This document contains suggested enhancements to the Advanced Library Format, using
ALF 2.0 as baseline. The document serves as aworksheet rather than aformal proposal.
The suggested enhancements are collected in no particular order. Theideais to keep track
of evolving proposals here and then agree formally whether or not they should be part of
the |EEE spec.

The following template is used throughout this document:

X.0 Item

relation to ALF 2.0 reference to ALF 2.0 chapter
relation to | EEE P1603 reference to | EEE P1603 chapter

History date of initial draft, date of revisions

X.1 Motivation

Explain reason for new feature

X.2 Proposal

Describe new feature

October 8, 2001 1

1.0 Levd definition for Vector Expression Language

relationto ALF 2.0 53,54,113
relation to | EEE P1603 N/A

History initial draft April 16 2001 by Wolfgang
reviewed and rejected by Study Group April 16
rejection confirmed by Tim Ehrler May 1
changed title and closed May 4 by Wolfgang

1.1 Motivation

The vector expression language is anew concept which has almost no equivalent in legacy
library model description languages. Currently there are EDA toolswhich support a subset
of the vector expression language. Purpose of this proposal isto re-write the definitionsin
such away that it is easy to identify subsets for different levels of support. For example:
levelO=Dbasic subset, |evel 1=intermediate subset, level 2=full setin ALF 2.0, level 3=full set
in ALF 2.0 plus new proposed extensions.

1.2 Proposal
Level O: single event, single event & boolean condition, two-event sequence

Level 1. N-event sequence, N-event sequence & boolean condition, alternative event
sequence

Level 2: everything in ALF 2.0 (except if we decide to drop something fundamentally
unpractical or un-implementable)

Level 3: new operators for repetition of sub-sequences

October 8, 2001 2

2.0 Metal Density

relationto ALF 2.0 9.2,95
relation to | EEE P1603 11.13

History initial draft April 16 2001 by Wolfgang
reviewed and retained by Study Group April 16
ok. asisby Tim Ehrler May 1
supplementary proposal by Wolfgang Oct. 5
to bereviewed Oct. 9

2.1 Motivation

Manufacturability in 130 nm technology and below requires so-called metal density rules.
For agiven routing layer, metal must cover a certain percentage of the total areawithin a
lower and upper bound in order to ensure planarity. This percentage also depends on the
total area under consideration, i.e., there are“local” and “global” metal density rules.

Manufacturing rules also specify, how density should be calculated. For example, only
structures wider than a certain minimum width should be taken into account.

Also, for local rules, the shape of the region to be checked can be specified. For example,

check the rule on a square of x*x mm?, check the density on aregion of x mm widthin X
or'Y direction etc.

2.2 Proposal

Introduce new keyword DENSITY (or other word) for arithmetic model. Shall be non-
negative number normalized between 0 and 1 (1 means 100%). Usable in context of
LAYER (see ALF 2.0, chapter 9.5.1) with PURPOSE=routing (see ALF 2.0, chapter
9.5.2). Legal argument (i.e. HEADER) includes AREA, meaning the die area subjected to
manufacturing of this layer.

Example:

LAYER netal 1 {
PURPCSE = routi ng;
LIMT {
DENSI TY {
M N {
HEADER {
AREA {
| NTERPOLATI ON = fl oor;
TABLE { 0 100 1000 }
}
}
TABLE { 0.2 0.3 0.4}

October 8, 2001 3

}
MAX {
HEADER {
AREA {
| NTERPOLATI ON = f1 oor;
TABLE { 0 100 1000 }
}
}
TABLE { 0.8 0.7 0.6 }
}
}

}
}

Within an area of less than 100 units, the metal density must be between 20% and 80%.
Within an area of 100 up to less than 1000 units, the metal density must be between 30%
and 70%. Within an are of 1000 units or more, the metal density must be between 40% and
60%. The annotation INTERPOLATION=floor indicates that no interpolation is made for
areas in-between, but the next lower valueis used (see ALF 2.0, chapter 7.4.4).

To alow for particularitiesin density calculation, the DENSITY statement must be in con-
text of aRULE (see ALF 2.0, chapter 9.11). The applicable layer is given as annotation.
Both amodel for calculation of DENSITY and amodel for the limit of DENSITY must be
given in context of the RULE.

Example:

RULE m n_density {
DENSI TY {
LAYER = netal 1;
CALCULATION = increnental;
HEADER {
W DTH
LENGTH
AREA
}
EQUATION { WDTH * LENGTH / AREA }
}
LIMT { DENSITY { LAYER = netall; MN=10.2; } }
}
RULE max_density {
DENSI TY {
LAYER = netal 1;
CALCULATION = increnental;
HEADER {
W DTH
LENGTH
AREA
}
EQUATION { (WDTH<0.1)? 0 : WDTH * LENGTH / AREA }

}
LIMT { DENSITY { LAYER = netal 1; MAX = 0.8; } }

October 8, 2001 4

Note: WIDTH (see ALF 2.0, chapter 9.2, table 9-4) and LENGTH (see ALF 2.0, chapter
9.2, table 9-6) are the dimensions of aroutable object in the layer. AREA (see ALF 2.0,
chapter 9.2, table 9-7) should be defined as the area of the environment in this context.

The example specifies, that objects smaller than 0.1 units of WIDTH areto be disregarded
for DENSITY calculation in context of the RULE max_density.

October 8, 2001

3.0 Current

relationto ALF 2.0 8.1, 8.7,8.15
relation to | EEE P1603 11.12.5,11.12.11

History initial draft April 162001 by Wolfgang
reviewed and retained by Study Group April 16
also reviewed by Tim Ehrler May 1
add text to clarify purpose by Wolfgang May 4
proposal reviewed May 8, added supplementary proposal
request to accept and close Oct. 9

3.1 Motivation

CURRENT needs PIN annotation indicating the target point where the current is flowing
into. Cannot define a branch of an electrical network where the current flows through.
Therefore there will be 3 types of CURRENT specification:

I1 = current into PIN from unspecified source (already supported in ALF 2.0)
|2 = current through a COMPONENT with two terminal nodes
I3 = current through an independent current source connected between two NODEs

seell, 12, I3 inillustration
————® |3

R1

11
4>
12
Cl C2
_ and -
3.2 Proposal

In the context of WIRE, the following annotations for CURRENT shall be legal:
PIN = pin_identifier ;
Current flows from unknown source into the pin (already supported).

COVPONENT = conponent _identifier ;

October 8, 2001

Current flows through the component. The component must be a declared two-terminal
electrical component in the context of the WIRE, i.e. a RESISTANCE, CAPACITANCE,
VOLTAGE or INDUCTANCE (excluding mutua inductance, which has4 terminals). The
direction of the current flow is given by the order of node identifiersin the NODE annota-
tion for that component (see ALF 2.0, chapter 8.15.3, 8.15.4).

NODE { 1st _node_identifier 2nd _node_identifier }

Current flows through a current source connected between the nodes. The direction of the
current flow is given by the order of node identifiersin this NODE annotation.

Example:

W RE i nterconnect _anal ysis_nodel 1 {
CAPACI TANCE C1 { NODE { n1 gnd } }
CAPACI TANCE C2 { NODE { n2 gnd } }
RESI STANCE Rl { NODE { n1 n2 } }
CURRENT 11 { PIN = n1; }

CURRENT 12 { COWPONENT = R1; }
CURRENT 13 { NOCDE { nl1 n2 } }

}

This example corresponds exactly to the illustration shown above.

3.3 Supplementary proposal

According to ALF 2.0, chapter 8.7.3, the sense of measurement for current associated
with a pin shall be into the node. However, in some cases, the natural sense of measure-
ment is out of the node. In order to alow explicit specification of the sense of measure-
ment, the following feature is proposed:

FLOW annotation for current shall specify the sense of measurement of current. Default
value shall be “in”, which is backward compatible with ALF 2.0.

FLOW= in | out;
For example, the following two statements are equivalent:
CURRENT |1 =3.0 { PIN =nl1; FLON=in; }

CURRENT 1|1

-3.0 { PIN=nl; FLOW= out; }
Thisisillustrated in the picture below.

nl nl
11=3.0 11=-3.0
FLOW =in; FLOW = out;

October 8, 2001 7

4.0 Noise

relationto ALF 2.0 8.1, 8.14
relation to | EEE P1603 11.12.10

History initial draft April 16 2001 by Wolfgang
0.k by Tim Ehrler May 1
updated by Wolfgang May 4
reviewed and updated (see minutes) May 8
request to accept and close Oct. 9

4.1 Motivation

NOISE_MARGIN defines a normalized voltage difference between nominal signal level
and tolerated signal level. If violated, the correct signal level can not be determined. In
order to check against noise margin, actual noise must be calculated. Currently VOLTAGE
isused for noise calculations. However, since noise margin is normalized to signal voltage
swing, it would be convenient, if the actual noise could also be represented in a normal-
ized way. In CMOS, actual noise and noise margin tend to scale with supply voltage. A
non-normalized model requires supply voltage as a parameter, if the supply voltage is sub-
ject to variation. A normalized model would to a 1st order degree approximate the voltage
scaling effect already and therefore eliminate the supply voltage as a model parameter.

