
ALF - Advanced Library Format

Page 1 of 63

ALF - AdvancedLibraryFormat
for ASIC Cells, Blocks andCores

containingTiming, Power,
Functional andPhysical Information

for Synthesis, Analysis andTest

ALF - Advanced Library Format

Page 2 of 63

Outline

Motivation and Goals

Relation between ALF, DCL, OLA

Functional Modeling

Object Model and Semantic Features

Conclusion

The ALF Story

Meta Syntax and Scoping Rules

Timing and Power Modeling
Modeling for Synthesis, Test and DRC

Introduction

ALF Language

ALF Applications

ALF Flow, Target Applications and Features

General Purpose ALF Objects

Megacell and Core Modeling

ALF - Advanced Library Format

Page 3 of 63

Motivation

Cost of ASIC Library Development

Resources
Time

Fast Introduction of new Technologies requires Efficient Library Generation

Cost Reduction

Quality Assignment

Leverage for New EDA Tools

Extensive Collaboration between EDA and ASIC Vendors necessary for Success

Automation

Fair Comparison Between Tools

The ALF standard can make life easier for everybody!

e.g. 60 people
e.g. 4 months

20 person years -> 50% productivity increase saves 10 person years

Time to Market
Efficient Use of Resources

Freed-up resources can help to make your next product
even more competitive or bring it faster to market!

ALF - Advanced Library Format

Page 4 of 63

ALF Goals
* Generality

Addresses Needs for Generic Design Tools
Expandable for Advanced Modeling Capabilities

* Simplicity

Self-Explaining Format
Easy to Generate and to Parse

* Efficiency

Compact Representation of Pertinent Information

* Flexibility

* Acceptance
Backward Compatibility

Does not Dictate Particular Modeling Style

Added Value

ALF - Advanced Library Format

Page 5 of 63

The ALF Story

ALF1.0 approved by OVI

ALF libraries from ASIC council companies

Commitment for ALF support from EDA

ALF integrated in ECSI OMILIBRES project

2/98

12/97

9/97

prototypes 4/98
production 9/98

Ambit, Avant!, Cadence, Mentor Graphics

OLA project for integration of ALF and DCL
approved by ASIC council and OVI

2/98

OLA demonstrator from ASIC council / SI2 6/98 (DAC)

ALF work group preparing ALF1.1 ongoing

ALF work group started as OVI PS-TSC 6/96

ALF named and announced at IVC/VIUF 3/97

ALF - Advanced Library Format

Page 6 of 63

The ALF Story (cont.)
Companies currently active in ALF work group, coordinated by OVI

Ambit, Avant!, Cadence, Cadworx, Duet, Fujitsu, LSI Logic, Mentor Graphics,
Motorola, NEC, Toshiba, VLSI Technologies

Companies involved in OLA (ALF-DCL integration project), coordinated by SI2

Ambit, Avant!, Cadence, Cadworx, Duet, IBM, LSI Logic, Lucent Technologies,
Mentor Graphics, Motorola, NEC, Synopsys, TI, VLSI Technologies

Other standardization bodies interested in ALF

ECSI, VSIA

Other EDA vendors interested in ALF

ASC, Sente Inc., Tera Systems, Verysys

Other ASIC and System vendors interested in ALF

Alcatel, I&D Telefonica, Siemens, Sun Microsystems

ALF - Advanced Library Format

Page 7 of 63

Relation between ALF, DCL, OLA

ALF
source library

delay & power
calculation
source code

golden
ALF
parser

DCL
compiler

OLA-compliant API

Application program

OLA framework development sponsored by ASIC council

OLA framework based on
OVI ALF 1.0 and DCL IEEE1481

ALF - Advanced Library Format

Page 8 of 63

Relation between ALF, DCL, OLA (cont.)
ALF (Advanced Library Format)

DCL (Delay Calculation Language)

Delay & power calculation requires bothlibrary anddesign data as input

is the source for delay & power calculation algorithms

is the source for cell characterization data

DCL compiler digests both ALF and DCL source and transforms them
into optimized code for performance and memory usage

OLA (Open Library API) is the interface between ALF, DCL
and the application program

Golden parser preprocesses ALF source for
correct syntax and semantics

OLA makes delay & power data and calculation algorithms transparent
ALF and DCL sources cannot be retrieved technically

Functional models and annotations are accessible through OLA
ALF source can be retrieved
Source access protection can be embedded in API

Results of calculation are required by application

ALF - Advanced Library Format

Page 9 of 63

ALF Library

functional model

simulation models

Timing analyzer Power analyzer

Test vector generatorModel generator

Verilog & VHDL
Test vectors
Verilog & VHDL

simulators
Verilog & VHDL

Logic synthesis tool

timing models power models

ALF Flow

annotations
for synthesis

annotations
for test

wire models

Test synthesis tool

proprietary or 3rd party EDA tool
3rd party EDA tool

Delay & Power Calculator

Design Database

Cell characterization tool

ALF - Advanced Library Format

Page 10 of 63

Target Applications
Timing Analysis

Power Analysis

Logic Synthesis

Simulation model

Test Synthesis

Signal Integrity

Place & Route

models generated with ALF input

 covered by PDEF (IEEE1481)

RTL Floorplanner
targeted for ALF 1.1

Test Vector Set

supported by ALF 1.0

Formal Verification

DRC

Delay and Power Calculator

ALF - Advanced Library Format

Page 11 of 63

ALF Features

Generic Functional Model

Combinational and sequential cells

Memories
Datapath: counters, adders, multipliers, comparators ...

