
A standard for an
Advanced Library Format (ALF)

describing Integrated Circuit (IC)
technology, cells, and blocks

This is an unapproved draft for an IEEE standard
and subject to change

IEEE P1603 Draft 3

January 4, 2002

Copyright© 2001, 2002, 2003 by IEEE. All rights reserved.

put in IEEE verbage
ii Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

The following individuals contributed to the creation, editing, and review of this document

Wolfgang Roethig, Ph.D. wroethig@eda.org Official Reporter and WG Chair

Joe Daniels chippewea@aol.com Technical Editor
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual iii

Revision history:

IEEE P1596 Draft 0 August 19, 2001

IEEE P1603 Draft 1 September 17, 2001

IEEE P1603 Draft 2 November 12, 2001
iv Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

Table of Contents
1. Introduction..1

1.1 Motivation..1
1.2 Goals ..2
1.3 Target applications...2
1.4 Conventions ...5
1.5 Contents of this standard..5

2. References..7

3. Definitions ...9

4. Acronyms and abbreviations ...11

5. ALF language construction principles ...13

5.1 ALF meta-language ...13

1. ALF language construction principles ...13

1.1 ALF meta-language ...13
5.2 Categories of ALF statements..14
5.3 Relationships between objects ...14
5.4 References of objects ...17
5.5 Incremental definitions ..19
5.6 Scoping rules..19

6. Lexical rules...21

6.1 Cross-reference of lexical tokens...21
6.2 Characters ..21

6.2.1 Character set ..21
6.2.2 Whitespace characters ...22
6.2.3 Other characters...22

6.3 Lexical tokens ..23
6.3.1 Delimiter..23
6.3.2 Comment ...24
6.3.3 Number..24
6.3.4 Bit literals ..24
6.3.5 Based literals ...25
6.3.6 Edge literals ...26
6.3.7 Quoted strings..26
6.3.8 Identifier ..27

6.4 Keywords ...29
6.4.1 Keywords for objects...29
6.4.2 Keywords for operators ...29
6.4.3 Context-sensitive keywords ..30

6.5 Rules against parser ambiguity ..30
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual v

6.6 Values.. 30
6.6.1 Arithmetic value ... 30
6.6.2 String value... 31
6.6.3 Edge values... 31
6.6.4 Index value ... 31

7. Auxiliary items.. 33

7.1 Index and related items ... 33
7.1.1 Index ... 33
7.1.2 Index range ... 33

7.2 Pin assignment and related items .. 33
7.2.1 Pin assignment.. 33
7.2.2 Pin variable ... 34
7.2.3 Pin value ... 34

7.3 Annotation and related items .. 35
7.3.1 Annotations... 35
7.3.2 Annotation value... 35

7.4 All purpose item.. 36

8. Generic objects.. 37

8.1 INCLUDE statement... 37
8.1.1 Interpreting special symbols... 37
8.1.2 Use of multiple files ... 37

8.2 ALIAS statement... 38
8.3 CONSTANT statement ... 38
8.4 ATTRIBUTE statement .. 38
8.5 PROPERTY statement.. 39
8.6 CLASS statement.. 40
8.7 KEYWORD statement.. 40
8.8 GROUP statement... 41
8.9 TEMPLATE statement ... 41

8.9.1 Referencing by placeholder .. 43
8.9.2 Parameterizeable cells .. 43

9. Library-specific objects... 47

9.1 Library-specific objects... 47
9.1.1 Library-specific singular objects .. 48
9.1.2 Modeling for synthesis and test .. 48

9.2 LIBRARY statement and related statements .. 48
9.2.1 LIBRARY statement .. 49
9.2.2 SUBLIBRARY statement .. 49
9.2.3 INFORMATION statement.. 49
9.2.4 INFORMATION container .. 50

9.3 CELL statement and related statements.. 50
9.3.1 CELL statement.. 50
9.3.2 NON_SCAN_CELL statement... 51
9.3.3 Annotations and attributes for a CELL... 52

9.4 PIN statement and related statements ... 61
9.4.1 PIN statement ... 61
9.4.2 Definitions for bus pins .. 61
9.4.3 RANGE statement .. 63
vi Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

9.4.4 PIN_GROUP statement...64
9.4.5 Annotations and attributes for a PIN...65

9.5 WIRE statement and related statements ..81
9.5.1 WIRE statement ..81
9.5.2 NODE statement..87

9.6 VECTOR statement and related statements...90
9.6.1 VECTOR statement...90
9.6.2 ILLEGAL statement..90
9.6.3 Annotations and attributes for a VECTOR ...91

9.7 LAYER statement and related statements ...96
9.7.1 LAYER statement ...97
9.7.2 PURPOSE annotation..98
9.7.3 PITCH annotation..98
9.7.4 PREFERENCE annotation ..99
9.7.5 Example...99

9.8 VIA statement and related statements ...100
9.8.1 VIA statement..100
9.8.2 USAGE annotation..101
9.8.3 Example...102
9.8.4 VIA reference statement..103

9.9 Statements related to physical design rules ...104
9.9.1 RULE statement ..104
9.9.2 ANTENNA statement ...108
9.9.3 BLOCKAGE statement...112
9.9.4 PORT statement ..113

9.10 Statements related to physical geometry ...116
9.10.1 SITE statement ..116
9.10.2 ARRAY statement...118
9.10.3 PATTERN statement...121
9.10.4 ARTWORK statement ..123
9.10.5 Geometric model ...124
9.10.6 Geometric transformation..129

9.11 Statements related to functional description..132
9.11.1 FUNCTION statement ..132
9.11.2 TEST statement ...133
9.11.3 Physical bitmap for memory BIST..133
9.11.4 BEHAVIOR statement ..138
9.11.5 STRUCTURE statement ...139
9.11.6 VIOLATION statement...144
9.11.7 STATETABLE statement ...145
9.11.8 PRIMITIVE statement ..147

10. Constructs for modeling of digital behavior ..159

10.1 Variable declarations ...159
10.2 Combinational functions..159

10.2.1 Combinational logic ..159
10.2.2 Boolean operators on scalars ...160
10.2.3 Boolean operators on words ..160
10.2.4 Operator priorities ...162
10.2.5 Datatype mapping..162
10.2.6 Rules for combinational functions ..164
10.2.7 Concurrency in combinational functions ..165

10.3 Sequential functions...165
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual vii

10.3.1 Level-sensitive sequential logic.. 166
10.3.2 Edge-sensitive sequential logic .. 166
10.3.3 Unary operators for vector expressions .. 168
10.3.4 Basic rules for sequential functions.. 169
10.3.5 Concurrency in sequential functions .. 172
10.3.6 Initial values for logic variables ... 173

10.4 Higher-order sequential functions... 174
10.4.1 Vector-sensitive sequential logic.. 174
10.4.2 Canonical binary operators for vector expressions... 175
10.4.3 Complex binary operators for vector expressions .. 176
10.4.4 Extension to N operands... 177
10.4.5 Operators for conditional vector expressions ... 179
10.4.6 Operators for sequential logic... 180
10.4.7 Operator priorities... 180
10.4.8 Using PINs in VECTORs ... 181

10.5 Modeling with vector expressions .. 181
10.5.1 Event reports... 182
10.5.2 Event sequences.. 183
10.5.3 Scope and content of event sequences.. 184
10.5.4 Alternative event sequences ... 186
10.5.5 Symbolic edge operators .. 187
10.5.6 Non-events.. 188
10.5.7 Compact and verbose event sequences... 189
10.5.8 Unspecified simultaneous events within scope .. 190
10.5.9 Simultaneous event sequences.. 191
10.5.10 Implicit local variables ... 193
10.5.11 Conditional event sequences .. 194
10.5.12 Alternative conditional event sequences .. 196
10.5.13 Change of scope within a vector expression .. 198
10.5.14 Sequences of conditional event sequences ... 201
10.5.15 Incompletely specified event sequences... 203
10.5.16 How to determine well-specified vector expressions ... 204

10.6 Boolean expression language.. 205
10.7 Vector expression language .. 205
10.8 Control expression semantics.. 206

11. Constructs for modeling of analog behavior... 209

11.1 Arithmetic expression language.. 209
11.1.1 Syntax of arithmetic expressions.. 209
11.1.2 Arithmetic operators ... 210
11.1.3 Operator priorities... 211

11.2 Arithmetic model and related statements.. 211
11.2.1 Arithmetic models .. 211
11.2.2 Arithmetic model statement.. 217
11.2.3 Partial arithmetic model.. 217
11.2.4 Non-trivial arithmetic model .. 218
11.2.5 Trivial arithmetic model ... 218
11.2.6 Assignment arithmetic model ... 218
11.2.7 Items for any arithmetic model... 219

11.3 Arithmetic submodel and related statements .. 219
11.3.1 Arithmetic submodel statement .. 219
11.3.2 Non-trivial arithmetic submodel... 219
11.3.3 Trivial arithmetic submodel.. 219
viii Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

11.3.4 Items for any arithmetic submodel ..220
11.4 Arithmetic body and related statements...220

11.4.1 Arithmetic body...220
11.4.2 HEADER statement ..220
11.4.3 TABLE statement..221
11.4.4 EQUATION statement ..221

11.5 Arithmetic model container ...221
11.5.1 LIMIT container ..222
11.5.2 Containers for arithmetic models and submodels ...222

11.6 Statements related to arithmetic models for general purpose ..223
11.6.1 MIN and MAX statements ..223
11.6.2 TYP statement ...224
11.6.3 DEFAULT statement ..224
11.6.4 LIMIT statement..225
11.6.5 Annotations for arithmetic models for general purpose..228

11.7 Rules for evaluation of arithmetic models...233
11.7.1 Arithmetic model with arithmetic submodels ...233
11.7.2 Arithmetic model with table arithmetic body..233
11.7.3 Arithmetic model with equation arithmetic body..233

11.8 Overview of arithmetic models..233
11.8.1 Overview of modeling keywords ..233
11.8.2 Arithmetic models in the context of layout ...237

11.9 Arithmetic models for timing data...240
11.9.1 Specification of timing models..240
11.9.2 TIME statement...244
11.9.3 FREQUENCY statement...248
11.9.4 DELAY and RETAIN statements ...250
11.9.5 SLEWRATE statement ...251
11.9.6 SETUP and HOLD statement..251
11.9.7 NOCHANGE statement ..252
11.9.8 RECOVERY and REMOVAL statements ..252
11.9.9 SKEW statement ...253
11.9.10 PULSEWIDTH statement ...254
11.9.11 PERIOD statement ..254
11.9.12 JITTER statement..254
11.9.13 THRESHOLD statement...255

11.10Auxiliary statements related to timing data ..257
11.10.1 FROM and TO statements...257
11.10.2 EARLY and LATE statements..258
11.10.3 Annotations for arithmetic models for timing data ...258

11.11Arithmetic models for environmental data ...261
11.11.1 PROCESS and DERATE_CASE statement..261
11.11.2 TEMPERATURE statement..263

11.12Arithmetic models for electrical data..263
11.12.1 PIN-related arithmetic models for electrical data..264
11.12.2 CAPACITANCE statement...266
11.12.3 RESISTANCE statement ..266
11.12.4 INDUCTANCE statement...266
11.12.5 VOLTAGE statement..266
11.12.6 CURRENT statement ..267
11.12.7 POWER and ENERGY statement...267
11.12.8 FLUX and FLUENCE statement ..268
11.12.9 DRIVE_STRENGTH statement..269
11.12.10SWITCHING_BITS statement...270
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual ix

11.12.11NOISE and NOISE_MARGIN statement.. 271
11.12.12Annotations for arithmetic models for electrical data ... 278

11.13Arithmetic models for physical data .. 280
11.13.1 CONNECTIVITY statement .. 280
11.13.2 SIZE statement ... 283
11.13.3 AREA statement ... 283
11.13.4 WIDTH statement... 283
11.13.5 HEIGHT statement ... 283
11.13.6 LENGTH statement.. 283
11.13.7 DISTANCE statement .. 283
11.13.8 OVERHANG statement ... 283
11.13.9 PERIMETER statement.. 284
11.13.10EXTENSION statement... 284
11.13.11THICKNESS statement ... 284
11.13.12Annotations for arithmetic models for physical data... 284

11.14Arithmetic submodels for timing and electrical data ... 287
11.14.1 RISE and FALL statement ... 287
11.14.2 HIGH and LOW statement ... 287

11.15Arithmetic submodels for physical data... 288
11.15.1 HORIZONTAL and VERTICAL statement... 288

(informative)Syntax rule summary ... 289

A.1 Lexical definitions... 289

A.2 Auxiliary definitions ... 291

A.3 Generic definitions .. 293

A.4 Library definitions... 294

A.5 Control definitions .. 301

A.6 Arithmetic definitions ... 302

(informative)Bibliography .. 305
x Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

List of Figures
Figure 1—ALF and its target applications ...4
Figure 2—Objects containing annotations or annotation containers ..15
Figure 3—Objects containing generic objects ..15
Figure 4—Objects in a library for logical and electrical design and their relationships16
Figure 5—Objects in a library for physical design and their relationships ..17
Figure 6—Referencing rules for ALF objects ..18
Figure 7—Generic objects ..37
Figure 8—Library-specific objects ...47
Figure 9—Library-specific singular objects ...48
Figure 10—FUNCTION and TEST ...48
Figure 11—Illustration of independent SWAP_CLASS and RESTRICT_CLASS ...57
Figure 12—Illustration of SWAP_CLASS with inherited RESTRICT_CLASS ...58
Figure 13—Construction scheme for composite SIGNALTYPE values ...69
Figure 14—Example of boundary parasitic description ...85
Figure 15—Example for interconnect description ..89
Figure 16—Metal-poly illustration ...112
Figure 17—Routing layer shapes ...122
Figure 18—Illustration of VERTEX annotation ..123
Figure 19—Geometric model and its context ...125
Figure 20—Illustration of geometric models ..126
Figure 21—Illustration of straight point-to-point connection ..127
Figure 22—Illustration of rectilinear point-to-point connection ..127
Figure 23—Illustration of FLIP, ROTATE, and SHIFT ..132
Figure 24—Illustration of a physical memory architecture, arranged in banks, rows, columns134
Figure 25—Illustration of the memory BIST concept ..134
Figure 26—Concurrency for combinational logic ..165
Figure 27—Model of a flip-flop with asynchronous clear in ALF ...167
Figure 28—Model of a flip-flop with asynchronous clear in Verilog ..167
Figure 29—Model of a flip-flop with asynchronous clear in VHDL ...167
Figure 30—Concurrency for edge-sensitive sequential logic ...172
Figure 31—Example of event sequence detection function ...174
Figure 32—Arithmetic model ...211
Figure 33—Illustration of extrapolation rules ..232
Figure 34—General timing measurement or timing constraint ..241
Figure 35—Illustration of time to peak using FROM statement ..245
Figure 36—Illustration of time to peak using TO statement ..246
Figure 37—Illustration of a piece-wise linear waveform ...247
Figure 38—TIME and FREQUENCY in a waveform ...248
Figure 39—RETAIN and DELAY ...251
Figure 40—SETUP and HOLD ..252
Figure 41—NOCHANGE, SETUP, and HOLD ..252
Figure 42—RECOVERY and REMOVAL ..253
Figure 43—THRESHOLD measurement definition ..255
Figure 44—Schematic of a pulse generator ..260
Figure 45—Timing diagram of a pulse generator ..260
Figure 46—Timing diagram of a DRAM cycle ..261
Figure 47—General representation of electrical models around a pin ...264
Figure 48—Electrical models associated with input and output pins ...265
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual xi

Figure 49—Definition of noise margin .. 271
Figure 50—Timing diagram of a noisy signal ... 272
Figure 51—Separation between two noise pulses ... 273
Figure 52—Example for timing-dependent noise margin ... 275
Figure 53—Principle of noise propagation .. 276
Figure 54—Principle of signal propagation ... 276
Figure 55—Example of noise propagation .. 277
Figure 56—Example of noise rejection ... 278
Figure 57—Mathematical definitions for MEASUREMENT annotations .. 279
Figure 58—Illustration of LENGTH and DISTANCE .. 284
Figure 59—Illustration of REFERENCE for DISTANCE .. 285
xii Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

List of Tables
Table 1—Target applications and models supported by ALF..2
Table 2—Categories of ALF statements..14
Table 3—Object references as annotation ...19
Table 4—Cross-reference of lexical tokens...21
Table 5—List of whitespace characters ...22
Table 6—Single bit constants ..25
Table 7—Special characters in quoted strings ...27
Table 8—Object keywords ..29
Table 9—Built-in arithmetic function keywords ...29
Table 10—Information annotation container...50
Table 11—CELLTYPE annotations for a CELL object...53
Table 12—Attributes within a CELL with CELLTYPE=memory ..53
Table 13—Attributes within a CELL with CELLTYPE=block...54
Table 14—Attributes within a CELL with CELLTYPE=core...54
Table 15—Attributes within a CELL with CELLTYPE=special...55
Table 16—Predefined values for RESTRICT_CLASS ...55
Table 17—SCAN_TYPE annotations for a CELL object ...58
Table 18—SCAN_USAGE annotations for a CELL object ..59
Table 19—BUFFERTYPE annotations for a CELL object ...59
Table 20—DRIVERTYPE annotations for a CELL object ...60
Table 21—VIEW annotations for a PIN object ...65
Table 22—PINTYPE annotations for a PIN object ...66
Table 23—DIRECTION annotations for a PIN object ..66
Table 24—DIRECTION in combination with PINTYPE ...67
Table 25—Fundamental SIGNALTYPE annotations for a PIN object ...67
Table 26—Composite SIGNALTYPE annotations based on DATA ...69
Table 27—Composite SIGNALTYPE annotations based on ADDRESS ...69
Table 28—Composite SIGNALTYPE annotations based on CONTROL...69
Table 29—Composite SIGNALTYPE annotations based on ENABLE..70
Table 30—Composite SIGNALTYPE annotations based on CLOCK..71
Table 31—ACTION annotations for a PIN object ..71
Table 32—ACTION applicable in conjunction with fundamental SIGNALTYPE values72
Table 33—POLARITY annotations for a PIN...72
Table 34—POLARITY applicable in conjunction with fundamental SIGNALTYPE values...............................73
Table 35—DATATYPE annotations for a PIN object..73
Table 36—STUCK annotations for a PIN object ..74
Table 37—DRIVETYPE annotations for a PIN object ...76
Table 38—SCOPE annotations for a PIN object ...77
Table 39—PULL annotations for a PIN object..77
Table 40—Attributes within a PIN object ...78
Table 41—Attributes for pins of a memory...78
Table 42—Attributes for pins representing double-rail signals ...78
Table 43—PIN attributes for memory BIST..79
Table 44—SIDE annotations for a PIN object...80
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual xiii

Table 45—Statements in ALF describing physical objects .. 96
Table 46—Items for LAYER description.. 97
Table 47—Items for VIA description ... 101
Table 48—Items for RULE description .. 104
Table 49—Items for ANTENNA description ... 109
Table 50—Annotations within VIOLATION.. 144
Table 51—Unary boolean operators ... 160
Table 52—Binary boolean operators .. 160
Table 53—Ternary operator .. 160
Table 54—Unary reduction operators... 160
Table 56—Unary bitwise operators .. 161
Table 57—Binary bitwise operators.. 161
Table 55—Binary reduction operators .. 161
Table 58—Binary operators .. 162
Table 59—Case comparison operators.. 163
Table 60—Unary vector operators on bits .. 168
Table 61—Unary vector operators on bits or words ... 169
Table 62—Canonical binary vector operators... 175
Table 63—Complex binary vector operators .. 176
Table 64—Operators for conditional vector expressions.. 179
Table 65—Operators for sequential logic ... 180
Table 66—Unary arithmetic operators.. 210
Table 67—Binary arithmetic operators... 210
Table 68—Function arithmetic operators...211
Table 69—Generally applicable arithmetic submodels .. 216
Table 70—Submodels restricted to electrical modeling ... 216
Table 71—Submodels restricted to physical modeling... 217
Table 72—Unnamed containers for arithmetic models .. 222
Table 73—UNIT annotation ... 228
Table 74—Timing measurements ... 234
Table 75—Timing constraints ... 234
Table 78—Analog measurements ... 235
Table 76—Generalized timing measurements .. 235
Table 77—Normalized measurements .. 235
Table 80—Abstract measurements ... 236
Table 79—Electrical components ... 236
Table 82—Environmental data ... 237
Table 83—Arithmetic models for layout data... 237
Table 81—Discrete measurements.. 237
Table 84—Semantic meaning of SIZE ... 238
Table 85—Semantic meaning of WIDTH... 238
Table 86—Semantic meaning of HEIGHT... 239
Table 87—Semantic meaning of LENGTH .. 239
Table 88—Semantic meaning of AREA... 239
Table 89—Semantic meaning of PERIMETER.. 239
Table 90—Semantic meaning of DISTANCE .. 240
Table 91—Semantic meaning of THICKNESS.. 240
Table 92—Semantic meaning of OVERHANG ... 240
Table 93—Semantic meaning of EXTENSION ... 240
Table 94—Range of time value depending on VECTOR... 242
xiv Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

Table 95—Partially specified timing measurements and constraints ..242
Table 96—Semantic interpretation of MEASUREMENT, TIME, or FREQUENCY annotation.......................250
Table 97—Predefined process names ..262
Table 98—Predefined derating cases...262
Table 99—Direct association of models with a PIN..265
Table 100—External association of models with a PIN ..266
Table 101—Relations between ENERGY and POWER ..268
Table 102—Relations between FLUENCE and FLUX ..269
Table 103—MEASUREMENT annotation ...278
Table 104—CONNECT_RULE annotation ..280
Table 105—Implications between connect rules ...280
Table 106—Arguments for connectivity..282
Table 107—Boolean literals in non-interpolateable tables..282
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual xv

xvi Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
IEEE Standard for an
Advanced Library Format (ALF)
describing Integrated Circuit (IC)
technology, cells, and blocks

1. Introduction

Add a lead-in OR change this to parallel an IEEE intro section

1.1 Motivation

Designing digital integrated circuits has become an increasingly complex process. More functions get integrated
into a single chip, yet the cycle time of electronic products and technologies has become considerably shorter. It
would be impossible to successfully design a chip of today’s complexity within the time-to-market constraints
without extensive use of EDA tools, which have become an integral part of the complex design flow. The effi-
ciency of the tools and the reliability of the results for simulation, synthesis, timing and power analysis, layout
and extraction rely significantly on the quality of available information about the cells in the technology library.

New challenges in the design flow, especially signal integrity, arise as the traditional tools and design flows hit
their limits of capability in processing complex designs. As a result, new tools emerge, and libraries are needed
in order to make them work properly. Library creation (generation) itself has become a very complex process and
the choice or rejection of a particular application (tool) is often constrained or dictated by the availability of a
library for that application. The library constraint can prevent designers from choosing an application program
that is best suited for meeting specific design challenges. Similar considerations can inhibit the development and
productization of such an application program altogether. As a result, competitiveness and innovation of the
whole electronic industry can stagnate.

In order to remove these constraints, an industry-wide standard for library formats, the Advanced Library Format
(ALF), is proposed. It enables the EDA industry to develop innovative products and ASIC designers to choose
the best product without library format constraints. Since ASIC vendors have to support a multitude of libraries
according to the preferences of their customers, a common standard library is expected to significantly reduce the
library development cycle and facilitate the deployment of new technologies sooner.
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 1

1

5

10

15

20

25

30

35

40

45

50

55
1.2 Goals

The basic goals of the proposed library standard are

— simplicity - library creation process needs to be easy to understand and not become a cumbersome pro-
cess only known by a few experts.

— generality - tools of any level of sophistication need to be able to retrieve necessary information from the
library.

— expandability - this needs to be done for early adoption and future enhancement possibilities.
— flexibility - the choice of keeping information in one library or in separate libraries needs to be in the hand

of the user not the standard.
— efficiency - the complexity of the design information requires the process of retrieving information from

the library does not become a bottleneck. The right trade-off between compactness and verbosity needs to
be established.

— ease of implementation - backward compatibility with existing libraries shall be provided and translation
to the new library needs to be an easy task.

— conciseness - unambiguous description and accuracy of contents shall be detailed.
— acceptance - there needs to be a preference for the new standard library over existing libraries.

1.3 Target applications

The fundamental purpose of ALF is to serve as the primary database for all third-party applications of ASIC
cells. In other words, it is an elaborate and formalized version of the databook.

In the early days, databooks provided all the information a designer needed for choosing a cell in a particular
application: Logic symbols, schematics, and a truth table provided the functional specification for simple cells.
For more complex blocks, the name of the cell (e.g., asynchronous ROM, synchronous 2-port RAM, or 4-bit syn-
chronous up-down counters) and timing diagrams conveyed the functional information. The performance charac-
teristics of each cell were provided by the loading characteristics, delay and timing constraints, and some
information about DC and AC power consumption. The designers chose the cell type according to the function-
ality, estimated the performance of the design, and eventually re-implemented it in an optimized way as neces-
sary to meet performance constraints.

Design automation enabled tremendous progress in efficiency, productivity, and the ability to deal with complex-
ity, yet it did not change the fundamental requirements for ASIC design. Therefore, ALF needs to provide mod-
els with functional information and performance information, primarily including timing and power. Signal
integrity characteristics, such as noise margin can also be included under performance category. Such informa-
tion is typically found in any databook for analog cells. At deep sub-micron levels, digital cells behave similar to
analog cells as electronic devices bound by physical laws and therefore are not infinitely robust against noise.

Table 1 shows a list of applications used in ASIC design flow and their relationship to ALF.

NOTE — ALF covers library data, whereas design data needs to be provided in other formats.

Table 1—Target applications and models supported by ALF

Application Functional model Performance model Physical model

Simulation Derived from ALF N/A N/A

Synthesis Supported by ALF Supported by ALF Supported by ALF

Design for test Supported by ALF N/A N/A
2 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
Historically, a functional model was virtually identical to a simulation model. A functional gate-level model was
used by the proprietary simulator of the ASIC company and it was easy to lump it together with a rudimentary
timing model. Timing analysis was done through dynamic functional simulation. However, with the advanced
level of sophistication of both functional simulation and timing analysis, this is no longer the case. The capabili-
ties of the functional simulators have evolved far beyond the gate-level and timing analysis has been decoupled
from simulation.

RTL design planning is an emerging application type aiming to produce “virtual prototypes” of complex for sys-
tem-on-chip (SOC) designs. RTL design planning is thought of as a combination of some or all of RTL floorplan-
ning and global routing, timing budgeting, power estimation, and functional verification, as well as analysis of
signal integrity, EMI, and thermal effects. The library components for RTL design planning range from simple
logic gates to parameterizeable macro-functions, such as memories, logic building blocks, and cores.

From the point of view of library requirements, applications involved in RTL design planning need functional,
performance, and physical data. The functional aspect of design planning includes RTL simulation and formal
verification. The performance aspect covers timing and power as primary issues, while signal integrity, EMI, and
thermal effects are emerging issues. The physical aspect is floorplanning. As stated previously, the functional and
performance models of components can be described in ALF.

ALF also covers the requirements for physical data, including layout. This is important for the new generation of
tools, where logical design merges with physical design. Also, all design steps involve optimization for timing,
power, signal integrity, i.e. electrical correctness and physical correctness. EDA tools need to be knowledgeable
about an increasing number of design aspects. For example, a place and route tool needs to consider congestion
as well as timing, crosstalk, electromigration, antenna rules etc. Therefore it is a logical step to combine the func-
tional, electrical and physical models needed by such a tool in a unified library.

Figure 1 shows how ALF provides information to various design tools.

Design planning Supported by ALF Supported by ALF Supported by ALF

Timing analysis N/A Supported by ALF N/A

Power analysis N/A Supported by ALF N/A

Signal integrity N/A Supported by ALF N/A

Layout N/A N/A Supported by ALF

Table 1—Target applications and models supported by ALF (Continued)

Application Functional model Performance model Physical model
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 3

1

5

10

15

20

25

30

35

40

45

50

55
Figure 1—ALF and its target applications

The worldwide accepted standards for hardware description and simulation are VHDL and Verilog. Both lan-
guages have a wide scope of describing the design at various levels of abstraction: behavioral, functional, synthe-
sizable RTL, and gate level. There are many ways to describe gate-level functions. The existing simulators are
implemented in such a way that some constructs are more efficient for simulation run time than others. Also,
how the simulation model handles timing constraints is a trade-off between efficiency and accuracy. Developing
efficient simulation models which are functionally reliable (i.e., pessimistic for detecting timing constraint viola-
tion) is a major development effort for ASIC companies.

Hence, the use of a particular VHDL or Verilog simulation model as primary source of functional description of
a cell is not very practical. Moreover, the existence of two simulation standards makes it difficult to pick one as a

Cell characterization tool

ALF

universal functional model

Simulation models

Test vector generator Model generator

Verilog & VHDL
Test vectors

Verilog & VHDL

Simulators
Verilog & VHDL

Synthesis tool

universal universal

annotations
for synthesis

annotations
for scan

wireload

timing model power model

Scan insertion tool

Vendor-specific or commercial EDA tool

Commercial EDA tool

models

Timing
analysis tool

Power
analysis tool

Signal integrity
analysis tool

universal
design limits

universal signal
integrity model

Place & Route
tool

layout
models
4 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
reference with respect to the other. The purpose of a generic functional model is to serve as an absolute reference
for all applications that require functional information. Applications such as synthesis, which need functional
information merely for recognizing and choosing cell types, can use the generic functional model directly. For
other applications, such as simulation and test, the generic functional model enables automated simulation model
and test vector generation and verification, which has a tremendous benefit for the ASIC industry.

With progress of technology, the set of physical constraints under which the design functions have increased dra-
matically, along with the cost constraints. Therefore, the requirements for detailed characterization and analysis
of those constraints, especially timing and power in deep submicron design, are now much more sophisticated.
Only a subset of the increasing amount of characterization data appears in today’s databooks.

ALF provides a generic format for all type of characterization data, without restriction to state-of-the art timing
models. Power models are the most immediate extension and they have been the starter and primary driver for
ALF.

Detailed timing and power characterization needs to take into account the mode of operation of the ASIC cell,
which is related to the functionality. ALF introduces the concept of vector-based modeling, which is a generali-
zation and a superset of today’s timing and power modeling approaches. All existing timing and power analysis
applications can retrieve the necessary model information from ALF.

1.4 Conventions

The syntax for description of lexical and syntax rules uses the following conventions.
Consider using the BNF nomenclature from IEEE 1481-1999

::= definition of a syntax rule
| alternative definition
[item] an optional item
[item1 | item2 | ...] optional item with alternatives
{item} optional item that can be repeated
{item1 | item2 | ... } optional items with alternatives

which can be repeated
item item in boldface font is taken verbatim
item item in italic is for explanation purpose only

The syntax for explanation of semantics of expressions uses the following conventions.

=== left side and right side expressions are equivalent
<item> a placeholder for an item in regular syntax

1.5 Contents of this standard

The organization of the remainder of this standard is

— Clause 2 (References) provides references to other applicable standards that are assumed or required for
ALF.

— Clause 3 (Definitions) defines terms used throughout the different specifications contained in this stan-
dard.

— Clause 4 (Acronyms and abbreviations) defines the acronyms used in this standard.
— Clause 6 (Lexical rules) specifies the lexical rules.
— Clause 5 (ALF language construction principles) defines the language construction principles.
— Clause 7 (Auxiliary Syntax Rules) defines syntax and semantics of auxiliary items used in this standard.
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 5

1

5

10

15

20

25

30

35

40

45

50

55
— Clause 8 (Generic objects and related statements) defines syntax and semantics of generic objects used in
this standard.

— Clause 9 (Library-specific objects and related statements) defines syntax and semantics of library-spe-
cific objects used in this standard.

— Clause 10 (Constructs for modeling of digital behavior) defines syntax and semantics of the control
expression language used in this standard

— Clause 11 (Constructs for modeling of analog behavior) defines syntax and semantics of arithmetic mod-
els used in this standard.

— Annexes. Following Clause 11are a series of normative and informative annexes.
6 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
2. References

**Fill in applicable references, i.e. standards on which the herein proposed standard depends.

This standard shall be used in conjunction with the following publication. When the following standard is super-
seded by an approved revision, the revision shall apply.

**The following is only an example. ALF does not depend on C.

ISO/IEC 9899:1990, Programming Languages—C.1

[ISO 8859-1 : 1987(E)] ASCII character set

1ISO publications are available from the ISO Central Secretariat, Case Postale 56, 1 rue de Varembé, CH-1211, Genève 20, Switzerland/
Suisse (http://www.iso.ch/). IEC publications are available from the Sales Department of the International Electrotechnical Commission,
Case Postale 131, 3, rue de Varembé, CH-1211, Genève 20, Switzerland/Suisse (http://www.iec.ch/). ISO/IEC publications are also available
in the United States from the Sales Department, American National Standards Institute, 11 West 42nd Street, 13th Floor, New York, NY
10036, USA.
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 7

1

5

10

15

20

25

30

35

40

45

50

55
8 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
3. Definitions

For the purposes of this standard, the following terms and definitions apply. The IEEE Standard Dictionary of
Electrical and Electronics Terms [B4] should be consulted for terms not defined in this standard.

**Fill in definitions of terms which are used in the herein proposed standard.

3.1 advanced library format: The format of any file that can be parsed according to the syntax and semantics
defined within this standard.

3.2 application, electric design automation (EDA) application: Any software program that uses data repre-
sented in the Advanced Library Format (ALF). Examples include RTL (Register Transfer Level) synthesis tools,
static timing analyzers, etc. See also: advanced library format; register transfer level.

3.3 arc: See: timing arc.

3.4 argument: A data item required for the mathematical evaluation of an artihmetic model. See also: arith-
metic model.

3.5 arithmetic model: A representation of a library quantity that can be mathematically evaluated.

3.6 ...

3.7 register transfer level: A behavioral representation of a digital electronic design allowing inference of
sequential and combinational logic components.

3.8 ...

3.9 timing arc: An abstract representation of a measurement between two points in time during operation of a
library component.

3.10 ...
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 9

1

5

10

15

20

25

30

35

40

45

50

55
10 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
4. Acronyms and abbreviations

This clause lists the acronyms and abbreviations used in this standard.

ALF advanced library format, title of the herein proposed standard

ASIC application specific integrated circuit

AWE asymptotic waveform evaluation

BIST built-in self test

BNF Backus-Naur Form

CAE computer-aided engineering [the term electronic design automation (EDA) is preferred]

CAM content-addressable memory

CLF Common Library Format from Avant! Corporation

CPU central processing unit

DCL Delay Calculation Language from IEEE 1481-1999 std

DEF Design Exchange Format from Cadence Design Systems Inc.

DLL delay-locked loop

DPCM Delay and Power Calculation Module from IEEE 1481-1999 std

DPCS Delay and Power Calculation System from IEEE 1481-1999 std

DSP digital signal processor

DSPF Detailed Standard Parasitic Format

EDA electronic design automation

EDIF Electronic Design Interchange Format

HDL hardware description language

IC integrated circuit

IP intellectual property

ILM Interface Logic Model from Synopsys Inc.

LEF Library Exchange Format from Cadence Design Systems Inc.

LIB Library Format from Synopsys Inc.

LSSD level-sensitive scan design

MPU micro processor unit

OLA Open Library Architecture from Silicon Integration Initiative Inc.

PDEF Physical Design Exchange Format from IEEE 1481-1999 std

PLL Phase-locked loop

PVT process/voltage/temperature (denoting a set of environmental conditions)

QTM Quick Timing Model

RAM random access memory

RC resistance times capacitance

RICE rapid interconnect circuit evaluator

ROM read-only memory

RSPF Reduced Standard Parasitic Format

RTL Register Transfer Level

SDF Standard Delay Format from IEEE 1497 std

SDC Synopsys Design Constraint format from Synopsys Inc.

SPEF Standard Parasitic Exchange Format from IEEE 1481-1999 std

SPF Standard Parasitic Format

SPICE Simulation Program with Integrated Circuit Emphasis

STA Static Timing Analysis
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 11

1

5

10

15

20

25

30

35

40

45

50

55
STAMP (STA Model Parameter ?) format from Synopsys Inc.

TCL Tool Command Language (supported by multiple EDA vendors)

TLF Timing Library Format from Cadence Design Systems Inc.

VCD Value Change Dump format (from IEEE 1364 std ?)

VHDL VHSIC Hardware Description Language

VHSIC very-high-speed integrated circuit

VITAL VHDL Initiative Towards ASIC Libraries from IEEE ??? std

VLSI very-large-scale integration
12 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
5. ALF language construction principles and overview

Add lead-in text

This section presents the ALF language construction principles and gives an overview of the language features.
The types of ALF statements and rules for parent/child relationships between types are presented summarily.
Most of the types are associated with predefined keywords. The keywords in ALF shall be case-insensitive.
However, uppercase is used for keywords throughout this section for clarity.

5.1 ALF meta-language

The following Syntax 1— establishes an ALF meta-language.

Syntax 1—syntax construction for ALF meta-language

An ALF statement uses the delimiters “;”, “{“ and “}” to indicate its termination.

The ALF type is defined by a keyword (see Section 6.11 on page 31) eventually in conjunction with an index (see
Section 7.7 on page 34) or by the operator “@” (Section 6.4 on page 24) or by the delimiter “:” (see Section 6.3
on page 23). The usage of keyword, index, operator, or delimiter as ALF type is defined by ALF language rules
concerning the particular ALF type.

The ALF name is defined by an identifier (see Section 6.10 on page 29) eventually in conjunction with an index
or by a control expression (see Section 10.9 on page 208). Depending on the ALF type, the ALF name is manda-
tory or optional or not applicable. The usage of identifier, index, or control expression as ALF name is defined by
ALF language rules concerning the particular ALF type.

The ALF value is defined by an identifier, a number (see Section 6.5 on page 27), an arithmetic expression (see
Section 11.1 on page 209), a boolean expression (see Section 10.7 on page 207), or a control expression.
Depending on the type of the ALF statement, the ALF value is mandatory or optional or not applicable. The
usage of identifier, number, arithmetic expression, boolean expression or control expression as ALF value is
defined by ALF language rules concerning the particular ALF type.

ALF_statement ::=
ALF_type [ALF_name] [= ALF_value] ALF_statement_termination

ALF_statement_termination ::=
;

| { { ALF_value | : | ; } }
| { { ALF_statement } }

ALF_type ::=
non_escaped_identifier [index]

| @
| :

ALF_name ::=
identifier [index]

| control_expression
ALF_value ::=

identifier
| number
| arithmetic_expression
| boolean_expression
| control_expression
IEEE P1603 Draft 2 Advanced Library Format (ALF) Reference Manual 13

1

5

10

15

20

25

30

35

40

45

50

55
An ALF statement can contain one or more other ALF statements. The former is called parent of the latter. Con-
versely, the latter is called child of the former. An ALF statement with child is called a compound ALF state-
ment.

An ALF statement containing one or more ALF values, eventually interspersed with the delimiters “;” or “:”, is
called a semi-compound ALF statement. The items between the delimiters “{“ and “}” are called contents of the
ALF statement. The usage of the delimiters “;” or “:” within the contents of an ALF statement is defined by ALF
language rules concerning the particular ALF statement.

An ALF statement without child is called an atomic ALF statement. An ALF statement which is either com-
pound or semi-compound is called a non-atomic ALF statement.

Examples

a) ALF statement describing an unnamed object without value:
ARBITRARY_ALF_TYPE {

// put children here
}

b) ALF statement describing an unnamed object with value:
ARBITRARY_ALF_TYPE = arbitrary_ALF_value;

or
ARBITRARY_ALF_TYPE = arbitrary_ALF_value {

// put children here
}

c) ALF statement describing a named object without value:
ARBITRARY_ALF_TYPE arbitrary_ALF_name;

or
ARBITRARY_ALF_TYPE arbitrary_ALF_name {

// put children here
}

d) ALF statement describing a named object with value:
ARBITRARY_ALF_TYPE arbitrary_ALF_name = arbitrary_ALF_value;

or
ARBITRARY_ALF_TYPE arbitrary_ALF_name = arbitrary_ALF_value {

// put children here
}

5.2 Categories of ALF statements

In this section, the terms statement, type, name, value are used for shortness in lieu of ALF statement, ALF name,
ALF value, respectively.
14 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 2

1

5

10

15

20

25

30

35

40

45

50

55
Statements are divided into the following categories: generic object, library-specific object, arithmetic model,
arithmetic submodel, arithmetic model container, geometric model, annotation, annotation container, and auxil-
iary statement, as shown in Table 2—.

The following Figure 2— illustrates the parent/child relationship between categories of statements.

Table 2—Categories of ALF statements

category purpose syntax particularity

generic object provide a definition for use within other
ALF statements

Statement is atomic, semi-compound or com-
pound.
Name is mandatory.
Value is either mandatory or not applicable.

library-specific object describe the contents of a IC technology
library

Statement is atomic or compound.
Name is mandatory.
Value does not apply.
Category of parent is exclusively
library-specific object

arithmetic model describe an abstract mathematical quan-
tity that can be calculated and eventually
measured within the design of an IC

Statement is atomic or compound.
Name is optional.
Value is mandatory, if atomic.

arithmetic submodel describe an arithmetic model under a
specific measurement condition

Statement is atomic or compound.
Name does not apply.
Value is mandatory, if atomic.
Category of parent is exclusively
arithmetic model

arithmetic model container provide a context for an arithmetic
model

Statement is compound.
Name and value do not apply.
Category of child is exclusively
arithmetic model

geometric model describe an abstract geometrical form
used in physical design of an IC

Statement is semi-compound or compound.
Name is optional.
Value does not apply.

annotation provide a qualifier or a set of qualifiers
for an ALF statement

Statement is atomic, semi-compound or com-
pound.
Name does not apply.
Value is mandatory, if atomic or compound.
Value does not apply, if semi-compound.
Category of child is exclusively
annotation

annotation container provide a context for an annotation Statement is compound.
Name and value do not apply.
Category of child is exclusively
annotation

auxiliary statement provide an additional description within
the context of a library-specific object,
an arithmetic model, an arithmetic sub-
model, geometric model or another aux-
liary statement

dependent on subcategory
IEEE P1603 Draft 2 Advanced Library Format (ALF) Reference Manual 15

1

5

10

15

20

25

30

35

40

45

50

55
Figure 2—Parent/child relationship between ALF statements

More detailed rules for parent/child relationships for particular types of statements apply.

5.3 Generic objects and library-specific objects

Statements with mandatory name are called objects, i.e., generic object and library-specific object.

library-specific object

legend:

arithmetic model

arithmetic model container

arithmetic submodel

annotation

annotation container

auxiliary statement

geometric model

library-specific object

auxiliary statement

generic objectarithmetic model

parent child

parent child no restrictive rules

with restrictive rules

generic object

library-specific object

auxiliary statement

arithmetic model

annotation container
annotation

arithmetic submodel

arithmetic model container
16 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 2

1

5

10

15

20

25

30

35

40

45

50

55
The following table lists the keywords and items in the category generic object. The keywords used in this cate-
gory are called generic keywords.

The following Table 3— lists the keywords and items in the category library-specific object. The keywords used
in this category are called library-specific keywords.

Table 3—Generic objects

keyword item section

ALIAS alias declaration

CONSTANT constant declaration

CLASS class declaration

GROUP group declaration

KEYWORD keyword declaration

TEMPLATE template declaration

Table 4—Library-specific objects

keyword item section

LIBRARY library

SUBLIBRARY sublibrary

CELL cell

PRIMITIVE primitive

WIRE wire

PIN pin

PINGROUP pin group

VECTOR vector

NODE node

LAYER layer

VIA via

RULE rule

ANTENNA antenna

SITE site
IEEE P1603 Draft 2 Advanced Library Format (ALF) Reference Manual 17

1

5

10

15

20

25

30

35

40

45

50

55
The following Figure 3— illustrates the parent/child relationship between statements within the category library-
specific object.

Figure 3—Parent/child relationship amongst library-specific objects

A parent can have multiple library-specific objects of the same type as children. Each child is distinguished by
name.

5.4 Singular statements and plural statements

Auxiliary statements with predefined keywords are devided in the following subcategories: singular statement
and plural statement.

ARRAY array

BLOCKAGE blockage

PORT port

PATTERN pattern

REGION region new proposal for IEEE

Table 4—Library-specific objects

keyword item section

library

legend:

parent child

sublibrary

cell primitive
wire

pinpin-group
vectornode

layer

via

rule

antenna

site

array

blockage

port

pattern

region?

pin
18 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 2

1

5

10

15

20

25

30

35

40

45

50

55
Auxiliary statements with predefined keywords and without name are called singular statements. Auxiliary state-
ments with predefined keywords and with name, yet without value, are called plural statements.

The following Table 5— lists the singular statements.

The following Table 6— lists the plural statements.

The following Figure 4— illustrates the parent/child relationship for singular statements and plural statements.

Table 5—Singular statements

keyword item value complexity section

FUNCTION function N/A compound

TEST test N/A compound

RANGE range N/A semi-compound

FROM from N/A compound

TO to N/A compound

VIOLATION violation N/A compound

HEADER header N/A compound (or semi-compound?)

TABLE table N/A semi-compound

EQUATION equation N/A semi-compound

BEHAVIOR behavior N/A compound

STRUCTURE structure N/A compound

NON_SCAN_CELL non-scan cell optional compound or semi-compound

ARTWORK artwork mandatory compound or atomic

PULL pull optional compound or atomic

Table 6—Plural statements

keyword item name complexity section

STATETABLE state table optional semi-compound

@ control statement mandatory compound

: alternative control statement mandatory compound
IEEE P1603 Draft 2 Advanced Library Format (ALF) Reference Manual 19

1

5

10

15

20

25

30

35

40

45

50

55
Figure 4—Parent/child relationship involving singular statements and plural statements

A parent can have at most one child of a particular type in the category singular statements, but multiple children
of a particular type in the category plural statements.

5.5 Instantiation statement and assignment statement

Auxiliary statements without predefined keywords use the name of an object as keyword. Such statements are
devided in the following subcategories: instantiation statement and assignment statement.

Compound or semi-compound statements using the name of an object as keyword are called instantiation state-
ments. Their purpose is to specify an instance of the object.

The following Table 7— lists the instantiation statements.

Table 7—Instantiation statements

item name value section

cell instantiation optional N/A

primitive instantiation optional N/A

template instantiation N/A optional

via instantiation mandatory N/A

wire instantiation mandatory N/A proposed for IEEE

legend:

parent child

function test range

from

to

violation

header

table

equation

behavior

structure

cellprimitive pin

arithmetic model

arithmetic submodel

non-scan cell

artwork
pull

arithmetic submodel

statetable

control statement

alternative control statement
20 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 2

1

5

10

15

20

25

30

35

40

45

50

55
Atomic statements without name using an identifier as keyword which has been defined within the context of
another object are called assignment statements. A value is mandatory for assignment statements, as their pur-
pose is to assign a value to the identifier. Such an identifier is called a variable.

The following Table 8— lists the assignment statements.

The following Figure 5— illustrates the parent/child relationship involving instantiation and assigment state-
ments.

Figure 5—Parent/child relationship involving instantiation and assignment statements

A parent can have multiple children using the same keyword in the category instantiation statement, but at most
one child using the same variable in the category assignment statement.

Table 8—Assignment statements

item section

pin assignment

boolean assignment

arithmetic assignment

behavior

structurenon-scan cell

artwork

control statement

alternative control statement

pin assignment

boolean assignment

arithmetic assignment

cell instantiation

template instantiation

wire instantiation?

generic object

library-specific object

arithmetic model container

arithmetic model

arithmetic submodel

singular statement

plural statement

primitive instantiation

legend:

parent child

parent child no restrictive rules

with restrictive rules
IEEE P1603 Draft 2 Advanced Library Format (ALF) Reference Manual 21

1

5

10

15

20

25

30

35

40

45

50

55
5.6 Annotation, arithmetic model, and related statements

Multiple keywords are predefined in the categories arithmetic model, arithmetic model container, arithmetic
submodel, annotation, annotation container, and geometric model. Their semantics are established within the
context of their parent. Therefore they are called context-sensitive keywords. In addition, the ALF language
allows additional definition of keywords in these categories.

The following Table 9— provides a reference to sections where more definitions about these categories can be
found.

There exist predefined keywords with generic semantics in the category annotation and annotation container.
They are called generic keywords, like the keywords for generic objects.

The following Table 10— lists the generic keywords in the category annotation and annotation container.

The following Table 11— lists predefined keywords in categories related to arithmetic model..

Table 9—Other categories of ALF statements

item section

arithmetic model

arithmetic submodel

arithmetic model container

annotation

annotation container

geometric model

Table 10—Annotations and annotation containers with generic keyword

keyword item / subcategory section

PROPERTY one_level_annotation_container

ATTRIBUTE multi_value_annotation

INFORMATION one_level_annotation_container

Table 11—Keywords related to arithmetic model

keyword item / category section

LIMIT arithmetic model container
22 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 2

1

5

10

15

20

25

30

35

40

45

50

55
The definitions of other predefined keywords, especially in the category arithmetic model, can be self-described
in ALF using the keyword declaration statement (see Section 8.4 on page 38).

5.7 Statements for parser control

The following provides a reference to statements used for ALF parser control.

The statements for parser control do not necessarily follow the ALF meta-language shown in Syntax 1.

5.8 Name space and visibility of statements

The following rules for name space and visibility shall apply:

a) A statement shall be visible within its parent statement.
b) A statement visible within another statement shall also be visible within a child of that other statement.
c) All objects (i.e., generic objects and library-specific objects) shall share a common name space within

their scope of visibility. No object shall use the same name as any other visible object. Conversely, an
object may use the same name as any other object outside the scope of its visibility.

d) Exceptions of rule c) may be allowed for specific objects and with specific semantic implications.
e) All statements with optional names (i.e., property, arithmetic model, geometric model) shall share a com-

mon name space within their scope of visibility. No statement with optional name shall use the same
name as any other visible statement with optional name. Conversely, a statement may use the same
optional name as any other statement with optional name outside the scope of its visibility.

MIN arithmetic submodel, operator within arithmetic expression

MAX arithmetic submodel, operator within arithmetic expression

TYP arithmetic submodel

DEFAULT arithmetic submodel, annotation

ABS operator within arithmetic expression

EXP operator within arithmetic expression

LOG operator within arithmetic expression

Table 12—Statements for ALF parser control

keyword statement section

INCLUDE include statement

ALF_REVISION revision statement

Table 11—Keywords related to arithmetic model

keyword item / category section
IEEE P1603 Draft 2 Advanced Library Format (ALF) Reference Manual 23

1

5

10

15

20

25

30

35

40

45

50

55
24 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 2

1

5

10

15

20

25

30

35

40

45

50

55
6. Lexical rules

This section discusses the lexical rules.

The ALF source text files shall be a stream of lexical tokens and whitespace. Lexical tokens shall be divided into
the categories delimiter, operator, comment, number, bit literal, based literal, edge, quoted string, and identifier.

Each lexical token shall be composed of one or more characters. Whitespace shall be used to separate lexical
tokens from each other. Whitespace shall not be allowed within a lexical token with the exception of comment
and quoted string.

The specific rules for construction of lexical tokens and for usage of whitespace are defined in this section.

6.1 Character set

This standard shall use the ASCII character set [ISO 8859-1 : 1987(E)].

The ASCII character set shall be divided into the following categories: whitespace, letter, digit, and special, as
shown in Syntax 3.

The following Table 4 shows the list of whitespace characters and their ASCII code.

character ::=
whitespace

| letter
| digit
| special

letter ::=
uppercase | lowercase

uppercase ::=
A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W
| X | Y | Z

lowercase ::=
a | b | c | d | e | f | g | h | i | j | k | l | m | n | o | p | q | r | s | t | u | v | w | x | y | z

digit ::=
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

special ::=
& | | | ^ | ~ | + | - | * | / | % | ? | ! | : | ; | , | ” | ’ | @ | = | \ | . | $ | _ | #
| (|) | < | > | [|] | { | }

whitespace ::=
space | vertical_tab | horizontal_tab | new_line | carriage_return | form_feed

Syntax 3—ASCII character

Table 4—List of whitespace characters

Name ASCII code (octal)

space 200

horizontal tab 011

new line 012

vertical tab 013
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 21

1

5

10

15

20

25

30

35

40

45

50

55
The following Table 5— shows the list of special characters and their names used in this standard

form feed 014

carriage return 015

Table 5—List of special characters

Symbol Name

& amperesand

| ??? bar

^ ??? hyphen

~ tilde

+ plus

- minus

* asterix

/ divider

% percent

? question mark

! exclamation mark

: colon

; semicolon

, comma

” double quote

’ single quote

@ ??? at

= equal

\ escape character

. dot

$ dollar

_ underscore

??? sharp

(|) parenthesis (open | close)

< | > angular bracket (open | close)

Table 4—List of whitespace characters (Continued)

Name ASCII code (octal)
22 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
6.2 Comment

A comment shall be divided into the subcategories in-line comment and block comment, as shown in Syntax 4.

The start of an in-line comment shall be determined by the occurence of two subsequent divider characters with-
out whitespace in-between. The end of an in-line comment shall be determined by the occurence of a new line or
of a carriage return character.

The start of a block comment shall be determined by the occurence of a divider character followed by an asterix
without whitespace in-between. The end of a block comment shall be determined by the occurence of an asterix
character followed by a divider character.

A comment shall have the same semantic meaning as a whitespace. Therefore, no syntax rule shall involve a
comment.

6.3 Delimiter

The special characters shown in Syntax 5 shall be considered delimiters.

When appearing in a syntax rule, a delimiter shall be used to indicate the end of a statement or of a partial state-
ment, the begin and end of an expression or of a partial expression.

[|] square bracket (open | close)

{ | } curly brace (open | close)

comment ::=
in_line_comment

| block_comment
in_line_comment ::=

/ /{character}new_line
| / /{character}carriage_return

block_comment ::=
/ *{character}* /

Syntax 4—Comment

delimiter ::=
(|) | [|] | { | } | : | ; | ,

Syntax 5—Delimiter

Table 5—List of special characters (Continued)

Symbol Name
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 23

1

5

10

15

20

25

30

35

40

45

50

55
6.4 Operator

Operators shall be divided into the following subcategories: arithmetic operator, boolean operator, relational
operator, shift operator, event sequence operator, and meta operator, as shown in Syntax 6

When appearing in a syntax rule, an operator shall be used within a statement or within an expression. An opera-
tor with one operand shall be called unary operator. An unary operator shall precede the operand. An operator
with two operands shall be called binary operator. A binary operator shall succede the first operand and precede
the second operand.

6.4.1 Arithmetic operator

The following Table 6— shows the list of arithmetic operators and their names used in this standard.

Arithmetic operators shall be used to specify arithmetic operations.

operator ::=
arithmetic_operator

| boolean_operator
| relational_operator
| shift_operator
| event_sequence_operator
| other_operator
| =
| ?
| @

arithmetic_operator ::=
+ | - | * | / | % | **

boolean_operator ::=
&& | || | ~& | ~| | ^ | ~^ | ~ | ! | & | |

relational_operator ::=
== | != | >= | <= | > | <

shift_operator ::=
<< | >>

event_sequence_operator ::=
-> | ~> | <-> | <~> | &> | <&>

meta_operator ::=
= | ? | @

Syntax 6—Operator

Table 6—List arithmetic operators

Symbol Operator name unary / binary section

+ plus binary

- minus both

* multiply binary

/ divide binary

% modulo binary

** power binary
24 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
6.4.2 Boolean operator

The following Table 7— shows the list of boolean operators and their names used in this standard.

Boolean operators shall be used to specify boolean operations.

6.4.3 Relational operator

The following Table 8— shows the list of relational operators and their names used in this standard.

Relational operators shall be used to specify mathematical relationships between numerical quantities.

Table 7—List of boolean operators

Symbol Operator name unary / binary section

! logical invert unary

&& logical and binary

|| logical or binary

~ vector invert unary

& vector and both

~& vector nand both

| vector or both

~| vector nor both

^ exclusive or both

~^ exclusive nor both

Table 8—List of relational operators

Symbol Operator name unary / binary section

== equal binary

!= not equal binary

> greater binary

< lesser binary

>= greater or equal binary

<= lesser or equal binary
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 25

1

5

10

15

20

25

30

35

40

45

50

55
6.4.4 Shift operator

The following Table 9— shows the list of shift operators and their names used in this standard.

Shift operators shall be used to specify manipulations of discrete mathematical values.

6.4.5 Event sequence operator

The following Table 10— shows the list of event sequence operators and their names used in this standard.

Event sequence operators shall be sed to express temporal relationships between discrete events.

6.4.6 Meta operator

The following Table 11— shows the list of meta operators and their names used in this standard.

Meta operators shall be used to specify transactions between variables.

Table 9—List of shift operators

Symbol Operator name unary / binary section

<< shift left binary

>> shift right binary

Table 10—List of event sequence operators

Symbol Operator name unary / binary section

-> immediately followed by binary

~> eventually followed by binary

<-> immediately following each other binary

<~> eventually following each other binary

&> simultaneous or immediately followed by binary

<&> simultaneous or immediately following each other binary

Table 11—List of meta operators

Symbol Operator name unary / binary section

= assignment binary

? condition binary

@ control unary
26 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
6.5 Number

Numbers shall be divided into subcategories signed number and unsigned number, as shown in Syntax 7.

Alternatively, numbers shall be divided into subcategories integer and real, as shown in Syntax 8—.

Numbers shall be used to represent numerical quantities.

6.6 Bit literal

Bit literals shall be divided into subcategories numeric bit literal and symbolic bit literal, as shown in Syntax 9.

Bit literals shall be used to specify scalar values within a boolean system.

number ::=
signed_number | unsigned_number

signed_number ::=
signed_integer | signed_real

signed_integer ::=
sign unsigned_integer

signed_real ::=
sign unsigned_real

unsigned_number ::=
unsigned_integer | unsigned_real

unsigned_integer ::=
digit { [_] digit }

unsigned_real ::=
unsigned . unsigned

| unsigned [. unsigned] E [sign] unsigned
| unsigned [. unsigned] e [sign] unsigned

sign ::=
+ | -

Syntax 7—Signed and unsigned numbers

number ::=
integer | real

integer ::=
signed_integer | unsigned_integer

real ::=
signed_real | unsigned_real

Syntax 8—Integer and real numbers

bit_literal ::=
numeric_bit_literal

| symbolic_bit_literal
numeric_bit_literal ::=

0 | 1
symbolic_bit_literal ::=

X | Z | L | H | U | W
| x | z | l | h | u | w
| ? | *

Syntax 9—Bit literal
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 27

1

5

10

15

20

25

30

35

40

45

50

55
6.7 Based literal

Based literals shall be divided into subcategories binary based literal, octal based literal, decimal based literal,
and hexadecimal based literal, as shown in Syntax 10.

Based literals shall be used to specify vectorized values within a boolean system.

6.8 Edge literal

Edge literals shall be divided into subcategories bit edge literal, based edge literal, and symbolic edge literal, as
shown in Syntax 11—.

Edge literals shall be used to specify a change of value within a boolean system. In general, bit edge literals shall
specify a change of a scalar value, based edge literals shall specify a change of a vectorized value, and symbolic
edge literals shall specify a change of a scalar or of a vectorized value.

based_literal ::=
binary_based_literal | octal_based_literal | decimal_based_literal | hexadecimal_based_literal

binary_based_literal ::=
binary_base bit_literal { [_] bit_literal }

octal_based_literal ::=
octal_base octal { [_] octal }

decimal_based_literal ::=
decimal_base digit { [_] digit }

hexadecimal_based_literal ::=
hex_base hexadecimal { [_] hexadecimal }

binary_base ::=
'B | 'b

octal_base ::=
'O | 'o

decimal_base ::=
'D | 'd

hex_base ::=
'H | 'h

octal ::=
bit_literal | 2 | 3 | 4 | 5 | 6 | 7

hexadecimal ::=
octal | 8 | 9

| A | B | C | D | E | F
| a | b | c | d | e | f

Syntax 10—Based literal

edge_literal ::=
bit_edge_literal

| based_edge_literal
| symbolic_edge_literal

bit_edge_literal ::=
bit_literal bit_literal

based_edge_literal ::=
based_literal based_literal

symbolic_edge_literal ::=
?~ | ?! | ?-

Syntax 11—Edge literal
28 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
6.9 Quoted string

A quoted string shall be a sequence of zero or more characters enclosed between two double quote characters, as
shown in Syntax 12.

Within a quoted string, a sequence of characters starting with an escape character shall represent a symbol for
another character, as shown in Table 12.

The start of a quoted string shall be determined by a double quote character. The end of a quoted string shall be
determined by a double quote character preceded by an even number of escape characters or by any other charac-
ter than escape character.

6.10 Identifier

Identifiers shall be divided into the subcategories non-escaped identifier, escaped identifier, placeholder identi-
fier, and hierarchical identifier, as shown in Syntax 13.

quoted_string ::=
" { character } "

Syntax 12—Quoted string

Table 12—Character symbols within a quoted string

Symbol Character ASCII Code (octal)

\g Alert or bell 007

\h Backspace 010

\t Horizontal tab 011

\n New line 012

\v Vertical tab 013

\f Form feed 014

\r Carriage return 015

\" Double quote 042

\\ Escape character 134

\ digit digit digit ASCII character represented by three digit
octal ASCII code

digit digit digit

identifier ::=
non_escaped_identifier

| escaped_identifier
| placeholder_identifier
| hierarchical_identifier

Syntax 13—Identifier
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 29

1

5

10

15

20

25

30

35

40

45

50

55
Identifiers shall be used to specify a name of an ALF statement or a value of an ALF statement. Identifiers may
also appear in an arithmetic expression, in a boolean expression, or in a vector expression, referencing an already
defined statement by name.

A lowercase character used within a keyword or within an identifier shall be considered equivalent to the corre-
sponding uppercase character. This makes ALF case-insensitive. However, whereever an identifier is used to
specify the name of a statement, the usage of the exact letters shall be preserved by the parser to enable usage of
the same name by a case-sensitive application.

6.10.1 Non-escaped identifier

A non-escaped identifier shall be defined as shown in Syntax 14.

A non-escaped identifier shall be used, when there is no lexical conflict, i.e., no appearence of a character with
special meaning, and no semantical conflict, i.e., the identifier is not used elsewhere as a keyword.

6.10.2 Escaped identifier

An escaped identifier shall be defined as shown in Syntax 15.

An escaped identifier shall be used, when there is a lexical conflict, i.e., an appearence of a character with special
meaning, or a semantical conflict, i.e., the identifier is used elsewhere as a keyword.

6.10.3 Placeholder identifier

A placeholder identifier shall be defined as a non-escaped identifier enclosed by angular brackets without
whitespace, as shown in Syntax 16.

A placeholder identifier shall be used to represent a formal parameter in a template statement (see section ...),
which is to be replaced by an actual parameter in a template instantiation statement (see section ...).

6.10.4 Hierarchical identifier

A hierarchical identifier shall be defined as shown in Syntax 17.

non_escaped_identifier ::=
letter { letter | digit | _ | $ | # }

Syntax 14—Non-escaped identifier

escaped_identifier ::=
escape_character escapable_character { escapable_character }

escapable_character ::=
letter | digit | special

Syntax 15—Escaped identifier

placeholder_identifier ::=
< non_escaped_identifier >

Syntax 16—Placeholder identifier
30 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
A hierarchical identifier shall be used to specify a hierarchical name of a statement, i.e., the name of a child pre-
ceded by the name of its parent. A dot within a hierarchical identifier shall be used to separate a parent from a
child, unless the dot is directly preceded by an escape character.

Example

\id1.id2.\id3 is a hierarchical identifier, where id2 is a child of \id1, and \id3 is a child of id2.

id1\.id2.\id3 is a hierarchical identifier, where \id3 is a child of “id1.id2”.

id1\.id2\.id3 specifies the pseudo-hierarchical name “id1.id2.id3”.

6.11 Keyword

Keywords shall be lexically equivalent to non-escaped identifiers. Predefined keywords are listed in Table 3—,
Table 4—, Table 5—, Table 6—, Table 10—, and Table 11—. Additional keywords are predefined in section ...

The predefined keywords in this standard follow a more restrictive lexical rule than general non-escaped identifi-
ers, as shown in Syntax 18—.

**Should this be a normative rule or a recommended practice to follow for additional keyword definitions? **

Note: This document presents keywords in all-uppercase letters for clarity.

6.12 Rules for whitespace usage

Whitespace shall be used to separate lexical tokens from each other, according to the following rules:

a) Whitespace before and after a delimiter shall be optional.
b) Whitespace before and after an operator shall be optional.
c) Whitespace before and after a quoted string shall be optional.
d) Whitespace before and after a comment shall be mandatory. This rule shall override a), b), and c).
e) Whitespace between subsequent quoted strings shall be mandatory. This rule shall override c).
f) Whitespace between subsequent lexical tokens amongst the categories number, bit literal, based literal,

and identifier shall be mandatory.
g) Whitespace before and after a placeholder identifier shall be mandatory. This rule shall override a), b),

and c).
h) Whitespace after an escaped identifier shall be mandatory. This rule shall override a), b), and c).
i) Either whitespace or delimiter before a signed number shall be mandatory. This rule shall override a), b),

and c).
j) Either whitespace or delimiter before a symbolic edge literal shall be mandatory. This rule shall override

a), b), and c).

hierarchical_identifier ::=
identifier [\] . identifier

Syntax 17—Hierarchical identifier

keyword_identifier ::=
letter { [_] letter }

Syntax 18—Keyword
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 31

1

5

10

15

20

25

30

35

40

45

50

55
Whitespace before the first lexical token or after the last lexical token in a file shall be optional. Hence in all rules
prescribing mandatory whitespace, “before” shall not apply for the first lexical token in a file, and “after” shall
not apply for the last lexical token in a file.

6.13 Rules against parser ambiguity

In a syntax rule where multiple legal interpretations of a lexical token are possible, the resulting ambiguity shall
be resolved according to the following rules:

a) In a context where both bit literal and identifier are legal, a non-escaped identifier shall take priority over
a symbolic bit literal.

b) In a context where both bit literal and number are legal, an unsigned integer shall take priority over a
numeric bit literal.

c) In a context where both edge literal and identifier are legal, a non-escaped identifier shall take priority
over a bit edge literal.

d) In a context where both edge literal and number are legal, an unsigned integer shall take priority over a
bit edge literal.