4.2 Proposal

Introduce new keyword NOI SE, representing a normalized voltage difference between
nominal signal level and actual signal level. Same measurement definition asfor noise
margin (see ALF 2.0, chapter 8.14). Noise margin is violated, if noiseis larger than noise
margin.

Context-specific meaning of NOISE

1. Context is output or bidirectional PIN

NOI SE specifies maximum amount of noise at output pin, when any input pin is subjected
to the amount of noise specified by NOISE_ MARGIN. NOISE may have submodel HIGH

and LOW. The relation between noise at output pin and noise margin at input pinisillus-
trated in the following picture.

October 8, 2001 8

Vout/Vdd
A

Vdd | |
1
o v
noise(high) = 1-Voh/Vdd
Vin Vout
noise(low) = Vol/Vdd
0
Gnd
noise margin(low) noise margin(high)
=Vil/Vdd =1-Vih/vVdd
Example:

PIN nmy_input_pin {
DI RECTI ON = i nput;
NO SE MARGN{ HGH=0.3; LOW=0.2; }

}
PIN my _output _pin {

DI RECTI ON = out put;

NOSE { HHGH = 0.02; LOW= 0.01; }
}

2. Context isVECTOR withvect or _expr essi on

NOISE needs PIN annotation. NOISE specifies peak noise while pinisin “*” state.
NOISE may only have submodel HIGH and LOW, if “?’ state as opposed to “0” or “1”
state is specified in vector_expression.

Example:

VECTOR (O* ny_pin -> *0 my_pin) {
NOSE =0.2{ PIN= ny_pin; }
}

3. Context isCELL, SUBLIBRARY, or LIBRARY

no PIN annotation. NOISE specifies maximum amount of noise at any output or bidirec-
tional pin within scope, unless this specification is overwritten locally.

Example:

LI BRARY ny_library {
NO SE { HHGH = 0.02; LOW= 0.01; }
}

October 8, 2001

5.0 Non-scan cdll

relationto ALF 2.0 6.2,11.2
relation to | EEE P1603 922

History initial draft April 16 2001 by Wolfgang
0.k. by Tim Ehrler May 1
request to accept and close Oct. 9

5.1 Motivation

Non-scan cell defines the mapping between the pins of a non-scan cell (left-hand side) and
the pins of a scan cdll (right-hand side). The scan cells has always certain pins which do
not exist in the non-scan cell. In some cases, the non-scan cell might have certain pins
which do not exist in the scan cell (In such a case, the scan replacement can only be done,
if the pin in question was tied to an inactive level in the non-scan cell in the first place).

Currently, the non-scan cell statement supports definition of LHS or RHS constants which
specify the logic level to which the non-corresponding pins should be tied to. However,
this definition is redundant, because every relevant pin in acell model must have annota-
tionsfor SIGNALTY PE and POLARITY in order to be usable for DFT tools. These anno-
tations specify aready the logic level to which non-corresponding pins must be tied.

5.2 Proposal

Reduce syntax for pin_assignment (see ALF 2.0, chapter 11.2) to the following:

pi n_assi gnhnment ::=
pin_identifier [index]
| pin_identifier [index]

pin_identifier [index]
| ogi c_constant ;

Only“pin_identifier [index] = pin_identifier [index] ; “will actualy be
used for non-scan cell. Since POLARITY defines the active signal level, the pin should be
tied to the opposite level. For pins without POLARITY, the level does not matter (e.g.
scan input for scan flip-flop in non-scan mode).

Example (taken from ALF 2.0, chapter 6.2):

CELL ny_flipflop {
PIN q { DI RECTI ON=output; } // SIGNALTYPE defaults to “data”
PIN d { DIRECTION=i nput; } // SICGNALTYPE defaults to “data”
PIN cl k { DI RECTI ON=i nput; SIGNALTYPE=cl ock; POLARI TY=ri si ng_edge; }
PIN cl ear { DI RECTI ON=i nput; SIGNALTYPE=cl ear; POLARI TY=l ow;, }

}

CELL ny_scan_flipflop {
PIN data_out { DI RECTI ON=out put; } // SIGNALTYPE defaults to “data”
PIN data_in { DIRECTION=i nput; } // SICGNALTYPE defaults to “data”
PIN scan_in { DI RECTI ON=i nput; SIGNALTYPE=scan_data; }

October 8, 2001 10

PI'N scan_sel { DI RECTI ON=i nput; SIGNALTYPE=scan_control;

POLARI TY { SCAN=high; } } // scan node when 1, non-scan nbde when O
PI'N cl ock {DI RECTI ON=i nput; SI GNALTYPE=cl ock; POLARI TY=ri si ng_edge;}
NON_SCAN_CELL {

ny_flipflop {

clk = cl ock;
d = data_in;
q = data_out;

}

The scan replacement works only, if thecl ear pin of ny_f1i pfl op istied high (active
level islow). Note: Thisis an exceptional case and only shown because it might happen
eventually. Normally, the pins of the scan cell represent a superset of the pins of the non-
scan cell.

In order to simulate the non-scan mode, when the non-scan cell is replaced by the scan
cell, thescan_sel pinof ny_scan_fli pfl op must betied low (scan mode level ishigh).
Thescan_i n pin can be tied to either high or low.

This example shows that the constant logic levels need not be defined in the non-scan cell
statements, because they can be completely inferred from the POLARITY statements. The
POLARITY statements are mandatory for DFT tools anyway.

October 8, 2001 11

6.0 VIOLATION in context of LIMIT

relationto ALF 2.0 75,7.6,84
relation to | EEE P1603 9.105, 11.6.4

History Proposal May 1 by Tim Ehrler
written in doc May 4 by Wolfgang
reviewed and updated (see minutes) May8
request to accept and close Oct. 9

6.1 Motivation

Want to specify level of severity, if aLIMIT isviolated. Target is appropriate error report
from tool.

6.2 Proposal

The VIOLATION statement may appear within the context of an arithmetic model within
LIMIT or an arithmetic submodel within LIMIT.

In this context, aMESSAGE_TY PE annotation or aMESSAGE annotation or both shall
belegal within VIOLATION. A BEHAVIOR statement within VIOLATION shall only be
legal if the LIMIT iswithin the context of a VECTOR. In the latter case, the

vect or _expressi on or bool ean_expr essi on which identifiesthe VECTOR
shall define the triggering condition for the behavior described in the BEHAVIOR state-
ment.

October 8, 2001 12

7.0 New valuefor MEASUREMENT annotation

relationto ALF 2.0 89.1
relation to | EEE P1603 11.12.11

History Proposal by Wolfgang, May 22
reviewed June 27, o.k. July 10 (see minutes)
request to accept and close Oct. 9

7.1 Motivation

Currently, measurements of analog quantities can be specified as “average’, “rms’,
“peak”, “transient”, “static”. Another commonly used measurement is the average over
absolute values, which cannot be specified.

7.2 Proposal

The MEASUREMENT annotation shall support the following values:

MEASUREMENT =
transi ent

| static

| average

| rms

| peak

| absolute_averagel

(t=T)

| IE®a

£L=_Q).T__

The mathematical definition of absol ut e_aver age isthe followi ngzz

1. everything except absol ut e_aver age isaready supportedin ALF 2.0
2. Note: The parentheses around (t = 0) and (t = T) are an artefact of the framemaker equation editor.

October 8, 2001

13

8.0 MONITOR statement for VECTOR

relation to ALF 2.0 5.3.7,5.4,6.4.16
relation to | EEE P1603 953

History Proposal by Wolfgang, May 22
reviewed July 10 (see minutes)
request to accept and close Oct. 9

8.1 Motivation

Any vect or _expr essi on inthe context of aVECTOR has an associated set of vari-
ables, which are monitored for the purpose of evaluating thevect or _expr essi on.
The set of variablesis given by the set of declared PINSs, featuring a SCOPE annotation.

SCOPE = behavior | neasure | both | none ; // see ALF 2.0, chapter 6.4.16

In the context of aVECTOR, all PINswith SCOPE = neasure | bot h are monitored.
Sometimes it would be practical to reduce the set of monitored pins within the scope of a
particular vector. For example, in amultiport RAM, only the pins associated with a partic-
ular logical port should be monitored, if thevect or _expr essi on describes atransac-
tion involving only this port. Currently, this can only be achieved by applying the “ ?*”
operator to al unmonitored pins. Thereforethevect or _expr essi on can become
quite lengthy for complex cells.

