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IEEE Standard for an

Advanced Library Format (ALF)
describing Integrated Circuit (IC)
technology, cells, and blocks

1. Introduction

** Add alead-in OR change this to parallel an |EEE intro section**

1.1 Motivation

Designing digital integrated circuits has become an increasingly complex process. More functions get integrated
into a single chip, yet the cycle time of electronic products and technol ogies has become considerably shorter. 1t
would be impossible to successfully design a chip of today’s complexity within the time-to-market constraints
without extensive use of EDA tools, which have become an integral part of the complex design flow. The effi-
ciency of the tools and the reliability of the results for simulation, synthesis, timing and power analysis, layout
and extraction rely significantly on the quality of available information about the cellsin the technology library.

New challenges in the design flow, especially signal integrity, arise as the traditional tools and design flows hit
their limits of capability in processing complex designs. As a result, new tools emerge, and libraries are needed
in order to make them work properly. Library creation (generation) itself has become a very complex process and
the choice or rejection of a particular application (tool) is often constrained or dictated by the availability of a
library for that application. The library constraint can prevent designers from choosing an application program
that is best suited for meeting specific design challenges. Similar considerations can inhibit the devel opment and
productization of such an application program altogether. As a result, competitiveness and innovation of the
whol e electronic industry can stagnate.

In order to remove these constraints, an industry-wide standard for library formats, the Advanced Library Format
(ALF), is proposed. It enables the EDA industry to develop innovative products and ASIC designers to choose
the best product without library format constraints. Since ASIC vendors have to support a multitude of libraries
according to the preferences of their customers, acommon standard library is expected to significantly reduce the
library development cycle and facilitate the deployment of new technologies sooner.
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1.2 Goals
The basic goals of the proposed library standard are

— simplicity - library creation process needs to be easy to understand and not become a cumbersome pro-
cess only known by afew experts.

— generality - tools of any level of sophistication need to be able to retrieve necessary information from the
library.

— expandability - this needs to be done for early adoption and future enhancement possibilities.

— flexibility - the choice of keeping information in one library or in separate libraries needsto be in the hand
of the user not the standard.

— efficiency - the complexity of the design information requires the process of retrieving information from
the library does not become a bottleneck. The right trade-off between compactness and verbosity needsto
be established.

— ease of implementation - backward compatibility with existing libraries shall be provided and trandlation
to the new library needs to be an easy task.

— conciseness - unambiguous description and accuracy of contents shall be detailed.

— acceptance - there needs to be a preference for the new standard library over existing libraries.

1.3 Target applications

The fundamental purpose of ALF is to serve as the primary database for al third-party applications of ASIC
cells. In other words, it is an elaborate and formalized version of the databook.

In the early days, databooks provided all the information a designer needed for choosing a cell in a particular
application: Logic symbols, schematics, and a truth table provided the functional specification for simple cells.
For more complex blocks, the name of the cell (e.g., asynchronous ROM, synchronous 2-port RAM, or 4-bit syn-
chronous up-down counters) and timing diagrams conveyed the functional information. The performance charac-
teristics of each cell were provided by the loading characteristics, delay and timing constraints, and some
information about DC and AC power consumption. The designers chose the cell type according to the function-
ality, estimated the performance of the design, and eventually re-implemented it in an optimized way as neces-
sary to meet performance constraints.

Design automation enabled tremendous progressin efficiency, productivity, and the ability to deal with complex-
ity, yet it did not change the fundamental requirements for ASIC design. Therefore, ALF needs to provide mod-
els with functional information and performance information, primarily including timing and power. Signal
integrity characteristics, such as noise margin can aso be included under performance category. Such informa-
tion istypically found in any databook for analog cells. At deep sub-micron levels, digital cells behave similar to
analog cells as electronic devices bound by physical laws and therefore are not infinitely robust against noise.

Table 1 shows alist of applications used in ASIC design flow and their relationship to ALF.

NOTE — ALF covers library data, whereas design data needs to be provided in other formats.

Table 1—Target applications and models supported by ALF

Application Functional model Performance model Physical model
Smulation Derived from ALF N/A N/A
Synthesis Supported by ALF Supported by ALF Supported by ALF
Design for test Supported by ALF N/A N/A
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Table 1—Target applications and models supported by ALF (Continued)

Application Functional model Perfor mance model Physical model
Design planning Supported by ALF Supported by ALF Supported by ALF
Timing analysis N/A Supported by ALF N/A
Power analysis N/A Supported by ALF N/A
Sgnal integrity N/A Supported by ALF N/A
Layout N/A N/A Supported by ALF

Historically, afunctional model was virtually identical to a simulation model. A functional gate-level model was
used by the proprietary simulator of the ASIC company and it was easy to lump it together with a rudimentary
timing model. Timing analysis was done through dynamic functional simulation. However, with the advanced
level of sophistication of both functional simulation and timing analysis, thisis no longer the case. The capabili-
ties of the functional simulators have evolved far beyond the gate-level and timing analysis has been decoupled
from simulation.

RTL design planning is an emerging application type aiming to produce “virtual prototypes’ of complex for sys-
tem-on-chip (SOC) designs. RTL design planning is thought of as a combination of some or al of RTL floorplan-
ning and global routing, timing budgeting, power estimation, and functional verification, as well as analysis of
signal integrity, EMI, and thermal effects. The library components for RTL design planning range from simple
logic gates to parameterizeable macro-functions, such as memories, logic building blocks, and cores.

From the point of view of library requirements, applications involved in RTL design planning need functional,
performance, and physical data. The functional aspect of design planning includes RTL simulation and formal
verification. The performance aspect coverstiming and power as primary issues, while signal integrity, EMI, and
thermal effects are emerging issues. The physical aspect isfloorplanning. As stated previously, the functional and
performance models of components can be described in ALF.

ALF also covers the requirements for physical data, including layout. Thisisimportant for the new generation of
tools, where logical design merges with physical design. Also, al design steps involve optimization for timing,
power, signal integrity, i.e. electrical correctness and physical correctness. EDA tools need to be knowledgeable
about an increasing number of design aspects. For example, a place and route tool needs to consider congestion
aswell astiming, crosstalk, electromigration, antennarules etc. Thereforeitisalogical step to combine the func-
tional, electrical and physical models needed by such atool in aunified library.

Figure 1 shows how ALF provides information to various design tools.
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Figure 1—ALF and its target applications

The worldwide accepted standards for hardware description and simulation are VHDL and Verilog. Both lan-
guages have awide scope of describing the design at various levels of abstraction: behavioral, functional, synthe-
sizable RTL, and gate level. There are many ways to describe gate-level functions. The existing simulators are
implemented in such a way that some constructs are more efficient for simulation run time than others. Also,
how the simulation model handles timing constraints is a trade-off between efficiency and accuracy. Developing
efficient smulation models which are functionally reliable (i.e., pessimistic for detecting timing constraint viola-
tion) isamajor development effort for ASIC companies.

Hence, the use of a particular VHDL or Verilog simulation model as primary source of functional description of
acell isnot very practical. Moreover, the existence of two simulation standards makes it difficult to pick oneasa
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reference with respect to the other. The purpose of a generic functional model isto serve as an absol ute reference
for all applications that require functional information. Applications such as synthesis, which need functional
information merely for recognizing and choosing cell types, can use the generic functional model directly. For
other applications, such as simulation and test, the generic functional model enables automated simulation model
and test vector generation and verification, which has atremendous benefit for the ASIC industry.

With progress of technology, the set of physical constraints under which the design functions have increased dra-
matically, along with the cost constraints. Therefore, the requirements for detailed characterization and analysis
of those constraints, especially timing and power in deep submicron design, are now much more sophisticated.
Only a subset of the increasing amount of characterization data appearsin today’s databooks.

ALF provides a generic format for all type of characterization data, without restriction to state-of-the art timing
models. Power models are the most immediate extension and they have been the starter and primary driver for
ALF

Detailed timing and power characterization needs to take into account the mode of operation of the ASIC cell,
which isrelated to the functionality. ALF introduces the concept of vector-based modeling, which is a generali-
zation and a superset of today’s timing and power modeling approaches. All existing timing and power analysis
applications can retrieve the necessary model information from ALF.

1.4 Conventions

The syntax for description of lexical and syntax rules uses the following conventions.
** Consider using the BNF nomenclature from |EEE 1481-1999* *

S definition of a syntax rule
| alternative definition
[item an optional item

[iteml | item2 | ... ] optional itemwith alternatives

{itent optional itemthat can be repeated

{iteml | iten2 | ... } optional itenms with alternatives
whi ch can be repeated

item itemin boldface font is taken verbatim

item itemin italic is for explanation purpose only

The syntax for explanation of semantics of expressions uses the following conventions.

