
Work document for tracking the development of the
IEEE 1603 std

This document contains suggested enhancements to the Advanced Library Format, using
ALF 2.0 as baseline. The document serves as a worksheet rather than a formal proposal.
The suggested enhancements are collected in no particular order. The idea is to keep track
of evolving proposals here and then agree formally whether or not they should be part of
the IEEE spec.

The following template is used throughout this document:

X.0 Item

relation to ALF 2.0 reference to ALF 2.0 chapter

relation to IEEE P1603 reference to IEEE P1603 chapter

History date of initial draft, date of revisions

Status open or closed, accepted or rejected

X.1 Motivation

Explain reason for new feature

X.2 Proposal

Describe new feature
July 12, 2002 1

Table of contents

X.0 Item ..1

Part 1: Language features for library modeling 4

1.0 Level definition for Vector Expression Language ...4

2.0 Metal Density...5

3.0 Types of electrical CURRENT ...8

4.0 NOISE modeling..10

5.0 Simplification of NON_SCAN_CELL statement..12

6.0 VIOLATION in context of LIMIT...14

7.0 New value for MEASUREMENT annotation ...15

8.0 MONITOR statement for VECTOR..16

9.0 Features for creating a standard ALF header file ..18

10.0 Amended semantics of LIMIT...20

11.0 Semantics of SUPPLYTYPE and SUPPLY_CLASS for multi-rail support..........21

12.0 Amended semantics of RESTRICT_CLASS and SWAP_CLASS........................24

13.0 Amended semantics of CONNECTIVITY ..28

14.0 Amended semantics of PULSEWIDTH, PERIOD..30

15.0 Amended definition of TIME and FREQUENCY statement in context of
arithmetic model32

16.0 Reference to models in other format than ALF ...34

17.0 ROUTE annotation for PATTERN ..37

18.0 REGION statement ..39

19.0 WIRE instantiation within arithmetic model ...41

20.0 Amendments and simplifications for arithmetic model...43

21.0 Amendments for hierarchical antenna support ..48

22.0 Amendments for REFERENCE related to DISTANCE ..51

23.0 Amendments for PIN_GROUP ...52

24.0 Extended definition of PURPOSE annotation ...55

25.0 Amended semantics of ILLEGAL statement...58

26.0 CONTROL_POLARITY statement ..60

27.0 Review of units for arithmetic models...63

28.0 Eliminate redundant driver CELL and PIN annotation ...65
July 12, 2002 2

29.0 Substitution for VIA reference ..66

30.0 Arithmetic submodels for physical library ..68

31.0 Simplification of SHIFT statement..69

32.0 Electrical components in context of CELL..70

Part 2: Grammar-related items 71

33.0 Make grammar more compact by removing redundancies....................................71

34.0 Rewrite grammar for more specific syntax and less semantic restriction75

35.0 Miscellaneous Grammar enhancements ..82

36.0 New item..85
July 12, 2002 3

Part 1: Language features for library modeling

1.0 Level definition for Vector Expression Language

relation to ALF 2.0 5.3, 5.4, 11.3

relation to IEEE P1603 N/A

History initial draft April 16, 2001 by Wolfgang
reviewed and rejected by Study Group April 16
rejection confirmed by Tim Ehrler May 1
changed title and closed May 4 by Wolfgang

Status closed, rejected

1.1 Motivation

The vector expression language is a new concept which has almost no equivalent in legacy
library model description languages. Currently there are EDA tools which support a subset
of the vector expression language. Purpose of this proposal is to re-write the definitions in
such a way that it is easy to identify subsets for different levels of support. For example:
level0=basic subset, level1=intermediate subset, level2=full set in ALF 2.0, level3=full set
in ALF 2.0 plus new proposed extensions.

1.2 Proposal

Level 0: single event, single event & boolean condition, two-event sequence

Level 1: N-event sequence, N-event sequence & boolean condition, alternative event
sequence

Level 2: everything in ALF 2.0 (except if we decide to drop something fundamentally
unpractical or un-implementable)

Level 3: new operators for repetition of sub-sequences
July 12, 2002 4

2.0 Metal Density

relation to ALF 2.0 9.2, 9.5

relation to IEEE P1603 11.13

History initial draft April 16, 2001 by Wolfgang
reviewed and retained by Study Group April 16
o.k. as is by Tim Ehrler May 1
supplementary proposal by Wolfgang Oct. 5
reviewed Oct. 9, supplementary proposal o.k.

Status closed, accepted

2.1 Motivation

Manufacturability in 130 nm technology and below requires so-called metal density rules.
For a given routing layer, metal must cover a certain percentage of the total area within a
lower and upper bound in order to ensure planarity. This percentage also depends on the
total area under consideration, i.e., there are “local” and “global” metal density rules.

Manufacturing rules also specify, how density should be calculated. For example, only
structures wider than a certain minimum width should be taken into account.

Also, for local rules, the shape of the region to be checked can be specified. For example,

check the rule on a square of x*x mm2, check the density on a region of x mm width in X
or Y direction etc.

2.2 Proposal

Introduce new keyword DENSITY (or other word) for arithmetic model. Shall be non-
negative number normalized between 0 and 1 (1 means 100%). Usable in context of
LAYER (see ALF 2.0, chapter 9.5.1) with PURPOSE=routing (see ALF 2.0, chapter
9.5.2). Legal argument (i.e. HEADER) includes AREA, meaning the die area subjected to
manufacturing of this layer.

Example:

LAYER metal1 {
PURPOSE = routing;
LIMIT {

DENSITY {
MIN {

HEADER {
AREA {

INTERPOLATION = floor;
TABLE { 0 100 1000 }

}

July 12, 2002 5

}
TABLE { 0.2 0.3 0.4 }

}
MAX {

HEADER {
AREA {

INTERPOLATION = floor;
TABLE { 0 100 1000 }

}
}
TABLE { 0.8 0.7 0.6 }

}
}

}
}

Within an area of less than 100 units, the metal density must be between 20% and 80%.
Within an area of 100 up to less than 1000 units, the metal density must be between 30%
and 70%. Within an are of 1000 units or more, the metal density must be between 40% and
60%. The annotation INTERPOLATION=floor indicates that no interpolation is made for
areas in-between, but the next lower value is used (see ALF 2.0, chapter 7.4.4).

To allow for particularities in density calculation, the DENSITY statement must be in con-
text of a RULE (see ALF 2.0, chapter 9.11). The applicable layer is given as annotation.
Both a model for calculation of DENSITY and a model for the limit of DENSITY must be
given in context of the RULE.

Example:

RULE min_density {
DENSITY {

LAYER = metal1;
CALCULATION = incremental;
HEADER {

WIDTH
LENGTH
AREA

}
EQUATION { WIDTH * LENGTH / AREA }

}
LIMIT { DENSITY { LAYER = metal1; MIN = 0.2; } }

}
RULE max_density {

DENSITY {
LAYER = metal1;
CALCULATION = incremental;
HEADER {

WIDTH
LENGTH
AREA

}
EQUATION { (WIDTH<0.1)? 0 : WIDTH * LENGTH / AREA }

}

July 12, 2002 6

LIMIT { DENSITY { LAYER = metal1; MAX = 0.8; } }
}

Note: WIDTH (see ALF 2.0, chapter 9.2, table 9-4) and LENGTH (see ALF 2.0, chapter
9.2, table 9-6) are the dimensions of a routable object in the layer. AREA (see ALF 2.0,
chapter 9.2, table 9-7) should be defined as the area of the environment in this context.

The example specifies, that objects smaller than 0.1 units of WIDTH are to be disregarded
for DENSITY calculation in context of the RULE max_density.
July 12, 2002 7

3.0 Types of electrical CURRENT

relation to ALF 2.0 8.1, 8.7, 8.15

relation to IEEE P1603 11.12.5, 11.12.11

History initial draft April 16, 2001 by Wolfgang
reviewed and retained by Study Group April 16
also reviewed by Tim Ehrler May 1
add text to clarify purpose by Wolfgang May 4
proposal reviewed May 8, added supplementary proposal
reviewed, amended and accepted Oct. 9

Status closed, accepted

3.1 Motivation

CURRENT needs PIN annotation indicating the target point where the current is flowing
into. Cannot define a branch of an electrical network where the current flows through.

Therefore there will be 3 types of CURRENT specification:

I1 = current into PIN from unspecified source (already supported in ALF 2.0)
I2 = current through a COMPONENT with two terminal nodes
I3 = current through an independent current source connected between two NODEs

see I1, I2, I3 in illustration

3.2 Proposal

In the context of WIRE, the following mutually exclusive annotations for CURRENT
shall be legal:

PIN = pin_identifier ;

Current flows from unknown source into the pin (already supported).

n1 n2

gnd

I3

I2

I1 R1

C1 C2
July 12, 2002 8

COMPONENT = component_identifier ;

Current flows through the component. The component must be a declared two-terminal
electrical component in the context of the WIRE, i.e. a RESISTANCE, CAPACITANCE,
VOLTAGE or INDUCTANCE (excluding mutual inductance, which has 4 terminals). The
direction of the current flow is given by the order of node identifiers in the NODE annota-
tion for that component (see ALF 2.0, chapter 8.15.3, 8.15.4).

NODE { 1st_node_identifier 2nd_node_identifier }

Current flows through a current source connected between the nodes. The direction of the
current flow is given by the order of node identifiers in this NODE annotation.

Example:

WIRE interconnect_analysis_model_1 {
CAPACITANCE C1 { NODE { n1 gnd } }
CAPACITANCE C2 { NODE { n2 gnd } }
RESISTANCE R1 { NODE { n1 n2 } }
CURRENT I1 { PIN = n1; }
CURRENT I2 { COMPONENT = R1; }
CURRENT I3 { NODE { n1 n2 } }

}

This example corresponds exactly to the illustration shown above.

3.3 Supplementary proposal

According to ALF 2.0, chapter 8.7.3, the sense of measurement for current associated
with a pin shall be into the node. However, in some cases, the natural sense of measure-
ment is out of the node. In order to allow explicit specification of the sense of measure-
ment, the following feature is proposed:

FLOW annotation for current shall specify the sense of measurement of current. Default
value shall be “in”, which is backward compatible with ALF 2.0.

FLOW = in | out;

For example, the following two statements are equivalent:

CURRENT I1 = 3.0 { PIN = n1; FLOW = in; }

CURRENT I1 = -3.0 { PIN = n1; FLOW = out; }

This is illustrated in the picture below.

n1

I1=3.0

n1

I1=-3.0

FLOW = in; FLOW = out;
July 12, 2002 9

4.0 NOISE modeling

relation to ALF 2.0 8.1, 8.14

relation to IEEE P1603 11.12.10

History initial draft April 16, 2001 by Wolfgang
o.k by Tim Ehrler May 1
updated by Wolfgang May 4
reviewed and updated (see minutes) May 8
reviewed and accepted Oct. 9

Status closed, accepted

4.1 Motivation

NOISE_MARGIN defines a normalized voltage difference between nominal signal level
and tolerated signal level. If violated, the correct signal level can not be determined. In
order to check against noise margin, actual noise must be calculated. Currently VOLTAGE
is used for noise calculations. However, since noise margin is normalized to signal voltage
swing, it would be convenient, if the actual noise could also be represented in a normal-
ized way. In CMOS, actual noise and noise margin tend to scale with supply voltage. A
non-normalized model requires supply voltage as a parameter, if the supply voltage is sub-
ject to variation. A normalized model would to a 1st order degree approximate the voltage
scaling effect already and therefore eliminate the supply voltage as a model parameter.

4.2 Proposal

Introduce new keyword NOISE, representing a normalized voltage difference between
nominal signal level and actual signal level. Same measurement definition as for noise
margin (see ALF 2.0, chapter 8.14). Noise margin is violated, if noise is larger than noise
margin.

Context-specific meaning of NOISE

1. Context is output or bidirectional PIN

NOISE specifies maximum amount of noise at output pin, when any input pin is subjected
to the amount of noise specified by NOISE_MARGIN. NOISE may have submodel HIGH
and LOW. The relation between noise at output pin and noise margin at input pin is illus-
trated in the following picture.
July 12, 2002 10

Example:

PIN my_input_pin {
DIRECTION = input;
NOISE_MARGIN { HIGH = 0.3; LOW = 0.2; }

}
PIN my_output_pin {

DIRECTION = output;
NOISE { HIGH = 0.02; LOW = 0.01; }

}

2. Context is VECTOR with vector_expression

NOISE needs PIN annotation. NOISE specifies peak noise while pin is in “*” state.
NOISE may only have submodel HIGH and LOW, if “?” state as opposed to “0” or “1”
state is specified in vector_expression.

Example:

VECTOR (0* my_pin -> *0 my_pin) {
NOISE = 0.2 { PIN = my_pin; }

}

3. Context is CELL, SUBLIBRARY, or LIBRARY

no PIN annotation. NOISE specifies maximum amount of noise at any output or bidirec-
tional pin within scope, unless this specification is overwritten locally.

Example:

LIBRARY my_library {
NOISE { HIGH = 0.02; LOW = 0.01; }

}

Vin/Vdd

Vout/Vdd

10

1

0

noise(low) = Vol/Vdd

noise(high) = 1-Voh/Vdd

noise margin(low)
= Vil/Vdd

noise margin(high)
= 1-Vih/Vdd

Vdd

Gnd

VoutVin
July 12, 2002 11

5.0 Simplification of NON_SCAN_CELL statement

relation to ALF 2.0 6.2, 11.2

relation to IEEE P1603 9.2.2

History initial draft April 16, 2001 by Wolfgang
o.k. by Tim Ehrler May 1
accepted and closed per default Oct. 9

Status closed, accepted

5.1 Motivation

Non-scan cell defines the mapping between the pins of a non-scan cell (left-hand side) and
the pins of a scan cell (right-hand side). The scan cells has always certain pins which do
not exist in the non-scan cell. In some cases, the non-scan cell might have certain pins
which do not exist in the scan cell (In such a case, the scan replacement can only be done,
if the pin in question was tied to an inactive level in the non-scan cell in the first place).

Currently, the non-scan cell statement supports definition of LHS or RHS constants which
specify the logic level to which the non-corresponding pins should be tied to. However,
this definition is redundant, because every relevant pin in a cell model must have annota-
tions for SIGNALTYPE and POLARITY in order to be usable for DFT tools. These anno-
tations specify already the logic level to which non-corresponding pins must be tied.

5.2 Proposal

Reduce syntax for pin_assignment (see ALF 2.0, chapter 11.2) to the following:

pin_assignment ::=
pin_identifier [index] = pin_identifier [index] ;

| pin_identifier [index] = logic_constant ;

Only “ pin_identifier [index] = pin_identifier [index] ; “ will actually be
used for non-scan cell. Since POLARITY defines the active signal level, the pin should be
tied to the opposite level. For pins without POLARITY, the level does not matter (e.g.
scan input for scan flip-flop in non-scan mode).

