
March 15, 2000 ALF tutorial 1

VDSM Modeling with ALF

ALF Tutorial 2000 version 0
March 15, 2000

Wolfgang Roethig

wroethig@eda.org

March 15, 2000 ALF tutorial 2

Outline

• Introduction

• ALF language

• ALF applications

• Conclusion

March 15, 2000 ALF tutorial 3

Introduction

ALF = Advanced Library Format

• Motivation

• Background

• Status

• Contents of ALF library

• Design flow with ALF

March 15, 2000 ALF tutorial 4

Motivation
• Nanometer technology

– Higher complexity: need for abstraction

– Smaller geometry: need for accuracy

• Tools merge
– all design steps from RTL synthesis to layout become backend

– strong interaction between electrical analysis and optimization

• ALF provides the adequate datamodel
– complete and comprehensive library representation

– covers all aspects of functional, electrical, physical modeling

– neutral format, open standard, freely available

March 15, 2000 ALF tutorial 5

Background

• ALF started 1996 as OVI workgroup
– primary focus on synthesis, power, timing libraries

• ALF version 1.0 released Nov. 1997
– contains function description, timing, power, DFT library for ASIC

• Collaboration with SI2 on OLA since Feb. 1998
– Built on ALF and DCL technology

– Goal: open library API for all design tools

• ALF version 1.1 released Apr. 1999
– new items: signal integrity, more abstract macromodeling capabilities

• ALF version 2.0 release planned for June 2000
– new items: layout, BIST, interconnect analysis

March 15, 2000 ALF tutorial 6

Status

• Contributors and reviewers across the industry
– Cadence, IBM, Infineon, Logicvision, LSI Logic, Mentor Graphics,

Monterey, NEC, Philips, Sente, SI2, Synopsys

– 1.5 day face-to-face meeting per month with typical attendance > 10 people

– 2 additional conference calls per month in average

• Emerging ALF support for new EDA tools
– Sente, Library Technologies, Magma, Silicon Metrics, Tera Systems

• Indirect ALF support through OLA
– Use of SI2’s OLAWorx - NDCL compiler suite

– Synthesis & timing analysis from Cadence, Mentor Graphics

• Initiation of IEEE standard planned in Q2 2000

March 15, 2000 ALF tutorial 7

Contents of ALF library
• Cell data

– Function
• golden reference for specification, characterization, synthesis,

formal verification, test, simulation

– Electrical performance data
• Characterization data for timing, power, signal integrity

covers superset of SDF, DCL data model

– Supplementary data for synthesis, test, layout

• Library data
– Global technology data

• Version 2.0 will have superset of LEF

– Models for interconnect analysis
• includes crosstalk and noise

March 15, 2000 ALF tutorial 8

Similarities with other library formats

• Readability
– human-readable ASCII source

– ALF language uses English keywords, no acronyms

• Data representation
– easy to map Synopsys .lib or Cadence TLF constructs

into ALF

– However, the primary intent is not to replace existing
formats for commodity, but to add value

March 15, 2000 ALF tutorial 9

Distinction from other library formats

• More general modeling language

• Describes the modeling concepts along with the data
– Example: Where other libraries may contain parameters or K-factors,

ALF supplies the complete equation

• Two most distinguishing concepts
– vector_expression language provides an abstraction for describing

dynamic behavior, useful for characterization, analysis, test from RTL
to post-layout

– arithmetic_model construct provides a general and concise way of
expressing mathematical relationships between measurable quantities
(e.g. electrical characterization data) in the library

March 15, 2000 ALF tutorial 10

Design flow with ALF
• Library characterization

– Primary input: cell & technology specification in ALF

– Primary output: cell & technology data in ALF

• Downstream library generation
– Verilog / VHDL

– OLA

• Model generation
– Front end design planning: models for softmacros in ALF

– Back end hierarchical design: models for hardmacros in ALF

• Repository for functional, electrical, physical library data

March 15, 2000 ALF tutorial 11

Design flow with ALF (cont.)

ALF cell
& technology

library

ALF
library
spec.

ALF
block-based

models

ALF
macro
models

HDL design
description

Structural
design description

Simulation model
generator

Verilog
VHDL
models

compiled
ALF library

For hierarchical design

Block
Block

Block

Model generation tool

Design planning tool

Physical design tool

Layout
database

OLA compiler

Macromodel
characterization
tool

Library
characterization
tool

Long term Short term

March 15, 2000 ALF tutorial 12

ALF language

• ALF grammar
– Symbols

– Expressions

• ALF statements
– Objects in a library

– Model data (arithmetic model)

March 15, 2000 ALF tutorial 13

ALF grammar
Conventions used :

::= start of syntax definition

| alternative syntax definition

item normal syntax item

item bold item appears verbatim in ALF source

italic_item italic part is for semantic explanation

[item] optional syntax item, can appear once

{ item } optional syntax item, can be repeated multiple times

Comments in ALF source:
/* this is an enclosed comment */

// this is a comment until end of line

March 15, 2000 ALF tutorial 14

ALF grammar (cont.)
• The grammar follows a common construction principle

• Each object is defined by a keyword, an optional name and an optional value

• Certain objects may have multiple values

• Certain objects may have children objects

object ::=

keyword [name] [= value] ;

| keyword [name] { value { value } }

| keyword [name] [= value] { object { object } }

• An object is always terminated either by a semicolon or by a values or
children objects enclosed by curly braces

• This construction principle allows an ALF reader to identify start and end of
an object without semantic interpretation, thus allowing inclusion of
customized objects

March 15, 2000 ALF tutorial 15

ALF grammar (cont.)

keyword ::= symbol [index]

name ::= symbol [index] | (expression)
value ::= symbol [index] | expression | number

• A keyword is a symbol with optional index

• A name is either a symbol with optional index or an expression

• A value is either a symbol with optional index or an expression or a number

Examples:
number: -3.8, 5E-9, 100

index: [3], [1:50]

symbol: C144, HEADER, @, <my_symbol>, “example.alf”

expression: 3*A + 0.5*B/C, X && !Y, (Z==‘b5)? A1 : A2

March 15, 2000 ALF tutorial 16

Symbols

non_escaped_identifier contains alphanumerical characters, _, $, #

quoted_string starts and ends with ”, contains any character including whitespace

escaped_identifier starts with \, contains any character except whitespace

escape character escapes the whole word, not just the following character

placeholder_identifier symbolizes a placeholder within a TEMPLATE

starts with <, ends with >, contains alphanumerical characters , _, $, #

hierarchical_identifier contains a dot . as hierarchical delimiter

dot overrides the escape character, must be escaped by itself, if necessary

based_literal starts with ‘b or ‘o or ‘d or ‘h

symbolizes a binary or octal or decimal or hexadecimal value, respectively

@, : are special symbols used in a particular context

symbol ::=
non_escaped_identifier | quoted_string

| placeholder_identifier | escaped_character
| hierarchical_identifier | based_literal | @ | :

March 15, 2000 ALF tutorial 17

Symbols (cont.)
Symbol are primarily used for keywords or names

Symbols used as values usually refer to the name of an already declared object

Purpose of the keyword
Declare an object of a certain type, e.g. LIBRARY, CELL, PIN

In general, only a non_escaped_identifier is used as a keyword

Purpose of the name
Distinguish different objects of the same type, e.g. PIN A, PIN Z

Make reference to an object by name, e.g. Z = ! A
The allowed set of symbols or expressions depends on the type of object

Case-sensitivity
Keywords are case-insensitive

However, in this tutorial, keywords will be systematically in upper case

Names and values are case-insensitive within ALF
However, a translator or compiler targeting a case-sensitive application shall preserve the

case of the name in the declaration of the object

March 15, 2000 ALF tutorial 18

Expressions

arithmetic_expression

describes calculation of numbers involving arithmetic models

boolean_expression

describes calculation of states involving logical variables

vector_expression

describes a sequence of events involving logical variables

statetable_header_expression

defines logic variables in a STATETABLE

statetable_body_expression

defines logic values in a STATETABLE

expression ::=
arithmetic_expression

| boolean_expression
| vector_expression
| statetable_header_expression
| statetable_body_expression

March 15, 2000 ALF tutorial 19

Arithmetic expressions

Unary operators
+ neutral operator

- change of sign

Binary operators
+ add

- subtract

* multiply

/ divide

% modulo

** power

Symbols for operators for arithmetic_expression

Macro operators with one argument
ABS absolute value

EXP natural exponent

LOG natural logarithm

Macro operators with multiple arguments:
MIN smallest value

MAX largest value

Increasing priority
Example for arithmetic_expression

-A + 0.5*(EXP(C%4) - 3.1*MAX(A/4, B))

March 15, 2000 ALF tutorial 20

Boolean expressions

bit_literal
Pure logic values

0 - low

1 - high

X - unknown

Logic values with weak drive strength
L - low

H - high

W - unknown

Special logic values
Z - high impedance

U - uninitialized

based_literal
binary base

Example: ‘b1101

octal base
Example: ‘o15

decimal base
Example: ‘d13

hexadecimal base
Example: ‘hD

Symbols for logic values in boolean_expression

March 15, 2000 ALF tutorial 21

Boolean expressions (cont.)