If the interpretation as bit literal is desired in case a) or b), a based literal can be substituted for a bit literal.

If the interpretation as edge literal is desired in case c) or d), a based edge literal can be substituted for a bit edge
literal.
32 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
7. Auxiliary Syntax Rules

This section specifies auxiliary syntax rules which are used to build other syntax rules.

7.1 All-purpose value

An all-purpose value shall be defined as shown in Syntax 25.

7.2 String

A string shall be defined as shown in Syntax 26.

A string shall represent textual data in general and the name of a referenced object in particular.

7.3 Arithmetic value

An arithmetic value shall be defined as shown in Syntax 27.

An arithmetic value shall represent data for an arithmetic model or for an arithmetic assignment. Semantic
restrictions apply, depending on the particular type of arithmetic model.

7.4 Boolean value

A boolean value shall be defined as shown in Syntax 28.

A boolean value shall represent the contents of a pin variable (see Section 7.8 on page 34).

all_purpose_value ::=
number

| identifier
| quoted_string
| bit_literal
| based_literal
| edge_value
| pin_variable
| control_expression

Syntax 25—All purpose value

string ::=
quoted_string | identifier

Syntax 26—String value

arithmetic_value ::=
number | identifier | bit_literal | based_literal

Syntax 27—Arithmetic value
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 33

1

5

10

15

20

25

30

35

40

45

50

55
7.5 Edge value

An edge value shall be defined as shown in Syntax 29.

An edge value shall represent a standalone edge literal that is not embedded in a vector expression.

7.6 Index value

An index value shall be defined as shown in Syntax 30.

An index value shall represent a particular position within a vector pin (see). The usage of identifier shall only
be allowed, if that identifier represents a constant (see Section 8.2) with a value of the category unsigned integer.

7.7 Index

An index shall be defined as shown in Syntax 31.

An index shall be used in conjunction with the name of a pin or a pin group. A single index shall represent a par-
ticular scalar within a one-diensional vector or a particular one-dimensional vector within a two-dimensional
matrix. A multi index shall represent a range of scalars or a range of vectors, wherein the most significant bit
(MSB) is specified by the left index value and the least significant bit (LSB) is specified by the right index value.

7.8 Pin variable

A pin variable shall be defined as shown in Syntax 32.

boolean_value ::=
bit_literal | based_literal | unsigned_integer

Syntax 28—Boolean value

edge_value ::=
(edge_literal)

Syntax 29—Edge value

index_value ::=
unsigned_integer | identifier

Syntax 30—Index value

index ::=
single_index | multi_index

single_index ::=
[index_value]

multi_index ::=
| [index_value : index_value]

Syntax 31—Index
34 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
A pin variable shall represent the name of a pin or the name of a pingroup, in conjunction with an optional index.

7.9 Pin assignment

A pin assignment shall be defined as shown in Syntax 33.

A pin assignment shall represent an association between a pin variable and another pin variable or a boolean
value.

The datatype of the left hand side (LHS) and the right hand side (RHS) of the assignment must be compatible
with each other. The following rules shall apply:

a) The bitwidth of the RHS must be equal to the bitwidth of the LHS.
b) A scalar pin at the LHS may be assigned a bit literal or a based literal representing a single bit.
c) A pin group, a one-dimensional vector pin, or a one-dimensional slice of a two-dimensional vector pin at

the LHS may be assigned a based literal or an unsigned integer, representing a binary number.

7.10 Annotation

An annotation shall be divided into the subcategories single value annotation and multi value annotation, as
shown in Syntax 34

An annotation shall represent an assocation between an identifier and a set of annotation values (values for short-
ness). In case of a single value annotation, only one value shall be legal. In case of a multi value annotation, one
or more values shall be legal. The annotation shall serve as a semantic qualifier of its parent statement. The value
shall be subject to semantic restrictions, depending on the identifier.

The annotation identifier may be a keyword used for the declaration of an object (i.e., a generic object or a
library-specific object). An annotation using such an annotation identifier shall be called a reference annotation.
The annotation value of a reference annotation shall be the name of an object of matching type. A reference
annotation may be a single-value annotation or a multi-value annotation. The semantic meaning of a reference
annotation shall be defined in the context of its parent statement.

7.11 Annotation container

An annotation container shall be defined as shown in Syntax 34

pin_variable ::=
pin_variable_identifier [index]

Syntax 32—Pin variable

pin_assignment ::=
pin_variable = boolean_value ;

| pin_variable = pin_variable ;

Syntax 33—Pin assignment
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 35

1

5

10

15

20

25

30

35

40

45

50

55
An annotation container shall represent a collection of annotations. The annotation container shall serve as a
semantic qualifier of its parent statement. The annotation container identifier shall be a keyword. An annotation
within an annotation container shall be subject to semantic restrictions, depending on the annotation container
identifier.

7.12 ATTRIBUTE statement

An attribute statement shall be defined as shown in Syntax 36.

The attribute statement shall be used to associate arbitrary identifiers with the parent of the attribute statement.
Semantics of such identifiers may be defined depending on the parent of the attribute statement. The attribute
statement has a similar syntax definition as a multi-value annotation (see Section 7.10). While a multi-value
annotation may have restricted semantics and a restricted set of applicable values, identifiers with and without
predefined semantics may co-exist within the same attribute statement.

Example

CELL myRAM8x128 {
ATTRIBUTE { rom asynchronous static }

}

annotation ::=
single_value_annotation

| multi_value_annotation
single_value_annotation ::=

annotation_identifier = annotation_value ;
multi_value_annotation ::=

annotation_identifier { annotation_value { annotation_value } }
annotation_value ::=

number
| identifier
| quoted_string
| bit_literal
| based_literal
| edge_value
| pin_variable
| control_expression
| boolean_expression
| arithmetic_expression

Syntax 34—Annotation

annotation_container ::=
annotation_container_identifier { annotation { annotation } }

Syntax 35—Annotation container

attribute ::=
ATTRIBUTE { identifier { identifier } }

Syntax 36—ATTRIBUTE statement
36 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
7.13 PROPERTY statement

A property statement shall be defined as shown in Syntax 37.

The property statement shall be used to associate arbitrary annotations with the parent of the property statement.
The property statement has a similar syntax definition as an annotation container (see Section 7.11). While the
keyword of an annotation container usually restricts the semantics and the set of applicable annotations, the key-
word “property” does not. Annotations shall have no predefined semantics, when they appear within the property
statement, even if annotation identifiers with otherwise defined semantics are used.

Example

PROPERTY myProperties {
parameter1 = value1 ;
parameter2 = value2 ;
parameter3 { value3 value4 value5 }

}

7.14 INCLUDE statement

An include statement shall be defined as shown in Syntax 38.

The quoted string shall specify the name of a file. When the include statement is encountered during parsing of a
file, the application shall parse the specified file and then continue parsing the former file. The format of the file
containing the include statement and the format of the file specified by the include statement shall be the same.

Example

LIBRARY myLib {
INCLUDE “templates.alf”;
INCLUDE “technology.alf”;
INCLUDE “primitives.alf”;
INCLUDE “wires.alf”;
INCLUDE “cells.alf”;

}

The filename specified by the quoted string shall be interpreted according to the rules of the application and/or
the operating system. The ALF parser itself shall make no semantic interpretation of the filename.

property ::=
PROPERTY [identifier] { annotation { annotation } }

Syntax 37—PROPERTY statement

include ::=
INCLUDE quoted_string ;

Syntax 38—INCLUDE statement
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 37

1

5

10

15

20

25

30

35

40

45

50

55
7.15 REVISION statement

A revision statement shall be defined as shown in Syntax 34

A revision statement shall be used to identify the revision or version of the file to be parsed. One, and only one,
revision statement may appear at the beginning of an ALF file.

The set of legal string values within the revision statement shall be defined as shown in Table 10

The revision statement shall be optional, as the application program parsing the ALF file may provide other
means of specifying the revision or version of the file to be parsed. If a revision statement is encountered while a
revision has already been specified to the parser (e.g. if an included file is parsed), the parser shall be responsible
to decide whether the newly encountered revision is compatible with the originally specified revision and then
either proceed assuming the original revision or abandon.

This document suggests, but does not certify, that the IEEE version of the ALF standard proposed herein be
backward compatible with the Accellera version 2.0 and the OVI version 1.1.

7.16 Generic object

A generic object shall be defined as shown in Syntax 40.

revision ::=
ALF_REVISION string_value

Syntax 39—Revision statement

Table 10—Legal string values within the REVISION statement

string value revision or version

“1.1” Version 1.1 by Open Verilog International, released on April 6, 1999

“2.0” Version 2.0 by Accellera, released on December 14, 2000

“P1603.2002-04-16” IEEE draft version as described in this document

TBD IEEE 1603 release version

generic_object ::=
alias_declaration

| constant_declaration
| class_declaration
| keyword_declaration
| group_declaration
| template_declaration
| generic_object_template_instantiation

Syntax 40—Generic object
38 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
7.17 Library-specific object

A library-specific object shall be defined as shown in Syntax 41.

7.18 All purpose item

An all purpose item shall be defined as shown in Syntax 42.

library_specific_object ::=
library

| sublibrary
| cell
| primitive
| wire
| pin
| pingroup
| vector
| node
| layer
| via
| rule
| antenna
| site
| array
| blockage
| port
| pattern
| region
| library_specific_object_template_instantiation

Syntax 41—Library-specific object

all_purpose_item ::=
generic_object

| include_statement
| annotation
| annotation_container
| arithmetic_model
| arithmetic_model_container
| all_purpose_item_template_instantiation

Syntax 42—All purpose item
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 39

1

5

10

15

20

25

30

35

40

45

50

55
40 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
8. Generic objects and related statements

Add lead-in text

8.1 ALIAS declaration

An alias shall be declared as shown in Syntax 33.

The alias declaration shall specify an identifier which may be used instead of an original identifier to specify a
name or a value of an ALF statement. The identifier shall be semantically interpreted in the same way as the orig-
inal identifier.

Example

ALIAS reset = clear;

8.2 CONSTANT declaration

A constant shall be declared as shown in Syntax 34.

The constant declaration shall specify an identifier which can be used instead of a constant value, i.e., a number
or a based literal. The identifier shall be semantically interpreted in the same way as the constant value.

Example

CONSTANT vdd = 3.3;
CONSTANT opcode = ‘h0f3a;

8.3 CLASS declaration

A class shall be declared as shown in Syntax 35.

alias_declaration ::=
ALIAS alias_identifier = original_identifier ;

Syntax 33—ALIAS declaration

constant_declaration ::=
CONSTANT constant_identifier = constant_value ;

constant_value ::=
number | based_literal

Syntax 34—CONSTANT declaration

class_declaration ::=
CLASS class_identifier ;

| CLASS identifier { all_purpose_items }

Syntax 35—CLASS declaration
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 37

1

5

10

15

20

25

30

35

40

45

50

55
A class declaration shall be used to establish a semantic association between ALF statements, including, but not
restricted to, other class declarations. ALF statements shall be associated with each other, if they contain a refer-
ence to the same class. The semantics specified by an all purpose item within a class declaration shall be inher-
ited by the statement containing the reference.

Example

CLASS \1stclass { ATTRIBUTE { everything } }
CLASS \2ndclass { ATTRIBUTE { nothing } }
CELL cell1 { CLASS = \1stclass; }
CELL cell2 { CLASS = \2ndclass; }
CELL cell3 { CLASS { \1stclass \2ndclass } }
// cell1 inherits “everything”
// cell2 inherits “nothing”
// cell3 inherits “everything” and “nothing”

8.4 KEYWORD declaration

A keyword shall be declared as shown in Syntax 36.

A keyword declaration shall be used to define a new keyword in a category or in a subcategory of ALF state-
ments specified by a syntax item identifier. One or more annotations (see Section 8.5) may be used to qualify the
contents of the keyword declaration.

A legal syntax item identifier shall be defined as shown in Table 10.

keyword_declaration ::=
KEYWORD keyword_identifier = syntax_item_identifier ;

| KEYWORD keyword_identifier = syntax_item_identifier { annotation { annotation } }

Syntax 36—KEYWORD declaration

Table 10—Syntax item identifier

identifier semantic meaning

annotation The keyword shall specify an annotation (see Section 7.10)

single_value_annotation The keyword shall specify a single value annotation (see Section 7.10)

multi_value_annotation The keyword shall specify a multi_value_annotation (see Section 7.10)

annotation_container The keyword shall specify an annotation container (see Section 7.11)

arithmetic_model The keyword shall specify an arithmetic model (see)

arithmetic_submodel The keyword shall specify an arithmetic submodel (see)

arithmetic_model_container The keyword shall specify an arithmetic model container (see)
38 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
8.5 Annotations in the context of a KEYWORD declaration

This subsection defines annotations which may be used as legal children of a keyword declaration statement.

8.5.1 VALUETYPE annotation

The valuetype annotation shall be a single value annotation. The set of legal values shall depend on the syntax
item identifier associated with the keyword declaration, as shown in Table 11.

The valuetype annotation shall specify the category of legal ALF values applicable for an ALF statement whose ALF type is
given by the declared keyword.

Example:

This example shows a correct and an incorrect usage of a declared keyword with specified valuetype.

KEYWORD Greeting = annotation { VALUETYPE = identifier ; }
CELL cell1 { Greeting = HiThere ; } // correct
CELL cell2 { Greeting = “Hi There” ; } // incorrect

The first usage is correct, since HiThere is an identifier. The second usage is incorret, since “Hi There” is a
quoted string and not an identifier.

8.5.2 VALUES annotation

The values annotation shall be a multi value annotation applicable in the case where the valuetype annotation is
also applicable.

Table 11—VALUETYPE annotation

syntax item identifier set of legal values for
VALUETYPE

default value for
VALUETYPE comment

annotation
or single_value_annotation
or multi_value_annotation

number, identifier,
quoted_string,
edge_value,
pin_variable,
control_expression,
boolean_expression,
arithmetic_expression

identifier see Syntax 34, definition of
annotation value

annotation_container N/A N/A an annotation container (see
Syntax 35) has no value

arithmetic_model number, identifier,
bit_literal, based_literal

number see Syntax 27, definition of
arithmetic value

arithmetic_submodel N/A N/A an arithmetic submodel (see)
shall always have the same
valuetype as its parent arith-
metic mdel

arithmetic_model_container N/A N/A an arithmetic model container
(see) has no value
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 39

1

5

10

15

20

25

30

35

40

45

50

55
The values annotation shall specify a discrete set of legal values applicable for an ALF statement using the declared
keyword. Compatibility between the values annotation and the valuetype annotation shall be mandatory.

Example:

This example shows a correct and an incorrect usage of a declared keyword with specified valuetype and values.

KEYWORD Greeting = annotation {
VALUETYPE = identifier ;
VALUES { HiThere Hello HowDoYouDo }

}
CELL cell3 { Greeting = Hello ; } // correct
CELL cell4 { Greeting = GoodBye ; } // incorrect

The first usage is correct, since Hello is contained within the set of values. The second usage is incorrect, since
GoodBye is not contained within the set of values.

8.5.3 DEFAULT annotation

The default annotation shall be a single value annotation applicable in the case where the valuetype annotation is
also applicable. Compatibility between the default annotation, the valuetype annotation, and the values annota-
tion shall be mandatory.

The default annotation shall specify a presumed value in absence of an ALF statement specifying a value.

Example:

KEYWORD Greeting = annotation {
VALUETYPE = identifier ;
VALUES { HiThere Hello HowDoYouDo }
DEFAULT = Hello ;

}
CELL cell5 { /* no Greeting */ }

In this example, the absence of a Greeting statement is equivalent to the following:

CELL cell5 { Greeting = Hello ; }

8.5.4 CONTEXT annotation

The context annotation shall specify the ALF type of a legal parent of the statement using the declared keyword.
The ALF type of a legal parent may be a predefined keyword or a declared keyword.

Example:

KEYWORD LibraryQualifier = annotation { CONTEXT { LIBRARY SUBLIBRARY } }
KEYWORD CellQualifier = annotation { CONTEXT = CELL ; }
KEYWORD PinQualifier = annotation { CONTEXT = PIN ; }
LIBRARY library1 {

LibraryQualifier = foo ; // correct
CELL cell1 {

CellQualifier = bar ; // correct
PinQualifier = foobar ; // incorrect
40 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
}
}

The following change would legalize the example above:

KEYWORD PinQualifier = annotation { CONTEXT { PIN CELL } }

8.5.5 SI_MODEL annotation

** see IEEE proposal, January 2002, chapter 27**

8.6 GROUP declaration

A group shall be declared as shown in Syntax 37.

A group declaration shall be used to specify the semantic equivalent of multiple similar ALF statements within a
single ALF statement. An ALF statement containing a group identifier shall be semantically replicated by substi-
tuting each group value for the group identifier, or, by substituting subsequent index values bound by the left
index value and by the right index value for the group identifier. The ALF parser shall verify whether each sub-
stitution results in a legal statement.

The ALF statement which has the same parent as the group declaration shall be semantically replicated, if the
group identifier is found within the statement itself or within a child of the statement or within a child of a child
of the statement etc. If the group identifier is found more than once within the statement or within its children,
the same group value or index value per replication shall be substituted for the group identifier, but no additional
replication shall occur.

The group identifier (i.e., the name associated with the goup declaration) may be re-used as name of another
statement. As a consequence, the other statement shall be interpreted as multiple statements wherein the group
identifier within each replication shall be replaced by the all-purpose value. On the other hand, no name of any
visible statement shall be allowed to be re-used as group identifier.

Examples

The following example shows substitution involving group values.

// statement using GROUP:
CELL myCell {

GROUP data { data1 data2 data3 }
PIN data { DIRECTION = input ; }

}
// semantically equivalent statement:
CELL myCell {

PIN data1 { DIRECTION = input ; }
PIN data2 { DIRECTION = input ; }

group_declaration ::=
GROUP group_identifier { all_purpose_value { all_purpose_value } }

| GROUP group_identifier { left_index_value : right_index_value }

Syntax 37—GROUP declaration
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 41

1

5

10

15

20

25

30

35

40

45

50

55
PIN data3 { DIRECTION = input ; }
}

The following example shows substitution involving index values.

// statement using GROUP:
CELL myCell {

GROUP dataIndex { 1 : 3 }
PIN [1:3] data { DIRECTION = input ; }
PIN clock { DIRECTION = input ; }
SETUP = 0.5 { FROM { PIN = data[dataIndex]; } TO { PIN = clock ; } }

}
// semantically equivalent statement:
CELL myCell {

GROUP dataIndex { 1 : 3 }
PIN [1:3] data { DIRECTION = input ; }
PIN clock { DIRECTION = input ; }
SETUP = 0.5 { FROM { PIN = data[1]; } TO { PIN = clock ; } }
SETUP = 0.5 { FROM { PIN = data[2]; } TO { PIN = clock ; } }
SETUP = 0.5 { FROM { PIN = data[3]; } TO { PIN = clock ; } }

}

The following example shows multiple occurences of the same group identifier within a statement.

// statement using GROUP:
CELL myCell {

GROUP dataIndex { 1 : 3 }
PIN [1:3] Din { DIRECTION = input ; }
PIN [1:3] Dout { DIRECTION = input ; }
DELAY = 1.0 { FROM {PIN=Din[dataIndex];} TO {PIN=Dout[dataIndex];} }

}
// semantically equivalent statement:
CELL myCell {

GROUP dataIndex { 1 : 3 }
PIN [1:3] Din { DIRECTION = input ; }
PIN [1:3] Dout { DIRECTION = input ; }
DELAY = 1.0 { FROM {PIN=Din[1];} TO {PIN=Dout[1];} }
DELAY = 1.0 { FROM {PIN=Din[2];} TO {PIN=Dout[2];} }
DELAY = 1.0 { FROM {PIN=Din[3];} TO {PIN=Dout[3];} }

}

8.7 TEMPLATE declaration

A template shall be declared as shown in Syntax 38.

A template declaration shall be used to specify one or more ALF statements with variable contents that can be
used many times. A template instantiation (see Section 8.8) shall specify the usage of such an ALF statement.

template_declaration ::=
TEMPLATE template_identifier { ALF_statement { ALF_statement } }

Syntax 38—TEMPLATE declaration
42 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
Within the template declaration, the variable contents shall be specified by a placeholder identifier (see
Section 6.10.3).

8.8 Template instantiation

A template shall be instantiated in form of a static template instantiation or a dynamic template instantiation, as
shown in Syntax 39

A template instantiation shall be semantically equivalent to the ALF statement or the ALF statements found
within the template declaration, after replacing the placeholder identifiers with replacement values. A static tem-
plate instantiation shall support replacement by order, using one or more all-purpose values, or alternatively,
replacement by reference, using one or more annotations (see). A dynamic template instantiation shall support
replacement by reference only, using one or more annotations and/or one or more arithmetic models (see).

In the case of replacement by reference, the reference shall be established by a non-escaped identifier matching
the placeholder identifier when the angular brackets are removed. The matching shall be case-insensitive.

The following rules shall apply:

a) A static template instantiation shall be used when the replacement value of any placeholder identifier can
be determined during compilation of the library. Only a matching identifier shall be considered a legal
annotation identifier. Each occurence of the placeholder identifier shall be replaced by the annotation
value associated with the annotation identifier.

b) A dynamic template instantiation shall be used when the replacement value of at least one placeholder
identifier can only determined during runtime of the application. Only a matching identifier shall be con-
sidered a legal annotation identifier, or alternatively, a arithmetic model identifier, or alternatively, a legal
arithmetic value.

c) Multiple replacement values within a multi-value annotation shall be legal if and only if the syntax rules
for the ALF statement within the template declaration allow substitution of multiple values for one place-
holder identifier.

d) In the case replacement by order, subsequently occuring placeholder identifiers in the template declara-
tion shall be replaced by subsequently occuring all-purpose values in the template instantiation. If a
placeholder identifier occurs more than once within the template declaration, all occurences of that
placeholder identifier shall be immediately replaced by the same all-purpose value. The first amongst the
remaining placeholder identifiers shall then be considered the next placeholder to be replaced by the next
all-purpose value.

template_instantiation ::=
static_template_instantiation

| dynamic_template_instantiation

static_template_instantiation ::=
template_identifier [= STATIC] ;

| template_identifier [= STATIC] { { all_purpose_value } }
| template_identifier [= STATIC] { { annotation } }

dynamic_template_instantiation ::=
template_identifier = DYNAMIC { { dynamic_template_instantiation_item } }

dynamic_template_instantiation_item ::=
annotation

| arithmetic_model

Syntax 39—TEMPLATE instantiation
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 43

1

5

10

15

20

25

30

35

40

45

50

55
e) A static template instantiation for which a placeholder identifier is not replaced shall be legal if and only
if the semantic rules for the ALF statement support a placeholder identifier outside a template declara-
tion. However, the semantics of a placeholder identifier as an item to be substituted shall only apply
within the template declaration statement.

Examples

The following example illustrates rule a).

// statement using TEMPLATE declaration and instantiation:
TEMPLATE someAnnotations {

KEYWORD <oneAnnotation> = single_value_annotation ;
KEYWORD annotation2 = single_value_annotation ;
<oneAnnotation> = value1 ;
annotation2 = <anotherValue> ;

}
someAnnotations {

oneAnnotation = annotation1 ;
anotherValue = value2 ;

}
// semantically equivalent statement:
KEYWORD annotation1 = single_value_annotation ;
KEYWORD annotation2 = single_value_annotation ;
annotation1 = value1 ;
annotation2 = value2 ;

The following example illustrates rule b).

// statement using TEMPLATE declaration and instantiation:
TEMPLATE someNumbers {

KEYWORD N1 = single_value_annotation { VALUETYPE=number ; }
KEYWORD N2 = single_value_annotation { VALUETYPE=number ; }
N1 = <number1> ;
N2 = <number2> ;

}
someNumbers = DYNAMIC {

number2 = number1 + 1;
}
// semantically equivalent statement, assuming number1=3 at runtime:
N1 = 3 ;
N2 = 4 ;

The following example illustrates rule c).

TEMPLATE moreAnnotations {
KEYWORD annotation3 = annotation ;
KEYWORD annotation4 = annotation ;
annotation3 { <someValue> }
annotation4 = <yetAnotherValue> ;

}
moreAnnotations {

someValue { value1 value2 }
yetAnotherValue = value3 ;

}

44 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
// semantically equivalent statement:
KEYWORD annotation3 = annotation ;
KEYWORD annotation4 = annotation ;
annotation3 { value1 value2 }
annotation4 = value3 ;

The following example illustrates rule e).

TEMPLATE evenMoreAnnotations {
KEYWORD <thisAnnotation> = single_value_annotation ;
KEYWORD <thatAnnotation> = single_value_annotation ;
<thatAnnotation> = <thisValue> ;
<thisAnnotation> = <thatValue> ;

}
// template instantiation by reference:
evenMoreAnnotations = STATIC {

thatAnnotation = day ;
thisAnnotation = month;
thatValue = April;
thisValue = Monday;

}
// semantically equivalent template instantiation by order:
evenMoreAnnotations = STATIC { day month Monday April }

// semantically equivalent statement:
KEYWORD day = single_value_annotation ;
KEYWORD month = single_value_annotation ;
month = April;
day = Monday;

The following example illustrates rule d).

// statement using TEMPLATE declaration and instantiation:
TEMPLATE encoreAnnotation {

KEYWORD context1 = annotation_container;
KEYWORD context2 = annotation_container;
KEYWORD annotation5 = single_value_annotation {

CONTEXT { context1 context2 }
VALUES { <something> <nothing> }

}
context1 { annotation5 = <nothing> ; }
context2 { annotation5 = <something> ; }

}
encoreAnnotation {

something = everything ;
}
// semantically equivalent statement:
KEYWORD context1 = annotation_container;
KEYWORD context2 = annotation_container;
KEYWORD annotation5 = single_value_annotation {

CONTEXT { context1 context2 }
VALUES { everything <nothing> }

}
context1 { annotation5 = <nothing> ; }
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 45

1

5

10

15

20

25

30

35

40

45

50

55
context2 { annotation5 = all ; }
// Both everything (without brackets) and <nothing> (with brackets)
// are legal values for annotation5.
46 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
9. Library-specific objects and related statements

Add lead-in text

9.1 LIBRARY and SUBLIBRARY declaration

A library and a sublibrary shall be declared as shown in Syntax 43.

A library shall serve as a repository of technology data for creation of an electronic integrated circuit. A subli-
brary may optionally be used to create different scopes of visibility for particular statements describing technol-
ogy data.

If any two objects of the same ALF type and the same ALF name appear in two libraries, or in two sublibraries
with the same library as parents, their usage for creation of an electronic circuit shall be mutually exclusive. For
example, two cells with the same name shall not be instantiated in the same integrated circuit. It shall be the
responsibility of the application tool to detect and properly handle such cases, as the selection of a library or a
sublibrary is controlled by the user of the application tool.

9.2 INFORMATION statement

An information statement shall be defined using ALF language as shown in Syntax 44.

The information statement shall be used to associate its parent statement with a product specification. While
information statement complies with the syntax definition of an annotation container (see Section 7.11), the fol-
lowing restrictions shall apply:

a) A library, a sublibrary, or a cell shall be a legal parent of the information statement.
b) A wire, or a primitive shall be a legal parent of the information statement, provided the parent of the wire

or the primitive is a library or a sublibrary.

library ::=
LIBRARY library_identifier ;

| LIBRARY library_identifier { { library_item } }
| library_template_instantiation

library_item ::=
sublibrary

| sublibrary_item
sublibrary ::=

SUBLIBRARY sublibrary_identifier ;
| SUBLIBRARY sublibrary_identifier { { sublibrary_item } }
| sublibrary_template_instantiation

sublibrary_item ::=
all_purpose_item

| cell
| primitive
| wire
| layer
| via
| rule
| antenna
| array
| site
| region

Syntax 43—LIBRARY and SUBLIBRARY statement
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 47

1

5

10

15

20

25

30

35

40

45

50

55
The semantics of the information contents are specified in the following Table 10.

The product developer shall be responsible for any rules concerning the format and detailed contents of the string
value itself.

Example

LIBRARY myProduct {
INFORMATION {

PRODUCT = p10sc;
TITLE = “0.10 standard cell”;
VERSION = “v2.1.0”;
AUTHOR = “Major Asic Vendor, Inc.”;
DATETIME = “Mon Apr 8 18:33:12 PST 2002”;

}
}

KEYWORD INFORMATION = annotation_container {
CONTEXT { LIBRARY SUBLIBRARY CELL WIRE PRIMITIVE }

}
KEYWORD PRODUCT = single_value_annotation {
VALUETYPE = string; DEFAULT = ““; CONTEXT = INFORMATION;

}
KEYWORD TITLE = single_value_annotation {
VALUETYPE = string; DEFAULT = ““; CONTEXT = INFORMATION;

}
KEYWORD VERSION = single_value_annotation {
VALUETYPE = string; DEFAULT = ““; CONTEXT = INFORMATION;

}
KEYWORD AUTHOR = single_value_annotation {
VALUETYPE = string; DEFAULT = ““; CONTEXT = INFORMATION;

}
KEYWORD DATETIME = single_value_annotation {
VALUETYPE = string; DEFAULT = ““; CONTEXT = INFORMATION;

}

Syntax 44—INFORMATION statement

Table 10—Annotations within an INFORMATION statement

annotation identifier semantics of annotation value

PRODUCT a code name of a product described herein

TITLE a descriptive title of the product described herein

VERSION a version number of the product description

AUTHOR the name of a person or company generating this product description

DATETIME date and time of day when this product description was created
48 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
9.3 CELL declaration

A cell shall be declared as shown in Syntax 45.

A cell shall represent an electronic circuit which can be used as a building block for a larger electronic circuit.

9.4 Annotations and attributes for a CELL

This section defines annotations and attribute values in the context of a cell declaration.

9.4.1 CELLTYPE annotation

A celltype annotation shall be defined using ALF language as shown in .

The celltype shall divide cells into categories, as specified in Table 11.

cell ::=
CELL cell_identifier ;

| CELL cell_identifier { { cell_item } }
| cell_template_instantiation

cell_item ::=
all_purpose_item

| pin
| pingroup
| primitive
| function
| non_scan_cell
| test
| vector
| wire
| blockage
| artwork
| pattern
| region

Syntax 45—CELL statement

KEYWORD CELLTYPE = single_value_annotation {
CONTEXT = CELL;
VALUETYPE = identifier;
VALUES {

buffer combinational multiplexor flipflop latch
memory block core special

}
}

Syntax 46— annotation

Table 11—CELLTYPE annotation values

Annotation value Description

buffer Cell is a buffer, inverting or non-inverting.
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 49

1

5

10

15

20

25

30

35

40

45

50

55
9.4.2 ATTRIBUTE within a CELL

An attribute in the context of a cell declaration shall specify more specific information within the category given
by the celltype annotation.

The attribute values shown in Table 12 can be used within a CELL with CELLTYPE=memory.

combinational Cell is a combinational logic element.

multiplexor Cell is a multiplexor.

flipflop Cell is a flip-flop.

latch Cell is a latch.

memory Cell is a memory or a register file.

block Cell is a hierarchical block, i.e., a complex element which can be rep-
resented as a netlist. All instances of the netlist are library elements,
i.e., there is a CELL model for each of them in the library.

core Cell is a core, i.e., a complex element which can be represented as a
netlist. At least one instance of the netlist is not a library element,
i.e., there is no CELL model, but a PRIMITIVE model for that
instance.

special Cell is a special element, which can only be used in certain applica-
tion contexts not describable by the FUNCTION statement. Exam-
ples: busholders, protection diodes, and fillcells.

Table 12—Attribute values for a CELL with CELLTYPE=memory

Attribute item Description

RAM Random Access Memory

ROM Read Only Memory

CAM Content Addressable Memory

static Static memory (e.g., static RAM)

dynamic Dynamic memory (e.g., dynamic RAM)

asynchronous Asynchronous memory

synchronous Synchronous memory

Table 11—CELLTYPE annotation values

Annotation value Description
50 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
The attributes shown in Table 13 can be used within a CELL with CELLTYPE=block.

The attributes shown in Table 14 can be used within a CELL with CELLTYPE=core.

The attributes shown in Table 15 can be used within a CELL with CELLTYPE=special.

Table 13—Attributes within a CELL with CELLTYPE=block

Attribute item Description

counter Cell is a complex sequential cell going through a predefined
sequence of states in its normal operation mode where each state rep-
resents an encoded control value.

shift_register Cell is a complex sequential cell going through a predefined
sequence of states in its normal operation mode, where each subse-
quent state can be obtained from the previous one by a shift opera-
tion. Each bit represents a data value.

adder Cell is an adder, i.e., a combinational element performing an addition
of two operands.

subtractor Cell is a subtractor, i.e., a combinational element performing a sub-
traction of two operands.

multiplier Cell is a multiplier, i.e., a combinational element performing a multi-
plication of two operands.

comparator Cell is a comparator, i.e., a combinational element comparing the
magnitude of two operands.

ALU Cell is an arithmetic logic unit, i.e., a combinational element combin-
ing the functionality of adder, subtractor, comparator in a selectable
way.

Table 14—Attributes within a CELL with CELLTYPE=core

Attribute item Description

PLL CELL is a phase-locked loop.

DSP CELL is a digital signal processor.

CPU CELL is a central processing unit.

GPU CELL is a graphical processing unit.

Table 15—Attributes within a CELL with CELLTYPE=special

Attribute item Description

busholder CELL enables a tristate bus to hold its last value before all drivers
went into high-impedance state (see FUNCTION statement).
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 51

1

5

10

15

20

25

30

35

40

45

50

55
9.4.3 SWAP_CLASS annotation

A swap_class annotation shall be defined using ALF language as shown in .

The value is the name of a declared CLASS. Multi-value annotation can be used. Cells referring to the same
CLASS can be swapped for certain applications.

Cell-swapping is only allowed under the following conditions:

— the RESTRICT_CLASS annotation (see 9.4.4) authorizes usage of the cell
— the cells to be swapped are compatible from an application standpoint (functional compatibility for syn-

thesis and physical compatibility for layout)

9.4.4 RESTRICT_CLASS annotation

A xxx annotation shall be defined using ALF language as shown in .

clamp CELL connects a net to a constant value (logic value and drive
strength; see FUNCTION statement).

diode CELL is a diode (no FUNCTION statement).

capacitor CELL is a capacitor (no FUNCTION statement).

resistor CELL is a resistor (no FUNCTION statement).

inductor CELL is an inductor (no FUNCTION statement).

fillcell CELL is merely used to fill unused space in layout (no FUNCTION
statement).

KEYWORD SWAP_CLASS = annotation {
CONTEXT = CELL;
VALUETYPE = identifier;

}

Syntax 47— annotation

KEYWORD RESTRICT_CLASS = annotation {
CONTEXT { CELL CLASS }
VALUETYPE = identifier;

}

Syntax 48— annotation

Table 15—Attributes within a CELL with CELLTYPE=special (Continued)

Attribute item Description
52 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
The value is the name of a declared CLASS. Multi-value annotation can be used. Cells referring to a particular
class can be used in design tools identified by the value. The restricted annotations are shown in Table 16.

User-defined values are also possible. If a cell has no or only unknown values for RESTRICT_CLASS, the
application tool shall not modify any instantiation of that cell in the design. However, the cell shall still be con-
sidered for analysis.

9.4.4.1 Independent SWAP_CLASS and RESTRICT CLASS

SWAP_CLASS and RESTRICT_CLASS can be defined for cells, independent of each other. In this case, the set
of cells that can be swapped with each other is the set of cells with a non-empty intersection of both
SWAP_CLASS and RESTRICT_CLASS.

Example

CLASS foo;
CLASS bar;
CLASS whatever;
CLASS my_tool;
CELL cell1 {

SWAP_CLASS { foo bar }
RESTRICT_CLASS { synthesis datapath }

}
CELL cell2 {

SWAP_CLASS { foo whatever }
RESTRICT_CLASS { synthesis scan my_tool }

}

The cells cell1 and cell2 can be used for synthesis, where they can be swapped which each other. Cell
cell1 can be also used for datapath. Cell cell2 can be also used for scan insertion and for the user-defined
application my_tool. Figure 8 depicts this scenario.

Table 16—Predefined values for RESTRICT_CLASS

Annotation string Description

synthesis Use restricted to logic synthesis.

scan Use restricted to scan synthesis.

datapath Use restricted to datapath synthesis.

clock Use restricted to clock tree synthesis.

layout Use restricted to layout, i.e., place & route.
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 53

1

5

10

15

20

25

30

35

40

45

50

55
Figure 8—Illustration of independent SWAP_CLASS and RESTRICT_CLASS

9.4.4.2 SWAP_CLASS with inherited RESTRICT_CLASS

The definition of a CLASS can contain a RESTRICT_CLASS annotation. In this case, the RESTRICT_CLASS
is inherited by the SWAP_CLASS. Cells can only be swapped if the intersection of their SWAP_CLASS and the
inherited RESTRICT_CLASS is non-empty.

Example

A combination of SWAP_CLASS and RESTRICT_CLASS can be used to emulate the concept of “logically
equivalent cells” and “electrically equivalent cells”. A synthesis tool needs to know about “logically equivalent
cells” for swapping. A layout tool needs to know about “electrically equivalent cells” for swapping.

CLASS all_nand2 { RESTRICT_CLASS { synthesis } }
CLASS all_high_power_nand2 { RESTRICT_CLASS { layout } }
CLASS all_low_power_nand2 { RESTRICT_CLASS { layout } }

CELL cell1 {
SWAP_CLASS { all_nand2 all_low_power_nand2 }

}
CELL cell2 {

SWAP_CLASS { all_nand2 all_high_power_nand2 }
}
CELL cell3 {

SWAP_CLASS { all_low_power_nand2 }
}
CELL cell4 {

SWAP_CLASS { all_high_power_nand2 }
}

foo

bar

whatever

synthesis

datapath scan

my_tool

SWAP_CLASS
for cell1

SWAP_CLASS
for cell2

RESTRICT_CLASS
for cell1 RESTRICT_CLASS

for cell2

non-empty intersection
54 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
all_nand2 encompasses a set of logically equivalent cells.
all_high_power_nand2 encompasses a set of electrically equivalent cells.
all_low_power_nand2 encompasses another set of electrically equivalent cells.

The synthesis tool can swap cell1 with cell2. The layout tool can swap cell1 with cell3 and cell2
with cell4. Figure 9 depicts this scenario.

Figure 9—Illustration of SWAP_CLASS with inherited RESTRICT_CLASS

9.4.5 SCAN_TYPE annotation

A xxx annotation shall be defined using ALF language as shown in .

KEYWORD SCAN_TYPE = single_value_annotation {
CONTEXT = CELL;
VALUETYPE = identifier;
VALUES { muxscan clocked lssd control_0 control_1 }

}

Syntax 49— annotation

all_nand2
synthesis

layout

SWAP_CLASS
for cell1

SWAP_CLASS
for cell2

inherited RESTRICT_CLASS

non-empty intersection

all_low_power_nand2

all_high_power_nand2 layout

SWAP_CLASS
for cell4

SWAP_CLASS
for cell3

between cell2 and cell4
non-empty intersection
between cell1 and cell3

non-empty intersection
between cell1 and cell2
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 55

1

5

10

15

20

25

30

35

40

45

50

55
can take the values shown in Table 17.

See Section A.3 for examples.

9.4.6 SCAN_USAGE annotation

A xxx annotation shall be defined using ALF language as shown in .

can take the values shown in Table 18.

The SCAN_USAGE applies for a special cell which is designed to be the primary input, output or intermediate
stage of a scan chain. It also applies for macro blocks with connected scan chains in case there are particular
scan-ordering requirements.

9.4.7 BUFFERTYPE annotation

A xxx annotation shall be defined using ALF language as shown in .

Table 17—SCAN_TYPE annotations for a CELL object

Annotation string Description

muxscan A multiplexor for normal data and scan data.

clocked A special scan clock.

lssd Combination between flip-flop and latch with special clocking (level sen-
sitive scan design).

control_0 Combinational scan cell, controlling pin shall be 0 in scan mode.

control_1 Combinational scan cell, controlling pin shall be 1 in scan mode.

KEYWORD SCAN_USAGE = single_value_annotation {
CONTEXT = CELL;
VALUETYPE = identifier;
VALUES { input output hold }

}

Syntax 50— annotation

Table 18—SCAN_USAGE annotations for a CELL object

Annotation string Description

input Primary input in a chain of cells.

output Primary output in a chain of cells.

hold Holds intermediate value in the scan chain.
56 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
can take the values shown in Table 19.

9.4.8 DRIVERTYPE annotation

A xxx annotation shall be defined using ALF language as shown in .

can take the values shown in Table 20.

NOTE—DRIVERTYPE applies only for cells with BUFFERTYPE = input | output | inout.

KEYWORD BUFFERTYPE = single_value_annotation {
CONTEXT = CELL;
VALUETYPE = identifier;
VALUES { input output inout internal }
DEFAULT = internal;

}

Syntax 51— annotation

Table 19—BUFFERTYPE annotations for a CELL object

Annotation string Description

input Cell has at least one external (off-chip) input pin.

output Cell has at least one external (off-chip) output pin.

inout Cell has at least one external (off-chip) bidirectional pin.

internal Cell has only internal (on-chip) pins.

KEYWORD DRIVERTYPE = single_value_annotation {
CONTEXT = CELL;
VALUETYPE = identifier;
VALUES { predriver slotdriver both }

}

Syntax 52— annotation

Table 20—DRIVERTYPE annotations for a CELL object

Annotation string Description

predriver Cell is a predriver, i.e., the core part of an IO buffer.

slotdriver Cell is a slotdriver, i.e., the pad of an IO buffer with off-chip connection.

both Cell is both a predriver and a slot driver, i.e., a complete IO buffer.
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 57

1

5

10

15

20

25

30

35

40

45

50

55
9.4.9 PARALLEL_DRIVE annotation

A xxx annotation shall be defined using ALF language as shown in .

specifies the number of parallel drivers. This shall be greater than zero (0) ; the default is 1.

9.4.10 PLACEMENT_TYPE annotation

A xxx annotation shall be defined using ALF language as shown in .

The identifiers have the following definitions:

— pad: I/O pad, to be placed in the I/O rows
— core: regular macro, to be placed in the core rows
— block: hierarchical block with regular power structure
— ring: macro with built-in power structure
— connector: macro at the end of core rows connecting with power or ground

9.4.11 SITE reference annotation

A CELL can point to one or more legal placement SITEs.

Example

CELL my_cell {
SITE { my_site /* fill in other sites, if applicable */ }
/* fill in contents of cell definition */

}

9.5 PIN declaration

A pin shall be declared as a scalar pin or as a vector pin or a matrix pin, as shown in Syntax 55.

KEYWORD PARALLEL_DRIVE = single_value_annotation {
CONTEXT = CELL;
VALUETYPE = unsigned;
DEFAULT = 1;

}

Syntax 53— annotation

KEYWORD PLACEMENT_TYPE = single_value_annotation {
CONTEXT = CELL;
VALUETYPE = identifier;
VALUES { pad core ring block onnector }
DEFAULT = core;

}

Syntax 54— annotation
58 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
A pin shall represent a terminal of an electronic circuit for the purpose of exchanging information with the envi-
ronment of the electronic circuit. A constant value of information shall be called state. A time-dependent value
of information shall be called signal. A reference to a pin in general shall be established by the pin identifier.

A scalar pin may be associated with a general electrical signal. However, a vector pin or a matrix pin may only be
associated with digital signals. One element of a vector pin or of a matrix pin shall be associated with one bit of
information, i.e., a binary digital signal.

A vector-pin can be considered as a combination of scalar pins. A reference to a scalar or to a subvector, respec-
tively, within the vector-pin shall be established by the pin identifier followed by a single index or by a multi
index, respectively.

A matrix-pin can be considered as a combination of vector-pins. A reference to a vector or to a submatrix,
respectively, within the matrix-pin shall be established by the pin identifier followed by a single index or by a
multi index, respectively.

Within a matrix-pin declaration, the first multi index shall specify the range of scalars or bits, and the second
multi index shall specify the range of vectors. Support for direct reference of a scalar within a vector within a
matrix is not provided.

Example

PIN [5:8] myVectorPin ;
PIN [3:0] myMatrixPin [1:1000] ;

The pin variable myVectorPin[5] refers to the scalar associated with the MSB of myVectorPin.
The pin variable myVectorPin[8] refers to the scalar associated with the LSB of myVectorPin.
The pin variable myVectorPin[6:7] refers to a subvector within myVectorPin.
The pin variable myMatrixPin[500] refers to a vector within myMatrixPin.
The pin variable myMatrixPin[500:502] refers to 3 subsequent vectors within myMatrixPin.

pin ::=
scalar_pin | vector_pin | matrix_pin

scalar_pin ::=
PIN pin_identifier ;

| PIN pin_identifier { { scalar_pin_item } }
| scalar_pin_template_instantiation

vector_pin ::=
PIN multi_index pin_identifier ;

| PIN multi_index pin_identifier { { vector_pin_item } }
| vector_pin_template_instantiation

matrix_pin ::=
PIN first_multi_index pin_identifier second_multi_index ;

| PIN first_multi_index pin_identifier second_multi_index { { matrix_pin_item } }
| matrix_pin_template_instantiation

scalar_pin_item ::=
all_purpose_item

| port
| pull

vector_pin_item ::=
all_purpose_item

| range
matrix_pin_item ::=

vector_pin_item

Syntax 55—PIN declaration
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 59

1

5

10

15

20

25

30

35

40

45

50

55
Consider the following pin assignment:
myVectorPin=myMatrixPin[500];

This establishes the following exchange of information:
myVectorPin[5] receives information from element [3] of myMatrixPin[500].
myVectorPin[6] receives information from element [2] of myMatrixPin[500].
myVectorPin[7] receives information from element [1] of myMatrixPin[500].
myVectorPin[8] receives information from element [0] of myMatrixPin[500].

9.6 RANGE statement

A range statement shall be defined as shown in Syntax 56.

The range statement shall be used to specify a valid address space for elements of a vector- or matrix-pin.

If no range statement is specified, the valid address space is given by the following mathematical relationship:

where

a is an unsigned number representing the decimal equivalent of the bits within a vector- or matrix-pin,
b is the bitwidth of the vector- or matrix-pin,

and

MSB is the leftmost bit within the vector- or matrix-pin,
LSB is the rightmost bit within the vector or- matrix-pin,

in accordance with Section 7.7 on page 34.

The index values within a range statement shall be bound by the address space a, or else the range statement shall
not be considered valid.

Example

PIN [5:8] myVectorPin { RANGE { 3 : 13 } }

range ::=
RANGE { index_value : index_value }

Syntax 56—RANGE statement

b 1 LSB MSB–+ if LSB MSB>()
1 MSB LSB–+ if LSB MSB≤()

=

0 a 2b 1–≤ ≤

b 4=

0 a 15≤ ≤

3 a 13≤ ≤

bitwidth:

default address space:

address space defined by range statement:
60 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
9.6.1 PINGROUP declaration

A pingroup shall be declared as a simple pingroup or as a vector pingroup, as shown in Syntax 57.

A pingroup in general shall serve the purpose to specify items applicable to a combination of pins rather than to
each pin within the combination. The combination of pins shall be specified by the members statement.

A vector pingroup may combine only scalar pins. A vector pingroup may be used as a pin variable, in the same
capacity as a vector pin.

A simple pingroup may combine pins of any format, i.e., scalar pins, vector pins, and matrix pins. A simple pin-
group may not be used as a pin variable.

9.7 Annotations and attributes for a PIN

This section defines annotations and attribute values in the context of a pin declaration or a pingroup declaration.

9.7.1 VIEW annotation

A xxx annotation shall be defined using ALF language as shown in .

pingroup ::=
simple_pingroup | vector_pingroup

simple_pingroup ::=
PINGROUP pingroup_identifier { members { all_purpose_item } }

| simple_pingroup_template_instantiation
vector_pingroup ::=

| PINGROUP [index_value : index_value] pingroup_identifier
{ members { vector_pingroup_item } }

| vector_pingroup_template_instantiation
vector_pingroup_item ::=

all_purpose_item
| range

members ::=
MEMBERS { pin_identifier pin_identifier { pin_identifier } }

Syntax 57—PINGROUP declaration

KEYWORD VIEW = single_value_annotation {
CONTEXT { PIN PINGROUP }
VALUETYPE = identifier;
VALUES { functional physical both none }
DEFAULT = both

}

Syntax 58— annotation
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 61

1

5

10

15

20

25

30

35

40

45

50

55
annotates the view where the pin appears, which can take the values shown in Table 21.

9.7.2 PINTYPE annotation

A xxx annotation shall be defined using ALF language as shown in .

annotates the type of the pin, which can take the values shown in Table 22.

9.7.3 DIRECTION annotation

A xxx annotation shall be defined using ALF language as shown in .

Table 21—VIEW annotations for a PIN object

Annotation string Description

functional Pin appears in functional netlist.

physical Pin appears in physical netlist.

both (default) Pin appears in both functional and physical netlist.

none Pin does not appear in netlist.

KEYWORD PINTYPE = single_value_annotation {
CONTEXT = PIN;
VALUETYPE = identifier;
VALUES { digital analog supply }
DEFAULT = digital;

}

Syntax 59— annotation

Table 22—PINTYPE annotations for a PIN object

Annotation string Description

digital (default) Digital signal pin.

analog Analog signal pin.

supply Power supply or ground pin.

KEYWORD DIRECTION = single_value_annotation {
CONTEXT = PIN;
VALUETYPE = identifier;
VALUES { input output both none }

}

Syntax 60— annotation
62 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
annotates the direction of the pin, which can take the values shown in Table 23.

Table 24 gives a more detailed semantic interpretation for using DIRECTION in combination with PINTYPE.

For pins with PINTYPE=supply, the DIRECTION describes an electrical characteristic rather than a functional
characteristic, since there is no functional definition for DIRECTION. For pins with PINTYPE=digital or analog,
the functional definition of DIRECTION actually matches the electrical definition.

Examples

— The power and ground pins of regular cells shall have DIRECTION=input.
— A level converter cell shall have a power supply pin with DIRECTION=input and another power sup-

ply pin with DIRECTION=output.
— A level converter can have separate ground pins on the input and output side or a common ground pin

with DIRECTION=both.
— The power and ground pins of a feed through cell shall have DIRECTION=none.

9.7.4 SIGNALTYPE annotation

A xxx annotation shall be defined using ALF language as shown in .

SIGNALTYPE classifies the functionality of a pin. The currently defined values apply for pins with PIN-
TYPE=DIGITAL.

Table 23—DIRECTION annotations for a PIN object

Annotation string Description

input Input pin.

output Output pin.

both Bidirectional pin.

none No direction can be assigned to the pin.

Table 24—DIRECTION in combination with PINTYPE

DIRECTION PINTYPE=digital PINTYPE=analog PINTYPE=supply

input Pin receives a digital signal. Pin receives an analog signal. Pin is a power sink.

output Pin drives a digital signal. Pin drives an analog signal. Pin is a power source.

both Pin drives or receives a digital
signal, depending on the opera-
tion mode.

Pin drives or receives an analog
signal, depending on the opera-
tion mode.

Pin is both power sink and
source.

none Pin represents either an inter-
nal digital signal with no exter-
nal connection or a feed
through.

Pin represents either an inter-
nal analog signal with no exter-
nal connection or a feed
through.

Pin represents either an
internal power pin with no
external connection or a
feed through.
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 63

1

5

10

15

20

25

30

35

40

45

50

55
Conceptually, a pin with PINTYPE = ANALOG can also have a SIGNALTYPE annotation. However, no values
are currently defined.

annotates the type of the signal connected to the pin.

The fundamental SIGNALTYPE values are defined in Table 25.

“Flipflop”, “latch”, “multiplexor”, and “memory” can be standalone cells or embedded in larger cells. In the
former case, the celltype is flipflop, latch, multiplexor, and memory, respectively. In the latter case,
the celltype is block or core.

KEYWORD SIGNALTYPE = single_value_annotation {
CONTEXT = PIN;
VALUETYPE = identifier;
VALUES { to be reviewed }
DEFAULT = data;

}

Syntax 61— annotation

Table 25—Fundamental SIGNALTYPE annotations for a PIN object

Annotation string Description

data (default) General data signal, i.e., a signal that carries information to be trans-
mitted, received, or subjected to logic operations within the CELL.

address Address signal of a memory, i.e., an encoded signal, usually a bus or
part of a bus, driving an address decoder within the CELL.

control General control signal, i.e., an encoded signal that controls at least
two modes of operation of the CELL, eventually in conjunction with
other signals. The signal value is allowed to change during real-time
circuit operation.

select Select signal of a multiplexor, i.e., a decoded or encoded signal that
selects the data path of a multiplexor or de-multiplexor within the
CELL. Each selected signal has the same SIGNALTYPE.

enable General enable signal, i.e., a decoded signal which enables and dis-
ables a set of operational modes of the CELL, eventually in conjunc-
tion with other signals. The signal value is expected to change during
real-time circuit operation.

tie The signal needs to be tied to a fixed value statically in order to
define a fixed or programmable mode of operation of the CELL,
eventually in conjunction with other signals. The signal value is not
allowed to change during real-time circuit operation.

clear Clear signal of a flip-flop or latch, i.e., a signal that controls the stor-
age of the value 0 within the CELL.

set Set signal of a flip-flop or latch, i.e., a signal that controls the storage
of the value 1 within the CELL.

clock Clock signal of a flip-flop or latch, i.e., a timing-critical signal that
triggers data storage within the CELL.
64 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
Composite values for SIGNALTYPE shall be constructed using one or more prefixes in combination with certain
fundamental values, separated by the underscore (_) character, as shown in Table 26 — Table 30.

The scheme for this is shown in Figure 10.

Figure 10—Construction scheme for composite SIGNALTYPE values

Table 26—Composite SIGNALTYPE annotations based on DATA

Annotation string Description

scan_data Data signal for scan mode.

test_data Data signal for test mode.

bist_data Data signal in BIST mode.

Table 27—Composite SIGNALTYPE annotations based on ADDRESS

Annotation string Description

test_address Address signal for test mode.

bist_address Address signal for BIST mode.

data

address

clock

control

enableread

write

master

slave

out
test

scan

bist

load
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 65

1

5

10

15

20

25

30

35

40

45

50

55
Table 28—Composite SIGNALTYPE annotations based on CONTROL

Annotation string Description

load_control Control signal for switching between load
mode and normal mode.

scan_control Control signal for switching between scan
mode and normal mode.

test_control Control signal for switching between test
mode and normal mode.

bist_control Control signal for switching between BIST
mode and normal mode.

read_write_control Control signal for switching between read
and write operation.

test_read_write_control Control signal for switching between read
and write operation in test mode.

bist_read_write_control Control signal for switching between read
and write operation in BIST mode.

Table 29—Composite SIGNALTYPE annotations based on ENABLE

Annotation string Description

load_enable Signal enables load operation in a counter or a shift register.

out_enable Signal enables the output stage of an arbitrary cell.

scan_enable Signal enables scan mode of a flip-flop or latch only.

scan_out_enable Signal enables the output of a flip-flop or latch in scan mode only.

test_enable Signal enables test mode only.

bist_enable Signal enables BIST mode only.

test_out_enable Signal enables the output stage in test mode only.

bist_out_enable Signal enables the output stage in BIST mode only.

read_enable Signal enables the read operation of a memory.

write_enable Signal enables the write operation of a memory.

test_read_enable Signal enables the read operation in test mode only.

test_write_enable Signal enables the write operation in test mode only.

bist_read_enable Signal enables the read operation in BIST mode only.

bist_write_enable Signal enables the write operation in BIST mode only.
66 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
9.7.5 ACTION annotation

A xxx annotation shall be defined using ALF language as shown in .

Table 30—Composite SIGNALTYPE annotations based on CLOCK

Annotation string Description

scan_clock Signal is clock of a flip-flop or latch in scan mode.

master_clock Signal is master clock of a flip-flop or latch.

slave_clock Signal is slave clock of a flip-flop or latch.

scan_master_clock Signal is master clock of a flip-flop or latch in scan mode.

scan_slave_clock Signal is slave clock of a flip-flop or latch in scan mode.

read_clock Clock signal triggers the read operation in a synchronous memory.

write_clock Clock signal triggers the write operation in a synchronous memory.

read_write_clock Clock signal triggers both read and write operation in a synchronous mem-
ory.

test_clock Signal is clock in test mode.

test_read_clock Clock signal triggers the read operation in a synchronous memory in test
mode.

test_write_clock Clock signal triggers the write operation in a synchronous memory in test
mode.

test_read_write_clock Clock signal triggers both read and write operation in a synchronous mem-
ory in test mode.

bist_clock Signal is clock in BIST mode.

bist_read_clock Clock signal triggers the read operation in a synchronous memory in BIST
mode.

bist_write_clock Clock signal triggers the write operation in a synchronous memory in
BIST mode.

bist_read_write_clock Clock signal triggers both read and write operation in a synchronous mem-
ory in BIST mode.

KEYWORD ACTION = single_value_annotation {
CONTEXT = PIN;
VALUETYPE = identifier;
VALUES { asynchronous synchronous }

}

Syntax 62— annotation
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 67

1

5

10

15

20

25

30

35

40

45

50

55
annotates the action of the signal, which can take the values shown in Table 31.

The ACTION annotation applies only to pins with certain SIGNALTYPE values, as shown in Table 32. The rule
applies also to any composite SIGNALTYPE values based on the fundamental values.

9.7.6 POLARITY annotation

A xxx annotation shall be defined using ALF language as shown in .

annotates the polarity of the pin signal.

Table 31—ACTION annotations for a PIN object

Annotation string Description

asynchronous Signal acts in an asynchronous way, i.e., self-triggered.

synchronous Signal acts in a synchronous way, i.e., triggered by a signal with
SIGNALTYPE CLOCK or a composite SIGNALTYPE with postfix
_CLOCK.

Table 32—ACTION applicable in conjunction with fundamental SIGNALTYPE values

Fundamental SIGNALTYPE Applicable ACTION

data N/A

address N/A

control Synchronous or asynchronous.

select N/A

enable Synchronous or asynchronous.

tie N/A

clear Synchronous or asynchronous.

set Synchronous or asynchronous.

clock N/A, but the presence of SIGNALTYPE=clock conditions the
validity of ACTION=synchronous for other signals.

KEYWORD POLARITY = single_value_annotation {
CONTEXT = PIN;
VALUETYPE = identifier;
VALUES { high low rising_edge falling_edge double_edge }

}

Syntax 63— annotation
68 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
The polarity of an input pin (i.e., DIRECTION = input;) takes the values shown in Table 33.

The POLARITY annotation applies only to pins with certain SIGNALTYPE values, as shown in Table 34. The
rule applies also to any composite SIGNALTYPE values based on the fundamental values.

Signals with composite signaltypes mode_CLOCK can have a single polarity or mode-specific polarities.

Example

PIN rw {
SIGNALTYPE = READ_WRITE_CONTROL;
POLARITY { READ=high; WRITE=low; }

}
PIN rwc {

SIGNALTYPE = READ_WRITE_CLOCK;
POLARITY { READ=rising_edge; WRITE=falling_edge; }

}

Table 33—POLARITY annotations for a PIN

Annotation string Description

high Signal active high or to be driven high.

low Signal active low or to be driven low.

rising_edge Signal sensitive to rising edge.

falling_edge Signal sensitive to falling edge.

double_edge Signal sensitive to any edge.

Table 34—POLARITY applicable in conjunction with fundamental SIGNALTYPE values

Fundamental SIGNALTYPE Applicable POLARITY value

data N/A

address N/A

control Mode-specific high or low for composite signaltype.

select N/A

enable Mandatory high or low.

tie Optional high or low.

clear Mandatory high or low.

set Mandatory high or low.

clock Mandatory high, low, rising_edge, falling_edge, or
double_edge, can be mode-specific for composite signaltype.
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 69

1

5

10

15

20

25

30

35

40

45

50

55
9.7.7 DATATYPE annotation

A xxx annotation shall be defined using ALF language as shown in .

annotates the datatype of the pin, which can take the values shown in Table 35.

DATATYPE is only relevant for bus pins.

9.7.8 INITIAL_VALUE annotation

A xxx annotation shall be defined using ALF language as shown in .

shall be compatible with the buswidth and DATATYPE of the signal.

INITIAL_VALUE is used for a downstream behavioral simulation model, as far as the simulator (e.g., a
VITAL-compliant simulator) supports the notion of initial value.

9.7.9 SCAN_POSITION annotation

A xxx annotation shall be defined using ALF language as shown in .

annotates the position of the pin in scan chain, starting with 1. Value 0 (default) indicates that the PIN is not on
the scan chain. See A.3.1 and A.3.4 for examples.

9.7.10 STUCK annotation

A xxx annotation shall be defined using ALF language as shown in .

KEYWORD DATATYPE = single_value_annotation {
CONTEXT { PIN PINGROUP }
VALUETYPE = identifier;
VALUES { signed unsigned }

}

Syntax 64— annotation

Table 35—DATATYPE annotations for a PIN object

Annotation string Description

signed Result of arithmetic operation is signed 2’s complement.

unsigned Result of arithmetic operation is unsigned.

KEYWORD INITIAL_VALUE = single_value_annotation {
CONTEXT = CELL;
VALUETYPE = boolean_value;

}

Syntax 65— annotation
70 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
annotates the stuck-at fault model as shown in Table 36.

9.7.11 SUPPLYTYPE

A xxx annotation shall be defined using ALF language as shown in .

A PIN with PINTYPE = SUPPLY shall have a SUPPLYTYPE annotation, as shown in Syntax 69.

9.7.12 SIGNAL_CLASS

A xxx annotation shall be defined using ALF language as shown in .

The following new keyword for class reference shall be defined:

KEYWORD SCAN_POSITION = single_value_annotation {
CONTEXT = PIN;
VALUETYPE = unsigned;
DEFAULT = 0;

}

Syntax 66— annotation

KEYWORD STUCK = single_value_annotation {
CONTEXT = PIN;
VALUETYPE = identifier;
VALUES { stuck_at_0 stuck_at_1 both none }
DEFAULT = both;

}

Syntax 67— annotation

Table 36—STUCK annotations for a PIN object

Annotation string Description

stuck_at_0 Pin can have stuck-at-0 fault.

stuck_at_1 Pin can have stuck-at-1 fault.

both (default) Pin can have both stuck-at-0 and stuck-at-1 faults.

none Pin can not have stuck-at faults.

KEYWORD SUPPLYTYPE = annotation {
CONTEXT = PIN;
VALUETYPE = identifier;
VALUES { power ground reference }

}

Syntax 68— annotation
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 71

1

5

10

15

20

25

30

35

40

45

50

55
SIGNAL_CLASS
A PIN referring to the same SIGNAL_CLASS belong to the same set of pins related to specific data
transaction operations, such as read or write operations. This set of pins is commonly called a logical
port. For example, the ADDRESS, WRITE_ENABLE, and DATA pin of a logical port of a memory have
the same SIGNAL_CLASS.

However, the term PORT in ALF is used to define a physical port (see ???) rather than a logical port.

SIGNAL_CLASS applies to a PIN with PINTYPE=DIGITAL | ANALOG.
SIGNAL_CLASS is orthogonal to SIGNALTYPE.

Example

CLASS portA;
CLASS portB;
CELL my_memory {

PIN[1:4] addrA { DIRECTION = input;
SIGNALTYPE = address;
SIGNAL_CLASS = portA;

}
PIN[7:0] dataA { DIRECTION = output;

SIGNALTYPE = data;
SIGNAL_CLASS = portA;

}
PIN[1:4] addrB { DIRECTION = input;

SIGNALTYPE = address;
SIGNAL_CLASS = portB;

}
PIN[7:0] dataB { DIRECTION = input;

SIGNALTYPE = data;
SIGNAL_CLASS = portB;

}
PIN weB { DIRECTION = input;

SIGNALTYPE = write_enable;
SIGNAL_CLASS = portB;

}
}

supplytype_assignment ::=
SUPPLYTYPE = supplytype_identifier ;

supplytype_identifier ::=
power

| ground
| reference

Syntax 69—supply_type assignment

KEYWORD SIGNAL_CLASS = annotation {
CONTEXT { PIN PINGROUP }
VALUETYPE = identifier;

}

Syntax 70— annotation
72 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
NOTE—The combination of SIGNAL_CLASS and SIGNALTYPE identifies the port type. CLASS portA represents a read
port, since it consists of a PIN with SIGNALTYPE = address and a PIN with SIGNALTYPE = data and DIREC-
TION = output. CLASS portB represents a write port, since it consists of a PIN with SIGNALTYPE = address, a
PIN with SIGNALTYPE = data and DIRECTION = input, and a PIN with SIGNALTYPE = write_enable.

9.7.13 SUPPLY_CLASS

A xxx annotation shall be defined using ALF language as shown in .

The following new keyword for class reference shall be defined:

SUPPLY_CLASS
a PIN referring to the same SUPPLY_CLASS belongs to the same power terminal.

For example, digital VDD and digital VSS have the same SUPPLY_CLASS.

SUPPLY_CLASS applies to not only to a PIN with PINTYPE=SUPPLY, but also to a PIN with PIN-
TYPE=DIGITAL or PINTYPE=ANALOG in order to indicate the related set of power supply pins. For
instance there can be signal pins related to digital power supply and others related to analog power sup-
ply within the same cell.

SUPPLY_CLASS is orthogonal to SUPPLYTYPE.

Example

CELL my_adc {
CLASS dig;
CLASS ana;
PIN vdd_dig { PINTYPE=supply; SUPPLYTYPE=power; SUPPLY_CLASS=dig; }
PIN vss_dig { PINTYPE=supply; SUPPLYTYPE=ground; SUPPLY_CLASS=dig; }
PIN vdd_ana { PINTYPE=supply; SUPPLYTYPE=power; SUPPLY_CLASS=ana; }
PIN vss_ana { PINTYPE=supply; SUPPLYTYPE=ground; SUPPLY_CLASS=ana; }
PIN din { PINTYPE=analog; SUPPLY_CLASS=ana; }
PIN[7:0] dout { PINTYPE=digital; SUPPLY_CLASS=dig; }

}

9.7.14 DRIVETYPE annotation

A xxx annotation shall be defined using ALF language as shown in .

