTOR (0* my_pin -> *0 my_pin) {
TIME = <pulse_duration> {

FROM { PIN=my_pin; EDGE_NUMBER=0; }
TO { PIN=my_pin; EDGE_NUMBER=1; }

}
VOLTAGE = <peak_voltage> {

CALCULATION = incremental;
MEASUREMENT = peak;
PIN = my_pin;

}
}

TheVECTORdescribes the symbolic timing diagram. TheTIME statement specifies the duration
of the pulse. TheVOLTAGE statement specifies the peak voltage. The annotation
CALCULATION=incremental specifies that the voltage is measured from the nominal signal
voltage level rather than from an absolute reference level and that noise voltage can add up.

It is also necessary to specify whether a noisy signal (which can oscillate above and below the
noise margin) is considered as one symbolic noise pulse or separated into multiple symbolic
noise pulses.

noise margin

possible real waveform

symbolic timing diagram

peak voltage

pulse duration

204 Advanced Library Format (ALF) Reference Manual Version 2.0

Electrical Performance Modeling Noise calculation

TheLIMIT statement forTIME shall be used for that purpose, as shown in the following
example and illustrated by the timing diagram shown in Figure 8-19.

VECTOR (*0 my_pin -> 0* my_pin) {
LIMIT {

TIME {
FROM { PIN = my_pin; EDGE_NUMBER = 0; }
TO { PIN = my_pin; EDGE_NUMBER = 1; }
MIN = <minimum_pulse_separation> ;

}
}

}

Figure 8-19: Separation between two noise pulses

When the minimum pulse separation is not met, consecutive noise pulses shall be symbolically
merged into one pulse.

8.14.3 Context of NOISE_MARGIN

NOISE_MARGIN is a pin-related quantity. It can appear either in the context of aPIN statement
or in the context of aVECTOR statement withPIN annotation. It can also appear in the global
context of aCELL, SUBLIBRARY, or LIBRARY statement.

If a NOISE_MARGIN statement appears in multiple contexts, the following priorities apply:

1. NOISE_MARGINwith PIN annotation in the context of theVECTOR, NOISE_MARGINwith
PIN annotation in the context of theCELL, or NOISE_MARGIN in the context of thePIN

2. NOISE_MARGIN withoutPIN annotation in the context of theCELL

3. NOISE_MARGIN in the context of theSUBLIBRARY

4. NOISE_MARGIN in the context of theLIBRARY

noise margin

possible real waveform

symbolic timing diagram

pulse separation

Version 2.0 Advanced Library Format (ALF) Reference Manual 205

Noise calculation Electrical Performance Modeling

5. NOISE_MARGIN outside theLIBRARY

If the noise margin is constant or depends only on environmental quantities, theNOISE_MARGIN

statement shall appear within the context of thePIN . The noise margin shall relate to the signal
VOLTAGE levels applicable for that pin.

Example:

PIN my_signal_pin {
PINTYPE = digital;
DIRECTION = input;
VOLTAGE { LOW = 0; HIGH = 2.5; }
NOISE_MARGIN { LOW = 0.4; HIGH = 0.3; }

}

If the noise margin depends on electrical quantities related to other pins, e.g., the supply
voltage, theNOISE_MARGINstatement shall have aPIN annotation and appear in the context of
theCELL.

Example:

CELL my_cell {
PIN my_signal_pin { PINTYPE = digital; DIRECTION = input; }
PIN my_power_pin { PINTYPE = supply; SUPPLYTYPE = power; }
PIN my_ground_pin { PINTYPE = supply; SUPPLYTYPE = ground; }
NOISE_MARGIN {

PIN = my_signal_pin;
HEADER {

VOLTAGE vdd { PIN = my_power_pin; }
VOLTAGE vss { PIN = my_ground_pin; }

}
EQUATION { 0.16 * (vdd - vss) }

}
}

If the noise margin depends on the logical states and/or the timing of other pins, the
NOISE_MARGIN statement shall have aPIN annotation and appear in the context of aVECTOR,
describing the state-and/or timing dependency.

Example for state-dependent noise margin:

CELL my_latch {
PIN Q { DIRECTION = output; SIGNALTYPE = data; }
PIN D { DIRECTION = input; SIGNALTYPE = data; }
PIN CLK { DIRECTION = input; SIGNALTYPE = clock; POLARITY = high; }
VECTOR (CLK && ! D) { NOISE_MARGIN = 0.4 { PIN = D; } }
VECTOR (CLK && D) { NOISE_MARGIN = 0.3 { PIN = D; } }

}

Here, the pinD is only noise-sensitive whenCLK is high. No noise margin is given for the case
whenCLK is low.

In the case of timing-dependency, thevector_expression shall indicate the time window
where noise is allowed and not allowed for the applicable pin. The symbolic state* (see Section
5.4.13) shall be used to indicate a noisy signal.

206 Advanced Library Format (ALF) Reference Manual Version 2.0

Electrical Performance Modeling Noise calculation

Example for timing-dependent noise margin:

VECTOR (*? D -> 10 CLK -> ?* D) {
TIME T1 = 0.35 {

FROM { PIN = D; EDGE_NUMBER = 0; }
TO { PIN = CLK; EDGE_NUMBER = 0; }

}
TIME T2 = 0.28 {

FROM { PIN = CLK; EDGE_NUMBER = 0; }
TO { PIN = D; EDGE_NUMBER = 1; }

}
NOISE_MARGIN = 0.44 { PIN = D; }

}

This example corresponds to the timing diagram shown in Figure 8-20.

Figure 8-20: Example for timing-dependent noise margin

Noise on pinD is allowed0.35 time-units before and0.28 time-units after the falling edge of
CLK. During the time window in-between, the noise margin is0.44 .

8.14.4 Noise propagation

Noise propagationfrom input to output can be modeled in a similar way as signal propagation,
using the concept of timing arcs. This is illustrated in Figure 8-21.

CLK

D

T1 (setup)
T2 (hold)

noise-sensitive time window

noise margin

noise margin

Version 2.0 Advanced Library Format (ALF) Reference Manual 207

Noise calculation Electrical Performance Modeling

Figure 8-21: Principle of noise propagation

The principle ofsignal propagationis to calculate the output arrival time and slewrate from the
input arrival time and slewrate. In a more abstract way, two points in time propagate from input
to output. The same principle applies for noise propagation. Two points in time, start and end
time of the noise waveform, propagate from input to output. In addition, the noise peak voltage
also propagates from input to output. This is illustrated in Figure 8-22.

Figure 8-22: Principle of signal propagation

A VECTORshall be used to describe the timing of the noise waveform. Again, the symbolic state
* (see Section 5.4.13) shall be used to indicate a noisy signal.

Example:

CELL my_cell {
PIN A { DIRECTION = input; }
PIN Z { DIRECTION = output; }
VECTOR (0* A -> *0 A <&> 0* Z -> *0 Z) {

DELAY T1 {
FROM { PIN = A; EDGE_NUMBER = 0; }
TO { PIN = Z; EDGE_NUMBER = 0; }
/* fill in HEADER, TABLE or EQUATION */

}

input output
pin pin

timing arc

start time
@ input

start time
@ output

peak voltage
@ input

end time
@ input

peak voltage
@ output

end time
@ output

input output
pin pin

timing arc

arrival time
@ input

arrival time
@ output

slewrate
@ input

slewrate
@ outputdelay = arrival time @ output

- arrival time @ input

208 Advanced Library Format (ALF) Reference Manual Version 2.0

Electrical Performance Modeling Noise calculation

DELAY T2 {
FROM { PIN = A; EDGE_NUMBER = 1; }
TO { PIN = Z; EDGE_NUMBER = 1; }
/* fill in HEADER, TABLE or EQUATION */

}
VOLTAGE { PIN = Z; MEASUREMENT = peak;

/* fill in HEADER, TABLE or EQUATION */
}

}

This example corresponds to the timing diagram shown in Figure 8-23.

Figure 8-23: Example of noise propagation

The input to output delay of the leading edge of the noise pulse can depend on the peak voltage
at pinA, the load capacitance at pinZ and other electrical quantities. In addition, the input to
output delay of the trailing edge of the noise pulse as well as the peak voltage at pinZ can also
depend on the duration of the pulse at pinA.

Note: The time measurement from start to end of the noise pulse shall be represented by the
keywordTIME (no causality between start and end time), whereas the time
measurement from input to output shall be represented by the keywordDELAY(causality
between input and output arrival time).

8.14.5 Noise rejection

Noise rejection is a limit case for noise propagation, when the output peak voltage is so low the
noise is considered rejected. In this case, the input peak voltage can still be above noise margin,
whereas the output peak voltage is way below noise margin.

Example:

CELL my_cell {
PIN A { DIRECTION = input; }
PIN Z { DIRECTION = output; }
VECTOR (0* A -> *0 A -> 00 Z) {

input pin A

output pin Z T1

T2

pulse duration @ A

peak voltage @ A

peak voltage @ Z

Version 2.0 Advanced Library Format (ALF) Reference Manual 209

Interconnect parasitics and analysis Electrical Performance Modeling

LIMIT {
VOLTAGE {

PIN = A; MEASUREMENT = peak;
MAX { /* fill in HEADER, TABLE or EQUATION */ }

}
}

}
}

Note: Thevector_expression 00 Z says explicitly a transition at pinZ doesnot happen.

This example corresponds to the timing diagram shown in Figure 8-24.

Figure 8-24: Example of noise rejection

The peak voltage limit for noise rejection can depend on the duration of the noise pulse at pin
A and other electrical quantities, e.g., the load capacitance at pinZ. If the peak voltage limit
does not depend on the duration of the noise pulse, theNOISE_MARGINstatement shall be used
rather than the vector-specificLIMIT construct for noise rejection.

8.15 Interconnect parasitics and analysis

This section defines interconnect parasitics and analysis.

8.15.1 Principles of the WIRE statement

Parasitic descriptions shall be in the context of aWIRE statement. The following fundamental
modeling styles are supported.

• Statistical wireload models

• Boundary parasitics

Statistical wireload models as well as interconnect analysis calculation models can be used
within the context of aLIBRARY, SUBLIBRARY, or CELL statement. The latter applies only for
cells withCELLTYPE=block , i.e., hierarchical cells. Boundary parasitics apply exclusively for
hierarchical cells. Statistical wireload models can be mixed with boundary parasitics within the
sameWIRE statement.

input pin A

output pin Z

pulse duration @ A

peak voltage @ A

peak voltage @ Z
is considered zero

210 Advanced Library Format (ALF) Reference Manual Version 2.0

Electrical Performance Modeling Interconnect parasitics and analysis

Interconnect analysis models shall also be defined within aWIRE statement. However, they
shall not be mixed with statistical wireload models or boundary parasitic descriptions.

The purpose of interconnect analysis is to calculate electrical quantities such asDELAY, SLE-

WRATE, and noiseVOLTAGEin the context of a netlist consisting of electrical components, such
asCAPACITANCE, RESISTANCE, andINDUCTANCE.

As opposed to boundary parasitics, where the components are connected to physical nodes
and pins of a cell, the components represent an abstract network targeted for analysis. The
interconnect analysis model specifies a directive for reducing the parasitic extraction/delay
calculation tool to an arbitrary network. In addition, the model specifies the calculation mod-
els for delay, noise, etc. in the context of the reduced network.

8.15.2 Statistical wireload models

A statistical wireload model is a collection of arithmetic models for estimated the electrical
quantitiesCAPACITANCE, RESISTANCE, andINDUCTANCE, representing the interconnect load
and estimatedAREA andSIZE of the interconnect nets.

These arithmetic models shall have noPIN annotation. Only environmental quantities such as
PROCESS, DERATE_CASE, andTEMPERATURE shall be allowed as arguments in theHEADER.

In addition, the quantitiesAREA, SIZE , FANOUT, FANIN, andCONNECTIONS are allowed as
arguments in theHEADER.

FANOUT andFANIN represent the number of receiver pins and driver pins, respectively,
connected to the net.CONNECTIONS is the total number of pins connected to the net.
CONNECTIONS equals to the sum ofFANOUT andFANIN.

AREArepresents a physically measurable area of an object, whereasSIZE represents an abstract
symbolic quantity or cost function for area. WhenAREAor SIZE is used as argument within the
HEADER, it shall represent the total area or size, respectively, allocated for place and route of the
block for which the wireload model applies. An arithmetic model given forAREAor SIZE itself
shall represent the estimated or actual area or size, respectively, of the object in the context of
which the model appears.CELL andWIRE are applicable objects forAREA or SIZE models.

In order to convertSIZE to AREA (analogous to convertingDRIVE_STRENGTH to RESISTANCE;
see Section 8.8.1), an arithmetic model forSIZE with AREAas an argument can be used outside
theWIREstatement. Arithmetic models forSIZE inside theWIREstatement shall be interpreted
as a calculation model rather than a conversion model.

The total area or size of a block shall be larger or equal to the area or size, respectively, of all
objects within the block, i.e., cells and wires.

Note: The area or size of a block is design-specific data, whereas the area or size of cells and
wires is given in the library.

Example:

LIBRARY my_library {
WIRE my_wlm {

CAPACITANCE {

Version 2.0 Advanced Library Format (ALF) Reference Manual 211

Interconnect parasitics and analysis Electrical Performance Modeling

HEADER {
CONNECTIONS { TABLE { 2 3 4 5 10 20 } }
AREA { TABLE { 1000 10000 100000 } }

}
TABLE {

0.03 0.06 0.08 0.10 0.15 0.25
0.05 0.10 0.15 0.18 0.25 0.35
0.10 0.18 0.25 0.32 0.50 0.65

}
}
AREA {

HEADER {
CONNECTIONS { TABLE { 2 3 4 5 10 20 } }
AREA { TABLE { 1000 10000 100000 } }

}
TABLE {

0.3 0.6 0.8 1.0 1.5 2.5
0.5 1.0 1.5 1.8 2.5 3.5
1.0 1.8 2.5 3.2 5.0 6.5

}
}

}
CELL my_cell {

AREA = 1.5;
PIN my_input { DIRECTION = input; CAPACITANCE = 0.1; }
PIN my_output { DIRECTION = output; CAPACITANCE = 0.0; }

}
}

A net routed in a block ofAREA=10000, driven by an instance ofmy_cell connecting to five
receivers (i.e.,CONNECTIONS=5), each of which is an instance ofmy_cell , shall have an
estimated capacitance of 0.18+4*0.1 =0.58 and wire area of1.8 . The five cell instances
together shall have an area of7.5 .

Note: CAPACITANCE, RESISTANCE, andAREA can each be independent arithmetic models
within theWIRE statement. No multiplication factor between area and capacitance or
between area and resistance is assumed.

8.15.3 Boundary parasitics

Boundary parasitics for aCELLcan be given within aWIREstatement in the context of theCELL.
The parasitics shall be identified by arithmetic models forCAPACITANCE, RESISTANCE, and
INDUCTANCE containing aNODE annotation.

The syntax is as follows:

two_node_ multi_value_assignment ::=

NODE { node_ identifier node_ identifier }

four_node_ multi_value_assignment ::=

NODE { node_ identifier node_ identifier node_ identifier

node_ identifier }

212 Advanced Library Format (ALF) Reference Manual Version 2.0

Electrical Performance Modeling Interconnect parasitics and analysis

wherenode_identifier is one of the following:

a simpleidentifier , referring to a declaredPIN of theCELL.

a hierarchical_identifier , referring to a declaredPORT of aPIN of theCELL (see Sec-
tion 9.10.4)

a simpleidentifier , referring to a declaredNODE of theWIRE (see Section 8.15.4)

a simpleidentifier , not referring to a declared object. This can be used for connectivity
inside theWIRE only.

The two_node_ multi_value_assignment applies for capacitance, resistance, and self-
inductance. These components imply the following relationship between voltage and current
across the nodes:

The four_node_ multi_value_assignment applies for mutual inductance. This component
implies the following relationship between voltage and current across the nodes:

Note: BothPIN assignments (e.g.,PIN=A;) andNODEassignments (e.g.,NODE{ A B }) can
refer toPINs orPORTs. The fundamental semantic difference between aPIN assignment
and aNODE assignment is the PIN assignment within an object defines the object is
applied or measured at thePIN or PORT. (e.g.,DELAY and SLEWRATE); theNODE

assignment within an object defines the object is fundamentallyconnectedwith thePIN

or PORT in the same way an object inside aPIN is also fundamentally connected with
thePIN . Therefore, theCAPACITANCE with NODE assignment is a more detailed way of
describing aCAPACITANCE of aPIN , whereas aCAPACITANCE with PIN assignment
describes a load capacitance, which is applied externally to the pin.

A CELL can contain aWIREstatement describing boundary parasitics as well asPIN statements
containing arithmetic models forCAPACITANCE, RESISTANCE, or INDUCTANCE. In this case the
latter shall be considered as a reduced form of the former. An analysis tool shall either use the
set of components inside thePIN or inside theWIRE, but not a combination of both.

Example:

CELL my_cell {
PIN A { PINTYPE = digital; CAPACITANCE = 4.8; RESISTANCE = 37.9;

PORT p1 { VIEW = physical; } // see Section 9.10
PORT p2 { VIEW = none; } // see Section 9.10

}

VOLTAGE(node1, node2) RESISTANCE(node1, node2) CURRENT(node1, node2)⋅=

CURRENT(node1, node2) CAPACITANCE(node1, node2)
td

d
VOLTAGE(node1, node2)⋅=

VOLTAGE(node1, node2) INDUCTANCE(node1, node2)
td

d
CURRENT(node1, node2)⋅=

VOLTAGE(node1, node2) INDUCTANCE(node1, node2, node3, node4)
td

d
CURRENT(node3, node4)⋅=

Version 2.0 Advanced Library Format (ALF) Reference Manual 213

Interconnect parasitics and analysis Electrical Performance Modeling

PIN B { PINTYPE = digital; CAPACITANCE = 2.6; }
PIN gnd { PINTYPE = supply; SUPPLYTYPE = ground; }
WIRE my_boundary_parasitics {

CAPACITANCE = 1.3 { NODE { A.p1 gnd } }
CAPACITANCE = 2.8 { NODE { A.p2 gnd } }
RESISTANCE = 65 { NODE { A.p1 A.p2 } }
CAPACITANCE = 0.7 { NODE { A.p1 B } }
CAPACITANCE = 1.9 { NODE { B gnd } }

}
}

This example corresponds to the netlist shown in Figure 8-25.

Figure 8-25: Example of boundary parasitic description

The distributed parasitics in theWIREstatement can be reduced to the lumped parasitics in the
PIN statement.

8.15.4 NODE declaration

The nodes used for interconnect analysis shall be declared within theWIRE statement, using
the following syntax.

node ::=

NODEnode_ identifier { all_purpose_items }

TheNODETYPE annotation and theNODE_CLASS annotation also specifically apply to aNODE.

nodetype_ annotation ::=

NODETYPE =nodetype_ identifier ;

nodetype_ identifier ::=

ground
| power
| source

A.p1 A.p2

B

1.9

0.7 1.3 2.8

65

B

A 37.9 = 65 * 2.8 / 4.8

4.8 = 0.7 + 1.3 + 2.8

2.6 = 0.7 + 1.9

distributed parasitics in WIRE lumped parasitics in PIN

214 Advanced Library Format (ALF) Reference Manual Version 2.0

Electrical Performance Modeling Interconnect parasitics and analysis

| sink
| driver
| receiver

• A driver node is the interface between a cell output pin and interconnect

• A receiver node is the interface between interconnect and a cell input pin

• A source node is a virtual start point of signal propagation; it can be collapsed with a
driver node

• A sink node is a virtual end point of signal propagation; it can be collapsed with a
receiver node

• A power node provides the current for rising signals at the source/driver side and a
reference for logic high signals at the sink/receiver side

• A ground node provides the current for falling signals at the source/driver side and a
reference for logic low signals at the sink/receiver side

The arithmetic models for electrical components which are part of the network shall have
names andNODE annotations, referring either to the pre-declared nodes or to internal nodes
which need not be declared.

Example:

WIRE my_interconnect_model {
NODE n0 { NODETYPE = source; }
NODE n2 { NODETYPE = driver; }
NODE n4 { NODETYPE = receiver; }
NODE n5 { NODETYPE = sink; }
NODE vdd { NODETYPE = power; }
NODE vss { NODETYPE = ground; }
RESISTANCE R1 { NODE { n0 n1 } }
RESISTANCE R2 { NODE { n1 n2 } }
RESISTANCE R3 { NODE { n2 n3 } }
RESISTANCE R4 { NODE { n3 n4 } }
RESISTANCE R5 { NODE { n4 n5 } }
CAPACITANCE C1 { NODE { n1 vss } }
CAPACITANCE C2 { NODE { n2 vss } }
CAPACITANCE C3 { NODE { n3 vss } }
CAPACITANCE C4 { NODE { n4 vss } }
CAPACITANCE C5 { NODE { n5 vss } }

}

This example is illustrated in Figure 8-26.

Version 2.0 Advanced Library Format (ALF) Reference Manual 215

Interconnect parasitics and analysis Electrical Performance Modeling

Figure 8-26: Example for interconnect description

TheNODE_CLASS annotation is optional and orthogonal to theNODETYPE annotation.

node_class_ annotation ::=

NODE_CLASS =node_class_ identifier ;

TheNODE_CLASS annotation shall refer to a pre-declaredCLASS within theWIRE statement to
indicate which node belongs to which device in the case of separate power supplies.

Example:

WIRE my_interconnect_model {
CLASS driver_cell;
CLASS receiver_cell;
NODE n0 { NODETYPE = source; NODE_CLASS = driver_cell; }
NODE n2 { NODETYPE = driver; NODE_CLASS = driver_cell; }
NODE n4 { NODETYPE = receiver; NODE_CLASS = receiver_cell; }
NODE n5 { NODETYPE = sink; NODE_CLASS = receiver_cell; }

NODE vdd1 { NODETYPE = power; NODE_CLASS = driver_cell; }
NODE vss1 { NODETYPE = ground; NODE_CLASS = driver_cell; }
NODE vdd2 { NODETYPE = power; NODE_CLASS = receiver_cell; }
NODE vss2 { NODETYPE = ground; NODE_CLASS = receiver_cell; }

}

If NODE_CLASS is not specified, the nodes withNODETYPE=power|ground are supposed to be
global. The DC-connected nodes withNODETYPE=driver|source andNODETYPE=receiver|

sink are supposed to belong to the same device.

power

ground ground

power

driver receiversource sink

n0
n1 n2 n3 n4 n5

R1 R2 R3 R4 R5

C5C4C3C2C1

driver_cell receiver_cell

216 Advanced Library Format (ALF) Reference Manual Version 2.0

Electrical Performance Modeling Interconnect parasitics and analysis

8.15.5 Interconnect delay and noise calculation

Calculation models forDELAYandSLEWRATEcan be described in the context of aVECTORinside
aWIRE. ThePIN assignments in these models shall refer to pre-declaredNODEs inside theWIRE.

Example:

WIRE my_interconnect_model {
/* node declarations */
/* electrical component declarations */
VECTOR ((01 n0 ~> 01 n5) | (10 n0 ~> 10 n5)) {

/* DELAY model */
/* SLEWRATE model */

}
}

The pre-declared electrical components which are part of the network can be used within an
EQUATION without being re-declared in theHEADER of the model.

Example:

DELAY {
FROM { PIN = n0; } TO { PIN = n5; }
EQUATION {

R1*(C1+C2+C3+C4+C5) + R2*(C2+C3+C4+C5)
+ R3*(C3+C4+C5) + R4*(C4+C5) + R5*C5

}
}

External components or stimuli which are not part of the network shall be declared in the
HEADER. Also, all arguments forTABLE-based models shall be in theHEADER. To avoid re-
declaration of pre-declared components, anEQUATION shall also be used for those arguments
in theHEADER which refer to pre-declared components.

Example:

SLEWRATE {
PIN = n5;
HEADER {

SLEWRATE { PIN = n0; TABLE {/* numbers */} }
RESISTANCE { EQUATION { R1+R2+R3+R4+R5 } TABLE {/* numbers */} }
CAPACITANCE { EQUATION { C1+C2+C3+C4+C5 } TABLE {/* numbers */} }

}
TABLE { /* numbers */ }

}

In order to model crosstalk delay and noise, at least two driver and receiver nodes are required.
The symbolic state “* ” (see Section 5.4.13) shall be used to indicate the signal subjected to
noise.

Example:

WIRE interconnect_model_with_coupling {
NODE aggressor_source { NODETYPE = driver; }
NODE victim_source { NODETYPE = driver; }
NODE aggressor_sink { NODETYPE = receiver; }
NODE victim_sink { NODETYPE = receiver; }

Version 2.0 Advanced Library Format (ALF) Reference Manual 217

Interconnect parasitics and analysis Electrical Performance Modeling

NODE vdd { NODETYPE = power; }
NODE gnd { NODETYPE = ground; }
CAPACITANCE cc { NODE {aggressor_sink victim_sink}}
CAPACITANCE cv { NODE {victim_sink gnd }}
RESISTANCE rv { NODE {victim_source victim_sink}}
VECTOR (01 aggressor_sink -> ?* victim_sink -> *? victim_sink) {

/* xtalk noise model */
}
VECTOR (

(01 aggressor_source <&> 01 victim_source)
 -> 01 aggressor_sink -> 01 victim_sink

) {
/* xtalk DELAY model */
}

}

Example for noise model:

VOLTAGE {
PIN = victim_sink;
MEASUREMENT = peak;
CALCULATION = incremental;
HEADER {

SLEWRATE tra { PIN = aggressor_sink; }
VOLTAGE va { NODE {vdd gnd} }

}
EQUATION { (1-EXP(-tra/(rv*cv)))*va*rv*cc/tra }

}
}

Example for delay model:

DELAY {
FROM { PIN = victim_source; } TO { PIN = victim_sink; }
CALCULATION = incremental;
HEADER {

SLEWRATE tra { PIN = aggressor_sink; }
SLEWRATE trv { PIN = victim_source; }

}
EQUATION { (1-EXP(-tra/(rv*cv)))*rv*cc*trv/tra }

}

TheVOLTAGEmodel applies for a rising aggressor signal while the victim signal is stable. The
DELAY model applies for rising victim signal simultaneous with or followed by a rising
aggressor signal at the coupling point. TheVECTOR implicitly defines the time window of
interaction between aggressor and victim; interaction occurs only if the aggressor signal at the
coupling point intervenes during the propagation of the victim signal from its source to the
coupling point. BothVOLTAGE andDELAY represent incremental numbers.

8.15.6 SELECT_CLASS annotation for WIRE statement

A sophisticated tool can support more than one interconnect model. Each calculation model can
have its “netlist” with the appropriate validity range of the RC components. For instance, a
lumped model can be used for short nets and a distributed model can be used for longer nets.

218 Advanced Library Format (ALF) Reference Manual Version 2.0

Electrical Performance Modeling Interconnect parasitics and analysis

Also, models with different accuracy for the same net can be defined. For instance, the lumped
model can be used for estimation purpose and the distributed model for signoff.

For this purpose, classes can be defined to select a set of models. The selection shall be defined
by the user, in a similar way as a user can select wireload models for pre-layout parasitic
estimation. The selected class shall be indicated by theSELECT_CLASS annotation within the
WIRE statement.

Example:

LIBRARY my_library {
CLASS estimation;
CLASS verification;
WIRE rough_model_for_short_nets {

SELECT_CLASS = estimation; /* etc.*/
}
WIRE detailed_model_for_short_nets {

SELECT_CLASS = verification; /* etc.*/
}
WIRE rough_model_for_long_nets {

SELECT_CLASS = estimation; /* etc.*/
}
WIRE detailed_model_for_long_nets {

SELECT_CLASS = verification; /* etc.*/
}

}

Version 2.0 Advanced Library Format (ALF) Reference Manual 219

Section 9

Physical Modeling

9.1 Overview

Table 9-1 summarizes the ALF statements for physical modeling.

Table 9-1 Statements in ALF describing physical objects

Statement Scope Comment

LAYER LIBRARY,
SUBLIBRARY

description of a plane provided for physical objects consist-
ing of electrically conducting material

VIA LIBRARY,
SUBLIBRARY

description of a physical object for electrical connection
between layers

SITE LIBRARY,
SUBLIBRARY

placement grid for a class of physically placeable objects

BLOCKAGE CELL physical object on a layer, forming an obstruction against
placing or routing other objects

PORT PIN physical object on a layer, providing electrical connections
to a pin

PATTERN VIA, RULE,
BLOCKAGE, PORT

physical object on a layer, described for the purpose of
defining relationships with other physical objects

RULE LIBRARY,
SUBLIBRARY,
CELL, PIN

set of rules defining calculable relationships between physi-
cal objects

ANTENNA LIBRARY,
SUBLIBRARY,
CELL

set of rules defining restrictions for physical size of electri-
cally connected objects for the purpose of manufacturing

ARTWORK VIA, CELL reference to an imported object from GDS2

ARRAY LIBRARY,
SUBLIBRARY

description of a regular grid for placement, global and
detailed routing

geometric
model

PATTERN description of the geometric form of a physical object

REPEAT physical object algorithm to replicate a physical object in a regular way

SHIFT physical object specification to shift a physical object in x/y direction

FLIP physical object specification to flip a physical object around an axis

ROTATE physical object specification to rotate a physical object around an axis

BETWEEN CONNECTIVITY,
DISTANCE

reference to objects with a relation to each other

220 Advanced Library Format (ALF) Reference Manual Version 2.0

Physical Modeling Arithmetic models in the context of layout

9.2 Arithmetic models in the context of layout

Table 9-2 shows keywords for arithmetic models in the context of layout.

Table 9-3 through Table 9-12 summarize the semantic meanings of arithmetic model key-
words in the context of layout.

Table 9-2 Arithmetic models for layout data

Keyword Value type
Base
units

Default
units Description

SIZE non-negative num-
ber

N/A 1 abstract, unitless measurement for the size
of a physical object

AREA non-negative num-
ber

Square
Meter

p (pico) area in square microns (pico = micro2)

DISTANCE non-negative num-
ber

Meter u (micro) distance between two points in microns

HEIGHT positive number Meter u (micro) y- dimension of a placeable object
(e.g., cell or block)

z- dimension of a routeable object (e.g.,
pattern on routing layer), representing the
absolute height above substrate

LENGTH positive number Meter u (micro) x-, or y- dimension of a routeable object
(e.g., pattern on routing layer) measured in
routing direction

WIDTH positive number Meter u (micro) x-dimension of a placeable object
(e.g., cell or block)

x- or y- dimension of a routeable object
(e.g., pattern on routing layer) measured in
orthogonal direction to the route

PERIMETER positive number Meter u (micro) circumference of a physical object

THICKNESS positive number Meter u (micro) z- dimension of a manufacturable physical
object, representing the distance between
the bottom of the object above and the top
of the object below

OVERHANG non-negative num-
ber

Meter u (micro) distance between the edges of two overlap-
ping physical objects

EXTENSION non-negative num-
ber

Meter u (micro) distance between the center and the outer
edge of a physical object

Version 2.0 Advanced Library Format (ALF) Reference Manual 221

Arithmetic models in the context of layout Physical Modeling

Table 9-3 Semantic meaning of SIZE

Context Meaning

CELL abstract measure for size of the cell, cost function for design implementation

WIRE - as a model (TABLE or EQUATION):
abstract measure for the size of the wire itself
- as argument of a model (HEADER):
abstract measure for size of the block for which the wireload model applies,
can be calculated by combining the size of all cells and all wires in the block

ANTENNA abstract measure for size of the antenna for which the antenna rule applies

Table 9-4 Semantic meaning of WIDTH

Context Meaning

CELL, SITE horizontal distance between cell or site boundaries, respectively

WIRE as argument of a model (HEADER):
horizontal distance between block boundaries for which wireload model applies

LAYER,
ANTENNA

width of a wire, orthogonal to routing direction

Table 9-5 Semantic meaning of HEIGHT

Context Meaning

CELL, SITE vertical distance between cell or site boundaries, respectively

WIRE as argument of a model (HEADER):
vertical distance between block boundaries for which wireload model applies

LAYER distance from top of ground plane to bottom of wire

Table 9-6 Semantic meaning of LENGTH

Context Meaning

WIRE estimated routing length of a wire in a wireload model

LAYER,
ANTENNA

actual routing length of a wire in layout

222 Advanced Library Format (ALF) Reference Manual Version 2.0

Physical Modeling Arithmetic models in the context of layout

Table 9-7 Semantic meaning of AREA

Context Meaning

CELL physical area of the cell, product of width and height of a rectangular cell

WIRE - as a model (TABLE or EQUATION):
physical area of the wire itself
- as argument of a model (HEADER):
physical area of the block for which wireload model applies,
product of width and height of rectangular block

LAYER, VIA ,
ANTENNA

physical area of a placeable or routeable object, measured in the x-y plane

Table 9-8 Semantic meaning of PERIMETER

Context Meaning

CELL perimeter of the cell, twice the sum of height and width for rectangular cell

WIRE - as a model (TABLE or EQUATION):
perimeter the wire itself
- as argument of a model (HEADER):
perimeter of the block for which wireload model applies,
 twice the sum of height and width for rectangular block

LAYER, VIA,
ANTENNA

perimeter of a placeable or routeable object, measured in the x-y plane

Table 9-9 Semantic meaning of DISTANCE

Context Meaning

RULE distance between objects for which the rule applies

Table 9-10 Semantic meaning of THICKNESS

Context Meaning

LAYER,
ANTENNA

distance between top and bottom of a physical object, orthogonal to the x-y plane

Table 9-11 Semantic meaning of OVERHANG

Context Meaning

RULE distance between the outer border of an object and the outer border of another object
inside the first one

Version 2.0 Advanced Library Format (ALF) Reference Manual 223

Statements for geometric transformation Physical Modeling

9.3 Statements for geometric transformation

This section definesSHIFT, ROTATE, FLIP , andREPEAT.

9.3.1 SHIFT statement

TheSHIFT statement defines the horizontal and vertical offset measured between the coordi-
nates of the geometric model and the actual placement of the object. Eventually, a layout tool
only supports integer numbers. The numbers are in units of DISTANCE.

shift_ annotation_container ::=

SHIFT { horizontal_or_vertical_ annotations }

horizontal_or_vertical_ annotations ::=
horizontal_ annotation

| vertical_ annotation
| horizontal_ annotation vertical_ annotation

horizontal_ annotation ::=

HORIZONTAL = number ;

vertical_ annotation ::=

VERTICAL = number ;

If only one annotation is given, the default value for the other one is0. If the SHIFT statement
is not given, both values default to0.

9.3.2 ROTATE statement

Therotate_ annotation statement defines the angle of rotation in degrees measured
between the orientation of the object described by the coordinates of the geometric model and
the actual placement of the object measured in counter-clockwise direction, specified by a
number between0 and360 . Eventually, a layout tool can only support angles which are multi-
ple of 90 degrees. The default is0.

rotate_ annotation ::=

ROTATE = number ;

The object shall rotate around its origin.

Table 9-12 Semantic meaning of EXTENSION

Context Meaning

LAYER, VIA ,
RULE,
geometric
model

distance between the border of the original object and the border of the same object
after enlargement

224 Advanced Library Format (ALF) Reference Manual Version 2.0

Physical Modeling Statements for geometric transformation

9.3.3 FLIP statement

Theflip_ annotation describes a transformation of the specified coordinates by flipping the
object around an axis specified by a number between0 and180 . The number represents the
angle of the flipping direction in degrees. Eventually, a layout tool can only support angles
which are multiple of 90 degrees. The axis is orthogonal to the flipping direction. The axis
shall go through the origin of the object.

flip_ annotation ::=

FLIP = number ;

Example:

FLIP = 0 means flip in horizontal direction, axis is vertical.
FLIP = 90 means flip in vertical direction, axis is horizontal.