Generic Model for CharacterizationData of Cells and Blocks
Wide range of variables, including timing and power

Vector-based modeling encompassed timing arcs, state-dependency and more
Equation or Table Based Models

Generic Physical Model

Annotation of Physical Cell Properties for Logic and Test Synthesis
Equation or Table Based Wire Models
Support for DRC

Cores

Canonical functional specification language
Supports logic expressions, event expressions, state and transition tables

Modeling Scope

Predefined and user-defined primitives

IO cells

Hierarchical modeling, emulation of netlists

ALF - Advanced Library Format

Page 12 of 63

Outline

Motivation and Goals

Relation between ALF, DCL, OLA

Functional Modeling

Object Model and Semantic Features

Conclusion

The ALF Story

Meta Syntax and Scoping Rules

Timing and Power Modeling
Modeling for Synthesis, Test and DRC

Introduction

ALF Language

ALF Applications

ALF Flow, Target Applications and Features

General Purpose ALF Objects

Megacell and Core Modeling

ALF - Advanced Library Format

Page 13 of 63

library

sublibrary

cell wire

pin

vector

arithmetic model

function

co
nt

ai
ns

co
nt

ai
ns

co
nt

ai
ns

co
nt

ai
ns

co
nt

ai
ns

co
nt

ai
ns

co
nt

ai
ns

co
nt

ai
ns

co
nt

ai
ns

contains

contains

contains

co
nt

ai
ns

ALF Object Model

primitive

co
nt

ai
ns

co
nt

ai
ns

co
nt

ai
ns

co
nt

ai
ns

co
nt

ai
ns

library

sublibrary

cell

wire

pin

vector
is a

is a

is a

is a

is a

is a

is a

library
object

primitive

annotation

annotation

contains
library
object

contains

contains

container

ALF - Advanced Library Format

Page 14 of 63

A Simple
CELL nand2 {

PIN a {
DIRECTION = input
CAPACITANCE = 20 {UNIT = fF}

}
PIN b {

DIRECTION = input
CAPACITANCE = 20 {UNIT = fF}

}
PIN z {

DIRECTION = output
}
FUNCTION {

BEHAVIOR {
z = !(a && b);

}
}
VECTOR (10 a -> 01 z){
// fill in characterization data
}
VECTOR (01 a -> 10 z){
// fill in characterization data
}
VECTOR (10 b -> 01 z){
// fill in characterization data
}
VECTOR (01 b -> 10 z){
// fill in characterization data
}

}

LIBRARY sample_library {

// written by ALFRED CLEARMAN

CAPACITANCE {UNIT = pF}
SLEWRATE {UNIT = ns}
DELAY {UNIT = ns}
ENERGY {UNIT = pJ}

CELL nand2 {
// fill in cell information
}

CELL d_flipflop {
// fill in cell information
}

}

Self-Explaining
Example

ALF - Advanced Library Format

Page 15 of 63

Semantic Features of ALF

* Each object type is recognized by a keyword

* library objects, especially arithmetic models, use context-specific keywords

- expandable modeling space for various applications
- customized modeling possible

* general purpose objects use hard keywords

ALF is case-insensitive
However, keywords are written in upper case in all examples for clarity

ALF - Advanced Library Format

Page 16 of 63

Meta Syntax

{ }child object
object

keyword =
identifier

object
value

KEYWORD { /* fill in children objects */ }

KEYWORD = value { /* fill in children objects */ }

KEYWORD object_id { /* fill in children objects */ }

KEYWORD object_id = value { /* fill in children objects */ }

* unnamed object without value assignment

* unnamed object with value assignment

* named object with value assignment

* named object without value assignment

defines object type defines object name

Any parser must be at least capable to identify begin and end of library objects

ALF - Advanced Library Format

Page 17 of 63

Scoping Rules
* curly parenthesis { } change the scope

* children objects are not visible outside their scope

* no more than one unnamed object of the same type allowed within the same scope

* unlimited number of named objects of same type allowed within the same scope

* parent objects propagate their visibility through their children objects

* named objects inherit properties of nearest visible unnamed object

* any inherited property can be overwritten by the object itself

* no unnamed object after a named object of the same type in the same scope
(unnamed object, if any, must come first)

ALF - Advanced Library Format

Page 18 of 63

Scoping Rules (cont.)

LIBRARY my_library {
CAPACITANCE { unit = 1e-12 }
CELL cell1 {

CAPACITANCE { unit = 1e-13}
CAPACITANCE c1 = 5

}
CELL cell2 {

CAPACITANCE = 7
CAPACITANCE c2

}
CAPACITANCE c3 = 9

}

Example:

Question:What are the units and values of c1, c2, and c3 ?

c1 = 5e-13c2 = 7e-12c3 = 9e-12 Answer:

scope = my_library

scope = my_library.cell1

scope = my_library.cell2

scope = my_library

ALF - Advanced Library Format

Page 19 of 63

General Purpose ALF Objects

* each library object may contain general purpose objects as well

* general purpose objects may not contain arbitrary general purpose objects

* the meaning of a general purpose object must be understood by any parser,
 whereas some tool-specific parsers may skip particular library objects
 (e.g. scan insertion tool does not need power consumption information)

template

general purpose object

property
group

alias
constant

class
attribute

is a

include is a
is a

is a

is a

is a
is a

is a

ALF - Advanced Library Format

Page 20 of 63

General Purpose ALF Objects (cont.)

