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IEEE Standard for an

Advanced Library Format (ALF)
describing Integrated Circuit (IC)
technology, cells, and blocks

1. Introduction

**Add alead-in OR change this to parallel an IEEE intro section**

1.1 Motivation

Designing digital integrated circuits has become an increasingly complex process. More functions get integrated
into a single chip, yet the cycle time of e ectronic products and technol ogies has become considerably shorter. It
would be impossible to successfully design a chip of today’s complexity within the time-to-market constraints
without extensive use of EDA tools, which have become an integral part of the complex design flow. The effi-
ciency of the tools and the reliability of the results for simulation, synthesis, timing and power analysis, layout
and extraction rely significantly on the quality of available information about the cellsin the technology library.

New challenges in the design flow, especialy signal integrity, arise as the traditional tools and design flows hit
their limits of capability in processing complex designs. As a result, new tools emerge, and libraries are needed
in order to make them work properly. Library creation (generation) itself has become avery complex process and
the choice or rejection of a particular application (tool) is often constrained or dictated by the availability of a
library for that application. The library constraint can prevent designers from choosing an application program
that is best suited for meeting specific design challenges. Similar considerations can inhibit the development and
productization of such an application program altogether. As a result, competitiveness and innovation of the
whole electronic industry can stagnate.

In order to remove these constraints, an industry-wide standard for library formats, the Advanced Library Format
(ALF), is proposed. It enables the EDA industry to develop innovative products and ASIC designers to choose
the best product without library format constraints. Since ASIC vendors have to support a multitude of libraries
according to the preferences of their customers, acommon standard library is expected to significantly reduce the
library development cycle and facilitate the deployment of new technol ogies sooner.
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1.2 Goals
The basic goals of the proposed library standard are

— simplicity - library creation process needs to be easy to understand and not become a cumbersome pro-
cess only known by afew experts.

— generality - tools of any level of sophistication need to be ableto retrieve necessary information from the
library.

— expandability - this needs to be done for early adoption and future enhancement possibilities.

— flexibility - the choice of keeping information in one library or in separate libraries needs to be in the hand
of the user not the standard.

— ¢fficiency - the complexity of the design information requires the process of retrieving information from
the library does not become a bottleneck. Theright trade-off between compactness and verbosity needsto
be established.

— ease of implementation - backward compatibility with existing libraries shall be provided and translation
to the new library needsto be an easy task.

— conciseness - unambiguous description and accuracy of contents shall be detailed.

— acceptance - there needs to be a preference for the new standard library over existing libraries.

1.3 Target applications

The fundamental purpose of ALF is to serve as the primary database for al third-party applications of ASIC
cells. In other words, it is an elaborate and formalized version of the databook.

In the early days, databooks provided all the information a designer needed for choosing a cell in a particular
application: Logic symbols, schematics, and a truth table provided the functional specification for simple cells.
For more complex blocks, the name of the cell (e.g., asynchronous ROM, synchronous 2-port RAM, or 4-bit syn-
chronous up-down counters) and timing diagrams conveyed the functional information. The performance charac-
teristics of each cell were provided by the loading characteristics, delay and timing constraints, and some
information about DC and AC power consumption. The designers chose the cell type according to the function-
ality, estimated the performance of the design, and eventualy re-implemented it in an optimized way as neces-
sary to meet performance constraints.

Design automation enabled tremendous progressin efficiency, productivity, and the ability to deal with complex-
ity, yet it did not change the fundamental requirements for ASIC design. Therefore, ALF needs to provide mod-
els with functional information and performance information, primarily including timing and power. Signal
integrity characteristics, such as noise margin can aso be included under performance category. Such informa-
tion is typically found in any databook for analog cells. At deep sub-micron levels, digital cells behave similar to
analog cells as electronic devices bound by physical laws and therefore are not infinitely robust against noise.

Table 1 shows alist of applications used in ASIC design flow and their relationship to ALF.

NOTE — ALF covers library data, whereas design data needs to be provided in other formats.

Table 1—Target applications and models supported by ALF

Application Functional model Performance model Physical model
Smulation Derived from ALF N/A N/A
Synthesis Supported by ALF Supported by ALF Supported by ALF
Design for test Supported by ALF N/A N/A
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Table 1—Target applications and models supported by ALF (Continued)

Application Functional model Performance model Physical model
Design planning Supported by ALF Supported by ALF Supported by ALF
Timing analysis N/A Supported by ALF N/A
Power analysis N/A Supported by ALF N/A
Sgnal integrity N/A Supported by ALF N/A
Layout N/A N/A Supported by ALF

Historically, afunctional model was virtually identical to a simulation model. A functional gate-level model was
used by the proprietary simulator of the ASIC company and it was easy to lump it together with a rudimentary
timing model. Timing analysis was done through dynamic functional simulation. However, with the advanced
level of sophistication of both functional simulation and timing analysis, thisis no longer the case. The capabili-
ties of the functional simulators have evolved far beyond the gate-level and timing analysis has been decoupled
from simulation.

RTL design planning is an emerging application type aiming to produce “virtual prototypes’ of complex for sys-
tem-on-chip (SOC) designs. RTL design planning is thought of as acombination of someor all of RTL floorplan-
ning and global routing, timing budgeting, power estimation, and functional verification, as well as analysis of
signal integrity, EMI, and thermal effects. The library components for RTL design planning range from simple
logic gates to parameterizeable macro-functions, such as memories, logic building blocks, and cores.

From the point of view of library requirements, applications involved in RTL design planning need functional,
performance, and physical data. The functional aspect of design planning includes RTL simulation and formal
verification. The performance aspect coverstiming and power as primary issues, while signal integrity, EMI, and
thermal effects are emerging issues. The physical aspect isfloorplanning. As stated previously, the functional and
performance models of components can be described in ALF.

ALF also coversthe requirements for physical data, including layout. Thisisimportant for the new generation of
tools, where logical design merges with physical design. Also, al design steps involve optimization for timing,
power, signal integrity, i.e. electrical correctness and physical correctness. EDA tools need to be knowledgeable
about an increasing number of design aspects. For example, a place and route tool needs to consider congestion
aswell astiming, crosstalk, electromigration, antennarulesetc. Thereforeitisalogical step to combine the func-
tional, electrical and physical models needed by such atool in a unified library.

Figure 1 shows how ALF provides information to various design tools.
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(D Vendor-specific or commercial EDA tool

Commercial EDA ool <Ce|| characterization tool>

/ \ \

[ayout
models
annotations
for scan

universal  |—
annotations ALF design limitg |
for synthesis

wireload Y
models ) _ ) )
universal functional model universa universal universal signal

— timing model power model integrity model
Test vectors Simulation models
écan insertion too>
Place & Route
tool

CTest vector generat@( Model generat@
Power
analysistool

Timing
Simulators analysis tool
Verilog & VHDL

Signal integrity
Verilog & VHDL | | Verilog & VHDL analysis tool
Figure 1—ALF and its target applications

The worldwide accepted standards for hardware description and simulation are VHDL and Verilog. Both lan-
guages have awide scope of describing the design at various levels of abstraction: behavioral, functional, synthe-
sizable RTL, and gate level. There are many ways to describe gate-level functions. The existing simulators are
implemented in such a way that some constructs are more efficient for simulation run time than others. Also,
how the simulation model handles timing constraints is a trade-off between efficiency and accuracy. Developing
efficient simulation models which are functionally reliable (i.e., pessimistic for detecting timing constraint viola-
tion) isamajor development effort for ASIC companies.

Hence, the use of a particular VHDL or Verilog simulation model as primary source of functional description of
acell isnot very practical. Moreover, the existence of two simulation standards makes it difficult to pick one asa
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reference with respect to the other. The purpose of ageneric functional model isto serve as an absol ute reference
for all applications that require functional information. Applications such as synthesis, which need functiona
information merely for recognizing and choosing cell types, can use the generic functional model directly. For
other applications, such as simulation and test, the generic functional model enables automated simulation model
and test vector generation and verification, which has a tremendous benefit for the ASIC industry.

With progress of technology, the set of physical constraints under which the design functions have increased dra-
matically, along with the cost constraints. Therefore, the requirements for detailed characterization and analysis
of those constraints, especialy timing and power in deep submicron design, are now much more sophisticated.
Only a subset of the increasing amount of characterization data appears in today’s databooks.

ALF provides a generic format for all type of characterization data, without restriction to state-of-the art timing
models. Power models are the most immediate extension and they have been the starter and primary driver for
ALF

Detailed timing and power characterization needs to take into account the mode of operation of the ASIC cell,
which is related to the functionality. ALF introduces the concept of vector-based modeling, which is a generali-
zation and a superset of today’s timing and power modeling approaches. All existing timing and power analysis
applications can retrieve the necessary model information from ALF.

1.4 Conventions

The syntax for description of lexical and syntax rules uses the following conventions.
**Consider using the BNF nomenclature from |[EEE 1481-1999* *

ti= definition of a syntax rule
| alternative definition
[item] an optional item

[iteml | item2 | ... ] optional item with alternatives

{item} optional item that can be repeated

{iteml | item2 | ... } optional items with alternatives
which can be repeated

item item in boldface font is taken verbatim

item item in italic is for explanation purpose only

The syntax for explanation of semantics of expressions uses the following conventions.

=== left side and right side expressions are equivalent
<item> a placeholder for an item in regular syntax

1.5 Contents of this standard
The organization of the remainder of this standard is

— Clause 2 (References) provides references to other applicable standards that are assumed or required for
ALF.

— Clause 3 (Definitions) defines terms used throughout the different specifications contained in this stan-
dard.

— Clause 4 (Acronyms and abbreviations) defines the acronyms used in this standard.

— Clause 6 (Lexical rules) specifiesthe lexical rules.

— Clause 5 (Language construction principles) defines the language construction principles.

— Clause 7 (Auxiliary items) defines syntax and semantics of auxiliary itemsused in this standard.

— Clause 8 (Generic objects) defines syntax and semantics of generic objects used in this standard.
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Clause 9 (Library-specific objects) defines syntax and semantics of library-specific objects used in this

standard.

Clause 10 (Constructs for modeling of digital behavior) defines syntax and semantics of the control

expression language used in this standard

Clause 11 (Constructs for modeling of anal og behavior) defines syntax and semantics of arithmetic mod-

elsused in this standard.
Annexes. Following Clause 11are a series of normative and informative annexes.
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2. References

**Fill in applicable references, i.e. standards on which the herein proposed standard depends.

This standard shall be used in conjunction with the following publication. When the following standard is super-
seded by an approved revision, the revision shall apply.

**The following is only an example. AL F does not depend on C.

[ SO/IEC 9899:1990, Programming Languages—C.1

[1SO 8859-1 : 1987(E)] ASCII character set

11SO publications are available from the 1SO Central Secretariat, Case Postale 56, 1 rue de Varembé, CH-1211, Genéve 20, Switzerland/
Suisse (http://www.iso.ch/). IEC publications are available from the Sales Department of the International Electrotechnical Commission,
Case Postale 131, 3, rue de Varembé, CH-1211, Genéve 20, Switzerland/Suisse (http://www.iec.ch/). ISO/IEC publications are a so available
in the United States from the Sales Department, American National Standards Institute, 11 West 42nd Street, 13th Floor, New York, NY
10036, USA.
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3. Definitions

For the purposes of this standard, the following terms and definitions apply. The IEEE Sandard Dictionary of
Electrical and Electronics Terms [B4] should be consulted for terms not defined in this standard.

**Fill in definitions of terms which are used in the herein proposed standard.

3.1 advanced library format: The format of any file that can be parsed according to the syntax and semantics
defined within this standard.

3.2 application, electric design automation (EDA) application: Any software program that uses data repre-
sented in the Advanced Library Format (ALF). Examplesinclude RTL (Register Transfer Level) synthesistools,
static timing analyzers, etc. See also: advanced library format; register transfer level.

3.3arc: See: timing arc.

3.4 argument: A data item required for the mathematical evaluation of an artihmetic model. See also: arith-
metic model.

3.5arithmetic model: A representation of alibrary quantity that can be mathematically evaluated.
36..

3.7 register transfer level: A behaviord representation of a digital electronic design allowing inference of
sequential and combinational logic components.

38..

3.9 timing arc: An abstract representation of a measurement between two points in time during operation of a
library component.

3.10 ...
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4. Acronyms and abbreviations

This clause lists the acronyms and abbreviations used in this standard.

ALF advanced library format, title of the herein proposed standard

ASIC application specific integrated circuit
AWE asymptotic waveform evaluation
BIST built-in self test

CAE computer-aided engineering [the term electronic design automation (EDA) is preferred]

CAM content-addressable memory

CLF Common Library Format from Avant! Corporation
CPU central processing unit

DCL Delay Calculation Language from |EEE 1481 std

DEF Design Exchange Format from Cadence Design Systems Inc.

DLL delay-locked loop

DPCM  Delay and Power Calculation Module from |EEE 1481 std
DPCS  Deay and Power Calculation System from |EEE 1481 std
DSP digital signal processor

EDA electronic design automation

EDIF Electronic Design Interchange Format

HDL hardware description language

IC integrated circuit

IP intellectua property

ILM Interface Logic Model from Synopsys Design Systems Inc.
LEF Library Exchange Format from Cadence Design Systems Inc.
LIB Library Format from Synopsys Inc.

LSSD level-sensitive scan design

MPU mMiCro processor unit

OLA Open Library Architecture from Silicon Integration Initiative Inc.

PDEF Physical Design Exchange Format from |EEE 1481 std
PLL Phase-locked loop

PVT process/voltage/temperature

QTM quick timing model

RAM random access memory

RC resistance times capacitance

RICE rapid interconnect circuit evaluator

ROM read-only memory

RSPF Reduced Standard Parasitic Format

RTL Register Transfer Level

SDF Standard Delay Format from |IEEE 1497 std

SLC System Level Constraint format from Synopsys Inc.
SPEF Standard Parasitic Exchange Format from |EEE 1481 std
SPF Standard Parasitic Format

SPICE  Simulation Program with Integrated Circuit Emphasis
STA Static Timing Analysis

STAMP (STA Model Parameter ?) format from Synopsys Inc.
TCL Tool Command Language (supported by multiple vendors)

IEEE P1603 Draft 2 Advanced Library Format (ALF) Reference Manual

11

on

10

15

20

25

30

35

40

45

50

55



10

15

20

25

30

35

40

45

50

55

TLF
VCD
VHDL
VHSIC
VITAL
VLS

12

Timing Library Format from Cadence Design Systems Inc.
Value Change Dump format (from |EEE 1364 std ?)
VHSIC Hardware Description Language

very-high-speed integrated circuit

VHDL Initiative Towards ASIC Libraries

very-large-scale integration

Advanced Library Format (ALF) Reference Manual
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5. Language construction principles

**Add lead-in text**

5.1 Object model

This section discusses the object model used by ALF and provides the syntax rules for al objects. The syntax
rules are provided in standard BNF form.

A library consists of one or more objects. Each object is defined by a keyword and an optional name for the
object and an optional value of the object.

A keyword defines the type of the object. Section 3.2 and Section 3.3 define various types of objectsused in ALF
and related keywords.

An optional identifier (also called a name) following the keyword defines the name of the object. This name shall
be used while referencing an object inside other objectsin thelibrary. If an object is not referenced by name, then
the object need not be named.

A literal defines an optional value associated with the object. An expression can be used when the value of the
object cannot be expressed as a literal.

An object can contain one or more objects. The containing object is called a hierarchical object. The contained
objects are called children objects. The children objects are defined and referenced inside curly braces ({ }) in
the description of the hierarchical object. An object without children is called an atomic object.

Forward referencing of objectsis not allowed. Therefore, all objects shall be defined before they can be instanti-
ated. Thisallows library parsersto be one-pass parsers.

5.1.1 Syntax conventions

In order to make ALF easy to parse, the syntax conventions follow the rules defined in 1.4. These should also be
followed for future extensions of the grammar.

The first token of the object is the object type identifier, followed by a name (mandatory or optional, depending
on object type), followed by (mandatory or optional) = and value assignment, followed by (mandatory or
optional) children objects enclosed by curly braces. Objects with more than one token (i.e., name and/or value)
and without children are terminated with a; .

Examples

a)  Unnamed object without value assignment:
MY OBJECT TYPE
or
MY OBJECT TYPE {
//£i1ll in children objects
}

b)  Unnamed object with value assignment:
MY OBJECT TYPE = my object value;
or
MY OBJECT TYPE = my object value {
//£i1ll in children objects
}
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c) Named object without value assignment:
MY OBJECT TYPE my object name;
or
MY OBJECT TYPE my object name {
//£i1ll in children objects
}

d) Named object with value assignment:
MY OBJECT TYPE my object name = my object value;
or
MY OBJECT TYPE my object name = my object value {
//£i1ll in children objects
}

The objects in ALF can be divided into the following categories: generic objects, library-specific objects, arith-
metic models, geometric models, and library-specific singular objects.

5.1.2 Relationships between objects

Figure 2 and Figure 3 describe the categories of objects and their relationships with each other.

Library-specific objects, arithmetic models, geometric models, and library-specific singular objects can contain
auxiliary objects, such as annotation and annotation container (see 11.7). Annotations and annotation containers

serve as semantic qualifiers for library-specific objects, arithmetic models, geometric models, and library-spe-
cific singular objects, as shown in Figure 2.

library-specific object contains annotation container
arithmetic model contains

_ contains
geometric mode contains
library-specific contains annotation
singular object

Figure 2—Objects containing annotations or annotation containers

All the above mentioned objects can contain generic objects, as shown in Figure 3.

library-specific object contains

arithmetic model con
contans

contans™ . .
library-specific singular object  Gnming™  9€NEric object
annotation ﬁ
annotation container

Figure 3—Objects containing generic objects
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Figure 4 and Figure 5 illustrate the relationship between objectsin a library for functional and electrical design
and for physical design, respectively.

library

contains

sublibrary

contains

contains

T / node
0 &
non-scan cell 3 Y
- : 5 &
COntaing— 8 range
S contains \ )
teSt‘”’cﬁa'ﬂS/ cdl ———> wire
L 2 Q Co S
— % /7[(9/.
g . s o @
o 8 3 Pinor pingroup s @
) ) =
*g *g 5 5 g/ Vecto
C c (%))
VY 9 9 S
S

contans
contans
contamns

primitive \\A&\

‘ -

Figure 4—Objects in a library for logical and electrical design and their relationships

A library for functional and electrical design can contain sublibraries, cells, primitives, wires, as shown in
Figure 4. Those cells which represent hierarchical blocks can also contain primitives and wires. Also, cells can
contain pins, pin groups, and vectors. Each object in the library can contain arithmetic models for electrical char-
acteristics. In particular, electrical models which require a stimulus for characterization shall be in the context of
avector, which describes the stimulus.

Certain objects can also contain library-specific singular objects: A cell can contain afunction, test, or non-scan
cell. A wire can contain anode. A pin can contain arange.
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library contains

contains

contains

sublibrary

-

- layer <

containg, rue -

. -
Via =

contains

-
— antenna

contains
contains

contains
contains

B
array -

- contains

Yyvyy
connectivity arithmetic model

Figure 5—Objects in a library for physical design and their relationships

A library for physical design can contain sublibraries, cells, layers, vias, general rules, antennarules, and arrays,
as shown in Figure 5. Cells and vias can contain a reference to artwork. Cells can contain blockages. Pins can
contain ports. Almost every library can contain arithmetic models for physical characteristics. A library, subli-
brary, cell, or pin can aso contain connectivity rules.

5.1.3 Relations between objects
Generd referenceable objects within the scope of visibility are TEMPLATE and GROUP. Library-specific refer-

enceable objects are PINS, PRIMITIVES, and arithmetic models. Figure 6 shows the relationships between
these objects and where they can be referenced.
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primitive —Teferencesbleby  cgl|

= annotation container

pin

Figure 6—Referencing rules for ALF objects

The TEMPLATE and GROUP objects are referenceable only by their respective instantiation. The TEMPLATE
definitions can contain instantiation of previously defined templates, which alows construction of reusable

objects.

The arithmetic models can be referenced by other arithmetic models, if they are contained within each other. This

allows hierarchical modeling and a mix of table- and equation-based models.

The PIN objects are referenced within FUNCTION and VECTOR objects and within any annotation container

inside the same CELL object.

The PRIMITIVESare referenceable by a CELL, to define pins and functionality, within a FUNCTION, to define

functionality only, or within an annotation container, e.g., SCAN.
To use PRIMITIVES and PINS, see5.6.1 and 5.3.7.
5.1.3.1 Keywords for referencing objects used as annotation

The object references shown in Table 2 can be used as annotations.

Table 2—Object references as annotation

Keyword Valuetype Description
CELL string Reference to a declared CELL object.
PRIMITIVE string Reference to adeclared PRIMITIVE object.
PIN string Reference to adeclared PIN object.
CLASS string Reference to a declared CLASS object.
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The syntax for defining an object reference annotation is shown in Syntax 1.

object_reference_annotation ::=
object_keyword = string

Syntax 1—Obiject reference annotation

5.1.3.2 Other incremental definitions

Incremental definitions of PROPERTY, ATTRIBUTE, LIBRARY, and SUBLIBRARY shall also belegal.
Different teams can work on different parts of the library or cells can be added incrementally to the library. The
incremental definition allows a standalone release of new cells belonging into a particular LIBRARY or SUBLI -
BRARY.

Incremental definitions of PROPERTY or ATTRIBUTE are applicable for objects, for which incremental defini-

tions are allowed in the first place, since each incremental definition can be accompanied by a new set of PROP-
ERTY Oof ATTRIBUTE values.

5.2 Library organization

This section defines the scoping rul es ang-use-ef-multiptefles within alibrary.

5.2.1 Scoping rules

**Thisis a single subsection**

The following scope rules shall apply to al library objects and their usage.
Rule 1: An object shall be defined before it is referenced.

Rule 2: An ALF object shall be known (referenceable) inside the parent object, inside al objects defined after
that object within the same parent object, and inside all the children of those objects.

Rule3: An object definition with only akeyword, but without an object identifier, implies the content of this def-
inition shall be applied to all objects identified by this keyword at the current scope and the underlying levels of
hierarchy.

Example

LIBRARY my library {
CAPACITANCE {UNIT = pF;} // default capacitance units for all
e // cells in my library
CELL celll ({
CAPACITANCE {UNIT = fF;} // capacitance units specific to celll
PIN A {CAPACITANCE = 10.5;}

}

CELL cell2 {
PIN A {CAPACITANCE = 0.010;} // default capacitance units
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Here, the capacitanceof pinA of ce111is10.5 £F. Thecapacitanceof pinA of ce112is0.010 pF.

Rule 4: An object shall not be defined again at the same level of scope. A definition of an object is considered
duplicate, if both keyword and object identifier are identical.

Example
Itisillega to write the following:

LIBRARY my library {
CAPACITANCE {UNIT = fF;}

CELL celll {
pin A {CAPACITANCE = 10.5;}

}

CAPACITANCE {UNIT = pF;} // duplicate definition
CELL cell2 {
pin A {CAPACITANCE = 0.010;}

}

There are three possible ways capacitance units can be set to £F for some of the cellsin the library and pF for
other cellsin the same library:

a) Puteach set of cellsin adifferent sublibrary.

b) Define templates for the different units and reference them appropriately.
c) Definethe unitslocally inside each cell.
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6. Lexical rules

This section discusses the lexical rules.

6.1 Cross-reference of lexical tokens

**Table needs update* *

Table 3 cross-references the lexical tokensused in ALF.

Table 3—Cross-reference of lexical tokens

Lexical token Section Lexical token Section
alphabetic bit literal | 6.34 integer 6.3.3
any character 6.2.3 nonescaped_identifier 6.3.8
based literal 6.3.5 non_negative number 6.3.3
binary base 6.3.5 nonreserved_character 6.2.3
binary digit 6.3.5 number 6.3.3
bit_edge literal 6.3.6 numeric_bit literal 6.3.4
bit literal 6.3.4 octal_base 6.3.5
block_comment 6.3.2 octal digit 6.3.5
comment 6.3.2 placeholder identifier 6.3.8
decimal base 6.3.5 quoted_string 6.3.7
delimiter 6.3.1 reserved_character 6.2.3
digit 6.2.3 sign 6.3.3
dont_care_literal 6.3.4 single line comment 6.3.2
edge literal 6.3.6 symbolic_edge literal 6.3.6
escape_character 6.2.3 unsigned 6.3.3
escaped identifier 6.3.8 whitespace 6.2.2
hex base 6.3.5 word_edge literal 6.3.6
hex digit 6.3.5

6.2 Characters
This section defines the use of charactersin ALF.
6.2.1 Character set

Each graphic character correspondsto a unique code of the SO eight-bit coded character set
[ISO 8859-1 : 1987(E)] and is represented (visually) by a graphical symbol.
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6.2.2 Whitespace characters

The characters shown in Table 4 shall be considered whitespace characters.

Table 4—List of whitespace characters

Character ASCII code (hex)
space 20
vertical tab 0B
horizontal tab 09
line feed (new line) 0A
carriage return 0D
form feed oc

Comments are a so considered white space (see 6.3.2).

A whitespace character shall be ignored except when it separates other lexical tokens or when it appears in a
quoted string.

6.2.3 Other characters

The ASCII character set shall be divided in four categories: reserved characters, non-reserved characters, escape
character, and whitespace (see 6.2.2), as shown in Syntax 2.

any_character ::=
reserved character
| nonreserved_character
| escape_character
| whitespace

Syntax 2—ASCI| character

6.2.3.1 Reserved character

The reserved characters are symbols that make up punctuation marks and operators, as shown in Syntax 3.

reserved character ::=
& |]||“,,||~;|+|-|*|/|%|?|! =1<i>rniblfe@

Syntax 3—Reserved character

6.2.3.2 Non-reserved character

The non-reserved characters shall be used for creating identifiers and numbers, as shown in Syntax 4 —
Syntax 6.
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nonreserved_character ::=
letter | digit| | $|#

Syntax 4—Non-reserved character

letter ::
a|b|cd elfigihjifjikiliminio|p|qiris|tiulv | Y1z
QEHCZE 5|E|%|G|L||I|J|K|L|I\JI|N| |FL|Q| SITIUIVIW

Syntax 5—Letter

digit ::=
011/2131415/161718]9

Syntax 6—Digit
6.2.3.3 Escape character

The escape character is shown in Syntax 7. ** More??

escape_character ::=

Syntax 7—Escape character

ALF treats uppercase and lowercase characters as the same characters. In other words, ALF is a case-insensitive
language.

NOTE—The characters $ and # can be reserved in other languages, such as VERILOG. Therefore, if translation from ALF
into VERILOG is required, these characters shall not be used for items which need to be translated, e.g., the names of cells
and pins. Other languages can be case-sensitive, such as VERILOG. Therefore, if trandation from ALF into VERILOG is
required, the case of the name used in the declaration of the object, e.g., the name of acell or apin, shall always be preserved
as areference. For example, if the name of a cell is declared as MyCe11, reference to the cell can be made as MYCELL or
mycell. However, it shall always be translated into VERILOG asMyCel11.

6.3 Lexical tokens

The ALF source text files shall be a stream of lexical tokens. Each lexical token is either a delimiter, a comment,
anumber, abit literal, abased literal, an edge literal, a quoted string, or an identifier.

6.3.1 Delimiter

A delimiter is either areserved character or a compound operator. A compound operator is composed of two or
three adjacent reserved characters, as shown in Syntax 8.

delimiter ::
r@erved character s
|&&|~&|IJ)|~I |==|1=** |>=|<=
1?2012~ |¥21->|<-> | &> <& >|>>| <<

Syntax 8—Delimiter
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**need to refer to operators rather than enumerating them here, otherwise we may miss some of them**

Each specia character in a single character delimiter list shall be a single delimiter, unless this character is used
as a character in acompound operator or as a character in a quoted string.

6.3.2 Comment

ALF has two formsto introduce comments, as shown in Syntax 9.

comment ::=
single_line_comment
| block_comment

Syntax 9—Comment

A single-line comment shall start with the two characters / / and end with anew line.

A block comment shall start with /* and end with * /. Comments shall not be nested. The single-line comment
token // shall not have any special meaning in a block comment.

6.3.3 Number

**make subsections for “unsigned” and “integer” and “real”**

Constant numbers can be specified as integer or real, as shown in Syntax 10.

integer ::=

[ sign] unsigned
sign::=

+ |-
unsigned ::=

digit { _ | digit}

non_negative_number ::=
unsigned [ . unsigned ]
| unsigned [ . unsigned ] E [ sign] unsigned
number ::=
[ sign] non_negative_number

Syntax 10—Integer and real numbers

Aninteger is adecimal integer constant.
6.3.4 Bit literals

Bit literals can be specified as numeric or a phabetic bit, don’t care, or random, as shown in Syntax 11.
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bit_literal ::=
numeric_bit_literal
| alphabetic_bit_literal
| dont_care_litera
| random_literal
numeric_bit_literal ::=
01
alphabetic_bit_literal ::=
X|Z|LHUW
IX1z|l1hjujw
dont_care_literal ::=
r)—

random_literal ::=
*

Syntax 11—Bit literal

A bit literal shall represent a single bit constant, as shown in Table 5.

Table 5—Single bit constants

Literal Description
0 Valueislogic zero.
1 Valueislogic one.
X orx Valueis unknown.
Lorl Valueislogic zero with weak drive strength.
Horh Value is logic one with weak drive strength.
Worw Value is unknown with weak drive strength.
Zorz Value is high-impedance.
uoru Valueisuninitialized.
? Value is any of the above, yet stable.
* Value can randomly change.

6.3.5 Based literals

A based literal is a constant expressed in a form that specifies the base explicitly. The base can be specified in
binary, octal, decimal or hexadecimal format, as shown in Syntax 12.

The underscore (_) shall be legal anywhere in the number, except as the first character and this character is
ignored. This feature can be used to break up long numbers for readability purposes. No white space shall be
allowed between base and digit token in a based literal.

When an alphabetic bit literal isused as an octal digit, it shall represent three repeated bits with the same literal.
When an alphabetic bit literal is used as a hex digit, it shall represent four repeated bits with the same literal.
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based_litera ::=
binary_base{ _ | binary_digit}
| octal_base{ _ | octal_digit }
| decimal_base{ __| digit}
| hex_base{ | hex_digit }
binary_base ::=
1 | Ib
binary_digit ::=
bit_literal
octal base::=
|O | |0
octal_digit ::=
binary digit| 2314|5167
decimal_base ::=
ID |‘I'd
hex_base ::=
"H|'h
hex_digit ::=
octal_digit|8|9|A|B|C|D|E|F|ajb|c|d|e|f

Syntax 12—Based literal
Example

'o2xwlu !S thesameas' 010 xxx www 000 uuu
'hiux  ISthesameas'bLLLL uuuu xxxx

6.3.6 Edge literals
An edge literal shall be constructed by two bit literals or two based literals, as shown in Syntax 13. It shall

describe the transition of a signal from one discrete value to another. No white space shall be allowed within
(between) the two literals. An underscore can be used.

edge literal ::=
bit_edge literal
| word_edge literal
| symbolic_edge literal
bit_edge literal ::=
bit_litera bit_literal
word_edge literd ::=
based literal based literal
symbolic_edge literal ::=
7?17~ ?-

Syntax 13—Edge literal

6.3.7 Quoted strings

A quoted string shall be a sequence of zero or more characters enclosed between two quotation marks (" ") and
contained on asingle line, as shown in Syntax 14.

quoted_string ::=
" { any_character} "

Syntax 14—Quoted string
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Character escape codes are used inside the string literal to represent some common special characters. The char-
acters which can follow the backslash (\) and their meanings are listed in Table 6.

Table 6—Special characters in quoted strings

Symbol Asg)l(:l[acj:)c)de M eaning
\g 007 Alert/bell.
\h 010 Backspace.
\t 011 Horizontal tab.
\n 012 New line.
\v 013 Verticd tab.
\f 014 Form feed.
\r 015 Carriage return.
\" 042 Double quotation mark.
A\ 134 Backslash.
\ddd Octal value of ASCII character (three digits).

A non-quoted string can not contain any reserved character. Therefore, use of a quoted string is necessary when
referencing file names (which typically contain adot (.) character).

6.3.8 Identifier

Identifiers are used in ALF as names of objects, reserved words, and context-sensitive keywords, as shown in
Syntax 15. An identifier shall be any sequence of letters, digits, underscore (_), and dollar sign ($) character.
Identifiers are treated in a case-insensitive way. They can be used in the definition of objects and in reference to
already defined objects. A parser should preserve the case of an identifier in the definition of an object, since a
downstream application could be case-sensitive.

identifiers::=
identifier { identifier }
identifier ::=
nonescaped_identifier
| escaped_identifier
| placeholder_identifier
| hierarchical _identifier

Syntax 15—Identifiers
Purpose: Create a name for an object, create a predefined value for an object.
6.3.8.1 Non-escaped identifier

If an identifier is constructed from one or more non-reserved characters, it is called an non-escaped identifier, as
shown in Syntax 16.

A digit shal not be allowed asfirst character of a non-escaped identifier.
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nonescaped_identifier ::=
nonreserved_character { nonreserved_character }

Syntax 16—Non-escaped identifier
6.3.8.2 Escaped identifier

A sequence of characters starting with an escape character is called an escaped identifier. The escaped
identifier legalizesthe use of adigit asfirst character of anidentifier and theuse of reserved character
anywhere in an identifier. Or it can be used to prevent the misinterpretation of an identifier as a keyword. The
escape character shall be followed by at least one non-white space character to form an escaped identifier. The
escaped identifier shall contain all characters up to first white space character, as shown in Syntax 17.

escaped_identifier ::=

escape_character escaped_characters
escaped_characters ::=

escaped_character { escaped_character }
escaped_character ::=

nonreserved_character
| reserved_character
| escape_character

Syntax 17—Escaped identifier

6.3.8.3 Placeholder identifier

A placeholder identifier shall be a non-escaped identifier between the less-than character (<) and the greater-than
character (>). No whitespace or delimiters are allowed between the non-escaped identifier and the placeholder
characters (< and >). The placeholder identifier is used in template objects as a forma parameter, which is
replaced by the actual parameter in template instantiation, as shown in Syntax 18.

placeholder_identifier ::=
< nonescaped_identifier >

Syntax 18—Placeholder identifier

6.3.8.4 Hierarchical identifier

A hierarchical identifier shall be defined as shown in Syntax 19, with no whitespace in-between the characters.

hierarchical_identifier ::=
identifier . { identifier . } identifier

Syntax 19—Hierarchical identifier

A dot (.) shal take precedence over an escape character. To escape adot, the escape character
shall be placed directly in front of it.

Examples

\id1.id2 //Only id1l
idi1\.id2 //Only the
id1.\id2 //Only id2

28

is escaped.
dot is escaped.
is escaped.
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6.4 Keywords

Keywords are case-insensitive non-escaped identifiers. For clarity, this document uses uppercase | etters for key-

words and lowercase | etters el sewhere, unless otherwise mentioned.

Keywords are reserved for use as object identifiers, not for general symbols. To use an identifier that conflicts

with the list of keywords, use the escape character, e.g., to declarea pin that is called PIN, use the form

PIN \PIN {.

-}

A keyword can either be a reserved keyword (also called a hard keyword) or a context-sensitive keyword (also
called a soft keyword). The hard keywords have fixed meanings and shall be understood by any parser of ALF.
The soft keywords might be understood only by specific applications. For example, a parser for atiming analysis

application can ignore objects that contain power related information described using soft keywords.

6.4.1 Keywords for objects

| **tablenot up to date, maybe should be omitted**

The keywords shown in Table 7 are used to identify object types.

Table 7—Object keywords

ALIAS
CLASS
GROUP

PIN
SUBLIBRARY
WIRE

ATTRIBUTE
CONSTANT
HEADER
PRIMITIVE
TABLE

BEHAVIOR
EQUATION
INCLUDE
PROPERTY
TEMPLATE

CELL
FUNCTION
LIBRARY
STATETABLE
VECTOR

6.4.2 Keywords for operators

| **table not up to date, refer to “ arithmetic expression language” **

The keywords shown in Table 8 are used for built-in arithmetic functions.

IEEE P1603 Draft 2

Table 8—Built-in arithmetic function keywords

Term Definition
ABS Absolute value.
EXP Natural exponential function.
LOG Natural logarithm.
MIN Minimum.
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Table 8—Built-in arithmetic function keywords (Continued)

Term Definition

MAX Maximum.

6.4.3 Context-sensitive keywords

In order to address the need of extensible modeling, ALF provides a predefined set of public context-sensitive
keywords. Additional private context-sensitive keywords can be introduced as long as they do not have the same
name as any existing public keyword.

6.5 Rules against parser ambiguity
The following rules shall apply when resolving ambiguity in parsing ALF source.

— In a context where both bit literal and identifier are legal syntax items, a
nonescaped identifier shall take priority over an alphabetic bit literal.

— Inacontext wherebothbit literal and number arelegd syntax items, anumber shall take prior-
ity over anumeric bit literal.

— Inacontext where both edge literal and identifier arelegal syntax items, an identifier
shall take priority over abit edge literal.

— Inacontext where both edge literal and number are legal syntax items, anumber shall take pri-
ority over abit edge literal.

In such contexts, abased literal shall beusedinstead of abit literal.

6.6 Values

A lexical token is semantically interpreted as avalue, once its lower-level lexical components (i.e., literals) have
been identified.

**Some of these values are shown as plural (e.q., arithmetic values) others as singular (e.q., a string value)**

6.6.1 Arithmetic value

Arithmetic values XXX, as shown in Syntax 20.

arithmetic_vaues::=
arithmetic_value { arithmetic_value}
arithmetic vaue::=
number
| identifier
| pin_value

Syntax 20—Arithmetic values

Purpose: Data for calculation described in arithmetic model or in arithmetic assignment for
dynamic_ template instantiation.
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Semantic restriction: arithmetic _value shall resolve to a valid value for the particular
arithmetic model, where it is used. Some arithmetic models alow only unsigned (e.g.,
SWITCHING BITS Or FANOUT), others alow only non negative numbers (e.g., WIDTH or LENGTH).
Non-interpolatable arithmetic models (e.g., PROCESS or DERATE CASE) alow only symbolic identifi-
ers rather than numbers.

6.6.2 String value

A string value XXX, as shown in Syntax 21.

string_value ::=
quoted_string
| identifier

Syntax 21—String value
Purpose: Textual data.
6.6.3 Edge values

Edge values XXX, as shown in Syntax 22.

edge values::=

edge value{ edge value}
edge value::=

(‘edge_literal )

Syntax 22—Edge values

Purpose: Use edge literal as a standalone value. For that purpose, the edge literal is enclosed by
parentheses (()), to avoid parser ambiguity. Normaly, an edge literal appears only within a
vector expression. Inthat context, the enclosing parentheses are not necessary.

6.6.4 Index value

Anindex value XXX, as shown in Syntax 23.

index_value::=
unsigned
| identifier

Syntax 23—Index value

index_value shall resolve to unsigned, i.e, identifier shal be the name of a CONSTANT with an
unsigned value or a placeholder in TEMPLATE which gets replaced with unsigned.
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7. Auxiliary items

**Add lead-in text**

7.1 Index and related items

**The following two syntax boxes could be combined* *

7.1.1 Index

Anindex XXX, as shown in Syntax 24.

index ::=
index_range
| | index_value

Syntax 24—Index

7.1.2 Index range

An index range XXX, as shown in Syntax 25.

index_range ::=
index_value . index_value

Syntax 25—Index range

index_range shall define consecutive unsigned numbers, bound by the index value left and right of the
colon (:). In the context of a PIN statement, the left index value shall be considered as the MSB, the right
index value shall be considered as the MSB. index value can aso be used in the RANGE and GROUP
statements.

7.2 Pin assignment and related items

**Add lead-in text**

7.2.1 Pin assignment

A pin assignment XXX, as shown in Syntax 26.

pin_assignments ::=

pin_assignment { pin_assignment }
pin_assignment ::=

pin_variable = pin_value,

Syntax 26—Pin assignment

Purpose: Associates a pin value with apin variable for the purpose of pin mapping. Used in the
NON_ SCAN CELL statement, ARTWORK statement, and STRUCTURE statement.
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Semantic redtrictions: The pin value shal be compatible with the pin variable. A scalar
pin variable can be assigned to another scaar pin variable or to a scdar pin value, i.e a
bit literal or onebit binary based literal. A one-dimensional pin variable or a one-dimen-
siona dice of a two-dimensiond pin variable can be assigned to another one-dimensiona
pin_variable, another one-dimensional dice of a two-dimensional pin variable of same bitwidth, a
based literal of the same bitwidth, or to aunsigned which can be converted into a binary number of the
same bitwidth.

If the bitwidth of the pin value is smaller than the bitwidth of the pin variable, the LSBs shal be
aligned. Excessive leading bits of thepin variable shall befilled with zeros (0).

To be discussed: If the bitwidth of the pin_value is greater than the bitwidth of the pin variable, the
LSBs shall be aligned. Excessive leading bits of thepin wvalue shall be cut off.

7.2.2 Pin variable

A pin variable XXX, as shown in Syntax 27.

pin_variables::=
pin_variable { pin_variable}
pin_variable ::=
pin_variable_identifier [ index ]

Syntax 27—Pin variable

Purpose: Apin variable representstheinformation accessible through a PIN. A PIN (See section xxx) is
the interface between alibrary component (i.e., a CELL or PRIMITIVE) and its environment.

Semantics: A legal pin variable identifier shall make reference to a previously declared PIN,
PIN GROUP, NODE, Or PORT (e0.,pin identifier.port identifier). A lega index shall be bound
by the MSB and by the LSB of the index range in the referenced PIN.

7.2.3 Pin value

A pinvaue XXX, as shown in Syntax 28.

pin_values::=
pin_value{ pin_value}
pin_value ::=
pin_variable
| bit_literal
| based_literal
| unsigned

Syntax 28—FPin values

Purpose: pin_value defines the set of values which can be assigned to a pin_variable. Assigning a
pin variable to another pin variable shall be legal. It can also be used in the context of a
NON SCAN CELL, STRUCTURE, Orf primitive instantiation, as a short form of
pin assignment,i.e, pin mapping by order instead of pin mapping by name.

34 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 2



7.3 Annotation and related items

**Add lead-in text**

7.3.1 Annotations

An annotation is an auxiliary statement within the context of a library specific object, a
library specific singular object,oOr anarithmetic model, asshown in Syntax 29. It serves

asaqualifier of its context.

annotation ::=
one_level_annotation
| two_level_annotation
| multi_level_annotation
one_level_annotations ::=
one_level_annotation { one_level_annotation }
one_level_annotation ::=
single_value_annotation
| multi_value_annotation
single_value_annotation ::=
identifier = annotation_value ;
multi_value_annotation ::=
identifier { annotation_values }
two_level_annotations ::=
two_level_annotation { two_level_annotation }
two_level_annotation ::=
one_level_annotation
| identifier [ = annotation_value]
{ one_level_annotations }
multi_level_annotations ::=
multi_level_annotation { multi_level_annotation }
multi_level_annotation ::=
one_level_annotation
| identifier [ = annotation_value]
multi_level_annotations

Syntax 29—Annotations
7.3.2 Annotation value

An annotation value XXX, as shown in Syntax 30.

annotation values::=

annotation_value { annotation_value }
annotation value ::=

index_value

| string_value

| edge_value

| pin_value

| arithmetic_value

| boolean_expression

| control_expression

Syntax 30—Annotation values

NOTE—There is lexical overlap, but semantic distinction between the possible annotation values???2.
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7.4 All purpose item

An al purpose item XXX, as shown in Syntax 31.

all_purpose_items ::=

all_purpose_item { all_purpose_item }
all_purpose_item ::=

include

| alias

| constant

| attribute

| property

| class_declaration

| keyword_declaration

| group_declaration

| template_declaration

| template_instantiation

| annotation

| arithmetic_model

| arithmetic_model_container

Syntax 31—All purpose items

Purpose: Provide flexibility and generality of the ALF syntax. The ALF semantics shall define whether a partic-

ular all purpose itemislegal within aspecific context.
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8. Generic objects

A generic object can appear at every level in the library within any scope. The semantics of ageneric object need
to be understood by any ALF compiler if the generic object iswithin the scope of application for that compiler.

The objects shown in Figure 7 shall be considered generic objects.

alias

constant \

include \,S‘ga\‘ o
class e generic object
attribute - >

template e >

property Sk v
group /
keyword

Figure 7—Generic objects

8.1 INCLUDE statement

An INCLUDE object is a named object without value assignment and without children. The name is a quoted
string containing the name of afileto be included, as shown in Syntax 32.

include ::=

I NCLUDE quoted_string ;

Syntax 32—INCLUDE statement
Example
INCLUDE “primitives.alf”;
8.1.1 Interpreting special symbols

Since the file name is a quoted string, any special symbols (like ~ or *) are alowed within the filename. The
interpretation of those (e.g., as afile search path) is up to the application.

8.1.2 Use of multiple files

Sometimesit is inconvenient or impractical to include all of the data for atechnology library in asingle file. The
INCLUDE keyword is used to compose a library from multiple files.

An INCLUDE statement can be used within any context, but any included file shall contain at least a valid object

definition to be considered a legal ALF file. It needs to begin with a keyword, otherwise it can be ignored by a
generic parser.
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In general, the effect of using the INCLUDE statement is to be considered equivalent to inserting the contents of
the included file at that point in the parent file.

For example, atop-level ALF library file can contain only the following statements, where each file contains
appropriate data to make up the entire library.

LIBRARY mylib {
INCLUDE “libdata.alf”;
INCLUDE “templates.alf”;
INCLUDE “cells.alf”;
INCLUDE “wiremodels.alf”;

}

A complete ALF library definition shall begin with the LIBRARY keyword. A list of cell definitions shall not be
considered afull, legal ALF library database.

8.2 ALIAS statement

An ALIAS object is a named object with value assignment and without children objects. The value isa string, as
shown in Syntax 33.

dias::=
AL I ASidentifier = identifier ;

Syntax 33—ALIAS statement

Example

ALTAS RAMPTIME = SLEWRATE;

8.3 CONSTANT statement

A CONSTANT object is a named object with value assignment and without children objects. The value is a num-
ber, as shown in Syntax 34.

constant ::=

CONSTANT identifier = arithmetic_value ;

Syntax 34—CONSTANT statement

Example

CONSTANT vdd = 3.3;

8.4 ATTRIBUTE statement

An ATTRIBUTE object is an unnamed object without value, but containing children objects. The attribute object
shall be the child object of another object. The children of the attribute object are unnamed objects that can have
other unnamed objects as children objects. The purpose of an attribute object is to provide free association of
objects with attributes when there is no special category available for the attributes, as shown in Syntax 35.
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attribute ::=
ATTRIBUTE { identifiers }

Syntax 35—ATTRIBUTE statement
Examples

CELL rr 8x128 ({
ATTRIBUTE {ROM ASYNCHRONOUS STATIC}
}

PIN my pin {
ATTRIBUTE { SCHMITT }
}

8.5 PROPERTY statement

A PROPERTY object is anamed or an unnamed annotation container. It can be used at any level in the library. It
is used for arbitrary parameter-value assignment, as shown in Syntax 36. **Isthis still correct??

pro =
E’elgyOPE RTY [identifier ] { one_level_annotations }

Syntax 36—PROPERTY statement

Example

PROPERTY items ({
parameterl=valuel;
parameter2=value2;

}

A PROPERTY Statement can a so contain assignments with multiple values.

**|s this still correct?? If so, the syntax box above needs to be revised to accomodate the syntax and example
shown below.

property ::=
PROPERTY [ identifier ] { property items }

property items ::=
property item { property item }

property item ::=
unnamed_assignment
| multi value assignment
Example
PROPERTY {

my paraml = valuel;
my param2 { vall val2 val3 }
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my param3 = value4;

8.6 CLASS statement

A CLASS object is a named object with optional value assignments and children objects. The hame can be used
by other objectsto reference the class object, as shown in Syntax 37.

class declaration ::=

CLASSidentifier ;
| CLASS identifier { all_purpose items}

Example

Syntax 37—CLASS statement

CLASS my class { ... }

MY OBJECT TYPE my_ object {

= my class;

} // my object belongs to my class

8.7 KEYWORD statement

The ALF language alows the use of customized context-sensitive keywords for certain purposes. While the
semantics of these custom keywords can only be known by the user of such keywords, every ALF parser shall
have the capability to check the correct syntax of objects involving custom keywords. Therefore, the declaration
of custom keywords using the KEYWORD statement shall be mandatory.

Generic objects shall be augmented by using the KEYWORD statement. The KEYWORD statement shall be defined
as shown in Syntax 39.

keyword_declaration ::=
KEYWORD context_sensitive_keyword = syntax_item_identifier ;

Syntax 38—KEYWORD statement

syntax item identifiers areasubset of the objects defined in Section 11.8, as shown in Syntax 39.

syntax_item_identifier ::=
annotation
| annotation_container
| arithmetic_model
| arithmetic_submodel
| arithmetic_model_container
| vector_assignment

Example

40

Syntax 39—Syntax item identifiers
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KEYWORD my arithmetic model = arithmetic model;
KEYWORD my annotation for capacitance = annotation;
KEYWORD my annotation for resistance = annotation;
my arithmetic model {
HEADER {
CAPACITANCE { my annotation for capacitance = foo; }
RESITANCE { my annotation for resistance = bar; }

}

EQUATION { 10*CAPACITANCE + 0.5*RESISTANCE }

}
Itisillega to redefineintrinsic ALF keywords.
Example

KEYWORD vector = arithmetic model; // THIS IS ILLEGAL!!!

8.8 GROUP statement

A GROUP object isa set of el ements with commonality between them, as shown in Syntax 40.

group_declaration ::=
OUP group_identifier { annotation_values }
| GROUP group_identifier { index_value : index_value }

Syntax 40—GROUP statement
Thus, the common characteristics can be defined once for the group instead of being repeated for each element.
Example
GROUP time measurements = {DELAY SLEWRATE SKEW JITTER}
The statement
time measurements { UNIT = ns; |}

replaces the following statements:

DELAY { UNIT = ns; }
SLEWRATE { UNIT = ns; |}
SKEW { UNIT = ns; }

}

JITTER { UNIT = ns;
Semantics: When the group identifier is used in an ALF statement within the scope of the GROUP declaration,
that ALF statement shall be replaced by several statements, substituting the annotation values or the index val-

ues, respectively, for the group identifier. The replacing statements shall appear at the same scope as the GROUP
declaration.

8.9 TEMPLATE statement

A TEMPLATE object is a named object with one or more children objects, as shown in Syntax 41.
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template_declaration ::=
EMPL AT E template identifier { template_items }
template_items::=
template_item { template item}
template_item ::=
all_purpose_item
| cell
| library
| node
| pin
| pin_group
| primitive
| sublibrary
| vector
| wire
| antenna
| array
| blockage
| layer
| pattern
| port
| rule
| site
| via
| function
| non_scan_cell
| test
| range
| artwork
| from
| to
|illega
| violation
| header
| table
| equation
| arithmetic_submodel
| behavior_item
| geometric_model
template_instantiation ::=
static_template_instantiation
| dynamic_template_instantiation
static_template_instantiation ::=
template_identifier [ = StatlC] ;
| template:_identifier [ = StatiC] { annotation_values }
| template_identifier [ = StatiC]{ one_level_annotations }
dynamic_template_instantiation ::=
template_identifier = dynamic
{ dynamic_template_instantiation items }
dynamic_template_instantiation_items ::=
dynamic_template_instantiation_item
{ dynamic_template_instantiation_item }
dynamic_template_ingtantiation_item ::=
one_level annotation
| arithmetic_model

Syntax 41—TEMPLATE statement
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8.9.1 Referencing by placeholder

Any valid ALF object can be a child object of atemplate object. Identifiers enclosed between < and > are recog-
nized as placeholders. When atemplate object is used, each of its placeholders shall be referenced by order or by
explicit name association.

Example

TEMPLATE std table {
CAPACITANCE {PIN=<pinl>; UNIT=pF; TABLE {0.02 0.04 0.08 0.16}}
SLEWRATE {PIN=<pin2>; UNIT=ns; TABLE {0.1 0.3 0.9}}

}

An instantiation of the above template object with explicit reference to placeholders by name:
std table{pinl=out; pin2=in;}

An instantiation of the above template object with implicit reference to placeholders by order:
std table{out in}

If a symbol within a placeholder appears more than once in the template definition, the order for implicit refer-
ence is defined by thefirst appearance of the symbol. Explicit referencing improves the readability and isthe rec-
ommended usage.

A template instantiation can appear at any place within a hierarchical object, as long as the template object con-
tains the structure of valid objectsinside. Hierarchical templates contain other template objects.

8.9.2 Parameterizeable cells

The concept of describing primitives with variable bus size shall be extended to parameterizeable cells. Dynamic
template instantiations can be used for that purpose.

Template definitions can incorporate any type of object. Placeholders in the template definition are the equiva-
lent of parameters. Hence, the definition of parameterizeable cellsis already supported within the support of gen-
eral template definitions.

In a static template instantiation, which is identified by the name of the template and by the optional value
assignment static, placeholders are replaced by fixed vaues or by complex objects containing fixed values.
Non-referenced placeholders stay in place and eventually result in semantically unrecognizable objects, which
cannot be processed by downstream applications. Such unrecognizable objects shall be disregarded.

In a dynamic template instantiation, which is identified by the name of the template and by the mandatory value
assignment dynamic, some placeholders can not be replaced. Those placeholders are application parameters.
The template definition can already contain certain rel ationships between parameters (e.g., arithmetic model and
its arguments in the header). Therefore the template instantiation determines which parameters need application
valuesin order to calculate values for other parameters.

Going one step further, even the relationship between parameters can be defined in the dynamic template instan-
tiation rather than in the template definition. In this case, the identifiers inside the placeholders become variables
for arithmetic assignments. This definition of variables shall only be recognized within the context of the
dynamic template instantiation.
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parameters are involved.
paraml = 1.5 + 0.4 * param2 ** 3
is equivalent to

paraml
HEADER { param2 param3 }

EQUATION { 1.5 + 0.4 * param2 ** 3 - 2.7 / param3 }

}

- 2.7 / param3

Arithmetic assignments provide a shorter syntax for equation-based arithmetic models where only placehol der-

For table-based models or for models where the arguments have children objects attached to them, the verbose

syntax with HEADER nheeds to be used.
Example

TEMPLATE adder ({
CELL <cellname> ({
PIN [ <bitwidth>

11
PIN [ <bitwidth> 1 1]

PIN Cout { DIRECTION
FUNCTION ({
BEHAVIOR {
S =A + B + Cin;
Cout = (A + B + Cin >=

}

AREA = <areavalues>;
VECTOR (?! Cin -> ?! Cout)
DELAY {
HEADER {
CAPACITANCE {PIN

SLEWRATE {PIN = Cin;

}

A { DIRECTION
B { DIRECTION
PIN Cin { DIRECTION = input;
PIN [ <bitwidth> : 1 ] S { DIRECTION

= output;

(<bitwidth>

1)));

EQUATION { <D0> + <D1>*CAPACITANCE + <D2>*SLEWRATE }

}

The template is used for instantiation of a hard macro:

adder { /* a hard macro */

cellname = ripple carry adder 16 bit;

bitwidth = 16;
areavalue = 500;

// DO, D1, D2 are undefined. DELAY cannot be calculated.

}

The static instantiation of the hard macro is equivalent to the following static object:
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CELL ripple carry adder_ 16 bit ({

PIN [ 16 : 1 ] A { DIRECTION = input; }
PIN [ 16 : 1 ] B { DIRECTION = input; }
PIN Cin { DIRECTION = input; }

PIN [ 16 : 1 ] S { DIRECTION = output; }

PIN Cout { DIRECTION = output; |}

FUNCTION ({
BEHAVIOR {
S =A + B + Cin;

Cout = (A + B + Cin >= "b1000000000000000) ;
}

}

AREA = 500 ;

VECTOR (?! Cin -> ?! Cout) ({
// DELAY {
// HEADER {
// CAPACITANCE {PIN = Cout; }
// SLEWRATE {PIN = Cin; }
// }
// EQUATION { <DO> + <D1>*CAPACITANCE + <D2>*SLEWRATE }
// }

}

Now the template is used for instantiation of a soft macro:

adder = dynamic { /* a soft macro */

cellname = ripple carry adder N bit;
areavalue = 20 + 30 * bitwidth;

}

DO

HEADER { AREA { TABLE { 10 20 30 } } }
TABLE { 15.6 34.3 50.7 }

D1 = 0.29;
D2 = 0.08;

}

The dynamic instantiation of the soft macro resultsin an object for which certain data depend on the runtime-val -
ues of the placeholder-parameters, as indicated in italics below. The calculation method for such data, however,
can be compiled statically (e.g., the equation for AREA is a function of bitwidth and the lookup table for Do isa

function of ARER).

CELL ripple carry adder N bit ({

PIN [ bitwidth : 1 ] A { DIRECTION = input; }
PIN [ bitwidth : 1 ] B { DIRECTION = input; }
PIN Cin { DIRECTION = input; }

PIN [ bitwidth : 1 ] S { DIRECTION = output; }

PIN Cout { DIRECTION = output; }
FUNCTION ({

BEHAVIOR {
S =A + B + Cin;
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Cout = (A + B + Cin >= ('bl << (bitwidth - 1)));

AREA = 20 + 30 * bitwidth ;

VECTOR (?! Cin -> ?! Cout) {
DELAY {
HEADER {

CAPACITANCE {PIN = Cout; }

SLEWRATE {PIN = Cin; }

Do
HEADER { AREA { TABLE { 10 20 30 } } }
TABLE { 15.6 34.3 50.7 }

/
}

EQUATION { DO + 0.29*CAPACITANCE + 0.08*SLEWRATE }
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9. Library-specific objects

** Add lead-in text; change the title above or for the first subheader bel ow* *

9.1 Library-specific objects

The library-specific objects define their nature and their relationship to each other by containment rules, as
shown in Figure 8. For example, alibrary can contain a cell, but a cell can not contain a library. However, both
the library and the cell can contain any generic object. A generic object defined at the library level is visible
inside the scope of that library and its children objects. A generic object defined at the cell level isvisibleinside
the scope of that cell and its children objects. Eventually the definition at the cell level overrides the definition at
the library level. Asageneral rule, a generic object defined at the level of a complex object is visible inside the
scope of that object and its children objects. Redefinitions within a child object override the definitions within a
parent object.

library
sublibrary

cell
wire
pin

pingroup —
vector \
primitive \

node u library-specific

|ayer o object
via w

rule MV

antenna isa

array isa

Site iSa

connectivity—isa
blockage is
port isa

Figure 8—Library-specific objects

Multiple named library-specific objects can appear in a given context. For example, alibrary can contain multi-
ple cells, acell can contain multiple pins etc. The objects, e.g. cells and pins etc. shall be distinguished by name.
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9.1.1 Library-specific singular objects

Library-specific singular objects can only appear in one instance within a given context. For instance, a cell can
contain at most one function and one test description.

function
non-scan cel
fest

artwork b |I_brar|y—spclajc_;|f|c
range o > singular object

Figure 9—Library-specific singular objects

An object caled FUNCTION describes the functional specification of a digital circuit (or a digital model of an
analog or a mixed-signal circuit) in a canonical form. The modeling language allows behavioral models as well
as statetables and structural models with primitives. The behavioral models contain boolean expressions, closely
matching |EEE 1364-1995. Since boolean expressions are insufficient to describe sequential logic, ALF intro-
duces new operators and symbols that can be used in conjunction with boolean operators and symbols (see Sec-
tion 5.3). Expressions that use both the |EEE operators and the new operators are called vector expressions.