Logical operations
|| logical or

&& logical and

^ exclusive or

~^ exclusive nor

! logical inversion

Symbols for logic operators in boolean_expression

If-then-else operation
if_then_else_boolean_expression ::=

if_boolean_expression ? then_boolean_expression :
{ else_if_boolean_expression ? then_boolean_expression : }
else_boolean_expression

Increasing priority

Bitwise operations
| bitwise or
& bitwise and

^ exclusive or

~^ exclusive nor

~ bitwise inversion

March 15, 2000 ALF tutorial 22

Boolean expressions (cont.)
Symbols for logic operators in boolean_expression (continued)

Logical reduction operations
&, ~& unary and, nand

|, ~| unary or, nor

^, ~^ unary exclusive or, exclusive nor

==, != equal, not equal

>, < greater than, less than

>=, <= greater or equal, less or equal

Integer arithmetic operations
+ addition

- subtraction

* multiplication

/ division

% modulus

>> shift right

<< shift left

Examples for boolean_expression

A && B | C
C[5:3] >> 2
C1 ? D1 : (C2 | C3) ? D2 : ‘bX
M >= N
~& D[1:100]

March 15, 2000 ALF tutorial 23

Vector expressions

edge_literal describes a transition between logic values

edge_literal ::=
bit_literal bit_literal | based_literal based_literal

The simplest vector_expression describes a single event

vector_single_event ::=
edge_literal boolean_expression

Examples

01 A transition from logical 0 to logical 1 on A

‘o5’o7 B[3:1] transition from octal 5 to octal 7 on B[3:1]

Symbols for operators in vector_expression

March 15, 2000 ALF tutorial 24

Vector expressions (cont.)

Symbolic bit_literals for use in edge_literals

? arbitrary state (don’t care)

* arbitrary number of transitions (don’t monitor)

Symbols for operators in vector_expression (continued)

time

0? A transition from logical 0 to arbitrary state on A

0* A steady logical 0 followed by arbitrary transitions on A

Examples

time

Symbolic edge_literals

?! arbitrary transition

?~ transition to bitwise complementary state
?- non-transition

March 15, 2000 ALF tutorial 25

Vector expressions (cont.)

Atomic relational operators for events
-> LHS immediately followed by RHS (no events in-between)
~> LHS eventually followed by RHS (arbitrary number of events in-between)
& LHS and RHS occur simultaneously
| LHS or RHS occur as alternatives

Symbols for operators in vector_expression (continued)

Complex relational operators for events
<-> LHS <-> RHS === LHS -> RHS | RHS -> LHS
&> LHS &> RHS === LHS & RHS | LHS -> RHS
<&> LHS <&> RHS === LHS &> RHS | RHS -> LHS

Operators for conditional events
vector_conditional_event ::=

vector_expression && condition_boolean_expression
| condition_boolean_expression && vector_expression
| if_boolean_expression ? then_vector_expression :

{else_if_boolean_expression ? then_vector_expression : }
else_vector_expression

March 15, 2000 ALF tutorial 26

ALF statements

• Statements defining objects in a library
library_specific_objects

• Statements defining model data in a library
arithmetic_models

• Statements for efficient library representation
generic_objects

• Auxiliary statements

March 15, 2000 ALF tutorial 27

Objects in a library
LIBRARY

SUBLIBRARY

CELL

PIN

PORT

FUNCTION

PRIMITIVE

VECTOR

WIRE

LAYER

VIA

RULE

SITE

NODE

PATTERN

PIN

BLOCKAGE

Physical domain Functional domain

geometric_models

ANTENNA

March 15, 2000 ALF tutorial 28

Objects in a library (cont.)
• Objects of a library have names

• The ALF language naturally defines the relationship between objects

• The ALF language is modular
– Library need not include every possible object from the functional or physical domain

LIBRARY my_library {
WIRE my_wire_model_1 { /* data for wire model */}
WIRE my_wire_model_2 { /* data for wire model */}
CELL my_cell {

/* data for cell */
PIN my_pin_A { /* data for pin */ }
PIN my_pin_B { /* data for pin */ }
FUNCTION { /* function description */ }
VECTOR (vector_expression) {

/* characterization data */
}
VECTOR (vector_expression) {

/* characterization data */
} } }

March 15, 2000 ALF tutorial 29

Objects in the functional domain

• LIBRARY contains CELLs, WIREs, functional PRIMITIVEs.

• A LIBRARY may be divided into SUBLIBRARIES, each of which may contain
CELLs, WIRE load models, PRIMITIVEs.

• CELLs contain PINs, a FUNCTION description and VECTORs

• WIREs contain interconnect modeling data, eventually using NODEs and VECTORs

• VECTOR contains characterization data, for which a specific stimulus is required.
The stimulus is described by a boolean_expression for static measurements or by a
vector_expression for transient measurements.

• LIBRARY, SUBLIBRARY, CELL, WIRE, PIN may contain characterization data,
for which no specific stimulus is required.

• Characterization data is represented in form of arithmetic_models

• PRIMITIVEs are technology-independent descriptions. They contain PINs and
FUNCTION only, no characterization data.

• In hierarchical design, complex CELLs may also contain PRIMITIVEs and WIREs.

March 15, 2000 ALF tutorial 30

Objects in the physical domain

• LIBRARY or SUBLIBRARY may contain LAYER, VIA, RULE, SITE, ANTENNA.

• VIA, RULE, SITE, ANTENNA may contain PATTERN descriptions.

• CELL may contain BLOCKAGE descriptions.

• PIN may contain physical PORT descriptions.

• Each PATTERN, BLOCKAGE, PORT description is associated with a specific layer
and may contain geometric_models, describing the form and shape of the object on
that layer.

• LAYER, VIA, RULE, SITE, ANTENNA may also contain arithmetic_models,
describing mathematical relationships and constraints related to geometrical and
electrical properties associated with the objects.