=== |l eft side and right side expressions are equival ent
<itemr a placeholder for an itemin regular syntax

1.5 Contents of this standard
The organization of the remainder of this standard is

— Clause 2 (References) provides references to other applicable standards that are assumed or required for
ALF.

— Clause 3 (Definitions) defines terms used throughout the different specifications contained in this stan-
dard.

— Clause 4 (Acronyms and abbreviations) defines the acronyms used in this standard.

— Clause 6 (Lexical rules) specifiesthe lexical rules.

— Clause 5 (ALF language construction principles) defines the language construction principles.

— Clause 7 (Auxiliary Syntax Rules) defines syntax and semantics of auxiliary items used in this standard.
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Clause 8 (Generic objects and related statements) defines syntax and semantics of generic objects used in
this standard.

Clause 9 (Library-specific objects and related statements) defines syntax and semantics of library-spe-
cific objectsused in this standard.

Clause 10 (Constructs for modeling of digital behavior) defines syntax and semantics of the control
expression language used in this standard

Clause 11 (Constructs for electrical and physical modeling) defines syntax and semantics of arithmetic
models used in this standard.

Annexes. Following Clause 11are a series of normative and informative annexes.
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2. References

**Fill in applicable references, i.e. standards on which the herein proposed standard depends.

This standard shall be used in conjunction with the following publication. When the following standard is super-
seded by an approved revision, the revision shall apply.

**Thefollowing is only an example. AL F does not depend on C.

| SO/IEC 9899:1990, Programming L anguages—C.*

[1SO 8859-1 : 1987(E)] ASCII character set

1130 publications are available from the 1SO Central Secretariat, Case Postale 56, 1 rue de Varembé, CH-1211, Genéve 20, Switzerland/
Suisse (http://www.iso.ch/). IEC publications are available from the Sales Department of the International Electrotechnical Commission,
Case Postale 131, 3, rue de Varembé, CH-1211, Genéve 20, Switzerland/Suisse (http://www.iec.ch/). ISO/IEC publications are aso available
in the United States from the Sales Department, American National Standards Institute, 11 West 42nd Street, 13th Floor, New York, NY
10036, USA.
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3. Definitions

For the purposes of this standard, the following terms and definitions apply. The IEEE Sandard Dictionary of
Electrical and Electronics Terms [B4] should be consulted for terms not defined in this standard.

**Fill in definitions of terms which are used in the herein proposed standard.

3.1 advanced library format: The format of any file that can be parsed according to the syntax and semantics
defined within this standard.

3.2 application, electric design automation (EDA) application: Any software program that uses data repre-
sented in the Advanced Library Format (ALF). Examplesinclude RTL (Register Transfer Level) synthesistools,
static timing analyzers, etc. See also: advanced library format; register transfer level.

3.3 arc: See: timing arc.

3.4 argument: A data item required for the mathematical evaluation of an artihmetic model. See also: arith-
metic model.

3.5 arithmetic model: A representation of alibrary quantity that can be mathematically evaluated.
36..

3.7 register transfer level: A behavioral representation of a digital electronic design allowing inference of
sequential and combinational logic components.

38...

3.9timing arc: An abstract representation of a measurement between two points in time during operation of a
library component.

3.10...
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4. Acronyms and abbreviations

This clause lists the acronyms and abbreviations used in this standard.

ALF
ASIC
AWE
BIST
BNF
CAE
CAM
CLF
CPU
DCL
DEF
DLL
DPCM
DPCS
DSP
DSPF
EDA
EDIF
HDL
IC
1P
ILM
LEF
LIB
LSSD
MPU
OLA
PDEF
PLL
PVT
QTM
RAM
RC
RICE
ROM
RSPF
RTL
SDF
sDC
SPEF
SPF
SPICE
STA

advanced library format, title of the herein proposed standard
application specific integrated circuit

asymptotic waveform evaluation

built-in salf test

Backus-Naur Form

computer-aided engineering [the term electronic design automation (EDA) is preferred]

content-addressable memory

Common Library Format from Avant! Corporation

central processing unit

Delay Calculation Language from |EEE 1481-1999 std

Design Exchange Format from Cadence Design Systems Inc.
delay-locked loop

Delay and Power Calculation Module from |EEE 1481-1999 std
Delay and Power Calculation System from | EEE 1481-1999 std
digital signal processor

Detailed Standard Parasitic Format

electronic design automation

Electronic Design Interchange Format

hardware description language

integrated circuit

intellectual property

Interface Logic Model from Synopsys Inc.

Library Exchange Format from Cadence Design Systems Inc.
Library Format from Synopsys Inc.

level-sensitive scan design

MiCro processor unit

Open Library Architecture from Silicon Integration Initiative Inc.
Physical Design Exchange Format from |EEE 1481-1999 std
Phase-locked loop

process/voltage/temperature (denoting a set of environmental conditions)
Quick Timing Model

random access memory

resistance times capacitance

rapid interconnect circuit eval uator

read-only memory

Reduced Standard Parasitic Format

Register Transfer Level

Standard Delay Format from |EEE 1497 std

Synopsys Design Constraint format from Synopsys Inc.
Standard Parasitic Exchange Format from |EEE 1481-1999 std
Standard Parasitic Format

Simulation Program with Integrated Circuit Emphasis

Static Timing Analysis
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STAMP
TCL
TLF
VCD
VHDL
VHSIC
VITAL
VLS

12

(STA Model Parameter ?) format from Synopsys Inc.

Tool Command Language (supported by multiple EDA vendors)
Timing Library Format from Cadence Design Systems Inc.
Value Change Dump format (from |EEE 1364 std ?)

VHSIC Hardware Description Language

very-high-speed integrated circuit

VHDL Initiative Towards ASIC Libraries from IEEE ??? std
very-large-scale integration
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5. ALF language construction principles and overview

** Add lead-in text**

This section presents the ALF language construction principles and gives an overview of the language features.
The types of ALF statements and rules for parent/child relationships between types are presented summarily.
Most of the types are associated with predefined keywords. The keywords in ALF shall be case-insensitive.
However, uppercase is used for keywords throughout this section for clarity.

5.1 ALF meta-language

The following Syntax 1— establishes an ALF meta-language.

ALF_statement ::=
ALF _type[ALF_name] [ = ALF_value] ALF_statement_termination
ALF_statement_termination ::=

|{ { ALF_value|:|;}}
|1 { ALF_statement } }}
ALF _type::=
non_escaped_identifier [ index ]
@
ALF name::=
identifier [ index ]
| control_expression
ALF vaue::=
identifier
| number
| arithmetic_expression
| boolean_expression
| control_expression

Syntax 1—syntax construction for ALF meta-language

An ALF statement uses the delimiters“;”, “{* and “}” to indicate its termination.

The ALF typeis defined by a keyword (see Section 6.12 on page 36) eventually in conjunction with an index (see
Section 7.8 on page 40) or by the operator “@” (Section 6.4 on page 28) or by the delimiter “:” (see Section 6.3
on page 27). The usage of keyword, index, operator, or delimiter as ALF type is defined by ALF language rules
concerning the particular ALF type.

The ALF name is defined by an identifier (see Section 6.11 on page 34) eventually in conjunction with an index
or by a control expression (see Section 10.9 on page 160). Depending on the ALF type, the ALF name is manda-
tory or optional or not applicable. The usage of identifier, index, or control expression as ALF nameis defined by
ALF language rules concerning the particular ALF type.

The ALF value is defined by an identifier, a number (see Section 6.5 on page 31), an arithmetic expression (see
Section 11.1 on page 163), a boolean expression (see Section 10.7 on page 159), or a control expression.
Depending on the type of the ALF statement, the ALF value is mandatory or optiona or not applicable. The
usage of identifier, number, arithmetic expression, boolean expression or control expression as ALF vaue is
defined by ALF language rules concerning the particular ALF type.
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An ALF statement can contain one or more other ALF statements. The former is called parent of the latter. Con-
versely, the latter is called child of the former. An ALF statement with child is called a compound ALF state-
ment.

An ALF statement containing one or more ALF values, eventually interspersed with the delimiters “;” or “:”, is
called a semi-compound ALF statement. The items between the delimiters “{* and “}" are called contents of the
ALF statement. The usage of the delimiters “;” or “:” within the contents of an ALF statement isdefined by ALF
language rules concerning the particular ALF statement.

An ALF statement without child is caled an atomic ALF statement. An ALF statement which is either com-
pound or semi-compound is called a non-atomic ALF statement.