9.3.4 REPEAT statement

TheREPEAT statement shall be defined as follows:

repeat ::=

REPEAT [= unsigned] {
shift_ annotation_container
[repeat]

}

The purpose of theREPEAT statement is to describe the replication of a physical object in a
regular way, for exampleSITE (see Section 9.12). TheREPEAT statement can also appear
within ageometric_model .

Theunsigned number defines the total number of replications. The number1 means, the
object appears just once. If this number is not given, theREPEATstatement defines a rule for an
arbitrary number of replications.

REPEAT statements can also be nested.

Examples:

The following example replicates an object three times along the horizontal axis in a distance
of 7 units.

REPEAT = 3 {
SHIFT { HORIZONTAL = 7; }

}

The following example replicates an object five times along a 45-degree axis.

REPEAT = 5 {
SHIFT { HORIZONTAL = 4; VERTICAL = 4; }

}

Version 2.0 Advanced Library Format (ALF) Reference Manual 225

Statements for geometric transformation Physical Modeling

The following example replicates an object two times along the horizontal axis and four times
along the vertical axis.

REPEAT = 2 {
SHIFT { HORIZONTAL = 5; }
REPEAT = 4 {

SHIFT { VERTICAL = 6; }
}

}

Note: The order of nestedREPEAT statements does not matter. The following example gives
the same result as the previous example.

REPEAT = 4 {
SHIFT { VERTICAL = 6; }
REPEAT = 2 {

SHIFT { HORIZONTAL = 5; }
}

}

9.3.5 Summary of geometric transformations

geometric_transformations ::=
geometric_transformation { geometric_transformation }

geometric_transformation ::=
shift_ annotation_container

| rotate_ annotation
| flip_ annotation
| repeat

Rules and restrictions:

• A physical object can contain ageometric_transformation statement of any kind, but no
more than one of a specific kind.

• Thegeometric_transformation statements shall apply to allgeometric_models within
the context of the object.

• Thegeometric_transformation statements shall refer to the origin of the object, i.e., the
point with coordinates{ 0 0 } . Therefore, the result of a combined transformation shall be
independent of the order in which each individual transformation is applied.

These are demonstrated in Figure 9-1.

226 Advanced Library Format (ALF) Reference Manual Version 2.0

Physical Modeling ARTWORK statement

Figure 9-1: Illustration of FLIP, ROTATE, and SHIFT

9.4 ARTWORK statement

TheARTWORK statement shall be defined as follows:

artwork ::=

ARTWORK =artwork_ identifier {
[geometric_transformations]
{ pin_assignments }

}

TheARTWORKstatement creates a reference between the cell in the library and the original cell
imported from a physical layout database (e.g., GDS2).

Thegeometric_transformations define the operations for transformation from the artwork
geometry to the actual cell geometry. In other words, the artwork is considered as the original
object whereas the cell is the transformed object.

The imported cell can have pins with different names. The LHS of thepin_assignments

describes the pin names of the original cell, the RHS describes the pin names of the cell in this
library. See Section 11.4 for the syntax ofpin_assignments .

Example:

CELL my_cell {
PIN A { /* fill in pin items */ }
PIN Z { /* fill in pin items */ }
ARTWORK = \GDS2$!@#$ {

SHIFT { HORIZONTAL = 0; VERTICAL = 0; }
ROTATE = 0;
\GDS2$!@#$A = A;
\GDS2$!@#$B = B;

}
}

SHIFTROTATEFLIP

legend: origin of the object

Version 2.0 Advanced Library Format (ALF) Reference Manual 227

LAYER statement Physical Modeling

9.5 LAYER statement

This section defines theLAYER statements.

9.5.1 Definition

TheLAYER statement shall be defined as follows:

layer ::=

LAYER identifier { layer_items }

layer_items ::=
layer_item { layer_item }

layer_item ::=
all_purpose_item

| arithmetic_model
| arithmetic_model_container

The syntax and semantics ofall_purpose_item , arithmetic_model_container , and
arithmetic_model are defined in Section 11.7 and Section 11.16.

Specific items applicable forLAYER are listed in Table 9-3.

Table 9-13 Items for LAYER description

Item Applies for layer Usable ALF statement Comment

purpose all PURPOSE = <identifier>
; see Section 9.5.2

property routing, cut, master PROPERTY { ... }
see Section 3.2.7

current density
limit

routing, cut LIMIT { CURRENT
{ ... MAX { ... } } see Section 7.5,

Section 8.1.2, Section
7.6.1, Section 8.9.1,
and Section 9.5.5

resistance routing, cut RESISTANCE { ... }
see Section 8.7.2 and
Section 9.5.5

capacitance routing CAPACITANCE {... }
see Section 8.7.2 and
Section 9.5.5

default width or
minimum width

routing WIDTH { DEFAULT =
<number>; } see Section 7.1.4.,

Section 9.2, and
Section 9.5.5

manufacturing
tolerance for
width

routing WIDTH { MIN = <number>;
TYP = <number>;
MAX = <number>; }

see Section 7.6.1,
Section 8.9.1, and
Section 9.5.5

228 Advanced Library Format (ALF) Reference Manual Version 2.0

Physical Modeling LAYER statement

Note: Rules involving relationships between objects within one or several layers is described
in the RULE statement (see Section 9.11).

9.5.2 PURPOSE annotation

The purpose of each layer shall be identified using thePURPOSE annotation.

layer_purpose_ assignment ::=

PURPOSE = layer_purpose_ identifier ;

layer_purpose_ identifier ::=

routing
| cut
| substrate
| dielectric
| reserved
| abstract

The identifiers have the following definitions:

• routing: layer provides electrical connections within one plane

• cut: layer provides electrical connections between planes

• substrate: layer(s) at the bottom

• dielectric: provides electrical isolation between planes

• reserved: layer is for proprietary use only

• abstract: not a manufacturable layer, used for description of boundaries between
objects

LAYER statements shall be in sequential order defined by the manufacturing process, starting
bottom-up in the following sequence: one or multiple substrate layers, followed by alternating
cut and routing layers, then the dielectric layer. Abstract layers can appear at the end of the
sequence.

default wire
extension

routing EXTENSION { DEFAULT =
<number>; } see Section 9.7.4 and

Section 9.5.5
height routing, cut, master HEIGHT = <number>;

see Section 9.2
thickness routing, cut, master THICKNESS = <number>;

see Section 9.2
preferred rout-
ing direction

routing PREFERENCE
see Section 9.5.4

Table 9-13 Items for LAYER description, continued

Item Applies for layer Usable ALF statement Comment

Version 2.0 Advanced Library Format (ALF) Reference Manual 229

LAYER statement Physical Modeling

9.5.3 PITCH annotation

ThePITCH annotation identifies the routing pitch for a layer withPURPOSE=routing .

pitch_ annotation ::=

PITCH = non_negative_number ;

The pitch is measured between the center of two adjacent parallel wires routed on the layer.

9.5.4 PREFERENCE annotation

ThePREFERENCE annotation forLAYER shall have the following form:

routing_preference_ annotation ::=

PREFERENCE = routing_preference_ identifier ;

routing_preference_ identifier ::=

horizontal
| vertical

The purpose is to indicate the preferred routing direction.

9.5.5 Example

This example contains a default width (the syntax isall_purpose_item), resistance, capaci-
tance, and current limits (the syntax isarithmetic_model) for arbitrary wires in a routing
layer. Since width and thickness are arguments of the models, special wires and fat wires are
also taken into account.

LAYER metal1 {
PURPOSE = routing;
PREFERENCE { HORIZONTAL = 0.75; VERTICAL = 0.25; }
WIDTH { DEFAULT = 0.4; MIN = 0.39; TYP = 0.40; MAX = 0.41; }
THICKNESS { DEFAULT = 0.2; MIN = 0.19; TYP = 0.20; MAX = 0.21; }
EXTENSION { DEFAULT = 0; }
RESISTANCE {

HEADER { LENGTH WIDTH THICKNESS TEMPERATURE }
EQUATION {

0.5*(LENGTH/(WIDTH*THICKNESS))
(1.0+0.01(TEMPERATURE-25))

}
}
CAPACITANCE {

HEADER { AREA PERIMETER }
EQUATION { 0.48*AREA + 0.13*PERIMETER*THICKNESS }

}
LIMIT {

CURRENT ac_limit_for_avg {
UNIT = mAmp ;
MEASUREMENT = average ;
HEADER {

230 Advanced Library Format (ALF) Reference Manual Version 2.0

Physical Modeling Geometric model statement

WIDTH { UNIT = uM; TABLE { 0.4 0.8 } }
FREQUENCY { UNIT = megHz; { 1 100 } }
THICKNESS { UNIT = uM; TABLE { 0.2 0.4 } }

}
TABLE {

2.0e-6 4.0e-6 1.5e-6 3.0e-6
4.0e-6 8.0e-6 3.0e-6 6.0e-6

}
}
CURRENT ac_limit_for_rms {

UNIT = mAmp ;
MEASUREMENT = rms ;
HEADER {

WIDTH { UNIT = uM; TABLE { 0.4 0.8 } }
FREQUENCY { UNIT = megHz; { 1 100 } }
THICKNESS { UNIT = uM; TABLE { 0.2 0.4 } }

}
TABLE {

4.0e-6 7.0e-6 4.5e-6 7.5e-6
8.0e-6 14.0e-6 9.0e-6 15.0e-6

}
}
CURRENT ac_limit_for_peak {

UNIT = mAmp ;
MEASUREMENT = peak ;
HEADER {

WIDTH { UNIT = uM; TABLE { 0.4 0.8 } }
FREQUENCY { UNIT = megHz; { 1 100 } }
THICKNESS { UNIT = uM; TABLE { 0.2 0.4 } }

}
TABLE {

6.0e-6 10.0e-6 5.9e-6 9.9e-6
12.0e-6 20.0e-6 11.8e-6 19.8e-6

}
}
CURRENT dc_limit {

UNIT = mAmp ;
MEASUREMENT = static ;
HEADER {

WIDTH { UNIT = uM; TABLE { 0.4 0.8 } }
THICKNESS { UNIT = uM; TABLE { 0.2 0.4 } }

}
TABLE { 2.0e-6 4.0e-6 4.0e-6 8.0e-6 }

}
}

}

9.6 Geometric model statement

This section defines the geometric model statement and how to predefine commonly used
objects (usingTEMPLATE).

Version 2.0 Advanced Library Format (ALF) Reference Manual 231

Geometric model statement Physical Modeling

9.6.1 Definition

The geometric model statement shall be defined as follows:

geometric_model ::=
geometric_model_ identifier

 [geometric_model_name_ identifier] {
all_purpose_items
coordinates

}
| geometric_model_ template_instantiation

geometric_models ::=
geometric_model { geometric_model }

geometric_model_ identifier ::=

DOT
| POLYLINE
| RING
| POLYGON

coordinates ::=

COORDINATES { x_ number y_ number { x_ number y_ number } }

A point is a pair ofx_ number andy_ number .

A DOT is 1 point.

A POLYLINE is defined byN>1 connected points, forming an open object.

A RING is defined byN>1 connected points, forming a closed object, i.e., the last point is
connected with first point. The object occupies the edges of the enclosed space.

A POLYGONis defined byN>1 connected points, forming a closed object, i.e., the last point is
connected with first point. The object occupies the entire enclosed space.

All of these are depicted in Figure 9-2.

Figure 9-2: Illustration of geometric models

POLYLINE RING POLYGON

232 Advanced Library Format (ALF) Reference Manual Version 2.0

Physical Modeling Geometric model statement

See Section 9.3.4 for the definition of therepeat statement.

Thepoint_to_point_ annotation applies forPOLYLINE, RING, andPOLYGON.
It specifies how the connections between points is made. The default isstraight , which
defines a straight connection (see Figure 9-3). The valuerectilinear specifies a connection
by moving in the x-direction first and then moving in the y-direction (see Figure 9-4). This
enables a non-redundant specification of rectilinear objects usingN/2 points instead ofN
points.

point_to_point_ annotation ::=

POINT_TO_POINT = point_to_point_ identifier ;

point_to_point_ identifier ::=

straight
| rectilinear

Figure 9-3: Illustration of straight point-to-point connection

9

8

7

6

5

4

3

2

1

-5 -4 -3 -2 -1 0 1 2 3 4 5

x

x

straight connection

straight connection

X-axis

Y-axis

straight connection

x

x

straight connection
from (-1/8) to (-1/5)

from (-1/5) to (3/5)

from (-3/5) to (3/8)

from (3/8) to (-1/8)

Version 2.0 Advanced Library Format (ALF) Reference Manual 233

Geometric model statement Physical Modeling

Figure 9-4: Illustration of rectilinear point-to-point connection

Example:

POLYGON {
POINT_TO_POINT = straight;
COORDINATES { -1 5 3 5 3 8 -1 8 }

}

POLYGON {
POINT_TO_POINT = rectilinear;
COORDINATES { -1 5 3 8 }

}

Both objects describe the same rectangle.

9.6.2 Predefined geometric models using TEMPLATE

TheTEMPLATE construct (see Section 3.2.6) can be used to predefine some commonly used
objects.

The templates RECTANGLE and LINE shall be predefined as follows:

TEMPLATE RECTANGLE {
POLYGON {

POINT_TO_POINT = rectilinear;
COORDINATES { <left> <bottom> <right> <top> }

}
}

9

8

7

6

5

4

3

2

1

-5 -4 -3 -2 -1 0 1 2 3 4 5

x

x

rectilinear connection from (-1/5) to (3/8)

rectilinear connection from (-3/8) to (-1/5)

X-axis

Y-axis

234 Advanced Library Format (ALF) Reference Manual Version 2.0

Physical Modeling Geometric model statement

TEMPLATE LINE {
POLYLINE {

POINT_TO_POINT = straight;
COORDINATES { <x_start> <y_start> <x_end> <y_end> }

}
}

The following example shows the instantiation of predefined templates.

// same rectangle as in previous example
RECTANGLE {left = -1; bottom = 5; right = 3; top = 8; }
//or
RECTANGLE {-1 5 3 8 }

// diagonals through the rectangle
LINE {x_start = -1; y_start = 5; x_end = 3; y_end = 8; }
LINE {x_start = 3; y_start = 5; x_end = -1; y_end = 8; }
//or
LINE { -1 5 3 8 }
LINE { 3 5 -1 8 }

The definitions for predefined templates are fixed. Therefore the keywords RECTANGLE and
LINE are reserved. On the other hand, the definitions for user-defined templates are only
known by the library supplied by the user.

The following example shows some user-defined templates.

TEMPLATE HORIZONTAL_LINE {
POLYLINE {

POINT_TO_POINT = straight;
COORDINATES { <left> <y> <right> <y> }

}
}

TEMPLATE VERTICAL_LINE {
POLYLINE {

POINT_TO_POINT = straight;
COORDINATES { <x> <bottom> <x> <top> }

}
}

The following example shows the instantiation of user-defined templates.

// lines bounding the rectangle
HORIZONTAL_LINE { y = 5; left = -1; right = 3; }
HORIZONTAL_LINE { y = 8; left = -1; right = 3; }
VERTICAL_LINE { x = -1; bottom = 5; top = 8; }
VERTICAL_LINE { x = 3; bottom = 5; top = 8; }
//or
HORIZONTAL_LINE { 5 -1 3 }
HORIZONTAL_LINE { 8 -1 3 }
VERTICAL_LINE { -1 5 8 }
VERTICAL_LINE { 3 5 8 }

Version 2.0 Advanced Library Format (ALF) Reference Manual 235

PATTERN statement Physical Modeling

9.7 PATTERN statement

This section defines thePATTERN statement and its annotations.

9.7.1 Definition

ThePATTERN statement shall be defined as follows:

pattern ::=

PATTERN [identifier] {
[all purpose_items]
[geometric_models]
[geometric_transformations]

}

9.7.2 SHAPE annotation

TheSHAPE annotation is defined as follows

shape_ assignment ::=

SHAPE = shape_ identifier ;

shape_ identifier ::=

line
| tee
| cross
| jog
| corner
| end

SHAPE applies only for aPATTERN in a routing layer, as shown in Figure 9-5. The default is
line .

Figure 9-5: Routing layer shapes

line

tee

cross

jog

corner

end

236 Advanced Library Format (ALF) Reference Manual Version 2.0

Physical Modeling PATTERN statement

line andjog represent routing segments, which can have an individualLENGTH andWIDTH.
TheLENGTHbetween routing segments is defined as the common run length. TheDISTANCE

between routing segments is measured orthogonal to the routing direction.

tee , cross , andcorner represent intersections between routing segments.end represents the
end of a routing segment. Therefore, they have points rather than lines as references. The
points can have anEXTENSION. TheDISTANCE between points can be measured straight or by
usingHORIZONTAL andVERTICAL.

9.7.3 LAYER annotation

The layer_ annotation defines the layer where the object resides. The layer shall have been
declared before.

layer_ annotation ::=

LAYER = layer_ identifier ;

9.7.4 EXTENSION annotation

Theextension_ annotation specifies the value by which the drawn object is extended at all
sides.

extension_ annotation ::=

EXTENSION = non_negative_number ;

The default value ofextension_ annotation is 0.

9.7.5 VERTEX annotation

Thevertex_ annotation shall appear only in conjunction with theextension_ annotation .
It specifies the form of the extended object, as shown in Figure 9-6.

vertex_ annotation ::=

VERTEX = vertex_ identifier ;

vertex_ identifier ::=

round
| straight

The default value ofvertex_ annotation is straight .

Version 2.0 Advanced Library Format (ALF) Reference Manual 237

VIA statement Physical Modeling

Figure 9-6: Illustration of VERTEX annotation

9.7.6 PATTERN with geometric model

A geometric_model describes the form of a physical object; it does not describe a physical
object itself. Thegeometric_model shall be in the context of aPATTERN.

A pattern can containgeometric_model statements, geometric transformation statements
(see Section 9.3.5), andall_purpose_items (see Section 11.7).

9.7.7 Example

PATTERN {
LAYER = metal1;
EXTENSION = 1;
DOT { COORDINATES { 5 10 } }

}

This object is effectively a square, with a lower left corner (x=4,y=9) and upper right corner
(x=6,y=11).

9.8 VIA statement

This section defines theVIA statement and its annotations.

9.8.1 Definition

TheVIA statement shall be defined as follows:

via ::=

VIA [identifier] { via_items }

EXTENSION = 1

VERTEX = straight VERTEX = round

238 Advanced Library Format (ALF) Reference Manual Version 2.0

Physical Modeling VIA statement

via_items ::=
via_item { via_item }

via_item ::=
all_purpose_item

| pattern
| arithmetic_model
| arithmetic_model_container

TheVIA statement shall contain at least three patterns, referring to the cut layer and two adja-
cent routing layers. Stacked vias can contain more than three patterns.

Theall_purpose_items andarithmetic_models for VIA are listed in Table 9-14.

9.8.2 USAGE annotation

TheUSAGE annotation for aVIA shall have one of the following mutually exclusive values.

usage_ annotation ::=

USAGE = usage_ identifier ;

usage_ identifier ::=

default
| non_default
| partial_stack
| full_stack

The identifiers have the following definitions:

• default: via can be used per default

• non_default: via can only be used if authorized by aRULE

• partial_stack: via contains 3 patterns: lower and upper routing layer and cut layer in-
between. It can only be used to build stacked vias. The bottom of a stack can be a
default or anon_default via.

• full_stack: via contains 2N+1 patterns (N>1). It describes the full stack from bottom to
top.

Table 9-14 Items for VIA description

Item Usable ALF statement Comment

property PROPERTY
see Section 3.2.7

resistance RESISTANCE
see Section 8.7.2

GDS2 reference ARTWORK
see Section 9.4 and Section 9.8.3

usage USAGE
see Section 9.8.2 and Section 9.8.3

Version 2.0 Advanced Library Format (ALF) Reference Manual 239

VIA statement Physical Modeling

9.8.3 Example

VIA via_with_two_contacts_in_x_direction {
ARTWORK = GDS2_name_of_my_via {

SHIFT { HORIZONTAL = -2; VERTICAL = -3; }
ROTATE = 180;

}
PATTERN via_contacts {

LAYER = cut_1_2 ;
RECTANGLE { 1 1 3 3 }
REPEAT = 2 {

SHIFT{ HORIZONTAL = 4; }
REPEAT = 1 {

SHIFT { VERTICAL = 4; }
} } }
PATTERN lower_metal {

LAYER = metal_1 ;
RECTANGLE { 0 0 8 4 }

}
PATTERN upper_metal {

LAYER = metal_2 ;
RECTANGLE { 0 0 8 4 }

}
}

A TEMPLATE (see Section 3.2.6) can be used to define a construction rule for a via.

TEMPLATE my_via_rule
VIA <via_rule_name> {

PATTERN via_contacts {
LAYER = cut_1_2 ;
RECTANGLE { 1 1 3 3 }
REPEAT = <x_repeat> {

SHIFT{ HORIZONTAL = 4; }
REPEAT = <y_repeat> {

SHIFT { VERTICAL = 4; }
} } }
PATTERN lower_metal {

LAYER = metal_1 ;
RECTANGLE { 0 0 <x_cover> <y_cover> }

}

PATTERN upper_metal {
LAYER = metal_2 ;
RECTANGLE { 0 0 <x_cover> <y_cover> }

}
}

}

A static instance of theTEMPLATE can be used to create the same via as in the first example
(except for the reference to GDS2):

240 Advanced Library Format (ALF) Reference Manual Version 2.0

Physical Modeling BLOCKAGE statement

my_via_rule {
via_rule_name = via_with_two_contacts_in_x_direction;
x_cover = 8;
y_cover = 4;
x_repeat = 2;
y_repeat = 1;

}

A dynamic instance of theTEMPLATE (see Section 5.6.8) can be used to create a via rule.

my_via_rule = dynamic {
via_rule_name = via_with_NxM_contacts;
x_cover = 8;
y_cover = 4;
x_repeat {

HEADER { x_cover { TABLE { 4 8 12 16 } } }
TABLE { 1 2 3 4 }

}
y_repeat {

HEADER { y_cover { TABLE { 4 8 12 16 } } }
TABLE { 1 2 3 4 }

}
}

Instead of defining fixed values for the placeholders, here the mathematical relationships
between the placeholders are defined, which can generate a via rule for any set of values.

9.8.4 VIA reference

Certain physical objects can contain a reference to one or more vias, using the following
statement.

via_reference ::=

VIA { via_instantiations }

via_instantiations ::=
via_instantiation { via_instantiation }

via_instantiation ::=
via_ identifier { geometric_transformations }

Thevia_ identifier shall be the name of an already definedVIA .

Example for a via reference in aPORT, see Section 9.10.

9.9 BLOCKAGE statement

This section defines theBLOCKAGE statement and its use.

9.9.1 Definition

TheBLOCKAGE statement shall be defined as follows:

Version 2.0 Advanced Library Format (ALF) Reference Manual 241

PORT statement Physical Modeling

blockage ::=

BLOCKAGE [identifier] {
[all_purpose_items]
[patterns]

}

See Section 11.7 for applicableall_purpose_items .

9.9.2 Example

CELL my_cell {
BLOCKAGE my_blockage {

PATTERN p1 {
LAYER = metal1;
RECTANGLE { -1 5 3 8 }
RECTANGLE { 6 12 3 8 }

}
PATTERN p2 {

LAYER = metal2;
RECTANGLE { -1 5 3 8 }

}
}

}

TheBLOCKAGE consists of two rectangles coveringmetal1 and one rectangle covering
metal2 .

9.10 PORT statement

This section defines thePORT statement and its use.

9.10.1 Definition

A port is a collection of geometries within a pin, representing electrically equivalent points.

ThePORT statement shall be defined as follows:

port ::=

PORT port_ identifier ;
| PORT [port_ identifier] {

[all_purpose_items]
[patterns]
[via_reference]

}

A numerical digit can be used as the first character inport_ identifier . In this case the num-
ber shall be proceeded by the escape character (see Section 10.3.8) in the declaration of the
PORT.

242 Advanced Library Format (ALF) Reference Manual Version 2.0

Physical Modeling PORT statement

ThePORTstatement is legal within the context of aPIN statement. For this purpose, the syntax
for pin_item (see Section 11.11) shall be augmented as follows:

pin_item ::=
all_purpose_item

| arithmetic_model
| port

A pin can have either noPORT statement, an arbitrary number ofPORT statements with a
port_ identifier , or exactly onePORT statement without aport_ identifier .

9.10.2 VIA reference

A PORTcan contain a reference to one or more vias by using thevia_reference statement (see
Section 9.8.4).

Example:

VIA my_via { /* put via definition here */ }

// later in the same library
CELL my_cell {

PIN my_pin {
PORT my_port {

VIA {
my_via { SHIFT { HORIZONTAL = 1.0 ; VERTICAL = 2.0 ; } }
my_via { SHIFT { HORIZONTAL = 5.0 ; VERTICAL = 8.0 ; } }

}
}

}
}

TheVIA my_via is instantiated twice in thePORT my_port within thePIN my_pin of theCELL

my_cell . The origin of the instantiated vias is shifted with respect to the origin of the cell, as
specified by theSHIFT statements.

9.10.3 CONNECTIVITY rules for PORT and PIN

By default, all connections to a pin shall be made to the same port. Different ports of a pin
shall not be connected externally. Those defaults can be overridden by using connectivity
rules for ports within a pin.

Pins of the same cell shall not be shorted externally by default. This default can also be over-
ridden by using connectivity rules for pins within a cell.

Example:

PIN A {
PORT P1 { VIEW=physical; }

}

Version 2.0 Advanced Library Format (ALF) Reference Manual 243

PORT statement Physical Modeling

PIN B {
PORT Q1 { VIEW=physical; }
PORT Q2 { VIEW=physical; }
PORT Q3 { VIEW=physical; }
CONNECTIVITY {

CONNECT_RULE = can_short;
BETWEEN { Q1 Q3 }

}
CONNECTIVITY {

CONNECT_RULE = cannot_short;
BETWEEN { Q1 Q2 }

}
CONNECTIVITY {

CONNECT_RULE = cannot_short;
BETWEEN { Q2 Q3 }

}
}
CONNECTIVITY {

CONNECT_RULE = must_short;
BETWEEN { A B }

}

The router can make external connections betweenQ1 andQ3, but not betweenQ1 andQ2 or
betweenQ2 andQ3, respectively. The router shall make an external connection betweenA.P1

and any port ofB (B.Q1 , B.Q2 , or B.Q3).

9.10.4 Reference of a declared PORT in a PIN annotation

In the context of timing modeling, aPORT can have the semantic meaning of aPIN . For exam-
ples,PORTs can be used asFROMand/orTOpoints of delay measurements -- use a reference by
a hierarchical_identifier .

Example:

CELL my_cell {
PIN A {

DIRECTION = input;
PORT p1;
PORT p2;

}
PIN Z {

DIRECTION = output;
}
VECTOR (01 A -> 01 Z) {

DELAY {
FROM { PIN = A.p1; }
TO { PIN = Z; }

244 Advanced Library Format (ALF) Reference Manual Version 2.0

Physical Modeling RULE statement

}
DELAY {

FROM { PIN = A.p2; }
TO { PIN = Z; }

}
}

}

9.10.5 VIEW annotation

A subset of values for theVIEWannotation inside aPIN (see Section 6.4.1) shall be applicable
for aPORT as well.

port_view_ annotation ::=

VIEW = port_view_ identifier ;

port_view_ identifier ::=

physical
| none

VIEW=physical shall qualify thePORT as a real port with the possibility to connect a routing
wire to it.

VIEW=none shall qualify thePORT as a virtual port for modeling purpose only.

9.10.6 LAYER annotation

The layer_ annotation can appear inside aPORT (see Section 9.10).

9.10.7 ROUTING_TYPE

A PORTcan inherit theROUTING_TYPEfrom itsPIN or it can have its ownROUTING_TYPEanno-
tation.

9.11 RULE statement

This section defines theRULE statement and its use.

9.11.1 Definition

TheRULE statement shall be defined as follows:

rule ::=

RULE [identifier] { rule_items }

rule_items ::=
rule_item { rule_item }

Version 2.0 Advanced Library Format (ALF) Reference Manual 245

RULE statement Physical Modeling

rule_item ::=
pattern

| all_purpose_item
| via_reference
| arithmetic_model_container
| arithmetic_model

Theall_purpose_items for RULE are listed in Table 9-15.

The rules for spacing and overlap, respectively, shall be expressed using theLIMIT construct
with DISTANCE andOVERHANG, respectively, as keywords for the arithmetic models (see Sec-
tion 7.5 and Section 7.6.1). The keywordsHORIZONTAL andVERTICAL shall be introduced as
qualifiers for arithmetic submodels (see Section 7.6) to distinguish rules for different routing
directions. If these qualifiers are not used, the rule shall apply in any routing direction.

9.11.2 Width-dependent spacing

An example of width-dependent spacing is:

RULE width_and_length_dependent_spacing {
PATTERN segment1 { LAYER = metal_1; SHAPE = line; }
PATTERN segment2 { LAYER = metal_1; SHAPE = line; }
CONNECTIVITY {

CONNECT_RULE = cannot_short;
BETWEEN { segment1 segment2 }

}
LIMIT {

DISTANCE { BETWEEN { segment1 segment2 }
MIN {

HEADER {
WIDTH w1 {

PATTERN = segment1;
/* TABLE, if applicable */

}
WIDTH w2 {

PATTERN = segment2;
/* TABLE, if applicable */

}
LENGTH common_run {

BETWEEN { segment1 segment2 }

Table 9-15 Items for RULE description

Item Usable ALF statement Comment

rule is for same net
or different nets

CONNECTIVITY
see Section 9.10.3 and
Section 9.15

spacing rule LIMIT { DISTANCE ... }
see Section 7.5 and
Section 9.11.2

overhang rule LIMIT { OVERHANG ... }
see Section 7.5 and
Section 9.11.3

246 Advanced Library Format (ALF) Reference Manual Version 2.0

Physical Modeling RULE statement

/* TABLE, if applicable */
}

}
/* EQUATION or TABLE */

}
MAX { /* some technology have MAX spacing rules */ }

}
}

}

Spacing rules dependent on routing direction can be expressed as follows:

LIMIT {
DISTANCE { BETWEEN { segment1 segment2 }

HORIZONTAL {
MIN { /* HEADER, EQUATION or TABLE */ }

}
VERTICAL {

MIN { /* HEADER, EQUATION or TABLE */ }
}

}
}

9.11.3 End-of-line rule

End-of-line rules can be expressed as follows:

RULE lonely_via {
PATTERN via_lower { LAYER = metal_1; SHAPE = line; }
PATTERN via_cut { LAYER = cut_1_2; }
PATTERN via_upper { LAYER = metal_2; SHAPE = end; }
PATTERN adjacent { LAYER = metal_2; SHAPE = line; }
CONNECTIVITY {

CONNECT_RULE = must_short;
BETWEEN { via_lower via_cut via_upper }

}
CONNECTIVITY {

CONNECT_RULE = cannot_short;
BETWEEN { via_upper adjacent }

}
LIMIT {

OVERHANG {
BETWEEN { via_cut via_upper }
MIN {

HEADER {
DISTANCE {

BETWEEN { via_cut adjacent }
/* TABLE, if applicable */

Version 2.0 Advanced Library Format (ALF) Reference Manual 247

RULE statement Physical Modeling

}
}
/* TABLE or EQUATION */

}
}

}
}

Overhang dependent on routing direction can be expressed as follows:

LIMIT {
OVERHANG { BETWEEN { via_cut via_upper }

HORIZONTAL {
MIN { /* HEADER, EQUATION or TABLE */ }

}
VERTICAL {

MIN { /* HEADER, EQUATION or TABLE */ }
}

}
}

9.11.4 Redundant vias

Rules for redundant vias can be expressed as follows:

RULE constraint_for_redundant_vias {
PATTERN via_lower { LAYER = metal_1; }
PATTERN via_cut { LAYER = cut_1_2; }
PATTERN via_upper { LAYER = metal_2; }
CONNECTIVITY {

CONNECT_RULE = must_short;
BETWEEN { via_lower via_cut via_upper }

}
LIMIT {

WIDTH {
PATTERN = via_cut;
MIN = 3; MAX = 5;

}
DISTANCE {

BETWEEN { via_cut }
MIN = 1; MAX = 2;

}
OVERHANG {

BETWEEN { via_lower via_cut }
MIN = 2; MAX = 4;

}
OVERHANG {

BETWEEN { via_upper via_cut }
MIN = 2; MAX = 4;

}
}

}

248 Advanced Library Format (ALF) Reference Manual Version 2.0

Physical Modeling RULE statement

9.11.5 Extraction rules

Extraction rules can be expressed as follows:

RULE parallel_lines_same_layer {
PATTERN segment1 { LAYER = metal_1; SHAPE = line; }
PATTERN segment2 { LAYER = metal_1; SHAPE = line; }
CAPACITANCE {

BETWEEN { segment1 segment2 }
HEADER {

DISTANCE {
BETWEEN { segment1 segment2 }
/* TABLE, if applicable */

}
LENGTH {

BETWEEN { segment1 segment2 }
/* TABLE, if applicable */

}
}
/* EQUATION or TABLE */

}
}

9.11.6 RULES within BLOCKAGE or PORT

General width-dependent spacing rules can not apply to blockages which are abstractions of
smaller blockages collapsed together. The spacing rule between the constituents of the
blockage and their neighboring objects shall be applied instead.

For example, a blockage can consist of two parallel wires in vertical direction ofwidth=1 and
distance=1 . They can be collapsed to form a blockage ofwidth=3 . Left and right of the
blockage, the spacing rule shall be based on the width of the constituent wires (i.e.,1) instead
of the width of the blockage (i.e.,3).

Therefore, it shall be legal within aRULEstatement to appear within the context of aBLOCKAGE

or PORT and reference aPATTERN which has been defined within the context of theBLOCKAGE

or PORT.

Example:

CELL my_cell {
BLOCKAGE my_blockage {

PATTERN my_pattern {
LAYER = metal1;
RECTANGLE { 5 0 8 10 }

}
RULE for_my_pattern {

PATTERN my_metal1 { LAYER = metal1; }
LIMIT {

DISTANCE {

Version 2.0 Advanced Library Format (ALF) Reference Manual 249

SITE statement Physical Modeling

BETWEEN { my_metal1 my_pattern }
MIN = 1;

}
}

}
}

}

It shall also be legal to define the spacing rule, which normally would be inside theRULE

statement, directly within the context of aPATTERN using theLIMIT construct and the
arithmetic model forDISTANCE. This arithmetic model shall not contain aBETWEENstatement.
The spacing rule shall apply between thePATTERN and any external object on the same layer.

Example:

CELL my_cell {
BLOCKAGE my_blockage {

PATTERN p1 {
LAYER = metal1;
RECTANGLE { 5 0 8 10 }
LIMIT { DISTANCE { MIN = 1; } }

}
}

}

9.11.7 VIA reference

A RULEcan contain a reference to one or more vias, using thevia_reference statement (see
Section 9.8.4).

9.12 SITE statement

This section defines theSITE statement and its use.

9.12.1 Definition

TheSITE statement shall be defined as follows:

site ::=

SITE site_ identifier { all_purpose_items }

Thewidth_ annotation andheight_ annotation (see Section 9.2) are mandatory.