March 15, 2000 ALF tutorial 31

Model data in a library
• Library data is described by arithmetic_models using context-sensitive

keywords
– Example: keyword CAPACITANCE

• Wire capacitance in the context of WIRE

• Pin capacitance in the context of PIN

• Load capacitance as argument of a DELAY model

• Load capacitance LIMIT for a PIN

• Model statements usually contain auxiliary statements
– Purpose: complete definition of semantics within the context

• Principle of inheritance
– Applies for unnamed model statements containing only definitions, no data

• Definitions are inherited by all models of the same type within the same context

• Definitions are propagated to the models within the children objects

• Definitions can be overridden locally

– Example: measurement units in LIBRARY, SUBLIBRARY, CELL

March 15, 2000 ALF tutorial 32

Arithmetic model
• Data specification

– Trivial arithmetic models
• Model data are single numbers

– Equation-based models
• Model data are fitted into an equation

– Table-based models
• Model data are represented in table form

– Nested models
• Equation is applied to raw model data, which are in table form

• Data qualifier specification
– Case1: Model is completely specified by the keyword

• Model statement contains the data directly

– Case 2: Model needs qualifiers, such as LIMIT, MIN, MAX, RISE, FALL
• Model containers contain the models which contain the data

March 15, 2000 ALF tutorial 33

Trivial arithmetic model

trivial_arithmetic_model ::=

model_keyword [name] = number ;

| model_keyword [name] = number { auxiliary_objects }

CAPACITANCE = 4.5 ;

CAPACITANCE = 4.5 { UNIT = 1e-15; }

definitions_for_arithmetic_model ::=

model_keyword { auxiliary_objects }

CAPACITANCE { UNIT = 1e-15; }

March 15, 2000 ALF tutorial 34

Equation-based arithmetic model
equation_based_arithmetic_model ::=

model_keyword { { auxiliary_objects }
HEADER { argument_objects }
EQUATION { arithmetic_expression }

}

argument_object ::=

argument_keyword [name] ;

| argument_keyword [name] { auxiliary_objects }

CAPACITANCE { UNIT = 1e-15;
HEADER {

VOLTAGE V { UNIT = 1; }
TEMPERATURE T { UNIT = 1; }

}
EQUATION { 4.5 + 0.1*(V-1.8) + 0.002*(T-25) }

}

March 15, 2000 ALF tutorial 35

Table-based arithmetic model
table_based_arithmetic_model ::=

model_keyword { { auxiliary_objects }
HEADER { table_argument_objects }
TABLE { numbers }

}

table_argument_object ::=

argument_keyword [name]
{ { auxiliary_objects } TABLE { numbers } }

CAPACITANCE { UNIT = 1e-15;
HEADER {

VOLTAGE { TABLE { 1.6 1.8 2.0 } }
TEMPERATURE { TABLE { 25 125 } }

}
TABLE {

4.48 4.50 4.52
4.68 4.70 4.72

}
}

March 15, 2000 ALF tutorial 36

Nested arithmetic model

nested_arithmetic_model ::=

model_keyword { { auxiliary_objects }
HEADER {table_based_arithmetic_models }
EQUATION { arithmetic_expression }

}

CAPACITANCE { UNIT = 1e-15;
HEADER {

CAPACITANCE C0 {
HEADER {

VOLTAGE { TABLE { 1.6 1.8 2.0 } }
}
TABLE { 4.48 4.50 4.52 }

}
TEMPERATURE T0 { TABLE { 25 125 } }

}
EQUATION { C0 + 0.002*(T0-25) }

}

March 15, 2000 ALF tutorial 37

Arithmetic model container
arithmetic_model_container ::=

model_container_keyword
{ { auxiliary_objects } arithmetic_model_containers }

model_container_keyword
{ { auxiliary_objects } arithmetic_models }

LIMIT {
CAPACITANCE {

MAX {
HEADER {

FREQUENCY { UNIT = 1e6;
TABLE { 1 10 100 } }

} }
TABLE { 0.5 0.4 0.04 }

} } }

CAPACITANCE {
RISE { MIN = 4.4; TYP = 4.5; MAX = 4.6; }
FALL { MIN = 4.3; TYP = 4.5; MAX = 4.7; }

}

March 15, 2000 ALF tutorial 38

Model data range and default
• Data range specification

– Data in TABLE within table_argument_object must be in ascending order

– Per default, the range of data specifies the range of validity

– Alternatively, the range of validity can be specified using MIN, MAX as
auxiliary_objects in argument_object or table_argument_object.

– Note the context-sensitivity of the MIN, MAX keywords

• Model qualifier: keywords for arithmetic_model.

• Range specification: keywords for auxiliary_objects in the HEADER.

• Default specification
– Reason: It may not always be possible for the application to calculate the value

of the argument_object or table_argument_object data.

CAPACITANCE {
HEADER {

VOLTAGE V { DEFAULT = 1.8, MIN = 1.6; MAX = 2.0; }
}
EQUATION {4.5 + 0.1*(V-1.8) }

}

March 15, 2000 ALF tutorial 39

Statements for efficient library
representation

• The ALIAS, CONSTANT, INCLUDE statements can be used to make the
library more readable or more maintainable.

• The TEMPLATE, GROUP statements can be used to make the library more
compact.

• The CLASS statement can be used to define statements that can be inherited by
multiple objects

• The KEYWORD statement can be used to extend the set of context-sensitive
keywords for customized arithmetic models and other statements.

• The ATTRIBUTE, PROPERTY statements can be used to include customized
attributes or properties for objects in the library.

• All of the above statements apply within the context of the object where they
appear and within the context of its children objects.

March 15, 2000 ALF tutorial 40

ALIAS, CONSTANT, INCLUDE
alias ::=

ALIAS identifier = identifier ;

ALIAS foo = bar; // definition of alias
foo = my_symbol; // usage of alias
bar = my_symbol; // equivalent statement without alias

constant ::=

CONSTANT identifier = number ;

CONSTANT c0 = 4.5; // definition of alias
CAPACITANCE = c0; // usage of alias
CAPACITANCE = 4.5; // equivalent statement without alias

include ::=

INCLUDE quoted_string ;

LIBRARY my_library {
INCLUDE “technology.alf” ; // put contents of file here
INCLUDE “cells.alf” ; // put contents of file here

}

March 15, 2000 ALF tutorial 41

TEMPLATE
template ::=

TEMPLATE identifier { objects }

TEMPLATE \2D_LUT { // definition of the template
CAPACITANCE { PIN = <out>; TABLE {20 40 80 160 } }
SLEWRATE { PIN = <in>; TABLE { 0.4 0.8 } }

}

SLEWRATE { PIN = Z;
HEADER { \2D_LUT { out=Z; in=A; } } // placeholder-replacement by name
TABLE { 0.25 0.34 0.58 1.12 0.31 0.39 0.62 1.15 } }

}

SLEWRATE { PIN = Z;
HEADER { \2D_LUT { Z A } } // placeholder-replacement by order
TABLE { 0.25 0.34 0.58 1.12 0.31 0.39 0.62 1.15 } }

}

SLEWRATE { PIN = Z;
HEADER { // equivalent statement without template

CAPACITANCE { PIN = Z; TABLE {20 40 80 160 } }
SLEWRATE { PIN = A; TABLE { 0.4 0.8 } }

}
TABLE { 0.25 0.34 0.58 1.12 0.31 0.39 0.62 1.15 } }

}

March 15, 2000 ALF tutorial 42

GROUP
group ::=

GROUP identifier { values }

| GROUP identifier { integer : integer }

GROUP Timing { DELAY SLEWRATE } // definition of group

Timing { UNIT = 1e-9; } // usage of group

// equivalent statements without group
DELAY { UNIT = 1e-9; }
SLEWRATE { UNIT = 1e-9; }

GROUP BitWidth { 1 : 3 } // definition of group
GROUP BitWidth { 1 2 3 } // equivalent definition of group

VECTOR (01 Clk -> 01 Q[BitWidth]){ // usage of group
DELAY = 1.5 { FROM { PIN=Clk; } TO { PIN=Q[BitWidth]; }

}
// equivalent statements without group
VECTOR (01 Clk -> 01 Q[1]){ DELAY = 1.5 { FROM { PIN=Clk; } TO { PIN=Q[1]; } }
VECTOR (01 Clk -> 01 Q[2]){ DELAY = 1.5 { FROM { PIN=Clk; } TO { PIN=Q[2]; } }
VECTOR (01 Clk -> 01 Q[3]){ DELAY = 1.5 { FROM { PIN=Clk; } TO { PIN=Q[3]; } }

March 15, 2000 ALF tutorial 43

CLASS

class ::=

CLASS identifier { objects }

// definition of classes
CLASS def1 { foo = 1; }
CLASS def2 { bar = 2; }
CLASS def3 { foobar = 3; }

// usage of classes
// Note: an object may refer to more than one class
// but the class definitions may not contain contradictory statements
CELL bufA { CLASS { def1 } }
CELL bufB { CLASS { def2 def3 } }
CELL bufC { CLASS { def1 def2 } }

// equivalent statements without class
CELL bufA { foo = 1; }
CELL bufB { bar = 2; foobar = 3; }
CELL bufC { foo = 1; bar = 2; }