Examples

a) ALF statement describing an unnamed object without val ue:
ARBI TRARY_ALF_TYPE {
/1 put children here
}
b) ALF statement describing an unnamed object with value:
ARBI TRARY_ALF _TYPE = arbitrary_ALF val ue;
or
ARBI TRARY_ALF _TYPE = arbitrary_ALF val ue {
/1 put children here
}

¢) ALF statement describing a named object without value:
ARBI TRARY_ALF_TYPE arbitrary_ALF_nane;
or
ARBI TRARY_ALF_TYPE arbitrary_ALF _nanme {
/1 put children here
}
d) ALF statement describing a named object with value:
ARBI TRARY_ALF _TYPE arbitrary_ ALF _name = arbitrary_ALF_val ue;
or
ARBI TRARY_ALF _TYPE arbitrary_ ALF nane
/1l put children here

arbitrary_ALF _val ue {

}

5.2 Categories of ALF statements

In this section, the terms statement, type, name, value are used for shortnessin lieu of ALF statement, ALF name,
ALF value, respectively.
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Statements are divided into the following categories: generic object, library-specific object, arithmetic model,
arithmetic submodel, arithmetic model container, geometric model, annotation, annotation container, and auxil-
iary statement, as shown in Table 2—.

Table 2—Categories of ALF statements

category

purpose

syntax particularity

generic object

provide a definition for use within other
ALF statements

Statement is atomic, semi-compound or com-
pound.

Name is mandatory.

Valueis either mandatory or not applicable.

library-specific object

describe the contents of alC technology
library

Statement is atomic or compound.
Name is mandatory.

Value does not apply.

Category of parent isexclusively
library-specific object

arithmetic model

describe an abstract mathematical quan-
tity that can be calcul ated and eventually
measured within the design of an IC

Statement is atomic or compound.
Name is optional.
Valueis mandatory, if atomic.

arithmetic submodel

describe an arithmetic model under a
specific measurement condition

Statement is atomic or compound.
Name does not apply.

Valueis mandatory, if atomic.
Category of parent isexclusively
arithmetic model

arithmetic model container

provide a context for an arithmetic
model

Statement is compound.

Name and value do not apply.
Category of child isexclusively
arithmetic model

geometric model

describe an abstract geometrical form
used in physical design of anIC

Statement is semi-compound or compound.
Name is optional.
Value does not apply.

annotation

provide aqualifier or aset of qualifiers
for an ALF statement

Statement is atomic, semi-compound or com-
pound.

Name does not apply.

Valueis mandatory, if atomic or compound.
Value does not apply, if semi-compound.
Category of child isexclusively

annotation

annotation container

provide a context for an annotation

Statement is compound.

Name and value do not apply.
Category of child isexclusively
annotation

auxiliary statement

provide an additional description within
the context of alibrary-specific object,
an arithmetic model, an arithmetic sub-
model, geometric model or another aux-
liary statement

dependent on subcategory

The following Figure 2— illustrates the parent/child relationship between categories of statements.
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Figure 2—Parent/child relationship between AL

F statements

More detailed rules for parent/child relationships for particular types of statements apply.

5.3 Generic objects and library-specific objects

Statements with mandatory name are called objects, i.e., generic object and library-specific object.
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The following table lists the keywords and items in the category generic object. The keywords used in this cate-

gory are called generic keywords.

Table 3—Generic objects

keyword item section
ALIAS alias declaration
CONSTANT constant declaration
CLASS class declaration
GROUP group declaration
KEYWORD keyword declaration
TEMPLATE template declaration

The following Table 3— lists the keywords and items in the category library-specific object. The keywords used
in this category are called library-specific keywords.

Table 4—Library-specific objects

IEEE P1603 Draft 4

keyword item section
LIBRARY library
SUBLIBRARY sublibrary
CELL cdl
PRIMITIVE primitive
WIRE wire
PIN pin
PINGROUP pin group
VECTOR vector
NODE node
LAYER layer
VIA via
RULE rule
ANTENNA antenna
SITE site
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Table 4—Library-specific objects

keyword item section
ARRAY array
BLOCKAGE blockage
PORT port
PATTERN pattern
REGION region new proposal for IEEE

Thefollowing Figure 3— illustrates the parent/child relationship between statements within the category library-

specific object.

library — e sublibrary
- layer

wire

cell primitive
- Site / \ \\ ¢
node
vector pin  pih-group pin
= array
- rule
. antenna e - port
L / legend:
via parent ——® child

Figure 3—Parent/child relationship amongst library-specific objects

A parent can have multiple library-specific objects of the same type as children. Each child is distinguished by

name.

5.4 Singular statements and plural statements

Auxiliary statements with predefined keywords are devided in the following subcategories. singular statement
and plural statement.

18
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Aucxiliary statements with predefined keywords and without name are called singular statements. Auxiliary state-
ments with predefined keywords and with name, yet without value, are called plural statements.

The following Table 5— lists the singular statements.

Table 5—Singular statements

keyword item value complexity section
FUNCTION function N/A compound
TEST test N/A compound
RANGE range N/A semi-compound
FROM from N/A compound
TO to N/A compound
VIOLATION violation N/A compound
HEADER header N/A compound (or semi-compound?)
TABLE table N/A semi-compound
EQUATION equation N/A semi-compound
BEHAVIOR behavior N/A compound
STRUCTURE structure N/A compound
NON_SCAN_CELL non-scan cell optional compound or semi-compound
ARTWORK artwork mandatory compound or atomic
The following Table 6— liststhe plural statements.
Table 6—Plural statements
keyword item name complexity section
STATETABLE state table optional semi-compound
@ control statement mandatory compound
alternative control statement mandatory compound

IEEE P1603 Draft 4
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19

10

15

20

25

30

35

40

45

50

55



10

15

20

25

30

35

40

50

55

primitive

function

structure

cell

test

violation<e—  grjthmetic model

#

#

statetable

legend:
parent —® child

be&avi or

» pin

non-scan cell

artwork
range

_—|:: from
to

L arithmetic submodel

—arithmetic submo

. » header
L table
- equation

I

—®>control statement
—®alternative control statement

Figure 4—Parent/child relationship involving singular statements and plural statements

A parent can have at most one child of a particular type in the category singular statements, but multiple children

of aparticular type in the category plural statements.

5.5 Instantiation statement and assignment statement

Auxiliary statements without predefined keywords use the name of an object as keyword. Such statements are
devided in the following subcategories: instantiation statement and assignment statement.

Compound or semi-compound statements using the name of an object as keyword are called instantiation state-
ments. Their purpose is to specify an instance of the object.

The following Table 7— lists the instantiation statements.

Table 7—Instantiation statements

item name value section
cell instantiation optional N/A
primitive instantiation optional N/A
templ ate instantiation N/A optional
viainstantiation mandatory N/A
wire instantiation mandatory N/A proposed for IEEE
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Atomic statements without name using an identifier as keyword which has been defined within the context of
another object are called assignment statements. A value is mandatory for assignment statements, as their pur-
poseisto assign avaue to the identifier. Such an identifier is called avariable.

The following Table 8— lists the assignment statements.

Table 8—Assignment statements

item section

pin assignment

boolean assignment

arithmetic assignment

The following Figure 5— illustrates the parent/child relationship involving instantiation and assigment state-

ments.
legend:
behavior parent ——® child no restrictive rules
parent = — —® child with restrictive rules

- primitiveinstantiation—— |

—®  control statement

—®alternative control statement ——
generic object

singular statement
non-scan cell  structure

Lo plural statement
R y/  arithmetic mod

pin assignment e—Wwire instantiation

library-specific object _

v

NARidJ.

artwork : cel ingtantiation  / arithmeticsubmodel’;
\ v ¢ ’/ arithmetic model container

- boolean assignment

template instantiation

\

arithmetic assignment

Figure 5—Parent/child relationship involving instantiation and assignment statements

A parent can have multiple children using the same keyword in the category instantiation statement, but at most

one child using the same variable in the category assignment statement.
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5.6 Annotation, arithmetic model, and related statements

Multiple keywords are predefined in the categories arithmetic model, arithmetic model container, arithmetic
submodel, annotation, annotation container, and geometric model. Their semantics are established within the
context of their parent. Therefore they are called context-sensitive keywords. In addition, the ALF language
allows additional definition of keywords in these categories.

The following Table 9— provides a reference to sections where more definitions about these categories can be
found.

Table 9—Other categories of ALF statements

item section

arithmetic model

arithmetic submodel

arithmetic model container

annotation

annotation container

geometric model

There exist predefined keywords with generic semantics in the category annotation and annotation container.
They are called generic keywords, like the keywords for generic objects.

