
This document contains suggested enhancements to the Advanced Library Format, using
ALF 2.0 as baseline. The document serves as a worksheet rather than a formal proposal.
The suggested enhancements are collected in no particular order. The idea is to keep track
of evolving proposals here and then agree formally whether or not they should be part of
the IEEE spec.

The following template is used throughout this document:

X.0 Item

relation to ALF 2.0 reference to ALF 2.0 chapter

relation to IEEE P1603 reference to IEEE P1603 chapter

History date of initial draft, date of revisions

X.1 Motivation

Explain reason for new feature

X.2 Proposal

Describe new feature
November 1, 2001 1

1.0 Level definition for Vector Expression Language

relation to ALF 2.0 5.3, 5.4, 11.3

relation to IEEE P1603 N/A

History initial draft April 16 2001 by Wolfgang
reviewed and rejected by Study Group April 16
rejection confirmed by Tim Ehrler May 1
changed title and closed May 4 by Wolfgang

1.1 Motivation

The vector expression language is a new concept which has almost no equivalent in legacy
library model description languages. Currently there are EDA tools which support a subset
of the vector expression language. Purpose of this proposal is to re-write the definitions in
such a way that it is easy to identify subsets for different levels of support. For example:
level0=basic subset, level1=intermediate subset, level2=full set in ALF 2.0, level3=full set
in ALF 2.0 plus new proposed extensions.

1.2 Proposal

Level 0: single event, single event & boolean condition, two-event sequence

Level 1: N-event sequence, N-event sequence & boolean condition, alternative event
sequence

Level 2: everything in ALF 2.0 (except if we decide to drop something fundamentally
unpractical or un-implementable)

Level 3: new operators for repetition of sub-sequences
November 1, 2001 2

2.0 Metal Density

relation to ALF 2.0 9.2, 9.5

relation to IEEE P1603 11.13

History initial draft April 16 2001 by Wolfgang
reviewed and retained by Study Group April 16
o.k. as is by Tim Ehrler May 1
supplementary proposal by Wolfgang Oct. 5
reviewed Oct. 9, supplementary proposal o.k.

2.1 Motivation

Manufacturability in 130 nm technology and below requires so-called metal density rules.
For a given routing layer, metal must cover a certain percentage of the total area within a
lower and upper bound in order to ensure planarity. This percentage also depends on the
total area under consideration, i.e., there are “local” and “global” metal density rules.

Manufacturing rules also specify, how density should be calculated. For example, only
structures wider than a certain minimum width should be taken into account.

Also, for local rules, the shape of the region to be checked can be specified. For example,

check the rule on a square of x*x mm2, check the density on a region of x mm width in X
or Y direction etc.

2.2 Proposal

Introduce new keyword DENSITY (or other word) for arithmetic model. Shall be non-
negative number normalized between 0 and 1 (1 means 100%). Usable in context of
LAYER (see ALF 2.0, chapter 9.5.1) with PURPOSE=routing (see ALF 2.0, chapter
9.5.2). Legal argument (i.e. HEADER) includes AREA, meaning the die area subjected to
manufacturing of this layer.

Example:

LAYER metal1 {
PURPOSE = routing;
LIMIT {

DENSITY {
MIN {

HEADER {
AREA {

INTERPOLATION = floor;
TABLE { 0 100 1000 }

}
}
TABLE { 0.2 0.3 0.4 }
November 1, 2001 3

}
MAX {

HEADER {
AREA {

INTERPOLATION = floor;
TABLE { 0 100 1000 }

}
}
TABLE { 0.8 0.7 0.6 }

}
}

}
}

Within an area of less than 100 units, the metal density must be between 20% and 80%.
Within an area of 100 up to less than 1000 units, the metal density must be between 30%
and 70%. Within an are of 1000 units or more, the metal density must be between 40% and
60%. The annotation INTERPOLATION=floor indicates that no interpolation is made for
areas in-between, but the next lower value is used (see ALF 2.0, chapter 7.4.4).

To allow for particularities in density calculation, the DENSITY statement must be in con-
text of a RULE (see ALF 2.0, chapter 9.11). The applicable layer is given as annotation.
Both a model for calculation of DENSITY and a model for the limit of DENSITY must be
given in context of the RULE.

Example:

RULE min_density {
DENSITY {

LAYER = metal1;
CALCULATION = incremental;
HEADER {

WIDTH
LENGTH
AREA

}
EQUATION { WIDTH * LENGTH / AREA }

}
LIMIT { DENSITY { LAYER = metal1; MIN = 0.2; } }

}
RULE max_density {

DENSITY {
LAYER = metal1;
CALCULATION = incremental;
HEADER {

WIDTH
LENGTH
AREA

}
EQUATION { (WIDTH<0.1)? 0 : WIDTH * LENGTH / AREA }

}
LIMIT { DENSITY { LAYER = metal1; MAX = 0.8; } }

}

November 1, 2001 4

Note: WIDTH (see ALF 2.0, chapter 9.2, table 9-4) and LENGTH (see ALF 2.0, chapter
9.2, table 9-6) are the dimensions of a routable object in the layer. AREA (see ALF 2.0,
chapter 9.2, table 9-7) should be defined as the area of the environment in this context.

The example specifies, that objects smaller than 0.1 units of WIDTH are to be disregarded
for DENSITY calculation in context of the RULE max_density.
November 1, 2001 5

3.0 Current types

relation to ALF 2.0 8.1, 8.7, 8.15

relation to IEEE P1603 11.12.5, 11.12.11

History initial draft April 162001 by Wolfgang
reviewed and retained by Study Group April 16
also reviewed by Tim Ehrler May 1
add text to clarify purpose by Wolfgang May 4
proposal reviewed May 8, added supplementary proposal
reviewed, amended and accepted Oct. 9

3.1 Motivation

CURRENT needs PIN annotation indicating the target point where the current is flowing
into. Cannot define a branch of an electrical network where the current flows through.

Therefore there will be 3 types of CURRENT specification:

I1 = current into PIN from unspecified source (already supported in ALF 2.0)
I2 = current through a COMPONENT with two terminal nodes
I3 = current through an independent current source connected between two NODEs

see I1, I2, I3 in illustration

3.2 Proposal

In the context of WIRE, the following mutually exclusive annotations for CURRENT
shall be legal:

PIN = pin_identifier ;

Current flows from unknown source into the pin (already supported).

COMPONENT = component_identifier ;

n1 n2

gnd

I3

I2

I1 R1

C1 C2
November 1, 2001 6

Current flows through the component. The component must be a declared two-terminal
electrical component in the context of the WIRE, i.e. a RESISTANCE, CAPACITANCE,
VOLTAGE or INDUCTANCE (excluding mutual inductance, which has 4 terminals). The
direction of the current flow is given by the order of node identifiers in the NODE annota-
tion for that component (see ALF 2.0, chapter 8.15.3, 8.15.4).

NODE { 1st_node_identifier 2nd_node_identifier }

Current flows through a current source connected between the nodes. The direction of the
current flow is given by the order of node identifiers in this NODE annotation.

Example:

WIRE interconnect_analysis_model_1 {
CAPACITANCE C1 { NODE { n1 gnd } }
CAPACITANCE C2 { NODE { n2 gnd } }
RESISTANCE R1 { NODE { n1 n2 } }
CURRENT I1 { PIN = n1; }
CURRENT I2 { COMPONENT = R1; }
CURRENT I3 { NODE { n1 n2 } }

}

This example corresponds exactly to the illustration shown above.

3.3 Supplementary proposal

According to ALF 2.0, chapter 8.7.3, the sense of measurement for current associated
with a pin shall be into the node. However, in some cases, the natural sense of measure-
ment is out of the node. In order to allow explicit specification of the sense of measure-
ment, the following feature is proposed:

FLOW annotation for current shall specify the sense of measurement of current. Default
value shall be “in”, which is backward compatible with ALF 2.0.

FLOW = in | out;

For example, the following two statements are equivalent:

CURRENT I1 = 3.0 { PIN = n1; FLOW = in; }

CURRENT I1 = -3.0 { PIN = n1; FLOW = out; }

This is illustrated in the picture below.

n1

I1=3.0

n1

I1=-3.0

FLOW = in; FLOW = out;
November 1, 2001 7

4.0 Noise

relation to ALF 2.0 8.1, 8.14

relation to IEEE P1603 11.12.10

History initial draft April 16 2001 by Wolfgang
o.k by Tim Ehrler May 1
updated by Wolfgang May 4
reviewed and updated (see minutes) May 8
reviewed and accepted Oct. 9

4.1 Motivation

NOISE_MARGIN defines a normalized voltage difference between nominal signal level
and tolerated signal level. If violated, the correct signal level can not be determined. In
order to check against noise margin, actual noise must be calculated. Currently VOLTAGE
is used for noise calculations. However, since noise margin is normalized to signal voltage
swing, it would be convenient, if the actual noise could also be represented in a normal-
ized way. In CMOS, actual noise and noise margin tend to scale with supply voltage. A
non-normalized model requires supply voltage as a parameter, if the supply voltage is sub-
ject to variation. A normalized model would to a 1st order degree approximate the voltage
scaling effect already and therefore eliminate the supply voltage as a model parameter.

4.2 Proposal

Introduce new keyword NOISE, representing a normalized voltage difference between
nominal signal level and actual signal level. Same measurement definition as for noise
margin (see ALF 2.0, chapter 8.14). Noise margin is violated, if noise is larger than noise
margin.