An object called TEST describes the specification for testing a digital circuit, using the same constructs as
FUNCTION. However, TEST describes a stimulus generator for the circuit, whereas FUNCTION describes the
circuit itself.

test function
%) e 9 %)
22\ > 2N PN
% & %‘ %
behavior structure statetable

“S&‘\ vector expression
and/or bOOlean expression

Figure 10—FUNCTION and TEST
9.1.2 Modeling for synthesis and test

**What do you want to say here, thisisjust the old chapter header**

9.2 LIBRARY statement and related statements

**Add lead-in text**
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9.2.1 LIBRARY statement

A LIBRARY statement XXX, as shown in Syntax 42.

library ::=
LIBRARY library_identifier { library_items }
|LIBRARY library identifier ,
| library_template_instantiation
library_items::=
library_item { library_item}
library_item ::=
sublibrary
| sublibrary_item

Syntax 42—LIBRARY statement

9.2.2 SUBLIBRARY statement

A SUBLIBRARY statement XXX, as shown in Syntax 43.

library ::=

agu BLIBRARY sublibrary_identifier { sublibrary_items}

| SUBLIBRARY sublibrary identifier ;

| sublibrary_template_instantiation
sublibrary_items ::=

sublibrary_item { sublibrary_item }
sublibrary_item ::=

all_purpose_item

| cell

| primitive

| wire

| layer

| via

| rule

| antenna

| array

| site

Syntax 43—SUBLIBRARY statement

9.2.3 INFORMATION statement

An INFORMATION statement XXX, as shown in Syntax 44.

INFORMATION two level annotation ::=

INFORMATTON { information_one level_annotations }
information_one_level _annotations ::=

information_one_level annotation

{ information_one_level_annotation }
information_one_level annotation ::=
AUTHOR one level _annotation

| VERSION_one_level_annotation

| DATETIME_one_level_annotation

| PROJECT _one_level _annotation

Syntax 44—INFORMATION statement
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INFORMATION shall be used within LIBRARY, SUBLIBRARY, CELL, WIRE, and PRIMITIVE, since these
objects can be considered as standal one deliverables. Other objects, for example PIN, PORT, LAYER, Or VIA,

can not be considered as standalone deliverables.

9.2.4 INFORMATION container

An INFORMATION container can be inside a LIBRARY, SUBLIBRARY, CELL, ofr WIRE. It can also be in
PRIMITIVE objectsinside a LIBRARY Or SUBLIBRARY, but not in the locally defined primitives inside cells

or functions. It can contain the annotations shown in Table 9.

Table 9—Information annotation container

Keyword Valuetype Description Examples
VERSION string Version of the object containing this “v1r3 2"
INFORMATION block. “1.3.2"
TITLE string Title or comment related this object. “0.2u StdCell Library”
“2-input NAND, 4x drive’
“3-layer metal, best case,
wireload model”
PRODUCT string Product related to the object. “vsc1083”
“vsm10rs111”
“0.2u technology family”
AUTHOR string Originator or modifier of the object. “user@system.com”
“Imn N. Gineer’
“An ASIC Vendor, Inc.”
DATETIME string Datef/time stamp related to the object. “Wed Aug 19 08:13:01 MST
1998”
“July 4, 1998”
Example

LIBRARY major ASIC vendor {
INFORMATION {

version = “v2.1.0";

title = “0.35 standard cell”;

product = p35sc;

author = “Major Asic Vendor, Inc.”;
datetime = “Wed Jul 23 13:50:12 MST 1997";

9.3 CELL statement and related statements

**Add lead-in text**

9.3.1 CELL statement

A CELL statement XXX, as shown in Syntax 45.
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cell :=
CELL cell_identifier { cell_items}
| CELL cell_identifier ;
| cell_template_instantiation
cell_items ::=
cell_item { cell_item}
cell_item ::=
all_purpose_item
| pin
| pin_group
| primitive
| function
| non_scan_cell
| test
| vector
| wire
| blockage
| artwork

Syntax 45—CELL statement

9.3.2 NON_SCAN_CELL statement

This statement shall define non-scan cell equivalency to the scan cell in which this annotation is contained, as
shown in Syntax 46.

non_scan cell ::=

"NON_SCAN_CELL { unnamed_cell_ingtantiations }

INON_SCAN_CELL = unnamed_cell_ingtantiation

| non_scan_cell_template instantiation
unnamed_cell_instantiations ::=

unnamed_cell_instantiation { unnamed_cdll_instantiation }
unnamed_cell_instantiation ::=

cell_identifier { pin_values }
| cell_identifier { pin_assignments }

Syntax 46—NON_SCAN_CELL statement

A cell instantiation form is used to reference the library cell that defines the non-scan functionality of the current
cell. If no such cell isavailable or defined, or if an explicit reference to such acell isnot desired, then a primitive
instantiation form can reference a primitive, either ALF- or user- defined, for such use. In either case, constant
values can appear on either the left-hand side or right-hand side of the pin connectivity relationships. A constant
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on the |eft-hand side defines the value the scan cell pins (appearing on the right-hand side) shall havein order for
the primitive to perform with the same functionality as does the instantiated reference. A statement containing
multiple non-scan cells shall indicate a choice between alternative non-scan cells.

Example
CELL my flip flop ({
PIN g { DIRECTION=output; }
PIN d { DIRECTION=input; }

PIN clk {DIRECTION=input; SIGNALTYPE=clock; POLARITY=rising edge;}
PIN clear { DIRECTION=input; SIGNALTYPE=clear; POLARITY=low; }
// followed by function, vectors etc.
}
CELL my other flip flop {
// declare the pins
// followed by function, vectors etc.
}
CELL my scan flip flop {
PIN data_out { DIRECTION=output;
PIN data_in { DIRECTION=input;
PIN clock { DIRECTION=input;
PIN scan_in { DIRECTION=input;
PIN scan_sel { DIRECTION=input;
NON_SCAN CELL {
my flip flop {
g = data_out;
d = data_in;
clk = clock;

o e

clear = 'bl; // scan cell has no clear
'b0 = scan_in; // non-scan cell has no scan_in
'b0 = scan _sel; // non-scan cell has no scan sel

}

my other flip flop {
// put in the pin assignments

}
}

// followed by function, vectors etc.

}
NOTES
1—Both scan cells and the referenced non-scan cells shall have at least the RESTRICT CLASS value scan.

2—In this example, the non-scan cell hasa CLEAR pin and the scan cell has not. Therefore, the scan cell can replace the non-
scan cell only if the instance of the non-scan cell hasthe CLEAR pintied to *b1. Thissituation israther exceptional. In prac-
tice, the scan cell should have atrue superset of non-scan cell functionality.

9.3.3 Annotations and attributes for a CELL
This section defines various CELL annotations and attributes.

**Should these annotations become syntax boxes??
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9.3.3.1 CELLTYPE annotation

CELLTYPE classifies the functionality of cells into broad categories. Thisis useful for information purpose, for
tools which do not need the exact specification of functionality, and for tools which can interpret the exact speci-
fication of functionality only for certain categories of cells. The exact specification of the functionality is
described in the FUNCTION statement.

CELLTYPE = string ;

on

which can take the values shown in Table 10.

Table 10—CELLTYPE annotations for a CELL object

Annotation string Description

buffer Cell isabuffer, inverting or non-inverting.

combinational Cell isacombinational logic element.

multiplexor Cell isamultiplexor.

flipflop Cell isaflip-flop.

latch Cell isalatch.

memory Cell isamemory or aregister file.

block Cell isahierarchical block, i.e., acomplex element which can be rep-
resented as a netlist. All instances of the netlist are library elements,
i.e, thereisa CELL model for each of them in thelibrary.

core Cell isacore, i.e., acomplex element which can be represented as a
netlist. At least one instance of the netlist is not alibrary element,
i.e., thereisno CELL model, but a PRIMITIVE model for that
instance.

special Cell isaspecial e ement, which can only be used in certain applica-
tion contexts not describable by the FUNCTION statement. Exam-
ples: busholders, protection diodes, and fillcells.

9.3.3.2 ATTRIBUTE within a CELL object

AN ATTRIBUTE within a CELL classifies the functionality given by CELLTYPE in more detail.

The attributes shown in Table 11 can be used within a CELL with CELLTYPE=memory.

Table 11—Attributes within a CELL with CELLTYPE=memory

IEEE P1603 Draft 2

Attributeitem Description
RAM Random Access Memory
ROM Read Only Memory
CAM Content Addressable Memory
static Static memory (e.g., static RAM)
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Table 11—Attributes within a CELL with CELLTYPE=memory (Continued)

Attributeitem

Description

dynamic Dynamic memory (e.g., dynamic RAM)
asynchronous Asynchronous memory
synchronous Synchronous memory

The attributes shown in Table 12 can be used within a CELL with CELLTYPE=block.

Table 12—Attributes within a CELL with CELLTYPE=block

Attributeitem

Description

counter

Cell isacomplex sequentia cell going through a predefined
sequence of states in its normal operation mode where each state rep-
resents an encoded control value.

shift register

Cell isacomplex sequentia cell going through a predefined
sequence of statesin its normal operation mode, where each subse-
guent state can be obtained from the previous one by a shift opera-
tion. Each bit represents a data value.

adder Cell isan adder, i.e., a combinational element performing an addition
of two operands.

subtractor Cell isasubtractor, i.e., acombinational element performing a sub-
traction of two operands.

multiplier Cell isamultiplier, i.e., acombinational element performing a multi-
plication of two operands.

comparator Cell isacomparator, i.e., acombinational element comparing the
magnitude of two operands.

ALU Cell isan arithmetic logic unit, i.e., a combinational €lement combin-

ing the functionality of adder, subtractor, comparator in a selectable
way.

The attributes shown in Table 13 can be used within a CELL with CELLTYPE=core.

Table 13—Attributes within a CELL with CELLTYPE=core

Attributeitem Description
PLL CELL is aphase-locked loop.
DSP CELL isadigital signal processor.
CPU CELL isacentral processing unit.
GPU CELL isagraphical processing unit.
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The attributes shown in Table 14 can be used within a CELL with CELLTYPE=special.

Table 14—Attributes within a CELL with CELLTYPE=special

Attributeitem Description

busholder CELL enables atristate bus to hold its last value before all drivers
went into high-impedance state (see FUNCT ION statement).

clamp CELL connects a net to a constant value (logic value and drive
strength; see FUNCTION statement).

diode CELL isadiode (no FUNCTION statement).

capacitor CELL isacapacitor (no FUNCTION statement).

resistor CELL isaresistor (no FUNCTION statement).

inductor CELL isan inductor (no FUNCTION statement).

fillcell CELL ismerely used to fill unused spacein layout (no FUNCTION
statement).

9.3.3.3 SWAP_CLASS annotation
SWAP_CLASS= string ;

The value is the name of a declared CLASS. Multi-value annotation can be used. Cells referring to the same
CLASS can be swapped for certain applications.

Cell-swapping is only allowed under the following conditions:
— theRESTRICT CLASS annotation (see 9.3.3.4) authorizes usage of the cell
— the cells to be swapped are compatible from an application standpoint (functional compatibility for syn-
thesis and physical compatibility for layout)
9.3.3.4 RESTRICT_CLASS annotation
RESTRICT_CLASS= string ;

The value is the name of a declared CLASS. Multi-value annotation can be used. Cells referring to a particular
class can be used in design tools identified by the value. The restricted annotations are shown in Table 15.

Table 15—Predefined values for RESTRICT_CLASS

Annotation string Description
synthesis Use restricted to logic synthesis.
scan Use restricted to scan synthesis.
datapath Use restricted to datapath synthesis.
clock Use restricted to clock tree synthesis.
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Table 15—Predefined values for RESTRICT_CLASS (Continued)

Annotation string

Description

layout

Use restricted to layout, i.e., place & route.

User-defined values are also possible. If a cell has no or only unknown values for RESTRICT CLASS, the
application tool shall not modify any instantiation of that cell in the design. However, the cell shall still be con-

sidered for anaysis.

9.3.3.5 Independent SWAP_CLASS and RESTRICT CLASS

SWAP CLASS and RESTRICT CLASS can be defined for cells, independent of each other. In this case, the set
of cells that can be swapped with each other is the set of cells with a non-empty intersection of both
SWAP CLASS and RESTRICT CLASS.

Example

CLASS foo;
CLASS Dbar;
CLASS whatever;
CLASS my_ tool;
CELL celll {
SWAP CLASS { foo
RESTRICT CLASS ({
}
CELL cell2 {
SWAP CLASS { foo
RESTRICT CLASS ({

}

bar }
synthesis datapath }

whatever }
synthesis scan my tool }

The cells cel11 and cell2 can be used for synthesis, where they can be swapped which each other. Cell
celll can be also used for datapath. Cell ce112 can be also used for scan insertion and for the user-defined
applicationmy tool. Figure 11 depicts this scenario.
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SWAP CLASS SWAP_CLASS
for celll for cell2

non-empty intersection

RESTRICT_CLASS
for celll datapath RESTRICT_CLASS
for cell2

Figure 11—lllustration of independent SWAP_CLASS and RESTRICT_CLASS

9.3.3.6 SWAP_CLASS with inherited RESTRICT_CLASS

The definition of a CLASS can contain aRESTRICT CLASS annotation. In this case, the RESTRICT CLASS

isinherited by the SwaAP cLASS. Cells can only be swapped if the intersection of their SWAP CLASS and the

inherited RESTRICT CLASS isnon-empty.

Example

A combination of SWAP CLASS and RESTRICT CLASS can be used to emulate the concept of “logically
equivalent cells” and “electrically equivalent cells’. A synthesis tool needs to know about “logically equivalent

cells’ for swapping. A layout tool needs to know about “electrically equivalent cells’ for swapping.

CLASS all nand2 { RESTRICT CLASS { synthesis } }
CLASS all high power nand2 { RESTRICT CLASS { layout } }
CLASS all low power nand2 { RESTRICT CLASS { layout } }

CELL celll ({
SWAP CLASS { all nand2 all low power_ nand2 }
}

CELL cell2 {
SWAP CLASS { all nand2 all high power nand2 }
}

CELL cell3 {
SWAP CLASS { all low power_ nand2 }
}

CELL cell4d {
SWAP CLASS { all high power nand2 }
}
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all nand2 encompasses aset of logically equivalent cells.
all high power nand2 encompasses aset of electrically equivalent cells.
all low power nand2 encompasses another set of electrically equivaent cells.

The synthesis tool can swap cell1l with cell2. The layout tool can swap celll with cell3 and cell2

with ce114. Figure 12 depicts this scenario.

non-empty intersection
between celll and cell2

SWAP_CLASS

for celll or cell2

> synthesis

all_nand?2

layout

all_low_power_nand -

all_high_power_nand2 > layout

SWAP_CLASS SWAP_CLASS
for cell3 for cell4 non-empty intersection
between cell2 and cell4

non-empty intersection
between celll and cell3

SWAP_CLASS inherited RESTRICT_CLASS

Figure 12—Illustration of SWAP_CLASS with inherited RESTRICT_CLASS
9.3.3.7 SCAN_TYPE annotation
SCAN_TYPE = string ;

can take the values shown in Table 16.

Table 16—SCAN_TYPE annotations for a CELL object

Annotation string Description
muxscan A multiplexor for normal data and scan data.
clocked A specid scan clock.
lssd Combination between flip-flop and latch with special clocking (level sen-
sitive scan design).
control 0 Combinational scan cell, controlling pin shall be 0 in scan mode.
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Table 16—SCAN_TYPE annotations for a CELL object (Continued)

Annotation string Description

control 1 Combinational scan cell, controlling pin shall be 1 in scan mode.

See Section A.3for examples.

9.3.3.8 SCAN_USAGE annotation
SCAN_USAGE = string ;

can take the values shown in Table 17.

Table 17—SCAN_USAGE annotations for a CELL object

Annotation string Description
input Primary input in a chain of cells.
output Primary output in a chain of cells.
hold Holds intermediate value in the scan chain.

The SCAN USAGE applies for a special cell which is designed to be the primary input, output or intermediate
stage of a scan chain. It also applies for macro blocks with connected scan chains in case there are particular
scan-ordering requirements.
9.3.3.9 BUFFERTYPE annotation

BUFFERTYPE = string ;

can take the values shown in Table 18.

Table 18—BUFFERTYPE annotations for a CELL object

Annotation string Description
input Cell has at least one external (off-chip) input pin.
output Cell has at least one external (off-chip) output pin.
inout Cell has at least one external (off-chip) bidirectional pin.
internal Cell hasonly internd (on-chip) pins.
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9.3.3.10 DRIVERTYPE annotation
DRIVERTYPE = string ;

can take the values shown in Table 19.

Table 19—DRIVERTYPE annotations for a CELL object

Annotation string Description
predriver Cell isapredriver, i.e., the core part of an 1O buffer.
slotdriver Cell isadotdriver, i.e., the pad of an 10 buffer with off-chip connection.
both Cell is both a predriver and ad ot driver, i.e., acomplete 1O buffer.

NOTE—DRIVERTYPE appliesonly for cellswith BUFFERTYPE = input | output | inout.

9.3.3.11 PARALLEL_DRIVE annotation
PARALLEL DRIVE = unsigned ;
specifies the number of parallel drivers. This shall be greater than zero (0) ; the default is 1.
9.3.3.12 Physical annotations for CELL
This section defines the physical annotationsfor a CELL.
9.3.3.12.1 PLACEMENT_TYPE annotation

A CELL can contain the PLACEMENT TYPE statement shown in Syntax 47.

pl
PLAC%EM ENT TYPE placement_type identifier ;

placement_type_identifier :
ad

|core
[ring

| block

| connector

Syntax 47—PLACEMENT_TYPE statement

The identifiers have the following definitions:

— pad: I/O pad, to be placed in the 1/O rows

— core: regular macro, to be placed in the core rows

— block: hierarchical block with regular power structure

— ring: macro with built-in power structure

— connector: macro at the end of core rows connecting with power or ground
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9.3.3.12.2 Reference of a SITE by a CELL
A CELL can point to one or more legal placement SITES.
Example

CELL my cell ({

SITE { my site /* fill in other sites, if applicable */ }
/* fill in contents of cell definition */

9.4 PIN statement and related statements

**Add lead-in text**

9.4.1 PIN statement

A PIN statement XXX, as shown in Syntax 48.

in:=
PIN [ [ index_range] ] pin_identifier [ [ index_range ] ] { pin_items }
| PIN [[ index_range] ] pin_identifier [ | index_range] ],
| pin_template_instantiation
pin_item ::=
all_purpose_item
| range
| port
| pin_instantiation
pin_items ::=
pin_item { pin_item }
pin_instantiation ::=
pin_variable{ pin_items }

Syntax 48—PIN statement
9.4.2 Definitions for bus pins
This section defines how to specify bus pins-ang-gredp-pHhs.
9.4.2.1 Multi-dimensional variables

A group of pins of a cell can be logically considered together by declaring a PIN with arange. A pin can be
declared with one dimension or two dimensions. For example,

PIN A ; // declares a scalar pin A
PIN [1:8] Al ; // declares pin Al with bits numbered 1 through 8
PIN [1:8] A2([1:4]1 ; // declares pin A2 with two dimensions

When a pin is declared with one dimension, the left number in the range shall specify the most significant bit
number and the right number shall specify the least significant bit number. If the pin is declared with two dimen-
sions, the second dimension shall specify the index of the first and the last rows of the two-dimension pin object.

A PIN object can be referenced in one of the four forms:
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— Individud bit - the pin name shall be followed by an index of the bit.
— Contiguous group of bits - the pin name shall be followed by the contiguous range of bits. The most sig-

nificant and least significant bit numbers shall follow the same relationship as given in the declaration.

— Entire PIN object - only the pin name shall be used. It shall beillegal to reference the entire two-dimen-

sion pin object in any operation.

— Onerow of a PIN object - for atwo-dimension pin object, the name of the pin shall be followed by the

row index of that pin. It shall beillegal to reference the individua bit or a group of bits of a two-dimen-
sion pin object directly in an operation.

When a PIN object is referenced on the left-hand side of an assignment, the result of the right-hand side expres-
sion iscopied from the least significant bit towards the most significant bit. If the right-hand side value has | esser
number of bitsthan the referenced PIN object in an assignment, the right-hand side value shall be zero-extended
to fill the remaining bits of the referenced PIN object. If the right-hand side value has more hits than the refer-
enced PIN object in an assignment, the right-hand side value shall be truncated to the size of the referenced PIN

object.
Example
pin [1:8] A1l;
pin [1:8] A2[1:32] ;
Al [8] = 'b0 ;
Al[1:6] = '075 ; // is equivalent to Al[1l:6] = 'blll 101
Al1[1:5] = 'o75 ; // is equivalent to A1[1:5] = 'bll 101,
// left most bit is truncated
A2[18] = 'h5 ; // is equivalent to A2[18] = 'b0000_0101

// entire row 18 of A2 is assigned a value.

Two-dimension PIN objects shall be referenced with the row index. It shall be illega to directly reference an
individua bit or a contiguous group of bits of a two-dimension PIN object. It shall be illega to reference the
entire PIN object as atwo-dimension PIN object.

Example

pin [1:8] A2[1:32] ;
pin [1:8] Bl ;

pin C ;
// legal references and assignments
A2[10] = 'h4s ; // assign 'h45 to row 10 of A2 ('b0100 0101)
Bl = A2[10] ; // copies whole row A2[10] to Bl
¢ = B1[3] ; // c = 'bO
// Illegal references and assignments
// B1I[3] = A2[10][3] ; illegal reference to bit 3 of A2[10]
// A2 = Bl ; illegal reference to entire A2

It shall belegal to use identifiers as an index, but expressions shall not be permitted.

Example

62

pin [4:1] ADDR;

ADDR = 'd 10;
A2 [ADDR] = 'h45 ; // assign 'h45 to row 10 of A2 ('b0100_0101)
// A2 [ADDR+1] = 'h45 ; illegal
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9.4.2.2 Scalar pins inside a bus

A PIN declared asabus shall contain the optional pin instantiation statement, asshown in Syntax 49.

pin_instantiation ::=
pin_identifier [ index ] { pin_items }

Syntax 49—pin_instantiation statement

Apin instantiation statement can aso refer to apart of the bus.

Annotations within the scope of the PIN or a higher-level pin instantiation shal be inherited by a
lower-level pin instantiation (See Section 6.4), aslong astheir values are applicable for both the bus and
each scalar pin within the bus. Values of VIEW, INITIAL VALUE, and arithmetic models such as CAPACI -
TANCE shal not be inherited, since a particular value cannot apply at the same time to the bus and to its scalar
pins.

Example

PIN [1:4] my address {

DIRECTION = input;

SIGNALTYPE = address;

VIEW = functional;

CAPACITANCE = 0.07;

my address [1:2] { ATTRIBUTE { ROW } CAPACITANCE = 0.03; }
my address([1] { VIEW = physical; CAPACITANCE = 0.01; }
my address([2] { VIEW = physical; CAPACITANCE = 0.02; }
my address [3:4] { ATTRIBUTE { COLUMN } CAPACITANCE = 0.04; }
my address([3] { VIEW = physical; CAPACITANCE = 0.02; }
my address([4] { VIEW = physical; CAPACITANCE 0.02; }

—

}

9.4.3 RANGE statement

A one-dimensional bus pin can contain aRANGE statement XXX, as shown in Syntax 50.

range ::=
%QANGE { index_range }

Syntax 50—RANGE statement

The RANGE statement applies only if the range of valid indices is contiguous. The range is limited by the width
of the bus. The possible range for a N-bit wide bus is between 0 and 2~. The possible range of values shall also
be the default range.

Example

A 4-bit wide bus has the following possible range of indices: 0, 1, 2, 3,4, 5,6, 7, 8,9, 10, 11, 12, 13, 14, 15.

RANGE { 3 : 13 }
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specifiestheindices 0, 1, 2, 14, and 15 areinvalid.

In the case where non-contiguous indices are valid, for example 1, 2, 3,5, 6, 7, 9, 10, 11, 13, 14, 15, the RANGE

statement does not apply.
9.4.4 PIN_GROUP statement

UseaPIN GROUP statement to define a grouping of pin members, as shown in Syntax 51.

pin_group ::=
IN_GROUP/[ [ index_range] ] pin_group_identifier { pin_group_items }
| pin_group_template_instantiation
pin_group_items::=
pin_group_item { pin_group_item }
pin_group_item ::=
all_purpose_item

| range
Syntax 51—PIN_GROUP statement
pha—eroup =
PIN CROUP [ index 1 pin agroup identifier {
_UJ.\VUJ. T It T P ST oupo— Ot ocTrrCr

wherepin—itemstsdefinedin-11.11:

The pins in the MEMBERS field shall refer to previously defined pins. The range of the index, if defined, shall

match the number and range of pinsin the MEMBERS field.

Annotations within the scope of the PIN contained in the MEMBERS field shall be inherited by the PIN GROUP,
aslong as their values are applicable for both the pin and the pin group. Values of VIEW, INITIAL VALUE, and
arithmetic models such as CAPACITANCE shall not be inherited, since a particular value cannot apply at the

same time to the pin and the pin group.

A pin group with VIEW=functional shall be treated like a bus pin in the functional netlist. It shall appear in

the netlist in place of the first defined pin within the MEMBERS field.
Example 1

PIN my address 1 {DIRECTION
PIN my address 2 {DIRECTION = input; VIEW
PIN my address 3 {DIRECTION = input; VIEW
PIN my address 4 {DIRECTION = input; VIEW
PIN GROUP [1:2] my address 1 2 {

ATTRIBUTE { ROW }

CAPACITANCE = 0.03;

MEMBERS { my address 1 my address 2 }

input; VIEW = physical; CAPACITANCE
physical; CAPACITANCE
physical; CAPACITANCE

physical; CAPACITANCE

}

PIN GROUP [1:2] my address 3 4 {

o O O o

.Ol;}
.02;}
.02;}
.02;}
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}

ATTRIBUTE { COLUMN }
CAPACITANCE = 0.03;
MEMBERS { my address 3 my address 4 }

PIN GROUP [1:4] my address ({

}

VIEW = functional;
CAPACITANCE = 0.07;
MEMBERS { my address 1 my address 2 my address 3 my address 4 }

Pairs of complementary pins, differentia pinsin particular, are special cases of pin groups.

Example 2

CELL my flip-flop {

}

PIN CLK { DIRECTION=input; SIGNALTYPE=clock; POLARITY=rising edge; }
PIN D { DIRECTION=input; SIGNALTYPE=data; }

PIN Q { DIRECTION=output; SIGNALTYPE=data; ATTRIBUTE { NON INVERTED}}
PIN Qbar { DIRECTION=output; SIGNALTYPE=data; ATTRIBUTE { INVERTED }}
cPIN GROUP [0:1] Q double rail { RANGE { 1 : 2 } MEMBERS { Q Qbar } }

The pins Q and Qbar are complementary. Their valid set of data comprises 'b01==="d1 and 'b10==="d2.
Thevaues 'b00==="d0and 'bl1l==="d3 areinvalid.

CELL my differential buffer {

}

PIN DIN { DIRECTION=input; ATTRIBUTE { DIFFERENTIAL NON INVERTED } }
PIN DINN { DIRECTION=input; ATTRIBUTE { DIFFERENTIAL INVERTED } }
PIN DOUT { DIRECTION=output; ATTRIBUTE { DIFFERENTIAL NON INVERTED }}
PIN DOUTN { DIRECTION=output; ATTRIBUTE { DIFFERENTIAL INVERTED } }
PIN GROUP [0:1] DI { RANGE { 1 : 2 } MEMBERS { DIN DINN } }

PIN GROUP [0:1] DO { RANGE { 1 : 2 } MEMBERS { DOUT DOUTN } }

The pinsDIN and DINN represent a pair of differential input pins. The pins DOUT and DOUTN represent a pair of
differentia output pins.

9.4.5 Annotations and attributes for a PIN

This section defines various PIN annotations and attributes.

9.4.5.1 VIEW annotation

VIEW = string ;

annotates the view where the pin appears, which can take the values shown in Table 20.

Table 20—VIEW annotations for a PIN object

Annotation string Description

functional Pin appearsin functional netlist.
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Table 20—VIEW annotations for a PIN object (Continued)

Annotation string

Description

physical

Pin appearsin physical netlist.

poth (default)

Pin appearsin both functional and physical netlist.

none

Pin does not appear in netlist.

9.4.5.2 PINTYPE annotation

PINTYPE = string ;

annotates the type of the pin, which can take the values shown in Table 21.

Table 21—PINTYPE annotations for a PIN object

Annotation string

Description

digital (default)

Digital signal pin.

analog

Analog signal pin.

supply

Power supply or ground pin.

9.4.5.3 DIRECTION annotation

DIRECTION = string ;

annotates the direction of the pin, which can take the values shown in Table 22.

Table 22—DIRECTION annotations for a PIN object

Annotation string Description
input Input pin.
output Output pin.
both Bidirectiona pin.
none No direction can be assigned to the pin.
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Table 23 gives a more detailed semantic interpretation for using DIRECTION in combination with PINTYPE.

Table 23—DIRECTION in combination with PINTYPE

DIRECTION PINTYPE=digital PINTYPE=analog PINTYPE=supply
input Pin receives adigital signal. Pin receives an analog signal. Pin is apower sink.
output Pin drives adigital signal. Pin drives an analog signal. Pin is a power source.
both Pin drives or receives a digital Pindrivesor receivesanandog | Pinisboth power sink and
signal, depending on the opera- | signal, depending on the opera- | source.
tion mode. tion mode.

none Pin represents either an inter- Pin represents either an inter- Pin represents either an
nal digital signal with no exter- | nal analog signal with no exter- | internal power pin with no
nal connection or afeed nal connection or afeed external connection or a
through. through. feed through.

For pins with PINTY PE=supply, the DIRECTION describes an electrical characteristic rather than a functiona
characteristic, since thereisno functional definition for DIRECTION. For pinswith PINTY PE=digital or analog,
the functional definition of DIRECTION actually matches the electrical definition.
Examples
— The power and ground pins of regular cells shall have DIRECTION=input.
— A leve converter cell shall have a power supply pin with DIRECTION=1input and another power sup-
ply pinwith DIRECTION=output.
— A level converter can have separate ground pins on the input and output side or a common ground pin
With DIRECTION=both.
— The power and ground pins of afeed through cell shall have DIRECTION=none.
9.4.5.4 SIGNALTYPE annotation

SIGNALTYPE classifies the functionality of a pin. The currently defined values apply for pins with PIN-
TYPE=DIGITAL.

Conceptually, apin with PINTYPE = ANALOG can also have a SIGNALTYPE annotation. However, no values
are currently defined.

SIGNALTYPE = string ;

annotates the type of the signal connected to the pin.

The fundamental SIGNALTYPE vaues are defined in Table 24.

Table 24—Fundamental SIGNALTYPE annotations for a PIN object

Annotation string Description

data (default) General datasignal, i.e., asignal that carriesinformation to be trans-

mitted, received, or subjected to logic operations within the CELL.
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“Hipflop”, “latch”, “multiplexor”, and “memory” can be standalone cells or embedded in larger cells. In the
former case, the celltypeis f1ipflop, latch, multiplexor, and memory, respectively. In the latter case,

Table 24—Fundamental SIGNALTYPE annotations for a PIN object (Continued)

Annotation string

Description

address

Address signal of amemory, i.e., an encoded signal, usually a bus or
part of abus, driving an address decoder within the CELL.

control

Genera control signal, i.e., an encoded signal that controls at least
two modes of operation of the CELL, eventually in conjunction with
other signals. The signal valueis allowed to change during real-time
circuit operation.

select

Select signal of amultiplexor, i.e., adecoded or encoded signal that
selects the data path of a multiplexor or de-multiplexor within the
CELL. Each selected signal has the same SIGNALTYPE.

enable

Genera enable signal, i.e., adecoded signal which enables and dis-
ables a set of operational modes of the CELL, eventually in conjunc-
tion with other signals. The signal value is expected to change during
real-time circuit operation.

tie

The signal needs to be tied to afixed vaue statically in order to
define afixed or programmable mode of operation of the CELL,
eventually in conjunction with other signals. The signal valueis not
allowed to change during real-time circuit operation.

clear

Clear signal of aflip-flop or latch, i.e., asignal that controls the stor-
age of the value 0 within the CELL.

set

Set signal of aflip-flop or latch, i.e., asignal that controls the storage
of the value 1 within the CELL.

clock

Clock signal of aflip-flop or latch, i.e., atiming-critical signal that
triggers data storage within the CELL.

the celltypeisblock or core.

Composite valuesfor SIGNALTYPE shall be constructed using one or more prefixesin combination with certain

fundamental values, separated by the underscore (_) character, as shown in Table 25 — Table 29.

The scheme for this is shown in Figure 13.
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Figure 13—Construction scheme for composite SIGNALTYPE values

Table 25—Composite SIGNALTYPE annotations based on DATA

Annotation string

Description

scan_data

Data signal for scan mode.

test data

Data signal for test mode.

bist data

Datasigna in BIST mode.

Table 26—Composite SIGNALTYPE annotations based on ADDRESS

Annotation string

Description

test address

Address signal for test mode.

bist_address

Address signa for BIST mode.

Table 27—Composite SIGNALTYPE annotations based on CONTROL

Annotation string

Description

load control

Control signal for switching between load
mode and normal mode.
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Table 27—Composite SIGNALTYPE annotations based on CONTROL (Continued)

Annotation string

Description

scan_control

Control signal for switching between scan
mode and normal mode.

test control

Control signal for switching between test
mode and normal mode.

bist control

Contral signal for switching between BIST
mode and normal mode.

read_write_ control

Control signal for switching between read
and write operation.

test read write control

Control signal for switching between read
and write operation in test mode.

bist read write control

Control signal for switching between read
and write operation in BIST mode.

Table 28—Composite SIGNALTYPE annotations based on ENABLE

Annotation string Description
load_enable Signal enables load operation in a counter or a shift register.
out_enable Signal enables the output stage of an arbitrary cell.
scan_enable Signal enables scan mode of aflip-flop or latch only.
scan_out_enable Signal enables the output of aflip-flop or latch in scan mode only.
test _enable Signal enables test mode only.
bist enable Signal enables BIST mode only.
test out_enable Signal enables the output stage in test mode only.
bist out_ enable Signal enables the output stage in BIST mode only.
read _enable Signal enables the read operation of a memory.
write enable Signal enables the write operation of a memory.
test read enable Signal enables the read operation in test mode only.
test _write_ enable Signal enables the write operation in test mode only.
bist read enable Signal enables the read operation in BIST mode only.
bist write enable Signal enables the write operation in BIST mode only.
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Table 29—Composite SIGNALTYPE annotations based on CLOCK

Annotation string

Description

scan_clock

Signal is clock of aflip-flop or latch in scan mode.

master clock

Signal is master clock of aflip-flop or latch.

slave clock

Signal is slave clock of aflip-flop or latch.

scan_master clock

Signd is master clock of aflip-flop or latch in scan mode.

scan_slave_clock

Signal is slave clock of aflip-flop or latch in scan mode.

read clock

Clock signal triggers the read operation in a synchronous memory.

write_clock

Clock signal triggers the write operation in a synchronous memory.

read_write_clock

Clock signal triggers both read and write operation in a synchronous mem-
ory.

test clock

Signal is clock in test mode.

test _read clock

Clock signal triggers the read operation in a synchronous memory in test
mode.

test_write_clock

Clock signal triggers the write operation in a synchronous memory in test
mode.

test read write clock

Clock signal triggers both read and write operation in a synchronous mem-
ory in test mode.

bist clock

Signal isclock in BIST mode.

bist read clock

Clock signal triggers the read operation in a synchronous memory in BIST
mode.

bist_write_clock

Clock signal triggers the write operation in a synchronous memory in
BIST mode.

bist read write clock

Clock signal triggers both read and write operation in a synchronous mem-
ory inBIST mode.

9.4.5.5 ACTION annotation
ACTION = string ;

annotates the action of the signal, which can take the values shown in Table 30.

Table 30—ACTION annotations for a PIN object

Annotation string Description

synchronous Signal acts in synchronous way, i.e., self-triggered.

Signal acts in asynchronous way, i.e., triggered by a signal with
SIGNALTYPE CLOCK Or acomposite SIGNALTYPE with postfix
CLOCK.

asynchronous
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The ACTION annotation applies only to pins with certain SIGNALTYPE vaues, as shown in Table 31. Therule
applies also to any composite SIGNALTYPE va ues based on the fundamental values.

Table 31—ACTION applicable in conjunction with fundamental SIGNALTYPE values

Fundamental SIGNALTYPE Applicable ACTION

data N/A

address N/A

control Synchronous or asynchronous.

select N/A

enable Synchronous or asynchronous.

tie N/A

clear Synchronous or asynchronous.

set Synchronous or asynchronous.

clock N/A, but the presence of SIGNALTYPE=clock conditionsthe

validity of ACTION=synchronous for other signals.

9.4.5.6 POLARITY annotation
POLARITY =

annotates the polarity of the pin signal.

string ,

The polarity of an input pin (i.e, DIRECTION = input ;) takesthevaluesshownin Table 32.

Table 32—POLARITY annotations for a PIN

Annotation string

Description

high

Signal active high or to be driven high.

low

Signal active low or to be driven low.

rising edge

Signal sensitiveto rising edge.

falling edge

Signal sensitiveto falling edge.

double edge

Signal sensitive to any edge.
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The POLARITY annotation applies only to pins with certain SIGNALTYPE values, as shown in Table 33. The

rule applies also to any composite SIGNALTYPE values based on the fundamental values.

Table 33—POLARITY applicable in conjunction with fundamental SIGNALTYPE values

Fundamental SIGNALTY PE Applicable POLARITY value
data N/A
address N/A
control Mode-specific high or 1ow for composite signaltype.
select N/A
enable Mandatory high or 1ow.
tie Optiona high or low.
clear Mandatory high or 1ow.
set Mandatory high or 1ow.
clock Mandatory high, low, rising edge, falling edge, or
double edge, can be mode-specific for composite signaltype.

Signals with composite signaltypes mode CLOCK can have a single polarity or mode-specific polarities.
Example

PIN rw {
SIGNALTYPE = READ WRITE CONTROL;
POLARITY { READ=high; WRITE=low; }

}

PIN rwc {
SIGNALTYPE = READ WRITE CLOCK;
POLARITY { READ=rising edge; WRITE=falling edge; }

}

9.4.5.7 DATATYPE annotation
DATATYPE = string ;

annotates the datatype of the pin, which can take the values shown in Table 34.

Table 34—DATATYPE annotations for a PIN object

Annotation string Description
signed Result of arithmetic operation is signed 2's complement.
unsigned Result of arithmetic operation is unsigned.

DATATYPE isonly relevant for bus pins.
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9.4.5.8 INITIAL_VALUE annotation
INITIAL_VALUE = 1ogic_constant ;
shall be compatible with the buswidth and DATATYPE of the signal.

INITIAL VALUE is used for a downstream behavioral simulation model, as far as the simulator (e.g., a
VITAL-compliant simulator) supports the notion of initial value.

9.4.5.9 SCAN_POSITION annotation
SCAN_POSITION = unsigned ;

annotates the position of the pin in scan chain, starting with 1. Value O (default) indicates that the PIN is not on
the scan chain. See A.3.1 and A.3.4 for examples.

9.4.5.10 STUCK annotation
STUCK = string ;

annotates the stuck-at fault model as shown in Table 35.

Table 35—STUCK annotations for a PIN object

Annotation string Description
stuck _at 0 Pin can have stuck-at-0 fault.
stuck _at 1 Pin can have stuck-at-1 fault.
both (default) Pin can have both stuck-at-0 and stuck-at-1 faults.
none Pin can not have stuck-at faults.

9.4.5.11 SUPPLYTYPE

A PIN with PINTYPE = SUPPLY shall have a SUPPLYTYPE annotation, as shown in Syntax 52.

supplytype assignment ::=
SﬁylgleY Y PE = supplytype identifier ;
supplytype_identifier ::=
power
|ground
|reference

Syntax 52—supply_type assignment

9.4.5.12 SIGNAL_CLASS
The following new keyword for class reference shall be defined:

SIGNAL_CLASS
A PIN referring to the same SIGNAL CLASS belong to the same set of pins related to specific data
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transaction operations, such as read or write operations. This set of pins is commonly called a logical
port. For example, the ADDRESS, WRITE ENABLE, and DATA pin of alogical port of a memory have
the same SIGNAL CLASS.

However, the term PORT in ALF isused to define a physical port (see 9.10) rather than alogica port.

SIGNAL CLASS appliesto aPIN with PINTYPE=DIGITAL | ANALOG.
SIGNAL CLASS isorthogona to SIGNALTYPE.

Example

CLASS portA;
CLASS portB;
CELL my memory {
PIN[1:4] addrA { DIRECTION = input;
SIGNALTYPE = address;
SIGNAL_ CLASS = pOrtA;
}
PIN[7:0] dataA { DIRECTION = output;
SIGNALTYPE = data;
SIGNAL_ CLASS = pOrtA;
}
PIN[1:4] addrB { DIRECTION = input;
SIGNALTYPE = address;
SIGNAL_ CLASS = portB;
}
PIN[7:0] dataB { DIRECTION = input;
SIGNALTYPE = data;
SIGNAL_ CLASS = portB;
}
PIN weB { DIRECTION = input;
SIGNALTYPE = write enable;
SIGNAL_ CLASS = portB;

}

NOTE—The combination of SIGNAL CLASS and SIGNALTYPE identifiesthe port type. CLASS portAa representsaread
port, since it consists of a PIN with SIGNALTYPE = address and a PIN with SIGNALTYPE = data and DIREC-
TION = output.CLASS portB representsawrite port, since it consists of a PIN with SIGNALTYPE = address, a
PIN with SIGNALTYPE = data ahdDIRECTION = input,and aPIN with SIGNALTYPE = write enable.

9.4.5.13 SUPPLY_CLASS

The following new keyword for class reference shall be defined:

SUPPLY_CLASS
aPIN referring to the same SUPPLY CLASS belongs to the same power terminal.

For example, digital vDD and digital vSs have the same SUPPLY CLASS.
SUPPLY CLASS appliesto not only to a PIN with PINTYPE=SUPPLY, but also to a PIN with PIN-

TYPE=DIGITAL or PINTYPE=ANALOG in order to indicate the related set of power supply pins. For
instance there can be signal pins related to digital power supply and others related to analog power sup-
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ply within the same cell.
SUPPLY CLASS isorthogona to SUPPLYTYPE.
Example

CELL my_ adc {
CLASS dig;
CLASS ana;
PIN vdd dig
PIN vss_dig

PINTYPE=supply; SUPPLYTYPE=power; SUPPLY CLASS=dig; }
PINTYPE=supply; SUPPLYTYPE=ground; SUPPLY CLASS=dig; }
PIN vdd_ana PINTYPE=supply; SUPPLYTYPE=power; SUPPLY CLASS=ana; }
PIN vss_ ana PINTYPE=supply; SUPPLYTYPE=ground; SUPPLY CLASS=ana; }
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PIN din { PINTYPE=analog; SUPPLY CLASS=ana; }
PIN[7:0] dout { PINTYPE=digital; SUPPLY CLASS=dig; }

}

9.4.5.14 Driver CELL and PIN specification

The keywords CELL and PIN can be used as references to existing objects to define a driver cell and pinin a

macro, i.e., acell with CELLTYPE=block.
Example

// this i1s a standard ASIC cell
CELL my_ inv {
CELLTYPE = buffer;
PIN in { DIRECTION = input; }
PIN out { DIRECTION = output; }

}

// this is a macro, synthesized from standard ASIC cells
CELL my macro
CELLTYPE = block;
PIN my output
DIRECTION = output;
CELL = my inv { PIN = out; }

}

/* £i1i1ll in other pins and stuff */

}

9.4.5.15 DRIVETYPE annotation
DRIVETYPE = string ;

annotates the drive type for the pin, which can take the values shown in Table 36.

Table 36—DRIVETYPE annotations for a PIN object

Annotation string Description

cmos (default) Standard cmos signal.
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Table 36—DRIVETYPE annotations for a PIN object (Continued)

Annotation string

Description

nmos Nmos or pseudo nmos signal.
pmos Pmos or pseudo pmos signal.
nmos_pass Nmos passgate signal.
pmos_pass Pmos passgate signal .

Ccmos_pass

Cmos passgate signal, i.e., the full transmission gate.

ttl

TTL signal.

open_drain

Open drain signd.

open_source

Open source signal.

9.4.5.16 SCOPE annotation

SCOPE = string ,

annotates the modeling scope of a pin, which can take the values shown in Table 37.

Table 37—SCOPE annotations for a PIN object

Annotation string

Description

behavior The pinisused for modeling functional behavior and events on the
pin are monitored for vector expressionsin BEHAVIOR statements.
measure M easurements related to the pin can be described, e.g., timing or

power characterization, and events on the pin are monitored for vec-
tor expressionsin VECTOR statements.

both (default)

The pinisused for functional behavior aswell asfor characterization
measurements.

none

No model; only the pin exists.

9.4.5.17 PULL annotation

PULL = string ;

annotates the pull type for the pin, which can take the values shown in Table 38.

Table 38—PULL annotations for a PIN object

Annotation string

Description

up

Pullup device connected to pin.

down

IEEE P1603 Draft 2

Pulldown device connected to pin.
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Table 38—PULL annotations for a PIN object (Continued)

Annotation string

Description

both

Pullup and pulldown device connected to pin.

none (default)

No pull device.

9.4.5.18 ATTRIBUTE for PIN objects

The attributes shown in Table 39 can be used within a PIN object.

Table 39—Attributes within a PIN object

Attributeitem Description
SCHMITT Schmitt trigger signal.
TRISTATE Tristate signal.
XTAL Crystal/oscillator signal.
PAD Pad going off-chip.

The attributes shown in Table 40 are only applicable for pinswithin cellswith CELLTYPE=memory and certain

vaues of SIGNALTYPE.

Table 40—Attributes for pins of a memory

Attributeitem

SIGNALTYPE Description

ROW_ADDRESS STROBE

clock

Samples the row address of the memory.

COLUMN_ADDRESS STROBE clock Samples the column address of the memory.
ROW address Selects an addressable row of the memory.
COLUMN address Selects an addressable column of the memory.
BANK address Selects an addressable bank of the memory.

The attributes shown in Table 41 are only applicable for pins representing double-rail signals.

Table 41—Attributes for pins representing double-rail signals

Attributeitem

Description

INVERTED

Represents the inverted value within a pair of signals car-
rying complementary values.

NON_INVERTED
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Table 41—Attributes for pins representing double-rail signals (Continued)

Attributeitem

Description

DIFFERENTIAL

Signal is part of adifferentia pair, i.e., both the inverted
and non-inverted values are always required for physical
implementation.

The following restrictions apply for double-rail signals:

— ThePINTYPE, SIGNALTYPE, and DIRECTION of both pins shall be the same.
— One PIN shall havethe attribute INVERTED, the other NON_INVERTED.

— Either both pins or no pins shall have the attribute DIFFERENTIAL.

— POLARITY, if applicable, shall be complementary asfollows:

HIGH is paired with LOW

RISING EDGE ispaired with FALLING EDGE
DOUBLE_EDGE is paired with DOUBLE EDGE

9.4.5.19 Definitions of pin ATTRIBUTE values for memory BIST

The specia pin ATTRIBUTE vaues shown in Table 42 shall be defined for memory BIST.

Table 42—PIN

attributes for memory BIST

Attributeitem

Description

ROW_INDEX

Pin is abus with a contiguous range of values, indicating
aphysical row of amemory.

COLUMN_INDEX

Pin is abus with a contiguous range of values, indicating
aphysical column of amemory.

BANK INDEX

Pin is abus with a contiguous range of values, indicating
aphysical bank of amemory.

DATA INDEX

Pin is abus with a contiguous range of values, indicating
the bit position within a data bus of a memory.

DATA VALUE

Pin represents a val ue stored in a physica memory loca-
tion.

These attributes apply to the pins of the BIST wrapper around the memory rather than to the pins of the memory

itself.

The BEHAVIOR statement within TEST shall involve the variables declared as PINs with ATTRIBUTE
ROW_ INDEX, COLUMN INDEX, BANK INDEX,DATA INDEX, or DATA VALUE.

9.4.5.20 Physical annotations for PIN

This section defines the physical annotationsfor a PIN.
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9.4.5.20.1 CONNECT_CLASS annotation
CONNECT_CLASS { class identifiers }
annotates a declared class object for connectivity determination.
Connectivity rules involving those classes shall apply for the pin.
9.4.5.20.2 SIDE annotation
SIDE = string ;

which can take the values shown in Table 43.

Table 43—SIDE annotations for a PIN object

Annotation string Description
left Pinis on the left side.
right Pinison theright side.
top Pinisat the top.
bottom Pin is at the bottom.

9.4.5.20.3 ROW and COLUMN annotation

The following annotation shall be used for a pin in order to indicate the location of the pin within a placement
row or column, as shown in Syntax 53.

row_assignment ::=
OW = unsigned ;
column_assignment ::=

COLUMN = unsigned;

Syntax 53—Pin placement annotation

where row assignment applies for pinswith SIDE = right | left and column assignment
appliesfor pinswith SIDE = top | bottom.

For bus pins, row assignment and column assignment shal have the form of
multi value assignments, asshownin Syntax 54.

row_multi_value _assignment ::=
{ unsigned { unsigned} } ;
column_multi_value assignment ::=
OLUMN { unsigned { unsigned} } .

Syntax 54—Row and column multivalue assignments
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9.4.5.20.4 ROUTING_TYPE annotation

A PIN cancontain the ROUTING TYPE statement shown in Syntax 55.

routing_type assignment ::=
R%UpTTNCg_TY PE = routing_type identifier ;
routing_type_identifier ::=
regular
|abutment

[rin
|feﬁgthrough

Syntax 55—routing_type assignment

The identifiers have the following definitions:
— regular: connection by regular routing
— abutment: connection by abutment, no routing

— ring: pin forms aring around the block with connection allowed to any point of the ring
— feedthrough: both ends of the pin align and can be used for connection

9.5 WIRE statement and related statements

This section defines interconnect parasitics and analysis.
9.5.1 WIRE statement

A WIRE statement XXX, as shown in Syntax 56.

wire ::=
W RE wire_identifier { wire_items }
| WIRE wire identifier ;
| wire_template_instantiation
wire items::=
wire_item { wire_item}
wire_item::=
all_purpose_item
| node

Syntax 56—WIRE statement

9.5.1.1 Principles of the WIRE statement

Parasitic descriptions shall be in the context of a WIRE statement. The following fundamental modeling styles
are supported.

— Statistical wireload models
— Boundary parasitics

Statistical wireload models as well as interconnect analysis cal culation models can be used within the context of
aLIBRARY, SUBLIBRARY, or CELL statement. The latter applies only for cellswith CELLTYPE=block, i.e,
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hierarchical cells. Boundary parasitics apply exclusively for hierarchical cells. Statistical wireload models can be
mixed with boundary parasitics within the same WIRE statement.

Interconnect analysis models shall also be defined within a WIRE statement. However, they shall not be mixed
with statistical wireload models or boundary parasitic descriptions.

The purpose of interconnect analysis is to calculate electrical quantities such as DELAY, SLEWRATE, and hoise
VOLTAGE in the context of a netlist consisting of electrical components, such as CAPACITANCE, RESIS-
TANCE, and INDUCTANCE.

Asopposed to boundary parasitics, where the components are connected to physical nodes and pins of a cell, the
components represent an abstract network targeted for analysis. The interconnect analysis model specifies a
directive for reducing the parasitic extraction/delay calculation tool to an arbitrary network. In addition, the
model specifies the calculation models for delay, noise, etc. in the context of the reduced network.

9.5.1.2 Statistical wireload models

A statistical wireload model isa collection of arithmetic models for estimated the electrical quantities CAPACT -
TANCE, RESISTANCE, and INDUCTANCE, representing the interconnect load and estimated AREA and SIZE
of the interconnect nets.

These arithmetic models shall have no PIN annotation. Only environmental quantities such as PROCESS,
DERATE_CASE, and TEMPERATURE shall be allowed as arguments in the HEADER.

In addition, the quantities AREA, SIZE, FANOUT, FANIN, and CONNECTIONS are allowed as argumentsin the
HEADER.

FANOUT and FANIN represent the number of receiver pins and driver pins, respectively, connected to the net.
CONNECTIONS isthe total number of pins connected to the net. CONNECTIONS equals to the sum of FANOUT
and FANIN.

AREA represents aphysically measurable area of an object, whereas ST ZE represents an abstract symbolic quan-
tity or cost function for area. When AREA or SIZE is used as argument within the HEADER, it shall represent the
total area or size, respectively, allocated for place and route of the block for which the wireload model applies.
An arithmetic model given for AREA or SIZE itself shall represent the estimated or actual area or size, respec-
tively, of the object in the context of which the model appears. CELL and WIRE are applicable objects for AREA
or SIZE models.

In order to convert SIZE to AREA (analogous to converting DRIVE STRENGTH to RESISTANCE; See Section
8.8.1), an arithmetic model for STZE with AREA as an argument can be used outside the WIRE statement. Arith-
metic models for SIZE inside the WIRE statement shall be interpreted as a calculation model rather than a con-
version model.

The total area or size of ablock shall be larger or equal to the area or size, respectively, of all objects within the
block, i.e., cellsand wires.

NOTE—The area or size of ablock is design-specific data, whereas the area or size of cells and wiresis givenin thelibrary.
Example
LIBRARY my library {

WIRE my wlm {
CAPACITANCE ({
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HEADER {
CONNECTIONS { TABLE { 2 3 4 5 10 20 } }
AREA { TABLE { 1000 10000 100000 } }

}
TABLE {
0.03 0.06 0.08 0.10 0.15 0.25
0.05 0.10 0.15 0.18 0.25 0.35
0.10 0.18 0.25 0.32 0.50 0.65
}
}
AREA {
HEADER {
CONNECTIONS { TABLE { 2 3 4 5 10 20 } }
AREA { TABLE { 1000 10000 100000 } }
}
TABLE {
0.3 0.6 0.8 1.0 1.5 2.5
0.5 1.0 1.5 1.8 2.5 3.5
1.0 1.8 2.5 3.2 5.0 6.5
}
}

}

CELL my cell ({
AREA = 1.5;
PIN my input { DIRECTION
PIN my output { DIRECTION

input; CAPACITANCE
output; CAPACITANCE = 0.0; }

Il
o
=

—

}

A net routed in ablock of AREA=10000, driven by an instance of my cell connecting to five receivers (i.e.,
CONNECTIONS=5), each of which is an instance of my cell, shall have an estimated capacitance of
0.18+4%0.1 = 0.58 andwireareaof 1.8. Thefive cell instances together shall have an areaof 7. 5.

NOTE—CAPACITANCE, RESISTANCE, and AREA can each be independent arithmetic models within the WIRE statement.
No multiplication factor between area and capacitance orn between area and resistance is assumed.

9.5.1.3 Boundary parasitics

Boundary parasitics for a CELL can be given within awIRE statement in the context of the CELL. The parasitics
shal be identified by arithmetic models for CAPACITANCE, RESISTANCE, and INDUCTANCE containing a
NODE annotation. The syntax is as shown in Syntax 57.

two_node multi_value_assignment ::=
NODE { node_identifier node_identifier }
four_node multi_value_assignment ::=
NODE { node_identifier node_identifier node_identifier node identifier }

Syntax 57—Multinode multivalue assignment

wherenode identifier isone of thefollowing:
— asimpleidentifier, referring to adeclared PIN of the CELL.

— ahierarchical identifier, referring to adeclared PORT of a PIN of the CELL (see 9.10.4)
— asimpleidentifier, referring to a declared NODE of the WIRE (See Section 8.15.4)
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— asimpleidentifier, not referring to a declared object.
This can be used for connectivity inside the WIRE only.

The two _node multi value assignment applies for capacitance, resistance, and self-inductance.
These componentsimply the following relationship between voltage and current across the nodes:

VOLTAGE(nodel, node2) = RESISTANCE(nodel, node2) - CURRENT (nodel, node?)
CURRENT(nodel, node2) = CAPACITANCE(hodel, node?) -%VOLTAGE(nodel, node2)

VOLTAGE(nodel, node?)

INDUCTANCE(nodel, node2) - %CU RRENT (nodel, node2)

The four node multi value assignment appliesfor mutual inductance. This component implies the
following relationship between voltage and current across the nodes:

VOLTAGE(nodel, node2) = INDUCTANCE(nodel, node2, node3, noded) - %CU RRENT (node3, node4)

NOTE—Both PIN assignments (e.g., PIN=2;) and NODE assignments(e.g.,, NODE { A B }) can refer to PINSOr PORTS.
The fundamental semantic difference between a PIN assignment and a NODE assignment is the PIN assignment within an
object defines the object is applied or measured at the PIN or PORT. (e.g., DELAY and SLEWRATE); the NODE assignment
within an object defines the object is fundamentally connected with the PIN or PORT in the same way an object inside a PIN
is also fundamentally connected with the PIN. Therefore, the CAPACITANCE with NODE assignment is a more detailed way
of describing a CAPACITANCE of a PIN, whereas a CAPACITANCE with PIN assignment describes a load capacitance,
which is applied externally to the pin.