The following Table 10— lists the generic keywords in the category annotation and annotation container.

Table 10—Annotations and annotation containers with generic keyword

keyword item / subcategory section
PROPERTY one_level _annotation_container
ATTRIBUTE multi_value_annotation
INFORMATION one_level _annotation_container

The following Table 11— lists predefined keywords in categories related to arithmetic model ..

Table 11—Keywords related to arithmetic model

keyword item / category section

LIMIT arithmetic model container
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Table 11—Keywords related to arithmetic model

keyword item / category section
MIN arithmetic submodel, operator within arithmetic expression
MAX arithmetic submodel, operator within arithmetic expression
TYP arithmetic submodel
DEFAULT arithmetic submodel, annotation
ABS operator within arithmetic expression
EXP operator within arithmetic expression
LOG operator within arithmetic expression

The definitions of other predefined keywords, especially in the category arithmetic model, can be self-described
in ALF using the keyword declaration statement (see Section 8.4 on page 48).

5.7 Statements for parser control

Thefollowing provides areference to statements used for ALF parser control.

Table 12—Statements for ALF parser control

keyword statement section
INCLUDE include statement
ASSOCIATE associ ate statement
ALF _REVISION revision statement

The statements for parser control do not necessarily follow the ALF meta-language shown in Syntax 1.

5.8 Name space and visibility of statements

The following rules for name space and visibility shall apply:

a) A statement shall be visible within its parent statement, but not outside its parent statement.

b) A statement visible within another statement shall aso be visible within a child of that other statement.

¢) All objects (i.e., generic objects and library-specific objects) shall share a common name space within
their scope of visibility. No object shall use the same name as any other visible object. Conversely, an
object may use the same name as any other object outside the scope of its visibility.

d) The following exception of rule c) is allowed for specific objects and with specific semantic implica-
tions. An object of the same type and the same name may be redeclared, if semantic support for this
redeclaration is provided. The purpose of such a redeclaration is to supplement the original declaration
with new children statements which augment the original declaration without contradicting it.
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6. Lexical rules
This section discusses the lexical rules.

The ALF source text files shall be a stream of Iexical tokens and whitespace. Lexical tokens shall be divided into
the categories delimiter, operator, comment, number, bit literal, based literal, edge, quoted string, and identifier.

Each lexical token shall be composed of one or more characters. Whitespace shall be used to separate lexical
tokens from each other. Whitespace shall not be allowed within alexical token with the exception of comment
and quoted string.

The specific rules for construction of lexical tokens and for usage of whitespace are defined in this section.

6.1 Character set
This standard shall use the ASCI| character set [ISO 8859-1 : 1987(E)].

The ASCII character set shall be divided into the following categories: whitespace, letter, digit, and special, as
shown in Syntax 2.

character ::=
whitespace
| letter
| digit
| special
letter ::=
uppercase | lowercase
uppercase

I'§~(I||§(I|CZIDIEIFIGIH||IJIKILIM INJOIPIQIRISITIUIVIW

lowercase ::=

a|b|0|d|e|f|g|h|I|J IKilimnjo[p|girisitiu|viw|x|y|z
0|1|2|3|4|5|6|7|8|9

speC|aI =
{ |/|%|’>|'| L1 1@1= 1N 18 1#
|( |)|< |>|
whitespace ::=

space | vertica_tab | horizontal_tab | new_line | carriage_return | form_feed

Syntax 2—ASCII character

The following Table 13 shows the list of whitespace characters and their ASCI| code.

Table 13—List of whitespace characters

Name ASCII code (octal)
space 200
horizontal tab 011
new line 012
vertical tab 013
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Table 13—List of whitespace characters (Continued)

Name ASCII code (octal)
form feed 014
carriage return 015

The following Table 14— showsthe list of special characters and their names used in this standard

Table 14—List of special characters

Symbol Name

& amperesand

| ?77? bar

A 722 hyphen

~ tilde

+ plus

- minus

* asterix

/ divider

% percent

? question mark

! exclamation mark

colon

; semicolon

, comma

K double quote

' single quote

@ ma

= equal
\ escape character

dot

$ dollar
_ underscore
# ??? sharp

(1) parenthesis (open | close)
<> angular bracket (open | close)
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Table 14—List of special characters (Continued)

Symbol Name
[ 1] square bracket (open | close)
{1} curly brace (open | close)

6.2 Comment

A comment shall be divided into the subcategories in-line comment and block comment, as shown in Syntax 3.

comment ::=
in_line_comment
| block_comment
in_line_comment ::=
| I{ character} new_line
|/ [{ character} carriage_return
block_comment ::=
[*{character}* /

Syntax 3—Comment

The start of an in-line comment shall be determined by the occurence of two subsequent divider characters with-
out whitespace in-between. The end of an in-line comment shall be determined by the occurence of anew line or
of acarriage return character.

The start of ablock comment shall be determined by the occurence of adivider character followed by an asterix
without whitespace in-between. The end of a block comment shall be determined by the occurence of an asterix
character followed by adivider character.

A comment shall have the same semantic meaning as a whitespace. Therefore, no syntax rule shall involve a
comment.

6.3 Delimiter

The specia characters shown in Syntax 4 shall be considered delimiters.

delimiter ::=

(DT,

Syntax 4—Delimiter

When appearing in asyntax rule, adelimiter shall be used to indicate the end of a statement or of a partial state-
ment, the begin and end of an expression or of a partial expression.
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6.4 Operator

Operators shall be divided into the following subcategories: arithmetic operator, boolean operator, relational

operator, shift operator, event sequence operator, and meta operator, as shown in Syntax 5

operator ::=
arithmetic_operator
| boolean_operator
| relational _operator
| shift_operator
| event_sequence_operator
| other_operator

arithmetic_operator ::=

+ -1 1% | **
boolean_operator ::= A

& I[[~& [~[IM 1~ & ]
relational_operator ::=

==[l=|>=|<=|>|<
shift_operator ::=

<<|>>
event_sequence_operator ::=

S>> <> <> | &> <& >
meta_operator ::=

=1?1@

Syntax 5—Operator

When appearing in a syntax rule, an operator shall be used within a statement or within an expression. An opera-
tor with one operand shall be called unary operator. An unary operator shall precede the operand. An operator
with two operands shall be called binary operator. A binary operator shall succede the first operand and precede

the second operand.

6.4.1 Arithmetic operator

The following Table 15— showsthe list of arithmetic operators and their names used in this standard.

Table 15—List arithmetic operators

Symbol Operator name unary / binary section
+ plus binary
- minus both
* multiply binary
/ divide binary
% modulo binary
** power binary

Arithmetic operators shall be used to specify arithmetic operations.
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6.4.2 Boolean operator

The following Table 16— shows the list of boolean operators and their names used in this standard.

Table 16—List of boolean operators

Symbol Operator name unary / binary section
! logical invert unary
& & logical and binary
I logical or binary
~ vector invert unary
& vector and both
~& vector nand both
| vector or both
~ vector nor both
N exclusive or both
~A exclusive nor both

Boolean operators shall be used to specify boolean operations.

6.4.3 Relational operator

The following Table 17— showsthe list of relational operators and their names used in this standard.

Table 17—List of relational operators

Symbol Operator name unary / binary section
== equal binary
1= not equal binary
greater binary
lesser binary
>= greater or equal binary
<= lesser or equal binary

Relational operators shall be used to specify mathematical relationships between numerical quantities.

IEEE P1603 Draft 4
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6.4.4 Shift operator

The following Table 18— showsthe list of shift operators and their names used in this standard.

Table 18—List of shift operators

Symbol Operator name unary / binary section
<< shift left binary
>> shift right binary

Shift operators shall be used to specify manipulations of discrete mathematical values.

6.4.5 Event sequence operator

The following Table 19— showsthe list of event sequence operators and their names used in this standard.

Table 19—List of event sequence operators

Symboal Operator name unary / binary section
-> immediately followed by binary
~> eventualy followed by binary
<> immediately following each other binary
<~> eventually following each other binary
&> simultaneous or immediately followed by binary
<&> simultaneous or immediately following each other | binary

Event sequence operators shall be used to express temporal relationships between discrete events.

6.4.6 Meta operator

The following Table 20— showsthe list of meta operators and their names used in this standard.

