
Harmonizing ALF and DCL modeling for function and timing in OLAMay 20, 1998 1

Harmonizing ALF and DCL modeling for
function and timing in OLA

Wolfgang Roethig

This note addresses timing and functional modeling issues, where harmonization between
ALF and DCL is needed. It presents a conceptional view rather than a detailed specifica-
tion, because we feel that agreement on the modeling principles is needed first.

1.0 Data-Control Flow Graph Modeling

1.1 Review of ALF functional modeling concept

1.1.1 Combinational Logic

Combinational logic is modeled with continuous assignments, like in Verilog.

Examples of continuous assignments are shown below.

z = a && b || c;
//and-or cell

q = (!s0 && !s1) ? d0 : (s0 && !s1) ? d1 : s1 ? d2 : ‘bx ;
//3-way mux

p[15:0] = a[7:0] * b[7:0];
// 8x8 multiplier

The operations and operands can be represented in a pure data flow graph, with exception
of the if-else operation (example of the 3-way mux), which has its control entry and its
data entry.

a

z = f(a)

any change in a triggers
evaluation of assignment
function f(a)

Harmonizing ALF and DCL modeling for function and timing in OLAMay 20, 1998 2

The combinational if-then-else operation can be graphically modeled using a select opera-
tor, which has orthogonal entries for data and control, as illustrated below.

 Cascaded if-elsif-elsif-elsif operations can be represented by cascaded select operators.

The values in data flow direction can be all values allowed by the standard, i.e. boolean,
unsigned, Z, X, L, H, W... Therefore any operators which produce such values are allowed.
AND, OR, Multiplication etc. are all allowed. Let us call them “data operators” for now.
On the other hand, in the control flow only the operators which produce boolean values are
allowed. Let us call them “boolean operators” for now. AND, OR are boolean operators.
They are a subset of data operators.

“Boolean operators” can have general data input, but boolean output. Examples are unary
reduction of unsigned numbers, equality comparison of non-boolean data.

1.1.2 Level-sensitive sequential logic

Level-sensitive sequential logic is modeled by conditional continuous assignments.

An example of conditional continuous assignments are shown below.

data entries

control
entry

select operator

data
operator

data
operator

boolean
operator

data flow
direction

control flow
direction

a

z

evaluation of assignment
function f(a) only enabled
while triggering function g

g

evaluates true
z = f(a)z holds value z holds value

Harmonizing ALF and DCL modeling for function and timing in OLAMay 20, 1998 3

//latch with input scan mux and asynchronous clear

@ (enb && !clear) { q = scan_enb ? test_in : data_in ;}
@ (clear) { q = 0 ; }
// modeled with concurrent “if”

@ (clear) { q = 0 ; }
: (enb) { q = scan_enb ? test_in : data_in ;}
// modeled with priority “if”, “else”

The sequential “if” is represented by “@”, the sequential “elsif/else” by “:” in ALF. If each
of the “@” and “:” clauses are proven false, the latch holds its value. If concurrent non-
exclusive “@” clauses are used, the latch will go to “X” in the case of simultaneously true
“@” clauses.

Sequential logic can be represented in a graph using a storage element. The storage ele-
ment has the same number of data entries as control entries, and each control entry is asso-
ciated with exactly one data entry.

The control entries need to be ordered in priority. A flow with concurrently activated con-
trol entries can always be transformed in a flow with prioritized control entries by defining
a conditional assignment to “X” for the “true” intersection of the concurrent clauses. An
example is shown below.

@ (a) { q = q1; }
@ (b) { q = q2; }

//is equivalent to
@ (a & !b) { q = q1; }
: (!a & b) { q = q2; }
: (a & b) { q = ‘bX; }

It is debatable whether implicit conflict resolution (i.e. if the values of q1 and q2 are the
same while a&b is true) should be provided as default or not. With implicit conflict resolu-
tion, the equivalence would be as follows.

data entries

control
entries

storage element

data
operator

data
operator

boolean
operator

data flow
direction

control flow
direction

boolean
operator

1 N
1

N

Harmonizing ALF and DCL modeling for function and timing in OLAMay 20, 1998 4

@ (a & !b) { q = q1; }
: (!a & b) { q = q2; }
: (a & b) { q = (q1==q2)? q1 : ‘bX; }

Note that the equivalence operator “==” is meant for absolute identity, like the Verilog
“===”. For boolean equivalence, the exnor operator “~^” should be used. For example
“‘bH==’b1“ is false while “‘bH~^’b1“ is true. Nevertheless, both “==” and “~^” are bool-
ean operators, since they produce only true or false or unknown, i.e. “X”.