A CELL can contain a WIRE statement describing boundary parasitics as well as PIN statements containing
arithmetic models for CAPACITANCE, RESISTANCE, or INDUCTANCE. In this case the latter shall be consid-
ered as a reduced form of the former. An analysis tool shall either use the set of components inside the PIN or
inside the WIRE, but not a combination of both.

Example

CELL my cell ({
PIN A { PINTYPE = digital; CAPACITANCE = 4.8; RESISTANCE = 37.9;
PORT pl { VIEW = physical; } // see 9.10
PORT p2 { VIEW = none; } // see 9.10

}

PIN B { PINTYPE = digital; CAPACITANCE

PIN gnd { PINTYPE = supply; SUPPLYTYPE

WIRE my boundary parasitics {
CAPACITANCE = 1.3 { NODE { A.pl gnd } }

2.6; }
ground; }

CAPACITANCE = 2.8 { NODE { A.p2 gnd } }
RESISTANCE = 65 { NODE { A.pl A.p2 } }
CAPACITANCE = 0.7 { NODE { A.pl B } }
CAPACITANCE = 1.9 { NODE { B gnd } }

}

This example corresponds to the netlist shown in Figure 14.
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distributed parasiticsin WIRE lumped parasiticsin PIN
A.pl A.p2 A 37.9 = 65 * 2.8 / 4.8
— | 65
1 ~ 4.8 =0.7 + 1.3 + 2.8
0.7 1.3 2.8
T B
B
—__1.9 2.6 =0.7 + 1.9

Figure 14—Example of boundary parasitic description
The distributed parasiticsin the WIRE statement can be reduced to the lumped parasitics in the PIN statement.
9.5.1.4 Interconnect delay and noise calculation

Cadlculation modelsfor DELAY and SLEWRATE can be described in the context of aVECTOR insideaWIRE. The
PIN assignmentsin these models shall refer to pre-declared NODES inside the WIRE.

Example

WIRE my interconnect model {
/* node declarations */
/* electrical component declarations */
VECTOR ( (01 n0 ~> 01 n5) | (10 n0 ~> 10 n5) ) {
/* DELAY model */
/* SLEWRATE model */

}

The pre-declared electrical components which are part of the network can be used within an EQUATION without
being re-declared in the HEADER of the model.

Example

DELAY {
FROM { PIN = nO; } TO { PIN = n5; }
EQUATION {
R1* (CL+C2+C3+C4+C5) + R2* (C2+C3+C4+C5)
+ R3* (C3+C4+C5) + R4*(C4+C5) + R5*CS

}

External components or stimuli which are not part of the network shall be declared in the HEADER. Also, all
arguments for TABLE-based models shall be in the HEADER. To avoid re-declaration of pre-declared compo-
nents, an EQUATION shall aso be used for those arguments in the HEADER which refer to pre-declared compo-
nents.
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Example

SLEWRATE {

}

PIN

= nb5;

HEADER {

}

SLEWRATE { PIN = n0O; TABLE {/* numbers */} }

RESISTANCE { EQUATION { R1+R2+R3+R4+R5 } TABLE {/* numbers */} }
CAPACITANCE { EQUATION { Cl+C2+C3+C4+C5 } TABLE {/* numbers */} }

TABLE { /* numbers */ }

In order to model crosstalk delay and noise, at least two driver and receiver nodes are required. The symbolic
state * (see 5.4.13) shall be used to indicate the signal subjected to noise.

Example

WIRE interconnect model with coupling {

}

NODE aggressor source { NODETYPE

driver; }

NODE victim_ source { NODETYPE = driver; }
NODE aggressor sink { NODETYPE = receiver; }
NODE victim sink { NODETYPE = receiver; }

NODE vdd { NODETYPE

power; |}

NODE gnd { NODETYPE = ground; }

CAPACITANCE cc { NODE {aggressor sink victim sink}}
CAPACITANCE cv { NODE {victim sink gnd }}
RESISTANCE rv { NODE {victim source victim sink}}
VECTOR ( 01 aggressor_sink -> ?* victim sink -> *? victim sink ) {

}

/* xtalk noise model */

VECTOR (

)

( 01 aggressor_source <&> 01 victim source )
-> 01 aggressor sink -> 01 victim sink

/* xtalk DELAY model */

}

Example for noise model

VOLTAGE

}

PIN = victim sink;
MEASUREMENT = peak;
CALCULATION = incremental;

HEADER {
SLEWRATE tra { PIN = aggressor_ sink; |}
VOLTAGE va { NODE {vdd gnd} }

}

EQUATION { (1-EXP(-tra/(rv*cv)))*va*rv*cc/tra |}

Example for delay model
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DELAY {
FROM { PIN = victim source; } TO { PIN = victim sink; }
CALCULATION = incremental;
HEADER {
SLEWRATE tra { PIN = aggressor_sink; }
SLEWRATE trv { PIN = victim source; }

}

EQUATION { (L-EXP(-tra/ (rv*cv)) ) *rv*cc*trv/tra }

}

The VOLTAGE model applies for arising aggressor signal while the victim signd is stable. The DELAY model
appliesfor rising victim signal simultaneous with or followed by a rising aggressor signal at the coupling point.
The VECTOR implicitly defines the time window of interaction between aggressor and victim; interaction occurs
only if the aggressor signal at the coupling point intervenes during the propagation of the victim signal from its
source to the coupling point. Both VOLTAGE and DELAY represent incremental numbers.

9.5.1.5 SELECT_CLASS annotation for WIRE statement

A sophisticated tool can support more than one interconnect model. Each calculation model can haveits“ netlist”
with the appropriate validity range of the RC components. For instance, a lumped model can be used for short
nets and a distributed model can be used for longer nets. Also, models with different accuracy for the same net
can be defined. For instance, the lumped model can be used for estimation purpose and the distributed model for
signoff.

For this purpose, classes can be defined to select a set of models. The selection shall be defined by the user, ina
similar way as a user can select wireload models for pre-layout parasitic estimation. The selected class shall be
indicated by the SELECT CLASS annotation within the WIRE statement.
Example
LIBRARY my library {

CLASS estimation;

CLASS verification;

WIRE rough model for short nets {

SELECT CLASS = estimation; /* etc.*/
}

WIRE detailed model for short nets {
SELECT CLASS = verification; /* etc.*/
}

WIRE rough model for long nets ({
SELECT CLASS = estimation; /* etc.*/
}

WIRE detailed model for long nets {
SELECT CLASS = verification; /* etc.*/
}

}

9.5.2 NODE statement
A NODE statement XXX, as shown in Syntax 58.

The nodes used for interconnect analysis shall be declared within the WIRE statement, using the following syn-
tax.

IEEE P1603 Draft 2 Advanced Library Format (ALF) Reference Manual 87

on

10

15

20

25

30

35

40

45

50

55



10

15

20

25

30

35

40

45

50

55

node ::=

NODE node identifier { node_items }

| NODE node identifier ;

| node_template instantiation

node_items::=

node_item { node_item }

node_item ::=

all_purpose_item

Syntax 58—NODE statement

The NODETYPE annotation and the NODE _ CLASS annotation also specifically apply to aNODE.

nodetype annotation ::=
NODETYPE = nodetype identifier ;

nodetype identifier ::=
ground
power
source
sink
driver
receiver

high signals at the sink/receiver side

A driver node is the interface between acell output pin and interconnect

A receiver node is the interface between interconnect and a cell input pin

A source node is avirtual start point of signal propagation; it can be collapsed with adriver node

A sink node isavirtual end point of signal propagation; it can be collapsed with areceiver node

A power node provides the current for rising signals at the source/driver side and a reference for logic

A ground node provides the current for falling signals at the source/driver side and a reference for logic
low signals at the sink/receiver side

The arithmetic models for electrical components which are part of the network shall have names and NODE anno-
tations, referring either to the pre-declared nodes or to internal nodes which need not be declared.

Example

88

WIRE my interconnect model (
NODETYPE
NODETYPE
NODETYPE

NODE n0 {
NODE n2
NODE n4
NODE n5 {
NODE vdd ({
NODE vss ({
RESISTANCE
RESISTANCE
RESISTANCE
RESISTANCE
RESISTANCE

CAPACITANCE Cl1 { NODE { nl vs

NODETYPE
NODETYPE
NODETYPE
R1 { NODE
R2 { NODE
R3 { NODE
R4 { NODE
R5 { NODE
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CAPACITANCE C2 { NODE { n2 vss } }
CAPACITANCE C3 { NODE { n3 wvss } }
CAPACITANCE C4 { NODE { n4 vss } }
CAPACITANCE C5 { NODE { n5 vss } }
}
Thisexampleisillustrated in Figure 15.

power power

driver cdll receiver_cell
source driver receiver sink
\ R2 R3 R4 R5
hw nl n2 n3 n4 nb5
no
Cc1L c2 C3 Cc4 Cs
ground ground

Figure 15—Example for interconnect description

The NODE_CLASS annotation is optional and orthogonal to the NODETYPE annotation.

node class_annotation

NODE_CLASS= node class identifier ;

The NODE_CLASS annotation shall refer to a pre-declared CLASS within the WIRE statement to indicate which
node belongs to which device in the case of separate power supplies.

Example

WIRE my interconnect model (
CLASS driver cell;
CLASS receiver cell;

NODE nO
NODE n2
NODE n4
NODE n5
NODE wvddl
NODE vssl
NODE wvdd2
NODE vss2

e R Rt Rt Rt Rate Rt

IEEE P1603 Draft 2

NODETYPE
NODETYPE
NODETYPE
NODETYPE
NODETYPE
NODETYPE
NODETYPE
NODETYPE

driver cell; }

= driver cell; }

receiver cell;
receiver cell;

= driver cell; }
= driver cell; }
= receilver cell;

source; NODE CLASS =
driver; NODE_ CLASS
receiver; NODE CLASS =
sink; NODE_ CLASS =
power; NODE CLASS
ground; NODE CLASS
power; NODE CLASS
ground; NODE CLASS

= receilver cell;
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If NODE CLASS is not specified, the nodes with NODETYPE=power | ground are supposed to be global. The
DC-connected nodes with NODETYPE=driver | source and NODETYPE=receiver| sink are supposed
to belong to the same device.

9.6 VECTOR statement and related statements

**Add lead-in text**

9.6.1 VECTOR statement

A VECTOR statement XXX, as shown in Syntax 59.

vector ::=
VECTOR control_expression { vector_items }
IVECTOR control_expression ;
| vector_template_instantiation
vector_items ::=
vector_item { vector_item}
vector_item ::=
all_purpose_item
| illegal

Syntax 59—VECTOR statement

9.6.2 ILLEGAL statement

A VECTOR statement shall contain the optional ILLEGAL statement, as shown in Syntax 60.

illega ::=
ILLEGAL {illega_items}
| illegal_template_instantiation

illega_items::=
illega_item { illegal_item}
illega_item ::=
all_purpose_item
| violation

Syntax 60—ILLEGAL statement

For complex cells, especially multi-port memories, it is useful to define the behavior as a consequence of illegal
operations, for example when several portstry to access the same address.

The vector expression within the VECTOR statement describes a state or a sequence of events which
define an illegal operation. The VIOLATION statement describes the consequence of such an illegal operation.

Example 1
VECTOR ( (addr A == addr B) && write enable A && write enable B ) {

ILLEGAL write A write B {
VIOLATION ({

MESSAGE = “write conflict between port A and B“;
MESSAGE TYPE = error;
BEHAVIOR { datal[addrA] = ‘bxxXXXXXX; |
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}

NOTE—An illegal operation can be legaized by using MESSAGE _TYPE=INFORMATION Or MESSAGE TYPE=WARNING.

This statement can also be used to define the behavior when an address is out of range. Sometimes the address
space is not continuous, i.e., it can contain holes in the middle. In this case, a MIN or MAX value for lega
addresses would not be sufficient. On the other hand, aboolean expression can dways exactly describe
the legal and illegal address space.

Example 2
VECTOR ( (addr > ‘h3) && write enb ) {
ILLEGAL {
VIOLATION ({
MESSAGE = “write address out of range“;
MESSAGE TYPE = error;
BEHAVIOR { dataladdr] = ‘bxxxxXXXX; }
}
}
}

9.6.3 Annotations and attributes for a VECTOR
AnnetationsferCLASS-andVECTOR

This section defines the annotations for CLASS and VECTOR.
9.6.3.1 PURPOSE annotation

A CcLASS isageneric object which can be referenced inside another object. An object referencing a classinherits
all children object of that class. In addition to this general reference, the usage of the keyword CLASS in con-
junction with a predefined prefix (e.g., CONNECT CLASS, SWAP_ CLASS, RESTRICT CLASS,
EXISTENCE CLASS, of CHARACTERIZATION CLASS) also carries a specific semantic meaning in the con-
text of itsusage. Notethe keyword prefix CLASS isused for referencing aclass, whereasthe definition of the
class aways uses the keyword CLASS. Thus a class can have multiple purposes. With the growing number of
usage models of the class concept, it is useful to include the purpose definition in the class itself in order to make
it easier for specific toolsto identify the classes of relevance for that tool.

A CLASS object can contain the PURPOSE annotation, which can take one or multiple values. A VECTOR enti-
tled to inherit the PURPOSE annotation from the CLASS can also contain the PURPOSE annotation, as shown in
Syntax 61.

vector_purpose_assignment ::=

PURPOSE { purpose_identifier { purpose identifier} }
vector_purpose_identifier :: =

Ist

|test

[timing

| power.

|Integrity

Syntax 61—PURPOSE annotation
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9.6.3.2 OPERATION annotation

The OPERATION statement inside a VECTOR shall be used to indicate the combined definition of signal values
or signal changes for certain operations which are not entirely controlled by a single signal.

operation assignment ::=

OPERATION = operation identifier ;

An OPERATION within the context of a VECTOR indicates certain a function of a cell, such as a memory write,
or change to some state, such as test mode. Many functions are not controlled by a single pin and are therefore
not able to be defined by the use of SIGNALTYPE aone. The VECTOR shall describe the complete operation,
including the sequence of events on input and expected output signals, such that one operation can be followed
seamlessly by the next.

The following values shall be predefined:

operation identifier ::=
read

write
read_modify_write
write_through

start

end

refresh

load

iddq

Their definitions are:

— read: read operation at one address

— write: write operation at one address

— read_modify_write: read followed by write of different value at same address

— tart: first operation required in a particular mode

— end: last operation required in a particular mode

— refresh: operation required to maintain the contents of the memory without modifying it
— load: operation for loading control registers

— iddq: operation for supply current measurements in quiescent state

With exception of iddg, all values apply for only cellswith CELLTYPE=memory.

The EXISTENCE CLASS (see 9.6.3.5) within the context of a VECTOR shall be used to identify which opera-
tions can be combined in the same mode. OPERATION is orthogonal to EXISTENCE CLASS. The
EXISTENCE CLASS statement isonly necessary, if there is more than one mode of operation.

Example 1

CLASS normal mode { PURPOSE = test; }
CLASS fast page mode { PURPOSE = test; |}
VECTOR ( ! WE && (
?! addr -> 01 RAS -> 10 RAS ->
?! addr -> 01 CAS -> X? dout -> 10 CAS -> ?X dout
) )|
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OPERATION = read; EXISTENCE CLASS = normal mode;
}
VECTOR ( WE && (
?! addr -> 01 RAS -> 10 RAS ->
?! addr -> ?? din -> 01 CAS -> 10 CAS
) )
OPERATION = write; EXISTENCE CLASS = normal mode;

}

VECTOR ( ! WE && (?! addr -> 01 CAS -> X? dout -> 10 CAS -> ?X dout

OPERATION = read; EXISTENCE CLASS = fast page mode;

}

VECTOR ( WE && ( ?! addr -> ?? din -> 01 CAS -> 10 CAS

}

VECTOR ( ?! addr -> 01 RAS -> 10 RAS ) {

}

OPERATION = write; EXISTENCE CLASS = fast page mode;

OPERATION = start; EXISTENCE CLASS = fast page mode;

NOTE—The complete description of a“read” operation also contains the behavior after the “read” is disabled.

Example 2

VECTOR ( 01 read enb -> X? dout -> 10 read enb -> ?X dout)

OPERATION = read; // output goes to X in read-off

}

VECTOR ( 01 read enb -> ?? dout -> 10 read enb -> ?- dout)
OPERATION = read; // output holds is value in read-off

}

9.6.3.3 LABEL annotation

LABEL = string ;
ensures SDF matching with conditional delays across Verilog, VITAL, etc.
See the end of B.3 for an example.

9.6.3.4 EXISTENCE_CONDITION annotation

EXISTENCE_CONDITION = boolean expression ;

{

{

{

{

For false-path analysis tools, the existence condition shall be used to eliminate the vector from further anaysisif,
and only if, the existence condition evaluates to False. For applications other than false-path analysis, the exist-
ence condition shall be treated as if the boolean expression was a co-factor to the vector itself. The default exist-

ence condition is True.
Example

VECTOR (01 a -> 01 z & (c | 1d) ) {

EXISTENCE CONDITION = !scan_select;

DELAY { FROM { PIN=a; } TO { PIN=z; } /* data */ }
}
VECTOR (01 a -> 01 z & (!c | d) ) {

EXISTENCE CONDITION = !scan_select;

IEEE P1603 Draft 2 Advanced Library Format (ALF) Reference Manual
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DELAY { FROM { PIN=a; } TO { PIN=z; } /* data */ }

}

Each vector contains state-dependent delay for the same timing arc. If !scan select evauates True, both
vectors are eliminated from timing anaysis.

9.6.3.5 EXISTENCE_CLASS annotation
EXISTENCE_CLASS= string ;

Reference to the same existence class by multiple vectors has the following effects:

— A common mode of operation is established between those vectors, which can be used for selective anal-
ysis, for instance mode-dependent timing analysis. The name of the mode is the name of the class.
— A common existence condition is inherited from that existence class, if thereisone.

Example

CLASS non scan mode {
EXISTENCE CONDITION = !scan_select;
}

VECTOR (01 a -> 01 z & (c | td) ) {

EXISTENCE CLASS = non_scan _mode;

DELAY { FROM { PIN=a; } TO { PIN=z; } /* data */ }
}
VECTOR (01 a -> 01 z & (!¢ | d) ) {

EXISTENCE CLASS = non_scan _mode;

DELAY { FROM { PIN=a; } TO { PIN=z; } /* data */ }

}

Each vector contains state-dependent delay for the same timing arc. If themode non _scan mode isturned off
orif lscan select evaluates True, both vectors are eliminated from timing analysis.

9.6.3.6 CHARACTERIZATION_CONDITION annotation
CHARACTERIZATION_CONDITION = boolean expression ;

For characterization tools, the characterization condition shall be treated as if the boolean expression was a co-
factor to the vector itself. For all other applications, the characterization condition shall be disregarded. The
default characterization condition is True.

Example

VECTOR (01 a -> 01 z & (c | 1d) ) {
CHARACTERIZATION CONDITION = c & !d;
DELAY { FROM { PIN=a; } TO { PIN=z; } /* data */ }

}

The delay value for the timing arc applies for any of the following conditions: (¢ & !d),
(c & d),or(!c & !d),sincethey al satisfy (¢ | !d).However, the only condition chosen for delay char-
acterizationis(c & !d).
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9.6.3.7 CHARACTERIZATION_VECTOR annotation
CHARACTERIZATION_VECTOR = ( vector expression );

The characterization vector is provided for the case where the vector expression cannot be constructed using the
vector and a boolean co-factor. The use of the characterization vector is restricted to characterization tools in the
same way as the use of the characterization condition. Either a characterization condition or a characterization
vector can be provided, but not both. If none is provided, the vector itself shall be used by the characterization
tool.

Example

VECTOR (01 A -> 01 Z) {
CHARACTERIZATION VECTOR = ((01 A & 10 inv_A) -> (01 Z & 10 inv_Z));
}

Analysis tools see the signals 2 and z. The signals inv_A and inv_Z are visible to the characterization tool
only.

9.6.3.8 CHARACTERIZATION_CLASS annotation

CHARACTERIZATION_CLASS= string ;

Reference to the same characterization class by multiple vectors has the following effects:

— A commonality is established between those vectors, which can be used for selective characterizationin a
way defined by the library characterizer, for instance, to share the characterization task between different
teams or jobs or tools.

— A common characterization condition or characterization vector is inherited from that characterization
class, if thereisone.

9.6.3.9 Incremental definitions for VECTOR

In general, it isillegal to re-declare an ALF object (see 4.1, Rule 4). However, there are objects which merely
define the context for other objects. When objects areincrementally added to the library, it is natural to re-declare
the context aswell.

Vector-specific timing, power, signal integrity characterization can be done by different groups, each of which
comes up with a set of vectors for the characterization domain. Some of the vectors can be accidentally the same.
Also, timing, power, signal integrity characterization can be done in different releases of the library. In both sce-
narios, the “incremental vector definitions’ make the merging process easier.

Multiple instances of the same VECTOR shall be legal for the purpose of incrementally adding children objects.
The first instance of the VECTOR shall be interpreted as a declaration. All following instances shall be inter-
preted as supplemental definitions of the VECTOR. The rule of illegal re-declaration shall apply for the children
objectswithin a VECTOR.

Example
// the following is legal

VECTOR ( 01 A -> 01 Z ) {
DELAY = 1 { FROM { PIN = A; } TO { PIN = Z; } }
}
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VECTOR ( 01 A -> 01 Z ) {
ENERGY = 25 ;
}

// the following is illegal
VECTOR ( 01 A -> 01 Z ) {

DELAY = 1 { FROM { PIN = A; } TO { PIN = Z; } }
}

VECTOR ( 01 A -> 01 Z ) {
DELAY = 2 { FROM { PIN = A; } TO { PIN = 2; } }
}

9.7 LAYER statement and related statements
Overview

Table 44 summarizes the ALF statements for physical modeling.
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Table 44—Statements in ALF describing physical objects

Satement Scope Comment

LAYER LIBRARY, Description of aplane provided for physical objects consisting of
SUBLIBRARY electrically conducting material.

VIA LIBRARY, Description of a physical object for electrical connection between
SUBLIBRARY layers.

SITE LIBRARY, Placement grid for a class of physically placeable objects.
SUBLIBRARY

BLOCKAGE CELL Physical object on alayer, forming an obstruction against placing

or routing other objects.
PORT PIN Physical object on alayer, providing electrical connectionsto a
pin.

PATTERN VIA, RULE, Physical object on alayer, described for the purpose of defining
BLOCKAGE, PORT | relationshipswith other physical objects.

RULE LIBRARY, Set of rules defining calculable relationships between physical
SUBLIBRARY, objects.
CELL, PIN

ANTENNA LIBRARY, Set of rules defining restrictions for physical size of electrically
SUBLIBRARY, connected objects for the purpose of manufacturing.
CELL

ARTWORK VIA, CELL Reference to an imported object from GDS2.

ARRAY LIBRARY, Description of aregular grid for placement, global and detailed
SUBLIBRARY routing.

geometric model | PATTERN Description of the geometric form of aphysical object.

REPEAT physical object Algorithm to replicate a physical object in aregular way.

SHIFT physical object Specification to shift aphysical object in x/y direction.

FLIP physical object Specification to flip a physical object around an axis.

ROTATE physical object Specification to rotate a physical object around an axis.
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Table 44—Statements in ALF describing physical objects (Continued)

Satement Scope Comment
BETWEEN CONNECTIVITY, Reference to objects with arelation to each other.
DISTANCE

9.7.1 LAYER statement

A LAYER statement is defined as shown in Syntax 62.

layer ;=
LAYER Iayer_identifier { layer_items }
|LAYER layer_identifier
| layer_template_instantiation
layer_items::=
layer_item { layer_item}
layer_item ::=
all_purpose_item

Syntax 62—LAYER statement

lovyer ==
LAYER id Y E 1 _ }
layer item { laver item
G PUrpose —ter
+ arithmetic medel
il " L model .

g¥r +
arithmetic model-aredefinedin-11.7-and-11.16:

Specific items applicable for LAYER arelisted in Table 45.

Table 45—Items for LAYER description

Item Appliesfor layer Usable ALF statement Comment
Purpose all PURPOSE = <identifiers ; See9.7.2
Property routing, cut, master PROPERTY { ... } See3.2.7
Current density routing, cut LIMIT { CURRENT See?75,8.1.2,7.6.1,89.1, and
limit { ...vax { ...} } 9.75
Resistance routing, cut RESISTANCE { } See8.7.2and 9.7.5
Capacitance routing CAPACITANCE {... } See8.7.2and 9.7.5
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Table 45—Items for LAYER description (Continued)

Item Appliesfor layer Usable ALF statement Comment
Default width or routing WIDTH { DEFAULT = See 7.1.4., Section 9.2, and
minimum width <number>; } 9.75
Manufacturing routing WIDTH { MIN = <numbers; See7.6.1,8.9.1, and 9.7.5
tolerance for TYP = <numbers;
width MAX = <numbers>; }

Default wire routing EXTENSION { DEFAULT = See9.10.3.3and 9.7.5
extension <number>; }

Height routing, cut, master HEIGHT = <numbers>; See Section 9.2
Thickness routing, cut, master THICKNESS = <numbers; See Section 9.2
Preferred routing routing PREFERENCE See9.7.4

direction

NOTE—Rules involving relationships between objects within one or severd layers is described in the RULE statement (see
9.9.1).

9.7.2 PURPOSE annotation
The purpose of each layer shall be identified using the PURPOSE annotation.

layer purpose assignment ::=
PURPOSE = layer purpose identifier ;|

layer purpose identifier ::=
routing
| cut
| substrate
| dielectric
| reserved
| abstract

The identifiers have the following definitions:

— routing: layer provides electrical connections within one plane

— cut: layer provides electrical connections between planes

— substrate: layer(s) at the bottom

— dielectric: provides electrical isolation between planes

— reserved: layer isfor proprietary use only

— abstract: not a manufacturable layer, used for description of boundaries between objects

LAYER statements shall be in sequentia order defined by the manufacturing process, starting bottom-up in the
following sequence: one or multiple substrate layers, followed by alternating cut and routing layers, then the
dielectric layer. Abstract layers can appear at the end of the sequence.

9.7.3 PITCH annotation

The PITCH annotation identifies the routing pitch for alayer with PURPOSE=rout ing.
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pitch annotation ::=
PITCH = non negative number ;

The pitch is measured between the center of two adjacent parallel wires routed on the layer.
9.7.4 PREFERENCE annotation
The PREFERENCE annotation for LAYER shall have the following form:

routing preference annotation ::=
PREFERENCE = routing preference identifier ,

routing preference identifier ::=
horizontal
| vertical

The purpose is to indicate the preferred routing direction.
9.7.5 Example

This example contains a default width (the syntax isall purpose item), resistance, capacitance, and cur-
rent limits (the syntaxisarithmetic model) for arbitrary wiresin arouting layer. Since width and thickness
are arguments of the models, special wires and fat wires are also taken into account.

LAYER metall {
PURPOSE = routing;
PREFERENCE { HORIZONTAL = 0.75; VERTICAL = 0.25; }
WIDTH { DEFAULT = 0.4; MIN = 0.39; TYP = 0.40; MAX = 0.41; }
THICKNESS { DEFAULT = 0.2; MIN = 0.19; TYP = 0.20; MAX = 0.21; }
EXTENSION { DEFAULT = 0; }
RESISTANCE {
HEADER { LENGTH WIDTH THICKNESS TEMPERATURE }
EQUATION {

0.5*% (LENGTH/ (WIDTH*THICKNESS) )
*(1.0+0.01* (TEMPERATURE-25))
}
}
CAPACITANCE ({
HEADER { AREA PERIMETER }
EQUATION { 0.48*AREA + 0.13*PERIMETER*THICKNESS }
}
LIMIT {
CURRENT ac_limit for avg f{
UNIT = mAmp ;
MEASUREMENT = average ;
HEADER {
WIDTH { UNIT = uM; TABLE { 0.4 0.8 } }
FREQUENCY { UNIT = megHz; { 1 100 } }
THICKNESS { UNIT = uM; TABLE { 0.2 0.4 } }

}

TABLE {
2.0e-6 4.0e-6 1.5e-6 3.0e-6
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4.0e-6 8.0e-6 3.0e-6 6.0e-6

}
}

CURRENT ac_limit for rms

UNIT = mAmp ;
MEASUREMENT = rms ;
HEADER {

WIDTH { UNIT = uM

FREQUENCY { UNIT
THICKNESS { UNIT

}

TABLE {

o~

TABLE { 0.4 0.8 } }
megHz; { 1 100 } }

uM; TABLE { 0.2 0.4 } }

4.0e-6 7.0e-6 4.5e-6 7.5e-6
8.0e-6 14.0e-6 9.0e-6 15.0e-6

}
}

CURRENT ac_limit for peak ({

UNIT = mAmp ;
MEASUREMENT = peak
HEADER {
WIDTH { UNIT =
FREQUENCY { UNIT
THICKNESS { UNIT
}

TABLE {

uM; TABLE { 0.4 0.8 } }

megHz; { 1 100 } }

uM; TABLE { 0.2 0.4 } }

6.0e-6 10.0e-6 5.9e-6 9.9e-6
12.0e-6 20.0e-6 11.8e-6 19.8e-6

}

}

CURRENT dc_limit {
UNIT = mAmp ;

MEASUREMENT = static

HEADER {

WIDTH { UNIT = uM; TABLE { 0.4 0
{ o

THICKNESS { UNIT

}

uM; TABLE

TABLE { 2.0e-6 4.0e-6 4.0e-6 8.0e-6 }

9.8.1 VIA statement

Vig—tr=—

A VIA statement is defined as shown in Syntax 63.

9.8 VIA statement and related statements

This section defines the VIA statement and its annotations.

VIA { identifier } { viai }
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via:=
V| A via_identifier { via_items }
| VIA via_identifier ;
| via_template_instantiation
via_items ::=
via_item { via_item}
via_item ::=
all_purpose_item
| pattern
| artwork

Syntax 63—VIA statement

qr
B
—
h
o

o)
[09]
H

The VIA statement shall contain at least three patterns, referring to the cut layer and two adjacent routing layers.
Stacked vias can contain more than three patterns.

Theall purpose items andarithmetic modelsfor VIA arelisted in Table 46.

Table 46—Items for VIA description

Item Usable ALF statement Comment
Property PROPERTY See3.2.7
Resistance RESISTANCE See8.7.2
GDS2 reference ARTWORK See Section 9.4 and 9.8.3
Usage USAGE See9.8.2and 9.8.3

9.8.2 USAGE annotation

The USAGE annotation for a VIA shall have one of the following mutually exclusive values.

usage annotation ::=
USAGE = usage identifier |

usage identifier ::=

default

| non_default
| partial_stack
| full_stack

Theidentifiers have the following definitions:

IEEE P1603 Draft 2
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— default: via can be used per default

— non_default: viacan only be used if authorized by a RULE

— partial_stack: via contains 3 patterns: lower and upper routing layer and cut layer in-between. It can only
be used to build stacked vias. The bottom of astack can beadefault or anon_default via

— full_stack: viacontains 2N+1 patterns (N>1). It describes the full stack from bottom to top.

9.8.3 Example

VIA via with two contacts in x direction (
ARTWORK = GDS2_name of my via {
SHIFT { HORIZONTAL = -2; VERTICAL = -3; }
ROTATE = 180;
}
PATTERN via contacts {
LAYER = cut_1 2 ;
RECTANGLE { 1 1 3 3 }
REPEAT = 2 {
SHIFT{ HORIZONTAL = 4; }
REPEAT = 1 {
SHIFT { VERTICAL = 4; }
Poor o)
PATTERN lower metal
LAYER = metal 1 ;
RECTANGLE { 0 0 8 4 }
}
PATTERN upper metal {
LAYER = metal 2 ;
RECTANGLE { 0 0 8 4 }

}

A TEMPLATE (see 3.2.6) can be used to define a construction rule for avia.

TEMPLATE my via rule
VIA <via_rule name> {
PATTERN via contacts {
LAYER = cut 1 2 ;
RECTANGLE { 1 1 3 3 }
REPEAT = <x_repeat> {
SHIFT{ HORIZONTAL = 4; }
REPEAT = <y repeat>
SHIFT { VERTICAL = 4; }
I
PATTERN lower metal {
LAYER = metal 1 ;
RECTANGLE { 0 0 <x covers> <y cover> }
}
PATTERN upper metal {
LAYER = metal 2 ;
RECTANGLE { 0 0 <x covers> <y cover> }
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A static instance of the TEMPLATE can be used to create the same viaasin the first example (except for the ref-
erence to GDS2):

my via rule {

via rule name = via with two contacts in x direction;
X _cover = 8;

y cover = 4;

X _repeat = 2;

y_repeat = 1;

A dynamic instance of the TEMPLATE (see 5.6.8) can be used to create aviarule.
my via rule = dynamic {
via rule name = via with NxM contacts;
X _cover = 8;

y cover = 4;

x_repeat
HEADER { x cover { TABLE { 4 8 12 16 } } }
TABLE { 1 2 3 4 }

}

y_repeat
HEADER { y cover { TABLE { 4 8 12 16 } } }
TABLE { 1 2 3 4 }

}

}

Instead of defining fixed values for the placeholders, here the mathematical rel ationships between the placehold-
ers are defined, which can generate aviarule for any set of values.

9.8.4 VIA reference statement

Certain physical objects can contain areference to one or more vias, as shown in Syntax 64.

via reference::=
VI A { via ingtantiations }
| VIA { via_identifiers
via ingtantiations ::=
via_instantiation { via_instantiation }
via_ingtantiation ::=
via_identifier { geometric_transformations }

Syntax 64—VIA reference statement

Thevia identifier shall bethe name of an aready defined Via.
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Example for aviareferencein a PORT, see Section 9.10.

MAreferance

A-RULE-can-contain-areferenceto-one-or-merevias-usingthe via—reference statement{see )

9.9 Statements related to physical design rules

**Add lead-in text**

9.9.1 RULE statement

A RULE statement is defined as shown in Syntax 65.

rule::=
RULE rule_identifier { rule_items }
| RUL E rule_identifier ;
| rule_template_instantiation
rule_items ::=
rule_item { rule_item}
rule_item ::=
all_purpose_item
| pattern
| via_reference

Syntax 65—RULE statement

Theall purpose itemsfor RULE arelisted in Table 47.

Table 47—Items for RULE description

Item Usable AL F statement

Comment

Rule isfor same net CONNECTIVITY
or different nets

See 9.9.4.2 and Section 9.15

Spacing rule LIMIT { DISTANCE ...

See7.5and 9.9.1.1

Overhang rule LIMIT { OVERHANG ...

See7.5and 9.9.1.2
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The rules for spacing and overlap, respectively, shall be expressed using the LIMIT construct with DISTANCE
and OVERHANG, respectively, as keywords for the arithmetic models (see 7.5 and 7.6.1). The keywords HORT -
ZONTAL and VERTICAL shall beintroduced as qualifiers for arithmetic submodels (see 7.6) to distinguish rules
for different routing directions. If these qualifiers are not used, the rule shall apply in any routing direction.

9.9.1.1 Width-dependent spacing
An example of width-dependent spacing is:

RULE width and length dependent spacing {
PATTERN segmentl { LAYER = metal 1; SHAPE = line; }
PATTERN segment2 { LAYER = metal 1; SHAPE = line; }
CONNECTIVITY {
CONNECT_RULE = cannot_short;
BETWEEN { segmentl segment2 }

}

LIMIT {
DISTANCE { BETWEEN { segmentl segment2 }
MIN {
HEADER {
WIDTH wl
PATTERN = segmentl;
/* TABLE, 1f applicable */
}
WIDTH w2
PATTERN = segment2;
/* TABLE, 1f applicable */
}
LENGTH common_ run
BETWEEN { segmentl segment2 }
/* TABLE, if applicable */
}
}
/* EQUATION or TABLE */

}

MAX { /* some technology have MAX spacing rules */ }

}

Spacing rules dependent on routing direction can be expressed as follows:

LIMIT {
DISTANCE { BETWEEN { segmentl segment2 }
HORIZONTAL ({
MIN { /* HEADER, EQUATION or TABLE */ }
}

VERTICAL ({
MIN { /* HEADER, EQUATION or TABLE */ }
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9.9.1.2 End-of-line rule
End-of-line rules can be expressed as follows:

RULE lonely via {

PATTERN via lower { LAYER = metal 1; SHAPE = line; }
PATTERN via cut { LAYER = cut_ 1 2; }
PATTERN via upper { LAYER = metal 2; SHAPE = end; |}
PATTERN adjacent { LAYER = metal 2; SHAPE = line; }
CONNECTIVITY {

CONNECT_RULE = must_short;

BETWEEN { via lower via_ cut via_ upper }
}
CONNECTIVITY {

CONNECT_ RULE = cannot_ short;

BETWEEN { via upper adjacent }
}
LIMIT {

OVERHANG {

BETWEEN { via cut via upper }
MIN {
HEADER {
DISTANCE (
BETWEEN { via cut adjacent }
/* TABLE, if applicable */

}

/* TABLE or EQUATION */

}

Overhang dependent on routing direction can be expressed as follows:

LIMIT {
OVERHANG { BETWEEN { via cut via upper }
HORIZONTAL ({
MIN { /* HEADER, EQUATION or TABLE */ }
}

VERTICAL ({
MIN { /* HEADER, EQUATION or TABLE */ }

}

9.9.1.3 Redundant vias
Rules for redundant vias can be expressed as follows:

RULE constraint for redundant vias {
PATTERN via lower { LAYER = metal 1; }
PATTERN via_cut { LAYER = cut_1 2; }
PATTERN via upper { LAYER = metal 2; }
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CONNECTIVITY {
CONNECT_RULE = must_short;
BETWEEN { via lower via cut via upper }

}

LIMIT {
WIDTH {
PATTERN = via cut;
MIN = 3; MAX = 5;

}

DISTANCE {

}

BET
MIN

WEEN { via_ cut }
= 1; MAX = 2;

OVERHANG {

}

BET
MIN

WEEN { via lower via cut }
= 2; MAX = 4;

OVERHANG

}

BET
MIN

WEEN { via upper via cut }
= 2; MAX = 4;

9.9.1.4 Extraction rules

Extraction rules can be expressed as follows:

RULE parallel lines same layer {
PATTERN segmentl { LAYER = metal 1; SHAPE = line;

PATTERN segment2 { LAYER = metal 1; SHAPE

line;

CAPACITANCE ({
BETWEEN { segmentl segment2 }
HEADER {

}

DIS

}

LEN

}

TANCE {
BETWEEN { segmentl segment2 }
/* TABLE, if applicable */

GTH {
BETWEEN { segmentl segment2 }
/* TABLE, if applicable */

/* EQUATION or TABLE */

}

9.9.1.5 RULES within BLOCKAGE or PORT

General width-dependent spacing rules can not apply to blockages which are abstractions of smaller blockages

}
}

collapsed together. The spacing rule between the constituents of the blockage and their neighboring objects shall

be applied instead.
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For example, a blockage can consist of two parallel wiresin vertical direction of width=1 and distance=1.
They can be collapsed to form a blockage of width=3. Left and right of the blockage, the spacing rule shall be
based on the width of the constituent wires (i.e., 1) instead of the width of the blockage (i.e., 3).

Therefore, it shall be legal within a RULE statement to appear within the context of aBLOCKAGE or PORT and
reference a PATTERN which has been defined within the context of the BLOCKAGE or PORT.

Example

CELL my cell ({
BLOCKAGE my blockage {
PATTERN my pattern {
LAYER = metall;
RECTANGLE { 5 0 8 10 }
}
RULE for my pattern {
PATTERN my metall { LAYER = metall; }
LIMIT {
DISTANCE {
BETWEEN { my metall my pattern }
MIN = 1;

}

It shall also be lega to define the spacing rule, which normally would be inside the RULE statement, directly
within the context of a PATTERN using the LIMIT construct and the arithmetic model for DISTANCE. This
arithmetic model shall not contain a BETWEEN statement. The spacing rule shall apply between the PATTERN
and any external object on the same layer.

Example
CELL my cell ({
BLOCKAGE my blockage {
PATTERN pl {
LAYER = metall;

RECTANGLE { 5 0 8 10 }
LIMIT { DISTANCE { MIN = 1; } }

}

9.9.2 ANTENNA statement

An ANTENNA statement is defined as shown in Syntax 66.
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antenna::=
ANTENNA antenna_identifier { antenna_items }
|ANTENNA antenna_identifier ;
| antenna_template_instantiation
antenna_items ::=
antenna_item { antenna_item }
antenna_item ::=
all_purpose_item

Syntax 66—ANNTENA statement

G purpose tEer
+ arithmetic_model
il " L model .

The items applicable for ANTENNA are shown in Table 48.

Table 48—Items for ANTENNA description

Item Usable AL F statement Scope Comment
Maximum allowed LIMIT { SIZE { LIBRARY, See?7.5,8.1.2,7.6.1,8.9.1, and
antennasize Max { ... } } } SUBLIBRARY | 9.9.21

CELL, PIN
Calculation method SIZE { HEADER LIBRARY, See8.1.3,and 9.9.2.1
for antenna size { ... } TABLE { ...} SUBLIBRARY
or
SIZE [id] { HEADER {
} EQUATION { ...}
Argument values for argument = value ; CELL, PIN Seell.2and 9.9.2.1
antennasize calcula or
tion argument = value { ... }

The use of the keyword SIZE (see 8.1.3) in the context of ANTENNA is proposed to represent an abstract, dimen-
sionless model of the antenna size. It is related to the area of the net which forms the antenna, but it is not neces-
sary a measure of area. It can be a measure of area ratio as well. However, the arguments of the calculation
function for antenna SIZE shal be measurable data, such as AREA, PERIMETER, LENGTH, THICKNESS,
WIDTH, and HEIGHT of metal segments connected to the net. The argument a so need an annotation defining the
applicable LAYER for the metal segments.

A process technology can have more than one antenna rule calculation method. In this case, the
antenna_identifier ismandatory for each rule.

Antenna rules apply for routing and cut layers connected to poly silicon and eventually to diffusion. The
CONNECT_ RULE statement in conjunction with the BETWEEN statement shall be used to specify the connected
layers. Connectivity shall only be checked up to the highest layer appearing in the CONNECT RULE statement.
Connectivity through higher layers shall not be taken into account, since such connectivity does not yet exist in
the state of manufacturing process when the antenna effect occurs.
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9.9.2.1 Layer-specific antenna rules

Antenna rules can be checked individually for each layer. In this case, the STZE model contains only two or
three arguments: AREA of the layer or perimeter (ca culated from the LENGTH and WIDTH) of the layer causing
the antenna effect, the area of poly silicon, and, eventually, the area of diffusion.

Example

ANTENNA individual ml {
LIMIT { SIZE { MAX
SIZE {

CONNECTIVITY {
CONNECT RULE
}

CONNECTIVITY {
CONNECT RULE = cannot_ short; BETWEEN { metall diffusion }
}

HEADER {
AREA al { LAYER = metall; }
AREA a0 { LAYER = poly; }

1000; } }

must short; BETWEEN { metall poly }

}

EQUATION { al / a0 }
}
ANTENNA individual m2 {
LIMIT { SIZE { MAX = 1000; } }
SIZE {
CONNECTIVITY ({
CONNECT RULE
}

CONNECTIVITY ({
CONNECT RULE = cannot short; BETWEEN { metal2 diffusion }
}

HEADER {
AREA a2 { LAYER = metal2; }
AREA a0 { LAYER = poly; }

must short; BETWEEN { metal2 poly }

}

EQUATION { a2 / a0 }

}

9.9.2.2 All-layer antenna rules

Antenna rules can also be checked globally for &l layers. In that case, the STZE model contains area or perimeter
of al layers as additional arguments.

Example

ANTENNA global m2 ml {
LIMIT { SIZE { MAX = 2000; } }
SIZE {
CONNECTIVITY {
CONNECT_RULE = must_short;
BETWEEN { metal2 metall poly }
}
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CONNECTIVITY {

}

CONNECT_RULE = cannot_short;
BETWEEN { metal2 diffusion }

HEADER {

}

AREA a2 { LAYER = metall; }
AREA al { LAYER = metall; }
AREA a0 { LAYER = poly; }

EQUATION { (a2 + al) / a0 }

}

9.9.2.3 Cumulative antenna rules

Antenna rules can also be checked by accumulating the individual effect. In that case, the STZE model can be

represented as a nested arithmetic model, each of which contain the model of the individual effect.

Example

ANTENNA accumulate m2 ml
LIMIT { SIZE { MAX = 3000; } }

SIZE {

HEADER {

SIZE ratiol ({

CONNECTIVITY {
CONNECT_RULE = must_short;
BETWEEN { metall poly }

}

CONNECTIVITY {
CONNECT_RULE = cannot_short;
BETWEEN { metall diffusion }

}

HEADER {
AREA al { LAYER metall; }
AREA a0 { LAYER = poly; }

}

EQUATION { al / a0 }
}
SIZE ratio2 {
CONNECTIVITY {
CONNECT_RULE = must_short;
BETWEEN { metal2 poly }
}
CONNECTIVITY {
CONNECT_RULE = cannot_short;
BETWEEN { metal2 diffusion }
}
HEADER {
AREA a2 { LAYER = metal2; }
AREA a0 { LAYER = poly; }

}

EQUATION { a2 / a0 }
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}

EQUATION { ratiol + ratio2 }

}

Theargumentsa0 inratiol and ratio2 can arenot thesame. In ratiol, a0 representsthe area of poly sil-
icon connected tometall inanet. In ratio2, a0 represents the area of poly silicon connected to metal2 in

a net, where the connection can be established through more than one subnet inmetall.

9.9.2.4 lllustration

Consider the structure shown in Figure 16.

Meta2 - — — — — — _ _ _|] A8 | — — _|] A9 | - __
Metall - — — — — — _ | A5 | — — | A6 |— — — _| A7 | — -
Poly __ [ A1 | —— A2 |- — — ]| A3 | -1 A4 | —_

Figure 16—Metal-poly illustration
Checking this structure against the rules in the examples yiel ds the following results:

individual ml:
1000 > A5 / (A1l+A2)
1000 > A6 / A3
1000 > A7 / A4
individual m2:
1000 > (A8+A9) / (Al+A2+A3+A4)
global m2 ml:
2000 > (A8+A9+A5+A6+A7) / (Al+A2+A3+A4)
accumulate m2 ml:
3000 > (A8+A9) / (Al+A2+A3+A4) + A5 / (Al+A2)
3000 > (A8+A9) / (Al+A2+A3+A4) + A6 / A3
3000 > (A8+A9) / (Al+A2+A3+A4) + A7 / R4

9.9.3 BLOCKAGE statement
This section defines the BLOCKAGE statement and its use.
9.9.3.1 Definition

A BLOCKAGE statement is defined as shown in Syntax 67.
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blockage ::=
BL OCK AGE blockage identifier { blockage items }
| BLOCK AGE blockage identifier |
| blockage template_instantiation
blockage items ::=
blockage_item { blockage item}
blockage item ::=
all_purpose_item
| pattern
| rule
| via_reference

Syntax 67—BLOCKAGE statement

qr
B

o

th

T+ 0
H

9.9.3.2 Example

CELL my cell ({
BLOCKAGE my blockage {

PATTERN pl {
LAYER = metall;
RECTANGLE { -1 5 3 8 }
RECTANGLE { 6 12 3 8 }

}

PATTERN p2 {
LAYER = metal2;
RECTANGLE { -1 5 3 8 }

}

The BLOCKAGE consists of two rectangles covering metall and one rectangle covering metal?2.
9.9.4 PORT statement

A port is a collection of geometries within a pin, representing electrically equivalent points. A PORT statement is
defined as shown in Syntax 68.

1 1 1 .
+ PORT | port identifier }—{
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port ::=
PORT port_identifier { port_items }
| PORT port_identifier ;
| port_template _instantiation
port_items ::=
port_item{ port_item }
port_item ::=
all_purpose_item
| pattern
| rule
| via_reference

Syntax 68—PORT statement

A numerica digit can be used as the first character in port identifier. In this case the number shall be
proceeded by the escape character (see 10.3.8) in the declaration of the PORT.

The PORT statement is legal within the context of a PIN statement. For this purpose, the syntax for pin_item
(see 2141 shall be augmented as follows:

pin item ::=
all purpose item
| arithmetic_model
| port

A pin can have either no PORT statement, an arbitrary number of PORT statementswithaport identifier,
or exactly one PORT statement without aport identifier.

9.9.4.1 VIA reference
A PORT can contain areference to one or morevias by using thevia reference statement (see xxx).
Example

VIA my via { /* put via definition here */ }

// later in the same library
CELL my cell ({
PIN my pin {
PORT my port
vIa {
my via { SHIFT { HORIZONTAL 1.0 ; VERTICAL
my via { SHIFT { HORIZONTAL = 5.0 ; VERTICAL = 8.0 ;

]
N
o

}

The VvIA my via is instantiated twice in the PORT my port within the PIN my pin of the CELL
my cell. The origin of the instantiated vias is shifted with respect to the origin of the cell, as specified by the
SHIFT statements.
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9.9.4.2 CONNECTIVITY rules for PORT and PIN

By default, all connectionsto a pin shall be made to the same port. Different ports of a pin shall not be connected
externally. Those defaults can be overridden by using connectivity rules for ports within apin.

Pins of the same cell shall not be shorted externally by default. This default can also be overridden by using con-
nectivity rulesfor pinswithin acell.

Example

PIN A {
PORT P1 { VIEW=physical; }
}

PIN B {
PORT Q1 { VIEW=physical; }
PORT Q2 { VIEW=physical; }
PORT Q3 { VIEW=physical; }
CONNECTIVITY {
CONNECT_RULE = can_short;
BETWEEN { Q1 Q3 }
}
CONNECTIVITY {
CONNECT_RULE = cannot_short;
BETWEEN { Q1 Q2 }
}
CONNECTIVITY {
CONNECT_ RULE = cannot_ short;
BETWEEN { Q2 Q3 }
}
}
CONNECTIVITY {
CONNECT_RULE = must_short;
BETWEEN { A B }

}

The router can make external connections between Q1 and Q3, but not between Q1 and Q2 or between Q2 and
03, respectively. The router shall make an external connection between . P1 and any port of B (B.Q1, B.Q2,
or B.Q3).

9.9.4.3 Reference of adeclared PORT in a PIN annotation

In the context of timing modeling, a PORT can have the semantic meaning of a PIN. For examples, PORTS can
be used as FROM andlor TO points of delay measurements — use a reference by a
hierarchical identifier.

Example

CELL my cell ({
PIN A {
DIRECTION = input;
PORT pl;
PORT p2;
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PIN Z {
DIRECTION = output;

VECTOR ( 01 A -> 01 Z ) {
DELAY {
FROM { PIN = A.pl; }
TO { PIN = Z; }

N

}

DELAY {
FROM { PIN = A.p2; }
TO { PIN =

N
—

}

9.9.4.4 VIEW annotation
A subset of values for the VIEW annotation inside a PIN (see 6.4.1) shall be applicable for aPORT aswell.

port view annotation ::=
VIEW = port view identifier ;

port view identifier ::=
physical
| none
VIEW=physical shal qualify the PORT asareal port with the possibility to connect arouting wireto it.
VIEW=none shal qualify the PORT asavirtual port for modeling purpose only.
9.9.4.5 LAYER annotation
The layer annotation canappear inside a PORT (see Section 9.10).

9.9.4.6 ROUTING_TYPE

A PORT can inherit the ROUTING TYPE fromits PIN or it can haveits own ROUTING TYPE annotation.

9.10 Statements related to physical geometry

**Add lead-in text**

9.10.1 SITE statement

A SITE statement is defined as shown in Syntax 69.

Thewidth annotation and height annotation (see Section 9.2) are mandatory.
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site::=
SITE site_identifier { site_items}
| SITE site identifier ;
| site_template_instantiation
site_items::=
site_item { site_item}
site_item ::=
all_purpose_item
| ORIENTATION_CLASS one_level_annotation
| SYMMETRY_CLASS one_level_annotation

Syntax 69—SITE statement
9.10.1.1 ORIENTATION_CLASS and SYMMETRY_CLASS

A set of CLASS statements shall be used to define a set of legal orientations applicable to a SITE. Both the
CLASS and the SITE statements shall be within the context of the same LIBRARY or SUBLIBRARY.

orientation class ::=
CLASS orientation class identifier {
[ geometric transformations ]

To refer to a predefined orientation class, use the ORIENTATION CLASS statement within a SITE and/or a
CELL. ORIENTATION of a CELL meansthe orientation of the cell itself. ORIENTATION of a SITE means the
orientation of rows that can be created using that site.

orientation class multivalue annotation ::=

ORIENTATION { orientation class identifiers }
The SYMMETRY CLASS statement shall be used for a SITE to indicate symmetry between legal orientations.
Multiple SYMMETRY statements shall be legal to enumerate all possible combinations in case they cannot be
described within asingle SYMMETRY statement.

symmetry class multivalue annotation ::=

SYMMETRY_CLASS{ orientation class identifiers }
Lega orientation of acell within a site shall be defined as the intersection of legal cell orientation and lega site
orientation. If there isa set of common legal orientations for both cell and site without symmetry, the orientation
of cell instance and site instance shall match.

If there isa set of common legal orientations for both cell and site with symmetry, the cell can be placed on the
side using any orientation within that set.

Case 1: no symmetry

Site has legal orientations 2 and B. Cell has legal orientations A and B. When the site is instantiated in the A ori-
entation, the cell shall be placed in the A orientation.

Case 2: symmetry

Site haslegal orientations A and B and symmetry between 2 and B. Cell haslegal orientations A and B. When the
siteisinstantiated in the A orientation, the cell can be placed in the A or B orientation.
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9.10.1.2 Example

LIBRARY my library {
CLASS north { ROTATE = 0; }
CLASS flip north { ROTATE = 0; FLIP = 0; }
CLASS south { ROTATE = 180; }
CLASS flip south { FLIP = 90; }

SITE Sitel ({
ORIENTATION CLASS { north flip north }
}

SITE Site2 {
ORIENTATION CLASS { north flip north south flip_south}
SYMMETRY CLASS { north flip north }
SYMMETRY CLASS { south flip south }
}
CELL Celll {
SITE { Sitel Site2 }
ORIENTATION CLASS { north flip north }
}
CELL Cell2 {
SITE { Site2 }
ORIENTATION CLASS { north south }

}

Celll canbeplaced on sitel. The orientation of Sitel and Cel11 shall match becausethereisno symme-
try between north and £1ip northinsSitel.

Celll can be placed on Site2, provided Site2 isinstantiated in the north or £1ip north orientation.
The orientation of site2 and celll need not match because of the symmetry between north and
flip northinsSite2.

Cell2 can beplaced on Site2, provided Site2 isinstantiated in the north or south orientation. The ori-
entation of Site2 and Cell2 shall match because there is no symmetry between north and south in
Site2.

9.10.2 ARRAY statement

An ARRAY statement is defined as shown in Syntax 70.

array ::=
ARRAY array identifier { array_items}
|ARRAY array identifier ;
| array_template_instantiation
array_items::=
array_item { array_item}
array_item ::=
all_purpose_item
| PURPOSE single value annotation
| geometric_transformation

Syntax 70—ARRAY statement
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The geometric transformations define the locations of the starting points within the array and the
number of repetitions of the components of the array. Details are defined in the next section.

9.10.2.1 PURPOSE annotation

Each array shall have a PURPOSE assignment.

An aray with purpose floorplan or placement shal have a reference to a SITE and a
shift annotation container, rotate annotation, and eventually a f1ip annotation to

array purpose assignment ::=
PURPOSE = array purpose identifier ;

array purpose identifier ::=
floor plan
| placement
| global
| routing

define the location and orientation of the SITE in the context of the array.

An array with purpose routing shal have a reference to one or more routing LAYERS and a

shift annotation container to definethelocation of the starting point.

An array with purpose global shall have a shift annotation container to define the location of the

starting point.

9.10.2.2 Examples

Example 1

width=100

=100

height

my site

ARRAY grid for my site {
= placement;

PURPOSE
SITE =

my site;

SHIFT { HORIZONTAL = 50; VERTICAL = 50; }
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REPEAT = 7 {
SHIFT { HORIZONTAL = 100; }
REPEAT = 5 {

SHIFT { VERTICAL = 5; }
}

}

Example 2

4>

horizontal route

ARRAY grid for detailed routing {

PURPOSE = routing;
LAYER { metall metal2 metal3 }
SHIFT { HORIZONTAL = 100; VERTICAL = 50; }
REPEAT = 7 {

SHIFT { VERTICAL = 100; }

REPEAT = 8 {

SHIFT { HORIZONTAL = 100; }

}

Example 3

ARRAY grid_ for global routing {
PURPOSE = global;
SHIFT { HORIZONTAL = 100; VERTICAL = 100; }
REPEAT = 3 {
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SHIFT { VERTICAL = 150; }
REPEAT = 4 {

SHIFT { HORIZONTAL = 100; }
}

}

9.10.3 PATTERN statement

A PATTERN statement is defined as shown in Syntax 71.

pattern ::=
PAT TERN pattern_identifier { pattern_items }
| PATTERN pattern_identifier |
| pattern_template_instantiation
pattern_items ::=
pattern_item { pattern_item }
pattern_item ::=
all_purpose_item
| SHAPE_single_value_annotation
| LAYER_single_value_annotation
| EXTENSON_single_value_annotation
| VERTEX_single_value_annotation
| geometric_model
| geometric_transformation

Syntax 71—PATTERN statement

9.10.3.1 SHAPE annotation
The SHAPE annotation is defined as follows

shape assignment ::=
SHAPE = shape identifier ;

shape identifier ::=
line

| tee

| Cross

| jog

| corner

| end

SHAPE applies only for a PATTERN in arouting layer, as shown in Figure 17. The default is 1 ine.
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tee ‘T corner
? end
Cross

Figure 17—Routing layer shapes
line and jog represent routing segments, which can have an individual LENGTH and WIDTH. The LENGTH
between routing segments is defined as the common run length. The DISTANCE between routing segments is
measured orthogonal to the routing direction.
tee, cross, and corner represent intersections between routing segments. end represents the end of a rout-
ing segment. Therefore, they have points rather than lines as references. The points can have an EXTENSION.
The DISTANCE between points can be measured straight or by using HORI ZONTAL and VERTICAL.
9.10.3.2 LAYER annotation

The layer annotation defines the layer where the object resides. The layer shall have been declared
before.

layer annotation ::=
LAYER = layer identifier ;

9.10.3.3 EXTENSION annotation
The extension annotation specifiesthe value by which the drawn object is extended at all sides.

extension annotation ::=

EXTENSION = non negative number ;
The default value of extension annotationiso.
9.10.3.4 VERTEX annotation

The vertex annotation shall appear only in conjunction with the extension annotation. It speci-
fiesthe form of the extended object, as shown in Figure 18.
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vertex annotation ::=
VERTEX = vertex identifier ;

vertex identifier ::=
round
| straight

The default value of vertex annotation isStraight.