Table 20—List of meta operators

Symbol Operator name unary / binary section
= assignment binary
? condition binary
@ control unary

Meta operators shall be used to specify transactions between variables.
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6.5 Number

Numbers shall be divided into subcategories signed number and unsigned number, as shown in Syntax 6.

number ::=
signed_number | unsigned_number
signed_number ::=
signed_integer | signed_real
signed_integer ::=
sign unsigned_integer
signed_red ::=
sign unsigned_real
unsigned_number ::=
unsigned_integer | unsigned_real
unsigned_integer ::=
digit { [ _ ]digit}
unsigned_real ::=
mantisse [ exponent ]
| unsigned_integer exponent
mantisse ::=
. unsigned_integer
| unsigned_integer . [ unsigned_integer ]
exponent ::=
E [ sign] unsigned_integer
| €[ sign] unsigned_integer
sign::=
+ | -

Syntax 6—Signed and unsigned numbers

Alternatively, numbers shall be divided into subcategories integer and real, as shown in Syntax 7—.

number ::=
integer | real
integer ::=
signed_integer | unsigned_integer
real ::=
signed_real | unsigned_redl

Syntax 7—Integer and real numbers

Numbers shall be used to represent numerical quantities.

6.6 Unit symbol

A unit symbol shall be defined as shownin.
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unit_symbol ::=

unity { letter} | K { letter} |M EG{ letter } |G { letter }
[M {letter} |U{ letter} | N { letter } | P{ letter } | F{ letter}
[\

[ERN

<
_gX'n
== g;

MUZCOMZ XS
O s5co®

nozcom

Syntax 8—Unit symbol

The meaning of the unit symbol is shown in Table 21.

Table 21—UNIT symbol

leading char acter lexical value numerical value

F femto le-15

P pico le-12

N nano le9

U micro le6

M milli le-3

unity one 1

K kilo let3

MEG mega let6

G giga let9

A unit symbol can be used to define a unit value (see Section 7.2).

6.7 Bit literal

Bit literals shall be divided into subcategories numeric bit literal and symbolic bit literal, as shown in Syntax 9.

bit_litera ::=
numeric_bit_literal
| symbolic_bit_literal
numeric_bit_literal ::=

X1Z|LHUW
X1z thjujw
| ?2]*

Syntax 9—Bit literal
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Bit literals shall be used to specify scalar values within a boolean system.

6.8 Based literal

Based literals shall be divided into subcategories binary based literal, octal based literal, decimal based literal,
and hexadecimal based literal, as shown in Syntax 10.

based literal ::=
binary_based_literal ::=
octal_based_literal ::=
decimal_based litera ::=
hexadecimal_based_literal ::=
binary base::=

octal_base ::=
decima_base ::=

hex_base ::=

octal ::=

hexadecimal ::=

binary_based_literal | octal_based_literal | decimal_based literal | hexadecimal_based_literal
binary_base bit_literal { [ _ ] bit_literal }
octal_baseoctal { [ _ ] octal }
decimal_base digit { [ _ ] digit }
hex_base hexadecimal { [ __ ] hexadecimal }
"B|'b
‘Ol'o
'‘D|'d

"H|'h
bit_literal | 2131415167
octa |8]9

|IA|B|C|DI|E|F
lalb|ci|d|e|f

Syntax 10—Based literal

Based literals shall be used to specify vectorized values within a boolean system.

6.9 Edge literal

Edge literals shall be divided into subcategories bit edge literal, based edge literal, and symbolic edge literal, as

shown in Syntax 11—.

edge literal ::=

bit_edge literal ::=
based_edge literal ::=

symbolic_edge literal ::=

bit_edge literal

| based_edge literal

| symbolic_edge literal
bit_literal bit_literal

based_literal based literal

7~ ?-

Syntax 11—Edge literal

Edge literals shall be used to specify a change of value within a boolean system. In general, bit edge literals shall
specify a change of a scalar value, based edge literals shall specify a change of a vectorized value, and symbolic
edge literals shall specify a change of a scalar or of a vectorized value.
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6.10 Quoted string

A quoted string shall be a sequence of zero or more characters enclosed between two double quote characters, as

shown in Syntax 12.

quoted_string ::=
" { character} "

Syntax 12—Quoted string

Within a quoted string, a sequence of characters starting with an escape character shall represent a symbol for
another character, as shown in Table 22.

Table 22—Character symbols within a quoted string

Symbol Character ASCII Code (octal)
\g Alert or bell 007
\h Backspace 010
\t Horizontal tab 011
\n New line 012
\v Vertical tab 013
\ f Form feed 014
\r Carriage return 015
\ " Double quote 042
\\ Escape character 134
\ digit digit digit ASCII character represented by three digit digit digit digit
octal ASCII code

The start of a quoted string shall be determined by a double quote character. The end of a quoted string shall be
determined by a double quote character preceded by an even number of escape characters or by any other charac-

ter than escape character.

6.11 Identifier

Identifiers shall be divided into the subcategories non-escaped identifier, escaped identifier, placeholder identi-
fier, and hierarchical identifier, as shown in Syntax 13.

identifier ::=
non_escaped_identifier
| escaped_identifier
| placeholder_identifier
| hierarchical_identifier

34
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Identifiers shall be used to specify a name of an ALF statement or avalue of an ALF statement. Identifiers may
also appear in an arithmetic expression, in a boolean expression, or in avector expression, referencing an already
defined statement by name.

A lowercase character used within a keyword or within an identifier shall be considered equivalent to the corre-
sponding uppercase character. This makes ALF case-insensitive. However, whereever an identifier is used to
specify the name of a statement, the usage of the exact |etters shall be preserved by the parser to enable usage of
the same name by a case-sensitive application.

6.11.1 Non-escaped identifier

A non-escaped identifier shall be defined as shown in Syntax 14.

non_escaped_identifier ::=
letter { letter |digit| | $|#}

Syntax 14—Non-escaped identifier

A non-escaped identifier shall be used, when there is no lexical conflict, i.e., no appearence of a character with
special meaning, and no semantical conflict, i.e., the identifier is not used elsewhere as a keyword.

6.11.2 Escaped identifier

An escaped identifier shall be defined as shown in Syntax 15.

escaped_identifier ::=
escape_character escapable_character { escapable_character }
escapable_character ::=
letter | digit | special

Syntax 15—Escaped identifier

An escaped identifier shall be used, when thereisalexical conflict, i.e., an appearence of acharacter with special
meaning, or asemantical conflict, i.e., theidentifier is used el sewhere as a keyword.

6.11.3 Placeholder identifier

A placeholder identifier shall be defined as a non-escaped identifier enclosed by angular brackets without
whitespace, as shown in Syntax 16.

placeholder_identifier ::=
< non_escaped_identifier >

Syntax 16—Placeholder identifier

A placeholder identifier shall be used to represent a formal parameter in a template statement (see section ...),
which isto be replaced by an actual parameter in atemplate instantiation statement (see section ...).

6.11.4 Hierarchical identifier

A hierarchical identifier shall be defined as shown in Syntax 17.
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hierarchical_identifier ::=
identifier [ \] . identifier

Syntax 17—Hierarchical identifier
A hierarchical identifier shall be used to specify a hierarchical name of a statement, i.e., the name of a child pre-

ceded by the name of its parent. A dot within a hierarchical identifier shall be used to separate a parent from a
child, unless the dot is directly preceded by an escape character.

Example
\id1.id2.\id3 isahierarchical identifier, whereid2 isachild of \id1, and \id3 isachild of id2.
id1\.id2.\id3 isahierarchical identifier, where\id3 isachild of “id1.id2".

id1\.id2\.id3 specifies the pseudo-hierarchical name “id1.id2.id3".

6.12 Keyword

Keywords shall be lexically equivalent to non-escaped identifiers. Predefined keywords are listed in Table 3—,
Table 4—, Table 5—, Table 6—, Table 10—, and Table 11—. Additional keywords are predefined in section ...

The predefined keywordsin this standard follow amore restrictive lexical rule than general non-escaped identifi-
ers, as shown in Syntax 18—.

keyword_identifier ::=
letter { [ _] letter}

Syntax 18—Keyword

** Should this be a normative rule or a recommended practice to follow for additional keyword definitions? **

Note: This document presents keywords in all-uppercase letters for clarity.

6.13 Rules for whitespace usage
Whitespace shall be used to separate lexical tokens from each other, according to the following rules:

a)  Whitespace before and after adelimiter shall be optional.

b)  Whitespace before and after an operator shall be optional.

¢) Whitespace before and after a quoted string shall be optional.

d)  Whitespace before and after a comment shall be mandatory. This rule shall override a), b), and c).

e)  Whitespace between subsequent quoted strings shall be mandatory. This rule shall override c).

f)  Whitespace between subsequent lexical tokens amongst the categories number, bit literal, based literal,
and identifier shall be mandatory.

g) Whitespace before and after a placeholder identifier shall be mandatory. This rule shall override @), b),
and c).

h)  Whitespace after an escaped identifier shall be mandatory. Thisrule shall override @), b), and ¢).

i)  Either whitespace or delimiter before asigned number shall be mandatory. This rule shall override a), b),
and c).

j)  Either whitespace or delimiter before a symbolic edge literal shall be mandatory. This rule shall override
a), b), and ¢).
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Whitespace before the first Iexical token or after the last lexical token in afile shall be optional. Hencein al rules
prescribing mandatory whitespace, “before” shall not apply for the first lexical token in afile, and “after” shall
not apply for the last lexical token in afile.

