Work document for tracking the development of the
|EEE 1603 std

This document contains suggested enhancements to the Advanced Library Format, using
ALF 2.0 as baseline. The document serves as a worksheet rather than aformal proposal.
The suggested enhancements are collected in no particular order. Theideaisto keep track
of evolving proposals here and then agree formally whether or not they should be part of
the IEEE spec.

The following template is used throughout this document:

X.0 Item

relation to ALF 2.0 reference to ALF 2.0 chapter
relation to | EEE P1603 reference to | EEE P1603 chapter
History date of initial draft, date of revisions

Satus open or closed, accepted or rejected

X.1 Motivation

Explain reason for new feature

X.2 Proposal

Describe new feature

January 13, 2002 1

Table of contents

Part 1: Language features for library modeling 4

1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10.0
11.0
12.0
13.0
14.0
15.0

16.0
17.0
18.0
19.0
20.0
21.0
22.0
23.0
24.0
25.0
26.0
27.0

Level definition for Vector EXpression Languagecocueeeererreeneesiesieeseeseesieenns 4
= = I 10 Y 5
Types of electrical CURRENToooeiieiecicie e see s s 8
NOISE MOGEIING.....ociiiieee e e 10
Simplification of NON_SCAN_CELL statement..........cccccveeereerveceseeneeeeseenen 12
VIOLATION in conteXt Of LIMITcccveiieiesiecesee e 14
New value for MEASUREMENT annotationccoceeverenennenieeneesie e 15
MONITOR statement for VECTORcooiieeiieiecierie e ee e 16
Featuresfor creating a standard ALF header file ..o 18
Amended semantiCS Of LIMIT ...c.coiiiiiiieeeeee e 20
Semantics of SUPPLY TY PE and SUPPLY _CLASS for multi-rail support.......... 21
Amended semantics of RESTRICT_CLASS and SWAP_CLASS.......c.ccccovevruenne. 24
Amended semantics of CONNECTIVITY ..o 28
Amended semantics of PULSEWIDTH, PERIOD........c.ccccevievieccieccee e, 30

Amended definition of TIME and FREQUENCY statement in context of
arithmetic model 32

Reference to modelsin other format than ALFcooevvieiecceneee e 34
ROUTE annotation for PATTERNoocviieiieeeiee e 36
REGION StALEMENL ..ottt st sae e re s esessesreneas 37
WIRE instantiation within arithmetic modelcccooveeeiieneeieceee e 39
Amendments and simplifications for arithmetic model..............cccooevivecvveereennene 41
Amenments for hierarchical antenna SUPPOItcccvveceeiiecieesee e 46
Amendments for REFERENCE related to DISTANCEccooovvoevivevnceerieeee 49
Amendments for PIN_GROUPooooiieeeieeeeceere e 50
Extended definition of PURPOSE annotation.............ccooevvenieieninneesie s 52
Amended semantics Of ILLEGAL Statement...........cccvvvereerenceeneeieseeseeseeseeeeens 53
CONTROL_POLARITY Statementccccceeeiieeeiiee e e cee e esreessneeesnee e 55
Review of unitsfor arithmetic MOdelS..........cccovveiiniiinirree e 58

January 13, 2002 2

Part 2: Grammar-related items 60

28.0
29.0
30.0

Make grammar more compact by removing redundancies

Rewrite grammar for more specific syntax and less semantic restriction

Miscellaneous Grammar enhancements

January 13, 2002

Part 1. Language featuresfor library modeling

1.0 Levd definition for Vector Expression Language
relation to ALF 2.0 5.3,5.4,11.3
relation to | EEE P1603 N/A

History initial draft April 16 2001 by Wolfgang
reviewed and rejected by Study Group April 16
rejection confirmed by Tim Ehrler May 1
changed title and closed May 4 by Wolfgang

Satus closed, rejected

1.1 Motivation

The vector expression language is anew concept which has almost no equivalent in legacy
library model description languages. Currently there are EDA toolswhich support a subset
of the vector expression language. Purpose of this proposal isto re-write the definitionsin
such away that it is easy to identify subsets for different levels of support. For example:
levelO=Dbasic subset, |evel 1=intermediate subset, level 2=full setin ALF 2.0, level 3=full set
in ALF 2.0 plus new proposed extensions.

1.2 Proposal
Level O: single event, single event & boolean condition, two-event sequence

Level 1: N-event sequence, N-event sequence & boolean condition, alternative event
sequence

Level 2: everything in ALF 2.0 (except if we decide to drop something fundamentally
unpractical or un-implementable)

Level 3: new operators for repetition of sub-sequences

January 13, 2002 4

2.0 Metal Density

relationto ALF 2.0 9.2,95
relation to | EEE P1603 11.13

History initial draft April 16 2001 by Wolfgang
reviewed and retained by Study Group April 16
ok. asisby Tim Ehrler May 1
supplementary proposal by Wolfgang Oct. 5
reviewed Oct. 9, supplementary proposal o.k.

Satus closed, accepted

2.1 Motivation

Manufacturability in 130 nm technology and below requires so-called metal density rules.
For a given routing layer, metal must cover a certain percentage of the total areawithin a
lower and upper bound in order to ensure planarity. This percentage also depends on the
total area under consideration, i.e., there are“local” and “global” metal density rules.

Manufacturing rules also specify, how density should be calculated. For example, only
structures wider than a certain minimum width should be taken into account.

Also, for local rules, the shape of the region to be checked can be specified. For example,

check the rule on asquare of x*x mm?, check the density on a region of x mm width in X
or'Y direction etc.

2.2 Proposal

Introduce new keyword DENSITY (or other word) for arithmetic model. Shall be non-
negative number normalized between 0 and 1 (1 means 100%). Usable in context of
LAYER (see ALF 2.0, chapter 9.5.1) with PURPOSE=routing (see ALF 2.0, chapter
9.5.2). Legal argument (i.e. HEADER) includes AREA, meaning the die area subjected to
manufacturing of thislayer.

Example:

LAYER netal 1 {
PURPCSE = routi ng;
LIMT {
DENSI TY {
M N {
HEADER {
AREA {
| NTERPOLATI ON = fl oor;
TABLE { 0 100 1000 }

}

January 13, 2002 5

}
TABLE { 0.2 0.3 0.4 }

}
MAX {
HEADER {
AREA {
| NTERPOLATI ON = f1 oor;
TABLE { 0 100 1000 }
}
}
TABLE { 0.8 0.7 0.6 }
}
}

}
}

Within an area of less than 100 units, the metal density must be between 20% and 80%.
Within an area of 100 up to less than 1000 units, the metal density must be between 30%
and 70%. Within an are of 1000 units or more, the metal density must be between 40%
and 60%. The annotation INTERPOLATION=floor indicates that no interpolation is made
for areas in-between, but the next lower value is used (see ALF 2.0, chapter 7.4.4).

To alow for particularitiesin density calculation, the DENSITY statement must be in con-
text of aRULE (see ALF 2.0, chapter 9.11). The applicable layer is given as annotation.
Both amodel for calculation of DENSITY and amodel for the limit of DENSITY must be
given in context of the RULE.

Example:

RULE m n_density {
DENSI TY {
LAYER = netal 1;
CALCULATION = increnental;
HEADER {
W DTH
LENGTH
AREA
}
EQUATION { WDTH * LENGTH / AREA }
}
LIMT { DENSITY { LAYER = netall; MN=10.2; } }
}
RULE max_density {
DENSI TY {
LAYER = netal 1;
CALCULATION = increnental;
HEADER {
W DTH
LENGTH
AREA
}
EQUATION { (WDTH<0.1)? 0 : WDTH * LENGTH / AREA }

January 13, 2002 6

LIMT { DENSITY { LAYER = netal1; MAX = 0.8; } }
}

Note: WIDTH (see ALF 2.0, chapter 9.2, table 9-4) and LENGTH (see ALF 2.0, chapter
9.2, table 9-6) are the dimensions of aroutable object in the layer. AREA (see ALF 2.0,
chapter 9.2, table 9-7) should be defined as the area of the environment in this context.

The example specifies, that objects smaller than 0.1 units of WIDTH areto be disregarded
for DENSITY calculation in context of the RULE max_density.

January 13, 2002 7

3.0 Typesof electrical CURRENT

relationto ALF 2.0 8.1, 8.7,8.15
relation to | EEE P1603 11.12.5,11.12.11

History initial draft April 162001 by Wolfgang
reviewed and retained by Study Group April 16
also reviewed by Tim Ehrler May 1
add text to clarify purpose by Wolfgang May 4
proposal reviewed May 8, added supplementary proposal
reviewed, amended and accepted Oct. 9

Satus closed, accepted

3.1 Motivation

CURRENT needs PIN annotation indicating the target point where the current is flowing
into. Cannot define a branch of an electrical network where the current flows through.

Therefore there will be 3 types of CURRENT specification:

|1 = current into PIN from unspecified source (already supported in ALF 2.0)
12 = current through a COMPONENT with two terminal nodes
I3 = current through an independent current source connected between two NODEs

seell, 12, I3 inillustration

nl W n2

11 R1
—>
—>
ct 2 2
gnd
@
3.2 Proposal

In the context of WIRE, the following mutually exclusive annotations for CURRENT
shall belegal:

PIN = pin_identifier ;

Current flows from unknown source into the pin (already supported).

January 13, 2002

COVPONENT = conponent _identifier ;

Current flows through the component. The component must be a declared two-terminal
electrical component in the context of the WIRE, i.e. a RESISTANCE, CAPACITANCE,
VOLTAGE or INDUCTANCE (excluding mutual inductance, which has 4 terminals).
The direction of the current flow is given by the order of node identifiersin the NODE
annotation for that component (see ALF 2.0, chapter 8.15.3, 8.15.4).

NODE { 1st _node_identifier 2nd _node_identifier }

Current flows through a current source connected between the nodes. The direction of the
current flow is given by the order of node identifiersin this NODE annotation.

Example:

W RE i nterconnect _anal ysis_nodel 1 {
CAPACI TANCE C1 { NODE { n1 gnd } }
CAPACI TANCE C2 { NODE { n2 gnd } }
RESI STANCE Rl { NODE { n1 n2 } }
CURRENT 11 { PIN = n1; }

CURRENT 12 { COVPONENT = R1; }
CURRENT 13 { NODE { nl1 n2 } }

}

This example corresponds exactly to the illustration shown above.

3.3 Supplementary proposal

According to ALF 2.0, chapter 8.7.3, the sense of measurement for current associated
with a pin shall be into the node. However, in some cases, the natural sense of measure-
ment is out of the node. In order to alow explicit specification of the sense of measure-
ment, the following feature is proposed:

FLOW annotation for current shall specify the sense of measurement of current. Default
value shall be “in”, which is backward compatible with ALF 2.0.

FLOW= in | out;
For example, the following two statements are equivalent:
CURRENT |1 = 3.0 { PIN = nl; FLOW=in; }
CURRENT 11 = -3.0 { PIN = nl; FLOVN= out; }
Thisisillustrated in the picture below.
nl nl
11=3.0 11=-3.0
FLOW =in; FLOW = out;

January 13, 2002 9

4.0 NOISE modeling

relationto ALF 2.0 8.1, 8.14
relation to | EEE P1603 11.12.10

History initial draft April 16 2001 by Wolfgang
0.k by Tim Ehrler May 1
updated by Wolfgang May 4
reviewed and updated (see minutes) May 8
reviewed and accepted Oct. 9

Satus closed, accepted

4.1 Motivation

NOISE_MARGIN defines a normalized voltage difference between nominal signal level
and tolerated signal level. If violated, the correct signal level can not be determined. In
order to check against noise margin, actual noise must be calculated. Currently VOLT-
AGE is used for noise calculations. However, since noise margin is normalized to signal
voltage swing, it would be convenient, if the actual noise could also be represented in a
normalized way. In CMOS, actual noise and noise margin tend to scale with supply volt-
age. A non-normalized model requires supply voltage as aparameter, if the supply voltage
is subject to variation. A normalized model would to a 1st order degree approximate the
voltage scaling effect already and therefore eliminate the supply voltage as a model
parameter.

4.2 Proposal

Introduce new keyword NOI SE, representing a normalized voltage difference between
nominal signal level and actual signal level. Same measurement definition as for noise
margin (see ALF 2.0, chapter 8.14). Noise margin is violated, if noiseislarger than noise
margin.

Context-specific meaning of NOI SE

1. Context is output or bidirectional PIN

NOI SE specifies maximum amount of noise at output pin, when any input pin is subjected
to the amount of noise specified by NOISE_ MARGIN. NOISE may have submodel HIGH

and LOW. The relation between noise at output pin and noise margin at input pinisillus-
trated in the following picture.

January 13, 2002 10

Vout/Vdd
A

Vdd | |
1
o v
noise(high) = 1-Voh/Vdd
Vin Vout
noise(low) = Vol/Vdd
0
Gnd
noise margin(low) noise margin(high)
=Vil/Vdd =1-Vih/vVdd
Example:

PIN nmy_input_pin {
DI RECTI ON = i nput;
NO SE MARGN{ HGH=0.3; LOW=0.2; }

}
PIN my _output _pin {

DI RECTI ON = out put;

NOSE { HHGH = 0.02; LOW= 0.01; }
}

2. Context isVECTOR withvect or _expr essi on

NOISE needs PIN annotation. NOISE specifies peak noise while pinisin “*” state.
NOISE may only have submodel HIGH and LOW, if “?’ state as opposed to “0” or “1”
state is specified in vector_expression.

Example:

VECTOR (O* ny_pin -> *0 my_pin) {
NOSE =0.2{ PIN= ny_pin; }
}

3. Context isCELL, SUBLIBRARY, or LIBRARY

no PIN annotation. NOISE specifies maximum amount of noise at any output or bidirec-
tional pin within scope, unless this specification is overwritten locally.