When the first N clauses with highest priority are proven false and the N+1 clause is
unknown, the output will be “X” as well.

1.1.3 Edge-sensitive sequential logic

Edge-sensitive sequential logic is modeled in the same way as level-sensitive sequential
logic, with the only difference, that “vector-expressions” can be used in the “@” and “:”
clauses. A “vector-expression” in ALF describes an event or a sequence of events, which
evaluates true at exactly the time when the event or sequence of events is proven detected.

An example is shown below.

//positive-edge triggered flipflop with asynchronous clear

@ (01 clk && !clear) { q = d ;}
@ (clear) { q = 0 ;}

“01” is the rising-edge operator. “10” is the falling edge operator. “?!” is the any-edge
operator. Edges are not restricted to boolean values. They could be transitions between
unsigned numbers, too.

Level and edge-sensitive clauses can be used in the same model. Assignments triggered by
an edge-sensitive clause may contain the LHS variable also in the RHS of the assignment,
since the assignment is instantaneous and not continuous. The “<=” operator which is

b

g(b)

a

z
z=f(a,z)

z holds value z holds value

evaluation of assignment
function f(a) enabled through
event detection function g(b)

Harmonizing ALF and DCL modeling for function and timing in OLAMay 20, 1998 5

used in Verilog for non-blocking assignments, is not needed in ALF, since all assignments
triggered by edge-sensitive clause are non-blocking, i.e. RHS is previous state, LHS is
next state.

Examples:

@ (01 clk) { q = !q; qn = q; } //toggle flipflop
// qn has the opposite value of q, since it takes the value of previous q

@ (01 clk) { q = (j & k)? !q : (j & !k)? ‘b1 : (!j & k)? ‘b0 : q; }
// JK flipflop

In ALF, level-or edge sensitivity is indicated by the contents of the clause itself, which is
determined by the parser. The graph representation, however, should have labels on the
entries to indicate level-or edge sensitivity.

The behavior for unknown and conflicting clauses should be the same as for purely level-
sensitive logic.

The “vector expressions” can be used for edge-sensitive control only, not for data assign-
ment.

For example, the following assignment is meaningless:

q = (01 cp); // not valid ALF

On the other hand, “vector expressions” are also used for ALF vectors, i.e. definition of
timing and power arcs.

1.1.4 Graph representation of event sequences

A graph representation of a “vector expression” needs yet to be defined in a general way.
An event detection mechanism consists of two components:

data entries

co
nt

ro
l

en
tr

ie
s

storage element

data
operator

data
operator

boolean
operator

data flow
direction

control flow
direction

edge-sensitive

level-sensitive 1 N
1

N feedback allowed
for edge-sensitive
assignment

from event-detection

Harmonizing ALF and DCL modeling for function and timing in OLAMay 20, 1998 6

• an event queue, which can be modeled by a special storage element.
Inputs to the event queue are all variables in the observation space for event detection.

• a matching logic which compares the contents of the event queue with a predefined
event sequence, which can be modeled by a special boolean operator.

An example is shown below.

Each stage of the event queue stores both the edge and the variable for which the transition
applies. Hence a general event queue needs the following number of bits in storage space:

Number of stages * (log2(number of variables) + 2*log2(number of possible values))

Events are ordered by the followed-by operator “->”.

We propose to represent the “vector expression” by an “event queue” and an “event match-
ing operator”.

Conceptually, the values of a “vector expression” are binary dirac pulses rather than bool-
ean states. Those dirac pulses can also be propagated through AND and OR operators. OR
between vector expressions evaluates true, when either event is detected. AND between
vector expressions evaluates true if the events are detected simultaneously. AND is also

A

B

g(A, B) = (01 A -> 01 B)

co
nt

en
ts

 o
f

ev
en

t q
ue

ue last
event

2nd last

event

01 A 10 A01 B 10 B 01 B10 A01 A

01 A 10 A01 B 10 B 10 A01 AX

X

X

sequence (01 A -> 01 B) detected

event
queue

pattern
matching
operator to edge-triggered

entry of
storage element

control flow
direction

Harmonizing ALF and DCL modeling for function and timing in OLAMay 20, 1998 7

defined between vector expression and boolean expression. It evaluates true, if the boolean
expression is true at the time of event detection.