Example (taken from ALF 2.0, chapter 6.2):

CELL my_flipflop {
PIN q { DIRECTION=output; } // SIGNALTYPE defaults to “data”
PIN d { DIRECTION=input; } // SIGNALTYPE defaults to “data”
PIN clk { DIRECTION=input; SIGNALTYPE=clock; POLARITY=rising_edge; }
PIN clear { DIRECTION=input; SIGNALTYPE=clear; POLARITY=low; }

}
CELL my_scan_flipflop {

PIN data_out { DIRECTION=output; } // SIGNALTYPE defaults to “data”
July 12, 2002 12

PIN data_in { DIRECTION=input; } // SIGNALTYPE defaults to “data”
PIN scan_in { DIRECTION=input; SIGNALTYPE=scan_data; }
PIN scan_sel { DIRECTION=input; SIGNALTYPE=scan_control;

POLARITY { SCAN=high; } } // scan mode when 1, non-scan mode when 0
PIN clock {DIRECTION=input; SIGNALTYPE=clock; POLARITY=rising_edge;}
NON_SCAN_CELL {

my_flipflop {
clk = clock;
d = data_in;
q = data_out;

}
}

}

The scan replacement works only, if the clear pin of my_flipflop is tied high (active
level is low). Note: This is an exceptional case and only shown because it might happen
eventually. Normally, the pins of the scan cell represent a superset of the pins of the non-
scan cell.

In order to simulate the non-scan mode, when the non-scan cell is replaced by the scan
cell, the scan_sel pin of my_scan_flipflop must be tied low (scan mode level is high).
The scan_in pin can be tied to either high or low.

This example shows that the constant logic levels need not be defined in the non-scan cell
statements, because they can be completely inferred from the POLARITY statements. The
POLARITY statements are mandatory for DFT tools anyway.
July 12, 2002 13

6.0 VIOLATION in context of LIMIT

relation to ALF 2.0 7.5, 7.6, 8.4

relation to IEEE P1603 9.10.5, 11.6.4

History Proposal May 1, 2001 by Tim Ehrler
written in doc May 4 by Wolfgang
reviewed and updated (see minutes) May8
reviewed, accepted and closed Oct. 9

Status closed, accepted

6.1 Motivation

Want to specify level of severity, if a LIMIT is violated. Target is appropriate error report
from tool.

6.2 Proposal

The VIOLATION statement may appear within the context of an arithmetic model within
LIMIT or an arithmetic submodel within LIMIT.

In this context, a MESSAGE_TYPE annotation or a MESSAGE annotation or both shall
be legal within VIOLATION. A BEHAVIOR statement within VIOLATION shall only be
legal if the LIMIT is within the context of a VECTOR. In the latter case, the
vector_expression or boolean_expression which identifies the VECTOR
shall define the triggering condition for the behavior described in the BEHAVIOR state-
ment.
July 12, 2002 14

7.0 New value for MEASUREMENT annotation

relation to ALF 2.0 8.9.1

relation to IEEE P1603 11.12.11

History Proposal by Wolfgang, May 22, 2001
reviewed June 27, o.k. July 10 (see minutes)
accepted and closed Oct. 9

Status closed, accepted

7.1 Motivation

Currently, measurements of analog quantities can be specified as “average”, “rms”,
“peak”, “transient”, “static”. Another commonly used measurement is the average over
absolute values, which cannot be specified.

7.2 Proposal

The MEASUREMENT annotation shall support the following values:

MEASUREMENT =
transient

| static
| average
| rms
| peak

| absolute_average1

The mathematical definition of absolute_average is the following2:

1. everything except absolute_average is already supported in ALF 2.0

2. Note: The parentheses around (t = 0) and (t = T) are an artefact of the framemaker equation editor.

E t() td

t 0=()

t T=()

∫
T

July 12, 2002 15

8.0 MONITOR statement for VECTOR

relation to ALF 2.0 5.3.7, 5.4, 6.4.16

relation to IEEE P1603 9.5.3

History Proposal by Wolfgang, May 22, 2001
reviewed July 10 (see minutes)
reviewed Oct. 9, added comments based on discussion
reviewed Nov. 12, Alex requested to keep it open
reviewed Jan. 14, 2002, agreed to accept by majority

Status closed, accepted

8.1 Motivation

Any vector_expression in the context of a VECTOR has an associated set of vari-
ables, which are monitored for the purpose of evaluating the vector_expression.
The set of variables is given by the set of declared PINs, featuring a SCOPE annotation.

SCOPE = behavior | measure | both | none ; // see ALF 2.0, chapter 6.4.16

In the context of a VECTOR, all PINs with SCOPE = measure | both are monitored.
Sometimes it would be practical to reduce the set of monitored pins within the scope of a
particular vector. For example, in a multiport RAM, only the pins associated with a partic-
ular logical port should be monitored, if the vector_expression describes a transac-
tion involving only this port. Currently, this can only be achieved by applying the “?*”
operator to all unmonitored pins. Therefore the vector_expression can become
quite lengthy for complex cells.

8.2 Proposal

Note: To understand and appreciate the proposal, it is mandatory that the reader be
familiar with ALF 2.0, chapter 5.4, pp. 55-80.

A VECTOR identified by a vector_expression may have the following MONITOR
annotation:

monitor_multivalue_annotation :==
MONITOR { pin_identifiers }

The set of pin_identifiers shall be a subset of pins with SCOPE = measure | both .

If the MONITOR annotation is present, all pins appearing within this annotation shall be
monitored. Any pin appearing in the vector_expression must also appear in the
MONITOR annotation. However, all pins appearing in the MONITOR annotation need
not appear in the vector_expression.
July 12, 2002 16

If the MONITOR annotation is not present, all pins with SCOPE = measure | both shall
be monitored (backward compatible with ALF 2.0).

Example:

CELL my_4_bit_register_file {
PIN clk { DIRECTION=input; }
PIN [4:1] din { DIRECTION=input; }
PIN [4:1] dout { DIRECTION=output; }
VECTOR (01 clk -> ?! dout[1]) {

MONITOR { din[1] dout[1] clk } // put in delay, power etc.
}
VECTOR (01 clk -> ?! dout[2]) {

MONITOR { din[2] dout[2] clk } // put in delay, power etc.
}
VECTOR (01 clk -> ?! dout[3]) {

MONITOR { din[3] dout[3] clk } // put in delay, power etc.
}
VECTOR (01 clk -> ?! dout[4]) {

MONITOR { din[4] dout[4] clk } // put in delay, power etc.
}

}

It has been suggested that the MONITOR statement should only contain the variables
which are not already present in the vector_expression. This has the following draw-
back: A vector_expression with all monitored variables present would need an empty
MONITOR statement in order to be compatible with ALF 2.0 semantics. Also, identifi-
cation of the full set of monitored variables would not be possible without analysis of the
vector expression. It was argued that specifying all variables is redundant and inconve-
nient. However, the latter applies only if both the vector_expression and the MONITOR
statement are specified by hand. Eventually, a user may specify only a set of MONITOR
statements and leave the generation of appropriate vector_expressions to an intelligent
characterization tool. The redundancy between MONITOR statement and
vector_expression could also serve as a validity check especially for automatically gen-
erated vector_expressions. Discussion to be continued ...

Alex accepted to close the discussion, but his dissens and concerns are noted.
July 12, 2002 17

9.0 Features for creating a standard ALF header file

relation to ALF 2.0 3.2.4, 3.2.6, 3.2.8, 3.2.9, 11.x

relation to IEEE P1603 8.6, 8/7, 8.8, 8.9, new Annex (normative or not TBD)

History Proposal by Wolfgang, May 22, 2001
review pending as of July 10
supplementary proposal by Wolfgang Oct. 7
left open for review by ALF parser developpers
agreed on Jan. 14, 2002 to create a header file
presented 1st draft of header file on Apr. 16, 2002

Status closed, accepted

9.1 Motivation

The idea is to define pertinent features of ALF using the ALF language itself. Such a defi-
nition could be used as a standard “header” file for ALF. Eventually, certain extensions of
the language could then be defined by changing the header file instead of changing the
language. This can be used for pure documentation purpose as well as for development of
self-adapting ALF parsers.

The remainder of this chapter is for illustration purpose only. The contents of the
header file shall be in a separate document.

9.2 Proposal

Use the KEYWORD statement to define standard arithmetic models.

Use the definition_for_arithmetic_model construct to define legal statements in the
context of arithmetic models.

Use the CLASS statement for shared definitions.

Example (just to show the idea):

KEYWORD PROCESS = arithmetic_model ;
KEYWORD SLEWRATE = arithmetic_model ;
KEYWORD CURRENT = arithmetic_model ;

PROCESS {
TABLE { nom spsn spwn wpsn wpwn }

}
CLASS all_models {

KEYWORD UNIT = single_value_annotation ;
}
CLASS timing_models {

CLASS { all_models }
July 12, 2002 18

UNIT = 1e-9 ;
KEYWORD RISE = arithmetic_model ;
KEYWORD FALL = arithmetic_model ;

}
CLASS analog_models {

CLASS { all_models }
KEYWORD MEASUREMENT = single_value_annotation ;

}
SLEWRATE {

CLASS { timing_models }
}
CURRENT {

CLASS { analog_models }
UNIT = 1e-3 ;

}

It may be worthwhile to explore how far we can get in describing ALF features in this lan-
guage.

9.3 Supplementary proposal

Current definition for keyword_declaration (see ALF 2.0, chapter 3.2.9):

keyword_declaration ::=
KEYWORD context_sensitive_keyword = syntax_item_identifier ;

Introduce the following extension:

keyword_declaration ::=
KEYWORD context_sensitive_keyword = syntax_item_identifier ;

| KEYWORD context_sensitive_keyword = syntax_item_identifier {
VALUE_TYPE = value_type_identifier ;

}

value_type_identifier ::=
number

| positive_number
| non_negative_number
| integer
| unsigned
| bit_literal
| quoted_string
| identifier

Note: need to add which value_type is compatible with which syntax_item_identifier (see
grammar definition).
July 12, 2002 19

10.0 Amended semantics of LIMIT

relation to ALF 2.0 7.5

relation to IEEE P1603 11.6.4

History Wolfgang, July 2, 2001, o.k. on July 10
refined and incorporated in this doc on July 19
reviewed, amended, accepted and closed October 9

Status closed, accepted

10.1 Motivation

ALF 2.0 misses a specification on how a design tool should handle a LIMIT.

10.2 Proposal

Existing text:

A LIMIT container shall contain arithmetic models. The arithmetic models shall contain
submodels identified by MIN and/or MAX.
Proposed modification:
A LIMIT container shall contain arithmetic models. The arithmetic models shall contain
submodels. These submodels shall either be exclusively identified by MIN and/or MAX or
contain other submodels which shall be exclusively identified by MIN and/or MAX.
Example:

LIMIT { SLEWRATE {
PIN = my_pin ; MAX = 5.4;

} }

Alternative example:

LIMIT { SLEWRATE {
PIN = my_pin ; RISE { MAX = 6.3; } FALL { MAX = 5.4; }

} }

Proposed addition:

The values specified within LIMIT shall be considered as design limits. That means,
design tools must create a design in such ways that the limits are respected. If the calcu-
lated actual values are found to be equal to the specified limit values, they shall be consid-
ered within the design limits. The MAX shall specify an upper limit. The MIN value shall
specify a lower limit. Therefore, if both MIN and MAX values are specified for the same
quantity under the same operating conditions, the MAX value must be greater or equal to the
MIN value.
July 12, 2002 20

11.0 Semantics of SUPPLYTYPE and SUPPLY_CLASS for
multi-rail support

relation to ALF 2.0 6.4.11, 6.4.13

relation to IEEE P1603 9.3.4

History email discussion on reflector initiated by Sergei Sokolov
captured in minutes July 10, 2001
incorporated in this document by Wolfgang, July 19
reviewed Oct. 9, pending comments wrt VHDL-AMS
reviewed and accepted Nov. 12

Status closed, accepted

11.1 Motivation

Semantics of SUPPLYTYPE are missing in ALF 2.0. Semantics of SUPPLY_CLASS for
support of multiple power/ground rails are not well-defined.

11.2 Proposal for SUPPLYTYPE semantics

Syntax and set of values for SUPPLYTYPE are already defined in ALF 2.0, chapter
6.4.11. Following table contains proposed semantics.

Note: ALF 2.0, chapter 6.4.3 defines the semantic implication of DIRECTION on a PIN
with PINTYPE= SUPPLY. If the DIRECTION is input, then the CELL must be connected
to a supply device in order to operate. If the DIRECTION is output, then the CELL itself
is the supply device.

TABLE 1. SUPPLYTYPE annotation for PIN object

Annotation value description

power (default) The PIN is the interface between a CELL and a power supply device, designed to
source or sink a significant part of the CURRENT affecting the POWER con-
sumption of the CELL. The VOLTAGE measured at this PIN is with respect to
ground.

ground The PIN is the interface between a CELL and the environmental common
ground. Therefore, the nominal VOLTAGE measured at this PIN is zero. How-
ever, spurious non-zero VOLTAGE may occur and LIMITs for such VOLTAGE
may be specified. The PIN is designed to serve as return path for a significant
part of the CURRENT affecting the POWER consumption of the CELL.

reference The PIN is the interface between a CELL and a device which supplies either a
well-defined VOLTAGE or a well-defined CURRENT without being a signifi-
cant contributor to the POWER consumption of the CELL. From an electrical
standpoint, a reference is similar to a signal. However, from an information-the-
oretical standpoint, a reference is similar to a supply, because it does not contain
information.
July 12, 2002 21

Note: A CELL needs not have exactly one PIN with SUPPLYTYPE=power and another
PIN with SUPPLYTYPE=ground. Passive devices (e.g. capacitor, resistor, diode) do not
have any supply pins. Semi-passive devices (e.g. clamp cells) have only supply pins corre-
sponding to the voltage level of the clamp. For example, a clamp cell to zero would have a
pin with SUPPLYTYPE=ground and DIRECTION=input and a pin with SIGNAL-
TYPE=TIE, POLARITY=low, and DIRECTION=output. Active devices have, at least,
either one pin with SUPPLYTYPE=power and another pin with SUPPLYTYPE=ground
or two pins with SUPPLYTYPE=power and different supply voltages, usually one posi-
tive and one negative. In general, a cell may have zero to multiple pins with SUPPLY-
TYPE=power or ground or reference.

11.3 Proposal for SUPPLY_CLASS semantics

Note: This section is proposed to supersede ALF 2.0, chapter 6.4.13.

The purpose of SUPPLY_CLASS is to define a relation between a power supply system
and a circuit utilizing the power supply system. The power supply system herein is under-
stood to be a set of nets (also called “rails”) capable to maintain a well-defined electrical
potential with respect to each other.

The power supply system itself shall be declared using a CLASS statement for global use
in the context of a LIBRARY or a SUBLIBRARY or for local use in the context of a
CELL or a WIRE.

The characteristics of the power supply system shall be defined in the context of the
objects which refer to the system using the SUPPLY_CLASS annotation. The value of the
annotation shall be the name of the CLASS declaring the power supply system. Multi-
value annotation shall be legal. Multi-value annotation shall indicate that the object can be
used within either power supply system appearing in the set of values, but not necessarily
within all of them at the same time.