8.2 Proposal

A VECTOR identified by avect or _expr essi on may havethefollowing MONITOR
annotation:

moni tor_rmul tival ue_annotation : ==
MONI TOR { pin_identifiers }

The set of pi n_i denti fi ers shall beasubset of pinswith SCOPE = neasure | both.

If the MONITOR annotation is present, all pins appearing within this annotation shall be
monitored. Any pin appearing inthevect or _expr essi on must aso appear in the
MONITOR annotation. However, all pins appearing in the MONITOR annotation need
not appear inthevect or _expr essi on.

If the MONITOR annotation is not present, all pinswith SCOPE = nmeasure | bot h shall
be monitored (backward compatible with ALF 2.0).

October 8, 2001 14

Example:

CELL my_4 bit _register file {

PIN cl k { DI RECTI ON=i nput; }
PIN[4:1] din { DI RECTI ON=i nput; }
PIN [4:1] dout { DI RECTI ON=out put; }
VECTOR (01 clk -> ?! dout[1]) {

MONI TOR { din[1] dout[1] clk } //
}

VECTOR (01 clk -> ?! dout[2]) {
MONI TOR { din[2] dout[2] clk } //

}

VECTOR (01 clk -> ?! dout[3]) {
MONI TOR { din[3] dout[3] clk } //

}

VECTOR (01 clk -> ?! dout[4]) {
MONI TOR { din[4] dout[4] clk } [/

}

put

put

put

put

i n del ay,

i n del ay,

i n del ay,

i n del ay,

power

power

power

power

October 8, 2001

15

9.0 Make grammar more compact by removing redundancies
relation to ALF 2.0 3.2,11.x
relation to |EEE P1603 Annex A (normative)

History Proposal by Wolfgang, May 22
review pending as of July 10
Comments from Tim Ehrler per email:
no issue with proposed changes
to bereviewed Oct. 9

9.1 Motivation

Simplify the grammar by getting rid of redundant definitions. Definitions which are used
in aparticular context should be presented in that context. Thiswill also simplify to intro-
duce grammar “snippets’ in the semantic sections, where they are needed.

9.2 Proposal
ALF 2.0 chapter 11.2

Get rid of chapter 11.2 and introduce the pertinent statements locally, where they are
needed.

unnaned_assi gnnent _base
remove

unnanmed_assi gnnent
renametosi ngl e_val ue_annot ati on, moveto 11.7

named_assi gnnent _base
remove

named_assi gnnent
remove

singl e_val ue_assi gnnment ::=
identifier = value ;

mul ti _val ue_assi gnnent
renametonul ti _val ue_annot at i on, moveto 11.7

assi gnnment
remove

pi n_assi gnment
modify according to chapter 5 of this doc., moveto 11.7

October 8, 2001 16

arithnmetic_assi gnnment
moveto 11.7

ALF 2.0 chapter 11.3

split into 3 separate chapters:

» Boolean expressions and operators
put bool ean_expr essi on

» Arithmetic expressions and operators
putarithmetic_expression

» Vector expressions and operators
put everything else

ALF 2.0 chapter 11.4

Get rid of chapter 11.4 and introduce the pertinent statements locally, where they are
needed.

cell _instantiation
remove
unnaned _cel |l _instantiation

only used for NON_SCAN_CELL, moveto 11.9

named cel |l _instantiation
only used for STRUCTURE, moveto 11.17

pi n_instantiation
only used for PIN, moveto 11.11

Error to be corrected:

incorrect use of pi n_i nstanti ati on in chapter 6.3, should be pi n_assi gnnent s

Error to be corrected:
pi n_i nstanti ati on isnot mentioned aspi n_i t emin chapter 11.11

primtive_instantiation
only used for FUNCTION, moveto 11.17

tenpl ate_instantiation
moveto 11.7

dynam c_instantiation_item
moveto 11.7

October 8, 2001

17

via_ instantiation
moveto 11.23

ALF 2.0 chapter 11.5
move to “lexical rules’” section (chapter 10)
ALF 2.0 chapter 11.6

Get rid of chapter 11.6, associate operators with the corresponding expressions.

» Boolean expressions and operators
put all operators with prefix bool ean_

» Arithmetic expressions and operators
put all operatorswith prefix ari t hmeti c_

» Vector expressions and operators
put all operators with prefix vect or _

movesequenti al _if,sequential else_ if toll.17.
ALF 2.0 chapter 11.7

renamel ogi c_assi gnnent (seel1l.17) into bool ean_assi gnnent and move
into 11.7. Movevect or _assi gnnment into 11.7.

rewrite grammar involvingal | _pur pose_i temannot ati on,
annot at i on_cont ai ner, the other items remain unchanged.

annotation ::=
one_| evel _annot ati on
| two_level annotation
| nulti_|evel _annotation

one_l evel _annotation ::=
si ngl e_val ue_annot ati on
| nulti_val ue_annotation

one_l evel _annotations ::=
one_l evel _annotation { one_level annotation }

two_| evel annotation ::=
one_| evel annotation
| identifier [= value] { one_level _annotations }

two_| evel _annotations ::=
two_| evel _annotation { two_|l evel annotation }

mul ti | evel _annotation ::=
one_l evel _annotati on
| identifier [= value] { multi_|evel _annotations }

October 8, 2001

18

multi | evel _annotations ::=

multi | evel _annotation { multi_|evel annotation }

annot ation_contai ner ::=

identifier { one_level _annotations }

Sinceal | _purpose_i temalowsgeneric_obj ect and generi c_obj ect includes
keywor d_decl ar at i on statement, consequently all syntax_item. i dentifiers
that can be used by keywor d_decl ar at i on (See chapter 3.2.9) must be covered by

al | _purpose_item

al

| _purpose item::=

generi c_obj ect

tenpl ate_instantiation
annot ati on

ari thmeti c_nodel
arithmetic_nodel _contai ner
bool ean_assi gnnent

vect or _assi gnnent

Error to be corrected:
bool ean_assi gnnment isnot mentioned assynt ax_item i denti fi er inchap-
ter 3.2.9.

Note: ari t hmetic_subnodel is alsoasyntax_item.identifier,butitisnot
included inal | _pur pose_it em becauseari t hneti c_subnodel isawaysin the context
of ari t hrret i c_nodel .

October 8, 2001 19

10.0 Rewritegrammar for more specific syntax and less
semantic restriction

relation to ALF 2.0 3.2,11.x
relation to |EEE P1603 Annex A (normative)

History Proposal by Wolfgang, May 22
review pending as of July 10
Comments from Tim Ehrler per email:
no issue with proposed changes
to bereviewed Oct. 9

10.1 Motivation

Certain syntax definitions of ALF are written in avery generic way. As a consequence, a
lot of semantic restrictions apply. The ideais to rewrite the grammar so that the syntax
section becomes more specific and as a consequence the semantic sections become less
“heavy”. However, the changes to the existing grammar should be limited to modifica-
tions which specifically serve that purpose rather than re-writing the whole grammar from
scratch. Also, eventual redundancy in the grammar can be eliminated.

10.2 Proposal

Useal | _purpose_i t emonly for statements with custom keywords, introduced by
keywor d_decl ar at i on statements and put the statements using standard keywords
explicitly in the grammar.

ALF 2.0 Chapter 11.9

cell _item::=
al | _purpose_item
| CELLTYPE_singl e _val ue_annot ati on
| SWAP_CLASS one_l evel _annotation
| RESTRI CT_CLASS one_l evel _annotation
| SCANTYPE_si ngl e_val ue_annot ati on
| SCAN _USAGE singl e _val ue_annot ati on
| BUFFERTYPE_si ngl e_val ue_annot ati on
| DRI VERTYPE_singl e_val ue_annot ati on
| PARALLEL DRI VE singl e val ue_annotation
| pin
| pin_group
| primtive
| function
| non_scan_cell
| test
| wvector
| wire
| bl ockage

October 8, 2001 20

ar t wor k
connectivity

ALF 2.0 Chapter 11.10

l[ibrary item::=

al | _purpose_item

ALF 2.0 Chapter 11.11

pin_item::=

al | _purpose_item

range

VI EW si ngl e_val ue_annot ati on

PI NTYPE_si ngl e_val ue_annot ati on

DI RECTI ON_si ngl e_val ue_annot ati on

SI GNALTYPE_si ngl e_val ue_annot ati on
ACTI ON_si ngl e_val ue_annot ati on

POLARI TY two_| evel _annot ation
DATATYPE_si ngl e_val ue_annot ati on

I NI TI AL_VALUE_si ngl e_val ue_annot ati on
SCAN_POSI Tl ON_si ngl e_val ue_annot ati on
STUCK si ngl e_val ue_annot ati on
SUPPLYTYPE_si ngl e_val ue_annot ati on

SI GNAL_CLASS one_| evel _annotation
SUPPLY_CLASS one_| evel _annotation
cell _pin_reference_two_| evel _annotation
DRI VETYPE_si ngl e_val ue_annot ati on
SCOPE_si ngl e_val ue_annot ati on