Hardware implementation of event queues can be found in asynchronous logic, for which
the ALF functional description capability comes in quite handy. An example is the Muel-
ler C-gate, which counts the events on its two inputs and toggles, when the two inputs
change subsequently.

@ (?! A -> ?! B || ?! B -> ?! A) { Z = !Z; }

Some shorthand operators are also defined:

(?! A <-> ?! B) is equivalent to (?! A -> ?! B || ?! B -> ?! A).

(?! A <&> ?! B) is equivalent to (?! A -> ?! B || ?! B & ?! A || ?! B -> ?! A).

1.2 Representation of control-data flow graph in DCL

This is currently being addressed by John Beatty’s proposal. Operators for continuous
assignements (boolean values and general data values) are well-defined therein. Defini-
tions for storage element, sequential control, and event queue need more work.

2.0 State-dependent Timing Arcs

2.1 Arc existence condition

DCL has a special function which returns the existence condition of a timing arc, ALF has
not. However, an ALF vector is not always the same thing as a DCL timing arc. Only vec-
tors with exactly two edges can be mapped directly into DCL timing arcs.

• Trivial case: ALF vector without logic condition, e.g. (01 A -> 10 B)
There is no existence condition, the vector always exists.

• Almost trivial case: ALF vector with logic condition, e.g. (01 A -> 10 B && C)
The existence condition of the vector isthe logic condition, e.g. C.

• General case: multiple ALF vectors with multiple logic conditions,
 (01 A -> 10 B && C) (01 A -> 10 B && D) (01 A -> 10 B && E)
The existence condition is the OR of all logic conditions, e.g. C || D || E.

This definition goes along with the ALF philosophy: ALF library is the complete charac-
terization database, therefore the existence condition of a timing arc must be the union of
all logic conditions of the vectors which map into that timing arc.

2.2 Mutual exclusivity of logic conditions

The question of mutual exclusive logic conditions needs to be resolved on the library char-
acterization level rather than on the ALF semantics level. ALF1.0 allows only specifica-

Harmonizing ALF and DCL modeling for function and timing in OLAMay 20, 1998 8

tion of exact delay values, not of a min-max or early-late range of delay values. Therefore,
if there are overlapping vectors, the delay values must be the same, otherwise the data was
not measured correctly.

If ALF would allow specification of delay data ranges, then the delay range for overlap-
ping vectors would need to be defined as the the non-empty intersection of delay data
ranges between the vectors.

2.3 Default for state-dependent arcs from ALF library

If the ALF set of vectors with conditions is not complete, how can a default be specified?
Specifying a default in ALF means to make the set of vectors complete. The delay value is
whatever the characterizer choses as default (again, specification of a range instead of
fixed value would be appropriate and could be considered for ALF1.1). The condition is
the one which complements the OR of all other conditions to the complete existence con-
dition.

Example:
existence condition is C, the vector (01 A -> 10 B && D) is characterized.
Since D must be a subset of the existence condition C, (D && !C) is always false.
Default vector needs to be (01 A -> 10 B && !D && C), since
 (!D && C) || D = (!D && C) || (D && C) || (D && !C) = C || (D && !C) = C.

2.4 Arc value condition

Given a set of vectors with conditions, a subset may be proven false, while no single con-
dition can be proven true. DCL currently cannot return the delays of the potentially true
vectors, it will return the default. This is because DCL evaluates the conditions in a serial
if-then-else manner and will return the delay for the first condition which is proven true or
the default as a fall-true value.

The only way in DCL to get delay for a subset of conditions instead of a single condition
is to predefine those subsets as modes, e.g. the set of all potentially true vectors in scan
modes are those with “scan enable” active.

ALF just contains the set of vectors without defining or restricting the access to the delay
values.

The capability of getting conditional delay values would almost eliminate the need for
defining modes and would be more general and flexible. However, it would require some
chirurgical changes in the DCL architecture. Therefore the cost-benefit tradeoff needs to
be considered carefully.

Harmonizing ALF and DCL modeling for function and timing in OLAMay 20, 1998 9

3.0 Open issues

3.1 Mapping ALF vectors with more than two edges into DCL arcs

to be discussed in the meeting

3.2 Mapping ALF vectors with less than two edges into DCL arcs

to be discussed in the meeting