Example:

LI BRARY ny_library {
NO SE { HHGH = 0.02; LOW= 0.01; }
}

January 13, 2002

11

5.0 Simplification of NON_SCAN_CELL statement

relationto ALF 2.0 6.2,11.2
relation to | EEE P1603 922

History initial draft April 16 2001 by Wolfgang
0.k. by Tim Ehrler May 1
accepted and closed per default Oct. 9

Satus closed, accepted

5.1 Motivation

Non-scan cell defines the mapping between the pins of anon-scan cell (left-hand side) and
the pins of a scan cell (right-hand side). The scan cells has always certain pinswhich do
not exist in the non-scan cell. In some cases, the non-scan cell might have certain pins
which do not exist in the scan cell (In such a case, the scan replacement can only be done,
if the pinin question was tied to an inactive level in the non-scan cell in the first place).

Currently, the non-scan cell statement supports definition of LHS or RHS constants which
specify the logic level to which the non-corresponding pins should be tied to. However,
this definition is redundant, because every relevant pin in a cell model must have annota-
tionsfor SIGNALTY PE and POLARITY in order to be usable for DFT tools. These anno-
tations specify aready the logic level to which non-corresponding pins must be tied.

5.2 Proposal

Reduce syntax for pin_assignment (see ALF 2.0, chapter 11.2) to the following:

pi n_assi gnment ::=
pin_identifier [index]
| pin_identifier [index]

pin_identifier [index]
| ogi c_constant ;

Only“pin_identifier [index] = pin_identifier [index] ; “will actualy be
used for non-scan cell. Since POLARITY definesthe active signal level, the pin should be
tied to the opposite level. For pins without POLARITY, the level does not matter (e.g.
scan input for scan flip-flop in non-scan mode).

Example (taken from ALF 2.0, chapter 6.2):

CELL ny _flipflop {
PIN g { DI RECTI ON=output; } // SIGNALTYPE defaults to “data”
PIN d { DIRECTION=input; } // SIGNALTYPE defaults to “data”
PIN cl k { DI RECTI ON=i nput; SI GNALTYPE=cl ock; POLARI TY=ri si ng_edge; }
PIN clear { DI RECTI ON=i nput; SIGNALTYPE=cl ear; POLARI TY=l ow; }
}
CELL my_scan_flipflop {
PIN data_out { DI RECTI ON=out put; } // SIGNALTYPE defaults to “data”

January 13, 2002 12

PIN data_in { DIRECTION=i nput; } // SIGNALTYPE defaults to “data”
PIN scan_in { DI RECTI ON=i nput; SIGNALTYPE=scan_data; }
PIN scan_sel { DI RECTI ON=i nput; SIGNALTYPE=scan_control;

POLARI TY { SCAN=hi gh; } } // scan node when 1, non-scan nbde when O
PIN cl ock {DlI RECTI ON=i nput; SIGNALTYPE=cl ock; POLARI TY=ri si ng_edge;}
NON_SCAN_CELL {

nmy flipflop {
cl k = cl ock;
d = data_in;
q = data_out;

}

The scan replacement works only, if thecl ear pin of ny_f 1 i pfl op istied high (active
level islow). Note: Thisis an exceptional case and only shown because it might happen
eventually. Normally, the pins of the scan cell represent a superset of the pins of the non-
scan cell.

In order to simulate the non-scan mode, when the non-scan cell is replaced by the scan
cell, thescan_sel pinof ny_scan_fli pflop must betied low (scan mode level ishigh).
Thescan_i n pin can be tied to either high or low.

This example shows that the constant logic levels need not be defined in the non-scan cell
statements, because they can be completely inferred from the POLARITY statements. The
POLARITY statements are mandatory for DFT tools anyway.

January 13, 2002 13

6.0 VIOLATION in context of LIMIT

relationto ALF 2.0 75,7.6,84
relation to | EEE P1603 9.105, 11.6.4

History Proposal May 1 by Tim Ehrler
written in doc May 4 by Wolfgang
reviewed and updated (see minutes) May8
reviewed, accepted and closed Oct. 9

Satus closed, accepted

6.1 Motivation

Want to specify level of severity, if aLIMIT isviolated. Target is appropriate error report
from tool.

6.2 Proposal

The VIOLATION statement may appear within the context of an arithmetic model within
LIMIT or an arithmetic submodel within LIMIT.

In this context, aMESSAGE_TY PE annotation or a MESSAGE annotation or both shall
be legal within VIOLATION. A BEHAVIOR statement within VIOLATION shall only
belegal if the LIMIT iswithin the context of a VECTOR. In the latter case, the

vect or _expressi on or bool ean_expr essi on which identifiesthe VECTOR
shall define the triggering condition for the behavior described in the BEHAVIOR state-
ment.

January 13, 2002 14

7.0 New valuefor MEASUREMENT annotation

relationto ALF 2.0 89.1
relation to | EEE P1603 11.12.11

History Proposal by Wolfgang, May 22
reviewed June 27, o.k. July 10 (see minutes)
accepted and closed Oct. 9

Satus closed, accepted

7.1 Motivation

Currently, measurements of analog quantities can be specified as “average”, “rms’,
“peak”, “transient”, “ static”. Another commonly used measurement is the average over
absolute values, which cannot be specified.

7.2 Proposal

The MEASUREMENT annotation shall support the following values:

MEASURENMENT =
transi ent

| static

| average

| rms

| peak

| absol ute_average?

(t=T)

| [E@dt

The mathematical definition of absol ut e_aver age is the following®: -

T

1. everything except absol ut e_aver age isaready supportedin ALF 2.0
2. Note: The parentheses around (t = 0) and (t = T) are an artefact of the framemaker equation editor.

January 13, 2002

15

8.0 MONITOR statement for VECTOR

relation to ALF 2.0 5.3.7,5.4,6.4.16
relation to | EEE P1603 953

History Proposal by Wolfgang, May 22
reviewed July 10 (see minutes)
reviewed Oct. 9, added comments based on discussion
reviewed Nov. 12, Alex requested to keep it open

Satus open

8.1 Motivation

Any vect or _expressi on inthe context of aVECTOR has an associated set of vari-
ables, which are monitored for the purpose of evaluating thevect or _expr essi on.
The set of variablesis given by the set of declared PINSs, featuring a SCOPE annotation.

SCOPE = behavior | neasure | both | none ; // see ALF 2.0, chapter 6.4.16

In the context of aVECTOR, all PINswith SCOPE = neasure | bot h are monitored.
Sometimes it would be practical to reduce the set of monitored pins within the scope of a
particular vector. For example, in amultiport RAM, only the pins associated with a partic-
ular logical port should be monitored, if thevect or _expr essi on describes atransac-
tion involving only this port. Currently, this can only be achieved by applying the “ ?*”
operator to all unmonitored pins. Thereforethevect or _expr essi on can become
quite lengthy for complex cells.

8.2 Proposal

Note: To understand and appreciate the proposal, it is mandatory that the reader be
familiar with ALF 2.0, chapter 5.4, pp. 55-80.

A VECTOR identified by avect or _expr essi on may havethefollowing MONITOR
annotation:

noni tor_mul tival ue_annotation : ==
MONI TOR { pin_identifiers }

The set of pi n_i denti fi ers shall be asubset of pinswith SCOPE = neasure | both.

If the MONITOR annotation is present, al pins appearing within this annotation shall be
monitored. Any pin appearing inthevect or _expr essi on must aso appear in the
MONITOR annotation. However, al pins appearing in the MONITOR annotation need
not appear inthevect or _expr essi on.

January 13, 2002 16

If the MONITOR annotation is not present, all pinswith SCOPE = neasure | bot h shall
be monitored (backward compatible with ALF 2.0).

Example:

CELL ny_4 bit_register_file {

}

It has been suggested that the MONITOR statement should only contain the variables
which are not already present in the vector_expression. This has the following draw-
back: A vector_expression with all monitored variables present would need an empty

PIN cl k { DI RECTI ON=i nput; }

PIN [4:1] din { DI RECTI ON=i nput; }

PIN [4:1] dout { DI RECTI ON=out put; }

VECTOR (01 clk -> ?! dout[1]) {
MONI TOR { din[1] dout[1] clk } //

}

VECTOR (01 clk -> ?! dout[2]) {
MONI TOR { din[2] dout[2] clk } //

}

VECTOR (01 clk -> ?! dout[3]) {
MONI TOR { din[3] dout[3] clk } //

}

VECTOR (01 clk -> ?! dout[4]) {
MONI TOR { din[4] dout[4] clk } //

}

put

put

put

put

i n del ay,

i n del ay,

i n del ay,

i n del ay,

power

power

power

power

MONITOR statement in order to be compatible with ALF 2.0 semantics. Also, identifi-

cation of the full set of monitored variables would not be possible without analysis of the
vector expression. It was argued that specifying all variablesis redundant and inconve-
nient. However, the latter applies only if both the vector_expression and the MONITOR
statement are specified by hand. Eventually, a user may specify only a set of MONITOR
statements and leave the generation of appropriate vector_expressions to an intelligent

characterization tool. The redundancy between MONITOR statement and
vector_expression could also serve as a validity check especially for automatically gen-
erated vector_expressions. Discussion to be continued ...

January 13, 2002

17

9.0 Featuresfor creating a standard AL F header file

relation to ALF 2.0 3.24,3.26,3.2.8,3.29, 11.x
relation to |EEE P1603 8.6, 8/7, 8.8, 8.9, new Annex (normative or not TBD)

History Proposal by Wolfgang, May 22
review pending as of July 10
supplementary proposal by Wolfgang Oct. 7
left open for review by ALF parser developpers

Satus open

9.1 Motivation

Theideaisto define pertinent features of ALF using the ALF language itself. Such a defi-
nition could be used as a standard “header” filefor ALF. Eventually, certain extensions of
the language could then be defined by changing the header file instead of changing the
language. This can be used for pure documentation purpose as well as for devel opment of
self-adapting ALF parsers.

9.2 Proposal
Use the KEYWORD statement to define standard arithmetic models.

Usethedefinition_for_arithmetic_nodel construct to definelegal statementsin the
context of arithmetic models.

Usethe CLASS statement for shared definitions.

Example (just to show the idea):

KEYWORD PROCESS = arithnetic_node
KEYWORD SLEWRATE = arithnetic_node
KEYWORD CURRENT = arithnetic_nodel

PROCESS ({
TABLE { nom spsn spwn wpsn wpwn }
}
CLASS all _nodel s {
KEYWORD UNI T = singl e _val ue_annotation ;
}
CLASS tim ng_nodel s {
CLASS { all _nodels }
UNIT = 1le-9 ;
KEYWORD RI SE = arithnetic_node
KEYWORD FALL = arithnetic_nodel
}
CLASS anal og_nodel s {
CLASS { all _nodels }

January 13, 2002 18

}

KEYWORD MEASUREMENT = singl e_val ue_annot ati on

SLEWRATE {

}

CLASS { timng _nodels }

CURRENT {

}

CLASS { anal og_nodel s }
UNIT = le-3 ;

It may be worthwhile to explore how far we can get in describing ALF featuresin thislan-
guage.

9.3 Supplementary proposal

Current definition for keywor d_decl ar at i on (See ALF 2.0, chapter 3.2.9):

keyword_decl aration ::=

KEYWORD cont ext _sensitive_keyword = syntax_item.identifier

Introduce the following extension:

keyword_decl aration ::=

va

KEYWORD cont ext _sensitive_keyword = syntax_item.identifier
KEYWORD cont ext _sensitive_keyword = syntax_item.identifier {
VALUE TYPE = val ue_type_identifier

}

ue_type_identifier ::=
nunber

posi tive_numnber
non_negati ve_nunber

i nt eger

unsi gned

bit literal

quot ed_string
identifier

Note: need to add which value_type is compatible with which syntax_item_identifier (see
grammar definition).

January 13, 2002 19

10.0 Amended semanticsof LIMIT

relationto ALF 2.0 75
relation to | EEE P1603 11.6.4

History Wolfgang, July 2, o.k. on July 10
refined and incorporated in this doc on July 19
reviewed, amended, accepted and closed October 9

Satus closed, accepted

10.1 Motivation

ALF 2.0 misses a specification on how a design tool should handlea LIMIT.

10.2 Proposal

Existing text:

A LIM T container shall contain arithmetic models. The arithmetic models shall contain
submodels identified by M N and/or MaX.
Proposed modification:
A LIM T container shall contain arithmetic models. The arithmetic models shall contain
submodels. These submodels shall either be exclusively identified by M N and/or MAX or
contain other submodels which shall be exclusively identified by M N and/or MAX.
Example:
LIMT { SLEWRATE {

PIN = nmy_pin ; MAX = 5.4,
bl

Alter native example:

LIMT { SLEWRATE {
PIN = ny_pin; RISE{ MAX = 6.3; } FALL { MAX = 5.4; }
b}

Proposed addition:

The values specified within LIMIT shall be considered as design limits. That means,
design tools must create a design in such ways that the limits are respected. If the calcu-
lated actual values are found to be equal to the specified limit values, they shall be consid-
ered within the design limits. The Max shall specify an upper limit. The M N value shall
specify alower limit. Therefore, if both M N and MAX values are specified for the same
guantity under the same operating conditions, the Max value must be greater or equal to the
M Nvalue.

January 13, 2002 20

11.0 Semanticsof SUPPLYTYPE and SUPPLY_CLASS for
multi-rail support

relationto ALF 2.0 6.4.11, 6.4.13
relation to | EEE P1603 934

History email discussion on reflector initiated by Sergei Sokolov
captured in minutes July 10
incorporated in this document by Wolfgang, July 19
reviewed Oct. 9, pending commentswrt VHDL-AMS
reviewed and accepted Nov. 12

Satus closed, accepted

11.1 Motivation

Semantics of SUPPLY TY PE aremissing in ALF 2.0. Semantics of SUPPLY _CLASSfor
support of multiple power/ground rails are not well-defined.

11.2 Proposal for SUPPLYTY PE semantics

Syntax and set of valuesfor SUPPLY TY PE are already defined in ALF 2.0, chapter
6.4.11. Following table contains proposed semantics.