KEYWORD SUPPLY_CLASS = annotation {
CONTEXT { PIN PINGROUP CLASS }
VALUETYPE = identifier;

}

Syntax 71— annotation
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 73

1

5

10

15

20

25

30

35

40

45

50

55
annotates the drive type for the pin, which can take the values shown in Table 37.

9.7.15 SCOPE annotation

A xxx annotation shall be defined using ALF language as shown in .

KEYWORD DRIVETYPE = single_value_annotation {
CONTEXT = PIN;
VALUETYPE = identifier;
VALUES {

cmos nmos pmos cmos_pass nmos_pass pmos_pass
ttl open_drain open_source

}
DEFAULT = cmos;

}

Syntax 72— annotation

Table 37—DRIVETYPE annotations for a PIN object

Annotation string Description

cmos (default) Standard cmos signal.

nmos Nmos or pseudo nmos signal.

pmos Pmos or pseudo pmos signal.

nmos_pass Nmos passgate signal.

pmos_pass Pmos passgate signal.

cmos_pass Cmos passgate signal, i.e., the full transmission gate.

ttl TTL signal.

open_drain Open drain signal.

open_source Open source signal.

KEYWORD SCOPE = single_value_annotation {
CONTEXT = PIN;
VALUETYPE = identifier;
VALUES { behavior measure both none }
DEFAULT = both;

}

Syntax 73— annotation
74 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
annotates the modeling scope of a pin, which can take the values shown in Table 38.

9.7.16 ATTRIBUTE for PIN objects

The attributes shown in Table 39 can be used within a PIN object.

The attributes shown in Table 40 are only applicable for pins within cells with CELLTYPE=memory and certain
values of SIGNALTYPE.

Table 38—SCOPE annotations for a PIN object

Annotation string Description

behavior The pin is used for modeling functional behavior and events on the
pin are monitored for vector expressions in BEHAVIOR statements.

measure Measurements related to the pin can be described, e.g., timing or
power characterization, and events on the pin are monitored for vec-
tor expressions in VECTOR statements.

both (default) The pin is used for functional behavior as well as for characterization
measurements.

none No model; only the pin exists.

Table 39—Attributes within a PIN object

Attribute item Description

SCHMITT Schmitt trigger signal.

TRISTATE Tristate signal.

XTAL Crystal/oscillator signal.

PAD Pad going off-chip.

Table 40—Attributes for pins of a memory

Attribute item SIGNALTYPE Description

ROW_ADDRESS_STROBE clock Samples the row address of the memory.

COLUMN_ADDRESS_STROBE clock Samples the column address of the memory.

ROW address Selects an addressable row of the memory.

COLUMN address Selects an addressable column of the memory.

BANK address Selects an addressable bank of the memory.
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 75

1

5

10

15

20

25

30

35

40

45

50

55
The attributes shown in Table 41 are only applicable for pins representing double-rail signals.

The following restrictions apply for double-rail signals:

— The PINTYPE, SIGNALTYPE, and DIRECTION of both pins shall be the same.
— One PIN shall have the attribute INVERTED, the other NON_INVERTED.
— Either both pins or no pins shall have the attribute DIFFERENTIAL.
— POLARITY, if applicable, shall be complementary as follows:

HIGH is paired with LOW
RISING_EDGE is paired with FALLING_EDGE
DOUBLE_EDGE is paired with DOUBLE_EDGE

9.7.17 Definitions of pin ATTRIBUTE values for memory BIST

The special pin ATTRIBUTE values shown in Table 42 shall be defined for memory BIST.

These attributes apply to the pins of the BIST wrapper around the memory rather than to the pins of the memory
itself.

The BEHAVIOR statement within TEST shall involve the variables declared as PINs with ATTRIBUTE
ROW_INDEX, COLUMN_INDEX, BANK_INDEX, DATA_INDEX, or DATA_VALUE.

Table 41—Attributes for pins representing double-rail signals

Attribute item Description

INVERTED Represents the inverted value within a pair of signals car-
rying complementary values.

NON_INVERTED Represents the non-inverted value within a pair of signals
carrying complementary values.

DIFFERENTIAL Signal is part of a differential pair, i.e., both the inverted
and non-inverted values are always required for physical
implementation.

Table 42—PIN attributes for memory BIST

Attribute item Description

ROW_INDEX Pin is a bus with a contiguous range of values, indicating
a physical row of a memory.

COLUMN_INDEX Pin is a bus with a contiguous range of values, indicating
a physical column of a memory.

BANK_INDEX Pin is a bus with a contiguous range of values, indicating
a physical bank of a memory.

DATA_INDEX Pin is a bus with a contiguous range of values, indicating
the bit position within a data bus of a memory.

DATA_VALUE Pin represents a value stored in a physical memory loca-
tion.
76 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
9.7.18 CONNECT_CLASS annotation

A xxx annotation shall be defined using ALF language as shown in .

annotates a declared class object for connectivity determination.

Connectivity rules involving those classes shall apply for the pin.

9.7.19 SIDE annotation

A xxx annotation shall be defined using ALF language as shown in .

which can take the values shown in Table 43.

9.7.20 ROW and COLUMN annotation

A xxx annotation shall be defined using ALF language as shown in .

The following annotation shall be used for a pin in order to indicate the location of the pin within a placement
row or column, as shown in Syntax 77.

where row_assignment applies for pins with SIDE = right | left and column_assignment
applies for pins with SIDE = top | bottom.

KEYWORD CONNECT_CLASS = single_value_annotation {
CONTEXT = PIN;
VALUETYPE = identifier;

}

Syntax 74— annotation

KEYWORD SIDE = single_value_annotation {
CONTEXT { PIN PINGROUP }
VALUETYPE = identifier;
VALUES { left right top bottom }

}

Syntax 75— annotation

Table 43—SIDE annotations for a PIN object

Annotation string Description

left Pin is on the left side.

right Pin is on the right side.

top Pin is at the top.

bottom Pin is at the bottom.
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 77

1

5

10

15

20

25

30

35

40

45

50

55
For bus pins, row_assignment and column_assignment shall have the form of
multi_value_assignments, as shown in Syntax 78.

9.7.21 ROUTING_TYPE annotation

A xxx annotation shall be defined using ALF language as shown in .

A PIN can contain the ROUTING_TYPE statement shown in Syntax 80.

KEYWORD ROW = annotation {
CONTEXT { PIN PINGROUP }
VALUETYPE = unsigned;

}
KEYWORD COLUMN = annotation {

CONTEXT { PIN PINGROUP }
VALUETYPE = unsigned;

}

Syntax 76— annotation

row_assignment ::=
ROW = unsigned ;

column_assignment ::=
COLUMN = unsigned ;

Syntax 77—Pin placement annotation

row_multi_value_assignment ::=
ROW { unsigned { unsigned } } ;

column_multi_value_assignment ::=
COLUMN { unsigned { unsigned } } ;

Syntax 78—Row and column multivalue assignments

KEYWORD ROUTING_TYPE = single_value_annotation {
CONTEXT = PIN;
VALUETYPE = identifier;
VALUES { regular abutment ring feedthrough }
DEFAULT = regular;

}

Syntax 79— annotation

routing_type_assignment ::=
ROUTING_TYPE = routing_type_identifier ;

routing_type_identifier ::=
regular

| abutment
| ring
| feedthrough

Syntax 80—routing_type assignment
78 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
The identifiers have the following definitions:

— regular: connection by regular routing
— abutment: connection by abutment, no routing
— ring: pin forms a ring around the block with connection allowed to any point of the ring
— feedthrough: both ends of the pin align and can be used for connection

9.8 NON_SCAN_CELL statement

A non-scan cell statement shall be defined as shown in Syntax 81.

Example

9.9 PULL statement

A pull statement shall be defined as shown in .

annotates the pull type for the pin, which can take the values shown in Table 44.

non_scan_cell ::=
NON_SCAN_CELL { unnamed_cell_instantiation { unnamed_cell_instantiation } }

| NON_SCAN_CELL = unnamed_cell_instantiation
| non_scan_cell_template_instantiation

unnamed_cell_instantiation ::=
cell_identifier { pin_value { pin_value } }

| cell_identifier { pin_assignment { pin_assignment } }
pin_value ::=

pin_variable | boolean_value

Syntax 81—NON_SCAN_CELL statement

pull ::=:
PULL = pull_value ;

| PULL = pull_value { { pull_item } }
| pull_template_instantiation

pull_value ::=
up | down | both | none

pull_item ::=
voltage_arithmetic_model

| resistance_arithmetic_model

Syntax 82—PULL statement

Table 44—PULL annotations for a PIN object

Annotation string Description

up Pullup device connected to pin.
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 79

1

5

10

15

20

25

30

35

40

45

50

55
9.10 WIRE statement and related statements

Interconnect parasitics and analysis

This section defines interconnect parasitics and analysis.

9.10.1 WIRE statement

A WIRE statement XXX, as shown in Syntax 83.

9.10.1.1 Principles of the WIRE statement

Parasitic descriptions shall be in the context of a WIRE statement. The following fundamental modeling styles
are supported.

— Statistical wireload models
— Boundary parasitics

Statistical wireload models as well as interconnect analysis calculation models can be used within the context of
a LIBRARY, SUBLIBRARY, or CELL statement. The latter applies only for cells with CELLTYPE=block, i.e.,
hierarchical cells. Boundary parasitics apply exclusively for hierarchical cells. Statistical wireload models can be
mixed with boundary parasitics within the same WIRE statement.

Interconnect analysis models shall also be defined within a WIRE statement. However, they shall not be mixed
with statistical wireload models or boundary parasitic descriptions.

The purpose of interconnect analysis is to calculate electrical quantities such as DELAY, SLEWRATE, and noise
VOLTAGE in the context of a netlist consisting of electrical components, such as CAPACITANCE, RESIS-
TANCE, and INDUCTANCE.

As opposed to boundary parasitics, where the components are connected to physical nodes and pins of a cell, the
components represent an abstract network targeted for analysis. The interconnect analysis model specifies a

down Pulldown device connected to pin.

both Pullup and pulldown device connected to pin.

none (default) No pull device.

wire ::=
WIRE wire_identifier { wire_items }

| WIRE wire_identifier ;
| wire_template_instantiation

wire_items ::=
wire_item { wire_item }

wire_item ::=
all_purpose_item

| node

Syntax 83—WIRE statement

Table 44—PULL annotations for a PIN object (Continued)

Annotation string Description
80 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
directive for reducing the parasitic extraction/delay calculation tool to an arbitrary network. In addition, the
model specifies the calculation models for delay, noise, etc. in the context of the reduced network.

9.10.1.2 Statistical wireload models

A statistical wireload model is a collection of arithmetic models for estimated the electrical quantities CAPACI-
TANCE, RESISTANCE, and INDUCTANCE, representing the interconnect load and estimated AREA and SIZE
of the interconnect nets.

These arithmetic models shall have no PIN annotation. Only environmental quantities such as PROCESS,
DERATE_CASE, and TEMPERATURE shall be allowed as arguments in the HEADER.

In addition, the quantities AREA, SIZE, FANOUT, FANIN, and CONNECTIONS are allowed as arguments in the
HEADER.

FANOUT and FANIN represent the number of receiver pins and driver pins, respectively, connected to the net.
CONNECTIONS is the total number of pins connected to the net. CONNECTIONS equals to the sum of FANOUT
and FANIN.

AREA represents a physically measurable area of an object, whereas SIZE represents an abstract symbolic quan-
tity or cost function for area. When AREA or SIZE is used as argument within the HEADER, it shall represent the
total area or size, respectively, allocated for place and route of the block for which the wireload model applies.
An arithmetic model given for AREA or SIZE itself shall represent the estimated or actual area or size, respec-
tively, of the object in the context of which the model appears. CELL and WIRE are applicable objects for AREA
or SIZE models.

In order to convert SIZE to AREA (analogous to converting DRIVE_STRENGTH to RESISTANCE; see Section
8.8.1), an arithmetic model for SIZE with AREA as an argument can be used outside the WIRE statement. Arith-
metic models for SIZE inside the WIRE statement shall be interpreted as a calculation model rather than a con-
version model.

The total area or size of a block shall be larger or equal to the area or size, respectively, of all objects within the
block, i.e., cells and wires.

NOTE—The area or size of a block is design-specific data, whereas the area or size of cells and wires is given in the library.

Example

LIBRARY my_library {
WIRE my_wlm {

CAPACITANCE {
HEADER {

CONNECTIONS { TABLE { 2 3 4 5 10 20 } }
AREA { TABLE { 1000 10000 100000 } }

}
TABLE {

0.03 0.06 0.08 0.10 0.15 0.25
0.05 0.10 0.15 0.18 0.25 0.35
0.10 0.18 0.25 0.32 0.50 0.65

}
}
AREA {

HEADER {
CONNECTIONS { TABLE { 2 3 4 5 10 20 } }
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 81

1

5

10

15

20

25

30

35

40

45

50

55
AREA { TABLE { 1000 10000 100000 } }
}
TABLE {

0.3 0.6 0.8 1.0 1.5 2.5
0.5 1.0 1.5 1.8 2.5 3.5
1.0 1.8 2.5 3.2 5.0 6.5

}
}

}
CELL my_cell {

AREA = 1.5;
PIN my_input { DIRECTION = input; CAPACITANCE = 0.1; }
PIN my_output { DIRECTION = output; CAPACITANCE = 0.0; }

}
}

A net routed in a block of AREA=10000, driven by an instance of my_cell connecting to five receivers (i.e.,
CONNECTIONS=5), each of which is an instance of my_cell, shall have an estimated capacitance of
0.18+4*0.1 = 0.58 and wire area of 1.8. The five cell instances together shall have an area of 7.5.

NOTE—CAPACITANCE, RESISTANCE, and AREA can each be independent arithmetic models within the WIRE statement.
No multiplication factor between area and capacitance orn between area and resistance is assumed.

9.10.1.3 Boundary parasitics

Boundary parasitics for a CELL can be given within a WIRE statement in the context of the CELL. The parasitics
shall be identified by arithmetic models for CAPACITANCE, RESISTANCE, and INDUCTANCE containing a
NODE annotation. The syntax is as shown in Syntax 84.

where node_identifier is one of the following:

— a simple identifier, referring to a declared PIN of the CELL.
— a hierarchical_identifier, referring to a declared PORT of a PIN of the CELL (see 9.10.4)
— a simple identifier, referring to a declared NODE of the WIRE (see Section 8.15.4)
— a simple identifier, not referring to a declared object.

This can be used for connectivity inside the WIRE only.

The two_node_multi_value_assignment applies for capacitance, resistance, and self-inductance.
These components imply the following relationship between voltage and current across the nodes:

two_node_multi_value_assignment ::=
NODE { node_identifier node_identifier }

four_node_multi_value_assignment ::=
NODE { node_identifier node_identifier node_identifier node_identifier }

Syntax 84—Multinode multivalue assignment

VOLTAGE(node1, node2) RESISTANCE(node1, node2) CURRENT(node1, node2)⋅=

CURRENT(node1, node2) CAPACITANCE(node1, node2)
td

d
VOLTAGE(node1, node2)⋅=

VOLTAGE(node1, node2) INDUCTANCE(node1, node2)
td

d
CURRENT(node1, node2)⋅=
82 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
The four_node_multi_value_assignment applies for mutual inductance. This component implies the
following relationship between voltage and current across the nodes:

NOTE—Both PIN assignments (e.g., PIN=A;) and NODE assignments (e.g., NODE { A B }) can refer to PINs or PORTs.
The fundamental semantic difference between a PIN assignment and a NODE assignment is the PIN assignment within an
object defines the object is applied or measured at the PIN or PORT. (e.g., DELAY and SLEWRATE); the NODE assignment
within an object defines the object is fundamentally connected with the PIN or PORT in the same way an object inside a PIN
is also fundamentally connected with the PIN. Therefore, the CAPACITANCE with NODE assignment is a more detailed way
of describing a CAPACITANCE of a PIN, whereas a CAPACITANCE with PIN assignment describes a load capacitance,
which is applied externally to the pin.

A CELL can contain a WIRE statement describing boundary parasitics as well as PIN statements containing
arithmetic models for CAPACITANCE, RESISTANCE, or INDUCTANCE. In this case the latter shall be consid-
ered as a reduced form of the former. An analysis tool shall either use the set of components inside the PIN or
inside the WIRE, but not a combination of both.

Example

CELL my_cell {
PIN A { PINTYPE = digital; CAPACITANCE = 4.8; RESISTANCE = 37.9;

PORT p1 { VIEW = physical; } // see 9.10
PORT p2 { VIEW = none; } // see 9.10

}
PIN B { PINTYPE = digital; CAPACITANCE = 2.6; }
PIN gnd { PINTYPE = supply; SUPPLYTYPE = ground; }
WIRE my_boundary_parasitics {

CAPACITANCE = 1.3 { NODE { A.p1 gnd } }
CAPACITANCE = 2.8 { NODE { A.p2 gnd } }
RESISTANCE = 65 { NODE { A.p1 A.p2 } }
CAPACITANCE = 0.7 { NODE { A.p1 B } }
CAPACITANCE = 1.9 { NODE { B gnd } }

}
}

This example corresponds to the netlist shown in Figure 11.

VOLTAGE(node1, node2) INDUCTANCE(node1, node2, node3, node4)
td

d
CURRENT(node3, node4)⋅=

A.p1 A.p2

B

1.9

0.7 1.3 2.8

65

B

A 37.9 = 65 * 2.8 / 4.8

4.8 = 0.7 + 1.3 + 2.8

2.6 = 0.7 + 1.9

distributed parasitics in WIRE lumped parasitics in PIN
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 83

1

5

10

15

20

25

30

35

40

45

50

55
Figure 11—Example of boundary parasitic description

The distributed parasitics in the WIRE statement can be reduced to the lumped parasitics in the PIN statement.

9.10.1.4 Interconnect delay and noise calculation

Calculation models for DELAY and SLEWRATE can be described in the context of a VECTOR inside a WIRE. The
PIN assignments in these models shall refer to pre-declared NODEs inside the WIRE.

Example

WIRE my_interconnect_model {
/* node declarations */
/* electrical component declarations */
VECTOR ((01 n0 ~> 01 n5) | (10 n0 ~> 10 n5)) {

/* DELAY model */
/* SLEWRATE model */

}
}

The pre-declared electrical components which are part of the network can be used within an EQUATION without
being re-declared in the HEADER of the model.

Example

DELAY {
FROM { PIN = n0; } TO { PIN = n5; }
EQUATION {

R1*(C1+C2+C3+C4+C5) + R2*(C2+C3+C4+C5)
+ R3*(C3+C4+C5) + R4*(C4+C5) + R5*C5

}
}

External components or stimuli which are not part of the network shall be declared in the HEADER. Also, all
arguments for TABLE-based models shall be in the HEADER. To avoid re-declaration of pre-declared compo-
nents, an EQUATION shall also be used for those arguments in the HEADER which refer to pre-declared compo-
nents.

Example

SLEWRATE {
PIN = n5;
HEADER {

SLEWRATE { PIN = n0; TABLE {/* numbers */} }
RESISTANCE { EQUATION { R1+R2+R3+R4+R5 } TABLE {/* numbers */} }
CAPACITANCE { EQUATION { C1+C2+C3+C4+C5 } TABLE {/* numbers */} }

}
TABLE { /* numbers */ }

}

In order to model crosstalk delay and noise, at least two driver and receiver nodes are required. The symbolic
state * (see 5.4.13) shall be used to indicate the signal subjected to noise.

Example
84 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
WIRE interconnect_model_with_coupling {
NODE aggressor_source { NODETYPE = driver; }
NODE victim_source { NODETYPE = driver; }
NODE aggressor_sink { NODETYPE = receiver; }
NODE victim_sink { NODETYPE = receiver; }
NODE vdd { NODETYPE = power; }
NODE gnd { NODETYPE = ground; }
CAPACITANCE cc { NODE {aggressor_sink victim_sink}}
CAPACITANCE cv { NODE {victim_sink gnd }}
RESISTANCE rv { NODE {victim_source victim_sink}}
VECTOR (01 aggressor_sink -> ?* victim_sink -> *? victim_sink) {

/* xtalk noise model */
}
VECTOR (

(01 aggressor_source <&> 01 victim_source)
-> 01 aggressor_sink -> 01 victim_sink

) {
/* xtalk DELAY model */
}

}

Example for noise model

VOLTAGE {
PIN = victim_sink;
MEASUREMENT = peak;
CALCULATION = incremental;
HEADER {

SLEWRATE tra { PIN = aggressor_sink; }
VOLTAGE va { NODE {vdd gnd} }

}
EQUATION { (1-EXP(-tra/(rv*cv)))*va*rv*cc/tra }

}
}

Example for delay model

DELAY {
FROM { PIN = victim_source; } TO { PIN = victim_sink; }
CALCULATION = incremental;
HEADER {

SLEWRATE tra { PIN = aggressor_sink; }
SLEWRATE trv { PIN = victim_source; }

}
EQUATION { (1-EXP(-tra/(rv*cv)))*rv*cc*trv/tra }

}

The VOLTAGE model applies for a rising aggressor signal while the victim signal is stable. The DELAY model
applies for rising victim signal simultaneous with or followed by a rising aggressor signal at the coupling point.
The VECTOR implicitly defines the time window of interaction between aggressor and victim; interaction occurs
only if the aggressor signal at the coupling point intervenes during the propagation of the victim signal from its
source to the coupling point. Both VOLTAGE and DELAY represent incremental numbers.
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 85

1

5

10

15

20

25

30

35

40

45

50

55
9.10.1.5 SELECT_CLASS annotation for WIRE statement

A sophisticated tool can support more than one interconnect model. Each calculation model can have its “netlist”
with the appropriate validity range of the RC components. For instance, a lumped model can be used for short
nets and a distributed model can be used for longer nets. Also, models with different accuracy for the same net
can be defined. For instance, the lumped model can be used for estimation purpose and the distributed model for
signoff.

For this purpose, classes can be defined to select a set of models. The selection shall be defined by the user, in a
similar way as a user can select wireload models for pre-layout parasitic estimation. The selected class shall be
indicated by the SELECT_CLASS annotation within the WIRE statement.

Example

LIBRARY my_library {
CLASS estimation;
CLASS verification;
WIRE rough_model_for_short_nets {

SELECT_CLASS = estimation; /* etc.*/
}
WIRE detailed_model_for_short_nets {

SELECT_CLASS = verification; /* etc.*/
}
WIRE rough_model_for_long_nets {

SELECT_CLASS = estimation; /* etc.*/
}
WIRE detailed_model_for_long_nets {

SELECT_CLASS = verification; /* etc.*/
}

}

9.10.2 NODE statement

A NODE statement XXX, as shown in Syntax 85.

The nodes used for interconnect analysis shall be declared within the WIRE statement, using the following syn-
tax.

node ::=

NODE node_identifier { all_purpose_items }

The NODETYPE annotation and the NODE_CLASS annotation also specifically apply to a NODE.

node ::=
NODE node_identifier { node_items }

| NODE node_identifier ;
| node_template_instantiation

node_items ::=
node_item { node_item }

node_item ::=
all_purpose_item

Syntax 85—NODE statement
86 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
nodetype_annotation ::=

NODETYPE = nodetype_identifier ;

nodetype_identifier ::=

ground
| power
| source
| sink
| driver
| receiver

— A driver node is the interface between a cell output pin and interconnect
— A receiver node is the interface between interconnect and a cell input pin
— A source node is a virtual start point of signal propagation; it can be collapsed with a driver node
— A sink node is a virtual end point of signal propagation; it can be collapsed with a receiver node
— A power node provides the current for rising signals at the source/driver side and a reference for logic

high signals at the sink/receiver side
— A ground node provides the current for falling signals at the source/driver side and a reference for logic

low signals at the sink/receiver side

The arithmetic models for electrical components which are part of the network shall have names and NODE anno-
tations, referring either to the pre-declared nodes or to internal nodes which need not be declared.

Example

WIRE my_interconnect_model {
NODE n0 { NODETYPE = source; }
NODE n2 { NODETYPE = driver; }
NODE n4 { NODETYPE = receiver; }
NODE n5 { NODETYPE = sink; }
NODE vdd { NODETYPE = power; }
NODE vss { NODETYPE = ground; }
RESISTANCE R1 { NODE { n0 n1 } }
RESISTANCE R2 { NODE { n1 n2 } }
RESISTANCE R3 { NODE { n2 n3 } }
RESISTANCE R4 { NODE { n3 n4 } }
RESISTANCE R5 { NODE { n4 n5 } }
CAPACITANCE C1 { NODE { n1 vss } }
CAPACITANCE C2 { NODE { n2 vss } }
CAPACITANCE C3 { NODE { n3 vss } }
CAPACITANCE C4 { NODE { n4 vss } }
CAPACITANCE C5 { NODE { n5 vss } }

}

This example is illustrated in Figure 12.
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 87

1

5

10

15

20

25

30

35

40

45

50

55
Figure 12—Example for interconnect description

The NODE_CLASS annotation is optional and orthogonal to the NODETYPE annotation.

node_class_annotation ::=

NODE_CLASS = node_class_identifier ;

The NODE_CLASS annotation shall refer to a pre-declared CLASS within the WIRE statement to indicate which
node belongs to which device in the case of separate power supplies.

Example

WIRE my_interconnect_model {
CLASS driver_cell;
CLASS receiver_cell;
NODE n0 { NODETYPE = source; NODE_CLASS = driver_cell; }
NODE n2 { NODETYPE = driver; NODE_CLASS = driver_cell; }
NODE n4 { NODETYPE = receiver; NODE_CLASS = receiver_cell; }
NODE n5 { NODETYPE = sink; NODE_CLASS = receiver_cell; }
NODE vdd1 { NODETYPE = power; NODE_CLASS = driver_cell; }
NODE vss1 { NODETYPE = ground; NODE_CLASS = driver_cell; }
NODE vdd2 { NODETYPE = power; NODE_CLASS = receiver_cell; }
NODE vss2 { NODETYPE = ground; NODE_CLASS = receiver_cell; }

}

If NODE_CLASS is not specified, the nodes with NODETYPE=power|ground are supposed to be global. The
DC-connected nodes with NODETYPE=driver|source and NODETYPE=receiver| sink are supposed
to belong to the same device.

9.11 VECTOR declaration

A VECTOR statement XXX, as shown in Syntax 86.

power

ground ground

power

driver receiversource sink

n0
n1 n2 n3 n4 n5

R1 R2 R3 R4 R5

C5C4C3C2C1

driver_cell receiver_cell
88 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
9.12 Annotations in context of VECTOR declaration

9.12.1 PURPOSE annotation

A xxx annotation shall be defined using ALF language as shown in .

A CLASS is a generic object which can be referenced inside another object. An object referencing a class inherits
all children object of that class. In addition to this general reference, the usage of the keyword CLASS in con-
junction with a predefined prefix (e.g., CONNECT_CLASS, SWAP_CLASS, RESTRICT_CLASS,
EXISTENCE_CLASS, or CHARACTERIZATION_CLASS) also carries a specific semantic meaning in the con-
text of its usage. Note the keyword prefix_CLASS is used for referencing a class, whereas the definition of the
class always uses the keyword CLASS. Thus a class can have multiple purposes. With the growing number of
usage models of the class concept, it is useful to include the purpose definition in the class itself in order to make
it easier for specific tools to identify the classes of relevance for that tool.

A CLASS object can contain the PURPOSE annotation, which can take one or multiple values. A VECTOR enti-
tled to inherit the PURPOSE annotation from the CLASS can also contain the PURPOSE annotation, as shown in
Syntax 88.

9.12.2 OPERATION annotation

A xxx annotation shall be defined using ALF language as shown in .

vector ::=
VECTOR control_expression { vector_items }

| VECTOR control_expression ;
| vector_template_instantiation

vector_items ::=
vector_item { vector_item }

vector_item ::=
all_purpose_item

| illegal

Syntax 86—VECTOR statement

KEYWORD = annotation {
CONTEXT = VECTOR;
VALUETYPE = ;
VALUES { }
DEFAULT = ;

}

Syntax 87— annotation

vector_purpose_assignment ::=
PURPOSE { purpose_identifier { purpose_identifier } }

vector_purpose_identifier :: =
bist

| test
| timing
| power
| integrity

Syntax 88—PURPOSE annotation
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 89

1

5

10

15

20

25

30

35

40

45

50

55
The OPERATION statement inside a VECTOR shall be used to indicate the combined definition of signal values
or signal changes for certain operations which are not entirely controlled by a single signal.

operation_assignment ::=

OPERATION = operation_identifier ;

An OPERATION within the context of a VECTOR indicates certain a function of a cell, such as a memory write,
or change to some state, such as test mode. Many functions are not controlled by a single pin and are therefore
not able to be defined by the use of SIGNALTYPE alone. The VECTOR shall describe the complete operation,
including the sequence of events on input and expected output signals, such that one operation can be followed
seamlessly by the next.

The following values shall be predefined:

operation_identifier ::=

read
| write
| read_modify_write
| write_through
| start
| end
| refresh
| load
| iddq

Their definitions are:

— read: read operation at one address
— write: write operation at one address
— read_modify_write: read followed by write of different value at same address
— start: first operation required in a particular mode
— end: last operation required in a particular mode
— refresh: operation required to maintain the contents of the memory without modifying it
— load: operation for loading control registers
— iddq: operation for supply current measurements in quiescent state

With exception of iddq, all values apply for only cells with CELLTYPE=memory.

The EXISTENCE_CLASS (see 9.12.5) within the context of a VECTOR shall be used to identify which opera-
tions can be combined in the same mode. OPERATION is orthogonal to EXISTENCE_CLASS. The
EXISTENCE_CLASS statement is only necessary, if there is more than one mode of operation.

KEYWORD = annotation {
CONTEXT = VECTOR;
VALUETYPE = ;
VALUES { }
DEFAULT = ;

}

Syntax 89— annotation
90 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
Example 1

CLASS normal_mode { PURPOSE = test; }
CLASS fast_page_mode { PURPOSE = test; }
VECTOR (! WE && (

?! addr -> 01 RAS -> 10 RAS ->
?! addr -> 01 CAS -> X? dout -> 10 CAS -> ?X dout

)) {
OPERATION = read; EXISTENCE_CLASS = normal_mode;

}
VECTOR (WE && (

?! addr -> 01 RAS -> 10 RAS ->
?! addr -> ?? din -> 01 CAS -> 10 CAS

)) {
OPERATION = write; EXISTENCE_CLASS = normal_mode;

}
VECTOR (! WE && (?! addr -> 01 CAS -> X? dout -> 10 CAS -> ?X dout)) {

OPERATION = read; EXISTENCE_CLASS = fast_page_mode;
}
VECTOR (WE && (?! addr -> ?? din -> 01 CAS -> 10 CAS)) {

OPERATION = write; EXISTENCE_CLASS = fast_page_mode;
}
VECTOR (?! addr -> 01 RAS -> 10 RAS) {

OPERATION = start; EXISTENCE_CLASS = fast_page_mode;
}

NOTE—The complete description of a “read” operation also contains the behavior after the “read” is disabled.

Example 2

VECTOR (01 read_enb -> X? dout -> 10 read_enb -> ?X dout) {
OPERATION = read; // output goes to X in read-off

}
VECTOR (01 read_enb -> ?? dout -> 10 read_enb -> ?- dout) {

OPERATION = read; // output holds is value in read-off
}

9.12.3 LABEL annotation

A xxx annotation shall be defined using ALF language as shown in .

ensures SDF matching with conditional delays across Verilog, VITAL, etc.

See the end of B.3 for an example.

KEYWORD = annotation {
CONTEXT = VECTOR;
VALUETYPE = ;
VALUES { }
DEFAULT = ;

}

Syntax 90— annotation
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 91

1

5

10

15

20

25

30

35

40

45

50

55
9.12.4 EXISTENCE_CONDITION annotation

A xxx annotation shall be defined using ALF language as shown in .

For false-path analysis tools, the existence condition shall be used to eliminate the vector from further analysis if,
and only if, the existence condition evaluates to False. For applications other than false-path analysis, the exist-
ence condition shall be treated as if the boolean expression was a co-factor to the vector itself. The default exist-
ence condition is True.

Example

VECTOR (01 a -> 01 z & (c | !d)) {
EXISTENCE_CONDITION = !scan_select;
DELAY { FROM { PIN=a; } TO { PIN=z; } /* data */ }

}
VECTOR (01 a -> 01 z & (!c | d)) {

EXISTENCE_CONDITION = !scan_select;
DELAY { FROM { PIN=a; } TO { PIN=z; } /* data */ }

}

Each vector contains state-dependent delay for the same timing arc. If !scan_select evaluates True, both
vectors are eliminated from timing analysis.

9.12.5 EXISTENCE_CLASS annotation

A xxx annotation shall be defined using ALF language as shown in .

Reference to the same existence class by multiple vectors has the following effects:

— A common mode of operation is established between those vectors, which can be used for selective anal-
ysis, for instance mode-dependent timing analysis. The name of the mode is the name of the class.

— A common existence condition is inherited from that existence class, if there is one.

Example

KEYWORD = annotation {
CONTEXT = VECTOR;
VALUETYPE = ;
VALUES { }
DEFAULT = ;

}

Syntax 91— annotation

KEYWORD = annotation {
CONTEXT = VECTOR;
VALUETYPE = ;
VALUES { }
DEFAULT = ;

}

Syntax 92— annotation
92 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
CLASS non_scan_mode {
EXISTENCE_CONDITION = !scan_select;

}
VECTOR (01 a -> 01 z & (c | !d)) {

EXISTENCE_CLASS = non_scan_mode;
DELAY { FROM { PIN=a; } TO { PIN=z; } /* data */ }

}
VECTOR (01 a -> 01 z & (!c | d)) {

EXISTENCE_CLASS = non_scan_mode;
DELAY { FROM { PIN=a; } TO { PIN=z; } /* data */ }

}

Each vector contains state-dependent delay for the same timing arc. If the mode non_scan_mode is turned off
or if !scan_select evaluates True, both vectors are eliminated from timing analysis.

9.12.6 CHARACTERIZATION_CONDITION annotation

A xxx annotation shall be defined using ALF language as shown in .

For characterization tools, the characterization condition shall be treated as if the boolean expression was a co-
factor to the vector itself. For all other applications, the characterization condition shall be disregarded. The
default characterization condition is True.

Example

VECTOR (01 a -> 01 z & (c | !d)) {
CHARACTERIZATION_CONDITION = c & !d;
DELAY { FROM { PIN=a; } TO { PIN=z; } /* data */ }

}

The delay value for the timing arc applies for any of the following conditions: (c & !d),
(c & d), or (!c & !d), since they all satisfy (c | !d) . However, the only condition chosen for delay char-
acterization is (c & !d).

9.12.7 CHARACTERIZATION_VECTOR annotation

A xxx annotation shall be defined using ALF language as shown in .

The characterization vector is provided for the case where the vector expression cannot be constructed using the
vector and a boolean co-factor. The use of the characterization vector is restricted to characterization tools in the
same way as the use of the characterization condition. Either a characterization condition or a characterization
vector can be provided, but not both. If none is provided, the vector itself shall be used by the characterization
tool.

KEYWORD = annotation {
CONTEXT = VECTOR;
VALUETYPE = ;
VALUES { }
DEFAULT = ;

}

Syntax 93— annotation
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 93

1

5

10

15

20

25

30

35

40

45

50

55
Example

VECTOR (01 A -> 01 Z) {
CHARACTERIZATION_VECTOR = ((01 A & 10 inv_A) -> (01 Z & 10 inv_Z));

}

Analysis tools see the signals A and Z. The signals inv_A and inv_Z are visible to the characterization tool
only.

9.12.8 CHARACTERIZATION_CLASS annotation

A xxx annotation shall be defined using ALF language as shown in .

Reference to the same characterization class by multiple vectors has the following effects:

— A commonality is established between those vectors, which can be used for selective characterization in a
way defined by the library characterizer, for instance, to share the characterization task between different
teams or jobs or tools.

— A common characterization condition or characterization vector is inherited from that characterization
class, if there is one.

9.13 Incremental definitions for VECTOR

In general, it is illegal to re-declare an ALF object (see 4.1, Rule 4). However, there are objects which merely
define the context for other objects. When objects are incrementally added to the library, it is natural to re-declare
the context as well.

Vector-specific timing, power, signal integrity characterization can be done by different groups, each of which
comes up with a set of vectors for the characterization domain. Some of the vectors can be accidentally the same.
Also, timing, power, signal integrity characterization can be done in different releases of the library. In both sce-
narios, the “incremental vector definitions” make the merging process easier.

Multiple instances of the same VECTOR shall be legal for the purpose of incrementally adding children objects.
The first instance of the VECTOR shall be interpreted as a declaration. All following instances shall be inter-

KEYWORD = annotation {
CONTEXT = VECTOR;
VALUETYPE = ;
VALUES { }
DEFAULT = ;

}

Syntax 94— annotation

KEYWORD = annotation {
CONTEXT = VECTOR;
VALUETYPE = ;
VALUES { }
DEFAULT = ;

}

Syntax 95— annotation
94 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
preted as supplemental definitions of the VECTOR. The rule of illegal re-declaration shall apply for the children
objects within a VECTOR.

Example

// the following is legal
VECTOR (01 A -> 01 Z) {

DELAY = 1 { FROM { PIN = A; } TO { PIN = Z; } }
}
VECTOR (01 A -> 01 Z) {

ENERGY = 25 ;
}
// the following is illegal
VECTOR (01 A -> 01 Z) {

DELAY = 1 { FROM { PIN = A; } TO { PIN = Z; } }
}
VECTOR (01 A -> 01 Z) {

DELAY = 2 { FROM { PIN = A; } TO { PIN = Z; } }
}

9.14 Statements for physical modeling

Overview

Table 45 summarizes the ALF statements for physical modeling.

Table 45—Statements in ALF describing physical objects

Statement Scope Comment

LAYER LIBRARY,
SUBLIBRARY

Description of a plane provided for physical objects consisting of
electrically conducting material.

VIA LIBRARY,
SUBLIBRARY

Description of a physical object for electrical connection between
layers.

SITE LIBRARY,
SUBLIBRARY

Placement grid for a class of physically placeable objects.

BLOCKAGE CELL Physical object on a layer, forming an obstruction against placing
or routing other objects.

PORT PIN Physical object on a layer, providing electrical connections to a
pin.

PATTERN VIA, RULE,
BLOCKAGE, PORT

Physical object on a layer, described for the purpose of defining
relationships with other physical objects.

RULE LIBRARY,
SUBLIBRARY,
CELL, PIN

Set of rules defining calculable relationships between physical
objects.

ANTENNA LIBRARY,
SUBLIBRARY,
CELL

Set of rules defining restrictions for physical size of electrically
connected objects for the purpose of manufacturing.

ARTWORK VIA, CELL Reference to an imported object from GDS2.
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 95

1

5

10

15

20

25

30

35

40

45

50

55
9.14.1 LAYER statement

A LAYER statement is defined as shown in Syntax 96.

layer ::=

LAYER identifier { layer_items }

layer_items ::=
layer_item { layer_item }

layer_item ::=
all_purpose_item

| arithmetic_model
| arithmetic_model_container

The syntax and semantics of all_purpose_item, arithmetic_model_container, and
arithmetic_model are defined in 11.7 and 11.16.

ARRAY LIBRARY,
SUBLIBRARY

Description of a regular grid for placement, global and detailed
routing.

geometric model PATTERN Description of the geometric form of a physical object.

REPEAT physical object Algorithm to replicate a physical object in a regular way.

SHIFT physical object Specification to shift a physical object in x/y direction.

FLIP physical object Specification to flip a physical object around an axis.

ROTATE physical object Specification to rotate a physical object around an axis.

BETWEEN CONNECTIVITY,
DISTANCE

Reference to objects with a relation to each other.

layer ::=
LAYER layer_identifier { layer_items }

| LAYER layer_identifier ;
| layer_template_instantiation

layer_items ::=
layer_item { layer_item }

layer_item ::=
all_purpose_item

Syntax 96—LAYER statement

Table 45—Statements in ALF describing physical objects (Continued)

Statement Scope Comment
96 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
Specific items applicable for LAYER are listed in Table 46.

NOTE—Rules involving relationships between objects within one or several layers is described in the RULE statement (see
9.16.1).

9.14.2 PURPOSE annotation

The purpose of each layer shall be identified using the PURPOSE annotation.

layer_purpose_assignment ::=

PURPOSE = layer_purpose_identifier ;

layer_purpose_identifier ::=

routing
| cut
| substrate
| dielectric
| reserved
| abstract

The identifiers have the following definitions:

— routing: layer provides electrical connections within one plane
— cut: layer provides electrical connections between planes
— substrate: layer(s) at the bottom

Table 46—Items for LAYER description

Item Applies for layer Usable ALF statement Comment

Purpose all PURPOSE = <identifier> ; See 9.14.2

Property routing, cut, master PROPERTY { ... } See 3.2.7

Current density
limit

routing, cut LIMIT { CURRENT
{ ... MAX { ... } }

See 7.5, 8.1.2, 7.6.1, 8.9.1, and
9.14.5

Resistance routing, cut RESISTANCE { ... } See 8.7.2 and 9.14.5

Capacitance routing CAPACITANCE {... } See 8.7.2 and 9.14.5

Default width or
minimum width

routing WIDTH { DEFAULT =
<number>; }

See 7.1.4., Section 9.2, and
9.14.5

Manufacturing
tolerance for
width

routing WIDTH { MIN = <number>;
TYP = <number>;
MAX = <number>; }

See 7.6.1, 8.9.1, and 9.14.5

Default wire
extension

routing EXTENSION { DEFAULT =
<number>; }

See 9.17.3.3 and 9.14.5

Height routing, cut, master HEIGHT = <number>; See Section 9.2

Thickness routing, cut, master THICKNESS = <number>; See Section 9.2

Preferred routing
direction

routing PREFERENCE See 9.14.4
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 97

1

5

10

15

20

25

30

35

40

45

50

55
— dielectric: provides electrical isolation between planes
— reserved: layer is for proprietary use only
— abstract: not a manufacturable layer, used for description of boundaries between objects

LAYER statements shall be in sequential order defined by the manufacturing process, starting bottom-up in the
following sequence: one or multiple substrate layers, followed by alternating cut and routing layers, then the
dielectric layer. Abstract layers can appear at the end of the sequence.

9.14.3 PITCH annotation

The PITCH annotation identifies the routing pitch for a layer with PURPOSE=routing.

pitch_annotation ::=

PITCH = non_negative_number ;

The pitch is measured between the center of two adjacent parallel wires routed on the layer.

9.14.4 PREFERENCE annotation

The PREFERENCE annotation for LAYER shall have the following form:

routing_preference_annotation ::=

PREFERENCE = routing_preference_identifier ;

routing_preference_identifier ::=

horizontal
| vertical

The purpose is to indicate the preferred routing direction.

9.14.5 Example

This example contains a default width (the syntax is all_purpose_item), resistance, capacitance, and cur-
rent limits (the syntax is arithmetic_model) for arbitrary wires in a routing layer. Since width and thickness
are arguments of the models, special wires and fat wires are also taken into account.

LAYER metal1 {
PURPOSE = routing;
PREFERENCE { HORIZONTAL = 0.75; VERTICAL = 0.25; }
WIDTH { DEFAULT = 0.4; MIN = 0.39; TYP = 0.40; MAX = 0.41; }
THICKNESS { DEFAULT = 0.2; MIN = 0.19; TYP = 0.20; MAX = 0.21; }
EXTENSION { DEFAULT = 0; }
RESISTANCE {

HEADER { LENGTH WIDTH THICKNESS TEMPERATURE }
EQUATION {

0.5*(LENGTH/(WIDTH*THICKNESS))
(1.0+0.01(TEMPERATURE-25))

}
}
CAPACITANCE {

HEADER { AREA PERIMETER }
EQUATION { 0.48*AREA + 0.13*PERIMETER*THICKNESS }
98 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
}
LIMIT {

CURRENT ac_limit_for_avg {
UNIT = mAmp ;
MEASUREMENT = average ;
HEADER {

WIDTH { UNIT = uM; TABLE { 0.4 0.8 } }
FREQUENCY { UNIT = megHz; { 1 100 } }
THICKNESS { UNIT = uM; TABLE { 0.2 0.4 } }

}
TABLE {

2.0e-6 4.0e-6 1.5e-6 3.0e-6
4.0e-6 8.0e-6 3.0e-6 6.0e-6

}
}
CURRENT ac_limit_for_rms {

UNIT = mAmp ;
MEASUREMENT = rms ;
HEADER {

WIDTH { UNIT = uM; TABLE { 0.4 0.8 } }
FREQUENCY { UNIT = megHz; { 1 100 } }
THICKNESS { UNIT = uM; TABLE { 0.2 0.4 } }

}
TABLE {

4.0e-6 7.0e-6 4.5e-6 7.5e-6
8.0e-6 14.0e-6 9.0e-6 15.0e-6

}
}
CURRENT ac_limit_for_peak {

UNIT = mAmp ;
MEASUREMENT = peak ;
HEADER {

WIDTH { UNIT = uM; TABLE { 0.4 0.8 } }
FREQUENCY { UNIT = megHz; { 1 100 } }
THICKNESS { UNIT = uM; TABLE { 0.2 0.4 } }

}
TABLE {

6.0e-6 10.0e-6 5.9e-6 9.9e-6
12.0e-6 20.0e-6 11.8e-6 19.8e-6

}
}
CURRENT dc_limit {

UNIT = mAmp ;
MEASUREMENT = static ;
HEADER {

WIDTH { UNIT = uM; TABLE { 0.4 0.8 } }
THICKNESS { UNIT = uM; TABLE { 0.2 0.4 } }

}
TABLE { 2.0e-6 4.0e-6 4.0e-6 8.0e-6 }

}
}

}

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 99

1

5

10

15

20

25

30

35

40

45

50

55
9.15 VIA statement and related statements

This section defines the VIA statement and its annotations.

9.15.1 VIA statement

A VIA statement is defined as shown in Syntax 97.

via ::=

VIA [identifier] { via_items }

via_items ::=
via_item { via_item }

via_item ::=
all_purpose_item

| pattern
| arithmetic_model
| arithmetic_model_container

The VIA statement shall contain at least three patterns, referring to the cut layer and two adjacent routing layers.
Stacked vias can contain more than three patterns.

The all_purpose_items and arithmetic_models for VIA are listed in Table 47.

9.15.2 USAGE annotation

The USAGE annotation for a VIA shall have one of the following mutually exclusive values.

via ::=
VIA via_identifier { via_items }

| VIA via_identifier ;
| via_template_instantiation

via_items ::=
via_item { via_item }

via_item ::=
all_purpose_item

| pattern
| artwork

Syntax 97—VIA statement

Table 47—Items for VIA description

Item Usable ALF statement Comment

Property PROPERTY See 3.2.7

Resistance RESISTANCE See 8.7.2

GDS2 reference ARTWORK See Section 9.4 and 9.15.3

Usage USAGE See 9.15.2 and 9.15.3
100 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
usage_annotation ::=

USAGE = usage_identifier ;

usage_identifier ::=

default
| non_default
| partial_stack
| full_stack

The identifiers have the following definitions:

— default: via can be used per default
— non_default: via can only be used if authorized by a RULE
— partial_stack: via contains 3 patterns: lower and upper routing layer and cut layer in-between. It can only

be used to build stacked vias. The bottom of a stack can be a default or a non_default via.
— full_stack: via contains 2N+1 patterns (N>1). It describes the full stack from bottom to top.

9.15.3 Example

VIA via_with_two_contacts_in_x_direction {
ARTWORK = GDS2_name_of_my_via {

SHIFT { HORIZONTAL = -2; VERTICAL = -3; }
ROTATE = 180;

}
PATTERN via_contacts {

LAYER = cut_1_2 ;
RECTANGLE { 1 1 3 3 }
REPEAT = 2 {

SHIFT{ HORIZONTAL = 4; }
REPEAT = 1 {

SHIFT { VERTICAL = 4; }
} } }
PATTERN lower_metal {

LAYER = metal_1 ;
RECTANGLE { 0 0 8 4 }

}
PATTERN upper_metal {

LAYER = metal_2 ;
RECTANGLE { 0 0 8 4 }

}
}

A TEMPLATE (see 3.2.6) can be used to define a construction rule for a via.

TEMPLATE my_via_rule
VIA <via_rule_name> {

PATTERN via_contacts {
LAYER = cut_1_2 ;
RECTANGLE { 1 1 3 3 }
REPEAT = <x_repeat> {

SHIFT{ HORIZONTAL = 4; }
REPEAT = <y_repeat> {

SHIFT { VERTICAL = 4; }
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 101

1

5

10

15

20

25

30

35

40

45

50

55
} } }
PATTERN lower_metal {

LAYER = metal_1 ;
RECTANGLE { 0 0 <x_cover> <y_cover> }

}
PATTERN upper_metal {

LAYER = metal_2 ;
RECTANGLE { 0 0 <x_cover> <y_cover> }

}
}

}

A static instance of the TEMPLATE can be used to create the same via as in the first example (except for the ref-
erence to GDS2):

my_via_rule {
via_rule_name = via_with_two_contacts_in_x_direction;
x_cover = 8;
y_cover = 4;
x_repeat = 2;
y_repeat = 1;

}

A dynamic instance of the TEMPLATE (see 5.6.8) can be used to create a via rule.

my_via_rule = dynamic {
via_rule_name = via_with_NxM_contacts;
x_cover = 8;
y_cover = 4;
x_repeat {

HEADER { x_cover { TABLE { 4 8 12 16 } } }
TABLE { 1 2 3 4 }

}
y_repeat {

HEADER { y_cover { TABLE { 4 8 12 16 } } }
TABLE { 1 2 3 4 }

}
}

Instead of defining fixed values for the placeholders, here the mathematical relationships between the placehold-
ers are defined, which can generate a via rule for any set of values.

9.15.4 VIA reference statement

Certain physical objects can contain a reference to one or more vias, as shown in Syntax 98.

via_reference ::=

VIA { via_instantiations }

via_instantiations ::=
via_instantiation { via_instantiation }

via_instantiation ::=
via_identifier { geometric_transformations }
102 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
The via_identifier shall be the name of an already defined VIA.

Example for a via reference in a PORT, see Section 9.10.

VIA reference

A RULE can contain a reference to one or more vias, using the via_reference statement (see).

9.16 Statements related to physical design rules

Add lead-in text

9.16.1 RULE statement

A RULE statement is defined as shown in Syntax 99.

rule ::=

RULE [identifier] { rule_items }

rule_items ::=
rule_item { rule_item }

rule_item ::=
pattern

| all_purpose_item
| via_reference
| arithmetic_model_container
| arithmetic_model

via_reference ::=
VIA { via_instantiations }

| VIA { via_identifiers }
via_instantiations ::=

via_instantiation { via_instantiation }
via_instantiation ::=

via_identifier { geometric_transformations }

Syntax 98—VIA reference statement

rule ::=
RULE rule_identifier { rule_items }

| RULE rule_identifier ;
| rule_template_instantiation

rule_items ::=
rule_item { rule_item }

rule_item ::=
all_purpose_item

| pattern
| via_reference

Syntax 99—RULE statement
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 103

1

5

10

15

20

25

30

35

40

45

50

55
The all_purpose_items for RULE are listed in Table 48.

The rules for spacing and overlap, respectively, shall be expressed using the LIMIT construct with DISTANCE
and OVERHANG, respectively, as keywords for the arithmetic models (see 7.5 and 7.6.1). The keywords HORI-
ZONTAL and VERTICAL shall be introduced as qualifiers for arithmetic submodels (see 7.6) to distinguish rules
for different routing directions. If these qualifiers are not used, the rule shall apply in any routing direction.

9.16.1.1 Width-dependent spacing

An example of width-dependent spacing is:

RULE width_and_length_dependent_spacing {
PATTERN segment1 { LAYER = metal_1; SHAPE = line; }
PATTERN segment2 { LAYER = metal_1; SHAPE = line; }
CONNECTIVITY {

CONNECT_RULE = cannot_short;
BETWEEN { segment1 segment2 }

}
LIMIT {

DISTANCE { BETWEEN { segment1 segment2 }
MIN {

HEADER {
WIDTH w1 {

PATTERN = segment1;
/* TABLE, if applicable */

}
WIDTH w2 {

PATTERN = segment2;
/* TABLE, if applicable */

}
LENGTH common_run {

BETWEEN { segment1 segment2 }
/* TABLE, if applicable */

}
}
/* EQUATION or TABLE */

}
MAX { /* some technology have MAX spacing rules */ }

}
}

}

Table 48—Items for RULE description

Item Usable ALF statement Comment

Rule is for same net
or different nets

CONNECTIVITY See 9.16.4.2 and Section 9.15

Spacing rule LIMIT { DISTANCE ... } See 7.5 and 9.16.1.1

Overhang rule LIMIT { OVERHANG ... } See 7.5 and 9.16.1.2
104 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
Spacing rules dependent on routing direction can be expressed as follows:

LIMIT {
DISTANCE { BETWEEN { segment1 segment2 }

HORIZONTAL {
MIN { /* HEADER, EQUATION or TABLE */ }

}
VERTICAL {

MIN { /* HEADER, EQUATION or TABLE */ }
}

}
}

9.16.1.2 End-of-line rule

End-of-line rules can be expressed as follows:

RULE lonely_via {
PATTERN via_lower { LAYER = metal_1; SHAPE = line; }
PATTERN via_cut { LAYER = cut_1_2; }
PATTERN via_upper { LAYER = metal_2; SHAPE = end; }
PATTERN adjacent { LAYER = metal_2; SHAPE = line; }
CONNECTIVITY {

CONNECT_RULE = must_short;
BETWEEN { via_lower via_cut via_upper }

}
CONNECTIVITY {

CONNECT_RULE = cannot_short;
BETWEEN { via_upper adjacent }

}
LIMIT {

OVERHANG {
BETWEEN { via_cut via_upper }
MIN {

HEADER {
DISTANCE {

BETWEEN { via_cut adjacent }
/* TABLE, if applicable */

}
}
/* TABLE or EQUATION */

}
}

}
}

Overhang dependent on routing direction can be expressed as follows:

LIMIT {
OVERHANG { BETWEEN { via_cut via_upper }

HORIZONTAL {
MIN { /* HEADER, EQUATION or TABLE */ }

}
VERTICAL {
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 105

1

5

10

15

20

25

30

35

40

45

50

55
MIN { /* HEADER, EQUATION or TABLE */ }
}

}
}

9.16.1.3 Redundant vias

Rules for redundant vias can be expressed as follows:

RULE constraint_for_redundant_vias {
PATTERN via_lower { LAYER = metal_1; }
PATTERN via_cut { LAYER = cut_1_2; }
PATTERN via_upper { LAYER = metal_2; }
CONNECTIVITY {

CONNECT_RULE = must_short;
BETWEEN { via_lower via_cut via_upper }

}
LIMIT {

WIDTH {
PATTERN = via_cut;
MIN = 3; MAX = 5;

}
DISTANCE {

BETWEEN { via_cut }
MIN = 1; MAX = 2;

}
OVERHANG {

BETWEEN { via_lower via_cut }
MIN = 2; MAX = 4;

}
OVERHANG {

BETWEEN { via_upper via_cut }
MIN = 2; MAX = 4;

}
}

}

9.16.1.4 Extraction rules

Extraction rules can be expressed as follows:

RULE parallel_lines_same_layer {
PATTERN segment1 { LAYER = metal_1; SHAPE = line; }
PATTERN segment2 { LAYER = metal_1; SHAPE = line; }
CAPACITANCE {

BETWEEN { segment1 segment2 }
HEADER {

DISTANCE {
BETWEEN { segment1 segment2 }
/* TABLE, if applicable */

}
LENGTH {

BETWEEN { segment1 segment2 }
/* TABLE, if applicable */
106 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
}
}
/* EQUATION or TABLE */

}
}

9.16.1.5 RULES within BLOCKAGE or PORT

General width-dependent spacing rules can not apply to blockages which are abstractions of smaller blockages
collapsed together. The spacing rule between the constituents of the blockage and their neighboring objects shall
be applied instead.

For example, a blockage can consist of two parallel wires in vertical direction of width=1 and distance=1.
They can be collapsed to form a blockage of width=3. Left and right of the blockage, the spacing rule shall be
based on the width of the constituent wires (i.e., 1) instead of the width of the blockage (i.e., 3).

Therefore, it shall be legal within a RULE statement to appear within the context of a BLOCKAGE or PORT and
reference a PATTERN which has been defined within the context of the BLOCKAGE or PORT.

Example

CELL my_cell {
BLOCKAGE my_blockage {

PATTERN my_pattern {
LAYER = metal1;
RECTANGLE { 5 0 8 10 }

}
RULE for_my_pattern {

PATTERN my_metal1 { LAYER = metal1; }
LIMIT {

DISTANCE {
BETWEEN { my_metal1 my_pattern }
MIN = 1;

}
}

}
}

}

It shall also be legal to define the spacing rule, which normally would be inside the RULE statement, directly
within the context of a PATTERN using the LIMIT construct and the arithmetic model for DISTANCE. This
arithmetic model shall not contain a BETWEEN statement. The spacing rule shall apply between the PATTERN
and any external object on the same layer.

Example

CELL my_cell {
BLOCKAGE my_blockage {

PATTERN p1 {
LAYER = metal1;
RECTANGLE { 5 0 8 10 }
LIMIT { DISTANCE { MIN = 1; } }

}

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 107

1

5

10

15

20

25

30

35

40

45

50

55
}
}

9.16.2 ANTENNA statement

An ANTENNA statement is defined as shown in Syntax 100.

antenna ::=

ANTENNA [antenna_identifier] { antenna_items }

antenna_items ::=
antenna_item { antenna_item }

antenna_item ::=
all_purpose_item

| arithmetic_model
| arithmetic_model_container

The syntax and semantics of all_purpose_item, arithmetic_model_container, and
arithmetic_model are already defined in defined in 11.7 and 11.16.

The items applicable for ANTENNA are shown in Table 49.

The use of the keyword SIZE (see 8.1.3) in the context of ANTENNA is proposed to represent an abstract, dimen-
sionless model of the antenna size. It is related to the area of the net which forms the antenna, but it is not neces-

antenna ::=
ANTENNA antenna_identifier { antenna_items }

| ANTENNA antenna_identifier ;
| antenna_template_instantiation

antenna_items ::=
antenna_item { antenna_item }

antenna_item ::=
all_purpose_item

Syntax 100—ANNTENA statement

Table 49—Items for ANTENNA description

Item Usable ALF statement Scope Comment

Maximum allowed
antenna size

LIMIT { SIZE {
MAX { ... } } }

LIBRARY,
SUBLIBRARY
CELL, PIN

See 7.5, 8.1.2, 7.6.1, 8.9.1, and
9.16.2.1

Calculation method
for antenna size

SIZE { HEADER
{ ... } TABLE { ...}
or
SIZE [id] { HEADER {
... } EQUATION { ...}

LIBRARY,
SUBLIBRARY

See 8.1.3, and 9.16.2.1

Argument values for
antenna size calcula-
tion

argument = value ;
or
argument = value { ... }

CELL, PIN See 11.2 and 9.16.2.1
108 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
sary a measure of area. It can be a measure of area ratio as well. However, the arguments of the calculation
function for antenna SIZE shall be measurable data, such as AREA, PERIMETER, LENGTH, THICKNESS,
WIDTH, and HEIGHT of metal segments connected to the net. The argument also need an annotation defining the
applicable LAYER for the metal segments.

A process technology can have more than one antenna rule calculation method. In this case, the
antenna_identifier is mandatory for each rule.

Antenna rules apply for routing and cut layers connected to poly silicon and eventually to diffusion. The
CONNECT_RULE statement in conjunction with the BETWEEN statement shall be used to specify the connected
layers. Connectivity shall only be checked up to the highest layer appearing in the CONNECT_RULE statement.
Connectivity through higher layers shall not be taken into account, since such connectivity does not yet exist in
the state of manufacturing process when the antenna effect occurs.

9.16.2.1 Layer-specific antenna rules

Antenna rules can be checked individually for each layer. In this case, the SIZE model contains only two or
three arguments: AREA of the layer or perimeter (calculated from the LENGTH and WIDTH) of the layer causing
the antenna effect, the area of poly silicon, and, eventually, the area of diffusion.

Example

ANTENNA individual_m1 {
LIMIT { SIZE { MAX = 1000; } }
SIZE {

CONNECTIVITY {
CONNECT_RULE = must_short; BETWEEN { metal1 poly }

}
CONNECTIVITY {

CONNECT_RULE = cannot_short; BETWEEN { metal1 diffusion }
}
HEADER {

AREA a1 { LAYER = metal1; }
AREA a0 { LAYER = poly; }

}
EQUATION { a1 / a0 }

}
ANTENNA individual_m2 {

LIMIT { SIZE { MAX = 1000; } }
SIZE {

CONNECTIVITY {
CONNECT_RULE = must_short; BETWEEN { metal2 poly }

}
CONNECTIVITY {

CONNECT_RULE = cannot_short; BETWEEN { metal2 diffusion }
}
HEADER {

AREA a2 { LAYER = metal2; }
AREA a0 { LAYER = poly; }

}
EQUATION { a2 / a0 }

}
}

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 109

1

5

10

15

20

25

30

35

40

45

50

55
9.16.2.2 All-layer antenna rules

Antenna rules can also be checked globally for all layers. In that case, the SIZE model contains area or perimeter
of all layers as additional arguments.

Example

ANTENNA global_m2_m1 {
LIMIT { SIZE { MAX = 2000; } }
SIZE {

CONNECTIVITY {
CONNECT_RULE = must_short;

BETWEEN { metal2 metal1 poly }
}
CONNECTIVITY {

CONNECT_RULE = cannot_short;
BETWEEN { metal2 diffusion }

}
HEADER {

AREA a2 { LAYER = metal1; }
AREA a1 { LAYER = metal1; }
AREA a0 { LAYER = poly; }

}
EQUATION { (a2 + a1) / a0 }

}
}

9.16.2.3 Cumulative antenna rules

Antenna rules can also be checked by accumulating the individual effect. In that case, the SIZE model can be
represented as a nested arithmetic model, each of which contain the model of the individual effect.

Example

ANTENNA accumulate_m2_m1 {
LIMIT { SIZE { MAX = 3000; } }
SIZE {

HEADER {
SIZE ratio1 {

CONNECTIVITY {
CONNECT_RULE = must_short;
BETWEEN { metal1 poly }

}
CONNECTIVITY {

CONNECT_RULE = cannot_short;
BETWEEN { metal1 diffusion }

}
HEADER {

AREA a1 { LAYER = metal1; }
AREA a0 { LAYER = poly; }

}
EQUATION { a1 / a0 }

}
SIZE ratio2 {
110 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
CONNECTIVITY {
CONNECT_RULE = must_short;
BETWEEN { metal2 poly }

}
CONNECTIVITY {

CONNECT_RULE = cannot_short;
BETWEEN { metal2 diffusion }

}
HEADER {

AREA a2 { LAYER = metal2; }
AREA a0 { LAYER = poly; }

}
EQUATION { a2 / a0 }

}
}
EQUATION { ratio1 + ratio2 }

}
}

The arguments a0 in ratio1 and ratio2 can are not the same. In ratio1, a0 represents the area of poly sil-
icon connected to metal1 in a net. In ratio2, a0 represents the area of poly silicon connected to metal2 in
a net, where the connection can be established through more than one subnet in metal1.

9.16.2.4 Illustration

Consider the structure shown in Figure 13.

Figure 13—Metal-poly illustration

Checking this structure against the rules in the examples yields the following results:

individual_m1:
1000 > A5 / (A1+A2)
1000 > A6 / A3
1000 > A7 / A4

individual_m2:
1000 > (A8+A9) / (A1+A2+A3+A4)

Poly

Metal1

Metal2

A2A1

A5

A8 A9

A6 A7

A3 A4
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 111

1

5

10

15

20

25

30

35

40

45

50

55
global_m2_m1:
2000 > (A8+A9+A5+A6+A7) / (A1+A2+A3+A4)

accumulate_m2_m1:
3000 > (A8+A9) / (A1+A2+A3+A4) + A5 / (A1+A2)
3000 > (A8+A9) / (A1+A2+A3+A4) + A6 / A3
3000 > (A8+A9) / (A1+A2+A3+A4) + A7 / A4

9.16.3 BLOCKAGE statement

This section defines the BLOCKAGE statement and its use.

9.16.3.1 Definition

A BLOCKAGE statement is defined as shown in Syntax 101.

blockage ::=

BLOCKAGE [identifier] {
[all_purpose_items]
[patterns]

}

See 11.7 for applicable all_purpose_items.

9.16.3.2 Example

CELL my_cell {
BLOCKAGE my_blockage {

PATTERN p1 {
LAYER = metal1;
RECTANGLE { -1 5 3 8 }
RECTANGLE { 6 12 3 8 }

}
PATTERN p2 {

LAYER = metal2;
RECTANGLE { -1 5 3 8 }

}
}

}

The BLOCKAGE consists of two rectangles covering metal1 and one rectangle covering metal2.

blockage ::=
BLOCKAGE blockage_identifier { blockage_items }

| BLOCKAGE blockage_identifier ;
| blockage_template_instantiation

blockage_items ::=
blockage_item { blockage_item }

blockage_item ::=
all_purpose_item

| pattern
| rule
| via_reference

Syntax 101—BLOCKAGE statement
112 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
9.16.4 PORT statement

A port is a collection of geometries within a pin, representing electrically equivalent points. A PORT statement is
defined as shown in Syntax 102.

port ::=

PORT port_identifier ;
| PORT [port_identifier] {

[all_purpose_items]
[patterns]
[via_reference]

}

A numerical digit can be used as the first character in port_identifier. In this case the number shall be
proceeded by the escape character (see 10.3.8) in the declaration of the PORT.