N
EXTENSION =1 N AN

! 3

VERTEX = straight VERTEX =round

Figure 18—Illustration of VERTEX annotation
9.10.3.5 PATTERN with geometric model

A geometric model describesthe form of aphysical object; it does not describe a physical object itself. The
geometric model shal bein the context of a PATTERN.

A pattern can contain geometric model statements, geometric transformation statements (see 9.10.6.5), and
all purpose items (seell.7).

9.10.3.6 Example
PATTERN {
LAYER = metall;

EXTENSION = 1;
DOT { COORDINATES { 5 10 } }

}
This object is effectively a square, with alower |eft corner (x=4, y=9) and upper right corner (x=6, y=11).
9.10.4 ARTWORK statement
An ARTWORK statement is defined as shown in Syntax 72.
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artwork ::=
ARTWORK = artwork_identifier { artwork_items }
|ARTWORK = artwork_identifier ;
| artwork_template_instantiation
artwork_items ::=
artwork_item { artwork_item }
artwork_item ::=
geometric_transformation
| pin_assignment

Syntax 72—ARTWORK statement

{pin—assignments—
3

The ARTWORK statement creates a reference between the cell in the library and the original cell imported from a
physical layout database (e.g., GDS2).

Thegeometric transformations definethe operationsfor transformation from the artwork geometry to
the actual cell geometry. In other words, the artwork is considered as the original object whereas the cell is the
transformed object.

The imported cell can have pins with different names. The LHS of the pin assignments describes the pin
names of the original cell, the RHS describes the pin names of the cell in thislibrary. See 11.4 for the syntax of
pin assignments.

Example

CELL my cell ({
PIN A { /* £fill in pin items */ }
PIN Z { /* £fill in pin items */ }
ARTWORK = \GDS2S$!@#$ {
SHIFT { HORIZONTAL = 0; VERTICAL = 0; }
ROTATE = 0;
\GDS2$ ! @#SA
\GDS2$ | @#S$B

A;
B;

}

9.10.5 Geometric model

This section defines the geometric model statement and how to predefine commonly used objects (using TEM-
PLATE).

A geometric model describes the form of an object in a physical library. It isin the context of a pattern, whichis

associated with physical objects, such asvia, blockage, port, rule. Patterns and other physical objects can also be
subjected to geometric transformations, as shown in Figure 19.
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port c
rule

via ~ comans » pattern array artwork

bl ockagey \&Ontai ns ¢ contains )Antai ns
a

geometric transformation

ntains _ _
geometric model —contans . coordinates

Figure 19—Geometric model and its context

9.10.5.1 Definition

A geometric model is defined as shown in Syntax 73.

geometric_model ::=
nonescaped_dentifier [ geometric_model _identifier |
{ geometric_mode!_items }
| geometric_model_template_instantiation
geometric_model_items ::=
geometric_model_item { geometric_model_item }
geometric_model_item ::=
all_purpose_item
| POINT_TO_POINT_one_level_annotation
| coordinates
coordinates ::=

COORDINATES{ x_number y_number { x_number y_number } }

Syntax 73—Geometric model

IEEE P1603 Draft 2

geometric model identifier ::=

DOT
| POLYLINE
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| RING
| POLYGON

coordinates ::=

COORDINATES{ x number y number { x number y number } }
A pointisapair of x number and y number.
A DOT is1 point.
A POLYLINE isdefined by N>1 connected points, forming an open object.

A RING isdefined by N>1 connected points, forming a closed object, i.e., the last point is connected with first
point. The object occupies the edges of the enclosed space.

A POLY GON is defined by N>1 connected points, forming a closed object, i.e., the last point is connected
with first point. The object occupies the entire enclosed space.

All of these are depicted in Figure 20.

POLYLINE RING POLYGON

Figure 20—Illustration of geometric models
See 9.10.6.4 for the definition of the repeat statement.

The point to point annotation appliesfor POLYLINE, RING, and POLY GON. It specifies
how the connections between pointsis made. Thedefault is st raight, which definesa straight connection (see
Figure 21). Thevaue rectilinear specifiesaconnection by moving in the x-direction first and then moving
in the y-direction (see Figure 22). This enables a non-redundant specification of rectilinear objects using N/2
points instead of N points.
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point to point annotation ::=

POINT_TO_POINT = point to point identifier ;

point to point identifier ::=

straight
rectilinear

Y-axis

P N W b~ OO N 0 ©

A

straight connection straight connection
from (-1/8) to (-1/5) E from (3/8) to (-1/8)
X X
straight connection
L from (-3/5) to (3/8)

straight connection
from (-1/5) to (3/5)

5 4 -3 -2 -1 01 2 3 4 5 X-axis

Figure 21—Illustration of straight point-to-point connection

Y-axis

P N W s~ 01O N O ©

A

rectilinear connection from (-3/8) to (-1/5)

X

X

rectilinear connection from (-1/5) to (3/8)

5 4 -3 -2 -101 2 3 4 5 X-axis

Figure 22—Illustration of rectilinear point-to-point connection
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10

POLYGON {
POINT TO POINT = straight;
COORDINATES { -1 53 53 8 -1 8 }
}
POLYGON {
POINT TO POINT = rectilinear;
COORDINATES { -1 5 3 8 }

}

Both objects describe the same rectangle.

9.10.5.2 Predefined geometric models using TEMPLATE
The TEMPLATE construct (see 3.2.6) can be used to predefine some commonly used objects.

The templates RECTANGLE and LINE shall be predefined as follows:
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TEMPLATE RECTANGLE
POLYGON {
POINT TO POINT = rectilinear;
COORDINATES { <left> <bottom> <right> <top> }
}
}
TEMPLATE LINE ({

POLYLINE ({
POINT TO POINT = straight;

COORDINATES { <x_ start> <y start> <x end> <y end> }

}

Example 1

The following example shows the instantiation of predefined templates.

// same rectangle as in previous example
RECTANGLE {left = -1; bottom = 5; right = 3; top = 8;

//or
RECTANGLE {-1 5 3 8 }

// diagonals through the rectangle

LINE {x start = -1; y start = 5; x end = 3; y end = 8;
LINE {x start = 3; y start = 5; x end = -1; y end = 8;
//or

LINE { -1 5 3 8 }

LINE { 3 5 -1 8 }

The definitions for predefined templates are fixed. Therefore the keywords RECTANGLE and LINE are
reserved. On the other hand, the definitions for user-defined templates are only known by the library supplied by
the user.

Example 2

The following example shows some user-defined templates.
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TEMPLATE HORIZONTAL LINE {
POLYLINE ({
POINT TO POINT = straight;
COORDINATES { <left> <y> <right> <y> }

}

}

TEMPLATE VERTICAL LINE ({
POLYLINE ({

POINT TO POINT = straight;
COORDINATES { <x> <bottoms> <x> <top> }

}
Example 3
The following example shows the instantiation of user-defined templates.

// lines bounding the rectangle

HORIZONTAL LINE { y = 5; left = -1; right = 3; }
HORIZONTAL LINE { y = 8; left = -1; right = 3; }
VERTICAL LINE { x = -1; bottom = 5; top = 8; }
VERTICAL LINE { x = 3; bottom = 5; top = 8; }

//or

HORIZONTAL LINE { 5 -1 3 }
HORIZONTAL LINE { 8 -1 3 }
VERTICAL LINE { -1 5 8 }
VERTICAL LINE { 3 5 8 }

9.10.6 Geometric transformation

A geometric transformation XXX, as shown in Syntax 74.

geometric_transformations ::=
geometric_transformation { geometric_transformation }
geometric_transformation ::=
SHIFT two_level _annotation
| ROTATE_one_level_annotation
| FLIP_one_level _annotation
| repeat

repeat ::=
REPEAT [ =unsigned] {
shift two_level_annotation
[ repeat |

Syntax 74—Geometric transformation

: . : .

This section also defines SHIFT, ROTATE, FLIP, and REPEAT.
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9.10.6.1 SHIFT statement

The SHIFT statement defines the horizontal and vertica offset measured between the coordinates of the geomet-
ric model and the actual placement of the object. Eventually, a layout tool only supports integer numbers. The
numbers are in units of DISTANCE.

shift annotation container ::=
SHIFT { horizontal or vertical annotations }

horizontal or vertical annotations ::=
horizontal annotation
| vertical annotation
| horizontal annotation vertical annotation

horizontal annotation ::=

HORIZONTAL = number ;

vertical annotation ::=

VERTICAL = number ;

If only one annotation is given, the default value for the other oneis 0. If the SHIFT statement is not given, both
values default to 0.

9.10.6.2 ROTATE statement

The rotate annotation statement defines the angle of rotation in degrees measured between the orienta-
tion of the object described by the coordinates of the geometric model and the actual placement of the object
measured in counter-clockwise direction, specified by a number between 0 and 360. Eventualy, a layout tool
can only support angles which are multiple of 90 degrees. The default is 0.

rotate annotation ::=

ROTATE = number ;
The object shall rotate around its origin.
9.10.6.3 FLIP statement
The f1ip annotation describes atransformation of the specified coordinates by flipping the object around
an axis specified by a number between 0 and 180. The number represents the angle of the flipping direction in
degrees. Eventually, alayout tool can only support angles which are multiple of 90 degrees. The axis is orthogo-

nal to the flipping direction. The axis shall go through the origin of the object.

flip annotation ::=
FLIP = number ;

Example
FLIP = 0 meansflipin horizontal direction, axisisvertical.
FLIP = 90 meansflipinvertical direction, axisishorizontal.

9.10.6.4 REPEAT statement

The REPEAT statement shall be defined as shown in Syntax 75.
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repeat ::=
REPEAT [ =unsigned] {

shift two_level_annotation

[ repeat |
Syntax 75—REPEAT statement
repeat==
RERPEAT [=unsigned]-f
i o .
}

The purpose of the REPEAT statement is to describe the replication of a physical object in a regular way, for
example SITE (see Section 9.12). The REPEAT statement can also appear within ageometric model.

The unsigned number defines the total number of replications. The number 1 means, the object appears just
once. If this number is not given, the REPEAT statement defines arule for an arbitrary number of replications.

REPEAT statements can a so be nested.
Examples
The following example replicates an object three times along the horizontal axisin adistance of 7 units.

REPEAT = 3 {
SHIFT { HORIZONTAL = 7; }
}

The following example replicates an object five times along a45-degree axis.

REPEAT = 5 {
SHIFT { HORIZONTAL = 4; VERTICAL = 4; }
}

The following example replicates an object two times aong the horizonta axis and four times aong the vertical
axis.

REPEAT = 2 {
SHIFT { HORIZONTAL = 5; }
REPEAT = 4 {
SHIFT { VERTICAL = 6; }
}

}

NOTE—The order of nested REPEAT statements does not matter. The following example gives the same result as the previ-
ous example.

REPEAT = 4 {
SHIFT { VERTICAL = 6; }
REPEAT = 2 {
SHIFT { HORIZONTAL = 5; }
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}

9.10.6.5 Summary of geometric transformations

geometric transformations ::=
geometric transformation { geometric transformation }

geometric transformation ::=
shift annotation container
| rotate annotation
| flip annotation
| repeat

Rules and restrictions:

— A physical object can contain ageometric transformation statement of any kind, but no more

than one of a specific kind.

— Thegeometric transformation statements shal apply to all geometric models within the

context of the object.

— Thegeometric transformation statements shall refer to the origin of the object, i.e., the point

with coordinates { 0 0 }. Therefore, the result of a combined transformation shall be independent of
the order in which each individual transformation is applied.

These are demonstrated in Figure 23.

FLIP ROTATE SHIFT
—> — —
[
[ [ [ P
legend: @ origin of the object

Figure 23—lllustration of FLIP, ROTATE, and SHIFT

9.11 Statements related to functional description
This section specifies the functional modeling for synthesis, formal verification, and simulation.
9.11.1 FUNCTION statement

A FUNCTION statement XXX, as shown in Syntax 76.
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function ::=
FUNCTION { function_items }

| function_template_instantiation
function_items ::=

function_item { function_item }
function_item ::=

all_purpose_item

| behavior

| structure

| statetable

Syntax 76—FUNCTION statement
9.11.2 TEST statement

A CELL can contain a TEST statement, which is defined as shown in Syntax 77.

test ;=
TEST { test_items}
| test_template_instantiation
test_items::=
test_item { test_item}
test_item ::=
all_purpose_item
| behavior
| statetable
Syntax 77—TEST statement

TEST { behavior—}

The purpose isto describe the interface between an externally applied test algorithm and the CELL. Thebehav-
ior statement within the TEST statement uses the same syntax as the behavior statement within the FUNC-
TION statement. However, the set of used variablesis different. Both the TEST and the FUNCTION statement
shall be self-contained, complete and complementary to each other.

9.11.3 Physical bitmap for memory BIST

This section defines the physical bitmap for memory BIST. This is a particular case of the usage of the TEST
statement.

9.11.3.1 Definition of concepts

The physical architecture of amemory can be described by the following parameters (as depicted in Figure 24):
BANK index: A memory can be arranged in one or several banks, each of which constitutes a two-dimen-
sional array of rows and columns
ROW index: A row of memory cells within one bank shares the same row decoder line.

COLUMN index: A column of memory cells within one bank shares the same data bit line and, if appli-
cable, the same sense amplifier.
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BANK index

s
Q
QX

ROW index & e ROW
\ )

Figure 24—lllustration of a physical memory architecture, arranged in banks, rows, columns

The physical memory architecture is not evident from the functional description and the pins involved in the
functional description of the memory. Those pins are called logical pins, e.g., logical address and logical data.

A memory BIST tool needs to know which logical address and data corresponds to a physical row, column, or
bank in order to write certain bit patterns into the memory and read expected bit patterns from the memory. Also,
the tool needs to know whether the physical datain a specific location isinverted or not with respect to the corre-
sponding logical data (as depicted in Figure 25).

algorithm \ /" Wrapper \ ;%%rci;

, . physical row / ins
writephysical data | | , P Memory
to row, column, bank hysical column circuit
. logical
hysical bank datainput under test
read physical data b
from row, column, bank [® physical data

logical
data output
K / AN / pins

Figure 25—lllustration of the memory BIST concept

A mapper between physical rows, columns, banks, data and logical addresses, and data pins shall be part of the
library description of amemory cell.

The physical row, column, and bank indices can be modeled as virtual inputs to the memory circuit. The datato
be written to a physical memory location can also be modeled as a virtual input. The datato be read from aphys-
ica memory location can be modeled as a virtual output. Since every data that is written for the purpose of test
also needs to be read, the data can be modeled as a virtua bidirectional pin. A virtual pin is a pin with
VIEW=none, i.e, thepinisnot visiblein any netlist.
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9.11.3.2 Explanatory example

One-dimensional arrays with

One-dimensional arrays with

recognized as data pins to be mapped, involving other one-dimensional arrays with ATTRIBUTE

{ paTA INDEX } (here: P
PIN bit).

NOTE—Since the data buses are
Base Example

CELL my memory {

PINT addr

PIN[3 ] Din

PIN[3 Dout
[

PIN[3: 0] bits
PIN write enb

}

POLARITY=hi

SIGNALTYPE=address (here: PIN[3:0] addr) shall be recognized as
address pins to be mapped, involving other one-dimensional arrayswith ATTRIBUTE { ROW_ INDEX } (here
PIN[1:0] row)andATTRIBUTE { COLUMN INDEX } (here: PIN[3:0] col). Thismemory hasonly
one bank. Therefore, no one-dimensional array with ATTRIBUTE { BANK INDEX } existshere.

SIGNALTYPE=data (here PIN[3:0] Din and PIN[3:0]

Dout) shall be

IN[1:0] dat)andscaar pinswith ATTRIBUTE { DATA VALUE } (here

4-bits wide, the dataindex is 2-bits wide, since 2=l0g2(4).

{ DIRECTION=input; SIGNALTYPE=address; |
{ DIRECTION=input; SIGNALTYPE=data; |}
{ DIRECTION=output; SIGNALTYPE=data; }
[0:

igh; ACTION=asynchronous;

15] { DIRECTION=none; VIEW=none; SCOPE=behavior; }
{ DIRECTION=input; SIGNALTYPE=write enable;

PIN[1:0] dat { ATTRIBUTE { DATA INDEX } DIRECTION=none; VIEW=none; }
PIN bit { ATTRIBUTE { DATA VALUE } DIRECTION=both; VIEW=none; |}

PIN[1:0] row
ATTRIBUTE
DIRECTION=

}

PIN[3:0] col
ATTRIBUTE
DIRECTION=

}

FUNCTION {
BEHAVIOR {

Dout =
@ (writ

b

{

{ ROW INDEX } RANGE { 0: 3 }
input; VIEW=none;

{

{ COLUMN INDEX } RANGE { 0 : 15 }
input; VIEW=none;

bits[addr];
e enb) { bits[addr] = Din; }

/*different physical architectures are shown in the following examples*/

}
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Example 1

addr[3;2] 000 00 00 00 01 01 01 01 10 10 10 10 11 11 11 11

physical column .o w1 ‘h2 *h3 ‘he ks ‘he 'h7 ‘he ‘ho ‘ha ‘hE ‘hC ‘hD ‘hE ‘hF

00 “ho D[0] D[1] DI[2] D[0] D[1] DI[2] D[o] D[1] DI2] D[0] D[1] DI[2]
01 ‘hi D[0] D[1] DI[2] D[0] D[1] D[2] D[o] DI[1] DI[2] D[0] D([1] DI[2]
10 ‘ho D[0] D[1] DI[2] D[0] D[1] DI[2] D[0o] D[1] DI[2] D[0] D[1] DI[2]
11 ‘h3 D[0] D[1] DI[2] D[0] D[1] D[2] D[o] DI[1] DI[2] D[0] D[1] DI[2]
o 3
4 2
)

©
AR

72

P

<

o

TEST {

BEHAVIOR {

// map row and column index to logical address
addr [1:0] row[1:0];
addr[3:2] = col[3:2];

// map column index to logical data index
dat[1:0] = col[1:0];

// map physical data to input and output data
Din[dat] = bit;
bit = Dout [dat];

Example 2

addr[32] o0 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11

physical column .o w1 ‘h2 *h3 he ‘hs ‘he 'h7 ‘he ‘ho ‘ha ‘hE ‘hC ‘hD ‘hE ‘hF

00 ‘ho Dol D[0] D[0] Dlo] D[1] DI[1] D[1] D[1] D[2] D[2] D[2] D[2]
o1 ‘b1 Dlo] D[0] D[0] Dlo] D[1] DI[1] D[1] D[1] D[2] D[2] D[2] D[2]
10 ‘h2 Dlo] D[o] D[o] Dlo] D[1] DI1] D[1] D[1] D[2] D[2] D[2] D[2]
11 ‘h3 Dol D[0] Dlo] D[o] D[1] D[1] D[1] D[1] D[2] DI2] D[2] DI2]
S 2
4 2
S

©
R

2

£

o}

TEST {

BEHAVIOR {
// map row and column index to logical address

136 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 2



addr [1:0] row[1l:0];
addr [3:2] col[1:0];

// map column index to logical data index
dat[1:0] = col[3:2];

// map physical data to input and output data
Din[dat] = bit;
bit = Dout [dat];

Example 3

addr[32] 00 01 11 10 11 10 00 01 00 01 11 10

physical column .o w1 h2 *h3 he ks ‘he 'h7 ‘he ‘ho ‘ha ‘hE ‘hC ‘hD ‘hE ‘hF

00 “ho D[0] D[0] D[1] D[1] D[0] D[0] DI[1] D[1]!D[2]!D[2] D[2] D[2]
10 ‘hi D[0] D[0] D[1] D[1] D[0] D[0] DI[1] D[1]!D[2]!D[2] D[2] D[2]
11 “ha D[0] D[0] DI[1] D[1]!D[0]!D[0]!D[1]!D[1] D[2] D[2] D[2] DI[2]
01 ‘h3 D[0] D[0] DI[1] D[1]1!D[0]!D[0]!D[1]!D[1] D[2] DI[2] D[2] D[2]
e 3
4 2
S

©
8 o

7

>

<

[}

TEST {

BEHAVIOR {
// map row and column index to logical address
addr [0] = rowl[1l];
addr[1] = row[0] * row[1]
addr[2] = col[0] * col[1l] * coll2];
addr[3] = col[2] * coll[3];
// map column index to logical data index
dat [0] = coll1l];
dat [1] = coll[3];
// map physical data to input and output data
Din[dat]=bit” (row[1]&col[2]&!col[3] | !row[l]l&!col[2]&col[3
bit=Dout [dat]” (row[1]&col[2]&!col[3] | !'row[l]&!col[2]&col ]

NOTES

1—This enables the description of a complete bitmap of a memory in a compact way.

2—The RANGE feature is not restricted to BIST. It can be used to describe a valid contiguous range on any bus. This allevi-
ates the need for interpreting a VECTOR with ILLEGAL statement to get the vaid range. However, the VECTOR with ILLE-

GAL statement is still necessary to describe the behavior of adevice when illegal values are driven on a bus.
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3—The TEST statement with BEHAVIOR alowsfor generalization from memory BIST to any test vector generation require-
ment, e.g., logic BIST. The only necessary additions would be other PIN ATTRIBUTES describing particular features to be
recognized by the test vector generation algorithm for the target test algorithm.

9.11.4 BEHAVIOR statement

A BEHAVIOR statement XXX, as shown in Syntax 78.

behavior ::=
BEHAVIOR { behavior_items }
| behavior_template_instantiation
behavior_items ::=
behavior_item { behavior_item}
behavior_item ::=
boolean_assignments
| control_statement
| primitive_instantiation
| behavior_item_template instantiation
boolean_assignments ::=
boolean_assignment { boolean_assignment }
boolean_assignment ::=
pin_variable = boolean_expression ;
primitive_instantiation ::=
primitive_identifier [ identifier ] { pin_values}
| primitive_identifier [ identifier ]
boolean_assignments }
control_statement ::=
@ control_expression { boolean_assignments }
{: control_expression{ bool ean_assignments} }

Syntax 78—BEHAVIOR statement

BEHAVIOR
Inside BEHAVIOR, variables that appear at the LHS of an assignment conditionally controlled by a vector
expression, as opposed to an unconditional continuous assignment, hold their values, when the vector expression
evaluates False. Those variables are considered to have latch-type behavior.

Examples

BEHAVIOR {

@(G)
Q = D; // both Q and QN have latch-type behavior
ON = !D;
}
}
BEHAVIOR {
@(G) {
Q = D; // only Q has latch-type behavior
}
QN = IQI
}
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9.11.5 STRUCTURE statement

An optional STRUCTURE statement shall be legal in the context of a FUNCTION. A STRUCTURE Statement
describes the structure of a complex cell composed of atomic cells, for example I/O buffers, LSSD flip-flops, or
clock trees. The STRUCTURE statement shall be legal inside the FUNCTION statement (see 11.17):

A STRUCTURE statement is defined as shown in Syntax 79.

structure ::=
STRUCTURE { named_cell_instantiations }
| structure_template_instantiation
named_cell_instantiations ::=
named_cell_instantiation { named_cell_instantiation }
named_cell_instantiation ::=
cell_identifier instance_identifier y pin_val u&}
| cell_identifier instance _identifier pin_assignments}

Syntax 79—STRUCTURE statement

B
He-

fth  fth
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D
o
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-

)]
ar qr

F
1
'._l
s
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'._l
f
P
'._l
Bl
t
dt 9
D
B
dt
'._l
D
qr
'._l
B
t

The STRUCTURE statement shall describe a netlist of components inside the CELL. The STRUCURE statement
shall not be a substitute for the BEHAVIOR statement. |f a FUNCTION contains only a STRUCTURE statement
and no BEHAVIOR statement, a behavior description for that particular cell shall be meaningless (e.g., fillcells,
diodes, vias, or anadog cells).

Timing and power models shall be provided for the CELL, if such models are meaningful. Application tools are
not expected to use function, timing, or power models from the instantiated components as a substitute of a miss-
ing function, timing, or power model at the top-level. However, tools performing characterization, construction,
or verification of atop-level model shall use the models of the instantiated components for this purpose.

Test synthesis applications can use the structural information in order to define a one-to-many mapping for scan
cell replacement, such as where a single flip-flop is replaced by a pair of master/slave latches. A macro cell can
be defined whose structure is a netlist containing the master and slave latch and this shall contain the
NON_ SCAN CELL annotation to define which sequential cellsit is replacing. No timing model is required for
this macro cell, since it should be treated as a transparent hierarchy level in the design netlist after test synthesis.

NOTES
1—Every instance identifier withina STRUCTURE statement shall be different from each other.

2—The STRUCTURE statement provides adirective to the application (e.g., synthesis and DFT) asto how the CELL isimple-
mented. A CELL referenced in named cell instantiation can be replaced by another CELL within the same
SWAP CLASS andRESTRICT CLASS (recognized by the application).

3—Thecell identifier withinaSTRUCTURE statement can refer to actual cellsaswell asto primitives. The usage of
primitives is recommended in fault modeling for DFT.
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4—BEHAVIOR statements also provide the possibility of instantiating primitives. However, those instantiations are for mod-
eling purposes only; they do not necessarily match a physical structure. The STRUCTURE statement always matches a physi-
cal structure.

Example 1
iobuffer = pre buffer + main buffer

CELL my main driver ({
DRIVERTYPE = slotdriver ;
BUFFERTYPE = output ;
PIN i { DIRECTION = input; }
PIN o { DIRECTION = output; }
FUNCTION { BEHAVIOR { o = i ; } }

}

CELL my pre driver ({
DRIVERTYPE = predriver ;
BUFFERTYPE = output ;
PIN i { DIRECTION = input; }
PIN o { DIRECTION = output; }
FUNCTION { BEHAVIOR { o = i ; } }
}
CELL my buffer ({
DRIVERTYPE = both ;
BUFFERTYPE = output ;
PIN A { DIRECTION = input; }
PIN Z { DIRECTION = output; }
PIN Y { VIEW = physical; }
FUNCTION {
BEHAVIOR { Z = A ; }
STRUCTURE
my pre driver pre { A Y }// pin by order
my main driver main { i=Y; o=Z; }// pin by name

}

Example 2
Issd flip-flop = latch + flip-flop + mux

CELL my latch {
RESTRICT CLASS { synthesis scan }
PIN enable { DIRECTION = input; }
PIN d { DIRECTION = input; }
PIN d { DIRECTION = output; }
FUNCTION { BEHAVIOR {
@ ( enable ) { g=4d ; }

b
}

CELL my flip-flop {
RESTRICT CLASS { synthesis scan }
PIN clock { DIRECTION = input; }
PIN d { DIRECTION = input; }
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PIN

a { DIR

ECTION = output; }

FUNCTION { BEHAVIOR ({

}
}

CELL my

@ ( 01 clock

}

_mux |

) {a=4d;}

RESTRICT CLASS { synthesis scan }

PIN
PIN
PIN

PIN select { DIRECTION

dout { DIR
dino { DIR
dinl { DIR

ECTION = output;

}

ECTION = input; }
ECTION = input; }
= input; }

FUNCTION { BEHAVIOR ({

}
}

dout = select

}

? dinl : dinO ;

CELL my lssd flip-flop ({
RESTRICT CLASS { scan }

CEL
SCA
PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN

LTYPE = block
N TYPE = lssd
clock
master clock
slave clock
scan_data
din
dout
scan master

scan_slave
d internal

DIRECTION = input;
DIRECTION = input;
DIRECTION = input;
DIRECTION = input;
DIRECTION = input;
DIRECTION = output;
physical; }

P Rt Ratn Rane Rt Rt Rate Rt Rt
o e e

VIEW =
VIEW = physical; }
VIEW = physical; }

FUNCTION { BEHAVIOR ({

@ ( master cl

ock ) {

scan_data master = scan data ;

}

@ ( slave clock & ! clock ) {
dout = scan_data master ;

} o+ (01 clock ) {

dout = din
}
STRUCTURE

my latch U
enable
din
dout

}

my flip-f1
clock
d

q

}

my mux U2
select
dinl
dinoO
dout

IEEE P1603 Draft 2

1

0 {

= master clock;

= scan_data;

= scan_data master;

op Ul {

= clock;

= din;

= d_internal;

slave clock;
scan_data master;
dout;
scan_data_slave;
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my mux U3
select clock;
dinl = d_internal;
dino scan _data slave;
dout dout;

ool
}

NON_SCAN CELL {
my flip flop {
clock clock;
d = din;
q = dout;
'b0 slave clock;

}

Example 3

clock tree = chains of clock buffers

142

CELL my root buffer {
RESTRICT CLASS { clock }
PIN i0 { DIRECTION = input; }
PIN o0 { DIRECTION = output; }
FUNCTION { BEHAVIOR { o0 = i0 ; } }
}
CELL my levell buffer {
RESTRICT CLASS { clock }
PIN il { DIRECTION = input; }
PIN ol { DIRECTION = output; }
FUNCTION { BEHAVIOR { ol = il ; } }

}

CELL my level2 buffer ({
RESTRICT CLASS { clock }
PIN i2 { DIRECTION = input; }
PIN o2 { DIRECTION = output; }
FUNCTION { BEHAVIOR { 02 = i2 ; } }
}
CELL my level3 buffer {
RESTRICT CLASS { clock }
PIN i3 { DIRECTION = input; }
PIN o3 { DIRECTION = output; }
FUNCTION { BEHAVIOR { o3 = i3 ; } }
}
CELL my tree from level2 ({
RESTRICT CLASS { clock }
PIN in { DIRECTION = input; }
PIN out { DIRECTION = output; }
PIN[1:2] level3 { DIRECTION = output; |}
FUNCTION {
BEHAVIOR { out = in ; }
STRUCTURE
my level2 buffer Ul { i2=in; o2=out; }
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my levell buffer U2 { i3=out; o3=level3[1]; }
my levell buffer U3 { i3=out; o3=level3[2]; }

}
}

CELL my tree from levell ({
RESTRICT CLASS { clock }
PIN in { DIRECTION = input; }
PIN out { DIRECTION = output; }
PIN[1:4] level2 { DIRECTION = output; }
FUNCTION ({
BEHAVIOR { out = in ; }
STRUCTURE {
my levell buffer Ul { il=in; ol=out; }
my tree from level2 U2 { i2=out; o2=level2
my tree from level2 U3 { i2=out; o2=level2
my tree from level2 U4 { i2=out; o2=level2
my tree from level2 U5 { i2=out; o2=level2

2

1}
1;: }
1; }
1}

2

[1
[2
(3
[41;

’

}
}

CELL my tree from root ({
RESTRICT CLASS { clock }
PIN in { DIRECTION = input; }
PIN out { DIRECTION = output; }
PIN[1:4] levell { DIRECTION = output; }
FUNCTION ({
BEHAVIOR { out = in ; }
STRUCTURE {
my root buffer Ul { i0=in; oO=out; }
my tree from levell U2 { il=o; ol=levell
my tree from levell U3 { il=o; ol=levell
my tree from levell U4 { il=o; ol=levell
my tree from levell U5 { il=o; ol=levell

’

1}
1; }
1; }
1; )

7

1
2
3
4

— /o,

7

}

Example 4
Multiplexor, showing the conceptional difference between BEHAVIOR and STRUCTURE.

CELL my multiplexor (
PIN a { DIRECTION = input; }
PIN b { DIRECTION = input; }
PIN s { DIRECTION = input; }
PIN y { DIRECTION = output; }
FUNCTION ({
BEHAVIOR {
// s_a and s_b are virtual internal nodes

ALF_AND { out = s_a; in[0] = !s; in[1] = a; }
ALF AND { out = s b; in[0] = s; in[1] = b; }
ALF OR { out = y; inl0] = s a; in[1] = s b; }
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STRUCTURE {
// sbar, sel a, sel b are physical internal nodes

ALF_NOT { out = sbar; in = s; }

ALF_NAND { out = sel a; in[0] = sbar; in[1] = a; }
ALF_NAND { out = sel b; in[0] = s; in[1] = b; }
ALF_NAND { out = y; in[0] = sel a; in[1] = sel b; }

}

9.11.6 VIOLATION statement

A VIOLATION statement XXX, as shown in Syntax 80.

violation ::=
VIOLATION { violation_items }
| violation_template_instantiation
violation_items ::=
violation_item { violation_item }
violation_item ::=
MESSAGE_TYPE single value annotation
| MESSAGE_single_value_annotation
| behavior

Syntax 80—VIOLATION statement
VHOLAHON-centainer
A VIOLATION statement can appear within an ILLEGAL statement (see 6.7) and aso within a
TIMING CONSTRAINT Or a SAME PIN TIMING CONSTRAINT. The VIOLATION statement can contain

the BEHAVIOR object (see 11.17), since the behavior in case of timing constraint violation cannot be described
in the FUNCTION. The VIOLATION statement can also contain the annotations shown in Table 49.

Table 49—Annotations within VIOLATION

Keyword Valuetype Description
MESSAGE_TYPE string Specifies the type of the message. It can be one of infor-
mation,warning, Or error.
MESSAGE string Specifies the message itself.
Example

VECTOR (01 d <&> 01 cp) {
SETUP
VIOLATION ({
MESSAGE TYPE = error;
MESSAGE = “setup violation 01 d <&> 01 cp“;
BEHAVIOR {g = 'bx;}
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9.11.7 STATETABLE statement

A STATETABLE statement XXX, as shown in Syntax 81.

statetable ::=

STATETABLE [ identifier]

{ statetable_header statetable_row { statetable row} }
| statetable_template_instantiation

statetable_header ::=

input_pin_variables . output_pin_variables
statetable_row ::=

statetable_control_values : statetable data values
statetable_control_values ::=

statetable_control_value { statetable_control_value}

statetable_control_value ::=
bit_literal
| based_literal
| unsigned
| edge_value
statetable_data values ::=

statetable_data value ::=
bit_literal
| based_literal
| unsigned
[([!]pin_variable)
[([~1] pin_variable)

statetable_data_value { statetable data value}

Syntax 81—STATETABLE statement

STATETABLE

9.11.7.1 Definition

The functiona description can be supplemented by a STATETABLE, the first row of which contains the argu-
ments that are object I1Ds of the declared PINs. The arguments appear in two fields, the first isinput and the sec-
ond is output. The fields are separated by a :. The rows are separated by a ;. The arguments can appear in both
fields if the PINs have attribute direction=output or direction=both. If direction=output,
then the argument has latch-type behavior. The argument on the input field is considered previous state and the
argument on the output field is considered the next state. If direction=both, then the argument on the input
field applies for input direction and the argument on the output field applies for output direction of the bidirec-

tional PIN.
Example

CELL ff sd {
PIN g {DIRECTION=output;}
PIN d {DIRECTION=input;}
PIN cp {DIRECTION=input;
SIGNALTYPE=clock;

POLARITY=rising edge; }
PIN cd {DIRECTION=input; SIGNALTYPE=clear; POLARITY=low; }
PIN sd {DIRECTION=input; SIGNALTYPE=set; POLARITY=low; }

FUNCTION {
BEHAVIOR {

}

@(!cd) {q = 0;} :(1sd)

IEEE P1603 Draft 2
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STATETABLE {

cd sd cp
? 27
0 27
1 12
1 20
1 12
1 20
1 01

VIS ISR B IV B o N
W R O R O W vQ
Q HrH OoORr oPr oQn

—

}

If the output variable with |atch-type behavior depends only on the previous state of itself, as opposed to the pre-
vious state of other output variables with latch-type behavior, it is not necessary to use that output variable in the
input field. This allows amore compact form of the STATETABLE.

Example

STATETABLE {

cd sd cp d : g ;
0 2 2? ? : 0 ;
1 0 2?2 ? 1 ;
1 1 1?2 2?2 :(q);
1 1 20 ?  :(q);
1 1 01 2 :(d);

}

A generic ALF parser shall make the following semantic checks.

— Aredl variables of a FUNCTION declared either by declaration as PIN names or through assignment?
— Doesthe STATETABLE exclusively contain declared PINS?

— Istheformat of the STATETABLE, i.e., the number of elementsin each field of each row, consistent?
— Arethevalues consistently either state or transition digits?

— Isthe number of digitsin each TABLE entry compatible with the signal bus width?

A more sophisticated checker for complete verification of logical consistency of a FUNCTION given in both
equation and tabular representation is out of scope for ageneric ALF parser, which checks only syntax and com-
pliance to semantic rules. However, formal verification agorithms can be implemented in special-purpose ALF
analyzers or model generators/compilers.

9.11.7.2 ROM initialization

The STATETABLE statement can be used to describe the contents of a ROM, as far as this content is fixed in the
library.

Example

CELL my_ rom {
CELLTYPE = memory;
ATTRIBUTE { rom asynchronous }
PIN[1:2] addr { DIRECTION = input; SIGNALTYPE = address; |}
PIN[3:0] dout { DIRECTION = output; SIGNALTYPE = data; |}
PIN[3:0] mem[1:4] { DIRECTION=none; VIEW=none; SIGNALTYPE=data; |}
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FUNCTION ({
BEHAVIOR { dout = mem[addr]; }
STATETABLE {

addr : mem ;
‘*ho : ‘h5 ;
‘hl : ‘ha ;
‘h2 : ‘hs5 ;
‘h3 : ‘ha ;

}
For flexibility, a separate included file can be used:
CELL my_ rom {

CELLTYPE = memory;
ATTRIBUTE { rom asynchronous }

PIN[1:2] addr { DIRECTION = input; SIGNALTYPE = address;

PIN[3:0] dout { DIRECTION = output; SIGNALTYPE = data;

PIN[3:0] mem[1:4] { DIRECTION=none; VIEW=none; SIGNALTYPE=data; |}

FUNCTION ({
BEHAVIOR { dout = mem[addr]; }
INCLUDE “rom initialization file.alf” ;

}
}

The contents of theincluded file rom_initialization file.alf are

STATETABLE {

addr : mem ;
‘*ho : ‘h5 ;
‘hl : ‘ha ;
‘h2 : ‘h5 ;
‘h3 : ‘ha ;

}

9.11.8 PRIMITIVE statement

A PRIMITIVE statement XXX, as shown in Syntax 82.

primitive ::=
PRIMITIVE primitive_identifier { primitive_items }
| PRIMITIVE primitive_identifier ;
| primitive_template_instantiation
primitive_items ::=
primitive_item { primitive_item }
primitive_item ::=
all_purpose_item
| pin
| pin_group
| function
| test

Syntax 82—PRIMITIVE statement
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Predefined-models
. . ? ‘ \efined ols i :

9.11.8.1 Usage of PRIMITIVEs

A PRIMITIVE referenced in a CELL can replace the complete set of PIN and FUNCTION definition. PINS can
be declared before the reference to the PRIMITIVE, in order to provide supplementary annotations that cannot
be inherited from the PRIMITIVE. However, the CELL shall be pin-compatible with the PRIMITIVE.

If the PRIMITIVE or a CELL isreferenced in an annotation container such as SCAN, only the subset of PINs
used in the non-scan cell shall be compatible with the PINs of the cell.

The pin names can be referenced by order or by name. In the latter case, the LHS is the pin name of the refer-
enced PRIMITIVE or CELL (e.g., the non-scan cell), the RHS is the pin name of the actua cell. A constant
logic value can also appear at the LHS or RHS, indicating a pin needs to be tied to a constant value. If thisinfor-
mation is aready specified in an annotation inside the PIN object itself, referencing between a pin name and a
constant value is not necessary.

PRIMITIVEScan also beinstantiated inside BEHAVIOR.
9.11.8.2 Concept of user-defined and predefined primitives

Primitives are described in ALF syntax. Primitives are generic cells containing PIN and FUNCTION objects
only, i.e., no characterization data. The primitives are used for structural functional modeling.

Example
PRIMITIVE MY PRIMITIVE ({
PIN x { ... }
PINy { ... }
PIN z { ... }
FUNCTION { ... }

}

CELL MY CELL ({

PIN a { ... }
PIN b { ... }
PIN c { ... }
FUNCTION {

BEHAVIOR { MY PRIMITIVE { x=a; y=b; z=c; } }

}
}

Extensible primitives, i.e., primitives with variable number of pins can be modeled using a TEMPLATE.
Example
TEMPLATE EXTENSIBLE PRIMITIVE({

PRIMITIVE <primitive name> {
PIN [0:<max index>] pin name { ... }
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// instantiation of the template creates a primitive
EXTENSIBLE PRIMITIVE {
primitive name = MY EXTENSIBLE PRIMITIVE;
max_index = 2;

}

The set of statements above is equivaent to the following statement:

PRIMITIVE MY EXTENSIBLE PRIMITIVE {
PIN [0:2] pin name { ... }

}
The primitive can be used as shown in the following example:

CELL MY MEGACELL ({

PIN a { ... }
PIN b { ... }
PIN ¢ { ... }
FUNCTION ({

BEHAVIOR {
// reference to the primitive

MY EXTENSIBLE PRIMITIVE {
pin name[0] = a;
pin name[1l] = b;

21

pin name | = C;

}

Primitives can be freely defined by the user. For convenience, ALF provides a set of predefined primitives with
the reserved prefix ALF__in their name, which cannot be used by user-defined primitives.

For all PINs of predefined primitives, the following annotations are defined by default:

VIEW = functional;
SCOPE = behavioral;

For predefined extensible primitives, a placeholder can be directly in the PRIMITIVE definition:

PRIMITIVE ALF EXTENSIBLE PRIMITIVE {
PIN [0:<max index>] pin name { ... }

}
Thisis equivalent to the following more verbose set of statements:
TEMPLATE EXTENSIBLE PRIMITIVE({

PRIMITIVE <primitive name> {
PIN [0:<max index>] pin name { ... }
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}

EXTENSIBLE PRIMITIVE {
primitive name = ALF_EXTENSIBLE PRIMITIVE;
max_index = <max indexs>;

}

9.11.8.3 Predefined combinational primitives
This section defines the use of predefined combinational primitives.

9.11.8.3.1 One input, multiple output primitives

There are two combinational primitiveswith oneinput pin and multiple output pins:

ALF_BUF and ALF_NOT

A GROUP statement is used to define the behavior of all output pinsin one statement.

The output pins are indexed starting with 0. If 0 isthe only index used, the index can be omitted when referenc-

ing the output pin, e.g., out refersto out [0] .
Example — Primitive model of ALF_BUF

PRIMITIVE ALF BUF {
GROUP index {0:<max_index>}
PIN[0:<max_index>] out ({
DIRECTION = output ;
}

PIN in {
DIRECTION = input ;

FUNCTION {
BEHAVIOR {
out [index] = in;
}

}

Example — Primitive model of ALF_NOT

PRIMITIVE ALF NOT {
GROUP index {0:<max_index>}
PIN[0:<max_index>] out ({
DIRECTION = output ;
}

PIN in {
DIRECTION = input ;

FUNCTION {
BEHAVIOR {
out [index] = !in;
}
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9.11.8.3.2 One output, multiple input primitives

There are six combinational primitives with one output pin and multiple input pins:

ALF AND, ALF_NAND, ALF_OR, ALF_NOR, ALF XOR, and ALF_XNOR

Theinput pins are indexed starting with 0. If 0 isthe only index used, the index can be omitted when referencing

theinput pin, e.g., in refersto in [0] .
Example — Primitive model of ALF_AND
PRIMITIVE ALF AND {
PIN out ({

DIRECTION = output;
}

PIN[O0:<max_index>] in {
DIRECTION = input;
}

FUNCTION ({
BEHAVIOR {
out = & in;

}
}

Example — Primitive model of ALF_NAND

PRIMITIVE ALF NAND {
PIN out ({
DIRECTION = output;

PIN[0:<max_index>] in ({
DIRECTION = input;
}

FUNCTION {
BEHAVIOR {
out = ~& in;
}

}

Example — Primitive model of ALF_OR

PRIMITIVE ALF OR {
PIN out ({
DIRECTION = output;

PIN[0:<max_index>] in {
DIRECTION = input;
}

FUNCTION {
BEHAVIOR {
out = | in;
}
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}

Example — Primitive model of ALF_NOR

PRIMITIVE ALF NOR {
PIN out ({
DIRECTION = output;

PIN[O0:<max_index>] in {
DIRECTION = input;
}

FUNCTION ({

BEHAVIOR {
out = ~| in;
}

}

Example — Primitive model of ALF_XOR

PRIMITIVE ALF XOR {
PIN out ({
DIRECTION = output;

PIN[O0:<max_index>] in {
DIRECTION = input;
}

FUNCTION {
BEHAVIOR {
out = "in;

}
}

Example — Primitive model of ALF_XNOR
PRIMITIVE ALF XNOR {
PIN out ({
DIRECTION = output;
}

PIN[0:<max_index>] in ({
DIRECTION = input;
}

FUNCTION {

BEHAVIOR {
out = ~"in;
}

}

9.11.8.4 Predefined tristate primitives

There are four tristate primitives:
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ALF BUFIF1,ALF BUFIFQ,ALF NOTIF1,andALF NOTIFO
Example — Primitive model of ALF_BUFIF1

PRIMITIVE ALF BUFIF1l ({
PIN out ({
DIRECTION = output;
ENABLE_PIN = enable;
ATTRIBUTE {TRISTATE}
}
PIN in {
DIRECTION = input;
}

PIN enable {

DIRECTION = input;
SIGNALTYPE = out enable;
}
FUNCTION ({
BEHAVIOR {
out = (enable)? in : 'bZ;

}

STATETABLE {
enable in : out;
0 ? A
1 ? : (in);

}

Example — Primitive model of ALF_BUFIFO

PRIMITIVE ALF BUFIFO
PIN out ({
DIRECTION = output;
ENABLE PIN = enable;
ATTRIBUTE {TRISTATE}
}
PIN in {
DIRECTION = input;
}

PIN enable {

DIRECTION = input;
SIGNALTYPE = out enable;
}
FUNCTION {
BEHAVIOR
out = (!enable)? in : 'bZz;

}

STATETABLE {
enable in : out;
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}

Example — Primitive model of ALF_NOTIF1

PRIMITIVE ALF NOTIF1l ({
PIN out ({
DIRECTION output;
ENABLE PIN = enable;
ATTRIBUTE {TRISTATE}

}

PIN in {
DIRECTION = input;
}
PIN enable {
DIRECTION = input;
SIGNALTYPE = out enable;
}
FUNCTION ({
BEHAVIOR {
out = (enable)? !in : 'bZzZ;

}

STATETABLE {
enable in : out;
0 ? A
1 ? o (!in);

}

Example — Primitive model of ALF_NOTIFO

PRIMITIVE ALF NOTIFO {
PIN out ({
DIRECTION output;
ENABLE PIN = enable;
ATTRIBUTE {TRISTATE}

}

PIN in {
DIRECTION = input;
}
PIN enable {
DIRECTION = input;
SIGNALTYPE = out enable;
}
FUNCTION {
BEHAVIOR
out = (!enable)? !in : 'bZzZ;

}

STATETABLE {
enable in : out;
1 ? A
0 ? : (!in);
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}

9.11.8.5 Predefined multiplexor

The predefined multiplexor has a known output value if either the select signal and the selected data inputs are
known or both data inputs have the same known value while the select signa is unknown.

Example — Primitive model of ALF_MUX

PRIMITIVE ALF MUX {

PIN Q {
DIRECTION = output;
SIGNALTYPE = data;

}

PIN[1:0] D {
DIRECTION = input;

SIGNALTYPE = data;
}
PIN S {
DIRECTION
SIGNALTYPE

input;
select;

}

FUNCTION {
BEHAVIOR {
Q = (s || (alol ~* dl1l) )2 dl1] : d[o0];
}

STATETABLE {
D[0] DI[1]
? ?

R O

)
0
1

}

9.11.8.6 Predefined flip-flop

A dual-rail output D-flip-flop with asynchronous set and clear pinsis a generic edge-sensitive sequential device.
Simpler flip-flops can be modeled using this primitive by setting input pins to appropriate constant values. More
complex flip-flops can be modeled by adding combinational logic around the primitive.

A particularity of thismodel isthe use of the last two pinsQ CONFLICT and QN CONFLICT, which arevirtua
pins. They specify the state of @ and QN in the event CLEAR and SET become active simultaneously.

Example — Primitive model of ALF_FLIPFLOP

PRIMITIVE ALF FLIPFLOP {

PIN Q {
DIRECTION = output;
SIGNALTYPE = data;
POLARITY = non_inverted;
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PIN ON {
DIRECTION =
SIGNALTYPE =
POLARITY =

}

PIN D {
DIRECTION =
SIGNALTYPE =

}

PIN CLOCK {
DIRECTION =
SIGNALTYPE =
POLARITY =

}

PIN CLEAR ({
DIRECTION =
SIGNALTYPE =
POLARITY =
ACTION =

}

PIN SET {
DIRECTION =
SIGNALTYPE =
POLARITY =
ACTION =

}

PIN Q CONFLICT
DIRECTION
VIEW =

}

PIN QN CONFLICT
DIRECTION
VIEW =

}

FUNCTION {
ALIAS QX =

output;
data;
inverted;

input;
data;

input;
clock;
rising edge;

input;

clear;

high;
asynchronous;

input;

set;

high;
asynchronous;

input;
none;

input;
none;

Q CONFLICT;

ALTIAS QONX = QN CONFLICT;

BEHAVIOR {

@ (CLEAR && SET) ({

Q = QX;
ON = QNX;

}

: (CLEAR) {
Q = 0;
ON = 1;

}

: (SET) {

Q —_

(01 CLOCK) { // edge-sensitive behavior
Q = D;

ON = !D;
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}

}

STATETABLE {

D CLOCK CLEAR SET QX

?7?
?7?
?7?
17
?0
01

LACARRAVENRLV RV AN

9.11.8.7 Predefined latch

The dual-rail D-latch with set and clear pins has the same functionality as the flip-flop, except the level-sensitive

1

o O o Br o

1 7

o O o o+
ROV v R
LSO IRV R V)

QNX

clock (ENABLE pin) isused instead of the edge-sensitive clock.

Example — Primitive model of ALF_LATCH

PRIMITIVE ALF LATCH ({
PIN Q {

}

DIRECTION =
SIGNALTYPE =
POLARITY =

PIN QN {

}

DIRECTION =
SIGNALTYPE =
POLARITY =

PIN D {

}

DIRECTION =
SIGNALTYPE =

PIN ENABLE ({

}

DIRECTION =
SIGNALTYPE =
POLARITY =

PIN CLEAR {

}

DIRECTION =
SIGNALTYPE =
POLARITY =
ACTION =

PIN SET {

}

DIRECTION =
SIGNALTYPE =
POLARITY =
ACTION =

PIN Q CONFLICT

DIRECTION =

IEEE P1603 Draft 2

output;
data;
non_inverted;

output;
data;
inverted;

input;
data;

input;
clock;
high;

input;

clear;

high;
asynchronous;

input;

set;

high;
asynchronous;

{

input;

Advanced Library Format (ALF) Reference Manual

7

157

on

10

15

20

25

30

35

40

45

50

55



10

15

20

25

30

35

40

45

50

55

158

VIEW

}

= none;

PIN QN CONFLICT {

DIRECTION = input;

VIEW = none;
FUNCTION ({

ALIAS QX = Q CONFLICT;

ALIAS QNX = QN CONFLICT;
BEHAVIOR {
@ (CLEAR && SET) {

Q = QX;
QN = ONX;

}

: (CLEAR) {
Q = 0;
QN = 1;

}

: (SET) {

Q =1;
QN = 0;

(ENABLE) { // level-sensitive behavior
Q = D;
ON = I!D;
}
}

STATETABLE {

D ENABLE CLEAR SET QX ONX Q ON ;
2002 1 1 ? ? (QX) (ONX) ;
2002 0 1 ? ? 1 0 ;
2002 1 0 ? ? 0 1 ;
2 0 0 0 ? ? (Q)  (oN) ;
2 1 0 0 ? ? (D) (!D) ;
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10. Constructs for modeling of digital behavior

**Add lead-in text**

10.1 Variable declarations

Inside a CELL object, the PIN objects with the PINTYPE digital define variables for FUNCTION objects
inside the same CELL. A primary input variable inside a FUNCTION shall be declared as a PIN with DIREC-
TION=input or both (since DIRECTION=both is a bidirectional pin). However, it is not required that all
declared pinsare used in the function. Output variablesinside a FUNCTION need not be declared pins, since they
are implicitly declared when they appear at the left-hand side (LHS) of an assignment.

Example

CELL my cell ({
PIN A {DIRECTION = input;}
PIN B {DIRECTION = input;}
PIN C {DIRECTION = output;}
FUNCTION ({
BEHAVIOR {
D = A && B;
Cc = !D;

}

c and p are output variables that need not be declared prior to use. After implicit declaration, o
isreused as an input variable. A and B are primary input variables.

10.2 Combinational functions
This section defines the different types of combinational functionsin ALF.
10.2.1 Combinational logic
Combinational logic can be described by continuous assignments of boolean values (True or False) to output
variables as a function of boolean values of input variables. Such functions can be expressed in either boolean
expression format or statetable format.
Let us consider an arbitrary continuous assignment
z = f(a; ..,.. ap)
In adynamic or simulation context, the left-hand side (LHS) variable zis evaluated whenever thereisachangein

one of the right-hand side (RHS) variables ai. No storage of previous states is needed for dynamic simulation of
combinational logic.
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10.2.2 Boolean operators on scalars

Table 50, Table 51, and Table 52 list unary, binary, and ternary boolean operators on scalars.

Table 50—Unary boolean operators

Operator Description

1~ Logical inversion.

Table 51—Binary boolean operators

Operator Description
&&, & Logical AND.
[ Logical OR.
N Logic equivalence (XNOR).
N Logic anti valence (XOR).

Table 52—Ternary operator

Operator Description

? Boolean condition operator for construction of combinational

if-then-else clause.

Boolean else operator for construction of combinational if-
then-else clause.

Combinational if-then-else clauses are constructed as follows:

<condl>? <valuel>: <cond2>? <value2>: <cond3>? <value3>: <default value>
If cond1 evaluates to boolean True, then valuel istheresult; elseif cond2 evauates to boolean True, then
value2 is the result; else if cond3 evauates to boolean True, then value3 is the result; else
default value istheresult of this clause.

10.2.3 Boolean operators on words

Table 53 and Table 54 list unary and binary reduction operators on words (logic variables with one or more bits).
The result of an expression using these operators shall be alogic value.

Table 53—Unary reduction operators

Operator Description

& AND all bits.
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Table 53—Unary reduction operators (Continued)

Operator Description
~& NAND all bits.
| OR all bits.
~| NOR all bits.
N XOR all bits.
~N XNOR all bits.
Table 54—Binary reduction operators
Operator Description
== Equality for case comparison.
I= Non-equality for case comparison.
Greater.
Smaller.
>= Greater or equal.
<= Smaller or equal.

Table 55 and Table 56 list unary and binary bitwise operators. The result of an expression using these operators

shall be an array of bits.

Table 55—Unary bitwise operators

Operator Description
~ Bitwise inversion.
Table 56—Binary bitwise operators
Operator Description
& Bitwise AND.
| Bitwise OR.
A Bitwise XOR.
~N Bitwise XNOR.

IEEE P1603 Draft 2
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The following arithmetic operators, listed in Table 57, are also defined for boolean operations on words. The
result of an expression using these operators shall be an extended array of bits.

Table 57—Binary operators

Operator Description
<< Shift left.
>> Shift right.
+ Addition.
- Subtraction.
* Multiplication.
/ Division.
% Modulo division.

The arithmetic operations addition, subtraction, multiplication, and division shall be unsigned if all the operands
have the datatype unsigned. If any of the operands have the datatype signed, the operation shall be signed. See
Table 6-25 for the DATATYPE definitions.

10.2.4 Operator priorities

The priority of binding operators to operands in boolean expressions shall be from strongest to weakest in the
following order:

a)
b)
c)
d)
€)

unary boolean operator (!, ~, &, ~&, |, ~|, *, ~")

XNOR (~A), XOR (A), relationa (>, <, >=,<=,==, ! =), shift (<<, >>)
AND (&, &&), NAND (~&), multiply (*), divide (/), modulus (%)

OR (]|, ||), NOR (~|), add (+), subtract (-)

ternary operators (?, :)

10.2.5 Datatype mapping

Logical operations can be applied to scalars and words. For that purpose, the values of the operands are reduced
to asystem of three logic values in the following way:

162

H hasthe logic value 1

L hasthelogic value 0

W, Z, U have the logic value X

A word hasthelogic value 1, if the unary OR reduction of al bitsresultsin 1
A word hasthe logic value 0, if the unary OR reduction of al bitsresultsin 0
A word hasthelogic value X, if the unary OR reduction of al bitsresultsin X
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Case comparison operations can a so be applied to scalars and words. For scalars, they are defined in Table 58.

Table 58—Case comparison operators

IEEE P1603 Draft 2

Advanced Library Format (ALF) Reference Manual

B A==B A!'=B A>B A<B

1 1 1 0 0 0
1 H 0 1 X X
1 0 0 1 1 0
1 L 0 1 1 0
1 W, U, Z, X 0 1 X 0
H 1 0 1 X X
H H 1 0 0 0
H 0 0 1 1 0
H L 0 1 1 0
H W, U, Z, X 0 1 X 0
0 1 0 1 0 1
0 H 0 1 0 1
0 0 1 0 0 0
0 L 0 1 X X
0 W, U, Z, X 0 1 0 X
L 1 0 1 0 1
L H 0 1 0 1
L 0 0 1 X X
L L 1 0 0 0
L W, U, Z, X 0 1 0 X
X X 1 0 X X
X U X X X X
X 0, 1, H, L, 0 1 X X

W, Z
W W 1 0 X X
W U X X X X
W 0, 1, H, L, 0 1 X X

X, Z
Z Z 1 0 X X
Z U X X X X
Z 0, 1, H, L, 0 1 X X

X, W
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Table 58—Case comparison operators (Continued)

A B A==B A!l=B A>B A<B

U o, 1, H, L, X X X X

For word operands, the operations > and < are performed after reducing all bits to the 3-value system first and
then interpreting the resulting number according to the datatype of the operands. For example, if datatype is
signed, 'b1111 issmaller than 'b0000; if datatypeisunsigned, 'b1111 isgreater than 'b0000. If two oper-
ands have the same value 'b1111 and a different datatype, the unsigned 'b1111 is greater than the signed
'b1111.