TABLE 1. SUPPLYTYPE annotation for PIN object

Annotation value | description

power (default) ThePIN istheinterface between a CELL and apower supply device, designed to
source or sink a significant part of the CURRENT affecting the POWER con-
sumption of the CELL. The VOLTAGE measured at this PIN is with respect to
ground.

ground The PIN isthe interface between a CELL and the environmental common
ground. Therefore, the nominal VOLTAGE measured at this PIN is zero. How-
ever, spurious non-zero VOLTAGE may occur and LIMITs for such VOLTAGE
may be specified. The PIN is designed to serve as return path for a significant
part of the CURRENT affecting the POWER consumption of the CELL.

reference The PIN isthe interface between a CELL and a device which supplies either a
well-defined VOLTAGE or awell-defined CURRENT without being a signifi-
cant contributor to the POWER consumption of the CELL. From an electrical
standpoint, areferenceis similar to asignal. However, from an information-the-
oretical standpoint, areferenceis similar to a supply, because it does not contain
information.

Note: ALF 2.0, chapter 6.4.3 defines the semantic implication of DIRECTION on a PIN
with PINTY PE= SUPPLY. If the DIRECTION isinput, then the CELL must be connected
to asupply device in order to operate. If the DIRECTION is output, then the CELL itself
isthe supply device.

January 13, 2002 21

Note: A CELL needs not have exactly one PIN with SUPPLY TY PE=power and another
PIN with SUPPLY TY PE=ground. Passive devices (e.g. capacitor, resistor, diode) do not
have any supply pins. Semi-passive devices (e.g. clamp cells) have only supply pins corre-
sponding to the voltage level of the clamp. For example, aclamp cell to zero would have a
pin with SUPPLY TY PE=ground and DIRECTION=input and a pin with SIGNAL-
TYPE=TIE, POLARITY =low, and DIRECTION=output. Active devices have, at least,
either one pin with SUPPLY TY PE=power and another pin with SUPPLY TY PE=ground
or two pinswith SUPPLY TY PE=power and different supply voltages, usually one posi-
tive and one negative. In general, acell may have zero to multiple pins with SUPPLY -
TY PE=power or ground or reference.

11.3 Proposal for SUPPLY_CLASS semantics
Note: This section is proposed to supersede ALF 2.0, chapter 6.4.13.

The purpose of SUPPLY _CLASS isto define arelation between a power supply system
and acircuit utilizing the power supply system. The power supply system herein is under-
stood to be a set of nets (also called “rails’) capable to maintain awell-defined electrical
potential with respect to each other.

The power supply system itself shall be declared using a CLASS statement for global use
in the context of aLIBRARY or a SUBLIBRARY or for local use in the context of a
CELL or aWIRE.

The characteristics of the power supply system shall be defined in the context of the
objects which refer to the system using the SUPPLY _CL ASS annotation. The value of the
annotation shall be the name of the CLASS declaring the power supply system. Multi-
value annotation shall belegal. Multi-value annotation shall indicate that the object can be
used within either power supply system appearing in the set of values, but not necessarily
within all of them at the same time.

The object, in the context of which the SUPPLY _CLASS annotation and the optional
characteristics of the power supply system appear, shall be one of the following:

* A PIN withinaCELL
* A NODE withinaWIRE

* A CLASSfor global usage within aLIBRARY or aSUBLIBRARY or for local usage
withina CELL or aWIRE

The characteristics of the power supply system, i.e., the characteristics of each net within
the power supply system, shall optionally include the following items:

* Anarithmetic model for VOLTAGE, eventually containing arithmetic submodels for
MIN, TYP, MAX, and/or DEFAULT. In the context of a PIN with SUPPLY -
TY PE=power or aNODE with NODETY PE=power, the arithmetic model shall specify
the value of the supply voltage itself. In the context of a PIN with SUPPLY -

January 13, 2002 22

TYPE=ground or aNODE with NODETY PE=ground, the value of the supply voltage
shall be presumed zero. In the context of another PIN or NODE, an arithmetic model
for VOLTAGE may appear, but no relationship to supply voltage shall be implied.

* A LIMIT statement, containing an arithmetic model for VOLTAGE with arithmetic
submodels for MIN and/or MAX. In the context of a PIN with any SUPPLY TY PE,
including “ground”, this model shall specify the tolerable limit for spurious supply
voltage change, which may occur due to resistive, capacitive or inductive noise. In the
context of another PIN, aLIMIT for VOLTAGE may appear, but no relationship to
supply voltage shall be implied.

* A SUPPLYTY PE may appear in the context of a CLASSfor the purpose to be inherited
by aPIN. Similarly, aNODETY PE may appear in the context of a CLASS for the pur-
pose to be inherited by aNODE.

The CONNECT_CLASS annotation (see ALF 2.0, chapter 9.17) within aPIN shall be
used to establish connectivity between terminals of a power supply net. The annotation
value shall be the name of a CLASS. The PIN shall inherit the statements appearing in the
context of that CLASS, including, but not restricted to, the SUPPLY _CL ASS annotation,
the arithmetic model for VOLTAGE, the LIMIT for VOLTAGE, and eventually the SUP-
PLY TY PE annotation.

The SUPPLY _CLASS annotation shall also be legal within an arithmetic model for
ENERGY or POWER. It shall indicate, which power supply system provides the energy
or power described by the arithmetic model.

Example:

LI BRARY ny_library {
CLASS io0 ;
CLASS core ;
CLASS Vdd_i o { SUPPLY_CLASS=i 0; SUPPLYTYPE=power; VOLTAGE=2.5; }
CLASS Vss_io { SUPPLY_CLASS=i o; SUPPLYTYPE=ground; }
CLASS Vdd_core { SUPPLY_CLASS=core; SUPPLYTYPE=power; VOLTAGE=1.38; }
CLASS Vss_core { SUPPLY_CLASS=core; SUPPLYTYPE=ground; }
CELL core2io_interface {
PIN Vdd1l { PINTYPE=supply; CONNECT_CLASS=Vdd_ i o; }
PIN Vdd2 { PINTYPE=supply; CONNECT_CLASS=Vdd _core; }
PIN Vss1 { PINTYPE=supply; CONNECT_CLASS=Vss i o; }
PIN Vss2 { PINTYPE=suppl y; CONNECT_CLASS=Vss core; }
PIN in { PINTYPE=digital; DI RECTI ON=i nput; SUPPLY_CLASS=core; }
PIN out { PINTYPE=digital; DI RECTI ON=out put; SUPPLY_CLASS=i o; }
VECTOR (?! in -> ?! out) {
ENERGY el 15.8 { SUPPLY_CLASS=i o; }
ENERGY e2 3.42 { SUPPLY_CLASS=core; }

January 13, 2002 23

12.0 Amended semanticsof RESTRICT_CLASSand
SWAP_CLASS

relation to ALF 2.0 6.1.3,6.1.4,6.1.5,6.1.6
relation to | EEE P1603 923

History extensive email discussion involving Kevin Grotjohn,
Tim Ehrler, Sean Huang
proposal formulated by Wolfgang, July 31
reviewed Nov. 12, made modifications
Kevin requested to trace history of discussion

Satus open

12.1 Motivation

The semantics of RESTRICT_CLASS and SWAP_CLASS, asdescribed in ALF 2.0, do
not fit the intended usage models.

12.2 Proposal for RESTRICT_CLASS
Note: This section is proposed to supersede ALF 2.0, chapter 6.1.4.

The purpose of the optional RESTRICT_CLASS annotation shall be to identify character-
istics of a CELL which allow or disallow usage of the CELL for certain application tools.
Single-value or multi-value annotation shall be legal.

If the usage of the CELL is allowed, the application tool may add, remove, or substitute
instances of such acell in the design. If the usage of the CELL is not allowed, the applica-
tion tool may not add, remove, or substitute instances of such acell in the design.

The condition for usage is not governed by the library. The library provides only a set of
RESTRICT_CLASS values upon which a condition for usage can be specified for an
application tool. The usage specification consists of two parts:

1. A set of RESTRICT_CLASS values “known” to the application tool
2. A condition for usage, involving the set of “known” values
This standard does not specify the mechanism by which the usage specification is estab-

lished. The possibilities range from hardcoded usage specification to programmable usage
specification.

Example:

The following usage specification has been established for an application tool:
1. RESTRICT_CLASS values known by thetool = (A, B, C, D, E)

January 13, 2002 24

2. Condition for usage=A and not Bor C

Thefollowing cells X, Y, and Z arein the library:
RESTRICT_CLASSvaluesof CELL X = (A, B)
Condition isfalse, therefore usage of CELL X is not allowed

RESTRICT_CLASSvaluesof CELL Y = (A, C)
Condition is true, therefore usage of CELL Y isalowed

RESTRICT_CLASSvauesof CELL Z=(A,C, F)
Condition is true, but usage of CELL Z isnot allowed due to unknown value F

This standard proposes a set of RESTRICT_CLASS values with predefined semanticsin
order to facilitate the cell usage specification for awide range of applications with well-
understood functionality.

In addition, the standard permits customized RESTRICT_CLASS values in order to con-
trol the cell usage in special applications.

12.3 Semantics of predefined RESTRICT_CLASS values

Note: The following table is proposed to replace table 6-6 in ALF 2.0, which contains
some circular definitions.

TABLE 2. RESTRICT_CLASS annotation for CELL object

Annotation value | description

synthesis Cell issuitable for usage by atool performing transformations from a RTL
design representation to a structural gate-level design representation or
between functionally equivalent structural gate-level design representations

scan Cell issuitable for usage by atool creating or modifying a structural design
representation by inserting circuitry for testability enabling serial shift of data
through storage elements

datapath Cell issuitable for usage by atool creating or modifying a structura imple-
mentation of a dataflow graph within a design

clock Cell is suitable for usage by atool creating or modifying circuitry for the dis-
tribution of synchronization signals (also called clock signals) within adesign

layout Cell issuitable for usage by atool creating or modifying physical locations
(placement) and physical interconnects (routes) of components within a
design

The usage of RESTRICT_CLASS values other than these predefined values shall be legal.
It shall not be implied that these predefined RESTRICT_CLASS values are automatically
“known” by every application tool.

12.4 Proposal for SWAP_CLASS

Note: This section is proposed to supersede ALF 2.0, chapter 6.1.3, 6.1.5, 6.1.6.

January 13, 2002 25

The purpose of SWAP_CLASS shall beto identify setsof CELLS, wherein each CELL in
the set can be substituted for each other by a particular application tool. Multi-value anno-
tation shall be legal.

If the usage of two CELLs s authorized for a particular application tool according to
RESTRICT_CLASS (see previous chapter) and the intersection of SWAP_CLASS values
of thetwo CELLsis not empty, then the two CEL L s shall be considered equivalent for the
particular application tool, and the application tool isfree to substitute one cell for the
other.

Any SWAP_CLASS vaue shall make reference to adeclared CLASS within aLIBRARY
or SUBLIBRARY.

The CLASS statement may contain a RESTRICT_CLASS statement. In this case, the set
of RESTRICT_CLASS values shall be inherited by the CELL containing the
SWAP_CLASS statement. If the intersection of SWAP_CLASS values of thetwo CELLs
is not empty and the usage of two CELLs is authorized according to the inherited
RESTRICT_CLASS values, then the two CELL s shall be considered equivalent for the
particular application tool, and the application tool isfree to substitute one cell for the
other.

Example with RESTRICT_CLASSand SWAP_CLASS (from ALF 2.0, chapter 6.1.5):

CLASS foo;
CLASS bar;
CLASS what ever;
CLASS ny_tool;
CELL cell1 {
SWAP_CLASS { foo bar }
RESTRI CT_CLASS { synthesis datapath }
}
CELL cell2 {
SWAP_CLASS { foo whatever }
RESTRI CT_CLASS { synthesis scan ny_tool }

}

In order to swap celll and cell2, application tool must know all RESTRICT_CLASS val-
ues mentioned in this example. Usage condition may be (synthesis) or (datapath or
my_tool) or (synthesis and datapath or scan and my_tool) etc.

[modify figure 6-1 from ALF 2.0: non-empty intersection applies only to SWAP_CLASS]

Example with SWAP_CLASS and inherited RESTRICT_CLASS (from ALF 2.0,
chapter6.1.6):

CLASS all _nand2 { RESTRI CT_CLASS { synthesis } }
CLASS al |l _hi gh_power_nand2 { RESTRI CT_CLASS { |ayout } }
CLASS all | ow _power _nand2 { RESTRICT_CLASS { |ayout } }
CELL cell 1 {

SWAP_CLASS { all_nand2 all _| ow _power _nand2 }

}

January 13, 2002 26

CELL cell 2 {
SWAP_CLASS { all _nand2 al | _hi gh_power _nand2 }

}
CELL cell3 {
SWAP_CLASS { all _| ow_power_nand2 }

}
CELL cell 4 {
SWAP_CLASS { al | _hi gh_power_nand2 }

}

A tool must know synthesisin order to utilize and swap cell1 and cell2. Another tool must
know layout in order to utilize cell1, cell2, cell3, cell4 and swap cell1 with cell3 or cell2
with cell4. A tool that knows both synthesis and layout may utilize and swap all four cells.

[modify figure 6-1 from ALF 2.0: non-empty intersection applies only to SWAP_CLASS]

January 13, 2002 27

13.0 Amended semanticsof CONNECTIVITY
relationto ALF 2.0 9.15
relation to | EEE P1603 11.13.1

History initial draft by Wolfgang, Oct. 7
initial review Nov. 12

Satus open

13.1 Motivation

CONNECTIVITY has been formulated as arithmetic_model in ALF 1.1, but not in ALF
2.0.In ALF 2.0, CONNECTIVITY is an exceptiona statement different from
arithmetic_model, albeit it features HEADER and TABLE like an arithmetic_model. The
advantage of re-formulating CONNECTIVITY as arithmetic_model isto get rid of the
exception and to utilize CONNECTIVITY also asargument in arithmetic_model. For
example, other arithmetic models, for example minimum spacing, antenna rule etc., may
depend on CONNECTIVITY. Another proposed enhancement is to utilize CONNECTIV -
ITY not only as arequirement for connections but also as actual connection.