* property: useful for arbitrary parameter-value assignment

* alias: useful for customized renaming of context-sensitive keywords

* constant: useful for constant numbers

* attribute: association of arbitrary unordered attributes

* include: inclusion of external ALF file

CONSTANT vdd = 3.3

ALIAS RAMPTIME = SLEWRATE

INCLUDE ’primitives.alf’

PROPERTY items {
parameter1 = value1 ;
parameter2 = value2 ;

}

CELL rom_8x128 {
ATTRIBUTE {ROM ASYNCHRONOUS STATIC}

}

ALF - Advanced Library Format

Page 21 of 63

Class Object

 object ID CLASS { }child object

* Reference to a class inside an object allows inheritance of arbitrary properties

Example: CLASS io_pin_cap {
UNIT = pF
MEASUREMENT = average

}
CLASS internal_pin_cap {

UNIT = fF
MEASUREMENT = average

}

CELL nand2 {
PIN a {

DIRECTION = input
CAPACITANCE = 20 {CLASS = internal_pin_cap}

}
...

}

* One object can inherit from more than one class

ALF - Advanced Library Format

Page 22 of 63

Group Object

{ }GROUP object ID identifier

* purpose: expand one definition to multiple definitions

integer integer:

Example: GROUP timing_measurements { DELAY SLEWRATE }
...
timing_measurements { UNIT = ns }

DELAY { UNIT = ns }
SLEWRATE { UNIT = ns }

group instantiation replaces the following individual instantiations

* Can also be used for definitions within a range of numbers (useful for bus expansion)

group definition

group instantiation

Example: GROUP bit { 0 : 3 }

VECTOR (a[bit] -> z[bit]) { ... }
// equivalent to 4 timing arc instantiations

ALF - Advanced Library Format

Page 23 of 63

Template Object

 object IDTEMPLATE { }child object

* Inside the parenthesis, any literal enclosed by < and > is recognized as a placeholder

Example:

* purpose:

* template instantiation uses the objectID

TEMPLATE input_pin {
PIN <name> {

DIRECTION = input
CAPACITANCE = <cap> {UNIT = fF}

}
}
CELL nand2 {

input_pin { name = a; cap = 20; }
input_pin { name = b; cap = 20; }
...

}

* reference to placeholders can be explicit (by annotation) or implicit (by order)

make format more compact for repeated information
define customized objects

ALF - Advanced Library Format

Page 24 of 63

Expressions

* Set of operators for arithmetic and boolean expressions

* Extended set of operators for vector expressions

adopted from IEEE standards

* Expressions can be nested

* Standard priority rules for operators

* Boolean expressions and vector expressions are used in functions and vectors

* Arithmetic expressions are used in arithmetic models

ALF - Advanced Library Format

Page 25 of 63

Outline

Motivation and Goals

Relation between ALF, DCL, OLA

Functional Modeling

Object Model and Semantic Features

Conclusion

The ALF Story

Meta Syntax and Scoping Rules

Timing and Power Modeling
Modeling for Synthesis, Test and DRC

Introduction

ALF Language

ALF Applications

ALF Flow, Target Applications and Features

General Purpose ALF Objects

Megacell and Core Modeling

ALF - Advanced Library Format

Page 26 of 63

a

z = f(a)

any change in a triggers
evaluation of assignment
functionf(a)

Function: Combinational Logic

* continuous assignments
modeled with

 * ALF uses continuous assignment language from VERILOG standard:
logical and, or, exor, if-then-else, unsigned and signed arithmetic ...
unary, binary and bitwise operators ...

 * ALF uses the 9 value system from IEEE standard:
- strong and weak 1, 0, X
- highZ, don’t care and uninitialized

z = a && b || c; //and-or cell

q = (!s0 && !s1) ? d0 : (s0 && !s1) ? d1 : s1 ? d2 : ‘bx ; //3-way mux

p[15:0] = a[7:0] * b[7:0]; // 8x8 multiplier

Examples:

boolean expressions

ALF - Advanced Library Format

Page 27 of 63

a

z

evaluation of assignment
functionf(a) only enabled
while triggering functiong

g

evaluates true
z = f(a)z holds value z holds value

Level-Sensitive Sequential Logic
* conditional

* both assignment and condition
modeled with

continuous assignments

boolean expressions

//latch with input scan mux and asynchronous clear

@ (enb && !clear) {
q = scan_enb ? test_in : data_in ;

}
@ (clear) {

q = 0 ;
}

Example:

@ (boolean expression) { continuous assignment }* Syntax:

ALF - Advanced Library Format

Page 28 of 63

b

g(b)

a

z
z=f(a,z)

z holds value z holds value

evaluation of assignment
functionf(a) enabled through
event detection functiong(b)

Edge-Sensitive Sequential Logic

condition for assignment

instantaneous assignment

modeled with

modeled with
boolean expression

vector expression

//positive-edge triggered flipflop with asynchronous clear

@ (01 cp && !clear) {
q = d ;

}
@ (clear) {

q = 0 ;
}

Example:

@ (vector expression) { continuous assignment }Syntax:

featuring edge operators

ALF - Advanced Library Format

Page 29 of 63

General Event-Sensitive Logic

vector expression

* vector expression

describes sequence

when sequence

A

B

g(A, B) = (01 A -> 01 B)

co
nt

en
ts

 o
f

ev
en

t q
ue

ue last
event

2nd last
event

01 A 10 A01 B 10 B 01 B10 A01 A

01 A 10 A01 B 10 B 10 A01 AX

X

X

sequence(01 A -> 01 B) detected

of transitions

evaluates true,

is detected

* General

//Mueller-C gate: output changes after two input events

@ ((01 A || 01 B || 10 A || 10 B) && event_count == 0) {
event_count = 1 ;

