A standard for an
Advanced Library Format (ALF)
describing Integrated Circuit (IC)

technology, cells, and blocks

This is an unapproved draft for an IEEE standard
and subject to change

IEEE P1603 Draft 3

January 4, 2002

Copyright© 2001, 2002, 2003 by IEEE. All rights reserved.

put in |EEE verbage

ii Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

The following individual s contributed to the creation, editing, and review of this document

Wolfgang Roethig, Ph.D. wroethig@eda.org Official Reporter and WG Chair
Joe Daniels chippewea@aol.com Technical Editor

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual

Revision history:

|EEE P1596 Draft O August 19, 2001
|EEE P1603 Draft 1 September 17, 2001
|EEE P1603 Draft 2 November 12, 2001

iv Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

Table of Contents

O 1 1o o 1 o PSSR 1
L1 IMIOLIVELION. ..c.eiuitiriitisites ettt ettt es bt b et bbbttt st et 1

0 T S 2

1.3 Target @DPliCALIONS. ...covieieieieiieteeee ettt b et bbbttt ettt bene 2

O o0 1V/= 011 o =SSO 5

1.5 Contents of thiS StANAr..........ccevviiiirere e s re et sae et e e e eeneenens 5

2. REFEIENCES. ..ottt b bt b e h b b e bR £ A e At R e R e e Rt eRe bt Rt b e bRt e ebeeeesrenean 7
T B 1< 1oL o] o USRS 9
4. Acronyms and @DDIEVIBLIONScoueiiierieieeei ettt et ettt eb e s b b e e et ene e eneenea 11
5. ALF language CONStruCtion PriNCIPIES.coiiereriireinieie ettt sttt s st e e se e ebesaesbesnen 13
L Y e o1 = =g To 0o T USSR 13

1. ALFlanguage CONSLruCtion PriNCIPIES.ccoiiiririere ettt st st s eb s s 13
1.1 ALF MEBIBNQUAGEc. eeveetite ittt ettt st e e st et eae e he b e e ae b e s b e b e sb e besee e e nbeneenes 13

5.2 Categories Of ALF SLAIEMENTS........cooiiiiiiiieiereeeeier ettt ettt bbb bbb et ne e e 14

5.3 Relationships BetWeen ODJECES........coiiiiiiie et e s 14

5.4 ReferenCeS Of ODJECES......coi i te s e et te e besaeeseesaeenesneenneas 17

5.5 Incremental defiNitioNS.........coo ottt b e bt bbb e e e 19

5.6 SCOPING FUIES.......eeeeieeteeiee ettt sttt eb e s bbb b b e et e s e e e e heeae e bt e et eb e e besbesbe b e s bese e e eneene e e ene 19

B. LEXICEI FUIES... e ettt b e bbbt b e e et e st e e e ae et e R e e Re e b e e Rt s bt e he e be s bene et e e e e 21
6.1 Cross-reference Of 16XICal tOKENS.........coci ittt be b b sae 21

LS O 0 = o £ TR O S PTSS 21
L R O 0= o = == SRS 21

(S V] 0 1 (=S o= o X o 0 = o1 = £ S 22

B.2.3 OLNEI CREIACLENS.......euiieitieieree et st sttt b e bbbt e e ene s 22

ORI I = [or= (0] (= = F TR UT S PTSS 23
LR I R B T [T 411 (= TSRS 23

6.3.2 COMIMENT ...ttt ettt st e et e e e e s b e es e e s be e s s e eb e e st ebeeae e saeeneeeesbeeneenrennne e 24

LSS G B (N 110 ¢ o= TS S SR 24

LR A = 11 A 11 (= =TSRSS 24

6.3.5 BASEU IITEIAlSeiueieeeeeee e bbb bbb 25

Lo T G =l (o T 1= ! £ SR 26

(S T A © 10 To) (= 1 o S 26

LRSS I Lo 1= 01) 1= OSSPSR 27

L QAT {0 LSS 29
6.4.1 KeyWOrdsSTor ODJECES......ciuiie ettt e st ne et e neeneenes 29

6.4.2 KeyWOrdSTOr OPEIAOIS. ... cccveiieeeeetecteceeesteseeste st e e e st ss et e e s reebesaeesee s s esesaesrenseesrenneenns 29

6.4.3 COoNtext-SenSItiVE KEYWOITScc.ecieiieeicie ettt s sae e s e 30

6.5 Rulesagainst Parser @MDIGUILYccccvieeiereeriesieeesessee s see e e see e e sae e sseestesseesesseesseaneesressaesneensens 30

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual Y

B.6.1 ATNNMELIC VAIUE ...ttt bbb s e 30
LSS 1] oo Y = LU= 31
LG T o To o 7= U= 31
B.6.4 INUEX VBIUEvnieceete ettt ettt bbbt st bbb nbene 31
F U L= YL = S 33
7.1 INdeX and rElated ItEIMS.....ccue ettt ettt e et eea e besbe e besbeeseesaeensesnaesbeereens 33
2% T R 1 o = GRS 33
45 1o T =TT (= SRRSO 33
7.2 Pinassignment and related itemMS........cocirieieere e e 33
A R o T = T 0] 00T | ST 33
T.2.2 PINVATADIE.....oiticeeeceeee ettt ettt st st e be bt e b et e b enreeae et eas 34
G T = 1 4 IV T OSSR 34
7.3 ANNOtation and rElated ITEMScoui ittt b e s re b e saeesaesreeraens 35
2 T R Y g 0o = 1 o 1T 35
2 T N g0 = o I = LSS 35
A N L o101 oot SN 1 = 1o USSP 36
(€T 07 (oo o L= £SO 37
8.1 INCLUDE SLBEIMENE....cutiitiirtiirtisietieesesteessesessesessesessesessesessesessesessessssessssessssessesessesessenssenessenesens 37
8.1.1 Interpreting SPECial SYMDOIS........oiiiiiiieieee e e e 37
8.1.2 USEOf MUIIPIE FIIES ... et 37
8.2 ALIAS SEBEIMEN.....ccviiieiriitiirtisirte ettt sttt ese st st e e e e e et e st et et e s e bene b et 38
8.3 CONSTANT SEBEIMENE ...c.eviiitiirtisieriseeeteesteseseesesteeseeeseesessesessesessesesse s sessssesesessesessesensesessenensens 38
8.4 ATTRIBUTE SEAEMENEcvitiitetiieiieeisieisie sttt st st ne s a e se s beseste e be e senesens 38
8.5 PROPERTY SLAEMENT....cciviriiiiiriiieriiesisieisaesistesessesesseessesessesessesessessssessssessssessesessesessensssensssenesens 39
8.6 CLASS SLALEIMIENLuiiiviiitiirtesistesieteste e e e e este e ste st see e stesessesesbesesse e s be s be e bensesessebensesesenesenensens 40
8.7 KEYWORD SIBEEMENT......civeuireieiriesiriesisiesesieesseesseseesesesessesessasessesessessssessssessssessesessesessessssensssenesens 40
8.8 GROUP SLALEMENL. ... ccitieriiirtiirtesietesteseaeesee e ste e sae e seesessasessesesse e s be s se e sensetessetensesessenessenensens 41
8.9 TEMPLATE SLELEIMENLccviiiviiitisietesieiesieestesestesesaeseseeessesessesessesessesesse s sessssensesessesessesessesessenensens 41
8.9.1 Referencing by plaCeholdercooiieieii et 43
8.9.2 Parameterizeabl@ CEIIS ..o e 43
Library-SpeCifiC ODJECLS......ceiiiieie e et a e et s re e e e s aaeseeeneenreeneenes 47
9.1 Library-SpeCifiC ODJECES......c.eiie ittt s e re et esre e e nneeaenreenaens 47
9.1.1 Library-specific Singular ODJECLS.......ccveciieieiicecce e e 48
9.1.2 Modeling for syntheSiS and tESL.........cccueiiieiiiiee e e s 48
9.2 LIBRARY statement and related StalEMENTS..........ooiiirieriiieieeeeriee e e e 48
9.2.1 LIBRARY SLAEMENEooveviiieiiiieiesiese et see e e ettt e st st stsbe st tesaetesaetesaenesaenessesensens 49
9.2.2 SUBLIBRARY SLEEMENLccctiiiiieieeiesisiesieieseete s e ieesiese sttt saste s te st saetessesesaesesessenenns 49
9.2.3 INFORMATION SEBLEIMENL......ceivetiieeieririeseeiesieiesee e seeiesesseses e seesesessestssesaesessetessenessesessesessns 49
9.2.4 INFORMATION COMEBINETcoviiietereeterireeseeteseetesaeseseeseseeseseeseseesestesessesessesessesessensssenessenessens 50
9.3 CELL statement and related StALEMENES..........ooiiiiriiierere e et e 50
LS R O = = 1= 0 1= 0| TSSOSO 50
9.3.2 NON_SCAN_CELL StAEMENL.......cceirireeriererieresieiesieisieresee e seesestesestesestesestesessesessesessesessens 51
9.3.3 Annotations and attributeS for @ CELL.........ccoiiiiiiiiierceeeee s 52
9.4 PIN statement and related SLIEMENESccooirireririree e e et 61
L R o NI = 1= 107 0| TSSOSO 61
9.4.2 DefinitioNS fOr DUSPINScciiiieie et st ne e e 61
9.4.3 RANGE SLELEIMENLc.civiiiieiiiieiirieieteeete ettt st st seebesee e seesesaesessesessesessesessesessesens 63

Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

9.4.4 PIN_GROUP SEBEMENL.......coeeireeeiereeieeerereere s e 64

9.4.5 Annotations and attributeS for @PINccccoiverirececi e 65

9.5 WIRE statement and related StatEMENEScccvrereiireseseesieee et s se e se e eresnesresnens 81
051 WIRE SEAEMENEooiiiieieiereeie ettt st st st sttt et et nb e 81

1S R N\ (O 1] = 1= 1 1= | S 87

9.6 VECTOR statement and related StatEmMENES..........eceveeeeeeerere e 90
9.6.1 VECTOR SEAEMENT.c.eitiieieeeierieie sttt sttt st st st st b sttt st s s e e b 90
0.6.2 ILLEGAL SEEEMENL.......ciieeteieiteriee sttt sttt st st st st bbb e et eb e 90
9.6.3 Annotations and attributesS for aVECTORccccovviiereeririeeeeecsesesee e s se e 91

9.7 LAYER statement and related SLAteMENESccoueiiiiiiecieeeeceeee ettt s sre e eneas 96
0.7 1 LAYER SEABEMENT ...cueiieee ettt te et st s e s e e s te e saeebe e saeeenneesaeesnneennneenteans 97
0.7.2 PURPOSE @QNNOALION........eiitiiieticieeteeeee et ete et eete e e saesreesbessaebesbeesbeeseeesssssesseesessesseessennsenns 98
0.7.3 PITCH @NNOLALION.ccitiiuieieiiieiteeeee et etee e ette st e tesbe et e sbeeaeeebeesesreeesesbeesaesbeeseessaenbesbeenbenseenns 98
9.7.4 PREFERENCE @NNOALON.......ccciiieeiiceecie ettt ettt et ere et saeesnesaeenesaesbesbeesbeeneens 99
O.7.5 EXBIMPIE... ettt e e ettt a e b b he b b et ettt et ne s 99

9.8 VIA statement and related StAtEMENESccviiiiiiiie et sre e 100
ST Y N - =101 | OSSR 100
0.8.2 USAGE @NNOALION......cceiuieiieieeie et etee ettt e se e s reeaae s e e ste et e be e s e sreensessaenesreesresanas 101
0.8.3 EXBIMPI .. ettt bbb e bbb bbb b ae e bbbt 102
9.8.4 VIA reference StalEMENL...........coie ettt s ere e re s 103

9.9 Statementsrelated to physical deSIgN FUIES ... s 104
9.9.1 RULE SEABEMENE ..ottt sttt ettt srene e 104
9.9.2 ANTENNA SEABEMENE ...ecviiieieiieisiee ettt st st sttt et ens 108
9.9.3 BLOCKAGE SLALEIMENLceiieiirieerieririesisieestesesteestesestesestesestesessesessesessesessessssesessenssseneens 112

S I O 1 [- 1= 01 | SRS 113
9.10 Statements related to PhySiCal GEOMELTYcooiiiiiiiiie et e 116
0.10.1 SITE SLEIMENE .c.ccveiiitesieie ettt st st et se st e besesbeseste st besesbesentesaeteseesesensesessanenns 116
9.10.2 ARRAY SABEMENL....cciiiiieieeieieetesiee ettt sttt st s sttt st se e se et e se e e s e e 118
9.10.3 PATTERN SEALEIMENL......ceiteiiiieiiienestesisiesesiesesteseseseese e e sessesesseseesestesestesessesestesessesessesensns 121
9.10.4 ARTWORK SEABEMENT ..c.coviiieiirieiesiee sttt sttt sttt ens 123
9.10.5 GEOMELHC MOEc.veiieeieeeeeee st et e et e eae e sreeneesreerenneas 124
9.10.6 GEOMELFC traNSfOrMBLION.........ccveeeeiece ettt e et eeae e s reenesreesrenneas 129
9.11 Statements related to functional deSCriPLioN..........cccviveiieiice e 132
9.11.1 FUNCTION SEEEMENT ...veueevenieieieieeeieesieesteses e ststesassesaetesaeseseesessesessesessesessesessesessesessasesns 132
0.11.2 TEST StEIMENE ...ccviiiete ettt et ettt sestesesbesesbesesbenesbe e beseebesenseneesenensenenns 133
9.11.3 Physical bitmap for Memory BISToooi i s 133
9.11.4 BEHAVIOR SEALEIMENTcceviieteieiereeirieiesie e s et tesestesestesestesestesestesestesessesessesessenenns 138
9.115 STRUCTURE SEALEMENLcceiueiirieirierirtesesieseeteseetesesseseesessesessesessesestesessesessesessesessesessessesens 139
9.11.6 VIOLATION SEBEMENE....c.ceieeieieieieirieieiee s ettt ste e st seste e sse e se e sse e ste e ssenessaneees 144
9.11.7 STATETABLE SLEEMENLc.ceeviieeieieeirieerie ettt st st st st see e s sae e e e ssens 145
9.11.8 PRIMITIVE SIBEMENTveieveieeieieeieesieesiees ettt sttt s st sttt et nesseneene 147

10. Constructs for modeling of digital DENAVIONcc.eeiiiicicee e e 159
10.1 Variabl@ deClarationSccecueeiieiiee ettt s e et s ae e sae s s entessaentesneenteeneanneenes 159
10.2 Combinational fUNCLIONS...........coiiiiii e sttt st ra e s ra e s ne et esneenneenns 159
0 T30 R e 0 o 1T 0 10 = oo | oSSR 159
10.2.2 BO0O0I€aN OPEratorS ON SCAIAIS.ueccuerreeieecieiee st etesteeste s e esaesteesesseeseereesaesaeesaesseenseseensenseens 160
10.2.3 BO0OI€aN OPErators ON WOFGS.........cceiueeiereeieeiesteeseesteeeesseesseeseessesseessesaesseesaesseesssssesnsessenns 160

O T2 R @ o= = (o gl o o 1 11 SRS 162
10.2.5 DatalyPe MEPPING. . ccueierrerreeierteeseeeesseeeesseeseesseeeesesesssesssessesssessesssssssensesseessessesssssssenss 162
10.2.6 Rulesfor combinational fUNCLIONSccccviiiiiie i 164
10.2.7 Concurrency in combinational fUNCLIONScccecceiirirsie e 165
10.3 SequENtial fFUNCLIONS........coueiieece e sae e e s re e s aesseentesaaensesneeneenneenseenns 165

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual vii

11.

viii

10.3.1 Level-sensitive sequential [0giC.......ccvireeerreeiisire s see sttt 166

10.3.2 Edge-sensitive SeqUENtial 10QIC ..c..cveeeereeire ettt s 166
10.3.3 Unary operators for VECIOr EXPrESSIONS.......ccvierierierieriereereeseesessesessessessessessensessessessessesenns 168
10.3.4 Basicrulesfor sequential fUNCLIONS........ccccoeieieeeeiere e 169
10.3.5 Concurrency in sequential fUNCLIONScccceiirecereecereee e e 172
10.3.6 Initial valuesfor 10giC VariablES.......ccceveieieeeieceee e 173
10.4 Higher-order sequential fUNCLIONS.........c.ccoiieeiereeece et sse e sre st s sre e 174
10.4.1 Vector-sensitive SeqUENtial [0QIC......covverierreeiecieie e see ettt 174
10.4.2 Canonical binary operators for VECLOr EXPreSSiONS........coevvveirieniniernieseresie e e 175
10.4.3 Complex binary operators for VECtOr EXPreSSIONS.cccvevreririeririesniesieresie s nenes 176
10.4.4 EXLENSION 10 N OPEIENGS.coveuiiieiirieiriiieieseeie ettt st 177
10.4.5 Operatorsfor conditional VECIOr EXPreSSIONS.........cccvieriiririrresnesiee s 179
10.4.6 Operators for SEqUENtial [0GIC. . .coueiriririiirieieee e 180
10.4.7 OPEralOr PriONTTIES. . ceiviertieetereeiereetere ettt eb sttt s e es et be e seneenenes 180
10.4.8 USING PINSTN VECTORS.....ccoctiiriiirieirieieteisteseeesis e e st ses e sesssseessesessessesessnns 181
10.5 Modeling With VECIOr EXPrESSIONScoueeeieiieireeie ettt se et e b e sae bt s seesbe e seeneeneas 181
JO.5.1 EVENE FEPOITS. .. .cotiieieiee ettt ettt sttt bttt eae s b ae e ebe b e sbe e besae et e sae et e sbe e benbeesaeennenee 182
10.5.2 EVENE SBOUENCES.eiieieueeteeutenteeteesaeseesteseesbe st e bt eseaabesaseeseeasesaeaeesaeeneesaeeabesbeenbenbeenbennnenee 183
10.5.3 Scope and content Of EVENE SEQUENCES.........coeriruererierierie e seeseeee e esseseesessesbe s e saesresseseens 184
10.5.4 ARErNatiVe EVENE SEOUEBNCESc.viieeieeeeieieeesie ettt see st se et e et et sbe b st entesee e enbeneeene 186
10.5.5 SymbOliC €008 OPEIELOISccueieieeieiieere ettt sttt st b b e e e b 187
JO.5.6 NONM-BVENES.....cueiiiiie ittt sttt se e bt a e eh et eb e e b e s ae e s be s ae e e e s e e sbesbeesbenneesaeenranee 188
10.5.7 Compact and Verbose eVent SEOUENCES.eierierieeerireeese ettt s 189
10.5.8 Unspecified simultaneous events Within SCOPE..........ccorerireriene e 190
10.5.9 SIMUItANEOUS EVENT SEQUENCES.ccvevereeeeeeeeiesieeesiestesteseeseeseesbeseesssseseesessessesaeseessenseseens 191
10.5.10 IMplicit 10Cal VAITADIESc.ciuiieiiieeee e e e 193
10.5.11 Conditional EVENt SEQUENCESc.ceuruererieeteriesiestesteseeseeeesesee e sre e saessesbeseesseseesseseeneesesaens 194
10.5.12 Alternative conditional eVent SEQUENCEScoeiuereeierereeeeieste sttt s sesse e e 196
10.5.13 Change of scope Within @VeCtor EXPrESSIONccieririereriereesie e seseeesre e s seeseesnens 198
10.5.14 Sequences of conditional EVENt SEOUENCESco.ereriererierie et seesie s 201
10.5.15 Incompl etely specified eVent SEQUENCES..........ccoerririne et s 203
10.5.16 How to determine well-specified VECIOr EXPreSSioNS..........covvereereeeeerenesiese e 204
10.6 Boolean eXpression [aNQUBOE.coviee et ste st te et e e s ee e st e e e s reesaesaeentesreensesneannes 205
10.7 VECtOr eXPreSSioN [aNQUAGEcoueeieiee e ceieesesteste e e e e e e stesnsesaeeaesseessesseeseesnsessessessesseessessesnss 205
10.8 Control eXPressioN SEMEANTICS......ccuiiiiie e e sieseesteeaete e e e s e eeeseseestessesteeseesseeseesseensesseensesseenses 206
Constructs for modeling of analog DENAVIONoov e e 209
11.1 Arithmetic eXPreSSioN [aNQUBOE.covecee e sttt te et e st esaesre et eereenresneennes 209
11.1.1 Syntax of arithmetiC EXPrESSIONS........ceccveiirieiieeierees e ee e et e e st e e sese e teeaesreeseenrens 209
I R AN 1 a0 1= (ol 0] o = o S 210
I G I @ o= = (o gl o o 1 (1= SO S 211
11.2 Arithmetic model and related SLAEEMENTS..........cooiiireie e e 211
1121 ArthMELIC MOGEIS ..ot et et et eb e sae bt saa 211
11.2.2 Arithmetic MOdel SEBEEMENT........cc.oieierieieireee et 217
11.2.3 Partial arithmetic MOGEL...........cooiiiiiie e e 217
11.2.4 Non-trivial arithmetic MOEcooiiiiee e 218
11.2.5 Trivial arithmetic MOCE! ..o e 218
11.2.6 Assignment arithmetic MOCE]ccooiveir i e s 218
11.2.7 Itemsfor any arithmeticC MOUELccveeeiiiee e 219
11.3 Arithmetic submodel and related SLALEMENES.........oii i e 219
11.3.1 Arithmetic SUDMOCE] SLAEEMENTooviieieieeee e e 219
11.3.2 Non-trivial arithmetic SUDMOTELcooiiiieeeeee e e 219
11.3.3 Trivia arithmetic SUDMOEL ..o e 219

Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

11.3.4 Itemsfor any arithmetic SUDMOMELccoeveeeiece e 220

11.4 Arithmetic body and related StatEMENLS..........coov i iirie e 220
7 AN 31 0= (oo V2SN 220
11.4.2 HEADER SEBEMENE ...ttt 220
1143 TABLE STBEMENT.....couiiiieeieiee e e 221
1144 EQUATION SEAEMENEc.eiietireeririetiriieisieeestesesies sttt et 221

11.5 Arithmetic MOTE!l COMEAINETcviieeviietiieteet ettt sb b en e ens 221
L1150 LIMIT CONMAINEY .ueitiiiitiiietiristerestesie sttt sttt se e st bt sbene e 222
11.5.2 Containersfor arithmetic models and SUBMOAEISccccvivverirereneeeerece s 222

11.6 Statements related to arithmetic models for general PUrPOSE........covrvirriircenieeree e 223
11.6.1 MIN @nd MAX SEEEEMENEScccviueeeerieiesieseeseeseesieeeseesese e sresseseeseeseesseseeessessessessessessessens 223
G I o 7 =0 1 | 224
11.6.3 DEFAULT SAEMENTccueeiieciee et stee e stae et s e e e te e ssaeeteete e enaeennaesnteenneesreeen 224
LG I 1Y S = 01 o | S 225
11.6.5 Annotations for arithmetic models for general PUrPOSE.......c.cooererererieieeririeee e 228

11.7 Rules for evaluation of arithmetic MOEIS..........cooiiiiiiii e s 233
11.7.1 Arithmetic model with arithmetic SUDMOEIS..........c.ooeiiriiii e 233
11.7.2 Arithmetic model with table arithmetic body...........cooeiiiiii e 233
11.7.3 Arithmetic model with equation arithmetic body............cccooioiiiiiinis 233

11.8 Overview of arithmetic MOEIS.........ooiiriieeee e e 233
11.8.1 Overview of Modeling KEYWOIdS..........ccooreriiiiririe et 233
11.8.2 Arithmetic modelsin the context of 1@YOULccoooiierrieiier e 237

11.9 Arithmetic models for timiNg ata...........ccooireriiiiie e e e 240
11.9.1 Specification of timing MOEIS........ccccouriiiiii e 240
11.9.2 TIME SEABEMENE...c.cciieiiieiiiecree ettt ettt ne b enenns 244
11.9.3 FREQUENCY SIAEMENL.....ciiveeiieiiieirieiieisie ettt st nessns 248
11.9.4 DELAY and RETAIN SEaEMENES...c.civiriiiririiisisiesisiesieresiene e siesesiesss e ssssesasssassessssessens 250
11,95 SLEWRATE ST@BEMENT ...cciiiiiiriiiirieieesiee ettt s ee 251
11.9.6 SETUP and HOLD StELEMENL........ceviuiiriiiriresisisiesissesieresseesteestesessessssesessessssessssensesensens 251
11.9.7 NOCHANGE SEBEMENT ...c.eeviieeiieieieiie et ne e ens 252
11.9.8 RECOVERY and REMOVAL StaleMENES.......cccurvirirerieesienesieesiesesiesesiesesiesessesessesesseseens 252
11.9.9 SKEW SEABEMENTcviiciiieiirieiieiie ettt nns 253
11.9.10 PULSEWIDTH SEABEMENTcvevieeirieiiririisiceiseses et sas e s e snns 254
11.9.11 PERIOD SEABIEMENTevieievirieiirietisieiesereseesestee e esse e e astesessesssessesessesensesessesessesessenesseneans 254
11.9.22 JTTER STABEMENT.....civiiiieieieieieieies ettt st e st na st be s st nesens 254
11.9.13 THRESHOLD StALEMENLc.covevieeriieiirieiiieiesieesieesie s ssesessesessessssessssessesessessssesessesessens 255

11.10Auxiliary statements related to timing data...........ccevieieeieiieie e 257
11.10.1 FROM and TO SEABLEMENTS.......coueririeriririririisieneseisiesesies et seeeses e sse e sese e seesessesessenessanenns 257
11.10.2 EARLY and LATE SIalEMENES.....coeeriiirieiiriiisesisiesise ettt et 258
11.10.3 Annotations for arithmetic models for timing data...........cccecevvieviieecce i, 258

11.11Arithmetic models for environmental data............coceeoereriiniiene i e 261
11.11.1 PROCESS and DERATE_CASE StaEMENt........coiueirieieieieeieesieeieeie e e ees 261
11.11.2 TEMPERATURE SEEEMENE.......ctieririiiririsinisesisiesisiesiere e et sesse e e sesseessesessenessenenns 263

11.12Arithmetic modelS for eleCtriCal dataL..........ooreiereiieee e s 263
11.12.1 PIN-related arithmetic models for electrical data...........cooeveevirerininineeceeeeree s 264
11.12.2 CAPACITANCE SEalEMENL........ciiiereriiiririsiisesesisiesisies e sae et e e e e e e e sessessssessssessns 266
11.12.3 RESISTANCE SLBEEIMENLeueiveeiieiiriiiesieeesiesesesissesissestesesseesie e ssesessesessesessesessesessenssseneens 266
11.12.4 INDUCTANCE SEAEEMENE.....c.civetirieiirieisieeisiesesesisee st te et te e e e sesessesessenessesesseneens 266
11.12.5 VOLTAGE SLBEIMENLc.ceuiiieeirietirieiisieresieseseeessesesseses e sssessssesas e ssssessesenseseseesessesessesessasenes 266
11.12.6 CURRENT SEABIEMENT....c.ciiiiiiiriiiisiriesieiesieie e et et se e e seesestesestesssseseses 267
11.12.7 POWER and ENERGY SEalEMENT........ccovveiriiririiiriesiniesieresienesieesiesesienessesessesessesessessssessns 267
11.12.8 FLUX and FLUENCE SLEEEMENEeoveverieieiieesieisie ettt s nes 268
11.12.9 DRIVE_STRENGTH StaEMENt......ccviiieiiieiriee ettt s seens 269
11.12.10SWITCHING_BITS StAEMENL......civieeeiieririeisieisieisieseseesee e et se e nessenens 270

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual ix

11.12.1ANOISE and NOISE_MARGIN StAEMENL........cveirerrrrererrreeenesrereese e 271

11.12.12Annotations for arithmetic modelsfor electrical data..........ccovevvvirncinecnccsen e 278
11.13Arithmetic models for phySiCal data..........cccvereieiiireie e ene e 280
11.13.1 CONNECTIVITY SE@BEMENTciiieiirieiieirierie e 280
11.13.2 SIZE SLALEIMENLcveueeeiireeiieeeeetes sttt sttt sttt eb e st ebe et e s et e eb e et e e sae e seneenenes 283
11.13.3 AREA SEBEMENccuieiiieieieesieeeiees sttt sb bbbttt b sttt enes 283
11.13.4 WIDTH SEAEEMENT......cieiirieieieieieceieeetees et eb et ebe sttt s et be s e seneesenes 283
11.13.5 HEIGHT SEEEEMENTcviirieieieerieeeiecs ettt st ere st sttt enenes 283
11.13.6 LENGTH SEABEMENT.......cciiieeieeeeie et e e et e st sseesne e sseenaesreeneesneeneesneensnnes 283
11.13.7 DISTANCE SIAEIMENTcoteeeieiieieeeeeeeenee e seeeeesesee e eeeste e e sseesessseeseseessesseessesnesseesneens 283
11.13.8 OVERHANG SLEEMENLeooveeeiiieeeerieeeeseesee e etese e et eseessesseesseesesseeneeseeeseessesneessesnsnnes 283
11.13.9 PERIMETER SEBLEMENT.......cceeiueeeeieeiesieeseesieeseesteeeie e eenteeeeeseesseesee e esesneesseeseessesneessesnsnnes 284
11.13. 1OEXTENSION SALEMENL.cceieeieieeeeeeeeeeeseesieseeseee e eeeeseessesseesseesesseensesseeneesnesnsesneensenes 284
1113 1ITHICKNESS SIAEMENTeceieeeeeee et see st eee et eee et sae e eneeseentesreeneenseeneensennes 284
11.13.12Annotations for arithmetic models for physical data............ccoeeerrerieninince e 284
11.14Arithmetic submodels for timing and electrical data...........c.covereeeiiierinin e 287
11.14.1 RISE @and FALL SEatEMENEeveuieeiieiieeirieisie e stesestesestesessessssessnes 287
11.14.2 HIGH and LOW StELEMENL........cviveiieiieiirieisieseseesiesesesesse st sesessesessesessesessenessesenes 287
11.15Arithmetic submodels for phySiCal dataL..........cccoeriiiieiiree e 288
11.15.1 HORIZONTAL and VERTICAL Stat@MENE.......cccccevreriririsinisesisiessiesieresiee e e sesse s 288
(INfOrmMatiVE) SYNLAX FUIE SUMIMAIYc.ciieuiriirieetirte sttt st e et et aesbesbesbesbeseeseese e eese e e ebesbesbesbesbesbeseesbenteseens 289
AL LexiCal defiNitiONS.........coiiiriiiiieiee e e et bbb e et 289
A2 AUXITANY AEFINITIONScouiieiitiiie et se e e 291
A3 GENENIC AEFINITIONS.ccueitiieiist e ettt b e bbb et 293

F N A I 1o = Vo (=] T (o L 294
A5 Control defiNItIONScoiiiiee e ettt b et eb e sb b e e b 301
A6 ArthmELiC defiNITIONSccoiiiiite et et et 302
(INfOrmMative) BibliOGraPNYccveiiieiieie ettt sttt e st e s e e e s e et te e testaesaeessenseensensesnnesaeennenreenens 305

X Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

List of Figures

Figure 1—ALF and itstarget apPliCAtiONScccivieiirineseseereeesee s ste s sre e s e sresre e ne e e e e seenens 4
Figure 2—Objects containing annotations or anNOtation CONLAINETSccuvviererererereeeeerese e e see e eeseenes 15
Figure 3—Objects contaiNiNg gENEIiC ODJECLScccviveireieririeie s e e sese e ste e see e e e sse e e sessesnesreeeseeneeneeneenes 15
Figure 4—Objectsin alibrary for logical and electrical design and their relationshipsccceeveiiiniencenen. 16
Figure 5—Objectsin alibrary for physical design and their relationshipsccocooevrernennenneneese e 17
Figure 6—Referencing rules for ALF ODJECLSc.oouiiiiiiiee e 18
FigUIre 7—GENEIC ODJECES ...t bbbttt sttt 37
Figure 8—Library-specifiC ODJECLS ..o 47
Figure 9—L ibrary-specific SINQUIAI ODJECEScoiiiiiiee e e b e 48
Figure 10—FUNCTION @0 TEST ...ocvooiieiieirieirieeseesiese sttt e asbe e se s s benessaneesens 48
Figure 11—Illustration of independent SWAP_CLASS and RESTRICT_CLASS ..o 57
Figure 12—Illustration of SWAP_CLASS with inherited RESTRICT_CLASSccooiiiinereeere e 58
Figure 13—Construction scheme for composite SIGNALTYPE VAIUEScoceiiiiiiiriieeeesesee e 69
Figure 14—Example of boundary parasitiC deSCripLiONccocerrieirire e 85
Figure 15—Example for interconNNECt AESCIIPLIONcviirieeeiiriere et s e 89
Figure 16—Metal-poly HTTUSIFELIONcoueieiieieieeeee e et b e bbb bbb sae b e sae e 112
Figure 17—ROULING [@YEr SNAPESoiueieiieieeeeeeir ettt s b b e e e e e et e se e b e s bt ebesbeebesbesbesreneens 122
Figure 18—Illustration of VERTEX @NNOALIONccccireriiriiiinie et s ene bbb e 123
Figure 19—Geometric Model and itS CONLEXLoiiiieririeieire ettt e e ne s 125
Figure 20—I1lustration of gEOMELIIC MOTEISc.oiuriiiiirere e et sb bbb s e 126
Figure 21—Illustration of straight point-to-poiNt CONNECLIONcoeieriireeieiereee e 127
Figure 22— llustration of rectilinear point-to-point CONNECLIONccccoiriieieeieierere e 127
Figure 23—Illustration of FLIP, ROTATE, and SHIFT ...cc.ciiiiieees e 132
Figure 24—Illustration of a physical memory architecture, arranged in banks, rows, columnsccccceu... 134
Figure 25—Illustration of the Memory BIST CONCEPLccoireierereeiriere et sr e s beneen 134
Figure 26—Concurrency for combinational [OJICcccvcieiiiieie e e 165
Figure 27—Model of aflip-flop with asynchronous clear in ALF ..o 167
Figure 28—Model of aflip-flop with asynchronous clear in VErilogcccocvevviceeiecieieniese e 167
Figure 29—Model of aflip-flop with asynchronous clear in VHDLcoooveiiieiecieeceeeee e 167
Figure 30—Concurrency for edge-sensitive sequential [0giCccveviiieievecie e 172
Figure 31—Example of event sequence detection fFUNCLIONccocciiieie e 174
Figure 32—ArthmELIC MOUELoooieeceee e e e e e e e s ae e e e s reeneeereesresneas 211
Figure 33—Illustration of extrapolation FUIESccccviiieiieiiee et saesre e resneas 232
Figure 34—Genera timing measurement or timing CONSIFAINTcccccvereeeiie e 241
Figure 35—Illustration of time to peak using FROM Statementccoooevieveieeie s e 245
Figure 36—Illustration of time to peak usSiNg TO StALEMENTccceeviiiiere e 246
Figure 37—Illustration of a piece-wise [inear WavefOrMccviveiiiiiere e 247
Figure 38—TIME and FREQUENCY 1N @WaVEfOIMooieiiieie ettt 248
Figure 39—RETAIN @N0 DELAY ..ottt e ettt b s 251
Figure 40—SETUP @GN HOLDoooiieiieiiestete et sttt ettt 252
Figure 41—NOCHANGE, SETUP, @anNd HOLDccoceiiiieiiieiieisie s 252
Figure 422—RECOVERY aNd REMOV ALoouiiiiieireecis sttt e ettt 253
Figure 43— THRESHOL D measurement defiNitionccccoveiieieiinie e 255
Figure 44—Schematic Of @PUISE JENEIALONcccieiiieieeeeie ettt e e re e e e reenesreenrenneas 260
Figure 45—Timing diagram of @ pulSE QENEIELONccceieeieiieieseeses et e e e aeaeereesnenneas 260
Figure 46—Timing diagram of aDRAM CYCIE ..o s 261
Figure 47—Genera representation of electrical models around apincccccovveveveeie e 264
Figure 48—Electrical models associated with input and OULPUL PINScceeeeeeece e 265

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual xi

Figure 49—Definition Of NOISE MAIGINcveiiiiiie ettt sr e e esae e e se e e sresrennennens 271

Figure 50—Timing diagram of an0iSy SIGNalcccceviviiiiniere s ee e esresresnennens 272
Figure 51—Separation betWeen tWO NOISE PUISESccveevriereiiiieereeseeseesee e seeste e s se e eseenasseesessesnessessensessens 273
Figure 52—Exampl e for timing-dependent NOISE MAIGINcccvveiererereerreese e ere e ereenens 275
Figure 53—Principle Of NOISE PrOPAgALIONcccvvierieieriree s e st se e e e saeseesessessessesrenaesrens 276
Figure 54—Principle of signal Propagationcccecerreerinieriere e se et e e e eeneeens 276
Figure 55—Example of NOISE PrOPAgALiONccceveeeiererereeriesieseeeereeeeresreseseseesteseesreseesseseeseeseesessessessessessessens 277
Figure 56—EXample Of NOISE FEJECLIONocueviiiiiiriie et e e sre st e e see e sreneeneeneeneans 278
Figure 57—Mathematical definitions for MEASUREMENT annOtationscccoureeeereeerenernenesesineeseeneneenes 279
Figure 58—Illustration of LENGTH and DISTANCE ..ottt s 284
Figure 59—Illustration of REFERENCE fOr DISTANCEccviitiiiriiieeneee e 285

xii Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

List of Tables

Table 1—Target applications and models supported By ALF ...t 2
Table 2—Categories Of ALF SLAEMENTS.......ccooii ettt et a e e b s be s besae b et seeseeneseeneans 14
Table 3—Object referenCeS @S @NNOLALIONcoiiieeietireee ettt sb b e e e et e se e ebesbesbesnens 19
Table 4—Cross-reference Of 16XICal TOKENS..........coi i e e 21
Table 5—List Of WhiteSpate ChArACIENS.oviirrerre ettt sttt be st b e 22
Table 6—SiNGIE DIt CONSIANESoueiiiiiiiit ettt bbbt e b e se b sbenennas 25
Table 7—Special charaCtersin QUOLE SEINGS.c.eieeriierieirieesie ettt sb s se b e seenes 27
TahI @ 8— O] ECE KEYWOITS ...ttt sttt bbbt b et b e et et eb e st beebe s be s ae et e s beseeseeneeneeneans 29
Table 9—Built-in arithmetic fUNCLION KEYWOITS...........ooiiiiiieeeece e e e 29
Table 10—Information anNOtation CONLAINEccieiriirieirieesee ettt st s b e ebesbene e 50
Table 11—CELLTY PE annotations for @ CELL ODJECL.........cccoeiiiiiinie st 53
Table 12—Attributes within @ CELL with CELLTY PESIMEMOIYc.coiuirieiinieierieeesieiesiene s sieseseas 53
Table 13—Attributes within a CELL With CELLTY PE=DIOCK.......ccciiiiiirirercrie e e 54
Table 14—Attributes within a CELL With CELLTY PESCOIE.........coioiiiiiiniirie et 54
Table 15—Attributes within a CELL with CELLTY PE=SPECIEL........ccciiririiieiieee et 55
Table 16—Predefined values for RESTRICT _CLASS.......coiiiiiirerrene ettt s sbesesbeseene e 55
Table 17—SCAN_TY PE annotations for aCELL ODJECL ..ot 58
Table 18—SCAN_USAGE annotations for @ CELL ODJECE..........cuvieirieirieirericeric e 59
Table 19—BUFFERTY PE annotations for 8 CELL ODJECEcouiiiiiiieiisiee e e 59
Table 20—DRIVERTY PE annotations for @ CELL OJECLccoiiiiiiiieriesieie e e e 60
Table 21—VIEW annotationS for @PIN ODJECLciiiiiiiiieeecee et e e 65
Table 22—PINTY PE annotations for @PIN ODJECE..........ccoiiiiiiirerne e 66
Table 23—DIRECTION annotations for @aPIN ODJECE..........ccvieiiiiniirrenre e 66
Table 24—DIRECTION in combination With PINTY PEc.coiiiiiiirrneree e 67
Table 25—Fundamental SIGNALTY PE annotations for a PIN ODJECLc.coeiirireieiieeeesene e 67
Table 26—Composite SIGNALTY PE annotations based 0N DATA ..o 69
Table 27—Composite SIGNALTY PE annotations based on ADDRESS. ... 69
Table 28—Composite SIGNALTY PE annotations based 0n CONTROLccoviirierieienieie s 69
Table 29—Composite SIGNALTY PE annotations based on ENABLE............cccooiiiiiiinneieeeeeeseee e 70
Table 30—Composite SIGNALTY PE annotations based 0n CLOCKccviiiiiiee e 71
Table 31—ACTION annotations for aPIN ODJECLcuiiicie e e 71
Table 32—ACTION applicable in conjunction with fundamental SIGNALTYPE valUesccccoveviveneieenn. 72
Table 33—POLARITY annotationS fOr @PIN...........coiiiiierer s 72
Table 34—POLARITY applicable in conjunction with fundamental SIGNALTY PE values.........ccccocvveeenenene. 73
Table 35—DATATY PE annotations for @aPIN ODJECL..........cocviriiniicicee e 73
Table 36—STUCK annotations for @PIN ODJECEc.coiiiiiiiiie e 74
Table 37—DRIVETYPE annotations for aPIN ObJECccuviieciiiese et 76
Table 38—SCOPE annotations for @PIN ODJECL..........cociiieiece et 77
Table 39—PULL annotations for aPIN ODJECL..........ccooiiieiecece et et ne 77
Table 40—Attributes Within @ PIN ODJECEccviuiiiieceiee bbb s 78
Table 41—Attributes for PINS Of A IMEMOIYcoiiiiiiree bbbt e b e e b e be e 78
Table 42—Attributes for pins representing double-rail SIgNalS.........cvviiriiineree e 78
Table 43—PIN attributes for MEMOrY BISTooei ettt st e se e s reeaesaneneas 79
Table 44—SIDE annotations for @PIN ObJECL.........ccciiiiie et s sne s 80

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual xiii

Table 45—Statementsin ALF describing physical ODJECESc.vcviivi v 96

Table 46—ItemS fOr LAY ER JESCIIPLION.ciui ittt st sae bbb st e e saeene e 97
Table 47—ItemS fOr VIA AESCHIPLION ...c.eiiiiiiie ettt sttt st b e et s e e enas 101
Table 48—ItemS fOr RULE GESCIIPLIONcoeiuiiiitiieete sttt st st e ebe e ebesae e 104
Table 49—Items for ANTENNA ESCIIPLIONevveieieeiceeeee e e et saese e e se e e e eneenes 109
Table 50—ANNotatioNS Within VIOLATION......cccoitiiirrireeesereereee s seenenee 144
Table 51—Unary DOOIEAN OPEIELOISeierieieeiereeeree ettt e s e ae st e s ae st e tenaeseen e see e eneenennn 160
Table 52—Binary DO0IEaN OPEIAIOIScouiiierieriereeie ettt et e e b e e bt b e e seese e besee e e e eneenas 160
TaDI @ 53——TEIMNEIY OPEIBLONcoueeuireieterte st st et e et e ettt s besaesbesbesee b eaee s s e e eneebeeaeeaeebebesaesbesbeseeseenbesee e eneensanas 160
Table 54—Unary reduCEiON OPEIALOLS.c.iiteiue ettt ettt sb bbb sa e be b see e et e se et eneebeseesee e e e eneenas 160
Table 56—UnNary DitWiSE OPEIGLOISccevi ettt sttt ettt st e st e et ettt b 161
Table 57—Binary DItWiSE OPEIALONS. .. .c.coi ettt st sttt bttt be e 161
Table 55—Binary redUCTION OPEIEIOIS.ccciueiirieririerieie ettt ettt st sttt sttt 161
Tahl € 58——BiNaAry OPEIELOIS.......c.eeiiuererteeeete ettt ettt sttt e e b e e e e s e e e s bt ehe st e s aesbesbeseese e besee e e e eneanis 162
Table 59—Case COMPAIISON OPEIBLOIS.couereeeereeiererieteeterte st ete st reesbebesee s e beseeseeaeeesse et sbesaesaesbesbeseeneeeensanas 163
Table 60—Unary VECtOr OPErators ON DItS........cooiiriiiriee ettt e 168
Table 61—Unary vector operators 0N hitS OF WOITS.........cooveiiririririee et e 169
Table 62—Canonical DiNary VECIOr OPEIELOIS.......coveutiieereeerieesteeetee ettt st be sttt ettt 175
Table 63—Complex biNary VECLOr OPEIELOIS........ccccuerrieeeiertesieeie sttt seese e eese e e e sbe e b e see e et see e e e eneenes 176
Table 64—Operators for conditional VECIOr EXPrESSIONS.........coeririerierieierieieeirreeesie bt e see e ee e e se e sreenes 179
Table 65—0perators for SEQUENTIAl 1OGICcovevireeiererieie ettt st 180
Table 66—Unary arithmMetic OPErALOIS.coeii ettt sttt et sttt ettt et 210
Table 67—Binary arithmEtiC OPEraLOrS.coe ittt ettt 210
Table 68—Function arithMEtiC OPEIALOIS..........ciieiriiirier ettt bbb e 211
Table 69—Generally applicable arithmetic SUDMOEIS ..o 216
Table 70—Submodels restricted to el ectrical MOl INGccceeririiiiie e 216
Table 71—Submodels restricted to physical MOAEIING.oriiiiier e e 217
Table 72—Unnamed containers for arithmetic MOdelS ..o 222
Tahle 73—UNIT BNNOLELIONc.eviiiieiirieieeeeeee ettt st et et se et e et se et b e st b se st b e sbebesbe s nbe e 228
Table 74—TimiNG MEBSUMEITIENESc.euirieirieerieere ettt sttt sttt sttt s e st et e et e se e sb e e se e e s et s et s be e st e eaens 234
Tahle 75—TiMING CONSIITAINES......coeitirerieetieterte sttt sttt ea et e s bt e e e e se e e e aeeaesbe e bt sbe s b seeseenbesee e e e ennenis 234
Tahle 78—ANalOg MEASUIEIMIENESccueitiiuirieree ettt ettt ettt sttt be e et ese et et e es e et s bt sbesbesbesbesbeseeseenbesee e eeennenis 235
Table 76—Generalized timing MEASUMEMENTSccueiiiierere ettt st st s sb et b e e e e e e e e eneenas 235
Table 77—NOrmali ZEA MEBSUMEIMENTS ..ottt sttt sttt s et s be et ebne 235
Table 80—ADSIraCt MEBSUMEITIENTSc.eiveiieeerieirie ettt sttt st st se e e et e et e et ettt bns 236
Table 79—EIeCtriCal COMPONENEScviiriireeie ettt et st bbbt b et 236
Table 82—ENVIronmMeNtal atal...........cvieriieiieiieeeeie e et 237
Table 83—Arithmetic MOdelS fOr 1ayOUL dataL...........ccce i e 237
Table 81—DiSCrete MEASUNEMENTS.ccitireee et sttt b e r et et r et n et e eer e e nr e 237
Table 84—Semantic Meaning Of SIZE ..o et 238
Table 85—Semantic Meaning Of WIDTH......c.ooi i e 238
Table 86—Semantic Meaning Of HEIGHT ..o e 239
Table 87—Semantic meaning Of LENGTH ...t 239
Table 88—Semantic Meaning Of AREAooi ottt st ste s ra e s e sreeneesre e teennennas 239
Table 89—Semantic meaning of PERIMETER...........cccoooiiiiiie ettt st nas 239
Table 90—Semantic Meaning Of DISTANGCE ..ot bbbt 240
Table 91—Semantic meaning Of THICKINESS..........coooiiiiiene et 240
Table 92—Semantic meaning Of OVERHANGccoiiiiiee e 240
Table 93—Semantic meaning Of EXTENSIONooiiiiiie ettt sre e nnas 240
Table 94—Range of time value depending ON VECTOR..........c.ooi ittt 242

Xiv Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

Table 95—Partially specified timing measurements and CONSIAINESccerieeerereriere e 242

Table 96—Semantic interpretation of MEASUREMENT, TIME, or FREQUENCY annotation....................... 250
Table 97—PredefiNed PrOCESS NAIMES.......cccciiiiiri ettt st b e et et et b e et e besaesbeseesbeneesen 262
Table 98—PredefiNed AEraling CASES.coiirieie ettt se et et et b e s bbb eeesbe e e 262
Table 99—Direct association of MOdelSWith @PINooiiiieree e 265
Table 100—External association of ModelSWith @PIN ..o 266
Table 101—Relations between ENERGY and POWER ..ot 268
Table 102—Relations between FLUENCE and FLUXcooiiiiineeenerise e 269
Table 103—MEASUREMENT @NNOLALONc.cviveiiriiriceeiesiresiete sttt et st s 278
Table 104—CONNECT_RULE 8NNOLAIONvcviiiriiiiciiisiicieie sttt s 280
Table 105—Implications bEtWEen CONNECE FUIES.........cccoiirereeee ettt 280
Table 106—Arguments fOr CONMNECTIVITYcoiveuirieirieireeeriee sttt st b et b e e bese s sbeneas 282
Table 107—Boolean literals in non-interpolateabl € tabIES.........c.coviirieirce e 282

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual XV

XVi Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

IEEE Standard for an

Advanced Library Format (ALF)
describing Integrated Circuit (IC)
technology, cells, and blocks

1. Introduction

** Add alead-in OR change this to parallel an |EEE intro section**

1.1 Motivation

Designing digital integrated circuits has become an increasingly complex process. More functions get integrated
into a single chip, yet the cycle time of electronic products and technol ogies has become considerably shorter. 1t
would be impossible to successfully design a chip of today’s complexity within the time-to-market constraints
without extensive use of EDA tools, which have become an integral part of the complex design flow. The effi-
ciency of the tools and the reliability of the results for simulation, synthesis, timing and power analysis, layout
and extraction rely significantly on the quality of available information about the cellsin the technology library.

New challenges in the design flow, especially signal integrity, arise as the traditional tools and design flows hit
their limits of capability in processing complex designs. As a result, new tools emerge, and libraries are needed
in order to make them work properly. Library creation (generation) itself has become a very complex process and
the choice or rejection of a particular application (tool) is often constrained or dictated by the availability of a
library for that application. The library constraint can prevent designers from choosing an application program
that is best suited for meeting specific design challenges. Similar considerations can inhibit the devel opment and
productization of such an application program altogether. As a result, competitiveness and innovation of the
whol e electronic industry can stagnate.

In order to remove these constraints, an industry-wide standard for library formats, the Advanced Library Format
(ALF), is proposed. It enables the EDA industry to develop innovative products and ASIC designers to choose
the best product without library format constraints. Since ASIC vendors have to support a multitude of libraries
according to the preferences of their customers, acommon standard library is expected to significantly reduce the
library development cycle and facilitate the deployment of new technologies sooner.

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 1

10

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

1.2 Goals
The basic goals of the proposed library standard are

— simplicity - library creation process needs to be easy to understand and not become a cumbersome pro-
cess only known by afew experts.

— generality - tools of any level of sophistication need to be able to retrieve necessary information from the
library.

— expandability - this needs to be done for early adoption and future enhancement possibilities.

— flexibility - the choice of keeping information in one library or in separate libraries needsto be in the hand
of the user not the standard.

— efficiency - the complexity of the design information requires the process of retrieving information from
the library does not become a bottleneck. The right trade-off between compactness and verbosity needsto
be established.

— ease of implementation - backward compatibility with existing libraries shall be provided and trandlation
to the new library needs to be an easy task.

— conciseness - unambiguous description and accuracy of contents shall be detailed.

— acceptance - there needs to be a preference for the new standard library over existing libraries.

1.3 Target applications

The fundamental purpose of ALF is to serve as the primary database for al third-party applications of ASIC
cells. In other words, it is an elaborate and formalized version of the databook.

In the early days, databooks provided all the information a designer needed for choosing a cell in a particular
application: Logic symbols, schematics, and a truth table provided the functional specification for simple cells.
For more complex blocks, the name of the cell (e.g., asynchronous ROM, synchronous 2-port RAM, or 4-bit syn-
chronous up-down counters) and timing diagrams conveyed the functional information. The performance charac-
teristics of each cell were provided by the loading characteristics, delay and timing constraints, and some
information about DC and AC power consumption. The designers chose the cell type according to the function-
ality, estimated the performance of the design, and eventually re-implemented it in an optimized way as neces-
sary to meet performance constraints.

Design automation enabled tremendous progressin efficiency, productivity, and the ability to deal with complex-
ity, yet it did not change the fundamental requirements for ASIC design. Therefore, ALF needs to provide mod-
els with functional information and performance information, primarily including timing and power. Signal
integrity characteristics, such as noise margin can aso be included under performance category. Such informa-
tion istypically found in any databook for analog cells. At deep sub-micron levels, digital cells behave similar to
analog cells as electronic devices bound by physical laws and therefore are not infinitely robust against noise.

Table 1 shows alist of applications used in ASIC design flow and their relationship to ALF.

NOTE — ALF covers library data, whereas design data needs to be provided in other formats.

Table 1—Target applications and models supported by ALF

Application Functional model Performance model Physical model
Smulation Derived from ALF N/A N/A
Synthesis Supported by ALF Supported by ALF Supported by ALF
Design for test Supported by ALF N/A N/A

2 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

Table 1—Target applications and models supported by ALF (Continued)

Application Functional model Perfor mance model Physical model
Design planning Supported by ALF Supported by ALF Supported by ALF
Timing analysis N/A Supported by ALF N/A
Power analysis N/A Supported by ALF N/A
Sgnal integrity N/A Supported by ALF N/A
Layout N/A N/A Supported by ALF

Historically, afunctional model was virtually identical to a simulation model. A functional gate-level model was
used by the proprietary simulator of the ASIC company and it was easy to lump it together with a rudimentary
timing model. Timing analysis was done through dynamic functional simulation. However, with the advanced
level of sophistication of both functional simulation and timing analysis, thisis no longer the case. The capabili-
ties of the functional simulators have evolved far beyond the gate-level and timing analysis has been decoupled
from simulation.

RTL design planning is an emerging application type aiming to produce “virtual prototypes’ of complex for sys-
tem-on-chip (SOC) designs. RTL design planning is thought of as a combination of some or al of RTL floorplan-
ning and global routing, timing budgeting, power estimation, and functional verification, as well as analysis of
signal integrity, EMI, and thermal effects. The library components for RTL design planning range from simple
logic gates to parameterizeable macro-functions, such as memories, logic building blocks, and cores.

From the point of view of library requirements, applications involved in RTL design planning need functional,
performance, and physical data. The functional aspect of design planning includes RTL simulation and formal
verification. The performance aspect coverstiming and power as primary issues, while signal integrity, EMI, and
thermal effects are emerging issues. The physical aspect isfloorplanning. As stated previously, the functional and
performance models of components can be described in ALF.

ALF also covers the requirements for physical data, including layout. Thisisimportant for the new generation of
tools, where logical design merges with physical design. Also, al design steps involve optimization for timing,
power, signal integrity, i.e. electrical correctness and physical correctness. EDA tools need to be knowledgeable
about an increasing number of design aspects. For example, a place and route tool needs to consider congestion
aswell astiming, crosstalk, electromigration, antennarules etc. Thereforeitisalogical step to combine the func-
tional, electrical and physical models needed by such atool in aunified library.

Figure 1 shows how ALF provides information to various design tools.

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 3

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

(D Vendor-specific or commercial EDA tool .
. Céll characterization tool
() Commercia EDA tool

/ \ \

[ayout
models

annotations
for scan

universal |—
annotations ALF design limits
for synthesis

wireload |/
models))))
universal functional model universal universal universal signa

— timing model power model integrity model
Test vectors Simulation model
Scan insertion tooD
Place & Route
tool

(Test vector generat@(M odel generat@
Power
analysis tool

Timing
Simulators analysis tool
Verilog & VHDL

Signal integrity
Verilog & VHDL | | Verilog & VHDL analysis tool
Figure 1—ALF and its target applications

The worldwide accepted standards for hardware description and simulation are VHDL and Verilog. Both lan-
guages have awide scope of describing the design at various levels of abstraction: behavioral, functional, synthe-
sizable RTL, and gate level. There are many ways to describe gate-level functions. The existing simulators are
implemented in such a way that some constructs are more efficient for simulation run time than others. Also,
how the simulation model handles timing constraints is a trade-off between efficiency and accuracy. Developing
efficient smulation models which are functionally reliable (i.e., pessimistic for detecting timing constraint viola-
tion) isamajor development effort for ASIC companies.

Hence, the use of a particular VHDL or Verilog simulation model as primary source of functional description of
acell isnot very practical. Moreover, the existence of two simulation standards makes it difficult to pick oneasa

4 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

reference with respect to the other. The purpose of a generic functional model isto serve as an absol ute reference
for all applications that require functional information. Applications such as synthesis, which need functional
information merely for recognizing and choosing cell types, can use the generic functional model directly. For
other applications, such as simulation and test, the generic functional model enables automated simulation model
and test vector generation and verification, which has atremendous benefit for the ASIC industry.

With progress of technology, the set of physical constraints under which the design functions have increased dra-
matically, along with the cost constraints. Therefore, the requirements for detailed characterization and analysis
of those constraints, especially timing and power in deep submicron design, are now much more sophisticated.
Only a subset of the increasing amount of characterization data appearsin today’s databooks.

ALF provides a generic format for all type of characterization data, without restriction to state-of-the art timing
models. Power models are the most immediate extension and they have been the starter and primary driver for
ALF

Detailed timing and power characterization needs to take into account the mode of operation of the ASIC cell,
which isrelated to the functionality. ALF introduces the concept of vector-based modeling, which is a generali-
zation and a superset of today’s timing and power modeling approaches. All existing timing and power analysis
applications can retrieve the necessary model information from ALF.

1.4 Conventions

The syntax for description of lexical and syntax rules uses the following conventions.
** Consider using the BNF nomenclature from |EEE 1481-1999* *

S definition of a syntax rule
| alternative definition
[item an optional item

[iteml | item2 | ...] optional itemwith alternatives

{itent optional itemthat can be repeated

{iteml | iten2 | ... } optional itenms with alternatives
whi ch can be repeated

item itemin boldface font is taken verbatim

item itemin italic is for explanation purpose only

The syntax for explanation of semantics of expressions uses the following conventions.

=== |l eft side and right side expressions are equival ent
<itemr a placeholder for an itemin regular syntax

1.5 Contents of this standard
The organization of the remainder of this standard is

— Clause 2 (References) provides references to other applicable standards that are assumed or required for
ALF.

— Clause 3 (Definitions) defines terms used throughout the different specifications contained in this stan-
dard.

— Clause 4 (Acronyms and abbreviations) defines the acronyms used in this standard.

— Clause 6 (Lexical rules) specifiesthe lexical rules.

— Clause 5 (ALF language construction principles) defines the language construction principles.

— Clause 7 (Auxiliary Syntax Rules) defines syntax and semantics of auxiliary items used in this standard.

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 5

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

Clause 8 (Generic objects and related statements) defines syntax and semantics of generic objectsused in
this standard.

Clause 9 (Library-specific objects and related statements) defines syntax and semantics of library-spe-
cific objectsused in this standard.

Clause 10 (Constructs for modeling of digital behavior) defines syntax and semantics of the control
expression language used in this standard

Clause 11 (Constructs for modeling of analog behavior) defines syntax and semantics of arithmetic mod-
els used in this standard.

Annexes. Following Clause 11are a series of normative and informative annexes.

Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

2. References

**Fill in applicable references, i.e. standards on which the herein proposed standard depends.

This standard shall be used in conjunction with the following publication. When the following standard is super-
seded by an approved revision, the revision shall apply.

**Thefollowing is only an example. AL F does not depend on C.

| SO/IEC 9899:1990, Programming L anguages—C.*

[1SO 8859-1 : 1987(E)] ASCII character set

1130 publications are available from the 1SO Central Secretariat, Case Postale 56, 1 rue de Varembé, CH-1211, Genéve 20, Switzerland/
Suisse (http://www.iso.ch/). IEC publications are available from the Sales Department of the International Electrotechnical Commission,
Case Postale 131, 3, rue de Varembé, CH-1211, Genéve 20, Switzerland/Suisse (http://www.iec.ch/). ISO/IEC publications are aso available
in the United States from the Sales Department, American National Standards Institute, 11 West 42nd Street, 13th Floor, New York, NY
10036, USA.

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 7

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 3

3. Definitions

For the purposes of this standard, the following terms and definitions apply. The IEEE Sandard Dictionary of
Electrical and Electronics Terms [B4] should be consulted for terms not defined in this standard.

**Fill in definitions of terms which are used in the herein proposed standard.

3.1 advanced library format: The format of any file that can be parsed according to the syntax and semantics
defined within this standard.

3.2 application, electric design automation (EDA) application: Any software program that uses data repre-
sented in the Advanced Library Format (ALF). Examplesinclude RTL (Register Transfer Level) synthesistools,
static timing analyzers, etc. See also: advanced library format; register transfer level.

3.3 arc: See: timing arc.

3.4 argument: A data item required for the mathematical evaluation of an artihmetic model. See also: arith-
metic model.

3.5 arithmetic model: A representation of alibrary quantity that can be mathematically evaluated.
36..

3.7 register transfer level: A behavioral representation of a digital electronic design allowing inference of
sequential and combinational logic components.

38...

3.9timing arc: An abstract representation of a measurement between two points in time during operation of a
library component.

3.10...

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 9

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

10

Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 3

4. Acronyms and abbreviations

This clause lists the acronyms and abbreviations used in this standard.

ALF
ASIC
AWE
BIST
BNF
CAE
CAM
CLF
CPU
DCL
DEF
DLL
DPCM
DPCS
DSP
DSPF
EDA
EDIF
HDL
IC
1P
ILM
LEF
LIB
LSSD
MPU
OLA
PDEF
PLL
PVT
QTM
RAM
RC
RICE
ROM
RSPF
RTL
SDF
sDC
SPEF
SPF
SPICE
STA

advanced library format, title of the herein proposed standard
application specific integrated circuit

asymptotic waveform evaluation

built-in salf test

Backus-Naur Form

computer-aided engineering [the term electronic design automation (EDA) is preferred]

content-addressable memory

Common Library Format from Avant! Corporation

central processing unit

Delay Calculation Language from |EEE 1481-1999 std

Design Exchange Format from Cadence Design Systems Inc.
delay-locked loop

Delay and Power Calculation Module from |EEE 1481-1999 std
Delay and Power Calculation System from | EEE 1481-1999 std
digital signal processor

Detailed Standard Parasitic Format

electronic design automation

Electronic Design Interchange Format

hardware description language

integrated circuit

intellectual property

Interface Logic Model from Synopsys Inc.

Library Exchange Format from Cadence Design Systems Inc.
Library Format from Synopsys Inc.

level-sensitive scan design

MiCro processor unit

Open Library Architecture from Silicon Integration Initiative Inc.
Physical Design Exchange Format from |EEE 1481-1999 std
Phase-locked loop

process/voltage/temperature (denoting a set of environmental conditions)
Quick Timing Model

random access memory

resistance times capacitance

rapid interconnect circuit eval uator

read-only memory

Reduced Standard Parasitic Format

Register Transfer Level

Standard Delay Format from |EEE 1497 std

Synopsys Design Constraint format from Synopsys Inc.
Standard Parasitic Exchange Format from |EEE 1481-1999 std
Standard Parasitic Format

Simulation Program with Integrated Circuit Emphasis

Static Timing Analysis

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual

11

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

STAMP
TCL
TLF
VCD
VHDL
VHSIC
VITAL
VLS

12

(STA Model Parameter ?) format from Synopsys Inc.

Tool Command Language (supported by multiple EDA vendors)
Timing Library Format from Cadence Design Systems Inc.
Value Change Dump format (from |EEE 1364 std ?)

VHSIC Hardware Description Language

very-high-speed integrated circuit

VHDL Initiative Towards ASIC Libraries from IEEE ??? std
very-large-scale integration

Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 3

5. ALF language construction principles and overview

** Add lead-in text**

This section presents the ALF language construction principles and gives an overview of the language features.
The types of ALF statements and rules for parent/child relationships between types are presented summarily.
Most of the types are associated with predefined keywords. The keywords in ALF shall be case-insensitive.
However, uppercase is used for keywords throughout this section for clarity.

5.1 ALF meta-language

The following Syntax 1— establishes an ALF meta-language.

ALF_statement ::=
ALF _type[ALF_name] [= ALF_value] ALF_statement_termination
ALF_statement_termination ::=

|{ { ALF_value|:|;}}
|1 { ALF_statement } }}
ALF _type::=
non_escaped_identifier [index]
@
ALF name::=
identifier [index]
| control_expression
ALF vaue::=
identifier
| number
| arithmetic_expression
| boolean_expression
| control_expression

Syntax 1—syntax construction for ALF meta-language

An ALF statement uses the delimiters“;”, “{* and “}” to indicate its termination.

The ALF type is defined by akeyword (see Section 6.11 on page 31) eventually in conjunction with an index (see
Section 7.7 on page 34) or by the operator “@” (Section 6.4 on page 24) or by the delimiter “.” (see Section 6.3
on page 23). The usage of keyword, index, operator, or delimiter as ALF type is defined by ALF language rules
concerning the particular ALF type.

The ALF name is defined by an identifier (see Section 6.10 on page 29) eventually in conjunction with an index
or by a control expression (see Section 10.9 on page 208). Depending on the ALF type, the ALF name is manda-
tory or optional or not applicable. The usage of identifier, index, or control expression as ALF nameis defined by
ALF language rules concerning the particular ALF type.

The ALF value is defined by an identifier, a number (see Section 6.5 on page 27), an arithmetic expression (see
Section 11.1 on page 209), a boolean expression (see Section 10.7 on page 207), or a control expression.
Depending on the type of the ALF statement, the ALF value is mandatory or optional or not applicable. The
usage of identifier, number, arithmetic expression, boolean expression or control expression as ALF vaue is
defined by ALF language rules concerning the particular ALF type.

IEEE P1603 Draft 2 Advanced Library Format (ALF) Reference Manual 13

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

An ALF statement can contain one or more other ALF statements. The former is called parent of the latter. Con-
versely, the latter is called child of the former. An ALF statement with child is called a compound ALF state-
ment.

An ALF statement containing one or more ALF values, eventually interspersed with the delimiters “;” or “:”, is
called a semi-compound ALF statement. The items between the delimiters “{* and “}" are called contents of the
ALF statement. The usage of the delimiters “;” or “:” within the contents of an ALF statement isdefined by ALF
language rules concerning the particular ALF statement.

An ALF statement without child is caled an atomic ALF statement. An ALF statement which is either com-
pound or semi-compound is called a non-atomic ALF statement.

Examples

a) ALF statement describing an unnamed object without val ue:
ARBI TRARY_ALF_TYPE {
/1 put children here
}
b) ALF statement describing an unnamed object with value:
ARBI TRARY_ALF _TYPE = arbitrary_ALF val ue;
or
ARBI TRARY_ALF _TYPE = arbitrary_ALF val ue {
/1 put children here
}

¢) ALF statement describing a named object without value:
ARBI TRARY_ALF_TYPE arbitrary_ALF_nane;
or
ARBI TRARY_ALF_TYPE arbitrary_ALF _nanme {
/1 put children here
}
d) ALF statement describing a named object with value:
ARBI TRARY_ALF _TYPE arbitrary_ ALF _name = arbitrary_ALF_val ue;
or
ARBI TRARY_ALF _TYPE arbitrary_ ALF nane
/1l put children here

arbitrary_ALF _val ue {

}

5.2 Categories of ALF statements

In this section, the terms statement, type, name, value are used for shortnessin lieu of ALF statement, ALF name,
ALF value, respectively.

14 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 2

Statements are divided into the following categories: generic object, library-specific object, arithmetic model,
arithmetic submodel, arithmetic model container, geometric model, annotation, annotation container, and auxil-
iary statement, as shown in Table 2—.

Table 2—Categories of ALF statements

category

purpose

syntax particularity

generic object

provide a definition for use within other
ALF statements

Statement is atomic, semi-compound or com-
pound.

Name is mandatory.

Valueis either mandatory or not applicable.

library-specific object

describe the contents of alC technology
library

Statement is atomic or compound.
Name is mandatory.

Value does not apply.

Category of parent isexclusively
library-specific object

arithmetic model

describe an abstract mathematical quan-
tity that can be calcul ated and eventually
measured within the design of an IC

Statement is atomic or compound.
Name is optional.
Valueis mandatory, if atomic.

arithmetic submodel

describe an arithmetic model under a
specific measurement condition

Statement is atomic or compound.
Name does not apply.

Valueis mandatory, if atomic.
Category of parent isexclusively
arithmetic model

arithmetic model container

provide a context for an arithmetic
model

Statement is compound.

Name and value do not apply.
Category of child isexclusively
arithmetic model

geometric model

describe an abstract geometrical form
used in physical design of anIC

Statement is semi-compound or compound.
Name is optional.
Value does not apply.

annotation

provide aqualifier or aset of qualifiers
for an ALF statement

Statement is atomic, semi-compound or com-
pound.

Name does not apply.

Valueis mandatory, if atomic or compound.
Value does not apply, if semi-compound.
Category of child isexclusively

annotation

annotation container

provide a context for an annotation

Statement is compound.

Name and value do not apply.
Category of child isexclusively
annotation

auxiliary statement

provide an additional description within
the context of alibrary-specific object,
an arithmetic model, an arithmetic sub-
model, geometric model or another aux-
liary statement

dependent on subcategory

The following Figure 2— illustrates the parent/child relationship between categories of statements.

IEEE P1603 Draft 2

Advanced Library Format (ALF) Reference Manual

15

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

legend:
parent — > child
parent — — 3 child

~

no restrictive rules

with restrictive rules

|
|
arithmetic model container :

|
arithmeticmodel <—| |
5~V

y
library-specific object

_ -geometric model

| annotation container

> T
/ s auxiliary statement
| arithmetic submodel- — %) ~ -
\ P —

- __ i

>

library-specific object —a s

arithmetic model — generic object

auxiliary statement ~ —%

library-specific object

- arithmetic model container
~ . .
_ < — - arithmetic model
genericobject - — — = arithmetic submodel
T & — -m auxiliary statement
O - @nnotation container
A annotation

—® annotation
B> _

Figure 2—Parent/child relationship between AL

F statements

More detailed rules for parent/child relationships for particular types of statements apply.