13.2 Proposal

The CONNECTIVITY statement shall be an arithmetic_model with value _typebit_literal.
It may contain the optional CONNECT _RULE annotation, which shall specify arequire-
ment for connections (see ALF 2.0, chapter 9.15.2). Without the CONNECT_RULE
annotation, the CONNECTIVITY statement shall specify actual connectivity. The value
“1" shall specify existing connection, the value “0” shall specify non-existing connection.

Example:

The following example describes pins on POLY layer with and without connection to dif-
fusion.

PIN pinl { // this pin has a POLY feature connected to NDI FF
AREA Al = 0.01 { LAYER=PQLY; }
CONNECTIVITY = 1 { BETWEEN { POLY NDI FF } }

}

PIN pin2 { // this pin has a PCLY feature not connected to NDI FF
AREA Al = 0.01 { LAYER=PQLY; }
CONNECTIVITY = 0 { BETWEEN { POLY NDI FF } }

}

The following exampl e describes a spacing rule between wires on the same layer, depen-
dent whether they are on the same net or not.

/1 mn distance between two w res, dependi ng whet her same net or not
RULE m n_di stance {

January 13, 2002 28

PATTERN pl { SHAPE = line; LAYER = netal 1; }
PATTERN p2 { SHAPE = line; LAYER = netal 1; }
LIMT {
DI STANCE {
BETVEEN { pl p2 }
M N {

HEADER { CONNECTIVITY { BETVEEN { pl p2 } } }
EQUATI ON { CONNECTIVITY ? 0.1 : 0.2 }

}
}
}
}

13.3 Supplementary proposal for CONNECT _TYPE

The CONNECT _TY PE annotation within the CONNECTIVITY statement shall specify
the nature of the connection.

connect _type_singl e _val ue_annotation ::=
CONNECT_TYPE = connect _type_identifier ;

connect _type_identifier ::=
el ectrical
| physical

The value “electrical” shall indicate that the objects are subjected to electrical connection,
i.e., apermanent direct current path does or does not exist between the objects. The value
“physical” shall indicate that the objects do or do not share common physical boundaries
with each other. The value “€electrical” shall be the default.

Supplementary explanation: A driver pin and areceiver pin of arouted wire have
CONNECT _TYPE €electrical. A viacut and the adjacent metal segments have
CONNECT _TYPE physical. CONNECT_TY PE physical does not alwaysimply electri-
cal connection. For example, objects of electrically insulating material may be physically
connected to each other.

January 13, 2002 29

14.0 Amended semantics of PULSEWIDTH, PERIOD

relation to ALF 2.0 8.3.17, 8/3/18
relation to | EEE P1603 11.9.9,11.9.10

History initial draft by Wolfgang, Oct. 7
reviewed and accepted Nov. 12

Satus closed, accepted

14.1 Motivation

PULSEWIDTH and PERIOD areintroduced in ALF 1.1 and ALF 2.0 for the purpose of
defining minimum pulse width and minimum period requirements in the context of a
VECTOR. The keywords PULSEWIDTH and PEERIOD are used in the same way as
SETUP, HOLD, RECOVERY, REMOVAL, which aso define minimum timing require-
ments, without using the LIMIT or MIN statement. However, while SETUP, HOLD,
RECOVERY, REMOVAL always represent minimum timing requirements, PUL SE-
WIDTH and PERIOD could represent actual measurements or maximum requirements.
Therefore we propose to amend the definitions of PULSEWIDTH and PERIOD to specify
actual measurements.

14.2 Proposal

The keywords PULSEWIDTH and PERIOD shall specify arithmetic models in the con-
text of aVECTOR.

PULSEWIDTH shall specify a measured time between two subsequent transitions on a
pin, where the state of the pin after the second transition shall be equal to the state of the
pin before the first transition. The PIN annotation shall be mandatory. The
EDGE_NUMBER annotation shall be optional and specify the first transition of the two
subsequent transitions. To specify a minimum or maximum constraint, use PUL SE-
WIDTH in the context of LIMIT with submodel MIN or MAX, respectively.

PERIOD shall specify the measured time between two subsequent occurrences of the
VECTOR. PIN annotation and EDGE_NUMBER annotation do not apply. To specify a
minimum or maximum constraint, use PERIOD in the context of LIMIT with submodel
MIN or MAX, respectively.

Example:

The following example specifies pulse width degradation through a buffer.

CELL ny_buffer {
PIN in { DI RECTI ON=i nput; }
PI N out { DI RECTI ON=out put }
VECTOR (01 in -> 10 in <& 01 out -> 10 out) {

January 13, 2002 30

/1 output pulse width = f(input pulse w dth)
PULSEW DTH { PIN = out;

HEADER {
PULSEWDTH { PIN = in;
TABLE { 0.1 0.2 0.3 0.4 0.5 }
}
}

/1l short pulses are shortened, |ong pul ses keep their wdth
TABLE { 0.05 0.18 0.29 0.4 0.5}

}

The following example specifies cycle time (minimum period) and refresh time (maxi-
mum period) of a DRAM.

CELL ny_DRAM {

PIN CE { DIRECTION = input; SIGNALTYPE = enable; }
/1 fill in other pins etc.
VECTOR (01 ce) {

/1 for simplicity, presune that CE controls all operations

LIMT {
PERI OD {
MN = 10;
MAX = 100000;
}
}

January 13, 2002

31

15.0 Amended definition of TIME and FREQUENCY
statement in context of arithmetic model

relationto ALF 2.0 8.3.6,8.9
relation to | EEE P1603 1191

History initial draft by Wolfgang, Oct. 7
reviewed and accepted in principle Nov. 12

Satus tentatively closed, to be confirmed

15.1 Motivation

TIME and FREQUENCY are defined as arithmetic models. In addition, they are defined
as annotations for arithmetic models featuring the MEASUREMENT annotation. The rea-
son is the necessity to know either the time or the repetition frequency of a measurement.
To get rid of the double-usage of the keywords, we propose to specify TIME and FRE-
QUENCY asauxiliary “arithmetic model” within another arithmetic model rather than as
“annotation”.

15.2 Proposal

TIME and FREQUENCY shall be usable as auxiliary arithmetic model within the context
of another arithmetic model featuring the MEASUREMENT annotation with value “ aver-
age’, “absolute_average”, “transient”, “RMS’, or “peak”. The evaluation of the auxiliary
TIME or FREQUENCY models must be independent from the evaluation of the main
model. Otherwise, TIME or FREQUENCY would have to appear within the HEADER of
the main model.

In the context of aVECTOR, the auxiliary TIME model may feature aFROM or aTO
statement. In the case of “peak”, this statement relates the occurrence time of the peak
measurement to a transition appearing in the VECTOR (see ALF 2.0, chapter 8.9.3). In
case of “average”, “absolute_average”, “transent”, “RMS’, the FROM and TO statement
define the occurrence time of atransition appearing in the VECTOR as the start or end
time, respectively, of the measurement.

Example:

The following exampl e specifies multiple average power measurements within asingle
vector.

VECTOR (01 in -> 01 out) {
PONER pl1 = 0.3 {
VEASUREMENT = aver age
TIME{ FROM{ PIN=1in; } TO{ PIN= out; } }
}

/1 average power is 0.3 neasured between the transition at "in”

January 13, 2002 32

/!l and the transition at ”out
POAER p2 = 0.4 {
MEASUREMENT = aver age
TIME =0.2{ FROM{ PIN = out; } }
}

/1 average power is 0.4 neasured during 0.2 tine units
/] after transition at "out”

}

The following example specifies time-window-sensitive noise margin.

VECTOR (*? data -> 01 clock -> ?* data) {
NO SE MARG N = 0. 45 {
PI N = dat a;
MEASUREMENT = transi ent;
TI VE {
FROM { PI N=dat a; EDGE_NUMBER=0; }
TO { PI N=data; EDGE_NUMBER=1; }
}
}

/1 pin "data” is noise-sensitive only around transition at pin ”clock”
SETUP = 0.2 {
FROM { PI N=dat a; EDGE_NUMBER=0; } TO { PI N=cl ock; }

}
/1 sensitivity window starts 0.2 tinme units before "clock” transition
HOLD = 0.3 {
FROM { PI N=cl ock; } TO { PIN=data; EDGE_NUMBER=1; }
}

/1 sensitivity window ends 0.3 time units after "clock” transition

January 13, 2002

16.0 Referenceto modelsin other format than ALF

relationto ALF 2.0 3.2.3, 7, others?
relation to | EEE P1603 TBD

History proposed by Alex, Oct. 9
incorporated in this document by Wolfgang, Oct. 16
initial review and discussion, Nov. 12
Alex should provide more comments

Satus open

16.1 Motivation

VHDL and Verilog 2000 provide features to reference models written in other languages
than VHDL and Verilog, respectively. The trend is multi-language support, and the capa-
bility to reference models, written for instancein C or C++ eliminates the need for trand a-
tion and makes re-use of existing models more efficient.

16.2 Proposal

Note: This proposal would represent a major enhancement of ALF. It should be driven
by the need and the feasibility of an implementation proving the concept. To get started,
only rough ideas are given here.

The INCLUDE statement (see ALF 2.0, chapter 3.2.3) could be enhanced to specify the
format of included files.

Example:

| NCLUDE " nodel 1. vhd” { FORMAT = VHDL ; }

| NCLUDE " nodel 2. v” { FORMAT = Verilog ; }

| NCLUDE " nodel 3.¢” { FORMAT = "C++" ; }

| NCLUDE " nodel 4. al f” { FORMAT = ALF ; } //default

The arithmetic_model statement (see ALF 2.0, chapter 7) could be enhanced to specify a
reference to an external subroutine for evaluation of amodel, instead of a TABLE or
EQUATION. Such an external subroutine must be found in an included file. The argu-
ments of the subroutine could be specified in the HEADER as long as they can be seman-
tically interpreted as artihmetic_models. The complete set of arguments, including
arguments which are alien to the ALF semantics, such as pointersto file handles etc.,
should be specified within the body of the subroutine statement.

Example:

DELAY Tdelay { FROM{ PIN=X; } TO{ PIN=Y; }
HEADER {

January 13, 2002 34

SLEWRATE Tslew { PIN=X; }
CAPACI TANCE O oad { PIN=Y; }

}
SUBROUTI NE {
Tdel ay = doubl e;
Tsl ew = doubl e ;
Cl oad = double ;
}
}
Corresponding C code:

doubl e Tdel ay (Tslew, C oad)
doubl e Tslew, Coad ;

{

/* calculate return_val ue */
return (return_val ue)

January 13, 2002

35

17.0 ROUTE annotation for PATTERN

relationto ALF 2.0 9.7
relation to | EEE P1603 993

History proposed by Wolfgang, Oct. 16
initial review Nov. 12

Satus open

17.1 Motivation

Rulesinvolving layout patterns may be anisotrop, i.e., depending on he routing direction.
For example, the minimum distance between paralel lines on a given routing layer may
depend on whether they are routed in horizontal or vertical direction (assuming that either
tounting direction is allowed).

17.2 Proposal

The PATTERN statement shall have an optional ROUTE annotation with the legal values
“horizontal” and “vertical” . In absence of the ROUTE annotation, the prefered routing
direction (see PREFERENCE statement, ALF 2.0, chapter 9.5.4) shall be presumed.

Example:

RULE m n_di stance_hori zontal {
PATTERN pl { LAYER=netal 1; SHAPE=li ne; ROUTE=hori zontal; }
PATTERN p2 { LAYER=netal 1; SHAPE=l i ne; ROUTE=hori zontal; }
LIMT { DI STANCE { BETVEEN { pl p2 } MN=0.5; } }

}

RULE m n_di stance_vertical {
PATTERN pl { LAYER=netal 1; SHAPE=l i ne; ROUTE=vertical; }
PATTERN p2 { LAYER=netal 1; SHAPE=l i ne; ROUTE=vertical; }
LIMT { DI STANCE { BETVEEN { pl p2 } MN=0.4; } }

}

Note: Should we also include diagonal routesin order to support the new routing tech-
nology from Simplex?

Note: Does this make the arithmetic submodels HORIZONTAL and VERTICAL (ALF
2.0, table 7-8) obsolete?

January 13, 2002 36

18.0 REGION statement
relationto ALF 2.0 9
relation to | EEE P1603 99

History proposed by Wolfgang, Oct. 16
initial review Nov. 12

Satus open

18.1 Motivation

The definition of abstract regions (as opposed to concrete layout patterns) has many appli-
cations. wire load models with obstructions, definition of transistors as intersection of
poly and diffusion, scope of metal density check etc. Boolean operations on regions (and,
or, exor) are also useful.

18.2 Proposal

The REGION statement shall be defined as follows:

region ::=
REG ON region_identifier { region_itens }

region_items ::=region_item{ region_item}

region_item::=
al | _purpose_item
geonetri c_nodel
geonetric_transfornmation
BOOLEAN si ngl e_val ue_annot ati on

/1 all_purpose_item geonetric_nodel, geonetric_transfornmation
/'l see existing gramrar

BOOLEAN si ngl e_val ue_annotation ::=
BOOLEAN = bool ean_expression ;

The operands BOOLEAN si ngl e_val ue_annot at i on inthe shal be
regi on_i dentifiers of aready defined regionsor pat tern_i denti fi ers of aready
defined patternsor | ayer _i denti fi ers of already defined layers.

The REGION statement shall be legal in the context of LIBRARY, SUBLIBRARY,
CELL, WIRE, RULE, ANTENNA.