PULL_si ngl e_val ue_annot ati on

port

connectivity

pin_instantiation // this one is mssing in chapter 11.11

ALF 2.0 Chapter 11.14

vector _item::=

all _purpose_item
PURPCSE_one_| evel _annot ati on

OPERATI ON_si ngl e_val ue_annot ati on
LABEL_si ngl e_val ue_annot ati on

EXI STENCE_CLASS one_| evel _annot ati on

EXI STENCE_CONDI TI ON_bool ean_assi gnnent
CHARACTERI ZATI ON_CLASS one_| evel _annotati on
CHARACTERI ZATI ON_CONDI TI ON_bool ean_assi gnnent
CHARACTERI ZATI ON_VECTOR vect or _assi gnnment
MONI TOR_one_| evel _annotation // proposed in this doc chapter 8
illegal _statenent

ALF 2.0 Chapter 11.15

wre item::=

all _purpose_item

October 8, 2001 21

| SELECT CLASS one_l evel annotation
| node

node ::=
NODE nane_identifier { node_itens }

node itens ::=
node_item { node_item}

node item::=

al | _purpose_item
| NODETYPE_si ngl e _val ue_annot ati on
| NODE_CLASS one_ | evel _annotation

ALF 2.0 Chapter 11.16

arithmetic_nodels ::=
arithmetic_nodel { arithnetic_nodel }

arithmetic_nodel ::=
partial _arithnetic_node
| full_arithnetic_nodel

Partial arithmetic model contains only definitions, no data. Can appear outside the seman-
tically valid context of the model, aslong as a semantically valid context exists within
scope. (Example: semantically valid context of arithmetic model X isVECTOR, VEC-
TOR exists within scope of LIBRARY, therefore partial arithmetic model X islegal within
LIBRARY.) Definitions inside partial arithmetic model without name_i denti fi er are
inherited by each arithmetic model with ari t hmet i c_nodel _i denti fi er within scope.
(Note: up to 2 levels of submodel are supported)

partial _arithnetic_nodel ::=
arithmetic_nodel _identifier [nane_identifier] {
{ all _purpose_ item}
{ arithmetic_nodel _qualifier }
{ partial _arithmetic_subnodel }

}

partial _arithnetic_subnodel ::=
arithnetic_subnodel identifier [nanme_identifier] {
{ all _purpose_item}
{ partial _arithmetic_leaf_ subnodel }

}

partial _arithnetic_| eaf _subnodel ::=
arithnetic_subnodel identifier [nane_identifier] {
{ all _purpose_item}

}

Full arithmetic model contains both definitions and data. Can only appear in the semanti-
cally valid context of the model. Enables evaluation of arithmetic model in design context
(e.g. delay calculation, power calculation). A trivial arithmetic model contains directly the
evaluation value. A non-trivial arithmetic model requires calculation of the value, based
on evaluation conditions. (Note: up to 2 levels of submodel are supported)

October 8, 2001 22

full _arithnmetic_nodel ::=
trivial _arithnetic_node
| non_trivial _arithnetic_nodel

trivial _arithnmetic_nodel ::=
arithnmetic_nodel identifier [nane_identifier]
| arithnetic_nodel identifier [nane_identifier]
{ all _purpose_item}
{ arithnetic_nodel qualifier }

val ue ;
val ue {

}

non_trivial _arithnetic_nodel ::=
arithmetic_nodel _identifier [name_identifier] {
{ all _purpose_item}
{ arithmetic_nodel _qualifier }
arithmeti c_nodel _body
{ arithmetic_nodel _datarange }
}
| arithnetic_nodel identifier [name_identifier] {
{ all _purpose_item}
[violation]
{ arithmetic_nodel _qualifier }
full _arithmetic_subnodel s

}

full _arithnetic_subnodels ::=
full _arithmetic_subnodel { full _arithnetic_subnodel }

full _arithnetic_subnodel ::=
full _arithnetic_| eaf subnodel
| arithnetic_subnodel _identifier [nanme_identifier] {
{ all _purpose_ item}
full _arithnetic_ | eaf subnodel s

}

full _arithnetic_| eaf _subnodels ::=
full _arithnetic_| eaf _subnodel { full _arithnetic_| eaf subnodel }

full _arithnetic_| eaf _subnodel ::=
trivial _arithmetic_| eaf _subnode
| non_trivial _arithnetic_| eaf _subnode

trivial _arithnmetic_|eaf subnodel ::=
arithmetic_subnodel _identifier [nane_identifier]
| arithnetic_subnodel _identifier [name_identifier]
{ all _purpose_item}

val ue ;
val ue {

}

non_trivial _arithnetic_| eaf _subnodel ::=
arithnetic_subnodel identifier [nane_identifier] {
{ all _purpose_item}
arithnetic_nodel _body
{ arithmetic_nodel datarange }

October 8, 2001

Auxiliary definitions for arithmetic model. Semantic restrictions apply. (Note: the new
grammar alows non-ambiguous distinction between usage of MIN/TYP/IMAX/
DEFAULT either asarithmeti c_| eaf _subnodel Or assingl e_val ue_annot ati on.)

arithnmetic_nodel _qualifier ::=

general _arithmetic_nodel qualifier
connected_arithnetic_nodel qualifier
anal og_arithnetic_nodel qualifier
timng_arithnetic_nodel qualifier

[ayout arithnetic_nodel qualifier

general _arithmetic_nodel _qualifier
UNI T_si ngl e_val ue_annot ati on

| CALCULATI ON_si ngl e_val ue_annot ati on

| | NTERPOLATI ON_si ngl e_val ue_annot at i on

connected_arithnetic_nodel _qualifier ::=
PI N one_| evel _annotati on
| NODE_one_l evel _annotation

anal og_arithmetic_nodel _qualifier ::=
anal og_EASUREMENT_si ngl e_val ue_annot ati on
| COVPONENT singl e val ue_annotation
| TIME arithnetic_nodel
| FREQUENCY_arithmetic_nodel

timng_arithmetic_nodel _qualifier ::=
EDGE_NUMBER si ngl e_val ue_annot ati on

| violation

| from

| to

| ayout _arithnetic_nodel _qualifier ::=
di st ance_ MEASUREMENT _si ngl e_val ue_annot ati on
| BETWEEN nulti_val ue_annotation
| REFERENCE singl e_val ue_annot ati on
| ANTENNA one_l evel _annotation
| PATTERN_ si ngl e_val ue_annotati on
| VIA single_value_annotation

arithmetic_nodel datarange ::=
M N_si ngl e_val ue_annot ati on
| TYP_single_ value annotation
| MAX singl e_val ue_annotation
| DEFAULT_si ngl e_val ue_annotation

arithnetic_nodel body ::=
[header] table [equation]
| [header] equation [table]

equation ::=
EQUATION { arithmnetic_expression }

from::=
FROM {
[PIN_single_value_annotation]

October 8, 2001

24

[EDGE_NUMBER singl e _val ue_annotation]
[THRESHOLD arithnretic_nodel]

}
to ::=
TO {
[PIN_single value_annotation]
[EDGE_NUMBER singl e _val ue_annotation]
[THRESHOLD arithnretic_nodel]
}

Auxiliary definitions for arithmetic model, also applicable el sewhere (separate chapter?).

VIOLATION isaso applicable for ILLEGAL

violation ::=
VI OLATI ON {
[MESSAGE TYPE_ singl e_val ue_annotati on]
[MESSAGE singl e_val ue_annotation]
[behavior]

}
TABLE and HEADER are also applicable for CONNECTIVITY.

table ::=
TABLE { val ues }

header ::=
HEADER { arithnetic_nodel _identifiers }
HEADER { header arithnetic_nodels }

Arithmetic model in context of HEADER (Note: no submodels allowed).

header _arithnetic_nodels ::=
header _arithnetic_nodel { header _arithnetic_nodel }

header _arithmetic_nodel ::=
arithnetic_nodel _identifier [nane_identifier] {
{ all _purpose_item}
{ arithmetic_nodel _qualifier }
{ arithmetic_nodel body }
{ arithmetic_nodel datarange }

}
Container of arithmetic model (Note: LIMIT is special).

arithnetic_nodel _containers ::=
arithnetic_nodel _container { arithnetic_nodel container }

arithnetic_nodel _container ::=

[imt
| arithnetic_nodel _container_identifier { arithnetic_nodels }
[imt ::=

LIMT { limt_arithnmetic_nodels }

October 8, 2001 25

Arithmetic model in context of LIMIT (Note: must contain leaf submodels MIN and/or
MAX).

limt_arithnetic _nodels ::=
[imt_arithmetic_nodel { limt_arithnetic_nodel }

[imt_arithmetic_nodel ::=
arithnmetic_nodel identifier [nane_identifier] {
{ all _purpose_ item}
[violation]
{ arithmetic_nodel _qualifier }
l[imt_arithneti c_subnodels