5.3 Generic objects and library-specific objects

Statements with mandatory name are called objects, i.e., generic object and library-specific object.

16

Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 2

The following table lists the keywords and items in the category generic object. The keywords used in this cate-

gory are called generic keywords.

Table 3—Generic objects

keyword item section
ALIAS alias declaration
CONSTANT constant declaration
CLASS class declaration
GROUP group declaration
KEYWORD keyword declaration
TEMPLATE template declaration

The following Table 3— lists the keywords and items in the category library-specific object. The keywords used
in this category are called library-specific keywords.

Table 4—Library-specific objects

IEEE P1603 Draft 2

keyword item section
LIBRARY library
SUBLIBRARY sublibrary
CELL cdl
PRIMITIVE primitive
WIRE wire
PIN pin
PINGROUP pin group
VECTOR vector
NODE node
LAYER layer
VIA via
RULE rule
ANTENNA antenna
SITE site

Advanced Library Format (ALF) Reference Manual

17

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

Thefollowing Figure 3— illustrates the parent/child relationship between statements within the category library-

Table 4—Library-specific objects

keyword item section
ARRAY array
BLOCKAGE blockage
PORT port
PATTERN pattern
REGION region new proposal for IEEE

specific object.
library — e sublibrary
- layer
wire
cell primitive
- Site / \ / \\ ¢
node vector _ ¢ .
pin pin-group pin
= array
region? blockage i
- rule
\ port
antenna pattern /
/ legend:
» Via parent ——® child

A parent can have multiple library-specific objects of the same type as children. Each child is distinguished by

name.

Figure 3—Parent/child relationship amongst library-specific objects

5.4 Singular statements and plural statements

Auxiliary statements with predefined keywords are devided in the following subcategories. singular statement

and plural statement.

18

Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 2

Aucxiliary statements with predefined keywords and without name are called singular statements. Auxiliary state-
ments with predefined keywords and with name, yet without value, are called plural statements.

The following Table 5— lists the singular statements.

Table 5—Singular statements

keyword item value complexity section
FUNCTION function N/A compound
TEST test N/A compound
RANGE range N/A semi-compound
FROM from N/A compound
TO to N/A compound
VIOLATION violation N/A compound
HEADER header N/A compound (or semi-compound?)
TABLE table N/A semi-compound
EQUATION equation N/A semi-compound
BEHAVIOR behavior N/A compound
STRUCTURE structure N/A compound
NON_SCAN_CELL non-scan cell optional compound or semi-compound
ARTWORK artwork mandatory compound or atomic
PULL pull optional compound or atomic
The following Table 6— lists the plural statements.
Table 6—Plural statements
keyword item name complexity section
STATETABLE state table optional semi-compound
@ control statement mandatory compound
alternative control statement mandatory compound

IEEE P1603 Draft 2

Advanced Library Format (ALF) Reference Manual

The following Figure 4— illustrates the parent/child relationship for singular statements and plural statements.

19

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

primitive

function

structure

cell

test

violation<e— grjthmetic model

#

#

statetable

legend:
parent —® child

be&avi or

» pin

non-scan cell

artwork
range

_—|:: from
to

L arithmetic submodel

—arithmetic submo

pull

. » header
L table
- equation

I

—®>control statement
—®alternative control statement

Figure 4—Parent/child relationship involving singular statements and plural statements

A parent can have at most one child of a particular type in the category singular statements, but multiple children

of aparticular type in the category plural statements.

5.5 Instantiation statement and assignment statement

Auxiliary statements without predefined keywords use the name of an object as keyword. Such statements are
devided in the following subcategories: instantiation statement and assignment statement.

Compound or semi-compound statements using the name of an object as keyword are called instantiation state-
ments. Their purpose is to specify an instance of the object.

The following Table 7— lists the instantiation statements.

Table 7—Instantiation statements

item name value section
cell instantiation optional N/A
primitive instantiation optional N/A
templ ate instantiation N/A optional
viainstantiation mandatory N/A
wire instantiation mandatory N/A proposed for IEEE

20

Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 2

Atomic statements without name using an identifier as keyword which has been defined within the context of
another object are called assignment statements. A value is mandatory for assignment statements, as their pur-
poseisto assign avaue to the identifier. Such an identifier is called avariable.

The following Table 8— lists the assignment statements.

Table 8—Assignment statements

item section

pin assignment

boolean assignment

arithmetic assignment

The following Figure 5— illustrates the parent/child relationship involving instantiation and assigment state-

ments.
legend:
behavior parent ——® child no restrictive rules
parent = — —® child with restrictive rules

- primitiveinstantiation—— |

—® control statement

—®alternative control statement ——
generic object

singular statement
non-scan cell structure

Lo plural statement
R y/ arithmetic mod

pin assignment e—Wireinstantiation?

library-specific object _

v

NARidJ.

artwork : cel ingtantiation / arithmeticsubmodel’;
\ v ¢ ’/ arithmetic model container

- boolean assignment

template instantiation

\

arithmetic assignment

Figure 5—Parent/child relationship involving instantiation and assignment statements

A parent can have multiple children using the same keyword in the category instantiation statement, but at most

one child using the same variable in the category assignment statement.

IEEE P1603 Draft 2

Advanced Library Format (ALF) Reference Manual 21

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

5.6 Annotation, arithmetic model, and related statements

Multiple keywords are predefined in the categories arithmetic model, arithmetic model container, arithmetic
submodel, annotation, annotation container, and geometric model. Their semantics are established within the
context of their parent. Therefore they are called context-sensitive keywords. In addition, the ALF language
allows additional definition of keywords in these categories.

The following Table 9— provides a reference to sections where more definitions about these categories can be
found.

Table 9—Other categories of ALF statements

item section

arithmetic model

arithmetic submodel

arithmetic model container

annotation

annotation container

geometric model

There exist predefined keywords with generic semantics in the category annotation and annotation container.
They are called generic keywords, like the keywords for generic objects.

The following Table 10— lists the generic keywords in the category annotation and annotation container.

Table 10—Annotations and annotation containers with generic keyword

keyword item / subcategory section
PROPERTY one_level _annotation_container
ATTRIBUTE multi_value_annotation
INFORMATION one_level _annotation_container

The following Table 11— lists predefined keywords in categories related to arithmetic model ..

Table 11—Keywords related to arithmetic model

keyword item / category section

LIMIT arithmetic model container

22 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 2

Table 11—Keywords related to arithmetic model

keyword item / category section
MIN arithmetic submodel, operator within arithmetic expression
MAX arithmetic submodel, operator within arithmetic expression
TYP arithmetic submodel
DEFAULT arithmetic submodel, annotation
ABS operator within arithmetic expression
EXP operator within arithmetic expression
LOG operator within arithmetic expression

The definitions of other predefined keywords, especially in the category arithmetic model, can be self-described
in ALF using the keyword declaration statement (see Section 8.4 on page 38).

5.7 Statements for parser control

Thefollowing provides areference to statements used for ALF parser control.

Table 12—Statements for ALF parser control

keyword statement section
INCLUDE include statement
ALF _REVISION revision statement

The statements for parser control do not necessarily follow the ALF meta-language shown in Syntax 1.

5.8 Name space and visibility of statements

The following rules for name space and visibility shall apply:

a) A statement shall be visible within its parent statement.

b) A statement visible within another statement shall also be visible within a child of that other statement.

c) All objects (i.e., generic objects and library-specific objects) shall share a common name space within
their scope of visibility. No object shall use the same name as any other visible object. Conversely, an

object may use the same name as any other object outside the scope of its visibility.
d) Exceptions of rule c) may be allowed for specific objects and with specific semantic implications.

e) All statements with optional names (i.e., property, arithmetic model, geometric model) shall share acom-
mon name space within their scope of visibility. No statement with optional name shall use the same
name as any other visible statement with optional name. Conversely, a statement may use the same
optional name as any other statement with optional name outside the scope of its visihility.

IEEE P1603 Draft 2

Advanced Library Format (ALF) Reference Manual

23

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

24

Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 2

6. Lexical rules
This section discusses the lexical rules.

The ALF source text files shall be a stream of Iexical tokens and whitespace. Lexical tokens shall be divided into
the categories delimiter, operator, comment, number, bit literal, based literal, edge, quoted string, and identifier.

Each lexical token shall be composed of one or more characters. Whitespace shall be used to separate lexical
tokens from each other. Whitespace shall not be allowed within alexical token with the exception of comment
and quoted string.

The specific rules for construction of lexical tokens and for usage of whitespace are defined in this section.

6.1 Character set
This standard shall use the ASCI| character set [ISO 8859-1 : 1987(E)].

The ASCII character set shall be divided into the following categories: whitespace, letter, digit, and special, as
shown in Syntax 3.

character ::=
whitespace
| letter
| digit
| special
letter ::=
uppercase | lowercase
uppercase

I'§~(I||§(I|CZIDIEIFIGIH||IJIKILIM INJOIPIQIRISITIUIVIW

lowercase ::=

a|b|0|d|e|f|g|h|I|J IKilimnjo[p|girisitiu|viw|x|y|z
0|1|2|3|4|5|6|7|8|9

speC|aI =
{ |/|%|’>|'| L1 1@1= 1N 18 1#
|(|)|< |>|
whitespace ::=

space | vertica_tab | horizontal_tab | new_line | carriage_return | form_feed

Syntax 3—ASCII character

The following Table 4 shows the list of whitespace characters and their ASCII code.

Table 4—List of whitespace characters

Name ASCII code (octal)
space 200
horizontal tab 011
new line 012
vertical tab 013

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 21

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

Table 4—List of whitespace characters (Continued)

Name ASCII code (octal)
form feed 014
carriage return 015

The following Table 5— showsthe list of special characters and their names used in this standard

Table 5—List of special characters

Symbol Name

& amperesand

| ?77? bar

A 722 hyphen

~ tilde

+ plus

- minus

* asterix

/ divider

% percent

? question mark

! exclamation mark

colon

; semicolon

, comma

K double quote

' single quote

@ ma

= equal
\ escape character

dot

$ dollar
_ underscore
??? sharp

(1) parenthesis (open | close)
<> angular bracket (open | close)

22 Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 3

Table 5—List of special characters (Continued)

Symbol Name
[1] square bracket (open | close)
{1} curly brace (open | close)

6.2 Comment

A comment shall be divided into the subcategories in-line comment and block comment, as shown in Syntax 4.

comment ::=
in_line_comment
| block_comment
in_line_comment ::=
| I{ character} new_line
|/ [{ character} carriage_return
block_comment ::=
[*{character}* /

Syntax 4—Comment

The start of an in-line comment shall be determined by the occurence of two subsequent divider characters with-
out whitespace in-between. The end of an in-line comment shall be determined by the occurence of anew line or
of acarriage return character.

The start of ablock comment shall be determined by the occurence of adivider character followed by an asterix
without whitespace in-between. The end of a block comment shall be determined by the occurence of an asterix
character followed by adivider character.

A comment shall have the same semantic meaning as a whitespace. Therefore, no syntax rule shall involve a
comment.

6.3 Delimiter

The specia characters shown in Syntax 5 shall be considered delimiters.

delimiter ::=

(DT,

Syntax 5—Delimiter

When appearing in asyntax rule, adelimiter shall be used to indicate the end of a statement or of a partial state-
ment, the begin and end of an expression or of a partial expression.

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 23

10

15

20

25

30

35

40

45

50

55

1

10

15

20

25

30

35

40

45

50

55

6.4 Operator

Operators shall be divided into the following subcategories: arithmetic operator, boolean operator, relational

operator, shift operator, event sequence operator, and meta operator, as shown in Syntax 6

operator ::=
arithmetic_operator
| boolean_operator
| relational _operator
| shift_operator
| event_sequence_operator
| other_operator

arithmetic_operator ::=

+ -1 1% | **
boolean_operator ::= A

& I[[~& [~[IM 1~ &]
relational_operator ::=

==[l=|>=|<=|>|<
shift_operator ::=

<<|>>
event_sequence_operator ::=

S>> <> <> | &> <& >
meta_operator ::=

=1?1@

Syntax 6—Operator

When appearing in a syntax rule, an operator shall be used within a statement or within an expression. An opera-
tor with one operand shall be called unary operator. An unary operator shall precede the operand. An operator
with two operands shall be called binary operator. A binary operator shall succede the first operand and precede

the second operand.

6.4.1 Arithmetic operator

The following Table 6— shows the list of arithmetic operators and their names used in this standard.

Table 6—List arithmetic operators

Symbol Operator name unary / binary section
+ plus binary
- minus both
* multiply binary
/ divide binary
% modulo binary
** power binary

Arithmetic operators shall be used to specify arithmetic operations.

24 Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 3

6.4.2 Boolean operator

The following Table 7— shows the list of boolean operators and their names used in this standard.

Table 7—List of boolean operators

Symbol Operator name unary / binary section
! logical invert unary
& & logical and binary
I logical or binary
~ vector invert unary
& vector and both
~& vector nand both
| vector or both
~ vector nor both
N exclusive or both
~A exclusive nor both

Boolean operators shall be used to specify boolean operations.

6.4.3 Relational operator

The following Table 8— showsthe list of relational operators and their names used in this standard.

Table 8—List of relational operators

Symbol Operator name unary / binary section
== equal binary
1= not equal binary
greater binary
lesser binary
>= greater or equal binary
<= lesser or equal binary

Relational operators shall be used to specify mathematical relationships between numerical quantities.

IEEE P1603 Draft 3

Advanced Library Format (ALF) Reference Manual

25

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

6.4.4 Shift operator

The following Table 9— shows the list of shift operators and their names used in this standard.

Table 9—List of shift operators

Symbol Operator name unary / binary section
<< shift left binary
>> shift right binary

Shift operators shall be used to specify manipulations of discrete mathematical values.

6.4.5 Event sequence operator

The following Table 10— showsthe list of event sequence operators and their names used in this standard.

Table 10—List of event sequence operators

Symboal Operator name unary / binary section
-> immediately followed by binary
~> eventualy followed by binary
<> immediately following each other binary
<~> eventually following each other binary
&> simultaneous or immediately followed by binary
<&> simultaneous or immediately following each other | binary

Event sequence operators shall be sed to express temporal relationships between discrete events.

6.4.6 Meta operator

The following Table 11— shows the list of meta operators and their names used in this standard.

Table 11—List of meta operators

Symbol Operator name unary / binary section
= assignment binary
? condition binary
@ control unary

Meta operators shall be used to specify transactions between variables.

26

Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 3

6.5 Number

Numbers shall be divided into subcategories signed number and unsigned number, as shown in Syntax 7.

number ::=
signed_number | unsigned_number
signed_number ::=
signed_integer | signed_real
signed_integer ::=
sign unsigned_integer
signed_red ::=
sign unsigned_real
unsigned_number ::=
unsigned_integer | unsigned_real
unsigned_integer ::=
digit { [_]digit}
unsigned_real ::=
unsigned . unsigned
|unsigned [. unsigned] E [sign] unsigned
| unsigned [. unsigned] €[sign] unsigned
sign::=
+ | -

Syntax 7—Signed and unsigned numbers

Alternatively, numbers shall be divided into subcategories integer and real, as shown in Syntax 8—.

number ::=
integer | real
integer ::=
signed_integer | unsigned_integer
rea ::=
signed_real | unsigned_redl

Syntax 8—Integer and real numbers

Numbers shall be used to represent numerical quantities.

6.6 Bit literal

Bit literals shall be divided into subcategories numeric bit literal and symbolic bit literal, as shown in Syntax 9.

bit_literal ::=
numeric_bit_literal
| symbolic_bit_literal
numeric_bit_literal ::=
011
symbolic_bit_literal ::=
X1Z|LIHIUW
X[zl hjujw
| ?1*

Syntax 9—Bit literal

Bit literals shall be used to specify scalar values within aboolean system.

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual

10

15

20

25

30

35

40

45

50

55

1

10

15

20

25

30

35

40

45

50

55

6.7 Based literal

Based literals shall be divided into subcategories binary based literal, octal based literal, decimal based literal,
and hexadecimal based literal, as shown in Syntax 10.

based literal ::=
binary_based_literal ::=
octal_based_literal ::=
decimal_based literal ::=
hexadecimal_based_literal ::=
binary base::=

"BI'b
octal _base ::=

decima_base ::

octal ::=

hexadecimal ::=

binary_based_literal | octal_based_literal | decimal_based literal | hexadecimal_based_literal
binary_base bit_literal { [_] bit_literal }

octal_baseoctal { [_] octal }

decimal_base digit { [_] digit }

hex_base hexadecimal { [__] hexadecimal }

‘Ol'o
'‘Dl'd

bit_literal | 2131415167

octa |89
|A|B| AD'E'F
lalb|ci|d|e|f

Syntax 10—Based literal

Based literals shall be used to specify vectorized values within a boolean system.

6.8 Edge literal

Edge literals shall be divided into subcategories bit edge literal, based edge literal, and symbolic edge literal, as

shown in Syntax 11—.

edge literal ::=

bit_edge literal ::=
based_edge literal ::=

mbolic_edge literal ::=
Syl g,)_

bit_edge literal

| based_edge literal

| symbolic_edge literal
bit_literal bit_literal
based_literal based literal

P~

Syntax 11—Edge literal

Edge literals shall be used to specify a change of value within a boolean system. In general, bit edge literals shall
specify achange of ascalar value, based edge literals shall specify a change of a vectorized value, and symbolic
edge literals shall specify a change of ascalar or of a vectorized value.

28

Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

6.9 Quoted string

A quoted string shall be a sequence of zero or more characters enclosed between two double quote characters, as

shown in Syntax 12.

quoted_string ::=
" { character} "

Syntax 12—Quoted string

Within a quoted string, a sequence of characters starting with an escape character shall represent a symbol for
another character, as shown in Table 12.

Table 12—Character symbols within a quoted string

Symbol Character ASCII Code (octal)
\g Alert or bell 007
\h Backspace 010
\t Horizontal tab 011
\n New line 012
\v Vertical tab 013
\ f Form feed 014
\r Carriage return 015
\ " Double quote 042
\\ Escape character 134
\ digit digit digit ASCII character represented by three digit digit digit digit
octal ASCII code

The start of a quoted string shall be determined by a double quote character. The end of a quoted string shall be
determined by a double quote character preceded by an even number of escape characters or by any other charac-

ter than escape character.

6.10 Identifier

Identifiers shall be divided into the subcategories non-escaped identifier, escaped identifier, placeholder identi-
fier, and hierarchical identifier, as shown in Syntax 13.

identifier ::=
non_escaped_identifier
| escaped_identifier
| placeholder_identifier
| hierarchical _identifier

IEEE P1603 Draft 3

Syntax 13—Identifier

Advanced Library Format (ALF) Reference Manual

29

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

Identifiers shall be used to specify a name of an ALF statement or avalue of an ALF statement. Identifiers may
also appear in an arithmetic expression, in a boolean expression, or in avector expression, referencing an already
defined statement by name.

A lowercase character used within a keyword or within an identifier shall be considered equivalent to the corre-
sponding uppercase character. This makes ALF case-insensitive. However, whereever an identifier is used to
specify the name of a statement, the usage of the exact letters shall be preserved by the parser to enable usage of
the same name by a case-sensitive application.

6.10.1 Non-escaped identifier

A non-escaped identifier shall be defined as shown in Syntax 14.

non_escaped_identifier ::=
letter { letter |digit| | $|#}

Syntax 14—Non-escaped identifier

A non-escaped identifier shall be used, when there is no lexical conflict, i.e., no appearence of a character with
special meaning, and no semantical conflict, i.e., the identifier is not used elsewhere as a keyword.

6.10.2 Escaped identifier

An escaped identifier shall be defined as shown in Syntax 15.

escaped_identifier ::=
escape_character escapable_character { escapable_character }
escapable_character ::=
letter | digit | special

Syntax 15—Escaped identifier

An escaped identifier shall be used, when thereisalexical conflict, i.e., an appearence of acharacter with special
meaning, or asemantical conflict, i.e., theidentifier is used €l sewhere as a keyword.

6.10.3 Placeholder identifier

A placeholder identifier shall be defined as a non-escaped identifier enclosed by angular brackets without
whitespace, as shown in Syntax 16.

placeholder_identifier ::=
< non_escaped_identifier >

Syntax 16—Placeholder identifier

A placeholder identifier shall be used to represent a formal parameter in a template statement (see section ...),
which isto be replaced by an actual parameter in atemplate instantiation statement (see section ...).

6.10.4 Hierarchical identifier

A hierarchical identifier shall be defined as shown in Syntax 17.

30 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

hierarchical_identifier ::=
identifier [\] . identifier

Syntax 17—Hierarchical identifier
A hierarchical identifier shall be used to specify a hierarchical name of a statement, i.e., the name of a child pre-

ceded by the name of its parent. A dot within a hierarchical identifier shall be used to separate a parent from a
child, unless the dot is directly preceded by an escape character.

Example
\id1.id2.\id3 isahierarchical identifier, whereid2 isachild of \id1, and \id3 isachild of id2.
id1\.id2.\id3 isahierarchical identifier, where\id3 isachild of “id1.id2".

id1\.id2\.id3 specifies the pseudo-hierarchical name “id1.id2.id3".

6.11 Keyword

Keywords shall be lexically equivalent to non-escaped identifiers. Predefined keywords are listed in Table 3—,
Table 4—, Table 5—, Table 6—, Table 10—, and Table 11—. Additional keywords are predefined in section ...

The predefined keywordsin this standard follow amore restrictive lexical rule than general non-escaped identifi-
ers, as shown in Syntax 18—.

keyword_identifier ::=
letter { [_] letter}

Syntax 18—Keyword

** Should this be a normative rule or a recommended practice to follow for additional keyword definitions? **

Note: This document presents keywords in all-uppercase letters for clarity.

6.12 Rules for whitespace usage
Whitespace shall be used to separate lexical tokens from each other, according to the following rules:

a) Whitespace before and after adelimiter shall be optional.

b) Whitespace before and after an operator shall be optional.

¢) Whitespace before and after a quoted string shall be optional.

d) Whitespace before and after a comment shall be mandatory. This rule shall override a), b), and c).

e) Whitespace between subsequent quoted strings shall be mandatory. This rule shall override c).

f) Whitespace between subsequent lexical tokens amongst the categories number, bit literal, based literal,
and identifier shall be mandatory.

g) Whitespace before and after a placeholder identifier shall be mandatory. This rule shall override @), b),
and c).

h) Whitespace after an escaped identifier shall be mandatory. Thisrule shall override @), b), and c).

i) Either whitespace or delimiter before a signed number shall be mandatory. This rule shall override a), b),
and c).

j) Either whitespace or delimiter before a symbolic edge literal shall be mandatory. This rule shall override
a), b), and ¢).

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 31

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

Whitespace before the first Iexical token or after the last lexical token in afile shall be optional. Hencein al rules
prescribing mandatory whitespace, “before” shall not apply for the first lexical token in afile, and “after” shall
not apply for the last lexical token in afile.

6.13 Rules against parser ambiguity

In a syntax rule where multiple legal interpretations of alexical token are possible, the resulting ambiguity shall
be resolved according to the following rules:

a)
b)
0)
d)

In a context where both bit literal and identifier are legal, anon-escaped identifier shall take priority over
asymbolic bit literal.

In a context where both bit literal and number are legal, an unsigned integer shall take priority over a
numeric bit literal.

In a context where both edge literal and identifier are legal, a non-escaped identifier shall take priority
over abit edgeliteral.

In a context where both edge literal and number are legal, an unsigned integer shall take priority over a
bit edge literal.

If the interpretation as bit literal isdesired in case a) or b), abased literal can be substituted for a bit literal.

If theinterpretation as edge literal isdesired in case c) or d), abased edge literal can be substituted for abit edge

literal.

32

Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

7. Auxiliary Syntax Rules

This section specifies auxiliary syntax rules which are used to build other syntax rules.

7.1 All-purpose value

An all-purpose value shall be defined as shown in Syntax 25.

al_purpose vaue::=
number
| identifier
| quoted_string
| bit_literal
| based_literal
| edge _value
| pin_variable
| control_expression

Syntax 25—All purpose value

7.2 String

A string shall be defined as shown in Syntax 26.

string ;=
quoted_string | identifier

Syntax 26—String value

A string shall represent textual datain general and the name of areferenced object in particular.

7.3 Arithmetic value

An arithmetic value shall be defined as shown in Syntax 27.

arithmetic_value ::=
number | identifier | bit_literal | based literal

Syntax 27—Arithmetic value

An arithmetic value shall represent data for an arithmetic model or for an arithmetic assignment. Semantic
restrictions apply, depending on the particular type of arithmetic model.

7.4 Boolean value
A boolean value shall be defined as shown in Syntax 28.

A boolean value shall represent the contents of a pin variable (see Section 7.8 on page 34).

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 33

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

boolean value::=
bit_literal | based_literal | unsigned_integer

Syntax 28—Boolean value

7.5 Edge value

An edge value shall be defined as shown in Syntax 29.

edge vaue::=
(‘edge literal)

Syntax 29—Edge value

An edge value shall represent a standal one edge literal that is not embedded in a vector expression.

7.6 Index value

An index value shall be defined as shown in Syntax 30.

index_value ::=
unsigned_integer | identifier

Syntax 30—Index value

An index value shall represent a particular position within a vector pin (see). The usage of identifier shall only
be allowed, if that identifier represents a constant (see Section 8.2) with avalue of the category unsigned integer.

7.7 Index

An index shall be defined as shown in Syntax 31.

index ::=
single_index | multi_index
single index ::=
[index_value|
multi_index ::=
| [index_value : index_value]

Syntax 31—Index
Anindex shall be used in conjunction with the name of apin or apin group. A single index shall represent a par-
ticular scalar within a one-diensional vector or a particular one-dimensional vector within a two-dimensional

matrix. A multi index shall represent a range of scalars or a range of vectors, wherein the most significant bit
(MSB) is specified by the left index value and the least significant bit (L SB) is specified by the right index value.

7.8 Pin variable

A pinvariable shall be defined as shown in Syntax 32.

34 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

pin_variable::=
pin_variable _identifier [index]

Syntax 32—Pin variable

A pin variable shall represent the name of a pin or the name of a pingroup, in conjunction with an optional index.

7.9 Pin assighment

A pin assignment shall be defined as shown in Syntax 33.

pin_assignment ::=
pin_variable = boolean value;
| pin_variable = pin_variable ;

Syntax 33—Pin assignment

A pin assignment shall represent an association between a pin variable and another pin variable or a boolean
value.

The datatype of the left hand side (LHS) and the right hand side (RHS) of the assignment must be compatible
with each other. The following rules shall apply:

a) The bitwidth of the RHS must be equal to the bitwidth of the LHS.

b) A scaar pin at the LHS may be assigned a bit literal or a based literal representing a single bit.

c) A pingroup, aone-dimensiona vector pin, or aone-dimensional dlice of atwo-dimensional vector pin at
the LHS may be assigned a based literal or an unsigned integer, representing a binary number.

7.10 Annotation

An annotation shall be divided into the subcategories single value annctation and multi value annotation, as
shown in Syntax 34

An annotation shall represent an assocation between an identifier and a set of annotation values (val ues for short-
ness). In case of asingle value annotation, only one value shall be legal. In case of amulti value annotation, one
or more values shall belegal. The annotation shall serve as a semantic qualifier of its parent statement. The value
shall be subject to semantic restrictions, depending on the identifier.

The annotation identifier may be a keyword used for the declaration of an object (i.e., a generic object or a
library-specific object). An annotation using such an annotation identifier shall be called a reference annotation.
The annotation value of a reference annotation shall be the name of an object of matching type. A reference

annotation may be a single-value annotation or a multi-value annotation. The semantic meaning of a reference
annotation shall be defined in the context of its parent statement.

7.11 Annotation container

An annotation container shall be defined as shown in Syntax 34

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 35

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

annotation ::=
single_value_annotation
| multi_value_annotation
single_value_annotation ::=
annotation_identifier = annotation_value ;
multi_value_annotation ::=
annotation_identifier { annotation_value { annotation_value} }
annotation_value ::=
number
| identifier
| quoted_string
| bit_literal
| based_literal
| edge value
| pin_variable
| control_expression
| boolean_expression
| arithmetic_expression

Syntax 34—Annotation

annotation_container ::=
annotation_container_identifier { annotation { annotation} }

Syntax 35—Annotation container
An annotation container shall represent a collection of annotations. The annotation container shall serve as a
semantic qualifier of its parent statement. The annotation container identifier shall be a keyword. An annotation
within an annotation container shall be subject to semantic restrictions, depending on the annotation container
identifier.
7.12 ATTRIBUTE statement

An attribute statement shall be defined as shown in Syntax 36.

atribute ::=
ATTRIBUTE { identifier { identifier } }

Syntax 36—ATTRIBUTE statement

The attribute statement shall be used to associate arbitrary identifiers with the parent of the attribute statement.
Semantics of such identifiers may be defined depending on the parent of the attribute statement. The attribute
statement has a similar syntax definition as a multi-value annotation (see Section 7.10). While a multi-value
annotation may have restricted semantics and a restricted set of applicable values, identifiers with and without
predefined semantics may co-exist within the same attribute statement.

Example

CELL nmyRAMBXx128 {
ATTRI BUTE { rom asynchronous static }

}

36 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

7.13 PROPERTY statement

A property statement shall be defined as shown in Syntax 37.

proE)erty = o _ '
ROPERTY [identifier] { annotation { annotation} }

Syntax 37—PROPERTY statement

The property statement shall be used to associate arbitrary annotations with the parent of the property statement.
The property statement has a similar syntax definition as an annotation container (see Section 7.11). While the
keyword of an annotation container usually restricts the semantics and the set of applicable annotations, the key-
word “property” does not. Annotations shall have no predefined semantics, when they appear within the property
statement, even if annotation identifiers with otherwise defined semantics are used.

Example
PROPERTY myProperties {
paraneterl = val uel ;

paraneter2 = val ue2 ;
paraneter3 { val ue3 val ue4 val ue5 }

7.14 INCLUDE statement

An include statement shall be defined as shown in Syntax 38.

include ::=

INCLUDE quoted_string ;

Syntax 38—INCLUDE statement

The quoted string shall specify the name of afile. When the include statement is encountered during parsing of a
file, the application shall parse the specified file and then continue parsing the former file. The format of the file
containing the include statement and the format of the file specified by the include statement shall be the same.

Example

LI BRARY nyLib {
I NCLUDE “tenplates.alf”;
I NCLUDE “t echnol ogy. al f”;
I NCLUDE “primtives.alf”;
I NCLUDE “wires.alf”;
I NCLUDE “cells.alf”;

}

The filename specified by the quoted string shall be interpreted according to the rules of the application and/or
the operating system. The ALF parser itself shall make no semantic interpretation of the filename.

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 37

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

7.15 REVISION statement

A revision statement shall be defined as shown in Syntax 34

I

evision ::=
ALF_REVISION string vaue

Syntax 39—Revision statement

A revision statement shall be used to identify the revision or version of the file to be parsed. One, and only one,
revision statement may appear at the beginning of an ALF file.

The set of legal string values within the revision statement shall be defined as shown in Table 10

Table 10—Legal string values within the REVISION statement

string value revision or version
“1.1" Version 1.1 by Open Verilog International, released on April 6, 1999
“2.0" Version 2.0 by Accellera, released on December 14, 2000

“P1603.2002-04-16"

|EEE draft version as described in this document

TBD

|EEE 1603 release version

The revision statement shall be optional, as the application program parsing the ALF file may provide other
means of specifying the revision or version of the file to be parsed. If arevision statement is encountered while a
revision has already been specified to the parser (e.g. if an included fileis parsed), the parser shall be responsible
to decide whether the newly encountered revision is compatible with the originally specified revision and then
either proceed assuming the original revision or abandon.

This document suggests, but does not certify, that the |IEEE version of the ALF standard proposed herein be
backward compatible with the Accelleraversion 2.0 and the OV version 1.1.

7.16 Generic object

A generic object shall be defined as shown in Syntax 40.

generic_object ::=
dlias _declaration
| constant_declaration
| class_declaration
| keyword_declaration
| group_declaration
| template_declaration
| generic_object_template_instantiation

38

Syntax 40—Generic object

Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 3

7.17 Library-specific object

A library-specific object shall be defined as shown in Syntax 41.

library_specific_object ::=

library

| sublibrary

| cell

| primitive

| wire

| pin

| pingroup

| vector

| node

| layer

| via

| rule

| antenna

| site

| array

| blockage

| port

| pattern

| region

| library_specific_object_template_instantiation

Syntax 41—Library-specific object

7.18 All purpose item

An all purpose item shall be defined as shown in Syntax 42.

al_purpose_item ::=
generic_object
| include_statement
| annotation
| annotation_container
| arithmetic_model
| arithmetic_model _container
| all_purpose_item_template_instantiation

Syntax 42—All purpose item

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 39

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

40

Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 3

8. Generic objects and related statements

** Add lead-in text**

8.1 ALIAS declaration

An alias shall be declared as shown in Syntax 33.

dias declaration :;=
AL ASalias identifier = original_identifier ;

Syntax 33—ALIAS declaration

The alias declaration shall specify an identifier which may be used instead of an original identifier to specify a
name or avalue of an ALF statement. The identifier shall be semantically interpreted in the same way asthe orig-
inal identifier.

Example

ALI AS reset = cl ear;

8.2 CONSTANT declaration

A constant shall be declared as shown in Syntax 34.

constant_declaration ::=

CONSTANT constant_identifier = constant_value
constant_value ::=

number | based_literal

Syntax 34—CONSTANT declaration

The constant declaration shall specify an identifier which can be used instead of a constant value, i.e., a number
or abased literal. The identifier shall be semantically interpreted in the same way as the constant value.

Example

CONSTANT vdd = 3. 3;
CONSTANT opcode = * hOf 3a;

8.3 CLASS declaration

A class shall be declared as shown in Syntax 35.

class declaration ::=

CL ASSclass identifier ;
| CLASSidentifier { all_purpose_items }

Syntax 35—CLASS declaration

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 37

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

A class declaration shall be used to establish a semantic association between ALF statements, including, but not
restricted to, other class declarations. ALF statements shall be associated with each other, if they contain arefer-
ence to the same class. The semantics specified by an al purpose item within a class declaration shall be inher-
ited by the statement containing the reference.

Example

CLASS \1stclass { ATTRIBUTE { everything } }
CLASS \ 2ndcl ass { ATTRIBUTE { nothing } }
CELL celll1 { CLASS = \1stclass; }

CELL cell2 { CLASS = \2ndcl ass; }

CELL cell3 { CLASS { \1stclass \2ndclass } }
/1 celll inherits “everything”

/1 cell?2 inherits “nothing”

/1 cell3 inherits “everything” and

not hi ng”

8.4 KEYWORD declaration

A keyword shall be declared as shown in Syntax 36.

keyword declaration ::=
KEYWORD keyword identifier = syntax_item_identifier ;
| KEYWORD keyword_identifier = syntax_item identifier { annotation { annotation} }

Syntax 36—KEYWORD declaration
A keyword declaration shall be used to define a new keyword in a category or in a subcategory of ALF state-
ments specified by a syntax item identifier. One or more annotations (see Section 8.5) may be used to qualify the
contents of the keyword declaration.

A legal syntax item identifier shall be defined as shown in Table 10.

Table 10—Syntax item identifier

identifier semantic meaning
annotation The keyword shall specify an annotation (see Section 7.10)
single value annotation The keyword shall specify a single value annotation (see Section 7.10)
multi_value_annotation The keyword shall specify amulti_value_annotation (see Section 7.10)
annotation_container The keyword shall specify an annotation container (see Section 7.11)
arithmetic_model The keyword shall specify an arithmetic model (see)
arithmetic_submodel The keyword shall specify an arithmetic submodel (see)
arithmetic_model_container | The keyword shall specify an arithmetic model container (see)

38 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

8.5 Annotations in the context of a KEYWORD declaration
This subsection defines annotations which may be used as legal children of a keyword declaration statement.
8.5.1 VALUETYPE annotation

The valuetype annotation shall be a single value annotation. The set of legal values shall depend on the syntax
item identifier associated with the keyword declaration, as shown in Table 11.

Table 11—VALUETYPE annotation

. . - set of legal values for default value for
syntax item identifier VALUETYPE VAL UETYPE comment
annotation number, identifier, identifier see Syntax 34, definition of
or single_value annotation | quoted_string, annotation value
or multi_value_annotation edge value,
pin_variable,
control_expression,
boolean_expression,
arithmetic_expression
annotation_container N/A N/A an annotation container (see

Syntax 35) has no value

arithmetic_model number, identifier, number see Syntax 27, definition of
bit_literal, based literal arithmetic value
arithmetic_submodel N/A N/A an arithmetic submodel (see)

shall always have the same
valuetype asits parent arith-
metic mdel

arithmetic_model_container | N/A N/A an arithmetic model container
(see) hasno value

The valuetype annotation shall specify the category of legal ALF vaues applicable for an ALF statement whose ALF typeis
given by the declared keyword.

Example:

This example shows a correct and an incorrect usage of a declared keyword with specified valuetype.
KEYWORD Greeting = annotation { VALUETYPE = identifier ; }
CELL celll { Geeting = H There ; } // correct
CELL cell2 { Geeting = “H There” ; } // incorrect

Thefirst usageis correct, since Hi Ther e isan identifier. The second usage isincorret, since“Hi There” isa
quoted string and not an identifier.

8.5.2 VALUES annotation

The values annotation shall be a multi value annotation applicable in the case where the valuetype annotation is
aso applicable.

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 39

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

The values annotation shall specify a discrete set of legal values applicable for an ALF statement using the declared
keyword. Compatibility between the values annotation and the valuetype annotation shall be mandatory.

Example:
This example shows a correct and an incorrect usage of a declared keyword with specified valuetype and values.

KEYWORD Greeting = annotation {
VALUETYPE = identifier ;
VALUES { H There Hell o HowbDoYouDo }
}
CELL cell3 { Geeting
CELL cell 4 { Geeting

Hello ; } /I correct
GoodBye ; } // incorrect

Thefirst usageis correct, since Hel | o is contained within the set of values. The second usageis incorrect, since
GoodBye is not contained within the set of values.

8.5.3 DEFAULT annotation

The default annotation shall be a single value annotation applicable in the case where the valuetype annotation is
also applicable. Compatibility between the default annotation, the valuetype annotation, and the values annota-
tion shall be mandatory.

The default annotation shall specify a presumed value in absence of an ALF statement specifying avalue.
Example:

KEYWORD Greeting = annotation {
VALUETYPE = identifier ;
VALUES { Hi There Hel | o HowbDoYouDo }
DEFAULT = Hell o ;

}
CELL cell5 { /* no Geeting */ }

In this example, the absence of aG eet i ng statement is equivalent to the following:
CELL cell5 { Geeting = Hello ; }
8.5.4 CONTEXT annotation

The context annotation shall specify the ALF type of alegal parent of the statement using the declared keyword.
The ALF type of alegal parent may be a predefined keyword or a declared keyword.

Example:

KEYWORD Li braryQualifier = annotation { CONTEXT { LIBRARY SUBLI BRARY } }
KEYWORD Cel | Qual ifier = annotation { CONTEXT = CELL ; }
KEYWORD Pi nQualifier = annotation { CONTEXT = PIN ; }
LI BRARY libraryl {
Li braryQualifier = foo ; // correct
CELL cell1 {
CellQualifier = bar ; // correct
PinQualifier = foobar ; // incorrect

40 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

}

The following change would legalize the example above:
KEYWORD Pi nQualifier = annotation { CONTEXT { PIN CELL } }
8.5.5 SI_MODEL annotation

** see |EEE proposal, January 2002, chapter 27**

8.6 GROUP declaration

A group shall be declared as shown in Syntax 37.

group_declaration ::=
GROUP group_identifier { all_purpose value{ all_purpose value} }
| GROUP group_identifier { left_index_value : right_index_value

Syntax 37—GROUP declaration

A group declaration shall be used to specify the semantic equivalent of multiple similar ALF statements within a
single ALF statement. An ALF statement containing a group identifier shall be semantically replicated by substi-
tuting each group value for the group identifier, or, by substituting subsequent index values bound by the left
index value and by the right index value for the group identifier. The ALF parser shall verify whether each sub-
gtitution resultsin alegal statement.

The ALF statement which has the same parent as the group declaration shall be semantically replicated, if the
group identifier is found within the statement itself or within a child of the statement or within a child of a child
of the statement etc. If the group identifier is found more than once within the statement or within its children,
the same group value or index value per replication shall be substituted for the group identifier, but no additional
replication shall occur.

The group identifier (i.e., the name associated with the goup declaration) may be re-used as name of another
statement. As a conseguence, the other statement shall be interpreted as multiple statements wherein the group
identifier within each replication shall be replaced by the all-purpose value. On the other hand, no name of any
visible statement shall be allowed to be re-used as group identifier.

Examples
The following example shows substitution involving group values.

/1 statenent using GROUP:
CELL nyCell {
GROUP data { datal data2 data3 }
PIN data { DIRECTION = input ; }
}
/1 semantically equival ent statenent:
CELL nyCell {
PIN datal { DI RECTI ON
PIN data2 { DI RECTI ON

i nput ; }
i nput ; }

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 41

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

}

PIN data3 { DIRECTION = input ; }

The following example shows substitution involving index values.

/1 statenent using GROUP:
CELL nyCell {

}

GROUP datalndex { 1 : 3}

PIN[1:3] data { DIRECTION = input ; }

PIN clock { DI RECTION = input ; }

SETUP = 0.5 { FROM{ PIN = data[datalndex]; } TO{ PIN=clock ; } }

/1 semantically equival ent statenent:
CELL nyCell {

}

GROUP datalndex { 1 : 3}
PIN[1:3] data { DIRECTION = input ; }
PIN clock { DIRECTION = input ; }

SETUP = 0.5 { FROM{ PIN = data[1]; } TO{ PIN = clock ; } }
SETUP = 0.5 { FROM{ PIN = data[2]; } TO{ PIN = clock ; } }
SETUP = 0.5 { FROM{ PIN = data[3]; } TO{ PIN = clock ; } }

The following example shows multiple occurences of the same group identifier within a statement.

/] statenent using GROUP:
CELL nyCell {

}

GROUP datalndex { 1 : 3}

PIN[1:3] Din { DIRECTION = input ; }

PIN [1:3] Dout { DI RECTION = input ; }

DELAY = 1.0 { FROM {PI N=Di n[dat al ndex];} TO {PI N=Dout [dat al ndex] ;} }

/1 semantically equival ent statenent:
CELL nyCell {

GROUP datalndex { 1 : 3}
PIN[1:3] Din { DIRECTION = input ; }
PIN[1:3] Dout { DIRECTION = input ; }

DELAY = 1.0 { FROM {PIN=Din[1];} TO {PIN=Dout[1];} }
DELAY = 1.0 { FROM {PIN=Din[2];} TO {PIN=Dout[2];} }
DELAY = 1.0 { FROM {PIN=Din[3];} TO {PIN=Dout[3];} }

8.7 TEMPLATE declaration

A template shall be declared as shown in Syntax 38.

template declaration ::=
PL ATE template identifier { ALF_statement { ALF_statement } }

Syntax 38—TEMPLATE declaration

A template declaration shall be used to specify one or more ALF statements with variable contents that can be
used many times. A template instantiation (see Section 8.8) shall specify the usage of such an ALF statement.

42

Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

Within the template declaration, the variable contents shall be specified by a placeholder identifier (see
Section 6.10.3).

8.8 Template instantiation

A template shall be instantiated in form of a static template instantiation or a dynamic template instantiation, as
shown in Syntax 39

template_instantiation ::=
static_template_instantiation
| dynamic_template_instantiation

static_template_instantiation ::=
template_identifier [= STATIC]
| template_identifier [= STATIC] { al_purpose value} }
| template:_identifier [= STATIC]{ { annotation} }

dynamic_template_instantiation ::=
template_identifier = DY NAM I C { { dynamic_template_instantiation_item} }

dynamic_template_instantiation_item ::=
annotation
| arithmetic_model

Syntax 39—TEMPLATE instantiation

A template instantiation shall be semantically equivalent to the ALF statement or the ALF statements found
within the template declaration, after replacing the placeholder identifiers with replacement values. A static tem-
plate instantiation shall support replacement by order, using one or more all-purpose values, or aternatively,
replacement by reference, using one or more annotations (see). A dynamic template instantiation shall support
replacement by reference only, using one or more annotations and/or one or more arithmetic models (see).

In the case of replacement by reference, the reference shall be established by a non-escaped identifier matching
the placeholder identifier when the angular brackets are removed. The matching shall be case-insensitive.

The following rules shall apply:

a)

b)

0)

d)

A static template instantiation shall be used when the replacement value of any placeholder identifier can
be determined during compilation of the library. Only a matching identifier shall be considered a legal
annotation identifier. Each occurence of the placeholder identifier shall be replaced by the annotation
value associated with the annotation identifier.

A dynamic template instantiation shall be used when the replacement value of at least one placeholder
identifier can only determined during runtime of the application. Only a matching identifier shall be con-
sidered alegal annotation identifier, or alternatively, aarithmetic model identifier, or alternatively, alegal
arithmetic value.

Muultiple replacement values within a multi-value annotation shall be legal if and only if the syntax rules
for the ALF statement within the template declaration allow substitution of multiple values for one place-
holder identifier.

In the case replacement by order, subsequently occuring placeholder identifiers in the template declara-
tion shall be replaced by subsequently occuring all-purpose values in the template instantiation. If a
placeholder identifier occurs more than once within the template declaration, all occurences of that
placeholder identifier shall be immediately replaced by the same all-purpose value. The first amongst the
remaining placeholder identifiers shall then be considered the next placeholder to be replaced by the next
al-purpose value.

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 43

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

e) A static template instantiation for which a placeholder identifier is not replaced shall be legal if and only
if the semantic rules for the ALF statement support a placeholder identifier outside a template declara-
tion. However, the semantics of a placeholder identifier as an item to be substituted shall only apply
within the template declaration statement.

Examples

The following example illustrates rule a).

/1l statenent using TEMPLATE decl aration and instantiation:
TEMPLATE soneAnnot ati ons {
KEYWORD <oneAnnot ati on> = singl e_val ue_annotation ;
KEYWORD annot ation2 = single_val ue_annotation ;
<oneAnnot ati on> = val uel ;
annot ati on2 = <anot her Val ue> ;
}
someAnnot ati ons {
oneAnnot ati on = annotationl ;
anot her Val ue = val ue2 ;
}
/1 semantically equival ent statenent:
KEYWORD annot ati onl singl e_val ue_annot ati on ;
KEYWORD annot ati on2 singl e_val ue_annot ati on ;
annotationl = val uel ;
annotation2 = val ue2 ;

The following example illustrates rule b).

/1 statenment using TEMPLATE declaration and instantiation:
TEMPLATE soneNunbers {

KEYWORD N1 = singl e_val ue_annotation { VALUETYPE=number ; }
KEYWORD N2 = single_value_annotation { VALUETYPE=number ; }

N1 = <nunber 1> ;
N2 = <nunber2> ;
}
someNurmbers = DYNAM C {
nunber2 = nunmberl + 1;
}
/1l semantically equival ent statenment, assum ng nunber 1=3 at
N1 = 3 ;
N =4 ;

The following example illustrates rule c).

TEMPLATE nor eAnnot ati ons {
KEYWORD annot ati on3 = annotation ;
KEYWORD annot ati on4 = annotation ;
annot ati on3 { <soneVal ue> }
annot ati on4 = <yet Anot her Val ue> ;
}
nmor eAnnot ati ons {
soneVal ue { val uel val ue2 }

yet Anot her Val ue = val ue3 ;

44 Advanced Library Format (ALF) Reference Manual

runti me:

IEEE P1603 Draft 3

/1 semantically equival ent statenent:

KEYWORD annot ati on3
KEYWORD annot ati on4

= annotation ;
= annotation ;

annot ati on3 { val uel val ue2 }
annot ati on4 = val ue3 ;

The following example illustrates rule €).

TEMPLATE evenMor eAnnot ati ons {

KEYWORD <t hi sAnnot ati on> = singl e_val ue_annotation ;
KEYWORD <t hat Annot ati on> = singl e_val ue_annotation ;

<t hat Annot ati on> = <t hi sVal ue> ;
<t hi sAnnot ati on> = <t hat Val ue> ;

}

/1 tenplate instantiation by reference:

evenMor eAnnot ati ons
t hat Annot ati on
t hi sAnnot ati on

= STATIC {
= day ;
= nont h;

that Val ue = April;
t hi sval ue = Monday;

}

/1 semantically equivalent tenplate instantiation by order:

evenMor eAnnot ati ons

= STATIC { day nonth Monday April

/1 semantically equival ent statenent:
KEYWORD day = singl e_val ue_annotation ;
KEYWORD nont h = singl e_val ue_annotation ;

month = April;
day = Monday;

The following example illustrates rule d).

/1 statenment using TEMPLATE declaration and instantiation:

TEMPLATE encor eAnnot ati on {

KEYWORD cont ext
KEYWORD cont ext
KEYWORD annot at

1 = annotation_container;
2 = annotati on_cont ai ner;
ion5 = single_value_annotation {

CONTEXT { contextl context2 }
VALUES { <sonet hi ng> <not hi ng> }

}

contextl { annotation5 = <nothing> ; }
context2 { annotati on5 = <sonething> ; }

}

encoreAnnot ati on {

sonmet hing = everything ;

}

/1l semantically equival ent statenent:
KEYWORD contextl = annotation_cont ai ner;
KEYWORD cont ext2 = annotati on_cont ai ner;

KEYWORD annot ati on5

= single_val ue_annotation {

CONTEXT { contextl context2 }

VALUES { everyt
}

hi ng <not hi ng> }

contextl { annotation5 = <nothing>; }

IEEE P1603 Draft 3

Advanced Library Format (ALF) Reference Manual

}

45

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

46

context2 { annotation5 = all ; }
/1 Both everything (w thout brackets) and <nothing> (w th brackets)

/1 are |egal

val ues for annotati onb.

Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 3

9. Library-specific objects and related statements

** Add lead-in text**

9.1 LIBRARY and SUBLIBRARY declaration

A library and a sublibrary shall be declared as shown in Syntax 43.

library ::=
LIBRARY library identifier
|LIBRARY library identifier { { library_item} }
| library_template_instantiation
library_item ::=
sublibrary
| sublibrary_item
sublibrary ::=
SUéLI BRARY sublibrary_identifier ;
|SUBLIBRARY sublibrary identifier { { sublibrary_item} }
| sublibrary_template instantiation
sublibrary_item ::=
all_purpose_item
| cell
| primitive
| wire
| layer
| via
| rule
| antenna
| array
| site
| region

Syntax 43—LIBRARY and SUBLIBRARY statement

A library shall serve as arepository of technology data for creation of an electronic integrated circuit. A subli-
brary may optionally be used to create different scopes of visibility for particular statements describing technol-
ogy data.

If any two objects of the same ALF type and the same ALF name appear in two libraries, or in two sublibraries
with the same library as parents, their usage for creation of an electronic circuit shall be mutually exclusive. For
example, two cells with the same name shall not be instantiated in the same integrated circuit. It shall be the
responsibility of the application tool to detect and properly handle such cases, as the selection of alibrary or a
sublibrary is controlled by the user of the application tool.

9.2 INFORMATION statement
An information statement shall be defined using ALF language as shown in Syntax 44.
The information statement shall be used to associate its parent statement with a product specification. While
information statement complies with the syntax definition of an annotation container (see Section 7.11), the fol-
lowing restrictions shall apply:

a) Alibrary, asublibrary, or acell shall be alegal parent of the information statement.

b) A wire, or aprimitive shall be alegal parent of the information statement, provided the parent of the wire
or the primitiveisalibrary or asublibrary.

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 47

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

}

KEYWORD | NFORVATI ON = annot ati on_cont ai ner {
CONTEXT { LI BRARY SUBLI BRARY CELL WRE PRI M Tl VE }

}
KEYWORD PRODUCT = si ngl e_val ue_annotati on {

VALUETYPE = string; DEFAULT = “*“; CONTEXT = | NFORVMATI ON;
}
KEYWORD Tl TLE = singl e_val ue_annotation {

VALUETYPE = string; DEFAULT = ““; CONTEXT = | NFORMATI ON;
}
KEYWORD VERSI ON = si ngl e_val ue_annotati on {

VALUETYPE = string; DEFAULT = ““; CONTEXT = | NFORMATI ON;
}
KEYWORD AUTHOR = singl e _val ue_annotation {

VALUETYPE = string; DEFAULT = ““; CONTEXT = | NFORMATI ON;
}

KEYWORD DATETI ME = singl e_val ue_annotati on {
VALUETYPE = string; DEFAULT = “*“; CONTEXT = | NFORVATI ON;

Syntax 44—INFORMATION statement

The semantics of the information contents are specified in the following Table 10.

Table 10—Annotations within an INFORMATION statement

annotation identifier semantics of annotation value
PRODUCT acode name of a product described herein
TITLE adescriptive title of the product described herein
VERSION aversion number of the product description
AUTHOR the name of a person or company generating this product description
DATETIME date and time of day when this product description was created

The product devel oper shall be responsible for any rules concerning the format and detailed contents of the string

value itself.

Example

LI BRARY nyProduct {
| NFORMATI ON {
PRODUCT = pl0sc;
TITLE = “0.10 standard cell”;
VERSION = “v2.1.0";
AUTHOR = “Maj or Asic Vendor, Inc.”;
DATETI ME = “NMon Apr 8 18:33:12 PST 2002”;

48 Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 3

9.3 CELL declaration

A cell shall be declared as shown in Syntax 45.

cel =
CELL cel_identifier ;
|CELL cell_identifier{ { cell_item} }
| cell_template_instantiation
cel _item::=
all_purpose_item
| pin
| pingroup
| primitive
| function
| non_scan_cell
| test
| vector
| wire
| blockage
| artwork
| pattern

| region

Syntax 45—CELL statement

A cell shall represent an electronic circuit which can be used as a building block for alarger electronic circuit.

9.4 Annotations and attributes for a CELL
This section defines annotations and attribute values in the context of a cell declaration.
9.4.1 CELLTYPE annotation

A celltype annotation shall be defined using ALF language as shown in .

KEYWORD CELLTYPE = singl e_val ue_annotation {
CONTEXT = CELL;
VALUETYPE = identifier;
VALUES {
buf fer conbinational multiplexor flipflop Iatch
menory bl ock core speci al

}
}

Syntax 46— annotation

The celltype shall divide cellsinto categories, as specified in Table 11.

Table 11—CELLTYPE annotation values

Annotation value Description

buf fer Cell isabuffer, inverting or non-inverting.

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 49

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

Table 11—CELLTYPE annotation values

Annotation value Description

conbi nati onal Cédll isacombinational logic element.

nmul ti pl exor Cdl isamultiplexor.

flipflop Cdl isaflip-flop.

| atch Cell isalatch.

nmenory Cell isamemory or aregister file.

bl ock Cell isahierarchical block, i.e., acomplex element which can berep-
resented as anetlist. All instances of the netlist are library elements,
i.e., thereisa CELL model for each of them in the library.

core Cdl isacore, i.e., acomplex element which can be represented as a
netlist. At least one instance of the netlist is not alibrary element,
i.e., thereisno CELL model, but aPRI M TI VE model for that
instance.

speci al Cedll isaspecia element, which can only be used in certain applica-
tion contexts not describable by the FUNCTI ON statement. Exam-
ples: busholders, protection diodes, and fillcells.

9.4.2 ATTRIBUTE within a CELL

An attribute in the context of a cell declaration shall specify more specific information within the category given

by the celltype annotation.

The attribute values shown in Table 12 can be used within a CELL with CELLTYPE=mnenory.

Table 12—Attribute values for a CELL with CELLTYPE=memory

Attributeitem Description
RAM Random Access Memory
ROM Read Only Memory
CAM Content Addressable Memory
static Static memory (e.g., static RAM)
dynami c Dynamic memory (e.g., dynamic RAM)
asynchr onous Asynchronous memory
synchr onous Synchronous memory

50 Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 3

The attributes shown in Table 13 can be used within a CELL with CELLTYPE=bl ock.

Table 13—Attributes within a CELL with CELLTYPE=block

Attributeitem

Description

count er

Cell isacomplex sequential cell going through a predefined
sequence of statesinits normal operation mode where each state rep-
resents an encoded control value.

shift_register

Cell isacomplex sequential cell going through a predefined
sequence of states in its normal operation mode, where each subse-
quent state can be obtained from the previous one by a shift opera-
tion. Each hit represents a data value.

adder

Cell isan adder, i.e., acombinational element performing an addition
of two operands.

subtract or

Cdll isasubtractor, i.e., acombinational element performing a sub-
traction of two operands.

mul tiplier Cell isamultiplier, i.e., acombinational element performing amulti-
plication of two operands.

conpar at or Cell isacomparator, i.e., acombinational element comparing the
magnitude of two operands.

ALU Cell isan arithmetic logic unit, i.e., acombinational element combin-

ing the functionality of adder, subtractor, comparator in a selectable
way.

The attributes shown in Table 14 can be used within a CELL with CELLTYPE=cor e.

Table 14—Attributes within a CELL with CELLTYPE=core

Attributeitem Description
PLL CELL isaphase-locked loop.
DSP CELL isadigital signal processor.
CPU CELL isacentral processing unit.
GPU CELL isagraphica processing unit.

The attributes shown in Table 15 can be used within a CELL with CELLTYPE=speci al .

Table 15—Attributes within a CELL with CELLTYPE=special

Attributeitem

Description

bushol der

IEEE P1603 Draft 3

CELL enables atristate bus to hold itslast value before all drivers
went into high-impedance state (see FUNCT| ON statement).

Advanced Library Format (ALF) Reference Manual

51

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

Table 15—Attributes within a CELL with CELLTYPE=special (Continued)

Attributeitem Description

cl anp CELL connects a net to a constant value (logic value and drive
strength; see FUNCTI ON statement).

di ode CELL isadiode (no FUNCTI ON statement).

capacitor CELL isacapacitor (no FUNCTI ON statement).

resistor CELL isaresistor (no FUNCTI ON statement).

i nduct or CELL isaninductor (no FUNCTI ON statement).

fillcell CELL ismerely used to fill unused spacein layout (no FUNCTI ON
statement).

9.4.3 SWAP_CLASS annotation

A swap_class annotation shall be defined using ALF language as shownin .

KEYWORD SWAP_CLASS = annot ation {
CONTEXT = CELL;
VALUETYPE = identifier;

}

Syntax 47— annotation

The value is the name of a declared CLASS. Multi-value annotation can be used. Cells referring to the same
CLASS can be swapped for certain applications.

Cell-swapping is only allowed under the following conditions:
— the RESTRI CT_CLASS annotation (see 9.4.4) authorizes usage of the cell
— the cells to be swapped are compatible from an application standpoint (functional compatibility for syn-
thesis and physical compatibility for layout)
9.4.4 RESTRICT_CLASS annotation

A xxx annotation shall be defined using ALF language as shownin .

KEYWORD RESTRI CT_CLASS = annotation {
CONTEXT { CELL CLASS }
VALUETYPE = identifier;

}

Syntax 48— annotation

52 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

The value is the name of a declared CLASS. Multi-value annotation can be used. Cells referring to a particular
class can be used in design tools identified by the value. The restricted annotations are shown in Table 16.

Table 16—Predefined values for RESTRICT_CLASS

Annotation string Description
synt hesi s Userestricted to logic synthesis.
scan Use restricted to scan synthesis.
dat apat h Userestricted to datapath synthesis.
cl ock Userestricted to clock tree synthesis.
| ayout Userestricted to layout, i.e., place & route.

User-defined values are also possible. If a cell has no or only unknown values for RESTRI CT_CLASS, the
application tool shall not modify any instantiation of that cell in the design. However, the cell shall still be con-
Sidered for analysis.

9.4.4.1 Independent SWAP_CLASS and RESTRICT CLASS

SWAP_CLASS and RESTRI CT_CLASS can be defined for cells, independent of each other. In this case, the set
of cells that can be swapped with each other is the set of cells with a non-empty intersection of both
SWAP_CLASS and RESTRI CT_CLASS.

Example

CLASS f 00;
CLASS bar;
CLASS what ever ;
CLASS ny_t ool ;
CELL cell1 {
SWAP_CLASS { foo bar }
RESTRI CT_CLASS { synthesis datapath }

}
CELL cell 2 {

SWAP_CLASS { foo whatever }

RESTRI CT_CLASS { synthesis scan ny_tool }
}

The cellscel | 1 and cel | 2 can be used for synthesis, where they can be swapped which each other. Cell
cel | 1 can be also used for datapath. Cell cel | 2 can be also used for scan insertion and for the user-defined
application my _t ool . Figure 8 depicts this scenario.

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 53

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

SWAP CLASS SWAP_CLASS
for celll for cell2

non-empty intersection

RESTRICT_CLASS
for celll datapath RESTRICT_CLASS
for cell2

Figure 8—lllustration of independent SWAP_CLASS and RESTRICT_CLASS
9.4.4.2 SWAP_CLASS with inherited RESTRICT_CLASS

The definition of a CLASS can contain a RESTRI CT_ CLASS annotation. In this case, the RESTRI CT_CLASS
isinherited by the SWAP_CLASS. Cells can only be swapped if the intersection of their SWAP_CLASS and the
inherited RESTRI CT__CLASS is non-empty.

Example

A combination of SWAP_CLASS and RESTRI CT_CLASS can be used to emulate the concept of “logically
equivalent cells’ and “electrically equivalent cells’. A synthesis tool needs to know about “logically equivalent
cells’ for swapping. A layout tool needs to know about “electrically equivalent cells’ for swapping.

CLASS all _nand2 { RESTRI CT_CLASS { synthesis } }
CLASS al |l _hi gh_power _nand2 { RESTRI CT_CLASS { |ayout } }
CLASS all _| ow _power _nand2 { RESTRI CT_CLASS { layout } }

CELL cell1 {
SWAP_CLASS { all _nand2 all _| ow power_nand2 }
}
CELL cell 2 {
SWAP_CLASS { all _nand2 al |l _hi gh_power _nand2 }
}
CELL cell3 {
SWAP_CLASS { all _| ow _power_nand2 }
}
CELL cell4 {
SWAP_CLASS { al | _hi gh_power_nand2 }
}

54 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

al I _nand2 encompasses a set of logically equivalent cells.
al I _hi gh_power _nand2 encompasses a set of electrically equivalent cells.
al | _| ow_power nand2 encompasses another set of electrically equivalent cells.

The synthesis tool can swap cel | 1 with cel | 2. The layout tool can swap cel | 1 withcel | 3 andcel | 2
with cel | 4. Figure 9 depicts this scenario.

non-empty intersection
between celll and cell2

SWAP_CLASS inherited RESTRICT_CLASS
for cell2

SWAP_CLASS
for celll

> synthesis

all_nand2

layout
all_low_power_nand -
all_high_power_nand?2 > Jayout
SWAP_CLASS SWAP_CLASS
for cell3 for cell4 non-empty intersection

. . between cell2 and cell4
non-empty intersection

between celll and cell3

Figure 9—lllustration of SWAP_CLASS with inherited RESTRICT_CLASS
9.4.5 SCAN_TYPE annotation

A xxx annotation shall be defined using ALF language as shown in .

KEYWORD SCAN TYPE = singl e_val ue_annotation {
CONTEXT = CELL;
VALUETYPE = identifier;
VALUES { rnuxscan cl ocked |ssd control 0 control _1 }

}

Syntax 49— annotation

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 55

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

can take the values shown in Table 17.

Table 17—SCAN_TYPE annotations for a CELL object

Annotation string Description
nmuxscan A multiplexor for normal data and scan data.
cl ocked A special scan clock.
| ssd Combination between flip-flop and latch with special clocking (level sen-
sitive scan design).
control _0 Combinational scan cell, controlling pin shall be 0 in scan mode.
control _1 Combinational scan cell, controlling pin shall be 1 in scan mode.
See Section A.3 for examples.

9.4.6 SCAN_USAGE annotation

A xxx annotation shall be defined using ALF language as shown in .

KEYWORD SCAN _USAGE = singl e_val ue_annotation {
CONTEXT = CELL;
VALUETYPE = identifier;
VALUES { input output hold }

}

Syntax 50— annotation

can take the values shown in Table 18.

Table 18—SCAN_USAGE annotations for a CELL object

Annotation string Description
i nput Primary input in achain of cdls.
out put Primary output in a chain of cells.
hol d Holds intermediate value in the scan chain.

The SCAN_USAGE applies for a specia cell which is designed to be the primary input, output or intermediate
stage of a scan chain. It also applies for macro blocks with connected scan chains in case there are particular
scan-ordering requirements.

9.4.7 BUFFERTYPE annotation

A xxx annotation shall be defined using ALF language as shown in .

56 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

KEYWORD BUFFERTYPE = singl e_val ue_annotation {
CONTEXT = CELL;
VALUETYPE = identifier;
VALUES { input output inout internal }
DEFAULT = internal;

Syntax 51— annotation

can take the values shown in Table 19.

Table 19—BUFFERTYPE annotations for a CELL object

Annotation string Description
i nput Cell has at |east one external (off-chip) input pin.
out put Cell has at |east one external (off-chip) output pin.
i nout Cell has at least one external (off-chip) bidirectional pin.
i nternal Cell hasonly interna (on-chip) pins.

9.4.8 DRIVERTYPE annotation

A xxx annotation shall be defined using ALF language as shown in .

}

KEYWORD DRI VERTYPE = singl e_val ue_annot ati on {
CONTEXT = CELL,;
VALUETYPE = identifier;
VALUES { predriver slotdriver both }

Syntax 52— annotation

can take the values shown in Table 20.

Table 20—DRIVERTYPE annotations for a CELL object

Annotation string

Description

predriver

Cell isapredriver, i.e., the core part of an 10 buffer.

slotdriver

Cell isadotdriver, i.e., the pad of an 10 buffer with off-chip connection.

bot h

Cell isboth a predriver and aslot driver, i.e., acomplete 10 buffer.

NOTE—DRI VERTYPE appliesonly for cellswith BUFFERTYPE = i nput | output | inout.

IEEE P1603 Draft 3

Advanced Library Format (ALF) Reference Manual

57

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

9.4.9 PARALLEL_DRI

VE annotation

A xxx annotation shall be defined using ALF language as shown in .

KEYWORD PARALLEL DRI VE = single val ue_annotation {

CONTEXT = CELL;
VALUETYPE = unsi gned,;
DEFAULT = 1;

}

specifies the number of parallel drivers. This shall be greater than zero (0) ; the default is 1.

Syntax 53— annotation

9.4.10 PLACEMENT_TYPE annotation

A xxx annotation shall be defined using ALF language as shown in .

KEYWORD PLACEMENT_TYPE = singl e_val ue_annot ati on {

CONTEXT = CELL,;

VALUETYPE = identifier;

VALUES { pad core ring bl ock onnector }
DEFAULT = cor e,

Syntax 54— annotation

Theidentifiers have the following definitions:

— pad: I/O pad, to be placed in the I/O rows
— core: regular macro, to be placed in the core rows
— block: hierarchical block with regular power structure

— ring: macro with

built-in power structure

— connector: macro at the end of core rows connecting with power or ground

9.4.11 SITE reference

annotation

A CELL can point to one or more legal placement S| TEs.

Example

CELL ny_cell {

SITE{ ny_site /* fill in other sites, if applicable */ }
/* fill in contents of cell definition */

9.5 PIN declaration

A pin shall be declared as a scalar pin or as avector pin or amatrix pin, as shown in Syntax 55.

58

Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 3

pin =
scalar_pin | vector_pin | matrix_pin
scalar_pin ::=
N pin_identifier ;
| PIN pin_identifier { { scalar_pin_item} }
| scalar_pin_template _instantiation
vector_pin ::=
PI'N multi_index pin_identifier ;
| PIN multi_index pin_identifier { { vector_pin_item} }
| vector_pin_template instantiation
matrix_pin ::=
PI'N first_multi_index pin_identifier second_multi_index |
| PIN first_multi_index pin_identifier second_multi_index { { matrix_pin_item} }
| matrix_pin_template_instantiation
scalar_pin_item ::=
all_purpose_item
| port
| pull
vector_pin_item ::=
all_purpose_item
| range
matrix_pin_item ::=
vector_pin_item

Syntax 55—PIN declaration

A pin shall represent aterminal of an electronic circuit for the purpose of exchanging information with the envi-
ronment of the electronic circuit. A constant value of information shall be called state. A time-dependent value
of information shall be called signal. A referenceto apin in general shall be established by the pin identifier.

A scalar pin may be associated with ageneral electrical signal. However, avector pin or amatrix pin may only be
associated with digital signals. One element of a vector pin or of amatrix pin shall be associated with one bit of
information, i.e., abinary digital signal.

A vector-pin can be considered as a combination of scalar pins. A reference to a scalar or to a subvector, respec-
tively, within the vector-pin shall be established by the pin identifier followed by a single index or by a multi
index, respectively.

A matrix-pin can be considered as a combination of vector-pins. A reference to a vector or to a submatrix,
respectively, within the matrix-pin shall be established by the pin identifier followed by a single index or by a
multi index, respectively.

Within a matrix-pin declaration, the first multi index shall specify the range of scalars or bits, and the second
multi index shall specify the range of vectors. Support for direct reference of a scalar within a vector within a
matrix is not provided.

Example

PIN [5:8] myVectorPin ;
PIN [3:0] nyMatrixPin [1:1000] ;

The pin variable nyVect or Pi n[5] refersto the scalar associated with the MSB of nyVect or Pi n.
The pin variable nyVect or Pi n[8] refersto the scalar associated with the LSB of nyVect or Pi n.
The pin variable nyVect or Pi n[6: 7] refersto a subvector within myVect or Pi n.

The pin variablenyMat ri xPi n[500] refersto avector within nyMat ri xPi n.

The pin variable nyMat ri xPi n[500: 502] refersto 3 subsequent vectors within nyMat ri xPi n.