9.12.2 ORIENTATION_CLASS and SYMMETRY_CLASS

A set ofCLASS statements shall be used to define a set of legal orientations applicable to a
SITE . Both theCLASS and theSITE statements shall be within the context of the same
LIBRARY or SUBLIBRARY.

orientation_ class ::=

CLASS orientation_class_ identifier {

250 Advanced Library Format (ALF) Reference Manual Version 2.0

Physical Modeling SITE statement

[geometric_transformations]

}

To refer to a predefined orientation class, use theORIENTATION_CLASS statement within a
SITE and/or aCELL. ORIENTATIONof a CELL means the orientation of the cell itself.ORIENTA-

TION of aSITE means the orientation of rows that can be created using that site.

orientation_class_ multivalue_annotation ::=

ORIENTATION { orientation_class_ identifiers }

TheSYMMETRY_CLASS statement shall be used for aSITE to indicate symmetry between legal
orientations. MultipleSYMMETRY statements shall be legal to enumerate all possible combina-
tions in case they cannot be described within a singleSYMMETRY statement.

symmetry_class_ multivalue_annotation ::=

SYMMETRY_CLASS {orientation_class_ identifiers }

Legal orientation of a cell within a site shall be defined as the intersection of legal cell orienta-
tion and legal site orientation. If there is a set of common legal orientations for both cell and
site without symmetry, the orientation of cell instance and site instance shall match.

If there is a set of common legal orientations for both cell and site with symmetry, the cell can
be placed on the side using any orientation within that set.

Case 1: no symmetry

Site has legal orientationsA andB. Cell has legal orientationsA andB. When the site is instan-
tiated in theA orientation, the cell shall be placed in theA orientation.

Case 2: symmetry

Site has legal orientationsA andB and symmetry betweenA andB. Cell has legal orientations
A andB. When the site is instantiated in theA orientation, the cell can be placed in theA or B

orientation.

9.12.3 Example

LIBRARY my_library {
CLASS north { ROTATE = 0; }
CLASS flip_north { ROTATE = 0; FLIP = 0; }
CLASS south { ROTATE = 180; }
CLASS flip_south { FLIP = 90; }

SITE Site1 {
ORIENTATION_CLASS { north flip_north }

}

SITE Site2 {
ORIENTATION_CLASS { north flip_north south flip_south}
SYMMETRY_CLASS { north flip_north }

Version 2.0 Advanced Library Format (ALF) Reference Manual 251

ANTENNA statement Physical Modeling

SYMMETRY_CLASS { south flip_south }
}
CELL Cell1 {

SITE { Site1 Site2 }
ORIENTATION_CLASS { north flip_north }

}
CELL Cell2 {

SITE { Site2 }
ORIENTATION_CLASS { north south }

}
}

Cell1 can be placed onsite1 . The orientation ofSite1 andCell1 shall match because there
is no symmetry betweennorth andflip_north in Site1 .

Cell1 can be placed onSite2 , providedSite2 is instantiated in thenorth or flip_north

orientation. The orientation ofsite2 andcell1 need not match because of the symmetry
betweennorth andflip_north in Site2 .

Cell2 can be placed onSite2 , providedSite2 is instantiated in thenorth or south

orientation. The orientation ofSite2 andCell2 shall match because there is no symmetry
betweennorth andsouth in Site2 .

9.13 ANTENNA statement

This section defines theSITE statement and its use.

9.13.1 Definition

TheANTENNA statement shall be defined as follows:

antenna ::=

ANTENNA[antenna_ identifier] { antenna_items }

antenna_items ::=
antenna_item { antenna_item }

antenna_item ::=
all_purpose_item

| arithmetic_model
| arithmetic_model_container

The syntax and semantics ofall_purpose_item , arithmetic_model_container , and
arithmetic_model are already defined in defined in Section 11.7 and Section 11.16.

252 Advanced Library Format (ALF) Reference Manual Version 2.0

Physical Modeling ANTENNA statement

The items applicable forANTENNA are shown in Table 9-16.

The use of the keywordSIZE (see Section 8.1.3) in the context ofANTENNAis proposed to rep-
resent an abstract, dimensionless model of the antenna size. It is related to the area of the net
which forms the antenna, but it is not necessary a measure of area. It can be a measure of area
ratio as well. However, the arguments of the calculation function for antennaSIZE shall be
measurable data, such asAREA, PERIMETER, LENGTH, THICKNESS, WIDTH, andHEIGHTof metal
segments connected to the net. The argument also need an annotation defining the applicable
LAYER for the metal segments.

A process technology can have more than one antenna rule calculation method. In this case,
theantenna_ identifier is mandatory for each rule.

Antenna rules apply for routing and cut layers connected to poly silicon and eventually to dif-
fusion. TheCONNECT_RULEstatement in conjunction with theBETWEENstatement shall be used
to specify the connected layers. Connectivity shall only be checked up to the highest layer
appearing in theCONNECT_RULE statement. Connectivity through higher layers shall not be
taken into account, since such connectivity does not yet exist in the state of manufacturing
process when the antenna effect occurs.

9.13.2 Layer-specific antenna rules

Antenna rules can be checked individually for each layer. In this case, theSIZE model con-
tains only two or three arguments:AREAof the layer or perimeter (calculated from theLENGTH

andWIDTH) of the layer causing the antenna effect, the area of poly silicon, and, eventually, the
area of diffusion.

Table 9-16 Items for ANTENNA description

Item Usable ALF statement Scope Comment

maximum allowed
antenna size

LIMIT { SIZE {
MAX { ... } } }

LIBRARY,
SUBLIBRARY
CELL, PIN

see Section 7.5, Section
8.1.2, Section 7.6.1,
Section 8.9.1, and
Section 9.13.2

calculation method
for antenna size

SIZE { HEADER
{ ... } TABLE { ...}
or
SIZE [id] { HEADER {
... } EQUATION {
...}

LIBRARY,
SUBLIBRARY see Section 8.1.3, and

Section 9.13.2

argument values for
antenna size calcu-
lation

argument= value;
or
argument= value{ ... }

CELL, PIN
see Section 11.2and
Section 9.13.2

Version 2.0 Advanced Library Format (ALF) Reference Manual 253

ANTENNA statement Physical Modeling

Example:

ANTENNA individual_m1 {
LIMIT { SIZE { MAX = 1000; } }
SIZE {

CONNECTIVITY {
CONNECT_RULE = must_short; BETWEEN { metal1 poly }

}
CONNECTIVITY {

CONNECT_RULE = cannot_short; BETWEEN { metal1 diffusion }
}
HEADER {

AREA a1 { LAYER = metal1; }
AREA a0 { LAYER = poly; }

}
EQUATION { a1 / a0 }

}
ANTENNA individual_m2 {

LIMIT { SIZE { MAX = 1000; } }
SIZE {

CONNECTIVITY {
CONNECT_RULE = must_short; BETWEEN { metal2 poly }

}
CONNECTIVITY {

CONNECT_RULE = cannot_short; BETWEEN { metal2 diffusion }
}
HEADER {

AREA a2 { LAYER = metal2; }
AREA a0 { LAYER = poly; }

}
EQUATION { a2 / a0 }

}
}

9.13.3 All-layer antenna rules

Antenna rules can also be checked globally for all layers. In that case, theSIZE model con-
tains area or perimeter of all layers as additional arguments.

Example:

ANTENNA global_m2_m1 {
LIMIT { SIZE { MAX = 2000; } }
SIZE {

CONNECTIVITY {
CONNECT_RULE = must_short;
BETWEEN { metal2 metal1 poly }

}
CONNECTIVITY {

CONNECT_RULE = cannot_short;
BETWEEN { metal2 diffusion }

}
HEADER {

254 Advanced Library Format (ALF) Reference Manual Version 2.0

Physical Modeling ANTENNA statement

AREA a2 { LAYER = metal1; }
AREA a1 { LAYER = metal1; }
AREA a0 { LAYER = poly; }

}
EQUATION { (a2 + a1) / a0 }

}
}

9.13.4 Cumulative antenna rules

Antenna rules can also be checked by accumulating the individual effect. In that case, the
SIZE model can be represented as a nested arithmetic model, each of which contain the model
of the individual effect.

Example:

ANTENNA accumulate_m2_m1 {
LIMIT { SIZE { MAX = 3000; } }
SIZE {

HEADER {
SIZE ratio1 {

CONNECTIVITY {
CONNECT_RULE = must_short;
BETWEEN { metal1 poly }

}
CONNECTIVITY {

CONNECT_RULE = cannot_short;
BETWEEN { metal1 diffusion }

}
HEADER {

AREA a1 { LAYER = metal1; }
AREA a0 { LAYER = poly; }

}
EQUATION { a1 / a0 }

}
SIZE ratio2 {

CONNECTIVITY {
CONNECT_RULE = must_short;
BETWEEN { metal2 poly }

}
CONNECTIVITY {

CONNECT_RULE = cannot_short;
BETWEEN { metal2 diffusion }

}
HEADER {

AREA a2 { LAYER = metal2; }
AREA a0 { LAYER = poly; }

Version 2.0 Advanced Library Format (ALF) Reference Manual 255

ANTENNA statement Physical Modeling

}
EQUATION { a2 / a0 }

}
}
EQUATION { ratio1 + ratio2 }

}
}

Note the argumentsa0 in ratio1 andratio2 can are not the same. Inratio1 , a0 represents
the area of poly silicon connected tometal1 in a net. Inratio2 , a0 represents the area of poly
silicon connected tometal2 in a net, where the connection can be established through more
than one subnet inmetal1 .

9.13.5 Illustration

Consider the structure shown in Figure 9-7.

Figure 9-7: Metal-poly illustration

Checking this structure against the rules in the examples yields the following results:

individual_m1:
1000 > A5 / (A1+A2)
1000 > A6 / A3
1000 > A7 / A4

individual_m2:
1000 > (A8+A9) / (A1+A2+A3+A4)

global_m2_m1:
2000 > (A8+A9+A5+A6+A7) / (A1+A2+A3+A4)

accumulate_m2_m1:
3000 > (A8+A9) / (A1+A2+A3+A4) + A5 / (A1+A2)
3000 > (A8+A9) / (A1+A2+A3+A4) + A6 / A3
3000 > (A8+A9) / (A1+A2+A3+A4) + A7 / A4

Poly

Metal1

Metal2

A2A1

A5

A8 A9

A6 A7

A3 A4

256 Advanced Library Format (ALF) Reference Manual Version 2.0

Physical Modeling ARRAY Statement

9.14 ARRAY Statement

This section defines theARRAY statement and its use.

9.14.1 Definition

TheARRAY statement shall be defined as follows:

array ::=

ARRAY identifier {
all_purpose_items
geometric_transformations

}

Thegeometric_transformations define the locations of the starting points within the array
and the number of repetitions of the components of the array. Details are defined in the next
section.

9.14.2 PURPOSE annotation

Each array shall have aPURPOSE assignment.

array_purpose_ assignment ::=

PURPOSE = array_purpose_ identifier ;

array_purpose_ identifier ::=

floorplan
| placement
| global
| routing

An array with purposefloorplan or placement shall have a reference to aSITE and a
shift_ annotation_container , rotate_ annotation , and eventually af lip_ annotation

to define the location and orientation of theSITE in the context of the array.

An array with purposerouting shall have a reference to one or more routingLAYERs and a
shift_ annotation_container to define the location of the starting point.

An array with purposeglobal shall have ashift_ annotation_container to define the
location of the starting point.

Version 2.0 Advanced Library Format (ALF) Reference Manual 257

ARRAY Statement Physical Modeling

9.14.3 Examples

Example 1:

ARRAY grid_for_my_site {
PURPOSE = placement;
SITE = my_site;
SHIFT { HORIZONTAL = 50; VERTICAL = 50; }
REPEAT = 7 {

SHIFT { HORIZONTAL = 100; }
REPEAT = 5 {

SHIFT { VERTICAL = 5; }
}

}
}

Example 2:

my_site

he
ig

ht
=

10
0 width=100

1

2

3

4

5

2 3 4 5 6 7

horizontal route

vertical route

258 Advanced Library Format (ALF) Reference Manual Version 2.0

Physical Modeling CONNECTIVITY statement

ARRAY grid_for_detailed_routing {
PURPOSE = routing;
LAYER { metal1 metal2 metal3 }
SHIFT { HORIZONTAL = 100; VERTICAL = 50; }
REPEAT = 7 {

SHIFT { VERTICAL = 100; }
REPEAT = 8 {

SHIFT { HORIZONTAL = 100; }
}

}
}

Example 3:

ARRAY grid_for_global_routing {
PURPOSE = global;
SHIFT { HORIZONTAL = 100; VERTICAL = 100; }
REPEAT = 3 {

SHIFT { VERTICAL = 150; }
REPEAT = 4 {

SHIFT { HORIZONTAL = 100; }
}

}
}

9.15 CONNECTIVITY statement

This section defines theCONNECTIVITY statement and its use.

9.15.1 Definition

A CONNECTIVITY statement shall have the following form:

connectivity ::=

CONNECTIVITY [identifier] {
connect_rule_ annotation
between_ multi_value_assignment

}

Version 2.0 Advanced Library Format (ALF) Reference Manual 259

CONNECTIVITY statement Physical Modeling

| CONNECTIVITY [identifier] {
connect_rule_ annotation
table_based_ model

}

9.15.2 CONNECT_RULE annotation

Theconnect_rule annotation can be only inside aCONNECTIVITY object. It specifies the
connectivity requirement.

CONNECT_RULE = string ;

which can take the values shown in Table 9-17.

It is not necessary to specify more than one rule between a given set of objects. If one rule is
specified to beTrue, the logical value of the other rules can be implied shown in Table 9-18.

9.15.3 CONNECTIVITY modeled with BETWEEN statement

TheBETWEEN statement specifies the objects for which the connectivity applies.

between_ multi_value_assignment ::=

BETWEEN { identifiers }

If the BETWEEN statement contains only one identifier, than theCONNECTIVITY shall apply
between multiple instances of the same object.

Table 9-17 : CONNECT_RULE annotation

Annotation string Description

must_short electrical connection required

can_short electrical connection allowed

cannot_short electrical connection disallowed

Table 9-18 : Implications between connect rules

must_short cannot_short can_short

False False True

False True False

True False N/A

260 Advanced Library Format (ALF) Reference Manual Version 2.0

Physical Modeling CONNECTIVITY statement

Example:

CLASS analog_power;
CLASS analog_ground;
CLASS digital_power;
CLASS digital_ground;
CONNECTIVITY Aground { // connect all members of CLASS analog_ground

CONNECT_RULE = must_short;
BETWEEN { analog_ground }

}
CONNECTIVITY Dground { // connect all members of CLASS digital_ground

CONNECT_RULE = must_short;
BETWEEN { digital_ground }

}
CONNECTIVITY Apower { // connect all members of CLASS analog_power

CONNECT_RULE = must_short;
BETWEEN { analog_power }

}
CONNECTIVITY Dpower { // connect all members of CLASS digital_power

CONNECT_RULE = must_short;
BETWEEN { digital_power }

}
CONNECTIVITY Aground2Dground {

CONNECT_RULE = must_short;
BETWEEN { analog_ground digital_ground }

}
CONNECTIVITY Apower2Dpower {

CONNECT_RULE = can_short;
BETWEEN { analog_power digital_power }

}
CONNECTIVITY Apower2Aground {

CONNECT_RULE = cannot_short;
BETWEEN { analog_power analog_ground }

}
CONNECTIVITY Apower2Dground {

CONNECT_RULE = cannot_short;
BETWEEN { analog_power digital_ground }

}
CONNECTIVITY Dpower2Aground {

CONNECT_RULE = cannot_short;
BETWEEN { digital_power analog_ground }

}
CONNECTIVITY Dpower2Dground {

CONNECT_RULE = cannot_short;
BETWEEN { digital_power digital_ground }

}

9.15.4 CONNECTIVITY modeled as lookup TABLE

Connectivity can also be described as a lookup table model. This description is usually more
compact than the description using theBETWEEN statements.

Version 2.0 Advanced Library Format (ALF) Reference Manual 261

CONNECTIVITY statement Physical Modeling

The connectivity model can have the arguments shown in Table 9-19 in theHEADER.

Each argument shall contain aTABLE.

The connectivity model specifies the allowed and disallowed connections amongst drivers or
receivers in one-dimensional tables or between drivers and receivers in two-dimensional
tables.The boolean literals in the table refer to theCONNECT_RULE as shown in Table 9-20.

Example:

CLASS analog_power;
CLASS analog_ground;
CLASS digital_power;
CLASS digital_ground;
CONNECTIVITY all_must_short {

CONNECT_RULE = must_short;
HEADER {

RECEIVER r1 {
TABLE {analog_ground analog_power digital_ground digital_power}

}
RECEIVER r2 {

TABLE {analog_ground analog_power digital_ground digital_power}
}

}
TABLE {

1 0 1 0
0 1 0 0
1 0 1 0
0 0 0 1

}
/*
The following table would apply, if the CONNECT_RULE was "cannot_short":

TABLE {
0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

}
The following table would apply, if the CONNECT_RULE was "can_short":

Table 9-19 : Arguments for connectivity

Argument Value type Description

DRIVER string argument of connectivity function

RECEIVER string argument of connectivity function

Table 9-20 : Boolean literals in non-interpolateable tables

Boolean literal Description

1 CONNECT_RULE is True

0 CONNECT_RULE is False

? CONNECT_RULE does not apply

262 Advanced Library Format (ALF) Reference Manual Version 2.0

Physical Modeling Physical annotations for CELL

TABLE {
? 0 ? 0
0 ? 0 ?
? 0 ? 0
0 ? 0 ?

}
*/
}

9.16 Physical annotations for CELL

This section defines the physical annotations for aCELL.

9.16.1 PLACEMENT_TYPE annotation

A CELL can contain the followingPLACEMENT_TYPE statement:

placement_type_ assignment ::=

PLACEMENT_TYPE =placement_type_ identifier ;

placement_type_ identifier ::=

pad
| core
| ring
| block
| connector

The identifiers have the following definitions:

• pad: I/O pad, to be placed in the I/O rows

• core: regular macro, to be placed in the core rows

• block: hierarchical block with regular power structure

• ring: macro with built-in power structure

• connector: macro at the end of core rows connecting with power or ground

9.16.2 Reference of a SITE by a CELL

A CELL can point to one or more legal placementSITE s.

Example:

CELL my_cell {
SITE { my_site /* fill in other sites, if applicable */ }
/* fill in contents of cell definition */

}

Version 2.0 Advanced Library Format (ALF) Reference Manual 263

Physical annotations for PIN Physical Modeling

9.17 Physical annotations for PIN

This section defines the physical annotations for aPIN .

9.17.1 CONNECT_CLASS annotation

CONNECT_CLASS { class_ identifiers }

annotates a declared class object for connectivity determination.

Connectivity rules involving those classes shall apply for the pin.

9.17.2 SIDE annotation

SIDE = string ;

which can take the values shown in Table 9-21.

9.17.3 ROW and COLUMN annotation

The following annotation shall be used for a pin in order to indicate the location of the pin
within a placement row or column:

row_ assignment ::=

ROW = unsigned ;

column_ assignment ::=

COLUMN = unsigned ;

whererow_ assignment applies for pins withSIDE = right | left and
column_ assignment applies for pins withSIDE = top | bottom .

For bus pins,row_ assignment andcolumn_ assignment shall have the form of
multi_value_assignment s.

row_ multi_value_assignment ::=

ROW { unsigned { unsigned } }

column_ multi_value_assignment ::=

COLUMN { unsigned { unsigned } }

Table 9-21 : SIDE annotations for a PIN object

Annotation string Description

left pin is on the left side

right pin is on the right side

top pin is at the top

bottom pin is at the bottom

264 Advanced Library Format (ALF) Reference Manual Version 2.0

Physical Modeling Physical annotations for arithmetic models

9.17.4 ROUTING_TYPE annotation

A PIN can contain the followingROUTING_TYPE statement:

routing_type_ assignment ::=

ROUTING_TYPE = routing_type_ identifier ;

routing_type_ identifier ::=

regular
| abutment
| ring
| feedthrough

The identifiers have the following definitions:

• regular: connection by regular routing

• abutment: connection by abutment, no routing

• ring: pin forms a ring around the block with connection allowed to any point of the ring

• feedthrough: both ends of the pin align and can be used for connection

9.18 Physical annotations for arithmetic models

This section defines the physical annotations for arithmetic models.

9.18.1 BETWEEN statement within DISTANCE, LENGTH

TheBETWEEN statement withinDISTANCE or LENGTH (see Section 9.2 and example in Section
9.11.5) shall identify the objects for which the measurement applies.

between_ multi_value_assignment ::=

BETWEEN { identifiers }

If the BETWEEN statement contains only one identifier, than theDISTANCE or LENGTH, respec-
tively, shall apply between multiple instances of the same object.

Example:

DISTANCE = 4 { BETWEEN { object1 object2 } }
LENGTH = 2 { BETWEEN { object1 object2 } }

object1 object2
LENGTH=2

DISTANCE=4

Version 2.0 Advanced Library Format (ALF) Reference Manual 265

Physical annotations for arithmetic models Physical Modeling

9.18.2 MEASUREMENT annotation for DISTANCE

The following statement shall specify how the distance between objects is measured.

distance_measurement_ assignment ::=

MEASUREMENT =distance_measurement_ identifier ;

distance_measurement_ identifier ::=

straight
| horizontal
| vertical
| manhattan

The default isstraight .

The mathematical definitions for distance measurements between two points with differential
coordinates∆x and∆y are:

• straight distance = (∆x2 + ∆y2)1/2

• horizontal distance =∆x

• vertical distance =∆y

• manhattan distance =∆x + ∆y

9.18.3 REFERENCE annotation for DISTANCE

Thereference_ annotation shall specify the reference for distance measurements between
objects, as shown in Figure 9-8.

reference_ annotation ::=

REFERENCE =reference_ identifier ;

reference_ identifier ::=

center
| origin
| edge

The default shall beedge . The valuecenter is only applicable for objects with
EXTENSION, whereas the valueedge is applicable for any physical object. The value
origin is only applicable for objects with specified coordinates.

266 Advanced Library Format (ALF) Reference Manual Version 2.0

Physical Modeling Physical annotations for arithmetic models

Figure 9-8: Illustration of REFERENCE for DISTANCE

9.18.4 Reference to ANTENNA

In hierarchical design, aPIN with physicalPORTs can be abstracted. Therefore, an arithmetic
model for SIZE, AREA, PERIMETER etc. relevant for certain antenna rules can be precalcu-
lated. The following statement within the arithmetic model enables references to the set of
antenna rules for which the arithmetic model applies.

antenna_reference_ multi_value_assignment ::=

ANTENNA { antenna_ identifiers }

Example:

CELL cell1 {
PIN pin1 {

AREA poly_area = 1.5 {
LAYER = poly;
ANTENNA { individual_m1 individual_via1 }

}
AREA m1_area = 1.0 {

LAYER = metal1;
ANTENNA { individual_m1 }

}
AREA via1_area = 0.5 {

LAYER = via1;
ANTENNA { individual_via1 }

}
}

}

The areapoly_area is used in the rulesindividual_m1 andindividual_via1 .
The aream1_area is used in the ruleindividual_m1 only.
The areavia1_area is used in the ruleindividual_via1 only.

The case with diffusion is illustrated in the following example:

DISTANCE

REFERENCE = edge

object 1 object 2

DISTANCE

REFERENCE = center

object 1 object 2

Version 2.0 Advanced Library Format (ALF) Reference Manual 267

Physical annotations for arithmetic models Physical Modeling

CELL my_diode {
CELLTYPE = special; ATTRIBUTE { DIODE }
PIN my_diode_pin {

AREA = 3.75 {
LAYER = diffusion;
ANTENNA { rule1_for_diffusion rule2_for_diffusion }

}
}

}

9.18.5 Reference to PATTERN

Reference to a PATTERN shall be legal within arithmetic models, if the pattern and the model
are within the scope of the same parent object.

pattern_reference_ assignment ::=

PATTERN = pattern_ identifier ;

The pattern reference shall be applicable for LENGTH, WIDTH, HEIGHT, SIZE, AREA,
THICKNESS, PERIMETER, EXTENSION (see Section 9.2 and example in Section 9.11.2).

268 Advanced Library Format (ALF) Reference Manual Version 2.0

Physical Modeling Physical annotations for arithmetic models

Version 2.0 Advanced Library Format (ALF) Reference Manual 269

Section 10

Lexical Rules

This section discusses the lexical rules.

10.1 Cross-reference of lexical tokens

Table 10-1 cross-references the lexical tokens used in ALF.

10.2 Characters

This section defines the use of characters in ALF.

10.2.1 Character set

Each graphic character corresponds to a unique code of the ISO eight-bit coded character set
[ISO 8859-1 : 1987(E)] and is represented (visually) by a graphical symbol.

Table 10-1 : Cross-reference of lexical tokens

Lexical token Section Lexical token Section

alphabetic_bit_literal 10.3.4 integer 10.3.3

any_character 10.2.3 nonescaped_identifier 10.3.8

based_literal 10.3.5 non_negative_number 10.3.3

binary_base 10.3.5 nonreserved_character 10.2.3

binary_digit 10.3.5 number 10.3.3

bit_edge_literal 10.3.6 numeric_bit_literal 10.3.4

bit_literal 10.3.4 octal_base 10.3.5

block_comment 10.3.2 octal_digit 10.3.5

comment 10.3.2 placeholder_identifier 10.3.8

decimal_base 10.3.5 quoted_string 10.3.7

delimiter 10.3.1 reserved_character 10.2.3

digit 10.2.3 sign 10.3.3

dont_care_literal 10.3.4 single_line_comment 10.3.2

edge_literal 10.3.6 symbolic_edge_literal 10.3.6

escape_character 10.2.3 unsigned 10.3.3

escaped_identifier 10.3.8 whitespace 10.2.2

hex_base 10.3.5 word_edge_literal 10.3.6

hex_digit 10.3.5

270 Advanced Library Format (ALF) Reference Manual Version 2.0

Lexical Rules Characters

10.2.2 Whitespace characters

The characters shown in Figure 10-1shall be consideredwhitespace characters:

Character ASCII code (hex)
space 20
vertical tab 0B
horizontal tab 09
line feed (new line) 0A
carriage return 0D
form feed 0C

Figure 10-1: List of whitespace characters

Comments are also considered white space (see Section 10.3.2).

A whitespace character shall be ignored except when it separates other lexical tokens or when
it appears in a quoted string.

10.2.3 Reserved and non-reserved characters

The ASCII character set shall be divided in three categories: whitespace (see Section 10.2.2),
reserved characters, and non-reserved characters. The reserved characters are symbols that
make up punctuation marks and operators. The non-reserved characters shall be used for
creating identifiers and numbers. Both are shown in Figure 10-2.

reserved_character ::=

& | | | ^ | ~ | + | - | * | / | % | ? | ! | = | < | > | :
| (|) | [|] | { | } | @ | ; | , | . | ” | ’

nonreserved_character ::=

 letter | digit | _ | $ | #

letter ::=

a | b | c | d | e | f | g | h | i | j | k | l | m
| n | o | p | q | r | s | t | u | v | w | x | y | z
| A | B | C | D | E | F | G | H | I | J | K | L | M
| N | O | P | Q | R | S | T | U | V | W | X | Y | Z

digit ::=

0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

escape_character ::=
\

any_character ::=
 reserved_character
| nonreserved_character

Version 2.0 Advanced Library Format (ALF) Reference Manual 271

Lexical tokens Lexical Rules

| escape_character
| whitespace

Figure 10-2: Reserved and non-reserved characters

ALF treats uppercase and lowercase characters as the same characters. In other words, ALF is
acase-insensitive language.

Notes:

The characters$ and# can be reserved in other languages, such as VERILOG. Therefore,
if translation from ALF into VERILOG is required, these characters shall not be used for
items which need to be translated, e.g., the names of cells and pins.
Other languages can be case-sensitive, such as VERILOG. Therefore, if translation from
ALF into VERILOG is required, the case of the name used in the declaration of the object,
e.g., the name of a cell or a pin, shall always be preserved as a reference. For example, if
the name of a cell is declared asMyCell , reference to the cell can be made asMYCELL or
mycell . However, it shall always be translated into VERILOG asMyCell .

10.3 Lexical tokens

The ALF source text files shall be a stream of lexical tokens. Each lexical token is either a
delimiter, acomment, abit literal, abased literal, anedge literal, anumber, aquoted stringor
an identifier.

10.3.1 Delimiters

A delimiter is either a reserved character or one of the following compound operators, each
composed of two or three adjacent reserved characters, as shown in Figure 10-3.

delimiter ::=
 reserved_character

| && | ~& | || | ~| | ~^ | == | != | ** | >= | <=
| ?! | ?~ | ?- | ?? | -> | <-> | &> | <&> | >> | <<

Figure 10-3: Tokens that make up delimiters

Each special character in a single character delimiter list shall be a single delimiter unless this
character is used as a character in a compound operator or as a character in a quoted string.

10.3.2 Comments

ALF has two forms to introduce comments, as shown in Figure 10-4.

A single-line comment shall start with the two characters // and end with a new line.

A block commentshall start with/* and end with*/ . Comments shall not be nested. The single-
line comment token// shall not have any special meaning in a block comment.

272 Advanced Library Format (ALF) Reference Manual Version 2.0

Lexical Rules Lexical tokens

comment ::=
 single_line_comment
| block_comment

Figure 10-4: Single-line and block comments

10.3.3 Numbers

Constant numbers can be specified as integer or real, as shown in Figure 10-5.

sign ::= + | -

unsigned ::= digit { _ | digit }

integer ::= [sign] unsigned

non_negative_number ::=

 unsigned [. unsigned]

| unsigned [. unsigned] E [sign] unsigned

number ::=
 [sign] non_negative_number

Figure 10-5: Integer and real numbers

The integer is a decimal integer constant.

10.3.4 Bit literals

A bit literal shall represent a single bit constant, as shown in Table 10-2.

bit_literal ::=
 numeric_bit_literal
| alphabetic_bit_literal
| dont_care_literal
| random_literal

numeric_bit_literal ::= 0 | 1

alphabetic_bit_literal ::=
X | Z | L | H | U | W

| x | z | l | h | u | w

dont_care_literal ::= ?

random_literal ::= *

Version 2.0 Advanced Library Format (ALF) Reference Manual 273

Lexical tokens Lexical Rules

10.3.5 Based literals

A based literalis a constant expressed in a form that specifies the base explicitly. The base can
be specified inbinary, octal, decimal or hexadecimal format, as shown in Figure 10-6.

based_literal ::=

 binary_base { _ | binary_digit }

| octal_base { _ | octal_digit }

| decimal_base { _ | digit }

| hex_base { _ | hex_digit }

binary_base ::=

'B | 'b

octal_base ::=

'O | 'o

decimal_base ::=

'D | 'd

hex_base ::=

'H | 'h

binary_digit ::=
bit_literal

octal_digit ::=

binary_digit | 2 | 3 | 4 | 5 | 6 | 7

Table 10-2 : Single bit constants

Literal Description

0 value is logic zero

1 value is logic one

X or x value is unknown

L or l value is logic zero with weak drive strength

H or h value is logic one with weak drive strength

W or w value is unknown with weak drive strength

Z or z value is high-impedance

U or u value is uninitialized

? value is any of the above, yet stable

* value may randomly change

274 Advanced Library Format (ALF) Reference Manual Version 2.0

Lexical Rules Lexical tokens

hex_digit ::=

octal_digit | 8 | 9 | A | B | C | D | E | F | a | b | c | d | e | f

Figure 10-6: Based constants

The underscore(_) shall be legal anywhere in the number, except as the first character and this
character is ignored. This feature can be used to break up long numbers for readability
purposes. No white space shall be allowed between base and digit token in a based literal.

When an alphabetic bit literal is used as an octal digit, it shall represent three repeated bits with
the same literal. When an alphabetic bit literal is used as a hex digit, it shall represent four
repeated bits with the same literal.

For example,

'o2xw0u is same as 'b010_xxx_www_000_uuu

'hLux is same as 'bLLLL_uuuu_xxxx

10.3.6 Edge literals

An edge literal shall be constructed by two bit literals or two based literals, as shown in
Figure 10-7. It shall describe the transition of a signal from one discrete value to another. No
white space shall be allowed within (between) the two literals. An underscore can be used.

edge_literal ::=
bit_edge_literal

| word_edge_literal
| symbolic_edge_literal

bit_edge_literal ::=
 bit_literal bit_literal

word_edge_literal ::=
 based_literal based_literal

symbolic_edge_literal::=
 ?? | ?~ | ?! | ?-

Figure 10-7: Edge literals

10.3.7 Quoted strings

The quoted string shall be a sequence of zero or more characters enclosed between two
quotation marks (") and contained on a single line, as shown in Figure 10-8. Characterescape
codes are used inside the string literal to represent some common special characters.

Version 2.0 Advanced Library Format (ALF) Reference Manual 275

Lexical tokens Lexical Rules

quoted_string ::=

 " { any_character } "

Figure 10-8: A quoted string

The characters which can follow the backslash (\) and their meanings are listed in Table 10-3.

A non-quoted string can not contain any reserved character. Therefore, use of a quoted string
is necessary when referencing file names (which typically contain a dot (.) character).

10.3.8 Identifiers

Identifiers are used in ALF as names of objects, reserved words, and context-sensitive
keywords. An identifier shall be any sequence of letters, digits, underscore (_), and dollar sign
($) character. If an identifier is constructed from one or more non-reserved characters, it is
callednon-escaped identifier. A digit shall not be allowed as first character of a non-escaped
identifier.

nonescaped_identifier ::=
nonreserved_character { nonreserved_character }

A sequence of characters starting with anescape_character is called anescaped identifier.
The escaped identifier legalizes the use of adigit as first character of an identifier and the use
of reserved_character anywhere in an identifier. Or it can be used to prevent the
misinterpretation of an identifier as a keyword. The escape character shall be followed by at
least one non-white space character to form an escaped identifier. The escaped identifier shall
contain all characters up to first white space character.

escaped_identifier ::=
escape_character escaped_characters

escaped_characters ::=
escaped_character { escaped_character }

Table 10-3 : Special characters in quoted strings

Symbol ASCII Code
(octal)

Meaning

\g 007 alert/bell

\h 010 backspace

\t 011 horizontal tab

\n 012 new line

\v 013 vertical tab

\f 014 form feed

\r 015 carriage return

\" 042 double quotation mark

\\ 134 backslash

\ddd 3-digit octal value of ASCII character

276 Advanced Library Format (ALF) Reference Manual Version 2.0

Lexical Rules Keywords

escaped_character ::=
 nonreserved_character
| reserved_character
| escape_character

A placeholder identifier shall be a non-escaped identifier between the less-than character (<)
and the greater-than character (>). No whitespace or delimiters are allowed between the non-
escaped identifier and the placeholder characters (< and>). The placeholder identifier is used
in template objects as a formal parameter, which is replaced by the actual parameter in template
instantiation.

placeholder_identifier ::=

< nonescaped_identifier >

Identifiers are treated in a case-insensitive way. They can be used in the definition of objects
and in reference to already defined objects. A parser should preserve the case of an identifier
in the definition of an object, since a downstream application could be case-sensitive.

10.3.9 Hierarchical identifier

A hierarchical identifier shall be defined as follows:

hierarchical_identifier ::=

identifier . { identifier . } identifier

with no whitespace in-between.

The dot (.) shall take precedence over theescape_character . In order to escape the dot, the
escape_character shall be placed directly in front of it.

Examples:

\id1.id2 //Only id1 is escaped.

id1\.id2 //Only the dot is escaped.

id1.\id2 //Only id2 is escaped.

10.4 Keywords

Keywords are case-insensitive non-escaped identifiers. For clarity, this document uses
uppercase letters for keywords and lowercase letters elsewhere, unless otherwise mentioned.