Context-specific meaning of NOISE

1. Context is output or bidirectional PIN

NOISE specifies maximum amount of noise at output pin, when any input pin is subjected
to the amount of noise specified by NOISE_MARGIN. NOISE may have submodel HIGH
and LOW. The relation between noise at output pin and noise margin at input pin is illus-
trated in the following picture.
November 1, 2001 8

Example:

PIN my_input_pin {
DIRECTION = input;
NOISE_MARGIN { HIGH = 0.3; LOW = 0.2; }

}
PIN my_output_pin {

DIRECTION = output;
NOISE { HIGH = 0.02; LOW = 0.01; }

}

2. Context is VECTOR with vector_expression

NOISE needs PIN annotation. NOISE specifies peak noise while pin is in “*” state.
NOISE may only have submodel HIGH and LOW, if “?” state as opposed to “0” or “1”
state is specified in vector_expression.

Example:

VECTOR (0* my_pin -> *0 my_pin) {
NOISE = 0.2 { PIN = my_pin; }

}

3. Context is CELL, SUBLIBRARY, or LIBRARY

no PIN annotation. NOISE specifies maximum amount of noise at any output or bidirec-
tional pin within scope, unless this specification is overwritten locally.

Example:

LIBRARY my_library {
NOISE { HIGH = 0.02; LOW = 0.01; }

}

Vin/Vdd

Vout/Vdd

10

1

0

noise(low) = Vol/Vdd

noise(high) = 1-Voh/Vdd

noise margin(low)
= Vil/Vdd

noise margin(high)
= 1-Vih/Vdd

Vdd

Gnd

VoutVin
November 1, 2001 9

5.0 Non-scan cell

relation to ALF 2.0 6.2, 11.2

relation to IEEE P1603 9.2.2

History initial draft April 16 2001 by Wolfgang
o.k. by Tim Ehrler May 1
accepted and closed per default Oct. 9

5.1 Motivation

Non-scan cell defines the mapping between the pins of a non-scan cell (left-hand side) and
the pins of a scan cell (right-hand side). The scan cells has always certain pins which do
not exist in the non-scan cell. In some cases, the non-scan cell might have certain pins
which do not exist in the scan cell (In such a case, the scan replacement can only be done,
if the pin in question was tied to an inactive level in the non-scan cell in the first place).

Currently, the non-scan cell statement supports definition of LHS or RHS constants which
specify the logic level to which the non-corresponding pins should be tied to. However,
this definition is redundant, because every relevant pin in a cell model must have annota-
tions for SIGNALTYPE and POLARITY in order to be usable for DFT tools. These anno-
tations specify already the logic level to which non-corresponding pins must be tied.

5.2 Proposal

Reduce syntax for pin_assignment (see ALF 2.0, chapter 11.2) to the following:

pin_assignment ::=
pin_identifier [index] = pin_identifier [index] ;

| pin_identifier [index] = logic_constant ;

Only “ pin_identifier [index] = pin_identifier [index] ; “ will actually be
used for non-scan cell. Since POLARITY defines the active signal level, the pin should be
tied to the opposite level. For pins without POLARITY, the level does not matter (e.g.
scan input for scan flip-flop in non-scan mode).

Example (taken from ALF 2.0, chapter 6.2):

CELL my_flipflop {
PIN q { DIRECTION=output; } // SIGNALTYPE defaults to “data”
PIN d { DIRECTION=input; } // SIGNALTYPE defaults to “data”
PIN clk { DIRECTION=input; SIGNALTYPE=clock; POLARITY=rising_edge; }
PIN clear { DIRECTION=input; SIGNALTYPE=clear; POLARITY=low; }

}
CELL my_scan_flipflop {

PIN data_out { DIRECTION=output; } // SIGNALTYPE defaults to “data”
PIN data_in { DIRECTION=input; } // SIGNALTYPE defaults to “data”
PIN scan_in { DIRECTION=input; SIGNALTYPE=scan_data; }
November 1, 2001 10

PIN scan_sel { DIRECTION=input; SIGNALTYPE=scan_control;
POLARITY { SCAN=high; } } // scan mode when 1, non-scan mode when 0

PIN clock {DIRECTION=input; SIGNALTYPE=clock; POLARITY=rising_edge;}
NON_SCAN_CELL {

my_flipflop {
clk = clock;
d = data_in;
q = data_out;

}
}

}

The scan replacement works only, if the clear pin of my_flipflop is tied high (active
level is low). Note: This is an exceptional case and only shown because it might happen
eventually. Normally, the pins of the scan cell represent a superset of the pins of the non-
scan cell.

In order to simulate the non-scan mode, when the non-scan cell is replaced by the scan
cell, the scan_sel pin of my_scan_flipflop must be tied low (scan mode level is high).
The scan_in pin can be tied to either high or low.

This example shows that the constant logic levels need not be defined in the non-scan cell
statements, because they can be completely inferred from the POLARITY statements. The
POLARITY statements are mandatory for DFT tools anyway.
November 1, 2001 11

6.0 VIOLATION in context of LIMIT

relation to ALF 2.0 7.5, 7.6, 8.4

relation to IEEE P1603 9.10.5, 11.6.4

History Proposal May 1 by Tim Ehrler
written in doc May 4 by Wolfgang
reviewed and updated (see minutes) May8
reviewed, accepted and closed Oct. 9

6.1 Motivation

Want to specify level of severity, if a LIMIT is violated. Target is appropriate error report
from tool.

6.2 Proposal

The VIOLATION statement may appear within the context of an arithmetic model within
LIMIT or an arithmetic submodel within LIMIT.

In this context, a MESSAGE_TYPE annotation or a MESSAGE annotation or both shall
be legal within VIOLATION. A BEHAVIOR statement within VIOLATION shall only be
legal if the LIMIT is within the context of a VECTOR. In the latter case, the
vector_expression or boolean_expression which identifies the VECTOR
shall define the triggering condition for the behavior described in the BEHAVIOR state-
ment.
November 1, 2001 12

7.0 New value for MEASUREMENT annotation

relation to ALF 2.0 8.9.1

relation to IEEE P1603 11.12.11

History Proposal by Wolfgang, May 22
reviewed June 27, o.k. July 10 (see minutes)
accepted and closed Oct. 9

7.1 Motivation

Currently, measurements of analog quantities can be specified as “average”, “rms”,
“peak”, “transient”, “static”. Another commonly used measurement is the average over
absolute values, which cannot be specified.

7.2 Proposal

The MEASUREMENT annotation shall support the following values:

MEASUREMENT =
transient

| static
| average
| rms
| peak

| absolute_average1

The mathematical definition of absolute_average is the following2:

1. everything except absolute_average is already supported in ALF 2.0

2. Note: The parentheses around (t = 0) and (t = T) are an artefact of the framemaker equation editor.

E t() td

t 0=()

t T=()

∫
T

November 1, 2001 13

8.0 MONITOR statement for VECTOR

relation to ALF 2.0 5.3.7, 5.4, 6.4.16

relation to IEEE P1603 9.5.3

History Proposal by Wolfgang, May 22
reviewed July 10 (see minutes)
reviewed Oct. 9, added comments based on discussion

8.1 Motivation

Any vector_expression in the context of a VECTOR has an associated set of vari-
ables, which are monitored for the purpose of evaluating the vector_expression.
The set of variables is given by the set of declared PINs, featuring a SCOPE annotation.

SCOPE = behavior | measure | both | none ; // see ALF 2.0, chapter 6.4.16

In the context of a VECTOR, all PINs with SCOPE = measure | both are monitored.
Sometimes it would be practical to reduce the set of monitored pins within the scope of a
particular vector. For example, in a multiport RAM, only the pins associated with a partic-
ular logical port should be monitored, if the vector_expression describes a transac-
tion involving only this port. Currently, this can only be achieved by applying the “?*”
operator to all unmonitored pins. Therefore the vector_expression can become
quite lengthy for complex cells.

8.2 Proposal

Note: To understand and appreciate the proposal, it is mandatory that the reader be
familiar with ALF 2.0, chapter 5.4, pp. 55-80.

A VECTOR identified by a vector_expression may have the following MONITOR
annotation:

monitor_multivalue_annotation :==
MONITOR { pin_identifiers }

The set of pin_identifiers shall be a subset of pins with SCOPE = measure | both .

If the MONITOR annotation is present, all pins appearing within this annotation shall be
monitored. Any pin appearing in the vector_expression must also appear in the
MONITOR annotation. However, all pins appearing in the MONITOR annotation need
not appear in the vector_expression.

If the MONITOR annotation is not present, all pins with SCOPE = measure | both shall
be monitored (backward compatible with ALF 2.0).
November 1, 2001 14

Example:

CELL my_4_bit_register_file {
PIN clk { DIRECTION=input; }
PIN [4:1] din { DIRECTION=input; }
PIN [4:1] dout { DIRECTION=output; }
VECTOR (01 clk -> ?! dout[1]) {

MONITOR { din[1] dout[1] clk } // put in delay, power etc.
}
VECTOR (01 clk -> ?! dout[2]) {

MONITOR { din[2] dout[2] clk } // put in delay, power etc.
}
VECTOR (01 clk -> ?! dout[3]) {

MONITOR { din[3] dout[3] clk } // put in delay, power etc.
}
VECTOR (01 clk -> ?! dout[4]) {

MONITOR { din[4] dout[4] clk } // put in delay, power etc.
}

}

It has been suggested that the MONITOR statement should only contain the variables
which are not already present in the vector_expression. This has the following draw-
back: A vector_expression with all monitored variables present would need an empty
MONITOR statement in order to be compatible with ALF 2.0 semantics. Also, identifi-
cation of the full set of monitored variables would not be possible without analysis of the
vector expression. It was argued that specifying all variables is redundant and inconve-
nient. However, the latter applies only if both the vector_expression and the MONITOR
statement are specified by hand. Eventually, a user may specify only a set of MONITOR
statements and leave the generation of appropriate vector_expressions to an intelligent
characterization tool. The redundancy between MONITOR statement and
vector_expression could also serve as a validity check especially for automatically gen-
erated vector_expressions. Discussion to be continued ...
November 1, 2001 15

9.0 Make grammar more compact by removing redundancies

relation to ALF 2.0 3.2, 11.x

relation to IEEE P1603 Annex A (normative)

History Proposal by Wolfgang, May 22
review pending as of July 10
Comments from Tim Ehrler per email:
no issue with proposed changes
left open for review by other ALF parser developpers

9.1 Motivation

Simplify the grammar by getting rid of redundant definitions. Definitions which are used
in a particular context should be presented in that context. This will also simplify to intro-
duce grammar “snippets” in the semantic sections, where they are needed.