The object, in the context of which the SUPPLY_CLASS annotation and the optional
characteristics of the power supply system appear, shall be one of the following:

• A PIN within a CELL

• A NODE within a WIRE

• A CLASS for global usage within a LIBRARY or a SUBLIBRARY or for local usage
within a CELL or a WIRE

The characteristics of the power supply system, i.e., the characteristics of each net within
the power supply system, shall optionally include the following items:

• An arithmetic model for VOLTAGE, eventually containing arithmetic submodels for
MIN, TYP, MAX, and/or DEFAULT. In the context of a PIN with SUPPLY-
TYPE=power or a NODE with NODETYPE=power, the arithmetic model shall specify
the value of the supply voltage itself. In the context of a PIN with SUPPLY-
July 12, 2002 22

TYPE=ground or a NODE with NODETYPE=ground, the value of the supply voltage
shall be presumed zero. In the context of another PIN or NODE, an arithmetic model
for VOLTAGE may appear, but no relationship to supply voltage shall be implied.

• A LIMIT statement, containing an arithmetic model for VOLTAGE with arithmetic
submodels for MIN and/or MAX. In the context of a PIN with any SUPPLYTYPE,
including “ground”, this model shall specify the tolerable limit for spurious supply
voltage change, which may occur due to resistive, capacitive or inductive noise. In the
context of another PIN, a LIMIT for VOLTAGE may appear, but no relationship to sup-
ply voltage shall be implied.

• A SUPPLYTYPE may appear in the context of a CLASS for the purpose to be inherited
by a PIN. Similarly, a NODETYPE may appear in the context of a CLASS for the pur-
pose to be inherited by a NODE.

The CONNECT_CLASS annotation (see ALF 2.0, chapter 9.17) within a PIN shall be
used to establish connectivity between terminals of a power supply net. The annotation
value shall be the name of a CLASS. The PIN shall inherit the statements appearing in the
context of that CLASS, including, but not restricted to, the SUPPLY_CLASS annotation,
the arithmetic model for VOLTAGE, the LIMIT for VOLTAGE, and eventually the SUP-
PLYTYPE annotation.

The SUPPLY_CLASS annotation shall also be legal within an arithmetic model for
ENERGY or POWER. It shall indicate, which power supply system provides the energy
or power described by the arithmetic model.

Example:

LIBRARY my_library {
CLASS io ;
CLASS core ;
CLASS Vdd_io { SUPPLY_CLASS=io; SUPPLYTYPE=power; VOLTAGE=2.5; }
CLASS Vss_io { SUPPLY_CLASS=io; SUPPLYTYPE=ground; }
CLASS Vdd_core { SUPPLY_CLASS=core; SUPPLYTYPE=power; VOLTAGE=1.8; }
CLASS Vss_core { SUPPLY_CLASS=core; SUPPLYTYPE=ground; }
CELL core2io_interface {

PIN Vdd1 { PINTYPE=supply; CONNECT_CLASS=Vdd_io; }
PIN Vdd2 { PINTYPE=supply; CONNECT_CLASS=Vdd_core; }
PIN Vss1 { PINTYPE=supply; CONNECT_CLASS=Vss_io; }
PIN Vss2 { PINTYPE=supply; CONNECT_CLASS=Vss_core; }
PIN in { PINTYPE=digital; DIRECTION=input; SUPPLY_CLASS=core; }
PIN out { PINTYPE=digital; DIRECTION=output; SUPPLY_CLASS=io; }
VECTOR (?! in -> ?! out) {

ENERGY e1 = 15.8 { SUPPLY_CLASS=io; }
ENERGY e2 = 3.42 { SUPPLY_CLASS=core; }

}
}

}

July 12, 2002 23

12.0 Amended semantics of RESTRICT_CLASS and
SWAP_CLASS

relation to ALF 2.0 6.1.3, 6.1.4, 6.1.5, 6.1.6

relation to IEEE P1603 9.2.3

History extensive email discussion involving Kevin Grotjohn,
Tim Ehrler, Sean Huang
proposal formulated by Wolfgang, July 31, 2001
reviewed Nov. 12, made modifications
Kevin requested to trace history of discussion
By request from Kevin, Jan. 14, 2002, two proposals from
the email discussion are included here by reference.

Status open

12.1 Motivation

The semantics of RESTRICT_CLASS and SWAP_CLASS, as described in ALF 2.0, do
not fit the intended usage models.

12.2 Proposal for RESTRICT_CLASS

Note: This section is proposed to supersede ALF 2.0, chapter 6.1.4.

The purpose of the optional RESTRICT_CLASS annotation shall be to identify character-
istics of a CELL which allow or disallow usage of the CELL for certain application tools.
Single-value or multi-value annotation shall be legal.

If the usage of the CELL is allowed, the application tool may add, remove, or substitute
instances of such a cell in the design. If the usage of the CELL is not allowed, the applica-
tion tool may not add, remove, or substitute instances of such a cell in the design.

The condition for usage is not governed by the library. The library provides only a set of
RESTRICT_CLASS values upon which a condition for usage can be specified for an
application tool. The usage specification consists of two parts:

1. A set of RESTRICT_CLASS values “known” to the application tool

2. A condition for usage, involving the set of “known” values

This standard does not specify the mechanism by which the usage specification is estab-
lished. The possibilities range from hardcoded usage specification to programmable usage
specification.

Example:
July 12, 2002 24

Supposed, the following usage specification has been established for an application tool:

1. RESTRICT_CLASS values known by the tool = (A, B, C, D, E)

2. Condition for usage = A and not B or C

Supposed, the following cells X, Y, and Z are in the library:

RESTRICT_CLASS values of CELL X = (A, B)
Condition is false, therefore usage of CELL X is not allowed

RESTRICT_CLASS values of CELL Y = (A, C)
Condition is true, therefore usage of CELL Y is allowed

RESTRICT_CLASS values of CELL Z = (A, C, F)
Condition is true, but usage of CELL Z is not allowed due to unknown value F

End of example

This standard proposes a set of RESTRICT_CLASS values with predefined semantics in
order to facilitate the cell usage specification for a wide range of applications with well-
understood functionality.

In addition, the standard permits customized RESTRICT_CLASS values in order to con-
trol the cell usage in special applications.

12.3 Alternative proposal #1

see email from Tim.Ehrler@philips.com, Wed Jul 11, recorded in following document:

http://www.eda.org/alf/homepage/restrict_class_history.txt

12.4 Alternative proposal #2

see email from wroethig@el.nec.com, Thu Jul 12, recorded in following document:

http://www.eda.org/alf/homepage/restrict_class_history.txt
July 12, 2002 25

12.5 Semantics of predefined RESTRICT_CLASS values

Note: The following table is proposed to replace table 6-6 in ALF 2.0, which contains
some circular definitions.

The usage of RESTRICT_CLASS values other than these predefined values shall be legal.
It shall not be implied that these predefined RESTRICT_CLASS values are automatically
“known” by every application tool.

12.6 Proposal for SWAP_CLASS

Note: This section is proposed to supersede ALF 2.0, chapter 6.1.3, 6.1.5, 6.1.6.

The purpose of SWAP_CLASS shall be to identify sets of CELLS, wherein each CELL in
the set can be substituted for each other by a particular application tool. Multi-value anno-
tation shall be legal.

If the usage of two CELLs is authorized for a particular application tool according to
RESTRICT_CLASS (see Section 12.2 on page 24) and the intersection of SWAP_CLASS
values of the two CELLs is not empty, then the two CELLs shall be considered equivalent
for the particular application tool, and the application tool is free to substitute one cell for
the other.

Any SWAP_CLASS value shall make reference to a declared CLASS within a LIBRARY
or SUBLIBRARY.

The CLASS statement may contain a RESTRICT_CLASS statement. In this case, the set
of RESTRICT_CLASS values shall be inherited by the CELL containing the
SWAP_CLASS statement. If the intersection of SWAP_CLASS values of the two CELLs
is not empty and the usage of two CELLs is authorized according to the inherited
RESTRICT_CLASS values, then the two CELLs shall be considered equivalent for the

TABLE 2. RESTRICT_CLASS annotation for CELL object

Annotation value description

synthesis Cell is suitable for usage by a tool performing transformations from a RTL
design representation to a structural gate-level design representation or
between functionally equivalent structural gate-level design representations

scan Cell is suitable for usage by a tool creating or modifying a structural design
representation by inserting circuitry for testability enabling serial shift of data
through storage elements

datapath Cell is suitable for usage by a tool creating or modifying a structural imple-
mentation of a dataflow graph within a design

clock Cell is suitable for usage by a tool creating or modifying circuitry for the dis-
tribution of synchronization signals (also called clock signals) within a design

layout Cell is suitable for usage by a tool creating or modifying physical locations
(placement) and physical interconnects (routes) of components within a
design
July 12, 2002 26

particular application tool, and the application tool is free to substitute one cell for the
other.

Example with RESTRICT_CLASS and SWAP_CLASS (from ALF 2.0, chapter 6.1.5):

CLASS foo;
CLASS bar;
CLASS whatever;
CLASS my_tool;
CELL cell1 {

SWAP_CLASS { foo bar }
RESTRICT_CLASS { synthesis datapath }

}
CELL cell2 {

SWAP_CLASS { foo whatever }
RESTRICT_CLASS { synthesis scan my_tool }

}

In order to swap cell1 and cell2, application tool must know all RESTRICT_CLASS val-
ues mentioned in this example. Usage condition may be (synthesis) or (datapath or
my_tool) or (synthesis and datapath or scan and my_tool) etc.

[modify figure 6-1 from ALF 2.0: non-empty intersection applies only to SWAP_CLASS]

Example with SWAP_CLASS and inherited RESTRICT_CLASS (from ALF 2.0,
chapter6.1.6):

CLASS all_nand2 { RESTRICT_CLASS { synthesis } }
CLASS all_high_power_nand2 { RESTRICT_CLASS { layout } }
CLASS all_low_power_nand2 { RESTRICT_CLASS { layout } }
CELL cell1 {

SWAP_CLASS { all_nand2 all_low_power_nand2 }
}
CELL cell2 {

SWAP_CLASS { all_nand2 all_high_power_nand2 }
}
CELL cell3 {

SWAP_CLASS { all_low_power_nand2 }
}
CELL cell4 {

SWAP_CLASS { all_high_power_nand2 }
}

A tool must know synthesis in order to utilize and swap cell1 and cell2. Another tool must
know layout in order to utilize cell1, cell2, cell3, cell4 and swap cell1 with cell3 or cell2
with cell4. A tool that knows both synthesis and layout may utilize and swap all four cells.

[modify figure 6-1 from ALF 2.0: non-empty intersection applies only to SWAP_CLASS]
July 12, 2002 27

13.0 Amended semantics of CONNECTIVITY

relation to ALF 2.0 9.15

relation to IEEE P1603 11.13.1

History initial draft by Wolfgang, Oct. 7, 2001
initial review Nov. 12
reviewed Jan. 14, 2002
tentatively closed if no objection raised by e/o Jan. 2002.
Acceptance confirmed Apr. 16, 2002

Status closed, accepted

13.1 Motivation

CONNECTIVITY has been formulated as arithmetic_model in ALF 1.1, but not in ALF
2.0. In ALF 2.0, CONNECTIVITY is an exceptional statement different from
arithmetic_model, albeit it features HEADER and TABLE like an arithmetic_model. The
advantage of re-formulating CONNECTIVITY as arithmetic_model is to get rid of the
exception and to utilize CONNECTIVITY also as argument in arithmetic_model. For
example, other arithmetic models, for example minimum spacing, antenna rule etc., may
depend on CONNECTIVITY. Another proposed enhancement is to utilize CONNECTIV-
ITY not only as a requirement for connections but also as actual connection.

13.2 Proposal

The CONNECTIVITY statement shall be an arithmetic_model with value_type bit_literal.
It may contain the optional CONNECT_RULE annotation, which shall specify a require-
ment for connections (see ALF 2.0, chapter 9.15.2). Without the CONNECT_RULE anno-
tation, the CONNECTIVITY statement shall specify actual connectivity. The value “1”
shall specify existing connection, the value “0” shall specify non-existing connection.

Example:

The following example describes pins on POLY layer with and without connection to dif-
fusion.

PIN pin1 { // this pin has a POLY feature connected to NDIFF
AREA A1 = 0.01 { LAYER=POLY; }
CONNECTIVITY = 1 { BETWEEN { POLY NDIFF } }

}
PIN pin2 { // this pin has a POLY feature not connected to NDIFF

AREA A1 = 0.01 { LAYER=POLY; }
CONNECTIVITY = 0 { BETWEEN { POLY NDIFF } }

}

July 12, 2002 28

The following example describes a spacing rule between wires on the same layer, depen-
dent whether they are on the same net or not.

// min distance between two wires, depending whether same net or not
RULE min_distance {

PATTERN p1 { SHAPE = line; LAYER = metal1; }
PATTERN p2 { SHAPE = line; LAYER = metal1; }
LIMIT {

DISTANCE {
BETWEEN { p1 p2 }
MIN {

HEADER { CONNECTIVITY { BETWEEN { p1 p2 } } }
EQUATION { CONNECTIVITY ? 0.1 : 0.2 }

}
}

}
}

13.3 Supplementary proposal for CONNECT_TYPE

The CONNECT_TYPE annotation within the CONNECTIVITY statement shall specify
the nature of the connection.

connect_type_single_value_annotation ::=
CONNECT_TYPE = connect_type_identifier ;

connect_type_identifier ::=
electrical

| physical

The value “electrical” shall indicate that the objects are subjected to electrical connection,
i.e., a permanent direct current path does or does not exist between the objects. The value
“physical” shall indicate that the objects do or do not share common physical boundaries
with each other. The value “electrical” shall be the default.

Supplementary explanation: A driver pin and a receiver pin of a routed wire have
CONNECT_TYPE electrical. A via cut and the adjacent metal segments have
CONNECT_TYPE physical. CONNECT_TYPE physical does not always imply electri-
cal connection. For example, objects of electrically insulating material may be physically
connected to each other.
July 12, 2002 29

14.0 Amended semantics of PULSEWIDTH, PERIOD

relation to ALF 2.0 8.3.17, 8/3/18

relation to IEEE P1603 11.9.9, 11.9.10

History initial draft by Wolfgang, Oct. 7, 2001
reviewed and accepted Nov. 12

Status closed, accepted

14.1 Motivation

PULSEWIDTH and PERIOD are introduced in ALF 1.1 and ALF 2.0 for the purpose of
defining minimum pulse width and minimum period requirements in the context of a
VECTOR. The keywords PULSEWIDTH and PEERIOD are used in the same way as
SETUP, HOLD, RECOVERY, REMOVAL, which also define minimum timing require-
ments, without using the LIMIT or MIN statement. However, while SETUP, HOLD,
RECOVERY, REMOVAL always represent minimum timing requirements, PULSE-
WIDTH and PERIOD could represent actual measurements or maximum requirements.
Therefore we propose to amend the definitions of PULSEWIDTH and PERIOD to specify
actual measurements.

14.2 Proposal

The keywords PULSEWIDTH and PERIOD shall specify arithmetic models in the con-
text of a VECTOR.

PULSEWIDTH shall specify a measured time between two subsequent transitions on a
pin, where the state of the pin after the second transition shall be equal to the state of the
pin before the first transition. The PIN annotation shall be mandatory. The
EDGE_NUMBER annotation shall be optional and specify the first transition of the two
subsequent transitions. To specify a minimum or maximum constraint, use PULSE-
WIDTH in the context of LIMIT with submodel MIN or MAX, respectively.