Keywords are reserved for use as object identifiers, not for general symbols. To use an
identifier that conflicts with the list of keywords, use the escape character, e.g., to declare a pin
that is calledPIN , use the form:

PIN \PIN {..}

A keyword can either be areserved keyword (also calledhard keyword) or acontext-sensitive
keyword (also calledsoft keyword). The hard keywords have fixed meaning and shall be
understood by any parser of ALF. The soft keywords might be understood only by specific

Version 2.0 Advanced Library Format (ALF) Reference Manual 277

Rules against parser ambiguity Lexical Rules

applications. For example, a parser for a timing analysis application can ignore objects that
contain power related information described using soft keywords.

10.4.1 Keywords for objects

The keywords shown in Figure 10-9 are used to identify object types:

ALIAS ATTRIBUTE BEHAVIOR CELL
CLASS CONSTANT EQUATION FUNCTION
GROUP HEADER INCLUDE LIBRARY
PIN PRIMITIVE PROPERTY STATETABLE
SUBLIBRARY TABLE TEMPLATE VECTOR
WIRE

Figure 10-9: Keywords for objects

10.4.2 Keywords for operators

The keywords shown in Figure 10-10 are used for built-in arithmetic functions:

ABS absolute value
EXP natural exponential function
LOG natural logarithm
MIN minimum
MAX maximum

Figure 10-10: Keywords for built-in arithmetic functions

10.4.3 Context-sensitive keywords

In order to address the need of extensible modeling, ALF provides a predefined set ofpublic
context-sensitive keywords. Additional private context-sensitive keywords can be introduced
as long as they do not have the same name as any existing public keyword.

The public context-sensitive keywords and their semantic meaning are defined in Section 5.6.
This set can be extended to include private context-sensitive keywords.

10.5 Rules against parser ambiguity

The following rules shall apply when resolving ambiguity in parsing ALF source:

• In a context where bothbit_literal andidentifier are legal syntax items,
nonescaped_identifier shall take priority overalphabetic_bit_literal .

• In a context where bothbit_literal andnumber are legal syntax items,number shall
take priority overnumeric_bit_literal .

• In a context where bothedge_literal andidentifier are legal syntax items,
identifier shall take priority overbit_edge_literal .

278 Advanced Library Format (ALF) Reference Manual Version 2.0

Lexical Rules Rules against parser ambiguity

• In a context where bothedge_literal andnumber are legal syntax items,number shall
take priority overbit_edge_literal .

In such contexts,based_literal shall be used instead ofbit_literal .

Version 2.0 Advanced Library Format (ALF) Reference Manual 279

Section 11

Syntax Rules

This section discusses the syntactical rules. The formal syntax of ALF language is described
using Backus-Naur Form (BNF).

11.1 Cross-reference of BNF items

Table 11-1 shows a cross-reference for all BNF items in ALF. A BNF item with a singular
name is defined in the same section as the BNF item with the plural name. A plural item name
implies one or more items with the corresponding singular name.

Table 11-1 : Cross-reference of BNF items with short semantic explanation

BNF item Section Short semantic explanation

alias 11.8 statement defining an alias

all_purpose_item(s) 11.7 item(s) that can appear inside any hierarchical object

annotation 11.7 parameter-value assignment inside an object, may be
nested

annotation_container 11.7 unnamed object containing annotations

antenna 11.28 statement describing a set of process antenna rules

antenna_item(s) 11.28 statement(s) inside an antenna statement

arithmetic_assignment 11.2 statement assigning an arithmetic expression to a variable

arithmetic_binary 11.6 arithmetic operator requiring two operands

arithmetic_expression 11.3 expression involving arithmetic operations

arithmetic_function_operator 11.6 arithmetic operator prefixing a list of arguments

arithmetic_model(s) 11.16 statement(s) for description of characterization data
using single numbers, tables or equations

arithmetic_model_item(s) 11.16 statement(s) inside arithmetic model statement

arithmetic_model_container 11.16 unnamed object containing arithmetic models

arithmetic_submodel(s) 11.16 statement(s) inside an arithmetic model statement for cat-
egorizing the characterization data

arithmetic_submodel_item(s) 11.16 statement(s) inside arithmetic submodel statement

arithmetic_unary 11.6 arithmetic operator requiring one operand

array 11.29 statement describing a regular floorplan or placement or
routing definition in gate technology

artwork 11.20 statement making reference between the cell in the
library and the corresponding description in the layout
(GDS2) database

280 Advanced Library Format (ALF) Reference Manual Version 2.0

Syntax Rules Cross-reference of BNF items

assignment 11.2 terminated statement for single value assignment to an
object

assignment_base 11.2 unterminated statement for single value assignment to an
object

attribute 11.8 statement associating attributes to an object

attribute_item(s) 11.8 item(s) inside an attribute statement

behavior 11.17 statement describing the logic function of a digital cir-
cuit in a behavioral language

behavior_item(s) 11.17 item(s) inside a behavior statement

blockage 11.24 statement describing routing obstructions

boolean_and 11.6 boolean AND operator

boolean_arithmetic 11.6 operator for boolean arithmetic

boolean_binary 11.6 boolean operator requiring two operands

boolean_case_compare 11.6 binary boolean operator for magnitude comparison

boolean_cond 11.6 boolean postfix operator evaluating the preceding bool-
ean expression (if-clause)

boolean_else 11.6 boolean infix operator separating if-and else-clauses

boolean_expression 11.3 expression involving boolean operations

boolean_logic_compare 11.6 binary boolean operator for logic comparison

boolean_or 11.6 boolean OR operator

boolean_unary 11.6 boolean operator requiring one operand

cell(s) 11.9 statement(s) describing the entire model of a digital or
analog circuit

cell_item(s) 11.9 item(s) inside a cell statement

cell_instantiation 11.4 statement inside a cell, describing a reference to another
cell with pin-to-pin correspondence

class 11.8 statement describing a class for the use of reference and
inheritance by other objects

class_item(s) 11.7 item(s) inside a class statement, which will be inherited
by any object referring to the class

connectivity 11.30 statement describing a set of electrical connectivity rules

constant 11.8 statement defining a numeric constant

context_sensitive_keyword 11.5 identifier of an object for which the semantic meaning is
established by its context

coordinates 11.19 statement containing numbers representing the coordi-
nates of reference points within a physical object

dynamic_instantiation_item(s) 11.4 item(s) inside a dynamic instantiation of a template

edge_literal(s) 11.5 symbol(s) describing a transition between two states

equation 11.16 statement inside arithmetic model containing an arith-
metic expression for the calculation of characterization
data

Table 11-1 : Cross-reference of BNF items with short semantic explanation, continued

BNF item Section Short semantic explanation

Version 2.0 Advanced Library Format (ALF) Reference Manual 281

Cross-reference of BNF items Syntax Rules

from 11.16 statement inside arithmetic model defining start point of
timing measurement

function 11.17 statement describing the logic function of a circuit in a
canonical way, using behavior and/or statetable statement

generic_object 11.7 statement with the sole purpose of being used by other
objects

geometric_model(s) 11.19 statement(s) describing the form of a physical object

geometric_transformation(s) 11.19 statement(s) describing shift, rotate, flip or repetition of a
physical object

group 11.8 statement allowing expansion of one object to multiple
objects

header 11.16 statement inside arithmetic model containing a list of
parameters of the arithmetic model

identifier(s) 11.5 literal(s) defining a keyword or a name or a string value

illegal_statement 11.14 statement inside a vector defining an illegal circuit opera-
tion

include 11.8 statement defining the inclusion of a file

index 11.5 symbol defining an integer or a range of integers for the
use as indices

keyword_declaration 11.8 statement declaring a new keyword

layer 11.21 statement describing the stackup information in a tech-
nology library

layer_item(s) 11.21 statement(s) inside a layer statement

library (libraries) 11.10 statement(s) describing the entire contents of a library

library_item(s) 11.10 item(s) inside a library statement

library_specific_object 11.7 statement describing an object which is part of the
library. Multiple statements describing objects of the
same type may appear within a given context.

library_specific_singular_object 11.7 statement describing an object which is part of the
library. Only one statement describing an object of a spe-
cific type may appear within a given context.

logic_assignment(s) 11.2 statement(s) assigning a logic expression to a logic vari-
able

logic_value(s) 11.5 variable(s) or constant logic value(s)

logic_constant(s) 11.5 constant logic value(s)

logic_variable(s) 11.5 variable(s) containing a logic value

multi_value_assignment 11.2 statement for assignment of multiple values to an object

named_assignment(s) 11.2 terminated statement(s) for single value assignment to a
named object

named_assignment_base 11.2 unterminated statement for single value assignment to a
named object

Table 11-1 : Cross-reference of BNF items with short semantic explanation, continued

BNF item Section Short semantic explanation

282 Advanced Library Format (ALF) Reference Manual Version 2.0

Syntax Rules Cross-reference of BNF items

named_cell_instantiation(s) 11.4 statement(s) describing a reference to another cell with
pin-to-pin correspondence and instance name

node 11.15 statement declaring a node in a physical wireload model

non_scan_cell 11.9 statement inside a cell making reference to the cells
which can be replaced by this cell in scan design

number(s) 11.5 integer or floating point number(s)

pattern 11.22 statement describing a physical object

pin(s) 11.11 statement(s) describing a pin inside a cell

pin_group 11.11 statement defining a group of pins that can henceforth be
referenced as a bus

pin_instantiation 11.4 statement inside a bus pin containing information perti-
nent to a subset of pins within that bus

pin_item(s) 11.11 item(s) inside a pin statement

pin_assignment(s) 11.2 statement(s) defining a correspondence between two pins
or between a pin and a constant logic value

port 11.25 statement describing an electrical connection point
within a pin

primitive(s) 11.12 statement(s) describing a technology-independent cell

primitive_instantiation 11.4 statement inside a behavior statement for logic function
description by reference to a primitive

primitive_item(s) 11.12 item(s) inside a primitive statement

property 11.8 statement describing private properties without standard-
ized semantics

property_item(s) 11.8 item(s) inside a property statement

range 11.7 definition of a contiguous range of integer numbers

repeat 11.19 statement defining how to duplicate a physical object
several times

rule(s) 11.26 statement describing a set of design or extraction rules

rule_item(s) 11.26 statement(s) inside a rule statement

sequential_else_if 11.6 operator indicating a lower-priority logic state or event
sequence

sequential_if 11.6 operator indicating a top-priority logic state or event
sequence

sequential_logic_statement 11.2 statement inside a behavior statement for logic function
description with storage elements

site 11.27 statement describing a legal placement site

source_text 11.7 contents of a self-sufficient file in ALF

statetable(s) 11.17 statement(s) describing the logic function of a digital cir-
cuit in table format

statetable_body 11.17 list of values inside a statetable

statetable_header 11.17 list of variables inside a statetable

Table 11-1 : Cross-reference of BNF items with short semantic explanation, continued

BNF item Section Short semantic explanation

Version 2.0 Advanced Library Format (ALF) Reference Manual 283

Cross-reference of BNF items Syntax Rules

statetable_value(s) 11.5 literal(s) inside a statetable

string 11.5 identifier consisting of a restricted set of characters or
quoted string containing arbitrary characters

structure 11.17 statement(s) describing the structure of a cell in form of a
netlist

sublibrary (sublibraries) 11.13 statement(s) describing the contents of a sub-library
inside a library

table 11.16 statement inside arithmetic model containing a list of
characterization data

table_item(s) 11.16 item(s) inside a table statement

template 11.8 statement defining an object or a set of objects using
placeholders

template_instantiation 11.4 statement referring to a template and filling the place-
holders

template_item(s) 11.8 statement(s) inside a template statement

test 11.18 statement containing information about the test algorithm
applicable to the cell

to 11.16 statement inside arithmetic model defining end point of
timing measurement

unnamed_assignment(s) 11.2 terminated statement(s) for single value assignment to an
unnamed object

unnamed_assignment_base 11.2 unterminated statement for single value assignment to an
unnamed object

unnamed_cell_instantiation(s) 11.4 statement(s) describing a reference to another cell with
pin-to-pin correspondence without instance name

value(s) 11.5 number(s) or string(s) or logic value(s)

vector(s) 11.14 statement(s) describing event sequence and data for char-
acterization of a circuit

vector_assignment 11.14 statement assigning a vector_expression to a variable

vector_and 11.6 operator used for description of simultaneous events or
simultaneous event sequences

vector_binary 11.6 operator requiring two operands used for description of
event sequences

vector_boolean_and 11.6 operator used for description of event sequences with
condition, one operand is an expression describing a
complex event, other operand is a boolean expression

vector_boolean_cond 11.6 condition operator indicating if-clause

vector_boolean_else 11.6 condition operator separating if-and else-clauses

vector_complex_event 11.3 expression describing complex event sequences without
condition

vector_conditional_event 11.3 expression describing complex event sequences with
condition

Table 11-1 : Cross-reference of BNF items with short semantic explanation, continued

BNF item Section Short semantic explanation

284 Advanced Library Format (ALF) Reference Manual Version 2.0

Syntax Rules Assignments

11.2 Assignments

unnamed_assignment_base ::=

context_sensitive_keyword = value

unnamed_assignment ::=

unnamed_assignment_base ;

unnamed_assignments ::=
unnamed_assignment { unnamed_assignment }

named_assignment_base ::=

context_sensitive_keyword identifier = value

named_assignment ::=

named_assignment_base ;

named_assignments ::=
named_assignment { named_assignment }

vector_event_sequence 11.3 expression describing one event sequence

vector_expression 11.3 expression describing complex event sequences

vector_followed_by 11.6 operator used for description of subsequent events

vector_item(s) 11.14 item(s) inside a vector statement

vector_event 11.3 expression describing one single event or multiple simul-
taneous events

vector_or 11.6 operator used for description of alternative events or
alternative event sequences

vector_or_boolean_expression 11.3 a vector expression or a boolean expression

vector_expression 11.3 expression describing complex event sequences

vector_single_event 11.3 expression describing one single event

vector_unary 11.6 operator requiring one operand used for description of
event sequences

via 11.23 statement describing the construction of electrical con-
nections across layers

via_instantiation(s) 11.4 statement describing the correspondence between the
model and the instance of a via

via_item(s) 11.23 statement(s) inside a via statement

via_reference 11.23 statement containing via_instantiation statements

violation 11.16 statement inside arithmetic model defining consequences
of timing violation or illegal operation

wire(s) 11.15 statement(s) describing a wireload model

wire_item(s) 11.15 item(s) inside a wire statement

Table 11-1 : Cross-reference of BNF items with short semantic explanation, continued

BNF item Section Short semantic explanation

Version 2.0 Advanced Library Format (ALF) Reference Manual 285

Expressions Syntax Rules

assignment_base ::=
named_assignment_base

| unnamed_assignment_base

multi_value_assignment ::=

identifier { values }

assignment ::=
named_assignment

| unnamed_assignment
| multi_value_assignment

pin_assignment ::=

pin_ identifier [index] = pin_ identifier [index] ;
| pin_ identifier [index] = logic_constant ;
| logic_constant = pin_ identifier [index] ;

pin_assignments ::=
pin_assignment { pin_assignment }

arithmetic_assignment ::=

identifier = arithmetic_expression ;

11.3 Expressions

arithmetic_expression ::=

(arithmetic_expression)
| number
| [arithmetic_unary] identifier
| arithmetic_expression arithmetic_binary

arithmetic_expression
| arithmetic_function_operator

(arithmetic_expression { , arithmetic_expression })

| boolean_expression ? arithmetic_expression :
{ boolean_expression ? arithmetic_expression : }
arithmetic_expression

boolean_expression ::=

(boolean_expression)
| logic_constant
| logic_variable
| boolean_unary boolean_expression
| boolean_expression boolean_binary boolean_expression
| boolean_expression

boolean_cond boolean_expression boolean_else
{ boolean_expression boolean_cond boolean_else }
boolean_expression

vector_single_event ::=

(vector_single_event)
| vector_unary boolean_expression

286 Advanced Library Format (ALF) Reference Manual Version 2.0

Syntax Rules Instantiations

vector_event ::=

(vector_event)
| vector_single_event
| vector_event vector_and vector_event

vector_event_sequence ::=

vector_event_sequence)
| vector_event
| vector_event_sequence vector_followed_by vector_event_sequence

vector_complex_event ::=

(vector_complex_event)
| vector_event_sequence
| vector_complex_event vector_binary vector_complex_event

vector_conditional_event ::=
vector_expression vector_boolean_and boolean_expression

| boolean_expression vector_boolean_and vector_expression
| boolean_expression vector_boolean_cond vector_expression

vector_boolean_else
{ boolean_expression vector_boolean_cond vector_expression
vector_boolean_else } vector_expression

vector_expression ::=

(vector_expression)
| vector_complex_event
| vector_conditional_event
| vector_expression vector_binary vector_expression

vector_or_boolean_expression ::=
vector_expression

| boolean_expression

11.4 Instantiations

cell_instantiation ::=
unnamed_cell_instantiation

| named_cell_instantiation

unnamed_cell_instantiations ::=
unnamed_cell_instantiation { unnamed_cell_instantiation }

unnamed_cell_instantiation ::=

cell _identifier { logic_values }
| cell _identifier { pin_assignments }

named_cell_instantiations ::=
named_cell_instantiation { named_cell_instantiation }

Version 2.0 Advanced Library Format (ALF) Reference Manual 287

Literals Syntax Rules

named_cell_instantiation ::=

cell_ identifier instance_ identifier { logic_values }
| cell_ identifier instance_ identifier { pin_assignments }

pin_instantiation ::=

pin_ identifier [index] {
pin_items

}

primitive_instantiation ::=

primitive _identifier [identifier] { logic_values }
| primitive _identifier [identifier] { logic_assignments }
| primitive _identifier [identifier] { pin_assignments }

template_instantiation ::=

template_ identifier ;
| template_ identifier [= static] { values }
| template_ identifier [= static] { all_purpose_items }
| template_ identifier = dynamic { values }
| template_ identifier = dynamic { dynamic_instantiation_items }

dynamic_instantiation_items ::=
dynamic_instantiation_item { dynamic_instantiation_item }

dynamic_instantiation_item ::=
all_purpose_item

| arithmetic_model
| arithmetic_assignment

via_instantiations ::=
via_instantiation { via_instantiation }

via_instantiation ::=
via_ identifier { geometric_transformations }

11.5 Literals

This subsection defines literals, unless they are already defined in Section 10.3.

context_sensitive_keyword ::=
nonescaped_identifier

edge_literals ::=
edge_literal { edge_literal }

identifier ::=
nonescaped_identifier

| escaped_identifier
| placeholder_identifier

288 Advanced Library Format (ALF) Reference Manual Version 2.0

Syntax Rules Literals

identifiers ::=
identifier { identifier }

index ::=

[unsigned]
| [unsigned : unsigned]
| [identifier]
| [identifier : identifier]

logic_value ::=
logic_constant

| logic_variable

logic_values ::=
logic_value { logic_value }

logic_constant ::=
bit_literal

| based_literal

logic_constants ::=
logic_constant { logic_constant }

statetable_value ::=
logic_constant

| edge_literal

| ([!] logic_variable)

statetable_values ::=
statetable_value { statetable_value }

logic_variable ::=
pin_ identifier [index]

logic_variables ::=
logic_variable { logic_variable }

numbers ::=
number { number }

string ::=
quoted_string

| identifier

value ::=
number

| string
| logic_value

values ::=
value { value }

Version 2.0 Advanced Library Format (ALF) Reference Manual 289

Operators Syntax Rules

11.6 Operators

arithmetic_unary ::=

+ | -

arithmetic_binary ::=

+ | - | * | / | ** | %

arithmetic_function_operator ::=

abs
| exp
| log
| min
| max

boolean_unary ::=

! | ~ | & | ~& | | | ~| | ^ | ~^

boolean_and ::=

& | &&

boolean_or ::=
| | ||

boolean_logic_compare ::=

^ | ~^

boolean_case_compare ::=

!= | == | >= | <= | > | <

boolean_arithmetic ::=

+ | - | * | / | % | >> | <<

boolean_binary ::=
boolean_and

| boolean_or
| boolean_logic_compare
| boolean_case_compare
| boolean_arithmetic

boolean_cond ::=

?

boolean_else ::=

:

vector_unary ::=
edge_literal

290 Advanced Library Format (ALF) Reference Manual Version 2.0

Syntax Rules Auxiliary objects

vector_and ::=

& | &&

vector_or ::=

| | ||

vector_followed_by ::=

-> | ~>

vector_binary ::=
vector_and

| vector_or
| vector_followed_by

| <->
| &>
| <&>

vector_boolean_and ::=

& | &&

vector_boolean_cond ::=

?

vector_boolean_else ::=

:

sequential_if ::=

@

sequential_else_if ::=

:

See Section 5.1.2, Section 5.1.3, and Section 7.2.2 for the semantics of these operators.

11.7 Auxiliary objects

all_purpose_item ::=
annotation

| annotation_container
| generic_object
| template_instantiation

all_purpose_items ::=
all_purpose_item { all_purpose_item }

annotation ::=
assignment

| assignment_base { all_purpose_items }

annotation_container ::=

context_sensitive_keyword { all_purpose_items }

Version 2.0 Advanced Library Format (ALF) Reference Manual 291

Generic objects Syntax Rules

generic_object ::=
alias

| attribute
| constant
| class
| group
| include
| keyword_declaration
| property
| template

library_specific_object ::=
cell

| library
| node
| pin
| pin_group
| primitive
| sublibrary
| vector
| wire
| antenna
| array
| blockage
| connectivity
| layer
| pattern
| port
| rule
| site
| via

library_specific_singular_object ::=
function

| non_scan_cell
| test
| range
| artwork

source_text ::=

ALF_REVISION version_ string library

11.8 Generic objects

alias ::=

ALIAS identifier = identifier ;

attribute ::=

ATTRIBUTE { attribute_items }

attribute_item ::=

identifier [{ unnamed_assignments }]

292 Advanced Library Format (ALF) Reference Manual Version 2.0

Syntax Rules Generic objects

attribute_items ::=
attribute_item { attribute_item }

class ::=

CLASS identifier ;
| CLASS identifier { class_items }

class_item ::=
all_purpose_item

| logic_assignment
| vector_assignment

class_items ::=
class_item { class_item }

constant ::=

CONSTANT identifier = number ;
| CONSTANT identifier = logic_constant ;

group ::=

GROUPgroup_ identifier { identifiers }
| GROUPgroup_ identifier { numbers }
| GROUPgroup_ identifier { edge_literals }
| GROUPgroup_ identifier { logic_constants }
| GROUPgroup_ identifier { logic_variables }
| GROUPgroup_ identifier { integer : integer }

include ::=

INCLUDE quoted_string ;

keyword_declaration ::=

KEYWORD context_sensitive_keyword = syntax_item_ identifier ;

property ::=

PROPERTY [identifier] { property_items }

property_items ::=
property_item { property_item }

property_item ::=
unnamed_assignment

| multi_value_assignment

template ::=

TEMPLATEtemplate_ identifier { template_items }

template_item ::=
all_purpose_item

| library_specific_object
| library_specific_singular_object
| arithmetic_model

Version 2.0 Advanced Library Format (ALF) Reference Manual 293

CELL Syntax Rules

| arithmetic_model_container
| header
| table
| equation
| behavior_item
| geometric_model

template_items ::=
template_item { template_item }

11.9 CELL

cell ::=

CELL cell_ identifier { cell_items }
| CELL cell_ identifier ;
| cell_ template_instantiation

cells ::=
cell { cell }

cell_item ::=
all_purpose_item

| pin
| pin_group
| primitive
| function
| non_scan_cell
| test
| arithmetic_model
| arithmetic_model_container
| vector
| wire
| blockage
| artwork
| connectivity

cell_items ::=
cell_item {cell_item}

non_scan_cell ::=

NON_SCAN_CELL { unnamed_cell_instantiations }
| NON_SCAN_CELL = unnamed_cell_instantiation

11.10 LIBRARY

library ::=

LIBRARY library_ identifier { library_items [sublibraries] }
| LIBRARY library_ identifier ;
| library_ template_instantiation

294 Advanced Library Format (ALF) Reference Manual Version 2.0

Syntax Rules PIN

libraries ::=
library { library }

library_item ::=
all_purpose_item

| arithmetic_model
| arithmetic_model_container
| cell
| primitive
| wire
| layer
| via
| rule
| antenna
| array
| site
| connectivity

library_items ::=
library_item { library_item }

11.11 PIN

pin ::=

PIN [index] pin_ identifier { pin_items }
PIN [index] pin_ identifier ;

| pin_ template_instantiation

pins ::=
pin { pin }

pin_item ::=
all_purpose_item

| arithmetic_model
| arithmetic_model_container
| range
| port
| connectivity

pin_items ::=
pin_item { pin_item }

pin_group ::=

PIN_GROUP [index] pin_group_ identifier {
pin_items

MEMBERS { pins }
}

range ::=

RANGE { unsigned : unsigned }

Version 2.0 Advanced Library Format (ALF) Reference Manual 295

PRIMITIVE Syntax Rules

11.12 PRIMITIVE

primitive ::=

PRIMITIVE primitive_ identifier { primitive_items }
| PRIMITIVE primitive_ identifier ;
| primitive_ template_instantiation

primitives ::=
primitive { primitive }

primitive_item ::=
all_purpose_item

| pin
| function
| test

primitive_items ::=
primitive_item { primitive_item }

11.13 SUBLIBRARY

sublibrary ::=

SUBLIBRARY library_ identifier { library_items }
| SUBLIBRARY library_ identifier ;
| sublibrary_ template_instantiation

sublibraries ::=
sublibrary { sublibrary }

11.14 VECTOR

vector ::=

VECTOR (vector_or_boolean_expression) { vector_items }
| VECTOR (vector_or_boolean_expression) ;
| vector_ template_instantiation

vectors ::=
vector { vector }

vector_item ::=
all_purpose_item

| arithmetic_model
| arithmetic_model_container
| illegal_statement
| logic_assignment
| vector_assignment

vector_items ::=
vector_item { vector_item }

296 Advanced Library Format (ALF) Reference Manual Version 2.0

Syntax Rules WIRE

illegal_statement ::=

ILLEGAL { violation }

vector_assignment ::=

context_sensitive_keyword = (vector_expression) ;

11.15 WIRE

wire ::=

WIRE wire_ identifier { wire_items }
| WIRE wire_ identifier ;
| wire_ template_instantiation

wires ::=
wire { wire }

wire_item ::=
all_purpose_item

| node
| arithmetic_model
| arithmetic_model_container

wire_items ::=
wire_item { wire_item }

node ::=

NODEnode_ identifier { all_purpose_items }

11.16 Arithmetic model

arithmetic_model ::=

context_sensitive_keyword [identifier] = value ;
| context_sensitive_keyword [identifier]

[= value] { arithmetic_model_items }
| arithmetic_model_ template_instantiation

arithmetic_models ::=
arithmetic_model { arithmetic_model }

arithmetic_model_item ::=
all_purpose_item

| from
| to
| violation
| header
| table
| equation
| arithmetic_submodel

Version 2.0 Advanced Library Format (ALF) Reference Manual 297

Arithmetic model Syntax Rules

arithmetic_model_items ::=
arithmetic_model_item { arithmetic_model_item }

arithmetic_model_container ::=

context_sensitive_keyword { arithmetic_models }

arithmetic_submodel ::=

context_sensitive_keyword = value ;
| context_sensitive_keyword

[= value] { arithmetic_submodel_items }
| context_sensitive_keyword { arithmetic_submodels }
| arithmetic_submodel_ template_instantiation

arithmetic_submodels ::=
arithmetic_submodel { arithmetic_submodel }

arithmetic_submodel_item ::=
all_purpose_item

| header
| table
| equation

arithmetic_submodel_items ::=
arithmetic_submodel_item { arithmetic_submodel_item }

header ::=

HEADER { [all_purpose_items] arithmetic_models }
| header_ template_instantiation

table ::=

TABLE { table_items }
| table_ template_instantiation

table_item ::=
number

| identifier

table_items ::=
table_item { table_item }

equation ::=

EQUATION { arithmetic_expression }
| equation_ template_instantiation

violation ::=

VIOLATION {
[message_type_ assignment]
[message_ assignment]
[behavior]

}

298 Advanced Library Format (ALF) Reference Manual Version 2.0

Syntax Rules FUNCTION

from ::=

FROM {
[pin_ assignment]
[edge_ assignment]
[threshold_ arithmetic_model]

}

to ::=

TO {
[pin_ assignment]
[edge_ assignment]
[threshold_ arithmetic_model]

}

11.17 FUNCTION

function ::=

FUNCTION [identifier]

{ [all_purpose_items] [behavior] [structure] [statetables] }
| function_ template_instantiation

structure ::=

STRUCTURE { named_cell_instantiations }

statetable ::=

STATETABLE [identifier] { statetable_header statetable_body }

statetables ::=
statetable { statetable }

statetable_body ::=

statetable_values : statetable_values ;
{ statetable_values : statetable_values ; }

statetable_header ::=

logic_variables : logic_variables ;

behavior ::=

BEHAVIOR [identifier] { behavior_items }

behavior_item ::=
logic_assignment

| sequential_logic_statement
| primitive_instantiation

behavior_items ::=
behavior_item { behavior_item }

logic_assignment ::=

identifier [index] = boolean_expression ;

Version 2.0 Advanced Library Format (ALF) Reference Manual 299

TEST Syntax Rules

logic_assignments ::=
logic_assignment { logic_assignment }

sequential_logic_statement ::=

sequential_if (vector_or_boolean_expression)
{ logic_assignments }

{ sequential_else_if (vector_or_boolean_expression)
{ logic_assignments } }

11.18 TEST

test ::=

TEST { behavior }

11.19 Geometric Model

geometric_model ::=
geometric_model_ identifier

 [geometric_model_name_ identifier] {
all_purpose_items

coordinates }
| geometric_model_ template_instantiation

geometric_models ::=
geometric_model { geometric_model }

coordinates ::=

COORDINATES { x_ number y_ number { x_ number y_ number } }

geometric_transformations ::=
geometric_transformation { geometric_transformation }

geometric_transformation ::=
shift_ annotation_container

| rotate_ assignment
| flip_ assignment
| repeat

repeat ::=

REPEAT [= unsigned] {
shift_ annotation_container
[repeat]

}

11.20 ARTWORK

artwork ::=

ARTWORK =artwork_ identifier ;

300 Advanced Library Format (ALF) Reference Manual Version 2.0

Syntax Rules LAYER

| ARTWORK =artwork_ identifier {
[geometric_transformations]
[pin_assignments]

}

11.21 LAYER

layer ::=

LAYER identifier { layer_items }

layer_items ::=
layer_item { layer_item }

layer_item ::=
all_purpose_item

| arithmetic_model
| arithmetic_model_container

11.22 PATTERN

pattern ::=

PATTERN [identifier] {
[all_purpose_items]
[geometric_models]
[geometric_transformations]

}

11.23 VIA

via ::=

VIA [identifier] { via_items }

via_items ::=
via_item { via_item }

via_item ::=
all_purpose_item

| pattern
| artwork
| arithmetic_model
| arithmetic_model_container

via_reference ::=

VIA { via_instantiations }

Version 2.0 Advanced Library Format (ALF) Reference Manual 301

BLOCKAGE Syntax Rules

11.24 BLOCKAGE

blockage ::=

BLOCKAGE [identifier] {
[all_purpose_items]
[patterns]
[rules]

}

11.25 PORT

port ::=

PORT port_ identifier ;
| PORT [port_ identifier] {

[all_purpose_items]
[patterns]
[rules]
[via_reference]

}

11.26 RULE

rule ::=

RULE [identifier] { rule_items }

rules ::=
rule { rule }

rule_items ::=
rule_item { rule_item }

rule_item ::=
pattern

| all_purpose_item
| via_reference
| arithmetic_model
| arithmetic_model_container

11.27 SITE

site ::=

SITE site_ identifier { all_purpose_items }

11.28 ANTENNA

antenna ::=

ANTENNA[antenna_ identifier] { antenna_items }

302 Advanced Library Format (ALF) Reference Manual Version 2.0

Syntax Rules ARRAY

antenna_items ::=
antenna_item { antenna_item }

antenna_item ::=
all_purpose_item

| arithmetic_model
| arithmetic_model_container

11.29 ARRAY

array ::=

ARRAY identifier {
all_purpose_items
geometric_transformations

}

11.30 Connectivity

connectivity ::=

CONNECTIVITY [identifier] {
connect_rule_ assignment
between_ multi_value_assignment

}

| CONNECTIVITY [identifier] {
connect_rule_ assignment
header table

}

Version 2.0 Advanced Library Format (ALF) Reference Manual 303

Appendix A

Sample Applications

This section shows various examples of library elements modeled using ALF.

A.1 Truth table versus boolean equation

A combinational logic cell and a sequential logic cell are shown below using two different
constructs - truth table and boolean equation.

A.1.1 NAND gate

A two-input NANDgate library cell can be modeled as shown below. TheFUNCTIONof the cell
can be modeled either as aSTATETABLE or asBEHAVIOR using a boolean equation.

Modeling aNAND gate using a truth table:

CELL ND2 { /* 2 input NAND gate */
PIN a {DIRECTION=input;}
PIN b {DIRECTION=input;}
PIN z {DIRECTION=output;}

FUNCTION {
STATETABLE {

a b : z ;
0 ? : 1 ;
1 ? : (!b);

}
}

)

Modeling aNAND gate using a boolean expression:

CELL ND2 { /* 2 input NAND gate */
PIN a {DIRECTION=input;}
PIN b {DIRECTION=input;}
PIN z {DIRECTION=output;}

FUNCTION {
BEHAVIOR {

z = !(a & b);
}

}
)

A.1.2 Flip-flop

A flip-flop with asynchronous set and clear signals is shown below using a truth table.

304 Advanced Library Format (ALF) Reference Manual Version 2.0

Sample Applications

CELL FLIPFLOP {
PIN CLEAR {DIRECTION=input; SIGNALTYPE=clear; POLARITY=low;}
PIN SET {DIRECTION=input; SIGNALTYPE=set; POLARITY=low;}
PIN CLOCK {DIRECTION=input; SIGNALTYPE=clock; POLARITY=rising_edge;}
PIN D {DIRECTION=input;}
PIN Q {DIRECTION=output;}
FUNCTION { /* see below */ }

}

STATETABLE {
CLEAR SET CLOCK D Q : Q;
0 ? ?? ? ? : 0;
1 0 ?? ? ? : 1;
1 1 01 ? ? : (d);
1 1 1? ? ? : (q);
1 1 ?0 ? ? : (q);

}

Modeling a flip-flop with asynchronous set and clear using a boolean expression:

BEHAVIOR {
@(!CLEAR) {Q = 0;} : (!SET) {Q = 1;} : (01 CLOCK) {Q = D;}

}

A.2 Use of primitives

The functionality of a cell can be described using instances of other cells.

A.2.1 D-flip-flop with asynchronous clear

Modeling aD- flip-flop with asynchronous clear:

CELL d_flipflop_clr {
PIN cd {DIRECTION=input; SIGNALTYPE=clear; POLARITY=low;}
PIN cp {DIRECTION=input; SIGNALTYPE=clock; POLARITY=rising_edge;}
PIN d {DIRECTION=input;}
PIN q {DIRECTION=output;}
FUNCTION { /* see below */ }

}

Explicit description does not use instances of other cells defined in the library:

BEHAVIOR {
@(01 cp & cd) {q = d;}
@(!cd) {q = 0;}

}

Use of primitives permit the derivation of new cells from other cells. Below, a D-flip-flop with
asynchronous clear is derived from a predefinedALF_FLIPFLOP with asynchronous set and
clear (see Section A.1.2):

BEHAVIOR {
ALF_FLIPFLOP {CLOCK=cp; D=d; Q=q; SET='b0; CLEAR=!cd;}

}

Version 2.0 Advanced Library Format (ALF) Reference Manual 305

Sample Applications

A.2.2 JK-flipflop

This example shows three ways of modeling a JK-flip-flop.