9.2 Proposal

ALF 2.0 chapter 11.2

Get rid of chapter 11.2 and introduce the pertinent statements locally, where they are
needed.

unnamed_assignment_base
remove

unnamed_assignment
rename to single_value_annotation, move to 11.7

named_assignment_base
remove

named_assignment
remove

single_value_assignment ::=
identifier = value ;

multi_value_assignment
rename to multi_value_annotation, move to 11.7

assignment
remove

pin_assignment
modify according to chapter 5 of this doc., move to 11.7
November 1, 2001 16

arithmetic_assignment
move to 11.7

ALF 2.0 chapter 11.3

split into 3 separate chapters:

• Boolean expressions and operators

put boolean_expression

• Arithmetic expressions and operators

put arithmetic_expression

• Vector expressions and operators

put everything else

ALF 2.0 chapter 11.4

Get rid of chapter 11.4 and introduce the pertinent statements locally, where they are
needed.

cell_instantiation
remove

unnamed_cell_instantiation
only used for NON_SCAN_CELL, move to 11.9

named_cell_instantiation
only used for STRUCTURE, move to 11.17

pin_instantiation
only used for PIN, move to 11.11

Error to be corrected:
incorrect use of pin_instantiation in chapter 6.3, should be pin_assignments

Error to be corrected:
pin_instantiation is not mentioned as pin_item in chapter 11.11

primitive_instantiation
only used for FUNCTION, move to 11.17

template_instantiation
move to 11.7

dynamic_instantiation_item
move to 11.7
November 1, 2001 17

via_instantiation
move to 11.23

ALF 2.0 chapter 11.5

move to “lexical rules” section (chapter 10)

ALF 2.0 chapter 11.6

Get rid of chapter 11.6, associate operators with the corresponding expressions.

• Boolean expressions and operators

put all operators with prefix boolean_

• Arithmetic expressions and operators

put all operators with prefix arithmetic_

• Vector expressions and operators

put all operators with prefix vector_

move sequential_if, sequential_else_if to 11.17.

ALF 2.0 chapter 11.7

rename logic_assignment (see 11.17) into boolean_assignment and move
into 11.7. Move vector_assignment into 11.7.

rewrite grammar involving all_purpose_item, annotation,
annotation_container, the other items remain unchanged.

annotation ::=
one_level_annotation

| two_level_annotation
| multi_level_annotation

one_level_annotation ::=
single_value_annotation

| multi_value_annotation

one_level_annotations ::=
one_level_annotation { one_level_annotation }

two_level_annotation ::=
one_level_annotation

| identifier [= value] { one_level_annotations }

two_level_annotations ::=
two_level_annotation { two_level_annotation }

multi_level_annotation ::=
one_level_annotation

| identifier [= value] { multi_level_annotations }
November 1, 2001 18

multi_level_annotations ::=
multi_level_annotation { multi_level_annotation }

annotation_container ::=
identifier { one_level_annotations }

Since all_purpose_item allows generic_object and generic_object includes
keyword_declaration statement, consequently all syntax_item_identifiers
that can be used by keyword_declaration (see chapter 3.2.9) must be covered by
all_purpose_item.

all_purpose_item ::=
generic_object

| template_instantiation
| annotation
| arithmetic_model
| arithmetic_model_container
| boolean_assignment
| vector_assignment

Error to be corrected:
boolean_assignment is not mentioned as syntax_item_identifier in chap-
ter 3.2.9.

Note: arithmetic_submodel is also a syntax_item_identifier, but it is not
included in all_purpose_item, because arithmetic_submodel is always in the context
of arithmetic_model.
November 1, 2001 19

10.0 Rewrite grammar for more specific syntax and less
semantic restriction

relation to ALF 2.0 3.2, 11.x

relation to IEEE P1603 Annex A (normative)

History Proposal by Wolfgang, May 22
review pending as of July 10
Comments from Tim Ehrler per email:
no issue with proposed changes
left open for review by other ALF parser developpers

10.1 Motivation

Certain syntax definitions of ALF are written in a very generic way. As a consequence, a
lot of semantic restrictions apply. The idea is to rewrite the grammar so that the syntax
section becomes more specific and as a consequence the semantic sections become less
“heavy”. However, the changes to the existing grammar should be limited to modifica-
tions which specifically serve that purpose rather than re-writing the whole grammar from
scratch. Also, eventual redundancy in the grammar can be eliminated.

10.2 Proposal

Use all_purpose_item only for statements with custom keywords, introduced by
keyword_declaration statements and put the statements using standard keywords
explicitly in the grammar.

ALF 2.0 Chapter 11.9

cell_item ::=
all_purpose_item

| CELLTYPE_single_value_annotation
| SWAP_CLASS_one_level_annotation
| RESTRICT_CLASS_one_level_annotation
| SCANTYPE_single_value_annotation
| SCAN_USAGE_single_value_annotation
| BUFFERTYPE_single_value_annotation
| DRIVERTYPE_single_value_annotation
| PARALLEL_DRIVE_single_value_annotation
| pin
| pin_group
| primitive
| function
| non_scan_cell
| test
| vector
| wire
| blockage
November 1, 2001 20

| artwork
| connectivity

ALF 2.0 Chapter 11.10

library_item ::=
all_purpose_item

ALF 2.0 Chapter 11.11

pin_item ::=
all_purpose_item

| range
| VIEW_single_value_annotation
| PINTYPE_single_value_annotation
| DIRECTION_single_value_annotation
| SIGNALTYPE_single_value_annotation
| ACTION_single_value_annotation
| POLARITY_two_level_annotation
| DATATYPE_single_value_annotation
| INITIAL_VALUE_single_value_annotation
| SCAN_POSITION_single_value_annotation
| STUCK_single_value_annotation
| SUPPLYTYPE_single_value_annotation
| SIGNAL_CLASS_one_level_annotation
| SUPPLY_CLASS_one_level_annotation
| cell_pin_reference_two_level_annotation
| DRIVETYPE_single_value_annotation
| SCOPE_single_value_annotation
| PULL_single_value_annotation
| port
| connectivity
| pin_instantiation // this one is missing in chapter 11.11

ALF 2.0 Chapter 11.14

vector_item ::=
all_purpose_item

| PURPOSE_one_level_annotation
| OPERATION_single_value_annotation
| LABEL_single_value_annotation
| EXISTENCE_CLASS_one_level_annotation
| EXISTENCE_CONDITION_boolean_assignment
| CHARACTERIZATION_CLASS_one_level_annotation
| CHARACTERIZATION_CONDITION_boolean_assignment
| CHARACTERIZATION_VECTOR_vector_assignment
| MONITOR_one_level_annotation // proposed in this doc chapter 8
| illegal_statement

ALF 2.0 Chapter 11.15

wire_item ::=
all_purpose_item
November 1, 2001 21

| SELECT_CLASS_one_level_annotation
| node

node ::=
NODE name_identifier { node_items }

node_items ::=
node_item { node_item }

node_item ::=
all_purpose_item

| NODETYPE_single_value_annotation
| NODE_CLASS_one_level_annotation

ALF 2.0 Chapter 11.16

arithmetic_models ::=
arithmetic_model { arithmetic_model }

arithmetic_model ::=
partial_arithmetic_model

| full_arithmetic_model

Partial arithmetic model contains only definitions, no data. Can appear outside the seman-
tically valid context of the model, as long as a semantically valid context exists within
scope. (Example: semantically valid context of arithmetic model X is VECTOR, VEC-
TOR exists within scope of LIBRARY, therefore partial arithmetic model X is legal within
LIBRARY.) Definitions inside partial arithmetic model without name_identifier are
inherited by each arithmetic model with arithmetic_model_identifier within scope.
(Note: up to 2 levels of submodel are supported)

partial_arithmetic_model ::=
arithmetic_model_identifier [name_identifier] {

{ all_purpose_item }
{ arithmetic_model_qualifier }
{ partial_arithmetic_submodel }

}

partial_arithmetic_submodel ::=
arithmetic_submodel_identifier [name_identifier] {

{ all_purpose_item }
{ partial_arithmetic_leaf_submodel }

}

partial_arithmetic_leaf_submodel ::=
arithmetic_submodel_identifier [name_identifier] {

{ all_purpose_item }
}

Full arithmetic model contains both definitions and data. Can only appear in the semanti-
cally valid context of the model. Enables evaluation of arithmetic model in design context
(e.g. delay calculation, power calculation). A trivial arithmetic model contains directly the
evaluation value. A non-trivial arithmetic model requires calculation of the value, based
on evaluation conditions. (Note: up to 2 levels of submodel are supported)
November 1, 2001 22

full_arithmetic_model ::=
trivial_arithmetic_model

| non_trivial_arithmetic_model

trivial_arithmetic_model ::=
arithmetic_model_identifier [name_identifier] = value ;

| arithmetic_model_identifier [name_identifier] = value {
{ all_purpose_item }
{ arithmetic_model_qualifier }