}

[imt_arithnmetic_subnodels ::=
[imt_arithnmetic_subnmodel { linmt_arithnetic_subnodel }

limt_arithnetic_subnodel ::=
limt _|eaf arithmetic_subnopde
| arithnetic_subnodel identifier [name_identifier] {
{ all _purpose_item}
[violation]
limt_arithnetic_| eaf _subnodel s

}

limt_arithnetic_| eaf _subnodels ::=
[imt_arithmetic_|eaf _subnodel { limt_arithnetic_|leaf_subnodel }

limt _arithnmetic | eaf subnodel ::=
mn_or _max = nunber ;
| min_or_max {
{ all _purpose_ item}
[violation]
[arithnetic_nodel body]

}

mn_or_max ::=
M N
| MAX

October 8, 2001

26

11.0 Creating a standard ALF header file

relation to ALF 2.0 3.24,3.2.6,3.2.8,3.2.9, 11.x

relation to |EEE P1603 8.6, 8/7, 8.8, 8.9, new Annex (normative or not TBD)

History Proposal by Wolfgang, May 22

review pending as of July 10

supplementary proposal by Wolfgang Oct. 7

to bereviewed Oct. 9

11.1 Motivation

The ideaisto define pertinent features of ALF using the ALF language itself. Such a defi-
nition could be used as a standard “header” filefor ALF. Eventually, certain extensions of

the language could then be defined by changing the header file instead of changing the

language. This can be used for pure documentation purpose as well as for development of

self-adapting ALF parsers.

11.2 Proposal

Use the KEYWORD statement to define standard arithmetic models.

Usethedefinition_for_arithmetic_nmodel construct to definelegal statementsin the

context of arithmetic models.
Use the CLASS statement for shared definitions.

Example (just to show the idea):

KEYWORD PROCESS = arithnetic_nodel
KEYWORD SLEWRATE = arithmetic_nodel
KEYWORD CURRENT = arithnetic_nodel

PROCESS {
TABLE { nom spsn spwn wpsn wpwn }
}
CLASS al |l _nodel s {
KEYWORD UNI T = singl e _val ue_annotation ;
}
CLASS tim ng_nodels {
CLASS { all _nodels }

UNIT = le-9 ;
KEYWORD RI SE = arithmetic_nodel
KEYWORD FALL = arithmetic_nodel

}
CLASS anal og_nodel s {

CLASS { all _nodels }

KEYWORD MEASUREMENT = singl e_val ue_annotation ;

October 8, 2001

27

SLEWRATE {
CLASS { tim ng _nodels }

}

CURRENT {
CLASS { anal og_nodel s }
UNIT = le-3 ;

}

It may be worthwhile to explore how far we can get in describing ALF featuresin this lan-
guage.

11.3 Supplementary proposal

Current definition for keywor d_decl ar at i on (See ALF 2.0, chapter 3.2.9):

keyword_decl aration ::=
KEYWORD cont ext _sensitive_keyword

syntax_item.identifier
Introduce the following extension:

keyword_decl aration ::=
KEYWORD cont ext _sensitive_keyword = syntax_item.identifier
| KEYWORD context_sensitive_keyword = syntax_item.identifier {
VALUE TYPE = val ue_type_identifier

}

val ue_type_identifier ::=
nunber

| positive_numnber

| non_negative_nunber

| integer

| unsigned

| bit_literal

| quoted_string

| identifier

Note: need to add which value_type is compatible with which syntax_item_identifier (see
grammar definition).

October 8, 2001 28

12.0 Amended semanticsof LIMIT

relationto ALF 2.0 75
relation to | EEE P1603 11.6.4

History Wolfgang, July 2, o.k. on July 10
refined and incorporated in this doc on July 19
request to accept and close October 9

12.1 Motivation

ALF 2.0 misses a specification on how adesign tool should handlea LIMIT.

12.2 Proposal

Existing text:

A LIM T container shall contain arithmetic models. The arithmetic models shall contain
submodels identified by M N and/or MaX.

Proposed modification:

A LIM T container shall contain arithmetic models. The arithmetic models shall contain
submodels. These submodels shall either be exclusively identified by M N and/or MAX or
contain other submodels which shall be exclusively identified by M N and/or MAX.
Example:

LIMT {
SLEWRATE {
PIN = ny_pin ;
MAX = 5. 4,

}
Alter native example:

LIMT {

SLEWRATE {
PIN = ny_pi
RISE { MAX
FALL { MAX

I n >

oo
Ao
—

}
}

Proposed addition:

The values specified within LIMIT shall be considered as design limits. That means,
design tools must create a design in such ways that the limits are respected. If the calcu-
lated actual values are found to be equal to the specified limit values, they shall be consid-
ered within the design limits. If both M N and Max values are specified for the same
guantity under the same operating conditions, the Max value must be greater or equal to the
M Nvalue.

October 8, 2001 29

13.0 Semantics of SUPPLYTYPE and SUPPLY_ CLASSfor
multi-rail support

relationto ALF 2.0

6.4.11, 6.4.13

relation to | EEE P1603 934

History

13.1 Motivation

email discussion on reflector initiated by Sergei Sokolov
captured in minutes July 10

incorporated in this document by Wolfgang, July 19
request to accept and close Oct. 9

Semantics of SUPPLY TYPE are missing in ALF 2.0. Semantics of SUPPLY _CLASS for
support of multiple power/ground rails are not well-defined.

13.2 Proposal for SUPPLYTY PE semantics

Syntax and set of valuesfor SUPPLY TY PE are already defined in ALF 2.0, chapter
6.4.11. Following table contains proposed semantics.

TABLE 1. SUPPLYTYPE annotation for PIN object

Annotation value

description

power (default)

ThePIN istheinterface between a CELL and a power supply device, designed
to source or sink a significant part of the CURRENT affecting the POWER
consumption of the CELL. The VOLTAGE measured at this PIN iswith
respect to ground.

ground

The PIN isthe interface between a CELL and the environmental common
ground. Therefore, the nominal VOLTAGE measured at this PIN is zero.
However, spurious non-zero VOLTAGE may occur and LIMITs for such
VOLTAGE may be specified. The PIN isdesigned to serve asreturn path for a
significant part of the CURRENT affecting the POWER consumption of the
CELL.

reference

The PIN isthe interface between a CELL and adevice which supplies either a
well-defined VOLTAGE or awell-defined CURRENT without being a signif-
icant contributor to the POWER consumption of the CELL. From an electrical
standpoint, areferenceis similar to asignal. However, from an information-
theoretical standpoint, areference is similar to a supply, because it does not
contain information.

Note: ALF 2.0, chapter 6.4.3 defines the semantic implication of DIRECTION on aPIN

with PINTY PE= SUPPLY. If the DIRECTION isinput, then the CELL must be connected
to asupply device in order to operate. If the DIRECTION is output, then the CELL itself

isthe supply device.

October 8, 2001

30

Note: A CELL needs not have exactly one PIN with SUPPLY TY PE=power and another
PIN with SUPPLY TY PE=ground. Passive devices (e.g. capacitor, resistor, diode) do not
have any supply pins. Semi-passive devices (e.g. clamp cells) have only supply pins corre-
sponding to the voltage level of the clamp. For example, aclamp cell to zero would have a
pin with SUPPLY TY PE=ground and DIRECTION=input and a pin with SIGNAL-
TYPE=TIE, POLARITY =low, and DIRECTION=output. Active devices have, at least,
either one pin with SUPPLY TY PE=power and another pin with SUPPLY TY PE=ground
or two pinswith SUPPLY TY PE=power and different supply voltages, usually one posi-
tive and one negative. In general, acell may have zero to multiple pins with SUPPLY -
TY PE=power or ground or reference.

13.3 Proposal for SUPPLY _CLASS semantics
Note: This section is proposed to supersede ALF 2.0, chapter 6.4.13.

The purpose of SUPPLY _CLASS isto define arelation between a power supply system
and acircuit utilizing the power supply system. The power supply system herein is under-
stood to be a set of nets (also called “rails’) capable to maintain awell-defined electrical
potential with respect to each other.

The power supply system itself shall be declared using a CLASS statement for global use
in the context of aLIBRARY or a SUBLIBRARY or for local use in the context of a
CELL or aWIRE.

The characteristics of the power supply system shall be defined in the context of the
objects which refer to the system using the SUPPLY _CL ASS annotation. The value of the
annotation shall be the name of the CLASS declaring the power supply system. Multi-
value annotation shall belegal. Multi-value annotation shall indicate that the object can be
used within either power supply system appearing in the set of values, but not necessarily
within all of them at the same time.