6.14 Rules against parser ambiguity

In a syntax rule where multiple legal interpretations of alexical token are possible, the resulting ambiguity shall
be resolved according to the following rules:

a)
b)
0)
d)

In a context where both bit literal and identifier are legal, anon-escaped identifier shall take priority over
asymbolic bit literal.

In a context where both bit literal and number are legal, an unsigned integer shall take priority over a
numeric bit literal.

In a context where both edge literal and identifier are legal, a non-escaped identifier shall take priority
over abit edgeliteral.

In a context where both edge literal and number are legal, an unsigned integer shall take priority over a
bit edge literal.

If the interpretation as bit literal isdesired in case a) or b), abased literal can be substituted for a bit literal.

If the interpretation as edge literal isdesired in case c) or d), abased edge literal can be substituted for abit edge

literal.
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7. Auxiliary Syntax Rules

This section specifies auxiliary syntax rules which are used to build other syntax rules.

7.1 All-purpose value

An all-purpose value shall be defined as shown in Syntax 19.

al_purpose vaue::=
number
| identifier
| quoted_string
| bit_literal
| based_literal
| edge _value
| pin_variable
| control_expression

Syntax 19—All purpose value

7.2 Unit value

A unit value shall be defined as shown in .

unit_value::=
unsigned_number | unit_symbol

Syntax 20—Unit value

Only the leading characters of the unit symbol shall be used for identification of a unit value, as specified in
Table 21.

Optional subsequent letters can be used to make the unit symbol more readable. For example, “pF’ can be used
to denote “picofarad” etc.

7.3 String

A string shall be defined as shown in Syntax 21.

string ;=
quoted_string | identifier

Syntax 21—String value

A string shall represent textual datain general and the name of a referenced object in particular.

7.4 Arithmetic value

An arithmetic value shall be defined as shown in Syntax 22.
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arithmetic_value ::=
number | identifier | bit_literal | based _literal

Syntax 22—Arithmetic value

An arithmetic value shall represent data for an arithmetic model or for an arithmetic assignment. Semantic
restrictions apply, depending on the particular type of arithmetic model.

7.5 Boolean value

A boolean value shall be defined as shown in Syntax 23.

boolean value::=
bit_literal | based_literal | unsigned_integer

Syntax 23—Boolean value

A boolean value shall represent the contents of a pin variable (see Section 7.9 on page 41).

7.6 Edge value

An edge value shall be defined as shown in Syntax 24.

edge vaue::=
(‘edge _literal )

Syntax 24—Edge value

An edge value shall represent a standalone edge literal that is not embedded in a vector expression.

7.7 Index value

An index value shall be defined as shown in Syntax 25.

index_vaue::=
unsigned_integer | identifier

Syntax 25—Index value

An index value shall represent a particular position within a vector pin (see ). The usage of identifier shall only
be alowed, if that identifier represents a constant (see Section 8.2) with avalue of the category unsigned integer.

7.8 Index

An index shall be defined as shown in Syntax 26.

Anindex shall be used in conjunction with the name of a pin or a pin group. A single index shall represent a par-
ticular scalar within a one-diensional vector or a particular one-dimensional vector within a two-dimensional

matrix. A multi index shall represent a range of scalars or a range of vectors, wherein the most significant bit
(MSB) is specified by the left index value and the least significant bit (LSB) is specified by the right index value.
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index ::=
single_index | multi_index
single index ::=
[ index_value]
multi_index ::=
| [ index_value : index_value]

Syntax 26—Index

7.9 Pin variable and pin value

A pin variable and a pin value shall be defined as shown in Syntax 27.

pin_variable ::=

pin_variable identifier [ index ]
pin_value ::=

pin_variable | boolean value

Syntax 27—~Pin variable

A pin variable shall represent the name of a pin or the name of a pingroup, in conjunction with an optional index.

A pin value shall represent the actual value or a pointer to the actual value associated with a pin variable. The
actual value is aboolean value. A pin variable represents a pointer to the actual value.

7.10 Pin assignment

A pin assignment shall be defined as shown in Syntax 28.

pin_assignment ::=
pin_variable = pin_value,

Syntax 28—Pin assignment

A pin assignment represents an association between a pin variable and a pin value.

The datatype of the left hand side (LHS) and the right hand side (RHS) of the assignment must be compatible
with each other. The following rules shall apply:

a)  The bitwidth of the RHS must be equal to the bitwidth of the LHS.
b) A scaar pin at the LHS may be assigned a bit literal or a based literal representing a single bit.

c) A pingroup, aone-dimensiona vector pin, or aone-dimensional slice of atwo-dimensional vector pin at
the LHS may be assigned a based literal or an unsigned integer, representing a binary number.

7.11 Annotation

An annotation shall be divided into the subcategories single value annotation and multi value annotation, as
shown in Syntax 29
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annotation ::=
single_value_annotation
| multi_value_annotation
single_value_annotation ::=
annotation_identifier = annotation_value ;
multi_value_annotation ::=
annotation_identifier { annotation_value { annotation_value} }
annotation_value ::=
number
| identifier
| quoted_string
| bit_literal
| based_literal
| edge value
| pin_variable
| control_expression
| boolean_expression
| arithmetic_expression

Syntax 29—Annotation

An annotation shall represent an assocation between an identifier and a set of annotation values (val ues for short-
ness). In case of asingle value annotation, only one value shall be legal. In case of amulti value annotation, one
or more values shall belegal. The annotation shall serve as a semantic qualifier of its parent statement. The value
shall be subject to semantic restrictions, depending on the identifier.

The annotation identifier may be a keyword used for the declaration of an object (i.e., a generic object or a
library-specific object). An annotation using such an annotation identifier shall be called a reference annotation.
The annotation value of a reference annotation shall be the name of an object of matching type. A reference
annotation may be a single-value annotation or a multi-value annotation. The semantic meaning of a reference
annotation shall be defined in the context of its parent statement.

7.12 Annotation container

An annotation container shall be defined as shown in Syntax 29

annotation_container ::=
annotation_container_identifier { annotation { annotation} }

Syntax 30—Annotation container
An annotation container shall represent a collection of annotations. The annotation container shall serve as a
semantic qualifier of its parent statement. The annotation container identifier shall be a keyword. An annotation
within an annotation container shall be subject to semantic restrictions, depending on the annotation container
identifier.
7.13 ATTRIBUTE statement

An attribute statement shall be defined as shown in Syntax 31.

atribute ::=
ATTRIBUTE { identifier { identifier} }

Syntax 31—ATTRIBUTE statement
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The attribute statement shall be used to associate arbitrary identifiers with the parent of the attribute statement.
Semantics of such identifiers may be defined depending on the parent of the attribute statement. The attribute
statement has a similar syntax definition as a multi-value annotation (see Section 7.11). While a multi-value
annotation may have restricted semantics and a restricted set of applicable values, identifiers with and without
predefined semantics may co-exist within the same attribute statement.

Example

CELL nmyRAMBXx128 ({
ATTRI BUTE { rom asynchronous static }

}

7.14 PROPERTY statement

A property statement shall be defined as shown in Syntax 32.

proE)erty = - _ '
ROPERTY [ identifier ] { annotation { annotation} }

Syntax 32—PROPERTY statement

The property statement shall be used to associate arbitrary annotations with the parent of the property statement.
The property statement has a similar syntax definition as an annotation container (see Section 7.12). While the
keyword of an annotation container usually restricts the semantics and the set of applicable annotations, the key-
word “property” does not. Annotations shall have no predefined semantics, when they appear within the property
statement, even if annotation identifiers with otherwise defined semantics are used.

Example

PROPERTY nyProperties {
paraneterl = val uel ;
paraneter2 = val ue2 ;
paraneter3 { val ue3 val ue4 val ue5 }

7.15 INCLUDE statement

Aninclude statement shall be defined as shown in Syntax 33.

include ::=

INCLUDE quoted_string ;

Syntax 33—INCLUDE statement

The quoted string shall specify the name of afile. When the include statement is encountered during parsing of a
file, the application shall parse the specified file and then continue parsing the former file. The format of the file
containing the include statement and the format of the file specified by the include statement shall be the same.