}
@ (01 event_count -> (01 A || 01 B || 10 A || 10 B)) {

event_count = 0 ;
Q = !Q ; // now the output changes

}

Example:

ALF - Advanced Library Format

Page 30 of 63

Choice of Functional Modeling Styles
logic behavior

logic statetable

primitive instantiation

hybrid modeling style is legal

* a primitive is a user-defineable object, which has pins and function like a cell,
but no arithmetic model

* modeler may define arbitraryprimitives at different levels of scope
for hierarchical netlist-style modeling

* ALF provides a set of predefined primitives, starting withALF_ prefix

* Names starting withALF_ are reserved for future predefined primitives

ALF_BUFIF1, ALF_BUFIF0, ALF_NOTIF1, ALF_NOTIF0

ALF_BUF, ALF_NOT
ALF_AND, ALF_OR, ALF_XOR, ALF_NAND, ALF_NOR, ALF_NXOR

ALF_MUX, ALF_LATCH, ALF_FLIPFLOP

ALF - Advanced Library Format

Page 31 of 63

Functional Modeling Styles: Example
NAND cell

BEHAVIOR {
z = !(a && b);

}
behavioral equation

STATETABLE {
a b : z ;
0 ? : 1 ;
1 ? : (!b);

}

BEHAVIOR {
ALF_NAND {

out = z;
in[0] = a;
in[1] = b;

}
}

BEHAVIOR {
ALF_NAND { z a b }

}

state table

primitive instantiation
pin reference by name

primitive instantiation
pin reference by order

ALF - Advanced Library Format

Page 32 of 63

Functional Modeling Styles: Example
flipflop with

BEHAVIOR {
@(01 cp && cd && sd) {q = d;}
@(!sd && cd) {q = 1;}
@(!cd) {q = 0;}

}

BEHAVIOR {
@(!cd) {q = 0;}
:(!sd) {q = 1;}
:(01 cp) {q = d;}

}

asynchronous
set and clear

STATETABLE {
cd sd cp d : q ;
0 ? ?? ? : 0 ;
1 0 ?? ? : 1 ;
1 1 1? ? :(q);
1 1 ?0 ? :(q);
1 1 01 ? :(d);

}

BEHAVIOR {
ALF_FLIPFLOP {

Q = q ;
D = d ;
CLOCK = cp;
CLEAR = !cd ;
SET = !sd ;

}
}

behavioral equation

state table

primitive instantiation
pin reference by name

concurrent style

if-then-else style

ALF - Advanced Library Format

Page 33 of 63

Timing and Power Modeling

Each operational mode of the cell, e.g. timing arc(01 A -> 10 Z)
is described by avector expression

* delay and power for each timing arc are functions of
slewrate @ pin A
load capacitance @ pin Z

* other possible dimensions: Vdd, Temperature ...

* multi-dimensional tables or equations

or combination of both

A
Z

B

NAND cell:

ALF - Advanced Library Format

Page 34 of 63

Example

Template for Standard

TEMPLATE std_header_2d {
HEADER {

CAPACITANCE {
PIN = <out_pin>
UNIT = pf
TABLE
{.01 .02 .04 .08 .16}

}
SLEWRATE {

PIN = <in_pin>
UNIT = ns
FROM {THRESHOLD = 0.3}
TO {THRESHOLD = 0.5}
TABLE {.1 .3 .9}

}

TEMPLATE std_char_2d {
DELAY {

UNIT = ns
FROM{PIN = <in_pin>

THRESHOLD = 0.4 }
TO{ PIN = <out_pin>

THRESHOLD = 0.6 }
std_header_2d {

in_pin = <in_pin>
out_pin = <out_pin>

}
TABLE <delay_data>

}SLEWRATE {
UNIT = ns
PIN = <out_pin>
FROM {THRESHOLD = 0.3}
TO {THRESHOLD = 0.5}
std_header_2d {

in_pin = <in_pin>
out_pin = <out_pin>

}
TABLE <ramptime_data>

}ENERGY {
UNIT = pj
std_header_2d {

in_pin = <in_pin>
out_pin = <out_pin>

}
TABLE <energy_data>

}
}

Characterization Table Header

Template for Standard
Characterization Table

ins
ta

nt
iat

es

ALF - Advanced Library Format

Page 35 of 63

Example (cont.)
CELL nand2 {

PIN a {
DIRECTION = input
CAPACITANCE = 0.02 {UNIT = pf}

}
PIN b {

DIRECTION = input
CAPACITANCE = 0.02 {UNIT = pf}

}
PIN z {

DIRECTION = output
}
FUNCTION {

BEHAVIOR {
z = !(a && b);