The PORT statement is legal within the context of a PIN statement. For this purpose, the syntax for pin_item
(see 11.11) shall be augmented as follows:

pin_item ::=
all_purpose_item

| arithmetic_model
| port

A pin can have either no PORT statement, an arbitrary number of PORT statements with a port_identifier,
or exactly one PORT statement without a port_identifier.

9.16.4.1 VIA reference

A PORT can contain a reference to one or more vias by using the via_reference statement (see xxx).

Example

VIA my_via { /* put via definition here */ }

// later in the same library
CELL my_cell {

PIN my_pin {
PORT my_port {

VIA {

port ::=
PORT port_identifier { port_items }

| PORT port_identifier ;
| port_template_instantiation

port_items ::=
port_item { port_item }

port_item ::=
all_purpose_item

| pattern
| rule
| via_reference

Syntax 102—PORT statement
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 113

1

5

10

15

20

25

30

35

40

45

50

55
my_via { SHIFT { HORIZONTAL = 1.0 ; VERTICAL = 2.0 ; } }
my_via { SHIFT { HORIZONTAL = 5.0 ; VERTICAL = 8.0 ; } }

}
}

}
}

The VIA my_via is instantiated twice in the PORT my_port within the PIN my_pin of the CELL
my_cell. The origin of the instantiated vias is shifted with respect to the origin of the cell, as specified by the
SHIFT statements.

9.16.4.2 CONNECTIVITY rules for PORT and PIN

By default, all connections to a pin shall be made to the same port. Different ports of a pin shall not be connected
externally. Those defaults can be overridden by using connectivity rules for ports within a pin.

Pins of the same cell shall not be shorted externally by default. This default can also be overridden by using con-
nectivity rules for pins within a cell.

Example

PIN A {
PORT P1 { VIEW=physical; }

}

PIN B {
PORT Q1 { VIEW=physical; }
PORT Q2 { VIEW=physical; }
PORT Q3 { VIEW=physical; }
CONNECTIVITY {

CONNECT_RULE = can_short;
BETWEEN { Q1 Q3 }

}
CONNECTIVITY {

CONNECT_RULE = cannot_short;
BETWEEN { Q1 Q2 }

}
CONNECTIVITY {

CONNECT_RULE = cannot_short;
BETWEEN { Q2 Q3 }

}
}
CONNECTIVITY {

CONNECT_RULE = must_short;
BETWEEN { A B }

}

The router can make external connections between Q1 and Q3, but not between Q1 and Q2 or between Q2 and
Q3, respectively. The router shall make an external connection between A.P1 and any port of B (B.Q1, B.Q2,
or B.Q3).
114 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
9.16.4.3 Reference of a declared PORT in a PIN annotation

In the context of timing modeling, a PORT can have the semantic meaning of a PIN. For examples, PORTs can
be used as FROM and/or TO points of delay measurements — use a reference by a
hierarchical_identifier.

Example

CELL my_cell {
PIN A {

DIRECTION = input;
PORT p1;
PORT p2;

}
PIN Z {

DIRECTION = output;
}
VECTOR (01 A -> 01 Z) {

DELAY {
FROM { PIN = A.p1; }
TO { PIN = Z; }

}
DELAY {

FROM { PIN = A.p2; }
TO { PIN = Z; }

}
}

}

9.16.4.4 VIEW annotation

A subset of values for the VIEW annotation inside a PIN (see 6.4.1) shall be applicable for a PORT as well.

port_view_annotation ::=

VIEW = port_view_identifier ;

port_view_identifier ::=

physical
| none

VIEW=physical shall qualify the PORT as a real port with the possibility to connect a routing wire to it.

VIEW=none shall qualify the PORT as a virtual port for modeling purpose only.

9.16.4.5 LAYER annotation

The layer_annotation can appear inside a PORT (see Section 9.10).

9.16.4.6 ROUTING_TYPE

A PORT can inherit the ROUTING_TYPE from its PIN or it can have its own ROUTING_TYPE annotation.
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 115

1

5

10

15

20

25

30

35

40

45

50

55
9.17 Statements related to physical geometry

Add lead-in text

9.17.1 SITE statement

A SITE statement is defined as shown in Syntax 103.

site ::=

SITE site_identifier { all_purpose_items }

The width_annotation and height_annotation (see Section 9.2) are mandatory.

9.17.1.1 ORIENTATION_CLASS and SYMMETRY_CLASS

A set of CLASS statements shall be used to define a set of legal orientations applicable to a SITE. Both the
CLASS and the SITE statements shall be within the context of the same LIBRARY or SUBLIBRARY.

orientation_class ::=

CLASS orientation_class_identifier {
[geometric_transformations]

}

To refer to a predefined orientation class, use the ORIENTATION_CLASS statement within a SITE and/or a
CELL. ORIENTATION of a CELL means the orientation of the cell itself. ORIENTATION of a SITE means the
orientation of rows that can be created using that site.

orientation_class_multivalue_annotation ::=

ORIENTATION { orientation_class_identifiers }

The SYMMETRY_CLASS statement shall be used for a SITE to indicate symmetry between legal orientations.
Multiple SYMMETRY statements shall be legal to enumerate all possible combinations in case they cannot be
described within a single SYMMETRY statement.

symmetry_class_multivalue_annotation ::=

SYMMETRY_CLASS { orientation_class_identifiers }

Legal orientation of a cell within a site shall be defined as the intersection of legal cell orientation and legal site
orientation. If there is a set of common legal orientations for both cell and site without symmetry, the orientation
of cell instance and site instance shall match.

site ::=
SITE site_identifier { site_items }

| SITE site_identifier ;
| site_template_instantiation

site_items ::=
site_item { site_item }

site_item ::=
all_purpose_item

| ORIENTATION_CLASS_one_level_annotation
| SYMMETRY_CLASS_one_level_annotation

Syntax 103—SITE statement
116 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
If there is a set of common legal orientations for both cell and site with symmetry, the cell can be placed on the
side using any orientation within that set.

Case 1: no symmetry

Site has legal orientations A and B. Cell has legal orientations A and B. When the site is instantiated in the A ori-
entation, the cell shall be placed in the A orientation.

Case 2: symmetry

Site has legal orientations A and B and symmetry between A and B. Cell has legal orientations A and B. When the
site is instantiated in the A orientation, the cell can be placed in the A or B orientation.

9.17.1.2 Example

LIBRARY my_library {
CLASS north { ROTATE = 0; }
CLASS flip_north { ROTATE = 0; FLIP = 0; }
CLASS south { ROTATE = 180; }
CLASS flip_south { FLIP = 90; }

SITE Site1 {
ORIENTATION_CLASS { north flip_north }

}

SITE Site2 {
ORIENTATION_CLASS { north flip_north south flip_south}
SYMMETRY_CLASS { north flip_north }
SYMMETRY_CLASS { south flip_south }

}
CELL Cell1 {

SITE { Site1 Site2 }
ORIENTATION_CLASS { north flip_north }

}
CELL Cell2 {

SITE { Site2 }
ORIENTATION_CLASS { north south }

}
}

Cell1 can be placed on site1. The orientation of Site1 and Cell1 shall match because there is no symme-
try between north and flip_north in Site1.

Cell1 can be placed on Site2, provided Site2 is instantiated in the north or flip_north orientation.
The orientation of site2 and cell1 need not match because of the symmetry between north and
flip_north in Site2.

Cell2 can be placed on Site2, provided Site2 is instantiated in the north or south orientation. The ori-
entation of Site2 and Cell2 shall match because there is no symmetry between north and south in
Site2.

9.17.2 ARRAY statement

An ARRAY statement is defined as shown in Syntax 104.
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 117

1

5

10

15

20

25

30

35

40

45

50

55
array ::=

ARRAY identifier {
all_purpose_items
geometric_transformations

}

The geometric_transformations define the locations of the starting points within the array and the
number of repetitions of the components of the array. Details are defined in the next section.

9.17.2.1 PURPOSE annotation

Each array shall have a PURPOSE assignment.

array_purpose_assignment ::=

PURPOSE = array_purpose_identifier ;

array_purpose_identifier ::=

floorplan
| placement
| global
| routing

An array with purpose floorplan or placement shall have a reference to a SITE and a
shift_annotation_container, rotate_annotation, and eventually a flip_annotation to
define the location and orientation of the SITE in the context of the array.

An array with purpose routing shall have a reference to one or more routing LAYERs and a
shift_annotation_container to define the location of the starting point.

An array with purpose global shall have a shift_annotation_container to define the location of the
starting point.

array ::=
ARRAY array_identifier { array_items }

| ARRAY array_identifier ;
| array_template_instantiation

array_items ::=
array_item { array_item }

array_item ::=
all_purpose_item

| PURPOSE_single_value_annotation
| geometric_transformation

Syntax 104—ARRAY statement
118 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
9.17.2.2 Examples

Example 1

ARRAY grid_for_my_site {
PURPOSE = placement;
SITE = my_site;
SHIFT { HORIZONTAL = 50; VERTICAL = 50; }
REPEAT = 7 {

SHIFT { HORIZONTAL = 100; }
REPEAT = 5 {

SHIFT { VERTICAL = 5; }
}

}
}

Example 2

ARRAY grid_for_detailed_routing {
PURPOSE = routing;
LAYER { metal1 metal2 metal3 }
SHIFT { HORIZONTAL = 100; VERTICAL = 50; }
REPEAT = 7 {

SHIFT { VERTICAL = 100; }
REPEAT = 8 {

SHIFT { HORIZONTAL = 100; }
}

}
}

my_site

he
ig

ht
=

10
0

width=100

1

2

3

4

5

2 3 4 5 6 7

horizontal route

vertical route
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 119

1

5

10

15

20

25

30

35

40

45

50

55
Example 3

ARRAY grid_for_global_routing {
PURPOSE = global;
SHIFT { HORIZONTAL = 100; VERTICAL = 100; }
REPEAT = 3 {

SHIFT { VERTICAL = 150; }
REPEAT = 4 {

SHIFT { HORIZONTAL = 100; }
}

}
}

9.17.3 PATTERN statement

A PATTERN statement is defined as shown in Syntax 105.

pattern ::=

PATTERN [identifier] {
[all purpose_items]
[geometric_models]
[geometric_transformations]

}

pattern ::=
PATTERN pattern_identifier { pattern_items }

| PATTERN pattern_identifier ;
| pattern_template_instantiation

pattern_items ::=
pattern_item { pattern_item }

pattern_item ::=
all_purpose_item

| SHAPE_single_value_annotation
| LAYER_single_value_annotation
| EXTENSION_single_value_annotation
| VERTEX_single_value_annotation
| geometric_model
| geometric_transformation

Syntax 105—PATTERN statement
120 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
9.17.3.1 SHAPE annotation

The SHAPE annotation is defined as follows

shape_assignment ::=

SHAPE = shape_identifier ;

shape_identifier ::=

line
| tee
| cross
| jog
| corner
| end

SHAPE applies only for a PATTERN in a routing layer, as shown in Figure 14. The default is line.

Figure 14—Routing layer shapes

line and jog represent routing segments, which can have an individual LENGTH and WIDTH. The LENGTH
between routing segments is defined as the common run length. The DISTANCE between routing segments is
measured orthogonal to the routing direction.

tee, cross, and corner represent intersections between routing segments. end represents the end of a rout-
ing segment. Therefore, they have points rather than lines as references. The points can have an EXTENSION.
The DISTANCE between points can be measured straight or by using HORIZONTAL and VERTICAL.

9.17.3.2 LAYER annotation

The layer_annotation defines the layer where the object resides. The layer shall have been declared
before.

layer_annotation ::=

LAYER = layer_identifier ;

9.17.3.3 EXTENSION annotation

The extension_annotation specifies the value by which the drawn object is extended at all sides.

line

tee

cross

jog

corner

end
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 121

1

5

10

15

20

25

30

35

40

45

50

55
extension_annotation ::=

EXTENSION = non_negative_number ;

The default value of extension_annotation is 0.

9.17.3.4 VERTEX annotation

The vertex_annotation shall appear only in conjunction with the extension_annotation. It speci-
fies the form of the extended object, as shown in Figure 15.

vertex_annotation ::=

VERTEX = vertex_identifier ;

vertex_identifier ::=

round
| straight

The default value of vertex_annotation is straight.

Figure 15—Illustration of VERTEX annotation

9.17.3.5 PATTERN with geometric model

A geometric_model describes the form of a physical object; it does not describe a physical object itself. The
geometric_model shall be in the context of a PATTERN.

A pattern can contain geometric_model statements, geometric transformation statements (see 9.17.6.5), and
all_purpose_items (see 11.7).

9.17.3.6 Example

PATTERN {
LAYER = metal1;
EXTENSION = 1;
DOT { COORDINATES { 5 10 } }

}

EXTENSION = 1

VERTEX = straight VERTEX = round
122 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
This object is effectively a square, with a lower left corner (x=4,y=9) and upper right corner (x=6,y=11).

9.17.4 ARTWORK statement

An ARTWORK statement is defined as shown in Syntax 106.

artwork ::=

ARTWORK = artwork_identifier {
[geometric_transformations]
{ pin_assignments }

}

The ARTWORK statement creates a reference between the cell in the library and the original cell imported from a
physical layout database (e.g., GDS2).

The geometric_transformations define the operations for transformation from the artwork geometry to
the actual cell geometry. In other words, the artwork is considered as the original object whereas the cell is the
transformed object.

The imported cell can have pins with different names. The LHS of the pin_assignments describes the pin
names of the original cell, the RHS describes the pin names of the cell in this library. See 11.4 for the syntax of
pin_assignments .

Example

CELL my_cell {
PIN A { /* fill in pin items */ }
PIN Z { /* fill in pin items */ }
ARTWORK = \GDS2$!@#$ {

SHIFT { HORIZONTAL = 0; VERTICAL = 0; }
ROTATE = 0;
\GDS2$!@#$A = A;
\GDS2$!@#$B = B;

}
}

9.17.5 Geometric model

This section defines the geometric model statement and how to predefine commonly used objects (using TEM-
PLATE).

artwork ::=
ARTWORK = artwork_identifier { artwork_items }

| ARTWORK = artwork_identifier ;
| artwork_template_instantiation

artwork_items ::=
artwork_item { artwork_item }

artwork_item ::=
geometric_transformation

| pin_assignment

Syntax 106—ARTWORK statement
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 123

1

5

10

15

20

25

30

35

40

45

50

55
A geometric model describes the form of an object in a physical library. It is in the context of a pattern, which is
associated with physical objects, such as via, blockage, port, rule. Patterns and other physical objects can also be
subjected to geometric transformations, as shown in Figure 16.

Figure 16—Geometric model and its context

9.17.5.1 Definition

A geometric model is defined as shown in Syntax 107.

geometric_model ::=
geometric_model_identifier

[geometric_model_name_identifier] {
all_purpose_items
coordinates

}
| geometric_model_template_instantiation

geometric_models ::=
geometric_model { geometric_model }

geometric_model_identifier ::=

DOT
| POLYLINE

geometric_model ::=
nonescaped_dentifier [geometric_model_identifier]

{ geometric_model_items }
| geometric_model_template_instantiation

geometric_model_items ::=
geometric_model_item { geometric_model_item }

geometric_model_item ::=
all_purpose_item

| POINT_TO_POINT_one_level_annotation
| coordinates

coordinates ::=
COORDINATES { x_number y_number { x_number y_number } }

Syntax 107—Geometric model

geometric model contains coordinates

pattern

geometric transformation

via

blockage

port

rule

array artwork
contains containscontains

contains

contains

contains

contains
124 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
| RING
| POLYGON

coordinates ::=

COORDINATES { x_number y_number { x_number y_number } }

A point is a pair of x_number and y_number.

A DOT is 1 point.

A POLYLINE is defined by N>1 connected points, forming an open object.

A RING is defined by N>1 connected points, forming a closed object, i.e., the last point is connected with first
point. The object occupies the edges of the enclosed space.

A POLYGON is defined by N>1 connected points, forming a closed object, i.e., the last point is connected
with first point. The object occupies the entire enclosed space.

All of these are depicted in Figure 17.

Figure 17—Illustration of geometric models

See 9.17.6.4 for the definition of the repeat statement.

The point_to_point_annotation applies for POLYLINE, RING, and POLYGON. It specifies
how the connections between points is made. The default is straight, which defines a straight connection (see
Figure 18). The value rectilinear specifies a connection by moving in the x-direction first and then moving
in the y-direction (see Figure 19). This enables a non-redundant specification of rectilinear objects using N/2
points instead of N points.

POLYLINE RING POLYGON
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 125

1

5

10

15

20

25

30

35

40

45

50

55
point_to_point_annotation ::=

POINT_TO_POINT = point_to_point_identifier ;

point_to_point_identifier ::=

straight
| rectilinear

Figure 18—Illustration of straight point-to-point connection

Figure 19—Illustration of rectilinear point-to-point connection

Example

9

8

7

6

5

4

3

2

1

-5 -4 -3 -2 -1 0 1 2 3 4 5

x

x

straight connection

straight connection

X-axis

Y-axis

straight connection

x

x

straight connection
from (-1/8) to (-1/5)

from (-1/5) to (3/5)

from (-3/5) to (3/8)

from (3/8) to (-1/8)

9

8

7

6

5

4

3

2

1

-5 -4 -3 -2 -1 0 1 2 3 4 5

x

x

rectilinear connection from (-1/5) to (3/8)

rectilinear connection from (-3/8) to (-1/5)

X-axis

Y-axis
126 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
POLYGON {
POINT_TO_POINT = straight;
COORDINATES { -1 5 3 5 3 8 -1 8 }

}
POLYGON {

POINT_TO_POINT = rectilinear;
COORDINATES { -1 5 3 8 }

}

Both objects describe the same rectangle.

9.17.5.2 Predefined geometric models using TEMPLATE

The TEMPLATE construct (see 3.2.6) can be used to predefine some commonly used objects.

The templates RECTANGLE and LINE shall be predefined as follows:

TEMPLATE RECTANGLE {
POLYGON {

POINT_TO_POINT = rectilinear;
COORDINATES { <left> <bottom> <right> <top> }

}
}
TEMPLATE LINE {

POLYLINE {
POINT_TO_POINT = straight;
COORDINATES { <x_start> <y_start> <x_end> <y_end> }

}
}

Example 1

The following example shows the instantiation of predefined templates.

// same rectangle as in previous example
RECTANGLE {left = -1; bottom = 5; right = 3; top = 8; }
//or
RECTANGLE {-1 5 3 8 }

// diagonals through the rectangle
LINE {x_start = -1; y_start = 5; x_end = 3; y_end = 8; }
LINE {x_start = 3; y_start = 5; x_end = -1; y_end = 8; }
//or
LINE { -1 5 3 8 }
LINE { 3 5 -1 8 }

The definitions for predefined templates are fixed. Therefore the keywords RECTANGLE and LINE are
reserved. On the other hand, the definitions for user-defined templates are only known by the library supplied by
the user.

Example 2

The following example shows some user-defined templates.
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 127

1

5

10

15

20

25

30

35

40

45

50

55
TEMPLATE HORIZONTAL_LINE {
POLYLINE {

POINT_TO_POINT = straight;
COORDINATES { <left> <y> <right> <y> }

}
}
TEMPLATE VERTICAL_LINE {

POLYLINE {
POINT_TO_POINT = straight;
COORDINATES { <x> <bottom> <x> <top> }

}
}

Example 3

The following example shows the instantiation of user-defined templates.

// lines bounding the rectangle
HORIZONTAL_LINE { y = 5; left = -1; right = 3; }
HORIZONTAL_LINE { y = 8; left = -1; right = 3; }
VERTICAL_LINE { x = -1; bottom = 5; top = 8; }
VERTICAL_LINE { x = 3; bottom = 5; top = 8; }
//or
HORIZONTAL_LINE { 5 -1 3 }
HORIZONTAL_LINE { 8 -1 3 }
VERTICAL_LINE { -1 5 8 }
VERTICAL_LINE { 3 5 8 }

9.17.6 Geometric transformation

A geometric transformation XXX, as shown in Syntax 108.

Statements for geometric transformation

This section also defines SHIFT, ROTATE, FLIP, and REPEAT.

geometric_transformations ::=
geometric_transformation { geometric_transformation }

geometric_transformation ::=
SHIFT_two_level_annotation

| ROTATE_one_level_annotation
| FLIP_one_level_annotation
| repeat

repeat ::=
REPEAT [= unsigned] {

shift_two_level_annotation
[repeat]

}

Syntax 108—Geometric transformation
128 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
9.17.6.1 SHIFT statement

The SHIFT statement defines the horizontal and vertical offset measured between the coordinates of the geomet-
ric model and the actual placement of the object. Eventually, a layout tool only supports integer numbers. The
numbers are in units of DISTANCE.

shift_annotation_container ::=

SHIFT { horizontal_or_vertical_annotations }

horizontal_or_vertical_annotations ::=
horizontal_annotation

| vertical_annotation
| horizontal_annotation vertical_annotation

horizontal_annotation ::=

HORIZONTAL = number ;

vertical_annotation ::=

VERTICAL = number ;

If only one annotation is given, the default value for the other one is 0. If the SHIFT statement is not given, both
values default to 0.

9.17.6.2 ROTATE statement

The rotate_annotation statement defines the angle of rotation in degrees measured between the orienta-
tion of the object described by the coordinates of the geometric model and the actual placement of the object
measured in counter-clockwise direction, specified by a number between 0 and 360. Eventually, a layout tool
can only support angles which are multiple of 90 degrees. The default is 0.

rotate_annotation ::=

ROTATE = number ;

The object shall rotate around its origin.

9.17.6.3 FLIP statement

The flip_annotation describes a transformation of the specified coordinates by flipping the object around
an axis specified by a number between 0 and 180. The number represents the angle of the flipping direction in
degrees. Eventually, a layout tool can only support angles which are multiple of 90 degrees. The axis is orthogo-
nal to the flipping direction. The axis shall go through the origin of the object.

flip_annotation ::=

FLIP = number ;

Example

FLIP = 0 means flip in horizontal direction, axis is vertical.
FLIP = 90 means flip in vertical direction, axis is horizontal.

9.17.6.4 REPEAT statement

The REPEAT statement shall be defined as shown in Syntax 109.
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 129

1

5

10

15

20

25

30

35

40

45

50

55
repeat ::=
REPEAT [= unsigned] {

shift_annotation_container
[repeat]

}

The purpose of the REPEAT statement is to describe the replication of a physical object in a regular way, for
example SITE (see Section 9.12). The REPEAT statement can also appear within a geometric_model.

The unsigned number defines the total number of replications. The number 1 means, the object appears just
once. If this number is not given, the REPEAT statement defines a rule for an arbitrary number of replications.

REPEAT statements can also be nested.

Examples

The following example replicates an object three times along the horizontal axis in a distance of 7 units.

REPEAT = 3 {
SHIFT { HORIZONTAL = 7; }

}

The following example replicates an object five times along a 45-degree axis.

REPEAT = 5 {
SHIFT { HORIZONTAL = 4; VERTICAL = 4; }

}

The following example replicates an object two times along the horizontal axis and four times along the vertical
axis.

REPEAT = 2 {
SHIFT { HORIZONTAL = 5; }
REPEAT = 4 {

SHIFT { VERTICAL = 6; }
}

}

NOTE—The order of nested REPEAT statements does not matter. The following example gives the same result as the previ-
ous example.

REPEAT = 4 {
SHIFT { VERTICAL = 6; }
REPEAT = 2 {

SHIFT { HORIZONTAL = 5; }

repeat ::=
REPEAT [= unsigned] {

shift_two_level_annotation
[repeat]

}

Syntax 109—REPEAT statement
130 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
}
}

9.17.6.5 Summary of geometric transformations

geometric_transformations ::=
geometric_transformation { geometric_transformation }

geometric_transformation ::=
shift_annotation_container

| rotate_annotation
| flip_annotation
| repeat

Rules and restrictions:

— A physical object can contain a geometric_transformation statement of any kind, but no more
than one of a specific kind.

— The geometric_transformation statements shall apply to all geometric_models within the
context of the object.

— The geometric_transformation statements shall refer to the origin of the object, i.e., the point
with coordinates { 0 0 }. Therefore, the result of a combined transformation shall be independent of
the order in which each individual transformation is applied.

These are demonstrated in Figure 20.

Figure 20—Illustration of FLIP, ROTATE, and SHIFT

9.18 Statements related to functional description

This section specifies the functional modeling for synthesis, formal verification, and simulation.

9.18.1 FUNCTION statement

A FUNCTION statement XXX, as shown in Syntax 110.

SHIFTROTATEFLIP

legend: origin of the object
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 131

1

5

10

15

20

25

30

35

40

45

50

55
9.18.2 TEST statement

A CELL can contain a TEST statement, which is defined as shown in Syntax 111.

test ::=

TEST { behavior }

The purpose is to describe the interface between an externally applied test algorithm and the CELL. The behav-
ior statement within the TEST statement uses the same syntax as the behavior statement within the FUNC-
TION statement. However, the set of used variables is different. Both the TEST and the FUNCTION statement
shall be self-contained, complete and complementary to each other.

9.18.3 Physical bitmap for memory BIST

This section defines the physical bitmap for memory BIST. This is a particular case of the usage of the TEST
statement.

9.18.3.1 Definition of concepts

The physical architecture of a memory can be described by the following parameters (as depicted in Figure 21):

BANK index: A memory can be arranged in one or several banks, each of which constitutes a two-dimen-
sional array of rows and columns
ROW index: A row of memory cells within one bank shares the same row decoder line.
COLUMN index: A column of memory cells within one bank shares the same data bit line and, if appli-
cable, the same sense amplifier.

function ::=
FUNCTION { function_items }

| function_template_instantiation
function_items ::=

function_item { function_item }
function_item ::=

all_purpose_item
| behavior
| structure
| statetable

Syntax 110—FUNCTION statement

test ::=
TEST { test_items }

| test_template_instantiation
test_items ::=

test_item { test_item }
test_item ::=

all_purpose_item
| behavior
| statetable

Syntax 111—TEST statement
132 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
Figure 21—Illustration of a physical memory architecture, arranged in banks, rows, columns

The physical memory architecture is not evident from the functional description and the pins involved in the
functional description of the memory. Those pins are called logical pins, e.g., logical address and logical data.

A memory BIST tool needs to know which logical address and data corresponds to a physical row, column, or
bank in order to write certain bit patterns into the memory and read expected bit patterns from the memory. Also,
the tool needs to know whether the physical data in a specific location is inverted or not with respect to the corre-
sponding logical data (as depicted in Figure 22).

Figure 22—Illustration of the memory BIST concept

A mapper between physical rows, columns, banks, data and logical addresses, and data pins shall be part of the
library description of a memory cell.

The physical row, column, and bank indices can be modeled as virtual inputs to the memory circuit. The data to
be written to a physical memory location can also be modeled as a virtual input. The data to be read from a phys-
ical memory location can be modeled as a virtual output. Since every data that is written for the purpose of test
also needs to be read, the data can be modeled as a virtual bidirectional pin. A virtual pin is a pin with
VIEW=none, i.e., the pin is not visible in any netlist.

COLUMN index

ROW index

BANK index

on
e

C
O

L
U

M
N

on
e BANK

one ROW

WrapperAlgorithm

logical

Memory
physical row

physical column

physical data

physical bank

logical
address
pins

data input
pins

logical
data output
pins

circuit
write physical data
to row, column, bank

read physical data
from row, column, bank

under test
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 133

1

5

10

15

20

25

30

35

40

45

50

55
9.18.3.2 Explanatory example

One-dimensional arrays with SIGNALTYPE=address (here: PIN[3:0] addr) shall be recognized as
address pins to be mapped, involving other one-dimensional arrays with ATTRIBUTE { ROW_INDEX } (here:
PIN[1:0] row) and ATTRIBUTE { COLUMN_INDEX } (here: PIN[3:0] col). This memory has only
one bank. Therefore, no one-dimensional array with ATTRIBUTE { BANK_INDEX } exists here.

One-dimensional arrays with SIGNALTYPE=data (here: PIN[3:0] Din and PIN[3:0] Dout) shall be
recognized as data pins to be mapped, involving other one-dimensional arrays with ATTRIBUTE
{ DATA_INDEX } (here: PIN[1:0] dat) and scalar pins with ATTRIBUTE { DATA_VALUE } (here:
PIN bit).

NOTE—Since the data buses are 4-bits wide, the data index is 2-bits wide, since 2=log2(4).

Base Example

CELL my_memory {
PIN[3:0] addr { DIRECTION=input; SIGNALTYPE=address; }
PIN[3:0] Din { DIRECTION=input; SIGNALTYPE=data; }
PIN[3:0] Dout { DIRECTION=output; SIGNALTYPE=data; }
PIN[3:0] bits[0:15] { DIRECTION=none; VIEW=none; SCOPE=behavior; }
PIN write_enb { DIRECTION=input; SIGNALTYPE=write_enable;

POLARITY=high; ACTION=asynchronous;
}
PIN[1:0] dat { ATTRIBUTE { DATA_INDEX } DIRECTION=none; VIEW=none; }
PIN bit { ATTRIBUTE { DATA_VALUE } DIRECTION=both; VIEW=none; }
PIN[1:0] row {

ATTRIBUTE { ROW_INDEX } RANGE { 0: 3 }
DIRECTION=input; VIEW=none;

}
PIN[3:0] col {

ATTRIBUTE { COLUMN_INDEX } RANGE { 0 : 15 }
DIRECTION=input; VIEW=none;

}
FUNCTION {

BEHAVIOR {
Dout = bits[addr];
@ (write_enb) { bits[addr] = Din; }

} }
/*different physical architectures are shown in the following examples*/
}

134 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
Example 1

TEST {
BEHAVIOR {

// map row and column index to logical address
addr[1:0] = row[1:0];
addr[3:2] = col[3:2];

// map column index to logical data index
dat[1:0] = col[1:0];

// map physical data to input and output data
Din[dat] = bit;
bit = Dout[dat];

}
}

Example 2

TEST {
BEHAVIOR {

// map row and column index to logical address

ph
ys

ic
al

ro
w

‘h0

‘h1

‘h2

‘h3

physical column

D[0] D[1] D[2] D[3] D[0] D[1] D[2] D[3] D[0] D[1] D[2] D[3] D[0] D[1] D[2] D[3]

D[0] D[1] D[2] D[3] D[0] D[1] D[2] D[3] D[0] D[1] D[2] D[3] D[0] D[1] D[2] D[3]

D[0] D[1] D[2] D[3] D[0] D[1] D[2] D[3] D[0] D[1] D[2] D[3] D[0] D[1] D[2] D[3]

D[0] D[1] D[2] D[3] D[0] D[1] D[2] D[3] D[0] D[1] D[2] D[3] D[0] D[1] D[2] D[3]

‘h0 ‘h1 ‘h2 ‘h3 ‘h4 ‘h5 ‘h6 ‘h7 ‘h8 ‘h9 ‘hA ‘hB ‘hC ‘hD ‘hE ‘hF

00

01

10

11

00 00 00 00 01 01 01 01 10 10 10 10 11 11 11 11addr[3:2]
ad

dr
[1

:0
]

ph
ys

ic
al

ro
w

‘h0

‘h1

‘h2

‘h3

physical column

D[0] D[0] D[0] D[0] D[1] D[1] D[1] D[1] D[2] D[2] D[2] D[2] D[3] D[3] D[3] D[3]

D[0] D[0] D[0] D[0] D[1] D[1] D[1] D[1] D[2] D[2] D[2] D[2] D[3] D[3] D[3] D[3]

D[0] D[0] D[0] D[0] D[1] D[1] D[1] D[1] D[2] D[2] D[2] D[2] D[3] D[3] D[3] D[3]

D[0] D[0] D[0] D[0] D[1] D[1] D[1] D[1] D[2] D[2] D[2] D[2] D[3] D[3] D[3] D[3]

‘h0 ‘h1 ‘h2 ‘h3 ‘h4 ‘h5 ‘h6 ‘h7 ‘h8 ‘h9 ‘hA ‘hB ‘hC ‘hD ‘hE ‘hF

00

01

10

11

00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11addr[3:2]

ad
dr

[1
:0

]

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 135

1

5

10

15

20

25

30

35

40

45

50

55
addr[1:0] = row[1:0];
addr[3:2] = col[1:0];

// map column index to logical data index
dat[1:0] = col[3:2];

// map physical data to input and output data
Din[dat] = bit;
bit = Dout[dat];

}
}

Example 3

TEST {
BEHAVIOR {

// map row and column index to logical address
addr[0] = row[1];
addr[1] = row[0] ^ row[1]
addr[2] = col[0] ^ col[1] ^ col[2];
addr[3] = col[2] ^ col[3];

// map column index to logical data index
dat[0] = col[1];
dat[1] = col[3];

// map physical data to input and output data
Din[dat]=bit^(row[1]&col[2]&!col[3] | !row[1]&!col[2]&col[3]);
bit=Dout[dat]^(row[1]&col[2]&!col[3] | !row[1]&!col[2]&col[3]);

}
}

NOTES

1—This enables the description of a complete bitmap of a memory in a compact way.

2—The RANGE feature is not restricted to BIST. It can be used to describe a valid contiguous range on any bus. This allevi-
ates the need for interpreting a VECTOR with ILLEGAL statement to get the valid range. However, the VECTOR with ILLE-
GAL statement is still necessary to describe the behavior of a device when illegal values are driven on a bus.

ph
ys

ic
al

ro
w

‘h0

‘h1

‘h2

‘h3

physical column

D[0] D[0] D[1] D[1] D[0] D[0] D[1] D[1]!D[2]!D[2]!D[3]!D[3] D[2] D[2] D[3] D[3]

D[0] D[0] D[1] D[1] D[0] D[0] D[1] D[1]!D[2]!D[2]!D[3]!D[3] D[2] D[2] D[3] D[3]

D[0] D[0] D[1] D[1]!D[0]!D[0]!D[1]!D[1] D[2] D[2] D[3] D[3] D[2] D[2] D[3] D[3]

D[0] D[0] D[1] D[1]!D[0]!D[0]!D[1]!D[1] D[2] D[2] D[3] D[3] D[2] D[2] D[3] D[3]

‘h0 ‘h1 ‘h2 ‘h3 ‘h4 ‘h5 ‘h6 ‘h7 ‘h8 ‘h9 ‘hA ‘hB ‘hC ‘hD ‘hE ‘hF

00

10

11

01

00 01 11 10 11 10 00 01 00 01 11 10 11 10 00 01addr[3:2]

ad
dr

[1
:0

]

136 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
3—The TEST statement with BEHAVIOR allows for generalization from memory BIST to any test vector generation require-
ment, e.g., logic BIST. The only necessary additions would be other PIN ATTRIBUTEs describing particular features to be
recognized by the test vector generation algorithm for the target test algorithm.

9.18.4 BEHAVIOR statement

A BEHAVIOR statement XXX, as shown in Syntax 112.

BEHAVIOR

Inside BEHAVIOR, variables that appear at the LHS of an assignment conditionally controlled by a vector
expression, as opposed to an unconditional continuous assignment, hold their values, when the vector expression
evaluates False. Those variables are considered to have latch-type behavior.

Examples

BEHAVIOR {
@(G){

Q = D; // both Q and QN have latch-type behavior
QN = !D;

}
}
BEHAVIOR {

@(G){
Q = D; // only Q has latch-type behavior

}
QN = !Q;

}

9.18.5 STRUCTURE statement

An optional STRUCTURE statement shall be legal in the context of a FUNCTION. A STRUCTURE statement
describes the structure of a complex cell composed of atomic cells, for example I/O buffers, LSSD flip-flops, or
clock trees. The STRUCTURE statement shall be legal inside the FUNCTION statement (see 11.17):

behavior ::=
BEHAVIOR { behavior_items }

| behavior_template_instantiation
behavior_items ::=

behavior_item { behavior_item }
behavior_item ::=

boolean_assignment
| control_statement
| primitive_instantiation
| behavior_item_template_instantiation

boolean_assignments ::=
boolean_assignment { boolean_assignment }

boolean_assignment ::=
pin_variable = boolean_expression ;

primitive_instantiation ::=
primitive_identifier [identifier] { pin_values }

| primitive_identifier [identifier] { boolean_assignments }
control_statement ::=

@ control_expression { boolean_assignments } { : control_expression { boolean_assignments } }

Syntax 112—BEHAVIOR statement
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 137

1

5

10

15

20

25

30

35

40

45

50

55
A STRUCTURE statement is defined as shown in Syntax 113.

structure ::=

STRUCTURE { named_cell_instantiations }

named_cell_instantiations ::=
named_cell_instantiation { named_cell_instantiation }

named_cell_instantiation ::=

cell_identifier instance_identifier { logic_values }
| cell_identifier instance_identifier { pin_instantiations }

The STRUCTURE statement shall describe a netlist of components inside the CELL. The STRUCURE statement
shall not be a substitute for the BEHAVIOR statement. If a FUNCTION contains only a STRUCTURE statement
and no BEHAVIOR statement, a behavior description for that particular cell shall be meaningless (e.g., fillcells,
diodes, vias, or analog cells).

Timing and power models shall be provided for the CELL, if such models are meaningful. Application tools are
not expected to use function, timing, or power models from the instantiated components as a substitute of a miss-
ing function, timing, or power model at the top-level. However, tools performing characterization, construction,
or verification of a top-level model shall use the models of the instantiated components for this purpose.

Test synthesis applications can use the structural information in order to define a one-to-many mapping for scan
cell replacement, such as where a single flip-flop is replaced by a pair of master/slave latches. A macro cell can
be defined whose structure is a netlist containing the master and slave latch and this shall contain the
NON_SCAN_CELL annotation to define which sequential cells it is replacing. No timing model is required for
this macro cell, since it should be treated as a transparent hierarchy level in the design netlist after test synthesis.

NOTES

1—Every instance_identifier within a STRUCTURE statement shall be different from each other.

2—The STRUCTURE statement provides a directive to the application (e.g., synthesis and DFT) as to how the CELL is imple-
mented. A CELL referenced in named_cell_instantiation can be replaced by another CELL within the same
SWAP_CLASS and RESTRICT_CLASS (recognized by the application).

3—The cell_identifier within a STRUCTURE statement can refer to actual cells as well as to primitives. The usage of
primitives is recommended in fault modeling for DFT.

4—BEHAVIOR statements also provide the possibility of instantiating primitives. However, those instantiations are for mod-
eling purposes only; they do not necessarily match a physical structure. The STRUCTURE statement always matches a physi-
cal structure.

Example 1

structure ::=
STRUCTURE { named_cell_instantiations }

| structure_template_instantiation
named_cell_instantiations ::=

named_cell_instantiation { named_cell_instantiation }
named_cell_instantiation ::=

cell_identifier instance_identifier { pin_values }
| cell_identifier instance_identifier { pin_assignments }

Syntax 113—STRUCTURE statement
138 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
iobuffer = pre buffer + main buffer

CELL my_main_driver {
DRIVERTYPE = slotdriver ;
BUFFERTYPE = output ;
PIN i { DIRECTION = input; }
PIN o { DIRECTION = output; }
FUNCTION { BEHAVIOR { o = i ; } }

}
CELL my_pre_driver {

DRIVERTYPE = predriver ;
BUFFERTYPE = output ;
PIN i { DIRECTION = input; }
PIN o { DIRECTION = output; }
FUNCTION { BEHAVIOR { o = i ; } }

}
CELL my_buffer {

DRIVERTYPE = both ;
BUFFERTYPE = output ;
PIN A { DIRECTION = input; }
PIN Z { DIRECTION = output; }
PIN Y { VIEW = physical; }
FUNCTION {

BEHAVIOR { Z = A ; }
STRUCTURE {

my_pre_driver pre { A Y }// pin by order
my_main_driver main { i=Y; o=Z; }// pin by name

}
}

}

Example 2

lssd flip-flop = latch + flip-flop + mux

CELL my_latch {
RESTRICT_CLASS { synthesis scan }
PIN enable { DIRECTION = input; }
PIN d { DIRECTION = input; }
PIN d { DIRECTION = output; }
FUNCTION { BEHAVIOR {

@ (enable) { q = d ; }
} }

}
CELL my_flip-flop {

RESTRICT_CLASS { synthesis scan }
PIN clock { DIRECTION = input; }
PIN d { DIRECTION = input; }
PIN q { DIRECTION = output; }
FUNCTION { BEHAVIOR {

@ (01 clock) { q = d ; }
} }

}

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 139

1

5

10

15

20

25

30

35

40

45

50

55
CELL my_mux {
RESTRICT_CLASS { synthesis scan }
PIN dout { DIRECTION = output; }
PIN din0 { DIRECTION = input; }
PIN din1 { DIRECTION = input; }
PIN select { DIRECTION = input; }
FUNCTION { BEHAVIOR {

dout = select ? din1 : din0 ;
} }

}
CELL my_lssd_flip-flop {

RESTRICT_CLASS { scan }
CELLTYPE = block;
SCAN_TYPE = lssd;
PIN clock { DIRECTION = input; }
PIN master_clock { DIRECTION = input; }
PIN slave_clock { DIRECTION = input; }
PIN scan_data { DIRECTION = input; }
PIN din { DIRECTION = input; }
PIN dout { DIRECTION = output; }
PIN scan_master { VIEW = physical; }
PIN scan_slave { VIEW = physical; }
PIN d_internal { VIEW = physical; }
FUNCTION { BEHAVIOR {

@ (master_clock) {
scan_data_master = scan_data ;

}
@ (slave_clock & ! clock) {

dout = scan_data_master ;
} : (01 clock) {

dout = din ;
} }

STRUCTURE {
my_latch U0 {

enable = master_clock;
din = scan_data;
dout = scan_data_master;

}
my_flip-flop U1 {

clock = clock;
d = din;
q = d_internal;

}
my_mux U2 {

select = slave_clock;
din1 = scan_data_master;
din0 = dout;
dout = scan_data_slave;

}
my_mux U3 {

select = clock;
din1 = d_internal;
din0 = scan_data_slave;
dout = dout;
140 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
} }
}
NON_SCAN_CELL {

my_flip_flop {
clock = clock;
d = din;
q = dout;
'b0 = slave_clock;

}
}

}

Example 3

clock tree = chains of clock buffers

CELL my_root_buffer {
RESTRICT_CLASS { clock }
PIN i0 { DIRECTION = input; }
PIN o0 { DIRECTION = output; }
FUNCTION { BEHAVIOR { o0 = i0 ; } }

}
CELL my_level1_buffer {

RESTRICT_CLASS { clock }
PIN i1 { DIRECTION = input; }
PIN o1 { DIRECTION = output; }
FUNCTION { BEHAVIOR { o1 = i1 ; } }

}
CELL my_level2_buffer {

RESTRICT_CLASS { clock }
PIN i2 { DIRECTION = input; }
PIN o2 { DIRECTION = output; }
FUNCTION { BEHAVIOR { o2 = i2 ; } }

}
CELL my_level3_buffer {

RESTRICT_CLASS { clock }
PIN i3 { DIRECTION = input; }
PIN o3 { DIRECTION = output; }
FUNCTION { BEHAVIOR { o3 = i3 ; } }

}
CELL my_tree_from_level2 {

RESTRICT_CLASS { clock }
PIN in { DIRECTION = input; }
PIN out { DIRECTION = output; }
PIN[1:2] level3 { DIRECTION = output; }
FUNCTION {

BEHAVIOR { out = in ; }
STRUCTURE {

my_level2_buffer U1 { i2=in; o2=out; }
my_level3_buffer U2 { i3=out; o3=level3[1]; }
my_level3_buffer U3 { i3=out; o3=level3[2]; }

}
}

}

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 141

1

5

10

15

20

25

30

35

40

45

50

55
CELL my_tree_from_level1 {
RESTRICT_CLASS { clock }
PIN in { DIRECTION = input; }
PIN out { DIRECTION = output; }
PIN[1:4] level2 { DIRECTION = output; }
FUNCTION {

BEHAVIOR { out = in ; }
STRUCTURE {

my_level1_buffer U1 { i1=in; o1=out; }
my_tree_from_level2 U2 { i2=out; o2=level2[1]; }
my_tree_from_level2 U3 { i2=out; o2=level2[2]; }
my_tree_from_level2 U4 { i2=out; o2=level2[3]; }
my_tree_from_level2 U5 { i2=out; o2=level2[4]; }

}
}

}
CELL my_tree_from_root {

RESTRICT_CLASS { clock }
PIN in { DIRECTION = input; }
PIN out { DIRECTION = output; }
PIN[1:4] level1 { DIRECTION = output; }
FUNCTION {

BEHAVIOR { out = in ; }
STRUCTURE {

my_root_buffer U1 { i0=in; o0=out; }
my_tree_from_level1 U2 { i1=o; o1=level1[1]; }
my_tree_from_level1 U3 { i1=o; o1=level1[2]; }
my_tree_from_level1 U4 { i1=o; o1=level1[3]; }
my_tree_from_level1 U5 { i1=o; o1=level1[4]; }

}
}

}

Example 4

Multiplexor, showing the conceptional difference between BEHAVIOR and STRUCTURE.

CELL my_multiplexor {
PIN a { DIRECTION = input; }
PIN b { DIRECTION = input; }
PIN s { DIRECTION = input; }
PIN y { DIRECTION = output; }
FUNCTION {

BEHAVIOR {
// s_a and s_b are virtual internal nodes

ALF_AND { out = s_a; in[0] = !s; in[1] = a; }
ALF_AND { out = s_b; in[0] = s; in[1] = b; }
ALF_OR { out = y; in[0] = s_a; in[1] = s_b; }

}
STRUCTURE {

// sbar, sel_a, sel_b are physical internal nodes
ALF_NOT { out = sbar; in = s; }
ALF_NAND { out = sel_a; in[0] = sbar; in[1] = a; }
ALF_NAND { out = sel_b; in[0] = s; in[1] = b; }
142 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
ALF_NAND { out = y; in[0] = sel_a; in[1] = sel_b; }
}

}
}

9.18.6 VIOLATION statement

A VIOLATION statement XXX, as shown in Syntax 114.

VIOLATION container

A VIOLATION statement can appear within an ILLEGAL statement (see 6.7) and also within a
TIMING_CONSTRAINT or a SAME_PIN_TIMING_CONSTRAINT. The VIOLATION statement can contain
the BEHAVIOR object (see 11.17), since the behavior in case of timing constraint violation cannot be described
in the FUNCTION. The VIOLATION statement can also contain the annotations shown in Table 50.

Example

VECTOR (01 d <&> 01 cp) {
SETUP {

VIOLATION {
MESSAGE_TYPE = error;

MESSAGE = “setup violation 01 d <&> 01 cp“;
BEHAVIOR {q = 'bx;}

}
}

}

9.18.7 STATETABLE statement

A STATETABLE statement XXX, as shown in Syntax 115.

violation ::=
VIOLATION { violation_items }

| violation_template_instantiation
violation_items ::=

violation_item { violation_item }
violation_item ::=

MESSAGE_TYPE_single_value_annotation
| MESSAGE_single_value_annotation
| behavior

Syntax 114—VIOLATION statement

Table 50—Annotations within VIOLATION

Keyword Value type Description

MESSAGE_TYPE string Specifies the type of the message. It can be one of infor-
mation, warning, or error.

MESSAGE string Specifies the message itself.
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 143

1

5

10

15

20

25

30

35

40

45

50

55
STATETABLE

9.18.7.1 Definition

The functional description can be supplemented by a STATETABLE, the first row of which contains the argu-
ments that are object IDs of the declared PINs. The arguments appear in two fields, the first is input and the sec-
ond is output. The fields are separated by a :. The rows are separated by a ;. The arguments can appear in both
fields if the PINs have attribute direction=output or direction=both. If direction=output,
then the argument has latch-type behavior. The argument on the input field is considered previous state and the
argument on the output field is considered the next state. If direction=both, then the argument on the input
field applies for input direction and the argument on the output field applies for output direction of the bidirec-
tional PIN.

Example

CELL ff_sd {
PIN q {DIRECTION=output;}
PIN d {DIRECTION=input;}
PIN cp {DIRECTION=input;

SIGNALTYPE=clock;
POLARITY=rising_edge;}

PIN cd {DIRECTION=input; SIGNALTYPE=clear; POLARITY=low;}
PIN sd {DIRECTION=input; SIGNALTYPE=set; POLARITY=low;}
FUNCTION {

BEHAVIOR {
@(!cd) {q = 0;} :(!sd) {q = 1;} :(01 cp) {q = d;}

}
STATETABLE {

cd sd cp d q : q ;
0 ? ?? ? ? : 0 ;
1 0 ?? ? ? : 1 ;

statetable ::=
STATETABLE [identifier]

{ statetable_header statetable_row { statetable_row } }
| statetable_template_instantiation

statetable_header ::=
input_pin_variables : output_pin_variables ;

statetable_row ::=
statetable_control_values : statetable_data_values ;

statetable_control_values ::=
statetable_control_value { statetable_control_value }

statetable_control_value ::=
bit_literal

| based_literal
| unsigned
| edge_value

statetable_data_values ::=
statetable_data_value { statetable_data_value }

statetable_data_value ::=
bit_literal

| based_literal
| unsigned
| ([!] pin_variable)
| ([~] pin_variable)

Syntax 115—STATETABLE statement
144 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
1 1 1? ? 0 : 0 ;
1 1 ?0 ? 1 : 1 ;
1 1 1? ? 0 : 0 ;
1 1 ?0 ? 1 : 1 ;
1 1 01 ? ? :(d);

}
}

}

If the output variable with latch-type behavior depends only on the previous state of itself, as opposed to the pre-
vious state of other output variables with latch-type behavior, it is not necessary to use that output variable in the
input field. This allows a more compact form of the STATETABLE.

Example

STATETABLE {
cd sd cp d : q ;
0 ? ?? ? : 0 ;
1 0 ?? ? : 1 ;
1 1 1? ? :(q);
1 1 ?0 ? :(q);
1 1 01 ? :(d);

}

A generic ALF parser shall make the following semantic checks.

— Are all variables of a FUNCTION declared either by declaration as PIN names or through assignment?
— Does the STATETABLE exclusively contain declared PINs?
— Is the format of the STATETABLE, i.e., the number of elements in each field of each row, consistent?
— Are the values consistently either state or transition digits?
— Is the number of digits in each TABLE entry compatible with the signal bus width?

A more sophisticated checker for complete verification of logical consistency of a FUNCTION given in both
equation and tabular representation is out of scope for a generic ALF parser, which checks only syntax and com-
pliance to semantic rules. However, formal verification algorithms can be implemented in special-purpose ALF
analyzers or model generators/compilers.

9.18.7.2 ROM initialization

The STATETABLE statement can be used to describe the contents of a ROM, as far as this content is fixed in the
library.

Example

CELL my_rom {
CELLTYPE = memory;
ATTRIBUTE { rom asynchronous }
PIN[1:2] addr { DIRECTION = input; SIGNALTYPE = address; }
PIN[3:0] dout { DIRECTION = output; SIGNALTYPE = data; }
PIN[3:0] mem[1:4] { DIRECTION=none; VIEW=none; SIGNALTYPE=data; }
FUNCTION {

BEHAVIOR { dout = mem[addr]; }
STATETABLE {

addr : mem ;
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 145

1

5

10

15

20

25

30

35

40

45

50

55
‘h0 : ‘h5 ;
‘h1 : ‘hA ;
‘h2 : ‘h5 ;
‘h3 : ‘hA ;

}
}

}

For flexibility, a separate included file can be used:

CELL my_rom {
CELLTYPE = memory;
ATTRIBUTE { rom asynchronous }
PIN[1:2] addr { DIRECTION = input; SIGNALTYPE = address; }
PIN[3:0] dout { DIRECTION = output; SIGNALTYPE = data; }
PIN[3:0] mem[1:4] { DIRECTION=none; VIEW=none; SIGNALTYPE=data; }
FUNCTION {

BEHAVIOR { dout = mem[addr]; }
INCLUDE “rom_initialization_file.alf” ;
}

}
}

The contents of the included file rom_initialization_file.alf are:

STATETABLE {
addr : mem ;
‘h0 : ‘h5 ;
‘h1 : ‘hA ;
‘h2 : ‘h5 ;
‘h3 : ‘hA ;

}

9.18.8 PRIMITIVE statement

A PRIMITIVE statement XXX, as shown in Syntax 116.

Predefined models

This section defines the use of predefined models in ALF.

primitive ::=
PRIMITIVE primitive_identifier { primitive_items }

| PRIMITIVE primitive_identifier ;
| primitive_template_instantiation

primitive_items ::=
primitive_item { primitive_item }

primitive_item ::=
all_purpose_item

| pin
| pin_group
| function
| test

Syntax 116—PRIMITIVE statement
146 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
9.18.8.1 Usage of PRIMITIVEs

A PRIMITIVE referenced in a CELL can replace the complete set of PIN and FUNCTION definition. PINs can
be declared before the reference to the PRIMITIVE, in order to provide supplementary annotations that cannot
be inherited from the PRIMITIVE. However, the CELL shall be pin-compatible with the PRIMITIVE.

If the PRIMITIVE or a CELL is referenced in an annotation container such as SCAN, only the subset of PINs
used in the non-scan cell shall be compatible with the PINs of the cell.

The pin names can be referenced by order or by name. In the latter case, the LHS is the pin name of the refer-
enced PRIMITIVE or CELL (e.g., the non-scan cell), the RHS is the pin name of the actual cell. A constant
logic value can also appear at the LHS or RHS, indicating a pin needs to be tied to a constant value. If this infor-
mation is already specified in an annotation inside the PIN object itself, referencing between a pin name and a
constant value is not necessary.

PRIMITIVEs can also be instantiated inside BEHAVIOR.

9.18.8.2 Concept of user-defined and predefined primitives

Primitives are described in ALF syntax. Primitives are generic cells containing PIN and FUNCTION objects
only, i.e., no characterization data. The primitives are used for structural functional modeling.

Example

PRIMITIVE MY_PRIMITIVE {
PIN x { ... }
PIN y { ... }
PIN z { ... }
FUNCTION { ... }

}
CELL MY_CELL {

PIN a { ... }
PIN b { ... }
PIN c { ... }
FUNCTION {

BEHAVIOR { MY_PRIMITIVE { x=a; y=b; z=c; } }
}
...

}

Extensible primitives, i.e., primitives with variable number of pins can be modeled using a TEMPLATE.

Example

TEMPLATE EXTENSIBLE_PRIMITIVE{
PRIMITIVE <primitive_name> {

PIN [0:<max_index>] pin_name { ... }
...

}
}
// instantiation of the template creates a primitive
EXTENSIBLE_PRIMITIVE {

primitive_name = MY_EXTENSIBLE_PRIMITIVE;
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 147

1

5

10

15

20

25

30

35

40

45

50

55
max_index = 2;
}

The set of statements above is equivalent to the following statement:

PRIMITIVE MY_EXTENSIBLE_PRIMITIVE {
PIN [0:2] pin_name { ... }

...
}

The primitive can be used as shown in the following example:

CELL MY_MEGACELL {
PIN a { ... }
PIN b { ... }
PIN c { ... }
FUNCTION {

BEHAVIOR {
// reference to the primitive
MY_EXTENSIBLE_PRIMITIVE {

pin_name[0] = a;
pin_name[1] = b;
pin_name[2] = c;

}
}

}
...

}

Primitives can be freely defined by the user. For convenience, ALF provides a set of predefined primitives with
the reserved prefix ALF_ in their name, which cannot be used by user-defined primitives.

For all PINs of predefined primitives, the following annotations are defined by default:

VIEW = functional;
SCOPE = behavioral;

For predefined extensible primitives, a placeholder can be directly in the PRIMITIVE definition:

PRIMITIVE ALF_EXTENSIBLE_PRIMITIVE {
PIN [0:<max_index>] pin_name { ... }

...
}

This is equivalent to the following more verbose set of statements:

TEMPLATE EXTENSIBLE_PRIMITIVE{
PRIMITIVE <primitive_name> {

PIN [0:<max_index>] pin_name { ... }
...

}
}
EXTENSIBLE_PRIMITIVE {

primitive_name = ALF_EXTENSIBLE_PRIMITIVE;
148 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
max_index = <max_index>;
}

9.18.8.3 Predefined combinational primitives

This section defines the use of predefined combinational primitives.

9.18.8.3.1 One input, multiple output primitives

There are two combinational primitives with one input pin and multiple output pins:

ALF_BUF and ALF_NOT

A GROUP statement is used to define the behavior of all output pins in one statement.

The output pins are indexed starting with 0. If 0 is the only index used, the index can be omitted when referenc-
ing the output pin, e.g., out refers to out[0].

Example — Primitive model of ALF_BUF

PRIMITIVE ALF_BUF {
GROUP index {0:<max_index>}
PIN[0:<max_index>] out {

DIRECTION = output ;
}
PIN in {

DIRECTION = input ;
}
FUNCTION {

BEHAVIOR {
out[index] = in;

}
}

}

Example — Primitive model of ALF_NOT

PRIMITIVE ALF_NOT {
GROUP index {0:<max_index>}
PIN[0:<max_index>] out {

DIRECTION = output ;
}
PIN in {

DIRECTION = input ;
}
FUNCTION {

BEHAVIOR {
out[index] = !in;

}
}

}

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 149

1

5

10

15

20

25

30

35

40

45

50

55
9.18.8.3.2 One output, multiple input primitives

There are six combinational primitives with one output pin and multiple input pins:

ALF_AND, ALF_NAND, ALF_OR, ALF_NOR, ALF_XOR, and ALF_XNOR

The input pins are indexed starting with 0. If 0 is the only index used, the index can be omitted when referencing
the input pin, e.g., in refers to in[0].

Example — Primitive model of ALF_AND

PRIMITIVE ALF_AND {
PIN out {

DIRECTION = output;
}
PIN[0:<max_index>] in {

DIRECTION = input;
}
FUNCTION {

BEHAVIOR {
out = & in;

}
}

}

Example — Primitive model of ALF_NAND

PRIMITIVE ALF_NAND {
PIN out {

DIRECTION = output;
}
PIN[0:<max_index>] in {

DIRECTION = input;
}
FUNCTION {

BEHAVIOR {
out = ~& in;

}
}

}

Example — Primitive model of ALF_OR

PRIMITIVE ALF_OR {
PIN out {

DIRECTION = output;
}
PIN[0:<max_index>] in {

DIRECTION = input;
}
FUNCTION {

BEHAVIOR {
out = | in;

}

150 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
}
}

Example — Primitive model of ALF_NOR

PRIMITIVE ALF_NOR {
PIN out {

DIRECTION = output;
}
PIN[0:<max_index>] in {

DIRECTION = input;
}
FUNCTION {

BEHAVIOR {
out = ~| in;

}
}

}

Example — Primitive model of ALF_XOR

PRIMITIVE ALF_XOR {
PIN out {

DIRECTION = output;
}
PIN[0:<max_index>] in {

DIRECTION = input;
}
FUNCTION {

BEHAVIOR {
out = ^in;

}
}

}

Example — Primitive model of ALF_XNOR

PRIMITIVE ALF_XNOR {
PIN out {

DIRECTION = output;
}
PIN[0:<max_index>] in {

DIRECTION = input;
}
FUNCTION {

BEHAVIOR {
out = ~^in;

}
}

}

9.18.8.4 Predefined tristate primitives

There are four tristate primitives:
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 151

1

5

10

15

20

25

30

35

40

45

50

55
ALF_BUFIF1, ALF_BUFIF0, ALF_NOTIF1, and ALF_NOTIF0

Example — Primitive model of ALF_BUFIF1

PRIMITIVE ALF_BUFIF1 {
PIN out {

DIRECTION = output;
ENABLE_PIN = enable;
ATTRIBUTE {TRISTATE}

}
PIN in {

DIRECTION = input;
}
PIN enable {

DIRECTION = input;
SIGNALTYPE = out_enable;

}
FUNCTION {

BEHAVIOR {
out = (enable)? in : 'bZ;

}
STATETABLE {

enable in : out;
0 ? : Z;
1 ? : (in);

}
}

}

Example — Primitive model of ALF_BUFIF0

PRIMITIVE ALF_BUFIF0 {
PIN out {

DIRECTION = output;
ENABLE_PIN = enable;
ATTRIBUTE {TRISTATE}

}
PIN in {

DIRECTION = input;
}
PIN enable {

DIRECTION = input;
SIGNALTYPE = out_enable;

}
FUNCTION {

BEHAVIOR {
out = (!enable)? in : 'bZ;

}
STATETABLE {
enable in : out;

1 ? : Z;
0 ? : (in);

}

152 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
}
}

Example — Primitive model of ALF_NOTIF1

PRIMITIVE ALF_NOTIF1 {
PIN out {

DIRECTION = output;
ENABLE_PIN = enable;
ATTRIBUTE {TRISTATE}

}
PIN in {

DIRECTION = input;
}
PIN enable {

DIRECTION = input;
SIGNALTYPE = out_enable;

}
FUNCTION {

BEHAVIOR {
out = (enable)? !in : 'bZ;

}
STATETABLE {

enable in : out;
0 ? : Z;
1 ? : (!in);

}
}

}

Example — Primitive model of ALF_NOTIF0

PRIMITIVE ALF_NOTIF0 {
PIN out {

DIRECTION = output;
ENABLE_PIN = enable;
ATTRIBUTE {TRISTATE}

}
PIN in {

DIRECTION = input;
}
PIN enable {

DIRECTION = input;
SIGNALTYPE = out_enable;

}
FUNCTION {

BEHAVIOR {
out = (!enable)? !in : 'bZ;

}
STATETABLE {

enable in : out;
1 ? : Z;
0 ? : (!in);

}

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 153

1

5

10

15

20

25

30

35

40

45

50

55
}
}

9.18.8.5 Predefined multiplexor

The predefined multiplexor has a known output value if either the select signal and the selected data inputs are
known or both data inputs have the same known value while the select signal is unknown.

Example — Primitive model of ALF_MUX

PRIMITIVE ALF_MUX {
PIN Q {

DIRECTION = output;
SIGNALTYPE = data;

}
PIN[1:0] D {

DIRECTION = input;
SIGNALTYPE = data;

}
PIN S {

DIRECTION = input;
SIGNALTYPE = select;

}
FUNCTION {

BEHAVIOR {
Q = (S || (d[0] ~^ d[1]))? d[1] : d[0];

}
STATETABLE {

D[0] D[1] S : Q ;
? ? 0 : (D[0]);
? ? 1 : (D[1]);
0 0 ? : 0;
1 1 ? : 1;

}
}

}

9.18.8.6 Predefined flip-flop

A dual-rail output D-flip-flop with asynchronous set and clear pins is a generic edge-sensitive sequential device.
Simpler flip-flops can be modeled using this primitive by setting input pins to appropriate constant values. More
complex flip-flops can be modeled by adding combinational logic around the primitive.

A particularity of this model is the use of the last two pins Q_CONFLICT and QN_CONFLICT, which are virtual
pins. They specify the state of Q and QN in the event CLEAR and SET become active simultaneously.

Example — Primitive model of ALF_FLIPFLOP

PRIMITIVE ALF_FLIPFLOP {
PIN Q {

DIRECTION = output;
SIGNALTYPE = data;
POLARITY = non_inverted;

}

154 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
PIN QN {
DIRECTION = output;
SIGNALTYPE = data;
POLARITY = inverted;

}
PIN D {

DIRECTION = input;
SIGNALTYPE = data;

}
PIN CLOCK {

DIRECTION = input;
SIGNALTYPE = clock;
POLARITY = rising_edge;

}
PIN CLEAR {

DIRECTION = input;
SIGNALTYPE = clear;
POLARITY = high;
ACTION = asynchronous;

}
PIN SET {

DIRECTION = input;
SIGNALTYPE = set;
POLARITY = high;
ACTION = asynchronous;

}
PIN Q_CONFLICT {

DIRECTION = input;
VIEW = none;

}
PIN QN_CONFLICT {

DIRECTION = input;
VIEW = none;

}
FUNCTION {

ALIAS QX = Q_CONFLICT;
ALIAS QNX = QN_CONFLICT;
BEHAVIOR {

@ (CLEAR && SET) {
Q = QX;
QN = QNX;

}
: (CLEAR) {

Q = 0;
QN = 1;

}
: (SET) {

Q = 1;
QN = 0;

}
: (01 CLOCK) { // edge-sensitive behavior

Q = D;
QN = !D;

}

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 155

1

5

10

15

20

25

30

35

40

45

50

55
}
STATETABLE {

D CLOCK CLEAR SET QX QNX : Q QN ;
? ?? 1 1 ? ? : (QX) (QNX);
? ?? 0 1 ? ? : 1 0 ;
? ?? 1 0 ? ? : 0 1 ;
? 1? 0 0 ? ? : (Q) (QN) ;
? ?0 0 0 ? ? : (Q) (QN) ;
? 01 0 0 ? ? : (D) (!D) ;

}
}

}

9.18.8.7 Predefined latch

The dual-rail D-latch with set and clear pins has the same functionality as the flip-flop, except the level-sensitive
clock (ENABLE pin) is used instead of the edge-sensitive clock.

Example — Primitive model of ALF_LATCH

PRIMITIVE ALF_LATCH {
PIN Q {

DIRECTION = output;
SIGNALTYPE = data;
POLARITY = non_inverted;

}
PIN QN {

DIRECTION = output;
SIGNALTYPE = data;
POLARITY = inverted;

}
PIN D {

DIRECTION = input;
SIGNALTYPE = data;

}
PIN ENABLE {

DIRECTION = input;
SIGNALTYPE = clock;
POLARITY = high;

}
PIN CLEAR {

DIRECTION = input;
SIGNALTYPE = clear;
POLARITY = high;
ACTION = asynchronous;

}
PIN SET {

DIRECTION = input;
SIGNALTYPE = set;
POLARITY = high;
ACTION = asynchronous;

}
PIN Q_CONFLICT {

DIRECTION = input;
156 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
VIEW = none;
}
PIN QN_CONFLICT {

DIRECTION = input;
VIEW = none;

}
FUNCTION {

ALIAS QX = Q_CONFLICT;
ALIAS QNX = QN_CONFLICT;
BEHAVIOR {

@ (CLEAR && SET) {
Q = QX;
QN = QNX;

}
: (CLEAR) {

Q = 0;
QN = 1;

}
: (SET) {

Q = 1;
QN = 0;

}
: (ENABLE) { // level-sensitive behavior

Q = D;
QN = !D;

}
}
STATETABLE {

D ENABLE CLEAR SET QX QNX : Q QN ;
? ? 1 1 ? ? : (QX) (QNX);
? ? 0 1 ? ? : 1 0 ;
? ? 1 0 ? ? : 0 1 ;
? 0 0 0 ? ? : (Q) (QN) ;
? 1 0 0 ? ? : (D) (!D) ;

}
}

}

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 157

1

5

10

15

20

25

30

35

40

45

50

55
158 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
10. Constructs for modeling of digital behavior

Add lead-in text

10.1 Variable declarations

Inside a CELL object, the PIN objects with the PINTYPE digital define variables for FUNCTION objects
inside the same CELL. A primary input variable inside a FUNCTION shall be declared as a PIN with DIREC-
TION=input or both (since DIRECTION=both is a bidirectional pin). However, it is not required that all
declared pins are used in the function. Output variables inside a FUNCTION need not be declared pins, since they
are implicitly declared when they appear at the left-hand side (LHS) of an assignment.