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 59

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

Consider the following pin assignment:
nmyVect or Pi n=nyMat ri xPi n[500] ;

This establishes the following exchange of information:
nmyVect or Pi n[5] receivesinformation from element [3] of myMat ri xPi n[500] .
nmyVect or Pi n[6] receivesinformation from element [2] of myMat ri xPi n[500] .
nmyVect or Pi n[7] receivesinformation from element [1] of myMat ri xPi n[500] .
nmyVect or Pi n[8] receivesinformation from element [0] of myMat ri xPi n[500] .

9.6 RANGE statement

A range statement shall be defined as shown in Syntax 56.

range ::=
%QANGE { index_value : index_value }

Syntax 56—RANGE statement

The range statement shall be used to specify a valid address space for elements of a vector- or matrix-pin.
If no range statement is specified, the valid address space is given by the following mathematical relationship:
0<as<2’-1

b= [1+LSB—MSB if(LSB > MSB)
1+MSB—LSB if(LSB < MSB)

where

aisan unsigned number representing the decimal equivalent of the bits within a vector- or matrix-pin,
b isthe bitwidth of the vector- or matrix-pin,

and

MSB isthe leftmost bit within the vector- or matrix-pin,
L SB isthe rightmost bit within the vector or- matrix-pin,

in accordance with Section 7.7 on page 34.

The index values within arange statement shall be bound by the address space a, or €l se the range statement shall
not be considered valid.

Example

PIN [5:8] nyVectorPin { RANGE { 3 : 13 } }

bitwidth: b=4
default address space: O<ax<15
address space defined by range statement: 3<a<13

60 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

9.6.1 PINGROUP declaration

A pingroup shall be declared as a simple pingroup or as a vector pingroup, as shown in Syntax 57.

pingroup ::=
simple_pingroup | vector_pingroup

simple_pingroup ::=
Pﬁj\lcq:ROUP pingroup_identifier { members{ all_purpose_item} }
| simple_pingroup_template_instantiation
vector_pingroup ::=
| PINGROUP [index_value : index_value] pingroup_identifier
{ members{ vector_pingroup_item }
| vector_pingroup_template_instantiation
vector_pingroup_item ::=
al_purpose_item
| range
members ::=
M EM BERS({ pin_identifier pin_identifier { pin_identifier} }

Syntax 57—PINGROUP declaration

A pingroup in general shall serve the purpose to specify items applicable to a combination of pins rather than to

each pin within the combination. The combination of pins shall be specified by the members statement.

A vector pingroup may combine only scalar pins. A vector pingroup may be used as a pin variable, in the same

capacity as avector pin.

A simple pingroup may combine pins of any format, i.e., scalar pins, vector pins, and matrix pins. A simple pin-
group may not be used as a pin variable.

9.7 Annotations and attributes for a PIN

This section defines annotations and attribute values in the context of a pin declaration or a pingroup declaration.

9.7.1 VIEW annotation

A xxx annotation shall be defined using ALF language as shown in .

KEYWORD VI EW = si ngl e_val ue_annotati on {
CONTEXT { PI'N PI NGROUP }
VALUETYPE = identifier;
VALUES { functional physical both none }
DEFAULT = both

IEEE P1603 Draft 3

Syntax 58— annotation

Advanced Library Format (ALF) Reference Manual

61

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

annotates the view where the pin appears, which can take the values shown in Table 21.

Table 21—VIEW annotations for a PIN object

Annotation string Description
functi onal Pin appears in functional netlist.
physi cal Pin appearsin physical netlist.
bot h (default) Pin appears in both functional and physical netlist.
none Pin does not appear in netlist.

9.7.2 PINTYPE annotation

A xxx annotation shall be defined using ALF language as shown in .

KEYWORD PI NTYPE = si ngl e_val ue_annot ati on {
CONTEXT = PI N,
VALUETYPE = identifier;
VALUES { digital anal og supply }
DEFAULT = digital;

}

Syntax 59— annotation

annotates the type of the pin, which can take the values shown in Table 22.

Table 22—PINTYPE annotations for a PIN object

Annotation string Description
di gi tal (default) Digital signal pin.
anal og Analog signal pin.
supply Power supply or ground pin.

9.7.3 DIRECTION annotation

A xxx annotation shall be defined using ALF language as shownin .

KEYWORD DI RECTI ON = si ngl e_val ue_annotati on {
CONTEXT = PIN;
VALUETYPE = identifier;
VALUES { input output both none }

}

Syntax 60— annotation

62 Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 3

annotates the direction of the pin, which can take the values shown in Table 23.

Table 23—DIRECTION annotations for a PIN object

Annotation string Description
i nput Input pin.
out put Output pin.
bot h Bidirectional pin.
none No direction can be assigned to the pin.

Table 24 gives a more detailed semantic interpretation for using DI RECTI ON in combination with Pl NTYPE.

Table 24—DIRECTION in combination with PINTYPE

DIRECTION PINTY PE=digital PINTYPE=analog PINTYPE=supply

i nput Pin receives adigital signal. Pin receives an analog signal. Pinisapower sink.

out put Pin drivesa digital signal. Pin drives an analog signal. Pinisapower source.

bot h Pin drives or receives a digital Pindrivesor receivesananalog | Pinisboth power sink and
signal, depending on the opera- | signal, depending on the opera- | source.
tion mode. tion mode.

none Pin represents either an inter- Pin represents either an inter- Pin represents either an
nal digital signal with no exter- | nal analog signal with no exter- | internal power pin with no
nal connection or afeed nal connection or afeed external connection or a
through. through. feed through.

For pins with PINTY PE=supply, the DIRECTION describes an electrical characteristic rather than a functional
characteristic, sincethereis no functional definition for DIRECTION. For pinswith PINTY PE=digital or analog,
the functional definition of DIRECTION actually matches the electrical definition.

Examples

— The power and ground pins of regular cells shall have DI RECTI ON=i nput .

— A level converter cell shall have a power supply pin with DI RECTI ON=i nput and another power sup-
ply pin with DI RECTI ON=out put .

— A level converter can have separate ground pins on the input and output side or a common ground pin
with DI RECTI ON=bot h.

— The power and ground pins of afeed through cell shall have DI RECTI ON=none.

9.7.4 SIGNALTYPE annotation
A xxx annotation shall be defined using ALF language as shown in .

SI GNALTYPE classifies the functionality of a pin. The currently defined values apply for pins with Pl N-
TYPE=DI G TAL.

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 63

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

KEYWORD SI GNALTYPE = singl e_val ue_annotation {
CONTEXT = PIN;
VALUETYPE = identifier;
VALUES { tobereviewed }
DEFAULT = dat a;

Conceptually, apin with Pl NTYPE = ANALOGcan also have a SI GNALTYPE annotation. However, no values

are currently defined.

Syntax 61— annotation

annotates the type of the signal connected to the pin.

The fundamental SI GNALTYPE values are defined in Table 25.

“Flipflop”, “latch”, “multiplexor”, and “memory” can be standalone cells or embedded in larger cells. In the
former case, the celltypeisf | i pfl op, | atch, mul ti pl exor, and menor vy, respectively. In the latter case,

Table 25—Fundamental SIGNALTYPE annotations for a PIN object

Annotation string

Description

dat a (default)

Genera datasignd, i.e., asignal that carries information to be trans-
mitted, received, or subjected to logic operations within the CELL.

addr ess

Address signal of amemory, i.e., an encoded signal, usually abus or
part of abus, driving an address decoder within the CELL.

control

Genera control signal, i.e., an encoded signal that controls at |east
two modes of operation of the CELL, eventually in conjunction with
other signals. The signal value is alowed to change during rea-time
circuit operation.

sel ect

Select signal of amultiplexor, i.e., adecoded or encoded signal that
selects the data path of a multiplexor or de-multiplexor within the
CELL. Each selected signal has the same SI GNALTYPE.

enabl e

Genera enable signal, i.e., adecoded signal which enables and dis-
ables a set of operational modes of the CELL, eventually in conjunc-
tion with other signals. The signal valueis expected to change during
real-time circuit operation.

tie

The signal needs to betied to afixed value statically in order to
define afixed or programmable mode of operation of the CELL,
eventually in conjunction with other signals. The signal valueis not
allowed to change during real-time circuit operation.

cl ear

Clear signal of aflip-flop or latch, i.e., asignal that controls the stor-
age of the value 0 within the CELL.

set

Set signal of aflip-flop or latch, i.e., asignal that controls the storage
of the value 1 within the CELL.

cl ock

Clock signal of aflip-flop or latch, i.e., atiming-critical signal that
triggers data storage within the CELL.

the celltypeisbl ock or cor e.

64

Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 3

Composite valuesfor SI GNALTYPE shall be constructed using one or more prefixes in combination with certain
fundamental values, separated by the underscore (_) character, as shown in Table 26 — Table 30.

The scheme for thisis shown in Figure 10.

> _>I oad . addr ess
—® out — ™
| ptest > ‘A—» >—>
| CoOnt r ol
—® read p €nable
_>b| st > > it e >
¢ > dat a
»scan >>YTHSt er___ g cl ock
L sl ave

IEEE P1603 Draft 3

Figure 10—Construction scheme for composite SIGNALTYPE values

Table 26—Composite SIGNALTYPE annotations based on DATA

Annotation string

Description

scan_dat a Data signal for scan mode.
test_data Data signal for test mode.
bi st _data Datasignal in Bl ST mode.

Table 27—Composite SIGNALTYPE annotations based on ADDRESS

Annotation string

Description

test _address

Address signal for test mode.

bi st _address

Addresssignal for BI ST mode.

Advanced Library Format (ALF) Reference Manual

65

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

66

Table 28—Composite SIGNALTYPE annotations based on CONTROL

Annotation string Description

| oad_control

Control signal for switching between load
mode and normal mode.

scan_control

Control signal for switching between scan
mode and normal mode.

test _control

Control signal for switching between test
mode and normal mode.

bi st _control

Control signal for switching between Bl ST
mode and normal mode.

read_wite_control Control signal for switching between read

and write operation.

test _read_wite_control Control signal for switching between read

and write operation in test mode.

bist read wite control Control signal for switching between read

and write operation in Bl ST mode.

Table 29—Composite SIGNALTYPE annotations based on ENABLE

Annotation string

Description

| oad_enabl e

Signal enables |oad operation in a counter or a shift register.

out _enabl e

Signal enables the output stage of an arbitrary cell.

scan_enabl e

Signal enables scan mode of aflip-flop or latch only.

scan_out _enabl e

Signal enables the output of aflip-flop or latch in scan mode only.

test _enabl e

Signal enables test mode only.

bi st _enabl e

Signal enables Bl ST mode only.

test _out _enabl e

Signal enables the output stage in test mode only.

bi st _out _enabl e

Signal enables the output stage in Bl ST mode only.

read_enabl e

Signal enables the read operation of a memory.

write enabl e

Signal enables the write operation of a memory.

test _read _enable

Signal enables the read operation in test mode only.

test_ wite _enable

Signal enables the write operation in test mode only.

bi st _read_enabl e

Signal enables the read operation in Bl ST mode only.

bist_ wite _enable

Signal enables the write operation in Bl ST mode only.

Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

Table 30—Composite SIGNALTYPE annotations based on CLOCK

Annotation string

Description

scan_cl ock

Signal is clock of aflip-flop or latch in scan mode.

mast er _cl ock

Signal is master clock of aflip-flop or latch.

sl ave_cl ock

Signal is slave clock of aflip-flop or latch.

scan_mast er _cl ock

Signal is master clock of aflip-flop or latch in scan mode.

scan_sl ave_cl ock

Signal is slave clock of aflip-flop or latch in scan mode.

read_cl ock

Clock signal triggers the read operation in a synchronous memory.

write clock

Clock signal triggers the write operation in a synchronous memory.

read_write_cl ock

Clock signal triggers both read and write operation in a synchronous mem-
ory.

test _cl ock

Signal is clock in test mode.

test _read_cl ock

Clock signal triggers the read operation in a synchronous memory in test
mode.

test _write_cl ock

Clock signal triggers the write operation in a synchronous memory in test
mode.

test read wite clock

Clock signal triggers both read and write operation in a synchronous mem-
ory in test mode.

bi st _cl ock

Signal isclock in Bl ST mode.

bi st _read_cl ock

Clock signal triggers the read operation in asynchronous memory in Bl ST
mode.

bist_wite_cl ock

Clock signal triggers the write operation in a synchronous memory in
Bl ST mode.

bi st _read wite_clock

Clock signal triggers both read and write operation in a synchronous mem-
ory in Bl ST mode.

9.7.5 ACTION annotation

A xxx annotation shall be defined using ALF language as shownin .

KEYWORD ACTI ON = si ngl e_val ue_annotation {
CONTEXT = PIN;
VALUETYPE = identifier;
VALUES { asynchronous synchronous }

}

IEEE P1603 Draft 3

Syntax 62— annotation

Advanced Library Format (ALF) Reference Manual

67

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

annotates the action of the signal, which can take the values shown in Table 31.

The ACTI ON annotation applies only to pins with certain SI GNALTYPE values, as shown in Table 32. Therule

Table 31—ACTION annotations for a PIN object

Annotation string

Description

asynchr onous

Signd actsin an asynchronous way, i.e., self-triggered.

synchr onous

Signd actsin a synchronous way, i.e., triggered by a signal with
SI GNALTYPE CLOCK or acomposite SI GNALTYPE with postfix
_CLOCK.

applies also to any composite SI GNALTYPE values based on the fundamental values.

Table 32—ACTION applicable in conjunction with fundamental SIGNALTYPE values

Fundamental SIGNALTY PE

Applicable ACTION

dat a N/A

addr ess N/A

control Synchronous or asynchronous.

sel ect N/A

enabl e Synchronous or asynchronous.

tie N/A

cl ear Synchronous or asynchronous.

set Synchronous or asynchronous.

cl ock N/A, but the presence of SI GNALTYPE=cl| ock conditions the

validity of ACTI ON=synchr onous for other signals.

9.7.6 POLARITY annotation

A xxx annotation shall be defined using ALF language as shown in .

KEYWORD POLARI TY = singl e_val ue_annotation {

CONTEXT =

PI'N;

VALUETYPE = identifier;

VALUES { high low rising edge falling_edge doubl e_edge }

}

annotates the polarity of the pin signal.

68

Advanced Library Format (ALF) Reference Manual

Syntax 63— annotation

IEEE P1603 Draft 3

The polarity of aninput pin (i.e.,, DI RECTI ON = i nput ;) takesthe values shown in Table 33.

Table 33—POLARITY annotations for a PIN

Annotation string Description
hi gh Signd active high or to be driven high.
| ow Signd active low or to be driven low.
ri si ng_edge Signa sensitiveto rising edge.
falling_edge Signa sensitiveto falling edge.
doubl e_edge Signa sensitive to any edge.

The POLARI TY annotation applies only to pins with certain SI GNALTYPE values, as shown in Table 34. The
rule applies also to any composite SI GNAL TYPE values based on the fundamental values.

Table 34—POLARITY applicable in conjunction with fundamental SIGNALTYPE values

Fundamental SIGNALTY PE Applicable POLARITY value
dat a N/A
addr ess N/A
control Mode-specific hi gh or | owfor composite signaltype.
sel ect N/A
enabl e Mandatory hi gh or | ow
tie Optiond hi gh or | ow.
cl ear Mandatory hi gh or | ow
set Mandatory hi gh or | ow
cl ock Mandatory hi gh, | ow ri si ng_edge, fal |l i ng_edge, or
doubl e_edge, can be mode-specific for composite signaltype.

Signals with composite signaltypes mode CLOCK can have a single polarity or mode-specific polarities.

Example
PIN rw {
SI GNALTYPE = READ WRI TE_CONTRCOL;
POLARI TY { READ=hi gh; WRI TE=Il ow, }
}
PIN rwe {
SI GNALTYPE = READ WRI TE_CLOCK;
POLARI TY { READ=ri si ng_edge; WRI TE=falling_edge; }
}

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 69

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

9.7.7 DATATYPE annotation

A xxx annotation shall be defined using ALF language as shown in .

KEYWORD DATATYPE = singl e _val ue_annotation {
CONTEXT { PIN Pl NGROUP }
VALUETYPE = identifier;
VALUES { signed unsigned }

}

Syntax 64— annotation

annotates the datatype of the pin, which can take the values shown in Table 35.

Table 35—DATATYPE annotations for a PIN object

Annotation string Description
si gned Result of arithmetic operation is signed 2's complement.
unsi gned Result of arithmetic operation is unsigned.

DATATYPE isonly relevant for bus pins.
9.7.8 INITIAL_VALUE annotation

A xxx annotation shall be defined using ALF language as shown in .

KEYWORD | NI TI AL_VALUE = si ngl e_val ue_annot ati on {
CONTEXT = CELL,;
VALUETYPE = bool ean_val ue;

}

Syntax 65— annotation

shall be compatible with the buswidth and DATATYPE of the signal.

I NI TI AL_VALUE is used for a downstream behaviora simulation model, as far as the simulator (e.g., a
VITAL-compliant simulator) supports the notion of initial value.

9.7.9 SCAN_POSITION annotation
A xxx annotation shall be defined using ALF language as shownin .

annotates the position of the pin in scan chain, starting with 1. Value 0O (default) indicates that the PIN is not on
the scan chain. See A.3.1 and A.3.4 for examples.

9.7.10 STUCK annotation

A xxx annotation shall be defined using ALF language as shownin .

70 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

KEYWORD SCAN_PGSI TI ON = singl e_val ue_annotation {

CONTEXT = PIN;
VALUETYPE = unsi gned,;
DEFAULT = O0;

Syntax 66— annotation

KEYWORD STUCK = singl e_val ue_annotation {
CONTEXT = PIN;
VALUETYPE = identifier;
VALUES { stuck_at_0 stuck_at_1 both none }
DEFAULT = bot h;

Syntax 67— annotation

annotates the stuck-at fault model as shown in Table 36.

Table 36—STUCK annotations for a PIN object

Annotation string

Description

stuck_at 0

Pin can have stuck-at-0 fault.

stuck_at_1

Pin can have stuck-at-1 fault.

bot h (default)

Pin can have both stuck-at-0 and stuck-at-1 faults.

none

Pin can not have stuck-at faults.

9.7.11 SUPPLYTYPE

A xxx annotation shall be defined using ALF language as shown in .

KEYWORD SUPPLYTYPE = annotation {
CONTEXT = PIN,;
VALUETYPE = identifier;
VALUES { power ground reference }

}

Syntax 68— annotation

10

15

20

25

30

35

40

45

A PI Nwith PI NTYPE = SUPPLY shall have a SUPPLYTYPE annotation, as shown in Syntax 69.

9.7.12 SIGNAL_CLASS
A xxx annotation shall be defined using ALF language as shownin .

The following new keyword for class reference shall be defined:

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual

71

50

55

10

15

20

25

30

35

40

45

50

55

supplytype assignment ::=
|g|5LY Y PE = supplytype identifier ;
supplytype_identifier ::=
power
|ground
|reference

Syntax 69—supply_type assignment

KEYWORD SI GNAL_CLASS = annotati on {
CONTEXT { PIN Pl NGROUP }
VALUETYPE = identifier;

}

Syntax 70— annotation

SIGNAL_CLASS

A PI N referring to the same SI GNAL _CLASS belong to the same set of pins related to specific data
transaction operations, such as read or write operations. This set of pins is commonly called a logical
port. For example, the ADDRESS, WRI TE_ENABLE, and DATA pin of alogical port of a memory have
the same SI GNAL_ CLASS.

However, the term PORT in ALF is used to define aphysical port (see ???) rather than alogical port.

S| GNAL__ CLASS appliesto aPl Nwith PI NTYPE=DI A TAL | ANALOG
S| GNAL_CLASS isorthogonal to SI GNALTYPE.

Example

72

CLASS portA;
CLASS port B;
CELL my_menory {
PIN 1: 4] addrA { DI RECTION = input;
SI GNALTYPE = address;
SI GNAL_CLASS = portA

}

PIN 7: 0] dataA { DI RECTI ON = out put;
SI GNALTYPE = dat a;
SI GNAL_CLASS = portA;

}

PIN 1: 4] addrB { DI RECTION = input;
SI GNALTYPE = addr ess;
SI GNAL_CLASS = port B;

}

PIN 7:0] dataB { DI RECTI ON = input;
SI GNALTYPE = dat a;
SI GNAL_CLASS = port B;

}

PIN weB { DI RECTION = i nput;
SIGNALTYPE = write_enabl g;
SI GNAL_CLASS = port B;

Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

NOTE—The combination of SI GNAL_ CLASS and SI GNAL TYPE identifies the port type. CLASS por t A represents aread
port, since it consists of a Pl Nwith SI GNALTYPE = address and aPl Nwith SI GNALTYPE = dat a and DI REC-
TI ON = out put.CLASS port Brepresents awrite port, since it consists of aPl Nwith SI GNALTYPE = address, a
Pl Nwith SI GNALTYPE = dat a and DI RECTI ON = i nput,andaPl Nwith SI GNALTYPE = wite_enabl e.

9.7.13 SUPPLY_CLASS

A xxx annotation shall be defined using ALF language as shown in .

KEYWORD SUPPLY_CLASS = annotation {
CONTEXT { PI'N Pl NGROUP CLASS }
VALUETYPE = identifier;

}

Syntax 71— annotation

The following new keyword for class reference shall be defined:

SUPPLY_CLASS
a Pl Nreferring to the same SUPPLY_CLASS belongs to the same power terminal.

For example, digital VDD and digital VSS have the same SUPPLY_CLASS.

SUPPLY_CLASS applies to not only to a Pl Nwith PI NTYPE=SUPPLY, but also to a Pl Nwith PI N-
TYPE=DI G TAL or Pl NTYPE=ANALQOG in order to indicate the related set of power supply pins. For
instance there can be signal pins related to digital power supply and others related to analog power sup-
ply within the same cell.

SUPPLY_CLASS is orthogonal to SUPPLYTYPE.
Example

CELL my_adc {
CLASS di g;
CLASS ana;
PI N vdd_di g { PINTYPE=supply; SUPPLYTYPE=power; SUPPLY_CLASS=dig; }
PIN vss_dig { PINTYPE=supply; SUPPLYTYPE=ground; SUPPLY_ CLASS=dig; }
PI'N vdd_ana { PI NTYPE=supply; SUPPLYTYPE=power; SUPPLY_CLASS=ana; }
PIN vss_ana { PINTYPE=supply; SUPPLYTYPE=ground; SUPPLY_CLASS=ana; }
PIN din { PINTYPE=anal og; SUPPLY_CLASS=ana; }
PIN[7:0] dout { PINTYPE=digital; SUPPLY_CLASS=dig; }

}

9.7.14 DRIVETYPE annotation

A xxx annotation shall be defined using ALF language as shown in .

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 73

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

KEYWORD DRI VETYPE = singl e_val ue_annotation {
CONTEXT = PIN;
VALUETYPE = identifier;
VALUES {

CNDS NNMDS pPNDS CNDS_pass NNDS_pass pnos_pass

ttl open_drain open_source

}
DEFAULT = cnos;

}

Syntax 72— annotation

annotates the drive type for the pin, which can take the values shown in Table 37.

Table 37—DRIVETYPE annotations for a PIN object

Annotation string Description
cnos (default) Standard cmos signal.
nmos Nmos or pseudo nmos signal.
pnos Pmos or pseudo pmos signal.
nmos_pass Nmos passgate signal.
pnmos_pass Pmos passgate signal.
cnos_pass Cmos passgate signal, i.e., the full transmission gate.
ttl TTL signal.
open_drain Open drain signal.
open_sour ce Open source signal.

9.7.15 SCOPE annotation

A xxx annotation shall be defined using ALF language as shown in .

KEYWORD SCOPE = singl e_val ue_annotation {
CONTEXT = PIN,;
VALUETYPE = identifier;
VALUES { behavi or neasure both none }
DEFAULT = bot h;

74

Syntax 73— annotation

Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 3

annotates the modeling scope of a pin, which can take the values shown in Table 38.

Table 38—SCOPE annotations for a PIN object

Annotation string Description

behavi or The pinisused for modeling functional behavior and events on the
pin are monitored for vector expressions in BEHAVI OR statements.
neasure Measurements related to the pin can be described, e.g., timing or

power characterization, and events on the pin are monitored for vec-
tor expressions in VECTOR statements.

bot h (default) The pinisused for functional behavior aswell asfor characterization

measurements.

none No model; only the pin exists.

9.7.16 ATTRIBUTE for PIN objects

The attributes shown in Table 39 can be used within a Pl N object.

Table 39—Attributes within a PIN object

Attributeitem Description
SCHM TT Schmitt trigger signal.
TRI STATE Tristate signal.
XTAL Crystal/oscillator signal.
PAD Pad going off-chip.

The attributes shown in Table 40 are only applicable for pinswithin cellswith CELLTYPE=nmenor y and certain

values of SI GNALTYPE.

Table 40—Attributes for pins of a memory

Attributeitem SIGNALTYPE Description
ROW ADDRESS_STROBE cl ock Samples the row address of the memory.
COLUMN_ADDRESS_STROBE cl ock Samples the column address of the memory.
ROW addr ess Selects an addressable row of the memory.
COLUWN addr ess Selects an addressable column of the memory.
BANK addr ess Selects an addressable bank of the memory.

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual

75

10

15

20

25

30

35

40

45

50

55

1

10

15

20

25

30

35

40

45

50

55

The attributes shown in Table 41 are only applicable for pins representing double-rail signals.

Table 41—Attributes for pins representing double-rail signals

Attributeitem

Description

| N\VERTED

Represents the inverted value within a pair of signals car-
rying complementary values.

NON_| NVERTED

Representsthe non-inverted value within apair of signals
carrying complementary values.

DI FFERENTI AL

Signal is part of adifferentid pair, i.e., both the inverted
and non-inverted values are always required for physical
implementation.

The following restrictions apply for double-rail signals:

— ThePI NTYPE, SI GNALTYPE, and DI RECTI ON of both pins shall be the same.
— OnePI Nshall havethe attribute | NVERTED, the other NON_| NVERTED.

— Either both pins or no pins shall have the attribute DI FFERENTI AL.

— POLARI TY, if applicable, shall be complementary as follows:

Hl GHis paired with LOW

Rl SI NG_EDGE is paired with FALLI NG_EDGE
DOUBLE_EDGE is paired with DOUBLE_EDCE

9.7.17 Definitions of pin ATTRIBUTE values for memory BIST

The specia pin ATTRI BUTE values shown in Table 42 shall be defined for memory BIST.

Table 42—PIN attributes for memory BIST

Attributeitem Description

ROW | NDEX Pin is abus with a contiguous range of values, indicating
aphysical row of amemory.

COLUMN_| NDEX Pin is abus with a contiguous range of values, indicating
aphysical column of amemory.

BANK_| NDEX Pinis abus with a contiguous range of values, indicating
aphysical bank of amemory.

DATA | NDEX Pin isabus with a contiguous range of values, indicating
the bit position within a data bus of a memory.

DATA _VALUE Pin represents a value stored in a physical memory loca-
tion.

These attributes apply to the pins of the Bl ST wrapper around the memory rather than to the pins of the memory

itself.

The BEHAVI OR statement within TEST shal involve the variables declared as Pl Ns with ATTRI BUTE

ROW_ I NDEX, COLUMN_| NDEX, BANK_| NDEX, DATA | NDEX, or DATA_VALUE.

76 Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 3

9.7.18 CONNECT_CLASS annotation

A xxx annotation shall be defined using ALF language as shown in .

}

KEYWORD CONNECT_CLASS = singl e_val ue_annotation {
CONTEXT = PIN;
VALUETYPE = identifier;

Syntax 74— annotation

annotates a declared class object for connectivity determination.

Connectivity rules involving those classes shall apply for the pin.

9.7.19 SIDE annotation

A xxx annotation shall be defined using ALF language as shown in .

}

KEYWORD S| DE = singl e_val ue_annotati on {
CONTEXT { PI'N PI NGROUP }
VALUETYPE = identifier;
VALUES { left right top bottom}

Syntax 75— annotation

which can take the values shown in Table 43.

Table 43—SIDE annotations for a PIN object

Annotation string

Description

| eft

Pinison theleft side.

ri ght Pinisontheright side.
top Pinisat the top.
bottom Pinis at the bottom.

9.7.20 ROW and COLUMN annotation

A xxx annotation shall be defined using ALF language as shownin ..

The following annotation shall be used for a pin in order to indicate the location of the pin within a placement

row or column, as shown in Syntax 77.

where r ow_assi gnment applies for pinswith SIDE = right | left andcol um_assi gnnment
appliesfor pinswithSI DE = top | bottom

IEEE P1603 Draft 3

Advanced Library Format (ALF) Reference Manual

7

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

KEYWORD ROW = annot ation {
CONTEXT { PI N Pl NGROUP }
VALUETYPE = unsi gned,;

}

KEYWORD COLUMN = annot ation {
CONTEXT { PI N Pl NGROUP }
VALUETYPE = unsi gned,;

}

Syntax 76— annotation

row assignment ::=
= unsigned
column_assignment ::=
N = unsigned ;

Syntax 77—Pin placement annotation

For bus pins, row_ assignment and colum_assignnent shall have the form
mul ti _val ue_assi gnnent s, asshown in Syntax 78.

row_multi_value assignment ::=
{ unsigned { unsigned} }
column_multi_value assignment ::=
COLUMN { unsigned { unsigned} }

of

Syntax 78—Row and column multivalue assignments

9.7.21 ROUTING_TYPE annotation

A xxx annotation shall be defined using ALF language as shown in .

KEYWORD ROUTI NG TYPE = singl e_val ue_annotati on {
CONTEXT = PIN;
VALUETYPE = identifier;
VALUES { regul ar abutnment ring feedthrough }
DEFAULT = regul ar;

Syntax 79— annotation

A PI N can contain the ROUTI NG_TYPE statement shown in Syntax 80.

routing_type assignment ::=

R%ﬁpﬂN&_TY PE = routing_type identifier ;
routing_type identifier ::=

regular

| abutment

rin
Ifeegthrough

Syntax 80—routing_type assignment

78 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

Theidentifiers have the following definitions:

— regular: connection by regular routing

— abutment: connection by abutment, no routing

— ring: pin forms aring around the block with connection allowed to any point of the ring
— feedthrough: both ends of the pin align and can be used for connection

9.8 NON_SCAN_CELL statement

A non-scan cell statement shall be defined as shown in Syntax 81.

non_scan cell ::=
"NON_SCAN_CELL { unnamed_cell_instantiation { unnamed_cell_instantiation} }
INON_SCAN_CEL L = unnamed_celi_instantiation
| non_scan_cell_template_instantiation
unnamed_cell_instantiation ::=
cell_identifier { pin_value{ pin vaue} }
| cell__identifier { pin_assignment { pin_assignment } }
pin_vaue::=
pin_variable | boolean value

Example

Syntax 81—NON_SCAN_CELL statement

9.9 PULL statement

A pull statement shall be defined as shownin .

pull ::=:
PULL = pull_value ;
|PULL = pull_value {{ pull_item} }
| pull_template_instantiation
pull_value::=
up |down | both |none
pull_item ::=

voltage_arithmetic_model
| resistance_arithmetic_model

Syntax 82—PULL statement

annotates the pull type for the pin, which can take the values shown in Table 44.

Table 44—PULL annotations for a PIN object

Annotation string Description

up

Pullup device connected to pin.

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual

79

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

Table 44—PULL annotations for a PIN object (Continued)

Annotation string Description
down Pulldown device connected to pin.
bot h Pullup and pulldown device connected to pin.
none (default) No pull device.

9.10 WIRE statement and related statements

This section defines interconnect parasitics and analysis.
9.10.1 WIRE statement

A W RE statement XXX, as shown in Syntax 83.

wire ;=
WI RE wire_identifier { wire_items }
| WIRE wire_identifier ;
| wire_template instantiation
wire_items::=
wire_item{ wire_item}
wire item ;=
all_purpose_item
| node

Syntax 83—WIRE statement

9.10.1.1 Principles of the WIRE statement

Parasitic descriptions shall be in the context of a W RE statement. The following fundamental modeling styles
are supported.

— Statistical wireload models
— Boundary parasitics

Statistical wireload models as well as interconnect analysis cal culation models can be used within the context of
aLl BRARY, SUBLI BRARY, or CELL statement. The latter applies only for cells with CELLTYPE=Dbl ock, i.e.,
hierarchical cells. Boundary parasitics apply exclusively for hierarchical cells. Statistical wireload models can be
mixed with boundary parasitics within the same W RE statement.

Interconnect analysis models shall aso be defined within a W RE statement. However, they shall not be mixed
with statistical wireload models or boundary parasitic descriptions.

The purpose of interconnect analysis is to calculate electrical quantities such as DELAY, SLEWRATE, and noise
VOLTACE in the context of a netlist consisting of electrical components, such as CAPACI TANCE, RESI S-
TANCE, and | NDUCTANCE.

As opposed to boundary parasitics, where the components are connected to physical nodes and pins of acell, the
components represent an abstract network targeted for analysis. The interconnect analysis model specifies a

80 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

directive for reducing the parasitic extraction/delay calculation tool to an arbitrary network. In addition, the
model specifies the calculation models for delay, noise, etc. in the context of the reduced network.

9.10.1.2 Statistical wireload models

A satistical wireload model is a collection of arithmetic models for estimated the electrical quantities CAPACI -
TANCE, RESI STANCE, and | NDUCTANCE, representing the interconnect load and estimated AREA and Sl ZE
of the interconnect nets.

These arithmetic models shall have no PI N annotation. Only environmental quantities such as PROCESS,
DERATE_CASE, and TEMPERATURE shall be allowed as argumentsin the HEADER.

In addition, the quantities AREA, SI ZE, FANOUT, FANI N, and CONNECT| ONS are allowed as argumentsin the
HEADER.

FANOUT and FANI N represent the number of receiver pins and driver pins, respectively, connected to the net.
CONNECTI ONS isthe total number of pins connected to the net. CONNECTI ONS equal s to the sum of FANOUT
and FANI N.

AREA represents a physically measurable area of an object, whereas S| ZE represents an abstract symbolic quan-
tity or cost function for area. When AREA or S| ZE isused as argument within the HEADER, it shall represent the
total area or size, respectively, allocated for place and route of the block for which the wireload model applies.
An arithmetic model given for AREA or S| ZE itself shall represent the estimated or actual area or size, respec-
tively, of the object in the context of which the model appears. CELL and W RE are applicable objects for AREA
or SI ZE models.

In order to convert Sl ZE to AREA (analogous to converting DRI VE_STRENGTH to RESI STANCE; see Section
8.8.1), an arithmetic model for SI ZE with AREA as an argument can be used outside the W RE statement. Arith-
metic models for SI ZE inside the W RE statement shall be interpreted as a calculation model rather than a con-
version model.

The total area or size of ablock shall be larger or equal to the area or size, respectively, of al objects within the
block, i.e., cellsand wires.

NOTE—The area or size of ablock is design-specific data, whereas the area or size of cells and wiresis given in the library.

Example

LI BRARY ny_library {
WRE ny_ W m{
CAPACI TANCE {
HEADER {
CONNECTIONS { TABLE { 2 3 4 5 10 20 } }
AREA { TABLE { 1000 10000 100000 } }

}
TABLE {
0.03 0.06 0.08 0.10 0.15 0.25
0.05 0.10 0.15 0.18 0.25 0.35
0.10 0.18 0.25 0.32 0.50 0.65
}
}
AREA {
HEADER {

CONNECTIONS { TABLE { 2 3 4 5 10 20 } }

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 81

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

AREA { TABLE { 1000 10000 100000 } }

}
TABLE {
0.30.60.81.01.5 2.5
0.51.01.51.8 2.5 3.5
1.0 1.8 2.5 3.25.06.5
}
}
}
CELL my_cell {
AREA = 1.5;
PIN ny_input { DI RECTION = input; CAPACITANCE = 0.1; }
PIN my_output { DI RECTI ON = out put; CAPACI TANCE = 0.0; }
}

}

A net routed in ablock of AREA=10000, driven by an instance of ny_cel | connecting to five receivers (i.e.,
CONNECTI ONS=5), each of which is an instance of ny_cel |, shall have an estimated capacitance of
0.18+4*0.1 = 0. 58 andwireareaof 1. 8. Thefive cell instances together shall have an areaof 7. 5.

NOTE—CAPACI TANCE, RESI STANCE, and AREA can each be independent arithmetic models within the W RE statement.
No multiplication factor between area and capacitance orn between area and resistance is assumed.

9.10.1.3 Boundary parasitics

Boundary parasitics for a CELL can be given within aW RE statement in the context of the CELL. The parasitics
shall be identified by arithmetic models for CAPACI TANCE, RESI STANCE, and | NDUCTANCE containing a
NODE annotation. The syntax is as shown in Syntax 84.

two_node multi_value_assignment ::=
{ node_identifier node_identifier }
four_node _multi_value_assignment ::=
ODE { node_identifier node_identifier node_identifier node_identifier }

Syntax 84—Multinode multivalue assignment

wherenode_i dent i fi er isone of the following:
— asmplei denti fi er, referring to adeclared Pl N of the CELL.
— ahierarchical _identifier,referring to adeclared PORT of aPl Nof the CELL (see 9.10.4)
— asmplei dent i fi er, referring to a declared NODE of the W RE (see Section 8.15.4)
— asmplei denti fi er, not referring to adeclared object.
This can be used for connectivity inside the W RE only.

The two_node_rmul ti _val ue_assi gnment applies for capacitance, resistance, and self-inductance.
These components imply the following relationship between voltage and current across the nodes:

VOLTAGE(nodel, node2) = RESISTANCE(nodel, node?) CCURRENT (nodel, node2)

CURRENT(nodel, node2) = CAPACITANCE(nodel, node2) D(%VOLTAGE(nodel, node2)

VOLTAGE(nodel, node2) = INDUCTANCE(nodel, node2) Dg—tCURRENT(nodel, node2)

82 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

Thefour_node_nulti _val ue_assi gnnent appliesfor mutua inductance. This component implies the
following relationship between voltage and current across the nodes:

VOLTAGE(nodel, node?) = INDUCTANCE(nodel, node2, node3, node4) D(;j—tCURRENT(nodeB, noded)

NOTE—Both PI N assignments (e.g., Pl N=A;) and NODE assignments (e.g.,, NODE { A B }) canrefer to Pl Nsor PORTSs.
The fundamental semantic difference between a Pl N assignment and a NODE assignment is the PI N assignment within an
object defines the object is applied or measured at the PI N or PORT. (e.g., DELAY and SLEWRATE); the NODE assignment
within an object defines the object is fundamentally connected with the PI N or PORT in the same way an object insidea Pl N
is also fundamentally connected with the PI N. Therefore, the CAPACI TANCE with NODE assignment is a more detailed way
of describing a CAPACI TANCE of a Pl N, whereas a CAPACI TANCE with PI N assignment describes a load capacitance,
which is applied externally to the pin.

A CELL can contain a W RE statement describing boundary parasitics as well as PI N statements containing
arithmetic models for CAPACI TANCE, RESI STANCE, or | NDUCTANCE. In this case the latter shall be consid-
ered as areduced form of the former. An analysis tool shall either use the set of components inside the PI N or
inside the W RE, but not a combination of both.

Example

CELL ny_cel |l {
PIN A { PINTYPE = digital; CAPACI TANCE = 4.8; RESI STANCE = 37.09;
PORT pl1 { VIEW = physical; } // see 9.10
PORT p2 { VIEW = none; } // see 9.10

}
PIN B { PINTYPE = digital; CAPACI TANCE = 2.6; }
PIN gnd { PINTYPE = supply; SUPPLYTYPE = ground; }
W RE ny_boundary_parasitics {

CAPACI TANCE = 1.3 { NODE { A pl gnd } }

CAPACI TANCE = 2.8 { NODE { A.p2 gnd } }

RESI STANCE = 65 { NODE { A pl Ap2} }

CAPACI TANCE = 0.7 { NODE { A pl1 B} }

CAPACI TANCE = 1.9 { NODE { B gnd } }
}

}
This example corresponds to the netlist shown in Figure 11.
distributed parasiticsin WIRE lumped parasiticsin PIN
A pl A p2 A 37.9 =65 * 2.8/ 4.8

—] 65

e — 48=0.7+1.3+ 238
0.7___ 1.3 2.8

TTT— B

B
__ 1.9 ___2.6=0.7+19

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 83

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

Figure 11—Example of boundary parasitic description
The distributed parasitics in the W RE statement can be reduced to the lumped parasiticsin the Pl N statement.
9.10.1.4 Interconnect delay and noise calculation

Cadlculation modelsfor DELAY and SLEWRATE can be described in the context of aVECTORinsideaW RE. The
Pl N assignments in these models shall refer to pre-declared NODEs inside the W RE.

Example

W RE ny_interconnect nodel {
/* node declarations */
/* electrical conponent declarations */
VECTOR ((01 nO ~> 01 n5) | (10 n0 ~> 10 n5)) {
/* DELAY nodel */
/* SLEWRATE nodel */

}

The pre-declared electrical components which are part of the network can be used within an EQUATI ON without
being re-declared in the HEADER of the model.

Example

DELAY {
FROM{ PIN=n0; } TO{ PIN = n5; }
EQUATI ON {
RL* (C1+C2+C3+CA+C5) + R2* (C2+C3+C4+C5)
+ R3*(C3+C4+C5) + R4*(C4+C5) + R5*C5

}

External components or stimuli which are not part of the network shall be declared in the HEADER. Also, all
arguments for TABLE-based models shall be in the HEADER. To avoid re-declaration of pre-declared compo-
nents, an EQUATI ON shall also be used for those arguments in the HEADER which refer to pre-declared compo-
nents.

Example

SLEWRATE {

PIN = n5;

HEADER {
SLEWRATE { PIN = n0O; TABLE {/* nunbers */} }
RESI STANCE { EQUATION { R1+R2+R3+R4+R5 } TABLE {/* nunbers */} }
CAPACI TANCE { EQUATION { Cl1+C2+C3+C4+C5 } TABLE {/* nunmbers */} }

}

TABLE { /* nunbers */ }

}

In order to model crosstalk delay and noise, at least two driver and receiver nodes are required. The symbolic
state * (see 5.4.13) shall be used to indicate the signal subjected to noise.

Example

84 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

W RE i nterconnect _nodel _with _coupling {

NODE aggr essor _source { NODETYPE = driver; }
NCDE vi cti m source { NODETYPE = driver; }
NODE aggr essor _si nk { NODETYPE = receiver; }
NCDE vi cti m si nk { NODETYPE = receiver; }

NODE vdd { NODETYPE = power; }

NODE gnd { NODETYPE = ground; }

CAPACI TANCE cc { NODE {aggressor_sink victimsink}}

CAPACI TANCE cv { NODE {victimsink gnd }}

RESI STANCE rv { NODE {victimsource victimsink}}

VECTOR (01 aggressor_sink -> ?* victimsink -> *? victimsink) {
/* xtal k noi se nodel */

}
VECTOR (
(01 aggressor_source <& 01 victimsource)
-> 01 aggressor_sink -> 01 victimsink
) |
/* xtal k DELAY nodel */
}

}

Example for noise model

VOLTAGE {

PIN = victi msink;

MEASUREMENT = peak;

CALCULATI ON = increnental ;

HEADER {
SLEWRATE tra { PIN = aggressor_sink; }
VOLTAGE va { NODE {vdd gnd} }

}

EQUATION { (1-EXP(-tral/(rv*cv)))*va*rv*cc/tra }

}

Example for delay model

DELAY {
FROM{ PIN = victimsource; } TO{ PIN = victimsink; }
CALCULATI ON = increnental ;

HEADER {
SLEWRATE tra { PIN
SLEWRATE trv { PIN

aggressor _si nk; }
vi cti msource; }

}
EQUATION { (1-EXP(-tral/(rv*cv)))*rv*cc*trv/tra }

}

The VOLTACE model applies for arising aggressor signal while the victim signal is stable. The DELAY model
applies for rising victim signal simultaneous with or followed by arising aggressor signal at the coupling point.
The VECTOR implicitly defines the time window of interaction between aggressor and victim; interaction occurs
only if the aggressor signal at the coupling point intervenes during the propagation of the victim signal from its
source to the coupling point. Both VOLTAGE and DELAY represent incremental numbers.

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 85

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

9.10.1.5 SELECT_CLASS annotation for WIRE statement

A sophisticated tool can support more than one interconnect model. Each calculation model can have its“ netlist”
with the appropriate validity range of the RC components. For instance, a lumped model can be used for short
nets and a distributed model can be used for longer nets. Also, models with different accuracy for the same net
can be defined. For instance, the lumped model can be used for estimation purpose and the distributed model for
signoff.

For this purpose, classes can be defined to select a set of models. The selection shall be defined by the user, in a
similar way as a user can select wireload models for pre-layout parasitic estimation. The selected class shall be
indicated by the SELECT _CLASS annotation within the W RE statement.

Example

LI BRARY ny_library {

CLASS estimti on;

CLASS verification;

W RE rough_nodel _for_short_nets {
SELECT _CLASS = estimation; /* etc.*/

}

W RE detail ed_nodel _for_short_nets {
SELECT _CLASS = verification; /* etc.*/

}

W RE rough_nodel for_long_nets {
SELECT _CLASS = estimation; /* etc.*/

}

W RE detail ed_nodel _for_long_nets {
SELECT _CLASS = verification; /* etc.*/

}
}

9.10.2 NODE statement

A NODE statement XXX, as shown in Syntax 85.

node ::=
NODE node _identifier { node_items }

| NODE node _identifier ;

| node_template instantiation
node_items::=

node_item { node_item}
node item ::=

al_purpose_item

Syntax 85—NODE statement

The nodes used for interconnect analysis shall be declared within the W RE statement, using the following syn-
tax.

node =

NODE g tier {all_ g }

The NODETYPE annotation and the NODE_ CLASS annotation also specifically apply to a NODE.

86 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

nodet ype_annotation ::=
NODETYPE = nodetype_identifier ;

nodetype_identifier ::=

ground

power

Sour ce

sink

driver

| receiver

— A driver node isthe interface between a cell output pin and interconnect

— A receiver nodeisthe interface between interconnect and a cell input pin

— A sourcenode isavirtual start point of signal propagation; it can be collapsed with a driver node

— A sinknodeisavirtual end point of signal propagation; it can be collapsed with areceiver node

— A power node provides the current for rising signals at the source/driver side and a reference for logic
high signals at the sink/receiver side

— A ground node provides the current for falling signals at the source/driver side and a reference for logic
low signals at the sink/receiver side

The arithmetic models for electrical components which are part of the network shall have names and NODE anno-
tations, referring either to the pre-declared nodes or to internal nodes which need not be declared.

Example

W RE ny_i nterconnect _nodel {
NCDE n0O { NODETYPE = source;
NCDE n2 { NODETYPE = driver;
NCDE n4 { NODETYPE = receiver;
NODE n5 { NODETYPE = si nk;
NODE vdd { NODETYPE = power;
NCDE vss { NODETYPE = ground;
RESI STANCE R1 NODE { nO nl1 }
RES| STANCE R2 NODE { nl n2 }
RES| STANCE R3
RES| STANCE R4
RES| STANCE R5
CAPACI TANCE C1
CAPACI TANCE C2
C3
4
c5

e e e e

CAPACI TANCE
CAPACI TANCE
CAPACI TANCE

—~
>
D
>
(é]
—
B s e e e

e o

}

This exampleisillustrated in Figure 12.

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 87

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

power power
driver_cell receiver_cell
source driver receiver sink
\ N 1 N 2 N 3 N 4 o 5
n n n n n
o NN \
C1 c2 C3 (o7} G |
ground ground

Figure 12—Example for interconnect description
The NODE_CLASS annotation is optional and orthogonal to the NODET YPE annotation.

node_cl ass_annotation ::=
NODE_CLASS= node_cl ass_identifier ;

The NODE_CLASS annotation shall refer to a pre-declared CLASS within the W RE statement to indicate which
node belongs to which device in the case of separate power supplies.

Example

W RE ny_i nterconnect _nodel {
CLASS driver_cell;
CLASS receiver_cell;

NODE n0O { NODETYPE = source; NODE_CLASS = driver_cell; }
NCDE n2 { NODETYPE = driver; NODE_CLASS = driver_cell; }
NODE n4 { NODETYPE = receiver; NODE_CLASS = receiver_cell; }
NODE n5 { NODETYPE = si nk; NODE_CLASS = receiver_cell; }
NODE vddl { NODETYPE = power; NODE_CLASS = driver_cell; }
NODE vss1l { NODETYPE = ground; NODE_CLASS = driver_cell; }
NODE vdd2 { NODETYPE = power; NODE _CLASS = receiver_cell; }
NODE vss2 { NODETYPE = ground; NODE_CLASS = receiver_cell; }

}

If NODE_CLASS is not specified, the nodes with NODETYPE=power | gr ound are supposed to be global. The
DC-connected nodes with NODETYPE=dr i ver | sour ce and NODETYPE=r ecei ver| si nk aresupposed
to belong to the same device.

9.11 VECTOR declaration

A VECTOR statement XXX, as shown in Syntax 86.

88 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

vector ::=
VECTOR control_expression { vector_items }
[VECTOR control_expression |
| vector_template_instantiation
vector_items ;=
vector_item { vector_item }
vector_item ::=
all_purpose_item
|illega

Syntax 86—VECTOR statement

9.12 Annotations in context of VECTOR declaration
9.12.1 PURPOSE annotation

A xxx annotation shall be defined using ALF language as shown in .

KEYWORD = annotation {
CONTEXT = VECTOR;
VALUETYPE = ;

VALUES { }
DEFAULT = ;

Syntax 87— annotation

A CLASS isageneric object which can be referenced inside another object. An object referencing a classinherits
all children object of that class. In addition to this general reference, the usage of the keyword CLASS in con-
junction with a predefined prefix (e, CONNECT _CLASS, SWAP_CLASS, RESTRI CT_CLASS,
EXI STENCE_CLASS, or CHARACTERI ZATI ON_CLASS) also carries a specific semantic meaning in the con-
text of its usage. Note the keyword pr ef i x_CLASS is used for referencing a class, whereas the definition of the
class always uses the keyword CLASS. Thus a class can have multiple purposes. With the growing number of
usage models of the class concept, it is useful to include the purpose definition in the classitself in order to make
it easier for specific tools to identify the classes of relevance for that tool.

A CLASS object can contain the PURPOSE annotation, which can take one or multiple values. A VECTOR enti-
tled to inherit the PURPOSE annotation from the CLASS can al so contain the PURPOSE annotation, as shown in
Syntax 88.

vector urlgose assignment ::=

PURPOSE {gpurpose_identifier{ purpose_identifier } }
vector_purpose_identifier :: =

bist

|test.

[timing

| power’

[Integrity

Syntax 88—PURPOSE annotation

9.12.2 OPERATION annotation

A xxx annotation shall be defined using ALF language as shown in .

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 89

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

KEYWORD = annotation {
CONTEXT = VECTOR;
VALUETYPE =
VALUES { }
DEFAULT = ;

Syntax 89— annotation

The OPERATI ON statement inside a VECTOR shall be used to indicate the combined definition of signal values
or signal changes for certain operations which are not entirely controlled by asingle signal.

operation_assignment ::=
OPERATION = operation_identifier ;

An OPERATI ON within the context of a VECTOR indicates certain a function of a cell, such as a memory write,
or change to some state, such as test mode. Many functions are not controlled by a single pin and are therefore
not able to be defined by the use of SI GNALTYPE alone. The VECTOR shall describe the complete operation,
including the sequence of events on input and expected output signals, such that one operation can be followed
seamlessly by the next.

The following vaues shall be predefined:

operation_identifier ::=
read

write
read_modify_write
write through

start

end

refresh

load

iddq

Their definitions are;

— read: read operation at one address

— write: write operation at one address

— read_modify_write: read followed by write of different value at same address

— tart: first operation required in a particular mode

— end: last operation required in a particular mode

— refresh: operation required to maintain the contents of the memory without modifying it
— load: operation for loading control registers

— iddq: operation for supply current measurementsin quiescent state

With exception of iddg, all values apply for only cellswith CELLTYPE=nmenory.
The EXI STENCE_CLASS (see 9.12.5) within the context of a VECTOR shall be used to identify which opera-

tions can be combined in the same mode. OPERATI ON is orthogonal to EXI STENCE_CLASS. The
EXI STENCE CLASS statement is only necessary, if there is more than one mode of operation.

90 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

Example 1

CLASS nornmal _node { PURPCSE = test; }
CLASS fast _page_node { PURPCSE = test; }
VECTOR (! VE && (
?! addr -> 01 RAS -> 10 RAS ->
?! addr -> 01 CAS -> X? dout -> 10 CAS -> ?X dout

)) A
OPERATI ON = read; EXI STENCE CLASS = nornal _node;

}
VECTOR (VE && (
?! addr -> 01 RAS -> 10 RAS ->
?l addr -> ?? din -> 01 CAS -> 10 CAS
)) A
OPERATI ON = write; EXI STENCE CLASS = nornal _node;

}

VECTOR (! WE && (?! addr -> 01 CAS -> X? dout -> 10 CAS -> ?X dout)) {

OPERATI ON = read; EXI STENCE CLASS = fast_page_node;

}

VECTOR (VE && (?! addr -> ?? din -> 01 CAS -> 10 CAS)) {
OPERATION = write; EX STENCE _CLASS = fast_page_node;

}

VECTOR (?! addr -> 01 RAS -> 10 RAS) {
OPERATI ON = start; EX STENCE_CLASS = fast_page_node;

}

NOTE—The complete description of a“read” operation also contains the behavior after the “read” is disabled.

Example 2

VECTOR (01 read_enb -> X? dout -> 10 read_enb -> ?X dout) {
OPERATION = read; // output goes to X in read-off

}
VECTOR (01 read_enb -> ?? dout -> 10 read_enb -> ?- dout) {

OPERATION = read; // output holds is value in read-off
}

9.12.3 LABEL annotation

A xxx annotation shall be defined using ALF language as shown in .

KEYWORD = annotation {
CONTEXT = VECTOR
VALUETYPE =
VALUES { }

DEFAULT = ;

Syntax 90— annotation

ensures SDF matching with conditional delays across Verilog, VITAL, etc.

See the end of B.3 for an example.

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual

91

10

15

20

25

30

35

40

45

50

55

1

10

15

20

25

30

35

40

45

50

55

9.12.4 EXISTENCE_CONDITION annotation

A xxx annotation shall be defined using ALF language as shown in .

KEYWORD = annotation {
CONTEXT = VECTOR
VALUETYPE =
VALUES { }
DEFAULT = ;

Syntax 91— annotation

For false-path analysis toals, the existence condition shall be used to eliminate the vector from further analysisif,
and only if, the existence condition evaluates to False. For applications other than false-path analysis, the exist-
ence condition shall be treated asif the boolean expression was a co-factor to the vector itself. The default exist-
ence condition is True.

Example

VECTOR (01 a -> 01 z & (¢ | 'd)) {

EXI STENCE_CONDI TI ON = !scan_sel ect;

DELAY { FROM{ PIN=a; } TO{ PIN=z; } /* data */ }
}
VECTOR (01 a ->01 z & (!'c | d)) {

EXI STENCE_CONDI TI ON = !scan_sel ect;

DELAY { FROM{ PIN=a; } TO{ PIN=z; } /* data */ }
}

Each vector contains state-dependent delay for the same timing arc. If | scan_sel ect evauates True, both
vectors are eliminated from timing analysis.

9.12.5 EXISTENCE_CLASS annotation

A xxx annotation shall be defined using ALF language as shown in .

KEYWORD = annotation {
CONTEXT = VECTOR;
VALUETYPE =
VALUES { }
DEFAULT = ;

Syntax 92— annotation

Reference to the same existence class by multiple vectors has the following effects:
— A common mode of operation is established between those vectors, which can be used for selective anal -

ysis, for instance mode-dependent timing analysis. The name of the mode is the name of the class.
— A common existence condition is inherited from that existence class, if thereis one.

Example

92 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

CLASS non_scan_node {

EXI STENCE_CONDI TI ON = ! scan_sel ect;
}
VECTOR (01 a -> 01 z & (c | !d)) {

EXI STENCE_CLASS = non_scan_node;

DELAY { FROM{ PIN=a; } TO{ PIN=z; } /* data */ }
}
VECTOR (01 a -> 01 z & (!'c | d)) {

EXI STENCE_CLASS = non_scan_node;

DELAY { FROM{ PIN=a; } TO{ PIN=z; } /* data */ }
}

Each vector contains state-dependent delay for the same timing arc. If the mode non_scan_node isturned off
orif ! scan_sel ect evauates True, both vectors are eliminated from timing analysis.

9.12.6 CHARACTERIZATION_CONDITION annotation

A xxx annotation shall be defined using ALF language as shown in .

KEYWORD = annotation {
CONTEXT = VECTOR;
VALUETYPE = ;

VALUES { }
DEFAULT = ;

Syntax 93— annotation

For characterization tools, the characterization condition shall be treated as if the boolean expression was a co-
factor to the vector itself. For all other applications, the characterization condition shall be disregarded. The
default characterization condition is True.

Example

VECTOR (01 a -> 01 z & (c | !d)) {

CHARACTERI ZATI ON_CONDI TION = ¢ & !d;

DELAY { FROM{ PIN=a; } TO{ PIN=z; } /* data */ }
}

The delay value for the timing arc applies for any of the following conditions: (¢ & ! d),
(c & d),or(!c & !'d),sincethey al satisfy (c | ! d).However, the only condition chosen for delay char-
acterizationis(c & !d).

9.12.7 CHARACTERIZATION_VECTOR annotation

A xxx annotation shall be defined using ALF language as shown in .

The characterization vector is provided for the case where the vector expression cannot be constructed using the
vector and a boolean co-factor. The use of the characterization vector isrestricted to characterization tools in the
same way as the use of the characterization condition. Either a characterization condition or a characterization

vector can be provided, but not both. If none is provided, the vector itself shall be used by the characterization
tool.

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 93

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

KEYWORD = annotation {
CONTEXT = VECTOR;
VALUETYPE =
VALUES { }
DEFAULT = ;

Syntax 94— annotation

Example

VECTOR (01 A -> 01 2) {
CHARACTER! ZATI ON_VECTOR = ((01 A & 10 inv_A) -> (01 Z & 10 inv_2));

}

Analysis tools see the signals A and Z. The signalsi nv_A and i nv_Z are visible to the characterization tool
only.

9.12.8 CHARACTERIZATION_CLASS annotation

A xxx annotation shall be defined using ALF language as shown in ..

KEYWORD = annotation {
CONTEXT = VECTOR;
VALUETYPE = ;

VALUES { }
DEFAULT = ;

Syntax 95— annotation

Reference to the same characterization class by multiple vectors has the following effects:

— A commonality is established between those vectors, which can be used for selective characterizationin a
way defined by the library characterizer, for instance, to share the characterization task between different
teams or jobs or tools.

— A common characterization condition or characterization vector is inherited from that characterization
class, if thereis one.

9.13 Incremental definitions for VECTOR

In generdl, it isillegal to re-declare an ALF object (see 4.1, Rule 4). However, there are objects which merely
define the context for other objects. When objects are incrementally added to the library, it isnatural to re-declare
the context as well.

Vector-specific timing, power, signal integrity characterization can be done by different groups, each of which
comes up with aset of vectorsfor the characterization domain. Some of the vectors can be accidentally the same.
Also, timing, power, signal integrity characterization can be done in different releases of the library. In both sce-
narios, the “incremental vector definitions” make the merging process easier.

Multiple instances of the same VECTCOR shall be legal for the purpose of incrementally adding children objects.
The first instance of the VECTOR shall be interpreted as a declaration. All following instances shall be inter-

94 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

preted as supplemental definitions of the VECTOR. The rule of illegal re-declaration shall apply for the children
objects within a VECTOR.

Example

/1 the following is |egal
VECTOR (01 A->01 Z) {

DELAY = 1 { FROM{ PIN= A, } TO{ PIN=Z; } }
}
VECTOR (01 A->01 zZ) {

ENERGY = 25 ;
/1 the following is illegal
VECTOR (01 A -> 01 Z) {

DELAY = 1 { FROM{ PIN= A, } TO{ PIN=Z; } }
}
VECTOR (01 A->01 2) {

DELAY = 2 { FROM{ PIN= A, } TO{ PIN=Z; } }

}

9.14 Statements for physical modeling
Overview

Table 45 summarizes the ALF statements for physical modeling.

Table 45—Statements in ALF describing physical objects

Statement Scope Comment

LAYER LI BRARY, Description of a plane provided for physical objects consisting of
SUBLI BRARY eectrically conducting material.

VI A LI BRARY, Description of a physical object for electrical connection between
SUBLI BRARY layers.

SI TE LI BRARY, Placement grid for a class of physically placeable objects.
SUBLI BRARY

BLOCKAGE CELL Physical object on alayer, forming an obstruction against placing

or routing other objects.
PORT PIN Physical object on alayer, providing electrical connectionsto a
pin.

PATTERN VI A, RULE, Physical object on alayer, described for the purpose of defining
BLOCKAGE, PORT | relationships with other physical objects.

RULE LI BRARY, Set of rules defining cal culable relationships between physical
SUBLI BRARY, objects.
CELL, PIN

ANTENNA LI BRARY, Set of rules defining restrictions for physical size of electrically
SUBLI BRARY, connected objects for the purpose of manufacturing.
CELL

ARTWORK VI A, CELL Reference to an imported object from GDS2.

IEEE P1603 Draft 3

Advanced Library Format (ALF) Reference Manual

95

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

Table 45—Statements in ALF describing physical objects (Continued)

Satement Scope Comment

ARRAY LI BRARY, Description of aregular grid for placement, global and detailed
SUBLI BRARY routing.

geometric model | PATTERN Description of the geometric form of a physical object.

REPEAT physical object Algorithm to replicate a physical object in aregular way.

SHI FT physical object Specification to shift a physical object in x/y direction.

FLI P physical object Specification to flip aphysical object around an axis.

ROTATE physical object Specification to rotate a physical object around an axis.

BETVEEN CONNECTI VI TY, Reference to objects with arelation to each other.
DI STANCE

9.14.1 LAYER statement

A LAYER statement is defined as shown in Syntax 96.

lay

er =

LAYER layer_identifier { layer_items}
ILAYER Iayer_identifier ;
| layer_template _instantiation
layer_items::=

layer_item{ layer_item}

layer_item ::=

al_purpose_item

Syntax 96—LAYER statement

LAYER-i-dentiH-er—{—ayer—items—}
layer—item{ layer item}
al-l—purpose—item

F ari-thrstic_rodel _

F arithmetic nodel container

arithaeticnodel-aredefinedin-11.7-and-11.16:

96

Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 3

Specific items applicable for LAYER are listed in Table 46.

Table 46—Items for LAYER description

Item Appliesfor layer Usable AL F statement Comment
Purpose al PURPCSE = <identifier> ; See9.14.2
Property routing, cut, master PROPERTY { ... } See3.2.7
Current density routing, cut LIMT { CURRENT See?7.5,8.1.2,7.6.1,89.1, and
limit { ... v\&X{ ... } } 9.14.5
Resistance routing, cut RESI STANCE { ... } See8.7.2 and 9.14.5
Capecitance routing CAPACI TANCE {... } See8.7.2 and 9.14.5
Default width or routing W DTH { DEFAULT = See7.1.4., Section 9.2, and
minimum width <nunber >; } 9.14.5
Manufacturing routing WDTH { M N = <nunber >; See7.6.1,89.1,and 9.14.5
tolerance for TYP = <nunber >;
width MAX = <nunber>; }
Default wire routing EXTENSI ON { DEFAULT = See9.17.3.3and 9.14.5
extension <nunber >; }
Height routing, cut, master HElI GHT = <nunber >; See Section 9.2
Thickness routing, cut, master THI CKNESS = <nunber >; See Section 9.2
Preferred routing routing PREFERENCE See9.14.4
direction

10

15

20

25

30

NOTE—Rules involving relationships between objects within one or severa layersis described in the RULE statement (see
9.16.1).

9.14.2 PURPOSE annotation
The purpose of each layer shall be identified using the PURPOSE annotation.

| ayer _pur pose_assi gnnent ::=
PURPOSE = | ayer _purpose_identifier ;

| ayer _purpose_identifier ::=
routing
| cut
| substrate
| dielectric
| reserved
| abstract

The identifiers have the following definitions:
— routing: layer provides electrical connections within one plane

— cut: layer provides electrical connections between planes
— substrate: layer(s) at the bottom

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 97

10

15

20

25

30

35

40

50

55

— dielectric: provides electrical isolation between planes

— reserved: layer isfor proprietary use only

— abstract: not amanufacturable layer, used for description of boundaries between objects
LAYER statements shall be in sequential order defined by the manufacturing process, starting bottom-up in the
following sequence: one or multiple substrate layers, followed by aternating cut and routing layers, then the
dielectric layer. Abstract layers can appear at the end of the sequence.
9.14.3 PITCH annotation
The PI TCH annotation identifies the routing pitch for alayer with PURPOSE=r out i ng.

pitch_annotation ::=
PITCH = non_negative_nunber ;

The pitch is measured between the center of two adjacent parallel wires routed on the layer.
9.14.4 PREFERENCE annotation
The PREFERENCE annotation for LAYER shall have the following form:

routi ng_preference_annotation ::=
PREFERENCE = routing_preference_identifier ;

routing_preference_identifier ::=
horizontal
| vertical

The purpose is to indicate the preferred routing direction.

9.14.5 Example

This example contains a default width (the syntax isal | _pur pose_i t en), resistance, capacitance, and cur-
rent limits (thesyntax isar i t hrret i ¢_nodel) for arbitrary wiresin arouting layer. Since width and thickness

are arguments of the models, special wires and fat wires are al so taken into account.

LAYER netal 1 {
PURPCSE = routi ng;

PREFERENCE { HORI ZONTAL = 0.75; VERTICAL = 0. 25;
W DTH { DEFAULT = 0.4; MN = 0.39; TYP = 0.40; MAX = 0.41; }
THI CKNESS { DEFAULT = 0.2; MN = 0.19; TYP = 0.20; MAX = 0.21; }
EXTENSI ON { DEFAULT = 0; }
RESI STANCE {

HEADER { LENGTH W DTH THI CKNESS TEMPERATURE }

EQUATI ON {

0. 5% (LENGTH/ (W DTH* THI CKNESS))
(1. 0+0. 01 (TEMPERATURE- 25))

}
}
CAPACI TANCE {

HEADER { AREA PERI METER }
EQUATI ON { 0. 48*AREA + 0. 13* PERI METER* THI CKNESS }

98 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

IEEE P1603 Draft 3

}
LIMT {

CURRENT ac _limt _for_avg {

UNIT = mAnp ;

MEASUREMENT = aver age ;

HEADER {

WDTH { UN'T = uM TABLE { 0.4 0.8 } }

FREQUENCY { UNIT
THI CKNESS { UNIT

megHz; { 1 100 } }
uM TABLE { 0.2 0.4 } }

}
TABLE {
2.0e-6 4.0e-6 1.5e-6 3.0e-6
4.0e-6 8.0e-6 3.0e-6 6.0e-6
}
}
CURRENT ac_limt_for_rms {
UNIT = mAnp ;
MEASUREMENT = rns
HEADER {
WDTH{ UNIT = uM TABLE { 0.4 0.8 } }
FREQUENCY { UNIT = megHz; { 1 100 } }
THICKNESS { UNNT = uM TABLE { 0.2 0.4 } }
}
TABLE {
4.0e-6 7.0e-6 4.5e-6 7.5e-6
8.0e-6 14.0e-6 9.0e-6 15.0e-6
}
}
CURRENT ac_limt_for_peak {
UNIT = mAnp ;
MEASUREMENT = peak ;
HEADER {

WDTH { UNIT = uM
FREQUENCY { UNIT
THI CKNESS { UNIT

}
TABLE {

TABLE { 0.4 0.8 } }
megHz; { 1 100 } }
uM TABLE { 0.2 0.4 } }

6.0e-6 10.0e-6 5.9e-6 9.9e-6

12. 0e-6 20.0e-6 11.
}
}
CURRENT dc_limt {
UNIT = mAnp ;
MEASUREMENT = static ;
HEADER {
WDTH { UNIT = uM
THICKNESS { UNIT =

}
TABLE { 2.0e-6 4.0e-6

8e-6 19.8e-6

TABLE { 0.4 0.8 } }
uM TABLE { 2 0.4} }

4.0e-6 8.0e-6 }

Advanced Library Format (ALF) Reference Manual

99

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

9.15 VIA statement and related statements
This section defines the VI A statement and its annotations.
9.15.1 VIA statement

A VI A statement is defined as shown in Syntax 97.

via::=

VI A via_identifier { via_items }
| VIA via_identifier ,

| via_template_instantiation

via items::=
via_item { via_item}
via item ;=
all_purpose_item
| pattern
| artwork
Syntax 97—VIA statement
Va——r=—
VHA-[—identitier]—{—viaditem}
viaitems =
la_i (via] }
fa_| -
al-l—purpose—item
‘I_ . I . I I
‘I_ . . - .
. arithmetic nodel container

The VI A statement shall contain at least three patterns, referring to the cut layer and two adjacent routing layers.
Stacked vias can contain more than three patterns.

Theal | _purpose_itens andarithmeti c_nodel sfor VI Aarelisted in Table 47.

Table 47—Items for VIA description

Item Usable AL F statement Comment
Property PROPERTY See3.2.7
Resistance RESI STANCE See8.7.2
GDS2 reference ARTVORK See Section 9.4 and 9.15.3
Usage USACE See9.15.2 and 9.15.3

9.15.2 USAGE annotation

The USAGE annotation for a VI A shall have one of the following mutually exclusive values.

100 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

usage_annotation ::=
USAGE = usage_identifier ;

usage_identifier ::=
default
| non_default
| partial_stack
| full _stack

The identifiers have the following definitions:

— default: via can be used per default

— non_default: viacan only be used if authorized by a RULE

— partial_stack: viacontains 3 patterns: lower and upper routing layer and cut layer in-between. It can only
be used to build stacked vias. The bottom of astack canbeadef aul t oranon_def aul t via

— full_stack: via contains 2N+1 patterns (N>1). It describes the full stack from bottom to top.