CELL jk_flipflop {
PIN cp {DIRECTION=input; SIGNALTYPE=clock; POLARITY=rising_edge;}
PIN j {DIRECTION=input;}
PIN k {DIRECTION=input;}
PIN q {DIRECTION=output;}
FUNCTION { /* see below */ }

}

Explicit description:

BEHAVIOR {
d =

(!j & k) ? 0 :
(j & !k) ? 1 :
(j & k) ? !(q) :
(!j & !k) ? (q) :

 'bx ;
@(01 cp) {q = d;}

}

Use of primitives (using predefinedALF_MUX andALF_FLIPFLOP):

BEHAVIOR {
ALF_MUX {Q=d; D[0]=j; D[1]=!k; S=q;}
ALF_FLIPFLOP {CLOCK=cp; D=d; Q=q; SET='b0; CLEAR='b0;}

}

Use of a hybrid form (boolean expressions within primitive instantiation):

BEHAVIOR {
ALF_FLIPFLOP {CLOCK=cp; D=(q ? !k : j); Q=q; SET='b0; CLEAR='b0;}

}

Use of a statetable:

STATETABLE {
cp j k q : (q) ;
01 0 0 ? : (q) ;
01 0 1 ? : 0 ;
01 1 0 ? : 1 ;
01 1 1 ? : (!q);
1? ? ? ? : (q) ;
?0 ? ? ? : (q) ;

}

A.2.3 D-flip-flop with synchronous load and clear

This example shows two different models of a synchronous D-flip-flop.

306 Advanced Library Format (ALF) Reference Manual Version 2.0

Sample Applications

CELL d_flipflop_ld_clr {
PIN cs {DIRECTION=input; SIGNALTYPE=clear;

 POLARITY=low; ACTION=synchronous;}
PIN ls {DIRECTION=input;}
PIN cp {DIRECTION=input; SIGNALTYPE=clock; POLARITY=rising_edge;}
PIN d {DIRECTION=input;}
PIN q {DIRECTION=output;}
FUNCTION { /* see below */ }

}

Explicit description:

BEHAVIOR {
d1 = (ls)? d : q;
d2 = d1 & cs;
@(01 cp) {q = d2;}

}

Use of primitives:

BEHAVIOR {
ALF_MUX {Q=d1; D0=q; D1=d; SELECT=ls;}/* Connection by pin name */
ALF_AND {d2 d1 cs} /* Connection by pin order */
ALF_FLIPFLOP {CLOCK=cp; D=d2; Q=q; SET='b0; CLEAR='b0; }

}

A.2.4 D-flip-flop with input multiplexor

This example shows three different modeling styles for a D-flip-flop with input multiplexor,
asynchronous set, and asynchronous clear:

CELL d_flipflop_mux_set_clr {
PIN sel {DIRECTION=input;}
PIN sd {DIRECTION=input; SIGNALTYPE=set; POLARITY=low;}
PIN cd {DIRECTION=input; SIGNALTYPE=clear; POLARITY=low;}
PIN cp {DIRECTION=input; SIGNALTYPE=clock; POLARITY=rising_edge;}
PIN d1 {DIRECTION=input;}
PIN d2 {DIRECTION=input;}
PIN q {DIRECTION=output;}
FUNCTION { /* see below */ }

}

Explicit description:

BEHAVIOR {
@(!cd) {q = 0;}
@(!sd & cd) {q = 1;}
@(01 cp & cd & sd) {q = sel? d1 : d2;}

}

More efficient description can be created using anif-then-else style:

BEHAVIOR {
@(!cd) {q = 0;}
:(!sd) {q = 1;}
:(01 cp){q = sel ? d1 : d2;}

}

Version 2.0 Advanced Library Format (ALF) Reference Manual 307

Sample Applications

Use of primitive:

BEHAVIOR {
ALF_FLIPFLOP {CLOCK=cp; D=(sel ? d1: d2); Q=q; SET=!sd; CLEAR=!cd;}

}

The use of anALF_MUXprimitive is eliminated here by using an assignment expression to theD

input in theALF_FLIPFLOP instance.

A.2.5 D-latch

This example shows a level-sensitive cell in two different styles.

CELL d_latch {
PIN g {DIRECTION=input; SIGNALTYPE=clock; POLARITY=high;}
PIN d {DIRECTION=input;}
PIN q {DIRECTION=output;}
FUNCTION { /* see below */ }

}

Explicit description:

BEHAVIOR {
@(g) {q = d;}

}

Use of primitive:

BEHAVIOR {
ALF_LATCH {ENABLE=g; D=d; Q=q; SET='b0; CLEAR='b0;}

}

A.2.6 SR-latch

The example below shows how some of the input pins can be left unconnected if they represent
a “don’t care” situation.

CELL sr_latch {
PIN sn {DIRECTION=input; SIGNALTYPE=set; POLARITY=low;}
PIN rn {DIRECTION=input; SIGNALTYPE=clear; POLARITY=low;}
PIN q {DIRECTION = output;}
PIN qn {DIRECTION = output;}
FUNCTION { /* see below */ }

}

Explicit description:

BEHAVIOR {
@ (!sn) {q = 'b1; qn = !rn;}
@ (!rn) {qn = 'b1; q = !sn;}

}

Use of primitive:

BEHAVIOR {
ALF_LATCH {ENABLE='b0; Q=q; SET=!sn; CLEAR=!rn;}

}

308 Advanced Library Format (ALF) Reference Manual Version 2.0

Sample Applications

Since theENABLE pin is always set to0, the connection ofD pin is irrelevant. Even ifD is
considered'bX or 'bZ , the behavior will not change.

A.3 Modeling for DFT

A.3.1 JTAG BSR

The following example shows a JTAG BSR cell with built-in scan chain.

CELL F10_18 {
PIN SysOut {DIRECTION = output;}
PIN TDO {DIRECTION = output; SIGNALTYPE = scan_data;}
PIN SysIn {DIRECTION = input;}
PIN TDI {DIRECTION = input; SIGNALTYPE = scan_data;}
PIN Shift {DIRECTION = input; SIGNALTYPE = scan_enable;}
PIN Clk {DIRECTION = input; POLARITY = rising_edge;

SIGNALTYPE = master_clock;}
PIN Update {DIRECTION = input; POLARITY = rising_edge;

SIGNALTYPE = slave_clock;}
PIN Mode {DIRECTION = input; SIGNALTYPE = select;}
PIN STATE0 { // This pin is on the scan chain

SCAN_POSITION = 1; DIRECTION = output; VIEW = none;}
PIN STATE1 { // NOT on scan chain (just update latch)

DIRECTION = output; VIEW = none;}
FUNCTION {

BEHAVIOR {
@(01 Clk) {STATE0 = Shift ? TDI : SysIn;}
@(01 Update) {STATE1 = STATE0;}
TDO = STATE0;
SysOut = Mode ? STATE1 : SysIn;

}
}

}

A.3.2 Combinational scan cell

The following example shows a combinational scan cell with a reused primitive.

LIBRARY major_ASIC_vendor {
INFORMATION {

version = v2.1.0;
title = “0.35 standard cell”;
product = p35sc;
author = “Major Asic Vendor, Inc.”;
datetime = “Wed Jul 23 13:50:12 MST 1997”;

}
..
CELL ND3A {

INFORMATION {
version = v6.0;
title = “3 input nand”;
product = p35sc_lib;
author = “Joe Cell Designer”;

Version 2.0 Advanced Library Format (ALF) Reference Manual 309

Sample Applications

datetime = “Tue Apr 1 01:39:47 PST 1997”;
}

PIN Z {DIRECTION=output;}
PIN A {DIRECTION=input;}
PIN B {DIRECTION=input;}
PIN C {DIRECTION=input;}
FUNCTION {

BEHAVIOR {
ALF_NAND {Z A B C}

}
}
/* fill in timing and power data for ND3A cell */

}
..
CELL ND3B {

PIN Z {DIRECTION=output;}
PIN A {DIRECTION=input;}
PIN B {DIRECTION=input;}
PIN C {DIRECTION=input;}
FUNCTION {

BEHAVIOR {
ALF_NAND {Z A B C}

}
}
/* fill in timing and power data for ND3B cell */

}
..
CELL SCAN_ND4 {

PIN Z {DIRECTION=output;}
PIN A {DIRECTION=input;}
PIN B {DIRECTION=input;}
PIN C {DIRECTION=input;}
PIN D {DIRECTION=input; SIGNALTYPE=scan_enable;}

SCAN_TYPE = control_0;
NON_SCAN_CELL = ALF_NAND {Z A B C}
FUNCTION {

BEHAVIOR {
Z = !(A & B & C & D);

}
}

}
..

}

A.3.3 Scan flip-flop

The following example shows a scan flip-flop using the genericALF_FLIPFLOP primitive.

310 Advanced Library Format (ALF) Reference Manual Version 2.0

Sample Applications

LIBRARY major_ASIC_vendor {
...
CELL F614 {

PIN H01 {DIRECTION = input; SIGNALTYPE = data;}
PIN H02 {DIRECTION = input; SIGNALTYPE = clock;}
PIN H03 {DIRECTION = input; SIGNALTYPE = clear; POLARITY = high;}
PIN H04 {DIRECTION = input; SIGNALTYPE = set; POLARITY = high;}
PIN N01 {DIRECTION = output;}
PIN N02 {DIRECTION = output;}
FUNCTION {

BEHAVIOR {
ALF_FLIPFLOP {

D=H01; CLOCK=H02; CLEAR=H03; SET=H04;
Q=N01; QN=N02; Q_CONFLICT='bX; QN_CONFLICT='bX;

}
}

}
}
...
CELL S000 {

PIN H01 {DIRECTION = input; SIGNALTYPE = scan_data;}
PIN H02 {DIRECTION = input; SIGNALTYPE = clock;}
PIN H03 {DIRECTION = input; SIGNALTYPE = scan_enable;

 POLARITY = low;}
PIN H04 (DIRECTION = input; SIGNALTYPE = set; POLARITY = high;}
PIN H05 {DIRECTION = input; SIGNALTYPE = clear; POLARITY = high;}
PIN H06 {DIRECTION = input; SIGNALTYPE = data;}
PIN N01 {DIRECTION = output; SIGNALTYPE = data;}
PIN N02 {DIRECTION = output;}
FUNCTION{

BEHAVIOR{ // flipflop_d is an implicitly defined internal pin
ALF_MUX {Q=flipflop_d; D0=H06; D1=H01; SELECT=H03;}
ALF_FLIPFLOP {

D=flipflop_d; CLOCK=H02; CLEAR=H05; SET=H04;
Q=N01; QN=N02; Q_CONFLICT='bX; QN_CONFLICT='bX;

}
}

}
SCAN_TYPE = muxscan;
NON_SCAN_CELL = ALF_FLIPFLOP {D=H06; CLOCK=H02; CLEAR=H05; SET=H04;

 Q=N01; QN=N02; Q_CONFLICT='bX;
 QN_CONFLICT='bX; 'b0=H03; 'b0=H01;}

} // H03 and H01 have no corresponding pin in ALF_FLIPFLOP
...

}

A.3.4 Quad D-flip-flop

The following example shows a quad D-flip-flop with and without built-in scan chain.

Version 2.0 Advanced Library Format (ALF) Reference Manual 311

Sample Applications

LIBRARY major_ASIC_vendor {
PRIMITIVE FFX4 {

PIN CK { DIRECTION = input; }
PIN D0 { DIRECTION = input; }
PIN D1 { DIRECTION = input; }
PIN D2 { DIRECTION = input; }
PIN D3 { DIRECTION = input; }
PIN Q0 { DIRECTION = output; }
PIN Q1 { DIRECTION = output; }
PIN Q2 { DIRECTION = output; }
PIN Q3 { DIRECTION = output; }
FUNCTION {

BEHAVIOR {
ALF_FLIPFLOP {Q=Q0; D=D0; CLOCK=CK; SET='b0; CLEAR='b0;}
ALF_FLIPFLOP {Q=Q1; D=D1; CLOCK=CK; SET='b0; CLEAR='b0;}
ALF_FLIPFLOP {Q=Q2; D=D2; CLOCK=CK; SET='b0; CLEAR='b0;}
ALF_FLIPFLOP {Q=Q3; D=D3; CLOCK=CK; SET='b0; CLEAR='b0;}

}
}

}
CELL SCAN_FFX4 {

PIN OUT0 {DIRECTION = output;}
PIN OUT1 {DIRECTION = output;}
PIN OUT2 {DIRECTION = output;}
PIN OUT3 {DIRECTION = output;}
PIN SO {DIRECTION = output; SIGNALTYPE = scan_data;}
PIN IN0 {DIRECTION = input; SIGNALTYPE = data;}
PIN IN1 {DIRECTION = input; SIGNALTYPE = data;}
PIN IN2 {DIRECTION = input; SIGNALTYPE = data;}
PIN IN3 {DIRECTION = input; SIGNALTYPE = data;}
PIN CLK {DIRECTION = input; SIGNALTYPE = clock;}
PIN SI {DIRECTION = input; SIGNALTYPE = scan_data;}
PIN SE {DIRECTION = input; SIGNALTYPE = scan_enable;}
PIN STATE0 {SCAN_POSITION = 1; DIRECTION = output; VIEW = none;}
PIN STATE1 {SCAN_POSITION = 2; DIRECTION = output; VIEW = none;}
PIN STATE2 {SCAN_POSITION = 3; DIRECTION = output; VIEW = none;}
PIN STATE3 {SCAN_POSITION = 4; DIRECTION = output; VIEW = none;}
FUNCTION {

BEHAVIOR {
OUT0 = STATE0; OUT1 = STATE1; OUT2 = STATE2; OUT3 = STATE3;
SO = !STATE3;
@(01 CLK) {

STATE0 = SE ? !SI : IN0;
STATE1 = SE ? !STATE0 : IN1;
STATE2 = SE ? !STATE1 : IN2;
STATE3 = SE ? !STATE2 : IN3;

}
}

}
SCAN_TYPE = muxscan;
NON_SCAN_CELL = FFX4 {CLK IN0 IN1 IN2 IN3 OUT0 OUT1 OUT2 OUT3}
} // this example shows referencing by order

}
}

312 Advanced Library Format (ALF) Reference Manual Version 2.0

Sample Applications

A.3.5 Use of SIGNALTYPE for scan flip-flops

The following example shows 3 similar scan flip-flops and the usage of SIGNALTYPE anno-
tations. All 3 flip-flops feature a “scan” mode and a “normal” mode, where scan data and non-
scan data, respectively, are transferred from input to output, and a “hold” or “idle” mode,
where data transfer through the flipflop is not enabled.

Figure 1-1: Schematic for scan flipflop #1

ALF description of scan flipflop #1:

CELL scan_flipflop_1 {
PIN A { DIRECTION=input; SIGNALTYPE=data; }
PIN B { DIRECTION=input; SIGNALTYPE=scan_data; }
PIN C { DIRECTION=input; SIGNALTYPE=clock; }
PIN Q { DIRECTION=output; }
PIN X { DIRECTION=input; SIGNALTYPE=enable; POLARITY=high; }
PIN Y { DIRECTION=input; SIGNALTYPE=scan_control; POLARITY{SCAN=low;}}
FUNCTION { BEHAVIOR {

@ (01 C) { Q = Y ? A : X ? B : Q; }
} }

}

Table 1-1 Function table for scan flipflop #1

X Y mode

0 0 hold

0 1 normal (data signal A selected)

1 0 scan (data signal B selected)

1 1 normal (data signal A selected)

D Q

X Y

1

0

1

0

A

C

B Q

Version 2.0 Advanced Library Format (ALF) Reference Manual 313

Sample Applications

Figure 1-2: Schematic for scan flipflop #2

ALF description of scan flipflop #2:

CELL scan_flipflop_2 {
PIN A { DIRECTION=input; SIGNALTYPE=data; }
PIN B { DIRECTION=input; SIGNALTYPE=scan_data; }
PIN C { DIRECTION=input; SIGNALTYPE=clock; }
PIN Q { DIRECTION=output; }
PIN X { DIRECTION=input; SIGNALTYPE=enable; POLARITY=high; }
PIN Y { DIRECTION=input; SIGNALTYPE=scan_control; POLARITY{SCAN=low;}}
FUNCTION { BEHAVIOR {

@ (01 C) { Q = !Y ? B : X ? A : Q; }
} }

}

Table 1-2 Function table for scan flipflop #2

X Y mode

0 0 scan (data signal B selected)

0 1 hold

1 0 scan (data signal B selected)

1 1 normal (data signal A selected)

D Q

X Y

1

0

0

1

B

C

A Q

314 Advanced Library Format (ALF) Reference Manual Version 2.0

Sample Applications

Figure 1-3: Schematic for scan flipflop #3

ALF description of scan flipflop #3:

CELL scan_flipflop_3 {
PIN A { DIRECTION=input; SIGNALTYPE=data; }
PIN B { DIRECTION=input; SIGNALTYPE=scan_data; }
PIN C { DIRECTION=input; SIGNALTYPE=clock; }
PIN Q { DIRECTION=output; }
PIN X { DIRECTION=input; SIGNALTYPE=scan_control; POLARITY{SCAN=low;}}
PIN Y { DIRECTION=input; SIGNALTYPE=enable; POLARITY=high; }
FUNCTION { BEHAVIOR {

@ (01 C) { Q = !Y ? Q : X ? A : B; }
} }

}

The SIGNALTYPEscan_control rather thanscan_enable is chosen, because the signal in
question controls both scan and normal mode instead of merely enabling the scan mode. The
polarity of the normal mode is implied.

Table 1-3 Function table for scan flipflop #3

X Y mode

0 0 hold

0 1 scan (data signal B selected)

1 0 hold

1 1 normal (data signal A selected)

D Q

A

B

Y

X

C

1

0

1

0 Q

Version 2.0 Advanced Library Format (ALF) Reference Manual 315

Sample Applications

For all 3 flipflop, a set of sufficient polarity combinations for “scan” mode and “normal”
mode can be identified by looking at the SIGNALTYPE alone. Theenable signal must be
high (POLARITY=high). Thescan_control signal must be low for scan mode and high for
normal mode (POLARITY{SCAN=low;}).

Therefore 2 out of 4 states are defined unambiguously by the SIGNALTYPE annotation.
However, only the functional description can unambiguously define the polarity combination
for all 4 states (seeBEHAVIOR statement).

If a tool does not understand the contents of theBEHAVIORstatement, auxiliary descriptions in
the form of the ATTRIBUTE statement can be introduced to go beyond the limited specifica-
tion capability of SIGNALTYPE. It should be noted, however, that the interpretation of such
auxiliary descriptions is defined by convention, whereas the interpretation of theBEHAVIOR

statement is well-defined by formal language constructs. Therefore the use of theBEHAVIOR

statement is preferred.

In this example, the difference between the 3 flip-flops is the mode with the highest priority,
which is “normal” for flipflop #1, “scan” for flipflop #2, and “hold” for flipflop #3. The fol-
lowing attributes could be introduced:

CELL scan_flipflop_1 { ATTRIBUTE { priority_normal } }
CELL scan_flipflop_2 { ATTRIBUTE { priority_scan } }
CELL scan_flipflop_3 { ATTRIBUTE { priority_hold } }

From these attributes, the following behavior could be inferred:

Flipflop #1 is in “normal” mode, whenscan_control is high.
Flipflop #2 is in “scan” mode, whenscan_control is low.
Flipflop #3 is in “hold” mode, whenenable is low.

A.4 Templates and vector-specific models

This section describes how to use templates and vector-specific models.

A.4.1 Vector-specific delay and power tables

In this example, the use of vector specific models for input-to-output delay, output slewrate,
and switching energy is shown.

CELL nand2 {
PIN a {DIRECTION = input; CAPACITANCE = 0.02 {UNIT = pF;}}
PIN b {DIRECTION = input; CAPACITANCE = 0.02 {UNIT = pF;}}
PIN z {DIRECTION = output;}
FUNCTION {

BEHAVIOR {z = !(a & b); }
}
VECTOR (10 a -> 01 z){ /* Vector specific characterization */

DELAY {
UNIT = ns;
FROM {PIN = a; THRESHOLD = 0.4;}

316 Advanced Library Format (ALF) Reference Manual Version 2.0

Sample Applications

TO {PIN = z; THRESHOLD = 0.6;}
HEADER {

CAPACITANCE {
PIN = z; UNIT = pF;
TABLE {0.01 0.02 0.04 0.08 0.16}

}
SLEWRATE {

PIN = a; UNIT = ns;
FROM {THRESHOLD = 0.5;}
TO {THRESHOLD = 0.3;}
TABLE {0.1 0.3 0.9}

}
}
TABLE {

0.1 0.2 0.4 0.8 1.6
0.2 0.3 0.5 0.9 1.7
0.4 0.5 0.7 1.1 1.9

}
}
SLEWRATE {

PIN = z; UNIT = ns;
FROM {THRESHOLD = 0.3;}
TO {THRESHOLD = 0.5;}
HEADER {

CAPACITANCE {
PIN = z; UNIT = pF;
TABLE {0.01 0.02 0.04 0.08 0.16}

}
SLEWRATE {

PIN = a; UNIT = ns;
FROM {THRESHOLD = 0.5;}
TO {THRESHOLD = 0.3;}
TABLE {0.1 0.3 0.9}

}
}
TABLE {

0.1 0.2 0.4 0.8 1.6
0.1 0.2 0.4 0.8 1.6
0.2 0.4 0.6 1.0 1.8

}
}
ENERGY {

UNIT = pJ;
HEADER {

CAPACITANCE {
PIN = z; UNIT = pF;
TABLE {0.01 0.02 0.04 0.08 0.16}

}
SLEWRATE {

PIN = a; UNIT = ns;
FROM {THRESHOLD = 0.5;}
TO {THRESHOLD = 0.3;}
TABLE {0.1 0.3 0.9}

}

Version 2.0 Advanced Library Format (ALF) Reference Manual 317

Sample Applications

}
TABLE {

0.21 0.32 0.64 0.98 1.96
0.22 0.33 0.65 0.99 1.97
0.31 0.42 0.74 1.08 2.06

}
}

}
VECTOR (01 a -> 10 z){

DELAY { ... }
SLEWRATE { ... }
ENERGY { ... }

}
VECTOR (10 b -> 01 z){

DELAY { ... }
SLEWRATE { ... }
ENERGY { ... }

}
VECTOR (01 b -> 10 z){

DELAY { ... }
SLEWRATE { ... }
ENERGY { ... }

}
}

A.4.2 Use of TEMPLATE

Notice the header for the delay, ramptime, and energy models was the same in the example in
Section A.4.1. Therefore, creating a template definition can eliminate duplicate information,
reduce the possibility of inadvertent errors, and make the models compact. For example, a
header template can be created as shown below:

TEMPLATE std_header_2d {
HEADER {

CAPACITANCE {
PIN = <out_pin>; UNIT = pF;
TABLE {0.01 0.02 0.04 0.08 0.16}

}
SLEWRATE {

PIN = <in_pin>; UNIT = ns;
FROM {THRESHOLD {RISE = 0.3; FALL = 0.5;} }
TO {THRESHOLD {RISE = 0.5; FALL = 0.3;} }
TABLE {0.1 0.3 0.9}

}
}

The use ofTEMPLATEeliminates the repetition of header information by rewriting the previous
example (only the first vector) as shown below.

318 Advanced Library Format (ALF) Reference Manual Version 2.0

Sample Applications

DELAY {
UNIT = ns;
THRESHOLD {RISE=0.4; FALL=0.6;}
FROM {PIN = a;}
TO {PIN = z;}
std_header_2d { /* Template is used */

in_pin = a;
out_pin = z;

}
TABLE {

0.1 0.2 0.4 0.8 1.6
0.2 0.3 0.5 0.9 1.7
0.4 0.5 0.7 1.1 1.9

}
}
SLEWRATE {

PIN = z; UNIT = ns;
FROM {THRESHOLD {RISE = 0.3; FALL = 0.5;} }
TO {THRESHOLD {RISE = 0.5; FALL = 0.3;} }
std_header_2d { /* Template is used */

in_pin = a;
out_pin = z;

}
TABLE {

0.1 0.2 0.4 0.8 1.6
0.1 0.2 0.4 0.8 1.6
0.2 0.4 0.6 1.0 1.8

}
}
ENERGY {

UNIT = pJ;
std_header_2d { /* Template is used */

in_pin = a;
out_pin = z;

}
TABLE {

0.21 0.32 0.64 0.98 1.96
0.22 0.33 0.65 0.99 1.97
0.31 0.42 0.74 1.08 2.06

}
}

}

Note the entire characterization model for CELLnand2 is the same for each vector (i.e., pair
of input and output pins), so further efficiency can be achieved by defining the characterization
model itself as a template. This template definition uses the instantiation of the previously
defined header template.

Version 2.0 Advanced Library Format (ALF) Reference Manual 319

Sample Applications

TEMPLATE std_char_2d {
DELAY {

UNIT = ns;
THRESHOLD {RISE=0.4; FALL=0.6;}
FROM {PIN = <in_pin>; }
TO {PIN = <out_pin>; }
std_header_2d {

in_pin = <input_pin>;
out_pin = <output_pin>;

}
TABLE <delay_data>

}
SLEWRATE {

PIN = <out_pin>; UNIT = ns;
FROM {THRESHOLD {RISE = 0.3; FALL = 0.5;} }
TO {THRESHOLD {RISE = 0.5; FALL = 0.3;} }
std_header_2d {

in_pin = <input_pin>;
out_pin = <output_pin>;

}
TABLE <slewrate_data>

}
ENERGY {

UNIT = pJ;
std_header_2d {

in_pin = <input_pin>;
out_pin = <output_pin>;

}
TABLE <energy_data>

}
}

Now only the delay, slewrate, and energy models contain specific data that is different for each
vector. All repetitive information is in the template definition. The characterization model can
be rewritten compactly as shown below:

std_char_2d {
in_pin = a;
out_pin = z;
delay_data {

0.1 0.2 0.4 0.8 1.6
0.2 0.3 0.5 0.9 1.7
0.4 0.5 0.7 1.1 1.9

}
slewrate_data {

0.1 0.2 0.4 0.8 1.6
0.1 0.2 0.4 0.8 1.6
0.2 0.4 0.6 1.0 1.8

320 Advanced Library Format (ALF) Reference Manual Version 2.0

Sample Applications

}
energy_data {

0.21 0.32 0.64 0.98 1.96
0.22 0.33 0.65 0.99 1.97
0.31 0.42 0.74 1.08 2.06

}
}

A.4.3 Vector description styles for timing arcs

In previous examples, the vectors were specified as timing arcs. This is not ambiguous, since
the sequence of transitions can only happen under one test condition.

VECTOR (10 a -> 01 z){
std_char_2d { ... }

}
VECTOR (01 a -> 10 z){

std_char_2d { ... }
}
VECTOR (10 b -> 01 z){

std_char_2d { ... }
}
VECTOR (01 b -> 10 z){

std_char_2d { ... }
}

An alternate way of describing the above vectors is to specify the input transition and the state
of the other input(s) which control the output transition.

VECTOR (10 a && b){
std_char_2d { ... }

}
VECTOR (01 a && b){

std_char_2d { ... }
}
VECTOR (10 b && a){

std_char_2d { ... }
}
VECTOR (01 b && a){

std_char_2d { ... }
}

A more concise method of vector description is to specify both output transition and input
state(s) together with the input transition.

Version 2.0 Advanced Library Format (ALF) Reference Manual 321

Sample Applications

VECTOR (10 a -> 01 z && b){
std_char_2d { ... }

}
VECTOR (01 a -> 10 z && b){

std_char_2d { ... }
}
VECTOR (10 b -> 01 z && a){

std_char_2d { ... }
}
VECTOR (01 b -> 10 z && a){

std_char_2d { ... }
}

In the non-redundant specification, either the input state or the output transition can be derived
from the functional description.

A.4.4 Vectors for delay, power, and timing constraints

A D-flip-flop model without the set and clear signals is shown below. This model has vectors
with a specific purpose: some for delay and power, some for power only (output is not
switching), and some for timing constraints. However, each vector has the same structure,
although the input variables change. The vectors for delay and power model require two-
dimensional tables with load capacitance and input ramptime as variables, the vectors for
power model require one-dimensional tables with input ramptime as variable, and the vectors
for time constraints require 2-dimensional tables with ramptime on two inputs as variables.

CELL d_flipflop {
PIN cp {DIRECTION = input; SIGNALTYPE = clock; POLARITY = rising_edge;}
PIN d {DIRECTION = input;}
PIN q {DIRECTION = output;}
FUNCTION {

BEHAVIOR { @(01 cp) {q = d; } }
}
VECTOR (01 cp -> 01 q) {

/* fill in arithmetic models for delay and power */
}
VECTOR (01 cp -> 10 q) {

/* fill in arithmetic models for delay and power */
}
VECTOR (01 cp && d == q) {

/* fill in arithmetic model for power */
}
VECTOR (10 cp && d == q) {

/* fill in arithmetic model for power */
}
VECTOR (10 cp && d != q) {

/* fill in arithmetic model for power */
}
VECTOR (01 d && !cp) {

/* fill in arithmetic model for power */
}
VECTOR (10 d && !cp) {

/* fill in arithmetic model for power */

322 Advanced Library Format (ALF) Reference Manual Version 2.0

Sample Applications

}
VECTOR (01 d && cp) {

/* fill in arithmetic model for power */
}
VECTOR (10 d && cp) {

/* fill in arithmetic model for power */
}
VECTOR (01 d <&> 01 cp)

SETUP {
/* fill in arithmetic model for setup time constraint */
VIOLATION {

BEHAVIOR {q = 'bx;}
MESSAGE_TYPE = error;
MESSAGE = “setup violation 01 d <-> 01 cp“;

}
}
HOLD {

/* fill in arithmetic model for hold time constraint */
VIOLATION {

BEHAVIOR {q = 'bx;}
MESSAGE_TYPE = error;
MESSAGE = “hold violation 01 d <-> 01 cp“;

}
}

VECTOR (10 d <&> 01 cp)
SETUP {

/* fill in arithmetic model for setup time constraint */
VIOLATION {

BEHAVIOR {q = 'bx;}
MESSAGE_TYPE = error;
MESSAGE = “setup violation 10 d <-> 01 cp“;

}
}
HOLD {

/* fill in arithmetic model for hold time constraint */
VIOLATION {

BEHAVIOR {q = 'bx;}
MESSAGE_TYPE = error;
MESSAGE = “hold violation 10 d <-> 01 cp“;

}
}

}
}

A.5 Combining tables and equations

This section describes how to combine tables and equations.

A.5.1 Table versus equation

The following examples show the usage ofTABLE andEQUATION in the model.

An example using a table:

Version 2.0 Advanced Library Format (ALF) Reference Manual 323

Sample Applications

CURRENT {
PIN = VDD;
UNIT = mA;
TIME = 30 {UNIT = ns;}
MEASUREMENT = average;
HEADER {

CAPACITANCE {
PIN = z; UNIT = pF;
TABLE {0.02 0.04 0.08 0.16}

}
SLEWRATE {

PIN = a; UNIT = ns;
TABLE {0.1 0.3 0.9}

}
}
TABLE {

0.0011 0.0021 0.0041 0.0081
0.0013 0.0023 0.0043 0.0083
0.0019 0.0029 0.0049 0.0089

}
}

The equivalent example using an equation:

CURRENT {
PIN = VDD; UNIT = mA;
TIME = 30 {UNIT = ns;}
MEASUREMENT = average;
HEADER {

CAPACITANCE {PIN = z; UNIT = pF;}
SLEWRATE {PIN = a; UNIT = ns;}

}
EQUATION { 0.05*CAPACITANCE + 0.001*SLEWRATE }

}

If the model uses anEQUATION, then each argument shall appear in theHEADER. If the model
uses aTABLE, then theHEADERshall contain aTABLE for each argument. The number of values
in the main table and the indexing scheme is defined by the order and the number of values in
each table inside the header.

A.5.2 Cell with multiple output pins

The following example shows how to use combinations of tables and equations for efficient
modeling of energy consumption of a cell with two (buffered) outputs. When two outputs are
switching and are triggered by the same input, the dynamic energy consumption depends on
ramptime of the input signal and load capacitance on each output.

Instead of creating a three-dimensional table, 2 two-dimensional tables are used, which varies
the load capacitance at one output and keepszero load at the other output. The equation
calculates the energy for both outputs switching by adding the values from each table together
for the applicable load capacitance and by subtracting a corresponding correction term. The
result is exact for cells with buffered outputs.

324 Advanced Library Format (ALF) Reference Manual Version 2.0

Sample Applications

As shown in the example below, an arithmetic model becomes a named object if several objects
of the same type occur within the same scope (e.g,.ENERGY). For named objects, the equation
uses the object name instead of the object type.

VECTOR (01 ci -> (01 co <-> 10 s) & a) {
ENERGY {

UNIT = pJ;
HEADER {

ENERGY energy_co { // named object
UNIT = pJ;
HEADER {

CAPACITANCE {
PIN = co; UNIT = pF;
TABLE { ... }

}
SLEWRATE {

PIN = ci; UNIT = ns;
TABLE { ... }

}
}
TABLE { ... }

}
ENERGY energy_s { // named object

UNIT = pJ;
HEADER {

CAPACITANCE {
PIN = s; UNIT = pF;
TABLE { ... }

}
SLEWRATE {

PIN = ci; UNIT = ns;
TABLE { ... }

}
}
TABLE { ... }

}
ENERGY energy_noload { // named object

UNIT = pJ;
HEADER {

SLEWRATE {
PIN = ci; UNIT = ns;
TABLE { ... }

}
}
TABLE { ... }

}
}
EQUATION { energy_co + energy_s - energy_noload }

}
}

Version 2.0 Advanced Library Format (ALF) Reference Manual 325

Sample Applications

A.5.3 PVT derating

Combinations of tables and equations can also be used for derating with respect to voltage and
temperature, since those variables can add more dimensions to a purely table-based model.

In this example, theDELAY objects are named, since there is both a nominal and a derated
DELAY.

DELAY rise_out{
HEADER {

PROCESS {
HEADER {nom snsp snwp wnsp wnwp}
TABLE {0.0 -0.1 -0.2 +0.3 +0.2}

}
VOLTAGE {//fill in any annotations
}
TEMPERATURE {//fill in any annotations
}
DELAY nom_rise_out {

HEADER {
CAPACITANCE {

TABLE {0.03 0.06 0.12 0.24}
}
SLEWRATE {

TABLE {0.1 0.3 0.9}
}

}
TABLE {

0.07 0.10 0.14 0.22
0.09 0.13 0.19 0.30
0.10 0.15 0.25 0.41

}
}

}
EQUATION {

nom_rise_out
* (1 + PROCESS)
* (1 + (TEMPERATURE - 25)*0.001)
* (1 + (VOLTAGE - 3.3)*(-0.3))

}
}

TheHEADER in theprocess object contains exclusively named variables(nom , snsp , etc.) ,
similar to the truth table of aFUNCTION containing only pin names. Therefore, theTABLE is
expected to have as many entries as theHEADER. TheTABLE insidenom_rise_out shall follow
the format defined by eachTABLEinside the declarations ofload andramptime . Other declared
objects in theHEADER are ignored for theTABLE format if they do not have aTABLE inside
themselves.

For convenience, the derating equation can be defined as a template for future reuse.