Example

CELL my_cell {
PIN A {DIRECTION = input;}
PIN B {DIRECTION = input;}
PIN C {DIRECTION = output;}
FUNCTION {

BEHAVIOR {
D = A && B;
C = !D;

}
}

}

C and D are output variables that need not be declared prior to use. After implicit declaration, D
is reused as an input variable. A and B are primary input variables.

10.2 Boolean value system

this paragraph needs to move into another section

A bit literal shall represent a single bit constant, as shown in Table 51.

Table 51—Single bit constants

Literal Description

0 Value is logic zero.

1 Value is logic one.

X or x Value is unknown.

L or l Value is logic zero with weak drive strength.

H or h Value is logic one with weak drive strength.

W or w Value is unknown with weak drive strength.

Z or z Value is high-impedance.

U or u Value is uninitialized.
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 159

1

5

10

15

20

25

30

35

40

45

50

55
The following symbols within an octal based literal shall represent numerical values, which can be mapped into
equivalent symbols within a binary based literal, as shown in .

The following symbols within a hexadecimal based literal shall represent numerical values, which can be
mapped into equivalent symbols within an octal based literal and a binary based literal, as shown in .

? Value is any of the above, yet stable.

* Value can randomly change.

Table 52—Mapping between octal base and binary base

Octal Binary (bit literal) Numerical value

0 000 0

1 001 1

2 010 2

3 011 3

4 100 4

5 101 5

6 110 6

7 111 7

Table 53—Mapping between hexadecimal base, octal base, and binary base

Hexadecimal Octal Binary (bit literal) Numerical value

0 00 0000 0

1 01 0001 1

2 02 0010 2

3 03 0011 3

4 04 0100 4

5 05 0101 5

6 06 0110 6

7 07 0111 7

8 10 1000 8

9 11 1001 9

Table 51—Single bit constants (Continued)

Literal Description
160 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
Based literals involving symbolic bit literals shall not be used to represent numerical values. They shall be
mapped from one base into another base according to the following rules:

a) A symbolic bit literal in a hexadecimal based literal shall be mapped into two subsequent occurences of
the same symbolic bit literal in an octal based literal.

b) A symbolic bit literal in an octal based literal shall be mapped into three subsequent occurences of the
same symbolic bit literal in a binary based literal.

c) A symbolic bit literal in an hexadecimal based literal shall be mapped into four subsequent occurences of
the same symbolic bit literal in a binary based literal.

Example

'o2xw0u is equivalent to'b010_xxx_www_000_uuu
'hLux is equivalent to'bLLLL_uuuu_xxxx

10.3 Combinational functions

This section defines the different types of combinational functions in ALF.

10.3.1 Combinational logic

Combinational logic can be described by continuous assignments of boolean values (True or False) to output
variables as a function of boolean values of input variables. Such functions can be expressed in either boolean
expression format or statetable format.

Let us consider an arbitrary continuous assignment

z = f(a1 ..,.. an)

In a dynamic or simulation context, the left-hand side (LHS) variable z is evaluated whenever there is a change in
one of the right-hand side (RHS) variables ai. No storage of previous states is needed for dynamic simulation of
combinational logic.

a or A 12 1010 10

b or B 13 1011 11

c or C 14 1100 12

d or D 15 1101 13

e or E 16 1110 14

f or F 17 1111 15

Table 53—Mapping between hexadecimal base, octal base, and binary base (Continued)

Hexadecimal Octal Binary (bit literal) Numerical value
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 161

1

5

10

15

20

25

30

35

40

45

50

55
10.3.2 Boolean operators on scalars

Table 54, Table 55, and Table 56 list unary, binary, and ternary boolean operators on scalars.

Combinational if-then-else clauses are constructed as follows:

<cond1>? <value1>: <cond2>? <value2>: <cond3>? <value3>: <default_value>

If cond1 evaluates to boolean True, then value1 is the result; else if cond2 evaluates to boolean True, then
value2 is the result; else if cond3 evaluates to boolean True, then value3 is the result; else
default_value is the result of this clause.

10.3.3 Boolean operators on words

Table 57 and Table 58 list unary and binary reduction operators on words (logic variables with one or more bits).
The result of an expression using these operators shall be a logic value.

Table 54—Unary boolean operators

Operator Description

!, ~ Logical inversion.

Table 55—Binary boolean operators

Operator Description

&&, & Logical AND.

||, | Logical OR.

~^ Logic equivalence (XNOR).

^ Logic anti valence (XOR).

Table 56—Ternary operator

Operator Description

? Boolean condition operator for construction of combinational
if-then-else clause.

: Boolean else operator for construction of combinational if-
then-else clause.

Table 57—Unary reduction operators

Operator Description

& AND all bits.
162 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
Table 59 and Table 60 list unary and binary bitwise operators. The result of an expression using these operators
shall be an array of bits.

~& NAND all bits.

| OR all bits.

~| NOR all bits.

^ XOR all bits.

~^ XNOR all bits.

Table 58—Binary reduction operators

Operator Description

== Equality for case comparison.

!= Non-equality for case comparison.

> Greater.

< Smaller.

>= Greater or equal.

<= Smaller or equal.

Table 59—Unary bitwise operators

Operator Description

~ Bitwise inversion.

Table 60—Binary bitwise operators

Operator Description

& Bitwise AND.

| Bitwise OR.

^ Bitwise XOR.

~^ Bitwise XNOR.

Table 57—Unary reduction operators (Continued)

Operator Description
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 163

1

5

10

15

20

25

30

35

40

45

50

55
The following arithmetic operators, listed in Table 61, are also defined for boolean operations on words. The
result of an expression using these operators shall be an extended array of bits.

The arithmetic operations addition, subtraction, multiplication, and division shall be unsigned if all the operands
have the datatype unsigned. If any of the operands have the datatype signed, the operation shall be signed. See
Table 6-25 for the DATATYPE definitions.

10.3.4 Operator priorities

The priority of binding operators to operands in boolean expressions shall be from strongest to weakest in the
following order:

a) unary boolean operator (!, ~, &, ~&, |, ~|, ^, ~^)
b) XNOR (~^), XOR (^), relational (>, <, >=, <=, ==, !=), shift (<<, >>)
c) AND (&, &&), NAND (~&), multiply (*), divide (/), modulus (%)
d) OR (|, ||), NOR (~|), add (+), subtract (-)
e) ternary operators (?, :)

10.3.5 Datatype mapping

Logical operations can be applied to scalars and words. For that purpose, the values of the operands are reduced
to a system of three logic values in the following way:

H has the logic value 1
L has the logic value 0
W, Z, U have the logic value X
A word has the logic value 1, if the unary OR reduction of all bits results in 1
A word has the logic value 0, if the unary OR reduction of all bits results in 0
A word has the logic value X, if the unary OR reduction of all bits results in X

Table 61—Binary operators

Operator Description

<< Shift left.

>> Shift right.

+ Addition.

- Subtraction.

* Multiplication.

/ Division.

% Modulo division.
164 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
Case comparison operations can also be applied to scalars and words. For scalars, they are defined in Table 62.

Table 62—Case comparison operators

A B A==B A!=B A>B A<B

1 1 1 0 0 0

1 H 0 1 X X

1 0 0 1 1 0

1 L 0 1 1 0

1 W, U, Z, X 0 1 X 0

H 1 0 1 X X

H H 1 0 0 0

H 0 0 1 1 0

H L 0 1 1 0

H W, U, Z, X 0 1 X 0

0 1 0 1 0 1

0 H 0 1 0 1

0 0 1 0 0 0

0 L 0 1 X X

0 W, U, Z, X 0 1 0 X

L 1 0 1 0 1

L H 0 1 0 1

L 0 0 1 X X

L L 1 0 0 0

L W, U, Z, X 0 1 0 X

X X 1 0 X X

X U X X X X

X 0, 1, H, L,
W, Z

0 1 X X

W W 1 0 X X

W U X X X X

W 0, 1, H, L,
X, Z

0 1 X X

Z Z 1 0 X X

Z U X X X X

Z 0, 1, H, L,
X, W

0 1 X X
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 165

1

5

10

15

20

25

30

35

40

45

50

55
For word operands, the operations > and < are performed after reducing all bits to the 3-value system first and
then interpreting the resulting number according to the datatype of the operands. For example, if datatype is
signed, 'b1111 is smaller than 'b0000; if datatype is unsigned, 'b1111 is greater than 'b0000. If two oper-
ands have the same value 'b1111 and a different datatype, the unsigned 'b1111 is greater than the signed
'b1111.

The operations >= and <= are defined in the following way:

(a >= b) === (a > b) || (a == b)
(a <= b) === (a < b) || (a == b)

10.3.6 Rules for combinational functions

If a boolean expression evaluates True, the assigned output value is 1. If a boolean expression evaluates False,
the assigned output value is 0. If the value of a boolean expression cannot be determined, the assigned output
value is X. Assignment of values other than 1, 0, or X needs to be specified explicitly.

For evaluation of the boolean expression, input value 'bH shall be treated as 'b1. Input value 'bL shall be
treated as 'b0. All other input values shall be treated as 'bX.

Examples

In equation form, these rules can be expressed as follows.

BEHAVIOR {
Z = A;

}

is equivalent to

BEHAVIOR {
Z = A ? ’b1 : ’b0;

}

More explicitly, this is also equivalent to

BEHAVIOR {
Z = (A==’b1 || A==’bH)? ’b1 : (A==’b0 || A==’bL)? ’b0 : ’bX;

}

In table form, this can be expressed as follows:

STATETABLE {
A : Z;
? : (A);

}

U 0, 1, H, L,
X, W, Z, U

X X X X

Table 62—Case comparison operators (Continued)

A B A==B A!=B A>B A<B
166 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
which is equivalent to

STATETABLE {
A : Z;
0 : 0;
1 : 1;

}

More explicitly, this is also equivalent to

STATETABLE {
A : Z;
0 : 0;
L : 0;
1 : 1;
H : 1;
X : X;
W : X;
Z : X;
U : X;

}

10.3.7 Concurrency in combinational functions

Multiple boolean assignments in combinational functions are understood to be concurrent. The order in the func-
tional description does not matter, as each boolean assignment describes a piece of a logic circuit. This is illus-
trated in Figure 26.

Figure 26—Concurrency for combinational logic

10.4 Sequential functions

This section defines the different types of sequential functions in ALF.

BEHAVIOR {
Q1 = <1st_boolean_expression(D1..Di)> ;
...
Qn = <nth_boolean_expression(D1..Di)> ;

}

Q1

Qn

D1 Di

nth boolean expression

1st boolean expression
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 167

1

5

10

15

20

25

30

35

40

45

50

55
10.4.1 Level-sensitive sequential logic

In sequential logic, an output variable zj can also be a function of itself, i.e., of its previous state. The sequential
assignment has the form

zj = f(a1 ..,.. an , z1 ..,.. zm)

The RHS cannot be evaluated continuously, since a change in the LHS as a result of a RHS evaluation shall trig-
ger a new RHS evaluation repeatedly, unless the variables attain stable values. Modeling capabilities of sequen-
tial logic with continuous assignments are restricted to systems with oscillating or self-stabilizing behavior.

However, using the concept of triggering conditions for the LHS enables everything which is necessary for mod-
eling level-sensitive sequential logic. The expression of a triggered assignment can look like this:

@ g(b1 ..,.. bk) zj = f(a1 ..,.. an , z1 ..,.. zm)

The evaluation of f is activated whenever the triggering function g is True. The evaluation of g is self-triggered,
i.e. at each time when an argument of g changes its value. If g is a boolean expression like f, we can model all
types of level-sensitive sequential logic.

During the time when g is True, the logic cell behaves exactly like combinational logic. During the time when g
is False, the logic cell holds its value. Hence, one memory element per state bit is needed.

10.4.2 Edge-sensitive sequential logic

In order to model edge-sensitive sequential logic, notations for logical transitions and logical states are needed.

If the triggering function g is sensitive to logical transitions rather than to logical states, the function g evaluates
to True only for an infinitely small time, exactly at the moment when the transition happens. The sole purpose of
g is to trigger an assignment to the output variable through evaluation of the function f exactly at this time.

Edge-sensitive logic requires storage of the previous output state and the input state (to detect a transition). In
fact, all implementations of edge-triggered flip-flops require at least two storage elements. For instance, the most
popular flip-flop architecture features a master latch driving a slave latch.

Using transitions in the triggering function for value assignment, the functionality of a positive edge triggered
flip-flop can be described as follows in ALF:

@ (01 CP) {Q = D;}

which reads “at rising edge of CP, assign Q the value of D”.

If the flip-flop also has an asynchronous direct clear pin (CD), the functional description consists of either two
concurrent statements or two statements ordered by priority, as shown in Figure 27.

// concurrent style

@ (!CD) {Q = 0;}
@ (01 CP && CD) {Q = D;}

// priority (if-then-else) style

@ (!CD) {Q = 0;} : (01 CP) {Q = D;}
168 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
Figure 27—Model of a flip-flop with asynchronous clear in ALF

The following two examples show corresponding simulation models in Verilog and VHDL.

Figure 28—Model of a flip-flop with asynchronous clear in Verilog

Figure 29—Model of a flip-flop with asynchronous clear in VHDL

The following differences in modeling style can be noticed: VHDL and Verilog provide the list of sensitive sig-
nals at the beginning of the process or always block, respectively. The information of level-or edge-sensitiv-

// full simulation model

always @(negedge CD or posedge CP) begin
if (! CD) Q <= 0;
else if (CP && !CP_last_value) Q <= D;
else Q <= 1’bx;

end
always @ (posedge CP or negedge CP) begin

if (CP===0 | CP===1’bx) CP_last_value <= CP ;
end

// simplified simulation model for synthesis

always @(negedge CD or posedge CP) begin
if (! CD) Q <= 0;
else Q <= D;

end

// full simulation model

process (CP, CD) begin
if (CD = '0') then

Q <= '0';
elsif (CP'last_value = '0' and CP = '1' and CP'event) then

Q <= D;
elsif (CP'last_value = '0' and CP = 'X' and CP'event) then

Q <= ’X’;
elsif (CP'last_value = 'X' and CP = '1' and CP'event) then

Q <= ’X’;
end if;

end process;

// simplified simulation model for synthesis

process (CP, CD) begin
if (CD = '0') then

Q <= '0';
elsif (CP = '1' and CP'event) then

Q <= D;
end if;

end process;
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 169

1

5

10

15

20

25

30

35

40

45

50

55
ity shall be inferred by if-then-else statements inside the block. ALF shows the level-or-edge sensitivity as
well as the priority directly in the triggering expression. Verilog has another particularity: The sensitivity list
indicates whether at least one of the triggering signals is edge-sensitive by the use of negedge or posedge.
However, it does not indicate which one, since either none or all signals shall have negedge or posedge qual-
ifiers.

Furthermore, posedge is any transition with 0 as initial state or 1 as final state. A positive-edge triggered flip-
flop shall be inferred for synthesis, yet this flip-flop shall only work correctly if both the initial state is 0 and the
final state is 1. Therefore, a simulation model for verification needs to be more complex than the model in the
synthesizeable RTL code.

In Verilog, the extra non-synthesizeable code needs to also reproduce the relevant previous state of the clock sig-
nal, whereas VHDL has built-in support for last_value of a signal.

10.4.3 Unary operators for vector expressions

A transition operation is defined using unary operators on a scalar net. The scalar constants (see 6.7) shall be
used to indicate the start and end states of a transition on a scalar net.

bit bit // apply transition from bit value to bit value

For example,

01 is a transition from 0 to 1.

No whitespace shall be allowed between the two scalar constants. The transition operators shown in Table 63
shall be considered legal.

Table 63—Unary vector operators on bits

Operator Description

01 Signal toggles from 0 to 1.

10 Signal toggles from 1 to 0.

00 signal remains 0.

11 Signal remains 1.

0? Signal remains 0 or toggles from 0 to arbitrary value.

1? Signal remains 1 or toggles from 1 to arbitrary value.

?0 Signal remains 0 or toggles from arbitrary value to 0.

?1 Signal remains 1 or toggles from arbitrary value to 1.

?? Signal remains constant or toggles between arbitrary values.

0* A number of arbitrary signal transitions, including possibility of constant
value, with the initial value 0.

1* A number of arbitrary signal transitions, including possibility of constant
value, with the initial value 1.

?* A number of arbitrary signal transitions, including possibility of constant
value, with arbitrary initial value.
170 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
Unary operators for transitions can also appear in the STATETABLE.

Transition operators are also defined on words (and can appear the in STATETABLE as well):

'base word 'base word

In this context, the transition operator shall apply transition from first word value to second word value.

For example,

'hA'h5 is a transition of a 4-bit signal from 'b1010 to 'b0101.

No whitespace shall be allowed between base and word.

The unary and binary operators for transition, listed in Table 64 and Table 65 respectively, are defined on bits and
words.

10.4.4 Basic rules for sequential functions

A sequential function is described in equation form by a boolean assignment with a condition specified by a
boolean expression or a vector expression. If the condition evaluates to 1 (True), the boolean assignment is acti-
vated and the assigned output values follows the rules for combinational functions. If the vector expression eval-
uates to 0 (False), the output variables hold their assigned value from the previous evaluation.

For evaluation of a condition, the value 'bH shall be treated as True, the value 'bL shall be treated as False. All
other values shall be treated as the unknown value 'bX.

Example

*0 A number of arbitrary signal transitions, including possibility of constant
value, with the final value 0.

*1 A number of arbitrary signal transitions, including possibility of constant
value, with the final value 1.

*? A number of arbitrary signal transitions, including possibility of constant
value, with arbitrary final value.

Table 64—Unary vector operators on bits or words

Operator Description

?- No transition occurs.

?? Apply arbitrary transition, including possibility of constant value.

?! Apply arbitrary transition, excluding possibility of constant value.

?~ Apply arbitrary transition with all bits toggling.

Table 63—Unary vector operators on bits (Continued)

Operator Description
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 171

1

5

10

15

20

25

30

35

40

45

50

55
The following behavior statement

BEHAVIOR {
@ (E) {Z = A;}

}

is equivalent to

BEHAVIOR {
@ (E==’b1 || E==’bH) {Z = A;}

}

The following statetable statement, describing the same logic function

STATETABLE {
E A : Z;
0 ? : (Z);
1 ? : (A);

}

is equivalent to

STATETABLE {
E A : Z;
0 ? : (Z);
L ? : (Z);
1 ? : (A);
H ? : (A);

}

For edge-sensitive and higher-order event sensitive functions, transitions from or to 'bL shall be treated like
transitions from or to 'b0, and transitions from or to 'bH shall be treated like transitions from or to 'b1.

Not every transition can trigger the evaluation of a function. The set of vectors triggering the evaluation of a
function are called active vectors. From the set of active vectors, a set of inactive vectors can be derived, which
shall clearly not trigger the evaluation of a function. There are is also a set of ambiguous vectors, which can trig-
ger the evaluation of the function.

The set of active vectors is the set of vectors for which both observed states before and after the transition are
known to be logically equivalent to the corresponding states defined in the vector expression.

The set of inactive vectors is the set of vectors for which at least one of the observed states before or after the
transition is known to be not logically equivalent to the corresponding states defined in the vector expression.

Example

For the following sequential function

@ (01 CP) { Z = A; }

the active vectors are

('b0'b1 CP)
('b0'bH CP)
172 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
('bL'b1 CP)
('bL'bH CP)

and the inactive vectors are

(’b1’b0 CP)
(’b1’bL CP)
(’b1’bX CP)
(’b1’bW CP)
(’b1’bZ CP)
(’bH’b0 CP)
(’bH’bL CP)
(’bH’bX CP)
(’bH’bW CP)
(’bH’bZ CP)
(’bX’b0 CP)
(’bX’bL CP)
(’bW’b0 CP)
(’bW’bL CP)
(’bZ’b0 CP)
(’bZ’bL CP)
(’bU’b0 CP)
(’bU’bL CP)

and the ambiguous vectors are

(’b0’bX CP)
(’b0’bW CP)
(’b0’bZ CP)
(’bL’bX CP)
(’bL’bW CP)
(’bL’bZ CP)
(’bX’b1 CP)
(’bW’b1 CP)
(’bZ’b1 CP)
(’bX’bH CP)
(’bW’bH CP)
(’bZ’bH CP)
(’bX’bW CP)
(’bX’bZ CP)
(’bW’bX CP)
(’bW’bZ CP)
(’bZ’bX CP)
(’bZ’bW CP)
(’bU’bX CP)
(’bU’bW CP)
(’bU’bZ CP)

For vectors using exclusively based literals, the set of active vectors is the vector itself, the set of inactive vectors
is any vector with at least one different literal, and the set of ambiguous vectors is empty.

Therefore, ALF does not provide a default behavior for ambiguous vectors, since the behavior for each vector
can be explicitly defined in vectors using based literals.
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 173

1

5

10

15

20

25

30

35

40

45

50

55
10.4.5 Concurrency in sequential functions

The principle of concurrency applies also for edge-sensitive sequential functions, where the triggering condition
is described by a vector expression rather than a boolean expression. In edge-sensitive logic, the target logic vari-
able for the boolean assignment (LHS) can also be an operand of the boolean expression defining the assigned
value (RHS). Concurrency implies that the RHS expressions are evaluated immediately before the triggering
edge, and the values are assigned to the LHS variables immediately after the triggering edge. This is illustrated in
Figure 30.

Figure 30—Concurrency for edge-sensitive sequential logic

Statements with multiple concurrent conditions for boolean assignments can also be used in sequential logic. In
that case conflicting values can be assigned to the same logic variable. A default conflict resolution is not pro-
vided for the following reasons.

— Conflict resolution might not be necessary, since the conflicting situation is prohibited by specification.
— For different types of analysis (e.g., logic simulation), a different conflict resolution behavior might be

desirable, while the physical behavior of the circuit shall not change. For instance, pessimistic conflict
resolution always assigns X, more accurate conflict resolution first checks whether the values are con-
flicting. Different choices can be motivated by a trade-off in analysis accuracy and runtime.

— If complete library control over analysis is desired, conflict resolution can be specified explicitly.

Example

BEHAVIOR {
@ (<condition_1>) { Q = <value_1>; }
@ (<condition_2>) { Q = <value_2>; }

}

Explicit pessimistic conflict resolution can be described as follows:

BEHAVIOR {
@ (<vector_expression(E1..Em)>) {

Q1 =
<1st_boolean_expression(D1..Di)> ;

...
Qn =

<nth_boolean_expression(D1..Di)> ; } }

Q1

Qn

D1 Di

1st boolean expression

nth boolean expression

vector
expression

E1 Em

d q

d q
174 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
BEHAVIOR {
@ (<condition_1> && <condition_2>) { Q = ’bX; }
@ (<condition_1> && ! <condition_2>) { Q = <value_1>; }
@ (<condition_2> && ! <condition_1>) { Q = <value_2>; }

}

Explicit accurate conflict resolution can be described as follows:

BEHAVIOR {
@ (<condition_1> && <condition_2>) {

Q = (<value_1>==<value_2>)? <value_1> : ’bX;
}
@ (<condition_1> && ! <condition_2>) { Q = <value_1>; }
@ (<condition_2> && ! <condition_1>) { Q = <value_2>; }

}

Since the conditions are now rendered mutually exclusive, equivalent descriptions with priority statements can
be used. They are more elegant than descriptions with concurrent statements.

BEHAVIOR {
@ (<condition_1> && <condition_2>) {

Q = <conflict_resolution_value>;
}
: (<condition_1>) { Q = <value_1>; }
: (<condition_2>) { Q = <value_2>; }

}

Given the various explicit description possibilities, the standard does not prescribe a default behavior. The model
developer has the freedom of incomplete specification.

10.4.6 Initial values for logic variables

Per definition, all logic variables in a behavioral description have the initial value U which means “uninitialized”.
This value cannot be assigned to a logic variable, yet it can be used in a behavioral description in order to assign
other values than U after initialization.

Example

BEHAVIOR {
@ (Q1 == ’bU) { Q1 = ’b1 ; }
@ (Q2 == ’bU) { Q2 = ’b0 ; }
// followed by the rest of the behavioral description

}

A template can be used to make the intent more obvious, for example:

TEMPLATE VALUE_AFTER_INITIALIZATION {
@ (<logic_variable> == ’bU) { <logic_variable> = <initial_value> ; }

}
BEHAVIOR {

VALUE_AFTER_INITIALIZATION (Q1 ’b1’)
VALUE_AFTER_INITIALIZATION (Q2 ’b0’)
// followed by the rest of the behavioral description

}

IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 175

1

5

10

15

20

25

30

35

40

45

50

55
Logic variables in a vector expression shall be declared as PINs. It is possible to annotate initial values directly
to a pin. Such variables shall never take the value U. Therefore vector expressions involving U for such variables
(see the previous example) are meaningless.

Example

PIN Q1 { INITIAL_VALUE = ’b1 ; }
PIN Q2 { INITIAL_VALUE = ’b0 ; }

10.5 Higher-order sequential functions

This section defines the different types of higher-order sequential functions in ALF.

10.5.1 Vector-sensitive sequential logic

Vector expressions can be used to model generalized higher order sequential logic; they are an extension of the
boolean expressions. A vector expression describes sequences of logical events or transitions in addition to static
logical states. A vector expression represents a description of a logical stimulus without timescale. It describes
the order of occurrence of events.

The -> operator (followed by) gives a general capability of describing a sequence of events or a vector. For
example, consider the following vector expression:

01 A -> 01 B

which reads “rising edge on A is followed by rising edge on B”.

A vector expression is evaluated by an event sequence detection function. Like a single event or a transition, this
function evaluates True only at an infinitely short time when the event sequence is detected, as shown in
Figure 31.

Figure 31—Example of event sequence detection function

A

B

g(A, B) = (01 A -> 01 B)

co
nt

en
ts

of
ev

en
tq

ue
ue last

event

2nd last
event

01 A 10 A01 B 10 B 01 B10 A01 A

01 A 10 A01 B 10 B 10 A01 AX

X

X

sequence (01 A -> 01 B) detected
176 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
The event sequence detection mechanism can be described as a queue that sorts events according to their order of
arrival. The event sequence detection function evaluates True at exactly the time when a new event enters the
queue and forms the required sequence, i.e., the sequence specified by the vector expression with its preceding
events.

A vector-sensitive sequential logic can be called (N+1) order sequential logic, where N is the number of events
to be stored in the queue. The implementation of (N+1) order sequential logic requires N memory elements for
the event queue and one memory element for the output itself.

A sequence of events can also be gated with static logical conditions. In the example,

(01 CP -> 10 CP) && CD

the pin CD shall have state 1 from some time before the rising edge at CP to some time after the falling edge
of CP. The pin CD can not go low (state 0) after the rising edge of CP and go high again before the falling
edge of CP because this would insert events into the queue and the sequence “rising edge on CP followed by fall-
ing edge on CP” would not be detected.

The formal calculation rules for general vector expressions featuring both states and transitions are detailed in
10.5.2 and 10.5.3.

The concept of vector expression supports functional modeling of devices featuring digital communication pro-
tocols with arbitrary complexity.

10.5.2 Canonical binary operators for vector expressions

The following canonical binary operators are necessary to define sequences of transitions:

— vector_followed_by for completely specified sequence of events
— vector_and for simultaneous events
— vector_or for alternative events
— vector_followed_by for incompletely specified sequence of events

The symbols for the boolean operators for AND and OR are overloaded for vector_and and vector_or,
respectively. The new symbols for the vector_followed_by operators are shown in Table 65.

Table 65—Canonical binary vector operators

Operator Operands LHS, RHS
commutative Description

-> 2 vector
expressions

No Left-hand side (LHS) transition is followed by Right-hand side
(RHS) transition, no transition can occur in-between.

&&, & 2 vector
expressions

Yes LHS and RHS transition occur simultaneously.

||, | 2 vector
expressions

Yes LHS or RHS transition occur alternatively.

~> 2 vector
expressions

No Left-hand side (LHS) transition is followed by Right-hand side
(RHS) transition, other transitions can occur in-between.
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 177

1

5

10

15

20

25

30

35

40

45

50

55
Per definition, the -> and ~> operators shall not be commutative, whereas the && and || operators on events
shall be commutative.

01 a && 01 b === 01 b && 01 a
01 a || 01 b === 01 b || 01 a

The -> and ~> operators shall be freely associative.

01 a -> 01 b -> 01 c === (01 a -> 01 b) -> 01 c === 01 a -> (01 b -> 01 c)
01 a ~> 01 b ~> 01 c === (01 a ~> 01 b) ~> 01 c === 01 a ~> (01 b ~> 01 c)

The && operator is defined for single events and for event sequences with the same number of -> operators each.

(01 A1 .. -> ... 01 AN) & (01 B1 .. -> ... 01 BN)
===
01 A1 & 01 B1 ... -> ... 01 AN & 01 BN

The || operator reduces the set of edge operators (unary vector operators) to canonical and non-canonical opera-
tors.

(?? a) === (?! a)||(?- a) //a does or does not change its value

Hence ?? is non-canonical, since it can be defined by other operators.

If <value1><value2> is an edge operator consisting of two based literals value1 and value2 and word
is an expression which can take the value value1 or value2, then the following vector expressions are con-
sidered equivalent:

<value1><value2> <word>
=== 10 (<word> == <value1>) && 01 (<word> == <value2>)
=== 01 (<word> != <value1>) && 01 (<word> == <value2>)
=== 10 (<word> == <value1>) && 10 (<word> != <value2>)
=== 01 (<word> != <value1>) && 10 (<word> != <value2>)

// all expressions describe the same event:
// <word> makes a transition from <value1> to <value2>

Hence vector expressions with edge operators using based literals can be reduced to vector expressions using
only the edge operators 01 and 10.

10.5.3 Complex binary operators for vector expressions

Table 66 defines the complex binary operators for vector operators.

Table 66—Complex binary vector operators

Operator Operands LHS, RHS
commutative Description

<-> 2 vector
expressions

Yes LHS transition follows or is followed by RHS transition.

&> 2 vector
expressions

No LHS transition is followed by or occurs simultaneously with RHS
transition.
178 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
The following expressions shall be considered equivalent:

(01 a <-> 01 b) === (01 a -> 01 b)||(01 b -> 01 a)
(01 a &> 01 b) === (01 a -> 01 b)||(01 a && 01 b)
(01 a <&> 01 b) === (01 a -> 01 b)||(01 b -> 01 a)||(01 a && 01 b)

By their symmetric definition, the <-> and <&> operators are commutative.

01 a <-> 01 b === 01 b <-> 01 a
01 a <&> 01 b === 01 b <&> 01 a

The commutative complex binary vector operators are defined in Table 65. The commutativity rules are only
defined for two operands:

— commutative “followed by”:
vect_expr1 <-> vect_expr2 ===

vect_expr1 -> vect_expr2 // vect_expr1 occurs first
| vect_expr2 -> vect_expr1 // vect_expr2 occurs first

— commutative “followed by or simultaneously occurring”:
vect_expr1 <&> vect_expr2 ===

vect_expr1 -> vect_expr2 // vect_expr1 occurs first
| vect_expr2 -> vect_expr1 // vect_expr2 occurs first
| vect_expr1 && vect_expr2 // both occur simultaneously

10.5.4 Extension to N operands

This section defines how to use N operands.

A complex_vector_expression of the form

vector_expression { <-> vector_expression }

shall be commutative for all operands. The complex_vector_expression describes alternative event
sequences in which the temporal order of each constituent vector_expression is completely permutable,
excluding simultaneous occurrence of each constituent vector_expression.

A complex_vector_expression of the form

vector_expression { <&> vector_expression }

shall be commutative for all operands. The complex_vector_expression describes alternative event
sequences in which the temporal order of each constituent vector_expression is completely permutable,
including simultaneous occurrence of each constituent vector_expression.

<&> 2 vector
expressions

Yes LHS transition follows or is followed by or occurs simultaneously
with RHS transition.

Table 66—Complex binary vector operators (Continued)

Operator Operands LHS, RHS
commutative Description
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 179

1

5

10

15

20

25

30

35

40

45

50

55
Example

01 A <-> 01 B <-> 01 C ===
01 A -> 01 B -> 01 C

| 01 B -> 01 C -> 01 A
| 01 C -> 01 A -> 01 B
| 01 C -> 01 B -> 01 A
| 01 B -> 01 A -> 01 C
| 01 A -> 01 C -> 01 B

01 A <&> 01 B <&> 01 C ===
01 A -> 01 B -> 01 C

| 01 B -> 01 C -> 01 A
| 01 C -> 01 A -> 01 B
| 01 C -> 01 B -> 01 A
| 01 B -> 01 A -> 01 C
| 01 A -> 01 C -> 01 B
| 01 A && 01 B -> 01 C
| 01 A -> 01 B && 01 C
| 01 B && 01 C -> 01 A
| 01 B -> 01 C && 01 A
| 01 C && 01 A -> 01 B
| 01 C -> 01 A && 01 B
| 01 A && 01 B && 01 C

10.5.4.1 Boolean rules

The following rule applies for a boolean AND operation with three operands:

rule 1:
A & B & C === (A & B) & C | A & (B & C)

A corresponding rule also applies to the commutative followed-by operation with three operands:

rule 2:
01 A <-> 01 B <-> 01 C ===

(01 A <-> 01 B) <-> 01 C
| 01 A <-> (01 B <-> 01 C)

The alternative boolean expressions (A & B) & C and A & (B & C) in rule 1 are equivalent. Therefore,
rule 1 can be reduced to the following:

rule 3:
A & B & C === (A & B) & C === (B & C) & A

A corresponding rule does not apply to complex vector operands, since each expression with associated operands
generates only a subset of permutations:

(01 A <-> 01 B) <-> 01 C ===
(01 A <-> 01 B) -> 01 C)

| (01 C -> (01 A <-> 01 B)) ===
01 A -> 01 B -> 01 C

| 01 B -> 01 A -> 01 C
180 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
| 01 C -> 01 A -> 01 B
| 01 C -> 01 B -> 01 A

The permutations

01 A -> 01 C -> 01 B
01 B -> 01 C -> 01 A

are missing.

01 A <-> (01 B <-> 01 C) ===
(01 A -> (01 B <-> 01 C))

| ((01 B <-> 01 C) -> 01 A) ===
01 A -> 01 B -> 01 C

| 01 A -> 01 C -> 01 B
| 01 B -> 01 C -> 01 A
| 01 C -> 01 B -> 01 A

The permutations

| 01 B -> 01 A -> 01 C
| 01 C -> 01 A -> 01 B

are missing.

10.5.5 Operators for conditional vector expressions

The definitions of the &&, ?, and : operators are also overloaded to describe a conditional vector expression
(involving boolean expressions and vector expressions), as shown in Table 67. The clauses are boolean expres-
sions; while vector expressions are subject to those clauses.

An example for conditional vector expression using && is given below:

(01 a && !b) // a rises while b==0

Table 67—Operators for conditional vector expressions

Operator Operands
LHS, RHS
commutative Description

&&, & 1 vector
expression, 1
boolean
expression

Yes Boolean expression (LHS or RHS) is True while sequence of
transitions, defined by vector expression (RHS or LHS) occurs.

? 1 vector
expression, 1
boolean
expression

No Boolean condition operator for construction of if-then-else clause
involving vector expressions.

: 1 vector
expression, 1
boolean
expression

No Boolean else operator for construction of if-then-else clause
involving vector expressions.
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 181

1

5

10

15

20

25

30

35

40

45

50

55
The order of the operands in a conditional vector expression using && shall not matter.

<vector_exp> && <boolean_exp> === <boolean_exp> && <vector_exp>

The && operator is still commutative in this case, although one operand is a boolean expression defining a static
state, the other operand is a vector expression defining an event or a sequence of events. However, since the
operands are distinguishable per se, it is not necessary to impose a particular order of the operands.

An example for conditional vector expression using ? and : is given below.

!b ? 01 a : c ? 10 b : 01 d
===
!b & 01 a | !(!b) & c & 10 b | !(!b) & !c & 01 d

This example shows how a conditional vector expression using ternary operators can be expressed with alterna-
tive conditional vector expressions.

A conditional vector expression can be reduced to a non-conditional vector expression in some cases (see
10.6.11).

Every binary vector operator can be applied to a conditional vector expression.

10.5.6 Operators for sequential logic

Table 68 defines the complex binary operators for vector operators.

Sequential assignments are constructed as follows:

@ (<trigger1>) { <action1> } : (<trigger2>) { <action2> } :
(<trigger3>) { <action3> }

If trigger1 event is detected, then action1 is performed; else if trigger2 event is detected, then
action2 is performed; else if trigger3 event is detected, then action3 is performed as a result of this
clause.

10.5.7 Operator priorities

The priority of binding operators to operands in non-conditional vector expressions shall be from strongest to
weakest in the following order:

a) unary vector operators (edge literals)

Table 68—Operators for sequential logic

Operator Description

@ Sequential if operator, followed by a boolean logic expression (for level-
sensitive assignment) or by a vector expression (for edge-sensitive assign-
ment).

: Sequential else if operator, followed by a boolean logic expression (for
level-sensitive assignment) or by a vector expression (for edge-sensitive
assignment) with lower priority.
182 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
b) complex binary vector operators (<->, &>, <&>)
c) vector AND (&, &&)
d) vector_followed_by operators (->, ~>)
e) vector OR (|, ||)

10.5.8 Using PINs in VECTORs

A VECTOR defines state, transition, or sequence of transitions of pins that are controllable and observable for
characterization.

Within a CELL, the set of PINs with SCOPE=behavior or SCOPE=measure or SCOPE=both is the default
set of variables in the event queue for vector expressions relevant for BEHAVIOR or VECTOR statements or both,
respectively.

For detection of a sequence of transitions it is necessary to observe the set of variables in the event queue. For
instance, if the set of pins consists of A, B, C, D, the vector expression

(01 A -> 01 B)

implies no transition on A, B, C, D occurs between the transitions 01 A and 01 B.

The default set of pins applies only for vector expressions without conditions. The conditional event AND opera-
tor limits the set of variables in the event queue. In this case, only the state of the condition and the variables
appearing in the vector expression are observed.

Example

(01 A -> 01 B) && (C | D)

No transition on A, B occurs between 01 A and 01 B, and (C | D) needs to stay True in-between 01 A and
01 B as well. However, C and D can change their values as long as (C | D) is satisfied.

10.6 Modeling with vector expressions

Vector expressions provide a formal language to describe digital waveforms. This capability can be used for
functional specification, for timing and power characterization, and for timing and power analysis.

In particular, vector expressions add value by addressing the following modeling issues:

— Functional specification: complex sequential functionality, e.g., bus protocols.
— Timing analysis: complex timing arcs and timing constraints involving more than two signals.
— Power analysis: temporal and spatial correlation between events relevant for power consumption.
— Circuit characterization and test: specification of characterization and/or test vectors for particular tim-

ing, power, fault, or other measurements within a circuit.

Like boolean expressions, vector expressions provide the means for describing the functionality of digital cir-
cuits in various contexts without being self-sufficient. Vector expressions enrich this functional description capa-
bility by adding a “dynamic” dimension to the otherwise “static” boolean expressions.

The following subsections explain the semantics of vector expressions step-by-step. The vector expression con-
cept is explained using terminology from simulation event reports. However, the application of vector expres-
sions is not restricted to post-processing event reports.
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 183

1

5

10

15

20

25

30

35

40

45

50

55
Some application tools (e.g., power analysis tools) can actually evaluate vector expressions during post-process-
ing of event reports from simulation. Other application tools, especially simulation model generators, need to
respect the causality between the triggering events and the actions to be triggered. While it is semantically
impossible to describe cause and effect in the same vector expression for the purpose of functional modeling,
both cause and effect can appear in a vector expression used for a timing arc description.

ALF does not make assumption about the physical nature of the event report. Vector expressions can be applied
to an actual event report written in a file, to an internal event queue within a simulator, or to a hypothetical event
report which is merely a mathematical concept.

10.6.1 Event reports

This section describes the terminology of event reports from simulation, which is used to explain the concept of
ALF vector expressions. The intent of ALF vector expressions is not to replace existing event report formats.
Non-pertinent details of event report formats are not described here.

Simulation events (e.g., from Verilog or VHDL) can be reported in a value change dump (VCD) file, which has
the following general form:

<time1>
<variableA> <stateU>
<variableB> <stateV>
...

<time2>
<variableC> <stateW>
<variableD> <stateX>
...

<time3> ...

The set of variables for which simulation events are reported, i.e., the scope of the event report needs to be
defined beforehand. Each variable also has a definition for the set of states it can take. For instance, there can be
binary variables, 16-bit integer variables, 1-bit variables with drive-strength information, etc. Furthermore, the
initial state of each variable shall be defined as well. In an ALF context, the terms signal and variable are used
interchangeably. In VHDL, the corresponding term is signal. In Verilog, there is no single corresponding term.
All input, output, wire, and reg variables in Verilog correspond to a signal in VHDL.

The time values <time1>, <time2>, <time3>, etc. shall be in increasing order. The order in which simulta-
neous events are reported does not matter. The number of time points and the number of simultaneous events at a
certain time point are unlimited.

In the physical world, each event or change of state of a variable takes a certain amount of time. A variable can-
not change its state more than once at a given point in time. However, in simulation, this time can be smaller than
the resolution of the time scale or even zero (0). Therefore, a variable can change its state more than once at a
given point in simulation time. Those events are, strictly speaking, not simultaneous. They occur in a certain
order, separated by an infinitely small delta-time. Multiple simultaneous events of the same variable are not
reported in the VCD. Only the final state of each variable is reported.

A VCD file is the most compact format that allows reconstruction of entire waveforms for a given set of vari-
ables. A more verbose form is the test pattern format.

<TIME> <variableA> <variableB> <variableC> <variableD>
<time1> <stateU> <stateV>
<time2> <stateU> <stateV> <stateW> <stateX>
<time3>
184 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
The test pattern format reports the state of each variable at every point in time, regardless of whether the state has
changed or not. Previous and following states are immediately available in the previous and next row, respec-
tively. This makes the test pattern format more readable than the VCD and well-suited for taking a snapshot of
events in a time window.

An example of an event report in VCD format:

// initial values
A 0 B 1 C 1 D X E 1
// event dump
109 A 1 D 0
258 B 0
573 C 0
586 A 0
643 A 1
788 A 0 B 1 C 1
915 A 1
1062 E 0
1395 B 0 C 0
1640 A 0 D 1
// end of event dump

An example of an event report in test pattern format:

time A B C D E
0 0 1 1 X 1
109 1 1 1 0 1
258 1 0 1 0 1
573 1 0 0 0 1
586 0 0 0 0 1
643 1 0 0 0 1
788 0 1 1 0 1
915 1 1 1 0 1
1062 1 1 1 0 0
1395 1 0 0 0 0
1640 0 0 0 1 0

Both VCD and test pattern formats represent the same amount of information and can be translated into each
other.

10.6.2 Event sequences

For specification of a functional waveform (e.g., the write cycle of a memory), it is not practical to use an event
report format, such as a VCD or test pattern format. In such waveforms, there is no absolute time. And the rela-
tive time, for example, the setup time between address change and write enable change, can vary from one
instance to the other.

The main purpose of vector_expressions is waveform specification capability. The following operators
can be used:

— vector_unary (also called edge operator or unary vector operator)
The edge operator is a prefix to a variable in a vector expression. It contains a pair of states, the first
being the previous state, the second being the new state. Edge operators can describe a change of state or
no change of state.
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 185

1

5

10

15

20

25

30

35

40

45

50

55
— vector_and (also called simultaneous event operator)
This operator uses the overloaded symbol & or && interchangeably. The & operator is the separator
between simultaneously occurring events

— vector_followed_by (also called followed-by operator)
The “immediately followed-by operator” using the symbol -> is treated first. The -> operator is the sep-
arator between consecutively occurring events.

These operators are necessary and sufficient to describe the following subset of vector_expressions:

a) vector_single_event
A change of state in a single variable, for example:
01 A

b) vector_event
A simultaneous change of state in one or more variables, for example:
01 A & 10 B

c) vector_event_sequence
Subsequently occurring changes of state in one or more variables, for example:
01 A & 10 B -> 10 A

The vector_and operator has a higher binding priority than the vector_followed_by operator.

We can now express the pattern of the sample event report in a vector_event_sequence expression:

01 A & X0 D -> 10 B -> 10 C -> 10 A -> 01 A
-> 10 A & 01 B & 01 C -> 01 A -> 10 E -> 10 B & 10 C -> 10 A & 01 D

We can define the length of a vector_event_sequence expression as the number of subsequent events
described in the vector_event_sequence expression. The length is equal to the number of -> operators
plus one (1).

Although the vector expression format contains an inherent redundancy, since the old state of each variable is
always the same as the new state of the same variable in a previous event, it is more human-readable, especially
for waveform description. On the other hand, it is more compact than the test pattern format. For short event
sequences, it is even more compact than the VCD, since it eliminates the declaration of initial values. To be accu-
rate, for variables with exactly one event the vector expression is more compact than the VCD. For variables
with more than one event the VCD is more compact than the vector expression. In summary, the vector expres-
sion format offers readability similar to the test pattern format and compactness close to the VCD format.

10.6.3 Scope and content of event sequences

The scope applicable to a vector expression defines the set of variables in the event report. The content of a vec-
tor expression is the set of variables that appear in the vector expression itself. The content of a vector expression
shall be a subset of variables within scope.

— PINs with the annotation SCOPE = BEHAVIOR are applicable variables for vector expressions within
the context of BEHAVIOR.

— PINs with the annotation SCOPE = MEASURE are applicable variables for vector expressions within
the context of VECTOR.

— PINs with the annotation SCOPE = BOTH are applicable variables for all vector expressions.

A vector_event_sequence expression is an event pattern without time, containing only the variables
within its own content. This event pattern is evaluated against the event report containing all variables within
scope. The vector expression is True when the event pattern matches the event report.
186 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
Example

time A B C D E // scope is A, B, C, D, E
0 0 1 1 X 1
109 1 1 1 0 1
258 1 0 1 0 1
573 1 0 0 0 1
586 0 0 0 0 1
643 1 0 0 0 1
788 0 1 1 0 1
915 1 1 1 0 1
1062 1 1 1 0 0
1395 1 0 0 0 0
1640 0 0 0 1 0

Consider the following vector expressions in the context of the sample event report:

01 A //(1) content is A
//event pattern expressed by (1):
// A
// 0
// 1

(1) is True at time 109, time 643, and time 915.

10 B -> 10 C //(2) content is B, C
//event pattern expressed by (2):
// B C
// 1 1
// 0 1
// 0 0

(2) is True at time 573.

10 A -> 01 A //(3) content is A
//event pattern expressed by (3):
// A
// 1
// 0
// 1

(3) is True at time 643 and time 915.

01 D //(4) content is D
//event pattern expressed by (4):
// D
// 0
// 1

(4) is True at time 1640.

01 A -> 10 C //(5) content is A, C
//event pattern expressed by (5):
// A C
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 187

1

5

10

15

20

25

30

35

40

45

50

55
// 0 1
// 1 1
// 1 0

(5) is not be True at any time, since the event pattern expressed by (5) does not match the event report at any
time.

10.6.4 Alternative event sequences

The following operator can be used to describe alternative events:

vector_or, also called event-or operator or alternative-event operator, using the overloaded symbol
| or || interchangeably. The | operator is the separator between alternative events or alternative event
sequences.

In analogy to boolean operators, | has a lower binding priority than & and ->. Parentheses can be used to change
the binding priority.

Example

(01 A -> 01 B) | 10 C === 01 A -> 01 B | 10 C
01 A -> (01 B | 10 C) === 01 A -> 01 B | 01 A -> 10 C

Consider the following vector expressions in the context of the sample event report:

01 A | 10 //(6)
//event pattern expressed by (6):
// A
// 0
// 1
//alternative event pattern expressed by (6):
// C
// 1
// 0

(6) is True at time 109, time 573, time 643, time 915, and time 1395.

10 B -> 10 C | 10 A -> 01 A //(7)

//event pattern expressed by (7):
// B C
// 1 1
// 0 1
// 0 0
//alternative event pattern expressed by (7):
// A
// 1
// 0
// 1

(7) is True at time 573, time 643, and time 915.

01 D | 10 B -> 10 C //(8)
188 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
//event pattern expressed by (8):
// D
// 0
// 1
//alternative event pattern expressed by (8):
// B C
// 1 1
// 0 1
// 0 0

(8) is True at time 573 and time 1640.

10 B -> 10 C | 10 A //(9)
//event pattern expressed by (9):
// B C
// 1 1
// 0 1
// 0 0
//alternative event pattern expressed by (9):
// A
// 1
// 0

(9) is True at time 573, time 586, time 788, and time 1640.

The following operators provide a more compact description of certain alternative event sequences:

— &> events occur simultaneously or follow each other in the order RHS after LHS
— <-> a LHS event followed by a RHS event or a RHS event followed by a LHS event
— <&> events occur simultaneously or follow each other in arbitrary order

Example

01 A &> 01 C === 01 A & 01 C | 01 A -> 01 C
01 A <-> 01 C === 01 A -> 01 C | 01 C -> 01 A
01 A <&> 01 C === 01 A <-> 01 C | 01 A & 01 C

The binding priority of these operators is higher than of & and ->.

10.6.5 Symbolic edge operators

Alternative events of the same variable can be described in a even more compact way through the use of edge
operators with symbolic states. The symbol ? stands for “any state”.

— edge operator with ? as the previous state:
transition from any state to the defined new state

— edge operator with ? as the next state:
transition from the defined previous state to any state.

Both edge operators include the possibility no transition occurred at all, i.e., the previous and the next state are
the same. This situation can be explicitly described with the following operator:

edge operator with next state = previous state, also called non-event operator
The operand stays in the state defined by the operator.
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 189

1

5

10

15

20

25

30

35

40

45

50

55
The following symbolic edge operators also can be used:

a) ?- no transition on the operand
b) ?! transition from any state to any state different from the previous state
c) ?? transition from any state to any state or no transition on the operand
d) ?~ transition from any state to its bitwise complementary state

Example

Let A be a logic variable with the possible states 1, 0, and X.

?0 A === 00 A | 10 A | X0 A
?1 A === 01 A | 11 A | X1 A
?X A === 0X A | 1X A | XX A
0? A === 00 A | 01 A | 0X A
1? A === 10 A | 11 A | 1X A
X? A === X0 A | X1 A | XX A
?! A === 01 A | 0X A | 10 A | 1X A | X0 A | X1 A
?~ A === 01 A | 10 A | XX A
?? A === 00 A | 01 A | 0X A | 10 A | 11 A | 1X A | X0 A | X1 A | XX A
?- A === 00 A | 11 A | XX A

For variables with more possible states (e.g., logic states with different drive strength and multiple bits) the
explicit description of alternative events is quite verbose. Therefore the symbolic edge operators are useful for a
more compact description.

This completes the set of vector_binary operators necessary for the description of a subset of
vector_expressions called vector_complex_event expressions. All vector_binary operators
have two vector_complex_event expressions as operands. The set of vector_event_sequence
expressions is a subset of vector_complex_event expressions. Every vector_complex_event
expression can be expressed in terms of alternative vector_event_sequence expressions. The latter could
be called minterms, in analogy to boolean algebra.

10.6.6 Non-events

A vector_single_event expression involving a non-event operator is called a non-event. A rigorous defi-
nition is required for vector_complex_event expressions containing non-events. Consider the following
example of a flip-flop with clock input CLK and data output Q.

01 CLK -> 01 Q // (i)
01 CLK -> 00 Q // (ii)

The vector expression (i) describes the situation where the output switches from 0 to 1 after the rising edge of
the clock. The vector expression (ii) describes the situation where the output remains at 0 after the rising edge
of the clock.

How is it possible to decide whether (i) or (ii) is True, without knowing the delay between CLK and Q? The
only way is to wait until any event occurs after the rising edge of CLK. If the event is not on Q and the state of Q
is 0 during that event, then (ii) is True.

Hence, a non-event is True every time when another event happens and the state of the variable involved in the
non-event satisfies the edge operator of the non-event.

Example
190 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
time A B C D E
0 0 1 1 X 1
109 1 1 1 0 1
258 1 0 1 0 1
573 1 0 0 0 1
586 0 0 0 0 1
643 1 0 0 0 1
788 0 1 1 0 1
915 1 1 1 0 1
1062 1 1 1 0 0
1395 1 0 0 0 0
1640 0 0 0 1 0

The test pattern format represents an event, for example 01 A, in no different way than a non-event, for example
11 E. This non-event is True at times 109, 258, 573, 586, 643, 788, and 915; in short, every time when an event
happens while E is constant 1.

10.6.7 Compact and verbose event sequences

A vector_event_sequence expression in a compact form can be transformed into a verbose form by pad-
ding up every vector_event expression with non-events. The next state of each variable within a
vector_event expression shall be equal to the previous state of the same variable in the subsequent
vector_event expression.

Example

01 A -> 10B === 01 A & 11 B -> 11 A & 10 B

A vector expression for a complete event report in compact form resembles the VCD, whereas the verbose form
looks like the test pattern.

// compact form
01 A & X0 D -> 10 B -> 10 C -> 10 A -> 01 A
-> 10 A & 01 B & 01 C -> 01 A -> 10 E
-> 10 B & 10 C -> 10 A & 01 D
===
// verbose form
?0 A & ?1 B & ?1 C & ?X D & ?1 E ->
01 A & 11 B & 11 C & X0 D & 11 E ->
11 A & 10 B & 11 C & 00 D & 11 E ->
11 A & 00 B & 10 C & 00 D & 11 E ->
10 A & 00 B & 00 C & 00 D & 11 E ->
01 A & 00 B & 00 C & 00 D & 11 E ->
10 A & 01 B & 01 C & 00 D & 11 E ->
01 A & 11 B & 11 C & 00 D & 11 E ->
11 A & 11 B & 11 C & 00 D & 10 E ->
11 A & 10 B & 10 C & 00 D & 00 E ->
10 A & 00 B & 00 C & 01 D & 00 E

The transformation rule needs to be slightly modified in case the compact form contains a vector_event
expression consisting only of non-events. By definition, the non-event is True only if a real event happens simul-
taneously with the non-event. Padding up a vector_event expression consisting of non-events with other
non-events make this impossible. Rather, this vector_event expression needs to be padded up with unspeci-
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 191

1

5

10

15

20

25

30

35

40

45

50

55
fied events, using the ?? operator. Eventually, unspecified events can be further transformed into partly specified
events, if a former or future state of the involved variable is known.

Example

01 A -> 00 B
=== 01 A & 00 B -> ?? A & 00 B

In the first transformation step, the unspecified event ?? A is introduced.

01 A & 00 B -> ?? A & 00 B
=== 01 A & 00 B -> 1? A & 00 B

In the second step, this event becomes partly specified. ?? A is bound to be 1? A due to the previous event on
A.

10.6.8 Unspecified simultaneous events within scope

Variables which are within the scope of the vector expression yet do not appear in the vector expression, can be
used to pad up the vector expression with unspecified events as well. This is equivalent to omitting them from the
vector expression.

Example

01 A -> 10 B // let us assume a scope containing A, B, C, D, E
===
01 A & 10 B & ?? C & ?? D & ?? E -> 11 A & 10 B & ?? C & ?? D & ?? E

This definition allows unspecified events to occur simultaneously with specified events or specified non-events.
However, it disallows unspecified events to occur in-between specified events or specified non-events.

At first sight, this distinction seems to be arbitrary. Why not disallow unspecified events altogether? Yet there are
several reasons why this definition is practical.

If a vector expression disallows simultaneously occurring unspecified events, the application tool has the burden
not only to match the pattern of specified events with the event report but also to check whether the other vari-
ables remain constant. Therefore, it is better to specify this extra pattern matching constraint explicitly in the vec-
tor expression by using the ?- operator.

There are many cases where it actually does not matter whether simultaneously occurring unspecified events are
allowed or disallowed:

— Case 1: Simultaneous events are impossible by design of the flip-flop. For instance, in a flip-flop it is
impossible for a triggering clock edge 01 CK and a switch of the data output ? Q to occur at the same
time. Therefore, such events can not appear in the event report. It makes no difference whether 01 CK &
?- Q, 01 CK & ?? Q, or 01 CK is specified. The only occurring event pattern is 01 CK & ?- Q
and this pattern can be reliably detected by specifying 01 CK.

— Case 2: Simultaneous events are prohibited by design. For instance, in a flip-flop with a positive setup
time and positive hold time, the triggering clock edge 01 CK and a switch of the data input ?! D is a
timing violation. A timing checker tool needs the violating pattern specified explicitly, i.e., 01 CK &
?! D. In this context, it makes sense to specify the non-violating pattern also explicitly, i.e., 01 CK &
?- D. The pattern 01 CK by itself is not applicable.

— Case 3: Simultaneous events do not occur in correct design. For instance, power analysis of the event 01
CK needs no specification of ?! D or ?- D. In the analysis of an event report with timing violations, the
192 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
power analysis is less accurate anyway. In the analysis of the event report for the design without timing
violation, the only occurring event pattern is 01 CK & ?- D and this pattern can be reliably detected by
specifying 01 CK.2

— Case 4: The effects of simultaneous events are not modeled accurately. This is the case in static timing
analysis and also to some degree in dynamic timing simulation. For instance, a NAND gate can have the
inputs A and B and the output Z. The event sequence exercising the timing arc 01 A -> 10 Z can only
happen if B is constant 1. No event on B can happen in-between 01 A and 10 Z. Likewise, the timing
arc 01 B -> 10 Z can only happen if A is constant 1 and no event happens in-between 01 B and 10
Z. The timing arc with simultaneously switching inputs is commonly ignored. A tool encountering the
scenario 01 A & 01 B -> 10 Z has no choice other than treating it arbitrarily as 01 A -> 10 Z
or as 01 B -> 10 Z.

— Case 5: The effects of simultaneous events are modeled accurately. Here it makes sense to specify all sce-
narios explicitly, e.g., 01 A & ?- B -> 10 Z, 01 A &?! B -> 10 Z, ?- A & 01 B -> 10
Z, etc., whereas the patterns 01 A -> 10 Z and 01 B -> 10 Z by themselves apply only for less
accurate analysis (see Case 4).

There is also a formal argument why unspecified events on a vector expression need to be allowed rather than
disallowed. Consider the following vector expressions within the scope of two variables A and B.

01 A // (i)
01 B // (ii)
01 A & 01 B // (iii)

The natural interpretation here is (iii) === (i) & (ii). This interpretation is only possible by allowing
simultaneously occurring unspecified events.

Allowing simultaneously occurring unspecified events, the vector expressions (i) and (ii), respectively, are
interpreted as follows:

01 A & ?? B // (i’)
?? A & 01 B // (ii’)

Disallowing simultaneously occurring unspecified events, the vector expressions (i) and (ii), respectively,
are interpreted as follows:

01 A & ?- B // (i’’)
?- A & 01 B // (ii’’)

The vector expressions (i’) and (ii’) are compatible with (iii), whereas (i’’) and (ii’’) are not.

10.6.9 Simultaneous event sequences

The semantic meaning of the “simultaneous event operator” can be extended to describe simultaneously occur-
ring event sequences, by using the following definition:

(01 A#1 .. -> ... 01 A#N) & (01 B#1 .. -> ... 01 B#N)
=== 01 A#1 & 01 B#1 ... -> ... 01 A#N & 01 B#N

This definition is analogous to scalar multiplication of vectors with the same number of indices. The number of
indices corresponds to the number of vector_event expressions separated by -> operators. If the number of

2The power analysis tool relates to a timing constraint checker in a similar way as a parasitic extraction tool relates to a DRC tool. If the lay-
out has DRC violations, for instance shorts between nets, the parasitic extraction tool shall report inaccurate wire capacitance for those nets.
After final layout, the DRC violations shall be gone and the wire capacitance shall be accurate.
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 193

1

5

10

15

20

25

30

35

40

45

50

55
-> in both vector expressions is not the same, the shorter vector expression can be left-extended with unspecified
events, using the ?? operator, in order to align both vector expressions.

Example

(01 A -> 01 B -> 01 C) & (01 D -> 01 E)
=== (01 A -> 01 B -> 01 C) & (?? D -> 01 D -> 01 E)
=== 01 A & ?? D -> 01 B & 01 D -> 01 C & 01 E
=== 01 A -> 01 B & 01 D -> 01 C & 01 E

The easiest way to understand the meaning of “simultaneous event sequences” is to consider the event report in
test pattern format. If each vector_event_sequence expression matches the event report in the same time
window, then the event sequences happen simultaneously.

time A B C D E
0 0 1 1 X 1
109 1 1 1 0 1
258 1 0 1 0 1
573 1 0 0 0 1
586 0 0 0 0 1
643 1 0 0 0 1
788 0 1 1 0 1
915 1 1 1 0 1
1062 1 1 1 0 0
1395 1 0 0 0 0
1640 0 0 0 1 0

Example

01 A -> 10 B === 01 A & 11 B -> 11 A & 10 B // (10a)
// event pattern expressed by (10a):
// A B
// 0 1
// 1 1
// 1 0
X0 D -> 00 D // (10b)
// event pattern expressed by (10b):
// D
// X
// 0
// 0
(01 A -> 10 B) & (X0 D -> 00 D) // (10) === (10a)&(10b)

Both (10a) and (10b) are True at time 258. Therefore (10) is True at time 258.

10 C
=== ?? C -> ?? C -> 10 C
=== ?? C -> ?1 C -> 10 C // (11a)
// event pattern expressed by (11a):
// C
// ?
// ?
// 1
// 0
194 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
(11a) is left-extended to match the length of the following (11b).

01 A -> 00 D -> 11 E ===
01 A & 00 D & ?? E

-> ?? A & 00 D & ?? E
-> ?? A & ?? D & 11 E
===

01 A & 00 D & ?? E
-> 1? A & 00 D & ?1 E
-> ?? A & 0? D & 11 E // (11b)
// event pattern expressed by (11b):
// A D E
// 0 0 ?
// 1 0 ?
// ? 0 1
// ? ? 1

(11b) contains explicitly specified non-events. The non-event 00 D calls for the unspecified events ?? A and
?? E. The non-event 00 E calls for the unspecified events ?? A and ?? D. By propagating well-specified pre-
vious and next states to subsequent events, some unspecified events become partly specified.

10 C & (01 A -> 00 D -> 11 E) // (11) === (11a)&(11b)

(11a) is True at time 573 and time 1395. (11b) is True at time 573 and time 915. Therefore, (11) is True at
time 573.

10.6.10 Implicit local variables

Until now, vector expressions are evaluated against an event report containing all variables within the scope of a
cell. It is practical for the application to work with only one event report per cell or, at most, two event reports if
the set of variables for BEHAVIOR (scope=behavior) and VECTOR (scope=measure) is different. How-
ever, for complex cells and megacells, it is sometimes necessary to change the scope of event observation,
depending on operation modes. Different modes can require a different set of variables to be observed in differ-
ent event reports.

The following definition allows to extend the scope of a vector expression locally:

Edge operators apply not only to variables, but also to boolean expressions involving those variables.
Those boolean expressions represent implicit local variables that are visible only within the vector
expression where they appear.

Suppose the local variables (A & B), (A | B) are inserted into the event report:

time A B C D E A&B A|B
0 0 1 1 X 1 0 1
109 1 1 1 0 1 1 1
258 1 0 1 0 1 0 1
573 1 0 0 0 1 0 1
586 0 0 0 0 1 0 0
643 1 0 0 0 1 0 1
788 0 1 1 0 1 0 1
915 1 1 1 0 1 1 1
1062 1 1 1 0 0 1 1
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 195

1

5

10

15

20

25

30

35

40

45

50

55
1395 1 0 0 0 0 0 1
1640 0 0 0 1 0 0 0

Example

01 (A & B) // (12)
// event pattern expressed by (12):
// A&B
// 0
// 1

(12) is True at time 109 and time 915.

10 (A | B) // (13)
// event pattern expressed by (13):
// A|B
// 1
// 0

(13) is True at time 586 and time 1640.

01 (A & B) -> 10 B // (14)
// event pattern expressed by (14):
// B A&B
// 1 0
// 1 1
// 0 1

(14) is True at time 258.

10 (A & B) & 10 B -> 10 C // (15)
// event pattern expressed by (15):
// B C A&B
// 1 1 1
// 0 1 0
// 0 0 0

(15) is True at time 573.

10 (A & B) -> 10 (A | B) // (16)
// event pattern expressed by (16):
// A&B A|B
// 1 1
// 0 1
// 0 0

(16) is True at time 1640.

10.6.11 Conditional event sequences

The following definition restricts the scope of a vector expression locally:

vector_boolean_and, also called conditional event operator
196 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
This operator is defined between a vector expression and a boolean expression, using the overloaded
symbol & or &&. The scope of the vector expression is restricted to the variables and eventual implicit
local variables appearing within that vector expression. The boolean expression shall be True during the
entire vector expression. The boolean expression is called the Existence Condition of the vector expres-
sion.3

Vector expressions using the vector_boolean_and operator are called vector_conditional_event
expressions. Scope and contents of such expressions are identical, as opposed to non-conditional
vector_complex_event expressions, where the content is a subset of the scope.