March 15, 2000 ALF tutorial 44

PROPERTY, ATTRIBUTE
• use PROPERTY for customized parameter-value assignments or parameter-

multivalue assignments associated with an object
• use ATTRIBUTE for customized parameters associated with an object

property ::=

PROPERTY { { name = value ; } { name { values } } }

// example:
PROPERTY {

my_1st_parameter = my_1st_value ;
my_2nd_parameter = my_2nd_value ;
my_3rd_parameter { my_3rd_value my_4th_value my_5th_value }

}

attribute ::=

ATTRIBUTE { symbols }

// example:
ATTRIBUTE { my_1st_parameter my_2nd_parameter my_3rd_parameter }

March 15, 2000 ALF tutorial 45

ALF applications

• Design creation and modification

• Functional modeling

• Characterization
– Timing

– Power

– Signal Integrity

• Interconnect modeling

• Hierarchical design

• High-level design planning

March 15, 2000 ALF tutorial 46

Design creation and modification
• The usage restriction of each library component for design creation and

modification steps is controlled by the restrict_class statement inside a
general CLASS statement

– Certain cells are usable for general synthesis, others for test synthesis, others for
clock tree synthesis, others for layout

• Definitions for equivalent library components within the scope of a particular
design step are provided by the swap_class statement inside a CELL
statement
– A synthesis tool may swap certain logically equivalent cells

– A layout tool may swap certain electrically equivalent cells

{ CLASS class_name {
RESTRICT_CLASS { [synthesis] [datapath] [scan] [clock] [layout] }

} }
{ CELL cell_name {

SWAP_CLASS { class_name { class_name } }
} }

March 15, 2000 ALF tutorial 47

Design creation and modification (cont.)
// Example:

CLASS any_buffer { RESTRICT_CLASS { synthesis } }

CLASS single_height_buffer { RESTRICT_CLASS { layout } }

CLASS double_height_buffer { RESTRICT_CLASS { layout } }

CELL buf1 { SWAP_CLASS { any_buffer single_height_buffer } }

CELL buf2 { SWAP_CLASS { any_buffer double_height_buffer } }

CELL buf3 { SWAP_CLASS { single_height_buffer } }

CELL buf4 { SWAP_CLASS { double_height_buffer } }

// Synthesis tool sees the following:

CELL buf1 { SWAP_CLASS { any_buffer } }

CELL buf2 { SWAP_CLASS { any_buffer } }

CELL buf3 { /* not usable */ }

CELL buf4 { /* not usable */ }

// Therefore the synthesis tool may swap buf1 with buf2

// Layout tool sees the following:

CELL buf1 { SWAP_CLASS { single_height_buffer } }

CELL buf2 { SWAP_CLASS { double_height_buffer } }

CELL buf3 { SWAP_CLASS { single_height_buffer } }

CELL buf4 { SWAP_CLASS { double_height_buffer } }

// Therefore the layout tool may swap buf1 with buf3 and buf2 with buf4

March 15, 2000 ALF tutorial 48

Functional modeling

• A canonical functional model of the cell is
part of the cell specification

• Useful for characterization

• Useful for generating tool-specific views of
the function (Synthesis, STA, DFT …)

• Useful for generating simulation models
(Verilog, VHDL …)

March 15, 2000 ALF tutorial 49

Functional modeling (cont.)
• PIN specification is prerequisite for FUNCTION

• Only pins with PINTYPE=digital may be used as variables in the FUNCTION
statements

• Pins with DIRECTION=input|output are primary input or output variables,
respectively

• Pins with DIRECTION=both are bi-directional, i.e., both input and output

• Pins with DIRECTION=none can be used as internal variables

• Pins with VIEW=functional|physical appear in the Verilog/VHDL or in the
DEF netlist, respectively. Appearance in a netlist is orthogonal to appearance in
the FUNCTION.

PIN pin_name {

VIEW = functional | physical | both (default) | none ;

PINTYPE = digital (default) | analog | supply ;

following definitions are for pins with PINTYPE = digital:

DIRECTION = input | output | both | none ; (mandatory)

SIGNALTYPE = data | clock | control | etc. ; (optional)

}

March 15, 2000 ALF tutorial 50

Functional modeling (cont.)
Example:

CELL my_cell {
PIN VDD {

PINTYPE = supply; SUPPLYTYPE = power; VIEW = physical;
}
PIN A {

DIRECTION = input; PINTYPE = digital; SIGNALTYPE = data; VIEW = both;
}
PIN Z {

DIRECTION = output; PINTYPE = digital; SIGNALTYPE = data; VIEW = both;
}
PIN VSS {

 PINTYPE = supply; SUPPLYTYPE = ground; VIEW = physical;
}
// put FUNCTION statement here

}
// instance of my_cell in functional netlist will contain pins A, B
// instance of my_cell in physical netlist will contain pins VDD, A, B, VSS
// A, B are used as variables in FUNCTION statement

March 15, 2000 ALF tutorial 51

Functional modeling (cont.)
FUNCTION {

BEHAVIOR { behavior_description }
[STRUCTURE { structure_description }]
[STATETABLE [name] { statetable_description }]

}

• BEHAVIOR contains a canonical description of the function.
Purpose is to have a golden reference of the function.

• STRUCTURE (optional) contains a structural description of the cell
in form of a netlist.

• STATETABLE (optional) contains a complementary description of
the function in statetable format. One or more statetables can be
used. Purpose is to facilitate generation of table-based simulation
models, e.g. Verilog UDPs.

March 15, 2000 ALF tutorial 52

Functional modeling (cont.)
behavior_description ::=

{ combinational_statements }
{ sequential_statements }
{ primitive_instance_statements }

combinational_statement ::=
variable_name = boolean_expression ;

sequential_statement ::=
@ (control_expression) { combinational_statements }
{ : (control_expression) { combinational_statements } }

control_expression ::=
boolean_expression

| vector_expression

primitive_instance_statement ::=
primitive_name { combinational_statements }

March 15, 2000 ALF tutorial 53

Functional modeling (cont.)
• Combinational logic is modeled with combinational_statements

• Level-sensitive sequential logic is modeled with sequential_statements
containing only boolean_expressions

• Edge-sensitive sequential logic is modeled with sequential_statements
containing at least one vector_expression

• The symbols @, : in sequential_statements mean “if”, “else-if”

• All sequential_statements starting with @ are evaluated concurrently

• The priority of control_expression is in the order of occurrence in the
sequential_statement

• The combinational_statements activated by control_expression are evaluated
concurrently.

• Any logic can be modeled with primitive_instance_statements , reusing
predefined FUNCTION statements within a PRIMITIVE

• The FUNCTION statement within the PRIMITIVE must contain
combinational_statements or sequential_statements

March 15, 2000 ALF tutorial 54

Functional modeling (cont.)
• Graphical illustration of combinational_statements

boolean_expression variable

variable

variable

variable

boolean_expressionvariable

Primary inputs Internal variable Primary outputs

variable boolean_expression variable

• Primary inputs and outputs must be declared as PINs

• Internal scalar variables need not be declared as PINs

• All 1-or 2-dimensional variables must be declared as PINs

March 15, 2000 ALF tutorial 55

Functional modeling (cont.)
• Graphical illustration of sequential_statements

control_expression

variables

Control inputs

variables

• Feedback from storage outputs to data inputs is only allowed for edge-sensitivity, i.e.,
when the control_expression is a vector_expression

• Feedback from storage outputs to control inputs is only valid for modeling special
functionality, e.g. oscillators

control_expression

boolean_expressions

boolean_expressions

variables

variables
variables

data inputs

true

false

true

false
storage outputs

March 15, 2000 ALF tutorial 56

Functional modeling example: NAND gate
CELL my_nand {

PIN A { DIRECTION = input; }
PIN B { DIRECTION = input; }
PIN Z { DIRECTION = output; }
FUNCTION {

BEHAVIOR { Z = ! (A & B); }
/* alternative description using a primitive_instance_statement

BEHAVIOR { predefined_nand { out = Z; in[0] = A; in[1] = B; } }
*/

STATETABLE { // optional
A B : Z ; // statetable_header_expression
0 0 : 1 ; // statetable_body_expression
0 1 : 1 ; // statetable_body_expression
1 0 : 1 ; // statetable_body_expression
1 1 : 0 ; // statetable_body_expression