326 Advanced Library Format (ALF) Reference Manual Version 2.0

Sample Applications

TEMPLATE std_derating {
EQUATION {

<variable>
* (1 + <Kp>)
* (1 + (TEMPERATURE - 25)*<Kt>)
* (1 + (VOLTAGE - 3.3)*<Kv>)

}
}

Instantiation of the template in the model:

DELAY rise_out{
HEADER {

PROCESS {
HEADER {nom snsp snwp wnsp wnwp}
TABLE {0.0 -0.1 -0.2 +0.3 +0.2}

}
VOLTAGE { ... }
TEMPERATURE { ... }
DELAY nom_rise_out {

HEADER {
CAPACITANCE {TABLE { ... }}
SLEWRATE {TABLE { ... }}

}
TABLE { ... }

}
std_derating {

variable = nom_rise_out ;
Kp = PROCESS ;
Kt = 0.001 ;
Kv = -0.3 ;

}
}

It is possible to express voltage, temperature and delay with the derating case as an independent
variable:

VOLTAGE {
HEADER { DERATE_CASE { TABLE {nom bccom wcmil} } }
TABLE {3.3 3.5 2.8}

}
TEMPERATURE {

HEADER { DERATE_CASE { TABLE {nom bccom wcmil} } }
TABLE {25 0 125}

}
DELAY {

HEADER {
DERATE_CASE {

HEADER {nom bccom wcmil}
TABLE {0 -0.0835 0.265}

}
PROCESS

HEADER {nom snsp snwp wnsp wnwp}
TABLE {0.0 -0.1 -0.2 +0.3 +0.2}

}

Version 2.0 Advanced Library Format (ALF) Reference Manual 327

Sample Applications

DELAY nom_rise_out { ... }
}
EQUATION {

nom_rise_out
* (1 + PROCESS)
* (1 + DERATE_CASE)

}

Another possibility is a completely tabulated model, where the process and derating identifiers
can be directly used as table items.

DELAY {
HEADER {

DERATE_CASE {
TABLE {nom bccom wcmil}

}
PROCESS

TABLE {nom snsp snwp wnsp wnwp}
}

TABLE {
// 3*5 = 15 values

}

A.6 Use of annotations

This section describes how to use annotations.

A.6.1 Annotations for a PIN

Direct annotation:

PIN data_in {DIRECTION = input; THRESHOLD = 0.35; CAPACITANCE = 0.010;}

Using annotation containers:

PIN data_in {
DIRECTION = input;
THRESHOLD = 0.35;
CAPACITANCE = 0.010; {

UNIT = pF; MEASUREMENT = average;
MIN = 0.009; TYP = 0.010; MAX = 0.012;

}
LIMIT {

SLEWRATE {UNIT=ns;MAX=3.0;}
VOLTAGE {MAX=3.5; MIN=-0.2;}

}
}

The input pindata_in has a non-linear capacitance that was characterized by using an average
measurement (as opposed to RMS or peak measurements). Different measurements yield
average capacitances between0.009 pF and0.012 pF ; the typical average capacitance is
0.010 pF . The slewrate applied to the pin shall not exceed3.0 ns . The voltage swing shall
not exceed the lower bound of-0.2 V and the upper bound of3.5 V .

328 Advanced Library Format (ALF) Reference Manual Version 2.0

Sample Applications

CAPACITANCE {UNIT = pF;}
PIN data_out {

DIRECTION = output; CAPACITANCE = 0.002;
LIMIT {CAPACITANCE {MAX = 0.96;} }

}

The output pindata_out has a capacitance of0.002 pF . The maximum load capacitance that
can be applied to the pin is 0.96 pF .

A.6.2 Annotations for a timing arc

Specifications for a particular timing arc which references specific pins:

DELAY {
UNIT = ns;
FROM {PIN = data_in; THRESHOLD = 0.4;}
TO {PIN = data_out; THRESHOLD = 0.6;}

}

SLEWRATE {
PIN = data_out; UNIT = ns;
FROM {THRESHOLD = 0.3;}
TO {THRESHOLD = 0.5;}

}

Specifications for a generic timing arc which does not reference specific pins, but where the
values for both switching directions are defined:

DELAY {
UNIT = ns;
THRESHOLD {RISE=0.4; FALL=0.6;}

}

SLEWRATE {
UNIT = ns;
FROM {THRESHOLD {RISE=0.3; FALL=0.5;}}
TO {THRESHOLD {RISE=0.5; FALL=0.3;}}

}

A.6.3 Creating self-explaining annotations

Self-explaining annotations can be created usingTEMPLATE.

Example:

The number of connections allowed for each pin:

TEMPLATE must_connect {
LIMIT {CONNECTION {MIN = 1;}}

}

TEMPLATE can_float {
LIMIT {CONNECTION {MIN = 0;}}

}

TEMPLATE no_connection {
LIMIT {CONNECTION {MAX = 0;}}

}

Version 2.0 Advanced Library Format (ALF) Reference Manual 329

Sample Applications

CELL a_flipflop {
PIN q {must_connect DIRECTION=output;}
PIN qn {can_float DIRECTION=output;}
PIN qi {no_connection DIRECTION=output;}
...

}

A.7 Providing a fall-back position for applications
(using DEFAULT)

ALF’s modeling capabilities address the needs for all types of applications. However, ALF
shall also work for applications that use only a subset of information. Capability can be
modelled using aDEFAULT to control a subset of information. The information provided by
DEFAULT can be strictly ignored by applications that understand the full information.

A particular application might not be able to use three-dimensional tables or understand certain
models.DEFAULT values can be provided for each model.

Example:

DELAY {
HEADER {

SLEWRATE {
PIN = a; UNIT = 1e-9;
TABLE {0.5 1.0 1.5}
DEFAULT = 1.0;

}
CAPACITANCE {

PIN = z; UNIT = 1e-12;
TABLE {0.1 0.2 0.3 0.4}
DEFAULT = 0.1;

}
VOLTAGE {

PIN = vdd; UNIT = 1;
TABLE {3.0 3.3 3.6}
DEFAULT = 3.3;

}
}
TABLE {

// arrangement of whitespaces and comments
// is only for readability
// parser sees just a sequence of 3x4x3=36 numbers

//slewrate 0.5 1.0 1.5 capacitance voltage
// --------------+--------------+-------

0.2 0.8 1.1 // 0.1 3.0
0.4 1.0 1.2 // 0.2
0.7 1.2 1.4 // 0.3
0.9 1.5 1.8 // 0.4

0.1 0.7 1.2 // 0.1 3.3
0.3 0.9 1.3 // 0.2

330 Advanced Library Format (ALF) Reference Manual Version 2.0

Sample Applications

0.6 1.1 1.5 // 0.3
0.8 1.3 1.7 // 0.4

0.1 0.6 1.0 // 0.1 3.6
0.2 0.8 1.1 // 0.2
0.4 1.0 1.3 // 0.3
0.7 1.2 1.6 // 0.4

}
}

An application that does not understandVOLTAGEshall extract the following information from
this example:

DELAY {
HEADER {

SLEWRATE {
PIN = a; UNIT = 1e-9;
TABLE {0.5 1.0 1.5}

}
CAPACITANCE {

PIN = z; UNIT = 1e-12;
TABLE {0.1 0.2 0.3 0.4}

}
}
TABLE {

//slewrate 0.5 1.0 1.5 capacitance voltage
// --------------+--------------+-------

0.1 0.7 1.2 // 0.1 3.3
0.3 0.9 1.3 // 0.2
0.6 1.1 1.5 // 0.3
0.8 1.3 1.7 // 0.4

}
}

An application that does not understandSLEWRATEshall extract only the following information:

DELAY {
HEADER {

CAPACITANCE {
UNIT = 1e-12;
PIN = z;
TABLE {0.1 0.2 0.3 0.4}

}
}
TABLE {

//slewrate 1.0 capacitance voltage
// ----+--------------+-------

0.7 // 0.1 3.3
0.9 // 0.2
1.1 // 0.3
1.3 // 0.4

}
}

Version 2.0 Advanced Library Format (ALF) Reference Manual 331

Sample Applications

A.8 Bus modeling

This section describes how to model buses.

A.8.1 Tristate driver

Bus drivers are usually tristate buffers, which have straightforward functional models. If both
the input signal and enable signal have well-defined logic states, the output is driven to'b1 ,
'b0 , or 'bz ; otherwise it is driven to'bx .

CELL tristate_buffer {
PIN a {DIRECTION = input; SIGNALTYPE = data;}
PIN e {DIRECTION = input; SIGNALTYPE = out_enable;}
PIN z {DIRECTION = output; SIGNALTYPE = data;

 ATTRIBUTE {tristate} }
FUNCTION {

BEHAVIOR {
z =
 (e & a) ? 'b1:
 (e & !a) ? 'b0:
 (!e) ? 'bz:

 'bx;
}

}
}

A different model can be used for transmission-gate type of buffers, which also passes the high
impedance state from input to output.

BEHAVIOR {
z =
 (e) ? a :
 (!e) ? 'bz:

 'bx;
}

}

The drive strength information of tristate buffers is also needed to model a bus contention. This
is easily achieved by annotating a pin property, using a context-sensitive keyword.

CELL tristate_buffer {
...
PIN z {DIRECTION = output; DRIVE_STRENGTH = 4;ATTRIBUTE {tristate}}
...

}

The pin-propertyDRIVE_STRENGTH can take an arbitrary positive integer or a real number. In
general, greater values override smaller values and hereDRIVE_STRENGTH=0 is equivalent to

BEHAVIOR {z='bz;}.

ALF does not assume a particular set of legal drive strengths. The scale and granularity is left
to the discretion of the ASIC vendor (user).

332 Advanced Library Format (ALF) Reference Manual Version 2.0

Sample Applications

Modeling of state-dependent drive strength is achieved by annotating drive strength within a
vector rather than within a pin. The following example shows a buffer with astrong-0 and
weak-1 drive.

CELL tristate_buffer {
...
PIN z {DIRECTION = output; ATTRIBUTE {tristate}}
...
VECTOR (z==0) {

DRIVE_STRENGTH = 4; {PIN = z;}
}
VECTOR (z==1) {

DRIVE_STRENGTH = 2; {PIN = z;}
}

}

The bus itself is not described by an ALF model, since the bus is a design construct rather than
a library cell. A simulation model (Verilog or VHDL) can handle the bus contention. However,
since buses can also be embedded within a core cell, the functional model of the core need a
functional model of that bus as well.

A.8.2 Bus with multiple drivers

The following example shows a bus with three drivers of equal strength. The output is the
resolved value of the bus.

CELL bus3 {
PIN z1 {DIRECTION = input;}
PIN z2 {DIRECTION = input;}
PIN z3 {DIRECTION = input;}
PIN z {DIRECTION = output;}
FUNCTION {

BEHAVIOR {
z =
 ((z2=='bz || z2==z1) && z3=='bz)? z1:
 ((z3=='bz || z3==z2) && z1=='bz)? z2:
 ((z1=='bz || z1==z3) && z2=='bz)? z3:
 (z1=='b1 && z2=='b1 && z3=='b1)? 'b1:
 (z1=='b0 && z2=='b0 && z3=='b0)? 'b0:

 'bx;
}

}
}

The following example shows a bus with two drivers of equal strength and one driver with
weaker strength (e.g., a busholder).

CELL bus2s1w {
PIN z_strong1 {DIRECTION = input;}
PIN z_strong2 {DIRECTION = input;}
PIN z_weak {DIRECTION = input;}
PIN z {DIRECTION = output;}
FUNCTION {

BEHAVIOR {

Version 2.0 Advanced Library Format (ALF) Reference Manual 333

Sample Applications

z =
 (z_strong1=='b1 && z_strong2=='b1)? 'b1:
 (z_strong1=='b0 && z_strong2=='b0)? 'b0:
 (z_strong1=='bz && z_strong2=='bz)? z_weak:

 'bx;
}

}
}

A.8.3 Busholder

A busholderis a cell that retains the previous value of a tristate bus when all drivers go to high
impedance. This device has only one external pin, which is bidirectional. The input to this
bidirectional pin is the resolved value of the bus.

CELL busholder {
PIN a {DIRECTION = both;}
PIN z {DIRECTION = output; VIEW = none;}
FUNCTION {

BEHAVIOR {
a = !z;
@(a==0) {z = 1;}
@(a==1) {z = 0;}
@(a=='bx) {z = 'bx;}

}
}

}

In order to understand the functionality of a bidirectional pin, the pin can be split conceptually
into an input pin and an output pin as shown below.

CELL busholder_explicit {
PIN a_in {DIRECTION = input;}
PIN a_out {DIRECTION = output;}
PIN z {DIRECTION = output; VIEW = none;}
FUNCTION {

BEHAVIOR {
a_out = !z;
@(a_in==0) {z = 1;}
@(a_in==1) {z = 0;}
@(a_in=='bx) {z = 'bx;}

}
}

}

The function of this device is well defined ifa_out==a_in for all cases wherea_in!='bz . In
the case ofa_in=='bz, a_out can take any value. This is a general modeling rule for functions
with bidirectional pins.

A.9 Wire models

This section describes how to model wire models.

334 Advanced Library Format (ALF) Reference Manual Version 2.0

Sample Applications

A.9.1 Basic wire model

This example shows two wire models, using tables and equations. The equation is used outside
the defined table range. If no equation was defined, the table is extrapolated.

WIRE small_wire {
CAPACITANCE {

UNIT = pF;
HEADER {

CONNECTIONS {
TABLE {2 3 4 5}

}
}
TABLE {0.05 0.09 0.13 0.17}
EQUATION {CONNECTIONS * 0.04 - 0.03}

}
RESISTANCE {

UNIT = mOHM;
HEADER {

CONNECTIONS {
TABLE {2 3 4 5}

}
}
TABLE {7.5 10.0 12.5 15.0}
EQUATION {CONNECTIONS * 2.5 + 2.5}

}
}

WIRE large_wire {
CAPACITANCE {

UNIT = pF;
HEADER {

CONNECTIONS {
TABLE {2 3 4}

}
}
TABLE {0.10 0.16 0.22}
EQUATION {CONNECTIONS * 0.06 - 0.2}

}
RESISTANCE {

UNIT = mOhm;
HEADER {

CONNECTIONS {
TABLE {2 3 4}

}
}
TABLE {10.0 12.5 15.0}
EQUATION {CONNECTIONS * 2.5 + 5.0}

}
}

Version 2.0 Advanced Library Format (ALF) Reference Manual 335

Sample Applications

A.9.2 Wire select model

Since a library can contain multiple wire models, it is necessary to specify which model needs
to be selected for an application. The annotations inside each wire model can be used for this
purpose.

WIRE small_wire {
LIMIT {AREA {UNIT=1e-6; MAX=25;}}
...

}

WIRE large_wire {
LIMIT {AREA {UNIT=1e-6; MIN=25; MAX=100;}}
...

}

If the area covering the routing space is smaller than 25mm2, thesmall_wire model shall be
chosen. If the area covering the routing space is between 25mm2 and 100mm2, thelarge_wire

model is chosen. The unit for area is 1mm2.

To enable customized wire model selection, more annotations using theUSAGE keyword can
also be introduced.

A.10 Megacell modeling

This section describes how to model megacells.

A.10.1 Expansion of timing arcs

GROUPcan be used for sets of numbers or for a continuous range of numbers. This can be useful
for defining timing arcs between all bits of two vectors. For example,

GROUP adr_bits {1 2 3}
GROUP data_bits {1 2}
VECTOR (01 adr[adr_bits] -> 01 dout[data_bits]) { ... }

replaces the following statements:

VECTOR (01 adr[1] -> 01 dout[1]) { ... }
VECTOR (01 adr[2] -> 01 dout[1]) { ... }
VECTOR (01 adr[3] -> 01 dout[1]) { ... }
VECTOR (01 adr[1] -> 01 dout[2]) { ... }
VECTOR (01 adr[2] -> 01 dout[2]) { ... }
VECTOR (01 adr[3] -> 01 dout[2]) { ... }

The following example shows bit-wise expansion of two vectors:

GROUP data_bits {1 2}
VECTOR (01 din[data_bits] -> 01 dout[data_bits]) { ... }

This replaces the following statements:

VECTOR (01 din[1] -> 01 dout[1]) { ... }
VECTOR (01 din[2] -> 01 dout[2]) { ... }

336 Advanced Library Format (ALF) Reference Manual Version 2.0

Sample Applications

Example for byte-wise (or sub-word-wise) expansion:

GROUP low_byte {1 2}
GROUP high_byte {3 4}
VECTOR (01 we[0] -> 01 din[low_byte]) { ... }
VECTOR (01 we[1] -> 01 din[high_byte]) { ... }

This replaces the following statements:

VECTOR (01 we[0] -> 01 din[1]) { ... }
VECTOR (01 we[0] -> 01 din[2]) { ... }
VECTOR (01 we[1] -> 01 din[3]) { ... }
VECTOR (01 we[1] -> 01 din[4]) { ... }

A.10.2 Two-port memory

The memory model example below shows the use of abstract transition operators on words in
various vectors. This example also contains some vectors with distinction between events on
row and column address lines.

CELL async_1write_1read_ram {
GROUP col {1:0}
GROUP row {4:2}
GROUP all {row col}
GROUP byte{7:0}
GROUP * {0:31}
PIN enable_write {DIRECTION = input}
PIN [4:0] adr_write {DIRECTION = input}
PIN [4:0] adr_read {DIRECTION = input}
PIN [7:0] data_write {DIRECTION = input}
PIN [7:0] data_read {DIRECTION = output}
PIN [7:0] data_store [0:31] {DIRECTION = output VIEW = none}

FUNCTION {
BEHAVIOR {

data_read = data_store[adr_read];
@(enable_write) {data_store[adr_write] = data_write;}

}
}

VECTOR
(?! adr_read[col] -> ?? data_read[byte]) {

/* fill in arithmetic models for delay and power */
}
VECTOR
(?! adr_read[row] -> ?? data_read[byte]) {

/* fill in arithmetic models for delay and power */
}
VECTOR
((?!adr_read[col] && ?!adr_read[row]) -> ?? data_read[byte]){

/* fill in arithmetic models for delay and power */
}
VECTOR (01 enable_write -> ?? data_read[byte]) {

/* fill in arithmetic models for delay and power */
}

Version 2.0 Advanced Library Format (ALF) Reference Manual 337

Sample Applications

VECTOR (?! data_write[byte] -> ?? data_read[byte]) {
/* fill in arithmetic models for delay and power */

}

VECTOR (?! adr_write[col]) {
/* fill in arithmetic models for power */

}
VECTOR (?! adr_write[row]) {

/* fill in arithmetic models for power */
}
VECTOR (?! adr_write[row] && ?! adr_write[col]) {

/* fill in arithmetic models for power */
}
VECTOR (01 enable_write) {

/* fill in arithmetic models for power */
}
VECTOR (10 enable_write) {

/* fill in arithmetic models for power */
}
VECTOR (?! data_write[byte] && !enable_write) {

/* fill in arithmetic models for power */
}
VECTOR (?! data_write[byte] && enable_write) {

/* fill in arithmetic models for power */
}

}
VECTOR (?! adr_write[all] <-> 01 enable_write) {

SETUP {
VIOLATION {

BEHAVIOR { data_store[*] = 'bxxxxxxxx; }
MESSAGE_TYPE = error;
MESSAGE =

"setup violation: changing 'adr_write' -> rising 'enable_write',
memory -> 'X'";

}
FROM { pin = adr_write; }
TO { pin = enable_write; }
/* fill in header, table or equation */

}
}
VECTOR (10 enable_write <-> ?! adr_write[all]) {

HOLD {
VIOLATION {

BEHAVIOR { data_store[*] = 'bxxxxxxxx; }
MESSAGE_TYPE = error;
MESSAGE =

"hold violation: falling 'enable_write' -> changing 'adr_write',
memory -> 'X'";

}
FROM { pin = enable_write; }
TO { pin = adr_write; }
/* fill in header, table or equation */

}
}

338 Advanced Library Format (ALF) Reference Manual Version 2.0

Sample Applications

VECTOR (?! data_write[byte] <-> 10 enable_write) {
SETUP {

VIOLATION {
BEHAVIOR { data_store[adr_write] = 'bxxxxxxxx; }
MESSAGE_TYPE = error;
MESSAGE =

"setup violation: changing 'data_write' -> falling 'enable_write',
memory[adr_write] -> 'X'";

}
FROM { pin = data_write; }
TO { pin = enable_write; }
/* fill in header, table or equation */

}
HOLD {

VIOLATION {
BEHAVIOR { data_store[adr_write] = 'bxxxxxxxx; }
MESSAGE_TYPE = error;
MESSAGE =

"hold violation: falling 'enable_write' -> changing 'data_write',
memory[adr_write] -> 'X'";

}
FROM { pin = enable_write; }
TO { pin = data_write; }
/* fill in header, table or equation */

}
}
VECTOR (01 enable_write -> 10 enable_write) {

PULSEWIDTH {
VIOLATION {

MESSAGE_TYPE = error;
MESSAGE = "pulsewidth violation: high 'enable_write'";

}
PIN = enable_write;
/* fill in header, table or equation */

}
}
VECTOR (10 enable_write -> 01 enable_write) {

PULSEWIDTH {
VIOLATION {

MESSAGE_TYPE = error;
MESSAGE = "pulsewidth violation: low 'enable_write'";

}
PIN = enable_write;
/* fill in header, table or equation */

}
}

}

The energy consumption for each operation depends on the number of switching bits of the bus.
Therefore, the model for power inside a particular vector can look like this:

Version 2.0 Advanced Library Format (ALF) Reference Manual 339

Sample Applications

VECTOR (?! data_write && enable_write) {
ENERGY {

UNIT = pJ;
HEADER {switching_bits {PIN = data_write;}}
EQUATION {1.3 * switching_bits}

}
}

The rule that the address on a write port shall not change during write-enable high can be
incorporated easily in the functional model. A pessimistic model assumes the whole memory
content shall become unknown if such an illegal address change occurs.

BEHAVIOR {
data_read = data_store[adr_read];
@(enable_write) {data_store[adr_write] = data_write;}
@(!?adr_write && enable_write)

{data_store[*] = 'bxxxxxxxx;}
}

A.10.3 Three-port memory

Functional models of more complex memories are also straightforward. The conflicts of
writing to one memory location simultaneously from different ports can be modeled in a
pessimistic way as follows:

CELL async_2write_1read_ram {
PIN enb_write1 {DIRECTION = input;}
PIN enb_write2 {DIRECTION = input;}
PIN [4:0] adr_write1 {DIRECTION = input;}
PIN [4:0] adr_write2 {DIRECTION = input;}
PIN [4:0] adr_read {DIRECTION = input;}
PIN [7:0] data_write1 {DIRECTION = input;}
PIN [7:0] data_write2 {DIRECTION = input;}
PIN [7:0] data_read {DIRECTION = output;}
PIN [7:0] data_store [0:31] {DIRECTION = output; VIEW = none;}
FUNCTION {

BEHAVIOR {
data_read = data_store[adr_read];
@(enb_write1 & !enb_write2)

{data_store[adr_write1] = data_write1;}
@(enb_write2 & !enb_write1)

{data_store[adr_write2] = data_write2;}
@(enb_write1 & enb_write2 && adr_write1!=adr_write2) {

data_store[adr_write1] = data_write1;
data_store[adr_write2] = data_write2;

}
@(enb_write1 & enb_write2 && adr_write1==adr_write2) {

data_store[adr_write1] =
(data_write1==data_write2)? data_write1:8'bx;

data_store[adr_write2]
(data_write2==data_write1)? data_write2:8'bx;

340 Advanced Library Format (ALF) Reference Manual Version 2.0

Sample Applications

}
}

}
}

A.10.4 Annotation for pins of a bus

Annotations of numeric values to a bus apply to the total bus, not to each individual pin.

Example:

PIN [1:4] my_bus_pin {
CAPACITANCE = 0.04 ;

}

The total bus pin capacitance is 0.4 ; the capacitance values on each individual pin are not
defined.

The individual pin capacitance can be defined as follows:

PIN [1:4] my_bus_pin {
CAPACITANCE c1 = 0.01 { PIN = my_bus_pin[1]; }
CAPACITANCE c2 = 0.01 { PIN = my_bus_pin[2]; }
CAPACITANCE c3 = 0.01 { PIN = my_bus_pin[3]; }
CAPACITANCE c4 = 0.01 { PIN = my_bus_pin[4]; }

}

A.10.5 Skew for simultaneously switching signals on a bus

Vectors with simultaneously switching bits on a bus can contain a specification of the allowed
skew in order to be still considered as simultaneously switching bits.

Example:

PIN [1:3] address;
VECTOR (?! address)

SKEW {
PIN = address;
/* fill in data */

}
}

SKEWapplied to a bus pin is the maximal allowed time window between the earliest and latest
edge within simultaneously switching signals of a bus.

The multiple value annotation feature allows the definition of a group of pins equivalent to a
bus forSKEW modeling in the following way:

PIN A;
PIN [1:4] B;
VECTOR (?! A && ?! B)

SKEW { PIN { A B[2:3] } }
}

Version 2.0 Advanced Library Format (ALF) Reference Manual 341

Sample Applications

SKEW applies to the group of pinsA, B[2] , andB[3] . The following example is semantically
different, since this results in expansion of each object where the group is instantiated:

PIN A;
PIN [1:4] B;
GROUP my_group { A B[2] B[3] }
VECTOR (?! my_group)

SKEW { PIN = my_group; }
}

The expansion yields the following:

PIN A;
PIN [1:4] B;
VECTOR (?! A)

SKEW { PIN = A ; }
}
VECTOR (?! B[2])

SKEW { PIN = B[2] ; }
}
VECTOR (?! B[3])

SKEW { PIN = B[3] ; }
}

See Section B.2.7 for the definition ofSKEW for scalar pins.

A.11 Special cells

This section describes how to model special cells.

A.11.1 Pulse generator

The following cell generates a one-shot pulse of1 ns duration when enable goes high.

CELL one_shot {
PIN enable {DIRECTION = input;}
PIN q {DIRECTION = output;}
FUNCTION {

BEHAVIOR {
@(01 enable) {q = 1;}
@(q) {q = 0;}

}
}
VECTOR (01 q -> 10 q) {

DELAY = 1.0 {UNIT = ns;}
}

}

A.11.2 VCO

The following cell is a voltage controlled oscillator with 50% duty cycle and enable.

342 Advanced Library Format (ALF) Reference Manual Version 2.0

Sample Applications

CELL vco {
PIN enable {DIRECTION = input; PINTYPE = digital;}
PIN v_in {DIRECTION = input; PINTYPE = analog;}
PIN q {DIRECTION = output; PINTYPE = digital;}
FUNCTION {

BEHAVIOR {
@(!enable) {q = 0;}
@(!q & enable) {q = 1;}
@(q & enable) {q = 0;}

}
}
TEMPLATE voltage_controlled_delay {

DELAY {
UNIT = ns;
HEADER {

voltage {
PIN = v_in;
TABLE {0.5 1.0 1.5 2.0 2.5 3.0}

}
}
TABLE {10.00 5.00 3.33 2.50 2.00 1.67}

}
}
VECTOR (01 q -> 10 q)

voltage_controlled_delay
}
VECTOR (10 q -> 01 q)

voltage_controlled_delay
}

}

The template shown above can also be written as an equation to map voltage to frequency:

TEMPLATE voltage_controlled_delay {
DELAY {

UNIT = ns;
HEADER {voltage {PIN = v_in;}}
EQUATION {5.0 / voltage}

}
}

A.12 Core modeling (using a digital filter)

This example illustrates the potential of ALF for modeling complex blocks. It shows a digital
filter performing the following operation

dout(t) = state(t) + b1 * state(t-1) + b2 * state(t-2)
state(t) = din(t) - a1 * state(t-1) - a2 * state(t-2)

This second order infinite impulse response (IIR) filter is implemented with a single multiplier
and a single adder/subtractor in a way that a newdout is produced every four clock cycles. The
variable coefficientsa1, a2, b1, andb2 are stored in a dual port RAM.

Version 2.0 Advanced Library Format (ALF) Reference Manual 343

Sample Applications

The model uses templates for the functional blocks of a two-bit counter used as the controller
for memory access and I/O operation, a RAM for coefficient storage, and the filter itself. They
are instantiated as a structural netlist in the top module.

The use of templates is more general than the use of primitives, since not all basic blocks of the
core might be supported as primitives.

LIBRARY core_lib {
TEMPLATE CNT2 {

BEHAVIOR {
@ (!<cd>) {<cnt> = 2'b0;}
: (01 <cp>) {<cnt> = <start> ? 2'b0 : <cnt> + 1;}

}
}

TEMPLATE RAM16X4 {
BEHAVIOR {

<dout> = <dmem>[<r_adr>];
@ (<we>) {<dmem>[<w_adr>] = <din>;}

}
}

TEMPLATE IIR2 {
BEHAVIOR {

sum =
(<cntrl>=='d0)? <din> - product :
(<cntrl>=='d1)? accu - product :
(<cntrl>=='d2)? accu + product :
(<cntrl>=='d3)? accu + product;

@ (!<cd>) {
product = 16'b0;
accu = 16'b0;

}
: (01 <cp>){

product =
(<cntrl>=='d0)? coeff * state2 :
(<cntrl>=='d1)? coeff * state1 :
(<cntrl>=='d2)? coeff * state2 :
(<cntrl>=='d3)? coeff * state1 :
16'bX;

accu = sum;
}
@ (!<cd>) {

<dout> = 16'b0;
state1 = 16'b0;
state2 = 16'b0;

}
: (01 <cp> && <cntrl>=='d0){

state2 = state1;
state1 = accu;
<dout> = accu;

}
}

}

344 Advanced Library Format (ALF) Reference Manual Version 2.0

Sample Applications

CELL digital_filter {
PIN [15:0] data_out {DIRECTION = output;}
PIN [15:0] data_in {DIRECTION = input;}
PIN [1:0] index_coeff {DIRECTION = input;}
PIN write_coeff {DIRECTION = input;}
PIN [15:0] coeff_in {DIRECTION = input;}
PIN [15:0] coeff_out {DIRECTION = output; VIEW = none;}
PIN [15:0] coeff_array [1:4] {DIRECTION = output; VIEW = none;}
PIN data_strobe {DIRECTION = input;}
PIN [1:0] count {DIRECTION = output VIEW = none;}
PIN clock {DIRECTION = input;}
PIN reset {DIRECTION = input;}
FUNCTION {

IIR2 { din=data_in; dout=data_out; coeff=coeff_out;
cp=clock; cd=reset; cntrl = count;}

CNT2 { start=data_strobe; cnt=count; ck=clock; cd=reset;}
RAM16X4{ we=write_coeff; din=coeff_in; dout=coeff_out;

dmem=coeff_array; r_adr=count; w_adr=index_coeff;}
}

}
}

A.13 Connectivity

Connectivity information can be specified within the definition of the ALF language format as
described below. A connectivity object always contains a rule specifying the type of
connections (e.g., must short, can short, or cannot short) and a table. If no header is given, then
the table contains the pins or pin classes subject to the connectivity rule. If a header is given,
then the table contains the values of the connectivity function between arguments in the header.
There shall be a table inside each connectivity argument, containing the pins or pin classes
subject to the connectivity rule. Valid arguments areDRIVER and/orRECEIVER. Valid values
are the boolean digits0, 1, and?. The value1 implies the connection rule isTrue, the value0
implies the connection rule isFalse, the value? implies a “don’t care” situation with the
connection rule.

A.13.1 External connections between pins of a cell

The following example shows how to specify required and disallowed interconnections
external to a cell.

CELL pll {
PIN vdd_ana {PINTYPE=supply;}
PIN vdd_dig {PINTYPE=supply;}
PIN vss_ana {PINTYPE=supply;}
PIN vss_dig {PINTYPE=supply;}
CONNECTIVITY common_ground {

CONNECT_RULE = must_short;
TABLE {vss_ana vss_dig}

Version 2.0 Advanced Library Format (ALF) Reference Manual 345

Sample Applications

CONNECTIVITY separate_supply {
CONNECT_RULE = cannot_short;
TABLE {vdd_ana vdd_dig}

}
}

A.13.2 Allowed connections for classes of pins

The following example defines allowable pin interconnections. The constants for the desired
connectivity classes, the grouping of these classes, and the allowable class connectivity table
are first defined at the library level. The non-zero values within the matrix specify allowable
connectivity of indexed classes. The connectivity classes for pins are then specified with the
pin annotation sections.

LIBRARY example_library {
...
CLASS default_class;
CLASS clock_class;
CLASS enable_class;
CLASS reset_class;
CLASS tristate_class;
...
TEMPLATE drivers {

default_class
clock_class
enable_class
reset_class
tristate_class

}
TEMPLATE receivers {

default_class
clock_class
enable_class
reset_class

}
CONNECTIVITY driver_to_driver {

CONNECT_RULE = can_short;
HEADER {

DRIVER {TABLE {drivers}}
}
TABLE {// def clk enb rst tri

 0 0 0 0 1
}

}
CONNECTIVITY receiver_to_receiver {

CONNECT_RULE = can_short;
HEADER {

RECEIVER {TABLE {receivers}}
}
TABLE {// def clk enb rst

 1 1 1 1
}

}

346 Advanced Library Format (ALF) Reference Manual Version 2.0

Sample Applications

CONNECTIVITY driver_to_receiver {
CONNECT_RULE = can_short;
HEADER {

DRIVER {TABLE {drivers}}
RECEIVER {TABLE {receivers}}

}
TABLE {// def clk enb rst tri // driver/receiver

1 1 1 1 0 // def
0 1 0 0 0 // clk
0 0 1 0 0 // enb
0 0 0 1 0 // rst

}
}

The above table specifies the applicable connectivity from each class to itself, as well as from
each class to thedefault_class , except for thetristate_class class (which can only
connect to itself). While any class can connect to thedefault_class , thedefault_class can
only connect to itself.

Once the library level connectivity is defined, connection class specifications are defined for
each pin within cells. The default integer value for theCLASS annotation is0, which
corresponds to the constant declaration value fordefault_class .

CELL d_flipflop_clr {
PIN cd {DIRECTION = input; SIGNALTYPE = clear;

 POLARITY = low; CONNECT_CLASS = reset_class;}
PIN cp {DIRECTION = input; SIGNALTYPE = clock;

 POLARITY = rising_edge; CONNECT_CLASS = clock_class;}
PIN d {DIRECTION = input;}
PIN q {DIRECTION = output; CONNECT_CLASS = default_class;}

}

CELL d_latch {
PIN g {DIRECTION = input; SIGNALTYPE = enable;

 POLARITY = high; CONNECT_CLASS = enable_class;}
PIN d {DIRECTION = input; CONNECT_CLASS = default_class;}
PIN q {DIRECTION = output; CONNECT_CLASS = default_class;}

}

CELL tristate_buffer {
PIN a {DIRECTION = input;}
PIN enable {DIRECTION = input; CONNECT_CLASS = enable_class;}
PIN z {DIRECTION = output; CONNECT_CLASS = tristate_class;}
...

}

Net-specific connectivity, as opposed to the pin-specific connectivity shown above, is also
possible within the syntax of the language, since aCLASS is not restricted to pins. Specific
applications can assign all pins of a specific type, as well as nets like power and ground rails
to a defined class. This class can be used within the connectivity tables to allow or disallow
certain connectivity.

For example, ifvddrail_class is defined as a net-specific connectivity class, then a specific
pin can be disallowed from connecting to any net in thevddrail_class connectivity class.

Version 2.0 Advanced Library Format (ALF) Reference Manual 347

Sample Applications

CLASS vddrail_class
...
CELL inverter {

PIN in_pin {DIRECTION = input; SIGNALTYPE = clear;
POLARITY = low; CONNECT_CLASS = reset_class;}

CONNECTIVITY dont_tie {
CONNECT_RULE = cannot_short;
TABLE {in_pin vddrail_class}

}
...

}

A.14 Signal integrity

This section describes how to model signal integrity.