The operations >= and <= are defined in the following way:

(

| b)
(a <= b) === (a < b) || (

a
a b)

10.2.6 Rules for combinational functions

If a boolean expression evaluates True, the assigned output value is 1. If a boolean expression eva uates False,
the assigned output value is 0. If the value of a boolean expression cannot be determined, the assigned output
valueis X. Assignment of values other than 1, 0, or X needs to be specified explicitly.

For evauation of the boolean expression, input value 'bH shall be treated as 'b1. Input value 'bL shall be
treated as ' b0. All other input values shal be treated as ' bX.

Examples
In equation form, these rules can be expressed as follows.
BEHAVIOR {
Z = A;
}
is equivalent to
BEHAVIOR {
Z =A7? 'bl : '"b0;
}
More explicitly, thisis also equivalent to
BEHAVIOR {
Z = (A=='bl || A=='bH)? ’'bl : (A=='b0 || A=='bL)? ‘b0 : ’'b¥X;
}
In table form, this can be expressed as follows:
STATETABLE {

A : Z;
? : (A) ;
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whichisequivalent to

STATETABLE {

A : Z;
0 0;
1 : 1;

}

More explicitly, thisis also equivaent to

STATETABLE {

A Z;
0 0;
L 0;
1 1;
H 1;
X X;
W X;
Z X;
U X;

}

10.2.7 Concurrency in combinational functions

Multiple boolean assignmentsin combinational functions are understood to be concurrent. The order in the func-
tiona description does not matter, as each boolean assignment describes a piece of a logic circuit. Thisisillus-

trated in Figure 26.

BEHAVIOR {
Ql = <1lst boolean expression(Dl..Di)> ;
On = <nth boolean expression(Dl..Di)> ;
}
>
C 1st boolean expression ) p Q1
-
® >< nth boolean expression > p QN
® >
D1 Di

Figure 26—Concurrency for combinational logic

10.3 Sequential functions

This section defines the different types of sequentia functionsin ALF.
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10.3.1 Level-sensitive sequential logic

In sequential logic, an output variable z can also be a function of itself, i.e., of its previous state. The sequentia
assignment has the form

zy = fla; ..,.. ag , 21 ..,.. Zp)

The RHS cannot be evaluated continuously, since a change in the LHS as aresult of a RHS evaluation shall trig-
ger anew RHS eval uation repeatedly, unless the variables attain stable values. Modeling capabilities of sequen-
tial logic with continuous assignments are restricted to systems with oscillating or self-stabilizing behavior.

However, using the concept of triggering conditions for the LHS enables everything which is necessary for mod-
eling level-sensitive sequential logic. The expression of atriggered assignment can look like this:

@g(b; ..,.. by) zy = f(a; ..,.. a, , 27 -.,.. Zp)

The evaluation of f is activated whenever the triggering function g is True. The evaluation of g is self-triggered,
i.e. at each time when an argument of g changes its value. If g is a boolean expression like f, we can model all
types of level-sensitive sequential logic.

During the time when g is True, the logic cell behaves exactly like combinational logic. During the time when g
is False, thelogic cell holdsits value. Hence, one memory element per state bit is needed.

10.3.2 Edge-sensitive sequential logic

In order to model edge-sensitive sequential logic, notations for logical transitions and logical states are needed.
If the triggering function g is sensitive to logical transitions rather than to logical states, the function g evaluates
to True only for an infinitely small time, exactly at the moment when the transition happens. The sole purpose of
g isto trigger an assignment to the output variable through evaluation of the function f exactly at thistime.
Edge-sensitive logic requires storage of the previous output state and the input state (to detect a transition). In
fact, all implementations of edge-triggered flip-flops require at least two storage elements. For instance, the most

popular flip-flop architecture features a master latch driving a slave latch.

Using transitions in the triggering function for value assignment, the functionality of a positive edge triggered
flip-flop can be described as followsin ALF:

@ (01 cp) {Q = D;}
which reads “at rising edge of CP, assign Q the value of D”.

If the flip-flop also has an asynchronous direct clear pin (CD), the functional description consists of either two
concurrent statements or two statements ordered by priority, as shown in Figure 27.

// concurrent style

@ (!1cp) {Q = 0;}
@ (01 CP && CD) {Q = D;}

// priority (if-then-else) style
@ (!cp) {Q = 0;} : (01 cp) {Q = D;}
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Figure 27—Model of a flip-flop with asynchronous clear in ALF

The following two examples show corresponding simulation models in Verilog and VHDL .

// full simulation model

always @(negedge CD or posedge CP) begin
if (1 CD ) Q <= 0;
else if (CP && !CP_last value) Q <= D;
else Q <= 1'bx;

end
always @ (posedge CP or negedge CP) begin

if (CP===0 | CP===1'bx) CP_last value <= CP ;
end

// simplified simulation model for synthesis

always @(negedge CD or posedge CP) begin
if (! CD ) Q <= 0;
else Q <= D;

end

Figure 28—Model of a flip-flop with asynchronous clear in Verilog

// full simulation model

process (CP, CD) begin

if (CD = '0') then
Q <= 1'0";

elsif (CP'last value = '0' and CP = 'l' and CP'event)
Q <= Dj;

elsif (CP'last value = '0' and CP = 'X' and CP'event)
Q <= 'X’";

elsif (CP'last value = 'X' and CP = 'l' and CP'event)
Q <= 'X’";

end if;

end process;
// simplified simulation model for synthesis

process (CP, CD) begin

if (CD = '0') then
Q <= 1'0";

elsif (CP = 'l' and CP'event) then
Q <= D;

end if;

end process;

then

then

then

Figure 29—Model of a flip-flop with asynchronous clear in VHDL
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The following differences in modeling style can be noticed: VHDL and Verilog provide the list of sensitive sig-
nals at the beginning of the process or always block, respectively. The information of level-or edge-sensitiv-
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ity shall beinferred by 1 f-then-else statements inside the block. ALF shows the level-or-edge sensitivity as
well as the priority directly in the triggering expression. Verilog has another particularity: The sensitivity list
indicates whether at least one of the triggering signals is edge-sensitive by the use of negedge or posedge.
However, it does not indicate which one, since either none or al signals shall have negedge or posedge qual-
ifiers.

Furthermore, posedge isany transition with 0 asinitial state or 1 asfinal state. A positive-edge triggered flip-
flop shall be inferred for synthesis, yet thisflip-flop shall only work correctly if both the initial stateis 0 and the
final state is 1. Therefore, a simulation model for verification needs to be more complex than the model in the
synthesizeable RTL code.

In Verilog, the extra non-synthesi zeable code needs to also reproduce the relevant previous state of the clock sig-
nal, whereas VHDL has built-in support for last value of asignal.

10.3.3 Unary operators for vector expressions

A transition operation is defined using unary operators on a scalar net. The scalar constants (see 6.3.5) shall be
used to indicate the start and end states of atransition on a scalar net.

bit bit I apply transition from bit value to bit value
For example,
olisatransition from o to 1.

No whitespace shall be allowed between the two scalar constants. The transition operators shown in Table 59
shall be considered legal.

Table 59—Unary vector operators on bits

Operator Description

01 Signal togglesfrom 0 to 1.

10 Signal togglesfrom 1 to 0.

00 signal remains 0.

11 Signal remains 1.

0? Signal remains 0 or toggles from 0 to arhitrary value.

1? Signal remains 1 or toggles from 1 to arbitrary vaue.

20 Signal remains 0 or toggles from arbitrary valueto 0.

?1 Signal remains 1 or toggles from arbitrary valueto 1.

?? Signal remains constant or toggles between arbitrary values.

o* A number of arbitrary signal transitions, including possibility of constant
value, with theinitia value 0.

1* A number of arbitrary signal transitions, including possibility of constant
value, with theinitia value 1.

* A number of arbitrary signal transitions, including possibility of constant
value, with arbitrary initial value.
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Table 59—Unary vector operators on bits (Continued)

Operator Description
*0 A number of arbitrary signal transitions, including possibility of constant
value, with the final value 0.
*1 A number of arbitrary signal transitions, including possibility of constant
value, with the final value 1.
*7 A number of arbitrary signal transitions, including possibility of constant
value, with arbitrary final value.

Unary operators for transitions can also appear in the STATETABLE.

Transition operators are al so defined on words (and can appear the in STATETABLE aswell):

'base word 'base word

In this context, the transition operator shall apply transition from first word value to second word value.

For example,

'hA'h5 is atransition of a4-bit signal from 'b1010 to 'b0101.

No whitespace shall be allowed between base and word.

The unary and binary operators for transition, listed in Table 60 and Table 61 respectively, are defined on bits and

words.

Table 60—Unary vector operators on bits or words

Operator Description
?- No transition occurs.
?? Apply arbitrary transition, including possibility of constant val ue.
?! Apply arbitrary transition, excluding possibility of constant value.
?~ Apply arbitrary transition with all bits toggling.

10.3.4 Basic rules for sequential functions
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A seguentia function is described in equation form by a boolean assignment with a condition specified by a
boolean expression or a vector expression. If the condition evaluates to 1 (True), the boolean assignment is acti-
vated and the assigned output values follows the rules for combinational functions. If the vector expression eval-
uatesto 0 (False), the output variables hold their assigned value from the previous eval uation.

For evaluation of a condition, the value ' bH shall be treated as True, the value ' bL shall be treated as False. All
other values shall be treated as the unknown value ' bX.

Example
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The following behavior statement
BEHAVIOR {
@ (E) {z = a;}
}
is equivalent to
BEHAVIOR {
@ (E=='bl || E=='bH) {Z = A;}
}
The following statetable statement, describing the same logic function

STATETABLE {

E A : Z;
0 ? : (Z) ;
1 ? : (A) ;

}
isequivalent to

STATETABLE {

E A Z;

0 ? (z2);
L ? (Z) ;
1 ? (n) ;
H ? (A) ;

}

For edge-sensitive and higher-order event sensitive functions, transitions from or to 'bL shall be treated like
transitions from or to ' b0, and transitionsfrom or to ' bH shall be treated like transitionsfrom or to 'b1.

Not every transition can trigger the evaluation of a function. The set of vectors triggering the evaluation of a
function are called active vectors. From the set of active vectors, a set of inactive vectors can be derived, which
shall clearly not trigger the evaluation of afunction. There are is also a set of ambiguous vectors, which can trig-
ger the evaluation of the function.

The set of active vectors is the set of vectors for which both observed states before and after the transition are
known to be logically equivalent to the corresponding states defined in the vector expression.

The set of inactive vectors is the set of vectors for which at least one of the observed states before or after the
transition is known to be not logically equivalent to the corresponding states defined in the vector expression.

Example
For the following sequential function
@ (01 cp) { z =2A; }
the active vectors are
('b0'bl CP)

('b0'bH CP)
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('bL'bl CP)
('bL'bH CP)

and the inactive vectors are

For vectors using exclusively based literals, the set of active vectorsisthe vector itself, the set of inactive vectors
is any vector with at least one different literal, and the set of ambiguous vectors is empty.

Therefore, ALF does not provide a default behavior for ambiguous vectors, since the behavior for each vector
can be explicitly defined in vectors using based literals.
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Advanced Library Format (ALF) Reference Manual

171

on

10

15

20

25

30

35

40

45

50

55



10

15

20

25

30

35

40

45

50

55

10.3.5 Concurrency in sequential functions

The principle of concurrency applies also for edge-sensitive sequential functions, where the triggering condition
is described by avector expression rather than a boolean expression. In edge-sensitive logic, the target logic vari-
able for the boolean assignment (LHS) can also be an operand of the boolean expression defining the assigned
value (RHS). Concurrency implies that the RHS expressions are evaluated immediately before the triggering
edge, and the values are assigned to the LHS variablesimmediately after thetriggering edge. Thisisillustrated in
Figure 30.

BEHAVIOR {

@ ( <vector expression(El..Em)> ) { El Em
Ql =
<lst boolean expression(Dl..Di)> ; vector
.. expression
Qn =
<nth boolean expression(D1..Di)> ; } }

1st boolean expression > d i@ Q1

D1

V/V\V ‘V/V\V

nth boolean expression > d qT > Qn

.

Figure 30—Concurrency for edge-sensitive sequential logic

Statements with multiple concurrent conditions for boolean assignments can also be used in sequential logic. In
that case conflicting values can be assigned to the same logic variable. A default conflict resolution is not pro-
vided for the following reasons.

Conflict resolution might not be necessary, since the conflicting situation is prohibited by specification.
For different types of analysis (e.g., logic simulation), a different conflict resolution behavior might be
desirable, while the physical behavior of the circuit shall not change. For instance, pessimistic conflict
resolution always assigns X, more accurate conflict resolution first checks whether the values are con-
flicting. Different choices can be motivated by atrade-off in analysis accuracy and runtime.

If complete library control over analysisis desired, conflict resolution can be specified explicitly.

Example

BEHAVIOR {

}

@ ( <condition 1> )
@ ( <condition 2> )

<value 1>; }
= <value 2>; }

{0
{0

Explicit pessimistic conflict resolution can be described as follows:
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BEHAVIOR {

@ ( <condition 1> && <condition 2> ) { Q = 'bX; }
@ ( <condition 1> && ! <condition 2>) { Q = <value 1>; }
@ ( <condition 2> && ! <condition 1>) { Q = <value 2>; }

}

Explicit accurate conflict resolution can be described as follows:

BEHAVIOR {

@ ( <condition 1> && <condition 2> ) {

Q = (<value_ ls>==<value 2>)? <value 1> : ’'bX;
@ ( <condition 1> && ! <condition 2>) { Q = <value 1>; }
@ ( <condition 2> && ! <condition 1>) { Q = <value 2>; }

}

Since the conditions are now rendered mutually exclusive, equivaent descriptions with priority statements can
be used. They are more elegant than descriptions with concurrent statements.

BEHAVIOR {

@ ( <condition 1> && <condition 2> ) {
Q = <conflict resolution values;
: ( <condition 1> ) { = <value 1>; }

Q
( <condition 2> ) { Q = <value 2>; }

}

Given the various explicit description possibilities, the standard does not prescribe a default behavior. The model
devel oper has the freedom of incomplete specification.

10.3.6 Initial values for logic variables
Per definition, al logic variablesin abehavioral description have theinitial value U which means“ uninitialized”.

This value cannot be assigned to alogic variable, yet it can be used in a behavioral description in order to assign
other values than U after initialization.

Example
BEHAVIOR {
@ ( Q1 == 'bU ) { Q1 = bl ; }
@ ( Q2 == 'bu ) { Q2 = ‘b0 ; }

// followed by the rest of the behavioral description

}

A template can be used to make the intent more obvious, for example:

TEMPLATE VALUE AFTER INITIALIZATION {
@ ( <logic_variable> == 'bU ) { <logic_variable> = <initial value> ; }

BEHAVIOR {
VALUE AFTER INITIALIZATION ( Q1 "b1l’ )
VALUE AFTER INITIALIZATION ( Q2 "b0’ )
// followed by the rest of the behavioral description
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Logic variables in a vector expression shall be declared as PINS. It is possible to annotate initial values directly
to apin. Such variables shall never take the value U. Therefore vector expressionsinvolving U for such variables
(see the previous example) are meaningless.

Example
PIN Q1 { INITIAL VALUE = ’'bl ; }
PIN Q2 { INITIAL VALUE = ‘b0 ; }

10.4 Higher-order sequential functions

This section defines the different types of higher-order sequentia functionsin ALF.

10.4.1 Vector-sensitive sequential logic

Vector expressions can be used to model generaized higher order sequential logic; they are an extension of the
boolean expressions. A vector expression describes sequences of logical events or transitions in addition to static
logical states. A vector expression represents a description of alogica stimulus without timescale. It describes

the order of occurrence of events.

The - > operator (followed by) gives a general capability of describing a sequence of events or a vector. For
example, consider the following vector expression:

01 A -> 01 B
which reads “rising edge on 2 is followed by rising edge on B”.
A vector expression is evaluated by an event sequence detection function. Like asingle event or atransition, this

function evaluates True only at an infinitely short time when the event sequence is detected, as shown in
Figure 31.

|ast X 01 A 01 B 10 A 01 A 10 B 10 A 01 B

contents of
event queue

«Q

—~

g
[vs)

~
Il

(01 A -> 01 B) 4

sequence (01 A -> 01 B) detected

Figure 31—Example of event sequence detection function
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The event sequence detection mechanism can be described as a queue that sorts events according to their order of
arrival. The event sequence detection function evaluates True at exactly the time when a new event enters the
queue and forms the required sequence, i.e., the sequence specified by the vector expression with its preceding
events.

A vector-sensitive sequential logic can be called (N+1) order sequential logic, where N is the number of events
to be stored in the queue. The implementation of (N+ 1) order sequential logic requires N memory elements for
the event queue and one memory el ement for the output itself.

A sequence of events can also be gated with static logical conditions. In the example,

(0L CP -> 10 CP) && CD

the pin cD shall have state 1 from some time before the rising edge at CP to some time after the falling edge
of cp. The pin CD can not go low (state 0) after the rising edge of CP and go high again before the falling
edge of CP because this would insert events into the queue and the sequence “rising edge on CP followed by fall-

ing edge on CP” would not be detected.

The formal calculation rules for general vector expressions featuring both states and transitions are detailed in
10.4.2 and 10.4.3.

The concept of vector expression supports functional modeling of devices featuring digital communication pro-
tocols with arbitrary complexity.

10.4.2 Canonical binary operators for vector expressions

The following canonical binary operators are necessary to define sequences of transitions:
— vector followed by for completely specified sequence of events
— vector_ and for simultaneous events
— vector_ or for aternative events

— vector followed by for incompletely specified sequence of events

The symbols for the boolean operators for AND and OR are overloaded for vector and and vector or,
respectively. The new symbolsfor thevector followed by operatorsare shown in Table 61.

Table 61—Canonical binary vector operators

LHS, RHS L
Operator Operands commutative Description
-> 2 vector No Left-hand side (LHS) transition is followed by Right-hand side
expressions (RHS) transition, no transition can occur in-between.
&&, & 2 vector Yes LHS and RHS transition occur simultaneously.
expressions
[l | 2 vector Yes LHS or RHS transition occur alternatively.
expressions
~> 2 vector No Left-hand side (LHS) transition is followed by Right-hand side
expressions (RHS) transition, other transitions can occur in-between.
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Per definition, the - > and ~> operators shall not be commutative, whereas the && and | | operators on events
shall be commutative.

01 a && 01
01 a || o1

b 01 b && 01 a
b 01 b ||

01 a

The -> and ~> operators shall be freely associative.

0l a -> 01 b ->01c¢c===(01lLa->01Db) ->01c===201a->(01Db->01c)
0l a ~> 01 b ~> 01 ¢ === (01 a ~> 01 b) ~> 01 ¢ === 01 a ~> (01 b ~> 01 c)

The && operator is defined for single events and for event sequences with the same number of - > operators each.
(01 A1 .. -> ... 0L AN) & (01 B1 .. -> ... 01l BN)
01 A1 & 01 B1 ... -> ... 01 AN & 01 BN

The || operator reduces the set of edge operators (unary vector operators) to canonical and non-canonical opera-
tors.

(?? a) === (?! a)||(?- a) //a does or does not change its value
Hence ? 2 is non-canonical, since it can be defined by other operators.
If <valuel><value2> isan edge operator consisting of two based literasvaluel and value2 and word
is an expression which can take the value valuel or value2, then the following vector expressions are con-

sidered equivalent:

<valuel><value2> <word>

=== 10 (<word> == <valuel>) && 01 (<words> == <value2s)
=== 01 (<word> != <valuels>) && 01 (<word> == <value2>)
=== 10 (<words> <valuels>) && 10 (<word> != <value2s)

)

=== 01 (<word> != <valuel>) && 10 (<word> != <valuel2>
// all expressions describe the same event:
// <word> makes a transition from <valuel> to <value2>

Hence vector expressions with edge operators using based literals can be reduced to vector expressions using
only the edge operators 01 and 10.

10.4.3 Complex binary operators for vector expressions

Table 62 defines the complex binary operators for vector operators.

Table 62—Complex binary vector operators

LHS, RHS L
Operator Operands commutative Description
<-> 2 vector Yes LHS transition follows or is followed by RHS transition.
expressions
&> 2 vector No LHStransition isfollowed by or occurs simultaneously with RHS
expressions transition.
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Table 62—Complex binary vector operators (Continued)

LHS, RHS L
Operator Operands commutative Description
<&> 2 vector Yes LHStransition followsor is followed by or occurs simultaneously
expressions with RHS transition.

The following expressions shall be considered equivalent:

(0L a <-> 01 b) === (01 a -> 01 b)||(01 b -> 01 a)
(01 a &> 01 b) === (01 a -> 01 b)|| (01 a && 01 b)
(01 a <&> 01 b) === (01 a -> 01 b)||(01 b -> 01 a)|]| (01 a && 01 b)

By their symmetric definition, the <- > and < &> operators are commutative.

01 a <-> 01
01 a <&> 01

1 b<->01 a
1 b <&> 01 a

b === 0
b === 0
The commutative complex binary vector operators are defined in Table 61. The commutativity rules are only
defined for two operands:

— commutative “followed by”:
vect_exprl <-> vect_ expr2 ===
vect exprl -> vect expr2 // vect exprl occurs first
| vect expr2 -> vect exprl // vect expr2 occurs first
— commutative “followed by or simultaneously occurring”:
vect_exprl <&> vect expr2 ===
vect exprl -> vect expr2 // vect exprl occurs first
| vect expr2 -> vect exprl // vect expr2 occurs first
| vect exprl && vect expr2 // both occur simultaneously
10.4.4 Extension to N operands
This section defines how to use N operands.
A complex vector expression of theform
vector expression { <-> vector expression }
shall be commutative for all operands. The complex vector expression describes alternative event
sequences in which the temporal order of each constituent vector expression is completely permutable,
excluding simultaneous occurrence of each constituent vector expression.
A complex vector expression of theform
vector expression { <&> vector expression }
shall be commutative for all operands. The complex vector expression describes alternative event

sequences in which the temporal order of each constituent vector expression is completely permutable,
including simultaneous occurrence of each constituent vector expression.
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Example

01 A <-> 01 B <-> 01 C

01 A -> 01 B -> 01 C
| 01 B -> 01 C -> 01 A
| 01 C -> 01 A ->01B
| 01 C -> 01 B -> 01 A
| 01 B -> 01 A -> 01 C
| 01 A ->01C->01B
01 A <&> 01 B <&> 01 C ===

01 A -> 01 B -> 01 C
| 01 B -> 01 C -> 01 A
| 01 C -> 01 A ->01B
| 01 C -> 01 B -> 01 A
| 01 B -> 01 A -> 01 C
| 01 A ->01C->01B
| 01 A & 01 B -> 01 C
| 01 A -> 01 B && 01 C
| 01 B & 01 C -> 01 A
| 01 B -> 01 C && 01 A
| 01 C & 01 A -> 01 B
| 01 C -> 01 A && 01 B
| 01 A && 01 B && 01 C

10.4.4.1 Boolean rules
The following rule applies for a boolean AND operation with three operands:

rule 1:
A&B&C===(A&B) &C| A& (B&OC)

A corresponding rule also applies to the commuitative followed-by operation with three operands:

rule 2:

01 A <-> 01 B <-> 01 C ===
(01 A <-> 01 B) <-> 01 C

| 01 A <-> (01 B <-> 01 Q)

The alternative boolean expressions (A & B) & CandA & (B & C) inrule 1 areequivaent. Therefore,
rule 1 can be reduced to the following:

rule 3:
A &B &C === (A&B) & C === (B &C) &A

A corresponding rule does not apply to complex vector operands, since each expression with associated operands
generates only a subset of permutations:

(01 A <-> 01 B) <-> 01 C ===
(01 A <-> 01 B) -> 01 C)

| (01 C -> (01 A <-> 01 B)
0l A ->01B -> 01 C

| 01 B -> 01 A -> 01 C
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| 01 C -> 01 A ->01B
| 01 C -> 01 B -> 01 A
The permutations
01 A ->01C->01B
01 B -> 01 C -> 01 A
are missing.
01 A <-> (01 B <-> 01 C) ===
(0L A -> (01 B <-> 01 Q))
| ((01 B <-> 01 C) -> 01 A)
01 A ->01B ->01C
| 01 A ->01C->01B
| 01 B -> 01 C -> 01 A
| 01 C -> 01 B -> 01 A
The permutations
| 01 B -> 01 A -> 01 C
| 01 C -> 01 A ->01B
are missing.

10.4.5 Operators for conditional vector expressions

The definitions of the &&, ?, and : operators are also overloaded to describe a conditional vector expression

(involving boolean expressions and vector expressions), as shown in Table 63. The clauses are boolean expres-
sions; while vector expressions are subject to those clauses.

Table 63—Operators for conditional vector expressions

Operator

Operands

LHS, RHS
commutative

Description

&&, &

1 vector

expression, 1

boolean
expression

Yes

Boolean expression (LHS or RHS) is True while sequence of
transitions, defined by vector expression (RHS or LHS) occurs.

1 vector

expression, 1

boolean
expression

No

Boolean condition operator for construction of if-then-else clause
involving vector expressions.

1 vector

expression, 1

boolean
expression

No

Bool ean else operator for construction of if-then-else clause
involving vector expressions.

An example for conditional vector expression using && is given below:

(01 a &&

!'b)
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The order of the operands in a conditional vector expression using && shall not matter.

<vector exp> && <boolean exp> === <boolean exp> && <vector_ exp>
The && operator is still commutative in this case, although one operand is a boolean expression defining a static
state, the other operand is a vector expression defining an event or a sequence of events. However, since the
operands are distinguishable per se, it is not necessary to impose a particular order of the operands.
An example for conditional vector expression using ? and : is given below.

'lb?0la:c?10b : 01 d

'lb & 0L a | !(!b) & c& 10b | I(!b) & lc & 01 d

This example shows how a conditional vector expression using ternary operators can be expressed with aterna-
tive conditional vector expressions.

A conditional vector expression can be reduced to a non-conditional vector expression in some cases (see
10.5.11).

Every binary vector operator can be applied to a conditional vector expression.
10.4.6 Operators for sequential logic

Table 64 defines the complex binary operators for vector operators.

Table 64—Operators for sequential logic

Operator Description

@ Sequentia if operator, followed by aboolean logic expression (for level-
sensitive assignment) or by a vector expression (for edge-sensitive assign-
ment).

Sequential else 1if operator, followed by aboolean logic expression (for
level-sensitive assignment) or by a vector expression (for edge-sensitive
assignment) with lower priority.

Sequentia assignments are constructed as follows:

@ ( <triggerls ) { <actionl> } : ( <trigger2> ) { <action2> }
( <trigger3> ) { <action3s> }

If triggerl event is detected, then actionil is performed; else if trigger2 event is detected, then
action2 is performed; else if trigger3 event is detected, then action3 is performed as a result of this
clause.

10.4.7 Operator priorities

The priority of binding operators to operands in non-conditional vector expressions shall be from strongest to
weakest in the following order:

a) unary vector operators (edge literals)
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b) complex binary vector operators (< - >, &>, <&>)
C) vector AND (&, &&)

d) vector_followed by operators(->, ~>)

€) vector OR (|, | |)

10.4.8 Using PINs in VECTORs

A VECTOR defines state, transition, or sequence of transitions of pins that are controllable and observable for
characterization.

Within a CELL, the set of PINSwith SCOPE=behavior or SCOPE=measure Of SCOPE=both isthe default
set of variablesin the event queue for vector expressions relevant for BEHAVIOR or VECTOR statements or both,
respectively.

For detection of a sequence of transitions it is necessary to observe the set of variables in the event queue. For
instance, if the set of pins consists of A, B, C, D, the vector expression

(01 A -> 01 B)
implies no transition on 2, B, C, D occurs between the transitions 01 Aand 01 B.
The default set of pins applies only for vector expressions without conditions. The conditional event AND opera-
tor limits the set of variables in the event queue. In this case, only the state of the condition and the variables
appearing in the vector expression are observed.
Example

(01 A -> 01 B) && (C | D)

No transition on A, B occurs between 01 Aand 01 B,and (C | D) needsto stay Truein-between 01 A and
01 Baswell. However, C and D can change their valuesaslong as (C | D) issatisfied.

10.5 Modeling with vector expressions

Vector expressions provide a formal language to describe digital waveforms. This capability can be used for
functional specification, for timing and power characterization, and for timing and power analysis.

In particular, vector expressions add value by addressing the following modeling issues:

— Functional specification: complex sequential functionality, e.g., bus protocols.

— Timing analysis: complex timing arcs and timing constraints involving more than two signals.

— Power analysis: temporal and spatial correlation between events relevant for power consumption.

— Circuit characterization and test: specification of characterization and/or test vectors for particular tim-
ing, power, fault, or other measurements within a circuit.

Like boolean expressions, vector expressions provide the means for describing the functionality of digital cir-
cuitsin various contexts without being self-sufficient. Vector expressions enrich this functional description capa-
bility by adding a“dynamic” dimension to the otherwise “ static” boolean expressions.

The following subsections explain the semantics of vector expressions step-by-step. The vector expression con-

cept is explained using terminology from simulation event reports. However, the application of vector expres-
sionsis not restricted to post-processing event reports.
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Some application tools (e.g., power analysis tools) can actually evaluate vector expressions during post-process-
ing of event reports from simulation. Other application tools, especially simulation model generators, need to
respect the causality between the triggering events and the actions to be triggered. While it is semantically
impossible to describe cause and effect in the same vector expression for the purpose of functional modeling,
both cause and effect can appear in avector expression used for atiming arc description.

ALF does not make assumption about the physical nature of the event report. Vector expressions can be applied
to an actual event report written in afile, to an internal event queue within a simulator, or to a hypothetical event
report which is merely a mathematical concept.

10.5.1 Event reports

This section describes the terminology of event reports from simulation, which is used to explain the concept of
ALF vector expressions. The intent of ALF vector expressions is not to replace existing event report formats.
Non-pertinent details of event report formats are not described here.

Simulation events (e.g., from Verilog or VHDL) can be reported in a value change dump (VCD) file, which has
the following genera form:

<timels>
<variableA> <stateUs
<variableB> <stateVs>

<time2>
<variableC> <stateWs
<variableD> <stateX>

<time3>

The set of variables for which simulation events are reported, i.e., the scope of the event report needs to be
defined beforehand. Each variable also has a definition for the set of statesit can take. For instance, there can be
binary variables, 16-bit integer variables, 1-bit variables with drive-strength information, etc. Furthermore, the
initial state of each variable shall be defined as well. In an ALF context, the terms signal and variable are used
interchangeably. In VHDL, the corresponding term is signal. In Verilog, there is no single corresponding term.
All input, output, wire, and reg variablesin Verilog correspond to a signal in VHDL.

Thetimevalues <timel>, <time2>, <time3>, etc. shal bein increasing order. The order in which simulta-
neous events are reported does not matter. The number of time points and the number of simultaneous events at a
certain time point are unlimited.

In the physical world, each event or change of state of a variable takes a certain amount of time. A variable can-
not change its state more than once at agiven point in time. However, in simulation, this time can be smaller than
the resolution of the time scale or even zero (0). Therefore, a variable can change its state more than once at a
given point in simulation time. Those events are, strictly speaking, not simultaneous. They occur in a certain
order, separated by an infinitely small delta-time. Multiple simultaneous events of the same variable are not
reported in the VCD. Only the final state of each variableis reported.

A VCD file is the most compact format that allows reconstruction of entire waveforms for a given set of vari-
ables. A more verbose form isthe test pattern format.

<TIME> <variableA> <variableB> <variableC> <variableD>

<timel> <stateUs> <stateVs> . A
<time2> <stateUs> <stateVs> <stateW> <stateX>
<time3>
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Thetest pattern format reports the state of each variable at every point in time, regardless of whether the state has
changed or not. Previous and following states are immediately available in the previous and next row, respec-
tively. This makes the test pattern format more readable than the VCD and well-suited for taking a snapshot of
events in atime window.

An example of an event report in VCD format:

// initial values

A0 B 1 c 1 D X E 1
// event dump

109 A DO

258 B
573 C
586 A
643 A
788 A
915 A
1062 E
1395 B co

1640 A O D1

// end of event dump

oo rH or oo or

An example of an event report in test pattern format:

time A B c D B
0 0 1 1 X 1
109 1 1 1 0 1
258 1 0 1 0 1
573 1 0 0 0 1
586 0 0 0 0 1
643 1 0 0 0 1
788 0 1 1 0 1
915 1 1 1 0 1
1062 1 1 1 0 0
1395 1 0 0 0 0
1640 0 0 0 1 0

Both VCD and test pattern formats represent the same amount of information and can be translated into each
other.

10.5.2 Event sequences

For specification of afunctional waveform (e.g., the write cycle of amemory), it is not practical to use an event
report format, such as a VCD or test pattern format. In such waveforms, there is no absolute time. And the rela-
tive time, for example, the setup time between address change and write enable change, can vary from one
instance to the other.

The main purpose of vector expressions iswaveform specification capability. The following operators
can be used:

— vector unary (also called edge operator or unary vector operator)
The edge operator is a prefix to a variable in a vector expression. It contains a pair of states, the first
being the previous state, the second being the new state. Edge operators can describe a change of state or
no change of state.

IEEE P1603 Draft 2 Advanced Library Format (ALF) Reference Manual 183

on

10

15

20

25

30

35

40

45

50

55



10

15

20

25

30

35

40

45

50

55

— vector_ and (aso caled simultaneous event operator)
This operator uses the overloaded symbol & or && interchangeably. The & operator is the separator
between simultaneously occurring events

— vector followed by (aso caled followed-by operator)
The “immediately followed-by operator” using the symbol - > istreated first. The - > operator isthe sep-
arator between consecutively occurring events.

These operators are necessary and sufficient to describe the following subset of vector expressions:

a) vector_single event
A change of statein asingle variable, for example:
01 A
b) vector_event
A simultaneous change of state in one or more variables, for example:
01 A & 10 B
C) vector_event_sequence
Subsequently occurring changes of state in one or more variables, for example:
01 A & 10 B -> 10 A

Thevector_ and operator has a higher binding priority than the vector followed by operator.
We can now express the pattern of the sample event report inavector event sequence expression:

0l A& X0D -»>10B -»> 10 C -> 10 A -> 01 A
->10 A & 01 B &01C->01A->10E ->10B & 10 C -> 10 A & 01 D

We can define the length of a vector event sequence expression as the number of subsequent events
described in the vector event sequence expression. The length is equa to the number of - > operators
plusone (1).

Although the vector expression format contains an inherent redundancy, since the old state of each variable is
always the same as the new state of the same variable in a previous event, it is more human-readable, especially
for waveform description. On the other hand, it is more compact than the test pattern format. For short event
sequences, it is even more compact than the VCD, sinceit eliminates the declaration of initial values. To be accu-
rate, for variables with exactly one event the vector expression is more compact than the VCD. For variables
with more than one event the VCD is more compact than the vector expression. In summary, the vector expres-
sion format offers readability similar to the test pattern format and compactness close to the VCD format.

10.5.3 Scope and content of event sequences

The scope applicable to a vector expression defines the set of variables in the event report. The content of a vec-
tor expression is the set of variables that appear in the vector expression itself. The content of avector expression
shall be a subset of variables within scope.

— PINswith the annotation SCOPE = BEHAVIOR are applicable variables for vector expressions within
the context of BEHAVIOR.

— PINswith the annotation SCOPE = MEASURE are applicable variables for vector expressions within
the context of VECTOR.

— PINswiththe annotation SCOPE = BOTH are applicable variablesfor all vector expressions.

A vector event sequence expression is an event pattern without time, containing only the variables

within its own content. This event pattern is evaluated against the event report containing all variables within
scope. The vector expression is True when the event pattern matches the event report.
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Example

time
0
109
258
573
586
643
788
915
1062
1395
1640

oOorHrRPrRrRrOROKRHRLRKEHOPM
ooRrRrRrRRrROOOOR RO

OCoOoORr R OOORHEEREAN

H O OO OO OOoOOoOOoO NMNUO

// scope is A, B, C, D, E

CoOORRRRERRERRERRLRLH

Consider the following vector expressions in the context of the sample event report:

01 A // (1)
//event pattern expressed by (1):
// A
// 0
// 1
(1) isTrueat time 109, time 643, and time 915.
10 B -> 10 C //(2)
//event pattern expressed by (2):
// B C
// 11
// 0 1
// 0 0
(2) isTrueat time 573.
10 A -> 01 A //(3)
//event pattern expressed by (3):
// A
/71
// 0
// 1
(3) isTrueat time 643 and time 915.
01 D //(4)
//event pattern expressed by (4):
// D
// 0
/71
(4) isTrueat time 1640.
01 A -> 10 C //(5)

//event pattern expressed by (5):

// A C

IEEE P1603 Draft 2
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// 0 1
// 11
// 1 0

(5) isnot be True at any time, since the event pattern expressed by (5) does not match the event report at any
time.

10.5.4 Alternative event sequences

The following operator can be used to describe alternative events:
vector or, also called event-or operator or alternative-event operator, using the overloaded symbol
| or || interchangeably. The | operator is the separator between alternative events or alternative event

sequences.

In anal ogy to boolean operators, | has alower binding priority than & and - >. Parentheses can be used to change
the binding priority.

Example

1A ->01B]| 10 C

(01 A -> 01 B) | 10 C ===
) 1A->01B]| 01A->10C

01 A -> (01 B | 10 C

Consider the following vector expressionsin the context of the sample event report:

01 A | 10 //(6)
//event pattern expressed by (6):

// A

// 0

// 1

//alternative event pattern expressed by (6):

//C

// 1

// 0

(6) isTrueat time 109, time 573, time 643, time 915, and time 1395.

10 B -> 10 C | 10 A -> 01 A //(7)
//event pattern expressed by (7):

// B c

// 1 1

// 0 1

// 0 0

//alternative event pattern expressed by (7):
// A

/1

!/ 0

/1

(7) isTrueat time 573, time 643, and time 915.

01 D] 10 B -> 10 C //(8)
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//event pattern expressed by (8):

// D

// 0

// 1

//alternative event pattern expressed by (8):
// B C

// 1 1

// 0 1

// 0 0

(8) isTrueat time 573 and time 1640.

10 B -> 10 ¢ | 10 A //(9)
//event pattern expressed by (9):

// B C

// 11

// 0 1

// 0 0

//alternative event pattern expressed by (9):

// A

/1

// 0

(9) isTrueat time 573, time 586, time 788, and time 1640.
The following operators provide a more compact description of certain alternative event sequences:
— &> events occur simultaneously or follow each other in the order RHS after LHS
— <->alLHSevent followed by a RHS event or a RHS event followed by a LHS event
— <&> events occur simultaneously or follow each other in arbitrary order
Example
01 A &> 01 C

01 A <-> 01 C
01 A <&> 01 C

01 A &01C | 01A->01C
01 A ->01C | 01 C->01A2
01 A <->01C | 01 A & 01C

The binding priority of these operatorsis higher than of & and - >.
10.5.5 Symbolic edge operators

Alternative events of the same variable can be described in a even more compact way through the use of edge
operators with symbolic states. The symbol ? standsfor “any state”.

— edge operator with ? asthe previous state:
transition from any state to the defined new state
— edge operator with » asthe next state:
transition from the defined previous state to any state.

Both edge operators include the possibility no transition occurred at al, i.e., the previous and the next state are
the same. This situation can be explicitly described with the following operator:

edge operator with next state = previous state, aso called non-event operator
The operand stays in the state defined by the operator.
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The following symbolic edge operators & so can be used:
a) ?- notransition on the operand
b) 2! transition from any state to any state different from the previous state
c) 27 transition from any state to any state or no transition on the operand
d) 2~ transition from any state to its bitwise complementary state

Example

Let A be alogic variable with the possible states 1, 0, and X.

20 A === 00 A | 10 A | X0 A

?1 A === 01 A | 11 A | X1 A

?X A === 0X A | 1X A | XX A

0? A === 00 A | 01 A | OX A

1? A === 10 A | 11 A | 1X A

X? A === X0 A | X1 A | XX A

?! A === 012A | 0OXA | 10A | 1XA | X0 A | XL A

?~ A === 01 A | 10 A | XX A

?? A === 00A | 01 A | OXA | 10A | 11 A | 1X A | X0 A | X1 A | XX A
?- A === 00 A | 11 A | XX A

For variables with more possible states (e.g., logic states with different drive strength and multiple bits) the
explicit description of alternative events is quite verbose. Therefore the symbolic edge operators are useful for a
more compact description.

This completes the set of vector binary operators necessary for the description of a subset of
vector expressions cdled vector complex event expressions. All vector binary operators
have two vector complex event expressions as operands. The set of vector event sequence
expressions is a subset of vector complex event expressions. Every vector complex event
expression can be expressed in terms of alternative vector event sequence expressions. The latter could
be called minterms, in analogy to boolean algebra.

10.5.6 Non-events
A vector single event expression involving anon-event operator is called anon-event. A rigorous defi-
nition is required for vector complex event expressions containing non-events. Consider the following

example of aflip-flop with clock input CLK and data output Q.

01 CLK -> 01 Q // (1)
01 CLK -> 00 Q // (ii)

The vector expression (i) describes the situation where the output switches from 0 to 1 after the rising edge of
the clock. The vector expression (i1i) describesthe situation where the output remains at 0 after the rising edge
of the clock.

How isit possible to decide whether (i) or (ii) is True, without knowing the delay between cLK and Q? The
only way isto wait until any event occurs after the rising edge of CLK. If the event is not on Q and the state of Q
is 0 during that event, then (i1i) isTrue.

Hence, a non-event is True every time when another event happens and the state of the variable involved in the
non-event satisfies the edge operator of the non-event.

Example
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time A B C D E
0 0 1 1 X 1
109 1 1 1 0 1
258 1 0 1 0 1
573 1 0 0 0 1
586 0 0 0 0 1
643 1 0 0 0 1
788 0 1 1 0 1
915 1 1 1 0 1
1062 1 1 1 0 0
1395 1 0 0 0 0
1640 O 0 0 1 0

Thetest pattern format represents an event, for example 01 2, in no different way than a non-event, for example
11 E. Thisnon-eventisTrueat times 109, 258, 573, 586, 643, 788, and 915; in short, every time when an event
happens while E is constant 1.

10.5.7 Compact and verbose event sequences

A vector event segquence expression inacompact form can be transformed into a verbose form by pad-
ding up every vector event expression with non-events. The next state of each variable within a
vector event expression shall be equal to the previous state of the same variable in the subsequent
vector event expression.

Example
01 A -> 10B === 01 A & 11 B -> 11 A & 10 B

A vector expression for a complete event report in compact form resembles the VCD, whereas the verbose form
looks like the test pattern.

// compact form

0l A& X0D -»10B -»> 10 C -> 10 A -> 01 A
-> 10 A & 01 B & 01 C -> 01 A -> 10 E

-> 10 B & 10 C -> 10 A & 01 D

// verbose form

?70 A & ?1 B & ?1 C & ?X D & ?1 E ->
0l A & 11 B & 11 C & XO D & 11 E ->
11 A & 10 B & 11 C & 00 D & 11 E ->
11 A & 00 B & 10 C & 00 D & 11 E ->
10 A & 00 B & 00 C & 00 D & 11 E ->
01l A & 00 B & 00 C & 00D & 11 E ->
10 A & 01 B & 01 C & 00 D & 11 E ->
0l A& 11 B & 11 C & 00 D & 11 E ->
11 A & 11 B & 11 C & 00 D & 10 E ->
11 A & 10 B & 10 C & 00 D & 00 E ->
10 A & 00 B & 00 C & 01 D & 00 E

The transformation rule needs to be slightly modified in case the compact form contains a vector_ event
expression consisting only of non-events. By definition, the non-event is True only if area event happens simul-
taneously with the non-event. Padding up a vector event expression consisting of non-events with other
non-events make this impossible. Rather, thisvector event expression needs to be padded up with unspeci-
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fied events, using the ? ? operator. Eventually, unspecified events can be further transformed into partly specified

events,
Exampl

1

o

if aformer or future state of the involved variable is known.

e

A -> 00 B
=01 A & 00 B ->?? A & 00B

In the first transformation step, the unspecified event 2? A isintroduced.

01

A & 00 B ->?? A& 00 B
=01 A& 00 B ->1? A & 00 B

In the second step, this event becomes partly specified. ?? A isboundtobe 1? A dueto the previous event on

A.

10.5.8

Unspecified simultaneous events within scope

Variables which are within the scope of the vector expression yet do not appear in the vector expression, can be

used to

pad up the vector expression with unspecified events aswell. Thisis equivalent to omitting them from the

Vector expression.

Exampl
01

01

e

A -> 10 B // let us assume a scope containing A, B, C, D, E

A & 10 B & ?? C & ?? D & ?? E -> 11 A & 10 B & ?? C & ?? D & ?? E

This definition allows unspecified events to occur simultaneously with specified events or specified non-events.
However, it disallows unspecified events to occur in-between specified events or specified non-events.

At first
several

sight, this distinction seemsto be arbitrary. Why not disallow unspecified events altogether? Yet there are
reasons why this definition is practical.

If avector expression disallows simultaneously occurring unspecified events, the application tool has the burden
not only to match the pattern of specified events with the event report but also to check whether the other vari-
ablesremain constant. Therefore, it is better to specify this extra pattern matching constraint explicitly in the vec-
tor expression by using the ? - operator.

There are many cases where it actually does not matter whether simultaneously occurring unspecified events are
allowed or disallowed:

190

Case 1: Simultaneous events are impossible by design of the flip-flop. For instance, in a flip-flop it is
impossible for a triggering clock edge 01 CK and a switch of the data output ?» Q to occur at the same
time. Therefore, such events can not appear in the event report. It makes no difference whether 01 CK &
?- Q,01 CK & 2? Q,0r01 CK isspecified. Theonly occurring event patternisol CK & ?- Q
and this pattern can be reliably detected by specifying 01 CK.

Case 2: Simultaneous events are prohibited by design. For instance, in a flip-flop with a positive setup
time and positive hold time, the triggering clock edge 01 CK and a switch of the datainput 2! Disa
timing violation. A timing checker tool needs the violating pattern specified explicitly, i.e.,, 01 CK &
2! D. Inthis context, it makes sense to specify the non-violating pattern also explicitly, i.e., 01 CK &
?- D. Thepattern 01 CK by itself is not applicable.

Case 3: Simultaneous events do not occur in correct design. For instance, power analysis of the event 01
CK needs no specification of 2! Dor ?- D. Intheanalysisof an event report with timing violations, the
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power analysis is less accurate anyway. In the analysis of the event report for the design without timing
violation, the only occurring event patternis01 CK & ?- D and thispattern can be reliably detected by
specifying 01 cK.2

— Case 4: The effects of simultaneous events are not modeled accurately. This is the case in static timing
analysis and also to some degree in dynamic timing simulation. For instance, a NAND gate can have the
inputs A and B and the output z. The event sequence exercising thetimingarc 01 2 -> 10 Zcanonly
happen if B is constant 1. No event on B can happen in-between 01 A and 10 Z. Likewise, the timing
ac0l B -> 10 Zcanonly happenif A isconstant 1 and no event happensin-between 01 B and 10
Z. The timing arc with simultaneously switching inputs is commonly ignored. A tool encountering the
scenario 01 A & 01 B -> 10 Z hasno choice other than treating it arbitrarily aso1 A -> 10 Z
oras0l B -> 10 Z.

— Caseb: Theeffects of simultaneous events are modeled accurately. Here it makes sense to specify al sce-
narios explicitly,eg.,, 01 A & ?- B -> 10 Z,01 A &?! B -> 10 Z,?- A & 01 B -> 10
Z, etc., whereas the patterns 01 2 -> 10 Zand 0l B -> 10 Z by themselves apply only for less
accurate analysis (see Case 4).

There is dso a formal argument why unspecified events on a vector expression need to be allowed rather than
disallowed. Consider the following vector expressions within the scope of two variables A and B.

01 A // (1)
01 B // (ii)
0L A& 01 B // (iii)

The natura interpretation here is (iii) === (i) & (ii). This interpretation is only possible by allowing
simultaneously occurring unspecified events.

Allowing simultaneously occurring unspecified events, the vector expressions (i) and (ii), respectively, are
interpreted as follows:

01 A & ?? B // (i)
?? A & 01 B // (ii")

Disallowing simultaneously occurring unspecified events, the vector expressions (i) and (ii), respectively,
areinterpreted as follows:

01 A & ?- B // (1i'")
?- A & 01 B // (ii'")

The vector expressions (1’) and (ii’) are compatiblewith (iii),whereas (i’’) and (ii’ ') arenot.
10.5.9 Simultaneous event sequences

The semantic meaning of the “simultaneous event operator” can be extended to describe simultaneously occur-
ring event sequences, by using the following definition:

(01 A#1 .. -> ... 01 A#N) & (01 B#1 .. -> ... 01 B#N)
=== 01 A#1 & 01 B#1 ... -> ... 01l A#N & 01 B#N

This definition is analogous to scalar multiplication of vectors with the same number of indices. The number of
indices corresponds to the number of vector event expressions separated by - > operators. If the number of

2The power analysis tool relates to a timing constraint checker in asimilar way as a parasitic extraction tool relates to a DRC tool. If the lay-
out has DRC violations, for instance shorts between nets, the parasitic extraction tool shall report inaccurate wire capacitance for those nets.
After final layout, the DRC violations shall be gone and the wire capacitance shall be accurate.
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- > in both vector expressions is not the same, the shorter vector expression can be | eft-extended with unspecified
events, using the ? ? operator, in order to align both vector expressions.

Example

A ->01B ->01¢C) & (01 D-> 01 E)

== (01 A -> 01 B ->01C) & (?? D -> 01D -> 01 E)
01 A& ??D ->01B &O01D->01C&O01E

0l A ->01B&O01D->01C&O01E

The easiest way to understand the meaning of “simultaneous event sequences’ isto consider the event report in
test pattern format. If each vector event sequence expression matches the event report in the same time
window, then the event sequences happen simultaneously.

time A B C D E
0 0 1 1 X 1
109 1 1 1 0 1
258 1 0 1 0 1
573 1 0 0 0 1
586 0 0 0 0 1
643 1 0 0 0 1
788 0 1 1 0 1
915 1 1 1 0 1
1062 1 1 1 0 0
1395 1 0 0 0 0
1640 O 0 0 1 0
Example
0l A -»>10B === 01 A & 11 B -> 11 A & 10 B // (10a)
// event pattern expressed by (10a):
// A B
// 0 1
// 11
// 1 0
X0 D -> 00D // (10b)
// event pattern expressed by (10b):
// D
/X
// 0
// 0
(01 A -> 10 B) & (X0 D -> 00 D) // (10) === (10a)&(10b)

Both (10a) and (10b) are True at time 258. Therefore (10) is True at time 258.

10 C

=== ?? C -> ??2 C -> 10 C

=== ?? C -> ?1 C -> 10 C // (11a)
// event pattern expressed by (1lla):

//C

/1R

/R

/71

// 0
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(11a) isleft-extended to match the length of the following (11b) .

01l A -> 00D -> 11 E ===
01 A & 00D & ?? E

-> ?? A & 00 D & ?? E

-> ?? A & ?? D & 11 E

01 A & 00D & ?? E
-> 1?7 A & 00 D & 2?1 E
-> ?? A & 0?7 D & 11 E // (11b)
// event pattern expressed by (11b):
// A D E

// 0 0 ?
// 1 0 ?
// ? 0 1
// ? ? 1

(11b) containsexplicitly specified non-events. The non-event 00 D callsfor the unspecified events ?? A and
?? E.Thenon-event 00 E callsfor the unspecified events?? A and ?? D. By propagating well-specified pre-
vious and next states to subsequent events, some unspecified events become partly specified.

10 C & (01 A -> 00 D -> 11 E) // (11) === (1lla)&(1l1lb)

(11a) isTrue at time 573 and time 1395. (11b) isTrue at time 573 and time 915. Therefore, (11) is Trueat
time 573.

10.5.10 Implicit local variables

Until now, vector expressions are evaluated against an event report containing al variables within the scope of a
cell. It is practical for the application to work with only one event report per cell or, at most, two event reports if
the set of variables for BEHAVIOR (scope=behavior) and VECTOR (scope=measure) isdifferent. How-
ever, for complex cells and megacells, it is sometimes necessary to change the scope of event observation,
depending on operation modes. Different modes can require a different set of variables to be observed in differ-
ent event reports.

The following definition allows to extend the scope of a vector expression locally:
Edge operators apply not only to variables, but also to boolean expressions involving those variables.
Those boolean expressions represent implicit local variables that are visible only within the vector

expression where they appear.

Suppose the local variables (A & B), (A | B) areinserted into the event report:

i
R
w

A

w

time
0
109
258
573
586
643
788
915
1062

HPRPORORKHRL O
HF PP oOoOoOoOoORrRr W
H PR OOOH®IHEFPEFM
O O O O O oo o X UO
oOrHrRPRKFRPRRLRRPKRLRRLRPH
H P OOOOoOOoO«HRr O

HFRPrRPRRPROHKRRERL—
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1395 1 0 0 0 0 0

1640 O 0 0 1 0 0
Example

01 (A & B)

// event pattern expressed by

// A&B

// 0

// 1

(12) isTrueat time 109 and time 915.

10 (A | B)

// event pattern expressed by
// A|B

// 1

// 0

(13) isTrueat time 586 and time 1640.
01 (A & B) -> 10 B

// event pattern expressed by
// B A&B

/71 0
/71 1
// 0 1

(14) isTrueat time 258.

10 ( A & B) & 10 B -> 10 C
// event pattern expressed by
// B C A&B

// 1 1 1
// 0 1 0
// 0 0 0

(15) isTrueat time573.

10 (A & B) -> 10 (A | B)
// event pattern expressed by
// A&B A|B

// 1 1
// 0 1
// 0 0

(16) isTrueat time 1640.

10.5.11 Conditional event sequences

1

0
// (12)

(12) :
// (13)

(13) :
// (14)

(14) :
// (15)

(15) :
// (16)

(16) :

The following definition restricts the scope of a vector expression locally:

vector boolean and, aso called conditional event operator
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This operator is defined between a vector expression and a boolean expression, using the overloaded
symbol & or &&. The scope of the vector expression is restricted to the variables and eventual implicit
local variables appearing within that vector expression. The boolean expression shall be True during the
enti rg vector expression. The boolean expression is called the Existence Condition of the vector expres-
sion.

Vector expressions using the vector boolean and operator are called vector conditional event
expressions. Scope and contents of such expressions are identical, as opposed to non-conditional
vector complex event expressions, where the content is a subset of the scope.

Example
(10 (A & B) -> 10 (A | B)) & !D // (17)

// event pattern expressed by (17):
// A&B A|B

// 1 1
/7 0 1
// 0 0

// event report without C, E:
time A B D A&B A|B

0 0 1 X 0 1
109 1 1 0 1 1
258 1 0 0 0 1
586 0 0 0 0 0
643 1 0 0 0 1
788 0 1 0 0 1
915 1 1 0 1 1
1062 1 1 0 1 1
1395 1 0 0 0 1
1640 O 0 1 0 0

(17) contains the same vector complex event expression as (16). However, athough (16) is not
Trueat time 586, (17) isTrueat time 586, since the scope of observation is narrowed to 2, B, A&B, and A | B by
the existence condition ! D, which is statically True while the specified event sequence is observed.

Within, and only within, the narrowed scope of thevector conditional event expression, (17) canbe
considered eguivalent to the following:

(10 (A & B) -> 10 (A | B)) & !D

o

(10 (A & B) -> 10 (A | B)) & (11 (!D) -» 11 (!D))

ol

0 (A &B) & 11 (!D) -> 10 (A | B) & 11 (!D)
The transformation consists of the following steps:

a) Transform the boolean condition into a non-event.
For example, !D becomes11 (!D).

3An Existence Condition can al so appear as annotation to a VECTOR object instead of appearing in the vector expression. Thisenables recog-
nition of existence conditions by gpplication tools which can not evaluate vector expressions (e.g., static timing analysis tools). However, for
toolsthat can evaluate vector expressions, there is no difference between existence condition as a co-factor in the vector expression or as an
annotation.
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b) Left-extend the vector single event expression containing the non-event in order to match the
length of the vector complex event expression.
Forexample, 11 (!D) becomes11 (!D) -> 11 (!D) tomatch thelength of
10 (A & B) -> 10 (A | B).

c) Apply scalar multiplication rule for simultaneously occurring event sequences.

Thus, a vector conditional event expression can be transformed into an equivaent
vector complex event expression, but the change of scope needs to be kept in mind. An operator which
can express the change of scope in the vector expression language is defined in 10.5.13. This can make the trans-
formation more rigorous.

Regardless of scope, the transformation from vector conditional event expression to
vector complex event expression aso provides the means of detecting ill-specified
vector conditional event expressions.
Example

(10 A -> 01 B -> 01 A) & A

10 A & 11 A -> 01 B & 11 A -> 01 A & 11 A
The first expression 10 A & 11 A and the third expression 01 A & 11 A within the
vector complex event expression are contradictory. Hence, the vector conditional event
expression can never be True.

10.5.12 Alternative conditional event sequences

All vector binary operators, in particular the vector or operator, can be applied to
vector conditional event expressionsaswell astovector complex event expressions.

Consider again the event report:

time A B c D E
0 0 1 1 X 1
109 1 1 1 0 1
258 1 0 1 0 1
573 1 0 0 0 1
586 0 0 0 0 1
643 1 0 0 0 1
788 0 1 1 0 1
915 1 1 1 0 1
1062 1 1 1 0 0
1395 1 0 0 0 0
1640 O 0 0 1 0

Concurrent alternative vector conditional event expressions can be paraphrased in the following
way:

IF <boolean expression;> THEN <vector expression,>
OR IF <boolean expression,> THEN <vector expression,>
OR IF <boolean expressiony> THEN <vector expressiony>

The conditions can be True within overlapping time windows and thus the vector expressions are evaluated con-
currently. The vector_boolean and operator and vector or operator describe such vector expressions.
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Example

C&(01L A -> 10 B) | !D&(10 B -> 10 A) | E&(10 B -> 10 C) // (18)
// Event pattern expressed by (18):

// A B c

// 0 1 1

// 1 1 1

// 1 0 1

(18) isTrueat time 258 becauseof ¢ & (01 A -> 10 B).