}
} }

PRIMITIVE predefined_nand {
PIN out { DIRECTION = output; }
PIN[0:<num_bits>] in { DIRECTION = input; }
FUNCTION {

BEHAVIOR { out = ~& in; }
} }

March 15, 2000 ALF tutorial 57

Functional modeling example: Flipflop
CELL my_ff {

PIN D { DIRECTION = input; }
PIN CLK { DIRECTION = input; }
PIN RST { DIRECTION = input; }
PIN Q { DIRECTION = output; }
PIN QN { DIRECTION = output; }
FUNCTION {

BEHAVIOR {
@ (!RST) { Q = ‘b0; QN = ‘b1; }
: (01 CLK) { Q = D; QN = !D; }

/* alternative description with concurrent statements
@ ((01 CLK) & RST) { Q = D; QN = !D; }
@ (!RST) { Q = ‘b0; QN = ‘b1; }

*/
}
STATETABLE { // optional

RST CLK D Q : Q QN ;
0 ? ? ? : 0 1 ;
1 01 0 ? : 0 1 ;
1 01 1 ? : 1 0 ;
1 ?0 ? 0 : 0 1 ;
1 ?0 ? 1 : 1 0 ;
1 1? ? 0 : 0 1 ;
1 1? ? 1 : 1 0 ;

}
} }

March 15, 2000 ALF tutorial 58

Functional modeling example: 2 port memory
CELL my_2port_memory {

CLASS port_A; // read port
CLASS port_B; // write port
PIN[1:8] Dout { DIRECTION = output; SIGNALTYPE = data; SIGNAL_CLASS = port_A; }
PIN Renb { DIRECTION = input; SIGNALTYPE = read_enable; SIGNAL_CLASS = port_A; }
PIN[3:0] Raddr {

DIRECTION = input; SIGNALTYPE = address; SIGNAL_CLASS = port_A;
}
PIN[1:8] Din { DIRECTION = input; SIGNALTYPE = data; SIGNAL_CLASS = port_B; }
PIN Wenb { DIRECTION = input; SIGNALTYPE = write_enable; SIGNAL_CLASS = port_B; }
PIN[3:0] Waddr {

DIRECTION = input; SIGNALTYPE = address; SIGNAL_CLASS = port_B;
}
PIN[1:8] core[0:15] { DIRECTION = none; VIEW = none; }
FUNCTION {

BEHAVIOR {
@ (Wenb) { core[Waddr] = Din; }
@ (Renb) { Dout = core[Raddr]; }

}
}

}

March 15, 2000 ALF tutorial 59

Characterization

• Input
– Specification of CELL, PINs, FUNCTION

– Specification of characterization models and
range

– Specification of characterization VECTORs

• Output
– Models with characterization data

March 15, 2000 ALF tutorial 60

Timing

• Timing characterization data
– DELAY, RETAIN

– SLEWRATE

– SETUP, HOLD, RECOVERY, REMOVAL, SKEW

– PULSEWIDTH

– PERIOD , NOCHANGE

• Timing violations

March 15, 2000 ALF tutorial 61

Timing (cont.)
• Timing characterization data are in the context of a VECTOR

– Characterization waveform is described by vector_expression

• Sense of measurement is defined in FROM, TO statements

• Definitions for THRESHOLD
– represent a voltage reference point normalized to the signal voltage swing

– may be included in local FROM, TO statements for the model or in global
FROM, TO statements at CELL, SUBLIBRARY, or LIBRARY level

• Reference to PIN and EDGE_NUMBER
– indicate the measurement points related to the vector_expression

– appear in the context of the model

– appear in the FROM, TO statements for measurements between different pins

– must contain EDGE_NUMBER , if PIN appears more than once in
vector_expression

March 15, 2000 ALF tutorial 62

Timing (cont.)
// timing measurement between two consecutive events on two pins
DELAY | RETAIN {

FROM { PIN = pin_name ; [THRESHOLD = number ;] [EDGE_NUMBER = number ;] }
TO { PIN = pin_name ; [THRESHOLD = number ;] [EDGE_NUMBER = number ;] }

}

// timing measurement for one event on one pin
SLEWRATE { PIN = pin_name ; [EDGE_NUMBER = number ;]

 [FROM { THRESHOLD = number ; }] [TO { THRESHOLD = number ; }]
}

// early and late timing measurements
EARLY {

DELAY { /* fill in */ }
SLEWRATE { /* fill in */ }

}
LATE {

DELAY { /* fill in */ }
SLEWRATE { /* fill in */ }

}

March 15, 2000 ALF tutorial 63

Timing (cont.)
// timing check between two consecutive events on two pins
SETUP | HOLD | RECOVERY | REMOVAL | SKEW { [violation_statement]

FROM { PIN = pin_name ; [THRESHOLD = number ;] [EDGE_NUMBER = number ;] }
TO { PIN = pin_name ; [THRESHOLD = number ;] [EDGE_NUMBER = number ;] }

}

// timing check between two consecutive events on one pin
PULSEWIDTH { [violation_statement] PIN = pin_name ;

FROM { [THRESHOLD = number ;] [EDGE_NUMBER = number ;] }
TO { [THRESHOLD = number ;] [EDGE_NUMBER = number ;] }

}

// timing check for entire vector
PERIOD | NOCHANGE { [violation_statement] [PIN = pin_name ;] }

violation_statement ::=
VIOLATION {

MESSAGE_TYPE = information | warning | error ;
MESSAGE = quoted_string ;
BEHAVIOR { behavior_description }