PERIOD shall specify the measured time between two subsequent occurrences of the
VECTOR. PIN annotation and EDGE_NUMBER annotation do not apply. To specify a
minimum or maximum constraint, use PERIOD in the context of LIMIT with submodel
MIN or MAX, respectively.

Example:

The following example specifies pulse width degradation through a buffer.

CELL my_buffer {
PIN in { DIRECTION=input; }
PIN out { DIRECTION=output }
VECTOR (01 in -> 10 in <&> 01 out -> 10 out) {
July 12, 2002 30

// output pulse width = f(input pulse width)
PULSEWIDTH { PIN = out;

HEADER {
PULSEWIDTH { PIN = in;

TABLE { 0.1 0.2 0.3 0.4 0.5 }
}

}
// short pulses are shortened, long pulses keep their width
TABLE { 0.05 0.18 0.29 0.4 0.5 }

}
}

}

The following example specifies cycle time (minimum period) and refresh time (maxi-
mum period) of a DRAM.

CELL my_DRAM {
PIN CE { DIRECTION = input; SIGNALTYPE = enable; }
// fill in other pins etc.
VECTOR (01 ce) {

// for simplicity, presume that CE controls all operations
LIMIT {

PERIOD {
MIN = 10;
MAX = 100000;

}
}

}
}

July 12, 2002 31

15.0 Amended definition of TIME and FREQUENCY
statement in context of arithmetic model

relation to ALF 2.0 8.3.6, 8.9

relation to IEEE P1603 11.9.1

History initial draft by Wolfgang, Oct. 7
reviewed and accepted in principle Nov. 12
no objection raised in Jan. 14, 2002 meeting

Status closed, accepted

15.1 Motivation

TIME and FREQUENCY are defined as arithmetic models. In addition, they are defined
as annotations for arithmetic models featuring the MEASUREMENT annotation. The rea-
son is the necessity to know either the time or the repetition frequency of a measurement.
To get rid of the double-usage of the keywords, we propose to specify TIME and FRE-
QUENCY as auxiliary “arithmetic model” within another arithmetic model rather than as
“annotation”.

15.2 Proposal

TIME and FREQUENCY shall be usable as auxiliary arithmetic model within the context
of another arithmetic model featuring the MEASUREMENT annotation with value “aver-
age”, “absolute_average”, “transient”, “RMS”, or “peak”. The evaluation of the auxiliary
TIME or FREQUENCY models must be independent from the evaluation of the main
model. Otherwise, TIME or FREQUENCY would have to appear within the HEADER of
the main model.

In the context of a VECTOR, the auxiliary TIME model may feature a FROM or a TO
statement. In the case of “peak”, this statement relates the occurrence time of the peak
measurement to a transition appearing in the VECTOR (see ALF 2.0, chapter 8.9.3). In
case of “average”, “absolute_average”, “transient”, “RMS”, the FROM and TO statement
define the occurrence time of a transition appearing in the VECTOR as the start or end
time, respectively, of the measurement.

Example:

The following example specifies multiple average power measurements within a single
vector.

VECTOR (01 in -> 01 out) {
POWER p1 = 0.3 {

MEASUREMENT = average;
TIME { FROM { PIN = in; } TO { PIN = out; } }
July 12, 2002 32

}
// average power is 0.3 measured between the transition at ”in”
// and the transition at ”out”

POWER p2 = 0.4 {
MEASUREMENT = average;
TIME = 0.2 { FROM { PIN = out; } }

}
// average power is 0.4 measured during 0.2 time units
// after transition at ”out”
}

The following example specifies time-window-sensitive noise margin.

VECTOR (*? data -> 01 clock -> ?* data) {
NOISE_MARGIN = 0.45 {

PIN = data;
MEASUREMENT = transient;
TIME {

FROM { PIN=data; EDGE_NUMBER=0; }
TO { PIN=data; EDGE_NUMBER=1; }

}
}

// pin ”data” is noise-sensitive only around transition at pin ”clock”
SETUP = 0.2 {

FROM { PIN=data; EDGE_NUMBER=0; } TO { PIN=clock; }
}

// sensitivity window starts 0.2 time units before ”clock” transition
HOLD = 0.3 {

FROM { PIN=clock; } TO { PIN=data; EDGE_NUMBER=1; }
}

// sensitivity window ends 0.3 time units after ”clock” transition
}

July 12, 2002 33

16.0 Reference to models in other format than ALF

relation to ALF 2.0 3.2.3, 7, others?

relation to IEEE P1603 TBD

History proposed by Alex, Oct. 9, 2001
incorporated in this document by Wolfgang, Oct. 16
initial review and discussion, Nov. 12
Alex should provide more comments
Decision on Jan. 14, 2002:
Alex need to refine the proposal by Apr. 16,
otherwise it will be closed and rejected
Alex proposed the ASSOCIATE feature Apr. 16, 2002
This proposal got unanimous support

Status accepted in principle, details subject to review

16.1 Motivation

VHDL and Verilog 2000 provide features to reference models written in other languages
than VHDL and Verilog, respectively. The trend is multi-language support, and the capa-
bility to reference models, written for instance in C or C++ eliminates the need for transla-
tion and makes re-use of existing models more efficient.

16.2 Initial Proposal

Note: This proposal would represent a major enhancement of ALF. It should be driven
by the need and the feasibility of an implementation proving the concept. To get started,
only rough ideas are given here. This initial proposal has been considered too difficult
to implement, and therefore it has been rejected. However, it is kept in this doc. for
information purpose.

The INCLUDE statement (see ALF 2.0, chapter 3.2.3) could be enhanced to specify the
format of included files.

Example:

INCLUDE ”model1.vhd” { FORMAT = VHDL ; }
INCLUDE ”model2.v” { FORMAT = Verilog ; }
INCLUDE ”model3.c” { FORMAT = ”C++” ; }
INCLUDE ”model4.alf” { FORMAT = ALF ; } //default

The arithmetic_model statement (see ALF 2.0, chapter 7) could be enhanced to specify a
reference to an external subroutine for evaluation of a model, instead of a TABLE or
EQUATION. Such an external subroutine must be found in an included file. The argu-
ments of the subroutine could be specified in the HEADER as long as they can be seman-
tically interpreted as artihmetic_models. The complete set of arguments, including
July 12, 2002 34

arguments which are alien to the ALF semantics, such as pointers to file handles etc.,
should be specified within the body of the subroutine statement.

Example:

DELAY Tdelay { FROM { PIN=X; } TO { PIN=Y; }
HEADER {

SLEWRATE Tslew { PIN=X; }
CAPACITANCE Cload { PIN=Y; }

}
SUBROUTINE {

Tdelay = double;
Tslew = double ;
Cload = double ;

}
}

Corresponding C code:

double Tdelay (Tslew, Cload)
double Tslew, Cload ;
{

/* calculate return_value */
return (return_value) ;

}

16.3 Final Proposal: ASSOCIATE statement

The proposal below has been accepted.

The ASSOCIATE statement shall be defined as follows (using BNF):

associate ::=
ASSOCIATE quoted_string ;

| ASSOCIATE quoted_string { format_single_value_annotation }

where the quoted string shall represent a filename, similar to a filename in the INCLUDE
statement.

The purpose of the ASSOCIATE statement is to indicate that another view of the same
object exists in another file. The parent of the ASSOCIATE statement shall be considered
the object in question. The ASSOCIATE statement can appear as a child of a library-spe-
cific object.

The optional FORMAT annotation shall be defined as follows (using ALF self-extending
language):

KEYWORD FORMAT = single_value_annotation {
VALUETYPE = identifier;
CONTEXT = ASSOCIATE;
VALUES { vhdl verilog c \c++ alf }
July 12, 2002 35

DEFAULT = alf;
}

The purpose of the FORMAT annotation is to specify the format of the associated file.

Example:

CELL nand2x1 {
ASSOCIATE "nand2x1.vhd" { FORMAT = vhdl; }
ASSOCIATE "nand2x1.v" { FORMAT = verilog; }

}

Open questions:

Shall we allow the ASSOCIATE statement in almost any context, by making it an “all-
purpose item”, or should we restrict it to a context where the assocation is well under-
stood, such as CELL?

Should we introduce another annotation specifying the version of the associated file, or
should the version handling be handled by the application?
July 12, 2002 36

17.0 ROUTE annotation for PATTERN

relation to ALF 2.0 9.7

relation to IEEE P1603 9.9.3

History proposed by Wolfgang, Oct. 16, 2001
initial review Nov. 12
reviewed, amended and accepted Jan. 14, 2002

Status closed, accepted

17.1 Motivation

Rules involving layout patterns may be anisotrop, i.e., depending on he routing direction.
For example, the minimum distance between parallel lines on a given routing layer may
depend on whether they are routed in horizontal or vertical direction (assuming that either
tounting direction is allowed).

17.2 Proposal

The PATTERN statement shall have an optional ROUTE annotation with the legal values
“horizontal”, “vertical”, “acute”, and “obtuse”. In absence of the ROUTE annotation, the
prefered routing direction (see PREFERENCE statement, ALF 2.0, chapter 9.5.4) shall be
presumed.

The ROUTE annotation shall define the angle between the routing direction and a hori-
zontal line, as specified in the following illustration.

Example:

RULE min_distance_horizontal {
PATTERN p1 { LAYER=metal1; SHAPE=line; ROUTE=horizontal; }
PATTERN p2 { LAYER=metal1; SHAPE=line; ROUTE=horizontal; }
LIMIT { DISTANCE { BETWEEN { p1 p2 } MIN=0.5; } }

annotation value

horizontal
acute
vertical
obtuse

angle [degrees]

0
45
90
135

horizontal

acute

vertical

obtuse
July 12, 2002 37

}
RULE min_distance_vertical {

PATTERN p1 { LAYER=metal1; SHAPE=line; ROUTE=vertical; }
PATTERN p2 { LAYER=metal1; SHAPE=line; ROUTE=vertical; }
LIMIT { DISTANCE { BETWEEN { p1 p2 } MIN=0.4; } }

}

Note: Does this make the arithmetic submodels HORIZONTAL and VERTICAL (ALF
2.0, table 7-8) obsolete? Or, if they are kept, should aditional arithemtic submodels
ACUTE and OBTUSE be defined?

This question is addressed in Section 30.0, “Arithmetic submodels for physical library,”
on page 68.
July 12, 2002 38

18.0 REGION statement

relation to ALF 2.0 9

relation to IEEE P1603 9.9

History proposed by Wolfgang, Oct. 16, 2001
initial review Nov. 12
reviewed Jan. 14, 2002, accepted in principle
acceptance confirmed Apr. 16, 2002

Status closed, accepted

18.1 Motivation

The definition of abstract regions (as opposed to concrete layout patterns) has many appli-
cations: wire load models with obstructions, definition of transistors as intersection of
poly and diffusion, scope of metal density check etc. Boolean operations on regions (and,
or, exor) are also useful.

18.2 Proposal

The REGION statement shall be defined as follows:

region ::=
REGION region_identifier { region_items }

region_items ::= region_item { region_item }

region_item ::=
all_purpose_item
geometric_model
geometric_transformation
BOOLEAN_single_value_annotation

// all_purpose_item, geometric_model, geometric_transformation
// see existing grammar

BOOLEAN_single_value_annotation ::=
BOOLEAN = boolean_expression ;

The operands BOOLEAN_single_value_annotation in the shall be
region_identifiers of already defined regions or pattern_identifiers of already
defined patterns or layer_identifiers of already defined layers.

The REGION statement shall be legal in the context of LIBRARY, SUBLIBRARY,
CELL, WIRE, RULE, ANTENNA.

Reference to a REGION statement is made by a single-value annotation of the form
July 12, 2002 39

REGION = region_name_identifier ;

Example:

/* This antenna rule relates “gate” area, i.e. intersection of poly and
diffusion with total area of poly including routing */
LAYER poly { PURPOSE = reserved ; }
Layer diff { PURPOSE = reserved ; }
ANTENNA for_poly {

REGION gate { BOOLEAN = POLY && DIFF; }
SIZE {

HEADER {
AREA Atotal { LAYER = poly; }
AREA Agate { REGION = gate; }

}
EQUATION { Atotal / Agate }

}
LIMIT { SIZE { MAX = 100; } }

}

/* This rule defines local metal density in a 300um*300um region */
RULE local_metal_density {

REGION local { WIDTH = 300; HEIGHT = 300; }
LIMIT { DENSITY { REGION = local; MIN = 0.2; } }

}

July 12, 2002 40

19.0 WIRE instantiation within arithmetic model

relation to ALF 2.0 8.15

relation to IEEE P1603 9.4

History proposed by Wolfgang, Oct. 16, 2001
initial review Nov. 12, made modifications
reviewed and accepted Jan. 14, 2002

Status closed, accepted

19.1 Motivation

Cells may be characterized with more complex load models than just a lumped capaci-
tance, e.g. pi-model, lumped RLC, transmission line etc. Such complex load models can
be described using the WIRE statement. However, there must be a statement connecting
such models to a pin of a cell subjected to characterization.

19.2 Proposal

An arithmetic model describing electrical cell characterization data may contain a wire-
instantiation statement defined as follows:

wire_instantiation ::=
wire_identifier wire_instance_identifier { pin_assignments }

// pin_assignments see existing grammar

The wire_identifier shall be the name of an already defined WIRE. The
wire_instance_identifier shall provide means to reference a named arithmetic model
inside the WIRE using a hierarchical identifier. The pin_assignments shall define con-
nectivity between a node within the WIRE (LHS) and a pin within the CELL (RHS).

19.3 Supplementary proposal

To enable referencing of the components of the WIRE by the HEADER of the arithmetic
model, the MODEL annotation (see Section 19.0, “WIRE instantiation within arithmetic
model,” on page 41) shall be used, in conjunction with an hierarchical identifier.

Example:

CELL my_cell {
PIN in { DIRECTION=input; }
PIN out { DIRECTION=output; }
WIRE pi_model {

NODE n1 { NODETYPE=driver; }
NODE n2 { NODETYPE=receiver; }
NODE n3 { NODETYPE=gnd; }
July 12, 2002 41

CAPACITANCE C1 { NODE { n1 n3 } }
CAPACITANCE C2 { NODE { n2 n3 } }
RESISTANCE R1 { NODE { n1 n2 } }

}
DELAY {

FROM { PIN=in; } TO { PIN=out; }
pi_model load { n1 = out; }
HEADER {

CAPACITANCE C_near { MODEL = load.C1; TABLE { x x x } }
CAPACITANCE C_far { MODEL = load.C2; TABLE { x x x } }
RESISTANCE { MODEL = load.R1; TABLE { x x } }

}
TABLE { x x x x x x x x x x x x x x x x x x }

}
}

July 12, 2002 42

20.0 Amendments and simplifications for arithmetic model

relation to ALF 2.0 7.1, 7.3 through 7.6

relation to IEEE P1603 11.2 through 11.6

History Jan. 14, 2002 by Wolfgang
reviewed and accepted

Status closed, accepted

20.1 Motivation

There are many ways to construct arithmetic models in ALF. Some of them are predomi-
nantly used, others are seldom used and eventually redundant. The goal here is to simplify
the rules for arithmetic models and eventually remove redundant features or replace them
by new features which are easier to understand and implement.