9.15.3 Example

VIA via with two _contacts_in x direction {
ARTWORK = GDS2_nane_of _ny via {
SHI FT { HORI ZONTAL = -2; VERTICAL = -3; }
ROTATE = 180;
}
PATTERN vi a_contacts {
LAYER = cut _1_2 ;
RECTANGLE { 1 1 3 3}

REPEAT = 2 {
SHI FT{ HORI ZONTAL = 4; }
REPEAT = 1 {

SHI FT { VERTICAL = 4; }

|
PATTERN | ower _net al {

LAYER = nmetal _1 ;

RECTANGLE { 0 0 8 4 }
}
PATTERN upper _netal {

LAYER = metal _2 ;

RECTANGLE { 0 0 8 4 }

}

A TEMPLATE (see 3.2.6) can be used to define a construction rule for avia

TEMPLATE ny_via_rul e
VI A <via_rul e_nanme> {
PATTERN vi a_contacts {

LAYER = cut _1_2 ;

RECTANGLE { 1 1 3 3}

REPEAT = <x_repeat > {
SHI FT{ HORI ZONTAL = 4; }
REPEAT = <y repeat> {

SHI FT { VERTICAL = 4; }

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 101

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

Yooy}
PATTERN | ower _netal {

LAYER = netal 1 ;

RECTANGLE { 0 0 <x_cover> <y_cover> }
}
PATTERN upper _netal {

LAYER = nmetal 2 ;

RECTANGLE { 0 0 <x_cover> <y cover> }

}

A static instance of the TEMPLATE can be used to create the same via as in the first example (except for the ref-
erenceto GDS2):

my_via rule {
via rule_name = via with two _contacts_in_x_direction;

X_cover = §8;
y_cover = 4;
X_repeat = 2;
y_repeat = 1,

}

A dynamic instance of the TEMPLATE (see 5.6.8) can be used to create aviarule.

my_via rule = dynam c {
via rule_nanme = via with _NxM contacts;
x_cover
y_cover
X_repeat {
HEADER { x_cover { TABLE { 4 8 12 16 } } }
TABLE { 1 2 3 4}

8;
4;

}

y_repeat {
HEADER { y_cover { TABLE { 4 8 12 16 } } }
TABLE { 1 2 3 4}

}

}

Instead of defining fixed values for the placeholders, here the mathematical relationships between the placehol d-
ers are defined, which can generate aviarule for any set of values.

9.15.4 VIA reference statement

Certain physical objects can contain areference to one or more vias, as shown in Syntax 98.

102 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

via reference ;=
V1A { via instantiations }
| VIA { via_identifiers }
via_instantiations ::=
via_instantiation { via_instantiation }
via_instantiation ::=
via_identifier { geometric_transformations }

Syntax 98—VIA reference statement

Thevi a_i denti fi er shal bethe name of an already defined VI A.

Example for aviareference in a PORT, see Section 9.10.

9.16 Statements related to physical design rules

** Add lead-in text**

9.16.1 RULE statement

A RULE statement is defined as shown in Syntax 99.

rule::=
RULE rule_identifier { rule_items }
| RULE rule_identifier ;
| rule_template_instantiation
rule_items::=
rule_item { rule_item}
rule_item ::=
all_purpose_item
| pattern
| via_reference

Syntax 99—RULE statement

rule =

RULE [| tier i g }

5{

@

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual

103

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

Theal | _pur pose_it ensfor RULE are listed in Table 48.

Table 48—Items for RULE description

Item Usable AL F statement Comment
| Ruleisfor same net CONNECTI VI TY See 9.16.4.2 and Section 9.15
or different nets
| Spacing rule LIMT { D STANCE ... } See7.5and 9.16.1.1
| Overhang rule LIMT { OVERHANG ... } See7.5and 9.16.1.2

The rules for spacing and overlap, respectively, shall be expressed using the LI M T construct with DI STANCE
and OVERHANG respectively, as keywords for the arithmetic models (see 7.5 and 7.6.1). The keywords HORI -
ZONTAL and VERTI CAL shall be introduced as qualifiers for arithmetic submodels (see 7.6) to distinguish rules
for different routing directions. If these qualifiers are not used, the rule shall apply in any routing direction.

9.16.1.1 Width-dependent spacing

An exampl e of width-dependent spacingis:

RULE wi dt h_and_| engt h_dependent _spaci ng {
PATTERN segnmentl { LAYER = netal _1; SHAPE
PATTERN segnment2 { LAYER = netal _1; SHAPE

CONNECTI VI TY {

CONNECT_RULE = cannot _short;
BETWEEN { segnentl segnent2 }

line; }
line; }

}
LIMT {
DI STANCE { BETWEEN { segmentl segnent2 }
M N {
HEADER {
W DTH wi {
PATTERN = segnent 1;
[* TABLE, if applicable */
}
W DTH w2 {
PATTERN = segnent 2;
/* TABLE, if applicable */
}
LENGTH comron_run {
BETVEEN { segnentl segnent2 }
[* TABLE, if applicable */
}
}
/* EQUATI ON or TABLE */
}
MAX { /* sone technol ogy have MAX spacing rules */ }
}
}

104

Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

Spacing rules dependent on routing direction can be expressed as follows:

LIMT {
DI STANCE { BETWEEN { segnmentl segnent2 }
HORI ZONTAL {
M N { /* HEADER, EQUATION or TABLE */ }
}
VERTI CAL {
M N { /* HEADER, EQUATION or TABLE */ }
}
}
}

9.16.1.2 End-of-line rule
End-of-line rules can be expressed as follows:

RULE [onely_via {

PATTERN vi a_l ower { LAYER = netal _1; SHAPE = line; }
PATTERN vi a_cut { LAYER = cut_1 2; }

PATTERN vi a_upper { LAYER = netal _2; SHAPE = end; }
PATTERN adj acent { LAYER = netal _2; SHAPE = line; }

CONNECTI VI TY {

CONNECT_RULE = nust _short;

BETWEEN { via_l ower via_cut via_ upper }
}
CONNECTI VI TY {

CONNECT_RULE = cannot _short;

BETWEEN { vi a_upper adjacent }

}
LIMT {
OVERHANG {
BETWEEN { via_cut via_upper }
M N {
HEADER {
DI STANCE {
BETVWEEN { via cut adjacent }
[* TABLE, if applicable */
}
}
/* TABLE or EQUATI ON */
}
}
}

}

Overhang dependent on routing direction can be expressed as follows:

LIMT {
OVERHANG { BETWVEEN { via_cut via_upper }
HORI ZONTAL {
M N { /* HEADER, EQUATI ON or TABLE */ }
}
VERTI CAL {

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 105

10

15

20

25

30

35

40

50

55

9.16.1.3 Redundant vias

M N { /* HEADER, EQUATION or TABLE */ }

}

Rules for redundant vias can be expressed as follows:

9.16.1.4 Extraction rules

RULE constraint_for_redundant _vias {
PATTERN vi a_| ower { LAYER = netal _1; }
PATTERN vi a_cut { LAYER = cut_1_2; }
PATTERN vi a_upper { LAYER = netal _2; }
CONNECTI VI TY {
CONNECT_RULE = nust _short;
BETWEEN { via_l ower via_cut via_ upper }

}
LIMT {
W DTH {
PATTERN = vi a_cut;
MN = 3; MAX = 5;
}
DI STANCE {
BETWEEN { via_cut }
MN = 1; MAX = 2;
}
OVERHANG {
BETWEEN { via_l ower via_cut }
MN = 2; MAX = 4;
}
OVERHANG {
BETWEEN { vi a_upper via_cut }
MN = 2; MAX = 4;
}
}

}

Extraction rules can be expressed as follows:

106

RULE parallel _Iines_sanme_| ayer {

PATTERN segnentl { LAYER = netal _1; SHAPE
PATTERN segnent2 { LAYER = netal _1; SHAPE

i ne;
i ne;

CAPACI TANCE {
BETWEEN { segnentl segnent2 }

HEADER {

DI STANCE {
BETVWEEN { segnentl segnent2 }

/*
}

TABLE, if applicable */

LENGTH {
BETVEEN { segnentl segnent2 }

/*

TABLE, if applicable */

Advanced Library Format (ALF) Reference Manual

}
}

IEEE P1603 Draft 3

}
}
/* EQUATION or TABLE */

}

9.16.1.5 RULES within BLOCKAGE or PORT

General width-dependent spacing rules can not apply to blockages which are abstractions of smaller blockages
collapsed together. The spacing rule between the constituents of the blockage and their neighboring objects shall
be applied instead.

For example, a blockage can consist of two parallel wiresin vertical direction of wi dt h=1 and di st ance=1.
They can be collapsed to form a blockage of wi dt h=3. Left and right of the blockage, the spacing rule shall be
based on the width of the constituent wires (i.e., 1) instead of the width of the blockage (i.e., 3).

Therefore, it shall be legal within a RULE statement to appear within the context of a BLOCKAGE or PORT and
reference a PATTERN which has been defined within the context of the BLOCKAGE or PORT.

Example

CELL my_cell {
BLOCKAGE ny_bl ockage {

PATTERN ny_pattern {
LAYER = netal 1;
RECTANGLE { 5 0 8 10 }

}

RULE for_ny_pattern {
PATTERN ny_netal 1 { LAYER = netal 1; }

LIMT {
DI STANCE {
BETWEEN { ny_netall ny_pattern }
MN = 1;
}
}

}

It shall also be legal to define the spacing rule, which normally would be inside the RULE statement, directly
within the context of a PATTERN using the LI M T construct and the arithmetic model for DI STANCE. This
arithmetic model shall not contain a BETVEEN statement. The spacing rule shall apply between the PATTERN
and any external object on the same layer.

Example

CELL ny_cell {
BLOCKAGE ny_bl ockage {
PATTERN pl {
LAYER = net al 1;
RECTANGLE { 5 0 8 10 }
LIMT { DISTANCE { MN=1; } }

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 107

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

}

9.16.2 ANTENNA statement

An ANTENNA statement is defined as shown in Syntax 100.

antenna::=
ANT ENNA antenna_identifier { antenna items }
|ANTENNA antenna_identifier ;
| antenna_template_instantiation
antenna_items ::=
antenna_item { antenna_item }
antenna_item :;=
al_purpose_item

Syntax 100—ANNTENA statement

ahtepna—=
ANTENNA—{ i d o 14 |]
antenna—item-{ antennaitem}
al-l—purpose—item
F ari-thrstic_rodel _
F arithmetic nodel container

Fhe syntaxand-semanticsof-al- - —purpose_itemarithretic_rodel —contai-ner-and

arit-hreticnodel-aredready-definedr-definredHn-11. 7-anrd-11.16-

The items applicable for ANTENNA are shown in Table 49.

Table 49—Items for ANTENNA description

or
SI ZE [id] { HEADER {
... } EQUATION{ ...}

Item Usable ALF statement Scope Comment
Maximum allowed LIMT { SIZE { LI BRARY, See7.5,8.1.2,7.6.1, and
antennasize MX{ ... }}} SUBLI BRARY | 9.16.2.1

CELL, PIN
Calculation method S| ZE { HEADER LI BRARY, See8.1.3,and 9.16.2.1
for antenna size { ... } TABLE { ...} SUBLI BRARY

Argument values for argument = value; CELL, PIN Seell.2and9.16.2.1
antennasize calcula- or
tion argument = value{ ...}

The use of the keyword Sl ZE (see 8.1.3) in the context of ANTENNA is proposed to represent an abstract, dimen-
sionless model of the antenna size. It isrelated to the area of the net which forms the antenna, but it is not neces-

108 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

sary a measure of area. It can be a measure of area ratio as well. However, the arguments of the calculation
function for antenna S| ZE shall be measurable data, such as AREA, PERI METER, LENGTH, THI CKNESS,
W DTH, and HEI GHT of metal segments connected to the net. The argument al so need an annotation defining the
applicable LAYER for the metal segments.

A process technology can have more than one antenna rule calculation method. In this case, the
ant enna_i denti fi er ismandatory for each rule.

Antenna rules apply for routing and cut layers connected to poly silicon and eventually to diffusion. The
CONNECT _RULE statement in conjunction with the BETWEEN statement shall be used to specify the connected
layers. Connectivity shall only be checked up to the highest layer appearing in the CONNECT _RULE statement.
Connectivity through higher layers shall not be taken into account, since such connectivity does not yet exist in
the state of manufacturing process when the antenna effect occurs.

9.16.2.1 Layer-specific antenna rules

Antenna rules can be checked individually for each layer. In this case, the SI ZE model contains only two or
three arguments: AREA of the layer or perimeter (calculated from the LENGTH and W DTH) of the layer causing
the antenna effect, the area of poly silicon, and, eventually, the area of diffusion.

Example

ANTENNA i ndi vi dual _ntl {
LIMT { SIZE { MAX
Sl ZE {
CONNECTI VI TY {
CONNECT_RULE = nust_short; BETWEEN { netal 1 poly }

1000; } }

}
CONNECTI VI TY {

CONNECT_RULE = cannot _short; BETWEEN { netal 1 diffusion }

}
HEADER {
AREA al { LAYER = netal 1; }
AREA a0 { LAYER = poly; }
}
EQUATION { al / a0 }
}
ANTENNA i ndi vi dual _n?2 {
LIMT { SIZE { MAX = 1000; } }
Sl ZE {
CONNECTIMI TY {
CONNECT_RULE = nust _short; BETWEEN { netal 2 poly }
}

CONNECTIMVI TY {
CONNECT_RULE = cannot _short; BETWEEN { netal 2 di ffusion }

}

HEADER {
AREA a2 { LAYER = netal 2; }
AREA a0 { LAYER = poly; }

}

EQUATION { a2 / a0 }

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 109

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

9.16.2.2 All-layer antenna rules

Antennarules can also be checked globally for al layers. In that case, the SI ZE model contains area or perimeter
of al layers as additional arguments.

Example

ANTENNA gl obal _n2_ml {

}

LIMT { SIZE { MAX = 2000; } }
Sl ZE {

CONNECTI VI TY {

CONNECT_RULE = nust_short;
BETWEEN { netal 2 netal 1l poly }

}

CONNECTIMI TY {
CONNECT_RULE = cannot _short;
BETWEEN { netal 2 diffusion }

}

HEADER {
AREA a2 { LAYER = netal 1; }
AREA al { LAYER = netal 1; }
AREA a0 { LAYER = poly; }

}

EQUATION { (a2 + al) / a0 }

9.16.2.3 Cumulative antenna rules

Antenna rules can aso be checked by accumulating the individual effect. In that case, the SI ZE model can be
represented as a nested arithmetic model, each of which contain the model of the individual effect.

Example

ANTENNA accunul ate_n2_ml {

110

LIMT { SIZE { MAX = 3000; } }
SI ZE {

HEADER {
SI ZE ratiol {
CONNECTI VI TY {
CONNECT_RULE = nust _shor
BETWEEN { netall poly }

}
CONNECTI VI TY {

t;

CONNECT_RULE = cannot _short;

BETVWEEN { netal 1 diffusion }
}
HEADER {
AREA al { LAYER = netal 1; }
AREA a0 { LAYER = poly; }
}

EQUATION { al / a0 }

}
SIZE ratio2 {

Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 3

CONNECTI VI TY {
CONNECT_RULE = nust _short;
BETWEEN { netal 2 poly }

}

CONNECTI VI TY {
CONNECT_RULE = cannot _short;
BETWEEN { netal 2 diffusion }

}

HEADER {
AREA a2 { LAYER = netal 2; }
AREA a0 { LAYER = poly; }

}

EQUATION { a2 / a0 }
}
}
EQUATION { ratiol + ratio2 }

}

TheargumentsaO inrati ol andrati 02 canarenotthesame. Inrati 01, a0 representsthe areaof poly sil-
icon connectedtonet al 1 inanet. Inr at i 02, a0 represents the area of poly silicon connected to et al 2 in
anet, where the connection can be established through more than one subnet in net al 1.

9.16.2.4 Illustration

Consider the structure shown in Figure 13.

Metal2 - — — — — — — _ _] A8 | — — | A9 | — — — — _ __
Metall - — — — — — _ | A5 | — — [A6 |- — — —|] A7 | — -
Poly __ 1 A1 | —_—] A2 |—_— _ _| A3 | -] A4 | — -

Figure 13—Metal-poly illustration
Checking this structure against the rulesin the examples yields the following results:

i ndi vi dual _nt:
1000 > A5 / (Al1+A2)
1000 > A6 / A3
1000 > A7 /| A4
i ndi vi dual _n®:
1000 > (A8+A9) / (Al+A2+A3+A4)

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 111

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

gl obal _n2_mi:
2000 > (A8+A9+A5+A6+A7) | (Al+A2+A3+A4)
accunul ate_n2_mil:
3000 > (A8+A9) / (AL+A2+A3+A4) + A5 | (Al+A2)
3000 > (A8+A9) / (AL+A2+A3+A4) + A6 / A3
3000 > (A8+A9) / (AL+A2+A3+A4) + A7 | A4

9.16.3 BLOCKAGE statement
This section defines the BLOCKAGE statement and its use.
9.16.3.1 Definition

A BLOCKAGE statement is defined as shown in Syntax 101.

blockage ::=
BL OCK AGE blockage identifier { blockage items }
| BLOCK AGE blockage _identifier |
| blockage _template instantiation
blockage items::=
blockage_item { blockage_item}
blockage _item ::=
all_purpose_item
| pattern
| rule
| via_reference

Syntax 101—BLOCKAGE statement

}_
See11.7+er-apphicable-al - —purpose_itens:
9.16.3.2 Example

CELL ny_cell {
BLOCKAGE ny_bl ockage {
PATTERN p1l {
LAYER = net al 1;
RECTANGLE { -1 5 3 8}
RECTANGLE { 6 12 3 8 }

}
PATTERN p2 {
LAYER = netal 2;
RECTANGLE { -1 5 3 8 }
}

}

The BLOCKACE consists of two rectangles covering et al 1 and one rectangle covering et al 2.

112 Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 3

9.16.4 PORT statement

A port isacollection of geometries within apin, representing electrically equivalent points. A PORT statement is
defined as shown in Syntax 102.

port ::=
PORT port_identifier { port_items }
| PORT port_identifier ;
| port_template_instantiation
port_items ::=
port_item { port_item}
port_item ::=
all_purpose_item
| pattern
| rule
| via_reference

Syntax 102—PORT statement

}

A numerical digit can be used as the first character in port _i denti fi er. In this case the number shall be
proceeded by the escape character (see 10.3.8) in the declaration of the PORT.

The PORT statement is legal within the context of a Pl N statement. For this purpose, the syntax for pi n_i t em
(see H-41) shall be augmented as follows:

pin_item::=
al | _purpose_item
| arithmetic_nodel
| port

A pin can have either no PORT statement, an arbitrary number of PORT statementswithaport _i denti fi er,
or exactly one PORT statement without aport i dentifier.

9.16.4.1 VIA reference
A PORT can contain areference to one or more vias by using thevi a_r ef er ence statement (see xxx).
Example

VIAny via { /* put via definition here */ }

/1l later in the sanme library
CELL ny_cell {
PIN my_pin {
PORT ny_port {
VI A {

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 113

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

my_via { SHIFT { HORI ZONTAL
nmy_via { SHIFT { HORI ZONTAL

}

1.0 ;
5.0 ;

VERTI CAL
VERTI CAL

o™

The VI A ny_vi a is instantiated twice in the PORT my_port within the PI N mny_pi n of the CELL
nmy_cel | . The origin of the instantiated vias is shifted with respect to the origin of the cell, as specified by the

SHI

9.16.4.2 CONNECTIVITY rules for PORT and PIN

FT statements.

By default, all connectionsto apin shall be made to the same port. Different ports of a pin shall not be connected
externally. Those defaults can be overridden by using connectivity rules for ports within a pin.

Pins of the same cell shall not be shorted externally by default. This default can aso be overridden by using con-
nectivity rulesfor pinswithin a cell.

Example
PIN A {
PORT P1 { VI EWephysical; }
}
PIN B {
PORT Q1 { VI EWephysical; }
PORT @ { VIEWephysical; }
PORT B { VI EWephysical; }
CONNECTI VI TY {
CONNECT_RULE = can_short;
BETWEEN { QL @ }
}
CONNECTI VI TY {
CONNECT_RULE = cannot _short;
BETWEEN { QL @ }
}
CONNECTI VI TY {
CONNECT_RULE = cannot _short;
BETWEEN { @2 @ }
}
}

CONNECTI VI TY {
CONNECT_RULE = nust _short;
BETWEEN { A B }

}

The router can make external connections between QL and (3, but not between QL and Q2 or between 2 and
(B, respectively. The router shall make an external connection between A. P1 and any port of B (B. QL, B. 2,

or B. @).

114

Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 3

9.16.4.3 Reference of a declared PORT in a PIN annotation

In the context of timing modeling, a PORT can have the semantic meaning of a Pl N. For examples, PORTs can
be used as FROM andlor TO points of delay measurements — use a reference by a
hi erarchi cal _identifier.

Example
CELL ny_cel |l {
PIN A {
DI RECTI ON = i nput;
PORT p1;
PORT p2;
}
PIN Z {
DI RECTI ON = out put;
}
VECTOR (01 A->01 Z2) {
DELAY {
FROM { PIN = A pl; }
TO{ PIN= Z; }
}
DELAY {
FROM { PIN = A p2; }
TO{ PIN=2Z; }
}

}

9.16.4.4 VIEW annotation
A subset of values for the VI EWannotation inside aPl N (see 6.4.1) shall be applicable for a PORT aswell.

port_view annotation ::=
VIEW = port_view_ identifier ;

port _view identifier ::=
physical
| none
VI EWEphysi cal shall qualify the PORT asareal port with the possibility to connect arouting wire to it.
VI EWEnone shall qualify the PORT asavirtua port for modeling purpose only.
9.16.4.5 LAYER annotation
Thel ayer _annot at i on can appear inside a PORT (see Section 9.10).

9.16.4.6 ROUTING_TYPE

A PORT can inherit the ROUTI NG_TYPE from its Pl Nor it can have its own ROUTI NG_TYPE annotation.

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 115

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

9.17 Statements related to physical geometry

** Add lead-in text**

9.17.1 SITE statement

A Sl TE statement is defined as shown in Syntax 103.

Site::=
SITE site_identifier { site_items }
| SI TE site_identifier ;
| site_template instantiation
site items::=
site_item{ site_item}
site item ::=
all_purpose_item
| ORIENTATION_CLASS one level_annotation
| SYMMETRY_CLASS one_level_annotation

Syntax 103—SITE statement

SLTE site | T [_ | L
Thew dt h_annot ati on and hei ght _annot at i on (see Section 9.2) are mandatory.
9.17.1.1 ORIENTATION_CLASS and SYMMETRY_CLASS

A set of CLASS statements shall be used to define a set of legal orientations applicable to a SI TE. Both the
CLASS and the SI TE statements shall be within the context of the same LI BRARY or SUBLI BRARY.

orientation_class ::=
CLASS orientation_class_identifier {
[geonetric_transformations]

To refer to a predefined orientation class, use the ORI ENTATI ON_CLASS statement within a SI TE and/or a
CELL. ORI ENTATI ONof a CELL meansthe orientation of the cell itself. ORI ENTATI ONof a S| TE meansthe
orientation of rows that can be created using that site.

orientation_class_mnultivalue_annotation ::=

ORIENTATION{ orientation_class_identifiers }

The SYMVETRY_CLASS statement shall be used for a SI TE to indicate symmetry between legal orientations.
Multiple SYMVETRY statements shall be legal to enumerate all possible combinations in case they cannot be
described within a single SYMVETRY statement.

symmetry _class_mnul tival ue_annotation ::=
SYMMETRY_CLASS{ orientation_class_identifiers }

Legal orientation of a cell within a site shall be defined as the intersection of legal cell orientation and legal site
orientation. If thereis a set of common legal orientations for both cell and site without symmetry, the orientation
of cell instance and site instance shall match.

116 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

If there is a set of common legal orientations for both cell and site with symmetry, the cell can be placed on the
side using any orientation within that set.

Case 1. no symmetry

Site has legal orientations A and B. Cell has legal orientations A and B. When the site isinstantiated in the A ori-
entation, the cell shall be placed in the A orientation.

Case 2: symmetry

Site haslegal orientations A and B and symmetry between A and B. Cell haslegal orientations A and B. When the
siteisinstantiated in the A orientation, the cell can be placed in the A or B orientation.

9.17.1.2 Example

LI BRARY my_library {
CLASS north { ROTATE = 0
CLASS flip_north { ROTAT

.
E =
CLASS south { ROTATE = 180

0; FLIP = 0; }
}

90; }

CLASS flip_south { FLIP
SITE Sitel {
ORI ENTATI ON_CLASS { north flip_north }
}
SITE Site2 {
ORI ENTATI ON_CLASS { north flip_north south flip_south}
SYMMVETRY_CLASS { north flip_north }
SYMVETRY_CLASS { south flip_south }
}
CELL Cell1 {
SITE{ Sitel Site2 }
ORI ENTATION_CLASS { north flip_north }
}
CELL Cell2 {
SITE { Site2 }
ORI ENTATI ON_CLASS { north south }
}

}

Cel | 1 canbeplacedonsi t el. Theorientation of Si t el and Cel | 1 shall match because there is no symme-
try betweennort handflip_northinSitel.

Cel | 1 can beplaced on Si t €2, provided Si t e2 isinstantiated inthenort h or f | i p_nort h orientation.
The orientation of site2 and cel |l 1 need not match because of the symmetry between nort h and
flip_northinSite2.

Cel | 2 canbeplaced on Si t €2, provided Si t e2 isinstantiated in the nor t h or sout h orientation. The ori-
entation of Site2 and Cel | 2 shall match because there is nho symmetry between nort h and sout h in
Site2.

9.17.2 ARRAY statement

An ARRAY statement is defined as shown in Syntax 104.

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 117

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

array ::=
ARRAY array identifier { array_items }
|ARRAY array identifier ;
| array_template instantiation
array_items ::=
array_item{ array_item}
array_item ::=
all_purpose_item
| PURPOSE_single_value_annotation
| geometric_transformation

Syntax 104—ARRAY statement

ARRAY.| L E
alHl—purpose_itens
o .
}_

The geonet ri c_t ransf or mati ons define the locations of the starting points within the array and the
number of repetitions of the components of the array. Details are defined in the next section.

9.17.2.1 PURPOSE annotation
Each array shall have a PURPCSE assignment.

array_pur pose_assi gnnment ::=
PURPOSE = array_purpose_identifier ;

array_purpose_identifier ::=
floor plan
| placement
| global
| routing

An array with purpose floorplan or placement shall have a reference to a SITE and a
shi ft _annotation_container, rotate_annotation, and eventually a f1i p_annot ati on to
define the location and orientation of the SI TE in the context of the array.

An array with purpose routing shall have a reference to one or more routing LAYERs and a
shi ft _annot ati on_cont ai ner to define the location of the starting point.

An array with purpose global shall have ashi ft _annot ati on_cont ai ner to define the location of the
starting point.

118 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

9.17.2.2 Examples

Example 1

width=100

=100

my_site

height

R/ N W A o

ARRAY grid_for_ny site {
PURPOSE = pl acenent;
SITE = ny_site;
SH FT { HORI ZONTAL = 50; VERTICAL = 50; }

REPEAT = 7 {
SHI FT { HORI ZONTAL = 100; }
REPEAT = 5 {
SHI FT { VERTICAL = 5; }
}
}
}
Example 2
4>

hori zontal route

ARRAY grid for_detailed_routing {

PURPCSE = routi ng;
LAYER { nmetall netal 2 netal 3 }
SH FT { HORI ZONTAL = 100; VERTICAL = 50; }
REPEAT = 7 {

SH FT { VERTI CAL = 100; }

REPEAT = 8 {

SHI FT { HORI ZONTAL = 100; }
}

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 119

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

Example 3

o

B
| | | |

- S X X
| | | |

-k ke sk ke
| | | |

ARRAY grid_for_global _routing {

PURPOSE = gl obal ;
SH FT { HORI ZONTAL = 100; VERTICAL = 100; }
REPEAT = 3 {

SH FT { VERTICAL = 150; }

REPEAT = 4 {

SH FT { HORI ZONTAL = 100; }
}

}

9.17.3 PATTERN statement

A PATTERN statement is defined as shown in Syntax 105.

pattern ::=
PATTERN pattern_identifier { pattern_items }
| PATTERN pattern_identifier |
| pattern_template_instantiation
pattern_items ::=
pattern_item { pattern_item}
pattern_item ::=
all_purpose_item
| SHAPE_single_value_annotation
| LAYER_single value_annotation
| EXTENSION_single value_annotation
| VERTEX single_value_annotation
| geometric_model
| geometric_transformation

Syntax 105—PATTERN statement

120 Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 3

9.17.3.1 SHAPE annotation
The SHAPE annotation is defined as follows

shape_assi gnnment :: =
SHAPE = shape_identifier ;

shape_identifier ::=
line

| tee

| cross

| jog

| corner

| end

SHAPE applies only for a PATTERN in arouting layer, as shown in Figure 14. The default is| i ne.

tee j corner
7 end
Cross

Figure 14—Routing layer shapes
I i ne andj og represent routing segments, which can have an individual LENGTH and W DTH. The LENGTH
between routing segments is defined as the common run length. The DI STANCE between routing segments is
measured orthogonal to the routing direction.
t ee, cross, and cor ner represent intersections between routing segments. end represents the end of a rout-
ing segment. Therefore, they have points rather than lines as references. The points can have an EXTENSI ON.
The DI STANCE between points can be measured straight or by using HORI ZONTAL and VERTI CAL.
9.17.3.2 LAYER annotation

The | ayer _annot at i on defines the layer where the object resides. The layer shall have been declared
before.

| ayer _annotation ::=
LAYER = layer_identifier ;

9.17.3.3 EXTENSION annotation

Theext ensi on_annot at i on specifies the value by which the drawn object is extended at all sides.

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 121

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

ext ensi on_annotation ::=
EXTENSION = non_negative_nunber

The default value of ext ensi on_annot ati onisO.
9.17.3.4 VERTEX annotation

Thevert ex_annot at i on shall appear only in conjunction with the ext ensi on_annot at i on. It speci-
fiesthe form of the extended object, as shown in Figure 15.

vertex_annotation ::=
VERTEX = vertex_identifier ;

vertex_identifier ::=
round
| straight

The default value of ver t ex_annot at i on isstraight.

\ N
EXTENSION = 1 N N

\ 3

VERTEX = straight VERTEX =round

Figure 15—lllustration of VERTEX annotation
9.17.3.5 PATTERN with geometric model

A geonetri c_nodel describestheform of aphysical object; it does not describe a physical object itself. The
geonet ri c_nodel shal bein the context of a PATTERN.

A pattern can contain geonet ri ¢_nodel statements, geometric transformation statements (see 9.17.6.5), and
al | _purpose_itens (seell.7).

9.17.3.6 Example
PATTERN {
LAYER = net al 1;

EXTENSI ON = 1;
DOT { COORDI NATES { 5 10 } }

122 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

This object is effectively a square, with alower left corner (x=4, y=9) and upper right corner (x=6, y=11).
9.17.4 ARTWORK statement

An ARTWORK statement is defined as shown in Syntax 106.

artwork ::=

ARTWORK = artwork_identifier { artwork_items }
|ARTWORK = artwork_identifier ;
| artwork_template_instantiation
artwork_items ::=
artwork_item { artwork_item }
artwork_item ::=
geometric_transformation
| pin_assignment

Syntax 106—ARTWORK statement

artwork =
ARPAORK——artwork_i-dentiftier—{—
[geometrictransformationsJ-
t—pip_assighrents—
}_

The ARTWORK statement creates a reference between the cell in the library and the original cell imported from a
physical layout database (e.g., GDS2).

Thegeonetri c_transformati ons definethe operationsfor transformation from the artwork geometry to
the actual cell geometry. In other words, the artwork is considered as the original object whereas the cell is the
transformed object.

The imported cell can have pins with different names. The LHS of the pi n_assi gnnent s describes the pin
names of the original cell, the RHS describes the pin names of the cell in thislibrary. See 11.4 for the syntax of
pi n_assi gnnents .

Example
CELL ny_cell {
PINA{ /* fill inpinitems */ }
PINZ { /* fill inpinitems */ }

ARTWORK = \ GDS2$! @t$ {
SHI FT { HORI ZONTAL = 0; VERTICAL = 0; }

ROTATE = 0O;
\ CDS2$! @$A = A
\ GCDS2$! @$B = B;

}

9.17.5 Geometric model

This section defines the geometric model statement and how to predefine commonly used objects (using TEM
PLATE).

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 123

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

A geometric model describes the form of an object in a physical library. It isin the context of a pattern, whichis
associated with physical objects, such as via, blockage, port, rule. Patterns and other physical objects can also be

subjected to geometric transformations, as shown in Figure 16.

artwork

via contains pattern array
bl OCkageCOW \g)ntaiu_ns ¢ contains ﬁntains
port conta geometric transformation

rule ntains

geometric model —contans . coordinates

Figure 16—Geometric model and its context
9.17.5.1 Definition

A geometric model is defined as shown in Syntax 107.

geometric_model ::=
nonescaped_dentifier [geometric_model_identifier]
geometric_model_items
| geometric_model_template instantiation
geometric_model_items ::=
geometric_model_item { geometric_model_item }
geometric_model_item ::=
all_purpose_item
| POINT_TO_POINT_one_level_annotation
| coordinates
coordinates ::=

COORDINATES { x_number y_number { x_number y_number } }

Syntax 107—Geometric model

geonetric_nodel identifier ::=
DOT
| POLYLINE

124 Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 3

| RING
| POLYGON

coordinates ::=
COORDINATES{ x_nunber y_nunber { x_nunber y_nunber } }

A pointisapair of x_nunber andy_nunber.
A DOT is1 point.
A POLYLINE isdefined by N>1 connected points, forming an open object.

A RING isdefined by N>1 connected points, forming a closed object, i.e., the last point is connected with first
point. The object occupies the edges of the enclosed space.

A POLY GON is defined by N>1 connected points, forming a closed object, i.e., the last point is connected
with first point. The object occupies the entire enclosed space.

All of these are depicted in Figure 17.

POLYLINE RING POLYGON

Figure 17—Illustration of geometric models
See 9.17.6.4 for the definition of the r epeat statement.

The poi nt _to_poi nt _annot ati on appliesfor POLYLINE, RING, and POLY GON. It specifies
how the connections between pointsis made. The defaultisst r ai ght , which defines a straight connection (see
Figure 18). Thevaluer ect i | i near specifiesa connection by moving in the x-direction first and then moving
in the y-direction (see Figure 19). This enables a non-redundant specification of rectilinear objects using N/ 2
points instead of N points.

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 125

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

point _to_point_annotation ::=
POINT_TO _POINT = point_to_point_identifier ;

point _to_point_identifier ::=

straight

| rectilinear
Y-axis) Straight connection straight connection
9 T from (-1/8) to (-1/5) i from (3/8) to (-1/8)
8 X X
.
6 straight connection
5 L from (-3/5) to (3/8)
4
3 straight connection
5 from (-1/5) to (3/5)
1
>
5 -4 -3 -2-101 2 3 4 5 X-axis

Figure 18—lllustration of straight point-to-point connection

Y-axis

P N W, 01O N 0O ©

A

rectilinear connection from (-3/8) to (-1/5)

X

X

rectilinear connection from (-1/5) to (3/8)

|
5 -4 -3 -2 -101 2 3 4 5 X-axis

Example

126

Figure 19—lllustration of rectilinear point-to-point connection

Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 3

POLYGON {
PO NT_TO PO NT = straight;
COORDINATES { -1 53538-181}

}

POLYGON {
PO NT_TO PO NT = rectilinear;
COORDINATES { -1 5 3 8}

}

Both objects describe the same rectangle.
9.17.5.2 Predefined geometric models using TEMPLATE
The TEMPLATE construct (see 3.2.6) can be used to predefine some commonly used objects.
The templates RECTANGLE and LINE shall be predefined as follows:
TEMPLATE RECTANGLE {
POLYGON {

PO NT_TO PO NT = rectilinear;
COORDI NATES { <left> <bottonms <right> <top> }

}
}
TEMPLATE LI NE {
POLYLI NE {
PO NT_TO PO NT = straight;
COORDI NATES { <x_start> <y start> <x_end> <y_end> }
}
}
Example 1

The following example shows the instantiation of predefined templates.

/1l same rectangle as in previous exanple

RECTANGLE {left = -1; bottom=5; right = 3; top = 8; }
/I or

RECTANGLE {-1 5 3 8 }

/1 diagonals through the rectangle

LINE {x_start -1; y start = 5; x_end = 3; y_end
LINE {x_start 3; y_start =5; x end = -1; y_end
/1 or

LINE{ -153 }

LINE{ 35-128}

(e¢]

The definitions for predefined templates are fixed. Therefore the keywords RECTANGLE and LINE are
reserved. On the other hand, the definitions for user-defined templates are only known by the library supplied by
the user.

Example 2

The following example shows some user-defined templ ates.

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 127

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

TEMPLATE HORI ZONTAL_LI NE {
POLYLI NE {
PO NT_TO PO NT = straight;
COORDI NATES { <left> <y> <right> <y> }
}
}
TEMPLATE VERTI CAL_LI NE {
POLYLI NE {
PO NT_TO PO NT = straight;
COORDI NATES { <x> <bottonp» <x> <top> }

}

Example 3

The following example shows the instantiation of user-defined templates.

/1 lines bounding the rectangle

HORI ZONTAL_LINE { vy = 5; left = -1; right = 3; }
HORI ZONTAL_LINE { v = 8; left = -1; right = 3; }
VERTI CAL_LINE { x = -1; bottom=5; top = 8; }

VERTI CAL_LINE { x
/] or

HORI ZONTAL_LI NE { -1 3}
HORI ZONTAL_LINE { 8 -1 3}
VERTICAL_LINE { -1 5 8}
VERTICAL_LINE { 3 5 8}

3; bottom=15; top = 8; }

ol

9.17.6 Geometric transformation

A geometric transformation XXX, as shown in Syntax 108.

geometric_transformations ::=
geometric_transformation { geometric_transformation }
geometric_transformation ::=
SHIFT two_level_annotation
| ROTATE_one_level_annotation
| FLIP_one_level_annotation
| repeat

repeat ;=
REPEAT [= unsigned] {
shi ft _two level_annotation
[repeat]

Syntax 108—Geometric transformation

: . : .

This section also defines SHI FT, ROTATE, FLI P, and REPEAT.

128 Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 3

9.17.6.1 SHIFT statement

The SHI FT statement defines the horizontal and vertical offset measured between the coordinates of the geomet-
ric model and the actual placement of the object. Eventually, a layout tool only supports integer numbers. The
numbers are in units of DISTANCE.

shi ft_annotation_container ::=
SHIFT { horizontal _or_vertical _annotations }

hori zontal or_vertical _annotations ::=
hori zontal _annot ati on
| vertical _annotation
| horizontal _annotation vertical _annotation

hori zontal _annotation ::=
HORIZONTAL = nunber ;

vertical _annotation ::=

VERTICAL = nunber

If only one annotation is given, the default value for the other oneis 0. If the SHI FT statement is not given, both
values default to O.

9.17.6.2 ROTATE statement

Ther ot at e_annot at i on statement defines the angle of rotation in degrees measured between the orienta-
tion of the object described by the coordinates of the geometric model and the actual placement of the object
measured in counter-clockwise direction, specified by a number between 0 and 360. Eventualy, a layout tool
can only support angles which are multiple of 90 degrees. The default isO.

rotate_annotation ::=
ROTATE = nunber ;

The object shall rotate around its origin.

9.17.6.3 FLIP statement

Thefl i p_annot ati on describes atransformation of the specified coordinates by flipping the object around
an axis specified by a number between 0 and 180. The number represents the angle of the flipping direction in
degrees. Eventually, alayout tool can only support angles which are multiple of 90 degrees. The axisis orthogo-

nal to the flipping direction. The axis shall go through the origin of the object.

flip_annotation ::=

FLIP = nunber ;
Example
FLI P = 0 meansflipin horizontal direction, axisis vertical.
FLI P = 90 meansflipin vertical direction, axisis horizontal.

9.17.6.4 REPEAT statement

The REPEAT statement shall be defined as shown in Syntax 109.

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 129

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

repeat ::=
REPEAT [= unsigned] {

shi ft _two_level_annotation

[repeat |
Syntax 109—REPEAT statement
REPEAT-[= uns e
hife o .
}

The purpose of the REPEAT statement is to describe the replication of a physical object in a regular way, for
example S| TE (see Section 9.12). The REPEAT statement can also appear withinageonetri ¢c_nodel .

The unsi gned number defines the total number of replications. The number 1 means, the object appears just
once. If this number is not given, the REPEAT statement defines arule for an arbitrary number of replications.

REPEAT statements can also be nested.
Examples
The following example replicates an object three times along the horizontal axisin a distance of 7 units.

REPEAT = 3 {
SHI FT { HORI ZONTAL = 7; }
}

The following example replicates an object five times along a 45-degree axis.

REPEAT = 5 {
SHI FT { HORI ZONTAL = 4; VERTICAL = 4; }
}

The following example replicates an object two times along the horizontal axis and four times along the vertical
axis.

REPEAT = 2 {
SHI FT { HORI ZONTAL = 5; }
REPEAT = 4 {

SHIFT { VERTICAL = 6; }

}
}

NOTE—The order of nested REPEAT statements does not matter. The following example gives the same result as the previ-
ous example.

REPEAT = 4 {
SHIFT { VERTICAL = 6; }
REPEAT = 2 {

SHI FT { HORI ZONTAL = 5; }

130 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

}

9.17.6.5 Summary of geometric transformations

geonetric_transformations ::=
geonetric_transformati on { geonetric_transformation }

geonetric_transfornmation ::=
shi ft _annot ati on_cont ai ner
| rotate_annotation
| flip_annotation
| repeat

Rules and restrictions:

— A physical object can contain ageonetri c_t ransf ormati on statement of any kind, but no more
than one of a specific kind.

— Thegeonetric_transformation statements shall apply to all geornret ri ¢c_nodel s within the
context of the object.

— Thegeonetric_transformation statements shall refer to the origin of the object, i.e., the point
with coordinates{ 0 O }. Therefore, the result of a combined transformation shall be independent of
the order in which each individual transformation is applied.

These are demonstrated in Figure 20.

FLIP ROTATE . . SHIFT
—> — —
o
[L L P
legend: @ originof theobject [| &

Figure 20—lllustration of FLIP, ROTATE, and SHIFT

9.18 Statements related to functional description
This section specifies the functional modeling for synthesis, formal verification, and simulation.
9.18.1 FUNCTION statement

A FUNCTI ON statement XXX, as shown in Syntax 110.

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 131

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

function ::=
FUNCTION { function_items }
| function_template_instantiation

function _items:;=

function_item { function_item}
function_item ::=

al_purpose_item

| behavior

| structure

| statetable

Syntax 110—FUNCTION statement
9.18.2 TEST statement

A CELL can contain a TEST statement, which is defined as shownin Syntax 111.

test ::=
TEST { test_items}
| test_template _instantiation
test items::=
test_item{ test_item}
test_item ::=
all_purpose_item
| behavior
| statetable
Syntax 111—TEST statement
test =
FEST{—behavior—}

The purposeisto describe the interface between an externally applied test algorithm and the CELL. Thebehav-
i or statement within the TEST statement uses the same syntax as the behavi or statement within the FUNC-
T1 ON statement. However, the set of used variablesis different. Both the TEST and the FUNCTI ON statement
shall be self-contained, complete and complementary to each other.

9.18.3 Physical bitmap for memory BIST

This section defines the physical bitmap for memory BIST. This is a particular case of the usage of the TEST
statement.

9.18.3.1 Definition of concepts

The physical architecture of amemory can be described by the following parameters (as depicted in Figure 21):
BANK index: A memory can be arranged in one or several banks, each of which constitutes atwo-dimen-
sional array of rows and columns
ROW index: A row of memory cells within one bank shares the same row decoder line.

COLUMN index: A column of memory cells within one bank shares the same data bit line and, if appli-
cable, the same sense amplifier.

132 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

BANK index

&
Q)?“
ROW index S & one ROW

Figure 21—Illustration of a physical memory architecture, arranged in banks, rows, columns

The physical memory architecture is not evident from the functional description and the pins involved in the
functional description of the memory. Those pins are called logical pins, e.g., logical address and logical data.

A memory BIST tool needs to know which logical address and data corresponds to a physical row, column, or
bank in order to write certain bit patternsinto the memory and read expected bit patterns from the memory. Also,
the tool needs to know whether the physical datain a specific location isinverted or not with respect to the corre-
sponding logical data (as depicted in Figure 22).

ﬁl gorithm \ [Wrapper \ Ia%?jrcgs

. . physical row / ins
write physical data .) P Memory
to row, column, bank hysical column circuit
. logical
hysical bank datainput under test
read physical data pins
from row, column, bank [physical data logical

k / Sﬁz output

Figure 22—lllustration of the memory BIST concept

A mapper between physical rows, columns, banks, data and logical addresses, and data pins shall be part of the
library description of amemory cell.

The physical row, column, and bank indices can be modeled as virtual inputs to the memory circuit. The data to
be written to a physical memory location can also be modeled as avirtual input. The datato be read from a phys-
ical memory location can be modeled as a virtual output. Since every datathat is written for the purpose of test
aso needs to be read, the data can be modeled as a virtual bidirectional pin. A virtual pin is a pin with
VI EWEnone, i.e, the pinisnot visible in any netlist.

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 133

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

9.18.3.2 Explanatory example

One-dimensiona arrays with SI GNALTYPE=addr ess (here: PI N[3: 0] addr) shall be recognized as
address pinsto be mapped, involving other one-dimensional arrayswith ATTRI BUTE { ROW | NDEX } (here:
PIN[1: 0] row)and ATTRI BUTE { COLUVMN_I NDEX } (here: PI N[3: 0] col). Thismemory has only
one bank. Therefore, no one-dimensional array with ATTRI BUTE { BANK | NDEX } exists here.

One-dimensional arrays with SI GNALTYPE=dat a (here: PI N 3: 0] Di nand PI N[3: 0] Dout) shall be
recognized as data pins to be mapped, involving other one-dimensional arrays with ATTRI BUTE

{ DATA_I NDEX } (here: PI N[1: 0] dat) and scalar pinswith ATTRI BUTE { DATA_VALUE } (here
PIN bit).

NOTE—Since the data buses are 4-bits wide, the dataindex is 2-bits wide, since 2=l0g2(4).

Base Example

CELL nmy_nmenory {
PI N[3: 0] addr { DI RECTI ON=i nput; SI GNALTYPE=address; }
PIN[3:0] Din { DI RECTI ON=i nput; SIGNALTYPE=data; }
PI N[3: 0] Dout { DI RECTI ON=out put; SI GNALTYPE=data; }
PI N[3:0] bits[0:15] { DI RECTI ON=none; VI EWtnone; SCOPE=behavior; }
PIN wite_enb { DI RECTI ON=i nput; SI GNALTYPE=write_enabl e;
POLARI TY=hi gh; ACTI ON=asynchr onous;
}
PIN[1: 0] dat { ATTRIBUTE { DATA I NDEX } DI RECTI ON=none; VI EWnone; }
PIN bit { ATTRI BUTE { DATA VALUE } DI RECTI ON=bot h; VI EWtnone; }
PIN 1: 0] row {
ATTRIBUTE { ROWINDEX } RANGE { 0: 3}
DI RECTI ON=i nput ; VI EWEnone;
}
PIN[3:0] col {
ATTRI BUTE { COLUVWN INDEX } RANGE { 0 : 15 }
DI RECTI ON=i nput ; VI EWEnone;

}
FUNCTI ON {
BEHAVI OR {
Dout = bits[addr];
@(wite_enb) { bits[addr] = Din; }
Pl

/*different physical architectures are shown in the follow ng exanpl es*/

}

134 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

Example 1

addr[3:2] 00 00 00 00 01 01 01 01 10 10 10 10 11 11 11 11

physical column 1o “h1 “h2 *h3 “ha ‘hs ‘he ‘h7 ‘h8 ‘he 'hA ‘hB ‘hC ‘hD ‘hE ‘hF

00 ho Dfo] D1 b2 ool D1 DOf2] Dol o1 o2 DO D1] Df2]
01 ‘hi 0fo] D1] Df2] oo} o1 0Of2] Dol o1 o2 DO] D1] Of2]
10 “h2 0fo] D1] Df2] oo} o1 Of2] Dol o1 o2 DO] D1] Of2]
11 “h3 Dol O1] Bf2] oo} D1 Of2] Dol o1 o2 DO] D1] Bf2]
3 8
5 ©
® o
£
S
TEST {
BEHAVI CR {
/1 map row and col umm index to |ogical address
addr[1: 0] = row 1: 0];
addr[3:2] = col[3:2];
/1 map colum index to |ogical data index
dat[1:0] = col[1:0];
/1 map physical data to input and output data
Din[dat] = bit;
bit = Dout[dat];
}
}
Example 2
addr[3:2] 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11

physical column 1o “h1 “h2 *h3 “ha ‘hs ‘he ‘h7 hs ‘he 'hA ‘hB ‘hC 'hD ‘'hE ‘hF

00 ho D{o] Dfo] Dfo] Dfo] Di1] Di1] Of1] DO1] Df2] D2] D2] Df2]
01 ‘hl D{0] D[Oo] Dfo] Dio] D[1] D[1] DO1] D1] Df2] D 2] D2] Df2]
10 “h2 D{o] Dfo] Dfo] pfo] Di1] Di1] Of1] DO1] Df2] D2] D2] Df2]
11 ‘h3 D{o] Dfo] Dfo] pfo] Di1] Df1] Of1] DO1] Df2] D2] D2] Df2]
=
% T

D

>

<

o

TEST {
BEHAVI OR {

/1 map row and colum index to |ogical address

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 135

10

15

20

25

30

35

40

50

55

addr [1: 0] row 1:0];
addr [3: 2] col[1:0];

/1 map columm index to |ogical data index
dat[1:0] = col[3:2];

/1 map physical data to input and output data
Din[dat] = bit;
bit = Dout[dat];

}

Example 3

addr[3;2] 00 01 11 10 11 10 00 01 00 01 1 10

physical column 1o “h1 “h2 *h3 “ha ‘hs ‘he ‘h7 h8 ‘he 'hA ‘hB ‘hC 'hD ‘hE ‘hF

00 ho D0l §fo] Df1] D{1] D[O] DO] Bf1] D{1]!Df2]!D[2] o 2] Of2]
10 “hl D0l §fo] Df1] D{1] D[0] DO] Bf1] D{1]!D{2]!D[2] D 2] Df2]
11 “h2 D0l §fo] Df1] D{1JtDojtDiojtof1]tof1] of2] of2] D 2] Df2]
01 “h3 D0l §fo] Df1] DfiJtpojtpiojtpf1jio1] of2] o2 o 2] Of2]
5 ©
® o
g
o
TEST {
BEHAVI OR {
/1 map row and col umm index to | ogical address
addr[0] = row 1];
addr[1] =row 0] ™ row 1]
addr[2] = col[0] ™ col[1] ~ col[2];

addr[3] = col[2] ” col[3];

/1 map colum index to |ogical data index
dat[0] = col[1];
dat[1] = col[3];

/1 map physical data to i nput and output data
Din[dat]=bit~(row 1] &col [2] & col [3] | !'row 1] & col [2] &col [3]);
bit=Dout[dat]*(row 1] &col [2] & col [3] | !'row 1] & col [2] &ol [3]);

}

NOTES
1—This enables the description of a complete bitmap of a memory in a compact way.

2—The RANGE feature is not restricted to BIST. It can be used to describe a valid contiguous range on any bus. This allevi-
atesthe need for interpreting a VECTOR with | LLEGAL statement to get the valid range. However, the VECTOR with | LLE-
GAL statement is still necessary to describe the behavior of a device when illegal values are driven on abus.

136 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

3—The TEST statement with BEHAVI OR alows for generalization from memory BIST to any test vector generation require-
ment, e.g., logic BIST. The only necessary additions would be other PI N ATTRI BUTESs describing particular features to be
recognized by the test vector generation algorithm for the target test algorithm.

9.18.4 BEHAVIOR statement

A BEHAVI OR statement XXX, as shown in Syntax 112.

behavior ::=
BEHAVIOR { behavior_items}
| behavior_template_instantiation
behavior_items::=
behavior_item { behavior_item }
behavior_item ::=
boolean_assignment
| control_statement
| primitive_instantiation
| behavior_item template instantiation
boolean_assignments ::=
boolean_assignment { boolean_assignment }
boolean_assignment ::=
pin_variable = boolean_expression ,
primitive_instantiation ::=
primitive_identifier [identifier] 1 pin_va ues}
| primitive_identifier [identifier] { boolean_assignments }
control _statement ::=
@ control_expression { boolean_assignments } { : control_expression { boolean_assignments } }

Syntax 112—BEHAVIOR statement

BEHAVHOR

Inside BEHAVI OR, variables that appear at the LHS of an assignment conditionally controlled by a vector
expression, as opposed to an unconditional continuous assignment, hold their values, when the vector expression
evaluates False. Those variables are considered to have latch-type behavior.

Examples
BEHAVI OR {
@O {
Q=D [// both Qand ON have | atch-type behavi or
N =1!D;
}
}
BEHAVI OR {
@O {
Q=D [// only Qhas latch-type behavior
}
N =1Q
}

9.18.5 STRUCTURE statement
An optional STRUCTURE statement shall be legal in the context of a FUNCTI ON. A STRUCTURE statement

describes the structure of a complex cell composed of atomic cells, for example I/O buffers, LSSD flip-flops, or
clock trees. The STRUCTURE statement shall be legal inside the FUNCTI ON statement (see 11.17):

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 137

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

A STRUCTURE statement is defined as shown in Syntax 113.

structure ::=
STRUCTURE { named_cell_instantiations }
| structure_template_instantiation
named _cell_instantiations ::=
named_cell instantiation{ named_cell_instantiation }
named_cell_instantiation ::
cell |dent|f|er|nstance identifier y pin_ values}
| cel I_| dentifier instance_identifier { pin_assignments

Syntax 113—STRUCTURE statement

eeH—pdenH—h—er—mspa%kdem—l—Lkel;{——Leg—C—val—u%S—}—
F cell—identifier instance_identifier { pininstantiations}

The STRUCTURE statement shall describe a netlist of components inside the CELL. The STRUCURE statement
shall not be a substitute for the BEHAVI OR statement. If a FUNCTI ON contains only a STRUCTURE statement
and no BEHAVI OR statement, a behavior description for that particular cell shall be meaningless (e.g., fillcells,
diodes, vias, or analog cells).

Timing and power models shall be provided for the CELL, if such models are meaningful. Application tools are
not expected to use function, timing, or power models from the instantiated components as a substitute of a miss-
ing function, timing, or power model at the top-level. However, tools performing characterization, construction,
or verification of atop-level model shall use the models of the instantiated components for this purpose.

Test synthesis applications can use the structural information in order to define a one-to-many mapping for scan
cell replacement, such as where a single flip-flop is replaced by a pair of master/slave latches. A macro cell can
be defined whose structure is a netlist containing the master and dave laich and this shall contain the
NON_SCAN_CELL annotation to define which sequential cells it is replacing. No timing model is required for
thismacro cell, since it should be treated as a transparent hierarchy level in the design netlist after test synthesis.

NOTES
1—Every i nstance_i denti fi er within a STRUCTURE statement shall be different from each other.

2—The STRUCTURE statement provides adirective to the application (e.g., synthesisand DFT) asto how the CELL isimple-
mented. A CELL referenced in naned_cel | _i nstanti ati on can be replaced by another CELL within the same
SWAP_CLASS and RESTRI CT_CLASS (recognized by the application).

3—Thecel | _i denti fi er within a STRUCTURE statement can refer to actual cells aswell asto primitives. The usage of
primitives is recommended in fault modeling for DFT.

4—BEHAVI OR statements also provide the possibility of instantiating primitives. However, those instantiations are for mod-
eling purposes only; they do not necessarily match a physical structure. The STRUCTURE statement always matches a physi-
cal structure.

Example 1

138 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

iobuffer = pre buffer + main buffer

CELL nmy_nmmi n_driver {
DRI VERTYPE = sl otdriver ;
BUFFERTYPE = out put ;
PINi { DIRECTION = input; }
PIN o { DIRECTION = output; }
FUNCTION { BEHAVIOR { o =i ; } }

}

CELL nmy_pre_driver {
DRI VERTYPE = predriver ;
BUFFERTYPE = out put ;
PINi { DIRECTION = input; }
PIN o { DIRECTION = output; }

FUNCTION { BEHAVIOR { o =i ; } }
}
CELL my_buffer ({

DRI VERTYPE = both ;

BUFFERTYPE = out put ;

PIN A { DIRECTION = input; }
PIN Zz { DIRECTION = output; }
PINY { VIEW= physical; }

FUNCTI ON {

BEHAVIOR { Z = A ; }
STRUCTURE {
nmy_pre_driver pre { AY }// pin by order

nmy_main_driver main { i=Y; o=Z; }// pin by nane

}
Example 2

Issd flip-flop = latch + flip-flop + mux

CELL ny_latch {

RESTRI CT_CLASS { synthesis scan }
PIN enable { DIRECTION = input; }

PIN d
PIN d

{
{

DI RECTI ON
DI RECTI ON

input; }
output; }

FUNCTI ON { BEHAVI OR {
@(enable) { q=d; }

b}
}

CELL ny flip-flop {
RESTRI CT_CLASS { synthesis scan }

PI'N cl ock
PIN d
PIN q

{
{
{

DI RECTION = input; }
DI RECTION = input; }
DI RECTI ON = out put; }

FUNCTI ON { BEHAVI OR {
@(0l clock) { gq=4d; }

b

IEEE P1603 Draft 3

Advanced Library Format (ALF) Reference Manual

139

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

140

CELL my_nux {
RESTRI CT_CLASS { synthesis scan }

PI N dout { DIRECTION = output; }
PI N di nO { DIRECTION = input; }
PI' N dinl { DIRECTION = input; }
PIN select { DORECTION = input; }
FUNCTI ON { BEHAVI OR {
dout = select ? dinl : dinO ;

}oo}

}

CELL ny_lssd_flip-flop {
RESTRI CT_CLASS { scan }
CELLTYPE = bl ock;
SCAN _TYPE = | ssd;
PI N cl ock { DI RECTION = input;
PIN master_clock { DI RECTION = input;
PI N sl ave_cl ock { DI RECTION = input;
PI N scan_dat a { DI RECTION = input;
PI' N din { DI RECTION = input;
PI N dout { DI RECTI ON = out put;
PI N scan_mast er { VIEW = physical; }
PI N scan_sl ave { VIEW = physical; }
PI' N d_i nt ernal { VIEW = physical; }

FUNCTI ON { BEHAVI OR {
@ (master_clock) {
scan_data_master = scan_data ;
}
@(slave_clock & ! clock) {
dout = scan_data master ;
} ¢ (01 clock) {

dout = din ;
}ood
STRUCTURE {
my_latch WO {
enabl e = naster_cl ock;
din = scan_dat a;
dout = scan_data_nmaster;
}
my flip-flop Ul {
clock = clock;
d = din;
o} = d_internal;
}
my_mux U2 {
sel ect = slave_cl ock;
di nl = scan_data_nmast er;
di nO = dout;
dout = scan_dat a_sl ave;
}
nmy_mux U3 {
sel ect = cl ock;
dinl = d_internal;
di nO = scan_dat a_sl ave;
dout = dout;

Advanced Library Format (ALF) Reference Manual

e e e o

IEEE P1603 Draft 3

}
}

}

NON_SCAN CELL {
ny flip flop {

cl ock = cl ock;
d = din;
o} = dout;
' b0 = sl ave_cl ock;
}
}
}
Example 3

clock tree = chains of clock buffers

CELL my_root_buffer {
RESTRI CT_CLASS { cl ock }

PINiO
PI'N o0

{ DIRECTION = input; }
{ DIRECTION = output; }

FUNCTI ON { BEHAVIOR { 00 = i0 ; } }

}

CELL my_level 1_buffer {
RESTRI CT_CLASS { cl ock }

PIN il
PIN ol

{ DIRECTION = input; }
{ DIRECTION = output; }

FUNCTION { BEHAVIOR { ol = i1 ; } }

}

CELL my_l evel 2_buffer {

RESTRI
PINi2
PI' N o2
FUNCTI

}

CT_CLASS { clock }

{ DIRECTION = input; }

{ DIRECTION = output; }
ON{ BEHAVIOR { 02 =i2 ; } }

CELL ny_l evel 3_buffer {

RESTRI
PIN i3
PIN 03
FUNCTI

}

CELL ny_tr
RESTRI
PIN in

CT_CLASS { clock }

{ DIRECTION = input; }

{ DI RECTION = output; }
ON{ BEHAVIOR { 03 = i3 ; } }

ee_fromlevel 2 {
CT_CLASS { clock }
{ DIRECTION = input; }

PIN out { DI RECTION = output; }

PIN 1:
FUNCTI

2] level3 { DIRECTION = output; }
ON {

BEHAVIOR { out = in ; }
STRUCTURE {

IEEE P1603 Draft 3

my_level 2 buffer Ul { i2=in; o2=out; }
my_l evel 3_buffer U2 { i3=out; o03=level 3[1];
my_l evel 3_buffer U3 { i3=out; o03=level 3[2];

Advanced Library Format (ALF) Reference Manual

}
}

141

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

CELL nmy_tree fromlevell {
RESTRI CT_CLASS { clock }
PINin { D RECTION = input; }
PIN out { DI RECTION = output; }
PIN[1:4] level2 { DIRECTION = output; }
FUNCTI ON {
BEHAVIOR { out =in; }
STRUCTURE {
ny_levell buffer Ul { il=in; ol=out; }
ny_tree_fromlevel 2 U2 { i2=out; o2=level 2[1];
ny_tree_fromlevel 2 U3 { i2=out; o2=level 2[2];
ny_tree_fromlevel 2 U4 { i2=out; o2=level 2[3];
ny_tree_fromlevel 2 Us { i2=out; o2=level 2[4];

}
}
}
}

}

}
CELL my_tree_fromroot ({

RESTRI CT_CLASS { cl ock }
PINin { D RECTION = input; }
PIN out { DI RECTION = output; }
PIN[1:4] levell { DIRECTION = output; }
FUNCTI ON {

BEHAVIOR { out =in ; }

STRUCTURE {

my_root _buffer UL { i0=

n; oO=out; }

n;
nmy tree fromlevell U2 { il=0; ol=level 1[1]; }
my _tree fromlevell U3 { il=0; ol=level1[2]; }
nmy _tree fromlevell W { il=0; ol=level 1[3]; }
nmy _tree fromlevell U5 { il=0; ol=level 1[4]; }
}
}
}
Example 4

Multiplexor, showing the conceptional difference between BEHAVI OR and STRUCTURE.

CELL ny_rmultipl exor {

PIN a { DIRECTION = input; }
PIN b { DIRECTION = input; }
PINs { DIRECTION = input; }
PINy { DI RECTION = output; }
FUNCTI ON {
BEHAVI OR {
/! s_a and s_b are virtual internal nodes
ALF_AND { out s_a; in[0] =1!s; in[1]

ALF_AND { out
ALF_OR { out

s _b; in[0] = s; in[1] ;
y; in[0] =s_a; in[1l]] = s_b; }

}
STRUCTURE {

/'l sbar, sel_a, sel_b are physical internal nodes
ALF_NOT { out sbar; in =s; }
ALF_NAND { out sel _a; in[0]
ALF_NAND { out sel _b; in[0]

sbar; in[1]
S; in[1]

oo

142 Advanced Library Format (ALF) Reference Manual

—

IEEE P1603 Draft 3

ALF_ NAND { out =vy; in[0] = sel_a; in[1] = sel_b; }

}

9.18.6 VIOLATION statement

A VI OLATI ON statement XXX, as shown in Syntax 114.

violation ::=
VIOLATION { violation_items }
| violation_template_instantiation
violation_items:;=
violation_item { violation_item }
violation_item ::=
MESSAGE_TYPE_single value_annotation
| MESSAGE_single_value_annotation
| behavior

Syntax 114—VIOLATION statement
MOEAHON-contairer

A VI OLATI ON statement can appear within an | LLEGAL statement (see 6.7) and aso within a
TI M NG_CONSTRAI NT or a SAME_PI N_TI M NG_CONSTRAI NT. The VI OLATI ON statement can contain
the BEHAVI OR object (see 11.17), since the behavior in case of timing constraint violation cannot be described
inthe FUNCTI ON. The VI CLATI ON statement can also contain the annotations shown in Table 50.

Table 50—Annotations within VIOLATION

Keyword Valuetype Description
MESSAGE_TYPE string Specifies the type of the message. It can beone of i nf or -
mat i on, war ni ng, orerror.
MESSAGE string Specifies the message itself.
Example
VECTOR (01 d <& 01 cp) {
SETUP {
VI OLATI ON {

MESSACGE_TYPE = error;
MESSAGE = “setup violation 01 d <& 01 cp“;
BEHAVIOR {q = 'bx;}

}

9.18.7 STATETABLE statement

A STATETABLE statement XXX, as shown in Syntax 115.

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 143

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

| unsigned

| unsigned

statetable ::=
STATETABLE [identifier]
{ statetable_header statetable row { statetable row } }
| statetable template instantiation
statetable_header ::=
input_pin_variables . output_pin_variables,
statetable row ::=
statetable_control_values . statetable data values,
statetable_control_values ::=
statetable_control_value { statetable_control_value }
statetable_control_value ::=
bit_literal
| based_literal

| edge value
statetable data values::=
statetable_data value { statetable data value}
statetable_data value::=
bit_literal
| based_literal

|E[!] pin_variable)
[~] pin_variable)

STATETABLE

9.18.7.1 Definition

Syntax 115—STATETABLE statement

The functional description can be supplemented by a STATETABLE, the first row of which contains the argu-
ments that are object I Ds of the declared PI Ns. The arguments appear in two fields, the first is input and the sec-
ond is output. The fields are separated by a: . The rows are separated by a; . The arguments can appear in both
fields if the PI Ns have attribute di r ect i on=out put or di recti on=bot h. If di recti on=out put,
then the argument has latch-type behavior. The argument on the input field is considered previous state and the
argument on the output field is considered the next state. If di r ect i on=bot h, then the argument on the input
field applies for input direction and the argument on the output field applies for output direction of the bidirec-

tional PI N.

Example

CELL ff_sd {

PIN g {D RECTI ON=out put;}
PIN d {D RECTI ON=i nput;}
PI'N cp {DI RECTI ON=i nput ;
SI GNALTYPE=cl| ock;
POLARI TY=ri si ng_edge; }
PI N cd {D RECTI ON=i nput; Sl GNALTYPE=cl ear; POLARI TY=Il ow; }
PI'N sd {DlI RECTI ON=i nput; Sl GNALTYPE=set; POLARI TY=l ow; }

FUNCTI ON {
BEHAVI OR {
} @'cd) {q
STATETABLE {
cd sd cp
o ? ??
1 0 2?

144

= 0;) :(Isd) {q =1} :(01 cp) {q = d;})

d q :qg;
? 0?7 10
? 00?7 1

Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 3

1 1 1? 2 o : 0;
1 1 ?20 ? 1 :1;
1 1 1? 2 o : 0;
1 1 ?20 ? 1 :1;
1 1 o1 2 ? i (d);

}

If the output variable with latch-type behavior depends only on the previous state of itself, as opposed to the pre-
vious state of other output variables with latch-type behavior, it is not necessary to use that output variable in the
input field. This allows a more compact form of the STATETABLE.

Example
STATETABLE {
cdsd cp d : q;
o 2?2 2?2 2?2 :0;
1 0 2?2 ? :1;
1 1 1?7 2?2 :(9);
1 1 20 ? :(Qq);
1 1 01 ? :(d);

}

A generic ALF parser shall make the following semantic checks.

— Areall variables of a FUNCTI ON declared either by declaration as Pl N names or through assignment?
— Doesthe STATETABLE exclusively contain declared Pl Ns?

— Istheformat of the STATETABLE, i.e., the number of elementsin each field of each row, consistent?
— Arethevalues consistently either state or transition digits?

— Isthe number of digitsin each TABLE entry compatible with the signal bus width?

A more sophisticated checker for complete verification of logical consistency of a FUNCTI ON given in both
equation and tabular representation is out of scope for a generic ALF parser, which checks only syntax and com-
pliance to semantic rules. However, formal verification algorithms can be implemented in specia-purpose ALF
analyzers or model generators/compilers.

9.18.7.2 ROM initialization

The STATETABLE statement can be used to describe the contents of a ROM, asfar as this content isfixed in the
library.

Example

CELL nmy_rom{
CELLTYPE = nenory;,
ATTRI BUTE { rom asynchronous }
PIN 1: 2] addr { DIRECTION = input; SICGNALTYPE = address; }
PI N[3: 0] dout { DI RECTION = output; SICGNALTYPE = data; }
PIN 3:0] nenil:4] { DI RECTI ON=none; VIEWENnone; SICGNALTYPE=data; }
FUNCTI ON {
BEHAVI OR { dout = nmenjaddr]; }
STATETABLE {
addr : nmem;

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 145

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

‘h0 : “hb ;
‘hl : “hA;
‘h2 : “hb ;
‘h3 : “hA;

}

For flexibility, a separate included file can be used:

CELL mny_rom {
CELLTYPE = nenory;
ATTRI BUTE { rom asynchronous }

PIN 1:2] addr { DI RECTION = input; SIGNALTYPE = address; }
PIN[3: 0] dout { DI RECTION = output; SIGNALTYPE = data; }
PIN[3:0] meni1:4] { DI RECTI ON=none; VI EWtnone; SICGNALTYPE=data; }

FUNCTI ON {
BEHAVI OR { dout = nenfaddr]; }
I NCLUDE “rom.initialization_file.alf”

}

}

The contents of theincluded filerom initialization file.alf are

STATETABLE {
addr : nmem;

‘“hO : ‘hb5 ;
“hl : ‘hA;
‘“h2 : *‘hb5 ;
“h3 : ‘hA;

}

9.18.8 PRIMITIVE statement

A PRIMITIVE statement XXX, as shown in Syntax 116.

primitive ::=
PRIMITIVE primitive_identifier { primitive_items }
|PRIMITIVE primitive_identifier ;
| primitive_template instantiation
primitive_items::=
primitive_item { primitive_item}
primitive_item ::=
all_purpose_item
| pin
| pin_group
| function
| test

Syntax 116—PRIMITIVE statement

" on defines ! : . i _

146 Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 3

9.18.8.1 Usage of PRIMITIVEs

A PRI M TI VE referenced in a CELL can replace the complete set of PI N and FUNCTI ON definition. Pl Ns can
be declared before the reference to the PRI M Tl VE, in order to provide supplementary annotations that cannot
be inherited from the PRI M Tl VE. However, the CELL shall be pin-compatible with the PRI M TI VE.