}

non_trivial_arithmetic_model ::=
arithmetic_model_identifier [name_identifier] {

{ all_purpose_item }
{ arithmetic_model_qualifier }
arithmetic_model_body
{ arithmetic_model_datarange }

}
| arithmetic_model_identifier [name_identifier] {

{ all_purpose_item }
[violation]
{ arithmetic_model_qualifier }
full_arithmetic_submodels

}

full_arithmetic_submodels ::=
full_arithmetic_submodel { full_arithmetic_submodel }

full_arithmetic_submodel ::=
full_arithmetic_leaf_submodel

| arithmetic_submodel_identifier [name_identifier] {
{ all_purpose_item }
full_arithmetic_leaf_submodels

}

full_arithmetic_leaf_submodels ::=
full_arithmetic_leaf_submodel { full_arithmetic_leaf_submodel }

full_arithmetic_leaf_submodel ::=
trivial_arithmetic_leaf_submodel

| non_trivial_arithmetic_leaf_submodel

trivial_arithmetic_leaf_submodel ::=
arithmetic_submodel_identifier [name_identifier] = value ;

| arithmetic_submodel_identifier [name_identifier] = value {
{ all_purpose_item }

}

non_trivial_arithmetic_leaf_submodel ::=
arithmetic_submodel_identifier [name_identifier] {

{ all_purpose_item }
arithmetic_model_body
{ arithmetic_model_datarange }

}

November 1, 2001 23

Auxiliary definitions for arithmetic model. Semantic restrictions apply. (Note: the new
grammar allows non-ambiguous distinction between usage of MIN/TYP/MAX/
DEFAULT either as arithmetic_leaf_submodel or as single_value_annotation.)

arithmetic_model_qualifier ::=
general_arithmetic_model_qualifier

| connected_arithmetic_model_qualifier
| analog_arithmetic_model_qualifier
| timing_arithmetic_model_qualifier
| layout_arithmetic_model_qualifier

general_arithmetic_model_qualifier ::=
UNIT_single_value_annotation

| CALCULATION_single_value_annotation
| INTERPOLATION_single_value_annotation

connected_arithmetic_model_qualifier ::=
PIN_one_level_annotation

| NODE_one_level_annotation

analog_arithmetic_model_qualifier ::=
analog_MEASUREMENT_single_value_annotation

| COMPONENT_single_value_annotation
| TIME_arithmetic_model
| FREQUENCY_arithmetic_model

timing_arithmetic_model_qualifier ::=
EDGE_NUMBER_single_value_annotation

| violation
| from
| to

layout_arithmetic_model_qualifier ::=
distance_MEASUREMENT_single_value_annotation

| BETWEEN_multi_value_annotation
| REFERENCE_single_value_annotation
| ANTENNA_one_level_annotation
| PATTERN_single_value_annotation
| VIA_single_value_annotation

arithmetic_model_datarange ::=
MIN_single_value_annotation

| TYP_single_value_annotation
| MAX_single_value_annotation
| DEFAULT_single_value_annotation

arithmetic_model_body ::=
[header] table [equation]

| [header] equation [table]

equation ::=
EQUATION { arithmetic_expression }

from ::=
FROM {

[PIN_single_value_annotation]
November 1, 2001 24

[EDGE_NUMBER_single_value_annotation]
[THRESHOLD_arithmetic_model]

}

to ::=
TO {

[PIN_single_value_annotation]
[EDGE_NUMBER_single_value_annotation]
[THRESHOLD_arithmetic_model]

}

Auxiliary definitions for arithmetic model, also applicable elsewhere (separate chapter?).

VIOLATION is also applicable for ILLEGAL

violation ::=
VIOLATION {

[MESSAGE_TYPE_single_value_annotation]
[MESSAGE_single_value_annotation]
[behavior]

}

TABLE and HEADER are also applicable for CONNECTIVITY.

table ::=
TABLE { values }

header ::=
HEADER { arithmetic_model_identifiers }
HEADER { header_arithmetic_models }

Arithmetic model in context of HEADER (Note: no submodels allowed).

header_arithmetic_models ::=
header_arithmetic_model { header_arithmetic_model }

header_arithmetic_model ::=
arithmetic_model_identifier [name_identifier] {

{ all_purpose_item }
{ arithmetic_model_qualifier }
{ arithmetic_model_body }
{ arithmetic_model_datarange }

}

Container of arithmetic model (Note: LIMIT is special).

arithmetic_model_containers ::=
arithmetic_model_container { arithmetic_model_container }

arithmetic_model_container ::=
limit

| arithmetic_model_container_identifier { arithmetic_models }

limit ::=
LIMIT { limit_arithmetic_models }
November 1, 2001 25

Arithmetic model in context of LIMIT (Note: must contain leaf submodels MIN and/or
MAX).

limit_arithmetic_models ::=
limit_arithmetic_model { limit_arithmetic_model }

limit_arithmetic_model ::=
arithmetic_model_identifier [name_identifier] {

{ all_purpose_item }
[violation]
{ arithmetic_model_qualifier }
limit_arithmetic_submodels

}

limit_arithmetic_submodels ::=
limit_arithmetic_submodel { limit_arithmetic_submodel }

limit_arithmetic_submodel ::=
limit_leaf_arithmetic_submodel

| arithmetic_submodel_identifier [name_identifier] {
{ all_purpose_item }
[violation]
limit_arithmetic_leaf_submodels

}

limit_arithmetic_leaf_submodels ::=
limit_arithmetic_leaf_submodel { limit_arithmetic_leaf_submodel }

limit_arithmetic_leaf_submodel ::=
min_or_max = number ;

| min_or_max {
{ all_purpose_item }
[violation]
[arithmetic_model_body]

}

min_or_max ::=
MIN

| MAX
November 1, 2001 26

11.0 Creating a standard ALF header file

relation to ALF 2.0 3.2.4, 3.2.6, 3.2.8, 3.2.9, 11.x

relation to IEEE P1603 8.6, 8/7, 8.8, 8.9, new Annex (normative or not TBD)

History Proposal by Wolfgang, May 22
review pending as of July 10
supplementary proposal by Wolfgang Oct. 7
left open for review by ALF parser developpers

11.1 Motivation

The idea is to define pertinent features of ALF using the ALF language itself. Such a defi-
nition could be used as a standard “header” file for ALF. Eventually, certain extensions of
the language could then be defined by changing the header file instead of changing the
language. This can be used for pure documentation purpose as well as for development of
self-adapting ALF parsers.

11.2 Proposal

Use the KEYWORD statement to define standard arithmetic models.

Use the definition_for_arithmetic_model construct to define legal statements in the
context of arithmetic models.

Use the CLASS statement for shared definitions.

Example (just to show the idea):

KEYWORD PROCESS = arithmetic_model ;
KEYWORD SLEWRATE = arithmetic_model ;
KEYWORD CURRENT = arithmetic_model ;

PROCESS {
TABLE { nom spsn spwn wpsn wpwn }

}
CLASS all_models {

KEYWORD UNIT = single_value_annotation ;
}
CLASS timing_models {

CLASS { all_models }
UNIT = 1e-9 ;
KEYWORD RISE = arithmetic_model ;
KEYWORD FALL = arithmetic_model ;

}
CLASS analog_models {

CLASS { all_models }
KEYWORD MEASUREMENT = single_value_annotation ;

}

November 1, 2001 27

SLEWRATE {
CLASS { timing_models }

}
CURRENT {

CLASS { analog_models }
UNIT = 1e-3 ;

}

It may be worthwhile to explore how far we can get in describing ALF features in this lan-
guage.

11.3 Supplementary proposal

Current definition for keyword_declaration (see ALF 2.0, chapter 3.2.9):

keyword_declaration ::=
KEYWORD context_sensitive_keyword = syntax_item_identifier ;

Introduce the following extension:

keyword_declaration ::=
KEYWORD context_sensitive_keyword = syntax_item_identifier ;

| KEYWORD context_sensitive_keyword = syntax_item_identifier {
VALUE_TYPE = value_type_identifier ;

}

value_type_identifier ::=
number

| positive_number
| non_negative_number
| integer
| unsigned
| bit_literal
| quoted_string
| identifier

Note: need to add which value_type is compatible with which syntax_item_identifier (see
grammar definition).
November 1, 2001 28

12.0 Amended semantics of LIMIT

relation to ALF 2.0 7.5

relation to IEEE P1603 11.6.4

History Wolfgang, July 2, o.k. on July 10
refined and incorporated in this doc on July 19
reviewed, amended, accepted and closed October 9

12.1 Motivation

ALF 2.0 misses a specification on how a design tool should handle a LIMIT.