// Alternative event pattern expressed by (18):
// A B D

// 1 1 0

// 1 0 0

// 0 0 0

(18) isalso Trueat time 586 becauseof !D & (10 B -> 10 A).

// Alternative event pattern expressed by (18):
// B c E
// 1 1 1
// 0 1 1
// 0 0 1

(18) isalso Trueat time 573 becauseof E & (10 B -> 10 C).
Prioritized alternative vector conditional event expressions can be paraphrased in the following way:

IF <boolean expression;> THEN <vector expression,>

ELSE IF <boolean expression,> THEN <vector expression,>

ELSE IF <boolean expressiony> THEN <vector expressiony>

(optional) ELSE <vector expressiongefauit>
Only the vector expression with the highest priority True condition is evaluated. The
vector boolean cond operator and vector boolean else operator are used in ALF to describe
such vector expressions.
Example

c? (01 A -»> 10 B): !D? (10 B -» 10 A): E? (10 B -> 10 C) // (19)

The prioritized alternative vector conditional event expression can be transformed into concurrent
dternative vector conditional event expression asshown:

cC? (01 A-»>10B) : !ID? (10B -»>102) : E ? (10 B -> 10 Q)

& (01 A -> 10 B)

!IC & !D & (10 B -> 10 A)

!C & ! (!ID) & E & (10 B -> 10 C)

(19) isTrue at time 258 becauseof ¢ & (01 A -> 10 B), but not at time 586 because of higher priority C

while ID & (10 B -> 10 A), nor attime 573 because of higher priority ! D while
E & (10 B -> 10 C).
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10.5.13 Change of scope within a vector expression

Conditions on vector expressions redefine the scope of vector expressions locally. The following definition can
be used to change the scope even within a part of avector expression. For this purpose, the symbolic state * can
be used, which means “don’t care about events’. Thisis different from the symbolic state ? which means “don’t
care about state”. When the state of avariableis *, arbitrary events occurring on that variable are disregarded.

— Edge operator with * as next state:
The variable to which the operator appliesis no longer within the scope of the vector expression.
— Edge operator with * as previous state:
The variable to which the edge operator appliesis now within the scope of the vector expression.
Asopposed to ?, * standsfor an infinite variety of possibilities.

Example

Let A be alogic variable with the possible states 1, 0, and X.

*0 A ===

00 A | 10 A | X0 A

| 00 A ->00A | 10A -> 00 A | XOA -> 00 A
| 01 A ->10A | 11 A -> 10 A | X1 A -> 10 A
| 0OX A -> X0 A | 1X A -> X0 A | XX A -> X0 A
| 00 A -> 00 A -> 00 A |

0% A ===

00 A | 01 A | 0X A

| o0 A ->00A | 00A ->0LA | 00 A ->0XA
| 01 A ->10A | 0L A ->11A | 01 A -> 1X A
| 0OX A -> X0OA | OX A -> X1 A | OX A -> XX A
| 00 A -> 00 A -> 00 A |

A vector expression with an infinite variety of possible event sequences cannot be directly matched with an event
report. However, there are feasible ways to implement event sequence detection involving *. In principle, there
isa“static’ and “dynamic” way. The following parts of the vector expression are separated by * sub-sequences
of events.

— “Static” event sequence detection with *:
The event report with all variables can be maintained, but certain variables are masked for the purpose of
detection of certain sub-sequences.

— “Dynamic” event sequence detection with *:
The event report shall contain the set of variables necessary for detection of a relevant sub-sequence.
When such a sub-sequence is detected, the set of variables in the event report shall change until the next
sub-sequence is detected, etc.

Examples
01l A ->1* B -> 10 C // (20)

// Event pattern expressed by (20):
// A B C

// 0 1 1
// 1 1 1
// 1 * 1
// 1 * 0
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// pattern for 1st sub-sequence:

// pattern for 2nd sub-sequence:

// A B c
// 0 1 1
// 1 1 1
// 1 o 1
// A B c
// 1 1
// 1 * 0

The event report with masking relevant for (20):

time
0
109
258
573
586
643
788
915
1062
1395
1640

(20) isTrue at time 573 and time 1395. The first sub-sequence 01 A -> 1* B isdetected at time 258, since
* maps to any state. From time 258 onwards, B is masked. The second sub-sequence 10 C is detected at time

orHrRPrRrROROKHRRLREKEHOPMP

O % * P H OO % xR P W

OCoORr R OOORHEEREAN

H O OO OO OOoOOoOOoO NXUO

// detection of 1st sub-sequence
// detection of 2nd sub-sequence

// detection of 1st sub-sequence
// detection of 2nd sub-sequence

CoOORRRRERRERRRPLRLH

573. From time 573 onwards, B is unmasked. The first sub-sequence is detected again at time 1062. The second
sub-sequence is detected again at time 1395.

01 A & 1* E
// Event pattern expressed by (21):

-> 10 C

E

1
*
*

// (21)

// pattern for 1lst sub-sequence:

E
1

*

// pattern for 2nd sub-sequence:

// A c
// 0 1
// 1 1
// 1 0
// A c
// 0 1
// 1 1
// A c
// 1 1
// 1 0

E
*

*

The event report with masking relevant for (21):

time
0
109
258
573
586
643

A
0
1
1
1
0
1

IEEE P1603 Draft 2
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// detection of 1st sub-sequence
// abortion of detection process

I -
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788 0 1 1 0 1
915 1 1 1 0 * // detection of 1st sub-sequence
1062 1 1 1 0 * // disregard event out of scope
1395 1 0 0 0 0 // detection of 2nd sub-sequence
1640 O 0 0 1 0

(21) is True at time 1395. The first sub-sequence 01 A & 1* E is detected at time 109. From time 109
onwards, E is masked. The event on B at time 258 aborts continuation of the detection process and triggers restart
from the beginning. The first sub-sequence is detected again at time 915. From time 915 onwards, E is masked.
The event at time 1062 is therefore out of scope. The second sub-sequence 10 C is detected at time 1395.

0l A ->*1B ->10 B & 10 C // (22)
// Event pattern expressed by (22):
// A B C

// 0 * 1
// 1 * 1
// 1 1 1
// 1 0 0

// pattern for 1st sub-sequence:
// A B c
// 0 * 1
// 1 * 1

// pattern for 2nd sub-sequence:

// A B c
// 1 o 1
// 1 1 1
// 1 0 0

The event report with masking relevant for (22):

time
0
109
258
573
586
643
788
915
1062
1395
1640

// detection of 1st sub-sequence
// abort

// detection of 1st sub-sequence
// continue
// detection of 2nd sub-sequence

O RHRrHRORFRORFRRHRKHOD
O O % % % % ¥ OFL L W
OOoORrRRPRERHROOORKHEENM
H OO O0OOo0Oo0oooo XU
Oo0OOrRKHRRPRKERKRLRRPLERRLHE

(22) is True at time 1395. The first sub-sequence 01 A is detected at time 109. Therefore, B is unmasked.
Since B=0 at time 258, the attempt to detect the second sub-seguenceis aborted and the detection process restarts
from the beginning. The first sub-sequence 01 2 is detected again at time 109. The second sub-sequence *1 B
-> 10 B & 10 Cisdetected at time 1395.

0l A ->1? A & O* B & 1* E -> 10 C // (23)
// Event pattern expressed by (23):

// A B C E

// 0 0 1 1

// 1 0 1 1
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// 1 * 1 *
// 1 * 0 *
// pattern for 1st sub-sequence:
// A B C E

// 0 0 1 1
// 1 0 1 1
// ? * 1 *

// pattern for 2nd sub-sequence:
// A B C E
/)2 k1
/)2 o+« 0 %

The event report with masking relevant for (23):

time
0
109
258
573
586
643
788
915
1062
1395
1640

// detection of 1st sub-sequence
// abort

O RHRPrRHRORORFRRKRHOD
O OFr ¥ *OOOOKR RO
OO R RHPRKEFHROOORHEFERERANMN
H OO o0o0Oo0Oo0oooo XU
O OO % xR RFEFRFLERLREFEMH

(23) isnot True a any time. The first sub-sequence is detected at time 788. The event at time 915 does not
match the expected second sub-sequence.

10.5.14 Sequences of conditional event sequences

The symbol * can be used to describe the scope of a vector expression directly in the vector expression language.
Thisisparticularly useful for sequencesof vector conditional event expressions.

Inreusing (17) asexample:

(10 (A & B) -> 10 (A | B)) & !D
the scope of the sample event report contains contain the variables A, B, ¢, D, and E. The
vector conditional event expression (17) contains only the variables A, B, and D and the implicit
local variables 2&B and A | B. Therefore, the global variables ¢ and E are out of scope within (17) . Theimplicit
local variables A&B and A | B arein scope within, and only within, (17).
Now consider a sequence of vector conditional event expressions, where variables move in and out
of scope. With the following formalism, it is possible to transform such a sequence into an equivalent
vector complex event expression, alowing for a change of scope within each
vector conditional event expression.

<vector conditional event#l> .. -> .. <vector conditional event#N>

where
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<vector conditional event#i>

=== <vector complex event#i> & <boolean expression#i> // 1 < i < N
The principleis to decompose each vector conditional event expression into asequence of three vec-
tor expressions prefix, kernel, and postfix and then to reassembl e the decomposed expressions.

<vector conditional event#i>
=== <prefix#i> -> <kernel#i> -> <postfix#i> // 1 < i < N

a) Definethe prefix for each vector conditional event expression.
The prefixisavector event expression defining all implicit local variables.

Example
*? (A&B) & *? (A|B)

b) Definethekernel for each vector conditional event expression.

The kerned is the vector complex event  expression eguivaent to the
vector conditional event expression.

<vector complex event#i> & <boolean expression#is

=== <vector complex event#i>

& (11 <boolean expression#i> ..->.. 11 <boolean expression#i>)
The kernel can consist of one or several aternative vector event sequence expressions. Within
each vector event sequence expression, the same set of global variables are pulled out of scope
at thefirst vector event expression and pushed back in scope at the last vector event expres
sion.

Example
?* C & ?* E // global variables out of scope
& 10 (A & B) & 11 (!D) -> 10 (A | B) & 11 (!D)
& *? C & *? E // global variables back in scope

c) Definethe postfix for each vector conditional event expression
The postfixisavector event expression removing al implicit local variables.

Example
?* (A&B) & ?* (A|B)

d) Jointhesubsequent vector complex event expressionswith the vector and operator between
prefix#i+1land kernel#i and also between postfix#i and kernel#i+1.
<vector conditional event#i> -> <vector_ conditional event#i+1l>
=== .. <prefix#is>
-> <postfix#i-1> & <kernel#i> & <prefix#i+ls
-> <postfix#i> & <kernel#i+l> & <prefix#i+2>
-> <postfix#i+ls>

The complete example:

(10 (A & B) -> 10 (A | B)) & !D

*? (A&B) & *? (A|B)

-> ?*%* C & ?* E

& 10 (A & B) & 11 (!D) -»> 10 (A | B) & 11 (!D)
& *? C & *? E

-> ?* (A&B) & ?* (A|B)
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NOTE —The in-and-out-of-scope definitions for global variables are within the kernel, whereas the in-and-out-of-scope def-
initions for global variables are within the prefix and postfix. In this way, the resulting vector complex event expres
sion contains the same uninterrupted sequence of events as the original sequence of vector conditional event
expressions.

10.5.15 Incompletely specified event sequences

So far the vector expression language has provided support for completely specified event sequences and also the
capability to put variables temporarily in and out of scope for event observation. As opposed to changing the
scope of event observation, incompletely specified event sequences require continuous observation of all vari-
ables while alowing the occurrence of intermediate events between the specified events. The following operator
can be used for that purpose:

vector followed by, aso called followed-by operator, using the symbol ~>.
The ~> operator is the separator between consecutively occurring events, with possible unspecified
events in-between.

Detection of event sequences involving ~> requires detection of the sub-sequence before ~>, setting a flag,
detection of the sub-sequence after ~>, and clearing the flag.

This can beillustrated with a sample event report:

time
0
109
258
573
586
643
788
915
1062
1395
1640

// 01 A detected, set flag
// 10 C detected, clear flag
// 01 A detected, set flag
// 01 A detected again

// 10 C detected, clear flag

oOrRHRrRHRORFRORFRRHRKHOD
oOooRrRrRPRHOOOOKRRLRWW
OORrRrRPRPRHOOORLERERAMN
H OO O0Oo0Oo0ooooo XU
OCOoOORrRKRRRLRRERKRRLRRLHE

Example

01 A ~> 10 C /] (24)
// as opposed to previous example (5):01 A -> 10 C

(24) is True at time 573 because of 01 A at time 109 and 10 C at time 573. It is True again at time 1395
because of 01 A attime643 and 10 C at 1395. On the other hand, (5) is never True because there are always
eventsin-between 01 Aand10 C.

Vector expressions consisting of vector event expressions separated by -> or by ~> are called
vector event sequence expressions, using the same syntax rules for the two different
vector_ followed by operators. Consequently, all vector expressions involving
vector_ event sequence expressions  and vector binary operators are  called
vector complex event expressions.

However, only a subset of the semantic transformation rules can be applied to vector expressions containing ~>.

Associativerule applies for both - > and ~>.
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(01 A ~> 01 B) ~> 01 C === 01 A ~> (01 C ~> 01 B ~> 01 C)
(01 A -> 01 B) -> 01 C===01A-> (01 C->01B->012¢C)
(01 A ~> 01 B) -> 01 C === 01 A ~> (01 C ~> 01 B -> 01 C)
(01 A -> 01 B) ~> 01 C === 01 A -> (01 C -> 01 B ~> 01 C)

(01 A | 01 B) -» 01 C 01 A ~>01C | 01B ->01C°C
(01 A | 01 B) ~» 01 C === 01 A ~> 01 C | 01 B ~> 01 C
(01 A | 01 B) -» 01 C 01 A ~>01C | 01B ->01C°C

Scalar multiplication rule applies only for - >. The transformation involving ~ > is more complicated.

(01 A -> 01 B) & (01 C -> 01 D)
=== (01 A & 01 C) -> (01 B & 01 D)

(01 A ~> 01 B) & (01 C -> 01 D)
(01 A & 01 C) -> (01 B & 01 D)
0l A ~> 01 C -> (01 B & 01 D)

(01 A ~> 01 B) & (01 C ~> 01 D)

=== (01 A & 01 C) ~> (01 B & 01 D)
| 01 A ~> 01 C ~> (01 B & 01 D)
| 01 C ~> 01 A ~> (01 B & 01 D)

Transformation of vector conditional event expressions into vector complex event expres
sions appliesonly for - >.

(01 A -> 01 B) & C
=== 01 A & 11 C -> 01 B & 11 C

(01 A ~> 01 B) & C
===— 01 A & 11 C ~> 01 B & 11 C

Since the ~ > operator alows intermediate events, there isno way to express the continuously True condition C.
10.5.16 How to determine well-specified vector expressions
By defining semantics for
aternative vector event sequence expressions
and establishing calculation rules for

transforming vector complex event expressions into aternative vector event sequence
expressions

and for

transforming  alternative  vector_ conditional event  expressions into  alternative
vector complex event expressions,

semantics are now defined for all vector expressions.
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The calculation rules also provide means to determine whether a vector expression is well-specified or ill-speci-
fied. An ill-specified vector expression is contradictory in itself and can therefore never be True.

Once avector expression isreduced to a set of alternativevector event sequence expressions, two crite-
ria define whether a vector expression is well-defined or not.

— Compatibility between subsequent events on the same variable:
The next state of earlier event shall be compatible with previous state of later event. This check applies
only if no ~> operator is found between the events.
— Compatibility between simultaneous events on the same variable:
Both the previous and next state of both events shall be compatible. Such events commonly occur as
intermediate cal culation results within vector expression transformation.
The following compatibility rules apply:
a) ? iscompatible with any other state. If the other stateis *, the resulting state is ?. Otherwise, the result-
ing stateis the other state.
b) * iscompatible with any other state. The resulting state is the other state.
c) Any other state isonly compatible with itself.
Examples
01 A -> 01 B -> 10 A
The next state of 01 A iscompatible with the previous state of 10 A.
0OX A -> 01 B -> 10 A
The next state of 0X A isnot compatible with the previous state of 10 A.
0X A ~> 01 B -> 10 A
Compatibility check does not apply, since intermediate events are alowed.
01 A & 10 A
Both the previous and next state of A are contradictory; this resultsin an impossible event.

?1 A & 1? A

Both previous and next state of A are compatible; this resultsin the non-event 11 A.

10.6 Boolean expression language

The boolean expression language XXX, as shown in Syntax 83.

10.7 Vector expression language

The vector expression language XXX, as shown in Syntax 84.
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boolean_expression ::=
(‘boolean_expression )
| pin_value
| boolean_unary boolean_expression
| boolean_expression boolean_binary boolean_expression
| boolean_expression ? boolean_expression
{ boolean_expression ? boolean_expression : }
boolean_expression
boolean_unary ::=

| ~N
boolean_binary ::=

| & &

S =

+AVAVI

O~ % 1
N

AV
ANV

Syntax 83—Boolean expression langauge

10.8 Control expression semantics

** Syntax 84 also shows the control expression syntax (at the bottom): is this deliberate??
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vector_expression ::=
(vector_expression )
| vector_unary boolean_expression
| vector_expression vector_binary vector_expression
| boolean_expression ? vector_expression :
{ boolean_expression ? vector_expression : }
Vector_expression
| boolean_expression control_and vector_expression
| vector_expression control_and boolean_expression
Vector_unary ::=
edge_literal
vector_binary ::=

control_and ::=
& [&&
control_expression ::=
vector_expression )
| ( boolean_expression

IEEE P1603 Draft 2

Syntax 84—Vector expression language
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11. Constructs for modeling of analog behavior

**Add lead-in text**

11.1 Arithmetic expression language

Arithmetic expressions define the contents of an EQUATION. Variables used in the EQUATION are the iden-
tifiers of theheader model, if present, or elsethemodel keywords of the header model.

11.1.1 Syntax of arithmetic expressions

An arithmetic expression XXX, as shown in Syntax 85.

arithmetic_expression ::=

arithmetic_expression )

| arithmetic_value

| [ arithmetic_unary ] arithmetic_expression

| arithmetic_expression arithmetic_binary
arithmetic_expression

| boolean_expression ? arithmetic_expression
{ boolean_expression ? arithmetic_expression : }
arithmetic_expression

| arithmetic_macro
(‘arithmetic_expression { , arithmetic_expression} )

Syntax 85—Arithemetic expression

Examples

1.24

- vdd

Cl + C2

MAX ( 3.5*C , -vdd/2 , 0.0 )

(C > 10) ? vdd**2 : 1/2*vdd - 0.5*C

An arithmetic unary XXX, as shown in Syntax 86.

An arithmetic binary XXX, as shown in Syntax 87.
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sign

arithmetic_unary ::=

Syntax 86—Arithmetic unary

+

F~ ¥ I

*

S

arithmetic_binary ::=

Syntax 87—Arithmetic binary

An arithmetic macro XXX, as shown in Syntax 88.

S
| exp
|log
|min

arithmetic_macro ::=

| max

11.1.2 Arithmetic operators

Syntax 88—Arithmetic macro

Table 65, Table 66, and Table 67 list unary, binary, and function arithmetic operators.

Table 65—Unary arithmetic operators

Operator

Description

Positive sign (for integer or number)

Negative sign (for integer or number)

Table 66—Binary arithmetic operators

Operator

Description

+

Ad(dition (integer or number)

Subtraction (integer or number)

Multiplication (integer or number)

Division (integer or number)

Exponentiation (integer or number)

Modulo division (integer or number)
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Table 67—Function arithmetic operators

Operator Description
LOG Natural logarithm (argument is + integer or number)
EXP Natural exponentia (argument isinteger or number)
ABS Absolute value (argument is integer or number)
MIN Minimum (all arguments are integer or number)
MAX Maximum (all arguments are integer or number)

Function operators with one argument (such as 1og, exp, and abs) or multiple arguments (such as min and
max) shall have their arguments within parenthesis, e.g., min(1.2,-4.3,0.8).

11.1.3 Operator priorities

The priority of binding operators to operands in arithmetic expressions shall be from strongest to weakest in the
following order:

@)  unary arithmetic operator (+, -)
b)  exponentiation (**)

c) multiplication (*), division (/), modulo division (%)
d) addition (+), subtraction (-)

11.2 Arithmetic model and related statements

**Add lead-in text**

11.2.1 Arithmetic models

An arithmetic model is an object that describes characterization data or a more abstract, measurable relationship
between physical quantities, as shown in Figure 32. The modeling language allows tabulated data as well as lin-
ear and non-linear eguations. The equations consist of arithmetic expressions based on the symbols defined in
|EEE 1364-1995.

arithmetic model

contains contains
\, )
OOQ
header”

conans ™ table eguation
- - . r%&
arithmetic expressio

Figure 32—Arithmetic model
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: i torori : s

11.2.1.1 Principles of arithmetic models

The purpose of arithmetic modelsis to specify calculable mathematical relationships between objects represent-
ing physical quantities in the library. Arithmetic models are identified by context-sensitive keywords, because
how these quantities are measured, extracted, or interpreted depends on the context in which the objects are
placed.

The quantity identified by the keyword CAPACITANCE can serve as example. In the context of aPIN, it repre-
sents pin capacitance. In the context of aWwIRE, it representswire capacitance. In the context of aRULE, it repre-
sents the calculation method for a capacitance formed by alayout pattern described within the rule. The context-
specific semantics of each arithmetic model are specified in 8 for electrical models and 9 for physical models.

In certain cases, the context alone does not completely specify the semantics of an arithmetic model. Auxiliary
definitions within the arithmetic model are needed; these are represented by using annotations or annotation con-
tainers.

A simple example is the UNI T annotation, which is applicable for most arithmetic models. It specifiesthe unitin
terms of which the arithmetic model data is represented. The applicable auxiliary objects for each arithmetic
model are specified in 8 for electrical models and 9 for physical models.

11.2.1.1.1 Global definitions for arithmetic models

In many cases, auxiliary definitions apply globaly to all arithmetic models within a certain context, for instance,
the UNIT can apply for all CAPACITANCE objects within alibrary. In order to specify such global definitions,
the arithmetic model construct can be used without data.

A model definition XXX, as shown in Syntax 89.

model_definition ::=
model_keyword [ identifier ] { all_purpose_items}

Syntax 89—model_definition

This construct hasthe syntactical form of an annotation container (see1l.7).
11.2.1.1.2 Trivial arithmetic model

The simplest form of an arithmetic model containsjust constant data, as shown in Syntax 90.

trivial_model ::=
model_keyword [ identifier ] = number
| model_keyword [ identifier ] = number{ al_purpose _items }

Syntax 90—trival_model

This construct has the syntactical form of an annotation (see 11.7).
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11.2.1.1.3 Arithmetic model using EQUATION

The arithmetic model data can be represented asan EQUATION. In this case, a HEADER defines the arguments of
the equation. It is also possible to use other arithmetic models, which are visible within the context of this arith-
metic model, as arguments. Those arguments need not appear in the HEADER, as shown in Syntax 91.

equation_based modd ::=
model_keyword [ identifier ] {
[ all_purpose_items] [ equation_based header ] equation}
equation_based header ::=
HEADER { model_keyword { model_keyword} }
|HEADER { model_definition { model_definition } }

equation ::=
EQUATION { aithmetic_expression }

Syntax 91—equation_based_model
The syntax of arithmetic expression isexplainedin xxx.
11.2.1.1.4 Arithmetic model using TABLE

The arithmetic model data can be represented as a lookup table. In this case, a TABLE is necessary for the data
itself and for each argument, as shown in Syntax 92.

table_based modd ::=
model_keyword [ identifier ] {
[ all_purpose_items] table_based_header table [ equation ] }
table based header ::=
HEADER { table model_definition { table_ model_definition} }
table_model_definition ::=
model_keyword [ identifier ] { all_purpose_itemstable }

able::=
TABLE { symbol { symbol }
| TABLE fnumber{ number }

Syntax 92—table _based_model

Tables containing symbols are only meant for lookup of discrete datapoints. Tables containing numbers are for
calculation and, eventually, interpolation of datapoints. The model keyword (see 8 and 9) defines whether
symbols or numbers are legal for aparticular table.

The size of the table inside the table based model shall be the product of the size of the tables inside the
table header. In order to support interpolation, the numbersin each table inside the table header shall
be in strictly monotonic ascending order. See 11.2.1.2 for more details.

Thetable model definition canalsobeused outsidethe context of atable header, very much like
a model definition. In this case, the model definition supplies the same information as the
table model definition, plusthe additional information of a discrete set of valid numbers applicable
for the model.

For example, the WIDTH of aphysical layout object can contain only a discrete set of legal values. Those can be
specified usingatable model definition.
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However, the table in a table model definition outside a table header shall not substitute the
table inside the table header. The former defines a legal set of values, the latter defines the table-lookup
indices.

If al table data are numbers, the table based model can aso have an optional equation. Thiseguation isto
be used when the argument data are out of interpolation range. Without the equation, extrapolation shall be
applied for data which are out of range.

11.2.1.1.5 Complex arithmetic model

A complex arithmetic model can be constructed by defining a nested arithmetic model within another arithmetic
model, as shown in Syntax 93.

complex_model ::=
model_keyword [ identifier | é
[ al_purpose_items] HEADER { model { model } }
equation } ‘
| model_keyword
al_purpose_items HEADER { header_model { header_model } }
table [ equation] }
header_model ::=
model_definition
| table_model_definition
| equation_based_model
| table_based_model
| header_table_model
header table model ::=
model_keyword [ identifierE)E
al_purpose_items HEADER

bol bol
TABLE { number { number}g?/m o { symbol} }

Syntax 93—complex_model

The data of the inner arithmetic model is calculated first. Then the result is applied for calculation of the data of
the outer arithmetic model.

If any header model is either model definition or table model definition, then the
complex model reduces to the previously defined equation based model and
table based model, respectively. In order to support a table in the general model, any
header model shal be either atable model definition of table based model, and the num-
bersin each tableinside each header model shall be strictly monotonically increasing.

Theheader table model construct can be used to associate symbols with numbers. For example, process
corners can be defined as discrete symbols and associated with process derating factors. The numbers can be
used in equations and for interpolation, whereas the symbols cannot.

11.2.1.2 Construction of arithmetic models

Input variables, also called arguments of arithmetic models, appear in the HEADER of the model. In the simplest
case, the HEADER is just a list of arguments, each being a context-sensitive keyword. The modd itself is aso
defined with a context-sensitive keyword.

The model can be in equation form. All arguments of the equation shall be inthe HEADER. The ALF parser shall

issue an error if the EQUATION uses an argument not defined in the HEADER. A warning shall be issued if the
HEADER contains arguments not used in the EQUATION.
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Example
DELAY {
HEADER {
CAPACITANCE {...}
SLEWRATE {...}
}

EQUATION {
0.01 + 0.3*SLEWRATE + (0.6 + 0.1*SLEWRATE)*CAPACITANCE
}

}

If the model uses a TABLE, then each argument in the HEADER also needs a table defining the format. The order
of arguments decides how the index to each entry is calculated. Thefirst argument is the innermost index, the fol-
lowing arguments are outer indices.

DELAY {
HEADER {
CAPACITANCE ({
TABLE {0.03 0.06 0.12 0.24}

}
SLEWRATE {
TABLE {0.1 0.3 0.9}

}

}

TABLE {
0.07 0.10 0.14 0.22
0.09 0.13 0.19 0.30
0.10 0.15 0.25 0.41

}

}

The first argument CAPACITANCE has four entries. The second argument SLEWRATE has three entries. Thus,
DELAY has 4*3=12 entries. For readability, comments can be inserted in the table.

TABLE {

//capacitance:0.03 0.06 0.12 0.24

Y slewrate:
0.07 0.10 0.14 0.22 // 0.1
0.09 0.13 0.19 0.30 // 0.3
0.10 0.15 0.25 0.41 // 0.9

}

Comments have no significance for the ALF parser nor does the arrangement of rows and columns. Only the
order of valuesisimportant for index calculation. The table can be made more compact by removing newlines.

TABLE { 0.07 0.10 0.14 0.22 0.09 0.13 0.19 0.30 0.10 0.15 0.25 0.41 }

For readability, the models and arguments can aso have names, i.e., object IDs. For named objects, the name is
used for referencing, rather than the keyword.

DELAY rise out{
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HEADER {
CAPACITANCE c out {...}
SLEWRATE fall in {...}

}

EQUATION {
0.01 + 0.3 * fall in + (0.6 + 0.1* fall in) * c out
}

}

The arguments of an arithmetic model can be arithmetic models themselves. In this way, combinations of
TABLE- and EQUATION-based models can be used, for instance, in derating.

Analogous with FUNCTION, both EQUATION and TABLE representation of an arithmetic model are allowed.
The EQUATION isintended to be used when the values of the arguments fall out of range, i.e., to avoid extrapo-
lation.

11.2.1.3 Arithmetic submodels

Arithmetic submodels can be used to distinguish different measurement conditions for the same model. The root
of an arithmetic model can contain nested arithmetic submodels. The header of an arithmetic model can contain
nested arithmetic models, but not arithmetic submodels.

The arithmetic submodels shown in Table 68 are generally applicable.

Table 68—Generally applicable arithmetic submodels

Object Description

MIN For measured or calculated data:

the data represents the minimal value/ set of values within a statistical distribution.
For datawithin LIMIT container:

the data represents the lower limi.t value / set of values

TYP For measured or calculated data:
the data represents the typical vaue / set of values within a statistical distribution.

MAX For measured or calculated data:

the data represents the maximal value/ set of values within a statistical distribution.
For datawithin LIMIT container:

the data represents the lower limit value / set of values.

DEFAULT For measured or calculated data:
the data represents the default value / set of values to be used per default.

The arithmetic submodels shown in Table 69 are only applicable in the context of electrical modeling.

Table 69—Submodels restricted to electrical modeling

Object Description
HIGH Applicable for electrical datameasured at alogic high state of apin.
LOW Applicable for electrical datameasured at alogic 1ow state of apin.

216 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 2



Table 69—Submodels restricted to electrical modeling (Continued)

Object Description
RISE Applicable for electrical data measured during alogic Low to high transition of apin.
FALL Applicable for electrical data measured during alogic high to 1ow transition of apin.

The arithmetic submodels shown in Table 70 are only applicable in the context of physical modeling.

Table 70—Submodels restricted to physical modeling

Object Description
HORIZONTAL Applicable for layout measurements in horizontal direction.
VERTICAL Applicable for layout measurementsin vertical direction.

The semantics of the restricted submodels are explained in 8 and 9.

11.2.2 Arithmetic model statement

An arithmetic model statement XXX, as shown in Syntax 94.

arithmetic_models ::=

arithmetic_model { arithmetic_model }
arithmetic_model ::=

partial_arithmetic_model

| non_trivial_arithmetic_model

| trivial _arithmetic_model

| assignment_arithmetic_model

| arithmetic_model_template_instantiation

Syntax 94—Arithmetic model statement

11.2.3 Partial arithmetic model

A partia arithmetic model XXX, as shown in Syntax 95.

partial_arithmetic_modd ::=
nonescaped_identifier [ arithmetic_model_identifier ] { partial_arithmetic_model_items}
partial_arithmetic_modd_items ::=
partial_arithmetic_model_item { partial_arithmetic_model_item }
partial_arithmetic_model_item ::=
any_arithmetic_model_item
| table

A partial arithmetic model contains only definitions relevant for the model, but not sufficient data to evaluate the

model.

IEEE P1603 Draft 2
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Definitions within unnamed partia arithmetic model (i.e., apartial arithmetic model without an arithmetic model
identifier) shall be inherited by all arithmetic models of the same type (i.e., using the same nonescaped identifier)
within scope. However, these definitions can be locally overwritten.

A named partial arithmetic model (i.e., a partial arithmetic model without an arithmetic model identifier) can be
used as argument of an EQUATION within another arithmetic model within scope without appearing in the
HEADER.

— If apartial arithmetic model outside a HEADER contains a TABLE, the arithmetic values in the TABLE
shall define adiscrete set of valid values for the model.
— If apartial arithmetic model within a HEADER contains a TABLE, the arithmetic values in the TABLE
shall define the entries for table-lookup.
11.2.4 Non-trivial arithmetic model

A non-trivial arithmetic model XXX, as shown in Syntax 96.

non_trivia_arithmetic_model ::=
nonescaped_identifier [ arithmetic_model_identifier ] {
[ any_arithmetic_model_items ]
arithmetic_body
[ any_arithmetic_model_items] }

Syntax 96—Non-trivial arithmetic model
A non-trivia arithmetic model contains sufficient data to evaluate the model.
11.2.5 Trivial arithmetic model

A trivia arithmetic model XXX, as shown in Syntax 97.

trivial_arithmetic_model ::=
nonescaped_identifier [ arithmetic_model_identifier ] = arithmetic_vaue,
| nonescaped_identifier [ arithmetic_model_identifier ] = arithmetic_value
{ any_arithmetic_model_items }

Syntax 97—Trivial arithmetic model

A trivia arithmetic model is associated with a constant arithmetic value. Therefore, the evauation of the arith-
metic model istrivial.

11.2.6 Assignment arithmetic model

An assignment arithmetic model XXX, as shown in Syntax 98.

assignment_arithmetic_model ::=
arithmetic_model_identifier = arithmetic_expression

Syntax 98—Assignment arithmetic model

Thisform of arithmetic model is valid only in the following cases.
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— A partia arithmetic model has been defined using the arithmetic model identifier AND

arithmetic models for all arguments contained in the arithmetic expression have been defined.

— Thisconstruct isused in a dynamic template instantiation.
11.2.7 ltems for any arithmetic model

Arithmetic model items XXX, as shown in Syntax 99.

any_arithmetic_model_items ::=
any_arithmetic_model_item { any_arithmetic_model_item }
any_arithmetic_model_item ::=
all_purpose_item
| from
| to
| violation

Syntax 99—Arithmetic model items

Semantic restrictions apply, depending on the type and context of the arithmetic model. ** Define these**

11.3 Arithmetic submodel and related statements

**Add lead-in text**

11.3.1 Arithmetic submodel statement

An arithmetic submodel statement XXX, as shown in Syntax 100.

arithmetic_submodels ::=
arithmetic_submodel { arithmetic_submodel }
arithmetic_submodel ::=
non_trivial_arithmetic_submodel
| trivial _arithmetic_submodel
| arithmetic_submodel_template_instantiation

Syntax 100—Arithmetic submodel statement

11.3.2 Non-trivial arithmetic submodel

A non-trivial arithmetic submodel XXX, as shown in Syntax 101.

non_trivial_arithmetic_submode ::=
nonescaped_identifier {
[ any_arithmetic_submodel_items]
arithmetic_body
[ any_arithmetic_submodel_items] }

Syntax 101—Non-trivial arithmetic submodel

A non-trivia arithmetic submodel contains sufficient data to evaluate the arithmetic submode!.
11.3.3 Trivial arithmetic submodel

A trivia arithmetic submodel XXX, as shown in Syntax 102.
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trivial_arithmetic_submodel ::=
nonescaped_identifier = arithmetic_value,
| nonescaped_identifier = arithmetic_value{ any_arithmeti c_submodel_items}

Syntax 102—Trivial arithmetic submodel

A trivia arithmetic submodel is associated with a constant arithmetic value. Therefore, the evaluation of the
arithmetic submode istrivial.

11.3.4 ltems for any arithmetic submodel

Arithmetic submodel items XXX, as shown in Syntax 103.

any_arithmetic_submodel_items ::=
any_arithmetic_submodel_item { any_arithmetic_submodel_item }
any_arithmetic_submodel_item ::=
all_purpose_item
| violation

Syntax 103—Arithmetic submodel items

Semantic restrictions apply, depending on the type and context of the arithmetic model. ** Define these**

11.4 Arithmetic body and related statements

**Add lead-in text**

11.4.1 Arithmetic body

An arithmetic body XXX, as shown in Syntax 104.

arithmetic_body ::=
arithmetic_submodels
| table_arithmetic_body
| equation_arithmetic_body
table_arithmetic_body ::=
header table [ equation ]
equation_arithmetic_body ::=
[ header ] equation [ table]

Syntax 104—Arithmetic body

An arithmetic model body shall supply the data necessary for evaluation of the arithmetic model.
11.4.2 HEADER statement
A HEADER statement XXX, as shown in Syntax 105.

The HEADER shall contain arguments for evaluating the arithmetic model. The arithmetic values of those argu-
ments shall be supplied by application program.

Semantic restriction: No arithmetic submodel is allowed within an arithmetic model body.
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header ::=
HEADER { identifiers }
|HEADER { header_arithmetic_models }

| header_template_instantiation
header_arithmetic_models ::=
header_arithmetic_model { header_arithmetic_model }
header_arithmetic_model ::=
non_trivial_arithmetic_model
| partial _arithmetic_model

Syntax 105—HEADER statement
11.4.3 TABLE statement

A TABLE statement XXX, as shown in Syntax 106.

table ::=
TABLE { arithmetic_values}
| table_template_instantiation

Syntax 106—TABLE statement

A TABLE shall provide the means for evaluation using a look-up method. All arithmetic values within
the TABLE shall be of the same type and compatible with the type of the arithmetic model under evaluation.

11.4.4 EQUATION statement

An EQUATION statement XXX, as shown in Syntax 107.

uation ::=
EQUATION { arithmetic_expression }

| equation_template_instantiation

Syntax 107—EQUATION statement

An EQUATION shall provide the means for eval uation using an analytical method.

11.5 Arithmetic model container

An arithmetic model container XXX, as shown in Syntax 108.

arithmetic_model_container ::=
arithmetic_model_container_identifier { arithmetic_models }

Syntax 108—Arithmetic model container
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The keywords shown in Table 71 are defined for objects that can contain arithmetic models.

Table 71—Unnamed containers for arithmetic models

Object Description
FROM Contains start point of timing measurement or timing constraint.
TO Contains end point of measurement or timing constraint.
LIMIT Contains arithmetic models for limit values.
EARLY Contains arithmetic models for timing measurements relevant for early signal arrival time.
LATE Contains arithmetic models for timing measurements relevant for late signal arrival time.

The LIMIT container isfor general use. The FROM, TO, EARLY, and LATE containersare only for use within the
context of timing models.

11.5.1 LIMIT container

A LIMIT container shall contain arithmetic models. The arithmetic models shall contain submodels identified
by MIN and/or MAX.

Example
PIN data_in ({
LIMIT {
SLEWRATE { UNIT = ns; MIN = 0.05; MAX = 5.0;}
}
}

The minimum slewrate allowed at pindata _inis0.05 ns,themaximumis5.0 ns.

PIN data_in {

LIMIT {
SLEWRATE {
UNIT = ns;
MAX {
HEADER { FREQUENCY { UNIT=megahz;} }
EQUATION { 250 / FREQUENCY }
}
}
}

}

The maximum allowed slewrate is frequency-dependent, e.g., thevalueis0.25ns for 1GHz.
11.5.2 Containers for arithmetic models and submodels

Containers for arithmetic models can supplement the context-specific semantics of the arithmetic model. There-
fore, arithmetic models can be placed in the context of arithmetic model containers, as shown in Syntax 109.
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model_container ::=
model_container_keyword {
[ al_purpose_items] model_container_contents { model_container_contents } }
model_container_contents ::=
model_container
| trivial_model
| complex_model

Syntax 109—model_container

There is a dedicated set of model container keywords. In addition, model keywords can aso be
used a model container keywords and dedicated submodel keywords can be used as
model keywords. The number of levels in nested arithmetic model containers is restricted by the set of
dlowed combinations between model container keywords, model keywords  and
submodel keywords (see11.2.1.3).

11.6 Statements related to arithmetic models for general purpose

**Add lead-in text**

11.6.1 MIN and MAX statements
Semanties-of-MHNAER-HASE

MIN, TYP, and MAX indicate the data of the arithmetic model represent minimal, typical, or maximal values
within a statistical distribution. No corréelation is assumed or implied between MIN data, TYP data, or MAX data
across different arithmetic models.

Example

DELAY {
FROM { PIN=A; } TO { PIN=Z; }
MIN = 0.34; TYP = 0.38; MAX = 0.45;
}
POWER
MEASUREMENT = average; FREQUENCY = le6;
MIN = 1.2; TYP = 1.4; MAX = 1.5;

}

The MIN value for DELAY could simultaneously apply with the MIN value for POWER. Typically, the case with
smaller delay is also the case with larger power consumption.

Within the scope of a LIMIT container, MIN and MAX contain the data for a lower or upper limit, respectively.
There shall be at least one limit, lower or upper, in each model, but not necessarily both.

Example
LIMIT {

SLEWRATE { PIN=A; MAX=5.0; }
VOLTAGE { PIN=VDD; MIN=1.6; MAX=2.0; }
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MIN, MAX as an annotation inside amodel or inside amodel argument within the HEADER define the validity
range of the data. If MIN, MAX is not defined and the data is in a TABLE, the boundaries of the data in the
TABLE shall be considered as vaidity limits.

Example

POWER {
HEADER {
SLEWRATE { PIN=A; MIN=0.01; MAX=5.0; TABLE ({
6

.1 0.5 1.0 } }
CAPACITANCE { PIN=Z; TABLE { 0.0 0.4 0.8 1. }

0
}

}

TABLE { 0.2 0.3 0.6 0.4 0.5 0.7 0.8 0.8 1.0 1.5 1.5 1.6 }

}

The data for POWER is valid for SLEWRATE in the range between 0.01 and 5.0 (via extrapolation) and for
CAPACITANCE in the range between 0.0 and 1.6.

11.6.2 TYP statement

**Add lead-in text**

11.6.3 DEFAULT statement

**Add lead-in text**

11.6.3.1 DEFAULT annotation

Default annotation promotes use of the default value instead of the arithmetic model if the arithmetic model is
beyond the scope of the application tool.

DEFAULT = number ;

Restrictions can apply for the allowed type of number. For instance, if the arithmetic model allows only
non_negative number, then the default isrestricted to non negative number.

11.6.3.2 Semantics of DEFAULT

Arithmetic submodels can be identified by MIN, TYP, and MAX or context-restricted keywords. For cases where
the application tool cannot decide which qualifier applies, a supplementary arithmetic submodel with the quali-
fier DEFAULT can be used.

Example

PIN my pin {
CAPACITANCE ({

MIN { HEADER { ... } TABLE { bl
TYP { HEADER { ... } TABLE { ... } }
MAX { HEADER { ... } TABLE { bl
DEFAULT { HEADER { ... } TABLE { ... } }

}

NOTE—The DEFAULT model can also degenerate to asingle value; it represents atrivial arithmetic model.
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In certain cases, there is no supplementary submodel. Instead, one of the already defined submodelsis used by
default. For this case, the DEFAULT annotation can be used to point to the applicable keyword.

Example

PIN my pin {
CAPACITANCE ({
MIN { HEADER ({ } TABLE ({
TYP { HEADER { ... } TABLE ({
MAX { HEADER ({ } TABLE ({
DEFAULT = TYP;

——
——

}

The trivial arithmetic model construct with DEFAULT can aso be used for an argument in the context of the
HEADER of an arithmetic model. This enables evaluation of the arithmetic model in case the data of the argument
can not be supplied by the application tool.

Example

PIN my pin {
CAPACITANCE ({
HEADER { TEMPERATURE { DEFAULT=50; TABLE { 0 50 100 } } }
TABLE { 0.05 0.07 0.10 } }

}

The DEFAULT value of the CAPACITANCE hereis0.07.
11.6.4 LIMIT statement

In general, reliability is modeled by arithmetic models using the LIMIT construct.
11.6.4.1 Global LIMIT specifications

Global limits can be specified for electrical quantities, even if they are related to CELLS, PINS, or VECTORS.
Such global limits apply, unless local limits are specified within the context of CELLS, PINS, of VECTORS. The
priorities are given below.

a) LIMIT withinthe context of the VECTOR

b) LIMIT withinthe contextof aPIN (if theLIMIT inthe VECTOR has PIN annotation)
C) LIMIT withinthe context of the CELL

d) LIMIT withinthe context of the SUBLIBRARY

€) LIMIT withinthe context of the LIBRARY

f) LIMIToutside LIBRARY

The arguments in the HEADER of the LIMIT model can only be items that are visible within the scope of the

LIMIT model. In particular, arguments with PIN annotations are only legal for LIMIT modelsin the context of
aCELL or aVECTOR within the CELL.
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11.6.4.2 LIMIT and model specification in the same context

An arithmetic model for a physical quantity and a limit specification for the same physical quantity can appear
within the same context, for example, an arithmetic model for FLUENCE calculation and aL.IMIT for FLUENCE
within the context of a VECTOR. In such a case, the calculated quantity shall be checked against the limit of the
quantity within that context.

On the other hand, if multiple arithmetic models are given within the context for which the limit applies, the limit
shall be checked against the combination of all arithmetic modelsin the case of cumulative quantities, or against
the minimum or maximum calculated value in the case of non-cumulative or mutually exclusive quantities.

For example, aLIMIT for FLUENCE can be given in the context of a CELL. Calculation models for FLUENCE
can be given for multiple VECTORS within the context of the CELL. The LIMIT for FLUENCE shall be checked
against the accumulated FLUENCE calculated for all VECTORS.

Example

CELL my cell ({
PIN A { DIRECTION = input; }
PIN B { DIRECTION = input; }
PIN C { DIRECTION = input; }
{
{

PIN Z { DIRECTION = output; }
LIMIT { FLUENCE { MAX = 1e20; } } }
VECTOR ( 01 A -> 10 Z ) {
FLUENCE = le-5;
}

VECTOR ( 01 B -> 10 Z ) {
FLUENCE = le-5;
}

VECTOR ( 01 C -> 10 Z ) {
FLUENCE = le-6;
LIMIT { FLUENCE { MAX = lel8; } }

}

The fluence limit for the cell is reached after 1022 occurrences of VECTOR ( 01 A -> 10 Z ) of VECTOR
( 01 B -> 10 Z ) counted together. The fluence limit for the VECTOR ( 01 C -> 10 Z ) isreached
after 10%* occurrences of that vector.

An example for a non-cumulative quantity is SLEWRATE. The VECTORS in the context of which SLEWRATE is
modeled describe timing arcs with mutually exclusive conditions. Therefore, if a minimum or maximum LIMIT
for SLEWRATE is given for a PIN in the context of a CELL, this SLEWRATE shall be checked against the mini-
mum or maximum value of any calculated SLEWRATE applicableto that PIN.

Example

CELL my cell ({
PIN A { DIRECTION = input; }
PIN B { DIRECTION = input; }
PIN C { DIRECTION = input; }
PIN Z { DIRECTION = output; LIMIT { SLEWRATE { MAX = 5; } } }
VECTOR ( 01 A -> 10 Z ) {
SLEWRATE { PIN = Z; /* f£ill in HEADER, TABLE */ }
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VECTOR ( 01 B -> 10 Z ) {
SLEWRATE { PIN = Z; /* £ill in HEADER, TABLE */ }
}

VECTOR ( 01 C -> 10 Z ) {
SLEWRATE { PIN = Z; /* £ill in HEADER, TABLE */ }

}

Here the slewrate on pin z calculated in the context of any vector is checked against the same maximum limit.
11.6.4.3 Model and argument specification in the same context

An cumulative quantity can also be an argument in the HEADER of an arithmetic model. If the model for calcula-
tion of that quantity is within the same context as the argument of the other model, then the value of the calcu-
lated quantity shall be used. Otherwise, the value of the accumulated quantity shall be used.

For example, SLEWRATE can be modeled as a function of FLUENCE in the context of a VECTOR. If a calcula-
tion model for FLUENCE appears in the context of the same VECTOR, the value for FLUENCE shall be used for
the SLEWRATE calculation. On the other hand, if there is no calculation model for FLUENCE in the context of
the same VECTOR, but there is one in the context of other VECTORS, then the accumulated value of FLUENCE
from the other calculation models shall be used for SLEWRATE calculation.

Example

CELL my cell ({

PIN A { DIRECTION = input; }
PIN B { DIRECTION = input; }
PIN C { DIRECTION = input; }

PIN Z { DIRECTION = output; }
VECTOR ( (01 A | 01 B) -> 10 Z ) { FLUENCE
VECTOR ( 01 A -> 10 Z ) {
SLEWRATE { CALCULATION=incremental; PIN = Z;
HEADER { FLUENCE } EQUATION { le-8 * FLUENCE }
}
}

VECTOR ( 01 B -> 10 Z ) {
SLEWRATE { CALCULATION=incremental; PIN = Z;
HEADER { FLUENCE } EQUATION { le-8 * FLUENCE }

le-5; }

}
}

VECTOR ( 01 C -> 10 Z ) {
FLUENCE = le-6;
SLEWRATE { CALCULATION=incremental; PIN = Z;
HEADER { FLUENCE } EQUATION { le-9 * FLUENCE }
}

}

After 103 = 10°:10® occurrences of VECTOR ( (01 A | 01 B) -> 10 Z ),theslewrateat pin z for
VECTOR ( 01 A -> 10 Z ) andVECTOR ( 01 B -> 10 Z ) isincreased by 1 unit.

After 10%° = 10%¢10° occurrences of VECTOR ( 01 C -> 10 Z ),theslewrateat pin z for VECTOR ( 01
C -> 10 Z ) isincreased by 1 unit.
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11.6.5 Annotations for arithmetic models for general purpose

Annotations and annotation containers described in this section are relevant for the semantic interpretation of
arithmetic models and their arguments.

Example
DELAY=f (CAPACITANCE)
DELAY isthe arithmetic model, CAPACITANCE isthe argument.

Arguments of arithmetic models have the form of annotation containers. They can also have the form of arith-
metic models themselves, in which case they represent nested arithmetic models.

11.6.5.1 UNIT annotation
Unit annotation associates units with the value computed by the arithmetic model.
UNIT = string | non_negative number ;

A unit specified by a st ring can take the values (* indicates awild card) shown in Table 72.

Table 72—UNIT annotation

Annotation string Description
f£x or F* Equivalentto 1E-15.
p* Or P Equivaentto 1E-12.
n* or N* Equivalentto 1E-9.
u* or U* Equivalentto 1E-6.
m* or M* Equivalentto 1E-3.
1% Equivalent to 1E+0.
k* or K* Equivalentto 1E+3.
meg* Of MEG*2 Equivaent to 1E+6.
g* or G* Equivalentto 1E+9.

%or any uppercase/lowercase combination of these three characters
Arithmetic models are context-sensitive, i.e., the units for their values can be determined from the context. If the
UNIT annotation for such acontext does not exist, default units are applied to the value (see 11.2.1.3).
Example

TIME { UNIT = ns; }
FREQUENCY { UNIT = gigahz; }
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If the unit is a string, then only the first character (the first three characters in case of MEG) is interpreted. The
reminder of the string can be used to define base units. Metric base units are assumed, but not verified, in ALF.

There is no semantic difference between
unit = 1lsec;
and

unit

lvolt;

Therefore, if the unit is specified as
unit = meg;

the interpretation is 1E+6. However, for
unit = lmeg;

the interpretation is 1 and not 1E+6.

Unitsin anon-metric system can only be specified with numbers, not with strings. For instance, if the intent isto
specify an inch instead of a meter as the base unit, the following specification does not meet the intent:

unit = 1linch;
since the interpretation is 1 and meters are assumed.
The correct way of specifying inch instead of meter is
unit = 25.4E-3;
since 1inchis (approximately) 25.4 millimeters.
11.6.5.2 CALCULATION annotation

An arithmetic mode! in the context of a VECTOR can have the CALCULATION annotation defined as shown in
Syntax 110.

calculation annotation ::=
CALCULATION = calculation_identifier ;
calculation_identifier ::=
absolute
|incremental

Syntax 110—calculation_annotation

It shall specify whether the data of the model are to be used by themselves or in combination with other data. The
default is absolute.

The incremental data from one VECTOR shall be added to absolute data from another VECTOR under the
following conditions:
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— The model definitions are compatible, i.e., measurement specifications shall be the same. Units are
alowed to be different.
Example: slewrate measurements at the same pin, same switching direction, and same threshold values.

— The model definitions for common arguments are compatible, i.e., the same range of values for table-
based models and measurement specifications are the same. Units can be different.
Example: same vauesfor derate case and same threshold definitions for input slewrate.

— The vector definitions are compatible, i.e, the vector or boolean expression of the VECTOR
containing iNncremental data matches the vector or boolean expression of the VECTOR
containing absolut e data by removing all variables appearing exclusively in the former expression.

Example

VECTOR ( 01 A -> 01 Z ) {
DELAY {
CALCULATION = absolute;
FROM { PIN = A; } TO { PIN = Z; }
HEADER {
CAPACITANCE load { PIN = Z; }
SLEWRATE slew { PIN = A; }

}

EQUATION { 0.5 + 0.3*slew + l.2*load }
}
}
VECTOR ( 01 A &> 01 B &> 01 Z ) {
DELAY {
CALCULATION = incremental;
FROM { PIN = A; } TO { PIN = Z; }
HEADER {
SLEWRATE slew A { PIN = A; }
SLEWRATE slew B { PIN = B; }
TIME time A B { FROM { PIN = A; } TO { PIN = B; } }

}

EQUATION {- 0.1 + (0.05+0.002*slew A*slew B)*time A B) }

}

Both models describe the rise-to-rise delay from A to z. The second delay model describes the incremental delay
(here negative), when input B switches in atime window between A and z.

11.6.5.3 INTERPOLATION annotation

An argument of atable-based arithmetic model, i.e., amodel in the HEADER containing a TABLE statement, can
have the INTERPOLATION annotation defined as shown in Syntax 111.

interpolation_annotation ::=
INTERPOLATION = interpolation_identifier ;
inter ptlation_identifier =
|
|linear
| floor
| ceiling

Syntax 111—interpolation_annotation
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This also needs to specify the interpolation scheme for the values in-between the values of the TABLE.

— fit
the data points in the table are supposed to be part of a smooth curve. Linear interpolation or other algo-
rithms, e.g., cubic spline or polynomial regression can be used to fit the data points into the curve.

— linear
the data points in the table are supposed to be part of a piece wise linear curve. Linear interpolation shall
be used.

— floor
the value to the left in the table, i.e., the smaller value is used.

— calling
the valueto theright in the table, i.e., the larger valueis used.

The default isfit. For multi-dimensional tables, different interpolation schemes can be used for each dimension.

Example
my model
HEADER {
dimensionl { INTERPOLATION = fit; TABLE { 1 2 4 8 }
dimension2 { INTERPOLATION = floor; TABLE { 10 100 }
dimension3 { INTERPOLATION = ceiling; TABLE { 10 100 }
}
TABLE {
17365
10 20 60 40
50 30 20 100
0.8 0.4 0.2 0.9
}
}

Consider the following values:

dimensionl = 6
=> following subtable is chosen:
3 5 // interpolation between 3 and 5

60 40 // or between 60 and 40
20 100 // or between 20 and 100
0.2 0.9 // or between 0.2 and 0.9

dimension2 = 50
=> following subtable is picked:
3 5 // interpolation between 3 and 5
20 100 // or between 20 and 100
dimension3 = 50

=> following subtable is picked:
20 100 // interpolation between 20 and 100

The following rules shall apply for each dimension of atable-based model:

For values outside the range of the table, extrapolation shall apply, using the table data points at the leftmost or
rightmost side, respectively, as reference.

If the value is smaller than the smallest, i.e. leftmost, data point in the table, the extrapolation shall be cal culated
asif the value would fall in-between the leftmost and second leftmost value.
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If the value is greater than the greatest, i.e. rightmost, data point in the table, the extrapolation shall be cal culated

asif the value would fall in-between the rightmost and second rightmost value.

Example
my model Y {
HEADER {
my argument X
TABLE { 0 2 4 8 }
// x[0] x[1] x[2] XI[3]
}
}
TABLE { 0.5 0.6 1.0 1.5 }
// Y[0] Y[1] Y[2] YI[3]

}

For linear interpolation, the following equation is used:

¥ = v+ YINHIT - YIND

If X < X[0], the values X[0], X[1], Y[O], Y[1] are plugged into the equation.

If X > X[3], thevalues X[2], X[3], Y[2], Y[3] are plugged into the equation.

X[N+1] —X[N] X[N] £ X < X[N+1]

Figure 33 illustrates a non-linear interpolation scheme with the goa of fitting three neighboring points into a

smooth curve.

COoOO0CO0ORRRRRR
VOV ®OOWORNWRU

Figure 33—Illlustration of extrapolation rules

The curve based on the 3 rightmost or the 3 leftmost points, respectively, is used for extrapolation to the right

side or the left side, respectively.
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11.7 Rules for evaluation of arithmetic models

**Add lead-in text**

11.7.1 Arithmetic model with arithmetic submodels

The application program shall decide which arithmetic submodel applies for evaluation in a particular situation.
By default, the arithmetic submodel identified by the DEFAULT keyword or the arithmetic submodel referenced
by the DEFAULT annotation shall be used.

11.7.2 Arithmetic model with table arithmetic body

All arithmetic modelsin the HEADER shall contain aTABLE.

— Describe algorithm to identify correct table entry.
— Refer to INTERPOLATION annotation.

Supplementary EQUATION is legal; this shall be used for interpolation or extrapolation of values out-of-range.
11.7.3 Arithmetic model with equation arithmetic body

Operands in arithmetic expression shall be defined as arithmetic models in a HEADER or as partia arithmetic
models outside a HEADER, but within its scope. It shall be legal to some arguments defined in the HEADER and

some others outside the HEADER. ** scope??

For anamed arithmetic model, the name shall be used as the operand. For an unnamed arithmetic model, the key-
word shall be used as the operand.

A supplementary TABLE is legal; this shall be used asa lookup entry for downstream arithmetic models, when
the arithmetic model itself is within HEADER.

11.8 Overview of arithmetic models

**Add lead-in text**

. : .
11.8.1 Overview of modeling keywords

This section details the keywords used for performance modeling.
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11.8.1.1 Timing models

Table 73 — Table 76 show the set of keywords used for timing measurements and constraints. All keywords
have implied semantics that restrict their capability to describe general temporal relations between arbitrary sig-
nals. For unrestricted purposes, the keyword TIME shall be used.
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Table 73—Timing measurements

Base Default -
Keyword Valuetype units units Description

DELAY number Second n (nano) Time between two threshold crossings within
two consecutive events on two pins. A causal
relationship between the two eventsisimplied.