}

March 15, 2000 ALF tutorial 64

Timing example: delay

VECTOR (01 A -> 10 Z) {
DELAY {

FROM { PIN = A; THRESHOLD = 0.5; } TO { PIN = Z; THRESHOLD = 0.5; }
HEADER {

CAPACITANCE {
PIN = Z; TABLE { 5 10 20 40 80 160 320 }

}
SLEWRATE {

FROM { THRESHOLD = 0.1; } TO { THRESHOLD = 0.9; }
PIN = A; TABLE { 0.2 0.4 0.8 }

}
}
TABLE {

0.5 0.7 1.2 2.3 4.5 9.0
0.4 0.6 1.2 2.3 4.5 9.0
0.3 0.6 1.2 2.3 4.5 9.0

}
}

}

A

Z DELAY

SLEWRATE

March 15, 2000 ALF tutorial 65

Timing example: setup

VECTOR (10 D -> 01 CLK) {
SETUP {

FROM { PIN = D; THRESHOLD = 0.5; } TO { PIN = CLK; THRESHOLD = 0.5; }
HEADER {

SLEWRATE slew1 {
FROM { THRESHOLD = 0.9; } TO { THRESHOLD = 0.1; }
PIN = D; TABLE { 0.1 0.3 0.9 2.7 }

}
SLEWRATE slew2 {

FROM { THRESHOLD = 0.1; } TO { THRESHOLD = 0.9; }
PIN = CLK; TABLE { 0.2 0.4 0.8 }

}
}
TABLE {

0.4 0.4 0.6 1.1
0.4 0.5 0.8 1.4
0.5 0.6 1.2 1.9

}
}

}

CLK

D SETUP

slew2

slew1

March 15, 2000 ALF tutorial 66

Timing example: hold

VECTOR (01 CLK -> 10 D) {
HOLD {

FROM { PIN = CLK; THRESHOLD = 0.5; } TO { PIN = D; THRESHOLD = 0.5; }
HEADER {

SLEWRATE slew1 {
FROM { THRESHOLD = 0.1; } TO { THRESHOLD = 0.9; }
PIN = CLK; TABLE { 0.2 0.4 0.8 }

}
SLEWRATE slew2 {

FROM { THRESHOLD = 0.9; } TO { THRESHOLD = 0.1; }
PIN = D; TABLE { 0.1 0.3 0.9 2.7 }

} }
TABLE {

0.4 0.4 0.5
0.4 0.5 0.6
0.6 0.8 1.2
1.1 1.4 1.9

} }
}

CLK

D HOLD

slew1

slew2

March 15, 2000 ALF tutorial 67

Timing example: combined setup & hold

VECTOR (01 D -> 01 CLK -> 10 D) {
SETUP {

FROM { PIN = D; THRESHOLD = 0.5; } TO { PIN = CLK; THRESHOLD = 0.5; }
HEADER {

SLEWRATE slew1 { FROM { THRESHOLD = 0.1; } TO { THRESHOLD = 0.9; }
PIN = D; EDGE_NUMBER = 0; TABLE { /* data */ }

}
SLEWRATE slew2 { FROM { THRESHOLD = 0.1; } TO { THRESHOLD = 0.9; }

PIN = CLK; EDGE_NUMBER = 0; TABLE { /* data */ }
} }
TABLE { /* data */ }

}
HOLD {

FROM { PIN = CLK; THRESHOLD = 0.5; } TO { PIN = D; THRESHOLD = 0.5; }
HEADER {

SLEWRATE slew2 { FROM { THRESHOLD = 0.1; } TO { THRESHOLD = 0.9; }
PIN = CLK; EDGE_NUMBER = 0; TABLE { /* data */ }

}
SLEWRATE slew3 { FROM { THRESHOLD = 0.9; } TO { THRESHOLD = 0.1; }

PIN = D; EDGE_NUMBER = 1; TABLE { /* data */ }
} }
TABLE { /* data */ }

} }

CLK

D HOLD

slew2

slew3slew1

SETUP

March 15, 2000 ALF tutorial 68

Process-dependent timing modeling
Process can be used as index for table-based timing model

DELAY { /* FROM, TO */
HEADER {

CAPACITANCE { /* PIN, TABLE */ }
SLEWRATE { /* PIN, TABLE */ }
PROCESS { TABLE { bccom nom wccom } }

}
TABLE { bccom_numbers nom_numbers wccom_numbers }

Process index can be converted into coefficients for equation-based timing model

DELAY { /* FROM, TO */
HEADER {

DELAY nominal {
HEADER {

CAPACITANCE { /* PIN, TABLE */ }
SLEWRATE { /* PIN, TABLE */ }

} TABLE { numbers }
PROCESS Kp {

HEADER { bccom nom wccom } TABLE { -0.15 0.0 0.27 }
} }

EQUATION { nominal * (1 + Kp) }
}

March 15, 2000 ALF tutorial 69

Power

• Power consumption data
– ENERGY

– POWER

• Power supply data
– CURRENT

– VOLTAGE

• Waveform descriptions

March 15, 2000 ALF tutorial 70

Power calculation
• Power characterization data is expressed as POWER or ENERGY

• Measurement method is defined by MEASUREMENT statement

// static power measurement
POWER {

MEASUREMENT = static ;
}

// transient power measurement: TIME = 1 / FREQUENCY
POWER {

MEASUREMENT = average | rms | peak ;
TIME | FREQUENCY = number ;

}

// transient energy measurement: transient ENERGY = average POWER * TIME
ENERGY {

[MEASUREMENT = transient ;]
[TIME | FREQUENCY = number ;]

}

March 15, 2000 ALF tutorial 71

Power calculation (cont.)
• Power characterization data are in the context of a VECTOR

– Characterization waveform is described by vector_expression

– Usually the vectors for power are a superset of vectors for timing

• Dynamic interpretation of vector_expression in the context of
simulation-based power analysis
– All events at the PINs of the CELL are observed

– A boolean_expression describes a detectable state of the pins

– A vector_expression describes a detectable sequence of events

– Static power consumption occurs while a particular boolean_expression
matches the actual recorded state

– Transient power consumption occurs while a particular vector_expression
matches the actual recorded sequence of events

• Power consumption for all vectors adds up
– Vectors need not be mutually exclusive

March 15, 2000 ALF tutorial 72

Power calculation (cont.)
Particularities for dynamic interpretation of vector_expression
• An edge_literal indicating “no event on operand” defines another event by exclusion

(00 Z) // event on another pin occurs while Z == 0

(?- Z) // event on another pin occurs while Z is constant

• A vector_expression without condition implies that all pins must be taken into account,
not only those appearing in the vector_expression
(01 A -> 10 Z) // if there is a pin B, no event must occur on pin B

• A vector_expression with condition limits the scope of observation to the pins appearing
in the vector_expression
(01 A -> 01 Z) & B // if there is a pin C, any event may occur on pin C

• An edge_literal containing * puts the operand in or out of scope, respectively
(?* B) // pin B is not observed from now on

(*? C) // pin C is observed from now on

(1* B -> 10 A -> *1 C -> 10 Z)

// B must be 1 before (01 A) is detected, C must be 1 after (01 A) is detected

March 15, 2000 ALF tutorial 73

CELL my_cell {

/* my_cell has pins A, B, C, Z */

VECTOR (01 A -> 01 C) { /* power data */ }

VECTOR (01 B -> 00 Z) { /* power data */ }

VECTOR ((01 A -> 01 Z) & B) { /* power data */ }

VECTOR (1* B -> 10 A -> *1 C -> 10 Z) { /* power data */ }

}

/* simulation event report

time A B C Z

 10 0 0 0 1

 20 1 0 0 1

 30 1 0 1 0 // (01 A -> 01 C) detected at time 30

 40 0 1 1 0

 50 0 1 0 0 // (01 B -> 00 Z) detected at time 50

 60 1 1 1 0

 70 1 1 1 0

 80 0 1 0 1 // ((01 A -> 01 Z) & B) detected at time 80

 90 0 0 1 1

 100 0 1 1 0 // (1* B -> 10 A -> *1 C -> 10 Z) detected at time 100

*/

Power calculation: example

March 15, 2000 ALF tutorial 74

Power supply data and waveforms
// static current, depending on supply voltage

CURRENT { PIN = supply_pin_name ;

MEASUREMENT = static ;

HEADER { VOLTAGE { PIN = supply_pin_name ; TABLE { numbers } } }

TABLE { numbers }

}

// transient current, dependent on supply voltage, slewrate, load capacitance

CURRENT { PIN = supply_pin_name ;

MEASUREMENT = average | rms | peak ; TIME | FREQUENCY = number ;

HEADER {

VOLTAGE { PIN = supply_pin_name ; TABLE { numbers } } }

SLEWRATE { PIN = input_pin_name ; TABLE { numbers } } }

CAPACITANCE { PIN = output_pin_name ; TABLE { numbers } } }

TABLE { numbers }

}

// transient current waveform

CURRENT { PIN = supply_pin_name ;

MEASUREMENT = transient | average | rms | peak ;

HEADER { TIME { TABLE { numbers } } }

TABLE { numbers }

}

March 15, 2000 ALF tutorial 75

Signal Integrity

• Crosstalk
– NOISE_MARGIN

– driver RESISTANCE

• Electromigration, Hot electron
– limits for CURRENT

– limits for FREQUENCY

– FLUENCE

• Output buffer characteristics
– I/V characteristics

– parasitic INDUCTANCE

March 15, 2000 ALF tutorial 76

Crosstalk
• Noise margin is a measure of signal voltage tolerance

– globally for the library or locally on cell input pins

– also possible on vector for dynamic noise analysis

– simple number or dependent on process, temperature etc.