If the PRI M TI VE or a CELL is referenced in an annotation container such as SCAN, only the subset of PI Ns
used in the non-scan cell shall be compatible with the PI Ns of the cell.

The pin names can be referenced by order or by name. In the latter case, the LHS is the pin name of the refer-
enced PRI M TI VE or CELL (e.g., the non-scan cell), the RHS is the pin name of the actual cell. A constant
logic value can also appear at the LHS or RHS, indicating a pin needs to be tied to a constant value. If thisinfor-
mation is aready specified in an annotation inside the Pl N object itself, referencing between a pin name and a
constant value is not necessary.

PRI M TI VEs can also be instantiated inside BEHAVI OR.
9.18.8.2 Concept of user-defined and predefined primitives

Primitives are described in ALF syntax. Primitives are generic cells containing PI N and FUNCTION objects
only, i.e., no characterization data. The primitives are used for structural functional modeling.

Example

PRIM TI VE MY_PRI M TI VE {
PINx { ... }
PINy { ... }
PINz { ...}
FUNCTION { ... }

}

CELL My_CELL {
PINa{ ... }
PINb { ... }
PINc { ... }
FUNCTI ON {

BEHAVIOR { MY_PRIMTIVE { x=a; y=b; z=c; } }

}

\

Extensible primitives, i.e., primitives with variable number of pins can be modeled using a TEMPLATE.
Example

TEMPLATE EXTENSI BLE_PRI M TI VE{
PRIM TIVE <primtive_nane> {
PIN [0: <max_i ndex>] pin_name { ... }

}
}

/1l instantiation of the tenplate creates a prinitive
EXTENSI BLE_PRI M TI VE {
primtive_name = MY_EXTENSI BLE_PRI M Tl VE;

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 147

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

max_i ndex = 2;

}

The set of statements above is equivalent to the following statement:

PRI M TI VE MY_EXTENSI BLE_PRI M TI VE {
PIN[0:2] pin_name { ... }

}
The primitive can be used as shown in the following example:

CELL MY_MEGACELL {

PINa{ ...}
PINb { ... }
PINc { ... }
FUNCTI ON {
BEHAVI OR {

/1 reference to the primtive
MY_EXTENSI BLE_PRI M Tl VE {

pi n_name[0] = a;
pi n_name[1] = b;
pi n_name[2] = c;

}

Primitives can be freely defined by the user. For convenience, ALF provides a set of predefined primitives with

the reserved prefix ALF_ in their name, which cannot be used by user-defined primitives.

For al PI Ns of predefined primitives, the following annotations are defined by defaullt:

VI EW = functional ;
SCOPE = behavi oral ;

For predefined extensible primitives, a placeholder can be directly in the PRI M TI VE definition:

PRI M Tl VE ALF_EXTENSI BLE_PRI M Tl VE {
PIN [0: <max_i ndex>] pin_name { ... }

}
Thisis equivalent to the following more verbose set of statements:

TEMPLATE EXTENSI BLE_PRI M TI VE{

PRIM TIVE <primtive_nane> {

PIN [0: <max_i ndex>] pin_name { ... }

}
}
EXTENSI BLE_PRI M TI VE {

primtive_name = ALF_EXTENSI BLE_PRI M Tl VE;

148 Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 3

max_i ndex = <max_i ndex>;

}

9.18.8.3 Predefined combinational primitives

This section defines the use of predefined combinational primitives.

9.18.8.3.1 One input, multiple output primitives

There are two combinational primitives with one input pin and multiple output pins:
ALF_BUF and ALF_NOT

A GROUP statement is used to define the behavior of al output pinsin one statement.

The output pins are indexed starting with 0. If O isthe only index used, the index can be omitted when referenc-

ing the output pin, e.g., out referstoout [0] .
Example — Primitive model of ALF_BUF

PRI M TI VE ALF_BUF {
GROUP i ndex {0: <max_i ndex>}
PI N[0: <max_i ndex>] out {
DI RECTI ON = out put ;
}
PINin {
DI RECTI ON = input ;
}
FUNCTI ON {
BEHAVI CR {
out[index] = in;

}
}

Example — Primitive model of ALF_NOT

PRI M Tl VE ALF_NOT {
GROUP i ndex {0: <max_i ndex>}
PI N[0: <max_i ndex>] out {
DI RECTI ON = out put ;
}
PINin {
DI RECTI ON = i nput ;
}
FUNCTI ON {
BEHAVI OR {
out[index] = "!in;

}

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual

149

10

15

20

25

30

35

40

45

50

55

9.18.8.3.2 One output, multiple input primitives
There are six combinational primitives with one output pin and multiple input pins:
ALF_AND, ALF_NAND, ALF_OR, ALF_NOR, ALF_XOR, and ALF_XNOR

Theinput pins areindexed starting with 0. If 0 isthe only index used, theindex can be omitted when referencing

10

15

20

25

30

35

40

50

55

theinput pin, eg.,i nreferstoi n[0] .
Example — Primitive model of ALF_AND

PRI M Tl VE ALF_AND {
PI N out {
DI RECTI ON = out put ;
}
PI N[0: <max_i ndex>] in {
DI RECTI ON = i nput ;

}
FUNCTI ON {
BEHAVI OR {
out = & in;
}
}

}

Example — Primitive model of ALF_NAND

PRI M Tl VE ALF_NAND {
PI N out {
DI RECTI ON = out put;
}
PI N[0: <max_i ndex>] in {
DI RECTI ON = i nput;

}
FUNCTI ON {
BEHAVI OR {
out = ~& in;
}
}

}

Example — Primitive model of ALF_OR

PRIM Tl VE ALF_OR {
PI' N out {
DI RECTI ON = out put;
}
PI N 0: <max_i ndex>] in {
DI RECTI ON = i nput;

}
FUNCTI ON {
BEHAVI OR {
out =1 in;
}

150 Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 3

}

Example — Primitive model of ALF_NOR

PRI M TI VE ALF_NOR {
PI N out {
DI RECTI ON = out put ;
}

PI N[O: <max_i ndex>] in {
DI RECTI ON = i nput;

}
FUNCTI ON {
BEHAVI OR {
out = ~| in;
}
}

}

Example — Primitive model of ALF_XOR

PRI M Tl VE ALF_XOR {
PI N out {
DI RECTI ON = out put ;
}
PI N[0: <max_i ndex>] in {
DI RECTI ON = i nput ;

}
FUNCTI ON {
BEHAVI OR {
out = “in;
}
}

}

Example — Primitive model of ALF_XNOR

PRI M Tl VE ALF_XNCR {
PI' N out {
DI RECTI ON = out put;
}
PI N 0: <max_i ndex>] in {
DI RECTI ON = i nput;

}
FUNCTI ON {
BEHAVI OR {
out = ~"in;
}
}

}

9.18.8.4 Predefined tristate primitives

There are four tristate primitives:

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual

151

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

ALF_BUFI F1, ALF_BUFI FO, ALF_NOTI F1, and ALF_NOTI FO
Example — Primitive model of ALF_BUFIF1

PRI M Tl VE ALF_BUFI F1 {
PI N out {
DI RECTI ON out put ;
ENABLE _PI N = enabl €;
ATTRI BUTE { TRI STATE}

}
PINin {
DI RECTI ON = i nput;
}
PI N enabl e {
DI RECTI ON = i nput;
SI GNALTYPE = out _enabl e;
}
FUNCTI ON {
BEHAVI OR {
out = (enable)? in : 'bz
}
STATETABLE {
enable in : out;
0 ? 1 Z
1 ? (in);
}
}

}

Example — Primitive model of ALF_BUFIFO

PRI M Tl VE ALF_BUFI FO {
PI N out {
DI RECTI ON out put;
ENABLE PIN = enabl e;
ATTRI BUTE { TRI STATE}

}
PINin {
DI RECTION = input;
}
PI'N enabl e {
DI RECTION = input;
SI GNALTYPE = out _enabl e;
}
FUNCTI ON {
BEHAVI OR {
out = (lenable)? in : 'bz
}

STATETABLE {
enable in : out;
1 ? 1 Z
0 ? 1 (in);

152 Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 3

}

Example — Primitive model of ALF_NOTIF1

PRI M Tl VE ALF_NOTI F1 {
PI N out {
DI RECTI ON = out put;
ENABLE PIN = enabl e;
ATTRI BUTE { TRI STATE}

}
PINin {
DI RECTION = input;
}
PI' N enabl e {
DI RECTI ON = i nput;
SI GNALTYPE = out _enabl e;
}
FUNCTI ON {
BEHAVI OR {
out = (enable)? lin
}
STATETABLE {
enable in : out;
0 ? 1 Z
1 ?2 : (tin);
}
}

}

Example — Primitive model of ALF_NOTIFO

PRI M Tl VE ALF_NOTI FO {
PI N out {
DI RECTI ON = out put;
ENABLE PIN = enabl e;
ATTRI BUTE { TRI STATE}

}
PINin {
DI RECTION = input;
}
PI'N enabl e {
DI RECTION = input;
SI GNALTYPE = out _enabl e;
}
FUNCTI ON {
BEHAVI OR {

out = (lenable)? !in

}
STATETABLE {

enable in : out;
1 ? . Z
0 ? . (lin);

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual

'bz;

'bz;

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

}

9.18.8.5 Predefined multiplexor

The predefined multiplexor has a known output value if either the select signal and the selected data inputs are
known or both data inputs have the same known value while the select signal is unknown.

Example — Primitive model of ALF_MUX

PRIM TI VE ALF_MJIX {

}

PINQ {
DIRECTION =
SI GNALTYPE =
}
PIN1:0] D {
DI RECTION =
SI GNALTYPE =
}
PINS {
DI RECTION =
SI GNALTYPE =
}
FUNCTI ON {
BEHAVI OR {
Q= (sl
}
STATETABLE {
D o] DO 1]
? ?
? ?
0 0
1 1
}
}

9.18.8.6 Predefined flip-flop

out put ;
dat a;

i nput;
dat a;

i nput;
sel ect;

(d[0] ~* d[1]))? d[1] : d[O];

NN =N ?))

P OoO—~—,0
997
22

A dua-rail output D-flip-flop with asynchronous set and clear pinsis a generic edge-sensitive sequential device.
Simpler flip-flops can be modeled using this primitive by setting input pins to appropriate constant values. More
complex flip-flops can be modeled by adding combinational logic around the primitive.

A particularity of thismodel isthe use of the last two pins Q_CONFLI CT and QN_CONFLI CT, which are virtual
pins. They specify the state of Qand QN in the event CLEAR and SET become active simultaneously.

Example — Primitive model of ALF_FLIPFLOP

PRI M TI VE ALF_FLI PFLOP {

154

PIN Q {
DIRECTION =
SI GNALTYPE =
POLARI TY =

}

out put ;
dat a;
non_i nvert ed;

Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

PINON

DI RECTI ON = out put;
SI GNALTYPE = dat a;
POLARI TY = inverted;
}
PIN D {
DI RECTION = i nput;
SI GNALTYPE = dat a;
}
PI N CLOCK {
DI RECTI ON = i nput;
SI GNALTYPE = cl ock
POLARI TY = rising_edge;
}
PI N CLEAR {
DI RECTI ON = i nput;
SI GNALTYPE = cl ear;
POLARI TY = high;
ACTI ON = asynchr onous;
}
PIN SET {
DI RECTI ON = i nput;
SI GNALTYPE = set;
POLARI TY = high;
ACTI ON = asynchr onous;
}
PIN Q CONFLICT {
DI RECTION = input;
VI EW = none;
}
PIN QN_CONFLI CT {
DI RECTION = input;
VI EW = none;
}
FUNCTI ON {
ALI AS QX = Q_CONFLI CT;
ALI AS QNX = QN_CONFLI CT;
BEHAVI OR {
@ (CLEAR && SET) {
Q = QX
} QN = QNX;
. (CLEAR) {
Q =0
N = 1
}
. (SET) {
Q =1
N = 0;
}
: (01 CLOCK)
Q =D
N = !D;
}

IEEE P1603 Draft 3

Advanced Library Format (ALF) Reference Manual

{ /1 edge-sensitive behavior

155

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

}
STATETABLE {

D CLOCK CL
??
??
??
1?
?0
01

-~

NN N N N
QOO PFrOoOr

}

9.18.8.7 Predefined latch

EAR SET QX QX : Q N ;
1?2 2?2 @ (Q (AK);
1 2 ? o1 0 ;
o 2 ? .0 1 ;
o ? ? 1 (Q (AN ;
o ? 2?2 1 (Q (AN ;
0 ? ? (D (!'D ;

The dual-rail D-latch with set and clear pins has the same functionality as the flip-flop, except the level-sensitive
clock (ENABLE pin) is used instead of the edge-sensitive clock.

Example — Primitive model of AL
PRI M TI VE ALF_LATCH
PIN Q {
DI RECTION =
S| GNALTYPE =
POLARITY =
}
PIN QN {
DI RECTION =
S| GNALTYPE =
POLARITY =
}
PIN D {
DI RECTION =
S| GNALTYPE =
}
PI' N ENABLE {
DI RECTION =
S| GNALTYPE =
POLARITY =
}
PI'N CLEAR {
DI RECTION =
S| GNALTYPE =
POLARITY =
ACTI ON =
}
PIN SET {
DI RECTION =
S| GNALTYPE =
POLARITY =
ACTI ON =
}
PI'N Q CONFLI CT
DI RECTI ON = i

156

F_LATCH

{

out put ;
dat a;
non_i nvert ed;

out put ;
dat a;
inverted;

i nput ;
dat a;

i nput ;
cl ock;
hi gh;

i nput ;

cl ear;

hi gh;
asynchronous;

i nput ;

set;

hi gh;
asynchronous;

{
nput ;

Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 3

VI EW

}

= none;

PIN QN_CONFLI CT {
DI RECTI ON = i nput;

VI EW

}

FUNCTI ON {
ALl AS QX
ALI AS QNX = QN_CONFLI CT;
BEHAVI OR {

@ (CLEAR && SET) {
= QX

AN = QNX

(CLEAR) {

:

P’

P

}
}

—~

Q

9:0

I
—
I n~~

= none;

= Q CONFLI CT;

0;
1,

NABL

m

) { /'l level-sensitive behavi or

_£3

STATETABLE {

D

NN N N N

IEEE P1603 Draft 3

?

P O YN

ENABLE CLEAR SET QX QNX :

=

?

"
?
s
s

OOkFr O
[cNeNeN
ESRESEESEENEEN]

Advanced Library Format (ALF) Reference Manual

157

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

158

Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 3

10. Constructs for modeling of digital behavior

** Add lead-in text**

10.1 Variable declarations

Inside a CELL object, the Pl N objects with the PI NTYPE di gi t al define variables for FUNCTI ON objects
inside the same CELL. A primary input variable inside a FUNCTI ON shall be declared as a PI N with DI REC-

Tl ONEi nput or bot h (since DI RECTI ON=bot h is a bidirectional pin). However, it is not required that all
declared pins are used in the function. Output variablesinside a FUNCTI ON need not be declared pins, since they
are implicitly declared when they appear at the left-hand side (LHS) of an assignment.

Example

CELL ny_cel |l {
PIN A {Dl RECTI ON
PIN B { Dl RECTI ON
PIN C {Dl RECTI ON
FUNCTI ON {
BEHAVI OR {
D = A && B;
C=1D

i nput;}
i nput; }
out put ; }

}

C and Dare output variables that need not be declared prior to use. After implicit declaration, D
isreused as an input variable. A and B are primary input variables.

10.2 Boolean value system

this paragraph needs to move into another section

A bit literal shall represent a single bit constant, as shown in Table 51.

Table 51—Single bit constants

Literal Description
0 Valueislogic zero.
1 Valueislogic one.
Xorx Valueis unknown.
Lorl Valueislogic zero with wesk drive strength.
Horh Valueislogic one with weak drive strength.
Wor w Value is unknown with weak drive strength.
Zorz Value is high-impedance.
Uoru Valueis uninitialized.

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 159

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

Table 51—Single bit constants (Continued)

Literal Description
? Valueisany of the above, yet stable.
* Value can randomly change.

The following symbols within an octal based literal shall represent numerical values, which can be mapped into
equivaent symbols within a binary based literal, as shownin .

Table 52—Mapping between octal base and binary base

Octal Binary (bit literal) Numerical value

000
001
010
011
100
101
110
11

N O O~ W DN PO
N~N|lo ||~ w| NP]|O

The following symbols within a hexadecimal based literal shall represent numerical values, which can be
mapped into equivalent symbols within an octal based literal and abinary based literal, as shownin .

Table 53—Mapping between hexadecimal base, octal base, and binary base

Hexadecimal Octal Binary (bit literal) Numerical value
0 00 0000 0
1 01 0001 1
2 02 0010 2
3 03 0011 3
4 04 0100 4
5 05 0101 5
6 06 0110 6
7 07 0111 7
8 10 1000 8
9 11 1001 9

160 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

Table 53—Mapping between hexadecimal base, octal base, and binary base (Continued)

Hexadecimal Octal Binary (bit literal) Numerical value
aorA 12 1010 10
borB 13 1011 1
corC 14 1100 12
do D 15 1101 13
eorE 16 1110 14
forF 17 1111 15

Based literals involving symbolic bit literals shall not be used to represent numerical values. They shall be
mapped from one base into another base according to the following rules:

a) A symbolic bit literal in a hexadecimal based literal shall be mapped into two subsequent occurences of
the same symbolic bit literal in an octal based literal.

b) A symbolic bit literal in an octal based literal shall be mapped into three subsequent occurences of the
same symbolic bit literal in a binary based literal.

¢) A symbolic bit literal in an hexadecimal based literal shall be mapped into four subsequent occurences of
the same symbolic bit literal in abinary based literal.

Example

' 02xwOu isequivalent to' b010_xxx_ww_000_uuu
"hLux isequivalent to' bLLLL_uuuu_xxxx

10.3 Combinational functions
This section defines the different types of combinational functionsin ALF.
10.3.1 Combinational logic
Combinational logic can be described by continuous assignments of boolean values (True or False) to output
variables as a function of boolean values of input variables. Such functions can be expressed in either boolean
expression format or statetable format.
Let us consider an arbitrary continuous assignment
z =f(ag ..,.. ap)
In adynamic or simulation context, the left-hand side (LHS) variable zis evaluated whenever there isachangein

one of the right-hand side (RHS) variables ai. No storage of previous states is needed for dynamic simulation of
combinational logic.

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 161

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

10.3.2 Boolean operators on scalars

Table 54, Table 55, and Table 56 list unary, binary, and ternary boolean operators on scalars.

Table 54—Unary boolean operators

Operator Description

I~ Logical inversion.

Table 55—Binary boolean operators

Operator Description
&&, & Logical AND.
1] | Logical OR.
~N Logic equivalence (XNOR).
N Logic anti valence (XOR).

Table 56—Ternary operator

Operator Description

? Boolean condition operator for construction of combinational

if-then-else clause.

Boolean else operator for construction of combinational if-
then-else clause.

Combinational if-then-else clauses are constructed as follows:

<condl>? <val uel>:. <cond2>? <val ue2>: <cond3>? <val ue3>: <default_val ue>
If cond1 evaluates to boolean True, then val uel isthe result; else if cond2 evaluates to boolean True, then
val ue2 is the result; else if cond3 evaluates to boolean True, then val ue3 is the result; else
def aul t _val ue istheresult of this clause.

10.3.3 Boolean operators on words

Table 57 and Table 58 list unary and binary reduction operators on words (logic variables with one or more bits).
The result of an expression using these operators shall be alogic value.

Table 57—Unary reduction operators

Operator Description

& AND al bits.

162 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

Table 57—Unary reduction operators (Continued)

Operator Description
~& NAND all bits.
| ORall hits.
~ NCR all bits.
N XOR dl bits.
~N XNOR all hits.

Table 58—Binary reduction operators

Operator Description

== Equality for case comparison.

I= Non-equality for case comparison.

Greater.

Smaller.
>= Greater or equal.
<= Smaller or equal.

Table 59 and Table 60 list unary and binary bitwise operators. The result of an expression using these operators
shall be an array of bits.

Table 59—Unary bitwise operators

Oper ator Description

~ Bitwise inversion.

Table 60—Binary bitwise operators

Operator Description
& Bitwise AND.
| Bitwise OR.
A Bitwise XOR.
b Bitwise XNOR.

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 163

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

The following arithmetic operators, listed in Table 61, are also defined for boolean operations on words. The
result of an expression using these operators shall be an extended array of bits.

Table 61—Binary operators

Operator Description
<< Shift left.
>> Shift right.
+ Addition.
- Subtraction.
* Multiplication.
/ Division.
% Modulo division.

The arithmetic operations addition, subtraction, multiplication, and division shall be unsigned if all the operands
have the datatype unsigned. If any of the operands have the datatype signed, the operation shall be signed. See
Table 6-25 for the DATATYPE definitions.

10.3.4 Operator priorities

The priority of binding operators to operands in boolean expressions shall be from strongest to weakest in the
following order:

a)
b)
0)
d)
e

unary boolean operator (! , ~, & ~& | ,~| , ", ~")

XNOR (=), XOR (M), relational (>, <, >=, <=, ==, | =), shift (<<, >>)
AND (&, &&), NAND (~&), multiply (*), divide (/), modulus (%
OR(],]|), NOR(~|), add (+), subtract (-)

ternary operators (?, :)

10.3.5 Datatype mapping

Logical operations can be applied to scalars and words. For that purpose, the values of the operands are reduced
to asystem of three logic valuesin the following way:

164

Hhasthelogic value 1

L hasthelogic value 0

WZ, Uhavethelogic value X

A word hasthelogic value 1, if the unary OR reduction of all bitsresultsin 1
A word hasthelogic value 0, if the unary OR reduction of all bitsresultsin O
A word hasthelogic value X, if the unary OR reduction of all bitsresultsin X

Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

Case comparison operations can also be applied to scalars and words. For scalars, they are defined in Table 62.

Table 62—Case comparison operators

10

15

20

25

30

35

40

45

50

A<B

A>B

Al=

A==B

0

0

0

0

0

X

Z,

Wy

X

Z,

Wy

X

Z,

Wy

X

Z,

Wy

L,

H,

55

Advanced Library Format (ALF) Reference Manual 165

IEEE P1603 Draft 3

10

15

20

25

30

35

40

50

55

Table 62—Case comparison operators (Continued)

A B A==B Al=B A>B A<B
U 0, 1, H L, X X X X
X, W Z U

For word operands, the operations > and < are performed after reducing all bits to the 3-value system first and
then interpreting the resulting number according to the datatype of the operands. For example, if datatype is
signed,' b1111 issmaller than' b000O; if datatypeisunsigned, ' b1111 isgreater than' b000O. If two oper-
ands have the same value ' b1111 and a different datatype, the unsigned ' b1111 is greater than the signed
"b1111.

The operations >= and <= are defined in the following way:

(a >=Db) === (a >b) || (a==Dh)
(a <=Db) === (a <b) [| (a==0Dh)

10.3.6 Rules for combinational functions

If a boolean expression evaluates True, the assigned output value is 1. If a boolean expression evaluates False,
the assigned output value is 0. If the value of a boolean expression cannot be determined, the assigned output
value is X. Assignment of values other than 1, 0, or X needs to be specified explicitly.

For evaluation of the boolean expression, input value ' bH shall be treated as' b1. Input value ' bL shall be
treated as' b0. All other input values shall be treated as' bX.

Examples
In equation form, these rules can be expressed as follows.

BEHAVI OR {
Z = A
}

isequivalent to

BEHAVI OR {
Z=A?"bl: ’bo;
}

More explicitly, thisis also equivalent to

BEHAVI OR {
Z = (A=="bl || A== bH)? "bl : (A=="Db0 || A=="bL)? 'b0 : ’bX;
}

In table form, this can be expressed as follows:
STATETABLE {

A : Z;
? (A);

166 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

which isequivaent to

STATETABLE {

A : Z;
0 : 0;
1 1;

}

More explicitly, thisisalso equivalent to

STATETABLE ({

XXXXPEROON

CNEXII—‘I_O:D

}

10.3.7 Concurrency in combinational functions

Multiple boolean assignmentsin combinational functions are understood to be concurrent. The order in the func-
tional description does not matter, as each boolean assignment describes a piece of alogic circuit. Thisisillus-

trated in Figure 26.

BEHAVI OR {
QL

n
| -
1st bool ean expression Q
C)
® > :
nth bool ean expression (@)
C)

D1 Di

<1st _bool ean_expression(D1..Di)> ;

<nt h_bool ean_expression(Dl1..Di)> ;

Figure 26—Concurrency for combinational logic

10.4 Sequential functions

This section defines the different types of sequentia functionsin ALF.

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual

167

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

10.4.1 Level-sensitive sequential logic

In sequential logic, an output variable zj can also be a function of itself, i.e., of its previous state. The sequential
assignment has the form

zp =f(ag ..,.. ag, Z3 ..,.. Zp
The RHS cannot be evaluated continuously, since a change in the LHS as aresult of a RHS evaluation shall trig-
ger anew RHS evaluation repeatedly, unless the variables attain stable values. Modeling capabilities of sequen-

tial logic with continuous assignments are restricted to systems with oscillating or self-stabilizing behavior.

However, using the concept of triggering conditions for the LHS enables everything which is necessary for mod-
eling level-sensitive sequential logic. The expression of atriggered assignment can look like this:

@g(by ..,.. by z; =f(ay ..,.. ay, zy ..,.. Zp
The evaluation of f is activated whenever the triggering function g is True. The evaluation of g is self-triggered,
i.e. at each time when an argument of g changes its value. If g is a boolean expression like f, we can model all

types of |evel-sensitive sequential logic.

During the time when g is True, the logic cell behaves exactly like combinational logic. During the time when g
isFalse, thelogic cell holdsits value. Hence, one memory element per state bit is needed.

10.4.2 Edge-sensitive sequential logic

In order to model edge-sensitive sequential logic, notations for logical transitions and logical states are needed.
If the triggering function g is sensitive to logical transitions rather than to logical states, the function g evaluates
to True only for aninfinitely small time, exactly at the moment when the transition happens. The sole purpose of
g isto trigger an assignment to the output variable through evaluation of the function f exactly at thistime.
Edge-sensitive logic requires storage of the previous output state and the input state (to detect a transition). In
fact, all implementations of edge-triggered flip-flops require at least two storage elements. For instance, the most
popul ar flip-flop architecture features a master latch driving a slave latch.

Using transitions in the triggering function for value assignment, the functionality of a positive edge triggered
flip-flop can be described asfollowsin ALF:

@(01 CP) {Q=D}
which reads “at rising edge of CP, assign Qthe value of D".

If the flip-flop aso has an asynchronous direct clear pin (CD), the functional description consists of either two
concurrent statements or two statements ordered by priority, as shown in Figure 27.

/1l concurrent style

@(!'CO {Q = 0;}
@ (01 CP && CD) {Q =D}

[l priority (if-then-else) style
@(!c {Q=20} : (01 CP) {Q=D}

168 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

Figure 27—Model of a flip-flop with asynchronous clear in ALF

The following two examples show corresponding simulation modelsin Verilog and VHDL.

/] full simulation nodel

al ways @ negedge CD or posedge CP) begin
if (! CD) Q<= 0;
else if (CP && !CP_last_value) Q <= D
el se Q <= 1’ bx;
end
al ways @ (posedge CP or negedge CP) begin
if (CP===0 | CP===1"bx) CP_last_value <= CP ;
end

/1 sinplified sinulation nodel for synthesis

al ways @ negedge CD or posedge CP) begin
if (! CD) Q<= 0;
else Q <= D

end

Figure 28—Model of a flip-flop with asynchronous clear in Verilog

[/ full simulation nodel

process (CP, CD) begin
if (CD="0") then

Q<="'0";

elsif (CPPlast _value ="'0'" and CP = '1" and CP event) then
Q <= b

elsif (CPPlast _value ='0'" and CP = 'X and CP event) then
Q<="'X;

elsif (CPPlast_value = 'X and CP = '1" and CP event) then
Q<="X;

end if;

end process;
[l sinplified sinmulation nodel for synthesis

process (CP, CD) begin
if (CD="'0") then

Q<="0";

elsif (CP ="1 and CP event) then
Q<=D

end if;

end process;

Figure 29—Model of a flip-flop with asynchronous clear in VHDL

The following differences in modeling style can be noticed: VHDL and Verilog provide the list of sensitive sig-
nals at the beginning of the pr ocess or al ways block, respectively. The information of level-or edge-sensitiv-

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual

169

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

ity shall beinferred by i f -t hen-el se statements inside the block. ALF shows the level-or-edge sensitivity as
well as the priority directly in the triggering expression. Verilog has another particularity: The sensitivity list
indicates whether at least one of the triggering signals is edge-sensitive by the use of negedge or posedge.
However, it does not indicate which one, since either none or all signals shall have negedge or posedge qual-
ifiers.

Furthermore, posedge isany transition with O asinitia state or 1 asfinal state. A positive-edge triggered flip-
flop shall beinferred for synthesis, yet this flip-flop shall only work correctly if both the initial stateis 0 and the
final state is 1. Therefore, a simulation model for verification needs to be more complex than the model in the
synthesizeable RTL code.

In Verilog, the extra non-synthesi zeable code needs to al so reproduce the relevant previous state of the clock sig-
nal, whereas VHDL has built-in support for | ast _val ue of asignal.

10.4.3 Unary operators for vector expressions

A transition operation is defined using unary operators on a scalar net. The scalar constants (see 6.7) shall be
used to indicate the start and end states of atransition on a scalar net.

bit bit Il apply transition from bit value to bit value
For example,
olisatransitionfromo to 1.

No whitespace shall be allowed between the two scalar constants. The transition operators shown in Table 63
shall be considered legal.

Table 63—Unary vector operators on bits

Operator Description

01 Signal togglesfrom 0 to 1.

10 Signal toggles from 1 to 0.

00 signal remains 0.

1 Signal remains 1.

0? Signal remains 0 or toggles from O to arbitrary value.

1? Signal remains 1 or toggles from 1 to arbitrary value.

?0 Signal remains 0 or toggles from arbitrary valueto 0.

?1 Signal remains 1 or toggles from arbitrary valueto 1.

7 Signal remains constant or toggles between arbitrary values.

o* A number of arbitrary signal transitions, including possibility of constant
value, with theinitial value 0.

1* A number of arbitrary signal transitions, including possibility of constant
value, with theinitial value 1.

> A number of arbitrary signal transitions, including possibility of constant
value, with arbitrary initial value.

170 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

Table 63—Unary vector operators on bits (Continued)

Operator Description

*0 A number of arbitrary signal transitions, including possibility of constant
value, with the final value 0.

*1 A number of arbitrary signal transitions, including possibility of constant
value, with thefinal value 1.

*7 A number of arbitrary signal transitions, including possibility of constant
value, with arbitrary fina value.

Unary operators for transitions can also appear in the STATETABLE.
Transition operators are also defined on words (and can appear the in STATETABLE as well):
' base word ' base word
In this context, the transition operator shall apply transition from first word value to second word value.
For example,
'hA'h5 is atransition of a4-bit signal from 'b1010 to 'b0101.
No whitespace shall be allowed between base and word.

The unary and binary operatorsfor transition, listed in Table 64 and Table 65 respectively, are defined on bits and
words.

Table 64—Unary vector operators on bits or words

Operator Description
?- No transition occurs.
? Apply arbitrary transition, including possibility of constant value.
?! Apply arbitrary transition, excluding possibility of constant value.
?~ Apply arbitrary transition with all bits toggling.

10.4.4 Basic rules for sequential functions

A sequentia function is described in equation form by a boolean assignment with a condition specified by a
boolean expression or a vector expression. If the condition evaluatesto 1 (True), the boolean assignment is acti-
vated and the assigned output values follows the rules for combinational functions. If the vector expression eval-
uatesto 0 (False), the output variables hold their assigned value from the previous eval uation.

For evaluation of a condition, thevalue' bH shall be treated as True, the value' bL shall be treated as False. All
other values shall be treated as the unknown value' bX.

Example

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 171

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

The following behavior statement

BEHAVI OR {
@(E) {Zz=A}
}

isequivalent to
BEHAVI OR {
@(E=="bl || E=="bH) {Z = A}
}

The following statetabl e statement, describing the same logic function

STATETABLE ({

E A : Z,
0 ? : (2);
1 ? : (A);

}
isequivalent to

STATETABLE {

E A : Z;
0o 2?2 = (D;
L 2 (2);
1 ? A ;
(A);
H ? (A);

}

For edge-sensitive and higher-order event sensitive functions, transitions from or to ' bL shall be treated like
transitions fromor to' b0, and transitionsfrom or to ' bH shall be treated like transitionsfromor to' b1l.

Not every transition can trigger the evaluation of a function. The set of vectors triggering the evaluation of a
function are called active vectors. From the set of active vectors, a set of inactive vectors can be derived, which
shall clearly not trigger the evaluation of afunction. There areis also a set of ambiguous vectors, which can trig-
ger the evaluation of the function.

The set of active vectors is the set of vectors for which both observed states before and after the transition are
known to be logically equivalent to the corresponding states defined in the vector expression.

The set of inactive vectors is the set of vectors for which at least one of the observed states before or after the
transition is known to be not logically equivalent to the corresponding states defined in the vector expression.

Example
For the following sequential function
@(o1cp) { Z=A }
the active vectors are
(' b0’ bl CP)

(' b0' bH CP)

172 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

(' bL' bl CP)
(' bL' bH CP)

and the inactive vectors are

' b1’ b0 CP)
'b1’ bL CP)
' b1’ bX CP)
' b1’ bW CP)
' b1’ bZ CP)
' bH b0 CP)
' bH bL CP)
' bH bX CP)
' bH bW CP)
(" bH bz CP)
(" bX b0 CP)
(" bX bL CP)
(" bWbO CP)
(" bWbL CP)
(" bZ' b0 CP)
(" bZ bL CP)
(" bU b0 CP)
(" bU bL CP)

AN AN AN AN AN AN AN S

and the ambiguous vectors are

(" b0’ bX CP)
(’ b0’ bW CP)
(" b0’ bZ CP)
(" bL’ bX CP)
(" bL’ bW CP)
(" bL’ bZ CP)
(" bX' bl CP)
(' bW bl CP)
(" bZ bl CP)
(" bX' bH CP)
(" bW bH CP)
(" bZ' bH CP)
(" bX' bW CP)
(" bX' bZ CP)
(" bW bX CP)
(" bW bZ CP)
(" bZ' bX CP)
(" bZ' bW CP)
(" bU bX CP)
(" bU bw CP)
(" bU bz CP)

For vectors using exclusively based literals, the set of active vectorsisthe vector itself, the set of inactive vectors

10

15

20

25

30

35

40

45

50

isany vector with at least one different literal, and the set of ambiguous vectorsis empty.

Therefore, ALF does not provide a default behavior for ambiguous vectors, since the behavior for each vector
can be explicitly defined in vectors using based literals.

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 173

10

15

20

25

30

35

40

50

55

10.4.5 Concurrency in sequential functions

The principle of concurrency applies also for edge-sensitive sequentia functions, where the triggering condition
is described by avector expression rather than a boolean expression. In edge-sensitive logic, the target logic vari-
able for the boolean assignment (LHS) can also be an operand of the boolean expression defining the assigned
value (RHS). Concurrency implies that the RHS expressions are evaluated immediately before the triggering
edge, and the values are assigned to the LHS variablesimmediately after the triggering edge. Thisisillustrated in

Figure 30.
BEHAVI OR {
@ (<vector_expression(EL .Em>) { El Em
Qj_ =
<lst _bool ean_expression(Dl..D)> ; vector

expr essi on

o =

<nt h_bool ean_expression(DL..Di)> ; } }

Q

1st bool ean expression)

‘V/u

_.
L4
m

nth bool ean expressi on) d qT p

:

Figure 30—Concurrency for edge-sensitive sequential logic

Statements with multiple concurrent conditions for boolean assignments can aso be used in sequentia logic. In
that case conflicting values can be assigned to the same logic variable. A default conflict resolution is not pro-
vided for the following reasons.

Conflict resolution might not be necessary, since the conflicting situation is prohibited by specification.
For different types of analysis (e.g., logic simulation), a different conflict resolution behavior might be
desirable, while the physical behavior of the circuit shall not change. For instance, pessimistic conflict
resolution always assigns X, more accurate conflict resolution first checks whether the values are con-
flicting. Different choices can be motivated by a trade-off in analysis accuracy and runtime.

If complete library control over analysisis desired, conflict resolution can be specified explicitly.

Example

BEHAVI OR {

}

@(<condition 1>) { Q= <value_1>; }
@(<condition 2>) { Q= <value_2>; }

Explicit pessimistic conflict resolution can be described as follows:

174

Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

BEHAVI OR {

@(<condition 1> && <condition_ 2>) { Q= "bX }
@(<condition 1> & & ! <condition 2>) { Q= <value_1>; }
@(<condition 2> && ! <condition_1>) { Q = <value_2>; }
}
Explicit accurate conflict resolution can be described as follows:
BEHAVI OR {
@ (<condition_1> && <condition_ 2>) {
Q = (<value_l>==<val ue_2>)? <value_1> : ’'bX
}
@(<condition_1> && ! <condition_2>) { Q = <value_1>; }
@(<condition_2> && ! <condition_1>) { Q = <value_2>; }

}

Since the conditions are now rendered mutually exclusive, equivalent descriptions with priority statements can
be used. They are more elegant than descriptions with concurrent statements.

BEHAVI OR {
@(<condition_1> && <condition_2>) {
Q = <conflict_resol ution_val ue>;
}
: (<condition_1>) { Q= <value_1>; }
(<condition_2>) { Q= <value_2>; }

}

Given the various explicit description possibilities, the standard does not prescribe a default behavior. The model
developer has the freedom of incomplete specification.

10.4.6 Initial values for logic variables
Per definition, al logic variablesin abehavioral description have theinitial value U which means “uninitialized”.

This value cannot be assigned to alogic variable, yet it can be used in abehavioral description in order to assign
other values than U after initialization.

Example
BEHAVI OR {
@(A =="bUu) { AL ="bl;}
@(@ =="bU) { @ ="b0; }
/1 followed by the rest of the behavioral description

}

A template can be used to make the intent more obvious, for example:

TEVMPLATE VALUE_AFTER_I NI TI ALI ZATI ON {

@(<logic_variable> =="bU) { <logic_variable>=<initial_value>; }
}
BEHAVI OR {

VALUE_AFTER | NI TI ALI ZATION (QL 'bl')

VALUE_AFTER | NI TI ALI ZATION (@ ' b0’)

/1 followed by the rest of the behavioral description
}

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 175

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

Logic variablesin a vector expression shall be declared as Pl Ns. It is possible to annotate initial values directly
to apin. Such variables shall never take the value U. Therefore vector expressions involving U for such variables
(see the previous example) are meaningless.

Example
PINQL { INNTIAL_VALUE = "bl ; }
PINQ@ { INNTIAL_VALUE = "b0 ; }

10.5 Higher-order sequential functions

This section defines the different types of higher-order sequential functionsin ALF.

10.5.1 Vector-sensitive sequential logic

Vector expressions can be used to model generalized higher order sequential logic; they are an extension of the
boolean expressions. A vector expression describes sequences of logical events or transitions in addition to static
logical states. A vector expression represents a description of alogical stimulus without timescale. It describes

the order of occurrence of events.

The - > operator (followed by) gives a general capability of describing a sequence of events or a vector. For
example, consider the following vector expression:

01 A->018B
which reads “rising edge on A is followed by rising edge on B”.
A vector expression is evaluated by an event sequence detection function. Like asingle event or atransition, this

function evaluates True only at an infinitely short time when the event sequence is detected, as shown in
Figure 31.

w

B
X

01 A 01 B 10 A 01 A10 B 10 A 01 B

2
A

2ndlast X X 01 AO1 B 10 A 01 A10 B 10 A

contents of
event queue

9(A B) = (01 A -> 01 B) A

sequence (01 A -> 01 B) detected

Figure 31—Example of event sequence detection function

176 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

The event sequence detection mechanism can be described as a queue that sorts events according to their order of
arrival. The event sequence detection function evaluates True at exactly the time when a new event enters the
gueue and forms the required sequence, i.e., the sequence specified by the vector expression with its preceding
events.

A vector-sensitive sequential logic can be called (N+1) order sequential logic, where N is the number of events
to be stored in the queue. The implementation of (N+ 1) order sequential logic requires N memory elements for
the event queue and one memory element for the output itself.

A sequence of events can also be gated with static logical conditions. In the example,

(01 CP -> 10 CP) && CD

the pin CD shall have st at e 1 from some time before the rising edge at CP to some time after the falling edge
of CP. The pin CD can not go low (st at e 0) after the rising edge of CP and go high again before the falling
edge of CP because thiswould insert eventsinto the queue and the sequence “rising edge on CP followed by fall-

ing edge on CP” would not be detected.

The formal calculation rules for general vector expressions featuring both states and transitions are detailed in
10.5.2 and 10.5.3.

The concept of vector expression supports functional modeling of devices featuring digital communication pro-
tocols with arbitrary complexity.

10.5.2 Canonical binary operators for vector expressions

The following canonical binary operators are necessary to define sequences of transitions:
— vector_fol |l owed_by for completely specified sequence of events
— vect or _and for simultaneous events
— vect or _or for aternative events

— vector_fol | owed_by for incompletely specified sequence of events

The symbols for the boolean operators for AND and OR are overloaded for vect or _and and vect or _or,
respectively. The new symbolsfor thevect or _f ol | owed_by operators are shown in Table 65.

Table 65—Canonical binary vector operators

LHS, RHS L
Operator Operands commutative Description
-> 2 vector No Left-hand side (LHS) transition is followed by Right-hand side
expressions (RHS) transition, no transition can occur in-between.
&&,& 2 vector Yes LHS and RHS transition occur simultaneously.
expressions
|| | 2 vector Yes LHS or RHS transition occur alternatively.
expressions
~> 2 vector No Left-hand side (LHS) transition is followed by Right-hand side
expressions (RHS) transition, other transitions can occur in-between.

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 177

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

Per definition, the - > and ~> operators shall not be commutative, whereas the && and | | operators on events
shall be commutative.

01 a & 01 b === 01 b && 01 a
0Ola||] 01 b===01b|| Ol a

The- > and ~> operators shall be freely associative.

0Ola->01b->01c==(01a->01b) ->01c===01a->(01b->01r°c)
0la~>01b~>01c==(01a~>01b) ~>01c==01a-~>(01b~>01c)

The && operator isdefined for single events and for event sequences with the same number of - > operators each.
(01 AL .. -> ... 01 AN) & (01 B1 .. -> ... 01 BN
01 A1 &01B1... ->... 01 AN & 01 BN

The || operator reduces the set of edge operators (unary vector operators) to canonical and non-canonical opera-
tors.

(?? a) === (?! a)||(?- a) //a does or does not change its val ue
Hence ?? is non-canonical, since it can be defined by other operators.
If <val uel><val ue2> isan edge operator consisting of two based literalsval uel and val ue2 and wor d
is an expression which can take the value val uel or val ue2, then the following vector expressions are con-

sidered equivalent:

<val uel><val ue2> <wor d>

=== 10 (<word> == <val uel>) && 01 (<word> == <val ue2>)
=== 01 (<word> != <valuel>) && 01 (<word> == <val ue2>)
=== 10 (<word> == <val uel>) && 10 (<word> != <val ue2>)
=== 01 (<word> != <valuel>) && 10 (<word> != <val ue2>)

/1 all expressions describe the same event:
/'l <word> nmakes a transition from <val uel> to <val ue2>

Hence vector expressions with edge operators using based literals can be reduced to vector expressions using
only the edge operators 01 and 10.

10.5.3 Complex binary operators for vector expressions

Table 66 defines the complex binary operators for vector operators.

Table 66—Complex binary vector operators

LHS, RHS e
Operator Operands commutative Description
<-> 2 vector Yes LHStransition follows or isfollowed by RHS transition.
expressions
&> 2 vector No LHS transition isfollowed by or occurs simultaneously with RHS
expressions transition.

178 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

Table 66—Complex binary vector operators (Continued)

Operator Operands Clc;r:lrﬁ’u?;iie Description
<&> 2 vector Yes LHStransition follows or isfollowed by or occurs simultaneously
expressions with RHS transition.
The following expressions shall be considered equivalent:
(01 a<->01b) ===(01 a->01b)||(01 b ->01a)
(0l a & 01 b) === (01 a ->01Db)||(01 a & 01 b)
(01 a <& 01 b) === (01 a ->01 b)||(01 b ->01a)||(01l a & 01 b)

By their symmetric definition, the <- > and <&> operators are commutative.

01l a<->01b==01b<->01a
01l a <& 01 b ===01b <& 01 a

The commutative complex binary vector operators are defined in Table 65. The commutativity rules are only
defined for two operands:

— commutative “followed by”:
vect _exprl <-> vect_expr2 ===
vect _exprl -> vect _expr2 // vect_exprl occurs first
| vect _expr2 -> vect_exprl // vect_expr2 occurs first
— commutative “followed by or simultaneously occurring”:
vect _exprl <& vect_expr2 ===
vect _exprl -> vect _expr2 // vect_exprl occurs first
| vect _expr2 -> vect _exprl // vect_expr2 occurs first
| vect _exprl && vect _expr2 // both occur simultaneously
10.5.4 Extension to N operands
This section defines how to use N operands.
A conpl ex_vect or _expr essi on of theform
vect or _expression { <-> vector_expression }
shall be commutative for all operands. The conpl ex_vect or _expr essi on describes aternative event
seguences in which the temporal order of each constituent vect or _expr essi on is completely permutable,
excluding simultaneous occurrence of each congtituent vect or _expr essi on.
A conpl ex_vect or _expr essi on of theform
vect or _expression { <& vector_expression }
shall be commutative for all operands. The conpl ex_vect or _expr essi on describes aternative event

seguences in which the temporal order of each constituent vect or _expr essi on is completely permutable,
including simultaneous occurrence of each constituent vect or _expr essi on.

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 179

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

Example

01 A<->01 B<->01 C ===
01 ->01B->01

| 01 ->01C->01

| 01C->o01 01

| 01C->o01 01

|

|

01 -> 01 01
01 -> 01 01

>WO0Om>
0> >
V V VYV
TO>T>O

01 A<& 01 B <& 01 C

01 A->01B->01C
| 01B->01C->01A
| 01C->01A->01B8B
| 0LC->01B->01A
| 01B->01LA->01C
| O0LA->01C->01B
| 01 A& 01 B->01C
| O0LA->01B&O01C
| 01B& 01 C->01A
| 01 B->01C&&O0LA
| 01 C&& 01 A->01B
| 01 C->01A&:01B
| 01 A&& 01 B&& 01 C

10.5.4.1 Boolean rules
The following rule applies for a boolean AND operation with three operands:

rule 1:
A&B&C==(A&B) &C| A& (B &C

A corresponding rule also applies to the commutative followed-by operation with three operands:

rule 2:

01 A<->01 B <->01 C ===
(01 A<->01B) <->01C

| 01 A<-> (01 B<->010

The alternative boolean expressions(A & B) & CandA & (B & C) inrul e 1 areequivaent. Therefore,
rul e 1 can bereduced to the following:

rule 3:
A&B&C===(A&B) &C===(B&CQC &A

A corresponding rule does not apply to complex vector operands, since each expression with associated operands
generates only a subset of permutations:

(01A<-> 01 B) <-> 01 C ===
(01 A<->01B ->010

| (01 C-> (01 A<->01 B)) ===
0OlLA->01B->01C

| 01 B->01A->01C

180 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

01 C->01
01 C->01

The permutations

A->018B
B->01A

0Ol A->01C->018B
01 B->01C->01A

are missing.

01 A<> (01 B<->010

10

(01 A -> (01 B <-> 01 Q)

| ((01 B<->01C ->01 A ===
01 A->01B->01C
| 0Ol A->01C->018B
| 01 B->01C->01A
| 01 C->01B->01A
The permutations
| 01 B->01A->01C
| 01 C->01A->018B
are missing.

10.5.5 Operators for conditional vector expressions

The definitions of the &&, ?, and : operators are also overloaded to describe a conditional vector expression

(involving boolean expressions and vector expressions), as shown in Table 67. The clauses are boolean expres-
sions; while vector expressions are subject to those clauses.

Table 67—Operators for conditional vector expressions

Operator

Operands

LHS, RHS
commutative

Description

&&, &

1 vector
expression
boolean
expression

Yes
1

Boolean expression (LHS or RHS) is True while sequence of
transitions, defined by vector expression (RHS or LHS) occurs.

1 vector
expression
boolean
expression

No
1

Boolean condition operator for construction of if-then-else clause
involving vector expressions.

1 vector
expression
boolean
expression

No
1

Boolean else operator for construction of if-then-else clause
involving vector expressions.

An examplefor conditional vector expression using && is given below:

(01 a & !b)

IEEE P1603 Draft 3

// a riseswhile b==0

Advanced Library Format (ALF) Reference Manual

181

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

The order of the operands in a conditional vector expression using && shall not matter.

<vect or _exp> && <bool ean_exp> === <bool ean_exp> && <vector _exp>
The && operator is still commutative in this case, although one operand is a boolean expression defining a static
state, the other operand is a vector expression defining an event or a sequence of events. However, since the
operands are distinguishable per sg, it is hot necessary to impose a particular order of the operands.

An example for conditional vector expression using ? and : is given below.

Ib 201l a: c?10b: 01d

b &0l a| !(!'b) &c & 10 b | !(!b) &!c & 01 d

This example shows how a conditional vector expression using ternary operators can be expressed with alterna-
tive conditional vector expressions.

A conditional vector expression can be reduced to a non-conditional vector expression in some cases (see
10.6.11).

Every binary vector operator can be applied to a conditional vector expression.
10.5.6 Operators for sequential logic

Table 68 defines the complex binary operators for vector operators.

Table 68—Operators for sequential logic

Operator Description

@ Sequential i f operator, followed by aboolean logic expression (for level-
sensitive assignment) or by a vector expression (for edge-sensitive assign-
ment).

Sequential el se i f operator, followed by a boolean logic expression (for
level-sensitive assignment) or by a vector expression (for edge-sensitive
assignment) with lower priority.

Sequentia assignments are constructed as follows:

@(<triggerl>) { <actionl>} : (<trigger2>) { <action2>}
(<trigger3>) { <action3>}

If triggerl event is detected, then acti onl is performed; else if tri gger2 event is detected, then
action2 is performed; elseif t ri gger 3 event is detected, then act i on3 is performed as a result of this
clause.

10.5.7 Operator priorities

The priority of binding operators to operands in non-conditional vector expressions shall be from strongest to
weakest in the following order:

a) unary vector operators (edge literals)

182 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

b) complex binary vector operators (<- >, &>, <&>)
c) vector AND (&, &&)

d) vector_followed by operators (- >, ~>)

e vectorOR(|,]])

10.5.8 Using PINs in VECTORs

A VECTOR defines state, transition, or sequence of transitions of pins that are controllable and observable for
characterization.

Within a CELL, the set of PI Nswith SCOPE=behavi or or SCOPE=neasur e or SCOPE=Dbot h isthe default
set of variablesin the event queue for vector expressions relevant for BEHAVI OR or VECTOR statements or both,
respectively.

For detection of a sequence of transitions it is necessary to observe the set of variables in the event queue. For
instance, if the set of pins consists of A, B, C, D, the vector expression

(01 A -> 01 B)
implies no transition on A, B, C, D occurs between the transitions01 Aand 01 B.
The default set of pins applies only for vector expressions without conditions. The conditional event AND opera-
tor limits the set of variables in the event queue. In this case, only the state of the condition and the variables
appearing in the vector expression are observed.
Example
(01 A->01B) & (C| D

No transition on A, B occurs between 01 Aand 01 B,and (C | D) needsto stay Truein-between 01 A and
01 Baswell. However, Cand D can change their valuesaslongas (C | D) issatisfied.

10.6 Modeling with vector expressions

Vector expressions provide a formal language to describe digital waveforms. This capability can be used for
functional specification, for timing and power characterization, and for timing and power analysis.

In particular, vector expressions add value by addressing the following modeling issues:

— Functional specification: complex sequentia functionality, e.g., bus protocols.

— Timing analysis. complex timing arcs and timing constraints involving more than two signals.

— Power analysis: temporal and spatial correlation between events relevant for power consumption.

— Circuit characterization and test: specification of characterization and/or test vectors for particular tim-
ing, power, fault, or other measurements within a circuit.

Like boolean expressions, vector expressions provide the means for describing the functionality of digital cir-
cuitsin various contexts without being self-sufficient. Vector expressions enrich this functional description capa-
bility by adding a“dynamic” dimension to the otherwise “static” boolean expressions.

The following subsections explain the semantics of vector expressions step-by-step. The vector expression con-

cept is explained using terminology from simulation event reports. However, the application of vector expres-
sionsis not restricted to post-processing event reports.

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 183

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

Some application tools (e.g., power analysis tools) can actually evaluate vector expressions during post-process-
ing of event reports from simulation. Other application tools, especially simulation model generators, need to
respect the causality between the triggering events and the actions to be triggered. While it is semantically
impossible to describe cause and effect in the same vector expression for the purpose of functional modeling,
both cause and effect can appear in avector expression used for atiming arc description.

ALF does not make assumption about the physical nature of the event report. Vector expressions can be applied
to an actual event report writtenin afile, to an internal event queue within asimulator, or to a hypothetical event
report which is merely a mathematical concept.

10.6.1 Event reports

This section describes the terminology of event reports from simulation, which is used to explain the concept of
ALF vector expressions. The intent of ALF vector expressions is not to replace existing event report formats.
Non-pertinent details of event report formats are not described here.

Simulation events (e.g., from Verilog or VHDL) can be reported in a value change dump (VCD) file, which has
the following general form:

<tinmel>
<vari abl eA> <statel>
<vari abl eB> <st at eV>
<ti me2>
<vari abl eC <st ateW
<vari abl eD> <st ateX>

<tinme3> ...

The set of variables for which simulation events are reported, i.e., the scope of the event report needs to be
defined beforehand. Each variable also has a definition for the set of states it can take. For instance, there can be
binary variables, 16-bit integer variables, 1-bit variables with drive-strength information, etc. Furthermore, the
initial state of each variable shall be defined as well. In an ALF context, the terms signal and variable are used
interchangeably. In VHDL, the corresponding term is signal. In Verilog, there is no single corresponding term.
All i nput , out put ,wi r e, andr eg variablesin Verilog correspondto asi gnal inVHDL.

Thetimevaues<ti mel>, <ti ne2>, <t i ne3>, etc. shall be in increasing order. The order in which simulta-
neous events are reported does not matter. The number of time points and the number of simultaneous events at a
certain time point are unlimited.

In the physical world, each event or change of state of avariable takes a certain amount of time. A variable can-
not change its state more than once at agiven point in time. However, in simulation, thistime can be smaller than
the resolution of the time scale or even zero (0). Therefore, a variable can change its state more than once at a
given point in simulation time. Those events are, strictly speaking, not simultaneous. They occur in a certain
order, separated by an infinitely small delta-time. Multiple simultaneous events of the same variable are not
reported in the VCD. Only the final state of each variable is reported.

A VCD file is the most compact format that allows reconstruction of entire waveforms for a given set of vari-
ables. A more verbose form is the test pattern format.

<TI ME> <vari abl eA> <vari abl eB> <vari abl eC <vari abl eD>

<tinmel> <statel> <st at eV> .
<tinme2> <statel> <st at eV> <st at eWs <st at eX>
<tinme3> ...

184 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

The test pattern format reports the state of each variable at every point in time, regardless of whether the state has
changed or not. Previous and following states are immediately available in the previous and next row, respec-
tively. This makes the test pattern format more readable than the VCD and well-suited for taking a snapshot of
eventsin atime window.

An example of an event report in VCD format:

/1 initial values

AO B 1 cl1 D X E 1l
/1 event dunp

109 DO

258
573
586
643
788
915
1062
1395 co

1640 0 D1

/1 end of event dunp

B1 Ccl1

>oOmMm>»>r>>r0n>
OorORrROOOR

An example of an event report in test pattern format:

tine A
0 0
109 1
258 1
573 1
586 0
643 1
788 0
915 1
1062 1
1395 1
1640 0

OCORRPRRPROOOORRLRM
OCORRPRRPROOORREREQD
RPOOO0OO0OO0OO0OO0OO0OO XU
COORRRPRRERPRERRERRERM

Both VCD and test pattern formats represent the same amount of information and can be trandated into each
other.

10.6.2 Event sequences

For specification of a functional waveform (e.g., the write cycle of a memory), it is not practical to use an event
report format, such asaVCD or test pattern format. In such waveforms, there is no absolute time. And the rela-
tive time, for example, the setup time between address change and write enable change, can vary from one
instance to the other.

The main purpose of vect or _expr essi ons is waveform specification capability. The following operators
can be used:

— vect or_unary (also called edge operator or unary vector operator)
The edge operator is a prefix to a variable in a vector expression. It contains a pair of states, the first
being the previous state, the second being the new state. Edge operators can describe a change of state or
no change of state.

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 185

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

— vect or _and (also called simultaneous event operator)
This operator uses the overloaded symbol & or && interchangeably. The & operator is the separator
between simultaneously occurring events

— vector _fol |l owed_by (aso caled followed-by operator)
The “immediately followed-by operator” using the symbol - > istreated first. The - > operator isthe sep-
arator between consecutively occurring events.

These operators are necessary and sufficient to describe the following subset of vect or _expr essi ons:

a) vector_single event
A change of state in asingle variable, for example:
01 A
b) vector_event
A simultaneous change of state in one or more variables, for example:
01 A& 10 B
Cc) vector_event_sequence
Subsequently occurring changes of state in one or more variables, for example:
01 A&10B->10 A

Thevect or _and operator has a higher binding priority than thevect or _f ol | owed_by operator.
We can now express the pattern of the sample event report inavect or _event _sequence expression:

0l A&X0D->10B->10C->10 A->01 A
->10A&01B&01C->01A->10E->10B &10C->10 A&01D

We can define the length of avect or _event _sequence expression as the number of subsequent events
described in the vect or _event _sequence expression. The length is equal to the number of - > operators
plusone (1).

Although the vector expression format contains an inherent redundancy, since the old state of each variable is
always the same as the new state of the same variable in a previous event, it is more human-readable, especially
for waveform description. On the other hand, it is more compact than the test pattern format. For short event
sequences, it is even more compact than the VCD, since it eliminates the declaration of initial values. To be accu-
rate, for variables with exactly one event the vector expression is more compact than the VCD. For variables
with more than one event the VCD is more compact than the vector expression. In summary, the vector expres-
sion format offers readability similar to the test pattern format and compactness close to the VCD format.

10.6.3 Scope and content of event sequences

The scope applicable to a vector expression defines the set of variables in the event report. The content of a vec-
tor expression isthe set of variablesthat appear in the vector expression itself. The content of avector expression
shall be a subset of variables within scope.

— PI Nswith the annotation SCOPE = BEHAVI OR are applicable variables for vector expressions within
the context of BEHAVI OR.

— PI Nswith the annotation SCOPE = MEASURE are applicable variables for vector expressions within
the context of VECTOR.

— Pl Nswith the annotation SCOPE = BOTH are applicable variables for all vector expressions.

A vector _event _sequence expression is an event pattern without time, containing only the variables

within its own content. This event pattern is evaluated against the event report containing al variables within
scope. The vector expression is True when the event pattern matches the event report.

186 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

Example

time
0
109
258
573
586
643
788
915
1062
1395
1640

ORRPRPROFRPRORRLRRLROD>

OCOPFrRPFRPFPOOOORPFR®

OCORRPRRPROOORREQND

P OOO0OO0OO0OO0OO0OO0OO0OX0U

/1l scopeis A, B, C D E

COoOORRRRERRERREREREM

Consider the following vector expressions in the context of the sample event report:

01 A

/] event

11
1
11

A
0
1

/1(1)

pattern expressed by (1):

(1) isTrueat time 109, time 643, and time 915.

10 B-> 10 C

!/ event
/1 B
/1 1
/1 0
/1 0

(2) isTrueat time573.

10 A->01 A

!/ event
/1 A
/1 1
/1 0
/1 1

11(2)

pattern expressed by (2):

C

1
1
0

/1(3)

pattern expressed by (3):

(3) isTrueat time 643 and time 915.

01 D

/] event

/1
/1
/1

D
0
1

I1(4)

pattern expressed by (4):

(4) isTrueat time 1640.

01 A->10C

/] event

/1

A

/1(5)

pattern expressed by (5):

C

IEEE P1603 Draft 3

Advanced Library Format (ALF) Reference Manual

cont ent

cont ent

cont ent

cont ent

cont ent

is B, C

is A C

187

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

/1 0o 1
/1 1 1
/1 1 ©

(5) isnot be True at any time, since the event pattern expressed by (5) does not match the event report at any
time.

10.6.4 Alternative event sequences

The following operator can be used to describe aternative events:
vect or _or, aso caled event-or operator or alternative-event operator, using the overloaded symbol
| or|| interchangeably. The | operator isthe separator between alternative events or aternative event

sequences.

In analogy to boolean operators, | has alower binding priority than & and - >. Parentheses can be used to change
the binding priority.

Example
(01A->01B)| 10C=01A->01B]| 10C
0Ol A->(01B|] 10C ===01A->01B|] 01 A->10C

Consider the following vector expressions in the context of the sample event report:

01 A| 10 /1(6)
//event pattern expressed by (6):

/1 A

/1 0

/1 1

/lalternative event pattern expressed by (6):

/1 C

/1 1

/1 0

(6) isTrueat time 109, time 573, time 643, time 915, and time 1395.

10B->10C| 10 A->01 A 11 (7)
/levent pattern expressed by (7):

/1 B C

/1 1 1

/1 0 1

/1 0 O

/lalternative event pattern expressed by (7):
/1 A

/1 1

/1 0

/1 1

(7) isTrueat time 573, time 643, and time 915.

01 D| 10 B-> 10 C 11(8)

188 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

/1 event pattern expressed by (8):

/1 D

/1 0

/1 1

/lalternative event pattern expressed by (8):
/1 B C

/1 1 1

/1 0 1

/1 0 O

(8) isTrueat time 573 and time 1640.

10 B->10C| 10 A 11(9)
/levent pattern expressed by (9):

/1 B C

/1 1 1

/1 0 1

I 0 O

/lalternative event pattern expressed by (9):

/1 A

/1 1

/1 0

(9) isTrueat time 573, time 586, time 788, and time 1640.
The following operators provide a more compact description of certain alternative event sequences:
— &> events occur simultaneously or follow each other in the order RHS after LHS

— <->alLHSevent followed by a RHS event or aRHS event followed by a LHS event
— <&> events occur simultaneously or follow each other in arbitrary order

Example
01 A& 01 C === 01 A&01C]|] 01 A->01C
0l A<->01C == 01A->01C| 01C->01A
0l A< 01C === 0l1A<>01C| 01LA&O1C

The binding priority of these operatorsis higher than of & and - >.
10.6.5 Symbolic edge operators

Alternative events of the same variable can be described in a even more compact way through the use of edge
operators with symbolic states. The symbol ? stands for “any state”.

— edge operator with ? asthe previous state:
transition from any state to the defined new state
— edge operator with ? asthe next state:
transition from the defined previous state to any state.

Both edge operators include the possibility no transition occurred at al, i.e., the previous and the next state are
the same. This situation can be explicitly described with the following operator:

edge operator with next state = previous state, also called non-event operator
The operand stays in the state defined by the operator.

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 189

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

The following symbolic edge operators also can be used:
a) ?- notransition on the operand
b) ?! transition from any state to any state different from the previous state

c) ?7? transition from any state to any state or no transition on the operand
d) ?~ transition from any state to its bitwise complementary state

Example

Let A be alogic variable with the possible states 1, 0, and X.

20 A===00 A| 10 A| X0 A

21 A===01A| 11 A| XL A

2X A === 0XA| IXA| XX A

0?7 A=== 00 A| 01 A| OX A

1?7 A=== 10 A| 11 A| 1X A

X2 A=== X0 A| XL A| XXA

2 A=== 01 A| OXA| 10 A| 1IXA| X0 A| XL A

2~ A===01A| 10 A| XXA

22 A=== 00 A| 0L A| OXA| 10 A| 11 A| 1IXA| XOA| XL A| XX A
2- A=== 00 A| 11 A| XX A

For variables with more possible states (e.g., logic states with different drive strength and multiple bits) the
explicit description of aternative eventsis quite verbose. Therefore the symbolic edge operators are useful for a
more compact description.

This completes the set of vect or _bi nary operators necessary for the description of a subset of
vect or _expressi ons caled vect or _conpl ex_event expressions. All vect or _bi nary operators
have two vect or _conpl ex_event expressions as operands. The set of vect or _event _sequence
expressions is a subset of vector_conpl ex_event expressions. Every vect or _conpl ex_event
expression can be expressed in terms of alternativevect or _event _sequence expressions. The latter could
be called minterms, in analogy to boolean algebra.

10.6.6 Non-events
A vector_singl e_event expression involving anon-event operator is called a non-event. A rigorous defi-
nition is required for vect or _conpl ex_event expressions containing non-events. Consider the following

example of aflip-flop with clock input CLK and data output Q.

01 CLK -> 01 Q // (i)
01 CLK -> 00 Q // (ii)

The vector expression (i) describes the situation where the output switches from O to 1 after the rising edge of
the clock. The vector expression (i i) describesthe situation where the output remains at O after therising edge
of the clock.

How isit possible to decide whether (i) or (i) isTrue, without knowing the delay between CLK and Q? The
only way isto wait until any event occurs after the rising edge of CLK. If the event is not on Q and the state of Q
isO during that event, then (i i) isTrue

Hence, a non-event is True every time when another event happens and the state of the variable involved in the
non-event satisfies the edge operator of the non-event.

Example

190 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

time
0
109
258
573
586
643
788
915
1062
1395
1640

ORRPRPROFRPRORRLRRLROD>
OCORRPRFPROOOORRLRD
OCORRPRRFPROOORREREQND
POOO0OO0OO0OO0OO0OO0OOX0U
COoOORRRRERRERRERERREM

The test pattern format represents an event, for example 01 A, in no different way than a non-event, for example
11 E. Thisnon-event is True at times 109, 258, 573, 586, 643, 788, and 915; in short, every time when an event
happens while E is constant 1.

10.6.7 Compact and verbose event sequences

A vect or _event _sequence expression in acompact form can be transformed into a verbose form by pad-
ding up every vector _event expresson with non-events. The next state of each variable within a
vect or _event expression shall be equal to the previous state of the same variable in the subsequent
vect or _event expression.

Example
01 A->10B===01 A& 11 B->11 A& 10 B

A vector expression for a complete event report in compact form resembles the VCD, whereas the verbose form
looks like the test pattern.

/1 conpact form

01l A&X0D->10B->10C->10 A->01 A
->10 A&01B&01C->01A->10E
->10B &10C->10 A& 01 D

!/l verbose form

?20A&?1 B&7?1 C&?XD&?1E ->
0l A&11 B&11 C& X0OD&11 E ->
11 A&10B & 11 C& 00 D&11 E ->
11 A&00B&10C&00 D&11 E ->
10 A&00B&00OC&0D0D&I1I1E ->
0l A&00OB &0 C&O0O0D&I11 E ->
10 A&01B&01 C&0D0D&I1I1E ->
0l A&11 B&11 C&00D&11 E ->
11 A&11 B&11 C& 00 D&10E ->
11 A&10B & 10 C& 00 D &O0O0O E ->
10 A& 00 B & 00 C&01 D&OO0 E

The transformation rule needs to be dlightly modified in case the compact form contains avect or _event

expression consisting only of non-events. By definition, the non-event is True only if areal event happens simul-
taneoudly with the non-event. Padding up avect or _event expression consisting of non-events with other
non-events make this impossible. Rather, thisvect or _event expression needs to be padded up with unspeci-

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 191

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

fied events, using the ?? operator. Eventually, unspecified events can be further transformed into partly specified
events, if aformer or future state of the involved variable is known.

Example

01 A->008B
=== 01 A&00 B->?? A&00 B

In the first transformation step, the unspecified event ?? Aisintroduced.

01 A&00 B->7?? A&00 B
=== 01 A&00 B->1? A& 00 B

In the second step, this event becomes partly specified. ?? Aisboundtobe1? A dueto the previous event on
A

10.6.8 Unspecified simultaneous events within scope

Variables which are within the scope of the vector expression yet do not appear in the vector expression, can be
used to pad up the vector expression with unspecified events as well. Thisis equivalent to omitting them from the
vector expression.

Example

01 A->10B /1 let us assune a scope containing A, B, C, D, E

01l A&10B&??2C&°??D&??E->11A&10B&??7C&°??2D&?°E

This definition allows unspecified events to occur simultaneously with specified events or specified non-events.
However, it disallows unspecified events to occur in-between specified events or specified non-events.

At first sight, this distinction seemsto be arbitrary. Why not disallow unspecified events altogether? Yet there are
several reasons why this definition is practical.