20.2 MODEL annotation

The optional MODEL annotation within a partial arithmetic model or a partial arithmetic
submodel shall be a single-value annotation, consisting of the name of another arithmetic
model or the hierarchical name of an arithmetic submodel.

The arithmetic model or submodel referenced by the MODEL annotation shall be used for
evaluation of the arithmetic model or submodel containing the annotation. Both arithmetic
models must have the same type. In the case of arithmetic submodels, the parental arith-
metic models must have the same type.

Example:

LIBRARY my_library {
KEYWORD DERATE_FACTOR = arithmetic_model;
DERATE_FACTOR library_default_for_timing {

HEADER { DERATE_CASE { TABLE {wccom nom bccom } } }
TABLE { 1.3 1.0 0.8 }

}
CELL my_cell {

PIN A { DIRECTION = input; }
PIN Y { DIRECTION = output; }
DELAY cell_default { RISE = 4.5 ; FALL = 3.8 ; }
VECTOR (01 A -> 01 Y) {

DELAY a_to_y_rise { FROM { PIN = A; } TO { PIN = Y; }
HEADER {

DELAY { MODEL = cell_default.RISE ; }
DERATE_FACTOR { MODEL = library_default_for_timing ; }

}
EQUATION { DELAY * DERATE_FACTOR }

}
} } }
July 12, 2002 43

20.3 Language simplification enabled by MODEL annotation

In ALF 2.0, an arithmetic model for a_to_y_rise with the same mathematical result can
be described as follows:

DELAY a_to_y_rise { FROM { PIN = A; } TO { PIN = Y; }
HEADER {

DERATE_FACTOR {
HEADER { DERATE_CASE { TABLE {wccom nom bccom } } }
TABLE { 1.3 1.0 0.8 }

}
}
EQUATION { 4.5 * DERATE_FACTOR }

}

The ALF 2.0 construct uses a nested arithmetic model (see ALF 2.0, chapter 7.1.5). A
nested arithmetic model can be very cumbersome to describe, if multiple levels of inter-
mediate arithmetic models are needed. Also, the nested arithmetic model construct can
only describe calculation trees, therefore arguments in a reconvergent calculation graphs
must be re-described multiple times. This is illustrated in the following picture:

Therefore, the MODEL annotation capability makes the nested model construct obsolete.

Note: It could be argued to use the TEMPLATE construct instead to simplify nested
models. However, the description with template would still be more complex than with
MODEL annotation, and it would be more expensive to parse. A parser would have to

A B1 D E A

A1 B2

result

B C

D

result

calculation graph: available construct:
B C

B1

B2

B C

B1 E

A1

B C

B1
1st level

header

2nd level

header

3rd level

header

proposed construct:

AB C D

resultB1 B2

E

A1

B1 B1 A1 B1 B2
1st level

header
July 12, 2002 44

evaluate the template instantiations all the way to the branches(i.e., highest level of
HEADER) before the arithmetic model could be validated. In contrast, arithmetic mod-
els with only 1 level of HEADER could be all validated independently.

ALF 2.0 provides a “shortcut” for mapping non-numerical values of PROCESS or
DERATE_CASE into numerical values (see ALF 2.0, chapter 8.6.4). The arithmetic
model for a_to_y_rise could use the shortcut as follows:

DELAY a_to_y_rise { FROM { PIN = A; } TO { PIN = Y; }
HEADER {

DERATE_CASE {
HEADER { wccom nom bccom }
TABLE { 1.3 1.0 0.8 }

}
}
EQUATION { DELAY * DERATE_CASE }

}

If the nested model construct is obsoleted, this “shortcut” is also obsoleted. The parser is
further simplified, because the specific rules for this “shortcut” go away.

The syntax cnstruct to support the “shortcut” was

HEADER { identifier { identifier } }

where the identifier could not only be a set of non-numerical values of PROCESS or
DERATE_CASE, but also a set of keywords of self-contained partial arithmetic models,
that is, arithmetic models without any annotation.

Example:

LAYER via_1_2 { // this is a cut layer
LIMIT {

CURRENT {
HEADER { HEIGHT WIDTH }
EQUATION { 0.3 * HEIGHT * WIDTH }
// 0.3 is the current density limit, i.e., current per area

}
}

}

To support self-contained partial arithmetic models with the proposed language simplifi-
cation, we propose to support “empty” arithmetic models.

Old rule:

model_keyword_identifier [model_name_identifier]

{ arithmetic_model_items }

arithmetic_model_items ::=
arithmetic_model_item { arithmetic_model_item }
July 12, 2002 45

New rule:

model_keyword_identifier [model_name_identifier]

{ { arithmetic_model_item } }

With the new rule, the example will read:

LAYER via_1_2 { // this is a cut layer
LIMIT {

CURRENT {
HEADER { HEIGHT { } WIDTH { } }
EQUATION { 0.3 * HEIGHT * WIDTH }
// 0.3 is the current density limit, i.e., current per area

}
}

}

The old rule supports only uniformly self-contained or uniformely non-self contained
arithmetic models within a HEADER. The new rule supports a HEADER where some
arithmetic models are self-contained and others are not.

Note: Should the rule for “empty” constructs be generalized for all ALF statements?

20.4 Obsolete construct with both TABLE and EQUATION

An arithmetic model containing both TABLE and EQUATION statement is supposed to
be supported in the following way:

If the values of all arguments lie within the range of their respective validity, the table
applies. If the value of some argument lies outside the range, the equation is applied
instead of the table.

The drawback of this construct is, that the case where the equation has also a limited range
of validity can not be described. Also, the case of using different equations beyond the
upper bound and beyond the lower bound cannot be described with this construct. More-
over, the construct is redundant, since the intent of this construct can be described using
the following generally supported features within arithmetic model:

• TABLE with optional range defined by MIN and MAX

• EQUATION with optional range defined by MIN and MAX

• Describe a model using TABLE, another model using EQUATION, a target model ref-
erencing the other models using MODEL annotation and an EQUATION describing the
usage condition of each referenced model

We propose to obsolete the construct featuring both TABLE and EQUATION because of
its redundancy and limited applicability.

Example:
July 12, 2002 46

Old construct:

DELAY my_target {
HEADER {

CAPACITANCE my_arg {
TABLE { 1 2 4 8 } MIN = 0.1; MAX = 10.5;

} }
TABLE { 0.5 0.9 1.9 4.0 }
EQUATION { 0.5 * my_arg }

}

New construct:

DELAY intermediate_model {
HEADER {

CAPACITANCE { TABLE { 1 2 4 8 } }
}
TABLE { 0.5 0.9 1.9 4.0 }

}
DELAY my_target {

HEADER {
DELAY my_table { MODEL = intermediate_model; }
CAPACITANCE my_arg { /* put extended range of validity here */ }

}
EQUATION {

(my_arg >= 0.1 && my_arg <= 10.5)? my_table : 0.5 * my_arg
}

}

July 12, 2002 47

21.0 Amendments for hierarchical antenna support

relation to ALF 2.0 9.7, 9.13

relation to IEEE P1603 9.9.2, 9.10.3, 11.13.12

History Jan. 14, 2002 by Wolfgang
reviewed Jan. 14 and Feb. 13, accepted

Status closed, accepted

21.1 Motivation

Antenna rules are established to prevent transistors to be damaged during manufacturing
of upper metal layers. Evaluation of antenna rules requires visibility of all layers, starting
from polysilicon and diffusion which constitute the transistors. In cell-based design, the
artwork of a transistor connected to a pin of a cell is not visible to a layout tool. ALF sup-
ports the annotation of transistor AREA to the pin as a pertinent parameter for antenna
rule evaluation. For complex cells or blocks, this abstraction is not suffcient.

The following figure describes an example:

When the Metal2 segment “X2” is manufactured, the transistor area “P1” is exposed to
antenna. When the Metal3 segment “X3” is manufactured, the transistor areas “P1” and
“P2” are exposed to antenna. The smaller the exposed transistor area, the greater the dam-
age. Therefore, using the area “P1” is pessimistic, using the area “P1+P2” is not safe.

21.2 PATTERN annotation in context of PIN

Allow the PATTERN statement in context of PIN. Currently, the PATTERN statement is
allowed in context of PORT, BLOCKAGE and RULE. A PORT is allowed in context of a
PIN.

In conjunction with the amended CONNECTIVITY statement (see Section 13.0,
“Amended semantics of CONNECTIVITY,” on page 28), the pertinent information for
hierarchical antenna rule checking can be described.

POLY

Metal1

P1 P2

Metal3

A C G

B D FMetal2

E

X2

X3

X0

PIN

outside cell inside cell

X1
July 12, 2002 48

Example:

// Note: items in italic are not verbatim, they should be numbers
PIN my_pin {

PATTERN A { LAYER = M1; RECTANGLE { left bottom right top } }
PATTERN B { LAYER = M2; AREA = B; }
PATTERN C { LAYER = M1; AREA = C; }
PATTERN D { LAYER = M2; AREA = D; }
PATTERN E { LAYER = M3; AREA = E; }
PATTERN F { LAYER = M2; AREA = F; }
PATTERN G { LAYER = M1; AREA = G; }
PATTERN P1 { LAYER = POLY; AREA = P1; }
PATTERN P2 { LAYER = POLY; AREA = P2; }
PORT my_port { PATTERN = A; }
CONNECTIVITY = 1 { BETWEEN { A B } CONNECT_TYPE=physical; }
CONNECTIVITY = 1 { BETWEEN { B C P1 } CONNECT_TYPE=physical; }
CONNECTIVITY = 1 { BETWEEN { C D E } CONNECT_TYPE=physical; }
CONNECTIVITY = 1 { BETWEEN { E F G P2 } CONNECT_TYPE=physical; }

}

This example corresponds to the figure above. Note that the information about the various
patterns is restricted to area. Only the pattern A, which is must be visible as a physical
port, is described as rectangle. Reference to pattern A is made by the port.

Note: For similar reasons, a PATTERN statement could be allowed in the context of a
CELL. This would, for example, facilitate hierarchical parasitic extraction.

21.3 TARGET annotation within precalculated antenna SIZE

The pertinent data for antenna calculation can abstracted further, if the arithmetic model
describing antenna SIZE is partially pre-calculated considering the patterns within the
cell. The following calculation refers still to the same example

• Antenna with target X0:
SIZE = AREA(A+X1) / AREA (X0)
+ AREA(B+D+X2) / AREA(P1+X0)
+ AREA (E+X3) / AREA(P1+P2+X0)

• Antenna with target P1:
SIZE = AREA(C) / AREA(P1)
+ AREA(B+D+X2) / AREA(P1+X0)
+ AREA (E+X3) / AREA(P1+P2+X0)

• Antenna with target P2:
SIZE = AREA(F) / AREA(P2) + AREA(G) / AREA(P2)
+ AREA(E+X3) / AREA(P1+P2+X0)

The segments A, E, and P1 are pertinent. The individual segments B and D can be com-
bined, since only the sum B+D is pertinent. The partial SIZE=AREA(C)/AREA(P1) can
be precalculated. The partial SIZE=AREA(F+G)/AREA(P2) can also be precalculated.
July 12, 2002 49

Thus the individual segment P2 is not exposed and can be replaced by a combination of P1
and P2.

The following figure shows the abstraction.

In order to describe this abstraction in ALF, the TARGET annotation within the context of
SIZE is proposed. The value of the TARGET annotation is a PATTERN, corresponding to
the transistor area exposed to antenna.

Example:

// Note: items in italic are not verbatim, they should be numbers
PIN my_pin {

PATTERN A { LAYER = M1; RECTANGLE { left bottom right top } }
PATTERN B_D { LAYER = M2; AREA = B+D; }
PATTERN E { LAYER = M3; AREA = E; }
PATTERN P1 { LAYER = POLY; AREA = P1; }
PATTERN P1_P2 { LAYER = POLY; AREA = P1+P2; }
PORT my_port { PATTERN = A; }
CONNECTIVITY forX0 = 1 {

BETWEEN { A B_D } CONNECT_TYPE = physical;
}
CONNECTIVITY forP1 = 1 {

BETWEEN { P1 B_D E } CONNECT_TYPE = physical;
}
CONNECTIVITY forP2 = 1 {

BETWEEN { P1_P2 E } CONNECT_TYPE = physical;
}
SIZE targetP1 = C/P1 {

TARGET=P1; CALCULATION=incremental;
}
SIZE targetP2 = (F+G)/P2 {

TARGET=P1_P2; CALCULATION=incremental;
}

}

An eventual antenna rule violation will be assocated with the PATTERN referenced by the
TARGET annotation.

POLY

M1

M3

A

M2

PIN

outside cell inside cell

E

P1 P1+P2

SIZE=C/P1

SIZE=(F+G)/P2
B + D
July 12, 2002 50

22.0 Amendments for REFERENCE related to DISTANCE

relation to ALF 2.0 9.18

relation to IEEE P1603 11.13.12

History Jan.14, 2002 by Wolfgang
reviewed Jan. 14 and Feb. 13, accepted

Status closed, accepted

22.1 Motivation

A DISTANCE between two physical patterns can be described in ALF. The reference
point for distance measurements is indicated by the REFERENCE annotation which is
assocated with the DISTANCE statement. This annotation specifies whether the distance
is measured between the centers or the edges or the origins of the patterns. However, a dis-
tance measured between the center of one pattern and the edge of another pattern cannot
be specified in this way. Therefore, we propose to replace the annotation by an annotation
container which can specify the point of reference for each object.

22.2 Proposal

Existing definition:

reference_annotation ::=

REFERENCE = center | origin | edge ;

Proposed definition:

reference_annotation_container ::=

REFERENCE {
1st_pattern_identifier = center | origin | edge ;
2nd_pattern_identifier = center | origin | edge ;

}

Example:

DISTANCE d1 {
BETWEEN { pattern1 pattern2 }
REFERENCE { pattern1 = origin; pattern2 = origin; }
// instead of “REFERENCE = origin;” in ALF 2.0

}
DISTANCE d2 {

BETWEEN { pattern3 pattern4 }
REFERENCE { pattern3 = origin; pattern4 = edge; }
// not possible to describe in ALF 2.0

}

July 12, 2002 51

23.0 Amendments for PIN_GROUP

relation to ALF 2.0 6.5

relation to IEEE P1603 9.4.2

History Jan. 14, 2002 by Wolfgang
reviewed Feb. 13
accepted Apr. 16

Status closed, accepted

23.1 Motivation

ALF 2.0 features a pin_instantiation statement and a PIN_GROUP statement. The
PIN_GROUP statement is more general than the pin_instantiation statement. Therefore
the pin_instantiation statement is redundant. Since both statements have been only intro-
duced in ALF 2.0, chances are that they have not been adopted in practical applications
yet. Therefore we propose to obsolete the pin_instantiation statement.

23.2 Proposal: make pin_instantiation obsolete

The purpose of the pin_instantiation statement is to specify information releveant for a
scalar pin or a subarray of a 1-dimensional array pin. The statement allows for recursivity,
i.e., a pin_instantiation statement inside another pin_instantiation statement.