The object, in the context of which the SUPPLY _CLASS annotation and the optional
characteristics of the power supply system appear, shall be one of the following:

* A PIN withinaCELL
* A NODE withinaWIRE

* A CLASSfor global usage within aLIBRARY or aSUBLIBRARY or for local usage
withina CELL or aWIRE

The characteristics of the power supply system, i.e., the characteristics of each net within
the power supply system, shall optionally include the following items:

* Anarithmetic model for VOLTAGE, eventually containing arithmetic submodels for
MIN, TYP, MAX, and/or DEFAULT. In the context of a PIN with SUPPLY -
TY PE=power or aNODE with NODETY PE=power, the arithmetic model shall specify
the value of the supply voltage itself. In the context of a PIN with SUPPLY -

October 8, 2001 31

TYPE=ground or aNODE with NODETY PE=ground, the value of the supply voltage
shall be presumed zero. In the context of another PIN or NODE, an arithmetic model
for VOLTAGE may appear, but no relationship to supply voltage shall be implied.

A LIMIT statement, containing an arithmetic model for VOLTAGE with arithmetic
submodels for MIN and/or MAX. In the context of a PIN with any SUPPLY TY PE,
including “ground”, this model shall specify the tolerable limit for spurious supply
voltage change, which may occur due to resistive, capacitive or inductive noise. In the
context of another PIN, aLIMIT for VOLTAGE may appear, but no relationship to sup-
ply voltage shall be implied.

A SUPPLY TY PE may appear in the context of a CLASSfor the purpose to be inherited
by aPIN. Similarly, aNODETY PE may appear in the context of a CLASS for the pur-
pose to be inherited by aNODE.

The CONNECT_CLASS annotation (see ALF 2.0, chapter 9.17) within aPIN shall be
used to establish connectivity between terminals of a power supply net. The annotation
value shall be the name of a CLASS. The PIN shall inherit the statements appearing in the
context of that CLASS, including, but not restricted to, the SUPPLY _CL ASS annotation,
the arithmetic model for VOLTAGE, the LIMIT for VOLTAGE, and eventually the SUP-
PLY TY PE annotation.

The SUPPLY _CLASS annotation shall also be legal within an arithmetic model for
ENERGY or POWER. It shall indicate, which power supply system provides the energy
or power described by the arithmetic model.

Example:

LI BRARY ny_library {

CLASS io0 ;
CLASS core
CLASS Vdd_i o { SUPPLY_CLASS=i 0; SUPPLYTYPE=power; VOLTAGE=2.5; }
CLASS Vss_io { SUPPLY_CLASS=i o; SUPPLYTYPE=ground; }
CLASS Vdd_core { SUPPLY_CLASS=core; SUPPLYTYPE=power; VOLTAGE=1.38; }
CLASS Vss_core { SUPPLY_CLASS=core; SUPPLYTYPE=ground; }
CELL core2io_interface {
PIN Vdd1l { PINTYPE=supply; CONNECT_CLASS=Vdd_ i o; }
PIN Vdd2 { PINTYPE=supply; CONNECT_CLASS=Vdd _core; }
PIN Vss1 { PINTYPE=supply; CONNECT_CLASS=Vss i o; }
PIN Vss2 { PINTYPE=suppl y; CONNECT_CLASS=Vss core; }
PIN in { PINTYPE=digital; DI RECTI ON=i nput; SUPPLY_CLASS=core; }
PIN out { PINTYPE=digital; DI RECTI ON=out put; SUPPLY_CLASS=i o; }
VECTOR (?! in -> ?! out) {
ENERGY el 15.8 { SUPPLY_CLASS=i o; }
ENERGY e2 3.42 { SUPPLY_CLASS=core; }

October 8, 2001 32

14.0 Amended semanticsof RESTRICT_CLASSand
SWAP_CLASS

relation to ALF 2.0 6.1.3,6.1.4,6.1.5,6.1.6
relation to | EEE P1603 9.23

History extensive email discussion involving Kevin Grotjohn,
Tim Ehrler, Sean Huang
proposal formulated by Wolfgang, July 31
to be reviewed Oct. 9

14.1 Motivation

The semanticsof RESTRICT_CLASS and SWAP_CLASS, as described in ALF 2.0, do
not fit the intended usage models.

14.2 Proposal for RESTRICT_CLASS
Note: This section is proposed to supersede ALF 2.0, chapter 6.1.4.

The purpose of the optional RESTRICT_CLASS annotation shall be to identify character-
istics of a CELL which allow or disallow usage of the CELL for certain application tools.
Single-value or multi-value annotation shall be legal.

If the usage of the CELL is allowed, the application tool may add, remove, or substitute
instances of such acell in the design. If the usage of the CELL is not allowed, the applica-
tion tool may not add, remove, or substitute instances of such a cell in the design.

The condition for usage shall be specified to the application tool, at |east conceptually, by
a boolean function on a set of known RESTRICT_CLASS values. The application tool
shall, at least conceptually, evaluate this boolean function for each CELL. The value of a
particular variable in the boolean function shall be considered “true”, if the value appears
inthe RESTRICT_CLASS annotation of the CELL. Otherwise, the value shall be consid-
ered “false”. Usage of the CELL shall be allowed, if the boolean function evaluates true,
otherwise the usage of the CELL shall be disallowed. In addition, the usage of a CELL
shall be disallowed, if one or more RESTRICT_CLASS values of the CELL are unknown
to the application tool.

Example:
RESTRICT_CLASS vaues known by thetool = (A, B, C, D, E)
Condition for usage=A and not B or C

RESTRICT_CLASSvaluesof CELL X = (A, B)
Condition isfalse, therefore usage of CELL X is not allowed

October 8, 2001 33

RESTRICT_CLASSvaluesof CELL Y = (A, C)
Condition is true, therefore usage of CELL Y isalowed

RESTRICT_CLASSvaluesof CELL Z=(A, C, F)
Condition is true, but usage of CELL Z isnot allowed due to unknown value F

Note: The ALF standard does not prescribe a particular implementation of usage condition
support in thetoal. It is not necessary for the tool to provide a completely programmable
usage condition to comply with the ALF standard. The degree of sophistication for usage
condition support may be driven by user requirements.

14.3 Semantics of predefined RESTRICT_CLASS values

Note: The following table is proposed to replace table 6-6 in ALF 2.0, which contains
some circular definitions.

TABLE 2. RESTRICT_CLASS annotation for CELL object

Annotation value | description

synthesis Cell issuitable for usage by atool performing transformations from a behav-
ioral RTL design representation to astructural gate-level design representation
or between functionally equivalent structural gate-level design representations

scan Cell issuitable for usage by atool creating or modifying a structural design
representation by inserting circuitry for testability enabling serial shift of data
through storage elements

datapath Cell issuitable for usage by atool creating or modifying a structural imple-
mentation of a dataflow graph within a design

clock Cell is suitable for usage by atool creating or modifying circuitry for the dis-
tribution of synchronization signals (also called clock signals) within adesign

layout Cell issuitable for usage by atool creating or modifying physical locations
(placement) and physical interconnects (routes) of components within a
design

The usage of RESTRICT_CLASS values other than these predefined values shall belegal.
It shall not be implied that these predefined RESTRICT _CLASS values are automatically
“known™ by every application tool.

14.4 Proposal for SWAP_CLASS
Note: This section is proposed to supersede ALF 2.0, chapter 6.1.3, 6.1.5, 6.1.6.

The purpose of SWAP_CLASS shall beto identify setsof CELLS, wherein each CELL in
the set can be substituted for each other by a particular application tool. Multi-value anno-
tation shall be legal.

If the usage of two CELLs s authorized for a particular application tool according to
RESTRICT_CLASS (see previous chapter) and the intersection of SWAP_CLASS values
of thetwo CELLsis not empty, then thetwo CELLs shall be considered equivalent for the

October 8, 2001 34

particular application tool, and the application tool isfree to substitute one cell for the
other.

Any SWAP_CLASS vaue shall make reference to adeclared CLASS within aLIBRARY
or SUBLIBRARY.

The CLASS statement may contain a RESTRICT_CLASS statement. In this case, the set
of RESTRICT_CLASS values shall be inherited by the CELL containing the
SWAP_CLASS statement. If the intersection of SWAP_CLASS values of thetwo CELLS
is not empty and the usage of two CELLs is authorized according to the inherited
RESTRICT_CLASS values, then the two CELL s shall be considered equivalent for the
particular application tool, and the application tool isfree to substitute one cell for the
other.

Example with RESTRICT_CLASSand SWAP_CLASS (from ALF 2.0, chapter 6.1.5):

CLASS f oo0;
CLASS bar
CLASS what ever
CLASS ny_t ool
CELL cell1 {
SWAP_CLASS { foo bar }
RESTRI CT_CLASS { synthesis datapath }

}
CELL cell 2 {

SWAP_CLASS { foo whatever }
RESTRI CT_CLASS { synthesis scan ny_tool }

}

In order to swap celll and cell2, application tool must know all RESTRICT_CLASS val-
ues mentioned in this example. Usage condition may be (synthesis) or (datapath or
my_tool) or (synthesis and datapath or scan and my_tool) etc.