RETAIN number Second n (nano) Time when an output pin shall retain its value
after an event on the related input pin. RETAIN
appears always in conjunction with DELAY for
the same two pins.

SLEWRATE non-negative Second n (nano) Time between two threshold crossings within

number one event on one pin.
Table 74—Timing constraints
Base Default -
Keyword Valuetype units units Description

HOLD number Second n (nano) Minimum time limit for hold between two
threshold crossings within two consecutive
events on two pins.

NOCHANGE optiona  non- Second n (nano) Minimum time limit between two threshold

negative number crossingswithin two arbitrary consecutive events
on one pin, in conjunction with SETUP and
HOLD.

PERIOD non-negative Second n (nano) Minimum time limit between two identical

number events within a sequence of periodical events.

PULSEWIDTH number Second n (nano) Minimum time limit between two threshold
crossings within two consecutive and comple-
mentary events on one pin.

RECOVERY number Second n (nano) Minimum time limit for recovery between two
threshold crossings within two consecutive
events on two pins.

REMOVAL number Second n (hano) Minimum time limit for removal between two
threshold crossings within two consecutive
events on two pins.

SETUP number Second n (nano) Minimum time limit for setup between two
threshold crossings within two consecutive
events on two pins.

SKEW number Second n (nano) Absolute value is maximum time limit between
two threshold crossings within two consecutive
events on two pins; the sign indicates positive or
negative direction.
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8The associated SETUP and HOLD measurements provide data. NOCHANGE itself need not provide data.

Table 75—Generalized timing measurements

Keyword Valuetype Base units Default units Description
TIME number Second 1 (unit) Time point for waveform
modeling, time span for
average, RM S, and peak
modeling .
FREQUENCY non-negative Hz meg (Mega) Frequency.
number
JITTER non-negative Second n (nano) Uncertainty of arrival
number time.
Table 76—Normalized measurements
Base Default P
Keyword Valuetype units units Description

THRESHOLD non-negative Normalized 1 (unit) Fraction of signal voltage swing, specifying a
number between signal volt- reference point for timing measurement data.
oand1 age swing The threshold is the voltage for which the

timing measurement is taken.

NOISE MARGIN non-negative Normalized 1 (unit) Fraction of signal voltage swing, specifying
number between signal volt- the noise margin. The noise marginisadevia
oand1 age swing tion of the actual voltage from the expected

voltage for a specified signal level.

11.8.1.2 Analog models

Table 77 and Table 78 define the keywords for analog modeling.

Table 77—Analog measurements

Keyword

Valuetype

Base units

Default units Description

CURRENT

number

Ampere

Electrical current drawn
by thecell. A pin can be
specified as annota-
tion.2

m (milli)

ENERGY

number

Joule

Electrical energy drawn
by the cell, including
charge and discharge
energy, if applicable.

p (pico)

POWER

IEEE P1603 Draft 2

number
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Watt

u (micro) Electrical power drawn
by the cell, including
charge and discharge

power, if applicable.
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Table 77—Analog measurements (Continued)

Keyword Valuetype Base units Default units Description
TEMPERATURE number O Celsius 1 (unit) Temperature.
VOLTAGE number Volt 1 (unit) Voltage.

FLUX non-negative Coulomb per 1 (unit) Amount of hot electrons
number Square Meter in units of electrical
charge per gate oxide
area
FLUENCE non-negative Second times 1 (unit) Integral of FLUX over
number Coulomb per time.
Square Meter

8f the annotated PIN has PINTYPE=supply, the CURRENT measurement qualifiesfor power analysis. Inthis
case, the current includes charge/discharge current, if applicable.

Table 78—Electrical components
Default

Keyword Valuetype Base units units Description

CAPACITANCE non-negative Farad p (pico) Pin, wire, load, or net capacitance.
number

INDUCTANCE non-negative Henry n (nano) Pin, wire, load, or net inductance.
number

RESISTANCE non-negative Ohm K (kilo) Pin, wire, load, or net resistance.
number

11.8.1.3 Supplementary models

Table 79 and Table 80 define the keywords for supplementary models.

Table 79—Abstract measurements

Base Default _
Keyword Valuetype units units Description
DRIVE_ STRENGTH non-negative None 1 (unit) Drive strength of a pin, abstract measure for
number (drive resistance) L.
SIZE non-negative None 1 (unit) Abstract cost function for actual or estimated
number area of acell or ablock.
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Table 80—Discrete measurements

Base Default i
Keyword Valuetype units units Description

SWITCHING BITS non-negative None 1 Number of switching bits on a bus.
number

FANOUT non-negative None 1 Number of receivers connected to a net.
number

FANIN non-negative None 1 Number of drivers connected to a net.
number

CONNECTIONS non-negative None 1 Number of pins connected to a net, where
number CONNECTIONS = FANIN+FANOUT.

The actual valuesfor discrete measurements are always integer numbers, however, estimated values can be non-
integer numbers (e.g., the average fanout of anetis 2. 4).

Table 81 describes the arguments for arithmetic models to describe environmental dependency.

Table 81—Environmental data

Annotation string Valuetype Description
DERATE CASE string Derating case, i.e., the combination of process,
supply voltage, and temperature.
PROCESS string Process corner.
TEMPERATURE number Environmental temperature.

11.8.2 Arithmetic models in the context of layout

Table 82 shows keywords for arithmetic models in the context of layout.

Table 82—Arithmetic models for layout data

IEEE P1603 Draft 2

Base Default _—
Keyword Valuetype units units Description
SIZE Non-negative number N/A 1 Abstract, unitless measurement for the size of a
physical object.
AREA Non-negative number Square | p (pico) Areain sguare microns (pico = microz).
Meter
DISTANCE Non-negative number Meter u (micro) Distance between two pointsin microns.
HEIGHT Positive number Meter u (micro) y- dimension of a placeable object
(e.g., cell or block).
z- dimension of arouteable object (e.g., pattern
on routing layer), representing the absolute
height above substrate.
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Table 82—Arithmetic models for layout data (Continued)

Base Default L
Keyword Valuetype units units Description

LENGTH Positive number Meter u (micro) X-, or y- dimension of arouteable object (e.g.,
pattern on routing layer) measured in routing
direction.

WIDTH Positive number Meter u (micro) x-dimension of a placeable object
(e.g., cell or block).
x- or y- dimension of arouteable object (e.g.,
pattern on routing layer) measured in orthogo-
nal direction to the route.

PERIMETER Positive number Meter u (micro) Circumference of a physical object.

THICKNESS Positive number Meter u (micro) z- dimension of a manufacturable physical
object, representing the distance between the
bottom of the object above and the top of the
object below.

OVERHANG Non-negative number Meter u (micro) Distance between the edges of two overlapping
physical objects.

EXTENSION Non-negative number Meter u (micro) Distance between the center and the outer edge

of aphysical object.

Table 83— Table 92 summarize the semantic meanings of arithmetic model keywordsin the context of layout.

Table 83—Semantic meaning of SIZE

Context M eaning
CELL Abstract measure for size of the cell, cost function for design implementation.
WIRE - Asamodel (TABLE or EQUATION):
abstract measure for the size of the wireitself.
- Asargument of amodel (HEADER):
abstract measure for size of the block for which the wireload model applies,
can be calculated by combining the size of al cells and all wiresin the block.
ANTENNA Abstract measure for size of the antenna for which the antennarule applies.
Table 84—Semantic meaning of WIDTH
Context M eaning

CELL, SITE

Horizontal distance between cell or site boundaries, respectively.

WIRE As argument of amodel (HEADER):
horizontal distance between block boundaries for which wireload model applies.
LAYER, Width of awire, orthogonal to routing direction.
ANTENNA
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Table 85—Semantic meaning of HEIGHT

Context

M eaning

CELL, SITE

Vertical distance between cell or site boundaries, respectively.

WIRE As argument of amodel (HEADER):
vertical distance between block boundaries for which wireload mode applies.
LAYER Distance from top of ground plane to bottom of wire.
Table 86—Semantic meaning of LENGTH
Context M eaning
WIRE Estimated routing length of awire in awireload model.
LAYER, Actual routing length of awirein layout.
ANTENNA
Table 87—Semantic meaning of AREA
Context M eaning
CELL Physical area of the cell, product of width and height of arectangular cell.
WIRE - Asamodel (TABLE or EQUATION):
physical area of the wire itself.
- Asargument of amodel (HEADER):
physical area of the block for which wireload model applies,
product of width and height of rectangular block.
LAYER, VIA, Physical area of a placeable or routeable object, measured in the x-y plane.
ANTENNA
Table 88—Semantic meaning of PERIMETER
Context M eaning
CELL Perimeter of the cell, twice the sum of height and width for rectangular cell.
WIRE - Asamodel (TABLE or EQUATION):
perimeter the wire itself.
- Asargument of amodel (HEADER):
perimeter of the block for which wireload model applies,
twice the sum of height and width for rectangular block.
LAYER, VIA, Perimeter of a placeable or routeable object, measured in the x-y plane.
ANTENNA
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Table 89—Semantic meaning of DISTANCE

Context M eaning

RULE Distance between objects for which the rule applies.

Table 90—Semantic meaning of THICKNESS

Context M eaning
LAYER, Distance between top and bottom of a physical object, orthogonal to the x-y plane.
ANTENNA

Table 91—Semantic meaning of OVERHANG

Context Meaning

RULE Distance between the outer border of an object and the outer border of another object
inside the first one.

Table 92—Semantic meaning of EXTENSION

Context Meaning

LAYER, VIA, Distance between the border of the original object and the border of the same object after
RULE, enlargement.

geometric model

11.9 Arithmetic models for timing data

**Add lead-in text**

11.9.1 Specification of timing models
Timing models shall be specified in the context of a VECTOR statement.
11.9.1.1 Template for timing measurements / constraints

The following templates show ageneral timing measurement and a general timing constraint description, respec-
tively, applicable for two pins.

TEMPLATE TIMING MEASUREMENT {
<timeKeywords> = <timeValues> {
FROM
PIN=<fromPin>;
THRESHOLD=<fromThreshold>;
EDGE_NUMBER=<fromEdge>;

}

TO
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PIN=<toPin>;
THRESHOLD=<toThreshold>;
EDGE_NUMBER=< toEdge>;

}
}
TEMPLATE TIMING CONSTRAINT {
LIMIT {
<timeKeywords>
FROM {
PIN=<fromPin>;
THRESHOLD=<fromThreshold>;
EDGE_NUMBER=<fromEdge>;
}
TO {
PIN=<toPin>;
THRESHOLD=<toThreshold>;
EDGE_NUMBER=<tOEdge> ;
}
MIN <timeValueMin>;
MAX = <timeValueMax>;

}

For simplicity, trivial arithmetic models shown here. In general, a HEADER, TABLE, Oof EQUATION construct
can be used for calculation of <timevValues>, <timeValueMins>, Of <timeValueMax>.

A particular timing constraint does not necessarily contain both <t imevalueMin> and <t imeValueMaxs>.
The <fromThresholds> and <toThreshold> can be globaly predefined as explained in 11.10.3.2.

The vector expression in the context where the <t imeKeywords> appears shall contain at least two
expressions of thetype vector single event withthe <fromPin> and <toPins>, respectively, asoper-

ands. The <fromEdge> and <toEdge> point to their respective vector_single event, as shown in
Figure 34.

<fromEdge> <fromEdge> + 1
<fromPin> _ _ _\/ <fromThreshold>
|
| <toEdge> - 1 <toEdge>
<toPin> | _ \/toThresholds
|
|
l |
L >|
<timeValue> Of <timeValueMin> O <timeValueMax>

Figure 34—General timing measurement or timing constraint
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The direction of the respective transition shall be identified by the respective edge literal, i.e., the operator
of therespective vector single event.

The temporal order of the LHS and RHS vector single event expressions within the
vector expressionisindicated by avector binary operator.

Theimplicationson therange of <t imevValue> or <refPin> Or <timeValueMax> are shown in Table 93.

Table 93—Range of time value depending on VECTOR

LHS operand RHS range of <tiglreziiiz\ia?ru;;iziValueMir1>
<fromPin> ->0r ~> <toPin> Positive
<toPin> ->0r ~> <fromPin> Negative
<fromPin> &> <toPin> Positive or zero
<toPin> &> <fromPin> Negative or zero
<fromPin> <-> <toPins> Positive or negative
<toPin> <-> <fromPin> Positive or negative
<fromPin> <&> <toPins> Positive or negative or zero
<toPin> <&> <fromPin> Positive or negative or zero

NOTE—Thistable does not apply for models with CALCULATION=incremental. Incremental values can always be pos-
itive, negative, or zero.

11.9.1.2 Partially defined timing measurements and constraints
A partially defined timing measurement or timing constraint contains only a FROM statement or a TO statement,
but not both. This construct can be used to specify measurements from any point to a specific point (only TO is

specified) or from a specific point to any point (only FROM is specified).

Thisissummarized in Table 94.

Table 94—Partially specified timing measurements and constraints

DIRECTION of PIN FROM or TO specified Specified model applicablity
input FROM only Cell timing arcs starting at this pin.
input TO only Interconnect timing arcs ending at this pin.
output FROM only Interconnect timing arcs starting at this pin.
output TO only Cell timing arcs ending at this pin.

It is recommended to use the constructs for interconnect timing arcs only in conjunction with CALCULA-
TION=incremental. The<timeValue>, <timeValueMin>, Of <t imeValueMax> from thismodel is
added to the <timevalues, <timeValueMins>, Of <timeValueMax> from timing arcs starting or end-
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ing at this pin, respectively. If the construct is used with CALCULATION=absolute, the timing model can
only be used if completely specified interconnect timing models are not available and the result is not be accurate
in general.

11.9.1.3 Template for same-pin timing measurements / constraints

The following templates show atiming measurement and a timing constraint description, respectively, applicable
for the same pin.

TEMPLATE SAME PIN TIMING MEASUREMENT ({
<timeKeyword> = <timeValue> ({
PIN=<refPin>;
EDGE_NUMBER=<refEdges>;
FROM { THRESHOLD=<fromThresholds>; }
TO { THRESHOLD=<toThresholds>; }
}
}
TEMPLATE SAME PIN TIMING CONSTRAINT {
LIMIT {
<timeKeywords>
PIN=<refPin>;
EDGE_NUMBER=<refEdges>;
FROM { THRESHOLD=<fromThresholds; }
TO { THRESHOLD=<toThresholds>; }
MIN = <timeValueMins>;
MAX = <timeValueMax>;

}

Depending on the <t imeKeywords>, the <timevValue>, <timeValueMin>, Of <timeValueMax> iS
measured on the same <refEdge > or between <refEdge> and <refEdge> plus 1. Only the - > or ~> oper-
ators are applicable between subsequent edges. Therefore, the <timevalue>, <timeValueMin>, or
<timeValueMax> are positive by definition.

NOTE—The <fromThreshold> and <toThreshold> can be globally predefined as explained in 11.10.3.2. However,
the THRESHOLD in the context of a PIN does not apply for SAME PIN TIMING MEASUREMENT oOf
SAME _PIN TIMING CONSTRAINT, sincethe <refPin> isnotwithinaFROM or TO statement.

11.9.1.4 Absolute and incremental evaluation of timing models

As mentioned in the previous sections, the calculation models for TIMING MEASUREMENT,
TIMING CONSTRAINT, SAME PIN TIMING MEASUREMENT, and SAME PIN TIMING CONSTRAINT
can have the annotation CALCULATION=absolute (the default) or CALCULATION=incremental. These
annotations are only relevant more than one cal culation model for the same timing arc exists.

Calculation models for the same timing arc with CALCULATION=absolute shall be within the context of
mutually exclusive VECTORS. The vector expression specifies which model to use under which condi-
tion.

Example

VECTOR ( (01 A -> 01 Z) && B & !C ) {
DELAY { CALCULATION=absolute; FROM { PIN=A; } TO { PIN=Z; }
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/* £ill in HEADER, TABLE */ }

}

VECTOR ( (01 A -> 01 Z) && !B & C ) {
DELAY { CALCULATION=absolute; FROM { PIN=A; } TO { PIN=Z; }
/* £ill in HEADER, TABLE */ }

}

Thevectors ( (01 A -> 01 Z) && B & !C )and ( (01 A -> 01 Z) && !B & C ) aremutualy
exclusive. They describe the same timing arc with two mutually exclusive conditions.

In the case of a VECTOR containing acalculation model for atiming arc with CALCULATION=incremental,
there shall be another VECTOR with a calculation model for the same timing arc with CALCULATION=abso-
lute and both vectors shall be compatible. The vector expression of the latter shall necessarily be true
when the vector expression of theformer istrue.

Example

VECTOR (01 A -> 01 Z) {
DELAY { CALCULATION=absolute; FROM { PIN=A; } TO { PIN=Z; }
/* £ill in HEADER, TABLE */ }

}

VECTOR ( (01 A -> 01 Z) &% B & !C ) {
DELAY { CALCULATION=incremental; FROM { PIN=A; } TO { PIN=Z; }
/* £ill in HEADER, TABLE */ }

}

VECTOR ( (01 A -> 01 Z) && !B & C ) {
DELAY { CALCULATION=incremental; FROM { PIN=A; } TO { PIN=Z; }
/* £ill in HEADER, TABLE */ }

}

Thevectors ( (01 A -> 01 Z) &% B & !C )and ( (01 A -> 01 Z) && !B & C ) areboth
compatible with the vector (01 A -> 01 z) and mutually exclusive with each other. The latter describe the
sametiming arc with two mutually exclusive conditions. The former describes the same timing arc without con-
ditions. This modeling styleis useful for timing analysis toolswith or without support for conditions. The vectors
with conditions, if supported, add accuracy to the calculation. However, the vector without conditions is always
available for basic caculation.

11.9.1.5 PIN-related timing models

SAME PIN TIMING MEASUREMENT and SAME PIN TIMING CONSTRAINT (see11.9.1 and 11.12.1.4)
are pin-related timing models. They are defined with reference to the externally accessible node.

11.9.2 TIME statement

**Add lead-in text**

11.9.2.1 TIME

The <timeKeyword> TIME describes a general TIMING MEASUREMENT Of TIMING CONSTRAINT
without implying any particular relationship between <fromEdge > and <toEdge>.

In generad, <fromPin> and <toPins> refer to two different pins. However, it is legal for <fromPin> and
<toPin> to refer to the same pin.
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The default value for <fromEdge> and <toEdge> shall be 0.
11.9.2.2 TIME within the LIMIT construct
Within aLIMIT construct, TIME can be used in the following ways:

— TIME itself issubjectedto aLIMIT (see 11.12.11.2)
— TIME istheargument of amodel subjectedto aL.IMIT

When TIME isused as argument of amodel within the LIMIT construct, it shall mean the amount of time during
which the device is exposed to the quantity modeled within the LIMIT construct. This amount of time is aso
called alifetime.

Example

LIMIT {
CURRENT {
PIN = my pin;
MEASUREMENT = static;
MAX {
HEADER { TIME TEMPERATURE }
EQUATION { 6.5*EXP(-10/(TEMPERATURE+273))*TIME** (-0.3) }

}

The limit for maximum current depends on the temperature and the expected lifetime of the device.
11.9.2.3 TIME to peak measurement

For amodel in the context of a VECTOR, with a peak measurement, the TIME annotation shall define the time
between areference event within the vector expression and the instant when the peak value occurs.

For that purpose, either the FROM or the TO statement shall be used in the context of the TIME annotation, con-
taining a PIN annotation and, if necessary, a THRESHOLD and/or an EDGE_NUMBER annotation.

If the FROM statement is used, the start point shall be the reference event and the end point shall be the occur-
rence time of the peak, as shown in Figure 35.

<frqudqe>

<fromPin> <fromThreshold>

T
|
|
| |
—TIME >
| | _<modelvValue>
MEASUREMENT = peak | /:\
: I

Figure 35—Illustration of time to peak using FROM statement
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If the TO statement is used, the start point shall be the occurrence time of the peak and the end point shall be the
reference event, as shown in Figure 36.

<tOque>

<toThreshold>

<toPin>

TIME ’:
| MEASUREMENT = peak
|

< %
|
|

Figure 36—lllustration of time to peak using TO statement
Example

VECTOR (01 A -> 01 B -> 10 B) {
CURRENT peakl = 10.8 ({
PIN = vdd;
MEASUREMENT = peak;
TIME = 3.0 { UNIT=ns; FROM { PIN=A; EDGE_NUMBER=0; } }
}
CURRENT peak2 = 12.3 {
PIN = vdd;
MEASUREMENT = peak;
TIME = 2.0 { UNIT=ns; TO { PIN=B; EDGE NUMBER=1; } }

}
Here, the peak with magnitude 10 . 8 occurs 3 nanoseconds after theevent 01 A.
The peak with magnitude 12 . 3 occurs 2 nanoseconds beforethe event 10 B.
11.9.2.4 Waveform description
This section specifies waveform descriptions.
11.9.2.4.1 Principles

In order to describe an arithmetic model representing a waveform, TIME shall be an argument in the HEADER.
Other arguments can appear in the HEADER aswell. The model can be described asa TABLE or EQUATION.

Example for TABLE

VOLTAGE
HEADER {
TIME
UNIT = ns;
INTERPOLATION=linear;
TABLE { 0.0 1.0 1.5 2.0 3.0 }
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}
TABLE { 0.0 0.0 5.0 0.0 0.0 }
}
Example for EQUATION
VOLTAGE
HEADER {
TIME { UNIT = ns; |}
}
EQUATION {
(TIME < 1.0) 2 0
(TIME < 1.5) ? 5.0*(TIME - 1.0)
(TIME < 2.0) ? 5.0%(2.0 - TIME)
0.0
}

}

Both models describe the same piece-wise linear waveform, as shown in Figure 37.

5.0

VOLTAGE
0.0 TIME

0.0 10 15 20 3.0

Figure 37—Illustration of a piece-wise linear waveform

If the model is within the context of a VECTOR, either the FROM or the TO statement can be used in the context
of TIME, pointing to areference event which occursat TIME = 0 relative to the waveform description. See xxx
for the definition of start and end points of measurements.

Example

VECTOR (01 A -> 01 B -> 10 B) {
VOLTAGE
HEADER {
TIME
FROM { PIN = B; EDGE NUMBER = 1; }
TABLE { 0.0 1.0 1.5 2.0 3.0 }
// alternative description:
// TO { PIN = B; EDGE_NUMBER = 1; }
// TABLE { -3.0 -2.0 =-1.5 -1.0 0.0 }
}
}

TABLE { 0.0 0.0 5.0 0.0 0.0 }
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}

NOTE—Use the FROM statement. If the TO statement is used, TIME is measured backwards, which is counter-intuitive. For
dynamic analysis, use the last event in the vector expression asthe reference. Otherwise, the analysis tool remembers
the occurrence time of previous eventsin order to place the waveform into the context of absolute time.

11.9.2.4.2 Annotations within a waveform
The MEASUREMENT annotation transient shal apply as adefault for waveforms.

The FREQUENCY annotation can be used to specify a repetition frequency of the waveform. The following
boundary restrictions are imposed in order to make the waveform repeatable:

— Theinitial value and the final value of waveform shall be the same.

— Theextrapolation beyond theinitial and the final value of the waveform shall yield the same result. Thus,
the first, second, last, and second-to-last point of the waveform shall be the same.

— Thetime window between the first and the last measurement shall be smaller or equal to
1 / FREQUENCY.

Thisisillustrated in Figure 38.

| | TIME
|W[O] (1] T[M-1] |T[M] g
- (TIMT - T70]) ~

- 1/ FREQUENCY >

Figure 38—TIME and FREQUENCY in a waveform
11.9.3 FREQUENCY statement

**Add lead-in text**

11.9.3.1 FREQUENCY within a LIMIT construct
WithinaLIMIT construct, FREQUENCY can be used in the following ways:

— FREQUENCY itself issubjected toa LIMIT
— FREQUENCY isthe argument of a model subjectedto aLIMIT
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FREQUENCY can be subjected to a LIMIT within the context of a VECTOR. The LIMIT construct specifies an
upper and/or lower limit for the repetition frequency of the event sequence described by the
vector expression.

Example

VECTOR ( 01 A -> 01 Z ) {
LIMIT {
FREQUENCY {
MAX {

HEADER {
SLEWRATE { PIN = A; TABLE { 0.1 0.5 1.0 5.0 } }
CAPACITANCE { PIN = Z; TABLE { 0.1 0.4 1.6 } }

}

TABLE {
200 190 180 120
150 150 145 130

80 80 80 70

}

The maximum allowed switching frequency for arising edge on 2, followed by arising edge on Z, depends on
the slewrate on A and the load capacitance on z.

A LIMIT for a quantity with MEASUREMENT annotation average, rms, or peak can be frequency-depen-
dent. The FREQUENCY specifies the repetition frequency for the measurement.

Example

LIMIT {
CURRENT {
PIN = vdd;
MEASUREMENT = average;
MAX {
HEADER { FREQUENCY TIME TEMPERATURE }
EQUATION {
(FREQUENCY<1) ? 6.5*EXP (-10/ (TEMPERATURE+273) ) *TIME** (-0.3)
7.8*EXP (-9/ (TEMPERATURE+273) ) *TIME** (-0.2)

}

The limit for average current is specified for low frequencies ( < IMHz) and for higher frequencies. In both
cases, the limit depends on temperature and lifetime.

11.9.3.2 TIME and FREQUENCY annotation

Arithmetic modelswith certain values of MEASUREMENT annotation can also have either TIME or FREQUENCY
as annotations.
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The semantics are defined in Table 95.

Table 95—Semantic interpretation of MEASUREMENT, TIME, or FREQUENCY annotation

MEASUREMENT . . . Semantic meaning of FREQUENCY
annotation Semantic meaning of TIME annotation annotation

transient Integration of analog measurement isdone | Integration of analog measurement is
during that time window. repeated with that frequency.

static N/A N/A

average Average value is measured over that time Average value measurement is repeated
window. with that frequency.

rms Root-mean-square value is measured over Root-mean-square measurement is repeated
that time window. with that frequency.

peak Peak value occurs at that time (only within | Observation of peak value isrepeated with
context of VECTOR). that frequency.

Inthe case of average and rms, theinterpretation FREQUENCY = 1 / TIME isvalid. Either one of these
annotations shall be mandatory. The values for average measurements and for rms measurements scale lin-
early with FREQUENCY and 1 / TIME, respectively.

Inthecase of transient and peak, theinterpretation FREQUENCY = 1 / TIME isnotvalid. Either one
of these annotations shall be optional. The values do not necessarily scale with TIME or FREQUENCY. The TIME
or FREQUENCY annotations for transient measurements are purely informational.

11.9.4 DELAY and RETAIN statements

**Add lead-in text**

11.9.4.1 DELAY

The <t imeKeyword> DELAY describesa TIMING MEASUREMENT implying a causal relationship between
<fromEdge> and <toEdge>.

Usudly, <fromPin> refers to an input pin and <toPin> refers to an output pin. However, it is lega for
<fromPin> and <toPin> to refer to an output pin.

The default value for <fromEdge> and <toEdge> shal be 0, unless the DELAY statement appears in con-
junction with aRETAIN statement within the context of the same VECTOR.

11.9.4.2 RETAIN

The <timeKeyword> RETAIN describes a TIMING MEASUREMENT implying a causa relationship
between <fromEdge > and <toEdge> in the same way as DELAY.

RETAIN is used to describe the elapsed time until the output changes its old value, whereas DELAY is used to
describe the elapsed time until the output settlesto a stable new value, as shown in Figure 39.
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<fromEdge>

<fromPin>

<toEdge> <toEdge>

RETAIN

|

|

_ |
<toPin> |
|

|

|

L

|
|
|
!

Figure 39—RETAIN and DELAY

When DELAY appears in conjunction with RETAIN, the <fromEdges> for both measurements shall be the
same. The <toEdge > for DELAY shall be the <toEdge > for RETAIN plus 1.

The default value for < fromEdge > and <toEdge> for RETAIN shall be 0. The default value for <toEdge>
for DELAY shall be 1.

11.9.5 SLEWRATE statement

The <timeKeyword> SLEWRATE describes a SAME PIN TIMING MEASUREMENT for <timeValues
defining the duration of asignal transition or a fraction thereof.

The SLEWRATE appliesfor the <refEdge> onthe <refPin>. Thedefault value for <refEdge > shall be 0.
11.9.6 SETUP and HOLD statement

**Add lead-in text**

11.9.6.1 SETUP

The <timeKeywords> SETUP describes a TIMING CONSTRAINT for <timeValueMins> defining the
minimum stable time required for the data signal on the < fromPin> beforeit is sampled by the strobe signal on
the <toPins>.

The <fromPin> usualy isaninput pin with SIGNALTYPE=data. The <toPins> isaninput pin with SIGN-
ALTYPE=clock.

The default value for < fromEdge > and <toEdge> for SETUP shall be 0.

11.9.6.2 HOLD

The <t imeKeywords> HOLD describesa TIMING CONSTRAINT for <timeValueMins> defining the min-
imum stable time required for the data signal on the <toPin> after it is sampled by the strobe signal on the

<fromPins>.

The <toPin> usudly isaninput pin with SIGNALTYPE=data. The <fromPin> isan input pin with SIGN-
ALTYPE=clock.
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The default value for <fromEdge> shal be 0. The default value for <toEdge> shal be 0, unless HOLD
appears in conjunction with SETUP in the context of the same VECTOR. In that case, the default value for
<toEdge> shall be 1. All of thisis depicted in Figure 40.

<to$dqe>

<fromhEdge>
|

strobe |
| SETUP |
|
|

data <frorLEdge>
HOLD

|
<toEdge>

Figure 40—SETUP and HOLD

The <timeValueMin> for SETUP or the <t imeValueMin> for HOLD with respect to the same strobe can
be negative. However, the sum of both values shall be positive. The sum represents the minimum duration of a
valid data signal around a strobe signal.

11.9.7 NOCHANGE statement
The <timeKeyword> NOCHANGE describes a SAME PIN TIMING CONSTRAINT defining the require-

ment for a stable signa on a pin subjected to SETUP and HOLD on subseguent edges of a strobe signal ., as shown
in Figure 41.

| <toE?ge> <fropEdqe>
strobe \‘/ >
. SETUP /| \ HOLD
<fropEdge> | | <tokdge>
| | | |
data i i
/N\ . NOCHANGE |
<refEdge>

Figure 41—NOCHANGE, SETUP, and HOLD

The NOCHANGE applies between the <refEdge> and the subsequent edge, i.e., <refEdge> plus 1 on the
<refPins. The default value for <refEdge> shal be 0.

When NOCHANGE appears in conjunction with SETUP and HOLD within the context of the same VECTOR, the
default value for <fromEdge> and <toEdge> of SETUP shall be 0 and the default value for < fromEdge >
and <toEdge> of HOLD shall be 1.

11.9.8 RECOVERY and REMOVAL statements

**Add lead-in text**
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11.9.8.1 RECOVERY

The <t imeKeyword> RECOVERY describesa TIMING CONSTRAINTfor <timeValueMins definingthe
minimum stable time required for an asynchronous control signal on the <fromPin> to be inactive before a
strobe signal on the <toPin> can beactive.

The <fromPin> usually isan input pin with SIGNALTYPE=set |clear. The <toPin> isaninput pin with
SIGNALTYPE=clock.

The default value for <fromEdge> and <toEdge> for RECOVERY shall be 0.

11.9.8.2 REMOVAL

The <timeKeyword> REMOVAL describesa TIMING CONSTRAINT for <timeValueMin> defining the
minimum stable time required for an asynchronous control signal on the <toPin> to remain active after over-

riding a strobe signal on the <fromPins>.

The <toPin> usually isaninput pin with SIGNALTYPE=set | clear. The <fromPin> isaninput pin with
SIGNALTYPE=clock.

The default value for < fromEdge > and <toEdge> for REMOVAL shall be 0.

REMOVAL can appear in conjunction with RECOVERY within the context of the same VECTOR, as shown in
Figure 42.

<toEdge>
<frohEdge> ! '
strobe | |
| RECOVERY | |
<fromEdge>
: T <toédqe>
nc. control
i " REMOVAL
‘x same edge, shifted _J

Figure 42—RECOVERY and REMOVAL
The <timeValueMins> for RECOVERY or the <timeValueMin> for REMOVAL with respect to the same
strobe can be negative. However, the sum of both values shall be positive. The sum represents the time window
around the clock signal when the asynchronous control signal shall not switch.

11.9.9 SKEW statement

**Add lead-in text**

11.9.9.1 SKEW between two sighals

The <timeKeyword> SKEW describesa TIMING CONSTRAINT for <timeValueMax> defining the max-
imum allowed time separation between <fromEdge> on <fromPin> and <toEdge> 0n <toPin>.
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The default value for < fromEdge > and <toEdge> for SKEW shall be 0.
11.9.9.2 SKEW between multiple signals

SKEW can also describe the maximum time distortion between signals on multiple pins. In this case, alist of pins
appearsin form of a multi-value annotation. No FROM or TO containers can be used here.

Example
SKEW
PIN { <pinList> }

EDGE_NUMBER { <edgeList> }
<skewData>

}

The default for EDGE_NUMBER in SKEW for multiple signals shall be alist of 0s.

A special case of multiple pinsisasingle bus. In this case, the unnamed assignment syntax isasovalid as
dternativetothemulti value assignment syntax (see Section 8.15.3).

Example

SKEW { PIN = my bus pin[8:1]; }
or

SKEW { PIN { my bus pin[8:1] } }
11.9.10 PULSEWIDTH statement

The <timeKeyword> PULSEWIDTH describes a SAME PIN TIMING CONSTRAINT for <timeval-
ueMins> defining the minimum duration of the signal before changing state.

The PULSEWIDTH statement is applicable for both input and output pins. In the case of an input pin, it repre-
sents atiming check against the minimum duration. In case of an output pin, it represents the minimum possible
duration of the signal.

The PULSEWIDTH applies between the <refEdge > and the subsequent edge, i.e., <refEdge > plus 1 on the
<refPin>. Thedefault value for <refEdge> shall be 0.

11.9.11 PERIOD statement

The <timeKeywords> PERIOD describes a SAME PIN TIMING CONSTRAINT for <timeValueMins>
defining the minimum time between subsequent repetitions of asignal. Because of periodicity, <fromThresh-
0ld> and <toThreshold> are not required. Therefore, FROM and TO statements do not appear.

If the VECTOR describes a completely specified event sequence, <refPin> and <refEdge> are not required.
PERIOD appliesfor the complete event sequence. If the VECTOR describes a partially specified event sequence,
involving the ~> operator, <refPin> and <refEdge > are required.

11.9.12 JITTER statement

The <timeKeyword> JITTER describes a SAME PIN TIMING MEASUREMENT for <timevValues
defining the actual uncertainty of arrival time for aperiodical signal at a pin.

254 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 2



The JITTER applies for the <refEdge> on the <refPin>. The default value for <refEdge> shall be 0.
Threshold definitions, i.e., <fromThresholds> or <toThreshold> do not apply.

A limit for tolerable jitter at a pin can be expressed using the LIMIT construct, as shown in the template for
SAME PIN TIMING CONSTRAINT.

11.9.13 THRESHOLD statement

**Add lead-in text**

11.9.13.1 THRESHOLD definition

The THRESHOLD represents a reference voltage level for timing measurements, normalized to the signal voltage
swing and measured with respect to the logic 0 voltage level, as shown in Figure 43.

V (logic 1)
A
AV

AViie AViy,

\j y
V (logic 0) 'mel
AV AV
threshold ;o = — 158 threshold 4y = —al
(rise AV (fall) AV

Figure 43—THRESHOLD measurement definition
The voltage levels for logic 1 and 0 represent afull voltage swing.

Different threshold data for RISE and FALL can be specified or else the data shall apply for both rising and fall-
ing transitions.

The THRESHOLD statement has the form of an arithmetic model. If the submodel keywords RISE and FALL are
used, it has the form of an arithmetic model container.

Examples
THRESHOLD = 0.4;
THRESHOLD { RISE = 0.3; FALL = 0.5; }
THRESHOLD { HEADER { TEMPERATURE {TABLE{ 0 50 100 }}}
TABLE { 0.5 0.4 0.3}}

11.9.13.2 Context of THRESHOLD definitions

The THRESHOLD statement can appear in the context of a FROM or TO container. In this case, it specifies the
applicable reference for the start and end point of the timing measurement, respectively.
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Example

SLEWRATE {
FROM { THRESHOLD = 0.2;
TO { THRESHOLD = 0.8; }

}
}

The THRESHOLD statement can also appear in the context of a PIN. In this case, it specifies the applicable refer-
ence for the start or end point of timing measurements indicated by the PIN annotation inside a FROM or TO con-
tainer, unless a THRESHOLD is specified explicitly inside the FROM or TO container.

If both the RISE and FALL thresholds are specified and the switching direction of the applicable pin is clearly
indicated in the context of a VECTOR, the RISE or FALL data shall be applied accordingly.

Example

PIN A { THRESHOLD { RISE = 0.3; FALL
PIN Z { THRESHOLD = 0.4; }
// other statements
VECTOR ( 01 A -> 10 Z ) {

DELAY { FROM { PIN=A; } TO { PIN=Z; } }
// the applicable threshold for A is 0.3
// the applicable threshold for Z is 0.4

0.5; } }

If thresholds are needed for exact definition of the model data, the FROM and TO containers shall each contain an
arithmetic model for THRESHOLD.

A THRESHOLD statement can also appear as argument of an arithmetic model for timing measurements. In this
case, it shall contain a PIN annotation matching another PIN annotation in the FROM or TO container.

Example

DELAY {
FROM { PIN = A; THRESHOLD = 0.5; |}
TO { PIN = Z; }
HEADER { THRESHOLD { PIN = Z; TABLE { 0.3 0.4 0.5 } }
TABLE { 1.23 1.45 1.78 }
}
/* The measurement reference for pin A is always 0.5. The delay from A to
Z is expressed as a function of the measurement reference for pin Z. */

FROM and TO containers with THRESHOLD definitions, yet without PIN annotations, can appear within
unnamed timing model definitions in the context of a VECTOR, CELL, WIRE, SUBLIBRARY, Or LIBRARY
object for the purpose of specifying global threshold definitions for all timing models within scope of the defini-
tion. The following priorities apply:

a) THRESHOLD inthe HEADER of the timing model

b) THRESHOLD inthe FROM or TO statement within the timing model

C) THRESHOLD for timing model definition in the context of the same VECTOR

d) THRESHOLD withinthe PIN definition

€) THRESHOLD for timing model definition in the context of the same CELL of WIRE
f)  THRESHOLD for timing model definition in the context of the same SUBLIBRARY
g) THRESHOLD for timing model definition in the context of the same LIBRARY

h) THRESHOLD for timing model definition outside LIBRARY
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Example

LIBRARY my library {
DELAY {

FROM { THRESHOLD = 0.4; }
TO { THRESHOLD = 0.4; }
}
SLEWRATE {
FROM { THRESHOLD { RISE = 0.2; FALL = 0.8; } }
TO { THRESHOLD { RISE = 0.8; FALL = 0.2; } }

}

CELL my cell ({
PIN A { DIRECTION=input; THRESHOLD { RISE = 0.3; FALL = 0.5; } }
PIN Z { DIRECTION=output; }
VECTOR (01 A -> 10 2) {
DELAY { FROM { PIN=A; } TO { PIN=Z; } }
SLEWRATE { PIN = Z; }

}
}
// delay is measured from A (threshold=0.3) to Z (threshold=0.4)
// slewrate on Z is measured from threshold=0.8 to threshold=0.2.

11.10 Auxiliary statements related to timing data

**Add lead-in text**

11.10.1 FROM and TO statements

A FROM container and a TO container shall be used inside timing measurements and timing constraints. Depend-
ing on the semantics of the timing model (see 11.9.1), they can contain a THRESHOLD statement, PIN annota-
tion, and/or EDGE_NUMBER annotation, as shown in Syntax 112.

from ::=
FROM { from_to_items}

to:=

TO { from_to_items}
from to items::=

from_to_item { from_to_item}
from to item::=

PIN_single value_annotation
| EDGE_single value_annotation
| THRESHOLD_arithmetic_model

Syntax 112—FROM and TO statements

The datain the FROM and TO containers define the measurement start and end point, respectively.
Example
DELAY {

FROM {PIN = data in; THRESHOLD { RISE = 0.4; FALL = 0.6;} }
TO  {PIN = data out; THRESHOLD = 0.5;}

IEEE P1603 Draft 2 Advanced Library Format (ALF) Reference Manual 257

on

10

15

20

25

30

35

40

45

50

55



10

15

20

25

30

35

40

45

50

55

Thedelay ismeasured from pindata_intopindata out. Thethreshold fordata iniso.4 fortherising
signal and 0. 6 for the falling signa. Thethreshold for data_out is0. 5, which applies for both the rising and
falling signals.

11.10.2 EARLY and LATE statements

The EARLY and LATE containers define the boundaries of timing measurementsin one single analysis, as shown
in Syntax 113. They only apply to DELAY and SLEWRATE. Both of them need to appear in both containers.

EARLY_arithmetic_model_container ::=

EARLY { early_late_arithmetic_models }
LATE_arithmetic_model_container ::=

E { early_late_arithmetic_models }

early_late arithmetic_models ::=

early late arithmetic_model { early_late arithmetic_model }
early_late arithmetic_model ::=

DELAY _arithmetic_model
| RETAIN_arithmetic_model
| SLEWRATE_arithmetic_model

Syntax 113—EARLY and LATE statements

The quadruple
EARLY {
DELAY { FROM {...} TO { ...} /* data */ }
SLEWRATE { /* data */ }
LATE
DELAY { FROM {...} TO { ...} /* data */ }

SLEWRATE { /* data */ }

is used to calculate the envelope of the timing waveform at the TO point of a delay arc with respect to the timing
waveform at the FROM point of adelay arc.

The EARLY DELAY is asmaler number (or a set of smaller numbers) than the LATE DELAY. However, the
EARLY SLEWRATE isnot necessarily smaller than the LATE SLEWRATE, since the SLEWRATE of the EARLY
signal can be larger than the SLEWRATE of the LATE signal.

11.10.3 Annotations for arithmetic models for timing data

. cor tirni

This section details the auxiliary statements used for timing modeling.
11.10.3.1 PIN annotation

If the timing measurements or timing constraints, respectively, apply semantically for two pins (see 11.9.1.1),
the FROM and TO containers shall each contain the PIN annotation.

Example
DELAY {

FROM { PIN = ;
TO { PIN = Z ; }
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Otherwisg, if the timing measurements or timing constraints apply semanticaly only to one pin (see 11.9.1.3),
the PIN annotation shall be outside the FROM or TO container.

Example

SLEWRATE {
PIN = A ;
}

11.10.3.2 EDGE_NUMBER annotation

The EDGE_NUMBER annotation within the context of a timing model shall specify the edge where the timing
measurement applies. The timing model shall be in the context of a VECTOR. The EDGE_NUMBER shall have an
unsigned val ue pointing to exactly one of subsequent vector single event expressions applicable to the
referenced pin. The EDGE_NUMBER shall be counted individually for each pin which appears in the VECTOR,
starting with zero (0).

If the timing measurements or timing constraints, apply semantically to two pins (see 11.9.1.1), the
EDGE_NUMBER annotation shall be legal inside the FROM or TO container in conjunction with the PIN annota-
tion.

Example
DELAY {
FROM { PIN = A ; EDGE NUMBER = 0; }
TO { PIN = Z ; EDGE NUMBER = 0; }

}

Otherwise, if the timing measurements or timing constraints apply semantically only to one pin (see 11.9.1.3),
the EDGE_NUMBER annotation shall be legal outside the FROM or TO container in conjunction with the PIN
annotation.
Example
SLEWRATE {
PIN = A ; EDGE NUMBER = O0;
}

The default values for EDGE_NUMBER are specific for each timing model keyword (see 11.9.1).

The EDGE_NUMBER annotation is necessary for complex timing models involving multiple transitions on the
same pin, as illustrated by the Figure 44 — Figure 46 and their examples.
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_ DELAY d1l
n
out
Figure 44—Schematic of a pulse generator
| | |
in | | |
| DELAY dl: : >
EDGE_NUMBER = 0 >| | time
! !
out | | |
|
| |
1 | |
EDGE_NUMBER = 0 EDGE_NUMBER = 1

260

Figure 45—Timing diagram of a pulse generator
VECTOR ( 01 in -> 01 out -> 10 out ) {
DELAY dl {
FROM { PIN = in; }
TO { PIN = out; EDGE NUMBER = 0; }
}
DELAY d2 {
FROM { PIN = in; }
TO { PIN = out; EDGE NUMBER

Il
=
—
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| | | |
| | | |
RAS | | | |
| | | |

| 1\ | |
EDGE NUMBER = 0 EDGE NUMBER = 1
| + PeEy | | |
CAS | SETUlL s1 IJIOL]ZI) hil | | |
> SETUP |g2 | HOLD h2
| | |
| | L | | |
| | | | EDGE_NPMBER =0 E?GE_NU%BER =1
addr | o | | |
| | I\ | | | |
| | | |
| | /| | | |
EDGE_NFMBER F 0 EDFEﬂNUMBER T 1 FDGE_NFMBER = 2
| | |

Figure 46—Timing diagram of a DRAM cycle
VECTOR (?! addr ->01 RAS ->10 RAS ->?! addr ->01 CAS ->10 CAS ->?! addr) {
SETUP sl ({
FROM { PIN = addr; EDGE NUMBER = 0
TO { PIN = RAS; EDGE_NUMBER = 0; }

i)
}

HOLD hl {
FROM { PIN = RAS; EDGE NUMBER = 1; }
TO { PIN = addr; EDGE NUMBER = 1; }
}
SETUP s2 {
FROM { PIN = addr; EDGE NUMBER = 1; }
TO { PIN = CAS; EDGE NUMBER = 0; }
}
HOLD h2 {
FROM { PIN = CAS; EDGE NUMBER = 1; }
TO { PIN = addr; EDGE NUMBER = 2; }

11.11 Arithmetic models for environmental data

. : .
This section defines the environmental dependencies for electrical data.
11.11.1 PROCESS and DERATE_CASE statement

**Add lead-in text**
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11.11.1.1 PROCESS

The following identifiers can be used as predefined process corners:
?n?p  process definition with transistor strength

where ? can be

s strong
w weak

The possible process name combinations are shown in Table 96.

Table 96—Predefined process names

Process name Description
snsp Strong NMOS, strong PMOS.
snwp Strong NMOS, weak PMOS.
wnsp Weak NMOS, strong PMOS.
wnwp Weak NMOS, weak PMOS.

11.11.1.2 DERATE_CASE
The following identifiers can be used as predefined derating cases:
nom nominal case
bc? prefix for best case
we? prefix for worst case
where ? can be
com suffix for commercial case
ind suffix for industrial case

mil suffix for military case

The possible derating case combinations are defined in Table 97.

Table 97—Predefined derating cases

Derating case Description
bccom Best case commercial.
bcind Best case industrial.
bemil Best case military.
wceom Worst case commercial.
wcind Worst case military.
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Table 97—Predefined derating cases (Continued)

Derating case Description

wemil Worst case military.

11.11.1.3 Lookup table without interpolation

The PROCESS or DERATE_CASE can be used in a TABLE within the HEADER of an arithmetic model for elec-
trical data, e.g., DELAY. Data can not be interpolated in the dimension of this table.

Example
DELAY {
UNIT = ns;

HEADER {
PROCESS { TABLE { nom snsp wnwp |} }
}

TABLE { 0.4 0.3 0.6 }

}

Here, the DELAY is0.4 ns for nominal process, 0.3 ns for snsp, and 0.6 ns for wnwp. A delay “in-
between” snsp and wnwp can not be interpolated.

11.11.1.4 Lookup table for process- or derating-case coefficients

A nested arithmetic model construct can be used to describe lookup tables for coefficients, based on PROCESS
or DERATE CASE. These coefficients can be used in an EQUATION to calculate electrical data, e.g., DELAY.

Example
DELAY {
UNIT = ns;

HEADER {
PROCESS { HEADER { nom snsp wnwp } TABLE {0.0 -0.25 0.5} }
}

EQUATION { (1 + PROCESS)*0.4 }

}
The equation uses the PROCESS coefficient 0. 0 for nominal, -0.25 for snsp, and 0. 5 for wnwp. There-
forethe DELAY is 0.4 ns for the nominal process, 0.3 ns for snsp,and 0.6 ns for wnwp. Conceivably,
the DELAY can be caculated for any value of the coefficient.
11.11.2 TEMPERATURE statement
TEMPERATURE can be used as argument in the HEADER of an arithmetic model for timing or electrical data. It

can also be used as an arithmetic model with DERATE CASE as argument, in order to describe what temperature
applies for the specified derating case.

11.12 Arithmetic models for electrical data

**Add lead-in text**
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11.12.1 PIN-related arithmetic models for electrical data
This section details the PIN arithmetic models for electrical data.
11.12.1.1 Principles

Arithmetic models for electrical data can be associated with a pin of a cell. Their meaning is illustrated in
Figure 47.

source sink
current node resistance inductance node  cyrrent
4> 47
voltage voltage

capacitance

Figure 47—General representation of electrical models around a pin

A pin is represented as a source node and a sink node. For pins with DIRECTION=1input, the source node is
externally accessible. For pinswith DIRECTION=output, the sink node is externally accessible.

11.12.1.2 CAPACITANCE, RESISTANCE, and INDUCTANCE

RESISTANCE and INDUCTANCE apply between the source and sink node. CAPACITANCE applies between
the sink node and ground. By default, the values for resistance, inductance and capacitance shall be zero (0).

11.12.1.3 VOLTAGE and CURRENT

VOLTAGE and CURRENT can be measured at either source or sink node, depending on which node is externally
accessible. However, a voltage source can only be connected to a source node. The sense of measurement for
voltage shall be from the node to ground. The sense of measurement for current shall be into the node.

11.12.1.4 Context-specific semantics

An arithmetic model for VOLTAGE, CURRENT, SLEWRATE, RESISTANCE, INDUCTANCE, and CAPACI -
TANCE can be associated with a PIN in one of the following ways.

a) A model inthe context of aPIN
Example

PIN my pin {
CAPACITANCE = 0.025;

b) A modd in the context of a CELL, WIRE, or VECTOR with PIN annotation
Example

VOLTAGE = 1.8 { PIN = my pin; }

264 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 2



The model in the context of a PIN shall be used if the datais completely confined to the pin. That means, no
argument of the model shall make reference to any pin, since such reference implies an external dependency. A
model with dependency only on environmental data not associated with apin (e.g., TEMPERATURE, PROCESS,
and DERATE_CASE) can be described within the context of the PIN.

A model with dependency on external data applied to apin (e.g., load capacitance) shall be described outside the
context of the PIN, using a PIN annotation. In particular, if the model involves a dependency on logic state or
logic transition of other PINS, the model shall be described within the context of a VECTOR.

Figure 48 illustrates electrical models associated with input and output pins.

external driver Input pin output pin external load
current source sink source sink , current
s = N —
voltag - voltage

Figure 48—Electrical models associated with input and output pins

Table 98 and Table 99 define how models are associated with the pin, depending on the context.

Table 98—Direct association of models with a PIN

. M odel in context of CELL, WIRE, and
Model Model in context of PIN VECTOR with PIN annotation
CAPACITANCE Pin self-capacitance. Externally controlled capacitance at the pin,
e.g., voltage-dependent.
INDUCTANCE Pin self-inductance. Externally controlled inductance at the pin,
e.g., voltage-dependent.
RESISTANCE Pin self-resistance. Externally controlled resistance at the pin,
e.g., voltage-dependent, in the context of a
VECTOR for timing-arc specific driver
resistance.
VOLTAGE Operational voltage measured at pin. Externally controlled voltage at the pin.
CURRENT Operational current measured into pin. Externally controlled current into pin.
SAME_PIN TIMING For model definition, default, etc.; In context of VECTOR for timing arc, other
MEASUREMENT not for the timing arc. context for definition, default, etc.
SAME_PIN TIMING For model definition, default, etc.; In context of VECTOR for timing arc, other
CONSTRAINT not for the timing arc. context for definition, default, etc.
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Table 99—External association of models with a PIN

Model / Context

LIMIT within PIN or with PIN annotation

Model argument with PIN
annotation

CAPACITANCE Min or max limit for applicable load. Load for model characterization.
INDUCTANCE Min or max limit for applicable load. Load for model characterization.
RESISTANCE Min or max limit for applicable load. Load for model characterization.
VOLTAGE Min or max limit for applicable voltage. Voltage for model characterization.
CURRENT Min or max limit for applicable current. Current for model characterization.

SAME _PIN TIMING
MEASUREMENT

Currently applicable for min or max limit for
SLEWRATE.

Stimulus with SLEWRATE for model
characterization.

SAME_PIN TIMING
CONSTRAINT

N/A, since the keyword means a min or max
limit by itself.

N/A

Example

CELL my_cell
PIN pinl

DIRECTION=input; CAPACITANCE =

0.05; }

{
{

PIN pin2 { DIRECTION=output; LIMIT { CAPACITANCE { MAX=1.2; } } }
{

PIN pin3

DIRECTION=input; }

PIN pin4 { DIRECTION=input; }

CAPACITANCE ({
PIN=pin3;

HEADER { VOLTAGE { PIN=pin4; } }

EQUATION {

}

The capacitance on pinl is 0. 05. The maximum allowed load capacitance on pin2 is 1. 2. The capacitance

0.25 + 0.34*VOLTAGE }

on pin3 depends on the voltage on pind.

11.12.2 CAPACITANCE statement

**Add lead-in text**

11.12.3 RESISTANCE statement

**Add lead-in text**

11.12.4 INDUCTANCE statement

**Add lead-in text**

11.12.5 VOLTAGE statement

**Add lead-in text**
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11.12.6 CURRENT statement

**Add lead-in text**

11.12.7 POWER and ENERGY statement

. . : .

This section defines the arithmetic models used for power calculation.
11.12.7.1 Principles

The purpose of power calculation isto evaluate the electrical power supply demand and electrical power dissipa-
tion of an electronic circuit. In general, both power supply demand and power dissipation are the same, due to the
energy conservation law. However, there are scenarios where power is supplied and dissipated locally in different
places. The power modelsin ALF shall be specified in such away that the total power supply and dissipation of
acircuit adds up correctly to the same number.

Example

A capacitor C is charged from 0 volt to v volt by a switched DC source. The energy supplied by the
source is C*v2. The energy stored in the capacitor is 1 /2*C*Vv2. Hence the dissipated energy isalso 1/
2*C*V2, Later the capacitor is discharged from v volt to 0 volt. The supplied energy is 0. The dissipated
energy is 1/2*C*V2. A supply-oriented power model can associate the energy E 1=c*v2 with the charg-
ing event and E,=0 with the discharging event. The total energy is E=E1+E2=C*V2. A dissipation-ori-
ented power model can associate the energy Eg=1/2*C+*V? with both the charging and discharging
event. The total energy is also E=2*Eg=C*V?,

In many cases, it is not so easy to decide when and where the power is supplied and where it is dissipated. The
choice between a supply-oriented and dissipation-oriented model or a mixture of both is subjective. Hence the
ALF language provides no means to specify, which modeling approach is used. The choice is up to the model
developer, aslong as the energy conservation law is respected.

11.12.7.2 POWER and ENERGY
POWER and/or ENERGY models shall be in the context of a CELL or within a VECTOR. The total energy and/or
power of acell shall be calculated by combining the data of all models within the scope of the CELL or the VEC -

TORswithin the cell.

The datafor POWER and/or ENERGY shall be positive when energy is actually supplied to the CELL and/or dissi-
pated within the CELL. The data shall be negative when energy is actually supplied or restored by the CELL.
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Table 100 shows the mathematical relationship between ENERGY and POWER and the applicable MEA SURE-
MENT annotations.

Table 100—Relations between ENERGY and POWER

MEASUREMENT for MEASUREMENT Formulato calculate Formulato calculate
ENERGY for POWER POWER from ENERGY ENERGY from POWER
transient transient
d d
—_ENERGY IPOWER t
dt
transient average
ENERGY POWER - TIME
TIME
transient peak N/A
d
max| [——ENERGY
dt
transient rms N/A
i [(Generey)’
TIVE j GrENERGY dt
N/A static N/A
POWER - TIME
static N/A 0 N/A

To establish a meaningful relationship between energy and power, the measurement for energy shall be tran-
sient. A static measurement for energy is conceivable, modeling a state with constant energy, but no power
is dissipated during such astate. A static measurement for power models a state during which constant power
dissipation occurs. Although it is not meaningful to describe an energy model for such a state, it is conceivable to
calculate the energy by multiplying the power with the duration of the state. A 1-to-1 correspondence between
power and energy can be established for transient and average power measurements, modeling instanta-
neous and average power, respectively. Therefore, it is redundant to specify both energy and power in such case.
Also, peak and rms power can be conceivably calculated from atransient energy or power waveform, but tran-
sient energy can not be calculated from apeak or rms power measurement.

11.12.8 FLUX and FLUENCE statement
. . : .

This section defines arithmetic models for hot el ectron cal cul ation.
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11.12.8.1 Principles

The purpose of hot electron calculation is to evaluate the damage done to the performance of an electronic device
due to the hot electron effect. The hot electron effect consists in accumulation of electrons trapped in the gate
oxide of atransistor. The more electrons are trapped, the more the device slows down. At a certain point, the per-
formance specification no longer is met and the device is considered to be damaged.

11.12.8.2 FLUX and FLUENCE
FLUX and/or FLUENCE models shall be in the context of a CELL or within avECTOR. Tota fluence and/or flux
of acell shall be calculated by combining the data of all models within the scope of the CELL or the VECTORS

within the cell.

Both FLUX and FLUENCE are measures for hot electron damage. FLUX relatesto FLUENCE in the same way as
POWER relatesto ENERGY.

Table 101 shows the mathematical relationship between FLUENCE and FLUX and the applicable MEASURE -
MENT annotations.

Table 101—Relations between FLUENCE and FLUX

MEASUREMENT for MEASUREMENT Formulato calculate FLUX Formulato calculate
FLUENCE for FLUX from FLUENCE FLUENCE from FLUX
transient transient
%FLUENCE [FLUXdt
transient average
FLUENCE FLUX - TIME
TIME
N/A static N/A
FLUX - TIME
static N/A 0 N/A

Since hot electron damage is purely cumulative, the only meaningful MEASUREMENT annotations are tran-
sient, average, andstatic.