12.2 Proposal

Existing text:

A LIMIT container shall contain arithmetic models. The arithmetic models shall contain
submodels identified by MIN and/or MAX.
Proposed modification:
A LIMIT container shall contain arithmetic models. The arithmetic models shall contain
submodels. These submodels shall either be exclusively identified by MIN and/or MAX or
contain other submodels which shall be exclusively identified by MIN and/or MAX.
Example:

LIMIT { SLEWRATE {
PIN = my_pin ;
MAX = 5.4;

} }

Alternative example:

LIMIT { SLEWRATE {
PIN = my_pin ;
RISE { MAX = 6.3; }
FALL { MAX = 5.4; }

} }

Proposed addition:

The values specified within LIMIT shall be considered as design limits. That means,
design tools must create a design in such ways that the limits are respected. If the calcu-
lated actual values are found to be equal to the specified limit values, they shall be consid-
ered within the design limits. The MAX shall specify an upper limit. The MIN value shall
specify a lower limit. Therefore, if both MIN and MAX values are specified for the same
quantity under the same operating conditions, the MAX value must be greater or equal to the
MIN value.
November 1, 2001 29

13.0 Semantics of SUPPLYTYPE and SUPPLY_CLASS for
multi-rail support

relation to ALF 2.0 6.4.11, 6.4.13

relation to IEEE P1603 9.3.4

History email discussion on reflector initiated by Sergei Sokolov
captured in minutes July 10
incorporated in this document by Wolfgang, July 19
reviewed Oct. 9, pending comments wrt VHDL-AMS

13.1 Motivation

Semantics of SUPPLYTYPE are missing in ALF 2.0. Semantics of SUPPLY_CLASS for
support of multiple power/ground rails are not well-defined.

13.2 Proposal for SUPPLYTYPE semantics

Syntax and set of values for SUPPLYTYPE are already defined in ALF 2.0, chapter
6.4.11. Following table contains proposed semantics.

Note: ALF 2.0, chapter 6.4.3 defines the semantic implication of DIRECTION on a PIN
with PINTYPE= SUPPLY. If the DIRECTION is input, then the CELL must be connected
to a supply device in order to operate. If the DIRECTION is output, then the CELL itself
is the supply device.

TABLE 1. SUPPLYTYPE annotation for PIN object

Annotation value description

power (default) The PIN is the interface between a CELL and a power supply device, designed
to source or sink a significant part of the CURRENT affecting the POWER
consumption of the CELL. The VOLTAGE measured at this PIN is with
respect to ground.

ground The PIN is the interface between a CELL and the environmental common
ground. Therefore, the nominal VOLTAGE measured at this PIN is zero.
However, spurious non-zero VOLTAGE may occur and LIMITs for such
VOLTAGE may be specified. The PIN is designed to serve as return path for a
significant part of the CURRENT affecting the POWER consumption of the
CELL.

reference The PIN is the interface between a CELL and a device which supplies either a
well-defined VOLTAGE or a well-defined CURRENT without being a signif-
icant contributor to the POWER consumption of the CELL. From an electrical
standpoint, a reference is similar to a signal. However, from an information-
theoretical standpoint, a reference is similar to a supply, because it does not
contain information.
November 1, 2001 30

Note: A CELL needs not have exactly one PIN with SUPPLYTYPE=power and another
PIN with SUPPLYTYPE=ground. Passive devices (e.g. capacitor, resistor, diode) do not
have any supply pins. Semi-passive devices (e.g. clamp cells) have only supply pins corre-
sponding to the voltage level of the clamp. For example, a clamp cell to zero would have a
pin with SUPPLYTYPE=ground and DIRECTION=input and a pin with SIGNAL-
TYPE=TIE, POLARITY=low, and DIRECTION=output. Active devices have, at least,
either one pin with SUPPLYTYPE=power and another pin with SUPPLYTYPE=ground
or two pins with SUPPLYTYPE=power and different supply voltages, usually one posi-
tive and one negative. In general, a cell may have zero to multiple pins with SUPPLY-
TYPE=power or ground or reference.

13.3 Proposal for SUPPLY_CLASS semantics

Note: This section is proposed to supersede ALF 2.0, chapter 6.4.13.

The purpose of SUPPLY_CLASS is to define a relation between a power supply system
and a circuit utilizing the power supply system. The power supply system herein is under-
stood to be a set of nets (also called “rails”) capable to maintain a well-defined electrical
potential with respect to each other.

The power supply system itself shall be declared using a CLASS statement for global use
in the context of a LIBRARY or a SUBLIBRARY or for local use in the context of a
CELL or a WIRE.

The characteristics of the power supply system shall be defined in the context of the
objects which refer to the system using the SUPPLY_CLASS annotation. The value of the
annotation shall be the name of the CLASS declaring the power supply system. Multi-
value annotation shall be legal. Multi-value annotation shall indicate that the object can be
used within either power supply system appearing in the set of values, but not necessarily
within all of them at the same time.

The object, in the context of which the SUPPLY_CLASS annotation and the optional
characteristics of the power supply system appear, shall be one of the following:

• A PIN within a CELL

• A NODE within a WIRE

• A CLASS for global usage within a LIBRARY or a SUBLIBRARY or for local usage
within a CELL or a WIRE

The characteristics of the power supply system, i.e., the characteristics of each net within
the power supply system, shall optionally include the following items:

• An arithmetic model for VOLTAGE, eventually containing arithmetic submodels for
MIN, TYP, MAX, and/or DEFAULT. In the context of a PIN with SUPPLY-
TYPE=power or a NODE with NODETYPE=power, the arithmetic model shall specify
the value of the supply voltage itself. In the context of a PIN with SUPPLY-
November 1, 2001 31

TYPE=ground or a NODE with NODETYPE=ground, the value of the supply voltage
shall be presumed zero. In the context of another PIN or NODE, an arithmetic model
for VOLTAGE may appear, but no relationship to supply voltage shall be implied.

• A LIMIT statement, containing an arithmetic model for VOLTAGE with arithmetic
submodels for MIN and/or MAX. In the context of a PIN with any SUPPLYTYPE,
including “ground”, this model shall specify the tolerable limit for spurious supply
voltage change, which may occur due to resistive, capacitive or inductive noise. In the
context of another PIN, a LIMIT for VOLTAGE may appear, but no relationship to sup-
ply voltage shall be implied.

• A SUPPLYTYPE may appear in the context of a CLASS for the purpose to be inherited
by a PIN. Similarly, a NODETYPE may appear in the context of a CLASS for the pur-
pose to be inherited by a NODE.

The CONNECT_CLASS annotation (see ALF 2.0, chapter 9.17) within a PIN shall be
used to establish connectivity between terminals of a power supply net. The annotation
value shall be the name of a CLASS. The PIN shall inherit the statements appearing in the
context of that CLASS, including, but not restricted to, the SUPPLY_CLASS annotation,
the arithmetic model for VOLTAGE, the LIMIT for VOLTAGE, and eventually the SUP-
PLYTYPE annotation.

The SUPPLY_CLASS annotation shall also be legal within an arithmetic model for
ENERGY or POWER. It shall indicate, which power supply system provides the energy
or power described by the arithmetic model.

Example:

LIBRARY my_library {
CLASS io ;
CLASS core ;
CLASS Vdd_io { SUPPLY_CLASS=io; SUPPLYTYPE=power; VOLTAGE=2.5; }
CLASS Vss_io { SUPPLY_CLASS=io; SUPPLYTYPE=ground; }
CLASS Vdd_core { SUPPLY_CLASS=core; SUPPLYTYPE=power; VOLTAGE=1.8; }
CLASS Vss_core { SUPPLY_CLASS=core; SUPPLYTYPE=ground; }
CELL core2io_interface {

PIN Vdd1 { PINTYPE=supply; CONNECT_CLASS=Vdd_io; }
PIN Vdd2 { PINTYPE=supply; CONNECT_CLASS=Vdd_core; }
PIN Vss1 { PINTYPE=supply; CONNECT_CLASS=Vss_io; }
PIN Vss2 { PINTYPE=supply; CONNECT_CLASS=Vss_core; }
PIN in { PINTYPE=digital; DIRECTION=input; SUPPLY_CLASS=core; }
PIN out { PINTYPE=digital; DIRECTION=output; SUPPLY_CLASS=io; }
VECTOR (?! in -> ?! out) {

ENERGY e1 = 15.8 { SUPPLY_CLASS=io; }
ENERGY e2 = 3.42 { SUPPLY_CLASS=core; }

}
}

}

November 1, 2001 32

14.0 Amended semantics of RESTRICT_CLASS and
SWAP_CLASS

relation to ALF 2.0 6.1.3, 6.1.4, 6.1.5, 6.1.6

relation to IEEE P1603 9.2.3

History extensive email discussion involving Kevin Grotjohn,
Tim Ehrler, Sean Huang
proposal formulated by Wolfgang, July 31
to be reviewed Nov. 12

14.1 Motivation

The semantics of RESTRICT_CLASS and SWAP_CLASS, as described in ALF 2.0, do
not fit the intended usage models.

14.2 Proposal for RESTRICT_CLASS

Note: This section is proposed to supersede ALF 2.0, chapter 6.1.4.

The purpose of the optional RESTRICT_CLASS annotation shall be to identify character-
istics of a CELL which allow or disallow usage of the CELL for certain application tools.
Single-value or multi-value annotation shall be legal.

If the usage of the CELL is allowed, the application tool may add, remove, or substitute
instances of such a cell in the design. If the usage of the CELL is not allowed, the applica-
tion tool may not add, remove, or substitute instances of such a cell in the design.

The condition for usage shall be specified to the application tool, at least conceptually, by
a boolean function on a set of known RESTRICT_CLASS values. The application tool
shall, at least conceptually, evaluate this boolean function for each CELL. The value of a
particular variable in the boolean function shall be considered “true”, if the value appears
in the RESTRICT_CLASS annotation of the CELL. Otherwise, the value shall be consid-
ered “false”. Usage of the CELL shall be allowed, if the boolean function evaluates true,
otherwise the usage of the CELL shall be disallowed. In addition, the usage of a CELL
shall be disallowed, if one or more RESTRICT_CLASS values of the CELL are unknown
to the application tool.