Reference to a REGION statement is made by a single-value annotation of the form

REG ON = regi on_nane_identifier ;

January 13, 2002 37

Example:

/* This antenna rule relates “gate” area, i.e. intersection of poly and
diffusion with total area of poly including routing */
LAYER poly { PURPCSE = reserved ; }
Layer diff { PURPOSE = reserved ; }
ANTENNA for_poly {
REG ON gate { BOOLEAN = PCLY && DI FF; }

Sl ZE {
HEADER {
AREA Atotal { LAYER = poly; }
AREA Agate { REG ON = gate; }

}
EQUATION { Atotal / Agate }

}
LIMT { SIZE { MAX = 100; } }
}

/* This rule defines local netal density in a 300unt300um region */
RULE | ocal netal density {

REG ON | ocal { WDTH = 300; HEI GHT = 300; }

LIMT { DENSITY { REGON = local; MN=10.2; } }

January 13, 2002

19.0 WIRE instantiation within arithmetic model

relationto ALF 2.0 8.15
relation to | EEE P1603 94

History proposed by Wolfgang, Oct. 16
initial review Nov. 12, made modifications

Satus open

19.1 Motivation

Cells may be characterized with more complex load models than just alumped capaci-
tance, e.g. pi-model, lumped RLC, transmission line etc. Such complex load models can
be described using the WIRE statement. However, there must be a statement connecting
such modelsto a pin of a cell subjected to characterization.

19.2 Proposal

An arithmetic model describing electrical cell characterization data may contain awire-
instantiation statement defined as follows:

wire_instantiation ::=
wire identifier wire_instance_ identifier { pin_assignnents }
/1 pin_assignnents see existing grammar

Thewire_identifier shal bethename of an aready defined WIRE. The

wi re_i nstance_i dentifier shal provide meansto reference anamed arithmetic model
inside the WIRE using a hierarchical identifier. The pi n_assi gnment s shall define con-
nectivity between a node within the WIRE (LHS) and a pin within the CELL (RHS).

19.3 Supplementary proposal

To enable referencing of the components of the WIRE by the HEADER of the arithmetic
model, the MODEL annotation (see next chapter of this document) shall be used, in con-
junction with an hierarchical identifier.

Example:

CELL ny_cel |l {

PIN in { DI RECTI ON=i nput; }

PIN out { DI RECTI ON=out put; }

W RE pi _nodel {
NODE nl { NCDETYPE=driver; }
NODE n2 { NODETYPE=receiver; }
NODE n3 { NCDETYPE=gnd; }
CAPACI TANCE C1 { NODE { nl1 n3 } }
CAPACI TANCE C2 { NCDE { n2 n3 } }

January 13, 2002 39

RESI STANCE RL { NODE { n1 n2 } }

}
DELAY {
FROM { PIN=in; } TO{ PIN=out; }
pi _nodel load { nl = out; }
HEADER {
CAPACI TANCE C near { MODEL = load.Cl; TABLE { x x x } }
CAPACI TANCE C far { MODEL = load.C2; TABLE { x x x } }
RESI STANCE { MODEL = load.Rl; TABLE { x x } }
}
TABLE { X X X X X X X X X X X X XX X X XX}

January 13, 2002

40

20.0 Amendments and simplificationsfor arithmetic model
relation to ALF 2.0 7.1, 7.3 through 7.6

relation to |EEE P1603 11.2 through 11.6

History Jan. 14 by Wolfgang

Satus new

20.1 Motivation

There are many ways to construct arithmetic modelsin ALF. Some of them are predomi-
nantly used, others are seldom used and eventually redundant. The goal hereisto simplify
the rules for arithmetic models and eventually remove redundant features or replace them
by new features which are easier to understand and implement.

20.2 MODEL annotation

The optional MODEL annotation within apartial arithmetic model or a partial arithmetic
submodel shall be a single-value annotation, consisting of the name of another arithmetic
model or the hierarchical name of an arithmetic submodel.

The arithmetic model or submodel referenced by the MODEL annotation shall be used for
evaluation of the arithmetic model or submodel containing the annotation. Both arithmetic
models must have the same type. In the case of arithmetic submodels, the parental arith-
metic models must have the same type.

Example:

LI BRARY ny _library {

KEYWORD DERATE_FACTOR = arithnetic_nodel;

DERATE _FACTOR library default for_timng {
HEADER { DERATE CASE { TABLE {wccom nom bccom} } }
TABLE { 1.3 1.0 0.8 }

}

CELL ny_cell {
PIN A { DIRECTION = input; }
PIN Y { DI RECTION = output; }
DELAY cell default { RISE = 4.5 ; FALL = 3.8 ; }
VECTOR (01 A->01YVY) {

DELAY a to y rise { FROM{ PIN= A, } TO{ PIN=Y; }

HEADER {
DELAY { MODEL = cell _default.RISE ; }
DERATE_FACTOR { MODEL = library default _for timng ; }

}
EQUATI ON { DELAY * DERATE_FACTCR }
}
porod

January 13, 2002 41

20.3 Language simplification enabled by MODEL annotation

In ALF 2.0, an arithmetic model for a_to_y_ri se with the same mathematical result can
be described as follows:

DELAY a_to y rise { FROM{ PIN= A } TO{ PIN=Y; }
HEADER {
DERATE_FACTOR {
HEADER { DERATE_CASE { TABLE {wccom nom bccom} } }
TABLE { 1.3 1.0 0.8 }

}
}
EQUATION { 4.5 * DERATE_FACTCR }
}

The ALF 2.0 construct uses a nested arithmetic model (see ALF 2.0, chapter 7.1.5). A
nested arithmetic model can be very cumbersome to describe, if multiple levels of inter-
mediate arithmetic models are needed. Also, the nested arithmetic model construct can
only describe calculation trees, therefore arguments in a reconvergent cal culation graphs
must be re-described multiple times. Thisisillustrated in the following picture:

calculation graph: available construct:

3rd level B

\ / =N/ \/

A Bl D E 2ndlevel A Bl B C E
head
WINYT NS\ \\\/
Al B2 1st level Al
NN
result reLJIt
proposed construct:
wed g coA BL Bl B2
N/ N/ \\u/ \\/
Bl Al result

Therefore, the MODEL annotation capability makes the nested model construct obsol ete.

Note: It could be argued to use the TEMPLATE construct instead to simplify nested
models. However, the description with template would still be more complex than with
MODEL annotation, and it would be more expensive to parse. A parser would haveto

January 13, 2002 42

evaluate the template instantiations all the way to the branches(i.e., highest level of
HEADER) before the arithmetic model could be validated. I n contrast, arithmetic mod-
elswith only 1 level of HEADER could be all validated independently.

ALF 2.0 provides a " shortcut” for mapping non-numerical values of PROCESS or
DERATE_CASE into numerical values (see ALF 2.0, chapter 8.6.4). The arithmetic
model fora_to_y ri se could use the shortcut as follows:

DELAY a_ to y rise { FROM{ PIN= A } TO{ PIN=Y; }
HEADER {
DERATE_CASE {
HEADER { wccom nom bccom }
TABLE { 1.3 1.0 0.8 }

}

}
EQUATI ON { DELAY * DERATE CASE }

}

If the nested model construct is obsoleted, this “shortcut” is also obsoleted. The parser is
further smplified, because the specific rules for this “shortcut” go away.

The syntax cnstruct to support the “shortcut” was
HEADER { identifier { identifier } }

where the identifier could not only be a set of non-numerical values of PROCESS or
DERATE_CASE, but also a set of keywords of self-contained partial arithmetic models,
that is, arithmetic models without any annotation.

Example:

LAYER via_1 2 { // this is a cut |ayer
LIMT {
CURRENT {
HEADER { HEI GHT W DTH }
EQUATION { 0.3 * HEIGHT * WDTH }
/1 0.3 is the current density linit, i.e., current per area
}
}
}

To support self-contained partial arithmetic models with the proposed language simplifi-
cation, we propose to support “empty” arithmetic models.

Old rule;

nodel _keyword_identifier [nodel _name_identifier]
{ arithnetic_nodel _itens }

arithnetic_nodel itens ::=
arithnetic_nodel _item{ arithnmetic_nodel item}

January 13, 2002 43

New rule:

nodel _keyword_identifier [nodel _nanme_identifier]
{ { arithnetic_nodel _item} }

With the new rule, the example will read:

LAYER via_ 1 2 { // this is a cut |ayer
LIMT {
CURRENT {
HEADER { HEIGHT { } WDTH { } }
EQUATION { 0.3 * HEIGHT * WDTH }
/1 0.3 is the current density limt, i.e., current per area

}
}
}

The old rule supports only uniformly self-contained or uniformely non-self contained
arithmetic models within a HEADER. The new rule supports a HEADER where some
arithmetic models are self-contained and others are not.

Note: Should therulefor “empty” constructs be generalized for all ALF statements?

20.4 Obsolete construct with both TABLE and EQUATION

An arithmetic model containing both TABLE and EQUATION statement is supposed to
be supported in the following way:

If the values of all arguments lie within the range of their respective validity, the table
applies. If the value of some argument lies outside the range, the equation is applied
instead of the table.

The drawback of this construct is, that the case where the equation has also alimited range
of validity can not be described. Also, the case of using different equations beyond the
upper bound and beyond the lower bound cannot be described with this construct. More-
over, the construct is redundant, since the intent of this construct can be described using
the following generally supported features within arithmetic model:

» TABLE with optional range defined by MIN and MAX
» EQUATION with optional range defined by MIN and MAX

» Describe amodel using TABLE, another model using EQUATION, atarget model ref-
erencing the other models using MODEL annotation and an EQUATION describing
the usage condition of each referenced model

We propose to obsolete the construct featuring both TABLE and EQUATION because of
its redundancy and limited applicability.

Example:

January 13, 2002 44

Old construct:

DELAY ny_target {
HEADER {
CAPACI TANCE ny_arg {
TABLE { 1248} MN=0.1; MAX = 10.5;
bl
TABLE { 0.5 0.9 1.9 4.0 }
EQUATION { 0.5 * ny_arg }
}

New construct:
DELAY i nt er nedi at e_nodel {

HEADER {
CAPACITANCE { TABLE{ 1 2 4 8} }

}
TABLE { 0.5 0.9 1.9 4.0 }
}
DELAY ny_target {
HEADER {
DELAY ny_table { MODEL = internedi ate_nodel ; }
CAPACI TANCE ny_arg { /* put extended range of validity here */ }
}
EQUATI ON {
(my_arg >= 0.1 & ny_arg <= 10.5)? ny_table : 0.5 * ny_arg
}
}

January 13, 2002

45

21.0 Amenmentsfor hierarchical antenna support
relation to ALF 2.0 9.7,9.13

relation to |EEE P1603 9.9.2,9.10.3,11.13.2

History Jan. 14 by Wolfgang

Satus new

21.1 Motivation

Antennarules are established to prevent transistors to be damaged during manufacturing
of upper metal layers. Evaluation of antennarules requires visibility of all layers, starting
from polysilicon and diffusion which constitute the transistors. In cell-based design, the
artwork of atransistor connected to a pin of acell isnot visible to alayout tool. ALF sup-
ports the annotation of transistor AREA to the pin as a pertinent parameter for antenna
rule evaluation. For complex cells or blocks, this abstraction is not suffcient.

The following figure describes an example:

Metal3 - | X3 -
Metal2 - — X2 -
Metal - — -
POLY _ _ _ _ | _

outside cell ! inside cell

When the Metal2 segment “X2” is manufactured, the transistor area”P1” is exposed to
antenna. When the Metal 3 segment “X3” is manufactured, the transistor areas “P1” and
“P2" are exposed to antenna. The smaller the exposed transistor area, the greater the dam-
age. Therefore, using the area“P1” is pessimistic, using the area “P1+P2” is not safe.

21.2 PATTERN annotation in context of PIN

Allow the PATTERN statement in context of PIN. Currently, the PATTERN statement is
allowed in context of PORT, BLOCKAGE and RULE. A PORT isallowed in context of a
PIN.

In conjunction with the amended CONNECTIVITY statement (see earlier chapter of this
document), the pertinent information for hierarchical antenna rule checking can be
described.

January 13, 2002 46

Example:

/1 Note: items in italic are not verbatim they should be numbers

PIN my_pin {
PATTERN A { LAYER = ML; RECTANGLE { left bottomright top } }
PATTERN B { LAYER = M2; AREA = B; }
PATTERN C { LAYER = ML; AREA = C, }
PATTERN D { LAYER = M2; AREA = D; }
PATTERN E { LAYER = M3; AREA = E; }
PATTERN F { LAYER = M2; AREA = F; }
PATTERN G { LAYER = ML; AREA = G }
PATTERN P1 { LAYER = POLY; AREA = P1; }
PATTERN P2 { LAYER = POLY; AREA = P2; }
PORT ny_port { PATTERN = A, }
CONNECTIMITY = 1 { BETWEEN { A B } CONNECT_TYPE=physi cal ; }
CONNECTIMITY = 1 { BETWEEN { B C P1 } CONNECT_TYPE=physi cal ; }
CONNECTIMITY = 1 { BETWEEN { C D E } CONNECT_TYPE=physi cal; }
CONNECTIVITY = 1 { BETWEEN { E F G P2 } CONNECT_TYPE=physi cal ; }

}

This example corresponds to the figure above. Note that the information about the various

patternsis restricted to area. Only the pattern A, which is must be visible as a physical
port, is described as rectangle. Reference to pattern A is made by the port.

Note: For similar reasons, a PATTERN statement could be allowed in the context of a

CELL. Thiswould, for example, facilitate hierarchical parasitic extraction.

21.3 TARGET annotation within precalculated antenna SIZE

The pertinent data for antenna cal culation can abstracted further, if the arithmetic model

describing antenna SIZE is partially pre-calculated considering the patterns within the
cell. Thefollowing calculation refers still to the same example

* Antennawith target XO:
SIZE = AREA(A+X1) / AREA (X0)
+ AREA(B+D+X2) / AREA(P1+X0)
+ AREA (E+X3) / AREA(P1+P2+X0)

* Antennawith target P1:
SIZE = AREA(C) / AREA(P1)
+ AREA(B+D+X2) / AREA(P1+X0)
+ AREA (E+X3) / AREA(P1+P2+X0)

* Antennawith target P2:
SIZE = AREA(F) / AREA(P2) + AREA(G) / AREA(P2)
+ AREA(E+X3) / AREA(P1+P2+X0)

The segments A, E, and P1 are pertinent. The individual segments B and D can be com-
bined, since only the sum B+D is pertinent. The partial SIZE=AREA(C)/AREA(P1) can

be precalculated. The partial SIZE=AREA (F+G)/AREA (P2) can also be precal cul ated.