}
}
VECTOR (10 a -> 01 z){

std_char_2d { ... }
}
VECTOR (01 a -> 10 z){

std_char_2d { ... }
}
VECTOR (10 b -> 01 z){

std_char_2d { ... }
}
VECTOR (01 b -> 10 z){

std_char_2d { ... }
}

}

std_char_2d {
in_pin = a
out_pin = z
delay_data {

0.1 0.2 0.4 0.8 1.6
0.2 0.3 0.5 0.9 1.7
0.4 0.5 0.7 1.1 1.9

}
ramptime_data {

0.1 0.2 0.4 0.8 1.6
0.1 0.2 0.4 0.8 1.6
0.2 0.4 0.6 1.0 1.8

}
energy_data {

0.21 0.32 0.64 0.98 1.96
0.22 0.33 0.65 0.99 1.97
0.31 0.42 0.74 1.08 2.06

}
}

Use of template
in delay & power table
for NAND gate

ALF - Advanced Library Format

Page 36 of 63

Rules for Table Format
* Table format is defined by the order of appearance of the arguments in the header

* Each argument must have a one- dimensional table itself

* Target table contains just data separated by whitespace

Example: DELAY {
HEADER {

CAPACITANCE { TABLE { 0.5 1.0 2.0} }
SLEWRATE { TABLE { 0.3 0.9 } }
VOLTAGE { TABLE { 3.0 3.3 } }

}
TABLE {

0.3 0.5 0.8
0.6 1.0 1.4
0.2 0.4 0.7
0.5 0.8 1.2

}
}

Question:What is the delay for capacitance=1.0, slewrate=0.9, voltage=3.0 ?

Answer:delay = 1.0 (5th index)

* First argument defines innermost index

ALF - Advanced Library Format

Page 37 of 63

Glitch Power Modeling

* glitch power for(01 A -> 10 B)

 function of
A

Z

B
slewrate @ pin B
load capacitance @ pin Z

slewrate @ pin A

skew between transitions @ A and B

* 4-dimensional table not practical
-> use equations or combination of tables and equations

NAND cell:

ALF - Advanced Library Format

Page 38 of 63

Example
VECTOR (01 a -> 10 b) {

ENERGY {
HEADER {

SLEWRATE s_a { PIN = a }
SLEWRATE s_b { PIN = b }
DELAY dt {

FROM { PIN = a }
TO { PIN = b }

}
ENERGY e_a {

HEADER {
SLEWRATE {

PIN = a
TABLE {0.1 0.4 1.6}

}
TABLE {0.21 0.48 1.85}

}
ENERGY e_b {

HEADER {
SLEWRATE {

PIN = b
TABLE {0.1 0.4 1.6}

}
TABLE {0.23 0.46 1.79}

}
}
EQUATION {

(e_a + e_b) * dt / (s_a + s_b)
}

}
}

model glitch energy for a

- slewrate on each pin

- skew between input signals

- energy for each input transition
which itself is a function of

- slewrate on each pin

specific vector as a function of

energy for each input
is modeled as table

energy for resulting glitch
is modeled as equation

ALF - Advanced Library Format

Page 39 of 63

Timing Constraint Modeling

* Timing constraint arc(01 D <&> 01 CP)

* setup time and hold time are function of
slewrate @ pin D
slewrate @ pin CP

CP

D
Q

flipflop:

(01 D <&> 01 CP)

((01 D -> 01 CP) || (01 D & 01 CP) || (01 CP -> 01 D))

event on CP occurs first
or simultaneous events on D and CP
or event on D occurs first

 is a shorthand expression for

ALF - Advanced Library Format

Page 40 of 63

Example
VECTOR (01 d <&> 01 cp)

SETUP {
FROM { PIN = d; THRESHOLD = 0.35; }
TO { PIN = cp; THRESHOLD = 0.35; }
HEADER {

SLEWRATE s_d {
PIN = d
TABLE { 0.2 0.4 0.8 }

}
SLEWRATE s_cp {

PIN = cp
TABLE { 0.2 0.4 0.8 }

}
}
TABLE {

 0.1 0.4 0.9
-0.2 0.1 0.6
-0.3 0.0 0.4

}
VIOLATION {

BEHAVIOR { q = ‘bx; }
MESSAGE_TYPE = error
MESSAGE = “setup violation rising d to rising cp“

}
}

}

ALF - Advanced Library Format

Page 41 of 63

State-dependent Power Modeling
Internal switching power is a state-dependent function of

slewrate @ pin D

CP

D Q

flipflop:

(01 D && !CP)

(01 D && CP)

CP

D Q

1

0

0

1

no change no change

no change

ALF - Advanced Library Format

Page 42 of 63

Example
VECTOR (01 d && !cp) {

ENERGY {
HEADER {

SLEWRATE {
PIN = d
TABLE {

0.1 0.4 1.6
}

}
}
TABLE {

0.9 1.4 4.7
}

}
}
VECTOR (01 d && cp) {

ENERGY {
HEADER {

SLEWRATE {
PIN = d
TABLE {

0.1 0.4 1.6
}

}
}
TABLE {

0.3 0.5 1.8
}

}
}

ALF - Advanced Library Format

Page 43 of 63

Modeling of Delay (and Power) Derating
*Voltage and Temperature can be used as continuous variables

in any linear or non-linear model
* Process is a discrete variable, therefore process corners must be in a table

* For linear equation-based derating, put the process cornerdefinition in the header
and thevalue of the derating factor in thetable

* For nonlinear equation-based derating, use multiple named process objects
and do for each the same as for linear derating

* For lookup table model, process corners are used as non-interpolatable indices.
Put process cornerdefinition in the table, derating factors are not needed

HEADER {
PROCESS { HEADER {nom wnwp snsp} TABLE {0.0 0.25 -0.18} }
// other variables to follow