Example

LI BRARY nyLib {
I NCLUDE “tenpl ates.alf”;
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I NCLUDE “technol ogy. al f”;
I NCLUDE “primtives.alf”;
I NCLUDE “wires.al f”;
I NCLUDE “cells.al f”;

}

The filename specified by the quoted string shall be interpreted according to the rules of the application and/or
the operating system. The ALF parser itself shall make no semantic interpretation of the filename.

7.16 REVISION statement

A revision statement shall be defined as shown in Syntax 29

revision ::=

ALF_REVISION string vaue

Syntax 34—Revision statement

A revision statement shall be used to identify the revision or version of the file to be parsed. One, and only one,
revision statement may appear at the beginning of an ALF file.

The set of legal string values within the revision statement shall be defined as shown in Table 23

Table 23—Legal string values within the REVISION statement

string value revision or version
“1.1" Version 1.1 by Open Verilog International, released on April 6, 1999
“2.0" Version 2.0 by Accellera, released on December 14, 2000
“P1603.2002-04-16" | EEE draft version as described in this document
TBD |EEE 1603 release version

The revision statement shall be optional, as the application program parsing the ALF file may provide other
means of specifying the revision or version of thefile to be parsed. If arevision statement is encountered while a
revision has already been specified to the parser (e.g. if an included fileis parsed), the parser shall be responsible
to decide whether the newly encountered revision is compatible with the originally specified revision and then
either proceed assuming the original revision or abandon.

This document suggests, but does not certify, that the IEEE version of the ALF standard proposed herein be
backward compatible with the Accelleraversion 2.0 and the OV version 1.1.

7.17 Generic object

A generic object shall be defined as shown in Syntax 35.
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generic_object ::=

alias_declaration
| constant_declaration
| class_declaration
| keyword_declaration
| group_declaration
| template_declaration
| generic_object_template_instantiation

Syntax 35—Generic object

7.18 Library-specific object

A library-specific object shall be defined as shown in Syntax 36.

library_specific_object ::=

library
| sublibrary
| cell
| primitive
| wire
| pin
| pingroup
| vector
| node
| layer
| via
| rule
| antenna
| site
| array
| blockage
| port
| pattern
| region
| library_specific_object_template_instantiation

Syntax 36—Library-specific object

7.19 All purpose item

An all purposeitem shall be defined as shown in Syntax 37.
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al_purpose_item ::=
generic_object
| include_statement
| annotation
| annotation_container
| arithmetic_model
| arithmetic_model _container
| all_purpose_item_template_instantiation

46

Syntax 37—All purpose item
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8. Generic objects and related statements

** Add lead-in text**

8.1 ALIAS declaration

An alias shall be declared as shown in Syntax 38.

dias declaration :;=
AL ASalias identifier = original_identifier ;

Syntax 38—ALIAS declaration

The alias declaration shall specify an identifier which may be used instead of an original identifier to specify a
name or avalue of an ALF statement. The identifier shall be semantically interpreted in the same way asthe orig-
inal identifier.

Example

ALI AS reset = cl ear;

8.2 CONSTANT declaration

A constant shall be declared as shown in Syntax 39.

constant_declaration ::=

CONSTANT constant_identifier = constant_value
constant_value ::=

number | based_literal

Syntax 39—CONSTANT declaration

The constant declaration shall specify an identifier which can be used instead of a constant value, i.e., a number
or abased literal. The identifier shall be semantically interpreted in the same way as the constant value.

Example

CONSTANT vdd = 3. 3;
CONSTANT opcode = * hOf 3a;

8.3 CLASS declaration

A class shall be declared as shown in Syntax 40.

class declaration ::=

CL ASSclass identifier ;
| CLASSidentifier { all_purpose_items }

Syntax 40—CLASS declaration
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A class declaration shall be used to establish a semantic association between ALF statements, including, but not
restricted to, other class declarations. ALF statements shall be associated with each other, if they contain arefer-
ence to the same class. The semantics specified by an al purpose item within a class declaration shall be inher-
ited by the statement containing the reference.

Example

CLASS \1stclass { ATTRIBUTE { everything } }
CLASS \ 2ndcl ass { ATTRIBUTE { nothing } }
CELL celll1 { CLASS = \1stclass; }

CELL cell2 { CLASS = \2ndcl ass; }

CELL cell3 { CLASS { \1stclass \2ndclass } }
/1 celll inherits “everything”

/1 cell?2 inherits “nothing”

/1 cell3 inherits “everything” and

not hi ng”

8.4 KEYWORD declaration

A keyword shall be declared as shown in Syntax 41.

keyword declaration ::=
KEYWORD keyword identifier = syntax_item_identifier ;
| KEYWORD keyword_identifier = syntax_item identifier { annotation { annotation} }

Syntax 41—KEYWORD declaration
A keyword declaration shall be used to define a new keyword in a category or in a subcategory of ALF state-
ments specified by a syntax item identifier. One or more annotations (see Section 8.5) may be used to qualify the
contents of the keyword declaration.

A lega syntax item identifier shall be defined as shown in Table 24.

Table 24—Syntax item identifier

identifier semantic meaning
annotation The keyword shall specify an annotation (see Section 7.11)
single value annotation The keyword shall specify a single value annotation (see Section 7.11)
multi_value_annotation The keyword shall specify amulti_value_annotation (see Section 7.11)
annotation_container The keyword shall specify an annotation container (see Section 7.12)
arithmetic_model The keyword shall specify an arithmetic model (see)
arithmetic_submodel The keyword shall specify an arithmetic submodel (see)
arithmetic_model_container | The keyword shall specify an arithmetic model container (see)
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8.5 Annotations for a KEYWORD
This subsection defines annotations which may be used as legal children of a keyword declaration statement.
8.5.1 VALUETYPE annotation

The valuetype annotation shall be a single value annotation. The set of legal values shall depend on the syntax
item identifier associated with the keyword declaration, as shown in Table 25.

Table 25—VALUETYPE annotation

. . - set of legal values for default value for
syntax item identifier VALUETYPE VAL UETYPE comment
annotation number, identifier, identifier see Syntax 29, definition of
or single_value annotation | quoted_string, annotation value
or multi_value_annotation edge value,
pin_variable,
control_expression,
boolean_expression,
arithmetic_expression
annotation_container N/A N/A an annotation container (see

Syntax 30) has no value

arithmetic_model number, identifier, number see Syntax 22, definition of
bit_literal, based literal arithmetic value
arithmetic_submodel N/A N/A an arithmetic submodel (see)

shall always have the same
valuetype asits parent arith-
metic mdel

arithmetic_model_container | N/A N/A an arithmetic model container
(see) hasno value

The valuetype annotation shall specify the category of legal ALF vaues applicable for an ALF statement whose ALF typeis
given by the declared keyword.

Example:

This example shows a correct and an incorrect usage of a declared keyword with specified valuetype.
KEYWORD Greeting = annotation { VALUETYPE = identifier ; }
CELL celll { Geeting = H There ; } // correct
CELL cell2 { Geeting = “H There” ; } // incorrect

Thefirst usageis correct, since Hi Ther e isan identifier. The second usage isincorret, since“Hi  There” isa
quoted string and not an identifier.

8.5.2 VALUES annotation

The values annotation shall be a multi value annotation applicable in the case where the valuetype annotation is
aso applicable.
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The values annotation shall specify a discrete set of legal values applicable for an ALF statement using the declared
keyword. Compatibility between the values annotation and the valuetype annotation shall be mandatory.

Example:
This example shows a correct and an incorrect usage of a declared keyword with specified valuetype and values.

KEYWORD Greeting = annotation {
VALUETYPE = identifier ;
VALUES { H There Hell o HowbDoYouDo }
}
CELL cell3 { Geeting
CELL cell 4 { Geeting

Hello ; } /I correct
GoodBye ; } // incorrect

Thefirst usageis correct, since Hel | o is contained within the set of values. The second usageis incorrect, since
GoodBye is not contained within the set of values.

8.5.3 DEFAULT annotation

The default annotation shall be a single value annotation applicable in the case where the valuetype annotation is
also applicable. Compatibility between the default annotation, the valuetype annotation, and the values annota-
tion shall be mandatory.

The default annotation shall specify a presumed value in absence of an ALF statement specifying avalue.
Example:

KEYWORD Greeting = annotation {
VALUETYPE = identifier ;
VALUES { Hi There Hel | o HowbDoYouDo }
DEFAULT = Hell o ;

}
CELL cell5 { /* no Geeting */ }

In this example, the absence of aG eet i ng statement is equivalent to the following:
CELL cell5 { Geeting = Hello ; }
8.5.4 CONTEXT annotation

The context annotation shall specify the ALF type of alegal parent of the statement using the declared keyword.
The ALF type of alegal parent may be a predefined keyword or a declared keyword.