Example:

RESTRICT_CLASS values known by the tool = (A, B, C, D, E)

Condition for usage = A and not B or C

RESTRICT_CLASS values of CELL X = (A, B)
Condition is false, therefore usage of CELL X is not allowed
November 1, 2001 33

RESTRICT_CLASS values of CELL Y = (A, C)
Condition is true, therefore usage of CELL Y is allowed

RESTRICT_CLASS values of CELL Z = (A, C, F)
Condition is true, but usage of CELL Z is not allowed due to unknown value F

Note: The ALF standard does not prescribe a particular implementation of usage condition
support in the tool. It is not necessary for the tool to provide a completely programmable
usage condition to comply with the ALF standard. The degree of sophistication for usage
condition support may be driven by user requirements.

14.3 Semantics of predefined RESTRICT_CLASS values

Note: The following table is proposed to replace table 6-6 in ALF 2.0, which contains
some circular definitions.

The usage of RESTRICT_CLASS values other than these predefined values shall be legal.
It shall not be implied that these predefined RESTRICT_CLASS values are automatically
“known” by every application tool.

14.4 Proposal for SWAP_CLASS

Note: This section is proposed to supersede ALF 2.0, chapter 6.1.3, 6.1.5, 6.1.6.

The purpose of SWAP_CLASS shall be to identify sets of CELLS, wherein each CELL in
the set can be substituted for each other by a particular application tool. Multi-value anno-
tation shall be legal.

If the usage of two CELLs is authorized for a particular application tool according to
RESTRICT_CLASS (see previous chapter) and the intersection of SWAP_CLASS values
of the two CELLs is not empty, then the two CELLs shall be considered equivalent for the

TABLE 2. RESTRICT_CLASS annotation for CELL object

Annotation value description

synthesis Cell is suitable for usage by a tool performing transformations from a behav-
ioral RTL design representation to a structural gate-level design representation
or between functionally equivalent structural gate-level design representations

scan Cell is suitable for usage by a tool creating or modifying a structural design
representation by inserting circuitry for testability enabling serial shift of data
through storage elements

datapath Cell is suitable for usage by a tool creating or modifying a structural imple-
mentation of a dataflow graph within a design

clock Cell is suitable for usage by a tool creating or modifying circuitry for the dis-
tribution of synchronization signals (also called clock signals) within a design

layout Cell is suitable for usage by a tool creating or modifying physical locations
(placement) and physical interconnects (routes) of components within a
design
November 1, 2001 34

particular application tool, and the application tool is free to substitute one cell for the
other.

Any SWAP_CLASS value shall make reference to a declared CLASS within a LIBRARY
or SUBLIBRARY.

The CLASS statement may contain a RESTRICT_CLASS statement. In this case, the set
of RESTRICT_CLASS values shall be inherited by the CELL containing the
SWAP_CLASS statement. If the intersection of SWAP_CLASS values of the two CELLs
is not empty and the usage of two CELLs is authorized according to the inherited
RESTRICT_CLASS values, then the two CELLs shall be considered equivalent for the
particular application tool, and the application tool is free to substitute one cell for the
other.

Example with RESTRICT_CLASS and SWAP_CLASS (from ALF 2.0, chapter 6.1.5):

CLASS foo;
CLASS bar;
CLASS whatever;
CLASS my_tool;
CELL cell1 {

SWAP_CLASS { foo bar }
RESTRICT_CLASS { synthesis datapath }

}
CELL cell2 {

SWAP_CLASS { foo whatever }
RESTRICT_CLASS { synthesis scan my_tool }

}

In order to swap cell1 and cell2, application tool must know all RESTRICT_CLASS val-
ues mentioned in this example. Usage condition may be (synthesis) or (datapath or
my_tool) or (synthesis and datapath or scan and my_tool) etc.

[modify figure 6-1 from ALF 2.0: non-empty intersection applies only to SWAP_CLASS]

Example with SWAP_CLASS and inherited RESTRICT_CLASS (from ALF 2.0,
chapter6.1.6):

CLASS all_nand2 { RESTRICT_CLASS { synthesis } }

CLASS all_high_power_nand2 { RESTRICT_CLASS { layout } }

CLASS all_low_power_nand2 { RESTRICT_CLASS { layout } }

CELL cell1 {

SWAP_CLASS { all_nand2 all_low_power_nand2 }

}

CELL cell2 {

SWAP_CLASS { all_nand2 all_high_power_nand2 }

}

CELL cell3 {

SWAP_CLASS { all_low_power_nand2 }

}

November 1, 2001 35

CELL cell4 {

SWAP_CLASS { all_high_power_nand2 }

}

A tool must know synthesis in order to utilize and swap cell1 and cell2. Another tool must
know layout in order to utilize cell1, cell2, cell3, cell4 and swap cell1 with cell3 or cell2
with cell4. A tool that knows both synthesis and layout may utilize and swap all four cells.

[modify figure 6-1 from ALF 2.0: non-empty intersection applies only to SWAP_CLASS]
November 1, 2001 36

15.0 Miscellaneous Grammar enhancements

relation to ALF 2.0 3.2, 11.x

relation to IEEE P1603 6.x, Annex A

History initial draft Oct. 7 by Wolfgang
to be reviewed Nov. 12

15.1 Motivation

The grammar serves not only the purpose of defining syntax, but also terminology. A
parser does not care what terminology is used in grammar. However, if the grammar is
written in a meaningful and concise way for human understanding, the terminology intro-
duced therein can be used throughout the document for semantic explanation purpose.
Since human understanding is always subjective, it may take some iterations, before the
most meaningful and concise terminology is found.

15.2 Boolean_value literal

Current definition of pin_value in IEEE P1603, chapter 7.2.3:

pin_value ::=
pin_variable

| bit_literal
| based_literal
| unsigned

Issue: pin_value is referred to in IEEE 1603 chapter 6.6.1, which defines lexical rules.
However, pin_value is not a lexical token. The following change provides a remedy:

pin_value ::=
pin_variable

| boolean_value

boolean_value ::=
bit_literal

| based_literal
| unsigned

Instead of referring to pin_value in 6.6.1, refer to boolean_value. All the items in
boolean_value are lexical tokens.

15.3 PULL statement

In ALF 2.0, chapter 6.4.17, PULL is defined as annotation. Chapter A.15.7 suggests to
provide VOLTAGE and RESISTANCE annotation inside PULL statement. This would
make PULL technically a two_level_annotation. However, RESISTANCE and VOLT-
November 1, 2001 37

AGE are arithmetic models rather than annotations. Therefore, the grammar for the PULL
statement should be reformulated as follows:

pull ::=
PULL = pull_value_identifier ;

| PULL = pull_value_identifier { pull_items }
| pull_template_instantiation

pull_items ::= pull_item { pull_item }

pull_item ::=
voltage_arithmetic_model

| resistance_arithmetic_model

Since PULL is used inside PIN, redefine pin_item (IEEE 1603, chapter 9.3.1) as follows:

pin_item ::=
all_purpose_item

| range
| port
| pull
| pin_instantiation

Note:

pull_value_identifier ::=
up

| down
| both
| none

The pull_value_identifier eventually requires specification of both pull-up and pull-
down resistance and voltage. Arithmetic submodels HIGH and LOW can be used for that
purpose.

Example:

RESISTANCE { UNIT = 1ohm; }
VOLTAGE { UNIT = 1volt; }
PIN my_pin {

PULL = both {
RESISTANCE { HIGH = 500; LOW = 1000; }
VOLTAGE { HIGH = 5; LOW = -5; }

}
}

This pin features a pull up resistance of 500 ohm to be connected to 5 volt and a pull down
resistance of 1000 ohm to be connected to -5 volt.

15.4 Annotation container

The annotation_container statement (see ALF 2.0, chapter 11.7) has been omitted in
the new formulation of the grammar. Technically, annotation_container can be inter-
November 1, 2001 38

preted as a special case of two_level_annotation, but it may be advantageous to re-
introduce annotation_container, because two_level_annotation features a value,
whereas annotation_container does not. This distinction makes the data model more
precise.

annotation_container ::=
one_level_annotation_container

| two_level_annotation_container
| multi_level_annotation_container

one_level_annotation_container ::=
annotation_container_identifier { one_level_annotations }

two_level_annotation_container ::=
annotation_container_identifier { two_level_annotations }

multi_level_annotation_container ::=
annotation_container_identifier { multi_level_annotations }

To do: identify all statements in the grammar which are actually annotation_container.
November 1, 2001 39

16.0 Amended semantics of CONNECTIVITY

relation to ALF 2.0 9.15

relation to IEEE P1603 11.13.1

History initial draft by Wolfgang, Oct. 7
to be reviewed Nov. 12

16.1 Motivation

CONNECTIVITY has been formulated as arithmetic_model in ALF 1.1, but not in ALF
2.0. In ALF 2.0, CONNECTIVITY is an exceptional statement different from
arithmetic_model, albeit it features HEADER and TABLE like an arithmetic_model. The
advantage of re-formulating CONNECTIVITY as arithmetic_model is to get rid of the
exception and to utilize CONNECTIVITY also as argument in arithmetic_model. For
example, other arithmetic models, for example minimum spacing, antenna rule etc., may
depend on CONNECTIVITY. Another proposed enhancement is to utilize CONNECTIV-
ITY not only as a requirement for connections but also as actual connection.