If avector expression disallows simultaneously occurring unspecified events, the application tool has the burden
not only to match the pattern of specified events with the event report but also to check whether the other vari-
ablesremain constant. Therefore, it is better to specify this extra pattern matching constraint explicitly in the vec-
tor expression by using the ?- operator.

There are many cases where it actually does not matter whether simultaneously occurring unspecified events are
allowed or disallowed:

— Case 1. Simultaneous events are impossible by design of the flip-flop. For instance, in a flip-flop it is
impossible for atriggering clock edge 01 CK and a switch of the data output ? Qto occur at the same
time. Therefore, such events can not appear in the event report. It makes no difference whether 01 CK &
?- Q01 CK & ?? Qor01 CK isspecified. Theonly occurring event patternis01 CK & ?- Q
and this pattern can be reliably detected by specifying 01 CK.

— Case 2: Simultaneous events are prohibited by design. For instance, in a flip-flop with a positive setup
time and positive hold time, the triggering clock edge 01 CK and a switch of the datainput ?! Disa
timing violation. A timing checker tool needs the violating pattern specified explicitly, i.e.,, 01 CK &
?1 D. Inthis context, it makes sense to specify the non-violating pattern also explicitly, i.e,, 01 CK &
?- D.Thepattern 01 CKhby itself isnot applicable.

— Case 3: Simultaneous events do not occur in correct design. For instance, power analysis of the event 01
CK needs no specification of ?! Dor ?- D. Inthe anaysis of an event report with timing violations, the

192 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

power analysis is less accurate anyway. In the analysis of the event report for the design without timing
violation, the only occurring event patternis01 CK & ?- Dand this pattern can bereliably detected by
specifying 01 CK.2

— Case 4: The effects of simultaneous events are not modeled accurately. This is the case in static timing
analysis and also to some degree in dynamic timing simulation. For instance, a NAND gate can have the
inputs A and B and the output Z. The event sequence exercising thetimingarc01 A -> 10 Zcanonly
happen if B is constant 1. No event on B can happen in-between 01 Aand 10 Z. Likewise, thetiming
arc01 B -> 10 Z canonly happenif Aisconstant 1 and no event happensin-between 01 B and 10
Z. The timing arc with simultaneously switching inputs is commonly ignored. A tool encountering the
scenario01 A & 01 B -> 10 Z hasno choice other than treating it arbitrarily as01 A -> 10 Z
oras01 B -> 10 Z

— Caseb5: The effects of simultaneous events are model ed accurately. Here it makes sense to specify all sce-
narios explicitly,eg., 01 A & ?- B -> 10 Z,01 A &?! B -> 10 Z,?- A & 01 B -> 10
Z, etc., whereas the patterns01 A -> 10 Zand01l B -> 10 Z by themselves apply only for less
accurate analysis (see Case 4).

Thereis aso aformal argument why unspecified events on a vector expression need to be alowed rather than
disallowed. Consider the following vector expressions within the scope of two variables A and B.

01 A 11 (i)
01 B 11 (i)
01 A&OLB // (iii)

The natural interpretation hereis (iii) === (i) & (ii). Thisinterpretation is only possible by allowing
simultaneously occurring unspecified events.

Allowing simultaneously occurring unspecified events, the vector expressions (i) and (i i), respectively, are
interpreted as follows:

01 A&??B [/ (i)
22 A&O01 B [/ (ii)

Disallowing simultaneously occurring unspecified events, the vector expressions (i) and (i i), respectively,
are interpreted as follows:

01 A&? B [/ (i)
2- A&O01B [/ (ii)

The vector expressions (i’) and (i i’) arecompatiblewith (iii),whereas(i’’) and(ii’’) arenot.
10.6.9 Simultaneous event sequences

The semantic meaning of the “simultaneous event operator” can be extended to describe simultaneously occur-
ring event sequences, by using the following definition:

(01 A#1 .. -> ... 01 A#N) & (01 B#1 .. -> ... 01 B#N)
=== 01 A#1 & 01 B#1 ... -> ... 01 A#N & 01 B#N

This definition is analogous to scalar multiplication of vectors with the same number of indices. The number of
indices corresponds to the number of vect or _event expressions separated by - > operators. If the number of

2The power analysistool relatesto atiming constraint checker in asimilar way as a parasitic extraction tool relatesto a DRC toal. If the lay-
out has DRC violations, for instance shorts between nets, the parasitic extraction tool shall report inaccurate wire capacitance for those nets.
After final layout, the DRC violations shall be gone and the wire capacitance shall be accurate.

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 193

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

- > in both vector expressionsis not the same, the shorter vector expression can be | eft-extended with unspecified
events, using the ?? operator, in order to align both vector expressions.

Example

(01 A->01B->01C & (01 D->01E

=== (01 A->01 B->01C & (?? D->01D-> 01 E)
=== 01 A&??2D->01B&01D->01LC&OLE

=== 01 A->01B&O01D->01C&O1E

The easiest way to understand the meaning of “simultaneous event sequences’ isto consider the event report in
test pattern format. If each vect or _event _sequence expression matches the event report in the same time
window, then the event sequences happen simultaneously.

>
m

tine
0
109
258
573
586
643
788
915
1062
1395
1640

ORRPPFPORPRORRERREO
OCORRPRRFPROOOORRLRM
OCORRPRPROOORREREQD
POOO0OO0OO0OO0OO0OO0O XU
COoOO0ORRRRRERRREPR

Example

01 A->10B==01A&11B->11 A&10 B /1 (10a)
/1 event pattern expressed by (10a):

/1 A B

/1 0 1

/1 1 1

/1 1 0

X0 D->00D /1 (10b)
/1l event pattern expressed by (10b):

/1 D

/1 X

/1 0

/1 0

(01 A->10B) & (X0 D-> 00 D) /1 (10) === (10a) & 10b)

Both (10a) and (10b) are True at time 258. Therefore (10) is True at time 258.

10 C

== ?? C->??2 C->10C

== ?? C->?1 C->10C /1 (11a)
/1l event pattern expressed by (1lla):

/1 C

/1 ?

/1 ?

/1 1

/1 0

194 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

(11a) isleft-extended to match the length of the following (11b) .

01 A->00 D-> 11 E ===
01 A&O0O0 D&??E
->?? A&00 D &??E
-> 7?7?27 A&??D&11 E
01 A&O0O0D&??E
->1? A&00D&?1E
->?? A&0? D& 11 E 11 (11b)
/1 event pattern expressed by (11b):
/1 A D E
/1 o o 2
/1 1 0 2
/1 ? 0 1
/1 ? 0?2 1

(11b) contains explicitly specified non-events. The non-event 00 D calls for the unspecified events ?? A and
?? E. Thenon-event 00 E callsfor the unspecified events ?? Aand ?? D. By propagating well-specified pre-
vious and next states to subsequent events, some unspecified events become partly specified.

10 C & (01 A -> 00 D -> 11 E) /1 (11) === (11a) & 11b)

(11a) isTrueat time 573 and time 1395. (11b) is True at time 573 and time 915. Therefore, (11) is True at
time 573.

10.6.10 Implicit local variables

Until now, vector expressions are evaluated against an event report containing all variables within the scope of a
cell. It ispractical for the application to work with only one event report per cell or, at most, two event reports if
the set of variables for BEHAVI OR (scope=behavi or) and VECTOR (scope=neasur e) isdifferent. How-
ever, for complex cells and megacells, it is sometimes necessary to change the scope of event observation,
depending on operation modes. Different modes can require a different set of variables to be observed in differ-
ent event reports.

The following definition allows to extend the scope of a vector expression locally:
Edge operators apply not only to variables, but also to boolean expressions involving those variables.
Those boolean expressions represent implicit local variables that are visible only within the vector

expression where they appear.

Supposethelocal variables(A & B),(A | B) areinserted into the event report:

timm A B C D E A8 AB
0 0 1 1 X 1 0 1
109 1 1 1 0 1 1 1
258 1 0 1 0 1 0 1
573 1 0 0 0 1 0 1
586 0 0 0 0 1 0 0
643 1 0 0 0 1 0 1
788 0 1 1 0 1 0 1
915 1 1 1 0 1 1 1
1062 1 1 1 0 0 1 1

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 195

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

1395 1 0O o 0 o 0 1
1640 0 0 O 1 0 0 0

Example

01 (A & B)

/1l event pattern expressed by (12):
/1 A&B

/1 0

/1 1

(12) isTrueat time 109 and time 915.

10 (A | B)

/1 event pattern expressed by (13):
I Al B

/1 1

/1 0

(13) isTrueat time 586 and time 1640.
01 (A&B) ->10 B

/1 event pattern expressed by (14):
/1 B A&GB

/1 1 0
/1 1 1
/1 0 1

(14) isTrueat time 258.

10 (A&B) &10B ->10 C
/1 event pattern expressed by (15):
/1 B C A&

/1 1 1 1
/1 0 1 0
/1 0 0 0

(15) isTrueat time573.

10 (A& B) -> 10 (A] B
/1 event pattern expressed by (16):
/1 A&B A B

11 1 1
11 0 1
/1 0 0

(16) isTrueat time 1640.
10.6.11 Conditional event sequences

The following definition restricts the scope of avector expression locally:

Il (12)

Il (13)

11 (14)

/1 (15)

Il (16)

vect or _bool ean_and, aso called conditional event operator

196 Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 3

This operator is defined between a vector expression and a boolean expression, using the overloaded
symbol & or &&. The scope of the vector expression is restricted to the variables and eventual implicit
local variables appearing within that vector expression. The boolean expression shall be True during the
enti r(3e vector expression. The boolean expression is called the Existence Condition of the vector expres-
sion.

Vector expressions using the vect or _bool ean_and operator are called vect or _condi ti onal _event
expressions. Scope and contents of such expressions are identical, as opposed to non-conditional
vect or _conpl ex_event expressions, where the content is a subset of the scope.

Example

(10 (A& B) -> 10 (A]| B)) &!'D Il (17)
/1 event pattern expressed by (17):

/1 A&B A B

/1 1 1

/1 0 1

I 0 0

/1l event report without C E

time A A&B AB

0
109
258
586
643
788
915
1062
1395
1640

=

ORRPRPRORFRORRERO
OCORRPRPFPROOORRFLD
POOOO0OO0OO0OO0OXU
OORPFRPROOOORrRO
ORRPRRPRRLPRRPLRORPR

(17) contains the same vect or _conpl ex_event expression as (16) . However, although (16) is not
Trueat time 586, (17) isTrue at time 586, since the scope of observation is narrowed to A, B, A&B, and A| B by
the existence condition ! D, which is statically True while the specified event sequence is observed.

Within, and only within, the narrowed scope of thevect or _condi ti onal _event expression, (17) canbe
considered equivalent to the following:

(10 (A& B) -> 10 (A| B)) &!'D

(10 (A& B) -> 10 (A| B)) & (11 (!D) -> 11 (! D))

10 (A&B) &11 (!D -> 10 (A]| B & 11 (!'D
The transformation consists of the following steps:

a) Transform the boolean condition into a non-event.
For example, ! Dbecomes11l (! D).

3An Existence Condition can also appear as annotation to a VECTOR object instead of appearing in the vector expression. This enables recog-
nition of existence conditions by application tools which can not evaluate vector expressions (e.g., static timing analysis tools). However, for
tools that can evaluate vector expressions, there is no difference between existence condition as a co-factor in the vector expression or as an
annotation.

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 197

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

b) Left-extend the vect or _si ngl e_event expression containing the non-event in order to match the
length of thevect or _conpl ex_event expression.
For example, 11 (! D) becomes1l (! D) -> 11 (! D) to match thelength of
10 (A& B) -> 10 (A | B).

¢) Apply scalar multiplication rule for simultaneously occurring event sequences.

Thus, a vector_conditional event expresson can be transformed into an equivaent
vect or _conpl ex_event expression, but the change of scope needs to be kept in mind. An operator which
can express the change of scope in the vector expression language is defined in 10.6.13. This can make the trans-
formation more rigorous.

Regardless of scope, the transformation from vector _conditional event expresson to
vector _conpl ex_event expression aso provides the means of detecting ill-specified
vect or _condi ti onal _event expressions.

Example

(10 A->01B->01LA) &A

10 A&11 A->01B&11 A->01 A&11 A
The first expression 10 A & 11 A and the third expresson 01 A & 11 A within the
vect or _conpl ex_event expression are contradictory. Hence, the vect or _conditi onal _event
expression can never be True.

10.6.12 Alternative conditional event sequences

All vector_binary operators, in particular the vector_or operator, can be applied to
vect or _conditional _event expressionsaswell astovect or _conpl ex_event expressions.

Consider again the event report:

>
@]

tine
0
109
258
573
586
643
788
915
1062
1395
1640

ORPFPRFRPORORREO
OCORRPRRPRPROOOORRLRM
OORRFPRFRPROOORRR

RPOOO0OO0OO0OO0OO0OO0OO XU
COO0ORRRRERPRRERERERM

Concurrent alternative vect or _condi ti onal _event expressions can be paraphrased in the following
way:
| F <bool ean_expressi on;> THEN <vect or _expr essi on,>
OR | F <bool ean_expressi on,> THEN <vect or _expressi ony,>
OR | F <bool ean_expressi ony> THEN <vect or _expressi ony>

The conditions can be True within overlapping time windows and thus the vector expressions are evaluated con-
currently. Thevect or _bool ean_and operator and vect or _or operator describe such vector expressions.

198 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

Example

C&01 A->10B) | 'D&10 B -> 10 A) | E&10 B -> 10 O // (18)
/1 Event pattern expressed by (18):

/1 A B C

/1 0 1 1

/1 1 1 1

/1 1 0 1

(18) isTrueat time 258 becauseof C & (01 A -> 10 B).

/1 Aternative event pattern expressed by (18):
/1 A B D

/1 1 1 o0

/1 1 0 O

/1 0O 0 O

(18) isdso Trueat time586 becauseof ! D & (10 B -> 10 A).

/1 Alternative event pattern expressed by (18):

/1 B C E

/1 1 1 1

/1 0 1 1

/1 0O 0 1

(18) isadso Trueat time573 becauseof E & (10 B -> 10 C).

Prioritized alternative vect or _condi ti onal _event expressions can be paraphrased in the following way:

| F <bool ean_expressi on;> THEN <vect or _expr essi on,>

ELSE | F <bool ean_expressi ony,> THEN <vect or _expressi ony>
ELSE | F <bool ean_expressi ony> THEN <vect or _expressi onp>

(optional) ELSE <vector_expressi ONgefault>

Only the vector expresson with the highest priority True condition is evaluated. The
vect or _bool ean_cond operator and vect or _bool ean_el se operator are used in ALF to describe
such vector expressions.

Example
C? (01 A->10B): 'D? (10 B-> 10 A: E? (10 B->10 C // (19

The prioritized aternative vect or _condi ti onal _event expression can be transformed into concurrent
dternativevect or _condi ti onal _event expression as shown:

C? (01 A->10B) : 'D? (10 B->10A) : E? (10 B -> 10 O

C& (0L A->10 B)
| 1C&!D& (10 B -> 10 A
| '1C&!(!D) & E & (10 B -> 10 Q)

(19) isTrueat time 258 becauseof C & (01 A -> 10 B), but not at time 586 because of higher priority C

while! D & (10 B -> 10 A), nor at time 573 because of higher priority ! Dwhile
E & (10 B -> 10 O).

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 199

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

10.6.13 Change of scope within a vector expression

Conditions on vector expressions redefine the scope of vector expressions locally. The following definition can
be used to change the scope even within a part of a vector expression. For this purpose, the symbolic state * can
be used, which means “don’t care about events”. Thisis different from the symbolic state ? which means “don’'t
care about state”. When the state of avariableis*, arbitrary events occurring on that variable are disregarded.

— Edge operator with * as next state:
The variable to which the operator appliesis no longer within the scope of the vector expression.
— [Edge operator with * as previous state:
The variable to which the edge operator applies is now within the scope of the vector expression.
Asopposedto ?, * stands for an infinite variety of possibilities.
Example

Let A bealogic variable with the possible states 1, 0, and X.

*0 A ===

00 A| 10 A| X0 A

| 00A->00A| 10A->00A| X0 A->00A
| OLA->10A| 11 A->10 A| XL A-> 10 A
| OXA->X0 A| 1IXA->X0 A| XX A->X0 A
| 00 A->00A->00A |

0* A ===

00 A| 0L A| OX A

| 00OA->00A| 00A->01A| 00A->0XA
| OLA->10 A| 0L A->11 A| 01 A-> 1X A
| OXA->X0 A| OXA->XL A| OXA-> XX A
| 00 A->00A->00A |

A vector expression with an infinite variety of possible event sequences cannot be directly matched with an event
report. However, there are feasible ways to implement event sequence detection involving * . In principle, there
isa“static” and “dynamic” way. The following parts of the vector expression are separated by * sub-sequences
of events.

— “Static” event sequence detection with * :
The event report with all variables can be maintained, but certain variables are masked for the purpose of
detection of certain sub-sequences.

— “Dynamic” event sequence detection with * :
The event report shall contain the set of variables necessary for detection of a relevant sub-sequence.
When such a sub-sequence is detected, the set of variables in the event report shall change until the next
sub-sequence is detected, etc.

Examples

01 A->1* B-> 10 C /1 (20)
/1 Event pattern expressed by (20):

/1 A B C

/1 0 1 1

/1 1 1 1

/1 1 * 1

/1 1 * 0

200 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

/1 pattern for

1st sub-sequence:

/1 pattern for 2nd sub-sequence:

/1 A B C
/1 0 1 1
/1 1 1 1
/1 1 = 1
/1 A B C
/1 1 = 1
/1 1 = 0

The event report with masking relevant for (20) :

time
0
109
258
573
586
643
788
915
1062
1395
1640

ORrRPRPROFRORRLRRLROD>

O * * P R OO * Rk

OCORRPRRFRPROOORREREQND

P OOOOOO0OO0OO0OO0O XU

/1 detection of 1st sub-sequence
/1 detection of 2nd sub-sequence

/1 detection of 1st sub-sequence
/] detection of 2nd sub-sequence

OCOoOORRRPRRERPRERREREREM

(20) isTrueat time 573 and time 1395. The first sub-sequence01 A -> 1* Bisdetected at time 258, since
* maps to any state. From time 258 onwards, B is masked. The second sub-sequence 10 Cis detected at time
573. From time 573 onwards, B is unmasked. The first sub-sequence is detected again at time 1062. The second
sub-sequence is detected again at time 1395.

E->10 C
pattern expressed by (21):

11 (21)

1st sub-sequence:

/1l pattern for 2nd sub-sequence:

01 A & 1*

/1 Event

/1 A C E
/1 0 1 1
/1 1 1 *
/1 1 o *
/1l pattern for
/1 A C E
/1 0 1 1
/1 1 1 *
/1 A C E
/1 1 1 *
/1 1 o *

The event report with masking relevant for (21) :

tine
0
109
258
573
586
643

A
0
1
1
1
0
1

[eoNeNoNel i i)

IEEE P1603 Draft 3

coOoORrRLELRQO

o000 XU

/1 detection of 1st sub-sequence
/1 abortion of detection process

O N N 1l

Advanced Library Format (ALF) Reference Manual

201

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

788 0 1 1 o0 1
915 1 1 1 0 * /1 detection of 1st sub-sequence
1062 1 1 1 0 * /1 disregard event out of scope
1395 1 0 0 0 0 /1 detection of 2nd sub-sequence
1640 0 O O 1 o0

(21) is True at time 1395. The first sub-sequence 01 A & 1* E is detected at time 109. From time 109
onwards, E ismasked. The event on B at time 258 aborts continuation of the detection process and triggers restart
from the beginning. The first sub-sequence is detected again at time 915. From time 915 onwards, E is masked.
The event at time 1062 is therefore out of scope. The second sub-sequence 10 Cis detected at time 1395.

0OlA->*1B->10B&10C Il (22)
/1 Event pattern expressed by (22):
/1 A
/1 0
/1 1
/1 1
/1 1
/1 pat
/1 A
0
1
t
A
1
1
1

_..,
o

1st sub-sequence:

/1
/1
/1 pa
/1
/1
/1
/1

* xS OF * @

_.,
o
ORRPOTRPRRPOTORRLRERQND

2nd sub-sequence:

OrFr *mW?>S

The event report with masking relevant for (22) :

>

tine
0
109
258
573
586
643
788
915
1062
1395
1640

/1 detection of 1st sub-sequence
/] abort

/1 detection of 1st sub-sequence
/1 continue
/1 detection of 2nd sub-sequence

ORRPPFPORFRPRORRERREO
OOR % % % ¥ *ORRLR®m
OCORRPRRPROOORRERE(QD
RPOOO0OO0OO0OO0OO0OO0OO XU
OCOoOO0ORRRPRRERPRERRERREM

(22) is True at time 1395. The first sub-sequence 01 A is detected at time 109. Therefore, B is unmasked.
Since B=0 at time 258, the attempt to detect the second sub-sequence is aborted and the detection process restarts
from the beginning. The first sub-sequence 01 A is detected again at time 109. The second sub-sequence*1 B
-> 10 B & 10 Cisdetected at time 1395.

01 A->1? A&0* B&1* E-> 10 C 1 (23)
/1l Event pattern expressed by (23):

/1 A B C E

/1 0 0 1 1

/1 1 0 1 1

202 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

/1 1 * 1 *
/1 1 * 0o =
/1 pattern for 1st sub-sequence:
/1 A B C E

/1 0 O 1 1
/1 1 0 1 1
/1 ? 1 =

/1 pattern for 2nd sub-sequence:
/1 A B C E
/1 ? (R
/1 ? 0o =

The event report with masking relevant for (23):

>

tine
0
109
258
573
586
643
788
915
1062
1395
1640

/1 detection of 1st sub-sequence
/] abort

ORRPPRPRORORRERREO
OOR * xOOO0OORRLRM®
OCORRPRRFRPROOORRERE(QD
POOO0OO0OO0OO0OO0OO0OO XU
QOO * *RPRREPRRREREPM

(23) isnot True at any time. The first sub-sequence is detected at time 788. The event at time 915 does not
match the expected second sub-sequence.

10.6.14 Sequences of conditional event sequences

The symbol * can be used to describe the scope of avector expression directly in the vector expression language.
Thisis particularly useful for sequences of vect or _condi ti onal _event expressions.

Inreusing (17) asexample:

(10 (A& B) ->10 (A] B)) &!'D
the scope of the sample event report contains contain the variables A, B, C, D, and E. The
vector _conditional _event expression (17) contains only the variables A, B, and D and the implicit
local variables A&B and A| B. Therefore, the global variables C and E are out of scope within (17) . Theimplicit
local variables A&B and A| B are in scope within, and only within, (17) .
Now consider a sequence of vect or _condi ti onal _event expressions, where variables move in and out
of scope. With the following formalism, it is possible to transform such a sequence into an equivalent
vector_conpl ex_event expression, alowing for a change of scope within each
vector _conditional _event expression.

<vector_conditional _event#l1> .. -> .. <vector_conditional _event#N>

where

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 203

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

<vector_conditional event#i >
=== <vector_conpl ex_event #i > & <bool ean_expression#i > // 1 <i < N

The principleisto decompose each vect or _condi ti onal _event expression into a sequence of three vec-
tor expressions prefix, kernel, and postfix and then to reassembl e the decomposed expressions.

<vector_conditional event#i >
=== <prefix#i > -> <kernel #i > -> <postfix#i>// 1 <i <N

a) Definethe prefix for eachvect or _condi ti onal _event expression.
Theprefixisavect or _event expression defining all implicit local variables.

Example
*? (A&B) & *? (A B)

b) Definethekernel for eachvect or _condi ti onal _event expression.

The kernel is the vector_conpl ex_event expresson equivalent to the
vector _conditi onal _event expression.

<vect or _conpl ex_event #i > & <bool ean_expr essi on#i >

=== <vect or _conpl ex_event #i >

& (11 <bool ean_expression#i > ..->.. 11 <bool ean_expr essi on#i >)
The kernel can consist of one or severa alternative vect or _event _sequence expressions. Within
eachvect or _event _sequence expression, the same set of global variables are pulled out of scope
at the first vect or _event expression and pushed back in scope at the last vect or _event expres-
sion.

Example

?* C& ?* E /] global variables out of scope

& 10 (A&B) &11 (!D -> 10 (A] B) & 11 (!'D

& *? C& *? E // global variables back in scope

c) Definethe postfix for eachvect or _condi ti onal _event expression.
The postfixisavect or _event expression removing all implicit local variables.

Example
?* (A&B) & ?* (A B)

d) Jointhesubsequentvect or _conpl ex_event expressionswiththevect or _and operator between
prefix#i+1and kernel# and also between postfix#i and kernel#i+1.
<vector_conditional _event#i > -> <vector_conditional _event#i +1> ..
=== .. <prefix#i>
-> <postfix#i-1> & <kernel #i > & <prefi x#i +1>
-> <postfix#i > & <kernel #i +1> & <prefi x#i +2>
-> <postfix#i +1> ..

The complete example:

(10 (A& B) -> 10 (A| B)) &!D

*2 (A&B) & *? (Al B)

> 7?2 C& ™ E

& 10 (A&B) &11 (!D -> 10 (A| B) & 11 (!D)
&*? C&*? E

-> 2% (A&B) & ?* (A B)

204 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

NOTE —The in-and-out-of-scope definitions for global variables are within the kernel, whereas the in-and-out-of-scope def-
initions for globa variables are within the prefix and postfix. In this way, the resulting vect or _conpl ex_event expres-
sion contains the same uninterrupted sequence of events as the original sequence of vect or _condi ti onal _event
expressions.

10.6.15 Incompletely specified event sequences

So far the vector expression language has provided support for completely specified event sequences and also the
capability to put variables temporarily in and out of scope for event observation. As opposed to changing the
scope of event observation, incompletely specified event sequences require continuous observation of al vari-
ables while allowing the occurrence of intermediate events between the specified events. The following operator
can be used for that purpose:

vect or _fol | owed_by, aso called followed-by operator, using the symbol ~>.
The ~> operator is the separator between consecutively occurring events, with possible unspecified
events in-between.

Detection of event sequences involving ~> requires detection of the sub-sequence before ~>, setting a flag,
detection of the sub-sequence after ~>, and clearing the flag.

This can beillustrated with a sample event report:

tinme
0
109
258
573
586
643
788
915
1062
1395
1640

~
~

01 A detected, set flag
/1 10 C detected, clear flag
/1 01 A detected, set flag
/1 01 A detected again

/1 10 C detected, clear flag

ORRPRPROFRPRORRLRRELROD>
OCORRPRFRPROOOORRD
OCORRPRRPROOORREQND
RFPOOO0OO0OO0OO0OO0OO0OOX0U
COoOORRRPRRERRERREREREM

Example

01 A~>10 C Il (24)
/1 as opposed to previous exanple (5):01 A-> 10 C

(24) isTrue at time 573 because of 01 A at time 109 and 10 C at time 573. It is True again at time 1395
because of 01 Aattime643and 10 Cat 1395. On the other hand, (5) is never True because there are always
eventsin-between 01 Aand10 C.

Vector expressions consisting of vector_event expressions separated by -> or by ~> are caled
vect or _event _sequence expressions, using the same syntax rules for the two different
vector _fol |l owed_by operators. Consequently, al vector expressions involving
vect or _event _sequence expressions and vector _binary operators are called
vect or _conpl ex_event expressions.

However, only a subset of the semantic transformation rules can be applied to vector expressions containing ~>.

Associative rule applies for both - > and ~>.

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 205

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

(01 A~>01B) ~>01 C===01A~> (0L C~>01B~>010
(01 A->01B) ->01 C===01A-> (0L C->01B->010
(01 A~>01B) ->01 C===01A~> (0L C~>01B->010
(01 A->01B) ~>01 C===01A-> (0L C->01B~>010

Distributive rule applies for both - > and ~>.

(0L A| 01 B) ->01 C===01A~>01C| 01 B->01C
(01 A| 01 B) ~>01 C===01A~>01LC| 01 B~>01C
(0L A| 01 B) ->01 C===01A~>01LC| 0L B->01C

Scalar multiplication rule applies only for - >. The transformation involving ~> is more complicated.

(01 A->01B) & (01 C->01 D)
=== (01 A&01 C -> (01 B&O01 D

(01 A~>01B) & (01 C->01D)
=== (01 A&01 C -> (01 B&O01 D
| 01 A~>01 C-> (01 B & 01 D

(01 A ~> 01 B) & (01 C ~> 01 D)

=== (01 A & 01 C) ~> (01 B & 01 D)
| 01 A ~>01 C~> (01 B & 01 D)
| 01 C~> 01 A ~> (01 B & 01 D)

Transformation of vect or _condi ti onal _event expressions into vect or _conpl ex_event expres
sions applies only for - >.

(01 A->01B) &C
=== 01 A& 11 C->01 B&11 C

(01 A~>01B) &C
=== 01 A&11 C~>01B&11l C

Since the ~> operator allows intermediate events, there is no way to express the continuously True condition C.
10.6.16 How to determine well-specified vector expressions
By defining semantics for
dternativevect or _event _sequence expressions
and establishing calculation rules for

transforming vect or _conpl ex_event expressions into alternative vect or _event _sequence
expressions

and for

transforming aternative vect or _condi ti onal _event expressions into aternative
vect or _conpl ex_event expressions,

semantics are now defined for all vector expressions.

206 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

The calculation rules also provide means to determine whether a vector expression is well-specified or ill-speci-
fied. Anill-specified vector expression is contradictory in itself and can therefore never be True.

Once avector expression is reduced to a set of alternativevect or _event _sequence expressions, two crite-
ria define whether avector expression is well-defined or not.

— Compatibility between subseguent events on the same variable:
The next state of earlier event shall be compatible with previous state of later event. This check applies
only if no ~> operator isfound between the events.
— Compatibility between simultaneous events on the same variable:
Both the previous and next state of both events shall be compatible. Such events commonly occur as
intermediate cal culation results within vector expression transformation.
The following compatibility rules apply:
a) ? iscompatible with any other state. If the other stateis*, the resulting stateis ?. Otherwise, the result-
ing state is the other state.
b) * iscompatible with any other state. The resulting state is the other state.
c¢) Any other state is only compatible with itself.
Examples
01 A->01B->10 A
The next state of 01 A is compatible with the previous state of 10 A.
OXA->01B->10 A
The next state of 0X A isnot compatible with the previous state of 10 A.
OXA~>01B->10 A
Compatibility check does not apply, since intermediate events are allowed.
01 A& 10 A
Both the previous and next state of A are contradictory; this resultsin an impossible event.

?1 A& 1? A

Both previous and next state of A are compatible; thisresultsin the non-event 11 A.

10.7 Boolean expression language

The boolean expression language XXX, as shown in Syntax 84.

10.8 Vector expression language

The vector expression language XXX, as shown in Syntax 85.

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 207

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

boolean_expression ::
(boolean_expressi on)
| pin_value
| boolean_unary boolean_expression
| boolean_expression boolean |_binary boolean |_expression
| boolean_expression boolean _expression .
{ boolean expron ? boolean_expression : }
boolean_expression
boal ?an_unary u=
| ~
| &
| ~&
I
3
| ~N
boolean_binary
&
| & &
I
I
I
| ~N
! =
| ==
|>
I<—
|>
| <
|+
5
|/
| %
|>>
| <<

Syntax 84—Boolean expression langauge

10.9 Control expression semantics

** Syntax 85 also shows the control expression syntax (at the bottom); is this deliberate??

208 Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 3

vector_expression ::=
(‘vector_expression)
| vector_unary boolean_expression
| vector_expression vector_binary vector_expression
| boolean_expression ? vector_expression :
{ boolean_expression ? vector_expression . }
Vector_expression
| boolean_expression control_and vector_expression
| vector_expression control_and boolean_expression
vector_unary ::=
edge literal
vector_binary ::=

1& &
|
il

->
>

l

AWAN

->
~>
>

Ro

| <& >
control_and ::=
& |1&&
control_expression ::=
vector_expression)
| (boolean_expression)

IEEE P1603 Draft 3

Syntax 85—Vector expression language

Advanced Library Format (ALF) Reference Manual

209

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

210

Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 3

11. Constructs for modeling of analog behavior

** Add lead-in text**

11.1 Arithmetic expression language

Arithmetic expressions define the contents of an EQUATI ON. Variables used in the EQUATI ON are the i den-
tifiers oftheheader nodel ,if present, or elsethe nodel _keywor ds of theheader nodel .

11.1.1 Syntax of arithmetic expressions

bool _ . 2 oy e . :
" o)

An arithmetic expression XXX, as shown in Syntax 86.

arithmetic_expression ::=
(arithmetic_expression)

| arithmetic_value

| [arithmetic_unary] arithmetic_expression

| arithmetic_expression arithmetic_binary
arithmetic_expression

| boolean_expression ? arithmetic_expression
{ boolean_expression ? arithmetic_expression : }
arithmetic_expression

| arithmetic_macro
((arithmetic_expression { , arithmetic_expression})

Syntax 86—Arithemetic expression

Examples
1.24
- vdd
Cl +
MAX (3.5*C, -Vvdd/2 , 0.0)
(C>10) ? Wdd**2 : 1/2*vdd - 0.5*C
An arithmetic unary XXX, as shown in Syntax 87.

An arithmetic binary XXX, as shown in Syntax 88.

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 209

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

arithmetic_unary ::=
sign

Syntax 87—Arithmetic unary

arithmetic_binary ::=
+

};
|/
|**
| %

Syntax 88—Arithmetic binary

An arithmetic macro XXX, as shown in Syntax 89.

arithmetic_macro ::=
abs
|exp
|log
[min
| max

Syntax 89—Arithmetic macro

11.1.2 Arithmetic operators

Table 66, Table 67, and Table 68 list unary, binary, and function arithmetic operators.

Table 66—Unary arithmetic operators

Operator Description

+ Positive sign (for integer or number)

- Negative sign (for integer or number)

Table 67—Binary arithmetic operators

Operator Description

+ Addition (integer or number)

- Subtraction (integer or number)

* Multiplication (integer or number)

/ Division (integer or number)

*x Exponentiation (integer or number)
% Modulo division (integer or number)

210 Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 3

Table 68—Function arithmetic operators

Operator Description
LOG Natural logarithm (argument is + integer or number)
EXP Natural exponential (argument isinteger or number)
ABS Absolute value (argument is integer or number)
M N Minimum (all arguments are integer or number)
MAX Maximum (all arguments are integer or number)

Function operators with one argument (such as | og, exp, and abs) or multiple arguments (such as i n and
max) shall have their arguments within parenthesis, eg., m n(1. 2, -4. 3, 0. 8).

11.1.3 Operator priorities

The priority of binding operators to operands in arithmetic expressions shall be from strongest to weakest in the
following order:

a) unary arithmetic operator (+, -)
b) exponentiation (**)

¢ multiplication (*), division (/), modulo division (%
d) addition (+), subtraction (-)

11.2 Arithmetic model and related statements

** Add lead-in text**

11.2.1 Arithmetic models
An arithmetic model is an object that describes characterization data or a more abstract, measurable relationship

between physical quantities, as shown in Figure 32. The modeling language alows tabulated data as well aslin-
ear and non-linear equations. The equations consist of arithmetic expressions based on the symbols defined in

|EEE 1364-1995.
arithmetic model
@i ns '& %\ contains
S
header”©

contans ™ table eguation

: . 4
arithmetic express on’°/

Figure 32—Arithmetic model

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 211

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

11.2.1.1 Principles of arithmetic models

The purpose of arithmetic models is to specify cal culable mathematical relationships between objects represent-
ing physical quantities in the library. Arithmetic models are identified by context-sensitive keywords, because
how these quantities are measured, extracted, or interpreted depends on the context in which the objects are
placed.

The quantity identified by the keyword CAPACI TANCE can serve as example. In the context of aPI N, it repre-
sents pin capacitance. In the context of aW RE, it represents wire capacitance. In the context of a RULE, it repre-
sents the calculation method for a capacitance formed by alayout pattern described within the rule. The context-
specific semantics of each arithmetic model are specified in 8 for electrical models and 9 for physical models.

In certain cases, the context alone does not completely specify the semantics of an arithmetic model. Auxiliary
definitions within the arithmetic model are needed; these are represented by using annotations or annotation con-
tainers.

A smple exampleisthe UNI T annotation, which is applicable for most arithmetic models. It specifies the unit in
terms of which the arithmetic model data is represented. The applicable auxiliary objects for each arithmetic
model are specified in 8 for electrical models and 9 for physical models.

11.2.1.1.1 Global definitions for arithmetic models

In many cases, auxiliary definitions apply globally to all arithmetic models within a certain context, for instance,
the UNI T can apply for all CAPACI TANCE objects within a library. In order to specify such global definitions,
the arithmetic model construct can be used without data.

A model definition XXX, as shown in Syntax 90.

model_definition ::=
mode!_keyword [identifier | { all_purpose_items}

Syntax 90—model_definition

This construct has the syntactical form of an annot at i on_cont ai ner (see 11.7).
11.2.1.1.2 Trivial arithmetic model

The simplest form of an arithmetic model contains just constant data, as shown in Syntax 91.

trivia_model ::=
model_keyword [identifier] = number
| model_keyword [identifier] = number { al_purpose items }

Syntax 91—trival_model

This construct has the syntactical form of anannot at i on (see 11.7).

212 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

11.2.1.1.3 Arithmetic model using EQUATION

The arithmetic model data can be represented as an EQUATI ON. In this case, a HEADER defines the arguments of
the equation. It is also possible to use other arithmetic models, which are visible within the context of this arith-
metic model, as arguments. Those arguments need not appear in the HEADER, as shown in Syntax 92.

equation_based modd ::=
model_keyword [identifier] {
[al_purpose_items] [equation_based header | equation}
equation_based header ::=
HEADER { model_keyword { model_keyword} }
|IHEADER { model_definition { model_definition} }
equation ::=
EQUATION { arithmetic_expression }

Syntax 92—equation_based model
Thesyntax of ari t hmet i c_expr essi on isexplained in xxx.
11.2.1.1.4 Arithmetic model using TABLE

The arithmetic model data can be represented as a lookup table. In this case, a TABLE is necessary for the data
itself and for each argument, as shown in Syntax 93.

table based model ::=
model_keyword [identifier] {
[al_purpose_items] table_based header table [equation] }
table based header ::=
HEADER ({ table_model_definition { table_model_definition} }
table model_definition ::=
model_keyword [identifier | { all_purpose_itemstable }

able ::=
TABLE mbol mbol
| TABLE fr%mber% %mber}} i

Syntax 93—table_based_model

Tables containing symbols are only meant for lookup of discrete datapoints. Tables containing numbers are for
calculation and, eventually, interpolation of datapoints. The model _keywor d (see 8 and 9) defines whether
symbols or numbers are legal for a particular table.

The size of thetable inside thet abl e_based_nbdel shall be the product of the size of the tables inside the
t abl e_header. In order to support interpolation, the numbers in each table inside thet abl e_header shal
be in strictly monotonic ascending order. See 11.2.1.2 for more details.

Thet abl e_nodel _defi ni ti on canaso be used outside the context of at abl e_header, very much like
a nodel _definition. In this case, the nodel _definition supplies the same information as the
t abl e_nodel _defi niti on, plus the additional information of a discrete set of valid numbers applicable
for the model.

For example, the W DTH of a physical layout object can contain only a discrete set of legal values. Those can be
specified using at abl e_nodel _defi niti on.

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 213

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

However, the table in at abl e_nodel definition outside atabl e_header shal not substitute the
table inside the t abl e_header. The former defines a legal set of values, the latter defines the table-lookup
indices.

If all table dataare numbers, thet abl e_based_nbdel can also have an optional equation. Thisequationisto
be used when the argument data are out of interpolation range. Without the equation, extrapolation shall be
applied for datawhich are out of range.

11.2.1.1.5 Complex arithmetic model

A complex arithmetic model can be constructed by defining a nested arithmetic model within another arithmetic
model, as shown in Syntax 94.

complex_model ::=
model_keyword [identifier | lg
[al_purpose_items] HEADER { model { model } }
equation
| model_keyword {
al_purpose_items HEADER { header_model { header_model } }
table [equation] }
header_model ::=
model_definition
| table_model_definition
| equation_based _model
| table_based_model
| header_table_model
header table model ::=
model_keyword [identifier
al_purpose_items HEAI!)ER
BL E { number { number }

{}s?/mbol { symbol } }

Syntax 94—complex_model

The data of the inner arithmetic model is calculated first. Then the result is applied for calculation of the data of
the outer arithmetic model.

If any header nodel is either nodel _definition or tabl e nodel definition, then the
conpl ex_nodel reduces to the previously defined equation_based_nodel and
t abl e_based_nodel , respectively. In order to support a table in the general nodel, any
header nodel shal be either at abl e_nodel _definition ortabl e _based_nodel , and the num-
bersin each table inside each header _nodel shall be strictly monotonically increasing.

The header _t abl e_npdel construct can be used to associate symbols with numbers. For example, process
corners can be defined as discrete symbols and associated with process derating factors. The numbers can be
used in equations and for interpolation, whereas the symbols cannot.

11.2.1.2 Construction of arithmetic models

Input variables, aso called arguments of arithmetic models, appear in the HEADER of the model. In the simplest
case, the HEADER is just alist of arguments, each being a context-sensitive keyword. The model itself is aso
defined with a context-sensitive keyword.

The model can be in equation form. All arguments of the equation shall be in the HEADER. The ALF parser shall

issue an error if the EQUATI ON uses an argument not defined in the HEADER. A warning shall be issued if the
HEADER contains arguments not used in the EQUATI ON.

214 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

Example
DELAY {
HEADER {
CAPACI TANCE {...}
SLEWRATE {. ..}

}
EQUATI ON {

0.01 + 0.3*SLEWRATE + (0.6 + 0. 1* SLEWRATE) * CAPACI TANCE
}

}

If the model uses a TABLE, then each argument in the HEADER al so needs a table defining the format. The order
of arguments decides how the index to each entry is calculated. The first argument is the innermost index, the fol-
lowing arguments are outer indices.

DELAY {
HEADER {
CAPACI TANCE {
TABLE {0.03 0.06 0.12 0. 24}

}
SLEWRATE {
TABLE {0.1 0.3 0.9}

}

}

TABLE {
0.07 0.10 0.14 0.22
0.09 0.13 0.19 0.30
0.10 0.15 0.25 0.41

}

}

The first argument CAPACI TANCE has four entries. The second argument SLEWRATE has three entries. Thus,
DELAY has 4* 3=12 entries. For readability, comments can be inserted in the table.

TABLE {

// capacitance: 0.03 0.06 0.12 0.24

e sl ew at e:
0.07 0.10 0.14 0.22 // 0.1
0.09 0.13 0.19 0.30// 0.3
0.10 0.15 0.25 0.41// 0.9

}

Comments have no significance for the ALF parser nor does the arrangement of rows and columns. Only the
order of valuesisimportant for index calculation. The table can be made more compact by removing newlines.

TABLE { 0.07 0.10 0.14 0.22 0.09 0.13 0.19 0.30 0.10 0.15 0.25 0.41 }

For readability, the models and arguments can also have names, i.e., object I1Ds. For named objects, the name is
used for referencing, rather than the keyword.

DELAY rise_out{

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 215

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

HEADER {
CAPACI TANCE c_out {...}
SLEWRATE fall _in {...}

}
EQUATI ON {

0.01 + 0.3 * fall _in + (0.6 + 0.1* fall __in) * c_out
}

}

The arguments of an arithmetic model can be arithmetic models themselves. In this way, combinations of
TABLE- and EQUATI ON-based models can be used, for instance, in derating.

Analogous with FUNCTI ON, both EQUATI ON and TABLE representation of an arithmetic model are allowed.
The EQUATI ONisintended to be used when the values of the argumentsfall out of range, i.e., to avoid extrapo-
lation.

11.2.1.3 Arithmetic submodels

Arithmetic submodels can be used to distinguish different measurement conditions for the same model. The root
of an arithmetic model can contain nested arithmetic submodels. The header of an arithmetic model can contain

nested arithmetic models, but not arithmetic submodels.

The arithmetic submodels shown in Table 69 are generally applicable.

Table 69—Generally applicable arithmetic submodels

Object Description

M N For measured or calculated data:

the data represents the minimal value/ set of values within a statistical distribution.
For datawithin LI M T container:

the data represents the lower limi.t value / set of values

TYP For measured or calculated data:
the data represents the typical value/ set of values within a statistical distribution.

MAX For measured or calculated data:

the data represents the maximal value/ set of values within a statistical distribution.
For datawithin LI M T container:

the data represents the lower limit value / set of values.

DEFAULT For measured or calculated data:
the data represents the default value / set of valuesto be used per default.

The arithmetic submodels shown in Table 70 are only applicable in the context of electrical modeling.

Table 70—Submodels restricted to electrical modeling

Object Description
H GH Applicable for electrical data measured at alogic hi gh state of apin.
Low Applicable for electrical data measured at alogic | ow state of apin.

216 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

Table 70—Submodels restricted to electrical modeling (Continued)

Object Description
Rl SE Applicable for electrical data measured during alogic | owto hi gh transition of apin.
FALL Applicable for electrical data measured during alogic hi gh tol owtransition of apin.

The arithmetic submodels shown in Table 71 are only applicable in the context of physical modeling.

Table 71—Submodels restricted to physical modeling

Object Description
HORI ZONTAL Applicable for layout measurements in horizontal direction.
VERTI CAL Applicable for layout measurementsin vertical direction.

The semantics of the restricted submodels are explained in 8 and 9.
11.2.2 Arithmetic model statement

An arithmetic model statement XXX, as shown in Syntax 95.

arithmetic_models ::=

arithmetic_model { arithmetic_model }
arithmetic_model ::=

partial_arithmetic_model

| non_trivial_arithmetic_model

| trivial_arithmetic_model

| assignment_arithmetic_model

| arithmetic_model_template_instantiation

Syntax 95—Arithmetic model statement

11.2.3 Partial arithmetic model

A partia arithmetic model XXX, as shown in Syntax 96.

partial_arithmetic_model ::=
nonescaped_identifier [arithmetic_model_identifier] { partial_arithmetic_model_items}
partial_arithmetic_model_items ::=
partial_arithmetic_model_item { partial_arithmetic_model_item }
partial_arithmetic_model_item ::=
any_arithmetic_model_item
| table

Syntax 96—~Partial arithmetic model

A partia arithmetic model contains only definitions relevant for the model, but not sufficient datato evaluate the
model.

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 217

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

Definitions within unnamed partial arithmetic model (i.e., a partia arithmetic model without an arithmetic model
identifier) shall be inherited by all arithmetic models of the same type (i.e., using the same nonescaped identifier)
within scope. However, these definitions can be locally overwritten.

A named partial arithmetic model (i.e., apartial arithmetic model without an arithmetic model identifier) can be
used as argument of an EQUATI ON within another arithmetic model within scope without appearing in the
HEADER.

— If apartia arithmetic model outside a HEADER contains a TABLE, the arithmetic values in the TABLE
shall define adiscrete set of valid values for the model.
— If a partia arithmetic model within a HEADER contains a TABLE, the arithmetic values in the TABLE
shall define the entries for table-lookup.
11.2.4 Non-trivial arithmetic model

A non-trivial arithmetic model XXX, as shown in Syntax 97.

non_trivial_arithmetic_model ::=
nonescaped_identifier [arithmetic_model_identifier] {
[any_arithmetic_model_items]
arithmetic_body
[any_arithmetic_model_items] }

Syntax 97—Non-trivial arithmetic model
A non-trivia arithmetic model contains sufficient data to evaluate the model.
11.2.5 Trivial arithmetic model

A trivia arithmetic model XXX, as shown in Syntax 98.

trivial_arithmetic_model ::=
nonescaped_identifier [arithmetic_model_identifier | = arithmetic_value ;
| nonescaped_identifier [arithmetic_model_identifier] = arithmetic_value
any_arithmetic_model_i tems}

Syntax 98—Trivial arithmetic model

A trivia arithmetic model is associated with a constant arithmetic value. Therefore, the evaluation of the arith-
metic model istrivial.

11.2.6 Assignment arithmetic model

An assignment arithmetic model XXX, as shown in Syntax 99.

assignment_arithmetic_mode! ::=
arithmetic_model_identifier = arithmetic_expression ,

Syntax 99—Assignment arithmetic model

Thisform of arithmetic model is valid only in the following cases.

218 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

— A partia arithmetic model has been defined using the arithmetic model identifier AND

arithmetic models for all arguments contained in the arithmetic expression have been defined.

— Thisconstruct is used in a dynamic template instantiation.
11.2.7 ltems for any arithmetic model

Arithmetic model items XXX, as shown in Syntax 100.

any_arithmetic_model_items ::=
any_arithmetic_model_item { any_arithmetic_model_item }
any_arithmetic_model_item ::=
all_purpose_item
| from
| to
| violation

Syntax 100—Arithmetic model items

Semantic restrictions apply, depending on the type and context of the arithmetic model. ** Define these* *

11.3 Arithmetic submodel and related statements

** Add lead-in text**

11.3.1 Arithmetic submodel statement

An arithmetic submodel statement XXX, as shown in Syntax 101.

arithmetic_submodels ::=
arithmetic_submodel { arithmetic_submodel }
arithmetic_submodel ::=
non_trivial_arithmetic_submodel
| trivial_arithmetic_submodel
| arithmetic_submodel_template instantiation

Syntax 101—Arithmetic submodel statement

11.3.2 Non-trivial arithmetic submodel

A non-trivia arithmetic submodel XXX, as shown in Syntax 102.

non_trivial_arithmetic_submodel ::=
nonescaped_identifier {
[any_arithmetic_submodel_items]
arithmetic_body
[any_arithmetic_submodel _items] }

Syntax 102—Non-trivial arithmetic submodel

A non-trivial arithmetic submodel contains sufficient data to evaluate the arithmetic submodel.
11.3.3 Trivial arithmetic submodel

A trivia arithmetic submodel XXX, as shown in Syntax 103.

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual

219

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

trivial_arithmetic_submodd ::=
nonescaped_identifier = arithmetic_value
| nonescaped_identifier = arithmetic_val ue{ any_arithmetic_submodel_i tems}

Syntax 103—Trivial arithmetic submodel

A trivia arithmetic submodel is associated with a constant arithmetic value. Therefore, the evaluation of the
arithmetic submodel istrivial.

11.3.4 Items for any arithmetic submodel

Arithmetic submodel items XXX, as shown in Syntax 104.

any_arithmetic_submodel_items ::=
any_arithmetic_submodel_item { any_arithmetic_submodel_item }
any_arithmetic_submodel_item ::=
all_purpose_item
| violation

Syntax 104—Arithmetic submodel items

Semantic restrictions apply, depending on the type and context of the arithmetic model. ** Define these* *

11.4 Arithmetic body and related statements

** Add lead-in text**

11.4.1 Arithmetic body

An arithmetic body XXX, as shown in Syntax 105.

arithmetic_body ::=
arithmetic_submodels
| table_arithmetic_body
| equation_arithmetic_body
table_arithmetic_body ::=
header table [equation]
equation_arithmetic_body ::=
[header] equation [table]

Syntax 105—Arithmetic body

An arithmetic model body shall supply the data necessary for evaluation of the arithmetic model.
11.4.2 HEADER statement
A HEADER statement XXX, as shown in Syntax 106.

The HEADER shall contain arguments for evaluating the arithmetic model. The arithmetic values of those argu-
ments shall be supplied by application program.

Semantic restriction: No arithmetic submodel is allowed within an arithmetic model body.

220 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

header ::=
HEADER ({ identifiers }
|HEADER { header_arithmetic_models }
| header_template_instantiation
header_arithmetic_models ::=
header_arithmetic_model { header_arithmetic_mode }
header_arithmetic_ model ::=
non_trivial_arithmetic_model
| partial_arithmetic_model

Syntax 106—HEADER statement
11.4.3 TABLE statement

A TABLE statement XXX, as shown in Syntax 107.

table::=
TABLE { aithmetic_values }
| table_template_instantiation

Syntax 107—TABLE statement

A TABLE shall provide the means for evaluation using a look-up method. All ari t hmet i c_val ues within
the TABLE shall be of the same type and compatible with the type of the arithmetic model under evaluation.

11.4.4 EQUATION statement

An EQUATI ON statement XXX, as shown in Syntax 108.

equation ::=
EQUATION { arithmetic_expression }

| equation_template_instantiation

Syntax 108—EQUATION statement

An EQUATI ON shall provide the means for evaluation using an analytical method.

11.5 Arithmetic model container

An arithmetic model container XXX, as shown in Syntax 109.

arithmetic_model_container ::=
arithmetic_model_container_identifier { arithmetic_models }

Syntax 109—Arithmetic model container

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 221

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

The keywords shown in Table 72 are defined for objects that can contain arithmetic models.

Table 72—Unnamed containers for arithmetic models

Object Description
FROM Contains start point of timing measurement or timing constraint.
TO Contains end point of measurement or timing constraint.
LIMT Contains arithmetic models for limit values.
EARLY Contains arithmetic models for timing measurements relevant for early signa arriva time.
LATE Contains arithmetic models for timing measurements relevant for late signal arrival time.

TheLl M T container isfor general use. The FROM TO, EARLY, and LATE containers are only for use within the
context of timing models.

11.5.1 LIMIT container

A LI M T container shall contain arithmetic models. The arithmetic models shall contain submodels identified
by M Nand/or MAX.

Example

PIN data_in {
LIMT {
SLEWRATE { UNIT = ns; MN = 0.05; MAX = 5.0;}
}
}

The minimum slewrate allowed at pindat a_i nis0. 05 ns, themaximumis5. 0 ns.

PIN data_in {

LIMT {
SLEWRATE {
UNI T = ns;
MAX {
HEADER { FREQUENCY { UNI T=negahz;} }
EQUATI ON { 250 / FREQUENCY }
}
}
}

}

The maximum allowed slewrate is frequency-dependent, e.g., the valueis 0. 25ns for 1GHz.
11.5.2 Containers for arithmetic models and submodels

Containers for arithmetic models can supplement the context-specific semantics of the arithmetic model. There-
fore, arithmetic models can be placed in the context of arithmetic model containers, as shown in Syntax 110.

222 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

model_container :;=
model_container_keyword {
[al_purpose_items] model_container_contents{ model_container_contents} }
model_container_contents ::=
model_container
| trivial_model
| complex_model

Syntax 110—model_container

There is a dedicated set of nodel _cont ai ner _keywor ds. In addition, nrodel _keywor ds can also be
used as nodel contai ner_keywords and dedicated subnobdel keywords can be used as
nodel _keywor ds. The number of levels in nested arithmetic model containers is restricted by the set of
alowed combinations between nopdel contai ner _keywords, nobdel keywords and
subnodel _keywor ds (see11.2.1.3).

11.6 Statements related to arithmetic models for general purpose

** Add lead-in text**

11.6.1 MIN and MAX statements
Semapteso P A
M N, TYP, and MAX indicate the data of the arithmetic model represent minimal, typical, or maximal values

within a statistical distribution. No correlation is assumed or implied between M N data, TYP data, or MAX data
across different arithmetic models.

Example
DELAY {

FROM{ PIN=A; } TO{ PIN=Z; }
MN = 0.34; TYP = 0.38; MAX = 0. 45;

}

POVNER {
MEASUREMENT = average; FREQUENCY = 1e6;
MN=1.2; TYP = 1.4; MAX = 1.5;

}

The M Nvalue for DELAY could simultaneously apply with the M N value for POAER. Typically, the case with
smaller delay is also the case with larger power consumption.

Within the scope of aLl M T container, M N and MAX contain the data for a lower or upper limit, respectively.
There shall be at least one limit, lower or upper, in each model, but not necessarily both.

Example
LIMT {

SLEWRATE { PI N=A; MAX=5.0; }
VOLTAGE { PIN=VDD; M N=1.6; MAX=2.0; }

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 223

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

MIN, MAX as an annotation inside amodel or inside a model argument within the HEADER define the validity
range of the data. If MIN, MAX is not defined and the data is in a TABLE, the boundaries of the data in the
TABLE shall be considered as validity limits.

Example
POVER {
HEADER {
SLEWRATE { PI N=A; M N=0.01; MAX=5.0; TABLE { 0.1 0.5 1.0 } }
CAPACI TANCE { PIN=Z; TABLE { 0.0 0.4 0.8 1.6 } }
}

TABLE { 0.2 0.3 0.6 0.4 0.50.70.80.81.01.51.51.6}
}

The data for POWER is valid for SLEWRATE in the range between 0.01 and 5.0 (via extrapolation) and for
CAPACITANCE in the range between 0.0 and 1.6.

11.6.2 TYP statement

** Add lead-in text**

11.6.3 DEFAULT statement

** Add lead-in text**

11.6.3.1 DEFAULT annotation

Default annotation promotes use of the default value instead of the arithmetic model if the arithmetic model is
beyond the scope of the application tool.

DEFAULT = nunber ;

Restrictions can apply for the allowed type of nunber. For instance, if the arithmetic model allows only
non_negati ve_nunber, then the default isrestricted to non_negat i ve_nunber.

11.6.3.2 Semantics of DEFAULT
Arithmetic submodels can be identified by M N, TYP, and MAX or context-restricted keywords. For cases where

the application tool cannot decide which qualifier applies, a supplementary arithmetic submodel with the quali-
fier DEFAULT can be used.

Example
PIN nmy_pin {
CAPACI TANCE {
MN{ HEADER { ... } TABLE{ ... } }
TYP { HEADER { ... } TABLE { ... } }
MAX { HEADER { ... } TABLE { } o}
DEFAULT { HEADER { ... } TABLE{ ... } }
}
}

NOTE—The DEFAULT model can also degenerate to asingle value; it represents atrivial arithmetic model.

224 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

In certain cases, there is no supplementary submodel. Instead, one of the already defined submodelsis used by
default. For this case, the DEFAULT annotation can be used to point to the applicable keyword.

Example
PIN my_pin {
CAPACI TANCE {
MN { HEADER { ... } TABLE { }}
TYP { HEADER { ... } TABLE { } o}
MAX { HEADER { ... } TABLE { 1}
DEFAULT = TYP;
}
}

The trivial arithmetic model construct with DEFAULT can also be used for an argument in the context of the
HEADER of an arithmetic model. This enables eval uation of the arithmetic model in case the data of the argument
can not be supplied by the application tool.

Example
PIN my_pin {
CAPACI TANCE {

HEADER { TEMPERATURE { DEFAULT=50; TABLE { 0 50 100 } } }
TABLE { 0.05 0.07 0.10 } }

}

The DEFAULT value of the CAPACI TANCE hereis0. 07.
11.6.4 LIMIT statement

In general, reliability is modeled by arithmetic models using the LI M T construct.
11.6.4.1 Global LIMIT specifications

Globa limits can be specified for electrica quantities, even if they are related to CELLS, Pl Ns, or VECTORS.
Such global limits apply, unless local limits are specified within the context of CELLS, Pl Ns, or VECTORs. The
priorities are given below.

a) LI M T within the context of the VECTOR

b) LI M T within the context of aPl N (if theLlI M T in the VECTOR has Pl N annotation)
c) LI M T within the context of the CELL

d) LI M T within the context of the SUBLI BRARY

€) LI M T within the context of the LI BRARY

f) LI M T outsideLl BRARY

The arguments in the HEADER of the LI M T model can only be items that are visible within the scope of the

LI M T model. In particular, arguments with PI N annotations are only legal for LI M T models in the context of
aCELL or aVECTORwithin the CELL.

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 225

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

11.6.4.2 LIMIT and model specification in the same context

An arithmetic model for a physical quantity and a limit specification for the same physical quantity can appear
within the same context, for example, an arithmetic model for FLUENCE calculationand aLl M T for FLUENCE
within the context of a VECTOR. In such a case, the calculated quantity shall be checked against the limit of the
quantity within that context.

On the other hand, if multiple arithmetic model s are given within the context for which the limit applies, the limit
shall be checked against the combination of all arithmetic models in the case of cumulative quantities, or against
the minimum or maximum calculated value in the case of non-cumulative or mutually exclusive quantities.

For example, aLl M T for FLUENCE can be given in the context of a CELL. Calculation models for FLUENCE
can be given for multiple VECTORs within the context of the CELL. TheLl M T for FLUENCE shall be checked
against the accumulated FLUENCE calculated for all VECTORS.

Example
CELL my_cell {
PIN A { DIRECTION = input; }
PIN B { DIRECTION = input; }
PIN C { DIRECTION = input; }
PIN Zz { DIRECTION = output; }

LIMT { FLUENCE { MAX = 1e20; } } }

VECTOR (01 A -> 10 Z) {
FLUENCE = 1le-5;

}

VECTOR (01 B -> 10 Z) {
FLUENCE = 1le-5;
}

VECTOR (01 C-> 10 Z) {
FLUENCE = 1le-6;
LIMT { FLUENCE { MAX = 1el8; } }

}

The fluence limit for the cell is reached after 10%° occurrences of VECTOR (01 A -> 10 Z) or VECTOR
(01 B -> 10 Z) counted together. The fluence limit for the VECTOR (01 C -> 10 Z) isreached
after 10%* occurrences of that vector.

An example for a non-cumulative quantity is SLEWRATE. The VECTORs in the context of which SLEWRATE is
modeled describe timing arcs with mutually exclusive conditions. Therefore, if aminimum or maximum LI M T
for SLEWRATE is given for aPl Nin the context of a CELL, this SLEWRATE shall be checked against the mini-
mum or maximum value of any calculated SLEVWRATE applicableto that PI N.

Example

CELL ny_cell {

PIN A { DIRECTION = input; }
PIN B { DI RECTION = input; }
PIN C { DI RECTION = input; }

PIN Z { DIRECTION = output; LIMT { SLEWRATE { MAX = 5; } } }
VECTOR (01 A -> 10 Z) {

SLEWRATE { PIN = Z; /* fill in HEADER TABLE */ }
}

226 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

VECTOR (01 B -> 10 Z) {

SLEWRATE { PIN = Z; /* fill in HEADER TABLE */ }
}
VECTOR (01 C-> 10 Z) {

SLEWRATE { PIN = Z; /* fill in HEADER TABLE */ }
}

}

Here the dlewrate on pin Z calculated in the context of any vector is checked against the same maximum limit.
11.6.4.3 Model and argument specification in the same context

An cumulative quantity can aso be an argument in the HEADER of an arithmetic model. If the model for calcula
tion of that quantity is within the same context as the argument of the other model, then the value of the calcu-
lated quantity shall be used. Otherwise, the value of the accumulated quantity shall be used.

For example, SLEWRATE can be modeled as a function of FLUENCE in the context of a VECTOR. If a calcula-
tion model for FLUENCE appears in the context of the same VECTOR, the value for FLUENCE shall be used for
the SLEWRATE calculation. On the other hand, if there is no calculation model for FLUENCE in the context of
the same VECTOR, but there is one in the context of other VECTORs, then the accumulated value of FLUENCE
from the other calculation models shall be used for SLEWRATE calculation.

Example

CELL my_cell {

PIN A { DIRECTION = input; }
PIN B { DIRECTION = input; }
PIN C { DIRECTION = input; }
PIN Z { DI RECTION = output; }

VECTOR ((01 A| 01 B) -> 10 Z) { FLUENCE
VECTOR (01 A -> 10 Z) {
SLEWRATE { CALCULATI ON=i ncremental ; PIN = Z;
HEADER { FLUENCE } EQUATI ON { le-8 * FLUENCE }

le-5; }

}
}
VECTOR (01 B -> 10 Z) {
SLEWRATE { CALCULATI ON=i ncremental ; PIN = Z;
HEADER { FLUENCE } EQUATION { le-8 * FLUENCE }

}

}
VECTOR (01 C-> 10 Z) {

FLUENCE = 1le- 6;
SLEWRATE { CALCULATI ON=i ncremental ; PIN = Z;
HEADER { FLUENCE } EQUATI ON { 1le-9 * FLUENCE }

}
}

After 1013 = 10°*10® occurrences of VECTOR ((01 A | 01 B) -> 10 Z), theslewrateat pin Z for
VECTOR (01 A -> 10 Z) andVECTOR (01 B -> 10 Z) isincreased by 1 unit.

After 101® = 10%10° occurrences of VECTOR (01 C -> 10 Z), thedewrateat pin Z for VECTOR (01
C -> 10 Z) isincreased by 1 unit.

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 227

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

11.6.5 Annotations for arithmetic models for general purpose

. : . .

Annotations and annotation containers described in this section are relevant for the semantic interpretation of
arithmetic models and their arguments.

Example

DELAY=f (CAPAC! TANCE)

DELAY isthe arithmetic model, CAPACI TANCE is the argument.

Arguments of arithmetic models have the form of annotation containers. They can also have the form of arith-
metic models themselves, in which case they represent nested arithmetic models.

11.6.5.1 UNIT annotation

Unit annotation associates units with the value computed by the arithmetic model.

UNIT = string | non_negative_nunber ;

A unit specified by ast ri ng can take the vaues (* indicates awild card) shown in Table 73.

Table 73—UNIT annotation

Annotation string Description
f* or F* Equivalent to 1E- 15.
p* or P* Equivalentto 1E- 12.
n* or N* Equivalent to 1E- 9.
u* or Ur Equivalent to 1E- 6.
nt or M Equivalent to 1E- 3.
1* Equivalent to 1E+0.
k* or K* Equivalent to 1E+3.
meg* or MEGF2 Equivalent to 1E+6.
g* or & Equivalent to 1E+9.

%or any uppercase/lowercase combination of these three characters

Arithmetic models are context-sensitive, i.e., the units for their values can be determined from the context. If the
UNI T annotation for such a context does not exist, default units are applied to the value (see 11.2.1.3).

Example

228

TIME { UNNT = ns; }
FREQUENCY { UNIT = gi gahz; }

Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 3

If the unit is a string, then only the first character (the first three characters in case of MEG) is interpreted. The
reminder of the string can be used to define base units. Metric base units are assumed, but not verified, in ALF.

There is no semantic difference between

1sec;

unit

and

unit 1lvol t;

Therefore, if the unit is specified as
unit = neg;

the interpretation is 1E+6. However, for
unit = 1meg;

theinterpretationis 1 and not 1E+6.

Unitsin anon-metric system can only be specified with numbers, not with strings. For instance, if the intent isto
specify an inch instead of a meter as the base unit, the following specification does not meet the intent:

unit = 1inch;
since the interpretation is 1 and meters are assumed.
The correct way of specifying inch instead of meter is
unit = 25.4E-3;
since 1 inchis (approximately) 25.4 millimeters.
11.6.5.2 CALCULATION annotation

An arithmetic model in the context of a VECTOR can have the CALCULATI ON annotation defined as shown in
Syntax 111.

calculation annotation ::=

CALCULATION = calculation_identifier ;
calculation identifier ;=

absolute

|incremental

Syntax 111—calculation_annotation

It shall specify whether the data of the model are to be used by themsel ves or in combination with other data. The
default isabsolute.

The incremental data from one VECTOR shall be added to absolute data from another VECTOR under the
following conditions:

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 229

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

— The model definitions are compatible, i.e., measurement specifications shall be the same. Units are
allowed to be different.
Example: slewrate measurements at the same pin, same switching direction, and same threshold values.

— The model definitions for common arguments are compatible, i.e., the same range of values for table-
based models and measurement specifications are the same. Units can be different.
Example: same valuesfor der at e_case and same threshold definitions for input slewrate.

— The vector definitions are compatible, i.e, thevect or _or bool ean_expr essi on of the VECTOR
containing iNncremental data matches the vect or _or _bool ean_expr essi on of the VECTOR
containing absolute data by removing all variables appearing exclusively in the former expression.

Example

VECTOR (01 A->01 Z2) {
DELAY {
CALCULATI ON = absol ute;
FROM{ PIN= A, } TO{ PIN= Z; }
HEADER {
CAPACI TANCE load { PIN = Z; }
SLEWRATE slew { PIN = A; }

}
EQUATION { 0.5 + 0.3*slew + 1.2*| oad }
}
}
VECTOR (01 A& 01 B & 01 Z) {
DELAY {
CALCULATION = increnental;
FROM{ PIN= A, } TO{ PIN= Z; }
HEADER {
SLEWRATE slew A { PIN = A; }
SLEWRATE slew B { PIN = B; }
TIME time_ AB{ FROM{ PIN= A, } TO{ PIN=B; } }
}
EQUATION {- 0.1 + (0.05+0.002*sl ew A*slew B)*time_A B) }
}
}

Both models describe the rise-to-rise delay from A to Z. The second delay model describes the incremental delay
(here negative), when input B switchesin atime window between A and Z.

11.6.5.3 INTERPOLATION annotation

An argument of atable-based arithmetic model, i.e., amodel in the HEADER containing a TABLE statement, can
have the | NTERPOLATI ON annotation defined as shown in Syntax 112.

interpolation_annotation ::=
INTERPOLATION = interpolation_identifier ;
inter ptlation_identifier B
|
|linear
| floor
|celling

Syntax 112—interpolation_annotation

230 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

This also needs to specify the interpolation scheme for the values in-between the values of the TABLE.

— fit
the data points in the table are supposed to be part of a smooth curve. Linear interpolation or other algo-
rithms, e.g., cubic spline or polynomial regression can be used to fit the data pointsinto the curve.

— linear
the data points in the table are supposed to be part of apiece wise linear curve. Linear interpolation shall
be used.

— floor
thevalueto theleft in the table, i.e., the smaller valueis used.

— ceiling
thevalueto theright in the table, i.e., the larger valueis used.

The default is fit. For multi-dimensional tables, different interpolation schemes can be used for each dimension.

Example
nmy_nodel {
HEADER {
di mensionl { INTERPOLATION = fit; TABLE { 1 2 4 8 }
di mensi on2 { | NTERPOLATION = floor; TABLE { 10 100 }
di mensi on3 { | NTERPCLATION = ceiling; TABLE { 10 100 }
}
TABLE {
1735
10 20 60 40
50 30 20 100
0.8 0.40.20.9
}
}

Consider the following values:

di mrensionl = 6
=> followi ng subtable is chosen
3 5 /1l interpolation between 3 and 5
60 40 /1 or between 60 and 40
20 100 // or between 20 and 100
0.2 0.9 // or between 0.2 and 0.9
di mensi on2 = 50
=> followi ng subtable is picked:
3 5 /1 interpolation between 3 and 5
20 100 // or between 20 and 100
di mensi on3 = 50
=> followi ng subtable is picked:
20 100 // interpolation between 20 and 100

The following rules shall apply for each dimension of atable-based model:

For values outside the range of the table, extrapolation shall apply, using the table data points at the leftmost or
rightmost side, respectively, as reference.