11.12.9 DRIVE_STRENGTH statement

. .
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DRIVE_STRENGTH isaunit-less, abstract measure for the drivability of a PIN. It can be used as a substitute of
driver RESISTANCE. The higher the DRIVE STRENGTH, the lower the driver RESISTANCE. However,
DRIVE STRENGTH can only be used within a coherent system of cal culation models, since it does not represent
an absolute quantity, as opposed to RESISTANCE. For example, the weakest driver of alibrary can have drive
strength 1, the next stronger driver can have drive strength 2 and so forth. This does not necessarily mean the
resistance of the stronger driver is exactly half of the resistance of the weaker driver.

An arithmetic model for conversion from DRIVE STRENGTH toRESISTANCE can be given to relate the quan-
tity DRIVE STRENGTH across technology libraries.

Example

SUBLIBRARY high speed library {
RESISTANCE (
HEADER { DRIVE STRENGTH } EQUATION { 800 / DRIVE STRENGTH }
}

CELL high speed std driver ({
PIN Z { DIRECTION = output; DRIVE STRENGTH = 1; }
}
}

SUBLIBRARY low power library {
RESISTANCE {
HEADER { DRIVE STRENGTH } EQUATION { 1600 / DRIVE_ STRENGTH }
}

CELL low power std driver ({
PIN Z { DIRECTION = output; DRIVE STRENGTH = 1; }
}

}

Drive strength 1 in the high speed library corresponds to 800 ohm. Drive strength 1 in the low power library cor-
responds to 1600 ohm.

NOTE—Any particular arithmetic model for RESTISTANCE in either library shall locally override the conversion formula
from drive strength to resistance.

11.12.10 SWITCHING_BITS statement

The quantity SWITCHING BITS appliesonly for buspins. The rangeisfrom o to the width of the bus. Usudly,
the quantity SWITCHING BITS isnot calculated by an arithmetic model, since the number of switching bits on
a bus depends on the functiona specification rather than the electrical specification. However,
SWITCHING BITS canbeused asargument inthe HEADER of an arithmetic model to cal cul ate el ectrical quan-
tities, for instance, energy consumption.

Example

CELL my_ rom {
PIN [3:0] addr { DIRECTION=input; SIGNALTYPE=address; |}
PIN [7:0] dout { DIRECTION=output; SIGNALTYPE=data; }
VECTOR ( ?! addr -> 2! dout ) {
ENERGY ({
HEADER {
SWITCHING BITS addr bits { PIN = addr; }
SWITCHING BITS dout bits { PIN = dout; }
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EQUATION { 0.45*LOG(addr bits) + 2.6*dout bits }

}

The energy consumption of my rom depends on the number of switching data bits and on the logarithm of the
number of switching address bits.

11.12.11 NOISE and NOISE_MARGIN statement
. .

This section details the noise calculation definitions.

11.12.11.1 NOISE_MARGIN definition

Noise margin is defined as the maximal alowed difference between the ideal signal voltage under a well-speci-
fied operation condition and the actual signal voltage normalized to the ideal voltage swing. Thisisillustrated in
Figure 49.

V ided (logic 1) I\ i i aVa
NoisE Margin g = —
AV, { 9N (righ) =

\ min (logicl) ~ — — T T ]

AV

¥ max togeo) AV. A noise margin - Yo
0 (low) = 1,
V ideal (logic 0) 5 y A

Figure 49—Definition of noise margin

Noise margin is measured at a signal input pin of adigital cell. The terms ideal signal voltage and actual signal
voltage apply from the standpoint of that particular pin. In CMOS technology, the ideal signal voltage at apinis
the actual supply voltage of the cell, which is not necessarily identical to the nomina supply voltage of the chip.

TheNOISE MARGIN statement has the form of an arithmetic model. If the submodel keywords HIGH and LOW
are used, it has the form of an arithmetic model container.

Examples

NOISE MARGIN

NOISE MARGIN

NOISE MARGIN
HEADER { TEMPERATURE { TABLE { 0 50 100 } } }
TABLE { 0.4 0.3 0.2 }

0.3;
HIGH = 0.2; LOW = 0.4; }

H —~—~—~

}

NOISE MARGIN can berelated to signal VOLTAGE by using the following statement:
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VOLTAGE {
LOW = 0;
HIGH = 2.5;

}

NOISE MARGIN {
LOW = 0.4;
HIGH = 0.3;

}

In this example, the valid signa voltage levelsare bound by 1 volt=2.5 wvolt * 0.4 forlogic 0 and 1.75

volt=2.5 volt * (1 - 0.3) forlogic 1.

11.12.11.2 Representation of noise in a VECTOR

In order to describe timing diagrams involving noisy signals, the symbolic state * (see 5.4.13) shall be used. This
state represents arbitrary transitions between arbitrary states, which corresponds to the nature of noise, as shown

in Figure 50.

possible real waveform

noise margin

r |< pulse duration >|

symbolic timing diagram

peak voltage

Figure 50—Timing diagram of a noisy signal

The signal can be above or below noise margin during the state *, but it shall be within noise margin during the
state 0 or 1. During the state *, the signal is bound by an envelope defined by the pulse duration and the peak

voltage.
A description of the noisy signal is given in the following template:

VECTOR ( 0* my pin -> *0 my pin ) {

TIME = <pulse durations> {
FROM { PIN=my pin; EDGE NUMBER=0; }
TO { PIN=my pin; EDGE NUMBER=1; }

}

VOLTAGE = <peak voltage>
CALCULATION = incremental;
MEASUREMENT = peak;
PIN = my pin;
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}

The VECTOR describes the symbolic timing diagram. The TIME statement specifies the duration of the pulse.
The VOLTAGE statement specifies the peak voltage. The annotation CALCULATION=incremental specifies
that the voltage is measured from the nominal signal voltage level rather than from an absolute reference level
and that noise voltage can add up.

It is aso necessary to specify whether a noisy signal (which can oscillate above and below the noise margin) is
considered as one symbolic noise pulse or separated into multiple symbolic noise pulses.

The LIMIT statement for TIME shall be used for that purpose, as shown in the following example and illustrated
by the timing diagram shown in Figure 51.

Example

VECTOR ( *0 my pin -> 0* my pin ) {
LIMIT {
TIME {
FROM { PIN = my pin; EDGE NUMBER = 0; }
TO { PIN = my pin; EDGE NUMBER = 1; }
MIN = <minimum pulse separations> ;

possible real waveform !

|
|
|
I A AW
noise margin /\/-\
' \ "4 !v

symbolic timing diagram !

pulse separation

g L

Figure 51—Separation between two noise pulses

When the minimum pul se separation is not met, consecutive noise pulses shall be symbolically merged into one
pulse.
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11.12.11.3 Context of NOISE_MARGIN

NOISE MARGIN isapin-related quantity. It can appear either in the context of a PIN statement or in the context
of aVECTOR statement with PIN annotation. It can also appear in the global context of a CELL, SUBLIBRARY,
or LIBRARY statement.

If aNOISE MARGIN statement appears in multiple contexts, the following priorities apply:

a)

b)
c)
d)
€)

NOISE_ MARGIN with PIN annotation in the context of the VECTOR, NOISE MARGIN with PIN
annotation in the context of the CELL, or NOISE_MARGIN in the context of the PIN

NOISE MARGIN without PIN annotation in the context of the CELL

NOISE MARGIN in the context of the SUBLIBRARY

NOISE MARGIN inthecontext of the LIBRARY

NOISE MARGIN outside the LIBRARY

If the noise margin is constant or depends only on environmental quantities, the NOISE MARGIN statement
shall appear within the context of the PIN. The noise margin shall relate to the signal VOLTAGE levels applica-
ble for that pin.

Example

PIN my signal pin {

}

PINTYPE = digital;

DIRECTION = input;

VOLTAGE { LOW = 0; HIGH = 2.5; }

NOISE MARGIN { LOW = 0.4; HIGH = 0.3; }

If the noise margin depends on electrical quantities related to other pins, eg., the supply voltage, the
NOISE MARGIN statement shall have a PIN annotation and appear in the context of the CELL.

Example

CELL my cell ({

}

PIN my signal pin { PINTYPE digital; DIRECTION input; }
PIN my power pin { PINTYPE = supply; SUPPLYTYPE = power; }
PIN my ground pin { PINTYPE supply; SUPPLYTYPE ground; }
NOISE MARGIN {
PIN = my signal pin;
HEADER {
VOLTAGE vdd { PIN = my power pin; |}
VOLTAGE vss { PIN = my ground pin; }

}

EQUATION { 0.16 * (vdd - vss ) }

If the noise margin depends on the logical states and/or the timing of other pins, the NOISE MARGIN statement
shal have a PIN annotation and appear in the context of a VECTOR, describing the state-and/or timing depen-

dency.

Example for state-dependent noise margin
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CELL my_ latch ({
PIN Q { DIRECTION = output; SIGNALTYPE = data; }
PIN D { DIRECTION = input; SIGNALTYPE = data; }
PIN CLK { DIRECTION = input; SIGNALTYPE = clock; POLARITY
VECTOR ( CLK && ! D ) { NOISE MARGIN = 0.4 { PIN = D; } }
VECTOR ( CLK && D ) { NOISE MARGIN = 0.3 { PIN = D; } }

g

}

Here, the pin D is only noise-sensitive when CLK is high. No noise margin is given for the case when CLK islow.

In the case of timing-dependency, the vector_ expression shall indicate the time window where noise is
allowed and not allowed for the applicable pin. The symbolic state * (see 5.4.13) shall be used to indicate a noisy

signal.

Example for timing-dependent noise margin

VECTOR ( *? D -> 10 CLK -> ?* D ) {

TIME T1 = 0.35 {
FROM { PIN = D; EDGE_NUMBER = 0; }
TO { PIN = CLK; EDGE _NUMBER = 0; }

}

TIME T2 = 0.28 {
FROM { PIN = CLK; EDGE NUMBER = 0; }
TO { PIN = D; EDGE NUMBER = 1; }

}

NOISE MARGIN = 0.44 { PIN = D; }

}

This example corresponds to the timing diagram shown in Figure 52.

CLK

noise margin

-y !
noise-sensitive time window

Figure 52—Example for timing-dependent noise margin

Noiseonpin D isalowed 0. 35 time-units before and 0 . 28 time-units after the falling edge of CLK. During the

time window in-between, the noise marginis o . 44.
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11.12.11.4 Noise propagation

Noise propagation from input to output can be modeled in a similar way as signal propagation, using the concept
of timing arcs. Thisisillustrated in Figure 53.

starttime endtime sarttime endtime
@inpl)ut @linput I@output @output

| | timing arc
| |
peak voltage! | /\ | |
@ input input  output peak voltage
pin pin @ output

Figure 53—Principle of noise propagation

The principle of signal propagation isto calculate the output arrival time and slewrate from the input arrival time
and slewrate. In a more abstract way, two points in time propagate from input to output. The same principle
appliesfor noise propagation. Two pointsin time, start and end time of the noise waveform, propagate from input
to output. In addition, the noise peak voltage also propagates from input to output. Thisisillustrated in Figure 54.

arrival time arrival time
input . output
@ R timing arc @ P
| | /’\ | |
| |
| input output |
| | pin pin | |
| I | |
- —_ -
Séem%f delay = arrival time @ output S@I;gl:?tit
P - arrival time @ input P

Figure 54—Principle of signal propagation

A VECTOR shall be used to describe the timing of the noise waveform. Again, the symbolic state * (see 5.4.13)
shall be used to indicate anoisy signal.

Example

CELL my cell ({
PIN A { DIRECTION = input; }
PIN Z { DIRECTION = output; }
VECTOR ( 0* A -> *0 A <&> 0* Z -> *0 Z ) {
DELAY T1 {
FROM { PIN = A; EDGE NUMBER = 0; }
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TO { PIN = Z; EDGE_NUMBER = 0; }

/* £ill in HEADER, TABLE or EQUATION */
DELAY T2 {

FROM { PIN = A; EDGE NUMBER = 1; }

TO { PIN = Z; EDGE_NUMBER = 1; }

/* £ill in HEADER, TABLE or EQUATION */
VOLTAGE { PIN = Z; MEASUREMENT = peak;

/* £ill in HEADER, TABLE or EQUATION */

}

This example corresponds to the timing diagram shown in Figure 55.

______ peak voltage @ A
input pin A
Lh
- > |
pulse duration @ A |
| | ____ peakvoltage @ Z
output pin Z T1 y

Figure 55—Example of noise propagation

Theinput to output delay of the leading edge of the noise pulse can depend on the peak voltage at pin A, the load
capacitance at pin z and other electrical quantities. In addition, the input to output delay of the trailing edge of
the noise pulse as well as the peak voltage at pin Z can also depend on the duration of the pulse at pin A.

NOTE—The time measurement from start to end of the noise pulse shall be represented by the keyword TIME (no causality
between start and end time), whereas the time measurement from input to output shall be represented by the keyword DELAY
(causality between input and output arrival time).

11.12.11.5 Noise rejection

Noise rejection isalimit case for noise propagation, when the output peak voltage is so low the noise is consid-
ered rejected. In this case, the input peak voltage can still be above noise margin, whereas the output peak volt-
age isway below noise margin.

Example

CELL my cell ({
PIN A { DIRECTION = input; }
PIN Z { DIRECTION = output; }
VECTOR ( O* A -> *0 A -> 00 2 ) {
LIMIT {
VOLTAGE
PIN = A; MEASUREMENT = peak;
MAX { /* fill in HEADER, TABLE or EQUATION */ }
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}

NOTE—Thevector expression 00 Z saysexplicitly atransition a pin z does not happen.

This example corresponds to the timing diagram shown in Figure 56.

______ peak voltage @ A
input pin A
-
pulse duration @ A
. peak voltage @ Z
output pin Z is considered zero

Figure 56—Example of noise rejection

The peak voltage limit for noise rejection can depend on the duration of the noise pulse at pin A and other electri-
cal quantities, e.g., the load capacitance at pin z. If the peak voltage limit does not depend on the duration of the
noise pulse, the NOISE MARGIN statement shall be used rather than the vector-specific LIMIT construct for
noise rejection.
11.12.12 Annotations for arithmetic models for electrical data

ons forat .
This section defines the annotations for arithmetic models.

11.12.12.1 MEASUREMENT annotation

Arithmetic models describing analog measurements (see Table 77) can have a MEASUREMENT annotation. This
annotation indicates the type of measurement used for the computation in arithmetic model.

MEASUREMENT = string ;

The string can take the values shown in Table 102.

Table 102—MEASUREMENT annotation

Annotation string Description
transient Measurement is atransient value.
static Measurement is astatic value.
average Measurement is an average value.
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Table 102—MEASUREMENT annotation (Continued)

Annotation string Description
rms Measurement is an root mean square value.
peak Measurement is a peak value.

Their mathematical definitions are shown in Figure 57.

t=T
| t=T
transient J' dE(t) average J' E(t)dt
(t=0) t=0
=
static E = constant
rms (t=T)
[ EM%d
peak max(|E(t)]) - sgnE(t) t=T =- T

Figure 57—Mathematical definitions for MEASUREMENT annotations
Examples

transient measurement of ENERGY

static measurement of VOLTAGE, CURRENT, and POWER
average measurement of VOLTAGE, CURRENT, and POWER
rms measurement of VOLTAGE, CURRENT, and POWER
peak measurement of VOLTAGE, CURRENT, and POWER

11.12.12.2 Rules for combinations of annotations

Cumulative values of arithmetic models can be calculated for models which are cumulative in nature (e.g.,
ENERGY Of POWER) or by the usage of CALCULATION=incremental (e.g., CURRENT or VOLTAGE). The
MEASUREMENT annotation can be used in conjunction with the calculation of cumulative values under the fol-
lowing restrictions:

— Datawith MEASUREMENT=average for each model can be combined, provided the TIME annotation
value is the same.

— Datawith MEASUREMENT=peak for each model can be combined, provided the TIME annotation or a
complementary TIME model within the same context specify that the peak values can occur at the same
time.

— Datawith MEASUREMENT=rms for each model can not be combined.

— Datawith different MEASUREMENT annotations can not be combined.

— Daawith MEASUREMENT=transient | static canbe combined with each other.

All data that can be combined under the above mentioned restrictions, shall be in a compatible context, e.g.,
mutually non-exclusive VECTORs within a CELL.
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11.13 Arithmetic models for physical data

**Add lead-in text**

11.13.1 CONNECTIVITY statement

This section definesthe CONNECTIVITY statement and its use.

11.13.1.1 Definition

A CONNECTIVITY statement is defined as shown in Syntax 114.

connectivi

ICONN

connect_|

CONNECTIVITY [identifier ] {
connect_rule_annotation between_multi_value_assignment }

ECTIVITY [ identifier ] {
rule_annotation table_based_model }

Syntax 114—CONNECTIVITY statements

11.13.1.2 CONNECT_RULE annotation

The connect_rule annotation can be only inside a CONNECTIVITY object. It specifies the connectivity require-

ment.

CONNECT_RULE = string ;

which can take the values shown in Table 103.

Table 103—CONNECT_RULE annotation

Annotation string

Description

must_ short

Electrical connection required.

can_short

Electrical connection allowed.

cannot_short

Electrical connection disallowed.

It isnot necessary to specify more than one rule between a given set of objects. If oneruleis specified to be True,
the logical value of the other rules can be implied shown in Table 104.

Table 104—Implications between connect rules

must_short cannot_short can_short
False False True
False True False
True False N/A
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11.13.1.3 CONNECTIVITY modeled with BETWEEN statement

The BETWEEN statement specifies the objects for which the connectivity applies, as shown in Syntax 115.

between_multi_value _assignment ;:=

BETWEEN { identifiers }

Syntax 115—BETWEEN statements

If the BETWEEN statement contains only one identifier, than the CONNECTIVITY shall apply between multiple
instances of the same object.

Example

CLASS analog power;
CLASS analog ground;
CLASS digital power;
CLASS digital ground;
CONNECTIVITY Aground { // connect all members of CLASS analog ground
CONNECT_RULE = must_short;
BETWEEN { analog ground }
}
CONNECTIVITY Dground { // connect all members of CLASS digital ground
CONNECT_RULE = must_short;
BETWEEN { digital ground }
}
CONNECTIVITY Apower { // connect all members of CLASS analog power
CONNECT_RULE = must_short;
BETWEEN { analog power }
}
CONNECTIVITY Dpower { // connect all members of CLASS digital power
CONNECT_RULE = must_short;
BETWEEN { digital power }
}
CONNECTIVITY Aground2Dground {
CONNECT_RULE = must_short;
BETWEEN { analog ground digital ground }
}
CONNECTIVITY Apower2Dpower {
CONNECT_ RULE = can_short;
BETWEEN { analog power digital power }
}
CONNECTIVITY Apower2Aground
CONNECT_RULE = cannot_short;
BETWEEN { analog power analog ground |}
}
CONNECTIVITY Apower2Dground
CONNECT_RULE = cannot_short;
BETWEEN { analog power digital ground }
}
CONNECTIVITY Dpower2Aground
CONNECT_RULE = cannot_short;
BETWEEN { digital power analog ground }
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}

CONNECTIVITY Dpower2Dground
CONNECT_RULE = cannot_short;
BETWEEN { digital power digital ground }

}

11.13.1.4 CONNECTIVITY modeled as lookup TABLE

Connectivity can also be described as a lookup table model. This description is usually more compact than the

description using the BETWEEN statements.

The connectivity model can have the arguments shown in Table 105 in the HEADER.

Table 105—Arguments for connectivity

Argument Valuetype Description
DRIVER string Argument of connectivity function.
RECEIVER string Argument of connectivity function.

Each argument shall contain a TABLE.

The connectivity model specifies the alowed and disallowed connections amongst drivers or receivers in one-
dimensional tables or between drivers and receivers in two-dimensional tables.The boolean literals in the table

refer to the CONNECT RULE as shown in Table 106.

Table 106—Boolean literals in non-interpolateable tables

Boolean literal Description
1 CONNECT RULE isTrue.
0 CONNECT RULE isFalse.
? CONNECT RULE does not apply.

Example

CLASS analog power;
CLASS analog ground;
CLASS digital power;
CLASS digital ground;
CONNECTIVITY all must short {
CONNECT_RULE = must_short;
HEADER {
RECEIVER rl {

}

RECEIVER r2 {

TABLE {analog ground analog power digital ground digital power}

TABLE {analog ground analog power digital ground digital power}
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}
TABLE {
1 010
01 00
1 010
0 001
}
/*
The following table would apply,
TABLE {
01 01
1 010
01 01
1 010
}
The following table would apply,
TABLE {
? 07?0
0?2 07
? 07?0
0?2 07
}
*/
}

11.13.2 SIZE statement

**Add lead-in text**

11.13.3 AREA statement

**Add lead-in text**

11.13.4 WIDTH statement

**Add lead-in text**

11.13.5 HEIGHT statement

**Add lead-in text**

11.13.6 LENGTH statement

**Add lead-in text**

11.13.7 DISTANCE statement

**Add lead-in text**

11.13.8 OVERHANG statement

**Add lead-in text**

IEEE P1603 Draft 2

if the CONNECT RULE was "cannot short":

if the CONNECT RULE was "can_ short":
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11.13.9 PERIMETER statement

**Add lead-in text**

11.13.10 EXTENSION statement

**Add lead-in text**

11.13.11 THICKNESS statement

**Add lead-in text**

11.13.12 Annotations for arithmetic models for physical data
) s for asi )

This section defines the physical annotations for arithmetic models.

11.13.12.1 BETWEEN statement within DISTANCE, LENGTH

The BETWEEN statement within DISTANCE or LENGTH (see 11.8.2 and the example in Section 9.11.5) shall
identify the objects for which the measurement applies. The syntax is shown in Syntax 115.

If the BETWEEN statement contains only one identifier, than the DISTANCE or LENGTH, respectively, shall
apply between multiple instances of the same object, as shown in the following example and Figure 58.

Example

DISTANCE

= BETWEEN { objectl object2 } }
LENGTH = 2

4 |
{ BETWEEN { objectl object2 } }

objectl object2
LENGTH=2

DISTANCE=4

Figure 58—lllustration of LENGTH and DISTANCE
11.13.12.2 MEASUREMENT annotation for DISTANCE
The MEASUREMENT statement specifies the objects for which the connectivity applies, as shown in Syntax 116.
The default for measuring the distance between objects is Straight.

The mathematical definitions for distance measurements between two points with differential coordinates Ax and
Ay are:

—  straight distance = (Ax? + Ay?)¥2
— horizontal distance = Ax
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distance_measurement_assignment ::=
MEASUREMENT = distance_measurement_identifier ;
distance_measurement_identifier ::=
straight
| horizontal
| vertical
| manhattan

Syntax 116—MEASUREMENT statements

— vertical distance = Ay
— manhattan distance = Ax + Ay

11.13.12.3 REFERENCE annotation for DISTANCE

The reference annotation shal specify the reference for distance measurements between objects, as
shown in Syntax 117.

reference_annotation ::=
FERENCE = reference identifier ;
reference identifier ::=
center
|origin
|edge

Syntax 117—REFERENCE annotation

The default shall be edge. The value center is only applicable for objects with EXTENSTION, whereas the
value edge is applicable for any physical object. Thevalue origin isonly applicable for objects with speci-
fied coordinates. Thisisdepicted in Figure 59.

object 1 object 2 object 1 object 2
DISTANCE DISTANCE
- gt L
REFERENCE = edge REFERENCE = center

Figure 59—Illustration of REFERENCE for DISTANCE
11.13.12.4 Reference to ANTENNA
In hierarchical design, a PIN with physical PORTS can be abstracted. Therefore, an arithmetic model for SIZE,
AREA, PERIMETER, €tc. **relevant?? for certain antenna rules can be precalculated. An ANTENNA statement

within the arithmetic model enables references to the set of antenna rules for which the arithmetic model applies,
as shown in Syntax 118.
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antenna_reference_multi_value assignment ::=
ANTENNA { antenna_identifiers }

Syntax 118—ANTENNA statement
Example

CELL celll {
PIN pinl {
AREA poly area = 1.5 {
LAYER = poly;
ANTENNA { individual ml individual vial }
}
AREA ml_area = 1.0 f{
LAYER = metall;
ANTENNA { individual ml }
}
AREA vial area = 0.5 {
LAYER = vial;
ANTENNA { individual vial }

Theareapoly areaisusedintherulesindividual ml and individual vial.
Theareaml areaisusedintherule individual ml only.
Theareavial areaisusedintherule individual vial only.

The case with diffusion isillustrated in the following example:

CELL my diode ({
CELLTYPE = special; ATTRIBUTE { DIODE }
PIN my diode pin {
AREA = 3.75 {
LAYER = diffusion;
ANTENNA { rulel for diffusion rule2 for diffusion }

}

11.13.12.5 Reference to PATTERN

Reference to a PATTERN shall be legal within arithmetic models, if the pattern and the model are within the
scope of the same parent object, as shown in Syntax 119.

pattern_reference_assignment ::=
TTERN = pattern_identifier ;

Syntax 119—PATTERN reference

The pattern reference shall be applicable for LENGTH, WIDTH, HEIGHT, SIZE, AREA, THICKNESS,
PERIMETER, EXTENSION (see 11.8.2 and the example in Section 9.11.2).
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11.14 Arithmetic submodels for timing and electrical data

**Add lead-in text**

11.14.1 RISE and FALL statement
RISCane-=AEsubredels

For timing models in the context of a VECTOR, submodels for RISE and FALL are only applicable if the
vector expression does not specify the switching direction of the referenced PIN and EDGE NUMBER.
Thisisthe case, when symbolic vector unary operatorsareused, i.e, ? !, ??, ?*, or *? instead of 01, 10,
etc.

For SAME PIN TIMING MEASUREMENT Of SAME PIN TIMING CONSTRAINT, the RISE and FALL
submodels apply for the <refEdge>.

For apartially specified TIMING MEASUREMENT Or TIMING CONSTRAINT,theRISE and FALL submodels
apply for the <fromEdge> or <toEdge>, whichever is specified.

For a completely specified TIMING MEASUREMENT of TIMING CONSTRAINT, it is not possible to apply a
RISE and FALL submodel for both <fromEdge > and <toEdge>. The vector unary operator shall spec-
ify the switching direction for at least one edge. If the switching direction for both edges is unspecified, the
RISE and FALL submodel shall apply for the <t oEdge>.

Example

VECTOR ( 01 CLK -> ?! Q ) {
DELAY { FROM { PIN = CLK; } TO { PIN = Q; }
RISE = 0.76; FALL = 0.58;
}

}

// If Q is a scalar pin, the following construct is equivalent:
VECTOR ( 01 CLK -> 01 Q ) {

DELAY = 0.76 { FROM { PIN
}

VECTOR ( 01 CLK -> 10 Q ) {
DELAY = 0.58 { FROM { PIN
}

11.14.2 HIGH and LOW statement

CLK; } TO { PIN

Q; } }

CLK; } TO { PIN

Q; } }

Submedelsfor RISEFALLHIGHand- LOW

RISE and FALL contain data characterized in transient measurements. HIGH and LOW contain data character-
ized in static measurements.

<modelKeyword> { RISE=<modelValueRise>; FALL=<modelValueFalls>; }
<modelKeywords> { HIGH=<modelValueHigh>; LOW=<modelValueLow>; }

It is generally not required that both RISE and FALL or both HIGH and LOW, respectively, appear as an arith-
metic submodel.

HIGH and LOW qualify states with the logic value 1 and 0, respectively. RISE and FALL qualify transitions
between states with initial logic value 0 and 1, respectively and final values 1 and 0, respectively. For other
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states and their mapping to logic values, see 5.1.5. If the arithmetic model is within the scope of a vector which
describes the logic values without ambiguity, the use of RISE and FALL or HIGH and LOW does not apply.

HIGH, LOW, RISE, and FALL apply for al pin-related arithmetic models with the following exceptions:
— RISE and FALL do not apply for VOLTAGE.
— HIGH and LOW do not apply for SAME PIN TIMING MEASUREMENT and

SAME PIN TIMING CONSTRAINT .

NOTE—For states that cannot be mapped to logic 1 or 0, RISE and FALL or HIGH and LOW cannot be used. The use of
VECTOR with unambiguous description of the relevant states is mandatory in such cases.

11.15 Arithmetic submodels for physical data

**Add lead-in text**

11.15.1 HORIZONTAL and VERTICAL statement

**Add lead-in text**

**This is a single subheader**
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Annex A

(informative)

Syntax rule summary

This summary replicates the syntax detailed in the preceding clauses. If there is any conflict, in detail or com-
pleteness, the syntax presented in the clauses shall considered as the normative definition.

**The current ordering is as each item appearsin its subchapter; this needs to be updated to be complete.* *

A.1l Lexical definitions

any_character ::= (see6.2.3)
reserved_character
| nonreserved_character
| escape_character
| whitespace
reserved_character ::= (see6.2.3.1)
&IINM =1+ 1-1* 1% 1210 =1< 1> (D 0@ e
nonreserved_character ::= (see 6.2.3.2)
letter | digit| _|$|#

letter ::=
albjcidielfigrhiifjikiliminijo|plgirisitiu|viw|x|y|z
IAIBICIDIEIFIGIH[TJIKILIM INJOIPIQIRIS|T UV W
IX1Y|Z

digit ::=
0111213141516171819

escape_character ::= (see6.2.3.3)

\
delimiter ::= (see 6.3.1)
reserved_character
|&& | ~& [[[I~[ [ === ** |>=| <= | 2|2~ |- | 72| 7" |*7?
|->|<-> &> | <&>|>>|<<
comment ::= (see6.3.2)
single_line_comment
| block_comment
integer ::= (see 6.3.3)
[ sign] unsigned
sign =
+ |-
unsigned ::=
digit { _|digit}
non_negative_number ::=
unsigned [ . unsigned ]
| unsigned [ . unsigned ] E [ sign] unsigned
number ::=
[ sign] non_negative_number
bit_literal ::= (see 6.3.4)
numeric_bit_literal

IEEE P1603 Draft 2 Advanced Library Format (ALF) Reference Manual 289

on

10

15

20

25

30

35

40

45

50

55



10

15

20

25

30

35

40

45

50

55

| aphabetic_bit_literal

| dont_care litera
| random_literal

numeric_bit_literal ::=
01
alphabetic_bit_litera ::=
X|Z|LH|JU|W
IX1z|I1hjulw
dont_care literal ::=

?
random_literal ::=
*
based litera ::=

binary_base{ _|binary_digit }
| octal_base{ |octal_digit}
| decimal_base{ | digit}

binary_base ::=
'B|'b
binary_digit ::=
bit_literal
octal_base ::=
'‘Ol'o
octal_digit ::=

binary_digit|2|3|415|6]7
decimal_base ::=

'D|'d
hex_base ::=

'H|'h
hex_digit ::=

octal_digit|8|9|A|B|C|D|E|F|alb|c|d|e|f

edge literal ::=
bit_edge litera
| word_edge _literal
| symbolic_edge literal
bit_edge literal ::=
bit_literal bit_literal
word_edge_literal ::=
based literal based literal
symbolic_edge literal ::=
27212~ 2| ?-
quoted_string ::=
" { any_character} "
identifiers::=
identifier { identifier }
identifier ::=
nonescaped_identifier
| escaped_identifier
| placehol der_identifier
| hierarchical_identifier
nonescaped_identifier ::=
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nonreserved_character { nonreserved _character }

escaped_identifier ::=
escape_character escaped characters
escaped_characters ::=
escaped_character { escaped_character }
escaped_character ::=
nonreserved_character
| reserved_character
| escape_character
placeholder_identifier ::=
< nonescaped_identifier >
hierarchical _identifier ::=
identifier . { identifier . } identifier
arithmetic_values::=
arithmetic_value { arithmetic_value}
arithmetic_value ::=
number
| identifier
| pin_value
string_value ::=
quoted_string
| identifier
edge values::=
edge value{ edge vaue}
edge value ::=
(edge literal )
index_value ::=
unsigned
| identifier

A.2 Auxiliary definitions

index ::=
[ index_range]
| [ index_value]
index_range ::=

index_value : index_vaue
pin_assignments ::=

pin_assignment { pin_assignment }
pin_assignment ::=

pin_variable = pin_value ;
pin_variables ::=

pin_variable{ pin_variable}
pin_variable ::=

pin_variable identifier [ index ]
pin_values ::=

pin_vaue{ pin_vaue}
pin_value::=

pin_variable
| bit_literal
| based_literal
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| unsigned

annotation ::=

one_level _annotation
| two_level_annotation
| multi_level_annotation

one_level _annotations ::=

one_level_annotation { one_level_annotation }

one_level_annotation ::=

single_value_annotation
| multi_value_annotation

single_value_annotation ::=

identifier = annotation_value;

multi_value_annotation ::=

identifier { annotation_values }

two_level_annotations ::=

two_level_annotation { two_level _annotation }

two_level_annotation ::=

one_level _annotation
| identifier [ = annotation_value]
{ one_level_annotations }

multi_level _annotations ::=

multi_level _annotation { multi_level_annotation }

multi_level _annotation ::=

one_level _annotation
| identifier [ = annotation_value]
{ multi_level_annotations }

annotation_values ::=

annotation_value { annotation_value}

annotation_value ::=

index_value
| string_value
| edge value
| pin_value
| arithmetic_value
| boolean_expression
| control_expression

all_purpose_items ::=

all_purpose_item{ all_purpose_item}

al_purpose_item ::=

292

include
| alias
| constant
| attribute
| property
| class_declaration
| keyword_declaration
| group_declaration
| template_declaration
| template_instantiation
| annotation
| arithmetic_model
| arithmetic_model_container
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A.3 Generic definitions

include ::=

INCL UDE quoted string ;

dias =

ALIAS identifier = identifier ;

constant ::=

CONSTANT identifier = arithmetic_value ;

atribute ::=

ATTRIBUTE { identifiers }

property ::=

PROPERTY [ identifier ] { one_level_annotations }

class declaration ::=
CLASS dentifier ;

| CLASS identifier { al_purpose_items}

keyword_declaration ::=

KEYWORD context_sensitive_keyword = syntax_item_identifier ;

group_declaration ::=

GROUP group_identifier { annotation_values }
| GROUP group_identifier { index_value : index_value }

template_declaration ::=

TEMPLATE template_identifier { template_items}

template_items::=

template_item { template_item }

template_item::=
all_purpose_item
| cell
| library
| node
| pin
| pin_group
| primitive
| sublibrary
| vector
| wire
| antenna
| array
| blockage
| layer
| pattern
| port
| rule
| site
| via
| function
| non_scan_cell
| test
| range
| artwork
| from
| to
|illegal
| violation
| header

IEEE P1603 Draft 2
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| table
| equation
| arithmetic_submodel
| behavior_item
| geometric_model
template_instantiation ::=
static_template_instantiation
| dynamic_template instantiation
static_template_instantiation ::=
template_identifier [ = static] ;
| template_identifier [ = static] { annotation_values}
| template_identifier [ = static]{ one_level_annotations }
dynamic_template instantiation ::=
template_identifier = dynamic
{ dynamic_template_instantiation_items }
dynamic_template_instantiation_items ::=
dynamic_template instantiation_item
{ dynamic_template_instantiation_item }
dynamic_template instantiation_item ::=
one_level _annotation
| arithmetic_model

A.4 Library definitions

library ::=
LIBRARY library_identifier { library_items }
| LIBRARY library_identifier ;
| library_template instantiation
library_items::=
library_item { library_item }
library_item ::=
sublibrary
| sublibrary_item
library ::=

SUBLIBRARY sublibrary_identifier { sublibrary_items }
| SUBLIBRARY sublibrary_identifier ;
| sublibrary_template_instantiation

sublibrary_items ::=
sublibrary_item { sublibrary_item}
sublibrary_item ::=

all_purpose_item
| cell
| primitive
| wire
| layer
| via
[ rule
| antenna

| array
| site
INFORMATION_two_level_annotation ::=
INFORMATION { information_one level_annotations }
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information_one level _annotations ::=
information_one level _annotation
{ information_one_level_annotation }
information_one_level _annotation ::=
AUTHOR one level annotation
| VERSION_one level _annotation
| DATETIME_one level_annotation
| PROJECT one level_annotation
cell ::= (see9.3.1)
CELL cel_identifier { cell_items }
| CELL cell_identifier ;
| cell_template_instantiation
cell_items::=
cell_item{ cell_item}
cell_item ::=
all_purpose_item
| pin
| pin_group
| primitive
| function
| non_scan_cell
| test
| vector
| wire
| blockage
| artwork
non_scan_cell ::= (see9.3.2)
NON_SCAN_CELL { unnamed_cell_instantiations }
INON_SCAN_CELL = unnamed cell_instantiation
| non_scan_cell_template_instantiation
unnamed _cell_instantiations ::=
unnamed_cell_instantiation { unnamed_cell_instantiation }
unnamed_cell_instantiation ::=
cell_identifier { pin_values }
| cell_identifier { pin_assignments }
pin::= (see9.4.1)
PIN [ [ index_range] ] pin_identifier [ [ index_range] ] { pin_items }
| PIN [ [ index_range] ] pin_identifier [ [ index_range] ] ;
| pin_template_instantiation

pin_item ::=
all_purpose_item
| range
| port
| pin_instantiation
pin_items::=

pin_item{ pin_item}

pin_instantiation ::=
pin_variable{ pin_items }

range ::= (see 9.4.3)
RANGE {index_range}

pin_group ::= (see9.4.4)
PIN_GROUP [ index_range ] ] pin_group_identifier { pin_group_items }
| pin_group_template_instantiation
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pin_group_items ::=
pin_group_item { pin_group_item }
pin_group_item ::=
all_purpose_item

| range
wire::=
WIRE wire_identifier { wire_items }
| WIRE wire _identifier ;
| wire_template instantiation
wire_items::=
wire_item { wire_item}
wire_item ::=
all_purpose_item
| node
node ::=
NODE node identifier { node items }
| NODE node identifier ;
| node_template_instantiation
node_items::=
node_item { node_item }
node_item ::=
al_purpose_item
vector ::=
VECTOR control_expression { vector_items }
|VECTOR control_expression ;
| vector_template_instantiation
vector_items::=
vector_item { vector_item }
vector_item ::=
all_purpose_item
|illegal
illegal ::=
ILLEGAL {illegal_items}
| illegal _template_instantiation
illegal_items ::=
illegal_item { illegal_item }
illegal_item ::=
all_purpose_item
| violation
layer ::=
LAYER layer_identifier { layer_items}
| LAY ER layer_identifier ;
| layer_template_instantiation
layer_items::=
layer_item { layer_item}
layer_item ::=
al_purpose_item
via::=

VIA via_identifier { via_items }
| VIA via_identifier ;
| via_template instantiation
via items::=
via_item{ via_item}
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via item ::=
all_purpose_item
| pattern
| artwork
via_reference ::= (see9.8.4)
VIA { via_instantiations }
| VIA { via_identifiers }
via instantiations ::=
via_instantiation { via_instantiation }
via instantiation ::=
via_identifier { geometric_transformations }
rule::= (see9.9.1)
RULE rule_identifier { rule_items}
| RULE rule identifier ;
| rule_template_instantiation
rule_items::=
rule_item { rule_item}
rule_item ::=
all_purpose_item
| pattern
| via_reference
antenna ::= (s£e9.9.2)
ANTENNA antenna_identifier { antenna_items}
| ANTENNA antenna_identifier ;
| antenna_template_instantiation
antenna_items ::=
antenna_item { antenna_item }
antenna_item ::=
al_purpose_item
blockage ::= (se€9.9.3)
BL OCKAGE blockage identifier { blockage_items }
| BLOCKAGE blockage_identifier ;
| blockage_template_instantiation
blockage items ::=
blockage item { blockage item}

blockage item ::=
all_purpose_item
| pattern
[ rule
| via_reference
port ::= (see 9.9.4)

PORT port_identifier { port_items }
| PORT port_identifier ;
| port_template_instantiation
port_items::=
port_item { port_item }
port_item ::=
all_purpose_item
| pattern
| rule
| via_reference
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Site::=
SITE site_identifier { site_items}
| SITE site_identifier ;
| site_template instantiation
site items::=
site_item { site_item}
site item ::=
all_purpose_item
| ORIENTATION_CLASS one_level _annotation
| S'MMETRY_CLASS one level_annotation
array ::=
ARRAY array_identifier { array_items }
| ARRAY array identifier ;
| array_template instantiation
array_items ::=
array_item { array_item}
array_item ::=
all_purpose_item
| PURPOSE _single value annotation
| geometric_transformation
pattern ::=

PATTERN pattern_identifier { pattern_items }
| PATTERN pattern_identifier ;
| pattern_template_instantiation
pattern_items ::=
pattern_item { pattern_item }
pattern_item ::=
all_purpose_item
| SHAPE_single value annotation
| LAYER single value annotation
| EXTENSION_single value_annotation
| VERTEX_single value_annotation
| geometric_model
| geometric_transformation
artwork ::=
ARTWORK = artwork_identifier { artwork_items }
|ARTWORK = artwork_identifier ;
| artwork_template_instantiation
artwork_items ::=
artwork_item { artwork_item }
artwork_item ::=
geometric_transformation
| pin_assignment
geometric_model ::=
nonescaped_dentifier [ geometric_model_identifier |
{ geometric_model_items }
| geometric_model_template_instantiation
geometric_model_items ::=
geometric_model_item { geometric_model_item }
geometric_model_item ::=
all_purpose_item
| POINT_TO_POINT_one_level_annotation
| coordinates

298 Advanced Library Format (ALF) Reference Manual

(see9.10.1)

(see9.10.2)

(see 9.10.3)

(se€9.10.4)

(see 9.10.5)

IEEE P1603 Draft 2



coordinates ::=
COORDINATES { x_number y_number { x_number y_number } }

geometric_transformations ::=
geometric_transformation { geometric_transformation }
geometric_transformation ::=
HIFT _two_level annotation
| ROTATE_one_level_annotation
| FLIP_one level_annotation

| repeat
repeat ::=
REPEAT [ = unsigned] {
shift two_level_annotation
[ repeat ]
function ::=

FUNCTION { function_items }
| function_template_instantiation
function_items ::=
function_item { function_item}

function_item ::=
al_purpose_item
| behavior
| structure
| statetable

test ::=

TEST { test_items}
| test_template instantiation
test_items::=
test_item { test_item}
test_item ::=
all_purpose_item
| behavior
| statetable
behavior ::=
BEHAVIOR { behavior_items}
| behavior_template_instantiation
behavior_items ::=
behavior_item { behavior_item }
behavior_item ::=
boolean_assignments
| control_statement
| primitive_instantiation
| behavior_item template instantiation
boolean_assignments ::=
boolean_assignment { boolean_assignment }
boolean_assignment ::=
pin_variable = boolean_expression ;
primitive_instantiation ::=
primitive_identifier [ identifier ] { pin_values }
| primitive_identifier [ identifier ]
{ boolean_assignments }
control_statement ::=
@ control_expression { boolean_assignments }
{ : control_expression { boolean_assignments } }
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structure ::=
STRUCTURE { named_cell_instantiations }
| structure_template instantiation
named_cell _instantiations ::=
named_cell_instantiation { named cell_instantiation }
named_cell instantiation ::=
cell_identifier instance identifier { pin_values }
| cell_identifier instance_identifier { pin_assignments }
violation ::=
VIOLATION { violation_items }
| violation_template_instantiation
violation_items::=
violation_item { violation_item }
violation_item ::=
MESSAGE_TYPE single value_annotation
| MESSAGE_single value_annotation
| behavior
statetable ::=
STATETABLE [ identifier ]
{ statetable_header statetable row { statetable row } }
| statetable_template_instantiation
statetable header ::=
input_pin_variables: output_pin variables;
statetable row ::=
statetable_control_values : statetable data values;
statetable control_values ::=
statetable _control_value { statetable control_value }
statetable _control_value ::=
bit_literal
| based_literal
| unsigned
| edge value
statetable data values::=
statetable data value { statetable data value}
statetable data value ::=
bit_literal
| based_literal
| unsigned
| ([!]pin_variable)
| ([ ~] pin_variable)
primitive ::=
PRIMITIVE primitive_identifier { primitive_items}
| PRIMITIVE primitive identifier ;
| primitive_template_instantiation
primitive_items ::=
primitive_item { primitive_item }
primitive_item ::=
all_purpose_item
| pin
| pin_group
| function
| test
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A.5 Control definitions

boolean_expression ::=
( boolean_expression )
| pin_value
| boolean_unary boolean_expression
| boolean_expression boolean_binary boolean_expression
| boolean_expression ? boolean_expression :
{ boolean_expression ? boolean_expression : }
boolean_expression
boolean_unary ::=

boolean_binary ::=
&
| & &

I
Il
|/\
|.J\
1=

| ==
| >=
| <=
| >
| <
| +
| -
| *
|/
| %
| >>
| <<
Vector_expression ::=
(vector_expression )
| vector_unary boolean_expression
| vector_expression vector_binary vector_expression
| boolean_expression ? vector_expression :
{ boolean_expression ? vector_expression : }
Vector_expression

| boolean_expression control_and vector_expression
| vector_expression control_and boolean_expression

vector_unary ::=
edge literal
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vector_binary ::=
&
| & &
I
Il
|->
| ~>
| <->
| <~>
| &>
| <& >
control_and ::=
& 1&&
control_expression ::=
('vector_expression )
| ( boolean_expression )

A.6 Arithmetic definitions

arithmetic_expression ::=
(‘arithmetic_expression )
| arithmetic_value
| [ arithmetic_unary ] arithmetic_expression
| arithmetic_expression arithmetic_binary
arithmetic_expression
| boolean_expression ? arithmetic_expression :
{ boolean_expression ? arithmetic_expression : }
arithmetic_expression
| arithmetic_macro
(‘arithmetic_expression { , arithmetic_expression } )
arithmetic_unary ::=
sign
arithmetic_binary ::
+
| -
| *
|/
| **
| %
arithmetic_macro ::
abs
| EXp
|log
|min
| max
arithmetic_models ::=
arithmetic_model { arithmetic_model }
arithmetic_model ::=
partial_arithmetic_model
| non_trivial_arithmetic_model
| trivial_arithmetic_model
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| assignment_arithmetic_model
| arithmetic_model_template instantiation
partial_arithmetic_model ::= (see11.2.3)
nonescaped_identifier [ arithmetic_model_identifier ] { partial_arithmetic_model_items }
partial_arithmetic_ model_items ::=
partial_arithmetic_model_item { partia_arithmetic_model_item }
partial_arithmetic_model_item ::=
any_arithmetic_model_item
| table
non_trivial_arithmetic_model ::= (see11.2.4)
nonescaped_identifier [ arithmetic_model_identifier ] {
[ any_arithmetic_model _items]
arithmetic_body
[ any_arithmetic_model _items]

trivial_arithmetic_model ::= (see11.2.5)
nonescaped_identifier [ arithmetic_model_identifier | = arithmetic_value ;
| nonescaped_identifier [ arithmetic_model_identifier ] = arithmetic_value
{ any_arithmetic_model_items}

assignment_arithmetic_model ::= (see 11.2.6)
arithmetic_model_identifier = arithmetic_expression ;
any_arithmetic_model_items ::= (see11.2.7)

any_arithmetic_model_item { any_arithmetic_ model_item }
any_arithmetic_model_item ::=
all_purpose_item
| from
| to
| violation
arithmetic_submodels ::= (see11.31)
arithmetic_submodel { arithmetic_submode }
arithmetic_submodel ::=
non_trivial_arithmetic_submodel
| trivial_arithmetic_submodel
| arithmetic_submodel_template instantiation
non_trivial_arithmetic_submodel ::= (see11.3.2)
nonescaped_identifier {
[ any_arithmetic_submodel _items]
arithmetic_body
[ any_arithmetic_submodel _items]

trivial_arithmetic_submodel ::= (see 11.3.3)
nonescaped_identifier = arithmetic_value;
| nonescaped_identifier = arithmetic_value{ any_arithmetic_submodel_items }
any_arithmetic_submodel_items ::= (see11.3.4)
any_arithmetic_submodel_item { any_arithmetic_submodel_item }
any_arithmetic_submodel_item ::=
all_purpose_item
| violation
arithmetic_body ::= (see11.4.1)
arithmetic_submodels
| table_arithmetic_body
| equation_arithmetic_body
table_arithmetic_body ::=
header table [ equation ]
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equation_arithmetic_body ::=
[ header ] equation [ table]
header ::=
HEADER { identifiers}
| HEADER { header_arithmetic_models}
| header _template_instantiation
header_arithmetic_models ::=
header_arithmetic_model { header_arithmetic_model }
header_arithmetic_model ::=
non_trivial_arithmetic_model
| partial_arithmetic_model
table ::=
TABLE { aithmetic_values}
| table_template_instantiation
equation ::=
EQUATION { arithmetic_expression }
| equation_template instantiation
arithmetic_model_container ::=
arithmetic_model_container_identifier { arithmetic_models }
from ::=
FROM { from_to_items}
to =
TO { from_to_items}
from_to_items::=
from_to_item{ from_to_item}
from_to_item ::=
PIN_single value_annotation
| EDGE_single_value_annotation
| THRESHOLD _arithmetic_model
EARLY_arithmetic_model_container ::=
EARLY { early_late_arithmetic_models }
LATE_arithmetic_model_container ::=
LATE { early_late_arithmetic_models }
early late arithmetic_models ::=
early late arithmetic_model { early late arithmetic_mode }

early late arithmetic_model ::=
DELAY _arithmetic_model
| RETAIN_arithmetic_model
| SLEWRATE_arithmetic_model
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Symbols

(N+1) order sequential logic 175
-> operator 174

?- 26, 290

2 26, 290

7?26, 290

?~ 26, 290

@ 166

A

ABS 211

abs 210, 302

active vectors 170

ALF_AND 151

ALF_BUF 150

ALF BUFIFO 153

ALF BUFIF1 153

ALF_FLIPFLOP 155

ALF LATCH 157

ALF_MUX 155

ALF_NAND 151

ALF _NOR 151, 152

ALF_NOT 150

ALF _NOTIF0 153, 154

ALF _NOTIF1 153, 154

ALF OR 151

ALF _XNOR 151, 152

ALF XOR 151, 152

ALIAS 38

alias 38, 293

all_purpose_items 36, 292

alphabetic_bit_literal 25, 290

annotation

arithmetic modd tables

AREA 237
CAPACITANCE 236
CONNECTIONS 237
CURRENT 235
DELAY 234
DERATE_CASE 237
DISTANCE 237

DRIVE_STRENGTH 235, 236

DRIVER 282

| ndex

ENERGY 235
FANIN 237
FANOUT 237
FREQUENCY 235
HEIGHT 237
HOLD 234

JTTER 235
LENGTH 238
NOCHANGE 234
PERIOD 234
POWER 235
PROCESS 237
PULSEWIDTH 234
RECEIVER 282
RECOVERY 234
REMOVAL 234
RESISTANCE 236
SETUP 234

SKEW 234
SLEWRATE 234
SWITCHING BITS 237
TEMPERATURE 236
THRESHOLD 235
TIME 235
VOLTAGE 236
WIDTH 238

arithmetic models 228

average 278

can_short 280
cannot_short 280
CONNECT_RULE 280
DEFAULT 224
MEASUREMENT 278
must_short 280

peak 279

rms 279

static 278

transient 278

UNIT 228

CELL

BUFFERTY PE 59
CELLTYPES3
DRIVERTY PE 60
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NON_SCAN_CELL 51, 295
PARALLEL_DRIVE 60
SCAN_TYPE 58
SCAN_USAGE 59
cell buffertype
inout 59
input 59
internal 59
output 59
cell celltype
block 53
buffer 53
combinational 53
core 53
flipflop 53
latch 53
memory 53
multiplexor 53
special 53
cell drivertype
both 60
predriver 60
dotdriver 60
cell scan_type
clocked 58
control_058
control_159
Issd 58
muxscan 58
cell scan_usage
hold 59
input 59
output 59
default 224
from 222
information
AUTHOR 50
DATETIME 50
PRODUCT 50
TITLESO
VERSION 50
limit 222
object reference
cell 17
pin 17
primitive 17
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ACTION 71
CONNECT_CLASS 80
DATATYPE 73
DIRECTION 66
DRIVETYPE 76
ORIENTATION 80
POLARITY 72
PULL 77
SCAN_POSITION 74
SCOPE 77
SIGNALTYPE 67
STUCK 74
VIEW 65

pin
PINTY PE 66

pin action
asynchronous 71
synchronous 71

pin datatype
signed 73
unsigned 73

pin direction
both 66, 67
input 66, 67
none 66, 67
output 66, 67

pin drivetype
cmos 76
CmMos_pass 77
nmos 77
nmos_pass 77
open_drain 77
open_source 77
pmos 77
pmos_pass 77
ttl 77

pin orientation
bottom 80
left 80
right 80
top 80

pin pintype
analog 66
digital 66
supply 66
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pin polarity
double_edge 72
falling_edge 72
high 72
low 72
rising_edge 72
pin pull
both 78
down 77
none 78
up 77
pin scope
behavior 77
both 77
measure 77
none 77
pin signaltype
clear 68, 72, 73
clock 68, 72, 73
control 68, 70, 72, 73
data67, 72, 73
enable 68, 72, 73
master _clock 71
out_enable 69, 70
scan_clock 71
scan_data 69
scan_enable 70
scan_out_enable 70
select 68, 72, 73
set 68, 72, 73
dave clock 71
pin stuck
both 74
none 74
stuck at 074
stuck at 174
pin view
both 66
functional 65
none 66
physical 66
to 222
VECTOR
LABEL 93, 94, 95
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MESSAGE 144
MESSAGE TYPE 144
annotation container 39
anotation
object reference
class 17
any_character 22, 289
arithmetic models 14
arithmetic operators
binary 210
function 211
unary 210
arithmetic_binary_operator 210, 302
arithmetic_expression 209, 302
arithmetic_function_operator 210, 302
arithmetic_unary_operator 210, 302
atomic object 13
ATTRIBUTE 38
attribute 39, 293
CELL 53,54, 55
cell
asynchronous 54
CAM 53
dynamic 54
RAM 53
ROM 53
static 53
synchronous 54
PIN 78
pin
PAD 78
SCHMITT 78
TRISTATE 78
XTAL 78

B

based literal 25
based litera 26, 290
behavior 138, 299
behavior_body 138, 299
binary 25
Binary operators
arithmetic 210
bitwise 161
boolean, scalars 160
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reduction 161 D

vector 175, 176, 179 decimal 25
binary_base 26, 290 decimal_base 26, 290
binary_digit 26, 290 deep submicron 5
bit 25 default annotation 224, 228
bit_edge literal 26, 290 delimiter 23, 289
bit_literal 25, 289 digit 26, 290
Bitwise operators
binary 161 E
unary 161 edge literal 26
block comment 24 edge_literal 26, 290
boolean operators edge literals 31, 291
binary 160 edge-sensitive sequential logic 166
unary 160 equation 221, 304
boolean_binary_operator 206, 301 equation_template instantiation 221, 304
boolean_expression 206, 301 escape codes 27
boolean_unary_operator 206, 301 escape_character 23, 289
escaped identifier 28
c escaped_identifier 28, 291
case-insensitive langauge 23 event sequence detection 175
cell 51, 295 EXP 211
cell_identifier 51, 295 exp 210, 302
cell_items 51, 295 extensible primitives 148
cell_template_instantiation 51, 295
characterization 5 F
children object 13 Flipflop 155
CLASS 40 forward referencing 13
class 40, 293 function 133, 299
combinational logic 159 Function operators
combinational primitives 150 arithmetic 211
combinational _assignments 138, 299 function_template instantiation 133, 299
comment 23 functional model 5
block 24
long 24 G
short 24 generic objects 14
single-line 24 GROUP 41
comments group 41, 293
nested 24 group_identifier 41, 293
compound operators 23
CONSTANT 38 H
constant 38, 293 hard keyword 29
constant numbers 24 header 221, 304
context-sensitive keyword 29 header _template instantiation 221, 304
hex_base 26, 290

hex_digit 26, 290
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hexadecimal 25
hierarchical object 13

|

identifier 13, 23
Identifiers 27
identifiers 27, 290
inactive vectors 170
INCLUDE 37
include 37, 293
index 33, 291
integer 24, 289

K

keyword 13

Keywords
context-sensitive 30
generic objects 29
operators 29

L

Latch 157

level-sensitive sequential logic 166
library 13

Library creation 1

library_items 49, 294
library_template instantiation 49, 294
library-specific objects 14

literal 13, 23

LOG 211

log 210, 302

logic_values 145, 300
logic_variables 34, 291

M

MAX 211

max 210, 302

MIN 211

min 210, 302

mode of operation 5
multiplexor 155

N

nested comments 24
non_negative_number 24, 289
non-escaped identifier 27
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one-pass parser 13
operation mode 5
operator
->174
followed by 174
operators
arithmetic 210
boolean, scalars 160
boolean, words 160
signed 162
unsigned 162

P
pin_assignments 33, 291
pin_identifier 61, 295
pin_items 61, 295
pin_template _instantiation 61, 295
placeholder identifier 28
placeholder_identifier 27
placeholders 43
power constraint 5
Power model 5
predefined derating cases 250, 262
bccom 262
bcind 262
bemil 262
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wcind 262
wcmil 263
predefined process names 262
snsp 262
snwp 262
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primitive_instantiation 138, 299
primitive_items 147, 300
primitive_template_instantiation 147, 300
private keywords 30

PROPERTY 39

property 39, 293

public keywords 30

Q

Q CONFLICT 155
QN_CONFLICT 155
quoted string 22, 26
guoted_string 26, 290

R

real 24
Reduction operators
binary 161
unary 160
reserved keyword 29
reserved_character 22, 289
RTL 4

S
sequential logic
edge-sensitive 166
level-sensitive 166
N+1 order 175
vector-sensitive 174
sequential_assignment 138, 299
sign 24, 289
signed operators 162
simulation model 5
single-line comment 24
soft keyword 29
statetable 145, 300
statetable body 145, 300
string 31, 291
symbolic_edge literal 26, 290

T
table 221, 304
table_template_instantiation 221, 304
TEMPLATE 41

template 42, 293

template_identifier 42, 293
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Vector operators
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vector-based modeling 5
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Verilog 4, 167
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virtual pins 155

W

whitespace 22, 289

whitespace characters 22

wildcard_literal 25, 290

wire 81, 88, 97, 101, 104, 109, 113, 114, 117,
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