January 13, 2002

47

Thustheindividual segment P2 isnot exposed and can be replaced by acombination of P1
and P2.

The following figure shows the abstraction.

M3 _ [-
M2 B + D _
. SIZE=(F+G)/P2
M1 7 SIZE=CPL |T T
]
POLY _ _ _ _ _ _ _ _ _ r——— —- P1 — || P1+P2
outside cell : inside cell

In order to describe this abstraction in ALF, the TARGET annotation within the context of
SIZE is proposed. The value of the TARGET annotation isa PATTERN, corresponding to
the transistor area exposed to antenna.

Example:
/1 Note: items in italic are not verbatim they should be nunbers
PIN my_pin {
PATTERN A { LAYER = ML; RECTANGLE { left bottomright top } }
PATTERN B_.D { LAYER = M2; AREA = B+D; }
PATTERN E { LAYER = M3; AREA = E; }
PATTERN P1 { LAYER = POLY; AREA = P1; }
PATTERN P1_P2 { LAYER = PCLY; AREA = P1+P2; }

}

PORT ny_port { PATTERN = A }
CONNECTIVITY forXo = 1 {
BETVWEEN { A B_ D } CONNECT_TYPE = physical ;
}
CONNECTIMITY forP1 = 1 {
BETWEEN { P1 B D E} CONNECT_TYPE = physical;
}
CONNECTIVITY forP2 = 1 {
BETVWEEN { P1_P2 E } CONNECT_TYPE = physical;
}
SIZE targetPl = C P1 {
TARGET=P1; CALCULATI ON=i ncrenent al ;
}
SIZE targetP2 = (F+Q /P2 {
TARGET=P1_P2; CALCULATI ON=i ncrenent al ;
}

An eventual antennarule violation will be assocated with the PATTERN referenced by
the TARGET annotation.

January 13, 2002 48

22.0 Amendmentsfor REFERENCE related to DISTANCE

relationto ALF 2.0 9.18
relation to | EEE P1603 11.13.12
History Jan.14 by Wolfgang

Satus new

22.1 Motivation

A DISTANCE between two physical patterns can be described in ALF. The reference
point for distance measurementsis indicated by the REFERENCE annotation which is
assocated with the DISTANCE statement. This annotation specifies whether the distance
is measured between the centers or the edges or the origins of the patterns. However, adis-
tance measured between the center of one pattern and the edge of another pattern cannot
be specified in thisway. Therefore, we propose to replace the annotation by an annotation
container which can specify the point of reference for each object.

22.2 Proposal
Existing definition:

reference_annotation ::=
REFERENCE = center | origin | edge ;

Proposed definition:

reference_annotation_container ::=

REFERENCE {
pattern_identifier
pattern_identifier

center | origin | edge ;
center | origin | edge ;

}
Example:

DI STANCE d1 {
BETWEEN { patternl pattern2 }
REFERENCE { patternl = origin; pattern2 = origin; }
/1 instead of “REFERENCE = origin;” in ALF 2.0

}

DI STANCE d2 {
BETWEEN { pattern3 patternd }
REFERENCE { pattern3 = origin; patternd4 = edge; }
/1 not possible to describe in ALF 2.0

}

January 13, 2002 49

23.0 Amendmentsfor PIN_GROUP
relation to ALF 2.0 6.5

relation to | EEE P1603 9.4.2

History Jan. 14 by Wolfgang

Satus new

23.1 Motivation

ALF 2.0 features a pin_instantiation statement and a PIN_GROUP statement. The
PIN_GROUP statement is more general than the pin_instantiation statement. Therefore
the pin_instantiation statement is redundant. Since both statements have been only intro-
duced in ALF 2.0, chances are that they have not been adopted in practical applications
yet. Therefore we propose to obsol ete the pin_instantiation statement.

23.2 Proposal: make pin_instantiation obsolete

The purpose of the pin_instantiation statement is to specify information releveant for a
scalar pin or asubarray of al-dimensional array pin. The statement allows for recursivity,
i.e., apin_instantiation statement inside another pin_instantiation statement.

Example:

PIN [1:100] ny_array {
/1 put information pertaining to the entire array [1:100] here
my _array[1:50] { // this is a pin_instantiation
/1 put information pertaining to the sub-array [1:50] here
}
nmy_array[51:100] { // this is another pin_instantiation
/1 put information pertaining to the sub-array [51:100] here
}
}

The equivalent construct using PIN_GROUP looks as follows:

PIN [1:100] ny_array {
/1 put information pertaining to the entire array [1:100] here
}
PIN GROUP [1:50] subarray_ | ow {
MEMBERS { ny_array [1:50] }
/1 put information pertaining to the sub-array [1:50] here
}
PIN GROUP [1:50] subarray_high {
MEMBERS { ny_array [51:100] }
/1 put information pertaining to the sub-array [51:100] here

January 13, 2002 50

The PIN_GROUP statement is more general, because it allows for concatenation of arbi-
tary pins, whereas the pin_instantiation allows only for subarrays within one parent pin.

The following example can only described with PIN_GROUR, not with pin_instance:

PINpinl { /* put information pertaining to pinl here */ }
PIN[1:8] pin2 { /* put information pertaining to pin2 here */ }
PIN_GROUP [0: 3] ny_pingroup {

MEMBERS { pin2[7:8] pinl pin2[5] }

/1 pin mapping is as foll ows:

/1 ny_pi ngroup[0] <= pin2[7]
/1 ny_pi ngroup[1] <= pi n2[8]
/1 ny_pingroup[2] <= pinl

/1 ny_pi ngroup[3] <= pin2[5]

/* put information pertaining to my_pingroup here */

}

Therefore the pin_instance statement can be obsoleted. The effect is langauge simplifica-
tion without loss of description capability.

23.3 Proposal: rename PIN_GROUP to PINGROUP

A cosmetic change of the keyword PIN_GROUP to PINGROUP is proposed. The ratio-
naleisasfollows:

1] ”

In ALF convention, composite keywords building on abasic keyword use“ " as separa-
tor. For example, NON_SCAN_CELL buildson CELL, RESTRICT_CLASS builds on
CLASS. However, PINGROUP does not build on GROUP. GROUP hasin fact quite the
opposite effect of PINGROUP. GROUP allows to generate multiple statements from a
single statement. Maybe “EXPAND” would have been a better choice for akeyword than
“GROUP”, but “GROUP’ has been around since ALF 1.0 ...

Compatibility between changing keywords can be achieved by standardizing on an
ALIAS.

Example:

ALI AS PI N_GROUP = PI NGROUP ;

/1 backward conpatibility:

/1 PINGROUP is new primary keyword

/1 PIN_GROUP can still be used as alternative keyword

ALI AS EXPAND = GROUP ;

/1 forward conpatibility:

/1 GROUP remains prinmary keyword

/1 EXPAND becones alternative keyword

Subsequent revisions of the ALF standard could introduce a new keyword as alternative
keyword, then swap alternative keyword and primary keyword, finally obsolete the alter-
native keyword.

January 13, 2002 51

24.0 Extended definition of PURPOSE annotation

relation to ALF 2.0 6.6, 8.15
relation to | EEE P1603 8.6,9.5,9.6.3
History Jan.14 by Wolfgang

Satus new

24.1 Motivation

AsALFisavery genera language and many application tools need to build datamodels
only for specific subsets of the ALF statementsin alibrary, we propose to use the PUR-
POSE annotation. Currently, the PURPOSE annotation is supported only in the context of
afew ALF statements.

24.2 Proposal: generalized PURPOSE for CLASS

The CLASS statement has many purposes, given by those other statements making refer-
enceto the CLASS statement, for instance as RESTRICT_CLASS, SWAP_CLASS,
CONNECT_CLASS, EXISTENCE_CLASS, SUPPLY_CLASS. The PURPOSE annota-
tion for CLASS statement is supported for the target usage EXISTENCE_CLASS. We
propose to define a PURPOSE multivalue annotation indicating each target usage of a
CLASS statement.

24.3 Proposal: PURPOSE for WIRE

A WIRE statement can describe a statistical wireload model, a model for boundary para-
siticswithin acell, amodel for an electrical network to be connected to a cell, amodel for
interconnect delay and noise calculation, a model for parasitic reduction. We propose to
define a PURPOSE (singlevalue or multivalue?) annotation to indicate what is described.

24.4 Proposal: PURPOSE for REGION

A REGION statement has multiple potential usages. description of electrical components
such astransistors or diodes for antenna rule check, descriptions of region of interest for
metal density check, description of an all-layer blockage in context of acell, description of
abounding box of acell, description of a blockage in context of awireload model,
description of alowed and disallowed regions for over-block routing, description of a sub-
floorplan within ablock ...

We propose to define a PURPOSE annotation dependent on whether the REGION state-
ment feature will be accepted and what semantics will be supported.

January 13, 2002 52

25.0 Amended semanticsof ILLEGAL statement

relationto ALF 2.0 6.7
relation to | EEE P1603 9.6.2
History Jan.14 by Wolfgang

Satus new

25.1 Motivation

The ILLEGAL statement issimilar to SETUP or HOLD or other timing constraint state-
ment insofar asit appears in context of a VECTOR and can contain a VIOLATION state-
ment. However, timing constraint statements are arithmetic models whereas ILLEGAL
statement is a statement on its own. It indicates whether the VECTOR constitutes an ille-
gal state. Anillegal state may be tolerable for a short amount of time. Therefore the ILLE-
GAL statement could be interpreted as arithmetic model indicating the tolerable duration
of theillegal state. This provides more modeling capability. As a side effect, the language
issimplified, since the ILLEGAL statement now fallsin the category of arithmetic mod-
els.

25.2 Proposal

The ILLEGAL statement shall describe an arithmetic model in the context of aVECTOR.
If the related control expression is a boolean expression, the arithmetic model shall

describe the tolerable duration of the state defined by the boolean expression. If therelated
control expression is avector expression, the arithmetic model shall describe the tolerable
duration of time measured between specified events, using the FROM and TO statements.

If no data is associated with the arithmetic model, the state or sequence of events defined
by the control expression shall be considered illegal independent of time. The occurence
of the VECTOR alone constitutes a VIOLATION.

If datais associated with the arithmetic model, an actual duration of the state equal or
greater than the duration calculated by evaluation of the arithmetic model shall constitute
aVIOLATION.

Example:

VECTOR (A & ! A bar) {
| LLEGAL = 0.5 {
VI OLATION { /* put consequence of violation here */ }
}
}

A violation occurs, if thestate A && ! A bar lasts 0.5 units of time or longer.

January 13, 2002 53

VECTOR (01 B -> 01 B bar -> 10 B bar) {
I LLEGAL = 0.8 {
FROM { PIN = B _bar; EDGE_NUMBER = 0; }
TO{ PIN = B_bar; EDGE_NUMBER = 0; }
VI OLATION { /* put consequence of violation here */ }
}

A violation occurs, if the elapsed time between 01 B_bar and 10 B_bar is0.8 units of
time or longer.

January 13, 2002

54

26.0 CONTROL_POLARITY statement

relationto ALF 2.0 6.4.6
relation to | EEE P1603 945
History Jan.14 by Wolfgang

Satus new

26.1 Motivation

ALF 2.0 featuresthe POLARITY statement, which is either a single-value annotation or
an annotation container, depending on the value of the SIGNALTY PE annotation.
POLARITY as annotation container applies only for a composite signaltype value with
the fundamendal signaltype “control” or “clock”. The composite consists of the names of
operation modes which are controlled by the signal. The POLARITY statement states
those modes again and asssociates each of them with avalue. Currently, the names of
operation modes are predefined, e.g. “read”, “write”, “scan”. But for many applications, a
customized name space would be preferable. Also, priority of control signals can not be
described within the POLARITY statement.

We propose to introduce the CONTROL_POLARITY statement as an amendment.

26.2 Proposal

The CONTROL_POLARITY statement shall be defined as one-level annotation contai ner
in the context of aPIN asfollows:

control _polarity one | evel _annotation_container ::=
CONTROL_POLARI TY {
node_identifier = polarity value_identifier ;
{ node_identifier = polarity_value_identifier ; }

}

where pol ari ty_val ue_i denti fi er supportsthe set of values already defined for the
POLARITY annotation (i.e. “high”, “low”, “rising_edge’, “falling_edge”,
“double_edge”’) and node_i denti fi er supports an arbitrary set of values on top of
aready predefined values (i.e. “read”, “write”, “test”, “scan”, “bist”).

This statement eliminates the necessity for composite SIGNALTY PE values building on
fundamental SIGNALTY PE values “control” or “clock” (for example
“read_write_control”, “read_write_clock”).

The POLARITY statement shall now be only a single-value annotation. Its semantics for
usage as single-value annotation shall remain unchanged. In particular, POLARITY shall

January 13, 2002 55

be supported for “clock”, but not for “control”. As a consequence, “clock” can be associ-
ated with both POLARITY and CONTROL_POLARITY.

Example for “ control” :

PI'N node_sel _1 { SIGNALTYPE = control ;
CONTROL_POLARI TY {
normal = high ;
scan = | ow
hold = | ow ;
P}
PIN node_sel 2 { SIGNALTYPE = control

CONTROL_POLARI TY {

scan hi gh ;

hol d | ow ;
Pl
/1 corresponding truth table:
/1 node_sel 1 node_sel 2 node of operation
/1 hol d
/1 scan
/1 nor nmal
/1 nor nmal

= OO
R ORFr O

This construct provides priority information for control signals.
Example for “ clock”:

old construct;

PIN rw _cl ock {
SIGNALTYPE = read_wite_clock
POLARI TY {
read = rising_edge
write = falling_edge

}

new construct:

PIN rw_cl ock {
SI GNALTYPE = cl ock
POLARI TY = doubl e_edge
CONTROL_PCOLARI TY {
read = rising_edge
wite = falling_edge

In the old construct, there is a dependency between the value of SIGNALTY PE and the
contents of the POLARITY statement. The new construct is more orthogonal. The modes
are only found within the contents of the CONTROL_POLARITY statements.