Example

(10 (A & B) -> 10 (A | B)) & !D // (17)
// event pattern expressed by (17):
// A&B A|B
// 1 1
// 0 1
// 0 0
// event report without C, E:
time A B D A&B A|B
0 0 1 X 0 1
109 1 1 0 1 1
258 1 0 0 0 1
586 0 0 0 0 0
643 1 0 0 0 1
788 0 1 0 0 1
915 1 1 0 1 1
1062 1 1 0 1 1
1395 1 0 0 0 1
1640 0 0 1 0 0

(17) contains the same vector_complex_event expression as (16). However, although (16) is not
True at time 586, (17) is True at time 586, since the scope of observation is narrowed to A, B, A&B, and A|B by
the existence condition !D, which is statically True while the specified event sequence is observed.

Within, and only within, the narrowed scope of the vector_conditional_event expression, (17) can be
considered equivalent to the following:

(10 (A & B) -> 10 (A | B)) & !D
===
(10 (A & B) -> 10 (A | B)) & (11 (!D) -> 11 (!D))
===
10 (A & B) & 11 (!D) -> 10 (A | B) & 11 (!D)

The transformation consists of the following steps:

a) Transform the boolean condition into a non-event.
For example, !D becomes 11 (!D).

3An Existence Condition can also appear as annotation to a VECTOR object instead of appearing in the vector expression. This enables recog-
nition of existence conditions by application tools which can not evaluate vector expressions (e.g., static timing analysis tools). However, for
tools that can evaluate vector expressions, there is no difference between existence condition as a co-factor in the vector expression or as an
annotation.
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 197

1

5

10

15

20

25

30

35

40

45

50

55
b) Left-extend the vector_single_event expression containing the non-event in order to match the
length of the vector_complex_event expression.
For example, 11 (!D) becomes 11 (!D) -> 11 (!D) to match the length of
10 (A & B) -> 10 (A | B).

c) Apply scalar multiplication rule for simultaneously occurring event sequences.

Thus, a vector_conditional_event expression can be transformed into an equivalent
vector_complex_event expression, but the change of scope needs to be kept in mind. An operator which
can express the change of scope in the vector expression language is defined in 10.6.13. This can make the trans-
formation more rigorous.

Regardless of scope, the transformation from vector_conditional_event expression to
vector_complex_event expression also provides the means of detecting ill-specified
vector_conditional_event expressions.

Example

(10 A -> 01 B -> 01 A) & A
===
10 A & 11 A -> 01 B & 11 A -> 01 A & 11 A

The first expression 10 A & 11 A and the third expression 01 A & 11 A within the
vector_complex_event expression are contradictory. Hence, the vector_conditional_event
expression can never be True.

10.6.12 Alternative conditional event sequences

All vector_binary operators, in particular the vector_or operator, can be applied to
vector_conditional_event expressions as well as to vector_complex_event expressions.

Consider again the event report:

time A B C D E
0 0 1 1 X 1
109 1 1 1 0 1
258 1 0 1 0 1
573 1 0 0 0 1
586 0 0 0 0 1
643 1 0 0 0 1
788 0 1 1 0 1
915 1 1 1 0 1
1062 1 1 1 0 0
1395 1 0 0 0 0
1640 0 0 0 1 0

Concurrent alternative vector_conditional_event expressions can be paraphrased in the following
way:

IF <boolean_expression1> THEN <vector_expression1>
OR IF <boolean_expression2> THEN <vector_expression2>
... OR IF <boolean_expressionN> THEN <vector_expressionN>

The conditions can be True within overlapping time windows and thus the vector expressions are evaluated con-
currently. The vector_boolean_and operator and vector_or operator describe such vector expressions.
198 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
Example

C&(01 A -> 10 B) | !D&(10 B -> 10 A) | E&(10 B -> 10 C) // (18)
// Event pattern expressed by (18):
// A B C
// 0 1 1
// 1 1 1
// 1 0 1

(18) is True at time 258 because of C & (01 A -> 10 B).

// Alternative event pattern expressed by (18):
// A B D
// 1 1 0
// 1 0 0
// 0 0 0

(18) is also True at time 586 because of !D & (10 B -> 10 A).

// Alternative event pattern expressed by (18):
// B C E
// 1 1 1
// 0 1 1
// 0 0 1

(18) is also True at time 573 because of E & (10 B -> 10 C).

Prioritized alternative vector_conditional_event expressions can be paraphrased in the following way:

IF <boolean_expression1> THEN <vector_expression1>
ELSE IF <boolean_expression2> THEN <vector_expression2>
... ELSE IF <boolean_expressionN> THEN <vector_expressionN>
(optional) ELSE <vector_expressiondefault>

Only the vector expression with the highest priority True condition is evaluated. The
vector_boolean_cond operator and vector_boolean_else operator are used in ALF to describe
such vector expressions.

Example

C? (01 A -> 10 B): !D? (10 B -> 10 A): E? (10 B -> 10 C) // (19)

The prioritized alternative vector_conditional_event expression can be transformed into concurrent
alternative vector_conditional_event expression as shown:

C ? (01 A -> 10 B) : !D ? (10 B -> 10 A) : E ? (10 B -> 10 C)
===
C & (01 A -> 10 B)
| !C & !D & (10 B -> 10 A)
| !C & !(!D) & E & (10 B -> 10 C)

(19) is True at time 258 because of C & (01 A -> 10 B), but not at time 586 because of higher priority C
while !D & (10 B -> 10 A), nor at time 573 because of higher priority !D while
E & (10 B -> 10 C).
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 199

1

5

10

15

20

25

30

35

40

45

50

55
10.6.13 Change of scope within a vector expression

Conditions on vector expressions redefine the scope of vector expressions locally. The following definition can
be used to change the scope even within a part of a vector expression. For this purpose, the symbolic state * can
be used, which means “don’t care about events”. This is different from the symbolic state ? which means “don’t
care about state”. When the state of a variable is *, arbitrary events occurring on that variable are disregarded.

— Edge operator with * as next state:
The variable to which the operator applies is no longer within the scope of the vector expression.

— Edge operator with * as previous state:
The variable to which the edge operator applies is now within the scope of the vector expression.

As opposed to ?, * stands for an infinite variety of possibilities.

Example

Let A be a logic variable with the possible states 1, 0, and X.

*0 A ===
00 A | 10 A | X0 A
| 00 A -> 00 A | 10 A -> 00 A | X0 A -> 00 A
| 01 A -> 10 A | 11 A -> 10 A | X1 A -> 10 A
| 0X A -> X0 A | 1X A -> X0 A | XX A -> X0 A
| 00 A -> 00 A -> 00 A | ...

0* A ===
00 A | 01 A | 0X A
| 00 A -> 00 A | 00 A -> 01 A | 00 A -> 0X A
| 01 A -> 10 A | 01 A -> 11 A | 01 A -> 1X A
| 0X A -> X0 A | 0X A -> X1 A | 0X A -> XX A
| 00 A -> 00 A -> 00 A | ...

A vector expression with an infinite variety of possible event sequences cannot be directly matched with an event
report. However, there are feasible ways to implement event sequence detection involving *. In principle, there
is a “static” and “dynamic” way. The following parts of the vector expression are separated by * sub-sequences
of events.

— “Static” event sequence detection with *:
The event report with all variables can be maintained, but certain variables are masked for the purpose of
detection of certain sub-sequences.

— “Dynamic” event sequence detection with *:
The event report shall contain the set of variables necessary for detection of a relevant sub-sequence.
When such a sub-sequence is detected, the set of variables in the event report shall change until the next
sub-sequence is detected, etc.

Examples

01 A -> 1* B -> 10 C // (20)
// Event pattern expressed by (20):
// A B C
// 0 1 1
// 1 1 1
// 1 * 1
// 1 * 0
200 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
// pattern for 1st sub-sequence:
// A B C
// 0 1 1
// 1 1 1
// 1 * 1
// pattern for 2nd sub-sequence:
// A B C
// 1 * 1
// 1 * 0

The event report with masking relevant for (20):

time A B C D E
0 0 1 1 X 1
109 1 1 1 0 1
258 1 * 1 0 1 // detection of 1st sub-sequence
573 1 * 0 0 1 // detection of 2nd sub-sequence
586 0 0 0 0 1
643 1 0 0 0 1
788 0 1 1 0 1
915 1 1 1 0 1
1062 1 * 1 0 0 // detection of 1st sub-sequence
1395 1 * 0 0 0 // detection of 2nd sub-sequence
1640 0 0 0 1 0

(20) is True at time 573 and time 1395. The first sub-sequence 01 A -> 1* B is detected at time 258, since
* maps to any state. From time 258 onwards, B is masked. The second sub-sequence 10 C is detected at time
573. From time 573 onwards, B is unmasked. The first sub-sequence is detected again at time 1062. The second
sub-sequence is detected again at time 1395.

01 A & 1* E -> 10 C // (21)
// Event pattern expressed by (21):
// A C E
// 0 1 1
// 1 1 *
// 1 0 *
// pattern for 1st sub-sequence:
// A C E
// 0 1 1
// 1 1 *
// pattern for 2nd sub-sequence:
// A C E
// 1 1 *
// 1 0 *

The event report with masking relevant for (21):

time A B C D E
0 0 1 1 X 1
109 1 1 1 0 * // detection of 1st sub-sequence
258 1 0 1 0 * // abortion of detection process
573 1 0 0 0 1
586 0 0 0 0 1
643 1 0 0 0 1
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 201

1

5

10

15

20

25

30

35

40

45

50

55
788 0 1 1 0 1
915 1 1 1 0 * // detection of 1st sub-sequence
1062 1 1 1 0 * // disregard event out of scope
1395 1 0 0 0 0 // detection of 2nd sub-sequence
1640 0 0 0 1 0

(21) is True at time 1395. The first sub-sequence 01 A & 1* E is detected at time 109. From time 109
onwards, E is masked. The event on B at time 258 aborts continuation of the detection process and triggers restart
from the beginning. The first sub-sequence is detected again at time 915. From time 915 onwards, E is masked.
The event at time 1062 is therefore out of scope. The second sub-sequence 10 C is detected at time 1395.

01 A -> *1 B -> 10 B & 10 C // (22)
// Event pattern expressed by (22):
// A B C
// 0 * 1
// 1 * 1
// 1 1 1
// 1 0 0
// pattern for 1st sub-sequence:
// A B C
// 0 * 1
// 1 * 1
// pattern for 2nd sub-sequence:
// A B C
// 1 * 1
// 1 1 1
// 1 0 0

The event report with masking relevant for (22):

time A B C D E
0 0 1 1 X 1
109 1 1 1 0 1 // detection of 1st sub-sequence
258 1 0 1 0 1 // abort
573 1 * 0 0 1
586 0 * 0 0 1
643 1 * 0 0 1
788 0 * 1 0 1
915 1 * 1 0 1 // detection of 1st sub-sequence
1062 1 1 1 0 0 // continue
1395 1 0 0 0 0 // detection of 2nd sub-sequence
1640 0 0 0 1 0

(22) is True at time 1395. The first sub-sequence 01 A is detected at time 109. Therefore, B is unmasked.
Since B=0 at time 258, the attempt to detect the second sub-sequence is aborted and the detection process restarts
from the beginning. The first sub-sequence 01 A is detected again at time 109. The second sub-sequence *1 B
-> 10 B & 10 C is detected at time 1395.

01 A -> 1? A & 0* B & 1* E -> 10 C // (23)
// Event pattern expressed by (23):
// A B C E
// 0 0 1 1
// 1 0 1 1
202 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
// 1 * 1 *
// 1 * 0 *
// pattern for 1st sub-sequence:
// A B C E
// 0 0 1 1
// 1 0 1 1
// ? * 1 *
// pattern for 2nd sub-sequence:
// A B C E
// ? * 1 *
// ? * 0 *

The event report with masking relevant for (23):

time A B C D E
0 0 1 1 X 1
109 1 1 1 0 1
258 1 0 1 0 1
573 1 0 0 0 1
586 0 0 0 0 1
643 1 0 0 0 1
788 0 * 1 0 * // detection of 1st sub-sequence
915 1 * 1 0 * // abort
1062 1 1 1 0 0
1395 1 0 0 0 0
1640 0 0 0 1 0

(23) is not True at any time. The first sub-sequence is detected at time 788. The event at time 915 does not
match the expected second sub-sequence.

10.6.14 Sequences of conditional event sequences

The symbol * can be used to describe the scope of a vector expression directly in the vector expression language.
This is particularly useful for sequences of vector_conditional_event expressions.

In reusing (17) as example:

(10 (A & B) -> 10 (A | B)) & !D

the scope of the sample event report contains contain the variables A, B, C, D, and E. The
vector_conditional_event expression (17) contains only the variables A, B, and D and the implicit
local variables A&B and A|B. Therefore, the global variables C and E are out of scope within (17). The implicit
local variables A&B and A|B are in scope within, and only within, (17).

Now consider a sequence of vector_conditional_event expressions, where variables move in and out
of scope. With the following formalism, it is possible to transform such a sequence into an equivalent
vector_complex_event expression, allowing for a change of scope within each
vector_conditional_event expression.

<vector_conditional_event#1> .. -> .. <vector_conditional_event#N>

where
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 203

1

5

10

15

20

25

30

35

40

45

50

55
<vector_conditional_event#i>
=== <vector_complex_event#i> & <boolean_expression#i> // 1 < i < N

The principle is to decompose each vector_conditional_event expression into a sequence of three vec-
tor expressions prefix, kernel, and postfix and then to reassemble the decomposed expressions.

<vector_conditional_event#i>
=== <prefix#i> -> <kernel#i> -> <postfix#i> // 1 < i < N

a) Define the prefix for each vector_conditional_event expression.
The prefix is a vector_event expression defining all implicit local variables.

Example
*? (A&B) & *? (A|B)

b) Define the kernel for each vector_conditional_event expression.
The kernel is the vector_complex_event expression equivalent to the
vector_conditional_event expression.
<vector_complex_event#i> & <boolean_expression#i>
=== <vector_complex_event#i>
& (11 <boolean_expression#i> ..->.. 11 <boolean_expression#i>)

The kernel can consist of one or several alternative vector_event_sequence expressions. Within
each vector_event_sequence expression, the same set of global variables are pulled out of scope
at the first vector_event expression and pushed back in scope at the last vector_event expres-
sion.

Example
?* C & ?* E // global variables out of scope
& 10 (A & B) & 11 (!D) -> 10 (A | B) & 11 (!D)
& *? C & *? E // global variables back in scope

c) Define the postfix for each vector_conditional_event expression.
The postfix is a vector_event expression removing all implicit local variables.

Example
?* (A&B) & ?* (A|B)

d) Join the subsequent vector_complex_event expressions with the vector_and operator between
prefix#i+1and kernel#i and also between postfix#i and kernel#i+1.
.. <vector_conditional_event#i> -> <vector_conditional_event#i+1> ..
=== .. <prefix#i>

-> <postfix#i-1> & <kernel#i> & <prefix#i+1>
-> <postfix#i> & <kernel#i+1> & <prefix#i+2>

-> <postfix#i+1> ..

The complete example:

(10 (A & B) -> 10 (A | B)) & !D
===
*? (A&B) & *? (A|B)
-> ?* C & ?* E
& 10 (A & B) & 11 (!D) -> 10 (A | B) & 11 (!D)
& *? C & *? E
-> ?* (A&B) & ?* (A|B)
204 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
NOTE —The in-and-out-of-scope definitions for global variables are within the kernel, whereas the in-and-out-of-scope def-
initions for global variables are within the prefix and postfix. In this way, the resulting vector_complex_event expres-
sion contains the same uninterrupted sequence of events as the original sequence of vector_conditional_event
expressions.

10.6.15 Incompletely specified event sequences

So far the vector expression language has provided support for completely specified event sequences and also the
capability to put variables temporarily in and out of scope for event observation. As opposed to changing the
scope of event observation, incompletely specified event sequences require continuous observation of all vari-
ables while allowing the occurrence of intermediate events between the specified events. The following operator
can be used for that purpose:

vector_followed_by, also called followed-by operator, using the symbol ~>.
The ~> operator is the separator between consecutively occurring events, with possible unspecified
events in-between.

Detection of event sequences involving ~> requires detection of the sub-sequence before ~>, setting a flag,
detection of the sub-sequence after ~>, and clearing the flag.

This can be illustrated with a sample event report:

time A B C D E
0 0 1 1 X 1
109 1 1 1 0 1 // 01 A detected, set flag
258 1 0 1 0 1
573 1 0 0 0 1 // 10 C detected, clear flag
586 0 0 0 0 1
643 1 0 0 0 1 // 01 A detected, set flag
788 0 1 1 0 1
915 1 1 1 0 1 // 01 A detected again
1062 1 1 1 0 0
1395 1 0 0 0 0 // 10 C detected, clear flag
1640 0 0 0 1 0

Example

01 A ~> 10 C // (24)
// as opposed to previous example (5):01 A -> 10 C

(24) is True at time 573 because of 01 A at time 109 and 10 C at time 573. It is True again at time 1395
because of 01 A at time 643 and 10 C at 1395. On the other hand, (5) is never True because there are always
events in-between 01 A and 10 C.

Vector expressions consisting of vector_event expressions separated by -> or by ~> are called
vector_event_sequence expressions, using the same syntax rules for the two different
vector_followed_by operators. Consequently, all vector expressions involving
vector_event_sequence expressions and vector_binary operators are called
vector_complex_event expressions.

However, only a subset of the semantic transformation rules can be applied to vector expressions containing ~>.

Associative rule applies for both -> and ~>.
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 205

1

5

10

15

20

25

30

35

40

45

50

55
(01 A ~> 01 B) ~> 01 C === 01 A ~> (01 C ~> 01 B ~> 01 C)
(01 A -> 01 B) -> 01 C === 01 A -> (01 C -> 01 B -> 01 C)
(01 A ~> 01 B) -> 01 C === 01 A ~> (01 C ~> 01 B -> 01 C)
(01 A -> 01 B) ~> 01 C === 01 A -> (01 C -> 01 B ~> 01 C)

Distributive rule applies for both -> and ~>.

(01 A | 01 B) -> 01 C === 01 A ~> 01 C | 01 B -> 01 C
(01 A | 01 B) ~> 01 C === 01 A ~> 01 C | 01 B ~> 01 C
(01 A | 01 B) -> 01 C === 01 A ~> 01 C | 01 B -> 01 C

Scalar multiplication rule applies only for ->. The transformation involving ~> is more complicated.

(01 A -> 01 B) & (01 C -> 01 D)
=== (01 A & 01 C) -> (01 B & 01 D)

(01 A ~> 01 B) & (01 C -> 01 D)
=== (01 A & 01 C) -> (01 B & 01 D)
| 01 A ~> 01 C -> (01 B & 01 D)

(01 A ~> 01 B) & (01 C ~> 01 D)
=== (01 A & 01 C) ~> (01 B & 01 D)
| 01 A ~> 01 C ~> (01 B & 01 D)
| 01 C ~> 01 A ~> (01 B & 01 D)

Transformation of vector_conditional_event expressions into vector_complex_event expres-
sions applies only for ->.

(01 A -> 01 B) & C
=== 01 A & 11 C -> 01 B & 11 C

(01 A ~> 01 B) & C
=== 01 A & 11 C ~> 01 B & 11 C

Since the ~> operator allows intermediate events, there is no way to express the continuously True condition C.

10.6.16 How to determine well-specified vector expressions

By defining semantics for

alternative vector_event_sequence expressions

and establishing calculation rules for

transforming vector_complex_event expressions into alternative vector_event_sequence
expressions

and for

transforming alternative vector_conditional_event expressions into alternative
vector_complex_event expressions,

semantics are now defined for all vector expressions.
206 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
The calculation rules also provide means to determine whether a vector expression is well-specified or ill-speci-
fied. An ill-specified vector expression is contradictory in itself and can therefore never be True.

Once a vector expression is reduced to a set of alternative vector_event_sequence expressions, two crite-
ria define whether a vector expression is well-defined or not.

— Compatibility between subsequent events on the same variable:
The next state of earlier event shall be compatible with previous state of later event. This check applies
only if no ~> operator is found between the events.

— Compatibility between simultaneous events on the same variable:
Both the previous and next state of both events shall be compatible. Such events commonly occur as
intermediate calculation results within vector expression transformation.

The following compatibility rules apply:

a) ? is compatible with any other state. If the other state is *, the resulting state is ?. Otherwise, the result-
ing state is the other state.

b) * is compatible with any other state. The resulting state is the other state.
c) Any other state is only compatible with itself.

Examples

01 A -> 01 B -> 10 A

The next state of 01 A is compatible with the previous state of 10 A.

0X A -> 01 B -> 10 A

The next state of 0X A is not compatible with the previous state of 10 A.

0X A ~> 01 B -> 10 A

Compatibility check does not apply, since intermediate events are allowed.

01 A & 10 A

Both the previous and next state of A are contradictory; this results in an impossible event.

?1 A & 1? A

Both previous and next state of A are compatible; this results in the non-event 11 A.

10.7 Boolean expression language

The boolean expression language XXX, as shown in Syntax 84.

10.8 Vector expression language

The vector expression language XXX, as shown in Syntax 85.
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 207

1

5

10

15

20

25

30

35

40

45

50

55
10.9 Control expression semantics

**Syntax 85 also shows the control expression syntax (at the bottom); is this deliberate??

boolean_expression ::=
(boolean_expression)

| pin_value
| boolean_unary boolean_expression
| boolean_expression boolean_binary boolean_expression
| boolean_expression ? boolean_expression :

{ boolean_expression ? boolean_expression : }
boolean_expression

boolean_unary ::=
!

| ~
| &
| ~&
| |
| ~|
| ^
| ~^

boolean_binary ::=
&

| &&
| |
| ||
| ^
| ~^
| !=
| ==
| >=
| <=
| >
| <
+
*
/
%
>>
<<

Syntax 84—Boolean expression langauge
208 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
vector_expression ::=
(vector_expression)

| vector_unary boolean_expression
| vector_expression vector_binary vector_expression
| boolean_expression ? vector_expression :

{ boolean_expression ? vector_expression : }
vector_expression

| boolean_expression control_and vector_expression
| vector_expression control_and boolean_expression

vector_unary ::=
edge_literal

vector_binary ::=
&

| &&
| |
| ||
| ->
| ~>
| <->
| <~>
| &>
| <&>

control_and ::=
& | &&

control_expression ::=
(vector_expression)

| (boolean_expression)

Syntax 85—Vector expression language
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 209

1

5

10

15

20

25

30

35

40

45

50

55
210 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
11. Constructs for modeling of analog behavior

Add lead-in text

11.1 Arithmetic expression language

Arithmetic expressions

Arithmetic expressions define the contents of an EQUATION. Variables used in the EQUATION are the iden-
tifiers of the header_model, if present, or else the model_keywords of the header_model.

11.1.1 Syntax of arithmetic expressions

The syntax of arithmetic expressions is:

arithmetic_expression ::=

(arithmetic_expression)
| number
| [arithmetic_unary] identifier
| arithmetic_expression arithmetic_binary arithmetic_expression
| arithmetic_function_operator

(arithmetic_expression { , arithmetic_expression })

| boolean_expression ? arithmetic_expression :
{ boolean_expression ? arithmetic_expression : }
arithmetic_expression

An arithmetic expression XXX, as shown in Syntax 86.

Examples

1.24
- Vdd
C1 + C2
MAX (3.5*C , -Vdd/2 , 0.0)
(C > 10) ? Vdd**2 : 1/2*Vdd - 0.5*C

An arithmetic unary XXX, as shown in Syntax 87.

An arithmetic binary XXX, as shown in Syntax 88.

arithmetic_expression ::=
(arithmetic_expression)

| arithmetic_value
| [arithmetic_unary] arithmetic_expression
| arithmetic_expression arithmetic_binary

arithmetic_expression
| boolean_expression ? arithmetic_expression :

{ boolean_expression ? arithmetic_expression : }
arithmetic_expression

| arithmetic_macro
(arithmetic_expression { , arithmetic_expression })

Syntax 86—Arithemetic expression
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 209

1

5

10

15

20

25

30

35

40

45

50

55
An arithmetic macro XXX, as shown in Syntax 89.

11.1.2 Arithmetic operators

Table 66, Table 67, and Table 68 list unary, binary, and function arithmetic operators.

arithmetic_unary ::=
sign

Syntax 87—Arithmetic unary

arithmetic_binary ::=
+

| -
| *
| /
| **
| %

Syntax 88—Arithmetic binary

arithmetic_macro ::=
abs

| exp
| log
| min
| max

Syntax 89—Arithmetic macro

Table 66—Unary arithmetic operators

Operator Description

+ Positive sign (for integer or number)

- Negative sign (for integer or number)

Table 67—Binary arithmetic operators

Operator Description

+ Addition (integer or number)

- Subtraction (integer or number)

* Multiplication (integer or number)

/ Division (integer or number)

** Exponentiation (integer or number)

% Modulo division (integer or number)
210 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
Function operators with one argument (such as log, exp, and abs) or multiple arguments (such as min and
max) shall have their arguments within parenthesis, e.g., min(1.2,-4.3,0.8).

11.1.3 Operator priorities

The priority of binding operators to operands in arithmetic expressions shall be from strongest to weakest in the
following order:

a) unary arithmetic operator (+, -)
b) exponentiation (**)
c) multiplication (*), division (/), modulo division (%)
d) addition (+), subtraction (-)

11.2 Arithmetic model and related statements

Add lead-in text

11.2.1 Arithmetic models

An arithmetic model is an object that describes characterization data or a more abstract, measurable relationship
between physical quantities, as shown in Figure 32. The modeling language allows tabulated data as well as lin-
ear and non-linear equations. The equations consist of arithmetic expressions based on the symbols defined in
IEEE 1364-1995.

Figure 32—Arithmetic model
General Rules for Arithmetic Models

Table 68—Function arithmetic operators

Operator Description

LOG Natural logarithm (argument is + integer or number)

EXP Natural exponential (argument is integer or number)

ABS Absolute value (argument is integer or number)

MIN Minimum (all arguments are integer or number)

MAX Maximum (all arguments are integer or number)

arithmetic model
containsco

nta
ins

table equation
header

contains contains

contains

arithmetic expression us
es
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 211

1

5

10

15

20

25

30

35

40

45

50

55
This chapter defines the general rules for arithmetic models.

11.2.1.1 Principles of arithmetic models

The purpose of arithmetic models is to specify calculable mathematical relationships between objects represent-
ing physical quantities in the library. Arithmetic models are identified by context-sensitive keywords, because
how these quantities are measured, extracted, or interpreted depends on the context in which the objects are
placed.

The quantity identified by the keyword CAPACITANCE can serve as example. In the context of a PIN, it repre-
sents pin capacitance. In the context of a WIRE, it represents wire capacitance. In the context of a RULE, it repre-
sents the calculation method for a capacitance formed by a layout pattern described within the rule. The context-
specific semantics of each arithmetic model are specified in 8 for electrical models and 9 for physical models.

In certain cases, the context alone does not completely specify the semantics of an arithmetic model. Auxiliary
definitions within the arithmetic model are needed; these are represented by using annotations or annotation con-
tainers.

A simple example is the UNIT annotation, which is applicable for most arithmetic models. It specifies the unit in
terms of which the arithmetic model data is represented. The applicable auxiliary objects for each arithmetic
model are specified in 8 for electrical models and 9 for physical models.

11.2.1.1.1 Global definitions for arithmetic models

In many cases, auxiliary definitions apply globally to all arithmetic models within a certain context, for instance,
the UNIT can apply for all CAPACITANCE objects within a library. In order to specify such global definitions,
the arithmetic model construct can be used without data.

A model definition XXX, as shown in Syntax 90.

This construct has the syntactical form of an annotation_container (see 11.7).

11.2.1.1.2 Trivial arithmetic model

The simplest form of an arithmetic model contains just constant data, as shown in Syntax 91.

This construct has the syntactical form of an annotation (see 11.7).

model_definition ::=
model_keyword [identifier] { all_purpose_items }

Syntax 90—model_definition

trivial_model ::=
model_keyword [identifier] = number ;

| model_keyword [identifier] = number { all_purpose_items }

Syntax 91—trival_model
212 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
11.2.1.1.3 Arithmetic model using EQUATION

The arithmetic model data can be represented as an EQUATION. In this case, a HEADER defines the arguments of
the equation. It is also possible to use other arithmetic models, which are visible within the context of this arith-
metic model, as arguments. Those arguments need not appear in the HEADER, as shown in Syntax 92.

The syntax of arithmetic_expression is explained in xxx.

11.2.1.1.4 Arithmetic model using TABLE

The arithmetic model data can be represented as a lookup table. In this case, a TABLE is necessary for the data
itself and for each argument, as shown in Syntax 93.

Tables containing symbols are only meant for lookup of discrete datapoints. Tables containing numbers are for
calculation and, eventually, interpolation of datapoints. The model_keyword (see 8 and 9) defines whether
symbols or numbers are legal for a particular table.

The size of the table inside the table_based_model shall be the product of the size of the tables inside the
table_header. In order to support interpolation, the numbers in each table inside the table_header shall
be in strictly monotonic ascending order. See 11.2.1.2 for more details.

The table_model_definition can also be used outside the context of a table_header, very much like
a model_definition. In this case, the model_definition supplies the same information as the
table_model_definition, plus the additional information of a discrete set of valid numbers applicable
for the model.

For example, the WIDTH of a physical layout object can contain only a discrete set of legal values. Those can be
specified using a table_model_definition.

equation_based_model ::=
model_keyword [identifier] {

[all_purpose_items] [equation_based_header] equation }
equation_based_header ::=

HEADER { model_keyword { model_keyword } }
| HEADER { model_definition { model_definition } }

equation ::=
EQUATION { arithmetic_expression }

Syntax 92—equation_based_model

table_based_model ::=
model_keyword [identifier] {

[all_purpose_items] table_based_header table [equation] }
table_based_header ::=

HEADER { table_model_definition { table_model_definition } }
table_model_definition ::=

model_keyword [identifier] { all_purpose_items table }
table ::=

TABLE { symbol { symbol } }
| TABLE { number { number } }

Syntax 93—table_based_model
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 213

1

5

10

15

20

25

30

35

40

45

50

55
However, the table in a table_model_definition outside a table_header shall not substitute the
table inside the table_header. The former defines a legal set of values, the latter defines the table-lookup
indices.

If all table data are numbers, the table_based_model can also have an optional equation. This equation is to
be used when the argument data are out of interpolation range. Without the equation, extrapolation shall be
applied for data which are out of range.

11.2.1.1.5 Complex arithmetic model

A complex arithmetic model can be constructed by defining a nested arithmetic model within another arithmetic
model, as shown in Syntax 94.

The data of the inner arithmetic model is calculated first. Then the result is applied for calculation of the data of
the outer arithmetic model.

If any header_model is either model_definition or table_model_definition, then the
complex_model reduces to the previously defined equation_based_model and
table_based_model, respectively. In order to support a table in the general_model, any
header_model shall be either a table_model_definition or table_based_model, and the num-
bers in each table inside each header_model shall be strictly monotonically increasing.

The header_table_model construct can be used to associate symbols with numbers. For example, process
corners can be defined as discrete symbols and associated with process derating factors. The numbers can be
used in equations and for interpolation, whereas the symbols cannot.

11.2.1.2 Construction of arithmetic models

Input variables, also called arguments of arithmetic models, appear in the HEADER of the model. In the simplest
case, the HEADER is just a list of arguments, each being a context-sensitive keyword. The model itself is also
defined with a context-sensitive keyword.

The model can be in equation form. All arguments of the equation shall be in the HEADER. The ALF parser shall
issue an error if the EQUATION uses an argument not defined in the HEADER. A warning shall be issued if the
HEADER contains arguments not used in the EQUATION.

complex_model ::=
model_keyword [identifier] {
[all_purpose_items] HEADER { model { model } }
equation }

| model_keyword {
all_purpose_items HEADER { header_model { header_model } }
table [equation] }

header_model ::=
model_definition

| table_model_definition
| equation_based_model
| table_based_model
| header_table_model

header_table_model ::=
model_keyword [identifier] {

all_purpose_items HEADER { symbol { symbol } }
TABLE { number { number } } }

Syntax 94—complex_model
214 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
Example

DELAY {
...
HEADER {

CAPACITANCE {...}
SLEWRATE {...}

}
EQUATION {

0.01 + 0.3*SLEWRATE + (0.6 + 0.1*SLEWRATE)*CAPACITANCE
}

}

If the model uses a TABLE, then each argument in the HEADER also needs a table defining the format. The order
of arguments decides how the index to each entry is calculated. The first argument is the innermost index, the fol-
lowing arguments are outer indices.

DELAY {
HEADER {

CAPACITANCE {
TABLE {0.03 0.06 0.12 0.24}

}
SLEWRATE {

TABLE {0.1 0.3 0.9}
}

}
TABLE {

0.07 0.10 0.14 0.22
0.09 0.13 0.19 0.30
0.10 0.15 0.25 0.41

}
}

The first argument CAPACITANCE has four entries. The second argument SLEWRATE has three entries. Thus,
DELAY has 4*3=12 entries. For readability, comments can be inserted in the table.

TABLE {
//capacitance:0.03 0.06 0.12 0.24
// ------------------- slewrate:

0.07 0.10 0.14 0.22 // 0.1
0.09 0.13 0.19 0.30 // 0.3
0.10 0.15 0.25 0.41 // 0.9

}

Comments have no significance for the ALF parser nor does the arrangement of rows and columns. Only the
order of values is important for index calculation. The table can be made more compact by removing newlines.

TABLE { 0.07 0.10 0.14 0.22 0.09 0.13 0.19 0.30 0.10 0.15 0.25 0.41 }

For readability, the models and arguments can also have names, i.e., object IDs. For named objects, the name is
used for referencing, rather than the keyword.

DELAY rise_out{
...
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 215

1

5

10

15

20

25

30

35

40

45

50

55
HEADER {
CAPACITANCE c_out {...}
SLEWRATE fall_in {...}

}
EQUATION {

0.01 + 0.3 * fall_in + (0.6 + 0.1* fall_in) * c_out
}

}

The arguments of an arithmetic model can be arithmetic models themselves. In this way, combinations of
TABLE- and EQUATION-based models can be used, for instance, in derating.

Analogous with FUNCTION, both EQUATION and TABLE representation of an arithmetic model are allowed.
The EQUATION is intended to be used when the values of the arguments fall out of range, i.e., to avoid extrapo-
lation.

11.2.1.3 Arithmetic submodels

Arithmetic submodels can be used to distinguish different measurement conditions for the same model. The root
of an arithmetic model can contain nested arithmetic submodels. The header of an arithmetic model can contain
nested arithmetic models, but not arithmetic submodels.

The arithmetic submodels shown in Table 69 are generally applicable.

The arithmetic submodels shown in Table 70 are only applicable in the context of electrical modeling.

Table 69—Generally applicable arithmetic submodels

Object Description

MIN For measured or calculated data:
the data represents the minimal value / set of values within a statistical distribution.
For data within LIMIT container:
the data represents the lower limi.t value / set of values

TYP For measured or calculated data:
the data represents the typical value / set of values within a statistical distribution.

MAX For measured or calculated data:
the data represents the maximal value / set of values within a statistical distribution.
For data within LIMIT container:
the data represents the lower limit value / set of values.

DEFAULT For measured or calculated data:
the data represents the default value / set of values to be used per default.

Table 70—Submodels restricted to electrical modeling

Object Description

HIGH Applicable for electrical data measured at a logic high state of a pin.

LOW Applicable for electrical data measured at a logic low state of a pin.
216 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
The arithmetic submodels shown in Table 71 are only applicable in the context of physical modeling.

The semantics of the restricted submodels are explained in 8 and 9.

11.2.2 Arithmetic model statement

An arithmetic model statement XXX, as shown in Syntax 95.

11.2.3 Partial arithmetic model

A partial arithmetic model XXX, as shown in Syntax 96.

A partial arithmetic model contains only definitions relevant for the model, but not sufficient data to evaluate the
model.

RISE Applicable for electrical data measured during a logic low to high transition of a pin.

FALL Applicable for electrical data measured during a logic high to low transition of a pin.

Table 71—Submodels restricted to physical modeling

Object Description

HORIZONTAL Applicable for layout measurements in horizontal direction.

VERTICAL Applicable for layout measurements in vertical direction.

arithmetic_models ::=
arithmetic_model { arithmetic_model }

arithmetic_model ::=
partial_arithmetic_model

| non_trivial_arithmetic_model
| trivial_arithmetic_model
| assignment_arithmetic_model
| arithmetic_model_template_instantiation

Syntax 95—Arithmetic model statement

partial_arithmetic_model ::=
nonescaped_identifier [arithmetic_model_identifier] { partial_arithmetic_model_items }

partial_arithmetic_model_items ::=
partial_arithmetic_model_item { partial_arithmetic_model_item }

partial_arithmetic_model_item ::=
any_arithmetic_model_item

| table

Syntax 96—Partial arithmetic model

Table 70—Submodels restricted to electrical modeling (Continued)

Object Description
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 217

1

5

10

15

20

25

30

35

40

45

50

55
Definitions within unnamed partial arithmetic model (i.e., a partial arithmetic model without an arithmetic model
identifier) shall be inherited by all arithmetic models of the same type (i.e., using the same nonescaped identifier)
within scope. However, these definitions can be locally overwritten.

A named partial arithmetic model (i.e., a partial arithmetic model without an arithmetic model identifier) can be
used as argument of an EQUATION within another arithmetic model within scope without appearing in the
HEADER.

— If a partial arithmetic model outside a HEADER contains a TABLE, the arithmetic values in the TABLE
shall define a discrete set of valid values for the model.

— If a partial arithmetic model within a HEADER contains a TABLE, the arithmetic values in the TABLE
shall define the entries for table-lookup.

11.2.4 Non-trivial arithmetic model

A non-trivial arithmetic model XXX, as shown in Syntax 97.

A non-trivial arithmetic model contains sufficient data to evaluate the model.

11.2.5 Trivial arithmetic model

A trivial arithmetic model XXX, as shown in Syntax 98.

A trivial arithmetic model is associated with a constant arithmetic value. Therefore, the evaluation of the arith-
metic model is trivial.

11.2.6 Assignment arithmetic model

An assignment arithmetic model XXX, as shown in Syntax 99.

This form of arithmetic model is valid only in the following cases.

non_trivial_arithmetic_model ::=
nonescaped_identifier [arithmetic_model_identifier] {

[any_arithmetic_model_items]
arithmetic_body
[any_arithmetic_model_items] }

Syntax 97—Non-trivial arithmetic model

trivial_arithmetic_model ::=
nonescaped_identifier [arithmetic_model_identifier] = arithmetic_value ;

| nonescaped_identifier [arithmetic_model_identifier] = arithmetic_value
{ any_arithmetic_model_items }

Syntax 98—Trivial arithmetic model

assignment_arithmetic_model ::=
arithmetic_model_identifier = arithmetic_expression ;

Syntax 99—Assignment arithmetic model
218 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
— A partial arithmetic model has been defined using the arithmetic model identifier AND
arithmetic models for all arguments contained in the arithmetic expression have been defined.

— This construct is used in a dynamic template instantiation.

11.2.7 Items for any arithmetic model

Arithmetic model items XXX, as shown in Syntax 100.

Semantic restrictions apply, depending on the type and context of the arithmetic model. **Define these**

11.3 Arithmetic submodel and related statements

Add lead-in text

11.3.1 Arithmetic submodel statement

An arithmetic submodel statement XXX, as shown in Syntax 101.

11.3.2 Non-trivial arithmetic submodel

A non-trivial arithmetic submodel XXX, as shown in Syntax 102.

A non-trivial arithmetic submodel contains sufficient data to evaluate the arithmetic submodel.

11.3.3 Trivial arithmetic submodel

A trivial arithmetic submodel XXX, as shown in Syntax 103.

any_arithmetic_model_items ::=
any_arithmetic_model_item { any_arithmetic_model_item }

any_arithmetic_model_item ::=
all_purpose_item

| from
| to
| violation

Syntax 100—Arithmetic model items

arithmetic_submodels ::=
arithmetic_submodel { arithmetic_submodel }

arithmetic_submodel ::=
non_trivial_arithmetic_submodel

| trivial_arithmetic_submodel
| arithmetic_submodel_template_instantiation

Syntax 101—Arithmetic submodel statement

non_trivial_arithmetic_submodel ::=
nonescaped_identifier {

[any_arithmetic_submodel_items]
arithmetic_body
[any_arithmetic_submodel_items] }

Syntax 102—Non-trivial arithmetic submodel
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 219

1

5

10

15

20

25

30

35

40

45

50

55
A trivial arithmetic submodel is associated with a constant arithmetic value. Therefore, the evaluation of the
arithmetic submodel is trivial.

11.3.4 Items for any arithmetic submodel

Arithmetic submodel items XXX, as shown in Syntax 104.

Semantic restrictions apply, depending on the type and context of the arithmetic model. **Define these**

11.4 Arithmetic body and related statements

Add lead-in text

11.4.1 Arithmetic body

An arithmetic body XXX, as shown in Syntax 105.

An arithmetic model body shall supply the data necessary for evaluation of the arithmetic model.

11.4.2 HEADER statement

A HEADER statement XXX, as shown in Syntax 106.

The HEADER shall contain arguments for evaluating the arithmetic model. The arithmetic values of those argu-
ments shall be supplied by application program.

Semantic restriction: No arithmetic submodel is allowed within an arithmetic model body.

trivial_arithmetic_submodel ::=
nonescaped_identifier = arithmetic_value ;

| nonescaped_identifier = arithmetic_value { any_arithmetic_submodel_items }

Syntax 103—Trivial arithmetic submodel

any_arithmetic_submodel_items ::=
any_arithmetic_submodel_item { any_arithmetic_submodel_item }

any_arithmetic_submodel_item ::=
all_purpose_item

| violation

Syntax 104—Arithmetic submodel items

arithmetic_body ::=
arithmetic_submodels

| table_arithmetic_body
| equation_arithmetic_body

table_arithmetic_body ::=
header table [equation]

equation_arithmetic_body ::=
[header] equation [table]

Syntax 105—Arithmetic body
220 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
11.4.3 TABLE statement

A TABLE statement XXX, as shown in Syntax 107.

A TABLE shall provide the means for evaluation using a look-up method. All arithmetic_values within
the TABLE shall be of the same type and compatible with the type of the arithmetic model under evaluation.

11.4.4 EQUATION statement

An EQUATION statement XXX, as shown in Syntax 108.

An EQUATION shall provide the means for evaluation using an analytical method.

11.5 Arithmetic model container

An arithmetic model container XXX, as shown in Syntax 109.

Containers for arithmetic models

header ::=
HEADER { identifiers }

| HEADER { header_arithmetic_models }
| header_template_instantiation

header_arithmetic_models ::=
header_arithmetic_model { header_arithmetic_model }

header_arithmetic_model ::=
non_trivial_arithmetic_model

| partial_arithmetic_model

Syntax 106—HEADER statement

table ::=
TABLE { arithmetic_values }

| table_template_instantiation

Syntax 107—TABLE statement

equation ::=
EQUATION { arithmetic_expression }

| equation_template_instantiation

Syntax 108—EQUATION statement

arithmetic_model_container ::=
arithmetic_model_container_identifier { arithmetic_models }

Syntax 109—Arithmetic model container
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 221

1

5

10

15

20

25

30

35

40

45

50

55
The keywords shown in Table 72 are defined for objects that can contain arithmetic models.

The LIMIT container is for general use. The FROM, TO, EARLY, and LATE containers are only for use within the
context of timing models.

11.5.1 LIMIT container

A LIMIT container shall contain arithmetic models. The arithmetic models shall contain submodels identified
by MIN and/or MAX.

Example

PIN data_in {
LIMIT {

SLEWRATE { UNIT = ns; MIN = 0.05; MAX = 5.0;}
}

}

The minimum slewrate allowed at pin data_in is 0.05 ns, the maximum is 5.0 ns.

PIN data_in {
LIMIT {

SLEWRATE {
UNIT = ns;
MAX {

HEADER { FREQUENCY { UNIT=megahz;} }
EQUATION { 250 / FREQUENCY }

}
}

}
}

The maximum allowed slewrate is frequency-dependent, e.g., the value is 0.25ns for 1GHz.

11.5.2 Containers for arithmetic models and submodels

Containers for arithmetic models can supplement the context-specific semantics of the arithmetic model. There-
fore, arithmetic models can be placed in the context of arithmetic model containers, as shown in Syntax 110.

Table 72—Unnamed containers for arithmetic models

Object Description

FROM Contains start point of timing measurement or timing constraint.

TO Contains end point of measurement or timing constraint.

LIMIT Contains arithmetic models for limit values.

EARLY Contains arithmetic models for timing measurements relevant for early signal arrival time.

LATE Contains arithmetic models for timing measurements relevant for late signal arrival time.
222 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
There is a dedicated set of model_container_keywords. In addition, model_keywords can also be
used as model_container_keywords and dedicated submodel_keywords can be used as
model_keywords. The number of levels in nested arithmetic model containers is restricted by the set of
allowed combinations between model_container_keywords, model_keywords and
submodel_keywords (see 11.2.1.3).

11.6 Statements related to arithmetic models for general purpose

Add lead-in text

11.6.1 MIN and MAX statements

Semantics of MIN / TYP / MAX

MIN, TYP, and MAX indicate the data of the arithmetic model represent minimal, typical, or maximal values
within a statistical distribution. No correlation is assumed or implied between MIN data, TYP data, or MAX data
across different arithmetic models.

Example

DELAY {
FROM { PIN=A; } TO { PIN=Z; }
MIN = 0.34; TYP = 0.38; MAX = 0.45;

}
POWER {

MEASUREMENT = average; FREQUENCY = 1e6;
MIN = 1.2; TYP = 1.4; MAX = 1.5;

}

The MIN value for DELAY could simultaneously apply with the MIN value for POWER. Typically, the case with
smaller delay is also the case with larger power consumption.

Within the scope of a LIMIT container, MIN and MAX contain the data for a lower or upper limit, respectively.
There shall be at least one limit, lower or upper, in each model, but not necessarily both.

Example

LIMIT {
SLEWRATE { PIN=A; MAX=5.0; }
VOLTAGE { PIN=VDD; MIN=1.6; MAX=2.0; }

}

model_container ::=
model_container_keyword {

[all_purpose_items] model_container_contents { model_container_contents } }
model_container_contents ::=

model_container
| trivial_model
| complex_model

Syntax 110—model_container
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 223

1

5

10

15

20

25

30

35

40

45

50

55
MIN, MAX as an annotation inside a model or inside a model argument within the HEADER define the validity
range of the data. If MIN, MAX is not defined and the data is in a TABLE, the boundaries of the data in the
TABLE shall be considered as validity limits.

Example

POWER {
HEADER {

SLEWRATE { PIN=A; MIN=0.01; MAX=5.0; TABLE { 0.1 0.5 1.0 } }
CAPACITANCE { PIN=Z; TABLE { 0.0 0.4 0.8 1.6 } }

}
TABLE { 0.2 0.3 0.6 0.4 0.5 0.7 0.8 0.8 1.0 1.5 1.5 1.6 }

}

The data for POWER is valid for SLEWRATE in the range between 0.01 and 5.0 (via extrapolation) and for
CAPACITANCE in the range between 0.0 and 1.6.

11.6.2 TYP statement

Add lead-in text

11.6.3 DEFAULT statement

Add lead-in text

11.6.3.1 DEFAULT annotation

Default annotation promotes use of the default value instead of the arithmetic model if the arithmetic model is
beyond the scope of the application tool.

DEFAULT = number ;

Restrictions can apply for the allowed type of number. For instance, if the arithmetic model allows only
non_negative_number, then the default is restricted to non_negative_number.

11.6.3.2 Semantics of DEFAULT

Arithmetic submodels can be identified by MIN, TYP, and MAX or context-restricted keywords. For cases where
the application tool cannot decide which qualifier applies, a supplementary arithmetic submodel with the quali-
fier DEFAULT can be used.

Example

PIN my_pin {
CAPACITANCE {

MIN { HEADER { ... } TABLE { ... } }
TYP { HEADER { ... } TABLE { ... } }
MAX { HEADER { ... } TABLE { ... } }
DEFAULT { HEADER { ... } TABLE { ... } }

}
}

NOTE—The DEFAULT model can also degenerate to a single value; it represents a trivial arithmetic model.
224 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
In certain cases, there is no supplementary submodel. Instead, one of the already defined submodels is used by
default. For this case, the DEFAULT annotation can be used to point to the applicable keyword.

Example

PIN my_pin {
CAPACITANCE {

MIN { HEADER { ... } TABLE { ... } }
TYP { HEADER { ... } TABLE { ... } }
MAX { HEADER { ... } TABLE { ... } }
DEFAULT = TYP;

}
}

The trivial arithmetic model construct with DEFAULT can also be used for an argument in the context of the
HEADER of an arithmetic model. This enables evaluation of the arithmetic model in case the data of the argument
can not be supplied by the application tool.

Example

PIN my_pin {
CAPACITANCE {

HEADER { TEMPERATURE { DEFAULT=50; TABLE { 0 50 100 } } }
TABLE { 0.05 0.07 0.10 } }

}
}

The DEFAULT value of the CAPACITANCE here is 0.07.

11.6.4 LIMIT statement

Reliability calculation

In general, reliability is modeled by arithmetic models using the LIMIT construct.

11.6.4.1 Global LIMIT specifications

Global limits can be specified for electrical quantities, even if they are related to CELLs, PINs, or VECTORs.
Such global limits apply, unless local limits are specified within the context of CELLs, PINs, or VECTORs. The
priorities are given below.

a) LIMIT within the context of the VECTOR
b) LIMIT within the context of a PIN (if the LIMIT in the VECTOR has PIN annotation)
c) LIMIT within the context of the CELL
d) LIMIT within the context of the SUBLIBRARY
e) LIMIT within the context of the LIBRARY
f) LIMIT outside LIBRARY

The arguments in the HEADER of the LIMIT model can only be items that are visible within the scope of the
LIMIT model. In particular, arguments with PIN annotations are only legal for LIMIT models in the context of
a CELL or a VECTOR within the CELL.
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 225

1

5

10

15

20

25

30

35

40

45

50

55
11.6.4.2 LIMIT and model specification in the same context

An arithmetic model for a physical quantity and a limit specification for the same physical quantity can appear
within the same context, for example, an arithmetic model for FLUENCE calculation and a LIMIT for FLUENCE
within the context of a VECTOR. In such a case, the calculated quantity shall be checked against the limit of the
quantity within that context.

On the other hand, if multiple arithmetic models are given within the context for which the limit applies, the limit
shall be checked against the combination of all arithmetic models in the case of cumulative quantities, or against
the minimum or maximum calculated value in the case of non-cumulative or mutually exclusive quantities.

For example, a LIMIT for FLUENCE can be given in the context of a CELL. Calculation models for FLUENCE
can be given for multiple VECTORs within the context of the CELL. The LIMIT for FLUENCE shall be checked
against the accumulated FLUENCE calculated for all VECTORs.

Example

CELL my_cell {
PIN A { DIRECTION = input; }
PIN B { DIRECTION = input; }
PIN C { DIRECTION = input; }
PIN Z { DIRECTION = output; }
LIMIT { FLUENCE { MAX = 1e20; } } }
VECTOR (01 A -> 10 Z) {

FLUENCE = 1e-5;
}
VECTOR (01 B -> 10 Z) {

FLUENCE = 1e-5;
}
VECTOR (01 C -> 10 Z) {

FLUENCE = 1e-6;
LIMIT { FLUENCE { MAX = 1e18; } }

}
}

The fluence limit for the cell is reached after 1025 occurrences of VECTOR (01 A -> 10 Z) or VECTOR
(01 B -> 10 Z) counted together. The fluence limit for the VECTOR (01 C -> 10 Z) is reached
after 1024 occurrences of that vector.

An example for a non-cumulative quantity is SLEWRATE. The VECTORs in the context of which SLEWRATE is
modeled describe timing arcs with mutually exclusive conditions. Therefore, if a minimum or maximum LIMIT
for SLEWRATE is given for a PIN in the context of a CELL, this SLEWRATE shall be checked against the mini-
mum or maximum value of any calculated SLEWRATE applicable to that PIN.

Example

CELL my_cell {
PIN A { DIRECTION = input; }
PIN B { DIRECTION = input; }
PIN C { DIRECTION = input; }
PIN Z { DIRECTION = output; LIMIT { SLEWRATE { MAX = 5; } } }
VECTOR (01 A -> 10 Z) {

SLEWRATE { PIN = Z; /* fill in HEADER, TABLE */ }
}

226 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
VECTOR (01 B -> 10 Z) {
SLEWRATE { PIN = Z; /* fill in HEADER, TABLE */ }

}
VECTOR (01 C -> 10 Z) {

SLEWRATE { PIN = Z; /* fill in HEADER, TABLE */ }
}

}

Here the slewrate on pin Z calculated in the context of any vector is checked against the same maximum limit.

11.6.4.3 Model and argument specification in the same context

An cumulative quantity can also be an argument in the HEADER of an arithmetic model. If the model for calcula-
tion of that quantity is within the same context as the argument of the other model, then the value of the calcu-
lated quantity shall be used. Otherwise, the value of the accumulated quantity shall be used.

For example, SLEWRATE can be modeled as a function of FLUENCE in the context of a VECTOR. If a calcula-
tion model for FLUENCE appears in the context of the same VECTOR, the value for FLUENCE shall be used for
the SLEWRATE calculation. On the other hand, if there is no calculation model for FLUENCE in the context of
the same VECTOR, but there is one in the context of other VECTORs, then the accumulated value of FLUENCE
from the other calculation models shall be used for SLEWRATE calculation.

Example

CELL my_cell {
PIN A { DIRECTION = input; }
PIN B { DIRECTION = input; }
PIN C { DIRECTION = input; }
PIN Z { DIRECTION = output; }
VECTOR ((01 A | 01 B) -> 10 Z) { FLUENCE = 1e-5; }
VECTOR (01 A -> 10 Z) {

SLEWRATE { CALCULATION=incremental; PIN = Z;
HEADER { FLUENCE } EQUATION { 1e-8 * FLUENCE }

}
}
VECTOR (01 B -> 10 Z) {

SLEWRATE { CALCULATION=incremental; PIN = Z;
HEADER { FLUENCE } EQUATION { 1e-8 * FLUENCE }

}
}
VECTOR (01 C -> 10 Z) {

FLUENCE = 1e-6;
SLEWRATE { CALCULATION=incremental; PIN = Z;

HEADER { FLUENCE } EQUATION { 1e-9 * FLUENCE }
}

}
}

After 1013 = 105*108 occurrences of VECTOR ((01 A | 01 B) -> 10 Z), the slewrate at pin Z for
VECTOR (01 A -> 10 Z) and VECTOR (01 B -> 10 Z) is increased by 1 unit.
After 1015 = 106*109 occurrences of VECTOR (01 C -> 10 Z), the slewrate at pin Z for VECTOR (01
C -> 10 Z) is increased by 1 unit.
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 227

1

5

10

15

20

25

30

35

40

45

50

55
11.6.5 Annotations for arithmetic models for general purpose

Annotations for arithmetic models

Annotations and annotation containers described in this section are relevant for the semantic interpretation of
arithmetic models and their arguments.

Example

DELAY=f(CAPACITANCE)

DELAY is the arithmetic model, CAPACITANCE is the argument.

Arguments of arithmetic models have the form of annotation containers. They can also have the form of arith-
metic models themselves, in which case they represent nested arithmetic models.

11.6.5.1 UNIT annotation

Unit annotation associates units with the value computed by the arithmetic model.

UNIT = string | non_negative_number ;

A unit specified by a string can take the values (* indicates a wild card) shown in Table 73.

Arithmetic models are context-sensitive, i.e., the units for their values can be determined from the context. If the
UNIT annotation for such a context does not exist, default units are applied to the value (see 11.2.1.3).

Example

TIME { UNIT = ns; }
FREQUENCY { UNIT = gigahz; }

Table 73—UNIT annotation

Annotation string Description

f* or F* Equivalent to 1E-15.

p* or P* Equivalent to 1E-12.

n* or N* Equivalent to 1E-9.

u* or U* Equivalent to 1E-6.

m* or M* Equivalent to 1E-3.

1* Equivalent to 1E+0.

k* or K* Equivalent to 1E+3.

meg* or MEG*a

aor any uppercase/lowercase combination of these three characters

Equivalent to 1E+6.

g* or G* Equivalent to 1E+9.
228 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
If the unit is a string, then only the first character (the first three characters in case of MEG) is interpreted. The
reminder of the string can be used to define base units. Metric base units are assumed, but not verified, in ALF.

There is no semantic difference between

unit = 1sec;

and

unit = 1volt;

Therefore, if the unit is specified as

unit = meg;

the interpretation is 1E+6. However, for

unit = 1meg;

the interpretation is 1 and not 1E+6.

Units in a non-metric system can only be specified with numbers, not with strings. For instance, if the intent is to
specify an inch instead of a meter as the base unit, the following specification does not meet the intent:

unit = 1inch;

since the interpretation is 1 and meters are assumed.

The correct way of specifying inch instead of meter is

unit = 25.4E-3;

since 1 inch is (approximately) 25.4 millimeters.

11.6.5.2 CALCULATION annotation

An arithmetic model in the context of a VECTOR can have the CALCULATION annotation defined as shown in
Syntax 111.

It shall specify whether the data of the model are to be used by themselves or in combination with other data. The
default is absolute.

The incremental data from one VECTOR shall be added to absolute data from another VECTOR under the
following conditions:

calculation_annotation ::=
CALCULATION = calculation_identifier ;

calculation_identifier ::=
absolute

| incremental

Syntax 111—calculation_annotation
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 229

1

5

10

15

20

25

30

35

40

45

50

55
— The model definitions are compatible, i.e., measurement specifications shall be the same. Units are
allowed to be different.
Example: slewrate measurements at the same pin, same switching direction, and same threshold values.

— The model definitions for common arguments are compatible, i.e., the same range of values for table-
based models and measurement specifications are the same. Units can be different.
Example: same values for derate_case and same threshold definitions for input slewrate.

— The vector definitions are compatible, i.e, the vector_or_boolean_expression of the VECTOR
containing incremental data matches the vector_or_boolean_expression of the VECTOR
containing absolute data by removing all variables appearing exclusively in the former expression.

Example

VECTOR (01 A -> 01 Z) {
DELAY {

CALCULATION = absolute;
FROM { PIN = A; } TO { PIN = Z; }
HEADER {

CAPACITANCE load { PIN = Z; }
SLEWRATE slew { PIN = A; }

}
EQUATION { 0.5 + 0.3*slew + 1.2*load }

}
}
VECTOR (01 A &> 01 B &> 01 Z) {

DELAY {
CALCULATION = incremental;
FROM { PIN = A; } TO { PIN = Z; }
HEADER {

SLEWRATE slew_A { PIN = A; }
SLEWRATE slew_B { PIN = B; }
TIME time_A_B { FROM { PIN = A; } TO { PIN = B; } }

}
EQUATION {- 0.1 + (0.05+0.002*slew_A*slew_B)*time_A_B) }

}
}

Both models describe the rise-to-rise delay from A to Z. The second delay model describes the incremental delay
(here negative), when input B switches in a time window between A and Z.

11.6.5.3 INTERPOLATION annotation

An argument of a table-based arithmetic model, i.e., a model in the HEADER containing a TABLE statement, can
have the INTERPOLATION annotation defined as shown in Syntax 112.

interpolation_annotation ::=
INTERPOLATION = interpolation_identifier ;

interpolation_identifier ::=
fit

| linear
| floor
| ceiling

Syntax 112—interpolation_annotation
230 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
This also needs to specify the interpolation scheme for the values in-between the values of the TABLE.

— fit
the data points in the table are supposed to be part of a smooth curve. Linear interpolation or other algo-
rithms, e.g., cubic spline or polynomial regression can be used to fit the data points into the curve.

— linear
the data points in the table are supposed to be part of a piece wise linear curve. Linear interpolation shall
be used.

— floor
the value to the left in the table, i.e., the smaller value is used.

— ceiling
the value to the right in the table, i.e., the larger value is used.

The default is fit. For multi-dimensional tables, different interpolation schemes can be used for each dimension.

Example

my_model {
HEADER {

dimension1 { INTERPOLATION = fit; TABLE { 1 2 4 8 }
dimension2 { INTERPOLATION = floor; TABLE { 10 100 }
dimension3 { INTERPOLATION = ceiling; TABLE { 10 100 }

}
TABLE {

1 7 3 5
10 20 60 40
50 30 20 100
0.8 0.4 0.2 0.9

}
}

Consider the following values:

dimension1 = 6
=> following subtable is chosen:

3 5 // interpolation between 3 and 5
60 40 // or between 60 and 40
20 100 // or between 20 and 100
0.2 0.9 // or between 0.2 and 0.9

dimension2 = 50
=> following subtable is picked:

3 5 // interpolation between 3 and 5
20 100 // or between 20 and 100

dimension3 = 50
=> following subtable is picked:

20 100 // interpolation between 20 and 100

The following rules shall apply for each dimension of a table-based model:

For values outside the range of the table, extrapolation shall apply, using the table data points at the leftmost or
rightmost side, respectively, as reference.

If the value is smaller than the smallest, i.e. leftmost, data point in the table, the extrapolation shall be calculated
as if the value would fall in-between the leftmost and second leftmost value.
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 231

1

5

10

15

20

25

30

35

40

45

50

55
If the value is greater than the greatest, i.e. rightmost, data point in the table, the extrapolation shall be calculated
as if the value would fall in-between the rightmost and second rightmost value.

Example

my_model Y {
HEADER {

my_argument X {
TABLE { 0 2 4 8 }
// X[0] X[1] X[2] X[3]

}
}
TABLE { 0.5 0.6 1.0 1.5 }
// Y[0] Y[1] Y[2] Y[3]

}

For linear interpolation, the following equation is used:

If X < X[0], the values X[0], X[1], Y[0], Y[1] are plugged into the equation.

If X > X[3], the values X[2], X[3], Y[2], Y[3] are plugged into the equation.

Figure 33 illustrates a non-linear interpolation scheme with the goal of fitting three neighboring points into a
smooth curve.

Figure 33—Illustration of extrapolation rules

The curve based on the 3 rightmost or the 3 leftmost points, respectively, is used for extrapolation to the right
side or the left side, respectively.

Y Y[N]
Y[N+1] Y[N]–
X[N+1] X[N]–
------------------------------------- X⋅+= X[N] X X[N+1]≤ ≤

X0 1 2 3 4 5 6 7 8

1.5
1.4
1.3
1.2
1.1
1.0
0.9
0.8
0.7
0.6
0.5

Y

X

X

X
X

X

X

X
X

232 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
11.7 Rules for evaluation of arithmetic models

Add lead-in text

11.7.1 Arithmetic model with arithmetic submodels

The application program shall decide which arithmetic submodel applies for evaluation in a particular situation.
By default, the arithmetic submodel identified by the DEFAULT keyword or the arithmetic submodel referenced
by the DEFAULT annotation shall be used.

11.7.2 Arithmetic model with table arithmetic body

All arithmetic models in the HEADER shall contain a TABLE.

— Describe algorithm to identify correct table entry.
— Refer to INTERPOLATION annotation.

Supplementary EQUATION is legal; this shall be used for interpolation or extrapolation of values out-of-range.

11.7.3 Arithmetic model with equation arithmetic body

Operands in arithmetic expression shall be defined as arithmetic models in a HEADER or as partial arithmetic
models outside a HEADER, but within its scope. It shall be legal to some arguments defined in the HEADER and
some others outside the HEADER. **scope??

For a named arithmetic model, the name shall be used as the operand. For an unnamed arithmetic model, the key-
word shall be used as the operand.

A supplementary TABLE is legal; this shall be used asa lookup entry for downstream arithmetic models, when
the arithmetic model itself is within HEADER.

11.8 Overview of arithmetic models

Add lead-in text

Electrical Performance Modeling

11.8.1 Overview of modeling keywords

This section details the keywords used for performance modeling.
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 233

1

5

10

15

20

25

30

35

40

45

50

55
11.8.1.1 Timing models

Table 74 — Table 77 show the set of keywords used for timing measurements and constraints. All keywords
have implied semantics that restrict their capability to describe general temporal relations between arbitrary sig-
nals. For unrestricted purposes, the keyword TIME shall be used.

Table 74—Timing measurements

Keyword Value type Base
units

Default
units Description

DELAY number Second n (nano) Time between two threshold crossings within
two consecutive events on two pins. A causal
relationship between the two events is implied.

RETAIN number Second n (nano) Time when an output pin shall retain its value
after an event on the related input pin. RETAIN
appears always in conjunction with DELAY for
the same two pins.

SLEWRATE non-negative
number

Second n (nano) Time between two threshold crossings within
one event on one pin.

Table 75—Timing constraints

Keyword Value type Base
units

Default
units Description

HOLD number Second n (nano) Minimum time limit for hold between two
threshold crossings within two consecutive
events on two pins.

NOCHANGE optionala non-
negative number

Second n (nano) Minimum time limit between two threshold
crossings within two arbitrary consecutive events
on one pin, in conjunction with SETUP and
HOLD.

PERIOD non-negative
number

Second n (nano) Minimum time limit between two identical
events within a sequence of periodical events.

PULSEWIDTH number Second n (nano) Minimum time limit between two threshold
crossings within two consecutive and comple-
mentary events on one pin.

RECOVERY number Second n (nano) Minimum time limit for recovery between two
threshold crossings within two consecutive
events on two pins.

REMOVAL number Second n (nano) Minimum time limit for removal between two
threshold crossings within two consecutive
events on two pins.

SETUP number Second n (nano) Minimum time limit for setup between two
threshold crossings within two consecutive
events on two pins.

SKEW number Second n (nano) Absolute value is maximum time limit between
two threshold crossings within two consecutive
events on two pins; the sign indicates positive or
negative direction.
234 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
11.8.1.2 Analog models

Table 78 and Table 79 define the keywords for analog modeling.

aThe associated SETUP and HOLD measurements provide data. NOCHANGE itself need not provide data.

Table 76—Generalized timing measurements

Keyword Value type Base units Default units Description

TIME number Second 1 (unit) Time point for waveform
modeling, time span for
average, RMS, and peak
modeling .