• Mathematical definition for ALF:
noise = |actual voltage - nominal voltage | / voltage swing

normalized
voltage swing

= 1

noise margin (high)

noise margin (low)

normalized nominal signal voltage (high) = 1

normalized nominal signal voltage (low) = 0

March 15, 2000 ALF tutorial 77

Crosstalk (cont.)
LIBRARY my_library {

NOISE_MARGIN { HIGH = number; LOW = number; }
/* other data */
CELL my_flipflop {

PIN D { DIRECTION = input; SIGNALTYPE = data; }
PIN CLK { DIRECTION = input; SIGNALTYPE = clock;

NOISE_MARGIN { HIGH = number; LOW = number; }
}
PIN RST { DIRECTION = input; SIGNALTYPE = clear;

NOISE_MARGIN { HIGH = number; LOW = number; }
}
PIN Q { DIRECTION = output; SIGNALTYPE = data; }
/* other data */
VECTOR (01 CLK && !D && !Q) {

NOISE_MARGIN = number { PIN = D; }
}
VECTOR (01 CLK && D && Q) {

NOISE_MARGIN = number { PIN = D; }
}

}
}
// CLK and RST are always sensitive to noise, since it can trigger a malfunction
// D is only sensitive to noise during rising edge of CLK
// global noise margin applies per default

March 15, 2000 ALF tutorial 78

Crosstalk (cont.)
• Driver resistance is a model of Voltage/Current characteristics

– used for interconnect delay and noise analysis on-chip and off-chip

– measured on cell output pins, path-dependent and state-dependent

– always in context of vector, to be distinguished from parasitic resistance

– simple number or dependent on input slewrate, load capacitance etc.

input
voltage

controlled
voltage source

driver
resistance interconnect

load

March 15, 2000 ALF tutorial 79

Crosstalk (cont.)
CELL my_inv {

PIN A { DIRECTION = input; }
PIN Z { DIRECTION = output; }
// transient driver resistance
VECTOR (01 A -> 10 Z) {

RESISTANCE { PIN = Z;
HEADER { SLEWRATE { PIN = A; TABLE { 0.4 0.8 1.6 } }
TABLE { 812.6 815.8 820.7 }

}
}
VECTOR (10 A -> 01 Z) {

RESISTANCE { PIN = Z;
HEADER { SLEWRATE { PIN = A; TABLE { 0.4 0.8 1.6 } }
TABLE { 1601.5 1610.2 1633.6 }

}
}
// static driver resistance
VECTOR (!Z) {

RESISTANCE = 825.3 { PIN = Z; }
}
// static driver resistance
VECTOR (Z) {

RESISTANCE = 1601.9 { PIN = Z; }
} }

March 15, 2000 ALF tutorial 80

Electromigration
• Electromigration shortens the lifetime of a circuit by inflicting

permanent damage due to excessive current density
– Power supply wires: DC and AC currents

– Signal wires: AC currents only, wire self heat

– Damage can also occur on wires and contacts inside cells

• Currents through interconnect wires or external cell pins can be
observed by measurement, simulation, calculation
– Limits for observable currents can be defined as arithmetic_models

• Internal cell currents can not be observed directly

• However, they depend on observable quantities
– Current depends on slewrate, load capacitance, switching frequency

– Limits for observable quantities can be defined as arithmetic_models

March 15, 2000 ALF tutorial 81

Electromigration (cont.)
Example:

– Current limits for a wire segment on a particular metal layer
– Limits depend on wire width, characterization frequency and lifetime
– AC limits (average, rms, peak) and DC limits (static) are provided

LIBRARY my_library {
LAYER metal1 {

LIMIT {
CURRENT max_avg { measurement = average;

MAX {
HEADER {

WIDTH { TABLE { numbers } }
FREQUENCY { TABLE { numbers } }
TIME { TABLE { numbers } }

}
TABLE {numbers }

} }
CURRENT max_rms { measurement = rms;

MAX { // similar model as for max_avg
} }
CURRENT max_rms { measurement = peak;

MAX { // similar model as for max_avg
} }
CURRENT max_static { measurement = static;

MAX { // similar model as for max_avg
} } } } }

March 15, 2000 ALF tutorial 82

Electromigration (cont.)
Example:

– max. current limit for a pin of a cell
– max. frequency limit for a vector, exercising a particular current path inside the cell

CELL my_cell {
PIN VDD {

LIMIT { CURRENT { measurement = average | rms | peak | static ;
MAX { /* HEADER, EQUATION or TABLE */ }

} } }
PIN VSS { /* put another current limit, if necessary */ }
PIN A { /* put another current limit, if necessary */ }
PIN B { /* put another current limit, if necessary */ }
PIN Z { /* put another current limit, if necessary */ }
VECTOR (01 A -> 10 Z) {

LIMIT { FREQUENCY { MAX {
HEADER {

CAPACITANCE { PIN = Z; TABLE { numbers } }
SLEWRATE { PIN = A; TABLE { numbers } }

}
TABLE { numbers }

} } } }
VECTOR (01 B -> 10 Z) { /* put another frequency limit, if necessary */ }
VECTOR (10 A -> 01 Z) { /* put another frequency limit, if necessary */ }
VECTOR (10 B -> 01 Z) { /* put another frequency limit, if necessary */ }

}

March 15, 2000 ALF tutorial 83

Hot electron effect
• Hot electron effect degrades performance of a circuit by trapping

electrons in gate oxide due to excessive electrical field

• A direct measure of hot electron effect is fluence, i.e., amount of
accumulated charge per gate oxide area
– Similarity between fluence and energy

• Both are accumulative, path-and state-dependent

• Both can be characterized for vectors as arithmetic_models dependent on
input slewrate and load capacitance etc.

– Limits for fluence can be given for a cell, similar to limits for current
• Can be characterized as single number or as arithmetic_models dependent on

lifetime

• An indirect measure is frequency, in the same way as for
electromigration
– Frequency limits for hot electron and electromigration can be combined

March 15, 2000 ALF tutorial 84

Hot electron effect (cont.)

• Particularities of electromigration and hot electron effect
– High electric field (hot electron damage) for fast input, slow output

– High internal current (electromigration damage) for slow input, fast output

– Hot electron effect occurs only on NMOS transistors

– Electromigration occurs on any device, e.g. diffusion to metal contact of transistor

PIN A PIN B

PIN Z

CAPACITANCE

SLEWRATE

March 15, 2000 ALF tutorial 85

Interconnect modeling

• Statistical wireload models

• Physical parasitic models

• Interconnect delay models

• Interconnect crosstalk models

March 15, 2000 ALF tutorial 86

Statistical wireload model
WIRE my_wireload_model {

CAPACITANCE { // estimated capacitance of the wire

HEADER {

 // number of connections

CONNECTIONS { TABLE { numbers } }

// area of the block enclosing the wire

AREA { TABLE { numbers } }

} TABLE { numbers }

}

RESISTANCE { // estimated resistance of the wire

/* HEADER, TABLE */
}

AREA { // estimated area of the wire itself

/* HEADER, TABLE */
}

}

CELL my_cell {

AREA = number ; // area of the cell

}

// utilization = (total cell area + total wire area) / (area of the block)

March 15, 2000 ALF tutorial 87

Physical parasitic model
LAYER metal1 {
// estimated grounded capacitance for a wire on a layer

CAPACITANCE {
HEADER {

WIDTH { UNIT = 1e-6; }
LENGTH { UNIT = 1e-6; }

} EQUATION { 1.08*WIDTH*LENGTH }
} }

RULE parallel_lines {
PATTERN line1 { LAYER = metal1; SHAPE = line; }
PATTERN line2 { LAYER = metal1; SHAPE = line; }

// estimated coupling capacitance between parallel lines on the same layer
CAPACITANCE {

BETWEEN { line1 line2 }
HEADER {

DISTANCE D { BETWEEN { line1 line2 } }
LENGTH L1 { PATTERN = line1; }
LENGTH L2 { PATTERN = line2; }

} EQUATION { 0.27*(L1+L2)/D }
} }

March 15, 2000 ALF tutorial 88

Interconnect delay model
WIRE simple_interconnect_delay_model {

NODE N1 = driver;
NODE N2;
NODE N3 = receiver;
NODE N0 = ground;
VECTOR (?! N1 -> ?! N2) { // models apply for both rise and fall

DELAY { FROM { PIN = N1; } TO { PIN = N3; } }
HEADER {

RESISTANCE R1 { NODE { N1 N2 } }
CAPACITANCE C1 { NODE { N2 N0 } }
RESISTANCE R2 { NODE { N2 N3 } }
CAPACITANCE C2 { NODE { N3 N0 } }

} EQUATION { R1*(C1+C2) + R2*C2 } // Elmore delay
}
SLEWRATE { PIN = N3;