A.14.1 I/V curves

I/V curves describe the driven or drawn current at a pin as a function of the voltage at one or
several pins. The following example describes the output current of a buffer as a function of
the input and output voltage with a two-dimensional lookup table.

CELL simple_buffer {
PIN z { DIRECTION = output; }
PIN a { DIRECTION = input; }
// current @ z dependent on voltage @ z and @ a
CURRENT {

PIN = z;
UNIT = ma;
HEADER {

VOLTAGE vout {
PIN = z;
TABLE { 0.0 0.5 1.0 1.5 2.0 2.5 3.0 }

}
VOLTAGE vin {

PIN = a;
TABLE { 0.0 1.0 2.0 3.0 }

}
}
TABLE {

5.0 5.0 4.8 4.2 3.2 1.6 0.0
2.5 1.5 0.2 -0.4 -1.8 -2.7 -3.5
1.2 0.1 -1.3 -1.9 -2.5 -3.8 -4.6
0.0 -2.0 -3.8 -4.7 -5.5 -6.2 -6.3

}
}
// fill in function, vector and other stuff

}

An equation can also be used instead of a lookup table, for example:

348 Advanced Library Format (ALF) Reference Manual Version 2.0

Sample Applications

CURRENT {
PIN = z;
UNIT = ma;
HEADER {

VOLTAGE vout {
PIN = z;

}
VOLTAGE vin {

PIN = a;
}

}
EQUATION {

(1 - exp(6.3 - 2.4*vout))*exp(0.9 - 0.3*vin)
- (1 - exp(3.2*vout))*exp(0.3*vin)

}
}

A buffer can have programmable drive strength controlled by the state of additional input pins.
State-dependent I/V curves can be described by vector-specificCURRENT models.

CELL programmable_drive_strength_buffer {
PIN z { DIRECTION = output; }
PIN a { DIRECTION = input; }
// control pins for drive strength
PIN p1 { DIRECTION = input; }
PIN p2 { DIRECTION = input; }
VECTOR (!p1 & !p2) {

CURRENT {
// fill in the model

}
}
VECTOR (!p1 & p2) {

CURRENT {
// fill in the model

}
}
VECTOR (p1 & !p2) {

CURRENT {
// fill in the model

}
}
VECTOR (p1 & p2) {

CURRENT {
// fill in the model

}
}

}

It is also possible to describe other analog cell characteristics (state-dependent or state-
independent), for instance, voltage versus voltage, frequency versus voltage, or current versus
temperature, in the same way.

Version 2.0 Advanced Library Format (ALF) Reference Manual 349

Sample Applications

A.14.2 Driver resistance

Driver resistance is used to model the transient behavior of signals especially for crosstalk. The
drivers are modeled by voltage sources and driver resistances, as illustrated in Figure A-4.

Figure A-4: Modeling driver resistance

The idea here is to use linear circuit theory for the analysis of multiple drivers interacting with
coupled RC-interconnect networks. In reality, the drivers have non-linear resistance. The linear
resistance is a model of the non-linear resistance with the best-fitting linear resistance.
Therefore, the driver resistance is state-dependent and eventually also load- and slewrate
dependent, because the best-fitting value for driver resistance is different for different states
and different ranges of load and slewrates.

The following example shows a buffer featuring different driver resistance values for static low
and high states, and tables of slewrate- and load-dependent transient driver resistance values
for rise and fall transitions.

cell simple_buffer {
PIN z { DIRECTION = output; }
PIN a { DIRECTION = input; }
// state-dependent static driver resistance
VECTOR (!z) {

RESISTANCE = 0.7k { PIN = z; }
}
VECTOR (z) {

RESISTANCE = 1.2k { PIN = z; }
}

// slew & load dependent transient driver resistance
VECTOR (01 a -> 01 z) {

RESISTANCE {
PIN = z;
UNIT = kohm;
HEADER {

CAPACITANCE {
PIN = z;
UNIT = pfarad;

Vo
ut

(t
)

Rdriver

Cload

driver model

V0(t)=
f(Vin(t))

Vo
ut

(t
) Cload

real driver

V
in

(t
) interconnect

circuitry
interconnect
circuitry

350 Advanced Library Format (ALF) Reference Manual Version 2.0

Sample Applications

TABLE { 0.1 0.4 1.6 }
}
SLEWRATE {

PIN = a;
UNIT = nsec;
TABLE { 0.5 1.5}

}
TABLE { 1.4 1.3 1.3 1.6 1.4 1.3 }

}
}
VECTOR (10 a -> 10 z) {

RESISTANCE {
PIN = z;
UNIT = kohm;
HEADER {

CAPACITANCE {
PIN = z;
UNIT = pfarad;
TABLE { 0.1 0.4 1.6 }

}
SLEWRATE {

PIN = a;
UNIT = nsec;
TABLE { 0.5 1.5}

}
TABLE { 0.9 0.8 0.8 1.1 0.9 0.8 }

}
}

}

The transient driver resistance can also be state-dependent, for example, in the case of a buffer
with programmable drive-strength.

CELL programmable_drive_strength_buffer {
PIN z { DIRECTION = output; }
PIN a { DIRECTION = input; }
// control pins for drive strength
PIN p1 { DIRECTION = input; }
PIN p2 { DIRECTION = input; }
// state-dependent static driver resistance
VECTOR (!z & !p1 & !p2) {

RESISTANCE = 0.7k { PIN = z; }
}
VECTOR (!z & !p1 & p2) {

RESISTANCE = 0.6k { PIN = z; }
}
VECTOR (!z & p1 & !p2) {

RESISTANCE = 0.5k { PIN = z; }
}
VECTOR (!z & p1 & !p2) {

RESISTANCE = 0.4k { PIN = z; }
}
VECTOR (z & !p1 & !p2) {

RESISTANCE = 1.2k { PIN = z; }
}

Version 2.0 Advanced Library Format (ALF) Reference Manual 351

Sample Applications

VECTOR (z & !p1 & p2) {
RESISTANCE = 1.0k { PIN = z; }

}
VECTOR (z & p1 & !p2) {

RESISTANCE = 0.8k { PIN = z; }
}
VECTOR (z & p1 & p2) {

RESISTANCE = 0.6k { PIN = z; }
}
// slew & load and state dependent transient driver resistance
VECTOR (01 a -> 01 z && !p1 & !p2) {

RESISTANCE {
// fill in the model

}
VECTOR (01 a -> 01 z && !p1 & p2) {

RESISTANCE {
// fill in the model

}
VECTOR (01 a -> 01 z && p1 & !p2) {

RESISTANCE {
// fill in the model

}
VECTOR (01 a -> 01 z && p1 & p2) {

RESISTANCE {
// fill in the model

}
VECTOR (10 a -> 10 z && !p1 & !p2) {

RESISTANCE {
// fill in the model

}
VECTOR (10 a -> 10 z && !p1 & p2) {

RESISTANCE {
// fill in the model

}
VECTOR (10 a -> 10 z && p1 & !p2) {

RESISTANCE {
// fill in the model

}
VECTOR (10 a -> 10 z && p1 & p2) {

RESISTANCE {
// fill in the model

}
}

The model for transient driver resistance has the same form as a slewrate- and load-dependent
model for delay. Voltage-, process-, and temperature-dependent driver resistance can also be
modeled in the same way as voltage-, process-, and temperature-dependent delay.

A.15 Resistance and capacitance on a pin

This section describes how to model pin resistance and capacitance.

352 Advanced Library Format (ALF) Reference Manual Version 2.0

Sample Applications

A.15.1 Self-resistance and capacitance on input pin

A pin resistance is a resistance inside aPIN object.

PIN <pin_identifier> {
DIRECTION = input;
RESISTANCE = <resistance_value>;
CAPACITANCE = <capacitance_value>;

}

The pin resistance is in series with the pin capacitance, as shown in Figure A-5.

Figure A-5: Resistance and capacitance on a pin

A.15.2 Pullup and pulldown resistance on input pin

A pullup or pulldown resistance, or a combination of both on an input pin, can be described as
follows:

PIN <pin_identifier> {
DIRECTION = input;
PULL = < up | down | both > {

VOLTAGE = <voltage_value>;
RESISTANCE = <resistance_value>;

}
}

The pullup/pulldown resistance is in series with a clamp voltage, as shown in Figure A-6.

Figure A-6: Pullup or pulldown resistance

In the case of a pullup/pulldown combination, the resistance and voltage represent the
Thevenin equivalent resistance and voltage, respectively, as shown in Figure A-7.

input pin

pin resistance

pin capacitance

input pin

pullup or pulldown resistance

clamp voltage

Version 2.0 Advanced Library Format (ALF) Reference Manual 353

Sample Applications

Figure A-7: Thevenin equivalent resistance

A.15.3 Pin and load resistance and capacitance on an output pin

The driver resistance (see Section A.14.2) can also be represented as a pin capacitance of an
output pin, where there is no state dependency.

PIN <pin_identifier> {
DIRECTION = output;
CAPACITANCE = <capacitance_value>;
RESISTANCE {

RISE = <rise_resistance_value>;
FALL = <rise_resistance_value>;

}
}

Note the distinction of capacitance and resistance of the pin itself and capacitance and
resistance applied as load to the pin in Figure A-8. The load capacitance and resistance are
specified in a characterization vector (see Section A.4).

Figure A-8: Resistance and capacitance on an output pin

input pin

equivalent resistance

equivalent voltage

input pin

R = R1*R0 / (R1 + R0)

V1

V0

R1

R0

V = (V1*R0 + V0*R1) / (R1 + R0)

Thevenin
Equivalent

pulldown

pullup

resistance

resistance

output pin
pin resistance

load capacitancedriver signal pin capacitance

load resistance

(rise or fall)

354 Advanced Library Format (ALF) Reference Manual Version 2.0

Sample Applications

Version 2.0 Advanced Library Format (ALF) Reference Manual 355

Appendix B

ALF/SDF Cross Reference

This section provides a cross reference between the representation of timing data in ALF and
SDF. In general, ALF is used as a characterization library, which is the input to a delay
calculator, whereas SDF is the output from a delay calculator. Therefore, ALF typically
contains tables or equations (i.e., arithmetic models) for timing data, whereas SDF contains a
discrete set of data in fixed format. However, in an ALF representation of timing shells for
cores, which are typically represented in SDF today, the ALF library contains the same data as
the SDF.

The specification of the stimulus for a particular timing measurement (i.e., the timing diagram)
is pertinent to both ALF and SDF. In ALF, timing diagrams are directly described in the vector
expression language, and the timing measurements are always specified in relation to a
particular timing vector. In SDF, timing diagrams are partly described in the language and
partly implied by the keyword for timing measurements. Therefore SDF needs a larger set of
keywords than ALF for the same description capability.

B.1 SDF delays

This section details the different types of SDF delays.

B.1.1 SDF DELAY for IOPATH and INTERCONNECT

A DELAY is a measurement of the time needed for a signal to travel from one port to another
port. In ALF, delay measurements are described in a uniform language, independent of whether
A andZ are the input and output port of the same cell, respectively, the driver and receiver
connected to the same net, or both outputs of a cell. Therefore, the SDF keywordsIOPATHand
INTERCONNECT have no counterpart in ALF.

VECTOR (01 A -> 01 Z) {
DELAY {

FROM {PIN = A;}
TO {PIN = Z;}
/* fill in data */

}
}

This ALF VECTOR describes the sequence of events shown in Figure B-1:

rising edge at A followed by rising edge at Z.

TheFROM andTO pin annotations define the sense of measurement forDELAY.

356 Advanced Library Format (ALF) Reference Manual Version 2.0

ALF/SDF Cross Reference

Figure B-1: Measurement of SDF IOPATH or INTERCONNECT delay

As opposed to SDF, where input ports of anIOPATHcan have an edge specification and output
ports can not, the vector expression language in ALF always contains the specification of the
edge:

rising edge = “01”, falling edge = “10”, any edge = “?!”.

B.1.2 SDF PATHPULSE

A PATHPULSE in SDF defines the smallest pulse that can appear at a port in form of

• a full-swing pulse

• a pulse to X.

The equivalent model in ALF uses two vectors in conjunction with the keywordPULSEWIDTH.1

The ALF keywords are of more general use than the SDFPATHPULSE keyword, which is just
for one specific use.

VECTOR (01 Z -> 10 Z) {
PULSEWIDTH {

PIN = Z;
/* fill in data */

}
}

This ALF VECTOR describes the sequence of events shown in Figure B-2:

rising edge at Z followed by falling edge at Z.

The smallest possible full-swing pulse applies at pinZ.

1. The same keywordPULSEWIDTHis also used for a timing constraint in ALF. The semantic meaning
in both usage cases is consistent:PULSEWIDTH =smallest possible pulse at output or smallest
allowed pulse at input. Therefore, the usage of the same keyword is justified.

delay

A

Z

Version 2.0 Advanced Library Format (ALF) Reference Manual 357

ALF/SDF Cross Reference

Figure B-2: Measurement of SDF PATHPULSE full-swing

VECTOR ('b0'bX Z -> 'bX'b0 Z) {
PULSEWIDTH {

PIN = Z;
/* fill in data */

}
}

This ALF VECTOR describes the sequence of events shown in Figure B-3:

rising edge at Z from 0 to X followed by falling edge at Z from X to 0.

The smallest possible pulse toX applies at pinZ.

Figure B-3: Measurement of SDF PATHPULSE to X

VECTOR (01 A -> 10 B -> 01 Z -> 10 Z) {
PULSEWIDTH {

PIN = Z;
/* fill in data */

}
}

This ALF VECTOR describes the sequence of events shown in Figure B-4:

rising edge at A followed by falling edge at B followed by rising edge at Z followed by fall-
ing edge at Z.

This is a detailed specification of the pulse itself at pinZ, as well as of the triggering input
signalsA andB.

pulsewidth

Z

pulsewidth

Z XXXXXXXXXXX

358 Advanced Library Format (ALF) Reference Manual Version 2.0

ALF/SDF Cross Reference

Figure B-4: Measurement of SDF PATHPULSE with triggering inputs

B.1.3 SDF RETAIN delays

A RETAIN delay in SDF is a measurement of the time when an output signal shall retain its
value after a change at a related input signal occurs. It appears always in conjunction with a
IOPATH delay, which is the time for which an output shall stabilize after changing its value.

RETAIN is mainly used for asynchronous memories, where decoder glitches can appear at the
data output port.

VECTOR (01 A -> ?! Z) {
RETAIN {

FROM {PIN = A;}
TO {PIN = Z;}
/* fill in data */

}
DELAY {

FROM {PIN = A;}
TO {PIN = Z;}
/* fill in data */

}
}

This ALF VECTOR describes the sequence of events shown in Figure B-5:

rising edge at A followed by any edge at Z.

The intermediate events atZ, occurring eventually between retain and delay time, are not
specified.

Figure B-5: RETAIN and IOPATH delay

pulsewidth

A

B

Z

A

Z

retain

XXXXXXXX

delay

Version 2.0 Advanced Library Format (ALF) Reference Manual 359

ALF/SDF Cross Reference

B.1.4 SDF PORT delays

A PORTdelay in SDF is a delay measurement with unspecified start point, since the start point
is going to be established by a connection to a driver in the design and not in the library.

VECTOR (01 A) {
DELAY {

TO {PIN = A;}
/* fill in data */

}
}

This ALF VECTOR describes the event shown in Figure B-6:

rising edge at A.

The absence of aFROMpin defines the absence of a start point, which corresponds to the exact
meaning ofPORT in SDF.

Figure B-6: SDF PORT delay

ALF also has the capability of describing a delay measurement with unspecified end point.

VECTOR (01 Z) {
DELAY {

FROM {PIN = Z;}
/* fill in data */

}
}

Hence, ALF provides the description capability for both a delay from unspecified driver to
specified receiver and a delay from specified driver to unspecified receiver.

B.1.5 SDF DEVICE delays

A DEVICE delay in SDF is a delay that applies from all input ports of a device to one specific
output port or to all output ports by default.

The ALF vector expression language has no notion of “all input ports of a device”. ALF has a
more general capability of declaring groups of pins and define delays from group to group or
from group to pin or from pin to group.

delay

A

360 Advanced Library Format (ALF) Reference Manual Version 2.0

ALF/SDF Cross Reference

GROUP any_input { A B }
GROUP any_output { Y Z }
VECTOR (01 any_input -> 01 any_output) {

DELAY {
FROM {PIN = any_input;}
TO {PIN = any_output;}
/* fill in data */

}
}

This ALF VECTOR describes the event

rising edge at any_input (i.e., A or B) followed by rising edge at any_output (i.e., Y or Z).

This construct is equivalent to the following four vectors:

VECTOR (01 A -> 01 Y) {
DELAY {

FROM {PIN = A;}
TO {PIN = Y;}
/* fill in data */

}
}
VECTOR (01 B -> 01 Y) {

DELAY {
FROM {PIN = B;}
TO {PIN = Y;}
/* same data */

}
}
VECTOR (01 A -> 01 Z) {

DELAY {
FROM {PIN = A;}
TO {PIN = Z;}
/* same data */

}
}
VECTOR (01 B -> 01 Z) {

DELAY {
FROM {PIN = B;}
TO {PIN = Z;}
/* same data */

}
}

B.2 SDF timing constraints

This section details the different types of SDF timing constraints.

B.2.1 SDF SETUP

A SETUP in SDF is the minimal time required for a data signal to arrive before the sampling
edge of a clock signal in order to be sampled correctly.

Version 2.0 Advanced Library Format (ALF) Reference Manual 361

ALF/SDF Cross Reference

VECTOR (?! din -> 01 clk) {
SETUP {

FROM {PIN = din;}
TO {PIN = clk;}
/* fill in data */

}
}

This ALF VECTOR describes the sequence of events shown in Figure B-7:

any edge at din followed by rising edge at clk.

TheFROMandTOpin annotations define the sense of measurement forSETUP. Since setup time
is measured in positive sense from data to clock,din is the data pin andclk is the clock pin.

Figure B-7: Measurement of SDF SETUP

B.2.2 SDF HOLD

A HOLDin SDF is the minimal non-negative time required for a data signal to stay at its value
after the sampling edge of a clock signal in order to be sampled correctly.

VECTOR (01 clk -> ?! din) {
HOLD {

FROM {PIN = clk;}
TO {PIN = din;}
/* fill in data */

}

This ALF VECTOR describes the sequence of events as shown in Figure B-8:

rising edge at clk followed by any edge at din.

TheFROMandTOpin annotations define the sense of measurement forHOLD. Since hold time is
measured in positive sense from clock to data,clk is the clock pin anddin is the data pin.

setup

din

clk

362 Advanced Library Format (ALF) Reference Manual Version 2.0

ALF/SDF Cross Reference

Figure B-8: Measurement of SDF HOLD

B.2.3 SDF SETUPHOLD

A SETUPHOLD in SDF is a combination ofSETUP andHOLD. In this combination, eitherSETUP

or HOLD can be a negative value, but the sum of both values, which represents the minimal
pulsewidth of the data in order to be sampled correctly, shall be non-negative. The time from
the leading data edge to the sampling clock edge isSETUP. The time from the sampling clock
edge to the trailing data edge isHOLD.

VECTOR // for SETUPHOLD
(?! din -> 01 clk -> ?! din //setup & hold both positive
| 01 clk -> ?! din -> ?! din //negative setup, positive hold
| ?! din -> ?! din -> 01 clk //positive setup, negative hold
) {
SETUP {

FROM {PIN = din;
 TO {PIN = clk;}
/* fill in data */

}
HOLD {

FROM {PIN = clk;}
TO {PIN = din;}
/* fill in data */

}
}

These ALFVECTORs describe the alternative sequences of events shown in Figure B-9:

 any edge at din followed by rising edge at clk followed by any edge at din
or rising edge at clk followed by any edge at din followed by any edge at din
or any edge at din followed by any edge at din followed by rising edge at clk.

TheFROM andTO pin annotations define the sense of measurement forSETUP andHOLD,
respectively, in the same way as if they were specified in separate vectors.

hold

din

clk

Version 2.0 Advanced Library Format (ALF) Reference Manual 363

ALF/SDF Cross Reference

Figure B-9: Measurement of SDF SETUPHOLD

B.2.4 SDF RECOVERY

A RECOVERY in SDF is the minimal time required for a higher priority asynchronous control
signal to be released before a lower priority clock signal in order to allow the clock to be in
control.

VECTOR (01 clearbar -> 01 clk) {
RECOVERY {

FROM {PIN = clearbar;}
TO {PIN = clk;}

}

This ALF VECTOR describes the sequence of events shown in Figure B-10:

rising edge at clearbar followed by rising edge at clk.

TheFROM andTO pin annotations define the sense of measurement forRECOVERY. Since
recovery time is measured in positive sense from the higher priority asynchronous control
signal to the lower priority clock,clearbar is the asynchronous control pin andclk is the
clock pin.

Figure B-10: Measurement of SDF RECOVERY

B.2.5 SDF REMOVAL

A REMOVAL in SDF is the minimal time required for a higher priority asynchronous control
signal to stay active after a lower priority clock signal in order to keep overriding the clock.

hold

din

clk
setup

minimal data pulse

recovery

clearbar

clk

364 Advanced Library Format (ALF) Reference Manual Version 2.0

ALF/SDF Cross Reference

VECTOR (01 clk -> 01 clearbar) {
REMOVAL {

FROM {PIN = clk;}
TO {PIN = clearbar;}

}

This ALF VECTOR describes the sequence of events shown in Figure B-11:

rising edge at clk followed by rising edge at clearbar.

TheFROMandTOpin annotations define the sense of measurement forREMOVAL. Since removal
time is measured in positive sense from the lower priority clock to the higher priority
asynchronous control signal,clk is the clock pin andclearbar is the asynchronous control
pin.

Figure B-11: Measurement of SDF REMOVAL

B.2.6 SDF RECREM

A RECREM in SDF is a combination ofRECOVERY andREMOVAL. In this combination, either
RECOVERYor REMOVALcan be negative, but the sum of both shall be non-negative. The sum of
RECOVERYandREMOVALrepresents the width of the “forbidden zone” for the phase between the
higher priority and the lower priority signal. The boundary to the left isRECOVERY and the
boundary to the right isREMOVAL.

In a characterization vector forRECREM, either theRECOVERY or theREMOVAL effect can be
observed, depending on the phase relationship between the signals. This is different from
SETUPHOLD, where the effects of bothSETUP andHOLD can be observed in the same
characterization vector.

VECTOR // for RECREM
(01 clearbar -> 01 clk// pos. recovery or neg. removal
| 01 clk -> 01 clearbar// neg. recovery or pos. removal
) {
RECOVERY{

FROM {PIN = clearbar;}
TO {PIN = clk;}
/* fill in data */

}

removal

clearbar

clk

Version 2.0 Advanced Library Format (ALF) Reference Manual 365

ALF/SDF Cross Reference

REMOVAL {
FROM {PIN = clk;}
TO {PIN = clearbar;}
/* fill in data */

}
}

These ALFVECTORs describe the alternative sequences of events shown in Figure B-12:

rising edge at clearbar followed by rising edge at clk
or rising edge at clk followed by rising edge at clearbar

TheFROMandTOpin annotations define the sense of measurement forRECOVERYandREMOVAL,
respectively, in the same way as if they were specified in separate vectors.

Figure B-12: Measurement of SDF RECREM

B.2.7 SDF SKEW

A SKEW in SDF is the maximum allowed difference in arrival time between signals. The
allowed region for the phase between signals is bound by zero(0) to the left andSKEW to the
right for positiveSKEW, or bySKEW to the left and zero(0) to the right for negativeSKEW.

VECTOR (01 clk1 <&> 01 clk2) {// pos. or neg. or zero skew
SKEW {

FROM {PIN = clk1;}
TO {PIN = clk2;}
/* fill in data */

}
}

These ALFVECTORs describe the alternative sequences of events shown in Figure B-13:

 rising edge at clk1 followed by rising edge at clk2
or rising edge at clk2 followed by rising edge at clk1
or rising edge at clk2 simultaneously with rising edge at clk1

This is the most general case, where the skew can be positive, negative, or zero(0) across the
characterization space. TheFROM andTO pin annotations define the sense of measurement for
SKEW.

removal

clearbar

clk

recovery

forbidden zone

366 Advanced Library Format (ALF) Reference Manual Version 2.0

ALF/SDF Cross Reference

Figure B-13: Measurement of SDF SKEW

B.2.8 SDF WIDTH

VECTOR (01 clk -> 10 clk) {// high pulse
PULSEWIDTH {

PIN = clk;
/* fill in data */

}
}

This ALF VECTOR describes the sequence of events shown in Figure B-14:

rising edge at clk followed by falling edge at clk.

The pulsewidth applies to the positive phase of the signalclk .

Figure B-14: Measurement of SDF WIDTH

VECTOR (10 clk -> 01 clk) {// low pulse
PULSEWIDTH {

PIN = clk;
/* fill in data */

}
}

This ALF VECTOR describe the sequence of events:

falling edge at clk followed by rising edge at clk.

The pulsewidth applies to the negative phase of the signalclk .

clk1

clk2

skew (if positive value)

clk2

skew (if negative value)

allowed zone

allowed zone

clk

pulsewidth
pulsewidth

Version 2.0 Advanced Library Format (ALF) Reference Manual 367

ALF/SDF Cross Reference

VECTOR (01 clk -> 10 clk | 10 clk -> 01 clk) {// high or low pulse
PULSEWIDTH {

PIN = clk;
/* fill in data */

}
}

These ALFVECTORs describe the alternative sequences of events shown in Figure B-14:

 rising edge at clk followed by falling edge at clk
or falling edge at clk followed by rising edge at clk.

The pulsewidth applies to both phases of the signalclk .

B.2.9 SDF PERIOD

VECTOR (01 clk -> 10 clk -> 01 clk) {
PERIOD {

PIN = clk;
/* fill in data */

}
}

This ALF VECTOR describes the sequence of events shown in Figure B-15:

rising edge at clk followed by falling edge at clk followed by rising edge at clk.

Thus the period is measured between two consecutive rising edges at the signalclk .

Figure B-15: Measurement of SDF PERIOD

B.2.10 SDF NOCHANGE

VECTOR (?! addr -> 10 write -> 01 write -> ?! addr) {
SETUP {

FROM {PIN = addr;}
TO {PIN = write;}
/* fill in data */

HOLD {
FROM {PIN = write;}
TO {PIN = addr;}
/* fill in data */ }

NOCHANGE {
PIN = addr;
/* fill in optional data */

}
}

This ALF VECTOR describes the sequence of events shown in Figure B-16:

clk

period

368 Advanced Library Format (ALF) Reference Manual Version 2.0

ALF/SDF Cross Reference

any edge at addr followed by falling edge at write followed by rising edge at write fol-
lowed by any edge at addr.

TheSETUP time is measured from the first edge ataddr to the first edge atwrite . TheHOLD

time is measured from the second edge atwrite to the second edge ataddr . The signaladdr

can not change between the start time of thesetup measurement until the end time of thehold

measurement. ALF allows the specification of an additional measurement between the first and
second edge of the signal (subject toNOCHANGE). However, this additional measurement can not
be directly translated into SDF (and would be for characterization and future purposes only).

Figure B-16: Detection of SDF NOCHANGE

B.3 SDF conditions and labels for delays and
timing constraints

Conditions forIOPATH timing arcs in SDF apply to the entire timing arc. The condition is
evaluated during the event on the “from” port (i.e., an input pin) and the event on the “to” port
(i.e., an output pin) is scheduled consequently.

Conditions for timing constraints in SDF can be defined individually for each port. The
condition associated with thestart point of the timing constraint (i.e.,data for SETUP and

clock for HOLD) is called thestamp condition. The condition associated with theend point of
the timing constraint (i.e.,clock for SETUP anddata for HOLD) is called thecheck condition.

The use ofSETUPHOLD instead of the combination ofSETUP andHOLD or RECREM instead the
combination ofRECOVERY andREMOVAL in SDF imposes restrictions in the definition of
conditions. Where the use of two individual timing constraints allows the definition of four
conditions (two stamp and two check), the use of one combined timing constraint allows only
the definition of two conditions (one stamp and one check).

The ALF vector expression language can be used to specify conditions during the sequence of
events in a more general way than SDF.

Some more examples in ALF:

VECTOR (C & (01 A -> 01 B))

Some alternative specification options:

VECTOR (?1 C -> 01 A -> 01 B -> 1? C) // verbose

addr

write

setup hold

nochange

Version 2.0 Advanced Library Format (ALF) Reference Manual 369

ALF/SDF Cross Reference

VECTOR (?1 C -> 01 A -> 01 B) // C shall be true before start

VECTOR (01 A -> 01 B -> 1? C) // C shall be true until the end

These ALFVECTORs describe the sequence of events shown in Figure B-17:

rising edge at A is followed by rising edge at B, C is true before rising edge of A until after
rising edge of B.

Either of the pseudo-events (?1 C or 1? C) at the boundary can be omitted, since either one of
them is sufficient to specify the conditionC shall beTrue during the entire event sequence.

Figure B-17: Condition during sequence of two events

VECTOR ((C & 01 A) -> 01 B)

alternative specification options:

VECTOR (?1 C -> 01 A -> 1? C -> 01 B)

VECTOR (01 A -> 1? C -> 01 B)

These ALFVECTORs describe the sequence of events shown in Figure B-18:

rising edge at A is followed by rising edge at B, C is true before rising edge of A until after
rising edge of A.

Figure B-18: Condition during leading event

VECTOR (01 A -> (C & 01 B))

A

B

C don’t care don’t care

A

B

C don’t care don’t care

370 Advanced Library Format (ALF) Reference Manual Version 2.0

ALF/SDF Cross Reference

alternative syntax:

VECTOR (01 A -> ?1 C -> 01 B -> 1? C)

This ALF VECTOR describes the sequence of events shown in Figure B-19:

rising edge at A is followed by rising edge at B, C is true before rising edge of B until after
rising edge of B.

Figure B-19: Condition during trailing event

A SETUPHOLD with SCOND (stamp condition) andCCOND (check condition) in SDF can be
described in ALF in the following way (and depicted in Figure B-20):

VECTOR (?! din -> ?1 ccond -> 01 clk -> 1? scond -> ?! din) {
SETUP {

FROM {PIN = din;
 TO {PIN = clk;}
/* fill in data */

}
HOLD {

FROM {PIN = clk;}
TO {PIN = din;}
/* fill in data */

}
}

A more verbose specification of the vector is:

VECTOR (
?1 scond // scond shall be true at the beginning

-> ?! din // din toggles
-> ?1 ccond // last chance for ccond to become true
-> 01 clk // rising edge at clk
-> 1? scond // scond gets a break
-> ?! din // din toggles
-> 1? ccond // ccond gets a break at last
)

A

B

C don’t care don’t care

Version 2.0 Advanced Library Format (ALF) Reference Manual 371

ALF/SDF Cross Reference

Figure B-20: SETUPHOLD with SCOND and CCOND

The optional condition label in SDF has its counterpart in ALF (see Section 6.6.3). As in SDF,
the use and interpretation of this label is defined by the application tool and not by the standard.

Example:

VECTOR ((01 A -> ?! Z) && !B) {
LABEL = "my_label" ;
DELAY { FROM { PIN=A; } TO { PIN=Z; } RISE=1.3; FALL=0.8; }

}

The corresponding SDF construct looks as follows:

(DELAY
(ABSOLUTE

(COND "my_label" !B (IOPATH (posedge A) Z (1.3) (0.8)))
))

hold

din

clk
setup

minimal data pulse

scond

ccond don’t care don’t care

don’t care don’t carefor setup

for setup for hold

for hold

372 Advanced Library Format (ALF) Reference Manual Version 2.0

ALF/SDF Cross Reference

Version 2.0 Advanced Library Format (ALF) Reference Manual 373

Phased-out Items

Appendix C

Phased-out Items

This section contains all items from the ALF 1.1 spec., which are phased out for ALF 2.0,
because they are considered obsolete.

C.1 Polarity for output pin

The polarity of an output pin (i.e.DIRECTION = output;) can take the following values:

Reason for phase-out

Not required by any tool today. Applies to very few signals in a library (e.g. inverted and non-
inverted output of flip-flop). Different semantics than polarity for input signal, therefore
potentially confusing.

Substitution

Use attributes for pins representing double-rail signals (see Section 6.4.18).

Example

old style:

CELL my_flipflop {
PIN Q { DIRECTION = output; POLARITY = non_inverted; }
PIN Qbar { DIRECTION = output; POLARITY = inverted; }
/* other pins and stuff */

}

new style:

Table C-1 POLARITY (output) annotations for a PIN object (phased out)

Annotation string Description

inverted polarity change between input and output

non_inverted no polarity change between input and output

both polarity may change or not (e.g. XOR) (default)

none polarity has no meaning(e.g. analog signal)

374 Advanced Library Format (ALF) Reference Manual Version 2.0

Phased-out Items

CELL my_flipflop {
PIN Q { DIRECTION = output; ATTRIBUTE { non_inverted } }
PIN Qbar { DIRECTION = output; ATTRIBUTE { inverted } }
/* optional */ PIN_GROUP [0:1] Q_double_rail { MEMBERS Q Qbar } }
/* other pins and stuff */

}

C.2 ENABLE_PIN annotation

ENABLE_PIN = string ;

references an output enable pin (i.e., a pin withSIGNALTYPE = out_enable;).

Reason for phase-out

This annotation is phased out, since it provides only a very limited capability to describe a
relationship between two pins, which is normally not described as an annotation for a pin.
Relationships between pins can be described using VECTOR, supplemented by new features
in ALF 2.0. Also, the ENABLE_PIN can make a reference to a pin which may not yet be
declared. This clashes with the general rule: an object shall not be referenced before it is
declared.

Substitution

The ENABLE_PIN can be inferred according to the following rules:

For cells withCELLTYPE = buffer | combinational | latch | flipflop the following
rule applies:

• For a PIN withSIGNALTYPE = data andDIRECTION = output | both , the PIN with
SIGNALTYPE = out_enable is the enable-pin.

• For a PIN withSIGNALTYPE = scan_data andDIRECTION = output | both , the PIN
with SIGNALTYPE = scan_out_enable is the enable-pin.

For cells withCELLTYPE = memory the following rule applies:

• For a PIN withSIGNALTYPE = data andDIRECTION = output | both , the PIN with
SIGNALTYPE = read_enable is the enable-pin.

• For a PIN withSIGNALTYPE = test_data andDIRECTION = output | both , the PIN
with SIGNALTYPE = test_read_enable is the enable-pin.

Port-specific enable-pins in multi-port memories must have the sameSIGNAL_CLASS as the
related output pin.

Version 2.0 Advanced Library Format (ALF) Reference Manual 375

Phased-out Items

C.3 ATTRIBUTE with POLARITY annotation

The following attributes within a PIN object can also havePOLARITY annotation:

Reason for phase-out

Not a very concise modeling style. Also, this is the only case where ATTRIBUTE contains
non-atomic objects. By removing this special case, ATTRIBUTE will contain only atomic
objects, which simplifies the data model.

Substitution

Use mode-specific polarity for signal with composite signal type based on fundamental signal
typecontrol (see Section 6.4.4 and Section 6.4.6).

Example

old style:

PIN rw {
ATTRIBUTE {

WRITE { POLARITY = high; }
READ { POLARITY = low ; }

}
}

new style:

PIN rw {
SIGNALTYPE = read_write_control;
POLARITY {

WRITE = high;
READ = low;

}
}

C.4 OFF_STATE annotation
OFF_STATE = string ;

which can be:

Table C-2 Attributes with POLARITY annotation (phased out)

Attribute item Description

TIE signal that needs to be tied to a fixed value

READ read enable mode

WRITE write enable mode

376 Advanced Library Format (ALF) Reference Manual Version 2.0

Phased-out Items

Reason for phase-out

The purpose of this feature is not clear. No practical example could be found.