FREQUENCY non-negative
number

Hz meg (mega) Frequency.

JITTER non-negative
number

Second n (nano) Uncertainty of arrival
time.

Table 77—Normalized measurements

Keyword Value type Base
units

Default
units Description

THRESHOLD non-negative
number between
0 and 1

Normalized
signal volt-
age swing

1 (unit) Fraction of signal voltage swing, specifying a
reference point for timing measurement data.
The threshold is the voltage for which the
timing measurement is taken.

NOISE_MARGIN non-negative
number between
0 and 1

Normalized
signal volt-
age swing

1 (unit) Fraction of signal voltage swing, specifying
the noise margin. The noise margin is a devia-
tion of the actual voltage from the expected
voltage for a specified signal level.

Table 78—Analog measurements

Keyword Value type Base units Default units Description

CURRENT number Ampere m (milli) Electrical current drawn
by the cell. A pin can be
specified as annota-
tion.a

ENERGY number Joule p (pico) Electrical energy drawn
by the cell, including
charge and discharge
energy, if applicable.

POWER number Watt u (micro) Electrical power drawn
by the cell, including
charge and discharge
power, if applicable.
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 235

1

5

10

15

20

25

30

35

40

45

50

55
11.8.1.3 Supplementary models

Table 80 and Table 81 define the keywords for supplementary models.

TEMPERATURE number o Celsius 1 (unit) Temperature.

VOLTAGE number Volt 1 (unit) Voltage.

FLUX non-negative
number

Coulomb per
Square Meter

1 (unit) Amount of hot electrons
in units of electrical
charge per gate oxide
area.

FLUENCE non-negative
number

Second times
Coulomb per
Square Meter

1 (unit) Integral of FLUX over
time.

aIf the annotated PIN has PINTYPE=supply, the CURRENTmeasurement qualifies for power analysis. In this
case, the current includes charge/discharge current, if applicable.

Table 79—Electrical components

Keyword Value type Base units
Default
units Description

CAPACITANCE non-negative
number

Farad p (pico) Pin, wire, load, or net capacitance.

INDUCTANCE non-negative
number

Henry n (nano) Pin, wire, load, or net inductance.

RESISTANCE non-negative
number

Ohm K (kilo) Pin, wire, load, or net resistance.

Table 80—Abstract measurements

Keyword Value type Base
units

Default
units Description

DRIVE_STRENGTH non-negative
number

None 1 (unit) Drive strength of a pin, abstract measure for
(drive resistance)-1.

SIZE non-negative
number

None 1 (unit) Abstract cost function for actual or estimated
area of a cell or a block.

Table 78—Analog measurements (Continued)

Keyword Value type Base units Default units Description
236 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
The actual values for discrete measurements are always integer numbers, however, estimated values can be non-
integer numbers (e.g., the average fanout of a net is 2.4).

Table 82 describes the arguments for arithmetic models to describe environmental dependency.

11.8.2 Arithmetic models in the context of layout

Table 83 shows keywords for arithmetic models in the context of layout.

Table 81—Discrete measurements

Keyword Value type Base
units

Default
units Description

SWITCHING_BITS non-negative
number

None 1 Number of switching bits on a bus.

FANOUT non-negative
number

None 1 Number of receivers connected to a net.

FANIN non-negative
number

None 1 Number of drivers connected to a net.

CONNECTIONS non-negative
number

None 1 Number of pins connected to a net, where
CONNECTIONS = FANIN+FANOUT.

Table 82—Environmental data

Annotation string Value type Description

DERATE_CASE string Derating case, i.e., the combination of process,
supply voltage, and temperature.

PROCESS string Process corner.

TEMPERATURE number Environmental temperature.

Table 83—Arithmetic models for layout data

Keyword Value type Base
units

Default
units Description

SIZE Non-negative number N/A 1 Abstract, unitless measurement for the size of a
physical object.

AREA Non-negative number Square
Meter

p (pico) Area in square microns (pico = micro2).

DISTANCE Non-negative number Meter u (micro) Distance between two points in microns.

HEIGHT Positive number Meter u (micro) y- dimension of a placeable object
(e.g., cell or block).
z- dimension of a routeable object (e.g., pattern
on routing layer), representing the absolute
height above substrate.
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 237

1

5

10

15

20

25

30

35

40

45

50

55
Table 84 — Table 93 summarize the semantic meanings of arithmetic model keywords in the context of layout.

LENGTH Positive number Meter u (micro) x-, or y- dimension of a routeable object (e.g.,
pattern on routing layer) measured in routing
direction.

WIDTH Positive number Meter u (micro) x-dimension of a placeable object
(e.g., cell or block).
x- or y- dimension of a routeable object (e.g.,
pattern on routing layer) measured in orthogo-
nal direction to the route.

PERIMETER Positive number Meter u (micro) Circumference of a physical object.

THICKNESS Positive number Meter u (micro) z- dimension of a manufacturable physical
object, representing the distance between the
bottom of the object above and the top of the
object below.

OVERHANG Non-negative number Meter u (micro) Distance between the edges of two overlapping
physical objects.

EXTENSION Non-negative number Meter u (micro) Distance between the center and the outer edge
of a physical object.

Table 84—Semantic meaning of SIZE

Context Meaning

CELL Abstract measure for size of the cell, cost function for design implementation.

WIRE - As a model (TABLE or EQUATION):
abstract measure for the size of the wire itself.
- As argument of a model (HEADER):
abstract measure for size of the block for which the wireload model applies,
can be calculated by combining the size of all cells and all wires in the block.

ANTENNA Abstract measure for size of the antenna for which the antenna rule applies.

Table 85—Semantic meaning of WIDTH

Context Meaning

CELL, SITE Horizontal distance between cell or site boundaries, respectively.

WIRE As argument of a model (HEADER):
horizontal distance between block boundaries for which wireload model applies.

LAYER,
ANTENNA

Width of a wire, orthogonal to routing direction.

Table 83—Arithmetic models for layout data (Continued)

Keyword Value type Base
units

Default
units Description
238 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
Table 86—Semantic meaning of HEIGHT

Context Meaning

CELL, SITE Vertical distance between cell or site boundaries, respectively.

WIRE As argument of a model (HEADER):
vertical distance between block boundaries for which wireload model applies.

LAYER Distance from top of ground plane to bottom of wire.

Table 87—Semantic meaning of LENGTH

Context Meaning

WIRE Estimated routing length of a wire in a wireload model.

LAYER,
ANTENNA

Actual routing length of a wire in layout.

Table 88—Semantic meaning of AREA

Context Meaning

CELL Physical area of the cell, product of width and height of a rectangular cell.

WIRE - As a model (TABLE or EQUATION):
physical area of the wire itself.
- As argument of a model (HEADER):
physical area of the block for which wireload model applies,
product of width and height of rectangular block.

LAYER, VIA,
ANTENNA

Physical area of a placeable or routeable object, measured in the x-y plane.

Table 89—Semantic meaning of PERIMETER

Context Meaning

CELL Perimeter of the cell, twice the sum of height and width for rectangular cell.

WIRE - As a model (TABLE or EQUATION):
perimeter the wire itself.
- As argument of a model (HEADER):
perimeter of the block for which wireload model applies,
twice the sum of height and width for rectangular block.

LAYER, VIA,
ANTENNA

Perimeter of a placeable or routeable object, measured in the x-y plane.
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 239

1

5

10

15

20

25

30

35

40

45

50

55
11.9 Arithmetic models for timing data

Add lead-in text

11.9.1 Specification of timing models

Timing models shall be specified in the context of a VECTOR statement.

11.9.1.1 Template for timing measurements / constraints

The following templates show a general timing measurement and a general timing constraint description, respec-
tively, applicable for two pins.

TEMPLATE TIMING_MEASUREMENT {
<timeKeyword> = <timeValue> {

FROM {
PIN=<fromPin>;
THRESHOLD=<fromThreshold>;
EDGE_NUMBER=<fromEdge>;

}
TO {

Table 90—Semantic meaning of DISTANCE

Context Meaning

RULE Distance between objects for which the rule applies.

Table 91—Semantic meaning of THICKNESS

Context Meaning

LAYER,
ANTENNA

Distance between top and bottom of a physical object, orthogonal to the x-y plane.

Table 92—Semantic meaning of OVERHANG

Context Meaning

RULE Distance between the outer border of an object and the outer border of another object
inside the first one.

Table 93—Semantic meaning of EXTENSION

Context Meaning

LAYER, VIA,
RULE,
geometric model

Distance between the border of the original object and the border of the same object after
enlargement.
240 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
PIN=<toPin>;
THRESHOLD=<toThreshold>;
EDGE_NUMBER=<toEdge>;

}
}

}
TEMPLATE TIMING_CONSTRAINT {

LIMIT {
<timeKeyword> {

FROM {
PIN=<fromPin>;
THRESHOLD=<fromThreshold>;
EDGE_NUMBER=<fromEdge>;

}
TO {

PIN=<toPin>;
THRESHOLD=<toThreshold>;
EDGE_NUMBER=<toEdge>;

}
MIN = <timeValueMin>;
MAX = <timeValueMax>;

}
}

}

For simplicity, trivial arithmetic models shown here. In general, a HEADER, TABLE, or EQUATION construct
can be used for calculation of <timeValue>, <timeValueMin>, or <timeValueMax>.

A particular timing constraint does not necessarily contain both <timeValueMin> and <timeValueMax>.

The <fromThreshold> and <toThreshold> can be globally predefined as explained in 11.10.3.2.

The vector_expression in the context where the <timeKeyword> appears shall contain at least two
expressions of the type vector_single_event with the <fromPin> and <toPin>, respectively, as oper-
ands. The <fromEdge> and <toEdge> point to their respective vector_single_event, as shown in
Figure 34.

Figure 34—General timing measurement or timing constraint

<fromPin>

<toPin>

<fromThreshold>

<toThreshold>

<timeValue> or <timeValueMin> or <timeValueMax>

<fromEdge> <fromEdge> + 1

<toEdge> - 1 <toEdge>
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 241

1

5

10

15

20

25

30

35

40

45

50

55
The direction of the respective transition shall be identified by the respective edge_literal, i.e., the operator
of the respective vector_single_event.

The temporal order of the LHS and RHS vector_single_event expressions within the
vector_expression is indicated by a vector_binary operator.

The implications on the range of <timeValue> or <refPin> or <timeValueMax> are shown in Table 94.

NOTE—This table does not apply for models with CALCULATION=incremental. Incremental values can always be pos-
itive, negative, or zero.

11.9.1.2 Partially defined timing measurements and constraints

A partially defined timing measurement or timing constraint contains only a FROM statement or a TO statement,
but not both. This construct can be used to specify measurements from any point to a specific point (only TO is
specified) or from a specific point to any point (only FROM is specified).

This is summarized in Table 95.

It is recommended to use the constructs for interconnect timing arcs only in conjunction with CALCULA-
TION=incremental. The <timeValue>, <timeValueMin>, or <timeValueMax> from this model is
added to the <timeValue>, <timeValueMin>, or <timeValueMax> from timing arcs starting or end-

Table 94—Range of time value depending on VECTOR

LHS operand RHS range of <timeValue> or <timeValueMin>
or <timeValueMax>

<fromPin> -> or ~> <toPin> Positive

<toPin> -> or ~> <fromPin> Negative

<fromPin> &> <toPin> Positive or zero

<toPin> &> <fromPin> Negative or zero

<fromPin> <-> <toPin> Positive or negative

<toPin> <-> <fromPin> Positive or negative

<fromPin> <&> <toPin> Positive or negative or zero

<toPin> <&> <fromPin> Positive or negative or zero

Table 95—Partially specified timing measurements and constraints

DIRECTION of PIN FROM or TO specified Specified model applicablity

input FROM only Cell timing arcs starting at this pin.

input TO only Interconnect timing arcs ending at this pin.

output FROM only Interconnect timing arcs starting at this pin.

output TO only Cell timing arcs ending at this pin.
242 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
ing at this pin, respectively. If the construct is used with CALCULATION=absolute, the timing model can
only be used if completely specified interconnect timing models are not available and the result is not be accurate
in general.

11.9.1.3 Template for same-pin timing measurements / constraints

The following templates show a timing measurement and a timing constraint description, respectively, applicable
for the same pin.

TEMPLATE SAME_PIN_TIMING_MEASUREMENT {
<timeKeyword> = <timeValue> {

PIN=<refPin>;
EDGE_NUMBER=<refEdge>;
FROM { THRESHOLD=<fromThreshold>; }
TO { THRESHOLD=<toThreshold>; }

}
}
TEMPLATE SAME_PIN_TIMING_CONSTRAINT {

LIMIT {
<timeKeyword> {

PIN=<refPin>;
EDGE_NUMBER=<refEdge>;
FROM { THRESHOLD=<fromThreshold>; }
TO { THRESHOLD=<toThreshold>; }
MIN = <timeValueMin>;
MAX = <timeValueMax>;

}
}

}

Depending on the <timeKeyword>, the <timeValue>, <timeValueMin>, or <timeValueMax> is
measured on the same <refEdge> or between <refEdge> and <refEdge> plus 1. Only the -> or ~> oper-
ators are applicable between subsequent edges. Therefore, the <timeValue>, <timeValueMin>, or
<timeValueMax> are positive by definition.

NOTE—The <fromThreshold> and <toThreshold> can be globally predefined as explained in 11.10.3.2. However,
the THRESHOLD in the context of a PIN does not apply for SAME_PIN_TIMING_MEASUREMENT or
SAME_PIN_TIMING_CONSTRAINT, since the <refPin> is not within a FROM or TO statement.

11.9.1.4 Absolute and incremental evaluation of timing models

As mentioned in the previous sections, the calculation models for TIMING_MEASUREMENT,
TIMING_CONSTRAINT, SAME_PIN_TIMING_MEASUREMENT, and SAME_PIN_TIMING_CONSTRAINT
can have the annotation CALCULATION=absolute (the default) or CALCULATION=incremental. These
annotations are only relevant more than one calculation model for the same timing arc exists.

Calculation models for the same timing arc with CALCULATION=absolute shall be within the context of
mutually exclusive VECTORs. The vector_expression specifies which model to use under which condi-
tion.

Example

VECTOR ((01 A -> 01 Z) && B & !C) {
DELAY { CALCULATION=absolute; FROM { PIN=A; } TO { PIN=Z; }
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 243

1

5

10

15

20

25

30

35

40

45

50

55
/* fill in HEADER, TABLE */ }
}
VECTOR ((01 A -> 01 Z) && !B & C) {

DELAY { CALCULATION=absolute; FROM { PIN=A; } TO { PIN=Z; }
/* fill in HEADER, TABLE */ }

}

The vectors ((01 A -> 01 Z) && B & !C) and ((01 A -> 01 Z) && !B & C) are mutually
exclusive. They describe the same timing arc with two mutually exclusive conditions.

In the case of a VECTOR containing a calculation model for a timing arc with CALCULATION=incremental,
there shall be another VECTOR with a calculation model for the same timing arc with CALCULATION=abso-
lute and both vectors shall be compatible. The vector_expression of the latter shall necessarily be true
when the vector_expression of the former is true.

Example

VECTOR (01 A -> 01 Z) {
DELAY { CALCULATION=absolute; FROM { PIN=A; } TO { PIN=Z; }
/* fill in HEADER, TABLE */ }

}
VECTOR ((01 A -> 01 Z) && B & !C) {

DELAY { CALCULATION=incremental; FROM { PIN=A; } TO { PIN=Z; }
/* fill in HEADER, TABLE */ }

}
VECTOR ((01 A -> 01 Z) && !B & C) {

DELAY { CALCULATION=incremental; FROM { PIN=A; } TO { PIN=Z; }
/* fill in HEADER, TABLE */ }

}

The vectors ((01 A -> 01 Z) && B & !C) and ((01 A -> 01 Z) && !B & C) are both
compatible with the vector (01 A -> 01 Z) and mutually exclusive with each other. The latter describe the
same timing arc with two mutually exclusive conditions. The former describes the same timing arc without con-
ditions. This modeling style is useful for timing analysis tools with or without support for conditions. The vectors
with conditions, if supported, add accuracy to the calculation. However, the vector without conditions is always
available for basic calculation.

11.9.1.5 PIN-related timing models

SAME_PIN_TIMING_MEASUREMENT and SAME_PIN_TIMING_CONSTRAINT (see 11.9.1 and 11.12.1.4)
are pin-related timing models. They are defined with reference to the externally accessible node.

11.9.2 TIME statement

Add lead-in text

11.9.2.1 TIME

The <timeKeyword> TIME describes a general TIMING_MEASUREMENT or TIMING_CONSTRAINT
without implying any particular relationship between <fromEdge> and <toEdge>.

In general, <fromPin> and <toPin> refer to two different pins. However, it is legal for <fromPin> and
<toPin> to refer to the same pin.
244 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
The default value for <fromEdge> and <toEdge> shall be 0.

11.9.2.2 TIME within the LIMIT construct

Within a LIMIT construct, TIME can be used in the following ways:

— TIME itself is subjected to a LIMIT (see 11.12.11.2)
— TIME is the argument of a model subjected to a LIMIT

When TIME is used as argument of a model within the LIMIT construct, it shall mean the amount of time during
which the device is exposed to the quantity modeled within the LIMIT construct. This amount of time is also
called a lifetime.

Example

LIMIT {
CURRENT {

PIN = my_pin;
MEASUREMENT = static;
MAX {

HEADER { TIME TEMPERATURE }
EQUATION { 6.5*EXP(-10/(TEMPERATURE+273))*TIME**(-0.3) }

}
}

}

The limit for maximum current depends on the temperature and the expected lifetime of the device.

11.9.2.3 TIME to peak measurement

For a model in the context of a VECTOR, with a peak measurement, the TIME annotation shall define the time
between a reference event within the vector_expression and the instant when the peak value occurs.

For that purpose, either the FROM or the TO statement shall be used in the context of the TIME annotation, con-
taining a PIN annotation and, if necessary, a THRESHOLD and/or an EDGE_NUMBER annotation.

If the FROM statement is used, the start point shall be the reference event and the end point shall be the occur-
rence time of the peak, as shown in Figure 35.

Figure 35—Illustration of time to peak using FROM statement

TIME

<fromPin> <fromThreshold>

<fromEdge>

<modelValue>
MEASUREMENT = peak
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 245

1

5

10

15

20

25

30

35

40

45

50

55
If the TO statement is used, the start point shall be the occurrence time of the peak and the end point shall be the
reference event, as shown in Figure 36.

Figure 36—Illustration of time to peak using TO statement

Example

VECTOR (01 A -> 01 B -> 10 B) {
CURRENT peak1 = 10.8 {

PIN = Vdd;
MEASUREMENT = peak;
TIME = 3.0 { UNIT=ns; FROM { PIN=A; EDGE_NUMBER=0; } }

}
CURRENT peak2 = 12.3 {

PIN = Vdd;
MEASUREMENT = peak;
TIME = 2.0 { UNIT=ns; TO { PIN=B; EDGE_NUMBER=1; } }

}
}

Here, the peak with magnitude 10.8 occurs 3 nanoseconds after the event 01 A.

The peak with magnitude 12.3 occurs 2 nanoseconds before the event 10 B.

11.9.2.4 Waveform description

This section specifies waveform descriptions.

11.9.2.4.1 Principles

In order to describe an arithmetic model representing a waveform, TIME shall be an argument in the HEADER.
Other arguments can appear in the HEADER as well. The model can be described as a TABLE or EQUATION.

Example for TABLE

VOLTAGE {
HEADER {

TIME {
UNIT = ns;
INTERPOLATION=linear;
TABLE { 0.0 1.0 1.5 2.0 3.0 }

TIME

<toPin> <toThreshold>

<toEdge>

MEASUREMENT = peak

<modelValue>
246 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
}
}
TABLE { 0.0 0.0 5.0 0.0 0.0 }

}

Example for EQUATION

VOLTAGE {
HEADER {

TIME { UNIT = ns; }
}
EQUATION {

(TIME < 1.0) ? 0 :
(TIME < 1.5) ? 5.0*(TIME - 1.0) :
(TIME < 2.0) ? 5.0*(2.0 - TIME) :
0.0

}
}

Both models describe the same piece-wise linear waveform, as shown in Figure 37.

Figure 37—Illustration of a piece-wise linear waveform

If the model is within the context of a VECTOR, either the FROM or the TO statement can be used in the context
of TIME, pointing to a reference event which occurs at TIME = 0 relative to the waveform description. See xxx
for the definition of start and end points of measurements.

Example

VECTOR (01 A -> 01 B -> 10 B) {
VOLTAGE {

HEADER {
TIME {

FROM { PIN = B; EDGE_NUMBER = 1; }
TABLE { 0.0 1.0 1.5 2.0 3.0 }

// alternative description:
// TO { PIN = B; EDGE_NUMBER = 1; }
// TABLE { -3.0 -2.0 -1.5 -1.0 0.0 }

}
}
TABLE { 0.0 0.0 5.0 0.0 0.0 }

TIME

0.0 1.0 1.5 2.0 3.0

0.0

5.0

VOLTAGE
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 247

1

5

10

15

20

25

30

35

40

45

50

55
}
}

NOTE—Use the FROM statement. If the TO statement is used, TIME is measured backwards, which is counter-intuitive. For
dynamic analysis, use the last event in the vector_expression as the reference. Otherwise, the analysis tool remembers
the occurrence time of previous events in order to place the waveform into the context of absolute time.

11.9.2.4.2 Annotations within a waveform

The MEASUREMENT annotation transient shall apply as a default for waveforms.

The FREQUENCY annotation can be used to specify a repetition frequency of the waveform. The following
boundary restrictions are imposed in order to make the waveform repeatable:

— The initial value and the final value of waveform shall be the same.
— The extrapolation beyond the initial and the final value of the waveform shall yield the same result. Thus,

the first, second, last, and second-to-last point of the waveform shall be the same.
— The time window between the first and the last measurement shall be smaller or equal to

1 / FREQUENCY.

This is illustrated in Figure 38.

Figure 38—TIME and FREQUENCY in a waveform

11.9.3 FREQUENCY statement

Add lead-in text

11.9.3.1 FREQUENCY within a LIMIT construct

Within a LIMIT construct, FREQUENCY can be used in the following ways:

— FREQUENCY itself is subjected to a LIMIT
— FREQUENCY is the argument of a model subjected to a LIMIT

1 / FREQUENCY

TIME

T[0] T[M]T[M-1]T[1]

(T[M] - T[0])

E[0] E[M]E[M-1]E[1]
248 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
FREQUENCY can be subjected to a LIMIT within the context of a VECTOR. The LIMIT construct specifies an
upper and/or lower limit for the repetition frequency of the event sequence described by the
vector_expression.

Example

VECTOR (01 A -> 01 Z) {
LIMIT {

FREQUENCY {
MAX {

HEADER {
SLEWRATE { PIN = A; TABLE { 0.1 0.5 1.0 5.0 } }
CAPACITANCE { PIN = Z; TABLE { 0.1 0.4 1.6 } }

}
TABLE {

200 190 180 120
150 150 145 130
80 80 80 70

}
}

}
}

}

The maximum allowed switching frequency for a rising edge on A, followed by a rising edge on Z, depends on
the slewrate on A and the load capacitance on Z.

A LIMIT for a quantity with MEASUREMENT annotation average, rms, or peak can be frequency-depen-
dent. The FREQUENCY specifies the repetition frequency for the measurement.

Example

LIMIT {
CURRENT {

PIN = Vdd;
MEASUREMENT = average;
MAX {

HEADER { FREQUENCY TIME TEMPERATURE }
EQUATION {

(FREQUENCY<1)? 6.5*EXP(-10/(TEMPERATURE+273))*TIME**(-0.3) :
7.8*EXP(-9/(TEMPERATURE+273))*TIME**(-0.2) :

}
}

}
}

The limit for average current is specified for low frequencies (< 1MHz) and for higher frequencies. In both
cases, the limit depends on temperature and lifetime.

11.9.3.2 TIME and FREQUENCY annotation

Arithmetic models with certain values of MEASUREMENT annotation can also have either TIME or FREQUENCY
as annotations.
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 249

1

5

10

15

20

25

30

35

40

45

50

55
The semantics are defined in Table 96.

In the case of average and rms, the interpretation FREQUENCY = 1 / TIME is valid. Either one of these
annotations shall be mandatory. The values for average measurements and for rms measurements scale lin-
early with FREQUENCY and 1 / TIME, respectively.

In the case of transient and peak, the interpretation FREQUENCY = 1 / TIME is not valid. Either one
of these annotations shall be optional. The values do not necessarily scale with TIME or FREQUENCY. The TIME
or FREQUENCY annotations for transient measurements are purely informational.

11.9.4 DELAY and RETAIN statements

Add lead-in text

11.9.4.1 DELAY

The <timeKeyword> DELAY describes a TIMING_MEASUREMENT implying a causal relationship between
<fromEdge> and <toEdge>.

Usually, <fromPin> refers to an input pin and <toPin> refers to an output pin. However, it is legal for
<fromPin> and <toPin> to refer to an output pin.

The default value for <fromEdge> and <toEdge> shall be 0, unless the DELAY statement appears in con-
junction with a RETAIN statement within the context of the same VECTOR.

11.9.4.2 RETAIN

The <timeKeyword> RETAIN describes a TIMING_MEASUREMENT implying a causal relationship
between <fromEdge> and <toEdge> in the same way as DELAY.

RETAIN is used to describe the elapsed time until the output changes its old value, whereas DELAY is used to
describe the elapsed time until the output settles to a stable new value, as shown in Figure 39.

Table 96—Semantic interpretation of MEASUREMENT, TIME, or FREQUENCY annotation

MEASUREMENT
annotation Semantic meaning of TIME annotation Semantic meaning of FREQUENCY

annotation

transient Integration of analog measurement is done
during that time window.

Integration of analog measurement is
repeated with that frequency.

static N/A N/A

average Average value is measured over that time
window.

Average value measurement is repeated
with that frequency.

rms Root-mean-square value is measured over
that time window.

Root-mean-square measurement is repeated
with that frequency.

peak Peak value occurs at that time (only within
context of VECTOR).

Observation of peak value is repeated with
that frequency.
250 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
Figure 39—RETAIN and DELAY

When DELAY appears in conjunction with RETAIN, the <fromEdge> for both measurements shall be the
same. The <toEdge> for DELAY shall be the <toEdge> for RETAIN plus 1.

The default value for <fromEdge> and <toEdge> for RETAIN shall be 0. The default value for <toEdge>
for DELAY shall be 1.

11.9.5 SLEWRATE statement

The <timeKeyword> SLEWRATE describes a SAME_PIN_TIMING_MEASUREMENT for <timeValue>
defining the duration of a signal transition or a fraction thereof.

The SLEWRATE applies for the <refEdge> on the <refPin>. The default value for <refEdge> shall be 0.

11.9.6 SETUP and HOLD statement

Add lead-in text

11.9.6.1 SETUP

The <timeKeyword> SETUP describes a TIMING_CONSTRAINT for <timeValueMin> defining the
minimum stable time required for the data signal on the <fromPin> before it is sampled by the strobe signal on
the <toPin>.

The <fromPin> usually is an input pin with SIGNALTYPE=data. The <toPin> is an input pin with SIGN-
ALTYPE=clock.

The default value for <fromEdge> and <toEdge> for SETUP shall be 0.

11.9.6.2 HOLD

The <timeKeyword> HOLD describes a TIMING_CONSTRAINT for <timeValueMin> defining the min-
imum stable time required for the data signal on the <toPin> after it is sampled by the strobe signal on the
<fromPin>.

The <toPin> usually is an input pin with SIGNALTYPE=data. The <fromPin> is an input pin with SIGN-
ALTYPE=clock.

<fromPin>

<toPin>

RETAIN

DELAY

<toEdge> <toEdge>

<fromEdge>
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 251

1

5

10

15

20

25

30

35

40

45

50

55
The default value for <fromEdge> shall be 0. The default value for <toEdge> shall be 0, unless HOLD
appears in conjunction with SETUP in the context of the same VECTOR. In that case, the default value for
<toEdge> shall be 1. All of this is depicted in Figure 40.

Figure 40—SETUP and HOLD

The <timeValueMin> for SETUP or the <timeValueMin> for HOLD with respect to the same strobe can
be negative. However, the sum of both values shall be positive. The sum represents the minimum duration of a
valid data signal around a strobe signal.

11.9.7 NOCHANGE statement

The <timeKeyword> NOCHANGE describes a SAME_PIN_TIMING_CONSTRAINT defining the require-
ment for a stable signal on a pin subjected to SETUP and HOLD on subsequent edges of a strobe signal., as shown
in Figure 41.

Figure 41—NOCHANGE, SETUP, and HOLD

The NOCHANGE applies between the <refEdge> and the subsequent edge, i.e., <refEdge> plus 1 on the
<refPin>. The default value for <refEdge> shall be 0.

When NOCHANGE appears in conjunction with SETUP and HOLD within the context of the same VECTOR, the
default value for <fromEdge> and <toEdge> of SETUP shall be 0 and the default value for <fromEdge>
and <toEdge> of HOLD shall be 1.

11.9.8 RECOVERY and REMOVAL statements

Add lead-in text

SETUP

HOLD

<toEdge>

<toEdge>

<fromEdge>

<fromEdge>data

strobe

SETUP HOLD

<toEdge>

<toEdge><fromEdge>

<fromEdge>

data

strobe

NOCHANGE
<refEdge>
252 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
11.9.8.1 RECOVERY

The <timeKeyword> RECOVERY describes a TIMING_CONSTRAINT for <timeValueMin> defining the
minimum stable time required for an asynchronous control signal on the <fromPin> to be inactive before a
strobe signal on the <toPin> can be active.

The <fromPin> usually is an input pin with SIGNALTYPE=set|clear. The <toPin> is an input pin with
SIGNALTYPE=clock.

The default value for <fromEdge> and <toEdge> for RECOVERY shall be 0.

11.9.8.2 REMOVAL

The <timeKeyword> REMOVAL describes a TIMING_CONSTRAINT for <timeValueMin> defining the
minimum stable time required for an asynchronous control signal on the <toPin> to remain active after over-
riding a strobe signal on the <fromPin>.

The <toPin> usually is an input pin with SIGNALTYPE=set|clear. The <fromPin> is an input pin with
SIGNALTYPE=clock.

The default value for <fromEdge> and <toEdge> for REMOVAL shall be 0.

REMOVAL can appear in conjunction with RECOVERY within the context of the same VECTOR, as shown in
Figure 42.

Figure 42—RECOVERY and REMOVAL

The <timeValueMin> for RECOVERY or the <timeValueMin> for REMOVAL with respect to the same
strobe can be negative. However, the sum of both values shall be positive. The sum represents the time window
around the clock signal when the asynchronous control signal shall not switch.

11.9.9 SKEW statement

Add lead-in text

11.9.9.1 SKEW between two signals

The <timeKeyword> SKEW describes a TIMING_CONSTRAINT for <timeValueMax> defining the max-
imum allowed time separation between <fromEdge> on <fromPin> and <toEdge> on <toPin>.

RECOVERY

REMOVAL

<toEdge>

<toEdge>

<fromEdge>

<fromEdge>

async. control

strobe

same edge, shifted
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 253

1

5

10

15

20

25

30

35

40

45

50

55
The default value for <fromEdge> and <toEdge> for SKEW shall be 0.

11.9.9.2 SKEW between multiple signals

SKEW can also describe the maximum time distortion between signals on multiple pins. In this case, a list of pins
appears in form of a multi-value annotation. No FROM or TO containers can be used here.

Example

SKEW {
PIN { <pinList> }
EDGE_NUMBER { <edgeList> }
<skewData>

}

The default for EDGE_NUMBER in SKEW for multiple signals shall be a list of 0s.

A special case of multiple pins is a single bus. In this case, the unnamed_assignment syntax is also valid as
alternative to the multi_value_assignment syntax (see Section 8.15.3).

Example

SKEW { PIN = my_bus_pin[8:1]; }

or

SKEW { PIN { my_bus_pin[8:1] } }

11.9.10 PULSEWIDTH statement

The <timeKeyword> PULSEWIDTH describes a SAME_PIN_TIMING_CONSTRAINT for <timeVal-
ueMin> defining the minimum duration of the signal before changing state.

The PULSEWIDTH statement is applicable for both input and output pins. In the case of an input pin, it repre-
sents a timing check against the minimum duration. In case of an output pin, it represents the minimum possible
duration of the signal.

The PULSEWIDTH applies between the <refEdge> and the subsequent edge, i.e., <refEdge> plus 1 on the
<refPin>. The default value for <refEdge> shall be 0.

11.9.11 PERIOD statement

The <timeKeyword> PERIOD describes a SAME_PIN_TIMING_CONSTRAINT for <timeValueMin>
defining the minimum time between subsequent repetitions of a signal. Because of periodicity, <fromThresh-
old> and <toThreshold> are not required. Therefore, FROM and TO statements do not appear.

If the VECTOR describes a completely specified event sequence, <refPin> and <refEdge> are not required.
PERIOD applies for the complete event sequence. If the VECTOR describes a partially specified event sequence,
involving the ~> operator, <refPin> and <refEdge> are required.

11.9.12 JITTER statement

The <timeKeyword> JITTER describes a SAME_PIN_TIMING_MEASUREMENT for <timeValue>
defining the actual uncertainty of arrival time for a periodical signal at a pin.
254 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
The JITTER applies for the <refEdge> on the <refPin>. The default value for <refEdge> shall be 0.
Threshold definitions, i.e., <fromThreshold> or <toThreshold> do not apply.

A limit for tolerable jitter at a pin can be expressed using the LIMIT construct, as shown in the template for
SAME_PIN_TIMING_CONSTRAINT.

11.9.13 THRESHOLD statement

Add lead-in text

11.9.13.1 THRESHOLD definition

The THRESHOLD represents a reference voltage level for timing measurements, normalized to the signal voltage
swing and measured with respect to the logic 0 voltage level, as shown in Figure 43.

Figure 43—THRESHOLD measurement definition

The voltage levels for logic 1 and 0 represent a full voltage swing.

Different threshold data for RISE and FALL can be specified or else the data shall apply for both rising and fall-
ing transitions.

The THRESHOLD statement has the form of an arithmetic model. If the submodel keywords RISE and FALL are
used, it has the form of an arithmetic model container.

Examples

THRESHOLD = 0.4;
THRESHOLD { RISE = 0.3; FALL = 0.5; }
THRESHOLD { HEADER { TEMPERATURE {TABLE{ 0 50 100 }}}

TABLE { 0.5 0.4 0.3}}

11.9.13.2 Context of THRESHOLD definitions

The THRESHOLD statement can appear in the context of a FROM or TO container. In this case, it specifies the
applicable reference for the start and end point of the timing measurement, respectively.

V (logic 1)

V (logic 0)

∆Vrise ∆Vfall

time

threshold (rise) =
∆Vrise

∆V
threshold (fall) =

∆Vfall

∆V

∆V
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 255

1

5

10

15

20

25

30

35

40

45

50

55
Example

SLEWRATE {
FROM { THRESHOLD = 0.2; }
TO { THRESHOLD = 0.8; }

}

The THRESHOLD statement can also appear in the context of a PIN. In this case, it specifies the applicable refer-
ence for the start or end point of timing measurements indicated by the PIN annotation inside a FROM or TO con-
tainer, unless a THRESHOLD is specified explicitly inside the FROM or TO container.

If both the RISE and FALL thresholds are specified and the switching direction of the applicable pin is clearly
indicated in the context of a VECTOR, the RISE or FALL data shall be applied accordingly.

Example

PIN A { THRESHOLD { RISE = 0.3; FALL = 0.5; } }
PIN Z { THRESHOLD = 0.4; }
// other statements ...
VECTOR (01 A -> 10 Z) {

DELAY { FROM { PIN=A; } TO { PIN=Z; } }
// the applicable threshold for A is 0.3
// the applicable threshold for Z is 0.4

If thresholds are needed for exact definition of the model data, the FROM and TO containers shall each contain an
arithmetic model for THRESHOLD.

A THRESHOLD statement can also appear as argument of an arithmetic model for timing measurements. In this
case, it shall contain a PIN annotation matching another PIN annotation in the FROM or TO container.

Example

DELAY {
FROM { PIN = A; THRESHOLD = 0.5; }
TO { PIN = Z; }
HEADER { THRESHOLD { PIN = Z; TABLE { 0.3 0.4 0.5 } }
TABLE { 1.23 1.45 1.78 }

}
/* The measurement reference for pin A is always 0.5. The delay from A to
Z is expressed as a function of the measurement reference for pin Z. */

FROM and TO containers with THRESHOLD definitions, yet without PIN annotations, can appear within
unnamed timing model definitions in the context of a VECTOR, CELL, WIRE, SUBLIBRARY, or LIBRARY
object for the purpose of specifying global threshold definitions for all timing models within scope of the defini-
tion. The following priorities apply:

a) THRESHOLD in the HEADER of the timing model
b) THRESHOLD in the FROM or TO statement within the timing model
c) THRESHOLD for timing model definition in the context of the same VECTOR
d) THRESHOLD within the PIN definition
e) THRESHOLD for timing model definition in the context of the same CELL or WIRE
f) THRESHOLD for timing model definition in the context of the same SUBLIBRARY
g) THRESHOLD for timing model definition in the context of the same LIBRARY
h) THRESHOLD for timing model definition outside LIBRARY
256 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
Example

LIBRARY my_library {
DELAY {

FROM { THRESHOLD = 0.4; }
TO { THRESHOLD = 0.4; }

}
SLEWRATE {

FROM { THRESHOLD { RISE = 0.2; FALL = 0.8; } }
TO { THRESHOLD { RISE = 0.8; FALL = 0.2; } }

}
CELL my_cell {

PIN A { DIRECTION=input; THRESHOLD { RISE = 0.3; FALL = 0.5; } }
PIN Z { DIRECTION=output; }
VECTOR (01 A -> 10 Z) {

DELAY { FROM { PIN=A; } TO { PIN=Z; } }
SLEWRATE { PIN = Z; }

}
}

}
// delay is measured from A (threshold=0.3) to Z (threshold=0.4)
// slewrate on Z is measured from threshold=0.8 to threshold=0.2.

11.10 Auxiliary statements related to timing data

Add lead-in text

11.10.1 FROM and TO statements

A FROM container and a TO container shall be used inside timing measurements and timing constraints. Depend-
ing on the semantics of the timing model (see 11.9.1), they can contain a THRESHOLD statement, PIN annota-
tion, and/or EDGE_NUMBER annotation, as shown in Syntax 113.

The data in the FROM and TO containers define the measurement start and end point, respectively.

Example

DELAY {
FROM {PIN = data_in; THRESHOLD { RISE = 0.4; FALL = 0.6;} }
TO {PIN = data_out; THRESHOLD = 0.5;}

}

from ::=
FROM { from_to_items }

to ::=
TO { from_to_items }

from_to_items ::=
from_to_item { from_to_item }

from_to_item ::=
PIN_single_value_annotation

| EDGE_single_value_annotation
| THRESHOLD_arithmetic_model

Syntax 113—FROM and TO statements
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 257

1

5

10

15

20

25

30

35

40

45

50

55
The delay is measured from pin data_in to pin data_out. The threshold for data_in is 0.4 for the rising
signal and 0.6 for the falling signal. The threshold for data_out is 0.5, which applies for both the rising and
falling signals.

11.10.2 EARLY and LATE statements

The EARLY and LATE containers define the boundaries of timing measurements in one single analysis, as shown
in Syntax 114. They only apply to DELAY and SLEWRATE. Both of them need to appear in both containers.

The quadruple

EARLY {
DELAY { FROM {...} TO { ...} /* data */ }
SLEWRATE { /* data */ }

LATE {
DELAY { FROM {...} TO { ...} /* data */ }
SLEWRATE { /* data */ }

is used to calculate the envelope of the timing waveform at the TO point of a delay arc with respect to the timing
waveform at the FROM point of a delay arc.

The EARLY DELAY is a smaller number (or a set of smaller numbers) than the LATE DELAY. However, the
EARLY SLEWRATE is not necessarily smaller than the LATE SLEWRATE, since the SLEWRATE of the EARLY
signal can be larger than the SLEWRATE of the LATE signal.

11.10.3 Annotations for arithmetic models for timing data

Auxiliary statements for timing models

This section details the auxiliary statements used for timing modeling.

11.10.3.1 PIN annotation

If the timing measurements or timing constraints, respectively, apply semantically for two pins (see 11.9.1.1),
the FROM and TO containers shall each contain the PIN annotation.

Example

DELAY {
FROM { PIN = A ; }
TO { PIN = Z ; }

}

EARLY_arithmetic_model_container ::=
EARLY { early_late_arithmetic_models }

LATE_arithmetic_model_container ::=
LATE { early_late_arithmetic_models }

early_late_arithmetic_models ::=
early_late_arithmetic_model { early_late_arithmetic_model }

early_late_arithmetic_model ::=
DELAY_arithmetic_model

| RETAIN_arithmetic_model
| SLEWRATE_arithmetic_model

Syntax 114—EARLY and LATE statements
258 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
Otherwise, if the timing measurements or timing constraints apply semantically only to one pin (see 11.9.1.3),
the PIN annotation shall be outside the FROM or TO container.

Example

SLEWRATE {
PIN = A ;

}

11.10.3.2 EDGE_NUMBER annotation

The EDGE_NUMBER annotation within the context of a timing model shall specify the edge where the timing
measurement applies. The timing model shall be in the context of a VECTOR. The EDGE_NUMBER shall have an
unsigned value pointing to exactly one of subsequent vector_single_event expressions applicable to the
referenced pin. The EDGE_NUMBER shall be counted individually for each pin which appears in the VECTOR,
starting with zero (0).

If the timing measurements or timing constraints, apply semantically to two pins (see 11.9.1.1), the
EDGE_NUMBER annotation shall be legal inside the FROM or TO container in conjunction with the PIN annota-
tion.

Example

DELAY {
FROM { PIN = A ; EDGE_NUMBER = 0; }
TO { PIN = Z ; EDGE_NUMBER = 0; }

}

Otherwise, if the timing measurements or timing constraints apply semantically only to one pin (see 11.9.1.3),
the EDGE_NUMBER annotation shall be legal outside the FROM or TO container in conjunction with the PIN
annotation.

Example

SLEWRATE {
PIN = A ; EDGE_NUMBER = 0;

}

The default values for EDGE_NUMBER are specific for each timing model keyword (see 11.9.1).

The EDGE_NUMBER annotation is necessary for complex timing models involving multiple transitions on the
same pin, as illustrated by the Figure 44 — Figure 46 and their examples.
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 259

1

5

10

15

20

25

30

35

40

45

50

55
Figure 44—Schematic of a pulse generator

Figure 45—Timing diagram of a pulse generator
VECTOR (01 in -> 01 out -> 10 out) {

DELAY d1 {
FROM { PIN = in; }
TO { PIN = out; EDGE_NUMBER = 0; }

}
DELAY d2 {

FROM { PIN = in; }
TO { PIN = out; EDGE_NUMBER = 1; }

}
}

in

out

DELAY d1

DELAY d2

in

out

DELAY d1

DELAY d2
time

EDGE_NUMBER = 0 EDGE_NUMBER = 1

EDGE_NUMBER = 0
260 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
Figure 46—Timing diagram of a DRAM cycle
VECTOR(?! addr ->01 RAS ->10 RAS ->?! addr ->01 CAS ->10 CAS ->?! addr){

SETUP s1 {
FROM { PIN = addr; EDGE_NUMBER = 0; }
TO { PIN = RAS; EDGE_NUMBER = 0; }

}
HOLD h1 {

FROM { PIN = RAS; EDGE_NUMBER = 1; }
TO { PIN = addr; EDGE_NUMBER = 1; }

}
SETUP s2 {

FROM { PIN = addr; EDGE_NUMBER = 1; }
TO { PIN = CAS; EDGE_NUMBER = 0; }

}
HOLD h2 {

FROM { PIN = CAS; EDGE_NUMBER = 1; }
TO { PIN = addr; EDGE_NUMBER = 2; }

}
}

11.11 Arithmetic models for environmental data

Environmental dependency for electrical data

This section defines the environmental dependencies for electrical data.

11.11.1 PROCESS and DERATE_CASE statement

Add lead-in text

RAS

CAS

addr

SETUP s1 HOLD h1
SETUP s2 HOLD h2

EDGE_NUMBER = 0 EDGE_NUMBER = 1

EDGE_NUMBER = 0 EDGE_NUMBER = 1

EDGE_NUMBER = 0 EDGE_NUMBER = 1 EDGE_NUMBER = 2
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 261

1

5

10

15

20

25

30

35

40

45

50

55
11.11.1.1 PROCESS

The following identifiers can be used as predefined process corners:

?n?p process definition with transistor strength

where ? can be

s strong
w weak

The possible process name combinations are shown in Table 97.

11.11.1.2 DERATE_CASE

The following identifiers can be used as predefined derating cases:

nom nominal case
bc? prefix for best case
wc? prefix for worst case

where ? can be

com suffix for commercial case
ind suffix for industrial case
mil suffix for military case

The possible derating case combinations are defined in Table 98.

Table 97—Predefined process names

Process name Description

snsp Strong NMOS, strong PMOS.

snwp Strong NMOS, weak PMOS.

wnsp Weak NMOS, strong PMOS.

wnwp Weak NMOS, weak PMOS.

Table 98—Predefined derating cases

Derating case Description

bccom Best case commercial.

bcind Best case industrial.

bcmil Best case military.

wccom Worst case commercial.

wcind Worst case military.
262 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
11.11.1.3 Lookup table without interpolation

The PROCESS or DERATE_CASE can be used in a TABLE within the HEADER of an arithmetic model for elec-
trical data, e.g., DELAY. Data can not be interpolated in the dimension of this table.

Example

DELAY {
UNIT = ns;
HEADER {

PROCESS { TABLE { nom snsp wnwp } }
}
TABLE { 0.4 0.3 0.6 }

}

Here , the DELAY is 0.4 ns for nominal process, 0.3 ns for snsp, and 0.6 ns for wnwp. A delay “in-
between” snsp and wnwp can not be interpolated.

11.11.1.4 Lookup table for process- or derating-case coefficients

A nested arithmetic model construct can be used to describe lookup tables for coefficients, based on PROCESS
or DERATE_CASE. These coefficients can be used in an EQUATION to calculate electrical data, e.g., DELAY.

Example

DELAY {
UNIT = ns;
HEADER {

PROCESS { HEADER { nom snsp wnwp } TABLE {0.0 -0.25 0.5} }
}
EQUATION { (1 + PROCESS)*0.4 }

}

The equation uses the PROCESS coefficient 0.0 for nominal, -0.25 for snsp, and 0.5 for wnwp. There-
fore the DELAY is 0.4 ns for the nominal process, 0.3 ns for snsp, and 0.6 ns for wnwp. Conceivably,
the DELAY can be calculated for any value of the coefficient.

11.11.2 TEMPERATURE statement

TEMPERATURE can be used as argument in the HEADER of an arithmetic model for timing or electrical data. It
can also be used as an arithmetic model with DERATE_CASE as argument, in order to describe what temperature
applies for the specified derating case.

11.12 Arithmetic models for electrical data

Add lead-in text

wcmil Worst case military.

Table 98—Predefined derating cases (Continued)

Derating case Description
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 263

1

5

10

15

20

25

30

35

40

45

50

55
11.12.1 PIN-related arithmetic models for electrical data

This section details the PIN arithmetic models for electrical data.

11.12.1.1 Principles

Arithmetic models for electrical data can be associated with a pin of a cell. Their meaning is illustrated in
Figure 47.

Figure 47—General representation of electrical models around a pin

A pin is represented as a source node and a sink node. For pins with DIRECTION=input, the source node is
externally accessible. For pins with DIRECTION=output, the sink node is externally accessible.

11.12.1.2 CAPACITANCE, RESISTANCE, and INDUCTANCE

RESISTANCE and INDUCTANCE apply between the source and sink node. CAPACITANCE applies between
the sink node and ground. By default, the values for resistance, inductance and capacitance shall be zero (0).

11.12.1.3 VOLTAGE and CURRENT

VOLTAGE and CURRENT can be measured at either source or sink node, depending on which node is externally
accessible. However, a voltage source can only be connected to a source node. The sense of measurement for
voltage shall be from the node to ground. The sense of measurement for current shall be into the node.

11.12.1.4 Context-specific semantics

An arithmetic model for VOLTAGE, CURRENT, SLEWRATE, RESISTANCE, INDUCTANCE, and CAPACI-
TANCE can be associated with a PIN in one of the following ways.

a) A model in the context of a PIN

Example

PIN my_pin {
CAPACITANCE = 0.025;

b) A model in the context of a CELL, WIRE, or VECTOR with PIN annotation

Example

VOLTAGE = 1.8 { PIN = my_pin; }

source

resistance

capacitance

inductance

sink

voltage

node node currentcurrent

voltage
264 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
The model in the context of a PIN shall be used if the data is completely confined to the pin. That means, no
argument of the model shall make reference to any pin, since such reference implies an external dependency. A
model with dependency only on environmental data not associated with a pin (e.g., TEMPERATURE, PROCESS,
and DERATE_CASE) can be described within the context of the PIN.

A model with dependency on external data applied to a pin (e.g., load capacitance) shall be described outside the
context of the PIN, using a PIN annotation. In particular, if the model involves a dependency on logic state or
logic transition of other PINs, the model shall be described within the context of a VECTOR.

Figure 48 illustrates electrical models associated with input and output pins.

Figure 48—Electrical models associated with input and output pins

Table 99 and Table 100 define how models are associated with the pin, depending on the context.

Table 99—Direct association of models with a PIN

Model Model in context of PIN Model in context of CELL, WIRE, and
VECTOR with PIN annotation

CAPACITANCE Pin self-capacitance. Externally controlled capacitance at the pin,
e.g., voltage-dependent.

INDUCTANCE Pin self-inductance. Externally controlled inductance at the pin,
e.g., voltage-dependent.

RESISTANCE Pin self-resistance. Externally controlled resistance at the pin,
e.g., voltage-dependent, in the context of a
VECTOR for timing-arc specific driver
resistance.

VOLTAGE Operational voltage measured at pin. Externally controlled voltage at the pin.

CURRENT Operational current measured into pin. Externally controlled current into pin.

SAME_PIN_TIMING_
MEASUREMENT

For model definition, default, etc.;
not for the timing arc.

In context of VECTOR for timing arc, other
context for definition, default, etc.

SAME_PIN_TIMING_
CONSTRAINT

For model definition, default, etc.;
not for the timing arc.

In context of VECTOR for timing arc, other
context for definition, default, etc.

input pin output pin

source sink sinksource

voltage

current

voltage

current

external loadexternal driver
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 265

1

5

10

15

20

25

30

35

40

45

50

55
Example

CELL my_cell {
PIN pin1 { DIRECTION=input; CAPACITANCE = 0.05; }
PIN pin2 { DIRECTION=output; LIMIT { CAPACITANCE { MAX=1.2; } } }
PIN pin3 { DIRECTION=input; }
PIN pin4 { DIRECTION=input; }
CAPACITANCE {

PIN=pin3;
HEADER { VOLTAGE { PIN=pin4; } }
EQUATION { 0.25 + 0.34*VOLTAGE }

}
}

The capacitance on pin1 is 0.05. The maximum allowed load capacitance on pin2 is 1.2. The capacitance
on pin3 depends on the voltage on pin4.

11.12.2 CAPACITANCE statement

Add lead-in text

11.12.3 RESISTANCE statement

Add lead-in text

11.12.4 INDUCTANCE statement

Add lead-in text

11.12.5 VOLTAGE statement

Add lead-in text

Table 100—External association of models with a PIN

Model / Context LIMIT within PIN or with PIN annotation Model argument with PIN
annotation

CAPACITANCE Min or max limit for applicable load. Load for model characterization.

INDUCTANCE Min or max limit for applicable load. Load for model characterization.

RESISTANCE Min or max limit for applicable load. Load for model characterization.

VOLTAGE Min or max limit for applicable voltage. Voltage for model characterization.

CURRENT Min or max limit for applicable current. Current for model characterization.

SAME_PIN_TIMING_
MEASUREMENT

Currently applicable for min or max limit for
SLEWRATE.

Stimulus with SLEWRATE for model
characterization.

SAME_PIN_TIMING_
CONSTRAINT

N/A, since the keyword means a min or max
limit by itself.

N/A
266 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
11.12.6 CURRENT statement

Add lead-in text

11.12.7 POWER and ENERGY statement

Arithmetic models for power calculation

This section defines the arithmetic models used for power calculation.

11.12.7.1 Principles

The purpose of power calculation is to evaluate the electrical power supply demand and electrical power dissipa-
tion of an electronic circuit. In general, both power supply demand and power dissipation are the same, due to the
energy conservation law. However, there are scenarios where power is supplied and dissipated locally in different
places. The power models in ALF shall be specified in such a way that the total power supply and dissipation of
a circuit adds up correctly to the same number.

Example

A capacitor C is charged from 0 volt to V volt by a switched DC source. The energy supplied by the
source is C*V2. The energy stored in the capacitor is 1/2*C*V2. Hence the dissipated energy is also 1/
2*C*V2. Later the capacitor is discharged from V volt to 0 volt. The supplied energy is 0. The dissipated
energy is 1/2*C*V2. A supply-oriented power model can associate the energy E1=C*V

2 with the charg-
ing event and E2=0 with the discharging event. The total energy is E=E1+E2=C*V

2. A dissipation-ori-
ented power model can associate the energy E3=1/2*C*V

2 with both the charging and discharging
event. The total energy is also E=2*E3=C*V

2.

In many cases, it is not so easy to decide when and where the power is supplied and where it is dissipated. The
choice between a supply-oriented and dissipation-oriented model or a mixture of both is subjective. Hence the
ALF language provides no means to specify, which modeling approach is used. The choice is up to the model
developer, as long as the energy conservation law is respected.

11.12.7.2 POWER and ENERGY

POWER and/or ENERGY models shall be in the context of a CELL or within a VECTOR. The total energy and/or
power of a cell shall be calculated by combining the data of all models within the scope of the CELL or the VEC-
TORs within the cell.

The data for POWER and/or ENERGY shall be positive when energy is actually supplied to the CELL and/or dissi-
pated within the CELL. The data shall be negative when energy is actually supplied or restored by the CELL.
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 267

1

5

10

15

20

25

30

35

40

45

50

55
Table 101 shows the mathematical relationship between ENERGY and POWER and the applicable MEASURE-
MENT annotations.

To establish a meaningful relationship between energy and power, the measurement for energy shall be tran-
sient. A static measurement for energy is conceivable, modeling a state with constant energy, but no power
is dissipated during such a state. A static measurement for power models a state during which constant power
dissipation occurs. Although it is not meaningful to describe an energy model for such a state, it is conceivable to
calculate the energy by multiplying the power with the duration of the state. A 1-to-1 correspondence between
power and energy can be established for transient and average power measurements, modeling instanta-
neous and average power, respectively. Therefore, it is redundant to specify both energy and power in such case.
Also, peak and rms power can be conceivably calculated from a transient energy or power waveform, but tran-
sient energy can not be calculated from a peak or rms power measurement.

11.12.8 FLUX and FLUENCE statement

Arithmetic models for hot electron calculation

This section defines arithmetic models for hot electron calculation.

Table 101—Relations between ENERGY and POWER

MEASUREMENT for
ENERGY

MEASUREMENT
for POWER

Formula to calculate
POWER from ENERGY

Formula to calculate
ENERGY from POWER

transient transient

transient average

transient peak N/A

transient rms N/A

N/A static N/A

static N/A 0 N/A

td
d

ENERGY POWER td∫

ENERGY
TIME

--------------------- POWER TIME⋅

max
td

d
ENERGY

1
TIME

td
d

ENERGY

2

td∫⋅

POWER TIME⋅
268 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
11.12.8.1 Principles

The purpose of hot electron calculation is to evaluate the damage done to the performance of an electronic device
due to the hot electron effect. The hot electron effect consists in accumulation of electrons trapped in the gate
oxide of a transistor. The more electrons are trapped, the more the device slows down. At a certain point, the per-
formance specification no longer is met and the device is considered to be damaged.

11.12.8.2 FLUX and FLUENCE

FLUX and/or FLUENCE models shall be in the context of a CELL or within a VECTOR. Total fluence and/or flux
of a cell shall be calculated by combining the data of all models within the scope of the CELL or the VECTORs
within the cell.

Both FLUX and FLUENCE are measures for hot electron damage. FLUX relates to FLUENCE in the same way as
POWER relates to ENERGY.

Table 102 shows the mathematical relationship between FLUENCE and FLUX and the applicable MEASURE-
MENT annotations.

Since hot electron damage is purely cumulative, the only meaningful MEASUREMENT annotations are tran-
sient, average, and static.

11.12.9 DRIVE_STRENGTH statement

Other PIN-related arithmetic models

This section details some other PIN-related arithmetic models.

DRIVE_STRENGTH

Table 102—Relations between FLUENCE and FLUX

MEASUREMENT for
FLUENCE

MEASUREMENT
for FLUX

Formula to calculate FLUX
from FLUENCE

Formula to calculate
FLUENCE from FLUX

transient transient

transient average

N/A static N/A

static N/A 0 N/A

td
d

FLUENCE FLUX td∫

FLUENCE
TIME

------------------------ FLUX TIME⋅

FLUX TIME⋅
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 269

1

5

10

15

20

25

30

35

40

45

50

55
DRIVE_STRENGTH is a unit-less, abstract measure for the drivability of a PIN. It can be used as a substitute of
driver RESISTANCE. The higher the DRIVE_STRENGTH, the lower the driver RESISTANCE. However,
DRIVE_STRENGTH can only be used within a coherent system of calculation models, since it does not represent
an absolute quantity, as opposed to RESISTANCE. For example, the weakest driver of a library can have drive
strength 1, the next stronger driver can have drive strength 2 and so forth. This does not necessarily mean the
resistance of the stronger driver is exactly half of the resistance of the weaker driver.

An arithmetic model for conversion from DRIVE_STRENGTH to RESISTANCE can be given to relate the quan-
tity DRIVE_STRENGTH across technology libraries.

Example

SUBLIBRARY high_speed_library {
RESISTANCE {

HEADER { DRIVE_STRENGTH } EQUATION { 800 / DRIVE_STRENGTH }
}
CELL high_speed_std_driver {

PIN Z { DIRECTION = output; DRIVE_STRENGTH = 1; }
}

}
SUBLIBRARY low_power_library {

RESISTANCE {
HEADER { DRIVE_STRENGTH } EQUATION { 1600 / DRIVE_STRENGTH }

}
CELL low_power_std_driver {

PIN Z { DIRECTION = output; DRIVE_STRENGTH = 1; }
}

}

Drive strength 1 in the high speed library corresponds to 800 ohm. Drive strength 1 in the low power library cor-
responds to 1600 ohm.

NOTE—Any particular arithmetic model for RESISTANCE in either library shall locally override the conversion formula
from drive strength to resistance.

11.12.10 SWITCHING_BITS statement

The quantity SWITCHING_BITS applies only for bus pins. The range is from 0 to the width of the bus. Usually,
the quantity SWITCHING_BITS is not calculated by an arithmetic model, since the number of switching bits on
a bus depends on the functional specification rather than the electrical specification. However,
SWITCHING_BITS can be used as argument in the HEADER of an arithmetic model to calculate electrical quan-
tities, for instance, energy consumption.

Example

CELL my_rom {
PIN [3:0] addr { DIRECTION=input; SIGNALTYPE=address; }
PIN [7:0] dout { DIRECTION=output; SIGNALTYPE=data; }
VECTOR (?! addr -> ?! dout) {

ENERGY {
HEADER {

SWITCHING_BITS addr_bits { PIN = addr; }
SWITCHING_BITS dout_bits { PIN = dout; }

}

270 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
EQUATION { 0.45*LOG(addr_bits) + 2.6*dout_bits }
}

}
}

The energy consumption of my_rom depends on the number of switching data bits and on the logarithm of the
number of switching address bits.

11.12.11 NOISE and NOISE_MARGIN statement

Noise calculation

This section details the noise calculation definitions.

11.12.11.1 NOISE_MARGIN definition

Noise margin is defined as the maximal allowed difference between the ideal signal voltage under a well-speci-
fied operation condition and the actual signal voltage normalized to the ideal voltage swing. This is illustrated in
Figure 49.

Figure 49—Definition of noise margin

Noise margin is measured at a signal input pin of a digital cell. The terms ideal signal voltage and actual signal
voltage apply from the standpoint of that particular pin. In CMOS technology, the ideal signal voltage at a pin is
the actual supply voltage of the cell, which is not necessarily identical to the nominal supply voltage of the chip.

The NOISE_MARGIN statement has the form of an arithmetic model. If the submodel keywords HIGH and LOW
are used, it has the form of an arithmetic model container.

Examples

NOISE_MARGIN = 0.3;
NOISE_MARGIN { HIGH = 0.2; LOW = 0.4; }
NOISE_MARGIN {

HEADER { TEMPERATURE { TABLE { 0 50 100 } } }
TABLE { 0.4 0.3 0.2 }

}

NOISE_MARGIN can be related to signal VOLTAGE by using the following statement:

V ideal (logic 0)

V ideal (logic 1)

V min (logic 1)

V max (logic 0)

∆V1

∆V0

∆V

noise margin (high) =

noise margin (low) =

∆V1

∆V

∆V

∆V0
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 271

1

5

10

15

20

25

30

35

40

45

50

55
VOLTAGE {
LOW = 0;
HIGH = 2.5;

}
NOISE_MARGIN {

LOW = 0.4;
HIGH = 0.3;

}
}

In this example, the valid signal voltage levels are bound by 1 volt = 2.5 volt * 0.4 for logic 0 and 1.75
volt = 2.5 volt * (1 - 0.3) for logic 1.

11.12.11.2 Representation of noise in a VECTOR

In order to describe timing diagrams involving noisy signals, the symbolic state * (see 5.4.13) shall be used. This
state represents arbitrary transitions between arbitrary states, which corresponds to the nature of noise, as shown
in Figure 50.

Figure 50—Timing diagram of a noisy signal

The signal can be above or below noise margin during the state *, but it shall be within noise margin during the
state 0 or 1. During the state *, the signal is bound by an envelope defined by the pulse duration and the peak
voltage.

A description of the noisy signal is given in the following template:

VECTOR (0* my_pin -> *0 my_pin) {
TIME = <pulse_duration> {

FROM { PIN=my_pin; EDGE_NUMBER=0; }
TO { PIN=my_pin; EDGE_NUMBER=1; }

}
VOLTAGE = <peak_voltage> {

CALCULATION = incremental;
MEASUREMENT = peak;
PIN = my_pin;

noise margin

possible real waveform

symbolic timing diagram

peak voltage

pulse duration
272 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
}
}

The VECTOR describes the symbolic timing diagram. The TIME statement specifies the duration of the pulse.
The VOLTAGE statement specifies the peak voltage. The annotation CALCULATION=incremental specifies
that the voltage is measured from the nominal signal voltage level rather than from an absolute reference level
and that noise voltage can add up.

It is also necessary to specify whether a noisy signal (which can oscillate above and below the noise margin) is
considered as one symbolic noise pulse or separated into multiple symbolic noise pulses.

The LIMIT statement for TIME shall be used for that purpose, as shown in the following example and illustrated
by the timing diagram shown in Figure 51.

Example

VECTOR (*0 my_pin -> 0* my_pin) {
LIMIT {

TIME {
FROM { PIN = my_pin; EDGE_NUMBER = 0; }
TO { PIN = my_pin; EDGE_NUMBER = 1; }
MIN = <minimum_pulse_separation> ;

}
}

}

Figure 51—Separation between two noise pulses

When the minimum pulse separation is not met, consecutive noise pulses shall be symbolically merged into one
pulse.

noise margin

possible real waveform

symbolic timing diagram

pulse separation
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 273

1

5

10

15

20

25

30

35

40

45

50

55
11.12.11.3 Context of NOISE_MARGIN

NOISE_MARGIN is a pin-related quantity. It can appear either in the context of a PIN statement or in the context
of a VECTOR statement with PIN annotation. It can also appear in the global context of a CELL, SUBLIBRARY,
or LIBRARY statement.

If a NOISE_MARGIN statement appears in multiple contexts, the following priorities apply:

a) NOISE_MARGIN with PIN annotation in the context of the VECTOR, NOISE_MARGIN with PIN
annotation in the context of the CELL, or NOISE_MARGIN in the context of the PIN

b) NOISE_MARGIN without PIN annotation in the context of the CELL
c) NOISE_MARGIN in the context of the SUBLIBRARY
d) NOISE_MARGIN in the context of the LIBRARY
e) NOISE_MARGIN outside the LIBRARY

If the noise margin is constant or depends only on environmental quantities, the NOISE_MARGIN statement
shall appear within the context of the PIN. The noise margin shall relate to the signal VOLTAGE levels applica-
ble for that pin.

Example

PIN my_signal_pin {
PINTYPE = digital;
DIRECTION = input;
VOLTAGE { LOW = 0; HIGH = 2.5; }
NOISE_MARGIN { LOW = 0.4; HIGH = 0.3; }

}

If the noise margin depends on electrical quantities related to other pins, e.g., the supply voltage, the
NOISE_MARGIN statement shall have a PIN annotation and appear in the context of the CELL.

Example

CELL my_cell {
PIN my_signal_pin { PINTYPE = digital; DIRECTION = input; }
PIN my_power_pin { PINTYPE = supply; SUPPLYTYPE = power; }
PIN my_ground_pin { PINTYPE = supply; SUPPLYTYPE = ground; }
NOISE_MARGIN {

PIN = my_signal_pin;
HEADER {

VOLTAGE vdd { PIN = my_power_pin; }
VOLTAGE vss { PIN = my_ground_pin; }

}
EQUATION { 0.16 * (vdd - vss) }

}
}

If the noise margin depends on the logical states and/or the timing of other pins, the NOISE_MARGIN statement
shall have a PIN annotation and appear in the context of a VECTOR, describing the state-and/or timing depen-
dency.