Example:

PIN [1:100] my_array {
// put information pertaining to the entire array [1:100] here
my_array[1:50] { // this is a pin_instantiation

// put information pertaining to the sub-array [1:50] here
}
my_array[51:100] { // this is another pin_instantiation

// put information pertaining to the sub-array [51:100] here
}

}

The equivalent construct using PIN_GROUP looks as follows:

PIN [1:100] my_array {
// put information pertaining to the entire array [1:100] here

}
PIN_GROUP [1:50] subarray_low {

MEMBERS { my_array [1:50] }
// put information pertaining to the sub-array [1:50] here

}
PIN_GROUP [1:50] subarray_high {

MEMBERS { my_array [51:100] }
July 12, 2002 52

// put information pertaining to the sub-array [51:100] here
}

The PIN_GROUP statement is more general, because it allows for concatenation of arbi-
tary pins, whereas the pin_instantiation allows only for subarrays within one parent pin.

The following example can only described with PIN_GROUP, not with pin_instance:

PIN pin1 { /* put information pertaining to pin1 here */ }
PIN [1:8] pin2 { /* put information pertaining to pin2 here */ }
PIN_GROUP [0:3] my_pingroup {

MEMBERS { pin2[7:8] pin1 pin2[5] }
// pin mapping is as follows:
// my_pingroup[0] <= pin2[7]
// my_pingroup[1] <= pin2[8]
// my_pingroup[2] <= pin1
// my_pingroup[3] <= pin2[5]
/* put information pertaining to my_pingroup here */

}

Therefore the pin_instance statement can be obsoleted. The effect is langauge simplifica-
tion without loss of description capability.

23.3 Proposal: rename PIN_GROUP to PINGROUP

A cosmetic change of the keyword PIN_GROUP to PINGROUP is proposed. The ratio-
nale is as follows:

In ALF convention, composite keywords building on a basic keyword use “_” as separa-
tor. For example, NON_SCAN_CELL builds on CELL, RESTRICT_CLASS builds on
CLASS. However, PINGROUP does not build on GROUP. GROUP has in fact quite the
opposite effect of PINGROUP. GROUP allows to generate multiple statements from a sin-
gle statement. Maybe “EXPAND” would have been a better choice for a keyword than
“GROUP”, but “GROUP” has been around since ALF 1.0 ...

Compatibility between changing keywords can be achieved by standardizing on an
ALIAS.

Example:

ALIAS PIN_GROUP = PINGROUP ;
// backward compatibility:
// PINGROUP is new primary keyword
// PIN_GROUP can still be used as alternative keyword

ALIAS EXPAND = GROUP ;
// forward compatibility:
// GROUP remains primary keyword
// EXPAND becomes alternative keyword
July 12, 2002 53

Subsequent revisions of the ALF standard could introduce a new keyword as alternative
keyword, then swap alternative keyword and primary keyword, finally obsolete the alter-
native keyword.
July 12, 2002 54

24.0 Extended definition of PURPOSE annotation

relation to ALF 2.0 6.6, 8.15

relation to IEEE P1603 8.6, 9.5, 9.6.3

History Jan.14, 2002 by Wolfgang
reviewed Feb. 13
reviewed Apr. 16, to be harmonized with

Section 9.0, “Features for creating a standard ALF header file,” on page 18

Status accepted in principle, details subject to review

24.1 Motivation

As ALF is a very general language and many application tools need to build datamodels
only for specific subsets of the ALF statements in a library, we propose to use the PUR-
POSE annotation. Currently, the PURPOSE annotation is supported only in the context of
a few ALF statements.

Instead of defining new context-specific semantics and values for PURPOSE, dedicated
new keywords are proposed, so that the language extension can be pecified in the alf
header file.

24.2 Proposal: generalized PURPOSE for CLASS

The CLASS statement has many purposes, given by those other statements making refer-
ence to the CLASS statement, for instance as RESTRICT_CLASS, SWAP_CLASS,
CONNECT_CLASS, EXISTENCE_CLASS, SUPPLY_CLASS. The PURPOSE annota-
tion for CLASS statement is supported for the target usage EXISTENCE_CLASS. We
propose to define a PURPOSE multivalue annotation indicating each target usage of a
CLASS statement.

Revised definition for PURPOSE:

KEYWORD PURPOSE = multi_value_annotation {
CONTEXT { CLASS VECTOR }
VALUETYPE = identifier;
VALUES { bist test timing power signal_integrity reliability }

}

New USAGE annotation:

KEYWORD USAGE = annotation {
CONTEXT = CLASS;
VALUETYPEE = identifier;
VALUES { RESTRICT_CLASS SWAP_CLASS CONNECT_CLASS SUPPLY_CLASS
EXISTENCE_CLASS CHARACTERIZATION_CLASS SELECT_CLASS }

}

July 12, 2002 55

24.3 Proposal: PURPOSE for WIRE

A WIRE statement can describe a statistical wireload model, a model for boundary para-
sitics within a cell, a model for an electrical network to be connected to a cell, a model for
interconnect delay and noise calculation, a model for parasitic reduction. We propose to
define a PURPOSE (singlevalue or multivalue?) annotation to indicate what is described.

New WIRETYPE annotation:

KEYWORD WIRETYPE ::= single_value_annotation {
CONTEXT = WIRE;
VALUETYPE = identifier;
VALUES { estimated extracted analytical load }

}

24.4 Proposal: PURPOSE for REGION

A REGION statement has multiple potential usages: description of electrical components
such as transistors or diodes for antenna rule check, descriptions of region of interest for
metal density check, description of an all-layer blockage in context of a cell, description of
a bounding box of a cell, description of a blockage in context of a wireload model,
description of allowed and disallowed regions for over-block routing, description of a sub-
floorplan within a block ...

We propose to define a PURPOSE annotation dependent on whether the REGION state-
ment feature will be accepted and what semantics will be supported.

New REGIONTYPE annotation:

KEYWORD REGIONTYPE ::= single_value_annotation {
CONTEXT = REGION;
VALUETYPE = identifier;
VALUES { /* TBD */ }

}

24.5 Other new annotations

New LAYERTYPE annotation superseding PURPOSE for LAYER:

KEYWORD LAYERTYPE ::= single_value_annotation {
CONTEXT = LAYER;
VALUETYPE = identifier;
VALUES { routing cut substrate dielectric reserved abstract }

}

New VIATYPE annotation superseding USAGE for VIA:

KEYWORD VIATYPE ::= single_value_annotation {
CONTEXT = VIA;
VALUETYPE = identifier;
July 12, 2002 56

VALUES { default non_default partial_stack full_stack }
}

New ARRAYTYPE annotation superseding PURPOSE for ARRAY:

KEYWORD ARRAYTYPE ::= single_value_annotation {
CONTEXT = ARRAY;
VALUETYPE = identifier;
VALUES { global floorplan placement routing }

}

July 12, 2002 57

25.0 Amended semantics of ILLEGAL statement

relation to ALF 2.0 6.7

relation to IEEE P1603 9.6.2

History Jan.14, 2002 by Wolfgang
reviewed Feb. 13, 2002
accepted Apr. 16, 2002

Status closed, accepted

25.1 Motivation

The ILLEGAL statement is similar to SETUP or HOLD or other timing constraint state-
ment insofar as it appears in context of a VECTOR and can contain a VIOLATION state-
ment. However, timing constraint statements are arithmetic models whereas ILLEGAL
statement is a statement on its own. It indicates whether the VECTOR constitutes an ille-
gal state. An illegal state may be tolerable for a short amount of time. Therefore the ILLE-
GAL statement could be interpreted as arithmetic model indicating the tolerable duration
of the illegal state. This provides more modeling capability. As a side effect, the language
is simplified, since the ILLEGAL statement now falls in the category of arithmetic mod-
els.

25.2 Proposal

The ILLEGAL statement shall describe an arithmetic model in the context of a VECTOR.
If the related control expression is a boolean expression, the arithmetic model shall
describe the tolerable duration of the state defined by the boolean expression. If the related
control expression is a vector expression, the arithmetic model shall describe the tolerable
duration of time measured between specified events, using the FROM and TO statements.

If no data is associated with the arithmetic model, the state or sequence of events defined
by the control expression shall be considered illegal independent of time. The occurence
of the VECTOR alone constitutes a VIOLATION.

If data is associated with the arithmetic model, an actual duration of the state equal or
greater than the duration calculated by evaluation of the arithmetic model shall constitute
a VIOLATION.

Example:

VECTOR (A && ! A_bar) {
ILLEGAL = 0.5 {

VIOLATION { /* put consequence of violation here */ }
}

}

July 12, 2002 58

A violation occurs, if the state A && ! A_bar lasts 0.5 units of time or longer.

VECTOR (01 B -> 01 B_bar -> 10 B_bar) {
ILLEGAL = 0.8 {

FROM { PIN = B_bar; EDGE_NUMBER = 0; }
TO { PIN = B_bar; EDGE_NUMBER = 0; }
VIOLATION { /* put consequence of violation here */ }

}

A violation occurs, if the elapsed time between 01 B_bar and 10 B_bar is 0.8 units of
time or longer.
July 12, 2002 59

26.0 CONTROL_POLARITY statement

relation to ALF 2.0 6.4.6

relation to IEEE P1603 9.4.5

History Jan.14, 2002 by Wolfgang
reviewed Feb. 13
accepted Apr. 16

Status closed, accepted

26.1 Motivation

ALF 2.0 features the POLARITY statement, which is either a single-value annotation or
an annotation container, depending on the value of the SIGNALTYPE annotation.
POLARITY as annotation container applies only for a composite signaltype value with
the fundamendal signaltype “control” or “clock”. The composite consists of the names of
operation modes which are controlled by the signal. The POLARITY statement states
those modes again and asssociates each of them with a value. Currently, the names of
operation modes are predefined, e.g. “read”, “write”, “scan”. But for many applications, a
customized name space would be preferable. Also, priority of control signals can not be
described within the POLARITY statement.

We propose to introduce the CONTROL_POLARITY statement as an amendment.

26.2 Proposal

The CONTROL_POLARITY statement shall be defined as one-level annotation container
in the context of a PIN as follows:

control_polarity_one_level_annotation_container ::=

CONTROL_POLARITY {
mode_identifier = polarity_value_identifier ;
{ mode_identifier = polarity_value_identifier ; }

}

where polarity_value_identifier supports the set of values already defined for the
POLARITY annotation (i.e. “high”, “low”, “rising_edge”, “falling_edge”,
“double_edge”) and mode_identifier supports an arbitrary set of values on top of
already predefined values (i.e. “read”, “write”, “test”, “scan”, “bist”).

This statement eliminates the necessity for composite SIGNALTYPE values building on
fundamental SIGNALTYPE values “control” or “clock” (for example
“read_write_control”, “read_write_clock”).
July 12, 2002 60

The POLARITY statement shall now be only a single-value annotation. Its semantics for
usage as single-value annotation shall remain unchanged. In particular, POLARITY shall
be supported for “clock”, but not for “control”. As a consequence, “clock” can be associ-
ated with both POLARITY and CONTROL_POLARITY.

Example for “control”:

PIN mode_sel_1 { SIGNALTYPE = control ;
CONTROL_POLARITY {

normal = high ;
scan = low ;
hold = low ;

} }
PIN mode_sel_2 { SIGNALTYPE = control ;

CONTROL_POLARITY {
scan = high ;
hold = low ;

} }
// corresponding truth table:
// mode_sel_1 mode_sel_2 mode of operation
// 0 0 hold
// 0 1 scan
// 1 0 normal
// 1 1 normal

This construct provides priority information for control signals.

Example for “clock”:

old construct:

PIN rw_clock {
SIGNALTYPE = read_write_clock ;
POLARITY {

read = rising_edge ;
write = falling_edge ;

}
}

new construct:

PIN rw_clock {
SIGNALTYPE = clock ;
POLARITY = double_edge ;
CONTROL_POLARITY {

read = rising_edge ;
write = falling_edge ;

}

July 12, 2002 61

In the old construct, there is a dependency between the value of SIGNALTYPE and the
contents of the POLARITY statement. The new construct is more orthogonal. The modes
are only found within the contents of the CONTROL_POLARITY statements.

From an electrical standpoint, the information “double_edge” indicates a requirement for
clock distribution with tighter requirements on duty cycle and slewrates than
“rising_edge” or “falling_edge”. In the old construct, “double_edge” was only supported
if both edges control the same operation. In the case of different operations,
“double_edge” had to be infered from the mode-specific polarity values. In the new con-
truct, POLARITY is now used in a uniform way. The syntax and semantics rules for
POLARITY are independent of its context.
July 12, 2002 62

27.0 Review of units for arithmetic models

relation to ALF 2.0 8.1, 9.2, 9.6

relation to IEEE P1603 9.10.5, 11.8

History Jan.14, 2002 by Wolfgang, with input from Peter and Tak
reviewed Feb. 13, 2002
accepted Apr. 16, 2002

Status accepted, details subject to review

27.1 Motivation

We should revisit the systems of base units and default units in order to comply with scien-
tific standards. An error has been detected for base unit of FLUX and FLUENCE. Also,
the system of default units should be revisited, so that mathematical calculations can even-
tually be done without unit conversion. Also, there is no definition of units for coordinates
in geometric models. The assumption is that DISTANCE unit is used. Also, we can ponder
whether arithmetic models for timing such as DELAY, SETUP etc. need their own units or
they should uniformly use the unit of TIME.

27.2 Proposal

FLUX and FLUENCE: change base unit to [1/(m2 s)] and [1/(m2)], respectively.

DELAY, RETAIN, SLEWRATE, SETUP, HOLD, RECOVERY, REMOVAL, PULSE-
WIDTH, PERIOD, NOCHANGE, JITTER, ILLEGAL: use unit of TIME, unless unit for
specific model is explicitely defined.

LENGTH, HEIGHT, WIDTH, THICKNESS, OVERHANG: use unit of DISTANCE,
unless unit for specific model is explicitely defined.

Introduce following rule: A local definition of units for TIME or DISTANCE overrules a
global definition of units for specific model. A local definition of units for specific model
overrules definition of TIME or DISTANCE at same level or more global level.

Use the unit of DISTANCE for COORDINATE values within geometric models.

Define default units such that the following mathemetical relationships can be satisfied
without unit conversion:

f = 1 / t

P = dE / dt

V = R * I

I = C * dV / dt
July 12, 2002 63

V = L * dI / dt

P = C * V2 * f

flux = d fluence / dt

fluence = 1 / A

A = D2

etc.

with following mathematical symbols

f frequency
t time
P power
E energy
V voltage
I current
R resistance
C capacitance
L inductance
A area
D distance
? flux
? fluence

One possibility is to make all default units 1 and make sure that all base units are compat-
ible with SI-units.
July 12, 2002 64

28.0 Eliminate redundant driver CELL and PIN annotation

relation to ALF 2.0 6.3, 6.4.14

relation to IEEE P1603 N/A

History Wolfgang, presented on 16 April, 2002
agreed to eliminated this feature

Status closed, accepted

28.1 Motivation

The driver cell and pin annotation is redundant, because the equivalent information can be
described more concisely using the STRUCTURE statement. Therefore it is proposed to
remove this annotation. This eliminates not only a redundant item, but also the rarely used
syntax rule “two_level_annotation”.