If the value is smaller than the smallest, i.e. leftmost, data point in the table, the extrapolation shall be calculated
asif the value would fall in-between the leftmost and second leftmost val ue.

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 231

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

If the valueis greater than the greatet, i.e. rightmost, data point in the table, the extrapolation shall be calculated
asif the value would fall in-between the rightmost and second rightmost value.

Example
ny_nodel Y {
HEADER {
nmy_argunent X {
TABLE { 0 2 4 8 }
/1 X[0] X[1] X[2] X 3]
\ }
TABLE { 0.5 0.6 1.0 1.5}
/1 Y[O] Y[1] Y[2] VY[3]
}

For linear interpolation, the following equation is used:
_ Y[N+1] — Y[N]
Y = Y[N] + XIN+1] —X[N] X X[N] < X < X[N+1]
If X < X[0Q], thevalues X[0Q], X[1], Y[O], Y[1] are plugged into the equation.
If X > X[3], thevalues X[2], X[3], Y[2], Y[3] are plugged into the equation.

Figure 33 illustrates a non-linear interpolation scheme with the goal of fitting three neighboring points into a
smooth curve.

CooooRPRRRE
CO~N®OOORNWAU

Figure 33—lllustration of extrapolation rules

The curve based on the 3 rightmost or the 3 leftmost points, respectively, is used for extrapolation to the right
side or the left side, respectively.

232 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

11.7 Rules for evaluation of arithmetic models

** Add lead-in text**

11.7.1 Arithmetic model with arithmetic submodels

The application program shall decide which arithmetic submodel applies for evaluation in a particular situation.
By default, the arithmetic submodel identified by the DEFAULT keyword or the arithmetic submodel referenced
by the DEFAULT annotation shall be used.

11.7.2 Arithmetic model with table arithmetic body

All arithmetic modelsin the HEADER shall contain a TABLE.

— Describe agorithm to identify correct table entry.
— Refer to | NTERPOLATI ON annotation.

Supplementary EQUATI ONislegal; this shall be used for interpolation or extrapolation of values out-of-range.
11.7.3 Arithmetic model with equation arithmetic body

Operands in arithmetic expression shall be defined as arithmetic models in a HEADER or as partial arithmetic
models outside a HEADER, but within its scope. It shall be legal to some arguments defined in the HEADER and
some others outside the HEADER. ** scope??

For anamed arithmetic model, the name shall be used as the operand. For an unnamed arithmetic model, the key-
word shall be used as the operand.

A supplementary TABLE is legal; this shall be used asa lookup entry for downstream arithmetic models, when
the arithmetic model itself is within HEADER.

11.8 Overview of arithmetic models

** Add lead-in text**

. : .
11.8.1 Overview of modeling keywords

This section detail s the keywords used for performance modeling.

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 233

10

15

20

25

30

35

40

45

50

55

11.8.1.1 Timing models

Table 74 — Table 77 show the set of keywords used for timing measurements and constraints. All keywords
have implied semantics that restrict their capability to describe general temporal relations between arbitrary sig-
nals. For unrestricted purposes, the keyword Tl ME shall be used.

10

15

20

25

30

35

40

50

55

Table 74—Timing measurements

Base Default —
Keyword Valuetype units units Description

DELAY number Second n (nano) Time between two threshold crossings within
two consecutive events on two pins. A causal
rel ationship between the two eventsisimplied.

RETAI N number Second n (nano) Time when an output pin shall retain its value
after an event on the related input pin. RETAI N
appears dways in conjunction with DELAY for
the same two pins.

SLEVRATE non-negative Second n (nano) Time between two threshold crossings within

number one event on one pin.
Table 75—Timing constraints
Base Default i
Keyword Valuetype units units Description

HOLD number Second n (nano) Minimum time limit for hold between two
threshold crossings within two consecutive
events on two pins.

NOCHANGE optional® non- Second n (nano) Minimum time limit between two threshold

negative number crossings within two arbitrary consecutive events
on one pin, in conjunction with SETUP and
HOLD.

PERI CD non-negative Second n (nano) Minimum time limit between two identical

number events within a sequence of periodical events.

PULSEW DTH number Second n (nano) Minimum time limit between two threshold
crossings within two consecutive and comple-
mentary events on one pin.

RECOVERY number Second n (nano) Minimum time limit for recovery between two
threshold crossings within two consecutive
events on two pins.

REMOVAL number Second n (nano) Minimum time limit for removal between two
threshold crossings within two consecutive
events on two pins.

SETUP number Second n (nano) Minimum time limit for setup between two
threshold crossings within two consecutive
events on two pins.

SKEW number Second n (nano) Absolute value is maximum time limit between
two threshold crossings within two consecutive
events on two pins; the sign indicates positive or
negative direction.

234

Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 3

8The associated SETUP and HOL D measurements provide data. NOCHANGE itself need not provide data.

Table 76—Generalized timing measurements

Keyword Valuetype Base units Default units Description
TI ME number Second 1 (unit) Time point for waveform
modeling, time span for
average, RMS, and peak
modeling .
FREQUENCY non-negative Hz meg (mega) Frequency.
number
JI TTER non-negative Second n (nano) Uncertainty of arrival
number time.
Table 77—Normalized measurements
Base Default T
Keyword Valuetype units units Description
THRESHOLD non-negative Normalized 1 (unit) Fraction of signa voltage swing, specifying a
number between signa volt- reference point for timing measurement data.
Oand1 age swing The threshold is the voltage for which the
timing measurement is taken.
NO SE_MARG N non-negative Normalized 1 (unit) Fraction of signal voltage swing, specifying
number between signa volt- the noise margin. The noise margin isadevia
Oand1 age swing tion of the actual voltage from the expected
voltage for a specified signal level.

11.8.1.2 Analog models

Table 78 and Table 79 define the keywords for analog modeling.

Table 78—Analog measurements

Keyword

Valuetype

Base units

Default units Description

CURRENT

number

Ampere

Electrical current drawn
by the cell. A pincanbe
specified as annote-
tion.2

m(milli)

ENERGY

number

Joule

Electrica energy drawn
by the cell, including
charge and discharge
energy, if applicable.

p (pico)

POVNER

IEEE P1603 Draft 3

Advanced Library Format (ALF) Reference Manual

number

Watt

Electrical power drawn
by the cell, including
charge and discharge
power, if applicable.

u (micro)

235

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

Table 78—Analog measurements (Continued)

Keyword Valuetype Base units Default units Description
TEMPERATURE number OCelsius 1 (unit) Temperature.
VOLTAGE number Volt 1 (unit) Voltage.

FLUX non-negative Coulomb per 1 (unit) Amount of hot electrons
number Square Meter in units of electrical
charge per gate oxide
FLUENCE non-negative Second times 1 (unit) Integral of FLUX over
number Coulomb per
Square Meter

8f the annotated Pl Nhas Pl NTYPE=suppl y, the CURRENT measurement qualifiesfor power analysis. Inthis
case, the current includes charge/discharge current, if applicable.

Table 79—Electrical components
Default

Keyword Valuetype Base units units Description

CAPACI TANCE non-negative Farad p (pico) Pin, wire, load, or net capacitance.
number

| NDUCTANCE non-negative Henry n (nano) Pin, wire, load, or net inductance.
number

RESI STANCE non-negative Ohm K (kilo) Pin, wire, load, or net resistance.
number

11.8.1.3 Supplementary models

Table 80 and Table 81 define the keywords for supplementary models.

Table 80—Abstract measurements

Base Default I
Keyword Valuetype units units Description
DRI VE_STRENGTH non-negative None 1 (unit) Drive strength of a pin, abstract measure for
number (drive resistance) L.
Sl ZE non-negative None 1 (unit) Abstract cost function for actual or estimated
number areaof acell or ablock.
236 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

Table 81—Discrete measurements

Base Default _
Keyword Valuetype units units Description

SW TCHI NG BI TS non-negative None 1 Number of switching bits on a bus.
number

FANOUT non-negative None 1 Number of receivers connected to a net.
number

FANI N non-negative None 1 Number of drivers connected to a net.
number

CONNECTI ONS non-negative None 1 Number of pins connected to a net, where
number CONNECTI ONS = FANI N+FANOUT.

The actual values for discrete measurements are always integer numbers, however, estimated values can be non-
integer numbers (e.g., the average fanout of anetis2. 4).

Table 82 describes the arguments for arithmetic models to describe environmental dependency.

Table 82—Environmental data

Annotation string Valuetype Description
DERATE_CASE string Derating case, i.e., the combination of process,
supply voltage, and temperature.
PROCESS string Process corner.
TEMPERATURE number Environmental temperature.

11.8.2 Arithmetic models in the context of layout

Table 83 shows keywords for arithmetic models in the context of layout.

Table 83—Arithmetic models for layout data

IEEE P1603 Draft 3

Base Default e
Keyword Valuetype units units Description

Sl ZE Non-negative number N/A 1 Abstract, unitless measurement for the size of a
physical object.

AREA Non-negative number Square | p (pico) Areain square microns (pico = microz).

Meter

DI STANCE Non-negative number Meter u (micro) Distance between two points in microns.

HEI GHT Positive number Meter u (micro) y- dimension of a placeable object
(e.g., cdl or block).
z- dimension of arouteable object (e.g., pattern
on routing layer), representing the absolute
height above substrate.

Advanced Library Format (ALF) Reference Manual 237

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

Table 83—Arithmetic models for layout data (Continued)

Base Default _
Keyword Valuetype units units Description

LENGTH Positive number Meter u (micro) X-, or y- dimension of arouteable object (e.g.,
pattern on routing layer) measured in routing
direction.

W DTH Positive number Meter u (micro) x-dimension of a placeable object
(e.g., cel or block).

x- or y- dimension of arouteable object (e.g.,
pattern on routing layer) measured in orthogo-
nal direction to the route.

PERI METER Positive number Meter u (micro) Circumference of aphysical object.

THI CKNESS Positive number Meter u (micro) z- dimension of a manufacturable physical
object, representing the distance between the
bottom of the object above and the top of the
object below.

OVERHANG Non-negative number Meter u (micro) Distance between the edges of two overlapping
physical objects.

EXTENSI ON Non-negative number Meter u (micro) Distance between the center and the outer edge
of aphysical object.

Table 84 — Table 93 summarize the semantic meanings of arithmetic model keywordsin the context of layout.

Table 84—Semantic meaning of SIZE

Context Meaning
CELL Abstract measure for size of the cell, cost function for design implementation.
W RE - Asamodel (TABLE or EQUATI ON):
abstract measure for the size of the wireitself.
- As argument of amodel (HEADER):
abstract measure for size of the block for which the wireload model applies,
can be calculated by combining the size of all cells and all wiresin the block.
ANTENNA Abstract measure for size of the antenna for which the antennarule applies.
Table 85—Semantic meaning of WIDTH
Context Meaning
CELL, SITE Horizontal distance between cell or site boundaries, respectively.
W RE Asargument of amodel (HEADER):
horizontal distance between block boundaries for which wireload model applies.
LAYER, Width of awire, orthogonal to routing direction.
ANTENNA

238

Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

Table 86—Semantic meaning of HEIGHT

Context Meaning
CELL, SITE Vertical distance between cell or site boundaries, respectively.
W RE As argument of amodel (HEADER):
vertica distance between block boundaries for which wireload model applies.
LAYER Distance from top of ground plane to bottom of wire.
Table 87—Semantic meaning of LENGTH
Context Meaning
W RE Estimated routing length of awire in awireload model.
LAYER, Actual routing length of awirein layout.
ANTENNA
Table 88—Semantic meaning of AREA
Context Meaning
CELL Physical area of the cell, product of width and height of arectangular cell.
W RE - Asamodel (TABLE or EQUATI ON):
physical areaof the wireitself.
- As argument of amodel (HEADER):
physical area of the block for which wireload model applies,
product of width and height of rectangular block.
LAYER, VI A, Physical area of a placeable or routeable object, measured in the x-y plane.
ANTENNA
Table 89—Semantic meaning of PERIMETER
Context Meaning
CELL Perimeter of the cell, twice the sum of height and width for rectangular cell.
W RE - Asamodel (TABLE or EQUATI ON):
perimeter the wire itself.
- As argument of amodel (HEADER):
perimeter of the block for which wireload model applies,
twice the sum of height and width for rectangular block.
LAYER, VI A, Perimeter of a placeable or routeabl e object, measured in the x-y plane.
ANTENNA

IEEE P1603 Draft 3

Advanced Library Format (ALF) Reference Manual

239

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

Table 90—Semantic meaning of DISTANCE

Context Meaning

RULE Distance between objects for which the rule applies.

Table 91—Semantic meaning of THICKNESS

Context Meaning
LAYER, Distance between top and bottom of a physical object, orthogonal to the x-y plane.
ANTENNA

Table 92—Semantic meaning of OVERHANG

Context Meaning

RULE Distance between the outer border of an object and the outer border of another object
inside the first one.

Table 93—Semantic meaning of EXTENSION

Context Meaning

LAYER, VI A, Distance between the border of the original object and the border of the same object after
RULE, enlargement.

geometric model

11.9 Arithmetic models for timing data

** Add lead-in text**

11.9.1 Specification of timing models
Timing models shall be specified in the context of a VECTOR statement.
11.9.1.1 Template for timing measurements / constraints

The following templates show a general timing measurement and a general timing constraint description, respec-
tively, applicable for two pins.

TEMPLATE TI M NG_MEASUREMENT {
<ti neKeyword> = <tinmeVal ue> {

FROM {
Pl N=<f r onPi n>;
THRESHOLD=<f r onThr eshol d>;
EDGE_NUVMBER=<f r onrEdge>;

}

TO {

240 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

Pl N=<t oPi n>;
THRESHOLD=<t oThr eshol d>;
EDGE_NUMBER=<t oEdge>;

}
}
}
TEMPLATE TI M NG_CONSTRAI NT {
LIMT {
<ti meKeywor d> {
FROM {
Pl N=<f r onPi n>;
THRESHOLD=<f r onirhr eshol d>;
EDGE_NUMBER=<f r onEdge>;
}
TO {
Pl N=<t oPi n>;
THRESHOLD=<t oThr eshol d>;
EDGE_NUVBER=<t oEdge>;
}
M N = <tineVal ueM n>;
MAX = <ti neVal ueMax>;
}
}
}

For simplicity, trivial arithmetic models shown here. In general, a HEADER, TABLE, or EQUATI ON construct
can be used for calculation of <t i meVal ue>, <t i neVal ueM n>, or <t i neVal ueMax>.

A particular timing constraint does not necessarily contain both <t i meVal ueM n>and <t i meVal ueMax>.
The<f r omThr eshol d> and <t oThr eshol d> can be globally predefined as explained in 11.10.3.2.

The vect or _expr essi on in the context where the <t i nreKeywor d> appears shall contain at least two
expressions of thetypevect or _si ngl e_event with the <f r onPi n> and <t oPi n>, respectively, as oper-

ands. The <f r onEdge> and <t oEdge> point to their respective vect or _si ngl e_event, as shown in
Figure 34.

<f r omEdge> <fromkdge> + 1
<f ronPi n> _ _><_<f_ro_mThreshoI d> ><
|
| <t oEdge> - 1 <t oEdge>
<t oPi n> | ___ _\/<toThreshol d>
| |
[|
' !
<ti neVal ue> Or <ti neVal ueM n> Or <ti neVal ueMax>

Figure 34—General timing measurement or timing constraint

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 241

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

The direction of the respective transition shall be identified by the respectiveedge 1 i t er al , i.e, the operator
of the respectivevect or _si ngl e_event.

The temporal order of the LHS and RHS vector_single _event expressons within the
vect or _expressi onisindicated by avect or _bi nary operator.

Theimplications ontherange of <t i meVal ue> or <r ef Pi n> or <t i neVal ueMax> are shown in Table 94.

Table 94—Range of time value depending on VECTOR

LHS operand RHS rangeof <t i g:a\</f1: l;:;a?ru;t'via;rEVal ueM n>
<fronPi n> ->or~> <t oPi n> Positive
<t oPi n> ->or~> <fronPi n> Negative
<fronPi n> &> <t oPi n> Positive or zero
<t oPi n> &> <fronPi n> Negative or zero
<fronPi n> <-> <t oPi n> Positive or negative
<t oPi n> <-> <fronPi n> Positive or negative
<fronPi n> <&> <t oPi n> Positive or negative or zero
<t oPi n> <&> <fronPi n> Positive or negative or zero

NOTE—This table does not apply for models with CALCULATI ON=i ncr enent al . Incremental values can always be pos-
itive, negative, or zero.

11.9.1.2 Partially defined timing measurements and constraints
A partially defined timing measurement or timing constraint contains only a FROMstatement or a TO statement,
but not both. This construct can be used to specify measurements from any point to a specific point (only TOis

specified) or from a specific point to any point (only FROMis specified).

Thisis summarized in Table 95.

Table 95—Partially specified timing measurements and constraints

DIRECTION of PIN FROM or TO specified Specified model applicablity
input FROMonly Cell timing arcs starting at this pin.
input TOonly Interconnect timing arcs ending at this pin.
output FROMonly Interconnect timing arcs starting at this pin.
output TOonly Cell timing arcs ending at this pin.

It is recommended to use the constructs for interconnect timing arcs only in conjunction with CALCULA-
TI ON=i ncrenent al . The<t i meVal ue>, <ti neVal ueM n>, or <t i meVal ueMax> from thismodel is
added to the <t i meVal ue>, <ti neVal ueM n>, or <ti meVal ueMax> from timing arcs starting or end-

242 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

ing at this pin, respectively. If the construct is used with CALCULATI ON=absol ut e, the timing model can
only be used if completely specified interconnect timing models are not available and the result is not be accurate
in general.

11.9.1.3 Template for same-pin timing measurements / constraints

The following templates show a timing measurement and atiming constraint description, respectively, applicable
for the same pin.

TEMPLATE SAME_PI N_TI M NG _MEASUREMENT {
<ti meKeyword> = <tineVal ue> {
Pl N=<r ef Pi n>;
EDGE_NUMBER=<r ef Edge>;
FROM { THRESHOLD=<fronirhr eshol d>; }
TO { THRESHOLD=<t oThr eshol d>; }
}
}
TEMPLATE SAME_PI N_TI M NG_CONSTRAI NT {
LIMT {
<ti meKeywor d> {
Pl N=<r ef Pi n>;
EDGE_NUVMBER=<r ef Edge>;
FROM { THRESHOLD=<fr onirhr eshol d>; }
TO { THRESHOLD=<t oThr eshol d>; }
M N = <tinmeVal ueM n>;
MAX = <ti meVal ueMax>;

}

Depending on the <t i meKeywor d>, the <t i neVal ue>, <ti neVal ueM n>, or <ti meVal ueMax> is
measured on the same <r ef Edge> or between <r ef Edge> and <r ef Edge> plus 1. Only the - > or ~> oper-
ators are applicable between subsequent edges. Therefore, the <ti nmeVal ue>, <ti neVval ueM n>, or
<t i neVal ueMax> are positive by definition.

NOTE—The <f r omThr eshol d> and <t oThr eshol d> can be globally predefined as explained in 11.10.3.2. However,
the THRESHOLD in the context of a PIN does not apply for SAME_PI N _TI M NG _MEASUREMENT or
SAMVE_PI N_TI M NG_CONSTRAI NT, sincethe <r ef Pi n> is not within a FROMor TO statement.

11.9.1.4 Absolute and incremental evaluation of timing models
As mentioned in the previous sections, the calculation models for TI M NG_MEASUREMENT,
TI' M NG_CONSTRAI NT, SAME_PI N_TI M NG_MEASUREMENT, and SAME_PI N_TI M NG_CONSTRAI NT

can have the annotation CALCULATI ON=absol ut e (the default) or CALCULATI ON=i ncr enent al . These
annotations are only relevant more than one cal culation model for the same timing arc exists.

Calculation models for the same timing arc with CALCULATI ON=absol ut e shall be within the context of
mutually exclusive VECTORs. The vect or _expr essi on specifies which model to use under which condi-
tion.

Example

VECTOR ((01 A ->012) & B &!C) {
DELAY { CALCULATI ON=absol ute; FROM{ PIN=A; } TO { PIN=Z, }

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 243

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

/* fill in HEADER TABLE */ }

}

VECTOR ((01 A ->012) & !B &C) {
DELAY { CALCULATI ON=absol ute; FROM{ PIN=A; } TO{ PIN=Z; }
/* fill in HEADER TABLE */ }

}

Thevectors((01 A->01 2) & B & !C) and((01 A->01 2) && !B & C) aremutually
exclusive. They describe the same timing arc with two mutually exclusive conditions.

In the case of a VECTOR containing a calculation model for atiming arc with CALCULATI ON=i ncr enment al ,
there shall be another VECTOR with a calculation model for the same timing arc with CALCULATI ON=abso-

| ut e and both vectors shall be compatible. The vect or _expr essi on of the latter shall necessarily be true
whenthevect or _expr essi on of the former istrue.

Example

VECTOR (01 A -> 01 2) {
DELAY { CALCULATI ON=absol ute; FROM{ PIN=A; } TO{ PIN=Z; }
/* fill in HEADER, TABLE */ }

}

VECTOR ((01 A->012) & B &!C) {
DELAY { CALCULATI ON=i ncremental ; FROM{ PIN=A; } TO{ PIN=Z; }
/* fill in HEADER, TABLE */ }

}

VECTOR ((01 A->012) & !B & C) {
DELAY { CALCULATI ON=i ncremental ; FROM{ PIN=A; } TO{ PIN=Z; }
/* fill in HEADER, TABLE */ }

}

Thevectors((01 A -> 01 2) & B & !C) and((01 A -> 01 Z) && !B & C) areboth
compatible with the vector (01 A -> 01 Z) and mutually exclusive with each other. The latter describe the
same timing arc with two mutually exclusive conditions. The former describes the same timing arc without con-
ditions. Thismodeling style is useful for timing analysis tools with or without support for conditions. The vectors
with conditions, if supported, add accuracy to the calculation. However, the vector without conditions is aways
available for basic calculation.

11.9.1.5 PIN-related timing models

SAVE_PI N_TI M NG_MEASUREMENT and SAME_PI N_TI M NG_CONSTRAI NT (see11.9.1 and 11.12.1.4)
are pin-related timing models. They are defined with reference to the externally accessible node.

11.9.2 TIME statement

** Add lead-in text**

11.9.2.1 TIME

The <t i mneKeywor d> TI ME describes a general TI M NG_MEASURENMENT or TI M NG_CONSTRAI NT
without implying any particular relationship between <f r onEdge> and <t oEdge>.

In general, <f r onPi n> and <t oPi n> refer to two different pins. However, it is legal for <f r onPi n> and
<t oPi n> torefer to the same pin.

244 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

The default value for <f r onEdge> and <t oEdge> shall be 0.
11.9.2.2 TIME within the LIMIT construct
WithinaLl M T construct, TI ME can be used in the following ways:

— TI MEitself issubjectedtoall M T (see 11.12.11.2)
— Tl ME isthe argument of amodel subjectedtoall M T

When Tl ME is used as argument of amodel withintheLl M T construct, it shall mean the amount of time during
which the device is exposed to the quantity modeled within the LI M T construct. This amount of time is also
called alifetime.

Example

LIMT {
CURRENT {
PIN = my_pin;
MEASUREMENT = stati c;
MAX {
HEADER { TI ME TEMPERATURE }
EQUATI ON { 6.5*EXP(-10/(TEMPERATURE+273))*TI ME**(-0.3) }

}

The limit for maximum current depends on the temperature and the expected lifetime of the device.
11.9.2.3 TIME to peak measurement

For a model in the context of a VECTOR, with apeak measurement, the TI ME annotation shall define the time
between areference event withinthe vect or _expr essi on and the instant when the peak value occurs.

For that purpose, either the FROMor the TO statement shall be used in the context of the Tl ME annotation, con-
taining a Pl N annotation and, if necessary, a THRESHOL D and/or an EDGE_ NUVBER annotation.

If the FROM statement is used, the start point shall be the reference event and the end point shall be the occur-
rence time of the peak, as shown in Figure 35.

<fr olrrEdqe>

<fronPi n> <fronirhr eshol d>

T

|

|

|

>
/"wue>

|

|

Figure 35—lllustration of time to peak using FROM statement

MEASUREMENT = peak

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 245

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

If the TO statement is used, the start point shall be the occurrence time of the peak and the end point shall be the
reference event, as shown in Figure 36.

<t oIEdqe>

<t oThr eshol d>

<nodel Val ue> |
/\ | MEASUREMENT = peak
| |

Figure 36—lllustration of time to peak using TO statement

<t oPi n>

Example

VECTOR (01 A -> 01 B -> 10 B) {
CURRENT peakl = 10.8 {
PIN = Vvdd,
MEASUREMENT = peak;
TIME = 3.0 { UNI T=ns; FROM { PI N=A; EDGE_NUMBER=0; } }

}
CURRENT peak2 = 12.3 {

PIN = Vvdd,

MEASUREMENT = peak;

TIME = 2.0 { UNIT=ns; TO { PI N=B; EDGE_NUMBER=1; } }
}

}

Here, the peak with magnitude 10. 8 occurs 3 nanoseconds after the event 01 A.
The peak with magnitude 12. 3 occurs 2 nanoseconds before the event 10 B.
11.9.2.4 Waveform description

This section specifies waveform descriptions.

11.9.2.4.1 Principles

In order to describe an arithmetic model representing a waveform, Tl ME shall be an argument in the HEADER.
Other arguments can appear in the HEADER as well. The model can be described asa TABLE or EQUATI ON.

Example for TABLE

VOLTAGE {
HEADER {
TI ME {
UNI T = ns;
| NTERPOLATI ON=l i near;
TABLE{ 0.0 1.0 1.5 2.0 3.0}

246 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

}
}
TABLE { 0.0 0.0 5.0 0.0 0.0}
}

Example for EQUATI ON

VOLTAGE {

HEADER {
TIME{ UNNT = ns; }

}

EQUATI ON {
(TIME < 1.0) ? 0 :
(TIME < 1.5) ? 5.0*(TIME - 1.0)
(TIME < 2.0) ? 5.0*(2.0 - TIM)
0.0

}

}

Both models describe the same piece-wise linear waveform, as shown in Figure 37.

5.0

VOLTAGE
0.0 TIME

0.0 10 15 20 3.0

Figure 37—lllustration of a piece-wise linear waveform

If the model is within the context of a VECTOR, either the FROMor the TO statement can be used in the context
of Tl ME, pointing to areference event which occursat Tl ME = 0 relative to the waveform description. See xxx
for the definition of start and end points of measurements.

Example

VECTOR (01 A-> 01 B -> 10 B) {
VOLTAGE {
HEADER {
TI MVE {
FROM { PIN = B; EDGE_NUMBER =
TABLE { 0.0 1.0 1.5 2.0 3.0}
/1 alternative description:
/1 TO{ PIN = B, EDGE_ NUMBER = 1; }
/1 TABLE { -3.0 -2.0 -1.5 -1.0 0.0}
}
}
TABLE { 0.0 0.0 5.0 0.0 0.0}

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 247

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

}

NOTE—Use the FROMstatement. If the TO statement is used, TI ME is measured backwards, which is counter-intuitive. For
dynamic analysis, use the last event inthevect or _expr essi on asthe reference. Otherwise, the analysis tool remembers
the occurrence time of previous eventsin order to place the waveform into the context of absolute time.

11.9.2.4.2 Annotations within a waveform
The MEASUREMENT annotationt r ansi ent shall apply as adefault for waveforms.

The FREQUENCY annotation can be used to specify a repetition frequency of the waveform. The following
boundary restrictions are imposed in order to make the waveform repeatable:

— Theinitia value and the final value of waveform shall be the same.

— Theextrapolation beyond the initial and the final value of the waveform shall yield the same result. Thus,
the first, second, last, and second-to-last point of the waveform shall be the same.

— Thetime window between the first and the last measurement shall be smaller or equal to
1 / FREQUENCY.

Thisisillustrated in Figure 38.

| [| TIME
|W[O] T[1] T[M-1] T[M] >
= (TIM] - T70]) >

- 1/ FREQUENCY >

Figure 38—TIME and FREQUENCY in a waveform
11.9.3 FREQUENCY statement

** Add lead-in text**

11.9.3.1 FREQUENCY within a LIMIT construct
WithinaLl M T construct, FREQUENCY can be used in the following ways:

— FREQUENCY itself issubjectedtoalLl M T
— FREQUENCY isthe argument of amodel subjectedtoalLl M T

248 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

FREQUENCY can be subjected to a LI M T within the context of a VECTOR. The LI M T construct specifies an
upper and/or lower limit for the repetition frequency of the event sequence described by the
vect or _expressi on.

Example
VECTOR (01 A->01 Z2) {
LIMT {
FREQUENCY {
MAX {
HEADER {
SLEWRATE { PIN = A, TABLE { 0.1 0.5 1.0 5.0 } }
CAPACI TANCE { PIN = Z; TABLE{ 0.1 0.4 1.6 } }
}
TABLE {
200 190 180 120
150 150 145 130
80 80 80 70
}
}
}
}

}

The maximum allowed switching frequency for arising edge on A, followed by arising edge on Z, depends on
the slewrate on A and the load capacitance on Z.

A LI M T for a quantity with MEASUREMENT annotation aver age, r ms, or peak can be frequency-depen-
dent. The FREQUENCY specifies the repetition frequency for the measurement.

Example
LIMT {
CURRENT {
PI N = Vvdd;
MEASUREMENT = aver age;
MAX {
HEADER { FREQUENCY TI ME TEMPERATURE }
EQUATI ON {
(FREQUENCY<1) ? 6. 5* EXP(- 10/ (TEMPERATURE+273)) * TI ME** (- 0. 3)
7. 8*EXP(-9/ (TEMPERATURE+273)) *TI ME**(-0. 2) :
}
}
}
}

The limit for average current is specified for low frequencies (< IMHZz) and for higher frequencies. In both
cases, the limit depends on temperature and lifetime.

11.9.3.2 TIME and FREQUENCY annotation

Arithmetic models with certain values of MEASUREMENT annotation can also have either TI ME or FREQUENCY
as annotations.

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 249

10

15

20

25

30

35

40

45

50

55

1

10

15

20

25

30

35

40

45

50

55

The semantics are defined in Table 96.

Table 96—Semantic interpretation of MEASUREMENT, TIME, or FREQUENCY annotation

MEASUREMENT . . . Semantic meaning of FREQUENCY
annotation Semantic meaning of TIME annotation annotation

transient Integration of analog measurement isdone | Integration of analog measurement is
during that time window. repeated with that frequency.

static N/A N/A

aver age Average value is measured over that time Average value measurement is repeated
window. with that frequency.

r ms Root-mean-square value is measured over Root-mean-square measurement isrepeated
that time window. with that frequency.

peak Peak value occurs at that time (only within | Observation of peak valueis repeated with
context of VECTOR). that frequency.

Inthecaseof aver age and r s, theinterpretation FREQUENCY = 1 / TI MEisvalid. Either one of these
annotations shall be mandatory. The values for aver age measurements and for r ns measurements scale lin-
early with FREQUENCY and 1 / TI ME, respectively.

Inthecaseof t ransi ent and peak, theinterpretation FREQUENCY = 1 / TI MEisnot valid. Either one
of these annotations shall be optional. The values do not necessarily scale with TI ME or FREQUENCY. The Tl ME
or FREQUENCY annotationsfor t r ansi ent measurements are purely informational.

11.9.4 DELAY and RETAIN statements

** Add lead-in text**

11.9.4.1 DELAY

The <t i meKeywor d> DELAY describesa Tl M NG_MEASUREMENT implying a causal relationship between
<f r onEdge> and <t oEdge>.

Usually, <f r onPi n> refers to an input pin and <t oPi n> refers to an output pin. However, it is legal for
<f r onPi n>and <t oPi n> to refer to an output pin.

The default value for <f r onEdge> and <t oEdge> shall be 0, unless the DELAY statement appears in con-
junction with aRETAI N statement within the context of the same VECTOR.

11.9.4.2 RETAIN

The <ti meKeyword> RETAI N describes a TI M NG_MEASUREMENT implying a causal relationship
between <f r onEdge> and <t oEdge> in the same way as DELAY.

RETAI Nis used to describe the elapsed time until the output changes its old value, whereas DELAY is used to
describe the elapsed time until the output settles to a stable new value, as shown in Figure 39.

250 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

<fronEdge>

<f ronPi n>

<t oEdge> <t oEdge>

<t oPi n>

RETAIN

I
|
|
-/

Figure 39—RETAIN and DELAY

When DELAY appears in conjunction with RETAI N, the <f r omEdge> for both measurements shall be the
same. The <t oEdge> for DELAY shall bethe <t oEdge> for RETAI N plus 1.

The default value for <f r onEdge> and <t oEdge> for RETAI N shall be 0. The default value for <t oEdge>
for DELAY shall be 1.

11.9.5 SLEWRATE statement

The <t i meKeywor d> SLEWRATE describesa SAME_PI N_TI M NG_MEASUREMENT for <t i meVal ue>
defining the duration of asignal transition or afraction thereof.

The SLEWRATE applies for the <r ef Edge> on the <r ef Pi n>. The default value for <r ef Edge> shall be 0.
11.9.6 SETUP and HOLD statement

** Add lead-in text**

11.9.6.1 SETUP

The <t i meKeywor d> SETUP describes a TI M NG_CONSTRAI NT for <t i neVal ueM n> defining the
minimum stable time required for the datasignal on the <f r onPi n> before it is sampled by the strobe signal on
the <t oPi n>.

The<f r onPi n> usualy isaninput pin with SI GNALTYPE=dat a. The <t oPi n> isan input pin with SI G\
ALTYPE=cl ock.

The default value for <f r onEdge> and <t oEdge> for SETUP shall be 0.

11.9.6.2 HOLD

The<t i meKeywor d> HOLDdescribesaTl M NG_CONSTRAI NT for <t i meVal ueM n> defining the min-
imum stable time required for the data signal on the <t oPi n> after it is sampled by the strobe signal on the

<fronPi n>.

The <t oPi n> usually isaninput pin with SI GNALTYPE=dat a. The <f r omPi n> isan input pin with SI G\
ALTYPE=cl ock.

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 251

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

The default value for <f r onEdge> shall be 0. The default value for <t oEdge> shall be 0, unless HOLD
appears in conjunction with SETUP in the context of the same VECTOR. In that case, the default value for
<t oEdge> shall be 1. All of thisis depicted in Figure 40.

<t ollque>

<fr or?Edge>
| SETUP |
| |
|

data | <f r onEdge> |
! HOLD
| |

Figure 40—SETUP and HOLD

strobe

The <t i meVal ueM n> for SETUP or the <t i meVal ueM n> for HOLD with respect to the same strobe can
be negative. However, the sum of both values shall be positive. The sum represents the minimum duration of a
valid data signal around a strobe signal.

11.9.7 NOCHANGE statement
The <t i mneKeywor d> NOCHANGE describes a SAME_PI N_TI M NG_CONSTRAI NT defining the require-

ment for a stable signal on a pin subjected to SETUP and HOL D on subsequent edges of a strobe signal., as shown
in Figure 41.

| <t oEnge> <fr oIrTEdqe> |
strobe
| SETUP | | HOLD |
<f ror|TEdge> | | <t ot|‘:dge>
| | | |
data \/ | |
/N | NOCHANGE | |
<ref Edge>

Figure 41—NOCHANGE, SETUP, and HOLD

The NOCHANGE applies between the <r ef Edge> and the subsequent edge, i.e., <r ef Edge> plus 1 on the
<r ef Pi n>. The default value for <r ef Edge> shall be 0.

When NOCHANGE appears in conjunction with SETUP and HOLD within the context of the same VECTOR, the
default value for <f r onrEdge> and <t oEdge> of SETUP shall be 0 and the default value for <f r omEdge>
and <t oEdge> of HOLD shall be 1.

11.9.8 RECOVERY and REMOVAL statements

** Add lead-in text**

252 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

11.9.8.1 RECOVERY

The<t i neKeywor d> RECOVERY describesaTl M NG_CONSTRAI NT for <t i neVal ueM n> defining the
minimum stable time required for an asynchronous control signal on the <f r onPi n> to be inactive before a
strobe signal on the <t oPi n> can be active.

The <f r onPi n> usually isan input pin with SI GNALTYPE=set | cl ear. The<t oPi n>isaninput pin with
S| GNALTYPE=cl ock.

The default value for <f r onEdge> and <t oEdge> for RECOVERY shall be 0.

11.9.8.2 REMOVAL

The <t i meKeywor d> REMOVAL describesa Tl M NG_CONSTRAI NT for <t i meVal ueM n> defining the
minimum stable time required for an asynchronous control signal on the <t oPi n> to remain active after over-

riding a strobe signal on the <f r onPi n>.

The <t oPi n> usualy isan input pin with SI GNALTYPE=set | cl ear. The<f r onPi n> isan input pin with
S| GNALTYPE=cl ock.

The default value for <f r omEdge> and <t oEdge> for REMOVAL shall be 0.

REMOVAL can appear in conjunction with RECOVERY within the context of the same VECTOR, as shown in
Figure 42.

<t oEdge>
<fr ofEdge> ! '
strobe | |
| RECOVERY | |
| <fror|TEdge> <t oédqe>
| | |
nc. control
4 >< " REMOVAL
k same edge, shifted J

Figure 42—RECOVERY and REMOVAL
The <t i neVal ueM n> for RECOVERY or the <t i neVal ueM n> for REMOVAL with respect to the same
strobe can be negative. However, the sum of both values shall be positive. The sum represents the time window
around the clock signal when the asynchronous control signal shall not switch.

11.9.9 SKEW statement

** Add lead-in text**

11.9.9.1 SKEW between two signals

The<t i meKeywor d> SKEWdescribesa Tl M NG_CONSTRAI NT for <t i meVal ueMax> defining the max-
imum allowed time separation between <f r onEdge> on <f r onPi n> and <t oEdge> on <t oPi n>.

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 253

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

The default value for <f r onEdge> and <t oEdge> for SKEWshall be 0.
11.9.9.2 SKEW between multiple signals

SKEWCcan also describe the maximum time distortion between signals on multiple pins. In this case, alist of pins
appears in form of a multi-value annotation. No FROMor TO containers can be used here.

Example
SKEW {
PIN { <pinList>}
EDGE _NUMBER { <edgelist> }
<skewDat a>
}

The default for EDGE_NUMBER in SKEWfor multiple signals shall be alist of Os.

A special case of multiple pinsisasingle bus. In this case, theunnanmed_assi gnnment syntax isalso valid as
aternativetotherrul ti _val ue_assi gnment syntax (see Section 8.15.3).

Example

SKEW{ PIN = ny_bus_pin[8:1]; }
or

SKEW{ PIN{ my_bus _pin[8:1] } }
11.9.10 PULSEWIDTH statement

The <t i meKeywor d> PULSEW DTH describes a SAME_PI N_TI M NG_CONSTRAI NT for <ti neVal -
ueM n> defining the minimum duration of the signal before changing state.

The PULSEW DTH statement is applicable for both input and output pins. In the case of an input pin, it repre-
sents atiming check against the minimum duration. In case of an output pin, it represents the minimum possible
duration of the signal.

The PULSEW DTH applies between the <r ef Edge> and the subsequent edge, i.e., <r ef Edge> plus 1 on the
<r ef Pi n>. The default value for <r ef Edge> shall be 0.

11.9.11 PERIOD statement

The <t i meKeywor d> PERI OD describesa SAME_PI N_TI M NG_CONSTRAI NT for <t i neVal ueM n>
defining the minimum time between subsequent repetitions of asignal. Because of periodicity, <f r omThr esh-
ol d>and <t oThr eshol d> are not required. Therefore, FROMand TO statements do not appear.

If the VECTOR describes a completely specified event sequence, <r ef Pi n> and <r ef Edge> are not required.
PERI OD applies for the complete event sequence. If the VECTOR describes a partially specified event sequence,
involving the ~> operator, <r ef Pi n> and <r ef Edge> arerequired.

11.9.12 JITTER statement

The <t i meKeywor d> JI TTER describes a SAME_PI N_TI M NG_MEASUREMENT for <t i neVval ue>
defining the actual uncertainty of arrival time for aperiodical signal at apin.

254 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

The JI TTER applies for the <r ef Edge> on the <r ef Pi n>. The default value for <r ef Edge> shall be 0.
Threshold definitions, i.e., <f r oniThr eshol d> or <t oThr eshol d> do not apply.

A limit for tolerable jitter at a pin can be expressed using the LI M T construct, as shown in the template for
SAME_PI N_TI M NG_CONSTRAI NT.

11.9.13 THRESHOLD statement

** Add lead-in text**

11.9.13.1 THRESHOLD definition

The THRESHOL D represents a reference voltage level for timing measurements, normalized to the signal voltage
swing and measured with respect to the logic O voltage level, as shown in Figure 43.

V (logic 1)
A
AV
AViie AV g
|
V (logic 0) t|mel
AV, AV
threshold (e = —1e threshold (;.ypy = —dl
(i) = v/ (fal) = Ly

Figure 43— THRESHOLD measurement definition
The voltage levelsfor logic 1 and O represent afull voltage swing.

Different threshold data for RI SE and FALL can be specified or else the data shall apply for both rising and fall-
ing transitions.

The THRESHCL D statement has the form of an arithmetic model. If the submodel keywords Rl SE and FALL are
used, it has the form of an arithmetic model container.

Examples
THRESHOLD = 0. 4;
THRESHOLD { RISE = 0.3; FALL = 0.5; }
THRESHOLD { HEADER { TEMPERATURE { TABLE{ O 50 100 }}}
TABLE { 0.5 0.4 0.3}}
11.9.13.2 Context of THRESHOLD definitions

The THRESHOLD statement can appear in the context of a FROMor TO container. In this case, it specifies the
applicable reference for the start and end point of the timing measurement, respectively.

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 255

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

Example

SLEWRATE {
FROM { THRESHOLD =
TO { THRESHOLD = 0.

0.2; }
8, }
}

The THRESHOL D statement can also appear in the context of aPl N. In this case, it specifies the applicable refer-
ence for the start or end point of timing measurements indicated by the PI N annotation inside a FROMor TOcon-
tainer, unless a THRESHOL D is specified explicitly inside the FROMor TO container.

If both the RI SE and FALL thresholds are specified and the switching direction of the applicable pin is clearly
indicated in the context of a VECTOR, the Rl SE or FALL data shall be applied accordingly.

Example

PIN A{ THRESHOLD { RISE = 0.3; FALL =0.5; } }
PIN Z { THRESHOLD = 0.4; }
/1 other statements ...
VECTOR (01 A-> 10 Z2) {
DELAY { FROM{ PIN=A; } TO{ PIN=2Z; } }
/1 the applicable threshold for Ais 0.3
/1 the applicable threshold for Zis 0.4

If thresholds are needed for exact definition of the model data, the FROMand TO containers shall each contain an
arithmetic model for THRESHOLD.

A THRESHOLD statement can also appear as argument of an arithmetic model for timing measurements. In this
case, it shall contain a Pl N annotation matching another Pl N annotation in the FROMor TO container.

Example

DELAY ({
FROM { PIN = A; THRESHOLD = 0.5; }
TO{ PIN= Z; }
HEADER { THRESHOLD { PIN = Z; TABLE{ 0.3 0.4 0.5} }
TABLE { 1.23 1.45 1.78 }
}
/* The neasurenent reference for pin Ais always 0.5. The delay fromA to
Z is expressed as a function of the nmeasurenent reference for pin Z. */

FROM and TO containers with THRESHOLD definitions, yet without Pl N annotations, can appear within
unnamed timing model definitions in the context of a VECTOR, CELL, W RE, SUBLI BRARY, or LI BRARY
object for the purpose of specifying global threshold definitions for al timing models within scope of the defini-
tion. The following priorities apply:

a THRESHOLDin the HEADER of the timing model

b) THRESHCOLDinthe FROMor TO statement within the timing model

¢) THRESHOLDfor timing model definition in the context of the same VECTOR

d) THRESHOLDwithin the PI N definition

e) THRESHOLDfor timing model definition in the context of the same CELL or W RE
f) THRESHOLD for timing model definition in the context of the same SUBLI BRARY
g) THRESHOLDfor timing model definition in the context of the same L1 BRARY

h) THRESHOLD for timing model definition outside LI BRARY

256 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

Example

LI BRARY ny _library {
DELAY {

FROM { THRESHOLD = 0.4; }
TO { THRESHOLD = 0.4; }
}
SLEWRATE {
FROM { THRESHOLD { RISE = 0.2; FALL = 0.8; } }
TO { THRESHOLD { RISE = 0.8, FALL = 0.2; } }
}

CELL ny_cel |l {
PIN A { D RECTI ON=i nput; THRESHOLD { RISE = 0.3; FALL = 0.5; } }
PIN Z { DI RECTI ON=out put; }
VECTOR (01 A -> 10 2) {
DELAY { FROM { PIN=A; } TO{ PIN=Z; } }
SLEWRATE { PIN = Z; }

}
}
/1 delay is measured fromA (threshol d=0.3) to Z (threshol d=0. 4)
/Il slewate on Zis neasured fromthreshol d=0.8 to threshol d=0. 2.

11.10 Auxiliary statements related to timing data

** Add lead-in text**

11.10.1 FROM and TO statements

A FROMcontainer and a TO container shall be used inside timing measurements and timing constraints. Depend-
ing on the semantics of the timing model (see 11.9.1), they can contain a THRESHOLD statement, PI N annota-
tion, and/or EDGE_NUMBER annotation, as shown in Syntax 113.

from ::=
FROM { from_to_items}

to:=
TO { from _to_items}
from _to items::=
from_to_item{ from_to_item}
from _to_item::=
PIN_single_value_annotation
| EDGE_single_value _annotation
| THRESHOLD _arithmetic_model

Syntax 113—FROM and TO statements

The datain the FROMand TO containers define the measurement start and end point, respectively.

Example
DELAY {
FROM {PIN = data_in; THRESHOLD { RISE = 0.4; FALL = 0.6;} }
TO {PIN = data_out; THRESHOLD = 0.5;}
}

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 257

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

The delay ismeasured from pindat a_i ntopindat a_out . Thethresholdfordat a_i nis0. 4 fortherising
signal and 0. 6 for thefalling signal. Thethreshold for dat a_out is0. 5, which applies for both the rising and
faling signals.

11.10.2 EARLY and LATE statements

The EARLY and LATE containers define the boundaries of timing measurementsin one single analysis, as shown
in Syntax 114. They only apply to DELAY and SLEWRATE. Both of them need to appear in both containers.

EARLY arithmetic model_container ::=

EARLY { early_late arithmetic_models }
LATE_arithmetic_model_container ::=

E { early_late_arithmetic_models }

early |late_arithmetic_models ::=

early late_arithmetic_model { early late arithmetic_model }
early late arithmetic_model ::=

DELAY_arithmetic_model
| RETAIN_arithmetic_model
| SLEWRATE_arithmetic_model

Syntax 114—EARLY and LATE statements

The quadruple

EARLY {
DELAY { FROM{...} TO{ ...} /* data */ }
SLEWRATE { /* data */ }

LATE {
DELAY { FROM{...} TO{ ...} /* data */ }
SLEWRATE { /* data */ }

is used to calculate the envelope of the timing waveform at the TO point of a delay arc with respect to the timing
waveform at the FROMpoint of adelay arc.

The EARLY DELAY is a smaller number (or a set of smaller numbers) than the LATE DELAY. However, the
EARLY SLEWRATE is not necessarily smaller than the LATE SLEWRATE, since the SLEWRATE of the EARLY
signal can be larger than the SLEWRATE of the LATE signal.

11.10.3 Annotations for arithmetic models for timing data

This section details the auxiliary statements used for timing modeling.
11.10.3.1 PIN annotation

If the timing measurements or timing constraints, respectively, apply semanticaly for two pins (see 11.9.1.1),
the FROM and TO containers shall each contain the Pl N annotation.

Example
DELAY {

FROM{ PIN= A ; }
TO{ PIN=Z; }

258 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

Otherwise, if the timing measurements or timing constraints apply semantically only to one pin (see 11.9.1.3),
the Pl N annotation shall be outside the FROMor TO container.

Example

SLEWRATE {
PIN = A ;
}

11.10.3.2 EDGE_NUMBER annotation

The EDGE_NUMBER annotation within the context of a timing model shall specify the edge where the timing
measurement applies. The timing model shall be in the context of a VECTOR. The EDGE_NUMBER shall have an
unsigned value pointing to exactly one of subsegquent vect or _si ngl e_event expressions applicable to the
referenced pin. The EDGE_NUMBER shall be counted individually for each pin which appears in the VECTOR,
starting with zero (0).

If the timing measurements or timing constraints, apply semantically to two pins (see 11.9.1.1), the
EDGE_NUMBER annotation shall be legal inside the FROMor TO container in conjunction with the Pl N annota-
tion.

Example

DELAY {
FROM{ PIN = A ; EDGE_NUMBER = 0; }
TO{ PIN = Z ; EDGE_NUVBER = 0; }

}

Otherwise, if the timing measurements or timing constraints apply semantically only to one pin (see 11.9.1.3),

the EDGE_NUMBER annotation shall be legal outside the FROMor TO container in conjunction with the PI N
annotation.

Example

SLEWRATE {
PIN = A ; EDGE_NUMBER = O;
}

The default values for EDGE_NUMBER are specific for each timing model keyword (see 11.9.1).

The EDGE_NUMBER annotation is necessary for complex timing models involving multiple transitions on the
same pin, asillustrated by the Figure 44 — Figure 46 and their examples.

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 259

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

|
EDGE_NUMBER = 0

|
EDGE_NUMBER = 1

>
_ DELAY d1
n
out
Figure 44—Schematic of a pulse generator
| | |
in | | |
DELAY d1 | | o
I »! | .
EDGE_NUMBER F 0 | | time
| |
out | |

260

Figure 45—Timing diagram of a pulse generator
VECTOR (01 in -> 01 out -> 10 out) {
DELAY d1 {
FROM{ PIN = in; }

TO{ PIN = out; EDGE_NUVBER = 0; }
}
DELAY d2 {

FROM{ PIN = in; }

TO{ PIN = out; EDGE_NUMBER = 1; }
}

Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 3

| | | |
| | | |
RAS | | | | |
| #GE! | | |
E NUMBER = E NUMBER = 1
| DGE_'_ UVB 0 . UVB | | |
CAS | sgTub s1 toh h1 | | |
L gl | | SETUP |52 | HOLD h2
| | |
| | | | |
i | | | EDGE_N{UI\/BER =0 EI#GE_NUIT/BER =1
addr | o | | |
	N		
EDGE_N{UNBER i: 0 EDiGE_:NUI\/BER	1 iEDGE_r{UNBER =2		

VECTOR(?! addr
SETUP s1 {

Figure 46—Timing diagram of a DRAM cycle
->01 RAS ->10 RAS ->?! addr ->01 CAS ->10 CAS ->?! addr){

FROM { PIN = addr; EDGE_NUMBER = O0;
TO { PIN = RAS; EDGE_NUMBER = O0;

}
HOLD hi {

FROM { PIN = RAS; EDGE_NUMBER = 1; }
TO { PIN = addr; EDGE_NUMBER = 1; }

}
SETUP s2 {

FROM { PIN = addr; EDGE_NUMBER = 1;
TO { PIN = CAS; EDGE_NUMBER = O0;

}
HOLD h2 {

FROM { PIN = CAS; EDGE_NUMBER = 1; }
TO{ PIN = addr; EDGE_NUMBER = 2; }

11.11 Arithmetic models for environmental data

. .

This section defines the environmental dependencies for electrical data.

11.11.1 PROCESS and DERATE_CASE statement

** Add lead-in text**

IEEE P1603 Draft 3

Advanced Library Format (ALF) Reference Manual

261

10

15

20

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

11.11.1.1 PROCESS

The following identifiers can be used as predefined process corners:
?n?p process definition with transistor strength

where ? can be

S strong
w weak

The possible process name combinations are shown in Table 97.

Table 97—Predefined process names

Process name Description
snsp Strong NMOS, strong PMOS.
snwp Strong NMOS, weak PMOS.
wnsp Weak NMOS, strong PMOS.
wnwp Weak NMOS, weak PMOS.

11.11.1.2 DERATE_CASE
The following identifiers can be used as predefined derating cases:
nom nominal case
bc? prefix for best case
we? prefix for worst case
where ? can be
com suffix for commercial case
ind suffix for industrial case

m | suffix for military case

The possible derating case combinations are defined in Table 98.

Table 98—Predefined derating cases

Derating case Description
bccom Best case commercial.
bci nd Best caseindustrial.
bem | Best case military.
wecom Worst case commercial.
wei nd Worst case military.

262 Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 3

Table 98—Predefined derating cases (Continued)

Derating case Description

wemi | Worst case military.

11.11.1.3 Lookup table without interpolation

The PROCESS or DERATE_CASE can be used in a TABLE within the HEADER of an arithmetic model for elec-
trical data, e.g., DELAY. Data can not be interpolated in the dimension of thistable.

Example

DELAY {
UNIT = ns;
HEADER {
PROCESS { TABLE { nom snsp wnwp } }

}
TABLE { 0.4 0.3 0.6 }

}

Here, the DELAY is0. 4 ns for nominal process, 0. 3 ns for snsp, and 0. 6 ns for wnwp. A delay “in-
between” snsp and wnwp can not be interpol ated.

11.11.1.4 Lookup table for process- or derating-case coefficients

A nested arithmetic model construct can be used to describe lookup tables for coefficients, based on PROCESS
or DERATE_CASE. These coefficients can be used in an EQUATI ONto calculate electrical data, e.g., DELAY.

Example

DELAY {
UNI T = ns;
HEADER {
PROCESS { HEADER { nom snsp wnwp } TABLE {0.0 -0.25 0.5} }
}
EQUATION { (1 + PROCESS)*0.4 }
}

The eguation uses the PROCESS coefficient 0. O for nomi nal , - 0. 25 for snsp, and 0. 5 for wawp. There-
forethe DELAY is0. 4 ns for the nominal process, 0. 3 ns for snsp, and 0. 6 ns for wnwp. Conceivably,
the DELAY can be calculated for any value of the coefficient.

11.11.2 TEMPERATURE statement

TEMPERATURE can be used as argument in the HEADER of an arithmetic model for timing or electrical data. It

can aso be used as an arithmetic model with DERATE_CASE as argument, in order to describe what temperature
applies for the specified derating case.

11.12 Arithmetic models for electrical data

** Add lead-in text**

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 263

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

11.12.1 PIN-related arithmetic models for electrical data
This section details the Pl N arithmetic models for electrical data.
11.12.1.1 Principles

Arithmetic models for electrical data can be associated with a pin of a cell. Their meaning is illustrated in
Figure 47.

source sink
current node resistance inductance node o rent
— -
voltage voltage

capacitance

Figure 47—General representation of electrical models around a pin

A pin isrepresented as a source node and a sink node. For pins with DI RECTI ON=i nput , the source node is
externally accessible. For pinswith DI RECTI ON=out put , the sink nodeis externally accessible.

11.12.1.2 CAPACITANCE, RESISTANCE, and INDUCTANCE

RESI STANCE and | NDUCTANCE apply between the source and sink node. CAPACI TANCE applies between
the sink node and ground. By default, the values for resistance, inductance and capacitance shall be zero (0).

11.12.1.3 VOLTAGE and CURRENT

VOLTAGE and CURRENT can be measured at either source or sink node, depending on which node is externally
accessible. However, a voltage source can only be connected to a source node. The sense of measurement for
voltage shall be from the node to ground. The sense of measurement for current shall be into the node.

11.12.1.4 Context-specific semantics

An arithmetic model for VOLTAGE, CURRENT, SLEWRATE, RESI STANCE, | NDUCTANCE, and CAPACI -
TANCE can be associated with aPl Nin one of the following ways.

a A modd inthe context of aPl N
Example

PIN my_pin {
CAPACI TANCE = 0. 025;

b) A mode inthe context of aCELL, W RE, or VECTOR with PI N annotation
Example

VOLTAGE = 1.8 { PIN = ny_pin; }

264 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

The model in the context of a Pl N shall be used if the data is completely confined to the pin. That means, no
argument of the model shall make reference to any pin, since such reference implies an external dependency. A
model with dependency only on environmental data not associated with a pin (e.g., TEMPERATURE, PROCESS,
and DERATE_CASE) can be described within the context of the Pl N.

A model with dependency on external data applied to apin (e.g., load capacitance) shall be described outside the
context of the PI N, using a Pl N annotation. In particular, if the model involves a dependency on logic state or

logic transition of other Pl Ns, the model shall be described within the context of a VECTOR.

Figure 48 illustrates el ectrical models associated with input and output pins.

external driver Input pin outputpin external load
current source sink source sink current
s & N —
voltag - - voltage -

Figure 48—Electrical models associated with input and output pins

Table 99 and Table 100 define how models are associated with the pin, depending on the context.

Table 99—Direct association of models with a PIN

. Model in context of CELL, WIRE, and
Model Model in context of PIN VECTOR with PIN annotation
CAPACI TANCE Pin self-capacitance. Externally controlled capacitance at the pin,
e.g., voltage-dependent.
| NDUCTANCE Pin self-inductance. Externally controlled inductance at the pin,
e.g., voltage-dependent.
RESI STANCE Pin self-resistance. Externally controlled resistance at the pin,
e.g., voltage-dependent, in the context of a
VECTOR for timing-arc specific driver
resistance.
VOLTAGE Operationa voltage measured at pin. Externally controlled voltage at the pin.
CURRENT Operational current measured into pin. Externally controlled current into pin.
SAME PIN TI M NG_ For model definition, default, etc.; In context of VECTOR for timing arc, other
MEASUREMENT not for the timing arc. context for definition, default, etc.
SAME_PI N_TI M NG_ For model definition, default, etc.; In context of VECTOR for timing arc, other
CONSTRAI NT not for the timing arc. context for definition, default, etc.

IEEE P1603 Draft 3

Advanced Library Format (ALF) Reference Manual

265

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

Table 100—External association of models with a PIN

Model / Context

LIMIT within PIN or with PIN annotation

Model argument with PIN

annotation
CAPACI TANCE Min or max limit for applicable load. Load for model characterization.
| NDUCTANCE Min or max limit for applicable load. Load for model characterization.
RESI STANCE Min or max limit for applicable load. Load for model characterization.
VOLTAGE Min or max limit for applicable voltage. Voltage for model characterization.
CURRENT Min or max limit for applicable current. Current for model characterization.

SAME_PI N_TI M NG_
MEASUREMENT

Currently applicable for min or max limit for
SLEWRATE.

Stimulus with SLEWRATE for model
characterization.

SAMVE_PI N_TI M NG_
CONSTRAI NT

N/A, since the keyword means a min or max
limit by itself.

N/A

Example

CELL my_cell {
PI'N pinl {
PI'N pin2 {
PI'N pi n3 {
PI'N pin4d {

DI RECTI ON=i nput; CAPACI TANCE = 0.05; }
DI RECTI ON=out put; LIM T { CAPACI TANCE { MAX=1.2; } } }

DI RECTI ON=i nput ; }
DI RECTI ON=i nput ; }

CAPACI TANCE {
Pl N=pi n3;
HEADER { VOLTACE { PIN=pin4; } }
EQUATION { 0.25 + 0.34*VOLTAGE }

}

The capacitance on pi n1 is0. 05. The maximum allowed load capacitance on pi n2 is 1. 2. The capacitance

on pi n3 depends on the voltage on pin4.

11.12.2 CAPACITANCE statement

** Add lead-in text**

11.12.3 RESISTANCE statement

** Add lead-in text**

11.12.4 INDUCTANCE statement

** Add lead-in text**

11.12.5 VOLTAGE statement

** Add lead-in text**

266

Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 3

11.12.6 CURRENT statement

** Add lead-in text**

11.12.7 POWER and ENERGY statement

. , : .

This section defines the arithmetic models used for power calculation.
11.12.7.1 Principles

The purpose of power calculation isto evaluate the electrical power supply demand and electrical power dissipa-
tion of an electronic circuit. In general, both power supply demand and power dissipation are the same, due to the
energy conservation law. However, there are scenarios where power is supplied and dissipated locally in different
places. The power modelsin ALF shall be specified in such away that the total power supply and dissipation of
acircuit adds up correctly to the same number.

Example

A capacitor Cis charged from 0 volt to V volt by a switched DC source. The energy supplied by the
source is C* V2. The energy stored in the capacitor is 1/ 2* C+ V2. Hence the dissipated energy isalso 1/
2* C* V2. Later the capacitor isdischarged from V volt to 0 volt. The supplied energy is0. The dissipated
energy is1/ 2* C* V2. A supply-oriented power model can associate the energy E;=C* V2 with the charg-
ing event and E,=0 with the discharging event. The total energy is E=E{+E,=C* V2. A dissi pation-ori-
ented power model can associate the energy Ez=1/ 2* C* V2 with both the charging and discharging
event. Thetotal energy isalso E=2* Eg=C* V2.

In many cases, it is not so easy to decide when and where the power is supplied and where it is dissipated. The
choice between a supply-oriented and dissipation-oriented model or a mixture of both is subjective. Hence the
ALF language provides no means to specify, which modeling approach is used. The choice is up to the model
developer, aslong as the energy conservation law is respected.

11.12.7.2 POWER and ENERGY

POVER and/or ENERGY models shall be in the context of a CELL or within a VECTOR. The total energy and/or
power of acell shall be calculated by combining the data of all models within the scope of the CELL or the VEC-
TORs within the cell.

The datafor PONER and/or ENERGY shall be positive when energy is actually supplied to the CELL and/or dissi-
pated within the CELL. The data shall be negative when energy is actually supplied or restored by the CELL.

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 267

10

15

20

25

30

35

40

45

50

55

1

10

15

20

25

30

35

40

50

55

Table 101 shows the mathematical relationship between ENERGY and POWER and the applicable MEASURE-
MENT annotations.

Table 101—Relations between ENERGY and POWER

MEASUREMENT for MEASUREMENT Formulato calculate Formulato calculate
ENERGY for POWER POWER from ENERGY ENERGY from POWER
t ransi ent transi ent
d d
—ENERGY j POWERGdt
dt
transi ent aver age
ENERGY POWER LTIME
TIME
transi ent peak N/A
max(‘EENERGYD
dt
t ransi ent rns N/A
1 (d)2
T q GrENERGY dt
N/A static N/A
POWER [TIME
static N/A 0 N/A

To establish a meaningful relationship between energy and power, the measurement for energy shall bet r an-
si ent . A st at i ¢ measurement for energy is conceivable, modeling a state with constant energy, but no power
is dissipated during such astate. A st at i ¢ measurement for power models a state during which constant power
dissipation occurs. Although it is not meaningful to describe an energy model for such astate, it is conceivableto
calculate the energy by multiplying the power with the duration of the state. A 1-to-1 correspondence between
power and energy can be established for t r ansi ent and aver age power measurements, modeling instanta-
neous and average power, respectively. Therefore, it is redundant to specify both energy and power in such case.
Also, peak and r s power can be conceivably calculated from atransient energy or power waveform, but tran-
sient energy can not be calculated from apeak or r ms power measurement.

11.12.8 FLUX and FLUENCE statement

This section defines arithmetic models for hot el ectron calculation.

268 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

11.12.8.1 Principles

The purpose of hot electron calculation isto evaluate the damage done to the performance of an electronic device
due to the hot electron effect. The hot electron effect consists in accumulation of electrons trapped in the gate
oxide of atransistor. The more electrons are trapped, the more the device sows down. At a certain point, the per-
formance specification no longer is met and the deviceis considered to be damaged.

11.12.8.2 FLUX and FLUENCE

FLUX and/or FLUENCE models shall be in the context of a CELL or within a VECTOR. Total fluence and/or flux
of acell shall be calculated by combining the data of all models within the scope of the CELL or the VECTORs
within the cell.

Both FLUX and FLUENCE are measures for hot electron damage. FLUX relates to FLUENCE in the same way as
POVER relates to ENERGY.

Table 102 shows the mathematical relationship between FLUENCE and FLUX and the applicable MEASURE-

MENT annotations.
Table 102—Relations between FLUENCE and FLUX
MEASUREMENT for MEASUREMENT Formulato calculate FLUX Formulato calculate
FLUENCE for FLUX from FLUENCE FLUENCE from FLUX
t ransi ent transi ent
9 Uence [FLUX
dt
transi ent aver age
FLUENCE FLUX CTIME
TIME
N/A static N/A
FLUX CTIME
static N/A 0 N/A

Since hot electron damage is purely cumulative, the only meaningful MEASUREMENT annotations are t r an-
sient,average,andstati c.

11.12.9 DRIVE_STRENGTH statement

. .

hi on-detai | ated-arithmeti s

IEEE P1603 Draft 3

Advanced Library Format (ALF) Reference Manual

269

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

DRI VE_STRENGTH is a unit-less, abstract measure for the drivability of aPl N. It can be used as a substitute of
driver RESI STANCE. The higher the DRI VE_STRENGTH, the lower the driver RESI STANCE. However,
DRI VE_STRENGTH can only be used within a coherent system of calculation models, since it does not represent
an absolute quantity, as opposed to RESI STANCE. For example, the weakest driver of alibrary can have drive
strength 1, the next stronger driver can have drive strength 2 and so forth. This does not necessarily mean the
resistance of the stronger driver is exactly half of the resistance of the weaker driver.

An arithmetic model for conversion from DRI VE_STRENGTHto RESI STANCE can be given to relate the quan-
tity DRI VE_STRENGTH across technology libraries.

Example

SUBLI BRARY hi gh_speed_library {
RESI STANCE {
HEADER { DRI VE_STRENGTH } EQUATION { 800 / DRI VE_STRENGTH }
}
CELL hi gh_speed_std_driver {
PIN Z { D RECTION = output; DRI VE_STRENGTH = 1; }

}
}
SUBLI BRARY | ow_power _library {
RES| STANCE {
HEADER { DRI VE_STRENGTH } EQUATION { 1600 / DRI VE_STRENGTH }
}
CELL | ow_power _std_driver {
PIN Z { D RECTION = output; DRI VE_STRENGTH = 1; }
}
}

Drive strength 1 in the high speed library corresponds to 800 ohm. Drive strength 1 in the low power library cor-
responds to 1600 ohm.

NOTE—Any particular arithmetic model for RESI STANCE in either library shall locally override the conversion formula
from drive strength to resistance.

11.12.10 SWITCHING_BITS statement

The quantity SW TCHI NG_BI TS applies only for bus pins. The rangeisfrom O to the width of the bus. Usually,
the quantity SW TCHI NG_BI TSis not calculated by an arithmetic model, since the number of switching bits on
a bus depends on the functional specification rather than the electrical specification. However,
SW TCHI NG_BI TS can be used as argument in the HEADER of an arithmetic model to calcul ate electrical quan-
tities, for instance, energy consumption.

Example

CELL nmy_rom{
PIN [3:0] addr { DI RECTI ON=i nput; SIGNALTYPE=address; }
PIN [7:0] dout { DI RECTI ON=out put; SIGNALTYPE=data; }
VECTOR (?! addr -> ?! dout) {

ENERGY {
HEADER {
SW TCHI NG BI TS addr_bits { PIN = addr; }
SW TCHI NG _BI TS dout_bits { PIN = dout; }

270 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

EQUATION { 0.45*LOG addr _bits) + 2.6*dout _bits }

}

The energy consumption of ny_r omdepends on the number of switching data bits and on the logarithm of the
number of switching address hits.

11.12.11 NOISE and NOISE_MARGIN statement
: .
This section detail s the noise calculation definitions.
11.12.11.1 NOISE_MARGIN definition
Noise margin is defined as the maximal alowed difference between the ideal signal voltage under a well-speci-

fied operation condition and the actual signal voltage normalized to the ideal voltage swing. Thisisillustrated in
Figure 49.

V . .
ided (logic 1) AV, { A noise margin (high) = AAL\}
Vmin(logicl) ______]
AV
¥ max logieo) - _ _ VAR noise Margin (g = Vo
0 (low) = o,
Videal (logic 0) 5_ y &Y

Figure 49—Definition of noise margin

Noise margin is measured at a signal input pin of adigital cell. Thetermsideal signal voltage and actual signal
voltage apply from the standpoint of that particular pin. In CMOS technology, the ideal signal voltage at apinis
the actual supply voltage of the cell, which is not necessarily identical to the nominal supply voltage of the chip.

The NO SE_MARG N statement has the form of an arithmetic model. If the submodel keywords Hl GH and LOW
are used, it has the form of an arithmetic model container.

Examples
NO SE_MARA N = 0. 3;
NOSE MARGN{ HGH=0.2; LOWN=0.4; }
NO SE_MARG N {
HEADER { TEMPERATURE { TABLE { 0 50 100 } } }
TABLE { 0.4 0.3 0.2}
}

NO SE_MARG N can berelated to signal VOLTACGE by using the following statement:

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 271

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

VOLTAGE {
LOW = 0;
HGH = 2.5

}

NO SE_MARGA N {
LOW = 0. 4;
H GH = 0. 3;

}

}

In this example, the valid signal voltage levelsarebound by 1volt=2.5 volt *
volt=2.5 volt * (1 - 0.3) forlogic1l.