Example for state-dependent noise margin
274 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
CELL my_latch {
PIN Q { DIRECTION = output; SIGNALTYPE = data; }
PIN D { DIRECTION = input; SIGNALTYPE = data; }
PIN CLK { DIRECTION = input; SIGNALTYPE = clock; POLARITY = high; }
VECTOR (CLK && ! D) { NOISE_MARGIN = 0.4 { PIN = D; } }
VECTOR (CLK && D) { NOISE_MARGIN = 0.3 { PIN = D; } }

}

Here, the pin D is only noise-sensitive when CLK is high. No noise margin is given for the case when CLK is low.

In the case of timing-dependency, the vector_expression shall indicate the time window where noise is
allowed and not allowed for the applicable pin. The symbolic state * (see 5.4.13) shall be used to indicate a noisy
signal.

Example for timing-dependent noise margin

VECTOR (*? D -> 10 CLK -> ?* D) {
TIME T1 = 0.35 {

FROM { PIN = D; EDGE_NUMBER = 0; }
TO { PIN = CLK; EDGE_NUMBER = 0; }

}
TIME T2 = 0.28 {

FROM { PIN = CLK; EDGE_NUMBER = 0; }
TO { PIN = D; EDGE_NUMBER = 1; }

}
NOISE_MARGIN = 0.44 { PIN = D; }

}

This example corresponds to the timing diagram shown in Figure 52.

Figure 52—Example for timing-dependent noise margin

Noise on pin D is allowed 0.35 time-units before and 0.28 time-units after the falling edge of CLK. During the
time window in-between, the noise margin is 0.44.

CLK

D

T1 (setup)
T2 (hold)

noise-sensitive time window

noise margin

noise margin
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 275

1

5

10

15

20

25

30

35

40

45

50

55
11.12.11.4 Noise propagation

Noise propagation from input to output can be modeled in a similar way as signal propagation, using the concept
of timing arcs. This is illustrated in Figure 53.

Figure 53—Principle of noise propagation

The principle of signal propagation is to calculate the output arrival time and slewrate from the input arrival time
and slewrate. In a more abstract way, two points in time propagate from input to output. The same principle
applies for noise propagation. Two points in time, start and end time of the noise waveform, propagate from input
to output. In addition, the noise peak voltage also propagates from input to output. This is illustrated in Figure 54.

Figure 54—Principle of signal propagation

A VECTOR shall be used to describe the timing of the noise waveform. Again, the symbolic state * (see 5.4.13)
shall be used to indicate a noisy signal.

Example

CELL my_cell {
PIN A { DIRECTION = input; }
PIN Z { DIRECTION = output; }
VECTOR (0* A -> *0 A <&> 0* Z -> *0 Z) {

DELAY T1 {
FROM { PIN = A; EDGE_NUMBER = 0; }

input output
pin pin

timing arc

start time
@ input

start time
@ output

peak voltage
@ input

end time
@ input

peak voltage
@ output

end time
@ output

input output
pin pin

timing arc

arrival time
@ input

arrival time
@ output

slewrate
@ input

slewrate
@ outputdelay = arrival time @ output

- arrival time @ input
276 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
TO { PIN = Z; EDGE_NUMBER = 0; }
/* fill in HEADER, TABLE or EQUATION */

}
DELAY T2 {

FROM { PIN = A; EDGE_NUMBER = 1; }
TO { PIN = Z; EDGE_NUMBER = 1; }
/* fill in HEADER, TABLE or EQUATION */

}
VOLTAGE { PIN = Z; MEASUREMENT = peak;

/* fill in HEADER, TABLE or EQUATION */
}

}

This example corresponds to the timing diagram shown in Figure 55.

Figure 55—Example of noise propagation

The input to output delay of the leading edge of the noise pulse can depend on the peak voltage at pin A, the load
capacitance at pin Z and other electrical quantities. In addition, the input to output delay of the trailing edge of
the noise pulse as well as the peak voltage at pin Z can also depend on the duration of the pulse at pin A.

NOTE—The time measurement from start to end of the noise pulse shall be represented by the keyword TIME (no causality
between start and end time), whereas the time measurement from input to output shall be represented by the keyword DELAY
(causality between input and output arrival time).

11.12.11.5 Noise rejection

Noise rejection is a limit case for noise propagation, when the output peak voltage is so low the noise is consid-
ered rejected. In this case, the input peak voltage can still be above noise margin, whereas the output peak volt-
age is way below noise margin.

Example

CELL my_cell {
PIN A { DIRECTION = input; }
PIN Z { DIRECTION = output; }
VECTOR (0* A -> *0 A -> 00 Z) {

LIMIT {
VOLTAGE {

PIN = A; MEASUREMENT = peak;
MAX { /* fill in HEADER, TABLE or EQUATION */ }

input pin A

output pin Z T1

T2

pulse duration @ A

peak voltage @ A

peak voltage @ Z
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 277

1

5

10

15

20

25

30

35

40

45

50

55
}
}

}
}

NOTE—The vector_expression 00 Z says explicitly a transition at pin Z does not happen.

This example corresponds to the timing diagram shown in Figure 56.

Figure 56—Example of noise rejection

The peak voltage limit for noise rejection can depend on the duration of the noise pulse at pin A and other electri-
cal quantities, e.g., the load capacitance at pin Z. If the peak voltage limit does not depend on the duration of the
noise pulse, the NOISE_MARGIN statement shall be used rather than the vector-specific LIMIT construct for
noise rejection.

11.12.12 Annotations for arithmetic models for electrical data

Annotations for arithmetic models

This section defines the annotations for arithmetic models.

11.12.12.1 MEASUREMENT annotation

Arithmetic models describing analog measurements (see Table 78) can have a MEASUREMENT annotation. This
annotation indicates the type of measurement used for the computation in arithmetic model.

MEASUREMENT = string ;

The string can take the values shown in Table 103.

Table 103—MEASUREMENT annotation

Annotation string Description

transient Measurement is a transient value.

static Measurement is a static value.

average Measurement is an average value.

input pin A

output pin Z

pulse duration @ A

peak voltage @ A

peak voltage @ Z
is considered zero
278 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
Their mathematical definitions are shown in Figure 57.

Figure 57—Mathematical definitions for MEASUREMENT annotations

Examples

transient measurement of ENERGY
static measurement of VOLTAGE, CURRENT, and POWER
average measurement of VOLTAGE, CURRENT, and POWER
rms measurement of VOLTAGE, CURRENT, and POWER
peak measurement of VOLTAGE, CURRENT, and POWER

11.12.12.2 Rules for combinations of annotations

Cumulative values of arithmetic models can be calculated for models which are cumulative in nature (e.g.,
ENERGY or POWER) or by the usage of CALCULATION=incremental (e.g., CURRENT or VOLTAGE). The
MEASUREMENT annotation can be used in conjunction with the calculation of cumulative values under the fol-
lowing restrictions:

— Data with MEASUREMENT=average for each model can be combined, provided the TIME annotation
value is the same.

— Data with MEASUREMENT=peak for each model can be combined, provided the TIME annotation or a
complementary TIME model within the same context specify that the peak values can occur at the same
time.

— Data with MEASUREMENT=rms for each model can not be combined.
— Data with different MEASUREMENT annotations can not be combined.
— Data with MEASUREMENT=transient|static can be combined with each other.

All data that can be combined under the above mentioned restrictions, shall be in a compatible context, e.g.,
mutually non-exclusive VECTORs within a CELL.

rms Measurement is an root mean square value.

peak Measurement is a peak value.

Table 103—MEASUREMENT annotation (Continued)

Annotation string Description

max E t()() E t()sgn⋅ t T=

E t()d

t 0=()

t T=()

∫ E t() td

t 0=()

t T=()

∫

T

E t()2
td

t 0=()

t T=()

∫

T

E constant=

transient

static

average

rms

peak
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 279

1

5

10

15

20

25

30

35

40

45

50

55
11.13 Arithmetic models for physical data

Add lead-in text

11.13.1 CONNECTIVITY statement

This section defines the CONNECTIVITY statement and its use.

11.13.1.1 Definition

A CONNECTIVITY statement is defined as shown in Syntax 115.

11.13.1.2 CONNECT_RULE annotation

The connect_rule annotation can be only inside a CONNECTIVITY object. It specifies the connectivity require-
ment.

CONNECT_RULE = string ;

which can take the values shown in Table 104.

It is not necessary to specify more than one rule between a given set of objects. If one rule is specified to be True,
the logical value of the other rules can be implied shown in Table 105.

connectivity ::=
CONNECTIVITY [identifier] {
connect_rule_annotation between_multi_value_assignment }

|CONNECTIVITY [identifier] {
connect_rule_annotation table_based_model }

Syntax 115—CONNECTIVITY statements

Table 104—CONNECT_RULE annotation

Annotation string Description

must_short Electrical connection required.

can_short Electrical connection allowed.

cannot_short Electrical connection disallowed.

Table 105—Implications between connect rules

must_short cannot_short can_short

False False True

False True False

True False N/A
280 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
11.13.1.3 CONNECTIVITY modeled with BETWEEN statement

The BETWEEN statement specifies the objects for which the connectivity applies, as shown in Syntax 116.

If the BETWEEN statement contains only one identifier, than the CONNECTIVITY shall apply between multiple
instances of the same object.

Example

CLASS analog_power;
CLASS analog_ground;
CLASS digital_power;
CLASS digital_ground;
CONNECTIVITY Aground { // connect all members of CLASS analog_ground

CONNECT_RULE = must_short;
BETWEEN { analog_ground }

}
CONNECTIVITY Dground { // connect all members of CLASS digital_ground

CONNECT_RULE = must_short;
BETWEEN { digital_ground }

}
CONNECTIVITY Apower { // connect all members of CLASS analog_power

CONNECT_RULE = must_short;
BETWEEN { analog_power }

}
CONNECTIVITY Dpower { // connect all members of CLASS digital_power

CONNECT_RULE = must_short;
BETWEEN { digital_power }

}
CONNECTIVITY Aground2Dground {

CONNECT_RULE = must_short;
BETWEEN { analog_ground digital_ground }

}
CONNECTIVITY Apower2Dpower {

CONNECT_RULE = can_short;
BETWEEN { analog_power digital_power }

}
CONNECTIVITY Apower2Aground {

CONNECT_RULE = cannot_short;
BETWEEN { analog_power analog_ground }

}
CONNECTIVITY Apower2Dground {

CONNECT_RULE = cannot_short;
BETWEEN { analog_power digital_ground }

}
CONNECTIVITY Dpower2Aground {

CONNECT_RULE = cannot_short;
BETWEEN { digital_power analog_ground }

between_multi_value_assignment ::=
BETWEEN { identifiers }

Syntax 116—BETWEEN statements
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 281

1

5

10

15

20

25

30

35

40

45

50

55
}
CONNECTIVITY Dpower2Dground {

CONNECT_RULE = cannot_short;
BETWEEN { digital_power digital_ground }

}

11.13.1.4 CONNECTIVITY modeled as lookup TABLE

Connectivity can also be described as a lookup table model. This description is usually more compact than the
description using the BETWEEN statements.

The connectivity model can have the arguments shown in Table 106 in the HEADER.

Each argument shall contain a TABLE.

The connectivity model specifies the allowed and disallowed connections amongst drivers or receivers in one-
dimensional tables or between drivers and receivers in two-dimensional tables.The boolean literals in the table
refer to the CONNECT_RULE as shown in Table 107.

Example

CLASS analog_power;
CLASS analog_ground;
CLASS digital_power;
CLASS digital_ground;
CONNECTIVITY all_must_short {

CONNECT_RULE = must_short;
HEADER {

RECEIVER r1 {
TABLE {analog_ground analog_power digital_ground digital_power}

}
RECEIVER r2 {

TABLE {analog_ground analog_power digital_ground digital_power}

Table 106—Arguments for connectivity

Argument Value type Description

DRIVER string Argument of connectivity function.

RECEIVER string Argument of connectivity function.

Table 107—Boolean literals in non-interpolateable tables

Boolean literal Description

1 CONNECT_RULE is True.

0 CONNECT_RULE is False.

? CONNECT_RULE does not apply.
282 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
}
}
TABLE {

1 0 1 0
0 1 0 0
1 0 1 0
0 0 0 1

}
/*
The following table would apply, if the CONNECT_RULE was "cannot_short":

TABLE {
0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

}
The following table would apply, if the CONNECT_RULE was "can_short":

TABLE {
? 0 ? 0
0 ? 0 ?
? 0 ? 0
0 ? 0 ?

}
*/
}

11.13.2 SIZE statement

Add lead-in text

11.13.3 AREA statement

Add lead-in text

11.13.4 WIDTH statement

Add lead-in text

11.13.5 HEIGHT statement

Add lead-in text

11.13.6 LENGTH statement

Add lead-in text

11.13.7 DISTANCE statement

Add lead-in text

11.13.8 OVERHANG statement

Add lead-in text
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 283

1

5

10

15

20

25

30

35

40

45

50

55
11.13.9 PERIMETER statement

Add lead-in text

11.13.10 EXTENSION statement

Add lead-in text

11.13.11 THICKNESS statement

Add lead-in text

11.13.12 Annotations for arithmetic models for physical data

Physical annotations for arithmetic models

This section defines the physical annotations for arithmetic models.

11.13.12.1 BETWEEN statement within DISTANCE, LENGTH

The BETWEEN statement within DISTANCE or LENGTH (see 11.8.2 and the example in Section 9.11.5) shall
identify the objects for which the measurement applies. The syntax is shown in Syntax 116.

If the BETWEEN statement contains only one identifier, than the DISTANCE or LENGTH, respectively, shall
apply between multiple instances of the same object, as shown in the following example and Figure 58.

Example

DISTANCE = 4 { BETWEEN { object1 object2 } }
LENGTH = 2 { BETWEEN { object1 object2 } }

Figure 58—Illustration of LENGTH and DISTANCE

11.13.12.2 MEASUREMENT annotation for DISTANCE

The MEASUREMENT statement specifies the objects for which the connectivity applies, as shown in Syntax 117.

The default for measuring the distance between objects is straight.

The mathematical definitions for distance measurements between two points with differential coordinates ∆x and
∆y are:

— straight distance = (∆x2 + ∆y2)1/2

— horizontal distance = ∆x

object1 object2
LENGTH=2

DISTANCE=4
284 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
— vertical distance = ∆y
— manhattan distance = ∆x + ∆y

11.13.12.3 REFERENCE annotation for DISTANCE

The reference_annotation shall specify the reference for distance measurements between objects, as
shown in Syntax 118.

The default shall be edge. The value center is only applicable for objects with EXTENSION, whereas the
value edge is applicable for any physical object. The value origin is only applicable for objects with speci-
fied coordinates. This is depicted in Figure 59.

Figure 59—Illustration of REFERENCE for DISTANCE

11.13.12.4 Reference to ANTENNA

In hierarchical design, a PIN with physical PORTs can be abstracted. Therefore, an arithmetic model for SIZE,
AREA, PERIMETER, etc. **relevant?? for certain antenna rules can be precalculated. An ANTENNA statement
within the arithmetic model enables references to the set of antenna rules for which the arithmetic model applies,
as shown in Syntax 119.

distance_measurement_assignment ::=
MEASUREMENT = distance_measurement_identifier ;

distance_measurement_identifier ::=
straight

| horizontal
| vertical
| manhattan

Syntax 117—MEASUREMENT statements

reference_annotation ::=
REFERENCE = reference_identifier ;

reference_identifier ::=
center

| origin
| edge

Syntax 118—REFERENCE annotation

DISTANCE

REFERENCE = edge

object 1 object 2

DISTANCE

REFERENCE = center

object 1 object 2
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 285

1

5

10

15

20

25

30

35

40

45

50

55
Example

CELL cell1 {
PIN pin1 {

AREA poly_area = 1.5 {
LAYER = poly;
ANTENNA { individual_m1 individual_via1 }

}
AREA m1_area = 1.0 {

LAYER = metal1;
ANTENNA { individual_m1 }

}
AREA via1_area = 0.5 {

LAYER = via1;
ANTENNA { individual_via1 }

}
}

}

The area poly_area is used in the rules individual_m1 and individual_via1.
The area m1_area is used in the rule individual_m1 only.
The area via1_area is used in the rule individual_via1 only.

The case with diffusion is illustrated in the following example:

CELL my_diode {
CELLTYPE = special; ATTRIBUTE { DIODE }
PIN my_diode_pin {

AREA = 3.75 {
LAYER = diffusion;
ANTENNA { rule1_for_diffusion rule2_for_diffusion }

}
}

}

11.13.12.5 Reference to PATTERN

Reference to a PATTERN shall be legal within arithmetic models, if the pattern and the model are within the
scope of the same parent object, as shown in Syntax 120.

The pattern reference shall be applicable for LENGTH, WIDTH, HEIGHT, SIZE, AREA, THICKNESS,
PERIMETER, EXTENSION (see 11.8.2 and the example in Section 9.11.2).

antenna_reference_multi_value_assignment ::=
ANTENNA { antenna_identifiers }

Syntax 119—ANTENNA statement

pattern_reference_assignment ::=
PATTERN = pattern_identifier ;

Syntax 120—PATTERN reference
286 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
11.14 Arithmetic submodels for timing and electrical data

Add lead-in text

11.14.1 RISE and FALL statement

RISE and FALL submodels

For timing models in the context of a VECTOR, submodels for RISE and FALL are only applicable if the
vector_expression does not specify the switching direction of the referenced PIN and EDGE_NUMBER.
This is the case, when symbolic vector_unary operators are used, i.e., ?!, ??, ?*, or *? instead of 01, 10,
etc.

For SAME_PIN_TIMING_MEASUREMENT or SAME_PIN_TIMING_CONSTRAINT, the RISE and FALL
submodels apply for the <refEdge>.

For a partially specified TIMING_MEASUREMENT or TIMING_CONSTRAINT, the RISE and FALL submodels
apply for the <fromEdge> or <toEdge>, whichever is specified.

For a completely specified TIMING_MEASUREMENT or TIMING_CONSTRAINT, it is not possible to apply a
RISE and FALL submodel for both <fromEdge> and <toEdge>. The vector_unary operator shall spec-
ify the switching direction for at least one edge. If the switching direction for both edges is unspecified, the
RISE and FALL submodel shall apply for the <toEdge>.

Example

VECTOR (01 CLK -> ?! Q) {
DELAY { FROM { PIN = CLK; } TO { PIN = Q; }

RISE = 0.76; FALL = 0.58;
}

}
// If Q is a scalar pin, the following construct is equivalent:
VECTOR (01 CLK -> 01 Q) {

DELAY = 0.76 { FROM { PIN = CLK; } TO { PIN = Q; } }
}
VECTOR (01 CLK -> 10 Q) {

DELAY = 0.58 { FROM { PIN = CLK; } TO { PIN = Q; } }
}

11.14.2 HIGH and LOW statement

Submodels for RISE, FALL, HIGH, and LOW

RISE and FALL contain data characterized in transient measurements. HIGH and LOW contain data character-
ized in static measurements.

<modelKeyword> { RISE=<modelValueRise>; FALL=<modelValueFall>; }
<modelKeyword> { HIGH=<modelValueHigh>; LOW=<modelValueLow>; }

It is generally not required that both RISE and FALL or both HIGH and LOW, respectively, appear as an arith-
metic submodel.

HIGH and LOW qualify states with the logic value 1 and 0, respectively. RISE and FALL qualify transitions
between states with initial logic value 0 and 1, respectively and final values 1 and 0, respectively. For other
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 287

1

5

10

15

20

25

30

35

40

45

50

55
states and their mapping to logic values, see 5.1.5. If the arithmetic model is within the scope of a vector which
describes the logic values without ambiguity, the use of RISE and FALL or HIGH and LOW does not apply.

HIGH, LOW, RISE, and FALL apply for all pin-related arithmetic models with the following exceptions:

— RISE and FALL do not apply for VOLTAGE.
— HIGH and LOW do not apply for SAME_PIN_TIMING_MEASUREMENT and

SAME_PIN_TIMING_CONSTRAINT .

NOTE—For states that cannot be mapped to logic 1 or 0, RISE and FALL or HIGH and LOW cannot be used. The use of
VECTOR with unambiguous description of the relevant states is mandatory in such cases.

11.15 Arithmetic submodels for physical data

Add lead-in text

11.15.1 HORIZONTAL and VERTICAL statement

Add lead-in text

This is a single subheader
288 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
Annex A

(informative)

Syntax rule summary

This summary replicates the syntax detailed in the preceding clauses. If there is any conflict, in detail or com-
pleteness, the syntax presented in the clauses shall considered as the normative definition.

The current ordering is as each item appears in its subchapter; this needs to be updated to be complete.

A.1 Lexical definitions

any_character ::= (see6.2.3)
reserved_character

| nonreserved_character
| escape_character
| whitespace

reserved_character ::= (see 6.2.3)
& | | | ^ | ~ | + | - | * | / | % | ? | ! | = | < | > | : | (|) | [|] | { | } | @ | ; | , | . | ” | ’

nonreserved_character ::= (see 6.2.4)
letter | digit | _ | $ | #

letter ::=
a | b | c | d | e | f | g | h | i | j | k | l | m | n | o | p | q | r | s | t | u | v | w | x | y | z

| A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W
| X | Y | Z

digit ::=
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

escape_character ::= (see 6.2.5)
\

delimiter ::= (see 6.3)
reserved_character

| && | ~& | || | ~| | ~^ | == | != | ** | >= | <= | ?! | ?~ | ?- | ?? | ?* | *?
| -> | <-> | &> | <&> | >> | <<

comment ::= (see 6.2)
single_line_comment

| block_comment
integer ::= (see 6.5)

[sign] unsigned
sign ::=

+ | -
unsigned ::=

digit { _ | digit }
non_negative_number ::=

unsigned [. unsigned]
| unsigned [. unsigned] E [sign] unsigned

number ::=
[sign] non_negative_number

bit_literal ::= (see 6.6)
numeric_bit_literal
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 289

1

5

10

15

20

25

30

35

40

45

50

55
| alphabetic_bit_literal
| dont_care_literal
| random_literal

numeric_bit_literal ::=
0 | 1

alphabetic_bit_literal ::=
X | Z | L | H | U | W

| x | z | l | h | u | w
dont_care_literal ::=

?
random_literal ::=

*
based_literal ::= (see 6.7)

binary_base { _ | binary_digit }
| octal_base { _ | octal_digit }
| decimal_base { _ | digit }
| hex_base { _ | hex_digit }

binary_base ::=
'B | 'b

binary_digit ::=
bit_literal

octal_base ::=
'O | 'o

octal_digit ::=
binary_digit | 2 | 3 | 4 | 5 | 6 | 7

decimal_base ::=
'D | 'd

hex_base ::=
'H | 'h

hex_digit ::=
octal_digit | 8 | 9 | A | B | C | D | E | F | a | b | c | d | e | f

edge_literal ::= (see 6.8)
bit_edge_literal

| word_edge_literal
| symbolic_edge_literal

bit_edge_literal ::=
bit_literal bit_literal

word_edge_literal ::=
based_literal based_literal

symbolic_edge_literal ::=
?? | ?~ | ?! | ?-

quoted_string ::= (see 6.9)
" { any_character } "

identifiers ::= (see 6.10)
identifier { identifier }

identifier ::=
nonescaped_identifier

| escaped_identifier
| placeholder_identifier
| hierarchical_identifier

nonescaped_identifier ::= (see 6.10.1)
nonreserved_character { nonreserved_character }
290 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
escaped_identifier ::= (see 6.10.2)
escape_character escaped_characters

escaped_characters ::=
escaped_character { escaped_character }

escaped_character ::=
nonreserved_character

| reserved_character
| escape_character

placeholder_identifier ::= (see 6.10.3)
< nonescaped_identifier >

hierarchical_identifier ::= (see 6.10.4)
identifier . { identifier . } identifier

arithmetic_values ::= (see 6.6.1)
arithmetic_value { arithmetic_value }

arithmetic_value ::=
number

| identifier
| pin_value

string_value ::= (see 6.6.2)
quoted_string

| identifier
edge_values ::= (see 6.6.3)

edge_value { edge_value }

edge_value ::=
(edge_literal)

index_value ::= (see 6.6.4)
unsigned

| identifier

A.2 Auxiliary definitions

index ::= (see 7.1.1)
[index_range]

| [index_value]
index_range ::= (see 7.1.2)

index_value : index_value
pin_assignments ::= (see 7.2.1)

pin_assignment { pin_assignment }
pin_assignment ::=

pin_variable = pin_value ;
pin_variables ::= (see 7.2.2)

pin_variable { pin_variable }
pin_variable ::=

pin_variable_identifier [index]
pin_values ::= (see 7.2.3)

pin_value { pin_value }
pin_value ::=

pin_variable
| bit_literal
| based_literal
| unsigned
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 291

1

5

10

15

20

25

30

35

40

45

50

55
annotation ::= (see 7.3.1)
one_level_annotation

| two_level_annotation
| multi_level_annotation

one_level_annotations ::=
one_level_annotation { one_level_annotation }

one_level_annotation ::=
single_value_annotation

| multi_value_annotation
single_value_annotation ::=

identifier = annotation_value ;
multi_value_annotation ::=

identifier { annotation_values }
two_level_annotations ::=

two_level_annotation { two_level_annotation }
two_level_annotation ::=

one_level_annotation
| identifier [= annotation_value]

{ one_level_annotations }
multi_level_annotations ::=

multi_level_annotation { multi_level_annotation }
multi_level_annotation ::=

one_level_annotation
| identifier [= annotation_value]

{ multi_level_annotations }
annotation_values ::= (see 7.3.2)

annotation_value { annotation_value }
annotation_value ::=

index_value
| string_value
| edge_value
| pin_value
| arithmetic_value
| boolean_expression
| control_expression

all_purpose_items ::= (see 7.18)
all_purpose_item { all_purpose_item }

all_purpose_item ::=
include

| alias
| constant
| attribute
| property
| class_declaration
| keyword_declaration
| group_declaration
| template_declaration
| template_instantiation
| annotation
| arithmetic_model
| arithmetic_model_container
292 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
A.3 Generic definitions

include ::= (see 8.1)
INCLUDE quoted_string ;

alias ::= (see 8.1)
ALIAS identifier = identifier ;

constant ::= (see 8.2)
CONSTANT identifier = arithmetic_value ;

attribute ::= (see 8.4)
ATTRIBUTE { identifiers }

property ::= (see 8.5)
PROPERTY [identifier] { one_level_annotations }

class_declaration ::= (see 8.3)
CLASS identifier ;

| CLASS identifier { all_purpose_items }
keyword_declaration ::= (see 8.4)

KEYWORD context_sensitive_keyword = syntax_item_identifier ;
group_declaration ::= (see 8.6)

GROUP group_identifier { annotation_values }
| GROUP group_identifier { index_value : index_value }

template_declaration ::= (see 8.7)
TEMPLATE template_identifier { template_items }

template_items ::=
template_item { template_item }

template_item ::=
all_purpose_item

| cell
| library
| node
| pin
| pin_group
| primitive
| sublibrary
| vector
| wire
| antenna
| array
| blockage
| layer
| pattern
| port
| rule
| site
| via
| function
| non_scan_cell
| test
| range
| artwork
| from
| to
| illegal
| violation
| header
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 293

1

5

10

15

20

25

30

35

40

45

50

55
| table
| equation
| arithmetic_submodel
| behavior_item
| geometric_model

template_instantiation ::=
static_template_instantiation

| dynamic_template_instantiation
static_template_instantiation ::=

template_identifier [= static] ;
| template_identifier [= static] { annotation_values }
| template_identifier [= static]{ one_level_annotations }

dynamic_template_instantiation ::=
template_identifier = dynamic

{ dynamic_template_instantiation_items }
dynamic_template_instantiation_items ::=

dynamic_template_instantiation_item
{ dynamic_template_instantiation_item }

dynamic_template_instantiation_item ::=
one_level_annotation

| arithmetic_model

A.4 Library definitions

library ::= (see 9.1)
LIBRARY library_identifier { library_items }

| LIBRARY library_identifier ;
| library_template_instantiation

library_items ::=
library_item { library_item }

library_item ::=
sublibrary

| sublibrary_item
library ::=

SUBLIBRARY sublibrary_identifier { sublibrary_items }
| SUBLIBRARY sublibrary_identifier ;
| sublibrary_template_instantiation

sublibrary_items ::= (see 9.2.2)
sublibrary_item { sublibrary_item }

sublibrary_item ::=
all_purpose_item

| cell
| primitive
| wire
| layer
| via
| rule
| antenna

| array
| site

INFORMATION_two_level_annotation ::= (see 9.2.3)
INFORMATION { information_one_level_annotations }
294 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
information_one_level_annotations ::=
information_one_level_annotation

{ information_one_level_annotation }
information_one_level_annotation ::=

AUTHOR_one_level_annotation
| VERSION_one_level_annotation
| DATETIME_one_level_annotation
| PROJECT_one_level_annotation

cell ::= (see 9.3.1)
CELL cell_identifier { cell_items }

| CELL cell_identifier ;
| cell_template_instantiation

cell_items ::=
cell_item { cell_item }

cell_item ::=
all_purpose_item

| pin
| pin_group
| primitive
| function
| non_scan_cell
| test
| vector
| wire
| blockage
| artwork

non_scan_cell ::= (see 9.8)
NON_SCAN_CELL { unnamed_cell_instantiations }

| NON_SCAN_CELL = unnamed_cell_instantiation
| non_scan_cell_template_instantiation

unnamed_cell_instantiations ::=
unnamed_cell_instantiation { unnamed_cell_instantiation }

unnamed_cell_instantiation ::=
cell_identifier { pin_values }

| cell_identifier { pin_assignments }
pin ::= (see 9.4.1)

PIN [[index_range]] pin_identifier [[index_range]] { pin_items }
| PIN [[index_range]] pin_identifier [[index_range]] ;
| pin_template_instantiation

pin_item ::=
all_purpose_item

| range
| port
| pin_instantiation

pin_items ::=
pin_item { pin_item }

pin_instantiation ::=
pin_variable { pin_items }

range ::= (see 9.6)
RANGE { index_range }

pin_group ::= (see 9.6.1)
PIN_GROUP [[index_range]] pin_group_identifier { pin_group_items }
| pin_group_template_instantiation
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 295

1

5

10

15

20

25

30

35

40

45

50

55
pin_group_items ::=
pin_group_item { pin_group_item }

pin_group_item ::=
all_purpose_item

| range
wire ::= (see 9.10.1)

WIRE wire_identifier { wire_items }
| WIRE wire_identifier ;
| wire_template_instantiation

wire_items ::=
wire_item { wire_item }

wire_item ::=
all_purpose_item

| node
node ::= (see 9.10.2)

NODE node_identifier { node_items }
| NODE node_identifier ;
| node_template_instantiation

node_items ::=
node_item { node_item }

node_item ::=
all_purpose_item

vector ::= (see 9.11)
VECTOR control_expression { vector_items }

| VECTOR control_expression ;
| vector_template_instantiation

vector_items ::=
vector_item { vector_item }

vector_item ::=
all_purpose_item

| illegal
illegal ::= (see 9.6.2)

ILLEGAL { illegal_items }
| illegal_template_instantiation

illegal_items ::=
illegal_item { illegal_item }

illegal_item ::=
all_purpose_item

| violation
layer ::= (see 9.14.1)

LAYER layer_identifier { layer_items }
| LAYER layer_identifier ;
| layer_template_instantiation

layer_items ::=
layer_item { layer_item }

layer_item ::=
all_purpose_item

via ::= (see 9.15.1)
VIA via_identifier { via_items }

| VIA via_identifier ;
| via_template_instantiation

via_items ::=
via_item { via_item }
296 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
via_item ::=
all_purpose_item

| pattern
| artwork

via_reference ::= (see 9.15.4)
VIA { via_instantiations }

| VIA { via_identifiers }
via_instantiations ::=

via_instantiation { via_instantiation }
via_instantiation ::=

via_identifier { geometric_transformations }
rule ::= (see 9.16.1)

RULE rule_identifier { rule_items }
| RULE rule_identifier ;
| rule_template_instantiation

rule_items ::=
rule_item { rule_item }

rule_item ::=
all_purpose_item

| pattern
| via_reference

antenna ::= (see 9.16.2)
ANTENNA antenna_identifier { antenna_items }

| ANTENNA antenna_identifier ;
| antenna_template_instantiation

antenna_items ::=
antenna_item { antenna_item }

antenna_item ::=
all_purpose_item

blockage ::= (see 9.16.3)
BLOCKAGE blockage_identifier { blockage_items }

| BLOCKAGE blockage_identifier ;
| blockage_template_instantiation

blockage_items ::=
blockage_item { blockage_item }

blockage_item ::=
all_purpose_item

| pattern
| rule
| via_reference

port ::= (see 9.16.4)
PORT port_identifier { port_items }

| PORT port_identifier ;
| port_template_instantiation

port_items ::=
port_item { port_item }

port_item ::=
all_purpose_item

| pattern
| rule
| via_reference
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 297

1

5

10

15

20

25

30

35

40

45

50

55
site ::= (see 9.17.1)
SITE site_identifier { site_items }

| SITE site_identifier ;
| site_template_instantiation

site_items ::=
site_item { site_item }

site_item ::=
all_purpose_item

| ORIENTATION_CLASS_one_level_annotation
| SYMMETRY_CLASS_one_level_annotation

array ::= (see 9.17.2)
ARRAY array_identifier { array_items }

| ARRAY array_identifier ;
| array_template_instantiation

array_items ::=
array_item { array_item }

array_item ::=
all_purpose_item

| PURPOSE_single_value_annotation
| geometric_transformation

pattern ::= (see 9.17.3)
PATTERN pattern_identifier { pattern_items }

| PATTERN pattern_identifier ;
| pattern_template_instantiation

pattern_items ::=
pattern_item { pattern_item }

pattern_item ::=
all_purpose_item

| SHAPE_single_value_annotation
| LAYER_single_value_annotation
| EXTENSION_single_value_annotation
| VERTEX_single_value_annotation
| geometric_model
| geometric_transformation

artwork ::= (see 9.17.4)
ARTWORK = artwork_identifier { artwork_items }

| ARTWORK = artwork_identifier ;
| artwork_template_instantiation

artwork_items ::=
artwork_item { artwork_item }

artwork_item ::=
geometric_transformation

| pin_assignment
geometric_model ::= (see 9.17.5)

nonescaped_dentifier [geometric_model_identifier]
{ geometric_model_items }

| geometric_model_template_instantiation
geometric_model_items ::=

geometric_model_item { geometric_model_item }
geometric_model_item ::=

all_purpose_item
| POINT_TO_POINT_one_level_annotation
| coordinates
298 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
coordinates ::=
COORDINATES { x_number y_number { x_number y_number } }

geometric_transformations ::= (see 9.17.6)
geometric_transformation { geometric_transformation }

geometric_transformation ::=
SHIFT_two_level_annotation

| ROTATE_one_level_annotation
| FLIP_one_level_annotation
| repeat

repeat ::=
REPEAT [= unsigned] {

shift_two_level_annotation
[repeat]

}
function ::= (see 9.18.1)

FUNCTION { function_items }
| function_template_instantiation

function_items ::=
function_item { function_item }

function_item ::=
all_purpose_item
| behavior
| structure
| statetable

test ::= (see 9.18.2)
TEST { test_items }

| test_template_instantiation
test_items ::=

test_item { test_item }
test_item ::=

all_purpose_item
| behavior
| statetable

behavior ::= (see 9.18.4)
BEHAVIOR { behavior_items }

| behavior_template_instantiation
behavior_items ::=

behavior_item { behavior_item }
behavior_item ::=

boolean_assignments
| control_statement
| primitive_instantiation
| behavior_item_template_instantiation

boolean_assignments ::=
boolean_assignment { boolean_assignment }

boolean_assignment ::=
pin_variable = boolean_expression ;

primitive_instantiation ::=
primitive_identifier [identifier] { pin_values }

| primitive_identifier [identifier]
{ boolean_assignments }

control_statement ::=
@ control_expression { boolean_assignments }

{ : control_expression { boolean_assignments } }
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 299

1

5

10

15

20

25

30

35

40

45

50

55
structure ::= (see 9.18.5)
STRUCTURE { named_cell_instantiations }

| structure_template_instantiation
named_cell_instantiations ::=

named_cell_instantiation { named_cell_instantiation }
named_cell_instantiation ::=

cell_identifier instance_identifier { pin_values }
| cell_identifier instance_identifier { pin_assignments }

violation ::= (see 9.18.6)
VIOLATION { violation_items }

| violation_template_instantiation
violation_items ::=

violation_item { violation_item }
violation_item ::=

MESSAGE_TYPE_single_value_annotation
| MESSAGE_single_value_annotation
| behavior

statetable ::= (see 9.18.7)
STATETABLE [identifier]

{ statetable_header statetable_row { statetable_row } }
| statetable_template_instantiation

statetable_header ::=
input_pin_variables : output_pin_variables ;

statetable_row ::=
statetable_control_values : statetable_data_values ;

statetable_control_values ::=
statetable_control_value { statetable_control_value }

statetable_control_value ::=
bit_literal

| based_literal
| unsigned
| edge_value

statetable_data_values ::=
statetable_data_value { statetable_data_value }

statetable_data_value ::=
bit_literal

| based_literal
| unsigned
| ([!] pin_variable)
| ([~] pin_variable)

primitive ::= (see 9.18.8)
PRIMITIVE primitive_identifier { primitive_items }

| PRIMITIVE primitive_identifier ;
| primitive_template_instantiation

primitive_items ::=
primitive_item { primitive_item }

primitive_item ::=
all_purpose_item

| pin
| pin_group
| function
| test
300 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
A.5 Control definitions

boolean_expression ::= (see 10.7)
(boolean_expression)

| pin_value
| boolean_unary boolean_expression
| boolean_expression boolean_binary boolean_expression
| boolean_expression ? boolean_expression :

{ boolean_expression ? boolean_expression : }
boolean_expression

boolean_unary ::=
!

| ~
| &
| ~&
| |
| ~|
| ^
| ~^

boolean_binary ::=
&

| &&
| |
| ||
| ^
| ~^
| !=
| ==
| >=
| <=
| >
| <
+
*
/
%
>>
<<

vector_expression ::= (see 10.8)
(vector_expression)

| vector_unary boolean_expression
| vector_expression vector_binary vector_expression
| boolean_expression ? vector_expression :

{ boolean_expression ? vector_expression : }
vector_expression

| boolean_expression control_and vector_expression
| vector_expression control_and boolean_expression

vector_unary ::=
edge_literal
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 301

1

5

10

15

20

25

30

35

40

45

50

55
vector_binary ::=
&

| &&
| |
| ||
| ->
| ~>
| <->
| <~>
| &>
| <&>

control_and ::=
& | &&

control_expression ::=
(vector_expression)

| (boolean_expression)

A.6 Arithmetic definitions

arithmetic_expression ::= (see 11.1)
(arithmetic_expression)

| arithmetic_value
| [arithmetic_unary] arithmetic_expression
| arithmetic_expression arithmetic_binary

arithmetic_expression
| boolean_expression ? arithmetic_expression :

{ boolean_expression ? arithmetic_expression : }
arithmetic_expression

| arithmetic_macro
(arithmetic_expression { , arithmetic_expression })

arithmetic_unary ::=
sign

arithmetic_binary ::=
+

| -
| *
| /
| **
| %

arithmetic_macro ::=
abs

| exp
| log
| min
| max

arithmetic_models ::= (see 11.2.2)
arithmetic_model { arithmetic_model }

arithmetic_model ::=
partial_arithmetic_model

| non_trivial_arithmetic_model
| trivial_arithmetic_model
302 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
| assignment_arithmetic_model
| arithmetic_model_template_instantiation

partial_arithmetic_model ::= (see 11.2.3)
nonescaped_identifier [arithmetic_model_identifier] { partial_arithmetic_model_items }

partial_arithmetic_model_items ::=
partial_arithmetic_model_item { partial_arithmetic_model_item }

partial_arithmetic_model_item ::=
any_arithmetic_model_item

| table
non_trivial_arithmetic_model ::= (see 11.2.4)

nonescaped_identifier [arithmetic_model_identifier] {
[any_arithmetic_model_items]
arithmetic_body
[any_arithmetic_model_items]

}
trivial_arithmetic_model ::= (see 11.2.5)

nonescaped_identifier [arithmetic_model_identifier] = arithmetic_value ;
| nonescaped_identifier [arithmetic_model_identifier] = arithmetic_value

{ any_arithmetic_model_items }
assignment_arithmetic_model ::= (see 11.2.6)

arithmetic_model_identifier = arithmetic_expression ;
any_arithmetic_model_items ::= (see 11.2.7)

any_arithmetic_model_item { any_arithmetic_model_item }
any_arithmetic_model_item ::=

all_purpose_item
| from
| to
| violation

arithmetic_submodels ::= (see 11.3.1)
arithmetic_submodel { arithmetic_submodel }

arithmetic_submodel ::=
non_trivial_arithmetic_submodel

| trivial_arithmetic_submodel
| arithmetic_submodel_template_instantiation

non_trivial_arithmetic_submodel ::= (see 11.3.2)
nonescaped_identifier {

[any_arithmetic_submodel_items]
arithmetic_body
[any_arithmetic_submodel_items]

}
trivial_arithmetic_submodel ::= (see 11.3.3)

nonescaped_identifier = arithmetic_value ;
| nonescaped_identifier = arithmetic_value { any_arithmetic_submodel_items }

any_arithmetic_submodel_items ::= (see 11.3.4)
any_arithmetic_submodel_item { any_arithmetic_submodel_item }

any_arithmetic_submodel_item ::=
all_purpose_item

| violation
arithmetic_body ::= (see 11.4.1)

arithmetic_submodels
| table_arithmetic_body
| equation_arithmetic_body

table_arithmetic_body ::=
header table [equation]
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 303

1

5

10

15

20

25

30

35

40

45

50

55
equation_arithmetic_body ::=
[header] equation [table]

header ::= (see 11.4.2)
HEADER { identifiers }

| HEADER { header_arithmetic_models }
| header_template_instantiation

header_arithmetic_models ::=
header_arithmetic_model { header_arithmetic_model }

header_arithmetic_model ::=
non_trivial_arithmetic_model

| partial_arithmetic_model
table ::= (see 11.4.3)

TABLE { arithmetic_values }
| table_template_instantiation

equation ::= (see 11.4.4)
EQUATION { arithmetic_expression }

| equation_template_instantiation
arithmetic_model_container ::= (see 11.5)

arithmetic_model_container_identifier { arithmetic_models }
from ::= (see 11.10.1)

FROM { from_to_items }
to ::=

TO { from_to_items }
from_to_items ::=

from_to_item { from_to_item }
from_to_item ::=

PIN_single_value_annotation
| EDGE_single_value_annotation
| THRESHOLD_arithmetic_model

EARLY_arithmetic_model_container ::= (see 11.10.2)
EARLY { early_late_arithmetic_models }

LATE_arithmetic_model_container ::=
LATE { early_late_arithmetic_models }

early_late_arithmetic_models ::=
early_late_arithmetic_model { early_late_arithmetic_model }

early_late_arithmetic_model ::=
DELAY_arithmetic_model

| RETAIN_arithmetic_model
| SLEWRATE_arithmetic_model
304 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

1

5

10

15

20

25

30

35

40

45

50

55
Annex B

(informative)

Bibliography

[B1] Ratzlaff, C. L., Gopal, N., and Pillage, L. T., “RICE: Rapid Interconnect Circuit Evaluator,” Proceedings of
28th Design Automation Conference, pp. 555–560, 1991.

[B2] SPICE 2G6 User’s Guide.

[B3] Standard Delay Format Specification, Version 3.0, Open Verilog International, May 1995.

[B4] The IEEE Standard Dictionary of Electrical and Electronics Terms, Sixth Edition.
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual 305

1

5

10

15

20

25

30

35

40

45

50

55
306 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

Index

Symbols
(N+1) order sequential logic 175
-> operator 174
?- 26, 290
?! 26, 290
?? 26, 290
?~ 26, 290
@ 166

A
ABS 211
abs 210, 302
active vectors 170
ALF_AND 151
ALF_BUF 150
ALF_BUFIF0 153
ALF_BUFIF1 153
ALF_FLIPFLOP 155
ALF_LATCH 157
ALF_MUX 155
ALF_NAND 151
ALF_NOR 151, 152
ALF_NOT 150
ALF_NOTIF0 153, 154
ALF_NOTIF1 153, 154
ALF_OR 151
ALF_XNOR 151, 152
ALF_XOR 151, 152
ALIAS 38
alias 38, 293
all_purpose_items 36, 292
alphabetic_bit_literal 25, 290
annotation

arithmetic model tables
AREA 237
CAPACITANCE 236
CONNECTIONS 237
CURRENT 235
DELAY 234
DERATE_CASE 237
DISTANCE 237
DRIVE_STRENGTH 235, 236
DRIVER 282
IEEE P1603 Draft 3 Advanced Library Forma
ENERGY 235
FANIN 237
FANOUT 237
FREQUENCY 235
HEIGHT 237
HOLD 234
JITTER 235
LENGTH 238
NOCHANGE 234
PERIOD 234
POWER 235
PROCESS 237
PULSEWIDTH 234
RECEIVER 282
RECOVERY 234
REMOVAL 234
RESISTANCE 236
SETUP 234
SKEW 234
SLEWRATE 234
SWITCHING_BITS 237
TEMPERATURE 236
THRESHOLD 235
TIME 235
VOLTAGE 236
WIDTH 238

arithmetic models 228
average 278
can_short 280
cannot_short 280
CONNECT_RULE 280
DEFAULT 224
MEASUREMENT 278
must_short 280
peak 279
rms 279
static 278
transient 278
UNIT 228

CELL
BUFFERTYPE 59
CELLTYPE 53
DRIVERTYPE 60
t (ALF) Reference Manual Index-1

NON_SCAN_CELL 51, 295
PARALLEL_DRIVE 60
SCAN_TYPE 58
SCAN_USAGE 59

cell buffertype
inout 59
input 59
internal 59
output 59

cell celltype
block 53
buffer 53
combinational 53
core 53
flipflop 53
latch 53
memory 53
multiplexor 53
special 53

cell drivertype
both 60
predriver 60
slotdriver 60

cell scan_type
clocked 58
control_0 58
control_1 59
lssd 58
muxscan 58

cell scan_usage
hold 59
input 59
output 59

default 224
from 222
information

AUTHOR 50
DATETIME 50
PRODUCT 50
TITLE 50
VERSION 50

limit 222
object reference

cell 19
pin 19
primitive 19

PIN
ACTION 71
CONNECT_CLASS 80
DATATYPE 73
DIRECTION 66
DRIVETYPE 76
ORIENTATION 80
POLARITY 72
PULL 77
SCAN_POSITION 74
SCOPE 77
SIGNALTYPE 67
STUCK 74
VIEW 65

pin
PINTYPE 66

pin action
asynchronous 71
synchronous 71

pin datatype
signed 73
unsigned 73

pin direction
both 66, 67
input 66, 67
none 66, 67
output 66, 67

pin drivetype
cmos 76
cmos_pass 77
nmos 77
nmos_pass 77
open_drain 77
open_source 77
pmos 77
pmos_pass 77
ttl 77

pin orientation
bottom 80
left 80
right 80
top 80

pin pintype
analog 66
digital 66
supply 66
Index-2 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

pin polarity
double_edge 72
falling_edge 72
high 72
low 72
rising_edge 72

pin pull
both 78
down 77
none 78
up 77

pin scope
behavior 77
both 77
measure 77
none 77

pin signaltype
clear 68, 72, 73
clock 68, 72, 73
control 68, 70, 72, 73
data 67, 72, 73
enable 68, 72, 73
master_clock 71
out_enable 69, 70
scan_clock 71
scan_data 69
scan_enable 70
scan_out_enable 70
select 68, 72, 73
set 68, 72, 73
slave_clock 71

pin stuck
both 74
none 74
stuck_at_0 74
stuck_at_1 74

pin view
both 66
functional 65
none 66
physical 66

to 222
VECTOR

LABEL 93, 94, 95
violation

MESSAGE 144

MESSAGE_TYPE 144
annotation container 39
anotation

object reference
class 19

any_character 22, 289
arithmetic models 14
arithmetic operators

binary 210
function 211
unary 210

arithmetic_binary_operator 210, 302
arithmetic_expression 209, 302
arithmetic_function_operator 210, 302
arithmetic_unary_operator 210, 302
atomic object 13
ATTRIBUTE 38
attribute 39, 293

CELL 53, 54, 55
cell

asynchronous 54
CAM 53
dynamic 54
RAM 53
ROM 53
static 53
synchronous 54

PIN 78
pin

PAD 78
SCHMITT 78
TRISTATE 78
XTAL 78

B
based literal 25
based_literal 26, 290
behavior 138, 299
behavior_body 138, 299
binary 25
Binary operators

arithmetic 210
bitwise 161
boolean, scalars 160
reduction 161
vector 175, 176, 179
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual Index-3

binary_base 26, 290
binary_digit 26, 290
bit 25
bit_edge_literal 26, 290
bit_literal 25, 289
Bitwise operators

binary 161
unary 161

block comment 24
boolean operators

binary 160
unary 160

boolean_binary_operator 206, 301
boolean_expression 206, 301
boolean_unary_operator 206, 301

C
case-insensitive langauge 23
cell 51, 295
cell_identifier 51, 295
cell_items 51, 295
cell_template_instantiation 51, 295
characterization 5
children object 13
CLASS 40
class 40, 293
combinational logic 159
combinational primitives 150
combinational_assignments 138, 299
comment 23

block 24
long 24
short 24
single-line 24

comments
nested 24

compound operators 23
CONSTANT 38
constant 38, 293
constant numbers 24
context-sensitive keyword 29

D
decimal 25
decimal_base 26, 290
deep submicron 5

default annotation 224, 228
delimiter 23, 289
digit 26, 290

E
edge literal 26
edge_literal 26, 290
edge_literals 31, 291
edge-sensitive sequential logic 166
equation 221, 304
equation_template_instantiation 221, 304
escape codes 27
escape_character 23, 289
escaped identifier 28
escaped_identifier 28, 291
event sequence detection 175
EXP 211
exp 210, 302
extensible primitives 148

F
Flipflop 155
function 133, 299
Function operators

arithmetic 211
function_template_instantiation 133, 299
functional model 5

G
generic objects 14
GROUP 41
group 41, 293
group_identifier 41, 293

H
hard keyword 29
header 221, 304
header_template_instantiation 221, 304
hex_base 26, 290
hex_digit 26, 290
hexadecimal 25

I
identifier 13, 23
Identifiers 27
identifiers 27, 290
Index-4 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

inactive vectors 170
INCLUDE 37
include 37, 293
index 33, 291
integer 24, 289

K
keyword 13
Keywords

context-sensitive 30
generic objects 29
operators 29

L
Latch 157
level-sensitive sequential logic 166
Library creation 1
library_items 49, 294
library_template_instantiation 49, 294
library-specific objects 14
literal 13, 23
LOG 211
log 210, 302
logic_values 145, 300
logic_variables 34, 291

M
MAX 211
max 210, 302
MIN 211
min 210, 302
mode of operation 5
multiplexor 155

N
nested comments 24
non_negative_number 24, 289
non-escaped identifier 27
nonescaped_identifier 28, 290
nonreserved_character 23, 289
Number 24
number 24, 289
numeric_bit_literal 25, 290

O
objects 42, 293

octal 25
octal_base 26, 290
octal_digit 26, 290
operation mode 5
operator

-> 174
followed by 174

operators
arithmetic 210
boolean, scalars 160
boolean, words 160
signed 162
unsigned 162

P
pin_assignments 33, 291
pin_identifier 61, 295
pin_items 61, 295
pin_template_instantiation 61, 295
placeholder identifier 28
placeholder_identifier 27
placeholders 43
power constraint 5
Power model 5
predefined derating cases 250, 262

bccom 262
bcind 262
bcmil 262
wccom 262
wcind 262
wcmil 263

predefined process names 262
snsp 262
snwp 262
wnsp 262
wnwp 262

primitive_identifier 138, 147, 299, 300
primitive_instantiation 138, 299
primitive_items 147, 300
primitive_template_instantiation 147, 300
private keywords 30
PROPERTY 39
property 39, 293
public keywords 30
IEEE P1603 Draft 3 Advanced Library Format (ALF) Reference Manual Index-5

Q
Q_CONFLICT 155
QN_CONFLICT 155
quoted string 22, 26
quoted_string 26, 290

R
real 24
Reduction operators

binary 161
unary 160

reserved keyword 29
reserved_character 22, 289
RTL 4

S
sequential logic

edge-sensitive 166
level-sensitive 166
N+1 order 175
vector-sensitive 174

sequential_assignment 138, 299
sign 24, 289
signed operators 162
simulation model 5
single-line comment 24
soft keyword 29
statetable 145, 300
statetable_body 145, 300
string 31, 291
symbolic_edge_literal 26, 290

T
table 221, 304
table_template_instantiation 221, 304
TEMPLATE 41
template 42, 293
template_identifier 42, 293
template_instantiation 42, 294
Ternary operator 160
timing constraints 5
timing models 5
triggering conditions 166
triggering function 166
tristate primitives 152

U
Unary operator

bitwise 161
Unary operators

arithmetic 210
boolean, scalar 160
reduction 160

Unary vector operators 168
unnamed_assignment 35, 292
unsigned 24, 289
unsigned operators 162

V
vector 90, 296
vector expression 174
Vector operators

binary 175, 176
unary, bits 168
unary, words 169

vector_expression 90, 207, 296, 301
vector_items 90, 296
vector_template_instantiation 90, 296
vector_unary_operator 207, 301
vector-based modeling 5
Vector-Sensitive Sequential Logic 174
Verilog 4, 167
VHDL 4, 167
virtual pins 155

W
whitespace 22, 289
whitespace characters 22
wildcard_literal 25, 290
wire 81, 88, 97, 101, 104, 109, 113, 114, 117,

118, 121, 124, 296, 297, 298
wire_identifier 81, 88, 97, 101, 104, 109, 117,

296, 297, 298
wire_items 81, 88, 296
wire_template_instantiation 81, 88, 97, 101,

104, 109, 113, 114, 117, 118, 121,
124, 296, 297, 298

word_edge_literal 26, 290
Index-6 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 3

	1. Introduction
	1.1 Motivation
	1.2 Goals
	1.3 Target applications
	1.4 Conventions
	1.5 Contents of this standard

	2. References
	3. Definitions
	4. Acronyms and abbreviations
	5. ALF language construction principles and overview
	5.1 ALF meta-language
	5.2 Categories of ALF statements
	5.3 Generic objects and library-specific objects
	5.4 Singular statements and plural statements
	5.5 Instantiation statement and assignment statement
	5.6 Annotation, arithmetic model, and related statements
	5.7 Statements for parser control
	5.8 Name space and visibility of statements

	6. Lexical rules
	6.1 Character set
	6.2 Comment
	6.3 Delimiter
	6.4 Operator
	6.4.1 Arithmetic operator
	6.4.2 Boolean operator
	6.4.3 Relational operator
	6.4.4 Shift operator
	6.4.5 Event sequence operator
	6.4.6 Meta operator

	6.5 Number
	6.6 Bit literal
	6.7 Based literal
	6.8 Edge literal
	6.9 Quoted string
	6.10 Identifier
	6.10.1 Non-escaped identifier
	6.10.2 Escaped identifier
	6.10.3 Placeholder identifier
	6.10.4 Hierarchical identifier

	6.11 Keyword
	6.12 Rules for whitespace usage
	6.13 Rules against parser ambiguity

	7. Auxiliary Syntax Rules
	7.1 All-purpose value
	7.2 String
	7.3 Arithmetic value
	7.4 Boolean value
	7.5 Edge value
	7.6 Index value
	7.7 Index
	7.8 Pin variable
	7.9 Pin assignment
	7.10 Annotation
	7.11 Annotation container
	7.12 ATTRIBUTE statement
	7.13 PROPERTY statement
	7.14 INCLUDE statement
	7.15 REVISION statement
	7.16 Generic object
	7.17 Library-specific object
	7.18 All purpose item

	8. Generic objects and related statements
	8.1 ALIAS declaration
	8.2 CONSTANT declaration
	8.3 CLASS declaration
	8.4 KEYWORD declaration
	8.5 Annotations in the context of a KEYWORD declaration
	8.5.1 VALUETYPE annotation
	8.5.2 VALUES annotation
	8.5.3 DEFAULT annotation
	8.5.4 CONTEXT annotation
	8.5.5 SI_MODEL annotation

	8.6 GROUP declaration
	8.7 TEMPLATE declaration
	8.8 Template instantiation

	9. Library-specific objects and related statements
	9.1 LIBRARY and SUBLIBRARY declaration
	9.2 INFORMATION statement
	9.3 CELL declaration
	9.4 Annotations and attributes for a CELL
	9.4.1 CELLTYPE annotation
	9.4.2 ATTRIBUTE within a CELL
	9.4.3 SWAP_CLASS annotation
	9.4.4 RESTRICT_CLASS annotation
	9.4.5 SCAN_TYPE annotation
	9.4.6 SCAN_USAGE annotation
	9.4.7 BUFFERTYPE annotation
	9.4.8 DRIVERTYPE annotation
	9.4.9 PARALLEL_DRIVE annotation
	9.4.10 PLACEMENT_TYPE annotation
	9.4.11 SITE reference annotation

	9.5 PIN declaration
	9.6 RANGE statement
	9.6.1 PINGROUP declaration

	9.7 Annotations and attributes for a PIN
	9.7.1 VIEW annotation
	9.7.2 PINTYPE annotation
	9.7.3 DIRECTION annotation
	9.7.4 SIGNALTYPE annotation
	9.7.5 ACTION annotation
	9.7.6 POLARITY annotation
	9.7.7 DATATYPE annotation
	9.7.8 INITIAL_VALUE annotation
	9.7.9 SCAN_POSITION annotation
	9.7.10 STUCK annotation
	9.7.11 SUPPLYTYPE
	9.7.12 SIGNAL_CLASS
	9.7.13 SUPPLY_CLASS
	9.7.14 DRIVETYPE annotation
	9.7.15 SCOPE annotation
	9.7.16 ATTRIBUTE for PIN objects
	9.7.17 Definitions of pin ATTRIBUTE values for memory BIST
	9.7.18 CONNECT_CLASS annotation
	9.7.19 SIDE annotation
	9.7.20 ROW and COLUMN annotation
	9.7.21 ROUTING_TYPE annotation

	9.8 NON_SCAN_CELL statement
	9.9 PULL statement
	9.10 WIRE statement and related statements
	9.10.1 WIRE statement
	9.10.2 NODE statement

	9.11 VECTOR declaration
	9.12 Annotations in context of VECTOR declaration
	9.12.1 PURPOSE annotation
	9.12.2 OPERATION annotation
	9.12.3 LABEL annotation
	9.12.4 EXISTENCE_CONDITION annotation
	9.12.5 EXISTENCE_CLASS annotation
	9.12.6 CHARACTERIZATION_CONDITION annotation
	9.12.7 CHARACTERIZATION_VECTOR annotation
	9.12.8 CHARACTERIZATION_CLASS annotation

	9.13 Incremental definitions for VECTOR
	9.14 Statements for physical modeling
	9.14.1 LAYER statement
	9.14.2 PURPOSE annotation
	9.14.3 PITCH annotation
	9.14.4 PREFERENCE annotation
	9.14.5 Example

	9.15 VIA statement and related statements
	9.15.1 VIA statement
	9.15.2 USAGE annotation
	9.15.3 Example
	9.15.4 VIA reference statement

	9.16 Statements related to physical design rules
	9.16.1 RULE statement
	9.16.2 ANTENNA statement
	9.16.3 BLOCKAGE statement
	9.16.4 PORT statement

	9.17 Statements related to physical geometry
	9.17.1 SITE statement
	9.17.2 ARRAY statement
	9.17.3 PATTERN statement
	9.17.4 ARTWORK statement
	9.17.5 Geometric model
	9.17.6 Geometric transformation

	9.18 Statements related to functional description
	9.18.1 FUNCTION statement
	9.18.2 TEST statement
	9.18.3 Physical bitmap for memory BIST
	9.18.4 BEHAVIOR statement
	9.18.5 STRUCTURE statement
	9.18.6 VIOLATION statement
	9.18.7 STATETABLE statement
	9.18.8 PRIMITIVE statement

	10. Constructs for modeling of digital behavior
	10.1 Variable declarations
	10.2 Boolean value system
	10.3 Combinational functions
	10.3.1 Combinational logic
	10.3.2 Boolean operators on scalars
	10.3.3 Boolean operators on words
	10.3.4 Operator priorities
	10.3.5 Datatype mapping
	10.3.6 Rules for combinational functions
	10.3.7 Concurrency in combinational functions

	10.4 Sequential functions
	10.4.1 Level-sensitive sequential logic
	10.4.2 Edge-sensitive sequential logic
	10.4.3 Unary operators for vector expressions
	10.4.4 Basic rules for sequential functions
	10.4.5 Concurrency in sequential functions
	10.4.6 Initial values for logic variables

	10.5 Higher-order sequential functions
	10.5.1 Vector-sensitive sequential logic
	10.5.2 Canonical binary operators for vector expressions
	10.5.3 Complex binary operators for vector expressions
	10.5.4 Extension to N operands
	10.5.5 Operators for conditional vector expressions
	10.5.6 Operators for sequential logic
	10.5.7 Operator priorities
	10.5.8 Using PINs in VECTORs

	10.6 Modeling with vector expressions
	10.6.1 Event reports
	10.6.2 Event sequences
	10.6.3 Scope and content of event sequences
	10.6.4 Alternative event sequences
	10.6.5 Symbolic edge operators
	10.6.6 Non-events
	10.6.7 Compact and verbose event sequences
	10.6.8 Unspecified simultaneous events within scope
	10.6.9 Simultaneous event sequences
	10.6.10 Implicit local variables
	10.6.11 Conditional event sequences
	10.6.12 Alternative conditional event sequences
	10.6.13 Change of scope within a vector expression
	10.6.14 Sequences of conditional event sequences
	10.6.15 Incompletely specified event sequences
	10.6.16 How to determine well-specified vector expressions

	10.7 Boolean expression language
	10.8 Vector expression language
	10.9 Control expression semantics

	11. Constructs for modeling of analog behavior
	11.1 Arithmetic expression language
	11.1.1 Syntax of arithmetic expressions
	11.1.2 Arithmetic operators
	11.1.3 Operator priorities

	11.2 Arithmetic model and related statements
	11.2.1 Arithmetic models
	11.2.2 Arithmetic model statement
	11.2.3 Partial arithmetic model
	11.2.4 Non-trivial arithmetic model
	11.2.5 Trivial arithmetic model
	11.2.6 Assignment arithmetic model
	11.2.7 Items for any arithmetic model

	11.3 Arithmetic submodel and related statements
	11.3.1 Arithmetic submodel statement
	11.3.2 Non-trivial arithmetic submodel
	11.3.3 Trivial arithmetic submodel
	11.3.4 Items for any arithmetic submodel

	11.4 Arithmetic body and related statements
	11.4.1 Arithmetic body
	11.4.2 HEADER statement
	11.4.3 TABLE statement
	11.4.4 EQUATION statement

	11.5 Arithmetic model container
	11.5.1 LIMIT container
	11.5.2 Containers for arithmetic models and submodels

	11.6 Statements related to arithmetic models for general purpose
	11.6.1 MIN and MAX statements
	11.6.2 TYP statement
	11.6.3 DEFAULT statement
	11.6.4 LIMIT statement
	11.6.5 Annotations for arithmetic models for general purpose

	11.7 Rules for evaluation of arithmetic models
	11.7.1 Arithmetic model with arithmetic submodels
	11.7.2 Arithmetic model with table arithmetic body
	11.7.3 Arithmetic model with equation arithmetic body

	11.8 Overview of arithmetic models
	11.8.1 Overview of modeling keywords
	11.8.2 Arithmetic models in the context of layout

	11.9 Arithmetic models for timing data
	11.9.1 Specification of timing models
	11.9.2 TIME statement
	11.9.3 FREQUENCY statement
	11.9.4 DELAY and RETAIN statements
	11.9.5 SLEWRATE statement
	11.9.6 SETUP and HOLD statement
	11.9.7 NOCHANGE statement
	11.9.8 RECOVERY and REMOVAL statements
	11.9.9 SKEW statement
	11.9.10 PULSEWIDTH statement
	11.9.11 PERIOD statement
	11.9.12 JITTER statement
	11.9.13 THRESHOLD statement

	11.10 Auxiliary statements related to timing data
	11.10.1 FROM and TO statements
	11.10.2 EARLY and LATE statements
	11.10.3 Annotations for arithmetic models for timing data

	11.11 Arithmetic models for environmental data
	11.11.1 PROCESS and DERATE_CASE statement
	11.11.2 TEMPERATURE statement

	11.12 Arithmetic models for electrical data
	11.12.1 PIN-related arithmetic models for electrical data
	11.12.2 CAPACITANCE statement
	11.12.3 RESISTANCE statement
	11.12.4 INDUCTANCE statement
	11.12.5 VOLTAGE statement
	11.12.6 CURRENT statement
	11.12.7 POWER and ENERGY statement
	11.12.8 FLUX and FLUENCE statement
	11.12.9 DRIVE_STRENGTH statement
	11.12.10 SWITCHING_BITS statement
	11.12.11 NOISE and NOISE_MARGIN statement
	11.12.12 Annotations for arithmetic models for electrical data

	11.13 Arithmetic models for physical data
	11.13.1 CONNECTIVITY statement
	11.13.2 SIZE statement
	11.13.3 AREA statement
	11.13.4 WIDTH statement
	11.13.5 HEIGHT statement
	11.13.6 LENGTH statement
	11.13.7 DISTANCE statement
	11.13.8 OVERHANG statement
	11.13.9 PERIMETER statement
	11.13.10 EXTENSION statement
	11.13.11 THICKNESS statement
	11.13.12 Annotations for arithmetic models for physical data

	11.14 Arithmetic submodels for timing and electrical data
	11.14.1 RISE and FALL statement
	11.14.2 HIGH and LOW statement

	11.15 Arithmetic submodels for physical data
	11.15.1 HORIZONTAL and VERTICAL statement

	Annex A
	Annex B