[modify figure 6-1 from ALF 2.0: non-empty intersection applies only to SWAP_CLASS]

Example with SWAP_CLASS and inherited RESTRICT_CLASS (from ALF 2.0,
chapter6.1.6):

CLASS all _nand2 { RESTRI CT_CLASS { synthesis } }
CLASS al | _hi gh_power _nand2 { RESTRICT_CLASS { |ayout } }
CLASS all | ow _power _nand2 { RESTRICT_CLASS { |ayout } }
CELL cell 1 {
SWAP_CLASS { all _nand2 all | ow power nand2 }
}
CELL cell 2 {
SWAP_CLASS { all _nand2 all _high_power_nand2 }
}
CELL cell3 {
SWAP_CLASS { all | ow power_nand2 }

}

October 8, 2001 35

CELL cell 4 {
SWAP_CLASS { al | _hi gh_power_nand2 }

}

A tool must know synthesisin order to utilize and swap cell1 and cell2. Another tool must
know layout in order to utilize celll, cell2, cell3, cell4 and swap cell 1 with cell3 or cell2
with cell4. A tool that knows both synthesis and layout may utilize and swap all four cells.

[modify figure 6-1 from ALF 2.0: non-empty intersection applies only to SWAP_CLASS]

October 8, 2001 36

15.0 Miscellaneous Grammar enhancements

relationto ALF 2.0 3.2, 11.x
relation to | EEE P1603 6.Xx, Annex A

History Prepared for Oct. 9 meeting by Wolfgang

15.1 Motivation

The grammar serves not only the purpose of defining syntax, but also terminology. A
parser does not care what terminology is used in grammar. However, if the grammar is
written in ameaningful and concise way for human understanding, the terminology intro-
duced therein can be used throughout the document for semantic explanation purpose.
Since human understanding is aways subjective, it may take some iterations, before the
most meaningful and concise terminology is found.

15.2 Boolean valueliteral

Current definition of pin_value in IEEE P1603, chapter 7.2.3:

pin_value ::=

pi n_vari abl e
| bit_literal
| based_literal
| unsigned

Issue: pin_valueisreferred to in IEEE 1603 chapter 6.6.1, which defines lexical rules.
However, pin_valueis not alexical token. The following change provides aremedy:

pi n_value ::=
pi n_variabl e
| bool ean_val ue

bool ean_val ue :: =
bit literal

| based_literal

| unsigned

Instead of referring to pin_value in 6.6.1, refer to boolean_value. All theitemsin
boolean_value are lexical tokens.

15.3 PULL statement

In ALF 2.0, chapter 6.4.17, PULL is defined as annotation. Chapter A.15.7 suggests to
provide VOLTAGE and RESISTANCE annotation inside PULL statement. This would
make PULL technicaly atwo_level _annotation. However, RESISTANCE and VOLT-
AGE are arithmetic models rather than annotations. Therefore, the grammar for the PULL
statement should be reformulated as follows:

October 8, 2001 37

pul |l ::=

PULL pul | value_identifier
| PULL pul | _value_identifier { pull_itens }
| pull _tenplate_instantiation

pull itens ::= pull_item{ pull_item}

pull item::=
vol tage_arithnetic_node
| resistance_arithnetic_node

Since PULL isused inside PIN, redefine pin_item (IEEE 1603, chapter 9.3.1) asfollows:

pin_item::=
all _purpose_item
| range
| port
| pull
| pin_instantiation

Note:

pul |l _value_ identifier ::=
up

| down

| both

| none

Thepul | _val ue_i denti fi er eventually requires specification of both pull-up and pull-
down resistance and voltage. Arithmetic submodels HIGH and LOW can be used for that
purpose.

Example:

RESI STANCE { UNIT = 1lohm }
VOLTAGE { UNIT = 1volt; }

PIN ny_pin {
PULL = both {
RESI STANCE { HI GH = 500; LOW= 1000; }
VOLTAGE { HGH = 5; LOW= -5; }

}
This pin features a pull up resistance of 500 ohm to be connected to 5 volt and a pull down

resistance of 1000 ohm to be connected to -5 volt.

15.4 Annotation container

Theannot at i on_cont ai ner statement (see ALF 2.0, chapter 11.7) has been omitted in
the new formulation of the grammar. Technically, annot at i on_cont ai ner can beinter-
preted as a specia case of t wo_| evel _annot at i on, but it may be advantageous to re-
introduce annot at i on_cont ai ner, becauset wo_| evel _annot at i on features avaue

October 8, 2001 38

whereas annot at i on_cont ai ner does not. This distinction makes the data model more
precise.

annotati on_container ::=
one_l evel _annotati on_cont ai ner
| two_level annotation_container
| nulti_level _annotation_container

one_| evel annotation_container ::=
annot ation_contai ner_identifier { one_|l evel annotations }

two_| evel _annotation_container ::=
annotation_container_identifier { two_|evel annotations }

mul ti | evel _annotation_container ::=
annot ati on_container_identifier { nmulti_|evel _annotations }

To do: identify all statementsin the grammar which are actually annot at i on_cont ai ner.

October 8, 2001 39

16.0 Amended semantics of CONNECTIVITY

relationto ALF 2.0 9.15
relation to | EEE P1603 11.13.1

History initial draft by Wolfgang, Oct. 7

16.1 Motivation

CONNECTIVITY has been formulated as arithmetic_ model in ALF 1.1, but not in ALF
2.0. In ALF 2.0, CONNECTIVITY isan exceptional statement different from
arithmetic_model, albeit it features HEADER and TABLE like an arithmetic_model. The
advantage of re-formulating CONNECTIVITY as arithmetic_model isto get rid of the
exception and to utilize CONNECTIVITY aso asargument in arithmetic_model. For
example, other arithmetic models, for example minimum spacing, antenna rule etc., may
depend on CONNECTIVITY. Another proposed enhancement isto utilize CONNECTIV-
ITY not only as areguirement for connections but aso as actual connection.

16.2 Proposal

The CONNECTIVITY statement shall be an arithmetic_model with value _typebit_literal.
It may contain the optional CONNECT _RULE annotation, which shall specify arequire-
ment for connections (see ALF 2.0, chapter 9.15.2). Without the CONNECT _RULE anno-
tation, the CONNECTIVITY statement shall specify actual connectivity. The value “1”
shall specify existing connection, the value “0” shall specify non-existing connection.

Example:

The following example describes pins on POLY layer with and without connection to dif-
fusion.

PIN pinl { // this pin has a POLY feature connected to NDI FF
AREA Al = 0.01 { LAYER=PQLY; }
CONNECTIVITY = 1 { BETWEEN { POLY NDI FF } }

}

PIN pin2 { // this pin has a PCLY feature not connected to NDI FF
AREA Al = 0.01 { LAYER=PQLY; }
CONNECTIVITY = 0 { BETWEEN { POLY NDI FF } }

}

The following exampl e describes a spacing rule between wires on the same layer, depen-
dent whether they are on the same net or not.

/1 mn distance between two wires, dependi ng whether sane net or not

RULE m n_di stance {
PATTERN pl { SHAPE
PATTERN p2 { SHAPE
LIMT {

l'ine; LAYER
l'ine; LAYER

metal 1; }
metal 1; }

October 8, 2001 40

DI STANCE {
BETVEEN { pl p2 }
M N {
HEADER { CONNECTIVITY { BETWEEN { pl p2 } } }
EQUATI ON { CONNECTIVITY ? 0.1 : 0.2 }

}
}
}
}

16.3 Supplementary proposal for CONNECT _TYPE

The CONNECT _TY PE annotation within the CONNECTIVITY statement shall specify
the nature of the connection.

connect _type_singl e _val ue_annotation ::=
CONNECT_TYPE = connect _type_identifier ;

connect _type_identifier ::=
el ectrical
| physical

The value “electrical” shall indicate that the objects are subjected to electrical connection,
i.e., apermanent direct current path does or does not exist between the objects. The value
“physical” shall indicate that the objects do or do not share common physical boundaries
with each other. The value “€electrical” shall be the default.

Supplementary explanation: A driver pin and areceiver pin of arouted wire have
CONNECT _TYPE €electrical. A viacut and the adjacent metal segments have
CONNECT _TYPE physical. CONNECT_TY PE physical does not alwaysimply electri-
cal connection. For example, objects of electrically insulating material may be physically
connected to each other.