C.5 SCAN annotation container

A SCAN container may be used inside a CELL or a PIN object and may contain annotations
which are allowed inside a CELL or a PIN object for limiting the scope of those annotations.

Example:

PIN clk1 { signaltype = master_clock; SCAN {signaltype = slave_clock;} }

PIN clk2 { SCAN {signaltype = master_clock;} }

In normal mode,clk1 is master clock,clk2 is unused. In scan mode,clk2 is master clock,
clk1 is slave clock.

Reason for phase-out

This feature is not required for DFT, since all DFT items are already identified by dedicated
keywords. The example above is unrealistic.

C.6 PRIMITIVE definition in FUNCTION

BNF in ALF 1.1, chapter 3.4.16

function ::=

FUNCTION [identifier] {
[all_purpose_items]
[primitives]
[behavior]
[statetables]

}

Proposed change: remove[primitives] .

Reason for change

PRIMITIVE definitions must contain a FUNCTION statement themselves. Therefore, the
possibility of having PRIMITIVE inside FUNCTION and FUNCTION inside PRIMITIVE
bears the potential risk of circular reference in the data model.

Table C-3 OFF_STATE annotations for a PIN object

Annotation string Description

inverted pin is inverted when in off state

non_inverted pin is not inverted when in off state

Version 2.0 Advanced Library Format (ALF) Reference Manual 377

Phased-out Items

Substitution

use PRIMITIVE definitions inside the CELL which contains the FUNCTION.

378 Advanced Library Format (ALF) Reference Manual Version 2.0

Phased-out Items

Index

Version 2.0 Advanced Library Format (ALF) Reference Manual Index-379

Symbols
(N+1) order sequential logic 49
-> operator 14, 48
?- 274
?! 274
?? 274
?~ 274
@ 39

Numerics
2-dimensional tables 321

A
ABS 147
abs 289
abstract transition operators 336
active vectors 44
ALF_AND 88, 89, 306
ALF_BUF 87, 88
ALF_BUFIF0 91
ALF_BUFIF1 91
ALF_FLIPFLOP 94, 304
ALF_LATCH 95
ALF_MUX 93, 305
ALF_NAND 88, 89
ALF_NAND2 303
ALF_NOR 88, 90
ALF_NOT 87, 88
ALF_NOTIF0 91, 92
ALF_NOTIF1 91, 92
ALF_OR 88, 89
ALF_XNOR 88, 90
ALF_XOR 88, 90
ALIAS 17
alias 291
all_purpose_items 290
alphabetic_bit_literal 272
annotated properties 12
annotation 290

arithmetic model tables
AREA 220
CAPACITANCE 164
CONNECTIONS 164

CURRENT 163
DELAY 161
DERATE_CASE 165
DISTANCE 220
DRIVE_STRENGTH 163, 164
DRIVER 261
ENERGY 163
FANIN 164
FANOUT 164
FREQUENCY 162
HEIGHT 220
HOLD 161
JITTER 162
LENGTH 220
NOCHANGE 161
PERIOD 161
POWER 163
PROCESS 165
PULSEWIDTH 162
RECEIVER 261
RECOVERY 162
REMOVAL 162
RESISTANCE 164
SETUP 162
SKEW 162
SLEWRATE 161
SWITCHING_BITS 164
TEMPERATURE 163
THRESHOLD 163
TIME 162
VOLTAGE 163
WIDTH 220

arithmetic models 150
average 189
can_short 259
cannot_short 259
CONNECT_RULE 259
DEFAULT 150
MEASUREMENT 189
must_short 259
peak 189
rms 189
static 189

Index-380 Advanced Library Format (ALF) Reference Manual Version 2.0

transient 189
UNIT 150

CELL
BUFFERTYPE 107
CELLTYPE 101
DRIVERTYPE 107
NON_SCAN_CELL 108, 293
PARALLEL_DRIVE 107
SCAN_TYPE 106
SCAN_USAGE 106

cell buffertype
inout 107
input 107
internal 107
output 107

cell celltype
block 101
buffer 101
combinational 101
core 101
flipflop 101
latch 101
memory 101
multiplexor 101
special 101

cell drivertype
both 107
predriver 107
slotdriver 107

cell scan_type
clocked 106
control_0 106
control_1 106
lssd 106
muxscan 106

cell scan_usage
hold 107
input 107
output 107

default 150
from 155
information

AUTHOR 27
DATETIME 27
PRODUCT 27

TITLE 27
VERSION 27

limit 155
object reference

cell 28
pin 28
primitive 28

PIN
ACTION 120
CONNECT_CLASS 263
DATATYPE 122
DIRECTION 115
DRIVETYPE 125
ENABLE_PIN 374
OFF_STATE 375
ORIENTATION 263
POLARITY 121
PULL 126
SCAN_POSITION 122
SCOPE 126
SIGNALTYPE 116
STUCK 122
VIEW 114

pin
PINTYPE 115

pin action
asynchronous 120
synchronous 120

pin datatype
signed 122
unsigned 122

pin direction
both 115, 116
input 115
none 115, 116
output 115

pin drivetype
cmos 125
cmos_pass 125
nmos 125
nmos_pass 125
open_drain 125
open_source 125
pmos 125
pmos_pass 125
ttl 125

Version 2.0 Advanced Library Format (ALF) Reference Manual Index-381

pin off_state
inverted 376
non_inverted 376

pin orientation
bottom 263
left 263
right 263
top 263

pin pintype
analog 115
digital 115
supply 115

pin polarity
both 373
double_edge 121
falling_edge 121
high 121
inverted 373
low 121
non_inverted 373
none 373
rising_edge 121

pin pull
both 126
down 126
none 126
up 126

pin scope
behavior 126
both 126
measure 126
none 126

pin signaltype
clear 117, 121
clock 117, 121
control 117, 118, 119, 120, 121
data 116, 120, 121
enable 117, 120, 121
master_clock 119
out_enable 118, 119
scan_clock 119
scan_data 118
scan_enable 119
scan_out_enable 119
select 117, 120, 121

set 117, 121
slave_clock 119

pin stuck
both 123
none 123
stuck_at_0 122
stuck_at_1 122

pin view
both 115
functional 115
none 115
physical 115

to 155
VECTOR

LABEL 133, 134, 135
violation

MESSAGE 181
MESSAGE_TYPE 181

annotation container 19, 154
annotation_container 290
annotations 327

PIN 327
pin 345
self-explaining 328
timing arc 328

anotation
object reference

class 28
any_character 270
arithmetic models 16
arithmetic operations 9
arithmetic operators

binary 147
function 147
unary 147

arithmetic_binary_operator 289
arithmetic_expression 285
arithmetic_function_operator 289
arithmetic_model 296
arithmetic_model_template_instantiation

296, 297
arithmetic_unary_operator 289
assignment_base 285
async_2write_1read_ram 339
atomic megacell 7
atomic object 15

Index-382 Advanced Library Format (ALF) Reference Manual Version 2.0

ATTRIBUTE 18
attribute 291

CELL 102, 103
cell

asynchronous 102
CAM 102
dynamic 102
RAM 102
ROM 102
static 102
synchronous 102

PIN 126
pin

PAD 126, 127
SCHMITT 126
TRISTATE 126
XTAL 126

pin polarity
READ 375
TIE 375
WRITE 375

attribute_items 292
average 323

B
based literal 273
based_literal 273
BEHAVIOR 303
behavior 298
behavior_body 298
bidirectional pin 333
binary 273
Binary operators

arithmetic 147
bitwise 35
boolean, scalars 33
reduction 34
vector 49, 50, 53

binary_base 273
binary_digit 273
bit 272
bit_edge_literal 274
bit_literal 272
Bitwise operators

binary 35
unary 35

block comment 271
Boolean Equatio 303
boolean functions 7
boolean operators

binary 33
unary 33

boolean_and_operator 289
boolean_arithmetic_operator 289
boolean_binary_operator 289
boolean_case_compare_operator 289
boolean_condition_operator 289
boolean_else_operator 289
boolean_expression 285
boolean_logic_compare_operator 289
boolean_or_operator 289
boolean_unary_operator 289
both 333
bus contention 331
bus modeling 331
bus with multiple drivers 332
busholder 332

C
can_float 328
CAPACITANCE 316, 334
case-insensitive langauge 271
cell 293
cell modeling 12
cell_identifier 286, 293
cell_instantiation 286
cell_items 293
cell_template_instantiation 293
characterization 5, 7

power 7, 10
timing 7

characterization model 319
Characterization Modeling 8
characterization variables 7
children object 15
CLASS 17, 345
class 292

connectivity 345
combinational logic 13, 33
combinational primitives 87
combinational scan cell 308
combinational_assignments 299

Version 2.0 Advanced Library Format (ALF) Reference Manual Index-383

comment 271
block 271
long 271
short 271
single-line 271

comments
nested 271

compound operators 271
CONNECT_RULE 345
CONNECTION 328
connections

allowed 345
disallowed 344
external 344

CONNECTIVITY 345
connectivity 344

class 345
net-specific 346
pin-specific 346

connectivity class 345
CONSTANT 17
constant 292
constant numbers 272
constraints

delay 321
power 321
timing 321

context_sensitive_keyword 287
context-sensitive keyword 276, 331
context-sensitive keywords 9
core 7
core cell 332
core modeling 342

D
d_flipflop_clr 304
d_flipflop_ld_clr 306
d_flipflop_mux_set_clr 306
d_latch 307
decimal 273
decimal_base 273
deep submicron 5
DEFAULT 329
default annotation 150

delay mode
inertial 10
invalid-value-detection 10
transport 10

delay models 8
delay predictor 8
delimiter 271
derating 325
derating equation 325
digit 273
digital filter 342
digital_filter 344
DRIVE_STRENGTH 331
DRIVER 345

E
edge literal 274
edge rate 8
edge_literal 274
edge_literals 287
edge-sensitive sequential logic 14, 39
elapsed time 8
ENERGY 324
energy 9
equation 297
equation_template_instantiation 297
escape codes 274
escape_character 270
escaped identifier 275
escaped_identifier 275
event sequence detection 48
EXP 147
exp 289
expansion

bit-wise 335
bytewise 336

expansion of vectors 335
exponentiation 9
extensible primitives 86
external connections 344

F
fanout 12
Flipflop 94
flipflop 303
forward referencing 15

Index-384 Advanced Library Format (ALF) Reference Manual Version 2.0

fringe capacitance 12
FUNCTION 303
function 298

exponentiation 9
logarithm 9

Function operators
arithmetic 147

function_template_instantiation 298
functional model 5
functional modeling 13
functional models 7

G
generic objects 16
generic_object 291
glitch 10
GROUP 19, 335
group 292
group_identifier 292

H
hard keyword 276
hardware description language 7
HDL 7
header 297
header_template_instantiation 297
hex_base 273
hex_digit 273
hexadecimal 273
hierarchical object 15

I
identifier 15, 271
Identifiers 275
identifiers 288
inactive vectors 44
INCLUDE 17, 32
include 292
index 288
inertial delay mode 10
infinite impulse response filter 342
INFORMATION 308
integer 272
internal load 8
intrinsic delay 8

J
JK-flipflop 305
JTAG BSR cell 308

K
keyword 15
Keywords

context-sensitive 277
generic objects 277
operators 277

keywords
context-sensitive 9

L
Latch 95
layout parasitics 8
level-sensitive cell 307
level-sensitive sequential logic 39
libraries 294
LIBRARY 308
library 15
Library creation 1
library_identifier 295
library_items 294
library_specific_object 291
library_template_instantiation 293
library-specific objects 16
LIMIT 328
literal 15, 271
load characterization model 8
LOG 147
log 289
logarithm 9
logic_literals 288
logic_values 288
logic_variables 288

M
macrocells 7
MAX 148
max 289
MEASUREMENT 323
megacell modeling 335
megacells 7
metal layer 12
MIN 148

Version 2.0 Advanced Library Format (ALF) Reference Manual Index-385

min 289
mode of operation 5
modeling

bus 331
cell 12
characterization 8
cores 342
functional 13
megacell 335
physical 12
power 9
synthesis 12
test 12
timing 8
wire 12
wireload 333

multiplexor 93
must_connect 328
muxscan 310

N
named_assignment 284
named_assignment_base 284
NAND gate 303
nested comments 271
no_connection 328
non_negative_number 272
NON_SCAN_CELL 309
non-escaped identifier 275
nonescaped_identifier 275
nonreserved_character 270
non-scan cells 12
Number 272
number 272
numbers 288
numeric_bit_literal 272

O
objects 15, 293
octal 273
octal_base 273
octal_digit 273
one_shot 341
one-pass parser 15
operation mode 5
operator

-> 14, 48
followed by 14, 48

operators
arithmetic 147
boolean, scalars 33
boolean, words 34
signed 35
unsigned 35

output ramptime 315

P
parasitic capacitance 12
parasitic resistance 12
physical modeling 12
pin_assignments 285
pin_identifier 294
pin_items 294
pin_template_instantiation 294
pins 294
placeholder identifier 276
placeholder_identifier 276
placeholders 18
power 9
Power characterization 7
power characterization 10
power constraint 5
power dissipation 10
Power model 5
power modeling 9
predefined derating cases 182, 190

bccom 182
bcind 182
bcmil 182
wccom 182
wcind 182
wcmil 182

predefined process names 182
snsp 182
snwp 182
wnsp 182
wnwp 182

primitive 304
primitive_identifier 287, 295
primitive_instantiation 287
primitive_items 295
primitive_template_instantiation 295

Index-386 Advanced Library Format (ALF) Reference Manual Version 2.0

primitives 295
private keywords 277
PROCESS 325
PROPERTY 19
property 292
public keywords 277
pulse generator 341
PVT Derating 325

Q
Q_CONFLICT 94
QN_CONFLICT 94
quad D-Flipflop 310
quoted string 270, 274
quoted_string 275

R
RAM16X4 344
real 272
Reduction operators

binary 34
unary 34

reserved keyword 276
reserved_character 270
RESISTANCE 334
RTL 4

S
scaled average current 9
scaled average power 9
scan cell

combinational 308
scan chai 308
Scan Flipflop 309
Scan insertion 12
scan test 12
scan_data 310
scan_enable 310
SCAN_FFX4 311
SCAN_ND4 309
SCAN_TYPE 309
self capacitanc 12
self-explaining annotations 328
sequential logic

edge-sensitive 14, 39
level-sensitive 39

N+1 order 49
vector-sensitive 14, 48

sequential_assignment 299
sheet resistance 12
sign 272
signed operators 35
simulation model 5
single-line comment 271
slew rate 8
SLEWRATE 316, 330
soft keyword 276
source_text 291
sr_latch 307
state-dependent drive strength 332
STATETABLE 303
statetable 298
statetable_body 298
static power 10
std_derating 326
std_header_2d 317
string 288
sublibraries 295
sublibrary_template_instantiation 295
switching energy 315
symbolic_edge_literal 274

T
TABLE 316
table 297
table_items 297
table_template_instantiation 297
TEMPERATURE 325
TEMPLATE 18, 317
template 292, 315
template definition 317
template_identifier 292
template_instantiation 287
template-reference scheme 9
Ternary operator 34
Three-port Memory 339
timing arc 328
timing characterization 7
timing constraint model 8
timing constraint models 8
timing constraints 5, 321
timing modeling 8

Version 2.0 Advanced Library Format (ALF) Reference Manual Index-387

timing models 5
transcendent functions 9
transient power 10
transition delay 8
transmission-gate 331
transport delay mode 10

invalid-value-detection 10
triggering conditions 39
triggering function 39
tristate driver 331
tristate primitives 91
tristate_buffer 331
Truth Table 303
truth table 7
Two-port memory 336

U
Unary operator

bitwise 35
Unary operators

arithmetic 147
boolean, scalar 33
reduction 34

Unary vector operators 42
unnamed_assignment 284
unnamed_assignment_base 284
unnamed_assignments 284
unsigned 272
unsigned operators 35

V
VCO 341
VECTOR 315
vector 295
vector expression 14, 48
Vector operators

binary 49, 50
unary, bits 42
unary, words 43

vector_elsif_operator 290
vector_expression 286, 295
vector_if_operator 290
vector_items 295
vector_template_instantiation 295
vector_unary_operator 289
vector-based modeling 5

Vector-Sensitive Sequential Logic 14, 48
vector-specific model 315
Verilog 4, 40
VHDL 4, 40
via resistance 12
VIOLATION 322
virtual pins 12, 94
VOLTAGE 325, 330
voltage_controlled_delay 342

W
whitespace 271
whitespace characters 270
wildcard_literal 272
wire 296
wire modeling 12
wire select model 335
wire_identifier 296
wire_items 296
wire_template_instantiation 296
word_edge_literal 274

Index-388 Advanced Library Format (ALF) Reference Manual Version 2.0

	Introduction
	1.1 Motivation
	1.2 Goals
	1.3 Target applications
	1.4 Conventions
	1.5 Organization of this manual

	Characterization and Modeling
	2.1 Basic concepts
	2.2 Performance modeling for characterization
	2.2.1 Modeling for timing
	2.2.2 Modeling for power
	2.2.3 Modeling for signal integrity

	2.3 Physical modeling for synthesis and test
	2.3.1 Cell modeling
	2.3.2 Wire modeling

	2.4 Functional modeling
	2.4.1 Combinational logic
	2.4.2 Level-sensitive sequential logic
	2.4.3 Edge-sensitive sequential logic
	2.4.4 Vector-sensitive sequential logic

	Object Model
	3.1 Syntax conventions
	3.2 Generic objects
	3.2.1 CONSTANT statement
	3.2.2 ALIAS statement
	3.2.3 INCLUDE statement
	3.2.4 CLASS statement
	3.2.5 ATTRIBUTE statement
	3.2.6 TEMPLATE statement
	3.2.7 PROPERTY statement
	3.2.8 GROUP statement
	3.2.9 KEYWORD statement

	3.3 Library-specific objects
	3.4 Arithmetic models
	3.5 Geometric models
	3.6 Library-specific singular objects
	3.7 Relationships between objects
	3.8 INFORMATION container
	3.9 Relations between objects
	3.9.1 Keywords for referencing objects used as annotation
	3.9.2 Incremental definitions for VECTOR
	3.9.3 Other incremental definitions

	Library Organization
	4.1 Scoping rules
	4.2 Use of multiple files

	Functional Modeling
	5.1 Combinational functions
	5.1.1 Combinational logic
	5.1.2 Boolean operators on scalars
	5.1.3 Boolean operators on words
	5.1.4 Operator priorities
	5.1.5 Datatype mapping
	5.1.6 Rules for combinational functions
	5.1.7 Concurrency in combinational functions

	5.2 Sequential functions
	5.2.1 Level-sensitive sequential logic
	5.2.2 Edge-sensitive sequential logic
	5.2.3 Unary operators for vector expressions
	5.2.4 Basic rules for sequential functions
	5.2.5 Concurrency in sequential functions
	5.2.6 Initial values for logic variables

	5.3 Higher-order sequential functions
	5.3.1 Vector-sensitive sequential logic
	5.3.2 Canonical binary operators for vector expressions
	5.3.3 Complex binary operators for vector expressions
	5.3.3.1 Extension to N operands
	5.3.3.2 Boolean rules

	5.3.4 Operators for conditional vector expressions
	5.3.5 Operators for sequential logic
	5.3.6 Operator priorities
	5.3.7 Using PINs in VECTORs

	5.4 Modeling with vector expressions
	5.4.1 Event reports
	5.4.2 Event sequences
	5.4.3 Scope and content of event sequences
	5.4.4 Alternative event sequences
	5.4.5 Symbolic edge operators
	5.4.6 Non-events
	5.4.7 Compact and verbose event sequences
	5.4.8 Unspecified simultaneous events within scope
	5.4.9 Simultaneous event sequences
	5.4.10 Implicit local variables
	5.4.11 Conditional event sequences
	5.4.12 Alternative conditional event sequences
	5.4.13 Change of scope within a vector expression
	5.4.14 Sequences of conditional event sequences
	5.4.15 Incompletely specified event sequences
	5.4.16 How to determine well-specified vector expressions

	5.5 Variable declarations
	5.5.1 BEHAVIOR
	5.5.2 STATETABLE
	5.5.3 Multi-dimensional variables
	5.5.4 ROM initialization

	5.6 Predefined models
	5.6.1 Usage of PRIMITIVEs
	5.6.2 Concept of user-defined and predefined primitives
	5.6.3 Predefined combinational primitives
	5.6.3.1 One input, multiple output primitives
	5.6.3.2 One output, multiple input primitives

	5.6.4 Predefined tristate primitives
	5.6.5 Predefined multiplexor
	5.6.6 Predefined flip-flop
	5.6.7 Predefined latch
	5.6.8 Parameterizeable cells

	Modeling for Synthesis and Test
	6.1 Annotations and attributes for a CELL
	6.1.1 CELLTYPE annotation
	6.1.2 ATTRIBUTE within a CELL object
	6.1.3 SWAP_CLASS annotation
	6.1.4 RESTRICT_CLASS annotation
	6.1.5 Independent SWAP_CLASS and RESTRICT CLASS
	6.1.6 SWAP_CLASS with inherited RESTRICT_CLASS
	6.1.7 SCAN_TYPE annotation
	6.1.8 SCAN_USAGE annotation
	6.1.9 BUFFERTYPE annotation
	6.1.10 DRIVERTYPE annotation
	6.1.11 PARALLEL_DRIVE annotation

	6.2 NON_SCAN_CELL statement
	6.3 STRUCTURE statement
	6.4 Annotations and attributes for a PIN
	6.4.1 VIEW annotation
	6.4.2 PINTYPE annotation
	6.4.3 DIRECTION annotation
	6.4.4 SIGNALTYPE annotation
	6.4.5 ACTION annotation
	6.4.6 POLARITY annotation
	6.4.7 DATATYPE annotation
	6.4.8 INITIAL_VALUE annotation
	6.4.9 SCAN_POSITION annotation
	6.4.10 STUCK annotation
	6.4.11 SUPPLYTYPE
	6.4.12 SIGNAL_CLASS
	6.4.13 SUPPLY_CLASS
	6.4.14 Driver CELL and PIN specification
	6.4.15 DRIVETYPE annotation
	6.4.16 SCOPE annotation
	6.4.17 PULL annotation
	6.4.18 ATTRIBUTE for PIN objects

	6.5 Definitions for bus pins
	6.5.1 RANGE for bus pins
	6.5.2 Scalar pins inside a bus
	6.5.3 PIN_GROUP statement

	6.6 Annotations for CLASS and VECTOR
	6.6.1 PURPOSE annotation
	6.6.2 OPERATION annotation
	6.6.3 LABEL annotation
	6.6.4 EXISTENCE_CONDITION annotation
	6.6.5 EXISTENCE_CLASS annotation
	6.6.6 CHARACTERIZATION_CONDITION annotation
	6.6.7 CHARACTERIZATION_VECTOR annotation
	6.6.8 CHARACTERIZATION_CLASS annotation

	6.7 ILLEGAL statement for VECTOR
	6.8 TEST statement
	6.9 Physical bitmap for memory BIST
	6.9.1 Definition of concepts
	6.9.2 Definitions of pin ATTRIBUTE values for memory BIST
	6.9.3 Explanatory example

	General Rules for Arithmetic Models
	7.1 Principles of arithmetic models
	7.1.1 Global definitions for arithmetic models
	7.1.2 Trivial arithmetic model
	7.1.3 Arithmetic model using EQUATION
	7.1.4 Arithmetic model using TABLE
	7.1.5 Complex arithmetic model
	7.1.6 Containers for arithmetic models and submodels

	7.2 Arithmetic expressions
	7.2.1 Syntax of arithmetic expressions
	7.2.2 Arithmetic operators
	7.2.3 Operator priorities

	7.3 Construction of arithmetic models
	7.4 Annotations for arithmetic models
	7.4.1 DEFAULT annotation
	7.4.2 UNIT annotation
	7.4.3 CALCULATION annotation
	7.4.4 INTERPOLATION annotation

	7.5 Containers for arithmetic models
	7.6 Arithmetic submodels
	7.6.1 Semantics of MIN / TYP / MAX
	7.6.2 Semantics of DEFAULT

	Electrical Performance Modeling
	8.1 Overview of modeling keywords
	8.1.1 Timing models
	8.1.2 Analog models
	8.1.3 Supplementary models

	8.2 Auxiliary statements for timing models
	8.2.1 THRESHOLD definition
	8.2.2 FROM and TO container
	8.2.3 PIN annotation
	8.2.4 EDGE_NUMBER annotation
	8.2.5 Context of THRESHOLD definitions

	8.3 Specification of timing models
	8.3.1 Template for timing measurements / constraints
	8.3.2 Partially defined timing measurements and constraints
	8.3.3 Template for same-pin timing measurements / constraints
	8.3.4 Absolute and incremental evaluation of timing models
	8.3.5 RISE and FALL submodels
	8.3.6 TIME
	8.3.7 DELAY
	8.3.8 RETAIN
	8.3.9 SLEWRATE
	8.3.10 SETUP
	8.3.11 HOLD
	8.3.12 NOCHANGE
	8.3.13 RECOVERY
	8.3.14 REMOVAL
	8.3.15 SKEW between two signals
	8.3.16 SKEW between multiple signals
	8.3.17 PULSEWIDTH
	8.3.18 PERIOD
	8.3.19 JITTER

	8.4 VIOLATION container
	8.5 EARLY and LATE container
	8.6 Environmental dependency for electrical data
	8.6.1 PROCESS
	8.6.2 DERATE_CASE
	8.6.3 Lookup table without interpolation
	8.6.4 Lookup table for process- or derating-case coefficients
	8.6.5 TEMPERATURE

	8.7 PIN-related arithmetic models for electrical data
	8.7.1 Principles
	8.7.2 CAPACITANCE, RESISTANCE, and INDUCTANCE
	8.7.3 VOLTAGE and CURRENT
	8.7.4 PIN-related timing models
	8.7.5 Submodels for RISE, FALL, HIGH, and LOW
	8.7.6 Context-specific semantics

	8.8 Other PIN-related arithmetic models
	8.8.1 DRIVE_STRENGTH
	8.8.2 SWITCHING_BITS

	8.9 Annotations for arithmetic models
	8.9.1 MEASUREMENT annotation
	8.9.2 TIME and FREQUENCY annotation
	8.9.3 TIME to peak measurement
	8.9.4 Rules for combinations of annotations

	8.10 Waveform description
	8.10.1 Principles
	8.10.2 Annotations within a waveform

	8.11 Arithmetic models for power calculation
	8.11.1 Principles
	8.11.2 POWER and ENERGY

	8.12 Arithmetic models for hot electron calculation
	8.12.1 Principles
	8.12.2 FLUX and FLUENCE

	8.13 Reliability calculation
	8.13.1 TIME within the LIMIT construct
	8.13.2 FREQUENCY within a LIMIT construct
	8.13.3 Global LIMIT specifications
	8.13.4 LIMIT and model specification in the same context
	8.13.5 Model and argument specification in the same context

	8.14 Noise calculation
	8.14.1 NOISE_MARGIN definition
	8.14.2 Representation of noise in a VECTOR
	8.14.3 Context of NOISE_MARGIN
	8.14.4 Noise propagation
	8.14.5 Noise rejection

	8.15 Interconnect parasitics and analysis
	8.15.1 Principles of the WIRE statement
	8.15.2 Statistical wireload models
	8.15.3 Boundary parasitics
	8.15.4 NODE declaration
	8.15.5 Interconnect delay and noise calculation
	8.15.6 SELECT_CLASS annotation for WIRE statement

	Physical Modeling
	9.1 Overview
	9.2 Arithmetic models in the context of layout
	9.3 Statements for geometric transformation
	9.3.1 SHIFT statement
	9.3.2 ROTATE statement
	9.3.3 FLIP statement
	9.3.4 REPEAT statement
	9.3.5 Summary of geometric transformations

	9.4 ARTWORK statement
	9.5 LAYER statement
	9.5.1 Definition
	9.5.2 PURPOSE annotation
	9.5.3 PITCH annotation
	9.5.4 PREFERENCE annotation
	9.5.5 Example

	9.6 Geometric model statement
	9.6.1 Definition
	9.6.2 Predefined geometric models using TEMPLATE

	9.7 PATTERN statement
	9.7.1 Definition
	9.7.2 SHAPE annotation
	9.7.3 LAYER annotation
	9.7.4 EXTENSION annotation
	9.7.5 VERTEX annotation
	9.7.6 PATTERN with geometric model
	9.7.7 Example

	9.8 VIA statement
	9.8.1 Definition
	9.8.2 USAGE annotation
	9.8.3 Example
	9.8.4 VIA reference

	9.9 BLOCKAGE statement
	9.9.1 Definition
	9.9.2 Example

	9.10 PORT statement
	9.10.1 Definition
	9.10.2 VIA reference
	9.10.3 CONNECTIVITY rules for PORT and PIN
	9.10.4 Reference of a declared PORT in a PIN annotation
	9.10.5 VIEW annotation
	9.10.6 LAYER annotation
	9.10.7 ROUTING_TYPE

	9.11 RULE statement
	9.11.1 Definition
	9.11.2 Width-dependent spacing
	9.11.3 End-of-line rule
	9.11.4 Redundant vias
	9.11.5 Extraction rules
	9.11.6 RULES within BLOCKAGE or PORT
	9.11.7 VIA reference

	9.12 SITE statement
	9.12.1 Definition
	9.12.2 ORIENTATION_CLASS and SYMMETRY_CLASS
	9.12.3 Example

	9.13 ANTENNA statement
	9.13.1 Definition
	9.13.2 Layer-specific antenna rules
	9.13.3 All-layer antenna rules
	9.13.4 Cumulative antenna rules
	9.13.5 Illustration

	9.14 ARRAY Statement
	9.14.1 Definition
	9.14.2 PURPOSE annotation
	9.14.3 Examples

	9.15 CONNECTIVITY statement
	9.15.1 Definition
	9.15.2 CONNECT_RULE annotation
	9.15.3 CONNECTIVITY modeled with BETWEEN statement
	9.15.4 CONNECTIVITY modeled as lookup TABLE

	9.16 Physical annotations for CELL
	9.16.1 PLACEMENT_TYPE annotation
	9.16.2 Reference of a SITE by a CELL

	9.17 Physical annotations for PIN
	9.17.1 CONNECT_CLASS annotation
	9.17.2 SIDE annotation
	9.17.3 ROW and COLUMN annotation
	9.17.4 ROUTING_TYPE annotation

	9.18 Physical annotations for arithmetic models
	9.18.1 BETWEEN statement within DISTANCE, LENGTH
	9.18.2 MEASUREMENT annotation for DISTANCE
	9.18.3 REFERENCE annotation for DISTANCE
	9.18.4 Reference to ANTENNA
	9.18.5 Reference to PATTERN

	Lexical Rules
	10.1 Cross-reference of lexical tokens
	10.2 Characters
	10.2.1 Character set
	10.2.2 Whitespace characters
	10.2.3 Reserved and non-reserved characters

	10.3 Lexical tokens
	10.3.1 Delimiters
	10.3.2 Comments
	10.3.3 Numbers
	10.3.4 Bit literals
	10.3.5 Based literals
	10.3.6 Edge literals
	10.3.7 Quoted strings
	10.3.8 Identifiers
	10.3.9 Hierarchical identifier

	10.4 Keywords
	10.4.1 Keywords for objects
	10.4.2 Keywords for operators
	10.4.3 Context-sensitive keywords

	10.5 Rules against parser ambiguity

	Syntax Rules
	11.1 Cross-reference of BNF items
	11.2 Assignments
	11.3 Expressions
	11.4 Instantiations
	11.5 Literals
	11.6 Operators
	11.7 Auxiliary objects
	11.8 Generic objects
	11.9 CELL
	11.10 LIBRARY
	11.11 PIN
	11.12 PRIMITIVE
	11.13 SUBLIBRARY
	11.14 VECTOR
	11.15 WIRE
	11.16 Arithmetic model
	11.17 FUNCTION
	11.18 TEST
	11.19 Geometric Model
	11.20 ARTWORK
	11.21 LAYER
	11.22 PATTERN
	11.23 VIA
	11.24 BLOCKAGE
	11.25 PORT
	11.26 RULE
	11.27 SITE
	11.28 ANTENNA
	11.29 ARRAY
	11.30 Connectivity

	Sample Applications
	A.1 Truth table versus boolean equation
	A.1.1 NAND gate
	A.1.2 Flip-flop

	A.2 Use of primitives
	A.2.1 D-flip-flop with asynchronous clear
	A.2.2 JK-flipflop
	A.2.3 D-flip-flop with synchronous load and clear
	A.2.4 D-flip-flop with input multiplexor
	A.2.5 D-latch
	A.2.6 SR-latch

	A.3 Modeling for DFT
	A.3.1 JTAG BSR
	A.3.2 Combinational scan cell
	A.3.3 Scan flip-flop
	A.3.4 Quad D-flip-flop
	A.3.5 Use of SIGNALTYPE for scan flip-flops

	A.4 Templates and vector-specific models
	A.4.1 Vector-specific delay and power tables
	A.4.2 Use of TEMPLATE
	A.4.3 Vector description styles for timing arcs
	A.4.4 Vectors for delay, power, and timing constraints

	A.5 Combining tables and equations
	A.5.1 Table versus equation
	A.5.2 Cell with multiple output pins
	A.5.3 PVT derating

	A.6 Use of annotations
	A.6.1 Annotations for a PIN
	A.6.2 Annotations for a timing arc
	A.6.3 Creating self-explaining annotations

	A.7 Providing a fall-back position for applications (using DEFAULT)
	A.8 Bus modeling
	A.8.1 Tristate driver
	A.8.2 Bus with multiple drivers
	A.8.3 Busholder

	A.9 Wire models
	A.9.1 Basic wire model
	A.9.2 Wire select model

	A.10 Megacell modeling
	A.10.1 Expansion of timing arcs
	A.10.2 Two-port memory
	A.10.3 Three-port memory
	A.10.4 Annotation for pins of a bus
	A.10.5 Skew for simultaneously switching signals on a bus

	A.11 Special cells
	A.11.1 Pulse generator
	A.11.2 VCO

	A.12 Core modeling (using a digital filter)
	A.13 Connectivity
	A.13.1 External connections between pins of a cell
	A.13.2 Allowed connections for classes of pins

	A.14 Signal integrity
	A.14.1 I/V curves
	A.14.2 Driver resistance

	A.15 Resistance and capacitance on a pin
	A.15.1 Self-resistance and capacitance on input pin
	A.15.2 Pullup and pulldown resistance on input pin
	A.15.3 Pin and load resistance and capacitance on an output pin

	ALF/SDF Cross Reference
	B.1 SDF delays
	B.1.1 SDF DELAY for IOPATH and INTERCONNECT
	B.1.2 SDF PATHPULSE
	B.1.3 SDF RETAIN delays
	B.1.4 SDF PORT delays
	B.1.5 SDF DEVICE delays

	B.2 SDF timing constraints
	B.2.1 SDF SETUP
	B.2.2 SDF HOLD
	B.2.3 SDF SETUPHOLD
	B.2.4 SDF RECOVERY
	B.2.5 SDF REMOVAL
	B.2.6 SDF RECREM
	B.2.7 SDF SKEW
	B.2.8 SDF WIDTH
	B.2.9 SDF PERIOD
	B.2.10 SDF NOCHANGE

	B.3 SDF conditions and labels for delays and timing constraints

	Phased-out Items
	C.1 Polarity for output pin
	C.2 ENABLE_PIN annotation
	C.3 ATTRIBUTE with POLARITY annotation
	C.4 OFF_STATE annotation
	C.5 SCAN annotation container
	C.6 PRIMITIVE definition in FUNCTION