January 13, 2002 56

From an electrical standpoint, the information “double_edge” indicates a requirement for
clock distribution with tighter requirements on duty cycle and slewrates than
“rising_edge” or “faling_edge’. In the old construct, “double_edge” was only supported
if both edges control the same operation. In the case of different operations,
“double_edge’ had to be infered from the mode-specific polarity values. In the new con-
truct, POLARITY isnow used in auniform way. The syntax and semantics rules for
POLARITY are independent of its context.

January 13, 2002

57

27.0 Review of unitsfor arithmetic models

relation to ALF 2.0 8.1,9.2,9.6
relation to | EEE P1603 9.10.5,11.8
History Jan.14 by Wolfgang, with input from Peter and Tak

Satus new

27.1 Motivation

We should revisit the systems of base units and default unitsin order to comply with sci-
entific standards. An error has been detected for base unit of FLUX and FLUENCE. Also,
the system of default units should be revisited, so that mathematical calculations can even-
tually be done without unit conversion. Also, there isno definition of unitsfor coordinates
in geometric models. The assumption is that DISTANCE unit is used. Also, we can pon-
der whether arithmetic models for timing such as DELAY, SETUP etc. need their own
units or they should uniformly use the unit of TIME.

27.2 Proposal

FLUX and FLUENCE: change base unit to [1/(m? s)] and [1/(m?)], respectively.

DELAY, RETAIN, SLEWRATE, SETUP, HOLD, RECOVERY, REMOVAL, PUL SE-
WIDTH, PERIOD, NOCHANGE, JTTER, ILLEGAL: use unit of TIME, unless unit for
specific model is explicitely defined.

LENGTH, HEIGHT, WIDTH, THICKNESS, OVERHANG: use unit of DISTANCE,
unless unit for specific model is explicitely defined.

Introduce following rule: A local definition of unitsfor TIME or DISTANCE overrulesa
global definition of units for specific model. A local definition of units for specific model
overrules definition of TIME or DISTANCE at same level or more global level.

Use the unit of DISTANCE for COORDINATE values within geometric models.

Define default units such that the following mathemetical relationships can be satisfied
without unit conversion:

f=1/t
P=dE/dt
V=R*I
|=C*dV/dt
V=L*d/dt
P=C*V2*f

January 13, 2002 58

flux = d fluence/ dt
fluence=1/A

A =D?

etc.

with following mathematical symbols

frequency
time
power
energy
voltage
current
resistance
capacitance
inductance
area
distance
flux
fluence

NNOPrOTT<MT "

One possibility isto make al default units 1 and make sure that al base units are compat-

ible with Sl-units.

January 13, 2002

59

Part 2: Grammar-related items

28.0 Make grammar more compact by removing redundancies

relation to ALF 2.0 3.2,11.x
relation to |EEE P1603 Annex A (normative)

History Proposal by Wolfgang, May 22
review pending as of July 10
Comments from Tim Ehrler per email:
no issue with proposed changes
left open for review by other ALF parser developpers

Satus closed here, to be tracked within |EEE P1603

28.1 Motivation

Simplify the grammar by getting rid of redundant definitions. Definitions which are used
in aparticular context should be presented in that context. Thiswill also simplify to intro-
duce grammar “ snippets’ in the semantic sections, where they are needed.

28.2 Proposal
ALF 2.0 chapter 11.2

Get rid of chapter 11.2 and introduce the pertinent statements locally, where they are
needed.

unnamed_assi gnnent _base
remove

unnaned_assi gnnment
renameto si ngl e_val ue_annot ati on, moveto 11.7

named_assi gnnent _base
remove

named_assi gnnment
remove

singl e_val ue_assi gnnment ::=
identifier = value ;

mul ti _val ue_assi gnnent
renametonul ti _val ue_annot ati on, moveto 11.7

January 13, 2002 60

assi gnnment
remove

pi n_assi gnnent
modify according to chapter 5 of this doc., moveto 11.7

arithnmetic_assi gnnment
moveto 11.7

ALF 2.0 chapter 11.3

split into 3 separate chapters:

» Boolean expressions and operators
put bool ean_expr essi on

» Arithmetic expressions and operators
putarithmeti c_expression

* Vector expressions and operators
put everything else

ALF 2.0 chapter 11.4

Get rid of chapter 11.4 and introduce the pertinent statements locally, where they are
needed.

cell _instantiation
remove
unnaned _cel |l _instantiation

only used for NON_SCAN_CELL, moveto 11.9

named cell _instantiation
only used for STRUCTURE, moveto 11.17

pi n_instantiation
only used for PIN, moveto 11.11

Error to be corrected:
incorrect use of pi n_i nst anti ati on in chapter 6.3, should be pi n_assi gnnent s

Error to be corrected:
pi n_i nstanti ati on isnot mentioned aspi n_i t emin chapter 11.11

primtive_instantiation
only used for FUNCTION, moveto 11.17

January 13, 2002 61

tenpl ate_instantiation
moveto 11.7

dynam c_instantiation_item
moveto 11.7

via_ instantiation
moveto 11.23

ALF 2.0 chapter 11.5
move to “lexical rules’” section (chapter 10)
ALF 2.0 chapter 11.6

Get rid of chapter 11.6, associate operators with the corresponding expressions.

» Boolean expressions and operators
put all operators with prefix bool ean_

» Arithmetic expressions and operators

put all operators with prefix ari t hmeti c_
» Vector expressions and operators

put all operators with prefix vect or _

movesequenti al _if,sequential _else if toll.17.
ALF 2.0 chapter 11.7

renamel ogi c_assi gnnment (see11.17) into bool ean_assi gnnment and move
into 11.7. Movevect or _assi gnnent into 11.7.

rewrite grammar involvingal | _pur pose_itemannot ati on,
annot at i on_cont ai ner, the other items remain unchanged.

annotation ::=
one_l evel _annotati on
| two_level _annotation
| nulti_level _annotation

one_ |l evel annotation ::=
si ngl e_val ue_annot ati on
| nulti_val ue_annotation

one_l evel _annotations ::=
one_l evel _annotation { one_level annotation }

two_| evel _annotation ::=
one_l evel _annotati on
| identifier [= value] { one_level _annotations }

January 13, 2002

62

two_| evel _annotations ::=
two_| evel _annotation { two_| evel annotation }

multi | evel _annotation ::=
one_| evel _annot ati on
| identifier [= value] { multi_l|evel _annotations }

mul ti | evel annotations ::
multi | evel _annotation { multi_l|evel _annotation }

annot ation_contai ner ::=
identifier { one_level_annotations }

Sinceal | _purpose_itemalowsgeneric_object andgeneric_obj ect includes
keywor d_decl ar at i on statement, consequently al syntax_item.i dentifiers
that can be used by keywor d_decl ar at i on (See chapter 3.2.9) must be covered by

al | _purpose_item

all _purpose_item::=

generi c_obj ect

tenpl ate_instantiation
annot ati on
arithnetic_nodel
arithnetic_nodel contai ner
bool ean_assi gnnent

vect or _assi gnnent

Error to be corrected:
bool ean_assi gnnment isnot mentioned assynt ax_item.i denti fi er inchap-
ter 3.2.9.

Note: ari t hneti c_subnodel is dsoasyntax_item.identifier,butitisnot
included inal | _pur pose_i t em becauseari t hneti c_subnodel isawaysin the context
of arithneti c_nodel .

January 13, 2002 63

29.0 Rewrite grammar for more specific syntax and less
semantic restriction

relation to ALF 2.0 3.2,11.x
relation to |EEE P1603 Annex A (normative)

History Proposal by Wolfgang, May 22
review pending as of July 10
Comments from Tim Ehrler per email:
no issue with proposed changes
left open for review by other ALF parser developpers

Satus closed here, to be tracked within |EEE P1603

29.1 Motivation

Certain syntax definitions of ALF are written in avery generic way. As a consequence, a
lot of semantic restrictions apply. Theideaisto rewrite the grammar so that the syntax
section becomes more specific and as a consequence the semantic sections become less
“heavy”. However, the changes to the existing grammar should be limited to modifica-
tions which specifically serve that purpose rather than re-writing the whole grammar from
scratch. Also, eventual redundancy in the grammar can be eliminated.

29.2 Proposal

Useal | _pur pose_i t emonly for statements with custom keywords, introduced by
keywor d_decl ar at i on statements and put the statements using standard keywords
explicitly in the grammar.

ALF 2.0 Chapter 11.9

cell item::=

all _purpose_item
| CELLTYPE_singl e_val ue_annot ati on
| SWAP_CLASS one_l evel _annotation
| RESTRI CT_CLASS one_l evel _annotation
| SCANTYPE_si ngl e_val ue_annot ati on
| SCAN_USAGE_si ngl e_val ue_annot ati on
| BUFFERTYPE_si ngl e_val ue_annot ati on
| DRIVERTYPE_si ngl e_val ue_annot ati on
| PARALLEL_DRI VE_si ngl e_val ue_annot ati on
| pin
| pin_group
| primtive
| function
| non_scan_cell
| test
| wvector

January 13, 2002 64

wire

bl ockage

ar t wor k
connectivity

ALF 2.0 Chapter 11.10

l[ibrary item::=

al | _purpose_item

ALF 2.0 Chapter 11.11

pin_item::=

al | _purpose_item

range

VI EW si ngl e_val ue_annot ati on

PI NTYPE_si ngl e_val ue_annot ati on

DI RECTI ON_si ngl e_val ue_annot ati on

SI GNALTYPE_si ngl e_val ue_annot ati on
ACTI ON_si ngl e_val ue_annot ati on

POLARI TY two_| evel _annotation
DATATYPE_si ngl e_val ue_annot ati on

I NI TI AL_VALUE_si ngl e_val ue_annot at i on
SCAN_POSI Tl ON_si ngl e_val ue_annot ati on
STUCK si ngl e_val ue_annot ati on
SUPPLYTYPE_si ngl e_val ue_annot ati on

SI GNAL_CLASS one_| evel _annotation
SUPPLY_CLASS one_| evel _annotation
cell _pin_reference_two_I| evel _annotation
DRI VETYPE_si ngl e_val ue_annot ati on
SCOPE_si ngl e_val ue_annot ati on

PULL_si ngl e_val ue_annot ati on

port

connectivity

pin_instantiation // this one is mssing in chapter 11.11

ALF 2.0 Chapter 11.14

vector _item::=

all _purpose_item
PURPCSE_one_| evel _annot ati on

OPERATI ON_si ngl e_val ue_annot ati on
LABEL_si ngl e_val ue_annot ati on

EXI STENCE_CLASS one_| evel _annot ati on

EXI STENCE_CONDI TI ON_bool ean_assi gnnment
CHARACTERI ZATI ON_CLASS one_| evel _annot ati on
CHARACTERI ZATI ON_CONDI TI ON_bool ean_assi gnnent
CHARACTERI ZATI ON_VECTOR vect or _assi gnnment
MONI TOR_one_| evel _annotation // proposed in this doc chapter 8
illegal _statenent

ALF 2.0 Chapter 11.15

January 13, 2002 65

wireitem::=

al | _purpose_item
| SELECT _CLASS one_l evel annotation
| node

node ::=
NODE nane_identifier { node_itens }

node itens ::=
node_item { node_item}

node_item::=

al | _purpose_item
| NODETYPE_si ngl e _val ue_annot ati on
| NODE _CLASS one_ | evel _annotation

ALF 2.0 Chapter 11.16

arithmetic_nodels ::=
arithmetic_nodel { arithnetic_nodel }

arithmetic_nodel ::=
partial _arithnetic_node
| full_arithnetic_nodel

Partial arithmetic model contains only definitions, no data. Can appear outside the seman-
tically valid context of the model, aslong as a semantically valid context exists within
scope. (Example: semantically valid context of arithmetic model X isVECTOR, VEC-
TOR exists within scope of LIBRARY, therefore partial arithmetic model X islega
within LIBRARY.) Definitionsinside partial arithmetic model without name_i denti fi er
are inherited by each arithmetic model with ari t hmet i c_nodel _i denti fi er within
scope. (Note: up to 2 levels of submodel are supported)

partial _arithnetic_nodel ::=
arithmetic_nodel _identifier [nanme_identifier] {
{ all _purpose_ item}
{ arithmetic_nodel _qualifier }
{ partial _arithmetic_subnodel }

}

partial _arithnetic_subnodel ::=
arithnetic_subnodel identifier [nanme_identifier] {
{ all _purpose_item}
{ partial _arithmetic_|leaf subnodel }

}

partial _arithnetic_| eaf _subnodel ::=
arithnetic_subnodel identifier [nane_identifier] {
{ all _purpose_item}

}

Full arithmetic model contains both definitions and data. Can only appear in the semanti-
cally valid context of the model. Enables evaluation of arithmetic model in design context
(e.g. delay calculation, power calculation). A trivial arithmetic model contains directly the

January 13, 2002 66

evaluation value. A non-trivial arithmetic model requires calculation of the value, based
on evaluation conditions. (Note: up to 2 levels of submodel are supported)

full _arithnetic_nodel ::=
trivial _arithmetic_nodel
| non_trivial _arithmetic_node

trivial _arithnetic_nodel ::=
arithmetic_nodel identifier [nane_identifier]
| arithnetic_nodel _identifier [nanme_identifier]
{ all _purpose_ item}
{ arithnmetic_nodel qualifier }

val ue ;
val ue {

}

non_trivial _arithnetic _nodel ::=
arithnmetic_nodel identifier [nane_identifier] {
{ all _purpose_ item}
{ arithnmetic_nodel qualifier }
arithmetic_nodel body
{ arithnetic_nodel datarange }
}
| arithnetic_nodel _identifier [name_identifier] {
{ all _purpose_ item}
[violation]
{ arithnmetic_nodel qualifier }
full _arithnetic_subnodel s

}

full _arithnetic_subnodels ::=
full _arithmetic_subnodel { full _arithnetic_subnodel }

full _arithnetic_subnodel ::=
full _arithnetic_| eaf _subnode
| arithnetic_subnodel identifier [name_identifier] {
{ all _purpose_item}
full _arithnetic_| eaf _subnodel s