}
EQUATION { ... 0.24 + 1.53 * PROCESS ... }

HEADER {
PROCESS p1{ HEADER {nom wnwp snsp} TABLE {0.0 0.25 -0.18} }
PROCESS p2{ HEADER {nom wnwp snsp} TABLE {0.0 0.03 -0.04} }
// other variables to follow

}
EQUATION { ... 0.24 + 1.53 * p1 + 0.07 * p2 ** 2 ...}

HEADER {
PROCESS { TABLE {nom wnwp snsp} }
// other variables to follow

}
TABLE { /* multiple of 3 values */ }

ALF - Advanced Library Format

Page 44 of 63

Example
DELAY {

HEADER {
PROCESS {

HEADER {nom snsp snwp wnsp wnwp}
TABLE {0.0 -0.1 -0.2 +0.3 +0.2}

}
VOLTAGE { ... }
TEMPERATURE { ... }
DELAY {

HEADER {
CAPACITANCE { TABLE {0.03 0.06 0.12 0.24} }
SLEWRATE { TABLE {0.1 0.3 0.9} }

}
TABLE {

0.07 0.10 0.14 0.22
0.09 0.13 0.19 0.30
0.10 0.15 0.25 0.41

}
}

}
EQUATION {

DELAY
* (1 + PROCESS)
* (1 + (TEMPERATURE - 25)*0.001)
* (1 + (VOLTAGE - 3.3)*(-0.3))

}
}

ALF - Advanced Library Format

Page 45 of 63

Wire Modeling for Synthesis

* Table used for fanout inside range

WIRE my_wire {
CAPACITANCE {

UNIT = pF
HEADER {

FANOUT {
TABLE { 0 1 2 3 }

}
}
TABLE { 0.0 1.7 2.5 3.7 }
EQUATION { (FANOUT + 1) * 1.2 + 0.7}

}
RESISTANCE {

UNIT = mOhm
HEADER {

FANOUT {
TABLE { 0 1 2 3 }

}
}
TABLE { 0.0 9.5 12.5 15.0 }
EQUATION { (FANOUT + 1) * 4.5 + 0.8}

}
}

* Equation used for fanout outside range

* Estimation of wire capacitance and resistance
as a function of fanout

* expressed in tables or equations
in the same way as timing & power
models

ALF - Advanced Library Format

Page 46 of 63

Modeling for Test

* Reference to non-scan replacement model

* Annotations of Cell and Pin Properties for Scan Insertion and Test

Example:

CELL S000 {
PIN H01 {...}
PIN H02 {...}
PIN H03 {...}
PIN H04 {...}
PIN H05 {...}
PIN H06 {...}
PIN N01 {...}
PIN N02 {...}

SCAN {
scan_type = mux_scan
non_scan_cell = DFF2SC {

D = H06
CP = H02
CD = H05
SD = H04
Q = N01
QN = N02

}
}

}

CELL DFF2SC {
PIN Q {DIRECTION=output}
PIN QN {DIRECTION=output}
PIN D {DIRECTION=input }
PIN CP {DIRECTION=input }
PIN CD {DIRECTION=input }
PIN SD {DIRECTION=input }
FUNCTION {

@(CD) {QN = 1;}
@(SD) {Q = 1;}
@(CD && !SD) {Q = 0;}
@(SD && !CD) {QN = 0;}
@(01 CP && !CD && !SD)

{Q = D; QN = !D;}
}

}

ALF - Advanced Library Format

Page 47 of 63

Modeling for DRC

* Definition of connect classes at library level

* Connectivity function:

lookup table with connect-classes used as non-interpolatable indices

* Each pin of a cell belongs to a connect class by annotation

Modeling concepts:

* Connect rule must be associated with each connectivity function

values of connect_rule: must_short
can_short
cannot_short

values of connectivity function: connect rule is true
connect rule is false
connect rule is don’t care

1
0
?

input variables of lookup table: driver
receiver

ALF - Advanced Library Format

Page 48 of 63

LIBRARY example_library {
CLASS default
CLASS clock
CLASS enable
CLASS reset
CLASS tristate
CONNECTIVITY driver_to_driver {

CONNECT_RULE = can_short
HEADER {

DRIVER { TABLE { default clock enable reset tristate } }
} TABLE { 0 0 0 0 1 }

}
CONNECTIVITY receiver_to_receiver {

CONNECT_RULE = can_short
HEADER {

RECEIVER{ TABLE { default clock enable reset } }
} TABLE { 1 1 1 1 }

}
CONNECTIVITY driver_to_receiver {

CONNECT_RULE = can_short
HEADER {

DRIVER { TABLE { default clock enable reset tristate } }
RECEIVER{ TABLE { default clock enable reset } }

}
TABLE {// default clock enable reset tristate

1 1 1 1 0 // default
0 1 0 0 0 // clock
0 0 1 0 0 // enable
0 0 0 1 0 // reset

} } }

Example

ALF - Advanced Library Format

Page 49 of 63

Megacell Modeling
* Support for bus modeling and two-dimensional arrays (same as in VERILOG)

* Edge operators are supported also for words

Example: (‘b0100‘b1100 d[3:0]) is a short form of
(01 d[3] && d[2] && !d[1] && !d[0])

* Additional support for symbolic edge operators

?-
??
?!
?~

no switching activity on bus
arbitary switching activity on bus
at least 1 bit switches on bus
all bits switch on bus