28.2 Proposal

The driver cell and pin specification in ALF 2.0, chapter 6.4.14 is defined as follows:

CELL myCell {
PIN myPin {

CELL = cell1 { PIN = pin1; }
}

}

where “myCell” is a complex block which has at least a boundary gate-level netlist. The
pin “myPin” of that complex block is connected to the pin “pin1” which belongs to an
instance of the cell “cell1”.

The STRUCTURE statement in ALF 2.0, chapter 6.3, can describe the equivalent infor-
mation as follows.

CELL myCell {
PIN myPin { ... }
FUNCTION {

STRUCTURE {
cell1 instance1 { pin1 = myPin; }

}
}

}

Moreover, the STRUCTURE statement supports specification of an instance name (here
“instance1”). Also it allows to specify connectivity between physical ports, using hierar-
chical pin identifiers.

Therefore the driver cell and pin specification is redundant and can be eliminated.
July 12, 2002 65

29.0 Substitution for VIA reference

relation to ALF 2.0 3.9.1, 9.8.4, 9.10.2, 11.4, 11.23

relation to IEEE P1603 9.8

History Wolfgang, presented on 16 April, 2002
agreed to make the substitution

Status closed, accepted

29.1 Motivation

The syntax rule for via reference is incorrectly formulated in ALF 2.0. We propose to re-
formulate the rule not only correctly, but to make the rule similar to other rules with simi-
lar semantics.

29.2 Proposal

The VIA reference rule in ALF 2.0, chapter 11.23 was defined as follows:

via_reference ::=
VIA { via_instantiations }

where

via_instantiation ::=
via_identifier { geometric_transformations }

However, the intent was:

via_instantiation ::=
via_identifier { { geometric_transformations } }

Note: the outer brackets indicate “optional”, whereas the inner, bold brackets indicate that
brackets shall be used.

Example:

VIA via1 { ... } // declaration of a via named “via1”

//somewhere else in the library:
VIA { via1 // reference to “via1” with geometric transformation

SHIFT { HORIZONTAL = 1; VERTICAL = -2; }
ROTATE = 90;

}

//somewhere else in the library:
VIA { via1 } // reference to “via1” without geometric transformation

End of example
July 12, 2002 66

We take issue even with the corrected rule.

The case with geometric-transformations has no precedence. No other instantiation state-
ment (for example cell_instantiation, template_instantiation) is enclosed by the keyword
of the ALF type. The case without geometric-transformations could be simply covered
under multi-value annotation.

To make the rule similar to other rules, we propose the following amendments:

• To cover the case with geetric-transformation:

via_instantiation ::=
via_identifier [instance_identifier] { geometric_transformations }

This supports an optional name and makes the via-instantiation similar to cell-instantia-
tion, wire-instantiation etc.

• To cover the case without geometric transformation

A keyword for any library-specific object (not only CELL, PIN, PRIMITIVE as in ALF
2.0, chapter 3.9.1) shall be legal for use as annotation (not only single-value annotation, as
in ALF 2.0, chapter 3.9.1).

The rule for via_reference itself can be eliminated, and the usage of via-instantiation or
multi-value annotation can be allowed instead.
July 12, 2002 67

30.0 Arithmetic submodels for physical library

relation to ALF 2.0 7.6

relation to IEEE P1603 11.15

History Wolfgang, presented on 16 April, 2002
agreed on new feature

Status closed, accepted

30.1 Motivation

ALF 2.0 supports arithmetic submodels HORIZONTAL and VERTICAL. In this docu-
ment, Section 17.0, “ROUTE annotation for PATTERN,” on page 37, new routing direc-
tions ACUTE and OBTUSE are proposed. Consequently, the corresponding arithmetic
submodels should be introduced.

30.2 Proposal

Allow the arithmetic submodels ACUTE and OBTUSE in the same context as the arith-
metic submodels HORIZONTAL and VERTICAL.

The allowed context shall be an arithmetic model of type WIDTH or LENGTH, if this
arithmetic model appears in context of a routing layer.

For arithmetic models in context of RULE, the annotations according to Section 17.0 on
page 37 shall be used rather than arithmetic submodels.
July 12, 2002 68

31.0 Simplification of SHIFT statement

relation to ALF 2.0 9.3.1

relation to IEEE P1603 9.17.6

History Wolfgang, May 2, 2002

Status new

31.1 Motivation

SHIFT currently has the HORIZONTAL and VERTICAL annotation.
The keywords HORIZONTAL and VERTICAL are also used as arithmic submodels (see
Section 30.0, “Arithmetic submodels for physical library,” on page 68). Therefore we
want to simplify the SHIFT statement so that the HORIZONTAL and VERTICAL annota-
tion statements are not required.

31.2 Proposal

Redefine SHIFT statement as follows:

shift ::=
SHIFT { horizontal_number vertical_number }

Example:

// old syntax:
SHIFT { HORIZONTAL = 3; VERTICAL = 2; }

// new syntax:
SHIFT { 3 2 }
July 12, 2002 69

32.0 Electrical components in context of CELL

relation to ALF 2.0 7, 8

relation to IEEE P1603 11

History Wolfgang, May 2, 2002

Status new

32.1 Motivation

Some cell require connection with external components, for example pull-up/pull-down
resistance, low pass RC filter for PLL, decoupling cap for power supply etc.

We propose to use named arithmetic models in the context of a CELL for that purpose, in
a similar way as they are used in the context of WIRE. Therefore, a NODE declaration
should also be allowed in the context of a CELL.

32.2 Proposal

Example:

CELL buffer_with_pullup {
PIN in { DIRECTION = input; }
NODE pu_1 { NODETYPE = power; }
NODE pu_2 { NODETYPE = ground; }
RESISTANCE r_pu = 50 { NODE { in pu_1 } }
VOLTAGE v_pu = 3.3 { NODE { pu_1 pu_2 } }

}

CELL pll_with_loopfilter {
PIN ref { DIRECTION = input; }
PIN feedback { DIRECTION = input; }
PIN lowpass { DIRECTION = input; }
PIN vco { DIRECTION = output; }
NODE lp_1 { NODETYPE = interconnect; }
NODE lp_2 { NODETYPE = ground; }
RESISTANCE r_lp = 100 { NODE { lowpass lp_1 } }
CAPACITANCE c1_lp = 50 { NODE { lowpass lp_2 } }
CAPACITANCE c2_lp = 20 { NODE { lp_1 lp_2 } }

}

July 12, 2002 70

Part 2: Grammar-related items

33.0 Make grammar more compact by removing redundancies

relation to ALF 2.0 3.2, 11.x

relation to IEEE P1603 Annex A (normative)

History Proposal by Wolfgang, May 22, 2001
review pending as of July 10
Comments from Tim Ehrler per email:
no issue with proposed changes
left open for review by other ALF parser developpers

Status closed here, to be tracked within IEEE P1603

33.1 Motivation

Simplify the grammar by getting rid of redundant definitions. Definitions which are used
in a particular context should be presented in that context. This will also simplify to intro-
duce grammar “snippets” in the semantic sections, where they are needed.

33.2 Proposal

ALF 2.0 chapter 11.2

Get rid of chapter 11.2 and introduce the pertinent statements locally, where they are
needed.

unnamed_assignment_base
remove

unnamed_assignment
rename to single_value_annotation, move to 11.7

named_assignment_base
remove

named_assignment
remove

single_value_assignment ::=
identifier = value ;

multi_value_assignment
rename to multi_value_annotation, move to 11.7
July 12, 2002 71

assignment
remove

pin_assignment
modify according to Section 5.0 on page 12, move to 11.7

arithmetic_assignment
move to 11.7

ALF 2.0 chapter 11.3

split into 3 separate chapters:

• Boolean expressions and operators

put boolean_expression

• Arithmetic expressions and operators

put arithmetic_expression

• Vector expressions and operators

put everything else

ALF 2.0 chapter 11.4

Get rid of chapter 11.4 and introduce the pertinent statements locally, where they are
needed.

cell_instantiation
remove

unnamed_cell_instantiation
only used for NON_SCAN_CELL, move to 11.9

named_cell_instantiation
only used for STRUCTURE, move to 11.17

pin_instantiation
only used for PIN, move to 11.11

Error to be corrected:
incorrect use of pin_instantiation in chapter 6.3, should be pin_assignments

Error to be corrected:
pin_instantiation is not mentioned as pin_item in chapter 11.11

primitive_instantiation
only used for FUNCTION, move to 11.17
July 12, 2002 72

template_instantiation
move to 11.7

dynamic_instantiation_item
move to 11.7

via_instantiation
move to 11.23

ALF 2.0 chapter 11.5

move to “lexical rules” section (chapter 10)

ALF 2.0 chapter 11.6

Get rid of chapter 11.6, associate operators with the corresponding expressions.

• Boolean expressions and operators

put all operators with prefix boolean_

• Arithmetic expressions and operators

put all operators with prefix arithmetic_

• Vector expressions and operators

put all operators with prefix vector_

move sequential_if, sequential_else_if to 11.17.

ALF 2.0 chapter 11.7

rename logic_assignment (see 11.17) into boolean_assignment and move
into 11.7. Move vector_assignment into 11.7.

rewrite grammar involving all_purpose_item, annotation,
annotation_container, the other items remain unchanged.

annotation ::=
one_level_annotation

| two_level_annotation
| multi_level_annotation

one_level_annotation ::=
single_value_annotation

| multi_value_annotation

one_level_annotations ::=
one_level_annotation { one_level_annotation }

two_level_annotation ::=
one_level_annotation

| identifier [= value] { one_level_annotations }
July 12, 2002 73

two_level_annotations ::=
two_level_annotation { two_level_annotation }

multi_level_annotation ::=
one_level_annotation

| identifier [= value] { multi_level_annotations }

multi_level_annotations ::=
multi_level_annotation { multi_level_annotation }

annotation_container ::=
identifier { one_level_annotations }

Since all_purpose_item allows generic_object and generic_object includes
keyword_declaration statement, consequently all syntax_item_identifiers
that can be used by keyword_declaration (see chapter 3.2.9) must be covered by
all_purpose_item.

all_purpose_item ::=
generic_object

| template_instantiation
| annotation
| arithmetic_model
| arithmetic_model_container
| boolean_assignment
| vector_assignment

Error to be corrected:
boolean_assignment is not mentioned as syntax_item_identifier in chap-
ter 3.2.9.

Note: arithmetic_submodel is also a syntax_item_identifier, but it is not
included in all_purpose_item, because arithmetic_submodel is always in the context
of arithmetic_model.
July 12, 2002 74

34.0 Rewrite grammar for more specific syntax and less
semantic restriction

relation to ALF 2.0 3.2, 11.x

relation to IEEE P1603 Annex A (normative)

History Proposal by Wolfgang, May 22, 2001
review pending as of July 10
Comments from Tim Ehrler per email:
no issue with proposed changes
left open for review by other ALF parser developpers

Status closed here, to be tracked within IEEE P1603

34.1 Motivation

Certain syntax definitions of ALF are written in a very generic way. As a consequence, a
lot of semantic restrictions apply. The idea is to rewrite the grammar so that the syntax
section becomes more specific and as a consequence the semantic sections become less
“heavy”. However, the changes to the existing grammar should be limited to modifica-
tions which specifically serve that purpose rather than re-writing the whole grammar from
scratch. Also, eventual redundancy in the grammar can be eliminated.

34.2 Proposal

Use all_purpose_item only for statements with custom keywords, introduced by
keyword_declaration statements and put the statements using standard keywords
explicitly in the grammar.

ALF 2.0 Chapter 11.9

cell_item ::=
all_purpose_item

| CELLTYPE_single_value_annotation
| SWAP_CLASS_one_level_annotation
| RESTRICT_CLASS_one_level_annotation
| SCANTYPE_single_value_annotation
| SCAN_USAGE_single_value_annotation
| BUFFERTYPE_single_value_annotation
| DRIVERTYPE_single_value_annotation
| PARALLEL_DRIVE_single_value_annotation
| pin
| pin_group
| primitive
| function
| non_scan_cell
| test
| vector
July 12, 2002 75

| wire
| blockage
| artwork
| connectivity

ALF 2.0 Chapter 11.10

library_item ::=
all_purpose_item

ALF 2.0 Chapter 11.11

pin_item ::=
all_purpose_item

| range
| VIEW_single_value_annotation
| PINTYPE_single_value_annotation
| DIRECTION_single_value_annotation
| SIGNALTYPE_single_value_annotation
| ACTION_single_value_annotation
| POLARITY_two_level_annotation
| DATATYPE_single_value_annotation
| INITIAL_VALUE_single_value_annotation
| SCAN_POSITION_single_value_annotation
| STUCK_single_value_annotation
| SUPPLYTYPE_single_value_annotation
| SIGNAL_CLASS_one_level_annotation
| SUPPLY_CLASS_one_level_annotation
| cell_pin_reference_two_level_annotation
| DRIVETYPE_single_value_annotation
| SCOPE_single_value_annotation
| PULL_single_value_annotation
| port
| connectivity
| pin_instantiation // this one is missing in chapter 11.11

ALF 2.0 Chapter 11.14

vector_item ::=
all_purpose_item

| PURPOSE_one_level_annotation
| OPERATION_single_value_annotation
| LABEL_single_value_annotation
| EXISTENCE_CLASS_one_level_annotation
| EXISTENCE_CONDITION_boolean_assignment
| CHARACTERIZATION_CLASS_one_level_annotation
| CHARACTERIZATION_CONDITION_boolean_assignment
| CHARACTERIZATION_VECTOR_vector_assignment
| MONITOR_one_level_annotation // proposed in this doc chapter 8
| illegal_statement

ALF 2.0 Chapter 11.15
July 12, 2002 76

wire_item ::=
all_purpose_item

| SELECT_CLASS_one_level_annotation
| node

node ::=
NODE name_identifier { node_items }

node_items ::=
node_item { node_item }

node_item ::=
all_purpose_item

| NODETYPE_single_value_annotation
| NODE_CLASS_one_level_annotation

ALF 2.0 Chapter 11.16

arithmetic_models ::=
arithmetic_model { arithmetic_model }

arithmetic_model ::=
partial_arithmetic_model

| full_arithmetic_model

Partial arithmetic model contains only definitions, no data. Can appear outside the seman-
tically valid context of the model, as long as a semantically valid context exists within
scope. (Example: semantically valid context of arithmetic model X is VECTOR, VEC-
TOR exists within scope of LIBRARY, therefore partial arithmetic model X is legal within
LIBRARY.) Definitions inside partial arithmetic model without name_identifier are
inherited by each arithmetic model with arithmetic_model_identifier within scope.
(Note: up to 2 levels of submodel are supported)

partial_arithmetic_model ::=
arithmetic_model_identifier [name_identifier] {

{ all_purpose_item }
{ arithmetic_model_qualifier }
{ partial_arithmetic_submodel }

}

partial_arithmetic_submodel ::=
arithmetic_submodel_identifier [name_identifier] {

{ all_purpose_item }
{ partial_arithmetic_leaf_submodel }

}

partial_arithmetic_leaf_submodel ::=
arithmetic_submodel_identifier [name_identifier] {