}

full _arithnetic_ | eaf subnodels ::=
full _arithnetic_|eaf subnodel { full _arithnetic_| eaf subnodel }

full _arithnetic_| eaf _subnodel ::=
trivial _arithmetic_| eaf _subnode
| non_trivial _arithnetic_| eaf _subnode

trivial _arithmetic_|l eaf _subnodel ::=
arithnetic_subnodel identifier [name_identifier]
| arithnetic_subnodel identifier [name_identifier]
{ all _purpose_item}

val ue ;
val ue {

}

non_trivial_arithmetic_| eaf _subnodel ::=
arithmetic_subnodel _identifier [nane_identifier] {
{ all _purpose_item}
arithmeti c_nodel body

January 13, 2002

{ arithnetic_nodel datarange }

}

Auxiliary definitions for arithmetic model. Semantic restrictions apply. (Note: the new
grammar alows non-ambiguous distinction between usage of MIN/TYPIMAX/
DEFAULT either asarithmeti c_| eaf _subnodel Or assingl e_val ue_annot ati on.)

arithnmetic_nodel _qualifier ::=
general _arithmetic_nodel qualifier
| connected arithnetic_nodel qualifier
| analog_arithmetic_nodel _qualifier
| timng_arithmetic_nodel _qualifier
| layout _arithnetic_nodel qualifier

general _arithnetic_nodel _qualifier
UNI T_si ngl e_val ue_annot ati on

| CALCULATI ON_si ngl e_val ue_annot ati on

| | NTERPOLATI ON_si ngl e_val ue_annot at i on

connected_arithnetic_nodel _qualifier ::=
PI N one_ | evel _annotati on
| NODE_one_l evel _annotation

anal og_arithmetic_nodel _qualifier ::=
anal og_EASUREMENT_si ngl e_val ue_annot ati on
| COVPONENT singl e val ue_annotation
| TIME arithnetic_nodel
| FREQUENCY_arithmetic_nodel

timng_arithmetic_nodel _qualifier ::=
EDGE_NUMBER_si ngl e_val ue_annot ati on

| violation

| from

| to

| ayout _arithmetic_nodel _qualifier ::=
di st ance_ MEASUREMENT _si ngl e_val ue_annot ati on
| BETWEEN nulti_val ue_annotation
| REFERENCE si ngl e_val ue_annot ati on
| ANTENNA one_l evel _annotation
| PATTERN_ si ngl e_val ue_annotation
| VIA single_value_annotation

arithmeti c_nodel datarange ::=
M N_si ngl e_val ue_annot ati on
| TYP_single_ value_ annotation
| MAX singl e_val ue_annotation
| DEFAULT_si ngl e_val ue_annotati on

arithnetic_nodel body ::=
[header] table [equation]
| [header] equation [table]

equation ::=
EQUATION { arithmetic_expression }

January 13, 2002

68

from::=
FROM {
[PIN_single value_annotation]
[EDGE_NUMBER singl e _val ue_annotation]
[THRESHOLD arithnretic_nodel]

}
to ::=
TO {
[PIN_single_value_annotation]
[EDGE_NUMBER si ngl e_val ue_annotation]
[THRESHOLD arithretic_nodel]
}

Auxiliary definitions for arithmetic model, also applicable el sewhere (separate chapter?).

VIOLATION isaso applicable for ILLEGAL

violation ::=
VI OLATI ON {
[MESSAGE TYPE_ singl e_val ue_annotati on]
[MESSAGE singl e_val ue_annotation]
[behavior]

}
TABLE and HEADER are also applicable for CONNECTIVITY.

table ::=
TABLE { val ues }

header ::=
HEADER { arithnetic_nodel _identifiers }
HEADER { header arithnetic_nodels }

Arithmetic model in context of HEADER (Note: no submodels allowed).

header _arithnetic_nodels ::=
header _arithnetic_nodel { header _arithnetic_nodel }

header _arithmetic_nodel ::=
arithnetic_nodel _identifier [nane_identifier] {
{ all _purpose_item}
{ arithmetic_nodel _qualifier }
{ arithmetic_nodel body }
{ arithmetic_nodel datarange }

}
Container of arithmetic model (Note: LIMIT is special).

arithnetic_nodel _containers ::=
arithnetic_nodel _container { arithnetic_nodel container }

arithnetic_nodel _container ::=
[imt
| arithnetic_nodel container_identifier { arithnetic_nodels }

January 13, 2002 69

limt ::=
LIMT { linmt_arithnmetic_nodels }

Arithmetic model in context of LIMIT (Note: must contain leaf submodels MIN and/or
MAX).

limt_arithnetic _nodels ::=
[imt_arithmetic_nodel { limt_arithnetic_nodel }

[imt_arithnetic_nodel ::=
arithmetic_nodel _identifier [nane_identifier] {
{ all _purpose_ item}
[violation]
{ arithmetic_nodel _qualifier }
limt _arithnetic_subnodel s

}

[imt_arithnmetic_subnodels ::=
[imt_arithmetic_subnmodel { linmt_arithnetic_subnodel }

limt _arithnetic_subnodel ::=
limt _|leaf arithmetic_subnode
| arithnetic_subnodel identifier [name_identifier] {
{ all _purpose_item}
[violation]
limt_arithnetic_| eaf _subnodel s

}

limt _arithnetic_| eaf _subnodels ::=
[imt_arithmetic_|eaf _subnodel { limt_arithnetic_|leaf_subnodel }

limt_arithnmetic | eaf subnodel ::=
mn_or _max = nunber ;
| min_or_max {
{ all _purpose item}
[violation]
[arithnetic_nodel body]

}

mn_or_max ::=
M N
| MAX

January 13, 2002

70

30.0 Miscellaneous Grammar enhancements

relationto ALF 2.0 3.2, 11.x
relation to | EEE P1603 6.Xx, Annex A

History initial draft Oct. 7 by Wolfgang
to be reviewed Nov. 12

Satus open

30.1 Motivation

The grammar serves not only the purpose of defining syntax, but also terminology. A
parser does not care what terminology is used in grammar. However, if the grammar is
written in ameaningful and concise way for human understanding, the terminology intro-
duced therein can be used throughout the document for semantic explanation purpose.
Since human understanding is always subjective, it may take some iterations, before the
most meaningful and concise terminology is found.

30.2 Boolean valueliteral

Current definition of pin_value in IEEE P1603, chapter 7.2.3:

pin_value ::=

pi n_vari abl e
| bit_literal
| based_literal
| unsigned

Issue: pin_valueisreferred to in IEEE 1603 chapter 6.6.1, which defines lexical rules.
However, pin_valueis not alexical token. The following change provides a remedy:

pin_value ::=
pi n_vari abl e
| bool ean_val ue

bool ean_val ue :: =
bit literal

| based_literal

| unsigned

Instead of referring to pin_value in 6.6.1, refer to boolean_value. All theitemsin
boolean_value are lexical tokens.

30.3 PULL statement

In ALF 2.0, chapter 6.4.17, PULL is defined as annotation. Chapter A.15.7 suggests to
provide VOLTAGE and RESISTANCE annotation inside PULL statement. This would

January 13, 2002 71

make PULL technicaly atwo_level _annotation. However, RESISTANCE and VOLT-
AGE are arithmetic models rather than annotations. Therefore, the grammar for the PULL
statement should be reformulated as follows:

pull ::=
PULL = pull _value_identifier
| PULL = pull _value_identifier { pull _itens }
| pull _tenplate_instantiation
pull items ::= pull _item{ pull_item}
pull _item::=

vol tage_arithnetic_node
| resistance_arithnetic_nodel

Since PULL isused inside PIN, redefine pin_item (IEEE 1603, chapter 9.3.1) asfollows:

pin_item::=

al | _purpose_item
range

port

pul |
pin_instantiation

Note:

pul | _value_identifier ::=
up

| down

| both

| none

Thepul | _val ue_i denti fier eventually requires specification of both pull-up and pull-
down resistance and voltage. Arithmetic submodels HIGH and LOW can be used for that
purpose.

Example:

RESI STANCE { UNIT = 1lohm }
VOLTAGE { UNIT = 1volt; }

PIN nmy_pin {
PULL = both {
RESI STANCE { HI GH = 500; LOW= 1000; }
VOLTAGE { HGH = 5; LOW= -5; }

}

This pin features a pull up resistance of 500 ohm to be connected to 5 volt and a pull down
resistance of 1000 ohm to be connected to -5 volt.

January 13, 2002 72

30.4 Annotation container

Theannot at i on_cont ai ner statement (see ALF 2.0, chapter 11.7) has been omitted in
the new formulation of the grammar. Technically, annot at i on_cont ai ner can beinter-
preted as a specia case of t wo_| evel _annot at i on, but it may be advantageous to re-
introduce annot ati on_cont ai ner, becauset wo_| evel _annot at i on features avalue
whereas annot at i on_cont ai ner does not. This distinction makes the data model more
precise.

annot ati on_container ::=
one_l evel _annot ati on_cont ai ner
| two_level annotation_container
| nulti_level _annotation_container

one_l evel _annotation_container ::=
annot ati on_contai ner_identifier { one_|l evel annotations }

two_| evel _annotation_container ::=
annotation_container_identifier { two_|evel annotations }

mul ti | evel _annotation_container ::=
annot ati on_container_identifier { nmulti_|evel _annotations }

To do: identify all statementsin the grammar which are actually annot at i on_cont ai ner.

January 13, 2002 73

31.0 New item

relation to ALF 2.0 reference to ALF 2.0 chapter
relation to |EEE P1603 reference to | EEE P1603 chapter
History date of initial draft, date of revisions

Satus open or closed, accepted or rejected

31.1 Motivation

Explain reason for new feature

31.2 Proposal

Describe new feature

January 13, 2002

74

	Work document for tracking the development of the IEEE 1603 std
	X.0 Item
	X.1 Motivation
	X.2 Proposal
	Part 1: Language features for library modeling

	1.0 Level definition for Vector Expression Language
	1.1 Motivation
	1.2 Proposal

	2.0 Metal Density
	2.1 Motivation
	2.2 Proposal

	3.0 Types of electrical CURRENT
	3.1 Motivation
	3.2 Proposal
	3.3 Supplementary proposal

	4.0 NOISE modeling
	4.1 Motivation
	4.2 Proposal

	5.0 Simplification of NON_SCAN_CELL statement
	5.1 Motivation
	5.2 Proposal

	6.0 VIOLATION in context of LIMIT
	6.1 Motivation
	6.2 Proposal

	7.0 New value for MEASUREMENT annotation
	7.1 Motivation
	7.2 Proposal

	8.0 MONITOR statement for VECTOR
	8.1 Motivation
	8.2 Proposal

	9.0 Features for creating a standard ALF header file
	9.1 Motivation
	9.2 Proposal
	9.3 Supplementary proposal

	10.0 Amended semantics of LIMIT
	10.1 Motivation
	10.2 Proposal

	11.0 Semantics of SUPPLYTYPE and SUPPLY_CLASS for multi-rail support
	11.1 Motivation
	11.2 Proposal for SUPPLYTYPE semantics
	11.3 Proposal for SUPPLY_CLASS semantics

	12.0 Amended semantics of RESTRICT_CLASS and SWAP_CLASS
	12.1 Motivation
	12.2 Proposal for RESTRICT_CLASS
	12.3 Semantics of predefined RESTRICT_CLASS values
	12.4 Proposal for SWAP_CLASS

	13.0 Amended semantics of CONNECTIVITY
	13.1 Motivation
	13.2 Proposal
	13.3 Supplementary proposal for CONNECT_TYPE

	14.0 Amended semantics of PULSEWIDTH, PERIOD
	14.1 Motivation
	14.2 Proposal

	15.0 Amended definition of TIME and FREQUENCY statement in context of arithmetic model
	15.1 Motivation
	15.2 Proposal

	16.0 Reference to models in other format than ALF
	16.1 Motivation
	16.2 Proposal

	17.0 ROUTE annotation for PATTERN
	17.1 Motivation
	17.2 Proposal

	18.0 REGION statement
	18.1 Motivation
	18.2 Proposal

	19.0 WIRE instantiation within arithmetic model
	19.1 Motivation
	19.2 Proposal
	19.3 Supplementary proposal

	20.0 Amendments and simplifications for arithmetic model
	20.1 Motivation
	20.2 MODEL annotation
	20.3 Language simplification enabled by MODEL annotation
	20.4 Obsolete construct with both TABLE and EQUATION

	21.0 Amenments for hierarchical antenna support
	21.1 Motivation
	21.2 PATTERN annotation in context of PIN
	21.3 TARGET annotation within precalculated antenna SIZE

	22.0 Amendments for REFERENCE related to DISTANCE
	22.1 Motivation
	22.2 Proposal

	23.0 Amendments for PIN_GROUP
	23.1 Motivation
	23.2 Proposal: make pin_instantiation obsolete
	23.3 Proposal: rename PIN_GROUP to PINGROUP

	24.0 Extended definition of PURPOSE annotation
	24.1 Motivation
	24.2 Proposal: generalized PURPOSE for CLASS
	24.3 Proposal: PURPOSE for WIRE
	24.4 Proposal: PURPOSE for REGION

	25.0 Amended semantics of ILLEGAL statement
	25.1 Motivation
	25.2 Proposal

	26.0 CONTROL_POLARITY statement
	26.1 Motivation
	26.2 Proposal

	27.0 Review of units for arithmetic models
	27.1 Motivation
	27.2 Proposal
	Part 2: Grammar-related items

	28.0 Make grammar more compact by removing redundancies
	28.1 Motivation
	28.2 Proposal

	29.0 Rewrite grammar for more specific syntax and less semantic restriction
	29.1 Motivation
	29.2 Proposal

	30.0 Miscellaneous Grammar enhancements
	30.1 Motivation
	30.2 Boolean_value literal
	30.3 PULL statement
	30.4 Annotation container

	31.0 New item
	31.1 Motivation
	31.2 Proposal