* For Power modeling, number of switching bits can be used as a variable

* For Timing modeling, groups can be used to do timing arc expansion

ALF - Advanced Library Format

Page 50 of 63

Example

Asynchronous

CELL async_2port_ram {
PIN enable_write {

DIRECTION = input
}
PIN [4:0] adr_write {

DIRECTION = input
}
PIN [4:0] adr_read {

DIRECTION = input
}
PIN [7:0] data_write {

DIRECTION = input
}
PIN [7:0] data_read {

DIRECTION = output
}
PIN [7:0] data_store [0:31]{

DIRECTION = output; VIEW = none; SCOPE = modeling;
} // array of virtual pins

FUNCTION {
BEHAVIOR {

data_read = data_store[adr_read];
@(enable_write) {

data_store[adr_write] = data_write;
}

}
// to be followed by timing and power arcs

}

dual-port memory

ALF - Advanced Library Format

Page 51 of 63

Example (cont.)
GROUP adr_bits { 1 2 3 }
GROUP data_bits { 1 2 }

VECTOR (01 adr_read[adr_bits] -> 01 data_read[data_bits]) {
DELAY { ... }

} // this timing arc is expanded from all to all

VECTOR (01 din[data_bits] -> 01 dout[data_bits]) {
DELAY { ... }

} // this timing arc is expanded bitwise

VECTOR (?! data_write[7:0] && enable_write) {
ENERGY {

HEADER { SWITCHING_BITS { PIN = data_write } }
EQUATION { 1.3 * SWITCHING_BITS }

}
} // this power arc is not expanded

VECTOR (?! adr_read[4:0] -> 01 data_read[data_bits]) {
ENERGY {

HEADER { CAPACITANCE { PIN = data_read } }
EQUATION { 2.5 + 3.3 * CAPACITANCE }

}
} // this power arc is expanded to all data bits

}

expansion of
timing and power
arcs using groups

use of symbolic
edge operator “?!”
for non-expanded
power arc

ALF - Advanced Library Format

Page 52 of 63

Core Modeling
Approach: define lower level components asprimitives

Instantiate primitives for top levelfunction

Define vector objects fortiming shell

Example:

Resources:

Schedule: 4 multiplications performed in 4 clock cycles

data_out(t) = state(t) + b1*state(t-1) + b2* state(t-2)
state(t) = data_in(t) - a1*state(t-1) - a2*state(t-2)

16 bit adder/subtractor/accumulator, 16x16 bit multiplier

16bit x 4words register file for coefficients a1, a2, b1, b2

Controller: 2 bit counter counts 4 cycles

Algorithm:

shows datapath and control building blocks
2nd order digital IIR filter for DSP

16-bit wide data bus

ALF - Advanced Library Format

Page 53 of 63

Core Modeling: Example
CELL digital_filter {
// external pins

PIN [15:0] data_out {DIRECTION = output;}
PIN [15:0] data_in {DIRECTION = input; }
PIN [1:0] index_coeff{DIRECTION = input; }
PIN [15:0] coeff_in {DIRECTION = input; }
PIN clock {DIRECTION = input; }
PIN reset {DIRECTION = input; }
PIN write_coeff {DIRECTION = input; }
PIN data_strobe {DIRECTION = input; }

// internal pins
PIN [1:0] count {DIRECTION = output; VIEW = none;}
PIN [15:0] coeff_out {DIRECTION = output; VIEW = none;}

// user-defined primitives
PRIMITIVE CNT2 { ... }
PRIMITIVE REG16X4 { ... }
PRIMITIVE IIR2 { ... }

// function
FUNCTION { ... }

// timing shell
GROUP index {15 : 0}
VECTOR (01 clock -> 01 data_out[index]) { DELAY { ... } }
VECTOR (01 clock -> 10 data_out[index]) { DELAY { ... } }
VECTOR (01 clock <&> 01 data_in[index]) { SETUP { ... } HOLD { ... } }
VECTOR (01 clock <&> 10 data_in[index]) { SETUP { ... } HOLD { ... } }

}

top-level view

ALF - Advanced Library Format

Page 54 of 63

Core Modeling: Example (cont.)
PRIMITIVE CNT2 {

PIN cd { DIRECTION = input}
PIN cp { DIRECTION = input}
PIN start { DIRECTION = input}
PIN[1:0] count { DIRECTION = output}
FUNCTION {

BEHAVIOR {
@ (!cd) {count = 2’b0;}
: (01 cp){count = start ? 2’b0 : count + 1;}

}
}

}

PRIMITIVE REG16X4 {
PIN we {DIRECTION = input}
PIN [15:0] din {DIRECTION = input}
PIN [15:0] dout {DIRECTION = output}
PIN [15:0] dmem [1:4] {DIRECTION = output; VIEW = none;}
FUNCTION {

BEHAVIOR {
dout = dmem[r_adr];
@ (we) {dmem[w_adr] = din;}

}
}

}

2 bit counter

16bit x 4 word register file

ALF - Advanced Library Format

Page 55 of 63

PRIMITIVE IIR2 {
PIN cd { DIRECTION = input}
PIN cp { DIRECTION = input}
PIN [15:0] dout {DIRECTION = output}
PIN [15:0] din {DIRECTION = input}
PIN [1:0] cntrl {DIRECTION = input}
PIN [15:0] coeff {DIRECTION = input}
PIN [15:0] product {DIRECTION = output; VIEW = none}
PIN [15:0] accu {DIRECTION = output; VIEW = none}
PIN [15:0] state1 {DIRECTION = output; VIEW = none}
PIN [15:0] state2 {DIRECTION = output; VIEW = none}
FUNCTION { BEHAVIOR {

sum =
(cntrl==’d0)? din - product :
(cntrl==’d1)? accu - product :
(cntrl==’d2 || cntrl==’d3)? accu + product ;