October 8, 2001 41

17.0 Amended semantics of PULSEWIDTH, PERIOD

relation to ALF 2.0 8.3.17, 8/3/18
relation to | EEE P1603 11.9.9,11.9.10

History initial draft by Wolfgang, Oct. 7

17.1 Motivation

PULSEWIDTH and PERIOD are introduced in ALF 1.1 and ALF 2.0 for the purpose of
defining minimum pulse width and minimum period requirements in the context of a
VECTOR. The keywords PULSEWIDTH and PEERIOD are used in the same way as
SETUPR, HOLD, RECOVERY, REMOVAL, which aso define minimum timing require-
ments, without using the LIMIT or MIN statement. However, while SETUP, HOLD,
RECOVERY, REMOVAL always represent minimum timing requirements, PUL SE-
WIDTH and PERIOD could represent actual measurements or maximum requirements.
Therefore we propose to amend the definitions of PULSEWIDTH and PERIOD to specify
actual measurements.

17.2 Proposal

The keywords PULSEWIDTH and PERIOD shall specify arithmetic models in the con-
text of aVECTOR.

PULSEWIDTH shall specify a measured time between two subsequent transitions on a
pin, where the state of the pin after the second transition shall be equal to the state of the
pin before the first transition. The PIN annotation shall be mandatory. The
EDGE_NUMBER annotation shall be optional and specify the first transition of the two
subsequent transitions. To specify a minimum or maximum constraint, use PUL SE-
WIDTH in the context of LIMIT with submodel MIN or MAX, respectively.

PERIOD shall specify the measured time between two subsequent occurrences of the
VECTOR. PIN annotation and EDGE_NUMBER annotation do not apply. To specify a
minimum or maximum constraint, use PERIOD in the context of LIMIT with submodel
MIN or MAX, respectively.

Example:

The following example specifies pul se width degradation through a buffer.

CELL ny_buffer {

PIN in { DI RECTI ON=i nput; }

PIN out { DI RECTI ON=out put }

VECTOR (01 in -> 10 in <& 01 out -> 10 out) {
/1 output pulse width = f(input pulse w dth)
PULSEW DTH { PIN = out;

HEADER {

October 8, 2001 42

PULSEWDTH { PIN = in;
TABLE { 0.1 0.2 0.3 0.4 0.5 }
}

/1l short pulses are shortened, |ong pul ses keep their wdth
TABLE { 0.05 0.18 0.29 0.4 0.5}

}

The following example specifies cycle time (minimum period) and refresh time (maxi-
mum period) of a DRAM.
CELL ny_DRAM {

PIN CE { DIRECTION = input; SIGNALTYPE = enable; }
/1 fill in other pins etc.
VECTOR (01 ce) {

/1 for simplicity, presune that CE controls all

operations
LIMT {
PERI OD {
M N = 10;
MAX = 100000;
}
}

October 8, 2001 43

18.0 Amended definition of TIME and FREQUENCY
statement in context of arithmetic model

relationto ALF 2.0 8.3.6,8.9
relation to | EEE P1603 1191

History initial draft by Wolfgang, Oct. 7

18.1 Motivation

TIME and FREQUENCY are defined as arithmetic models. In addition, they are defined
as annotations for arithmetic models featuring the MEASUREMENT annotation. The rea-
son is the necessity to know either the time or the repetition frequency of a measurement.
To get rid of the double-usage of the keywords, we propose to specify TIME and FRE-
QUENCY asauxiliary “arithmetic model” within another arithmetic model rather than as
“annotation”.

18.2 Proposal

TIME and FREQUENCY shall be usable as auxiliary arithmetic model within the context
of another arithmetic model featuring the MEASUREMENT annotation with value “aver-
age”, “absolute_average”, “transient”, “RMS’, or “peak”. The evaluation of the auxiliary
TIME or FREQUENCY models must be independent from the evaluation of the main
model. Otherwise, TIME or FREQUENCY would have to appear within the HEADER of
the main model.

In the context of aVECTOR, the auxiliary TIME model may feature aFROM or aTO
statement. In the case of “peak”, this statement relates the occurrence time of the peak
measurement to a transition appearing in the VECTOR (see ALF 2.0, chapter 8.9.3). In
case of “average”, “absolute_average”, “transent”, “RMS’, the FROM and TO statement
define the occurrence time of atransition appearing in the VECTOR as the start or end
time, respectively, of the measurement.

Example:

The following example specifies multiple average power measurements within asingle
vector.

VECTOR (01 in -> 01 out) {
PONER pl1 = 0.3 {
MEASUREMENT = aver age;
TIME{ FROM{ PIN=1in; } TO{ PIN= out; } }
}
/1 average power is 0.3 nmeasured between the transition at "in”
/1 and the transition at "out”
PONER p2 = 0.4 {
MEASUREMENT = aver age;

October 8, 2001 44

/1
/1

}

TIME =0.2 { FROM{ PIN = out; } }
}
average power is 0.4 neasured during 0.2 tine units
after transition at "out”

The following example specifies time-window-sensitive noise margin.

VECTOR (*? data -> 01 clock -> ?* data) {

11

/1

/1

NO SE MARG N = 0.45 {
PIN = dat a;
MEASUREMENT = transient;
TI MVE {
FROM { PI N=dat a; EDGE_NUMBER=0; }
TO { PI N=data; EDGE_NUMBER=1; }
}
}

pin "data” is noise-sensitive only around transition at pin ”clock”
SETUP = 0.2 {
FROM { PI N=dat a; EDGE_NUMBER=0; } TO { PI N=cl ock; }

}
sensitivity window starts 0.2 tinme units before ”"clock” transition
HOLD = 0.3 {
FROM { PI N=cl ock; } TO { PI N=data; EDGE_NUMBER=1; }
}

sensitivity window ends 0.3 tinme units after ”"clock” transition

October 8, 2001

45

19.0 Item

relation to ALF 2.0 reference to ALF 2.0 chapter
relation to |EEE P1603 reference to | EEE P1603 chapter

History date of initial draft, date of revisions

19.1 Motivation

Explain reason for new feature

19.2 Proposal

Describe new feature

October 8, 2001

46

	X.0 Item
	X.1 Motivation
	X.2 Proposal

	1.0 Level definition for Vector Expression Language
	1.1 Motivation
	1.2 Proposal

	2.0 Metal Density
	2.1 Motivation
	2.2 Proposal

	3.0 Current
	3.1 Motivation
	3.2 Proposal
	3.3 Supplementary proposal

	4.0 Noise
	4.1 Motivation
	4.2 Proposal

	Context-specific meaning of NOISE
	5.0 Non-scan cell
	5.1 Motivation
	5.2 Proposal

	6.0 VIOLATION in context of LIMIT
	6.1 Motivation
	6.2 Proposal

	7.0 New value for MEASUREMENT annotation
	7.1 Motivation
	7.2 Proposal

	8.0 MONITOR statement for VECTOR
	8.1 Motivation
	8.2 Proposal

	9.0 Make grammar more compact by removing redundancies
	9.1 Motivation
	9.2 Proposal

	ALF 2.0 chapter 11.2
	ALF 2.0 chapter 11.3
	ALF 2.0 chapter 11.4
	ALF 2.0 chapter 11.5
	ALF 2.0 chapter 11.6
	ALF 2.0 chapter 11.7
	10.0 Rewrite grammar for more specific syntax and less semantic restriction
	10.1 Motivation
	10.2 Proposal

	ALF 2.0 Chapter 11.9
	ALF 2.0 Chapter 11.10
	ALF 2.0 Chapter 11.11
	ALF 2.0 Chapter 11.14
	ALF 2.0 Chapter 11.15
	ALF 2.0 Chapter 11.16
	11.0 Creating a standard ALF header file
	11.1 Motivation
	11.2 Proposal
	11.3 Supplementary proposal

	12.0 Amended semantics of LIMIT
	12.1 Motivation
	12.2 Proposal

	13.0 Semantics of SUPPLYTYPE and SUPPLY_CLASS for multi-rail support
	13.1 Motivation
	13.2 Proposal for SUPPLYTYPE semantics
	13.3 Proposal for SUPPLY_CLASS semantics

	14.0 Amended semantics of RESTRICT_CLASS and SWAP_CLASS
	14.1 Motivation
	14.2 Proposal for RESTRICT_CLASS
	14.3 Semantics of predefined RESTRICT_CLASS values
	14.4 Proposal for SWAP_CLASS

	15.0 Miscellaneous Grammar enhancements
	15.1 Motivation
	15.2 Boolean_value literal
	15.3 PULL statement
	15.4 Annotation container

	16.0 Amended semantics of CONNECTIVITY
	16.1 Motivation
	16.2 Proposal
	16.3 Supplementary proposal for CONNECT_TYPE

	17.0 Amended semantics of PULSEWIDTH, PERIOD
	17.1 Motivation
	17.2 Proposal

	18.0 Amended definition of TIME and FREQUENCY statement in context of arithmetic model
	18.1 Motivation
	18.2 Proposal

	19.0 Item
	19.1 Motivation
	19.2 Proposal