HEADER {
DELAY { FROM { PIN = N1; } TO { PIN = N3; } TABLE { numbers } }
SLEWRATE { PIN = N1; }

} TABLE { numbers } // slewrate degradation
}

}
}

March 15, 2000 ALF tutorial 89

Interconnect crosstalk model
WIRE interconnect_xtalk_delay_model {

NODE N1 = driver; NODE N2 = receiver; // aggressor
NODE N3 = driver; NODE N4 = receiver; // victim
NODE N0 = ground;

// aggressor is rising, victim is stable low
VECTOR ((01 N1 -> 01 N2) && !N3 && !N4) {

// xtalk-induced noise voltage
VOLTAGE { PIN = N4; MEASUREMENT = peak; CALCULATION = incremental;

HEADER {
SLEWRATE SA { PIN = N2; }
CAPACITANCE CC { NODE { N2 N4 } }
CAPACITANCE CV { NODE { N4 N0 } }
RESISTANCE RV { NODE { N3 N4 } }

} EQUATION { 1.35*(1 - EXP(-SA/(RV*CV)))*RV*CC/SA }
} }

// aggressor is rising, victim is falling
VECTOR (01 N1 -> 10 N3 -> 01 N2 -> 10 N4) {

// xtalk-induced delay
DELAY { FROM { PIN = N3; } TO { PIN = N4; } CALCULATION = incremental;

HEADER {
SLEWRATE SA { PIN = N2; }
SLEWRATE SV { PIN = N3; }
CAPACITANCE CC { NODE { N2 N4 } }
CAPACITANCE CV { NODE { N4 N0 } }
RESISTANCE RV { NODE { N3 N4 } }

} EQUATION { 0.442*(1 - EXP(-SA/(RV*CV)))*RV*CC*SV/SA }
} } }

March 15, 2000 ALF tutorial 90

Hierarchical design

• Pins with multiple ports

• Boundary parasitics

• Structural models

• Timing models

March 15, 2000 ALF tutorial 91

Hierarchical design (cont.)
CELL my_cell {

PIN X { /* pin data */ } PIN Y { /* pin data */ } PIN Z { /* pin data */ }
/* cell data */

}
CELL my_hierarchical_block {

PIN A1 { DIRECTION = input;
PORT P1 {VIEW=physical;} PORT P2 {VIEW=none;} PORT P3 {VIEW=none;}

}
PIN A2 { DIRECTION = input; }
PIN N1 { DIRECTION = none; PORT Q1 {VIEW=none;} PORT Q2 {VIEW=none;} }
PIN Z1 { DIRECTION = input;

PORT R1 {VIEW=none;} PORT R2 {VIEW= physical;} PORT R3 {VIEW= physical;}
}
/* boundary parasitics */
/* structural description */
/* timing description */

}

A2

A1.P1

N1.Q1

Z1.R1

my_cell

X

Y

Z

my_cell

X

Y

Z

A1.P2

A1.P3

N1.Q2

Z1.R2

Z1.R3

March 15, 2000 ALF tutorial 92

Hierarchical design (cont.)
CELL my_hierarchical_block {

/* pin description */
WIRE boundary_parasitics {

NODE GND = ground;
RESISTANCE r1 = number { NODE { A1.P1 A1.P2 } }
RESISTANCE r2 = number { NODE { A1.P1 A1.P3 } }
RESISTANCE r3 = number { NODE { N1.Q1 N1.Q2 } }
RESISTANCE r4 = number { NODE { Z1.R1 nn1 } }
RESISTANCE r5 = number { NODE { nn1 Z1.R2 } }
RESISTANCE r6 = number { NODE { nn1 Z1.R3 } }
CAPACITANCE c1 = number { NODE { A1.P2 GND } }
CAPACITANCE c2 = number { NODE { A1.P3 GND } }
CAPACITANCE c3 = number { NODE { A2 GND } }
CAPACITANCE c4 = number { NODE { nn1 GND } }

}
/* structural description */
/* timing description */

}

A2

A1.P1

N1.Q1

Z1.R1

my_cell

X

Y

Z

my_cell

X

Y

Z

A1.P2

A1.P3

N1.Q2

Z1.R2

Z1.R3

nn1

March 15, 2000 ALF tutorial 93

Hierarchical design (cont.)
CELL my_hierarchical_block {

/* pin description */
/* boundary parasitics */
FUNCTION { STRUCTURE {

my_cell inst1 { X=A1.P2; Y=A2; Z=N1.Q1; }
my_cell inst2 { X=A1.P3; Y=N1.Q1; Z=Z1.R1; }

} }
VECTOR (?! A1.P2 -> ?! N1.Q1) {

DELAY { FROM { PIN=A1.P2; } TO { PIN=N1.Q1; } /* HEADER, TABLE */ }
}
VECTOR (?! A2 -> ?! N1.Q1) {

DELAY { FROM { PIN=A2; } TO { PIN=N1.Q1; } /* HEADER, TABLE */ }
}
VECTOR (?! N1.Q1 -> N1.Q2 -> Z1.R1) {

DELAY { FROM { PIN=N1.Q1; } TO { PIN=Z1.R1; } /* HEADER, TABLE */ }
}
VECTOR (?! A1.P3 -> ?! Z1.R1) {

DELAY { FROM { PIN=A1.P3; } TO { PIN=Z1.R1; } /* HEADER, TABLE */ }
} }

A2

A1.P1

N1.Q1

Z1.R1

my_cell

X

Y

Z

my_cell

X

Y

Z

A1.P2

A1.P3

N1.Q2

Z1.R2

Z1.R3

nn1

March 15, 2000 ALF tutorial 94

High-level design planning

• Tool makes architectural trade-offs
– area vs timing vs power

• Library supports abstract models
– parameterized models for macrocells and logic

building blocks

– TEMPLATE construct is used

March 15, 2000 ALF tutorial 95

High-level design planning (cont.)
// Example: adder with fixed bitwidth

CELL my_8_bit_adder { AREA = 36.4;
PIN [8:1] A { DIRECTION = input; }
PIN [8:1] B { DIRECTION = input; }
PIN [8:1] S { DIRECTION = output; }
VECTOR ((A[8:2]==‘b1111111)&(?! A[1] -> ?! S[8])) {

DELAY = 2.5 { FROM { PIN = A[1]; } TO { PIN = S[8]; }
ENERGY = 139.7;

} }

// Template for adder with variable bitwidth
TEMPLATE my_N_bit_adder {

CELL <cellname> { AREA = <cellarea> ;
PIN [<N>:1] A { DIRECTION = input; }
PIN [<N>:1] B { DIRECTION = input; }
PIN [<N>:1] S { DIRECTION = output; }
VECTOR ((A [<N>:2]==(2**<N>-1)&(?! A[1] -> ?! S[<N>])) {

DELAY = <celldelay> { FROM { PIN = A[1]; } TO { PIN = S[<N>]; }
ENERGY = <cellenergy> ;

} } }

March 15, 2000 ALF tutorial 96

High-level design planning (cont.)
// Static template instance creates adder with fixed bitwidth
// Every placeholder is replaced with a value

my_N_bit_adder {
N = 8;
cellname = my_8_bit_adder;
cellarea = 36.4;
celldelay = 2.5;
cellenergy = 139.7;

}

// Dynamic template instance creates parameterized adder model
// Mathematical relationships between certain placeholders are defined

my_N_bit_adder = dynamic {
cellname = N_bit_ripple_carry_adder;
cellarea = N * 4.55;
celldelay = N * 0.3125;
cellenergy = N * 12.3 + N**2 * 5.1625;

}
// Tool can make tradeoff between N_bit_ripple_carry_adder and
// other dynamic template instances of my_N_bit_adder for a given N

March 15, 2000 ALF tutorial 97

Conclusion

• ALF covers the complete ASIC/SOC modeling space from
RTL to Silicon

• Modeling concepts of vector_expression and
arithmetic_model go a long way

• ALF is one of the most rapidly evolving OVI standards

• Please share the information from this tutorial freely with
your colleagues

• You are very welcome to join the ALF and the related OLA
workgroups

March 15, 2000 ALF tutorial 98

Further information

Please visit the ALF webpage at

www.eda.org/alf

Subscribe to the email reflector by sending email to

majordomo@eda.org

Contents:

subscribe ALF <your_email_address>