@ (!cd) {
product = 16’b0; accu = 16’b0; dout = 16’b0;
state1 = 16’b0; state2 = 16’b0;

}
: (01 cp){

product =
(cntrl==’d0 || cntrl==’d2)? coeff * state2 :
(cntrl==’d1 || cntrl==’d3)? coeff * state1 ;

accu = sum;
dout = (cntrl==’d0) ? accu : dout ;
state2 = (cntrl==’d0) ? state1 : state2;
state1 = (cntrl==’d0) ? accu : state1;

} } } }

datapath (2nd order digital IIR filter)

ALF - Advanced Library Format

Page 56 of 63

top-level function

CELL digital_filter {
...
FUNCTION {

BEHAVIOR {
CNT2 u1 {

cd = reset;
cp = clock;
count = count;
start = data_strobe;

}
REG16x4 u2 {

we = write_coeff;
din = coeff_in;
dout = coeff_out;

}
IIR2 u3 {

cd = reset;
cp = clock;
cntrl = count;
din = data_in;
dout = data_out;
coeff = coeff_out;

}
}

}
...

}

ALF - Advanced Library Format

Page 57 of 63

Outline

Motivation and Goals

Relation between ALF, DCL, OLA

Functional Modeling

Object Model and Semantic Features

Conclusion

The ALF Story

Meta Syntax and Scoping Rules

Timing and Power Modeling
Modeling for Synthesis, Test and DRC

Introduction

ALF Language

ALF Applications

ALF Flow, Target Applications and Features

General Purpose ALF Objects

Megacell and Core Modeling

ALF - Advanced Library Format

Page 58 of 63

Conclusion
* ALF is designed for generic ASIC libraries in order to

facilitate library development for ASIC vendors

leverage new EDA tools

respond to advanced modeling requirements

* ALF features efficient modeling of ASIC cells and blocks for
functionality
power and timing
physical properties

* ALF Syntax is
easy to understand
economic in use of keywords and reserved characters
versatile and flexible

ALF - Advanced Library Format

Page 59 of 63

Conclusion (cont.)
What ALF isNOT

* A programming language

* A delay or power calculation language

* A tool-specific data representation for Simulation, Static timing etc.

* Design data file

* Replacement for

- SDF
- SPF
- PDEF
- Verilog
- VHDL
- DCL

* The library seen by the final customer

ALF - Advanced Library Format

Page 60 of 63

Conclusion (cont.)
What ALF IS

* A file format forASIC functional, timing and power modeling

* A unified source for consistent library data

* A prefered data entry from modeling engineers who are not programmers

* complementary to other standards

- SDF
- SPF
- PDEF
- Verilog
- VHDL
- DCL

* source, allowing the application to compile for efficiency

* Library data file

for synthesis, analysis and test

ALF - Advanced Library Format

Page 61 of 63

Acknowledgements

Wolfgang Roethig, PhD NEC, formerly LSI Logic ALF chairman
Amir Zarkesh, PhD TDT, formerly Viewlogic ALF co-chairman
Mike Andrews Mentor Graphics ALF co-chairman
Tim Ayres Viewlogic/Sunrise
Victor Berman VI / IEEE
Dennis Brophy Mentor Graphics / IEEE DPC
Renlin Chang Cadence
Sanjay Churiwala Cadworx
Jose De Castro Mentor Graphics
Timothy Ehrler VLSI Technology
Paul Foster Avant! Corporation
Vassilios Gerousis, PhD Motorola / OVI Board
Kevin Grotjohn LSI Logic
Johnson Chan Limqueco Ambit Design Systems
Ta-Yung Liu Avant! Corporation
Larry Rosenberg Cadence/VSI
Hamid Rahmanian Mentor Graphics
Ambar Sarkar, PhD Viewlogic
Itzhak Shapira Cadence
Yatin Trivedi Seva Technologies Technical Editor
Devadas Varma Ambit Design Systems
David Wallace Mentor Graphics/Exemplar
Frank Weiler Avant! Corporation / OVI Board

Contributors to ALF 1.0

ALF - Advanced Library Format

Page 62 of 63

Focus of Work Groups
ALF work group

OLA work group

Propose extensions to ALF for new applications

Explore ALF as modeling language for existing and new applications

datapath compiler
signal integrity

...

Promote migration from internal ASIC library formats to ALF

help developping the OLA framework

help testing the OLA framework

Target audience: design & modeling engineers (software background useful)

Target audience: software engineers (design & modeling background useful)

promote development of OLA-based applications

promote migration of tool-specific interface to OLA

formal verification

Our work groups are open - please join us!

ALF - Advanced Library Format

Page 63 of 63

Contact People
ALF work group:

http://www.ovi.org
http://www.si2.org

OLA work group:

websites:

Wolfgang Roethig

Email: Wolfgang_Roethig@el.nec.com
Tel. 408 588 5349
NEC Electronics, Santa Clara CA

Mike Andrews

Email: mike_andrews@mentorg.com
Tel. 503 685 4879
Mentor Graphics Corp., Wilsonville OR

chairman

co-chairman

Jay Abraham

Email:jabraham@si2.org
Tel. 512 342 2244 x 52
Si2 Inc., Austin TX

project coordinator