{ all_purpose_item }
}

Full arithmetic model contains both definitions and data. Can only appear in the semanti-
cally valid context of the model. Enables evaluation of arithmetic model in design context
(e.g. delay calculation, power calculation). A trivial arithmetic model contains directly the
July 12, 2002 77

evaluation value. A non-trivial arithmetic model requires calculation of the value, based
on evaluation conditions. (Note: up to 2 levels of submodel are supported)

full_arithmetic_model ::=
trivial_arithmetic_model

| non_trivial_arithmetic_model

trivial_arithmetic_model ::=
arithmetic_model_identifier [name_identifier] = value ;

| arithmetic_model_identifier [name_identifier] = value {
{ all_purpose_item }
{ arithmetic_model_qualifier }

}

non_trivial_arithmetic_model ::=
arithmetic_model_identifier [name_identifier] {

{ all_purpose_item }
{ arithmetic_model_qualifier }
arithmetic_model_body
{ arithmetic_model_datarange }

}
| arithmetic_model_identifier [name_identifier] {

{ all_purpose_item }
[violation]
{ arithmetic_model_qualifier }
full_arithmetic_submodels

}

full_arithmetic_submodels ::=
full_arithmetic_submodel { full_arithmetic_submodel }

full_arithmetic_submodel ::=
full_arithmetic_leaf_submodel

| arithmetic_submodel_identifier [name_identifier] {
{ all_purpose_item }
full_arithmetic_leaf_submodels

}

full_arithmetic_leaf_submodels ::=
full_arithmetic_leaf_submodel { full_arithmetic_leaf_submodel }

full_arithmetic_leaf_submodel ::=
trivial_arithmetic_leaf_submodel

| non_trivial_arithmetic_leaf_submodel

trivial_arithmetic_leaf_submodel ::=
arithmetic_submodel_identifier [name_identifier] = value ;

| arithmetic_submodel_identifier [name_identifier] = value {
{ all_purpose_item }

}

non_trivial_arithmetic_leaf_submodel ::=
arithmetic_submodel_identifier [name_identifier] {

{ all_purpose_item }
arithmetic_model_body
July 12, 2002 78

{ arithmetic_model_datarange }
}

Auxiliary definitions for arithmetic model. Semantic restrictions apply. (Note: the new
grammar allows non-ambiguous distinction between usage of MIN/TYP/MAX/
DEFAULT either as arithmetic_leaf_submodel or as single_value_annotation.)

arithmetic_model_qualifier ::=
general_arithmetic_model_qualifier

| connected_arithmetic_model_qualifier
| analog_arithmetic_model_qualifier
| timing_arithmetic_model_qualifier
| layout_arithmetic_model_qualifier

general_arithmetic_model_qualifier ::=
UNIT_single_value_annotation

| CALCULATION_single_value_annotation
| INTERPOLATION_single_value_annotation

connected_arithmetic_model_qualifier ::=
PIN_one_level_annotation

| NODE_one_level_annotation

analog_arithmetic_model_qualifier ::=
analog_MEASUREMENT_single_value_annotation

| COMPONENT_single_value_annotation
| TIME_arithmetic_model
| FREQUENCY_arithmetic_model

timing_arithmetic_model_qualifier ::=
EDGE_NUMBER_single_value_annotation

| violation
| from
| to

layout_arithmetic_model_qualifier ::=
distance_MEASUREMENT_single_value_annotation

| BETWEEN_multi_value_annotation
| REFERENCE_single_value_annotation
| ANTENNA_one_level_annotation
| PATTERN_single_value_annotation
| VIA_single_value_annotation

arithmetic_model_datarange ::=
MIN_single_value_annotation

| TYP_single_value_annotation
| MAX_single_value_annotation
| DEFAULT_single_value_annotation

arithmetic_model_body ::=
[header] table [equation]

| [header] equation [table]

equation ::=
EQUATION { arithmetic_expression }
July 12, 2002 79

from ::=
FROM {

[PIN_single_value_annotation]
[EDGE_NUMBER_single_value_annotation]
[THRESHOLD_arithmetic_model]

}

to ::=
TO {

[PIN_single_value_annotation]
[EDGE_NUMBER_single_value_annotation]
[THRESHOLD_arithmetic_model]

}

Auxiliary definitions for arithmetic model, also applicable elsewhere (separate chapter?).

VIOLATION is also applicable for ILLEGAL

violation ::=
VIOLATION {

[MESSAGE_TYPE_single_value_annotation]
[MESSAGE_single_value_annotation]
[behavior]

}

TABLE and HEADER are also applicable for CONNECTIVITY.

table ::=
TABLE { values }

header ::=
HEADER { arithmetic_model_identifiers }
HEADER { header_arithmetic_models }

Arithmetic model in context of HEADER (Note: no submodels allowed).

header_arithmetic_models ::=
header_arithmetic_model { header_arithmetic_model }

header_arithmetic_model ::=
arithmetic_model_identifier [name_identifier] {

{ all_purpose_item }
{ arithmetic_model_qualifier }
{ arithmetic_model_body }
{ arithmetic_model_datarange }

}

Container of arithmetic model (Note: LIMIT is special).

arithmetic_model_containers ::=
arithmetic_model_container { arithmetic_model_container }

arithmetic_model_container ::=
limit

| arithmetic_model_container_identifier { arithmetic_models }
July 12, 2002 80

limit ::=
LIMIT { limit_arithmetic_models }

Arithmetic model in context of LIMIT (Note: must contain leaf submodels MIN and/or
MAX).

limit_arithmetic_models ::=
limit_arithmetic_model { limit_arithmetic_model }

limit_arithmetic_model ::=
arithmetic_model_identifier [name_identifier] {

{ all_purpose_item }
[violation]
{ arithmetic_model_qualifier }
limit_arithmetic_submodels

}

limit_arithmetic_submodels ::=
limit_arithmetic_submodel { limit_arithmetic_submodel }

limit_arithmetic_submodel ::=
limit_leaf_arithmetic_submodel

| arithmetic_submodel_identifier [name_identifier] {
{ all_purpose_item }
[violation]
limit_arithmetic_leaf_submodels

}

limit_arithmetic_leaf_submodels ::=
limit_arithmetic_leaf_submodel { limit_arithmetic_leaf_submodel }

limit_arithmetic_leaf_submodel ::=
min_or_max = number ;

| min_or_max {
{ all_purpose_item }
[violation]
[arithmetic_model_body]

}

min_or_max ::=
MIN

| MAX
July 12, 2002 81

35.0 Miscellaneous Grammar enhancements

relation to ALF 2.0 3.2, 11.x

relation to IEEE P1603 6.x, Annex A

History initial draft Oct. 7, 2001 by Wolfgang
to be reviewed Nov. 12
to be reviewed Apr. 16, 2002

Status open

35.1 Motivation

The grammar serves not only the purpose of defining syntax, but also terminology. A
parser does not care what terminology is used in grammar. However, if the grammar is
written in a meaningful and concise way for human understanding, the terminology intro-
duced therein can be used throughout the document for semantic explanation purpose.
Since human understanding is always subjective, it may take some iterations, before the
most meaningful and concise terminology is found.

35.2 Boolean_value literal

This proposal has been worked into the IEEE P1603 doc, draft 3.

Current definition of pin_value in IEEE P1603, chapter 7.2.3:

pin_value ::=
pin_variable

| bit_literal
| based_literal
| unsigned

Issue: pin_value is referred to in IEEE 1603 chapter 6.6.1, which defines lexical rules.
However, pin_value is not a lexical token. The following change provides a remedy:

pin_value ::=
pin_variable

| boolean_value

boolean_value ::=
bit_literal

| based_literal
| unsigned

Instead of referring to pin_value in 6.6.1, refer to boolean_value. All the items in
boolean_value are lexical tokens.
July 12, 2002 82

35.3 PULL statement

This proposal is withdrawn and superseded by Section 31.0, “Simplification of SHIFT
statement,” on page 69.

In ALF 2.0, chapter 6.4.17, PULL is defined as annotation. Chapter A.15.7 suggests to
provide VOLTAGE and RESISTANCE annotation inside PULL statement. This would
make PULL technically a two_level_annotation. However, RESISTANCE and VOLT-
AGE are arithmetic models rather than annotations. Therefore, the grammar for the PULL
statement should be reformulated as follows:

pull ::=
PULL = pull_value_identifier ;

| PULL = pull_value_identifier { pull_items }
| pull_template_instantiation

pull_items ::= pull_item { pull_item }

pull_item ::=
voltage_arithmetic_model

| resistance_arithmetic_model

Since PULL is used inside PIN, redefine pin_item (IEEE 1603, chapter 9.3.1) as follows:

pin_item ::=
all_purpose_item

| range
| port
| pull
| pin_instantiation

Note:

pull_value_identifier ::=
up

| down
| both
| none

The pull_value_identifier eventually requires specification of both pull-up and pull-
down resistance and voltage. Arithmetic submodels HIGH and LOW can be used for that
purpose.

Example:

RESISTANCE { UNIT = 1ohm; }
VOLTAGE { UNIT = 1volt; }
PIN my_pin {

PULL = both {
RESISTANCE { HIGH = 500; LOW = 1000; }
VOLTAGE { HIGH = 5; LOW = -5; }

}
}

July 12, 2002 83

This pin features a pull up resistance of 500 ohm to be connected to 5 volt and a pull down
resistance of 1000 ohm to be connected to -5 volt.

35.4 Annotation container

The annotation_container statement (see ALF 2.0, chapter 11.7) has been omitted in
the new formulation of the grammar. Technically, annotation_container can be inter-
preted as a special case of two_level_annotation, but it may be advantageous to re-
introduce annotation_container, because two_level_annotation features a value,
whereas annotation_container does not. This distinction makes the data model more
precise.

annotation_container ::=
one_level_annotation_container

| two_level_annotation_container
| multi_level_annotation_container

one_level_annotation_container ::=
annotation_container_identifier { one_level_annotations }

two_level_annotation_container ::=
annotation_container_identifier { two_level_annotations }

multi_level_annotation_container ::=
annotation_container_identifier { multi_level_annotations }

To do: identify all statements in the grammar which are actually annotation_container.
July 12, 2002 84

36.0 New item

relation to ALF 2.0 reference to ALF 2.0 chapter

relation to IEEE P1603 reference to IEEE P1603 chapter

History date of initial draft, date of revisions

Status open or closed, accepted or rejected

36.1 Motivation

Explain reason for new feature

36.2 Proposal

Describe new feature
July 12, 2002 85

	Work document for tracking the development of the IEEE 1603 std
	X.0 Item
	X.1 Motivation
	X.2 Proposal
	Part 1: Language features for library modeling

	1.0 Level definition for Vector Expression Language
	1.1 Motivation
	1.2 Proposal

	2.0 Metal Density
	2.1 Motivation
	2.2 Proposal

	3.0 Types of electrical CURRENT
	3.1 Motivation
	3.2 Proposal
	3.3 Supplementary proposal

	4.0 NOISE modeling
	4.1 Motivation
	4.2 Proposal

	5.0 Simplification of NON_SCAN_CELL statement
	5.1 Motivation
	5.2 Proposal

	6.0 VIOLATION in context of LIMIT
	6.1 Motivation
	6.2 Proposal

	7.0 New value for MEASUREMENT annotation
	7.1 Motivation
	7.2 Proposal

	8.0 MONITOR statement for VECTOR
	8.1 Motivation
	8.2 Proposal

	9.0 Features for creating a standard ALF header file
	9.1 Motivation
	9.2 Proposal
	9.3 Supplementary proposal

	10.0 Amended semantics of LIMIT
	10.1 Motivation
	10.2 Proposal

	11.0 Semantics of SUPPLYTYPE and SUPPLY_CLASS for multi-rail support
	11.1 Motivation
	11.2 Proposal for SUPPLYTYPE semantics
	11.3 Proposal for SUPPLY_CLASS semantics

	12.0 Amended semantics of RESTRICT_CLASS and SWAP_CLASS
	12.1 Motivation
	12.2 Proposal for RESTRICT_CLASS
	12.3 Alternative proposal #1
	12.4 Alternative proposal #2
	12.5 Semantics of predefined RESTRICT_CLASS values
	12.6 Proposal for SWAP_CLASS

	13.0 Amended semantics of CONNECTIVITY
	13.1 Motivation
	13.2 Proposal
	13.3 Supplementary proposal for CONNECT_TYPE

	14.0 Amended semantics of PULSEWIDTH, PERIOD
	14.1 Motivation
	14.2 Proposal

	15.0 Amended definition of TIME and FREQUENCY statement in context of arithmetic model
	15.1 Motivation
	15.2 Proposal

	16.0 Reference to models in other format than ALF
	16.1 Motivation
	16.2 Initial Proposal
	16.3 Final Proposal: ASSOCIATE statement

	17.0 ROUTE annotation for PATTERN
	17.1 Motivation
	17.2 Proposal

	18.0 REGION statement
	18.1 Motivation
	18.2 Proposal

	19.0 WIRE instantiation within arithmetic model
	19.1 Motivation
	19.2 Proposal
	19.3 Supplementary proposal

	20.0 Amendments and simplifications for arithmetic model
	20.1 Motivation
	20.2 MODEL annotation
	20.3 Language simplification enabled by MODEL annotation
	20.4 Obsolete construct with both TABLE and EQUATION

	21.0 Amendments for hierarchical antenna support
	21.1 Motivation
	21.2 PATTERN annotation in context of PIN
	21.3 TARGET annotation within precalculated antenna SIZE

	22.0 Amendments for REFERENCE related to DISTANCE
	22.1 Motivation
	22.2 Proposal

	23.0 Amendments for PIN_GROUP
	23.1 Motivation
	23.2 Proposal: make pin_instantiation obsolete
	23.3 Proposal: rename PIN_GROUP to PINGROUP

	24.0 Extended definition of PURPOSE annotation
	24.1 Motivation
	24.2 Proposal: generalized PURPOSE for CLASS
	24.3 Proposal: PURPOSE for WIRE
	24.4 Proposal: PURPOSE for REGION
	24.5 Other new annotations

	25.0 Amended semantics of ILLEGAL statement
	25.1 Motivation
	25.2 Proposal

	26.0 CONTROL_POLARITY statement
	26.1 Motivation
	26.2 Proposal

	27.0 Review of units for arithmetic models
	27.1 Motivation
	27.2 Proposal

	28.0 Eliminate redundant driver CELL and PIN annotation
	28.1 Motivation
	28.2 Proposal

	29.0 Substitution for VIA reference
	29.1 Motivation
	29.2 Proposal

	30.0 Arithmetic submodels for physical library
	30.1 Motivation
	30.2 Proposal

	31.0 Simplification of SHIFT statement
	31.1 Motivation
	31.2 Proposal

	32.0 Electrical components in context of CELL
	32.1 Motivation
	32.2 Proposal
	Part 2: Grammar-related items

	33.0 Make grammar more compact by removing redundancies
	33.1 Motivation
	33.2 Proposal

	34.0 Rewrite grammar for more specific syntax and less semantic restriction
	34.1 Motivation
	34.2 Proposal

	35.0 Miscellaneous Grammar enhancements
	35.1 Motivation
	35.2 Boolean_value literal
	35.3 PULL statement
	35.4 Annotation container

	36.0 New item
	36.1 Motivation
	36.2 Proposal