16.2 Proposal

The CONNECTIVITY statement shall be an arithmetic_model with value_type bit_literal.
It may contain the optional CONNECT_RULE annotation, which shall specify a require-
ment for connections (see ALF 2.0, chapter 9.15.2). Without the CONNECT_RULE anno-
tation, the CONNECTIVITY statement shall specify actual connectivity. The value “1”
shall specify existing connection, the value “0” shall specify non-existing connection.

Example:

The following example describes pins on POLY layer with and without connection to dif-
fusion.

PIN pin1 { // this pin has a POLY feature connected to NDIFF
AREA A1 = 0.01 { LAYER=POLY; }
CONNECTIVITY = 1 { BETWEEN { POLY NDIFF } }

}
PIN pin2 { // this pin has a POLY feature not connected to NDIFF

AREA A1 = 0.01 { LAYER=POLY; }
CONNECTIVITY = 0 { BETWEEN { POLY NDIFF } }

}

The following example describes a spacing rule between wires on the same layer, depen-
dent whether they are on the same net or not.

// min distance between two wires, depending whether same net or not
RULE min_distance {

PATTERN p1 { SHAPE = line; LAYER = metal1; }
PATTERN p2 { SHAPE = line; LAYER = metal1; }
November 1, 2001 40

LIMIT {
DISTANCE {

BETWEEN { p1 p2 }
MIN {

HEADER { CONNECTIVITY { BETWEEN { p1 p2 } } }
EQUATION { CONNECTIVITY ? 0.1 : 0.2 }

}
}

}
}

16.3 Supplementary proposal for CONNECT_TYPE

The CONNECT_TYPE annotation within the CONNECTIVITY statement shall specify
the nature of the connection.

connect_type_single_value_annotation ::=
CONNECT_TYPE = connect_type_identifier ;

connect_type_identifier ::=
electrical

| physical

The value “electrical” shall indicate that the objects are subjected to electrical connection,
i.e., a permanent direct current path does or does not exist between the objects. The value
“physical” shall indicate that the objects do or do not share common physical boundaries
with each other. The value “electrical” shall be the default.

Supplementary explanation: A driver pin and a receiver pin of a routed wire have
CONNECT_TYPE electrical. A via cut and the adjacent metal segments have
CONNECT_TYPE physical. CONNECT_TYPE physical does not always imply electri-
cal connection. For example, objects of electrically insulating material may be physically
connected to each other.
November 1, 2001 41

17.0 Amended semantics of PULSEWIDTH, PERIOD

relation to ALF 2.0 8.3.17, 8/3/18

relation to IEEE P1603 11.9.9, 11.9.10

History initial draft by Wolfgang, Oct. 7
to be reviewed Nov. 12

17.1 Motivation

PULSEWIDTH and PERIOD are introduced in ALF 1.1 and ALF 2.0 for the purpose of
defining minimum pulse width and minimum period requirements in the context of a
VECTOR. The keywords PULSEWIDTH and PEERIOD are used in the same way as
SETUP, HOLD, RECOVERY, REMOVAL, which also define minimum timing require-
ments, without using the LIMIT or MIN statement. However, while SETUP, HOLD,
RECOVERY, REMOVAL always represent minimum timing requirements, PULSE-
WIDTH and PERIOD could represent actual measurements or maximum requirements.
Therefore we propose to amend the definitions of PULSEWIDTH and PERIOD to specify
actual measurements.

17.2 Proposal

The keywords PULSEWIDTH and PERIOD shall specify arithmetic models in the con-
text of a VECTOR.

PULSEWIDTH shall specify a measured time between two subsequent transitions on a
pin, where the state of the pin after the second transition shall be equal to the state of the
pin before the first transition. The PIN annotation shall be mandatory. The
EDGE_NUMBER annotation shall be optional and specify the first transition of the two
subsequent transitions. To specify a minimum or maximum constraint, use PULSE-
WIDTH in the context of LIMIT with submodel MIN or MAX, respectively.

PERIOD shall specify the measured time between two subsequent occurrences of the
VECTOR. PIN annotation and EDGE_NUMBER annotation do not apply. To specify a
minimum or maximum constraint, use PERIOD in the context of LIMIT with submodel
MIN or MAX, respectively.

Example:

The following example specifies pulse width degradation through a buffer.

CELL my_buffer {
PIN in { DIRECTION=input; }
PIN out { DIRECTION=output }
VECTOR (01 in -> 10 in <&> 01 out -> 10 out) {

// output pulse width = f(input pulse width)
PULSEWIDTH { PIN = out;
November 1, 2001 42

HEADER {
PULSEWIDTH { PIN = in;
TABLE { 0.1 0.2 0.3 0.4 0.5 }

}
// short pulses are shortened, long pulses keep their width
TABLE { 0.05 0.18 0.29 0.4 0.5 }

}
}

}

The following example specifies cycle time (minimum period) and refresh time (maxi-
mum period) of a DRAM.

CELL my_DRAM {
PIN CE { DIRECTION = input; SIGNALTYPE = enable; }
// fill in other pins etc.
VECTOR (01 ce) {

// for simplicity, presume that CE controls all operations
LIMIT {

PERIOD {
MIN = 10;
MAX = 100000;

}
}

}
}

November 1, 2001 43

18.0 Amended definition of TIME and FREQUENCY
statement in context of arithmetic model

relation to ALF 2.0 8.3.6, 8.9

relation to IEEE P1603 11.9.1

History initial draft by Wolfgang, Oct. 7
to be reviewed Nov. 12

18.1 Motivation

TIME and FREQUENCY are defined as arithmetic models. In addition, they are defined
as annotations for arithmetic models featuring the MEASUREMENT annotation. The rea-
son is the necessity to know either the time or the repetition frequency of a measurement.
To get rid of the double-usage of the keywords, we propose to specify TIME and FRE-
QUENCY as auxiliary “arithmetic model” within another arithmetic model rather than as
“annotation”.

18.2 Proposal

TIME and FREQUENCY shall be usable as auxiliary arithmetic model within the context
of another arithmetic model featuring the MEASUREMENT annotation with value “aver-
age”, “absolute_average”, “transient”, “RMS”, or “peak”. The evaluation of the auxiliary
TIME or FREQUENCY models must be independent from the evaluation of the main
model. Otherwise, TIME or FREQUENCY would have to appear within the HEADER of
the main model.

In the context of a VECTOR, the auxiliary TIME model may feature a FROM or a TO
statement. In the case of “peak”, this statement relates the occurrence time of the peak
measurement to a transition appearing in the VECTOR (see ALF 2.0, chapter 8.9.3). In
case of “average”, “absolute_average”, “transient”, “RMS”, the FROM and TO statement
define the occurrence time of a transition appearing in the VECTOR as the start or end
time, respectively, of the measurement.

Example:

The following example specifies multiple average power measurements within a single
vector.

VECTOR (01 in -> 01 out) {
POWER p1 = 0.3 {

MEASUREMENT = average;
TIME { FROM { PIN = in; } TO { PIN = out; } }

}
// average power is 0.3 measured between the transition at ”in”
// and the transition at ”out”

POWER p2 = 0.4 {
November 1, 2001 44

MEASUREMENT = average;
TIME = 0.2 { FROM { PIN = out; } }

}
// average power is 0.4 measured during 0.2 time units
// after transition at ”out”
}

The following example specifies time-window-sensitive noise margin.

VECTOR (*? data -> 01 clock -> ?* data) {
NOISE_MARGIN = 0.45 {

PIN = data;
MEASUREMENT = transient;
TIME {

FROM { PIN=data; EDGE_NUMBER=0; }
TO { PIN=data; EDGE_NUMBER=1; }

}
}

// pin ”data” is noise-sensitive only around transition at pin ”clock”
SETUP = 0.2 {

FROM { PIN=data; EDGE_NUMBER=0; } TO { PIN=clock; }
}

// sensitivity window starts 0.2 time units before ”clock” transition
HOLD = 0.3 {

FROM { PIN=clock; } TO { PIN=data; EDGE_NUMBER=1; }
}

// sensitivity window ends 0.3 time units after ”clock” transition
}

November 1, 2001 45

19.0 Reference to models in other format than ALF

relation to ALF 2.0 3.2.3, 7, others?

relation to IEEE P1603 TBD

History proposed by Alex, Oct. 9
incorporated in this document by Wolfgang, Oct. 16

19.1 Motivation

VHDL and Verilog 2000 provide features to reference models written in other languages
than VHDL and Verilog, respectively. The trend is multi-language support, and the capa-
bility to reference models, written for instance in C or C++ eliminates the need for transla-
tion and makes re-use of existing models more efficient.

19.2 Proposal

Note: This proposal would represent a major enhancement of ALF. It should be driven
by the need and the feasibility of an implementation proving the concept. To get started,
only rough ideas are given here.

The INCLUDE statement (see ALF 2.0, chapter 3.2.3) could be enhanced to specify the
format of included files.

Example:

INCLUDE ”model1.vhd” { FORMAT = VHDL ; }
INCLUDE ”model2.v” { FORMAT = Verilog ; }
INCLUDE ”model3.c” { FORMAT = ”C++” ; }
INCLUDE ”model4.alf” { FORMAT = ALF ; } //default

The arithmetic_model statement (see ALF 2.0, chapter 7) could be enhanced to specify a
reference to an external subroutine for evaluation of a model, instead of a TABLE or
EQUATION. Such an external subroutine must be found in an included file. The argu-
ments of the subroutine could be specified in the HEADER as long as they can be seman-
tically interpreted as artihmetic_models. The complete set of arguments, including
arguments which are alien to the ALF semantics, such as pointers to file handles etc.,
should be specified within the body of the subroutine statement.