11.12.11.2 Representation of noise in a VECTOR

0. 4 for logic 0 and 1.75

In order to describe timing diagrams involving noisy signals, the symbolic state * (see 5.4.13) shall be used. This
State represents arbitrary transitions between arbitrary states, which corresponds to the nature of noise, as shown

in Figure 50.

possible real waveform

noise margin

symbolic timing diagram

peak voltage

Figure 50—Timing diagram of a noisy signal

The signal can be above or below noise margin during the state *, but it shall be within noise margin during the
state O or 1. During the state * , the signal is bound by an envelope defined by the pulse duration and the peak

voltage.
A description of the noisy signal is given in the following templ ate:

VECTOR (O* ny_pin -> *0 ny_pin) {

TIME = <pul se_duration> {
FROM { PI N=nmy_pi n; EDGE_NUMBER=0; }
TO { PIN=ny_pin; EDGE_NUMBER=1; }

}

VOLTAGE = <peak_vol tage> {
CALCULATI ON = increnental ;
MEASUREMENT = peak;
PIN = nmy_pin;

272 Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 3

}

The VECTOR describes the symbolic timing diagram. The Tl VE statement specifies the duration of the pulse.
The VOLTAGE statement specifies the peak voltage. The annotation CALCULATI ON=i ncr enent al specifies
that the voltage is measured from the nominal signal voltage level rather than from an absolute reference level
and that noise voltage can add up.

It is also necessary to specify whether a noisy signal (which can oscillate above and below the noise margin) is
considered as one symbolic noise pulse or separated into multiple symbolic noise pulses.

TheLl M T statement for Tl ME shall be used for that purpose, as shown in the following example and illustrated
by the timing diagram shown in Figure 51.

Example
VECTOR (*O0 ny_pin -> 0* ny_pin) {
LIMT {
TI ME {
FROM { PIN = ny_pin; EDGE_NUMBER = 0; }
TO { PIN = ny_pin; EDGE_NUMBER = 1; }

M N = <m ni nrum pul se_separation> ;

possible real waveform !

symbolic timing diagram |

pulse separation

g

L

Figure 51—Separation between two noise pulses

When the minimum pulse separation is not met, consecutive noise pulses shall be symbolically merged into one
pulse.

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 273

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

11.12.11.3 Context of NOISE_MARGIN

NO SE_MARG Nisapin-related quantity. It can appear either in the context of aPl N statement or in the context
of a VECTOR statement with Pl N annotation. It can also appear in the global context of a CELL, SUBLI BRARY,
or LI BRARY statement.

If aNO SE_MARG N statement appears in multiple contexts, the following priorities apply:

a)

b)
<)
d)
€)

NO SE_MARG N with PI N annotation in the context of the VECTOR, NO SE_MARG N with PI N
annotation in the context of the CELL, or NO SE_MARG Nin the context of the PI N

NO SE_MARG Nwithout PI' N annotation in the context of the CELL

NO SE_MARG Nin the context of the SUBLI BRARY

NO SE_MARG Nin the context of the LI BRARY

NO SE_MARG Noutside the LI BRARY

If the noise margin is constant or depends only on environmental quantities, the NO SE_ MARGQ N statement
shall appear within the context of the PI N. The noise margin shall relate to the signal VOLTAGE levels applica
blefor that pin.

Example

PIN nmy_signal _pin {

}

PI NTYPE = digital;

DI RECTI ON = i nput ;

VOLTAGE { LON=0; HGH = 2.5; }

NO SE_ VARG N { LOW= 0.4; HGH=0.3; }

If the noise margin depends on electrical quantities related to other pins, eg., the supply voltage, the
NO SE_MARG N statement shall have a Pl N annotation and appear in the context of the CELL.

Example

CELL ny_cell {

}

PIN my_signal _pin { PINTYPE = digital; DI RECTION = input; }
PIN my_power _pin { PINTYPE = supply; SUPPLYTYPE = power; }
PIN my_ground_pin { PINTYPE = supply; SUPPLYTYPE = ground; }

NO SE_MARG N {
PIN = my_si gnal _pin;
HEADER {
VOLTACE vdd { PIN
VOLTACE vss { PIN

my_power _pin; }
my_ground_pin; }

}
EQUATION { 0.16 * (vdd - vss) }

If the noise margin depends on the logical states and/or the timing of other pins, the NO SE_MARG N statement
shall have a Pl N annotation and appear in the context of a VECTOR, describing the state-and/or timing depen-

dency.

Example for state-dependent noise margin

274

Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

CELL nmy_latch {
PIN Q { DIRECTION = output; SICGNALTYPE = data; }
PIN D { DIRECTION = input; SIGNALTYPE = data; }
PIN CLK { DIRECTION = input; SIGNALTYPE = clock; POLARITY = high; }
VECTOR (CLK & ! D) { NOSE MMRGN=0.4{ PIN=D; } }
VECTOR (CLK & D) { NOSE_ MMARGAN=0.3 { PIN=D; } }
}

Here, the pin Dis only noise-sensitive when CLK is high. No noise margin is given for the case when CLK is low.
In the case of timing-dependency, the vect or _expr essi on shall indicate the time window where noise is
allowed and not allowed for the applicable pin. The symbolic state * (see 5.4.13) shall be used to indicate anoisy
signal.

Example for timing-dependent noise margin

VECTOR (*? D -> 10 CLK -> ?* D) {
TIME T1 = 0.35 {

FROM { PIN = D EDGE_NUMBER = 0; }
TO { PIN = CLK; EDGE_NUMBER = 0; }
}
TIME T2 = 0.28 {
FROM { PIN = CLK; EDGE_NUMBER = 0; }
TO { PIN = D EDGE_NUMBER = 1; }
}

NO SE MARG N = 0.44 { PIN=D; }
}

This example corresponds to the timing diagram shown in Figure 52.

T | |

| |
CLK T2 (hold} |
|

| T1 (setup) |
| |
|

. rﬁis@mﬁrgﬁ — _ 7
u >'

noise-sensitive time window

Figure 52—Example for timing-dependent noise margin

Noiseon pin Disallowed 0. 35 time-units before and 0. 28 time-units after the falling edge of CLK. During the
time window in-between, the noise marginis 0. 44.

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 275

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

11.12.11.4 Noise propagation

Noise propagation from input to output can be modeled in asimilar way as signal propagation, using the concept
of timing arcs. Thisisillustrated in Figure 53.

start time end time starttime endtime
@input @linput I@output I@output

| | timing arc
| |
peak voltage! l /\ | |
@ input input output peak voltage
pin pin @ output

Figure 53—Principle of noise propagation

The principle of signal propagation isto calculate the output arrival time and slewrate from the input arrival time
and slewrate. In a more abstract way, two points in time propagate from input to output. The same principle
applies for noise propagation. Two pointsin time, start and end time of the noise waveform, propagate from input
to output. In addition, the noise peak voltage also propagates from input to output. Thisisillustrated in Figure 54.

arrival time arrival time
@ inplut @ outlput

timing arc
| /\ | |
| |
| input output |
| | pin pin | |
| | |

dewrate dewrate
: delay = arrival time @ output
@ input - arrival time @ input @ output

Figure 54—Principle of signal propagation

A VECTOR shall be used to describe the timing of the noise waveform. Again, the symbolic state * (see 5.4.13)
shall be used to indicate a noisy signal.

Example

CELL ny_cel |l {
PIN A { DIRECTION = input; }
PIN Zz { DIRECTION = output; }
VECTOR (O* A->*0 A<& 0* Z ->*0Z) {
DELAY T1 {
FROM { PIN = A, EDGE_NUMBER = 0; }

276 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

TO { PIN = Z, EDGE_NUMBER = 0; }

/* fill in HEADER, TABLE or EQUATI ON */
}
DELAY T2 {

FROM { PIN = A, EDGE_ NUMBER = 1; }

TO { PIN = Z;, EDGE NUMBER = 1; }

/* fill in HEADER, TABLE or EQUATI ON */
}
VOLTAGE { PIN = Z; MEASUREMENT = peak;

/* fill in HEADER, TABLE or EQUATI ON */
}

}

This example corresponds to the timing diagram shown in Figure 55.

______ peak voltage @ A
input pin A
T2
- > |
pulse duration @ A |
. | | ___ pekvoltage@Z
output pin Z T1 }

Figure 55—Example of noise propagation

Theinput to output delay of the leading edge of the noise pulse can depend on the peak voltage at pin A, the load
capacitance at pin Z and other electrical quantities. In addition, the input to output delay of the trailing edge of
the noise pulse as well as the peak voltage at pin Z can aso depend on the duration of the pulse at pin A.

NOTE—The time measurement from start to end of the noise pulse shall be represented by the keyword Tl MVE (no causality
between start and end time), whereas the time measurement from input to output shall be represented by the keyword DELAY
(causality between input and output arrival time).

11.12.11.5 Noise rejection

Noise rejection isa limit case for noise propagation, when the output peak voltage is so low the noise is consid-
ered rejected. In this case, the input peak voltage can still be above noise margin, whereas the output peak volt-
age is way below noise margin.

Example

CELL ny_cell {
PIN A{ D RECTION = input; }
PIN Zz { DI RECTION = output; }
VECTOR (0* A->*0 A->00 2) {

LIMT {
VOLTAGE {
PIN = A, MEASUREMENT = peak;
MAX { /* fill in HEADER TABLE or EQUATION */ }

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 277

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

}

NOTE—Thevect or _expressi on 00 Z saysexplicitly atransition at pin Z does not happen.

This example corresponds to the timing diagram shown in Figure 56.

______ peak voltage @ A
input pin A
-
pulse duration @ A
_ peak voltage @ Z
output pin Z is considered zero

Figure 56—Example of noise rejection

The peak voltage limit for noise rejection can depend on the duration of the noise pulse at pin A and other electri-
cal quantities, e.g., the load capacitance at pin Z. If the peak voltage limit does not depend on the duration of the
noise pulse, the NO SE_MARG N statement shall be used rather than the vector-specific LI M T construct for
noise rejection.
11.12.12 Annotations for arithmetic models for electrical data

ione-forat .
This section defines the annotations for arithmetic models.

11.12.12.1 MEASUREMENT annotation

Arithmetic models describing analog measurements (see Table 78) can have a MEASUREMENT annotation. This
annotation indicates the type of measurement used for the computation in arithmetic model.

MEASUREMENT = string ;

The string can take the values shown in Table 103.

Table 103—MEASUREMENT annotation

Annotation string Description
transi ent Measurement is atransient value.
static Measurement is a static value.
aver age Measurement is an average value.

278 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

Table 103—MEASUREMENT annotation (Continued)

Annotation string Description
rms Measurement is an root mean sgquare value.
peak Measurement is a peak value.

Their mathematical definitions are shown in Figure 57.

t=T) t=T)
transi ent [dED) average [Eat
(t=0) t=0
T
static E = constant
rns
2
j E(t)“dt
peak max(E(t)) CsgnE(t) t=T =i

Figure 57—Mathematical definitions for MEASUREMENT annotations
Examples

transient measurement of ENERGY

static measurement of VOL TAGE, CURRENT, and PONER
average measurement of VOLTAGE, CURRENT, and PONER
rms measurement of VOL TAGE, CURRENT, and POAER
peak measurement of VOLTAGE, CURRENT, and POAER

11.12.12.2 Rules for combinations of annotations

Cumulative values of arithmetic models can be calculated for models which are cumulative in nature (e.g.,
ENERGY or POVER) or by the usage of CALCULATI ON=i ncr enent al (e.g., CURRENT or VOLTACE). The
MEASUREMENT annotation can be used in conjunction with the calculation of cumulative values under the fol-
lowing restrictions:

— Datawith MEASUREMENT=aver age for each model can be combined, provided the TI ME annotation
valueisthe same.

— Datawith MEASUREMENT=peak for each model can be combined, provided the Tl VE annotation or a
complementary TI ME model within the same context specify that the peak values can occur at the same
time.

— Datawith MEASUREMENT=r s for each model can not be combined.

— Datawith different MEASUREMENT annotations can not be combined.

— Datawith MEASUREMENT=t r ansi ent | st at i ¢ can be combined with each other.

All data that can be combined under the above mentioned restrictions, shall be in a compatible context, e.g.,
mutually non-exclusive VECTORs within a CELL.

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 279

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

11.13 Arithmetic models for physical data

** Add lead-in text**

11.13.1 CONNECTIVITY statement

This section defines the CONNECTI VI TY statement and its use.

11.13.1.1 Definition

A CONNECTI VI TY statement is defined as shown in Syntax 115.

connectivit

CONNECTIVITY [identifier] {

connect_rule_annotation between_multi_value_assignment }
ICONNECTTVITY [identifier] {
connect_rule_annotation table_based_model }

11.13.1.2 CONNECT_RULE annotation

Syntax 115—CONNECTIVITY statements

The connect_rule annotation can be only inside a CONNECT! VI TY object. It specifies the connectivity require-

ment.

CONNECT_RULE = string ;

which can take the values shown in Table 104.

Table 104—CONNECT_RULE annotation

Annotation string

Description

nmust _short

Electrical connection required.

can_short

Electrical connection allowed.

cannot _short

Electrical connection disallowed.

It is not necessary to specify more than one rule between a given set of objects. If oneruleis specified to be True,
thelogical value of the other rules can be implied shown in Table 105.

Table 105—Implications between connect rules

must_short cannot_short can_short
False False True
False True False
True False N/A

280

Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 3

11.13.1.3 CONNECTIVITY modeled with BETWEEN statement

The BETWEEN statement specifies the objects for which the connectivity applies, as shown in Syntax 116.

between multi_value assignment ::=

BETWEEN { identifiers }

Syntax 116—BETWEEN statements

If the BETVEEN statement contains only one identifier, than the CONNECTI VI TY shall apply between multiple
instances of the same object.

Example

CLASS anal og_power ;
CLASS anal og_gr ound;
CLASS digital _power;
CLASS digital _ground;
CONNECTIVITY Aground { // connect all nenbers of CLASS anal og_ground
CONNECT_RULE = nust _short;
BETWEEN { anal og_ground }
}
CONNECTIVITY Dground { // connect all nenbers of CLASS digital_ground
CONNECT_RULE = nust _short;
BETWEEN { digital _ground }
}
CONNECTIVITY Apower { // connect all menbers of CLASS anal og_power
CONNECT_RULE = nust _short;
BETWEEN { anal og_power }
}
CONNECTI VI TY Dpower { // connect all menbers of CLASS digital _power
CONNECT_RULE = nust_short;
BETWEEN { digital _power }
}
CONNECTI VI TY Aground2Dgr ound {
CONNECT_RULE = nust_short;
BETWEEN { anal og_ground digital ground }
}
CONNECTI VI TY Apower 2Dpower {
CONNECT_RULE = can_short;
BETWEEN { anal og_power digital power }
}
CONNECTI VI TY Apower 2Agr ound {
CONNECT_RULE = cannot _short;
BETWEEN { anal og_power anal og_ground }
}
CONNECTI VI TY Apower 2Dgr ound {
CONNECT_RULE = cannot _short;
BETWEEN { anal og_power digital _ground }
}
CONNECTI VI TY Dpower 2Agr ound {
CONNECT_RULE = cannot _short;
BETWEEN { digital power anal og_ground }

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 281

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

}

CONNECTI VI TY Dpower 2Dgr ound {
CONNECT_RULE = cannot _short;
BETWEEN { digital power digital ground }

}

11.13.1.4 CONNECTIVITY modeled as lookup TABLE

Connectivity can also be described as a lookup table model. This description is usually more compact than the
description using the BETWEEN statements.

The connectivity model can have the arguments shown in Table 106 in the HEADER.

Table 106—Arguments for connectivity

Argument Valuetype Description
DRI VER string Argument of connectivity function.
RECEI VER string Argument of connectivity function.

Each argument shall contain a TABLE.

The connectivity model specifies the allowed and disallowed connections amongst drivers or receivers in one-
dimensional tables or between drivers and receivers in two-dimensiona tables.The boolean literals in the table
refer to the CONNECT _RULE as shown in Table 107.

Table 107—Boolean literals in non-interpolateable tables

Boolean literal

Description

CONNECT_RULE isTrue.

CONNECT_RULE isFalse.

CONNECT_RULE does not apply.

Example

CLASS anal og_power ;

CLASS anal og_ground;
CLASS di gi tal _power;
CLASS digital ground;
CONNECTIVITY all _nust _short {
CONNECT_RULE = nust_short;

282

HEADER {

RECEI VER r1 {
TABLE {anal og_ground anal og_power digital _ground digital _power}

}

RECEI VER r2 {
TABLE {anal og_ground anal og_power digital_ground digital _power}

Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 3

}

TABLE {
1010
0100
1010
0001

}

/*
The follow ng table would apply,

TABLE {
0101
1010
0101
1010

}

The follow ng table would apply,

TABLE {
20?0
0?07
20?0
0?07

}

*/
}

11.13.2 SIZE statement

** Add lead-in text**

11.13.3 AREA statement

** Add lead-in text**

11.13.4 WIDTH statement

** Add lead-in text**

11.13.5 HEIGHT statement

** Add lead-in text**

11.13.6 LENGTH statement

** Add lead-in text**

11.13.7 DISTANCE statement

** Add lead-in text**

11.13.8 OVERHANG statement

** Add lead-in text**

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual

if the CONNECT_RULE was "cannot short":

if the CONNECT_RULE was "can_short":

283

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

11.13.9 PERIMETER statement

** Add lead-in text**

11.13.10 EXTENSION statement

** Add lead-in text**

11.13.11 THICKNESS statement

** Add lead-in text**

11.13.12 Annotations for arithmetic models for physical data
This section defines the physical annotations for arithmetic models.
11.13.12.1 BETWEEN statement within DISTANCE, LENGTH

The BETWEEN statement within DI STANCE or LENGTH (see 11.8.2 and the example in Section 9.11.5) shall
identify the objects for which the measurement applies. The syntax is shown in Syntax 116.

If the BETVEEEN statement contains only one identifier, than the DI STANCE or LENGTH, respectively, shall
apply between multiple instances of the same object, as shown in the following example and Figure 58.

Example
DI STANCE = 4 { BETWEEN { objectl object2 } }
LENGTH = 2 { BETWEEN { objectl object2 } }

obj ectl obj ect 2
LENGTH=2

DI STANCE=2 ™|

Figure 58—lllustration of LENGTH and DISTANCE
11.13.12.2 MEASUREMENT annotation for DISTANCE
The MEASUREMENT statement specifies the objects for which the connectivity applies, as shown in Syntax 117.
The default for measuring the distance between objects is Straight.

The mathematical definitions for distance measurements between two points with differential coordinates Ax and
Ay are:

— dtraight distance = (Ax? + Ay?)12
— horizontal distance = Ax

284 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

distance measurement assignment ::=
MEASUREMENT = dlsxance measurement_identifier ;
distance_measurement_identifier ::=
straight
| horizontal
| vertical
| manhattan

Syntax 117—MEASUREMENT statements

— vertical distance = Ay
— manhattan distance = Ax + Ay

11.13.12.3 REFERENCE annotation for DISTANCE

The r ef erence_annot at i on shall specify the reference for distance measurements between objects, as
shown in Syntax 118.

reference annotation ::=
REFERENCE reference_identifier ;
reference _identifier ::
center
|origin
|edge

Syntax 118—REFERENCE annotation

The default shall be edge. The value cent er is only applicable for objects with EXTENSI ON, whereas the
value edge is applicable for any physical object. Thevalueor i gi n isonly applicable for objects with speci-
fied coordinates. Thisisdepicted in Figure 59.

object 1 object 2 object 1 object 2
DISTANCE DISTANCE
B BE— g L
REFERENCE = edge REFERENCE = center

Figure 59—Illustration of REFERENCE for DISTANCE
11.13.12.4 Reference to ANTENNA
In hierarchical design, aPl N with physical PORTs can be abstracted. Therefore, an arithmetic model for SI ZE,
AREA, PERI METER, etc. **relevant?? for certain antenna rules can be precalculated. An ANTENNA statement

within the arithmetic model enables references to the set of antennarules for which the arithmetic model applies,
as shown in Syntax 119.

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 285

10

15

20

25

30

35

40

45

50

55

1 antenna_reference_multi_value assignment ::=
ANTENNA { antenna_identifiers }

Syntax 119—ANTENNA statement

5
Example
CELL cell 1 {
10 PIN pinl {
AREA poly_area = 1.5 {
LAYER = poly;
ANTENNA { individual _ml individual _vial }
}
15 AREA nml_area = 1.0 {
LAYER = netal 1;
ANTENNA { i ndividual _nml }
}
20 AREA vial_area = 0.5 {
LAYER = vi al;
ANTENNA { individual _vial }
}
}
25)
Theareapol y_ar eaisusedintherulesi ndi vi dual _nil andi ndi vi dual _vi al.

Theareanil_ar ea isusedintherulei ndi vi dual _mil only.
Theareavi al_ar eaisusedintherulei ndi vi dual _vi al only.

30 The case with diffusion isillustrated in the following example:

CELL mny_di ode {
CELLTYPE = special; ATTRI BUTE { DI CDE }
PI'N ny_di ode_pin {
35 AREA = 3.75 {

LAYER = di f fusi on;
ANTENNA { rul el for_diffusion rule2_for_diffusion }

40 }

11.13.12.5 Reference to PATTERN
Reference to a PATTERN shall be legal within arithmetic models, if the pattern and the model are within the

a5 scope of the same parent object, as shown in Syntax 120.

pattern_reference_assignment ::=
PATTERN = pattern_identifier ;

50
Syntax 120—PATTERN reference

The pattern reference shall be applicable for LENGTH, WIDTH, HEIGHT, SIZE, AREA, THICKNESS,

| PERIMETER, EXTENSION (see 11.8.2 and the example in Section 9.11.2).

55
Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

286

11.14 Arithmetic submodels for timing and electrical data

** Add lead-in text**

11.14.1 RISE and FALL statement
RUSE ol FALL submsdels

For timing models in the context of a VECTOR, submodels for RI SE and FALL are only applicable if the
vect or _expr essi on does not specify the switching direction of the referenced Pl N and EDGE_NUVBER.
Thisisthe case, when symbolic vect or _unary operatorsare used, i.e., ?! , ??,?*, or *? instead of 01, 10,
etc.

For SAME_PI N_TI M NG_MEASUREMENT or SAME_PI N_TI M NG_CONSTRAI NT, the RI SE and FALL
submodels apply for the <r ef Edge>.

For apartialy specified TI M NG_MEASUREMENT or TI M NG_CONSTRAI NT, the Rl SE and FALL submodels
apply for the <f r onEdge> or <t oEdge>, whichever is specified.

For a completely specified TI M NG_MEASUREMENT or TI M NG_CONSTRAI NT, it is not possible to apply a
RI SE and FALL submodel for both <f r onEdge> and <t oEdge>. Thevect or _unary operator shall spec-
ify the switching direction for at least one edge. If the switching direction for both edges is unspecified, the
Rl SE and FALL submodel shall apply for the <t oEdge>.

Example

VECTOR (01 CLK -> ?! Q) {
DELAY { FROM{ PIN= CLK; } TO{ PIN= Q }
RISE = 0.76; FALL = 0.58;
}

}

/1 1f Qis a scalar pin, the follow ng construct is equivalent:
VECTOR (01 CLK -> 01 Q) {

DELAY = 0.76 { FROM{ PIN
}

VECTOR (01 CLK -> 10 Q) {
DELAY = 0.58 { FROM{ PIN
}

11.14.2 HIGH and LOW statement

CLK; } TO{ PIN=Q } }

CLK; } TO{ PIN=Q } }

Submodelsfor RISEFALLHHGHandLOW

RI SE and FALL contain data characterized in transient measurements. H GH and LOWcontain data character-
ized in static measurements.

<nodel Keywor d> { RI SE=<nodel Val ueRi se>; FALL=<nodel Val ueFal | >; }
<nodel Keywor d> { HI GH=<npdel Val ueHi gh>; LOW<npdel Val ueLow>; }

It is generaly not required that both RI SE and FALL or both HI GH and LOW respectively, appear as an arith-
metic submodel.

HI GH and LOWqualify states with the logic value 1 and 0, respectively. Rl SE and FALL qualify transitions
between states with initial logic value 0 and 1, respectively and final values 1 and 0, respectively. For other

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 287

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

states and their mapping to logic values, see 5.1.5. If the arithmetic model is within the scope of a vector which
describes the logic values without ambiguity, the use of RI SE and FALL or HI GH and L OWdoes not apply.

HI GH, LOWRI SE, and FALL apply for all pin-related arithmetic models with the following exceptions:
— RI SE and FALL do not apply for VOLTAGE.
— H GHand LOWdo not apply for SAME_PI N_TI M NG_MEASUREMENT and
SAME_PI N_TI M NG_CONSTRAI NT .

NOTE—For states that cannot be mapped to logic 1 or 0, Rl SE and FALL or HI GH and LOWcannot be used. The use of
VECTOR with unambiguous description of the relevant statesis mandatory in such cases.

11.15 Arithmetic submodels for physical data

** Add lead-in text**

11.15.1 HORIZONTAL and VERTICAL statement

** Add lead-in text**

Thisis asingle subheader

288 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

Annex A

(informative)

Syntax rule summary

This summary replicates the syntax detailed in the preceding clauses. If there is any conflict, in detail or com-
pleteness, the syntax presented in the clauses shall considered as the normative definition.

The current ordering is as each item appearsin its subchapter; this needs to be updated to be complete.

A.l Lexical definitions

any_character ::= (seeb.2.3)
reserved character
| nonreserved_character
| escape_character
| whitespace
reserved_character ::= (see 6.2.3)
&I I=1+1-1* 1% 121N =1<1> 11D D@ L
nonreserved_character ::= (see 6.2.4)
letter | digit| | $|#

letter ::=
albicidielfiglhliljikiliminijolpiqgiri{s|tiu|v|w|x|y|z
IAIBICIDIEIFIGIH[IJIKILIM INJOIP|IQIRIS|IT|U|V W
IX1Y1Z

digit ::=
0111213141516171819

escape_character ::= (see 6.2.5)

delimiter ::= (see 6.3)
reserved_character
|&& [~& |||~ | == 1= "> |>= | <= |2 |2~ | 2-| 72| 7% |*7
|->]<-> &> | <&>|>>| <<
comment ::= (see6.2)
single_line_comment
| block_comment
integer ::= (see 6.5)
[sign] unsigned
sign =
+ |-
unsigned ::=
digit { _|digit}
non_negative_number ::=
unsigned [. unsigned |
| unsigned [. unsigned] E [sign] unsigned
number ::=
[sign] non_negative_number
bit_literal ::= (see 6.6)
numeric_bit_literal

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 289

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

| alphabetic_bit_literal
| dont_care litera
| random_literal

numeric_bit_literal ::=
0]1
alphabetic_bit_literal ::=
X|Z|LIH|JU|W
Ix1z[I1hjujw
dont_care litera ::=

?
random_literal ::=
*
based literal ::=

binary_base{ |binary_digit}
| octal_base{ |octa_digit}
| decimal_base{ _ | digit }

binary_digit ::=
bit_literal
octal_base ::=
'‘Ol'o
octal_digit ::=
binary digit|2|3[415]|6|7
decimal_base ::=
'D|'d
hex_base ::=
'"H|'h
hex_digit ::=

octa_digit|8|9|A|B|C|D|E|F|albjc|d|e]|f

edge litera ::=
bit_edge litera
| word_edge literal
| symbolic_edge literal
bit_edge litera ::=
bit_literal bit_literal
word_edge literd ::=
based literal based literal
symbolic_edge literal ::=
27217~ |7
quoted_string ::=
" { any_character} "
identifiers::=
identifier { identifier }
identifier ::=
nonescaped_identifier
| escaped_identifier
| placeholder_identifier
| hierarchical _identifier
nonescaped _identifier ::=

nonreserved_character { nonreserved character }

290 Advanced Library Format (ALF) Reference Manual

(see 6.7)

(see 6.8)

(see 6.9)

(see 6.10)

(see 6.10.1)

IEEE P1603 Draft 3

escaped_identifier ::=
escape_character escaped characters
escaped_characters::=
escaped_character { escaped character }
escaped_character ::=
nonreserved character
| reserved_character
| escape_character
placeholder_identifier ::=
< nonescaped_identifier >
hierarchical_identifier ::=
identifier . { identifier . } identifier
arithmetic_values ::=
arithmetic_value{ arithmetic_value}
arithmetic_value ::=
number
| identifier
| pin_value
string_value ::=
guoted_string
| identifier
edge values::=
edge value{ edge vaue}
edge vaue::=
(edge literal)
index_value::=
unsigned
| identifier

A.2 Auxiliary definitions

index ::=
[index_range]
| [index_value]
index_range ::=

index_value . index_value
pin_assignments ::=

pin_assignment { pin_assignment }
pin_assignment ::=

pin_variable = pin_vaue;
pin_variables::=

pin_variable{ pin_variable}
pin_variable ::=

pin_variable identifier [index]
pin_values::=

pin_value{ pin_value}
pin_value::=

pin_variable

| bit_literal

| based_literal

| unsigned

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual

(se€6.10.2)

(se€6.10.3)
(see 6.10.4)

(s, 6.6.1)

(s 6.6.2)

(522 6.6.3)

(see 6.6.4)

(see7.1.1)

(see7.1.2)

(see7.2.1)

(see7.2.2)

(see 7.2.3)

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

annotation ::=

one_level _annotation
| two_level _annotation
| multi_level_annotation

one_level _annotations ::=

one_level_annotation { one_level annotation }

one_level_annotation ::=

single value annotation
| multi_value _annotation

single value annotation ::=

identifier = annotation value;

multi_value annotation ::=

identifier { annotation_values }

two_level _annotations::=

two_level_annotation { two_level _annotation }

two_level_annotation ::=

one_level _annotation
| identifier [= annotation_value]
{ one_level_annotations }

multi_level_annotations ::=

multi_level_annotation { multi_level_annotation }

multi_level _annotation ::=

one_level _annotation
| identifier [= annotation_value]
{ multi_level_annotations }

annotation_values ::=

annotation_value { annotation_value }

annotation_value ::=

index_value
| string_value
| edge value
| pin_value
| arithmetic_value
| boolean_expression
| control_expression

al_purpose_items::=

al_purpose_item{ al_purpose_item}

al_purpose_item ::=

292

include
|dias
| constant
| attribute
| property
| class_declaration
| keyword_declaration
| group_declaration
| template_declaration
| template_instantiation
| annotation
| arithmetic_model
| arithmetic_model_container

Advanced Library Format (ALF) Reference Manual

(see7.3.1)

(see7.3.2)

(see 7.18)

IEEE P1603 Draft 3

A.3 Generic definitions

include ::=

INCLUDE quoted_string ;

dias::=

ALIASidentifier = identifier ;

constant ::=

CONSTANT identifier = arithmetic_vaue;

atribute ::=

ATTRIBUTE { identifiers }

property ::=

PROPERTY [identifier] { one_level_annotations }

class declaration ::=
CLASS dentifier ;

| CLASS identifier { all_purpose_items}

keyword_declaration ::=

KEYWORD context_sensitive_keyword = syntax_item_identifier ;

group_declaration ::=

GROUP group_identifier { annotation_values }
| GROUP group_identifier { index_value : index_value }

template_declaration ::=

TEMPLATE template_identifier { template_items }

template items::=

template item { template item}

template item ::=
all_purpose_item
| cell
| library
| node
| pin
| pin_group
| primitive
| sublibrary
| vector
| wire
| antenna
| array
| blockage
| layer
| pattern
| port
[rule
| site
| via
| function
| non_scan_cell
| test
| range
| artwork
| from
| to
|illegal
| violation
| header

IEEE P1603 Draft 3

Advanced Library Format (ALF) Reference Manual

(see 8.1)
(see 8.1)
(see8.2)
(see 8.4)
(see 8.5)

(see 8.3)

(see 8.9)

(see 8.6)

(see 8.7)

293

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

| table
| equation
| arithmetic_submodel
| behavior_item
| geometric_model
template_instantiation ::=
static_template_instantiation
| dynamic_template_instantiation
dtatic_template_instantiation ::=
template_identifier [= static] ;
| template_identifier [= static] { annotation_values }
| template_identifier [= static]{ one_level_annotations }
dynamic_template instantiation ::=
template_identifier = dynamic
{ dynamic_template_instantiation_items }
dynamic_template instantiation_items ::=
dynamic_template instantiation_item
{ dynamic_template instantiation_item }
dynamic_template instantiation_item ::=
one_level _annotation
| arithmetic_model

A.4 Library definitions

library ::=
LIBRARY library_identifier { library_items }
| LIBRARY library identifier ;
| library template instantiation
library_items ::=
library_item { library_item}
library_item ::=
sublibrary
| sublibrary_item
library ::=

SUBLIBRARY sublibrary_identifier { sublibrary_items }
| SUBLIBRARY sublibrary_identifier ;
| sublibrary_template_instantiation

sublibrary_items::=
sublibrary_item { sublibrary_item}
sublibrary_item ::=

all_purpose_item
| cell
| primitive
| wire
| layer
| via
[rule
| antenna

| array
| site
INFORMATION_two _level _annotation ::=
INFORMATION { information_one level_annotations }

294 Advanced Library Format (ALF) Reference Manual

(see9.1)

(see9.2.2)

(see9.2.3)

IEEE P1603 Draft 3

information_one level annotations ::=
information_one_level _annotation
{ information_one level annotation }

information_one level annotation ::=
AUTHOR one level _annotation
| VERSION_one level _annotation
| DATETIME_one_level _annotation
| PROJECT one_level _annotation

cell ::

(see9.3.)
CELL cell_identifier { cell_items}
| CELL cell_identifier ;
| cell_template_instantiation
cell_items::=
cell_item{ cell_item}
cell_item ::=
all_purpose_item
| pin
| pin_group
| primitive
| function
| non_scan_cell
| test
| vector
| wire
| blockage
| artwork
non_scan_cell ::= (see9.8)
NON_SCAN_CELL { unnamed_cell_instantiations }
INON_SCAN_CELL = unnamed cell_instantiation
| non_scan_cell_template_instantiation
unnamed_cell_instantiations ::=
unnamed_cell_instantiation { unnamed_cell_instantiation }
unnamed_cell_instantiation ::=
cell_identifier { pin_values }
| cell_identifier { pin_assignments }
pin::= (see9.4.1)
PIN[[index_range]] pin_identifier [[index_range]] { pin_items}
| PIN[[index_range]] pin_identifier [[index_range]] ;
| pin_template_instantiation

pin_item ::=
al_purpose_item
| range
| port
| pin_instantiation
pin_items::=

pin_item{ pin_item}

pin_instantiation ::=
pin_variable{ pin_items}

range ::= (see 9.6)
RANGE {index_range}

pin_group ::= (see9.6.1)
PIN_GROUP [index_range]] pin_group_identifier { pin_group_items }
| pin_group_template instantiation

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 295

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

pin_group_items::=
pin_group_item{ pin_group_item}

pin_group_item ::=
all_purpose_item
| range
wire::=

WIRE wire identifier { wire items}
| WIRE wire_identifier ;
| wire_template_instantiation
wire items::=
wire_item{ wire_item }
wire item::=
all_purpose_item
| node
node ::=
NODE node_identifier { node_items}
| NODE node _identifier ;
| node_template_instantiation
node items::=
node_item { node_item }
node item ::=
all_purpose_item
vector ;=
VECTOR control_expression { vector_items}
|[VECTOR control_expression ;
| vector_template instantiation
vector_items ;=
vector_item { vector_item }
vector_item ::=
all_purpose_item
|illega
illegd ::=
ILLEGAL {illega_items}
| illegal_template instantiation

illegal_items::=
illegal_item { illegal_item}
illegal_item ::=
all_purpose_item
| violation
layer ::=

LAYER layer_identifier { layer_items }
| LAY ER layer_identifier ;
| layer_template instantiation
layer_items ::=
layer_item { layer_item}
layer_item ::=
all_purpose_item
via:=
V1A via_identifier { via_items}
| VIA via_identifier ;
| via_template instantiation
via items::=
via item{ via_ item}

296 Advanced Library Format (ALF) Reference Manual

(se€9.10.1)

(s2€9.10.2)

(see 9.11)

(see9.6.2)

(see 9.14.1)

(see9.15.1)

IEEE P1603 Draft 3

via item ;=
all_purpose_item
| pattern
| artwork
via reference ;= (see9.15.4)
VIA { via_instantiations }
|VIA { via_identifiers }
via instantiations ::=
via instantiation { via instantiation }
via instantiation ::=
via_identifier { geometric_transformations }
rule ::= (see9.16.1)
RULE rule_identifier { rule_items }
| RULE rule_identifier ;
| rule_template instantiation
rule_items::=
rule item{ rule_item}
rule_item ::=
all_purpose_item
| pattern
| via_reference
antenna ::= (see9.16.2)
ANTENNA antenna_identifier { antenna_items }
| ANTENNA antenna_identifier ;
| antenna_template instantiation
antenna_items ::=
antenna_item { antenna item }
antenna_item ::=
all_purpose_item
blockage ::= (see9.16.3)
BL OCKAGE blockage identifier { blockage items}
| BLOCKAGE blockage identifier ;
| blockage template instantiation
blockage items::=
blockage item { blockage item}

blockage item ::=
al_purpose_item
| pattern
[rule
| via_reference
port ::= (see9.16.4)

PORT port_identifier { port_items }
| PORT port_identifier ;
| port_template instantiation
port_items::=
port_item { port_item }
port_item ::=
all_purpose_item
| pattern
[rule
| via_reference

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual

297

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

Ste::=
SITE site_identifier { site_items }
| SITE site identifier ;
| site_template instantiation
site items::=
site item { site_item}
site item ;=
all_purpose_item
| ORIENTATION_CLASS one level_annotation
| SYMMETRY_CLASS one level_annotation
array ::=
ARRAY array _identifier { array_items }
| ARRAY array_identifier ;
| array_template instantiation
array_items::=
array_item { array_item}
array_item::=

all_purpose_item
| PURPOSE_single value annotation
| geometric_transformation
pattern ::=
PATTERN pattern_identifier { pattern_items }
| PATTERN pattern_identifier ;
| pattern_template_instantiation
pattern_items::=
pattern_item { pattern_item}
pattern_item ::=
all_purpose_item
| SHAPE_single value annotation
| LAYER single value annotation
| EXTENSION_single value _annotation
| VERTEX_single_value_annotation
| geometric_model
| geometric_transformation
artwork ::=
ARTWORK = artwork_identifier { artwork_items }
|ARTWORK = artwork_identifier ;
| artwork_template _instantiation
artwork_items ::=
artwork_item { artwork_item}
artwork_item ::=
geometric_transformation
| pin_assignment
geometric_model ::=
nonescaped_dentifier [geometric_model_identifier |
{ geometric_model_items }
| geometric_model_template instantiation
geometric_model_items ::=
geometric_model_item { geometric_model_item }
geometric_model_item ::=
al_purpose_item
| POINT_TO_POINT_one_level_annotation
| coordinates

298 Advanced Library Format (ALF) Reference Manual

(see9.17.1)

(see9.17.2)

(s229.17.3)

(see 9.17.4)

(se€9.17.5)

IEEE P1603 Draft 3

coordinates ::=
COORDINATES{ x_number y_number { x_number y_number } }

geometric_transformations ::=
geometric_transformation { geometric_transformation }
geometric_transformation ::=
SHIFT two level annotation
| ROTATE one level _annotation
| FLIP_one level _annotation

| repeat
repeat ::=
REPEAT [= unsigned] {
shi ft_two_level annotation
[repeat |
function ::=

FUNCTION { function_items}
| function_template_instantiation
function_items::=
function_item { function_item }
function_item ::=

all_purpose_item

| behavior

| structure

| statetable
test ;=

TEST { test_items}

| test_template instantiation
test_items::=

test_item { test_item}
test_item ::=

all_purpose_item

| behavior

| statetable
behavior ::=

BEHAVIOR { behavior_items}
| behavior_template instantiation
behavior_items::=
behavior_item { behavior_item }
behavior_item ::=
boolean_assignments
| control_statement
| primitive_instantiation
| behavior_item template instantiation
boolean_assignments ::=
boolean_assignment { boolean_assignment }
boolean assignment ::=
pin_variable = boolean_expression ;
primitive_instantiation ::=
primitive_identifier [identifier] { pin_values}
| primitive_identifier [identifier]
{ boolean_assignments }
control_statement ::=
@ control_expression { boolean_assignments }
{ : control_expression { boolean_assignments } }

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual

(s229.17.6)

(see9.18.1)

(see9.18.2)

(see9.18.9)

299

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

structure ::=
STRUCTURE { named_cell_instantiations }
| structure_template instantiation
named_cell_instantiations ::=
named_cell_instantiation { named_cell_instantiation }
named_cell_instantiation ::=
cell_identifier instance_identifier { pin_values }
| cell_identifier instance_identifier { pin_assignments }
violation ::=
VIOLATION { violation_items }
| violation_template instantiation
violation_items ::=
violation_item { violation_item }
violation_item ::=
MESSAGE_TYPE_single value annotation
| MESSAGE_single value_annotation
| behavior
statetable ::=
STATETABLE [identifier]
{ statetable_header statetable row { statetable row } }
| statetable_template instantiation
statetable_header ::=
input_pin_variables : output_pin_variables ;
statetable row ::=
statetable control_values: statetable data values;
statetable _control_values ::=
statetable _control_value { statetable control_value}
statetable _control_value ::=
bit_litera
| based_litera
| unsigned
| edge value
statetable data values::=
statetable data value { statetable data value}
statetable data value ::=
bit_literal
| based_litera
| unsigned
[([!] pin_variable)
| ([~] pin_variable)
primitive ::=
PRIMITIVE primitive_identifier { primitive_items }
| PRIMITIVE primitive identifier ;
| primitive_template_instantiation
primitive_items ::=
primitive_item { primitive_item}
primitive_item ::=
al_purpose_item
| pin
| pin_group
| function
| test

300 Advanced Library Format (ALF) Reference Manual

(see9.18.5)

(see 9.18.6)

(see9.18.7)

(see9.18.8)

IEEE P1603 Draft 3

A.5 Control definitions

boolean_expression ::=
(boolean_expression)
| pin_value
| boolean_unary boolean_expression
| boolean_expression boolean_binary boolean_expression
| boolean_expression ? boolean_expression :
{ boolean_expression ? boolean_expression : }
boolean_expression
boolean_unary ::=

boolean binary ::=
&
| & &

I
Il
|/\
|.J\
1=

|>=
| <=
|>
| <
|+
¥
|/
| %
| >>
| <<
vector_expression ::=
('vector_expression)
| vector_unary boolean_expression
| vector_expression vector_binary vector_expression
| boolean_expression ? vector_expression :
{ boolean_expression ? vector_expression : }
Vector_expression
| boolean_expression control_and vector_expression
| vector_expression control_and boolean_expression

vector_unary ::=
edge litera

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual

(see 10.7)

(see 10.8)

301

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

vector_binary ::=
&
| & &

I

Il

[->

| ~>

| <->

| <~>

| &>

| <& >
control_and ::=

& |&&
control_expression ::=

('vector_expression)
| (boolean_expression)

A.6 Arithmetic definitions

arithmetic_expression ::=
(‘arithmetic_expression)
| arithmetic_value
| [arithmetic_unary] arithmetic_expression
| arithmetic_expression arithmetic_binary
arithmetic_expression
| boolean_expression ? arithmetic_expression :
{ boolean_expression ? arithmetic_expression : }
arithmetic_expression
| arithmetic_macro
(‘arithmetic_expression { , arithmetic_expression })
arithmetic_unary ::=
sign
arithmetic_binary ::
+
| -
| *
|/
| **
| %
arithmetic_macro ::
abs
|exp
|log
|min
| max
arithmetic_models ::=
arithmetic_model { arithmetic_mode }
arithmetic_model ::=
partial_arithmetic_model
| non_trivial_arithmetic_model
| trivial_arithmetic_model

302 Advanced Library Format (ALF) Reference Manual

(see11.1)

(see11.2.2)

IEEE P1603 Draft 3

| assignment_arithmetic_model
| arithmetic_model _template instantiation
partial_arithmetic_model ::= (see11.2.3)
nonescaped_identifier [arithmetic_model_identifier | { partial_arithmetic_model_items }
partial_arithmetic_model_items ::=
partial_arithmetic_model_item { partial_arithmetic_model_item }
partial_arithmetic_model_item ::=
any_arithmetic_model_item
| table
non_trivial_arithmetic_model ::= (see11.2.4)
nonescaped_identifier [arithmetic_model_identifier] {
[any_arithmetic_model_items]
arithmetic_body
[any_arithmetic_model_items]

trivial_arithmetic_model ::= (see11.2.5)
nonescaped _identifier [arithmetic_model_identifier]| = arithmetic_value;
| nonescaped_identifier [arithmetic_model_identifier] = arithmetic_value
{ any_arithmetic_model_items }

assignment_arithmetic_model ::= (see 11.2.6)
arithmetic_model_identifier = arithmetic_expression ;
any_arithmetic_model_items ::= (see11.2.7)

any_arithmetic_model_item { any_arithmetic_model_item }
any_arithmetic_model_item ::=
all_purpose_item
| from
| to
| violation
arithmetic_submodels ::= (see11.3.)
arithmetic_submode { arithmetic_submodel }
arithmetic_submodel ::=
non_trivial_arithmetic_submodel
| trivial_arithmetic_submodel
| arithmetic_submodel_template instantiation
non_trivial_arithmetic_submodel ::= (see11.3.2)
nonescaped_identifier {
[any_arithmetic_submodel_items]]
arithmetic_body
[any_arithmetic_submodel_items]]

trivial_arithmetic_submodel ::= (see11.3.3)
nonescaped_identifier = arithmetic_value;
| nonescaped_identifier = arithmetic_value{ any_arithmetic_submodel_items }
any_arithmetic_submodel_items::= (see 11.3.4)
any_arithmetic_submodel_item { any_arithmetic_submodel _item }
any_arithmetic_submodel_item ::=
all_purpose_item
| violation
arithmetic_body ::= (see11.4.1)
arithmetic_submodels
| table_arithmetic_body
| equation_arithmetic_body
table_arithmetic_body ::=
header table[equation]

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 303

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

equation_arithmetic_body ::=
[header] equation [table]
header ::=
HEADER { identifiers }
| HEADER { header_arithmetic_models }
| header _template_instantiation
header_arithmetic_ models ::=
header_arithmetic_model { header_arithmetic_model }
header_arithmetic_model ::=
non_trivial_arithmetic_model
| partial_arithmetic_model
table::=
TABLE { arithmetic_values}
| table_template_instantiation
equation ::=
EQUATION { arithmetic_expression }
| equation_template instantiation
arithmetic_model_container ::=
arithmetic_model_container_identifier { arithmetic_models }
from::=
FROM { from_to_items}
to::=
TO { from_to_items}
from_to_items::=
from_to_item { from_to_item}
from_to_item ::=
PIN_single value annotation
| EDGE_single value annotation
| THRESHOLD _arithmetic_model
EARLY_arithmetic_model_container ::=
EARLY { early_late_arithmetic_models }
LATE_arithmetic_model_container ::=
LATE { early_late arithmetic_models }
early late arithmetic_models::=
early_late arithmetic_model { early late arithmetic_model }
early_late arithmetic_model ::=
DELAY_arithmetic_model
| RETAIN_arithmetic_model
| SLEWRATE_arithmetic_model

304 Advanced Library Format (ALF) Reference Manual

(see 11.4.2)

(see 11.4.3)

(see 11.4.4)

(see 11.5)

(see 11.10.1)

(see 11.10.2)

IEEE P1603 Draft 3

Annex B

(informative)

Bibliography

[B1] Ratzlaff, C. L., Gopal, N., and Pillage, L. T., “RICE: Rapid Interconnect Circuit Evaluator,” Proceedings of

28th Design Automation Conference, pp. 555-560, 1991.

[B2] SPICE 2G6 User’'s Guide.

[B3] Standard Delay Format Specification, Version 3.0, Open Verilog International, May 1995.

[B4] The IEEE Standard Dictionary of Electrical and Electronics Terms, Sixth Edition.

IEEE P1603 Draft 3

Advanced Library Format (ALF) Reference Manual

305

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

306

Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 3

Symbols

(N+1) order sequential logic 175
-> operator 174

?- 26, 290

2 26, 290

?? 26, 290

2~ 26, 290

@ 166

A

ABS 211

abs 210, 302

active vectors 170

ALF _AND 151

ALF_BUF 150

ALF BUFIFO 153

ALF BUFIF1 153

ALF_FLIPFLOP 155

ALF LATCH 157

ALF MUX 155

ALF_NAND 151

ALF NOR 151, 152

ALF_NOT 150

ALF _NOTIF0 153, 154

ALF NOTIF1 153, 154

ALF OR 151

ALF XNOR 151, 152

ALF XOR 151, 152

ALIAS 38

aias 38, 293

all_purpose_items 36, 292

alphabetic_bit_literal 25, 290

annotation

arithmetic modd tables

AREA 237
CAPACITANCE 236
CONNECTIONS 237
CURRENT 235
DELAY 234
DERATE_CASE 237
DISTANCE 237

DRIVE_STRENGTH 235, 236

DRIVER 282

| ndex

ENERGY 235
FANIN 237
FANOUT 237
FREQUENCY 235
HEIGHT 237
HOLD 234

JTTER 235
LENGTH 238
NOCHANGE 234
PERIOD 234
POWER 235
PROCESS 237
PULSEWIDTH 234
RECEIVER 282
RECOVERY 234
REMOVAL 234
RESISTANCE 236
SETUP 234

SKEW 234
SLEWRATE 234
SWITCHING_BITS 237
TEMPERATURE 236
THRESHOLD 235
TIME 235
VOLTAGE 236
WIDTH 238

arithmetic models 228

average 278

can_short 280
cannot_short 280
CONNECT_RULE 280
DEFAULT 224
MEASUREMENT 278
must_short 280

peak 279

rms 279

static 278

transient 278

UNIT 228

CELL

BUFFERTY PE 59
CELLTYPES53
DRIVERTY PE 60

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual Index-1

Index-2

NON_SCAN_CELL 51, 295

PARALLEL_DRIVE 60
SCAN_TYPE 58
SCAN_USAGE 59
cell buffertype
inout 59
input 59
internal 59
output 59
cell celltype
block 53
buffer 53
combinational 53
core 53
flipflop 53
latch 53
memory 53
multiplexor 53
special 53
cell drivertype
both 60
predriver 60
slotdriver 60
cell scan_type
clocked 58
control_058
control_1 59
Issd 58
muxscan 58
cell scan_usage
hold 59
input 59
output 59
default 224
from 222
information
AUTHOR 50
DATETIME 50
PRODUCT 50
TITLESO
VERSION 50
limit 222
object reference
cell 19
pin 19
primitive 19

Advanced Library Format (ALF) Reference Manual

PIN
ACTION 71
CONNECT_CLASS 80
DATATYPE 73
DIRECTION 66
DRIVETYPE 76
ORIENTATION 80
POLARITY 72
PULL 77
SCAN_POSITION 74
SCOPE 77
SIGNALTYPE 67
STUCK 74
VIEW 65

pin
PINTY PE 66

pin action
asynchronous 71
synchronous 71

pin datatype
signed 73
unsigned 73

pin direction
both 66, 67
input 66, 67
none 66, 67
output 66, 67

pin drivetype
cmos 76
Cmos_pass 77
nmos 77
nmos_pass 77
open_drain 77
open_source 77
pmos 77
pmos _pass 77
ttl 77

pin orientation
bottom 80
left 80
right 80
top 80

pin pintype
analog 66
digital 66
supply 66

IEEE P1603 Draft 3

pin polarity
double_edge 72
falling_edge 72
high 72
low 72
rising_edge 72
pin pull
both 78
down 77
none 78
up 77
pin scope
behavior 77
both 77
measure 77
none 77
pin signaltype
clear 68, 72, 73
clock 68, 72, 73
control 68, 70, 72, 73
data67, 72, 73
enable 68, 72, 73
master_clock 71
out_enable 69, 70
scan_clock 71
scan_data 69
scan_enable 70
scan_out_enable 70
select 68, 72, 73
set 68, 72, 73
slave clock 71
pin stuck
both 74
none 74
stuck at 074
stuck at 174
pin view
both 66
functional 65
none 66
physical 66
to 222
VECTOR
LABEL 93, 94, 95
violation
MESSAGE 144

IEEE P1603 Draft 3

Advanced Library Format (ALF) Reference Manual

MESSAGE_TYPE 144
annotation container 39
anotation

object reference

class 19
any character 22, 289
arithmetic models 14
arithmetic operators

binary 210

function 211

unary 210
arithmetic_binary_operator 210, 302
arithmetic_expression 209, 302
arithmetic_function_operator 210, 302
arithmetic_unary_operator 210, 302
atomic object 13
ATTRIBUTE 38
attribute 39, 293

CELL 53, 54, 55

cell

asynchronous 54

CAM 53

dynamic 54

RAM 53

ROM 53

static 53

synchronous 54

PIN 78
pin

PAD 78

SCHMITT 78

TRISTATE 78

XTAL 78

B

based literal 25
based_literal 26, 290
behavior 138, 299
behavior_body 138, 299
binary 25
Binary operators
arithmetic 210
bitwise 161
boolean, scalars 160
reduction 161
vector 175, 176, 179

Index-3

binary_base 26, 290 default annotation 224, 228

binary_digit 26, 290 delimiter 23, 289
bit 25 digit 26, 290
bit_edge literal 26, 290
bit_literal 25, 289 E
Bitwise operators edge literal 26
binary 161 edge litera 26, 290
unary 161 edge literals 31, 291
block comment 24 edge-sensitive sequential logic 166
boolean operators equation 221, 304
binary 160 equation_template_instantiation 221, 304
unary 160 escape codes 27
boolean_binary_operator 206, 301 escape_character 23, 289
boolean_expression 206, 301 escaped identifier 28
boolean _unary_operator 206, 301 escaped_identifier 28, 291
event sequence detection 175
C EXP 211
case-insensitive langauge 23 exp 210, 302
cell 51, 295 extensible primitives 148
cell identifier 51, 295
cell_jtems 51, 295 F
cell_template instantiation 51, 295 Hlipflop 155
characterization 5 function 133, 299
children object 13 Function operators
CLASS 40 arithmetic 211
class 40, 293 function_template_instantiation 133, 299
combinational logic 159 functional model 5
combinational primitives 150
combinational_assignments 138, 299 G
comment 23 generic objects 14
block 24 GROUP 41
long 24 group 41, 293
short 24 group_identifier 41, 293
single-line 24
comments H
nested 24 hard keyword 29
compound operators 23 header 221, 304
CONSTANT 38 header_template instantiation 221, 304
constant 38, 293 hex_base 26, 290
constant numbers 24 hex_digit 26, 290
context-sensitive keyword 29 hexadecimal 25
D I
decimal 25 identifier 13, 23
decimal_base 26, 290 |dentifiers 27
deep submicron 5 identifiers 27, 290

Index-4 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

inactive vectors 170
INCLUDE 37
include 37, 293
index 33, 291
integer 24, 289

K

keyword 13

Keywords
context-sensitive 30
generic objects 29
operators 29

L

Latch 157

level-sengitive sequential logic 166
Library creation 1

library_items 49, 294
library_template instantiation 49, 294
library-specific objects 14

literal 13, 23

LOG 211

log 210, 302

logic_values 145, 300
logic_variables 34, 291

M

MAX 211

max 210, 302

MIN 211

min 210, 302

mode of operation 5
multiplexor 155

N

nested comments 24
non_negative_number 24, 289
non-escaped identifier 27
nonescaped_identifier 28, 290
nonreserved character 23, 289
Number 24

number 24, 289
numeric_bit_literal 25, 290

@)
objects 42, 293

IEEE P1603 Draft 3

Advanced Library Format (ALF) Reference Manual

octal 25
octal_base 26, 290
octal_digit 26, 290
operation mode 5
operator
-> 174
followed by 174
operators
arithmetic 210
boolean, scalars 160
boolean, words 160
signed 162
unsigned 162

P
pin_assignments 33, 291
pin_identifier 61, 295
pin_items 61, 295
pin_template instantiation 61, 295
placeholder identifier 28
placeholder_identifier 27
placeholders 43
power constraint 5
Power model 5
predefined derating cases 250, 262
bccom 262
bcind 262
bcmil 262
wccom 262
wcind 262
wcemil 263
predefined process names 262
snsp 262
snwp 262
wnsp 262
wnwp 262
primitive identifier 138, 147, 299, 300
primitive_instantiation 138, 299
primitive_items 147, 300

primitive_template instantiation 147, 300

private keywords 30
PROPERTY 39
property 39, 293
public keywords 30

Index-5

Q

Q_CONFLICT 155
QN_CONFLICT 155
quoted string 22, 26
quoted_string 26, 290

R

real 24
Reduction operators
binary 161
unary 160
reserved keyword 29
reserved_character 22, 289
RTL 4

S
sequential logic
edge-sensitive 166
level-sensitive 166
N+1 order 175
vector-sensitive 174
sequential_assignment 138, 299
sign 24, 289
signed operators 162
simulation model 5
single-line comment 24
soft keyword 29
statetable 145, 300
statetable body 145, 300
string 31, 291
symbolic_edge literal 26, 290

T
table 221, 304

table_template instantiation 221, 304
TEMPLATE 41

template 42, 293

template_identifier 42, 293
template_instantiation 42, 294
Ternary operator 160

timing constraints 5

timing models 5

triggering conditions 166

triggering function 166

tristate primitives 152

Index-6 Advanced Library Format (ALF) Reference Manual

U
Unary operator
bitwise 161
Unary operators
arithmetic 210
boolean, scalar 160
reduction 160
Unary vector operators 168
unnamed_assignment 35, 292
unsigned 24, 289
unsigned operators 162

V

vector 90, 296
vector expression 174
Vector operators

binary 175, 176

unary, bits 168

unary, words 169
vector_expression 90, 207, 296, 301
vector_items 90, 296
vector_template_instantiation 90, 296
vector_unary_operator 207, 301
vector-based modeling 5
Vector-Sensitive Sequential Logic 174
Verilog 4, 167
VHDL 4, 167
virtual pins 155

W

whitespace 22, 289
whitespace characters 22
wildcard _literal 25, 290

wire 81, 88, 97, 101, 104, 109, 113, 114, 117,

118, 121, 124, 296, 297, 298

wire_identifier 81, 88, 97, 101, 104, 109, 117,

296, 297, 298
wire_items 81, 88, 296

wire_template instantiation 81, 88, 97, 101,
104, 109, 113, 114, 117, 118, 121,

124, 296, 297, 298
word_edge literal 26, 290

IEEE P1603 Draft 3

	1. Introduction
	1.1 Motivation
	1.2 Goals
	1.3 Target applications
	1.4 Conventions
	1.5 Contents of this standard

	2. References
	3. Definitions
	4. Acronyms and abbreviations
	5. ALF language construction principles and overview
	5.1 ALF meta-language
	5.2 Categories of ALF statements
	5.3 Generic objects and library-specific objects
	5.4 Singular statements and plural statements
	5.5 Instantiation statement and assignment statement
	5.6 Annotation, arithmetic model, and related statements
	5.7 Statements for parser control
	5.8 Name space and visibility of statements

	6. Lexical rules
	6.1 Character set
	6.2 Comment
	6.3 Delimiter
	6.4 Operator
	6.4.1 Arithmetic operator
	6.4.2 Boolean operator
	6.4.3 Relational operator
	6.4.4 Shift operator
	6.4.5 Event sequence operator
	6.4.6 Meta operator

	6.5 Number
	6.6 Bit literal
	6.7 Based literal
	6.8 Edge literal
	6.9 Quoted string
	6.10 Identifier
	6.10.1 Non-escaped identifier
	6.10.2 Escaped identifier
	6.10.3 Placeholder identifier
	6.10.4 Hierarchical identifier

	6.11 Keyword
	6.12 Rules for whitespace usage
	6.13 Rules against parser ambiguity

	7. Auxiliary Syntax Rules
	7.1 All-purpose value
	7.2 String
	7.3 Arithmetic value
	7.4 Boolean value
	7.5 Edge value
	7.6 Index value
	7.7 Index
	7.8 Pin variable
	7.9 Pin assignment
	7.10 Annotation
	7.11 Annotation container
	7.12 ATTRIBUTE statement
	7.13 PROPERTY statement
	7.14 INCLUDE statement
	7.15 REVISION statement
	7.16 Generic object
	7.17 Library-specific object
	7.18 All purpose item

	8. Generic objects and related statements
	8.1 ALIAS declaration
	8.2 CONSTANT declaration
	8.3 CLASS declaration
	8.4 KEYWORD declaration
	8.5 Annotations in the context of a KEYWORD declaration
	8.5.1 VALUETYPE annotation
	8.5.2 VALUES annotation
	8.5.3 DEFAULT annotation
	8.5.4 CONTEXT annotation
	8.5.5 SI_MODEL annotation

	8.6 GROUP declaration
	8.7 TEMPLATE declaration
	8.8 Template instantiation

	9. Library-specific objects and related statements
	9.1 LIBRARY and SUBLIBRARY declaration
	9.2 INFORMATION statement
	9.3 CELL declaration
	9.4 Annotations and attributes for a CELL
	9.4.1 CELLTYPE annotation
	9.4.2 ATTRIBUTE within a CELL
	9.4.3 SWAP_CLASS annotation
	9.4.4 RESTRICT_CLASS annotation
	9.4.5 SCAN_TYPE annotation
	9.4.6 SCAN_USAGE annotation
	9.4.7 BUFFERTYPE annotation
	9.4.8 DRIVERTYPE annotation
	9.4.9 PARALLEL_DRIVE annotation
	9.4.10 PLACEMENT_TYPE annotation
	9.4.11 SITE reference annotation

	9.5 PIN declaration
	9.6 RANGE statement
	9.6.1 PINGROUP declaration

	9.7 Annotations and attributes for a PIN
	9.7.1 VIEW annotation
	9.7.2 PINTYPE annotation
	9.7.3 DIRECTION annotation
	9.7.4 SIGNALTYPE annotation
	9.7.5 ACTION annotation
	9.7.6 POLARITY annotation
	9.7.7 DATATYPE annotation
	9.7.8 INITIAL_VALUE annotation
	9.7.9 SCAN_POSITION annotation
	9.7.10 STUCK annotation
	9.7.11 SUPPLYTYPE
	9.7.12 SIGNAL_CLASS
	9.7.13 SUPPLY_CLASS
	9.7.14 DRIVETYPE annotation
	9.7.15 SCOPE annotation
	9.7.16 ATTRIBUTE for PIN objects
	9.7.17 Definitions of pin ATTRIBUTE values for memory BIST
	9.7.18 CONNECT_CLASS annotation
	9.7.19 SIDE annotation
	9.7.20 ROW and COLUMN annotation
	9.7.21 ROUTING_TYPE annotation

	9.8 NON_SCAN_CELL statement
	9.9 PULL statement
	9.10 WIRE statement and related statements
	9.10.1 WIRE statement
	9.10.2 NODE statement

	9.11 VECTOR declaration
	9.12 Annotations in context of VECTOR declaration
	9.12.1 PURPOSE annotation
	9.12.2 OPERATION annotation
	9.12.3 LABEL annotation
	9.12.4 EXISTENCE_CONDITION annotation
	9.12.5 EXISTENCE_CLASS annotation
	9.12.6 CHARACTERIZATION_CONDITION annotation
	9.12.7 CHARACTERIZATION_VECTOR annotation
	9.12.8 CHARACTERIZATION_CLASS annotation

	9.13 Incremental definitions for VECTOR
	9.14 Statements for physical modeling
	9.14.1 LAYER statement
	9.14.2 PURPOSE annotation
	9.14.3 PITCH annotation
	9.14.4 PREFERENCE annotation
	9.14.5 Example

	9.15 VIA statement and related statements
	9.15.1 VIA statement
	9.15.2 USAGE annotation
	9.15.3 Example
	9.15.4 VIA reference statement

	9.16 Statements related to physical design rules
	9.16.1 RULE statement
	9.16.2 ANTENNA statement
	9.16.3 BLOCKAGE statement
	9.16.4 PORT statement

	9.17 Statements related to physical geometry
	9.17.1 SITE statement
	9.17.2 ARRAY statement
	9.17.3 PATTERN statement
	9.17.4 ARTWORK statement
	9.17.5 Geometric model
	9.17.6 Geometric transformation

	9.18 Statements related to functional description
	9.18.1 FUNCTION statement
	9.18.2 TEST statement
	9.18.3 Physical bitmap for memory BIST
	9.18.4 BEHAVIOR statement
	9.18.5 STRUCTURE statement
	9.18.6 VIOLATION statement
	9.18.7 STATETABLE statement
	9.18.8 PRIMITIVE statement

	10. Constructs for modeling of digital behavior
	10.1 Variable declarations
	10.2 Boolean value system
	10.3 Combinational functions
	10.3.1 Combinational logic
	10.3.2 Boolean operators on scalars
	10.3.3 Boolean operators on words
	10.3.4 Operator priorities
	10.3.5 Datatype mapping
	10.3.6 Rules for combinational functions
	10.3.7 Concurrency in combinational functions

	10.4 Sequential functions
	10.4.1 Level-sensitive sequential logic
	10.4.2 Edge-sensitive sequential logic
	10.4.3 Unary operators for vector expressions
	10.4.4 Basic rules for sequential functions
	10.4.5 Concurrency in sequential functions
	10.4.6 Initial values for logic variables

	10.5 Higher-order sequential functions
	10.5.1 Vector-sensitive sequential logic
	10.5.2 Canonical binary operators for vector expressions
	10.5.3 Complex binary operators for vector expressions
	10.5.4 Extension to N operands
	10.5.5 Operators for conditional vector expressions
	10.5.6 Operators for sequential logic
	10.5.7 Operator priorities
	10.5.8 Using PINs in VECTORs

	10.6 Modeling with vector expressions
	10.6.1 Event reports
	10.6.2 Event sequences
	10.6.3 Scope and content of event sequences
	10.6.4 Alternative event sequences
	10.6.5 Symbolic edge operators
	10.6.6 Non-events
	10.6.7 Compact and verbose event sequences
	10.6.8 Unspecified simultaneous events within scope
	10.6.9 Simultaneous event sequences
	10.6.10 Implicit local variables
	10.6.11 Conditional event sequences
	10.6.12 Alternative conditional event sequences
	10.6.13 Change of scope within a vector expression
	10.6.14 Sequences of conditional event sequences
	10.6.15 Incompletely specified event sequences
	10.6.16 How to determine well-specified vector expressions

	10.7 Boolean expression language
	10.8 Vector expression language
	10.9 Control expression semantics

	11. Constructs for modeling of analog behavior
	11.1 Arithmetic expression language
	11.1.1 Syntax of arithmetic expressions
	11.1.2 Arithmetic operators
	11.1.3 Operator priorities

	11.2 Arithmetic model and related statements
	11.2.1 Arithmetic models
	11.2.2 Arithmetic model statement
	11.2.3 Partial arithmetic model
	11.2.4 Non-trivial arithmetic model
	11.2.5 Trivial arithmetic model
	11.2.6 Assignment arithmetic model
	11.2.7 Items for any arithmetic model

	11.3 Arithmetic submodel and related statements
	11.3.1 Arithmetic submodel statement
	11.3.2 Non-trivial arithmetic submodel
	11.3.3 Trivial arithmetic submodel
	11.3.4 Items for any arithmetic submodel

	11.4 Arithmetic body and related statements
	11.4.1 Arithmetic body
	11.4.2 HEADER statement
	11.4.3 TABLE statement
	11.4.4 EQUATION statement

	11.5 Arithmetic model container
	11.5.1 LIMIT container
	11.5.2 Containers for arithmetic models and submodels

	11.6 Statements related to arithmetic models for general purpose
	11.6.1 MIN and MAX statements
	11.6.2 TYP statement
	11.6.3 DEFAULT statement
	11.6.4 LIMIT statement
	11.6.5 Annotations for arithmetic models for general purpose

	11.7 Rules for evaluation of arithmetic models
	11.7.1 Arithmetic model with arithmetic submodels
	11.7.2 Arithmetic model with table arithmetic body
	11.7.3 Arithmetic model with equation arithmetic body

	11.8 Overview of arithmetic models
	11.8.1 Overview of modeling keywords
	11.8.2 Arithmetic models in the context of layout

	11.9 Arithmetic models for timing data
	11.9.1 Specification of timing models
	11.9.2 TIME statement
	11.9.3 FREQUENCY statement
	11.9.4 DELAY and RETAIN statements
	11.9.5 SLEWRATE statement
	11.9.6 SETUP and HOLD statement
	11.9.7 NOCHANGE statement
	11.9.8 RECOVERY and REMOVAL statements
	11.9.9 SKEW statement
	11.9.10 PULSEWIDTH statement
	11.9.11 PERIOD statement
	11.9.12 JITTER statement
	11.9.13 THRESHOLD statement

	11.10 Auxiliary statements related to timing data
	11.10.1 FROM and TO statements
	11.10.2 EARLY and LATE statements
	11.10.3 Annotations for arithmetic models for timing data

	11.11 Arithmetic models for environmental data
	11.11.1 PROCESS and DERATE_CASE statement
	11.11.2 TEMPERATURE statement

	11.12 Arithmetic models for electrical data
	11.12.1 PIN-related arithmetic models for electrical data
	11.12.2 CAPACITANCE statement
	11.12.3 RESISTANCE statement
	11.12.4 INDUCTANCE statement
	11.12.5 VOLTAGE statement
	11.12.6 CURRENT statement
	11.12.7 POWER and ENERGY statement
	11.12.8 FLUX and FLUENCE statement
	11.12.9 DRIVE_STRENGTH statement
	11.12.10 SWITCHING_BITS statement
	11.12.11 NOISE and NOISE_MARGIN statement
	11.12.12 Annotations for arithmetic models for electrical data

	11.13 Arithmetic models for physical data
	11.13.1 CONNECTIVITY statement
	11.13.2 SIZE statement
	11.13.3 AREA statement
	11.13.4 WIDTH statement
	11.13.5 HEIGHT statement
	11.13.6 LENGTH statement
	11.13.7 DISTANCE statement
	11.13.8 OVERHANG statement
	11.13.9 PERIMETER statement
	11.13.10 EXTENSION statement
	11.13.11 THICKNESS statement
	11.13.12 Annotations for arithmetic models for physical data

	11.14 Arithmetic submodels for timing and electrical data
	11.14.1 RISE and FALL statement
	11.14.2 HIGH and LOW statement

	11.15 Arithmetic submodels for physical data
	11.15.1 HORIZONTAL and VERTICAL statement

	Annex A
	Annex B