Example:

DELAY Tdelay { FROM { PIN=X; } TO { PIN=Y; }
HEADER {

SLEWRATE Tslew { PIN=X; }
CAPACITANCE Cload { PIN=Y; }

}
SUBROUTINE {

Tdelay = double;
November 1, 2001 46

c2 = double ;
s1 = double ;

}
}

Corresponding C code:

double Tdelay (Tslew, Cload)
double Tslew, Cload ;
{

/* calculate return_value */
return (return_value) ;

}

November 1, 2001 47

20.0 ROUTE annotation for PATTERN

relation to ALF 2.0 9.7

relation to IEEE P1603 9.9.3

History proposed by Wolfgang, Oct. 16

20.1 Motivation

Rules involving layout patterns may be anisotrop, i.e., depending on he routing direction.
For example, the minimum distance between parallel lines on a given routing layer may
depend on whether they are routed in horizontal or vertical direction (assuming that either
tounting direction is allowed).

20.2 Proposal

The PATTERN statement shall have an optional ROUTE annotation with the legal values
“horizontal” and “vertical”. In absence of the ROUTE annotation, the prefered routing
direction (see PREFERENCE statement, ALF 2.0, chapter 9.5.4) shall be presumed.

Example:

RULE min_distance_horizontal {
PATTERN p1 { LAYER=metal1; SHAPE=line; ROUTE=horizontal; }
PATTERN p2 { LAYER=metal1; SHAPE=line; ROUTE=horizontal; }
LIMIT { DISTANCE { BETWEEN { p1 p2 } MIN=0.5; } }

}
RULE min_distance_vertical {

PATTERN p1 { LAYER=metal1; SHAPE=line; ROUTE=vertical; }
PATTERN p2 { LAYER=metal1; SHAPE=line; ROUTE=vertical; }
LIMIT { DISTANCE { BETWEEN { p1 p2 } MIN=0.4; } }

}

Note: Should we also include diagonal routes in order to support the new routing tech-
nology from Simplex?
November 1, 2001 48

21.0 REGION statement

relation to ALF 2.0 9

relation to IEEE P1603 9.9

History proposed by Wolfgang, Oct. 16

21.1 Motivation

The definition of abstract regions (as opposed to concrete layout patterns) has many appli-
cations: wire load models with obstructions, definition of transistors as intersection of
poly and diffusion, scope of metal density check etc. Boolean operations on regions (and,
or, exor) are also useful.

21.2 Proposal

The REGION statement shall be defined as follows:

region ::=
REGION region_identifier { region_items }

region_items ::= region_item { region_item }

region_item ::=
all_purpose_item
geometric_model
geometric_transformation
BOOLEAN_single_value_annotation

// all_purpose_item, geometric_model, geometric_transformation
// see existing grammar

BOOLEAN_single_value_annotation ::=
BOOLEAN = boolean_expression ;

The operands BOOLEAN_single_value_annotation in the shall be
region_identifiers of already defined regions or pattern_identifiers of already
defined patterns or layer_identifiers of already defined layers.

The REGION statement shall be legal in the context of LIBRARY, SUBLIBRARY,
CELL, WIRE, RULE, ANTENNA.

Example:

/* This antenna rule relates “gate” area, i.e. intersection of poly and
diffusion with total area of poly including routing */
ANTENNA for_poly {

REGION gate { BOOLEAN = POLY && DIFF; }
SIZE {

HEADER {
November 1, 2001 49

AREA Atotal { LAYER = poly; }
AREA Agate { REGION = gate; }

}
EQUATION { Atotal / Agate }

}
LIMIT { SIZE { MAX = 100; } }

}

/* This rule defines local metal density in a 300um*300um region */
RULE local_metal_density {

REGION local { WIDTH = 300; HEIGHT = 300; }
LIMIT { DENSITY { REGION = local; MIN = 0.2; } }

}

November 1, 2001 50

22.0 WIRE instantiation within arithmetic model

relation to ALF 2.0 8.15

relation to IEEE P1603 9.4

History proposed by Wolfgang, Oct. 16

22.1 Motivation

Cells may be characterized with more complex load models than just a lumped capaci-
tance, e.g. pi-model, lumped RLC, transmission line etc. Such complex load models can
be described using the WIRE statement. However, there must be a statement connecting
such models to a pin of a cell subjected to characterization.

22.2 Proposal

An arithmetic model describing electrical cell characterization data may contain a wire-
instantiation statement defined as follows:

wire_instantiation ::=
wire_identifier wire_instance_identifier { pin_assignments }

// pin_assignments see existing grammar

The wire_identifier shall be the name of an already defined WIRE. The
wire_instance_identifier shall provide means to reference a named arithmetic model
inside the WIRE using a hierarchical identifier. The pin_assignments shall define con-
nectivity between a node within the WIRE (LHS) and a pin within the CELL (RHS).

22.3 Supplementary proposal

To enable referencing of the components of the WIRE by the HEADER of the arithmetic
model, the COMPONENT annotation (see chapter 3.2 of this document) shall be used, in
conjunction with an hierarchical identifier.

Example:

CELL my_cell {
PIN in { DIRECTION=input; }
PIN out { DIRECTION=output; }
WIRE pi_model {

NODE n1 { NODETYPE=driver; }
NODE n2 { NODETYPE=receiver; }
NODE n3 { NODETYPE=gnd; }
CAPACITANCE C1 { NODE { n1 n3 } }
CAPACITANCE C2 { NODE { n2 n3 } }
RESISTANCE R1 { NODE { n1 n2 } }

}
DELAY {
November 1, 2001 51

FROM { PIN=in; } TO { PIN=out; }
pi_model load { n1 = out; }
HEADER {

CAPACITANCE C_near { COMPONENT = load.C1; TABLE { x x x } }
CAPACITANCE C_far { COMPONENT = load.C2; TABLE { x x x } }
RESISTANCE { COMPONENT = load.R1; TABLE { x x } }

}
TABLE { x x x x x x x x x x x x x x x x x x }

}
}

November 1, 2001 52

23.0 Item

relation to ALF 2.0 reference to ALF 2.0 chapter

relation to IEEE P1603 reference to IEEE P1603 chapter

History date of initial draft, date of revisions

23.1 Motivation

Explain reason for new feature

23.2 Proposal

Describe new feature
November 1, 2001 53

	X.0 Item
	X.1 Motivation
	X.2 Proposal

	1.0 Level definition for Vector Expression Language
	1.1 Motivation
	1.2 Proposal

	2.0 Metal Density
	2.1 Motivation
	2.2 Proposal

	3.0 Current types
	3.1 Motivation
	3.2 Proposal
	3.3 Supplementary proposal

	4.0 Noise
	4.1 Motivation
	4.2 Proposal

	Context-specific meaning of NOISE
	5.0 Non-scan cell
	5.1 Motivation
	5.2 Proposal

	6.0 VIOLATION in context of LIMIT
	6.1 Motivation
	6.2 Proposal

	7.0 New value for MEASUREMENT annotation
	7.1 Motivation
	7.2 Proposal

	8.0 MONITOR statement for VECTOR
	8.1 Motivation
	8.2 Proposal

	9.0 Make grammar more compact by removing redundancies
	9.1 Motivation
	9.2 Proposal

	ALF 2.0 chapter 11.2
	ALF 2.0 chapter 11.3
	ALF 2.0 chapter 11.4
	ALF 2.0 chapter 11.5
	ALF 2.0 chapter 11.6
	ALF 2.0 chapter 11.7
	10.0 Rewrite grammar for more specific syntax and less semantic restriction
	10.1 Motivation
	10.2 Proposal

	ALF 2.0 Chapter 11.9
	ALF 2.0 Chapter 11.10
	ALF 2.0 Chapter 11.11
	ALF 2.0 Chapter 11.14
	ALF 2.0 Chapter 11.15
	ALF 2.0 Chapter 11.16
	11.0 Creating a standard ALF header file
	11.1 Motivation
	11.2 Proposal
	11.3 Supplementary proposal

	12.0 Amended semantics of LIMIT
	12.1 Motivation
	12.2 Proposal

	13.0 Semantics of SUPPLYTYPE and SUPPLY_CLASS for multi-rail support
	13.1 Motivation
	13.2 Proposal for SUPPLYTYPE semantics
	13.3 Proposal for SUPPLY_CLASS semantics

	14.0 Amended semantics of RESTRICT_CLASS and SWAP_CLASS
	14.1 Motivation
	14.2 Proposal for RESTRICT_CLASS
	14.3 Semantics of predefined RESTRICT_CLASS values
	14.4 Proposal for SWAP_CLASS

	15.0 Miscellaneous Grammar enhancements
	15.1 Motivation
	15.2 Boolean_value literal
	15.3 PULL statement
	15.4 Annotation container

	16.0 Amended semantics of CONNECTIVITY
	16.1 Motivation
	16.2 Proposal
	16.3 Supplementary proposal for CONNECT_TYPE

	17.0 Amended semantics of PULSEWIDTH, PERIOD
	17.1 Motivation
	17.2 Proposal

	18.0 Amended definition of TIME and FREQUENCY statement in context of arithmetic model
	18.1 Motivation
	18.2 Proposal

	19.0 Reference to models in other format than ALF
	19.1 Motivation
	19.2 Proposal

	20.0 ROUTE annotation for PATTERN
	20.1 Motivation
	20.2 Proposal

	21.0 REGION statement
	21.1 Motivation
	21.2 Proposal

	22.0 WIRE instantiation within arithmetic model
	22.1 Motivation
	22.2 Proposal
	22.3 Supplementary proposal

	23.0 Item
	23.1 Motivation
	23.2 Proposal