Example:

KEYWORD Li braryQualifier = annotation { CONTEXT { LIBRARY SUBLI BRARY } }
KEYWORD Cel | Qual ifier = annotation { CONTEXT = CELL ; }
KEYWORD Pi nQualifier = annotation { CONTEXT = PIN ; }
LI BRARY libraryl {
Li braryQualifier = foo ; // correct
CELL cell1 {
CellQualifier = bar ; // correct
PinQualifier = foobar ; // incorrect
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}

The following change would legalize the example above:
KEYWORD Pi nQualifier = annotation { CONTEXT { PIN CELL } }
8.5.5 SI_MODEL annotation

** see |EEE proposal, January 2002, chapter 27**

8.6 GROUP declaration

A group shall be declared as shown in Syntax 42.

group_declaration ::=
GROUP group_identifier { all_purpose value{ all_purpose value} }
| GROUP group_identifier { left_index_value : right_index_value

Syntax 42—GROUP declaration

A group declaration shall be used to specify the semantic equivalent of multiple similar ALF statements within a
single ALF statement. An ALF statement containing a group identifier shall be semantically replicated by substi-
tuting each group value for the group identifier, or, by substituting subsequent index values bound by the left
index value and by the right index value for the group identifier. The ALF parser shall verify whether each sub-
gtitution resultsin alegal statement.

The ALF statement which has the same parent as the group declaration shall be semantically replicated, if the
group identifier is found within the statement itself or within a child of the statement or within a child of a child
of the statement etc. If the group identifier is found more than once within the statement or within its children,
the same group value or index value per replication shall be substituted for the group identifier, but no additional
replication shall occur.

The group identifier (i.e., the name associated with the goup declaration) may be re-used as name of another
statement. As a conseguence, the other statement shall be interpreted as multiple statements wherein the group
identifier within each replication shall be replaced by the all-purpose value. On the other hand, no name of any
visible statement shall be allowed to be re-used as group identifier.

Examples
The following example shows substitution involving group values.

/1 statenent using GROUP:
CELL nyCell {
GROUP data { datal data2 data3 }
PIN data { DIRECTION = input ; }
}
/1 semantically equival ent statenent:
CELL nyCell {
PIN datal { DI RECTI ON
PIN data2 { DI RECTI ON

i nput ; }
i nput ; }
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}

PIN data3 { DIRECTION = input ; }

The following example shows substitution involving index values.

/1 statenent using GROUP:
CELL nyCell {

}

GROUP datalndex { 1 : 3}

PIN[1:3] data { DIRECTION = input ; }

PIN clock { DI RECTION = input ; }

SETUP = 0.5 { FROM{ PIN = data[datalndex]; } TO{ PIN=clock ; } }

/1 semantically equival ent statenent:
CELL nyCell {

}

GROUP datalndex { 1 : 3}
PIN[1:3] data { DIRECTION = input ; }
PIN clock { DIRECTION = input ; }

SETUP = 0.5 { FROM{ PIN = data[1]; } TO{ PIN = clock ; } }
SETUP = 0.5 { FROM{ PIN = data[2]; } TO{ PIN = clock ; } }
SETUP = 0.5 { FROM{ PIN = data[3]; } TO{ PIN = clock ; } }

The following example shows multiple occurences of the same group identifier within a statement.

/] statenent using GROUP:
CELL nyCell {

}

GROUP datalndex { 1 : 3}

PIN[1:3] Din { DIRECTION = input ; }

PIN [1:3] Dout { DI RECTION = input ; }

DELAY = 1.0 { FROM {PI N=Di n[ dat al ndex];} TO {PI N=Dout [ dat al ndex] ;} }

/1 semantically equival ent statenent:
CELL nyCell {

GROUP datalndex { 1 : 3}
PIN[1:3] Din { DIRECTION = input ; }
PIN[1:3] Dout { DIRECTION = input ; }

DELAY = 1.0 { FROM {PIN=Din[1];} TO {PIN=Dout[1];} }
DELAY = 1.0 { FROM {PIN=Din[2];} TO {PIN=Dout[2];} }
DELAY = 1.0 { FROM {PIN=Din[3];} TO {PIN=Dout[3];} }

8.7 TEMPLATE declaration

A template shall be declared as shown in Syntax 43.

template declaration ::=
PL ATE template identifier { ALF_statement { ALF_statement } }

Syntax 43— TEMPLATE declaration

A template declaration shall be used to specify one or more ALF statements with variable contents that can be
used many times. A template instantiation (see Section 8.8) shall specify the usage of such an ALF statement.
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Within the template declaration, the variable contents shall be specified by a placeholder identifier (see
Section 6.11.3).

8.8 TEMPLATE instantiation

A template shall be instantiated in form of a static template instantiation or a dynamic template instantiation, as
shown in Syntax 44

template_instantiation ::=
static_template_instantiation
| dynamic_template_instantiation

static_template_instantiation ::=
template_identifier [= STATIC]
| template_identifier [ = STATIC ] { al_purpose value} }
| template:_identifier [ = STATIC]{ { annotation} }

dynamic_template_instantiation ::=
template_identifier = DY NAM I C { { dynamic_template_instantiation_item} }

dynamic_template_instantiation_item ::=
annotation
| arithmetic_model

Syntax 44—TEMPLATE instantiation

A template instantiation shall be semantically equivalent to the ALF statement or the ALF statements found
within the template declaration, after replacing the placeholder identifiers with replacement values. A static tem-
plate instantiation shall support replacement by order, using one or more all-purpose values, or aternatively,
replacement by reference, using one or more annotations (see ). A dynamic template instantiation shall support
replacement by reference only, using one or more annotations and/or one or more arithmetic models (see).

In the case of replacement by reference, the reference shall be established by a non-escaped identifier matching
the placeholder identifier when the angular brackets are removed. The matching shall be case-insensitive.

The following rules shall apply:

a)

b)

0)

d)

A static template instantiation shall be used when the replacement value of any placeholder identifier can
be determined during compilation of the library. Only a matching identifier shall be considered a legal
annotation identifier. Each occurence of the placeholder identifier shall be replaced by the annotation
value associated with the annotation identifier.

A dynamic template instantiation shall be used when the replacement value of at least one placeholder
identifier can only determined during runtime of the application. Only a matching identifier shall be con-
sidered alegal annotation identifier, or alternatively, aarithmetic model identifier, or alternatively, alegal
arithmetic value.

Muultiple replacement values within a multi-value annotation shall be legal if and only if the syntax rules
for the ALF statement within the template declaration allow substitution of multiple values for one place-
holder identifier.

In the case replacement by order, subsequently occuring placeholder identifiers in the template declara-
tion shall be replaced by subsequently occuring all-purpose values in the template instantiation. If a
placeholder identifier occurs more than once within the template declaration, all occurences of that
placeholder identifier shall be immediately replaced by the same all-purpose value. The first amongst the
remaining placeholder identifiers shall then be considered the next placeholder to be replaced by the next
al-purpose value.

IEEE P1603 Draft 4 Advanced Library Format (ALF) Reference Manual 53

10

15

20

25

30

35

40

45

50

55



10

15

20

25

30

35

40

50

55

e) A static template instantiation for which a placeholder identifier is not replaced shall be legal if and only
if the semantic rules for the ALF statement support a placeholder identifier outside a template declara-
tion. However, the semantics of a placeholder identifier as an item to be substituted shall only apply
within the template declaration statement.

Examples

The following example illustrates rule a).

/1l statenent using TEMPLATE decl aration and instantiation:
TEMPLATE soneAnnot ati ons {
KEYWORD <oneAnnot ati on> = singl e_val ue_annotation ;
KEYWORD annot ation2 = single_val ue_annotation ;
<oneAnnot ati on> = val uel ;
annot ati on2 = <anot her Val ue> ;
}
someAnnot ati ons {
oneAnnot ati on = annotationl ;
anot her Val ue = val ue2 ;
}
/1 semantically equival ent statenent:
KEYWORD annot ati onl singl e_val ue_annot ati on ;
KEYWORD annot ati on2 singl e_val ue_annot ati on ;
annotationl = val uel ;
annotation2 = val ue2 ;

The following example illustrates rule b).

/1 statenment using TEMPLATE declaration and instantiation:
TEMPLATE soneNunbers {

KEYWORD N1 = singl e_val ue_annotation { VALUETYPE=number ; }
KEYWORD N2 = single_value_annotation { VALUETYPE=number ; }

N1 = <nunber 1> ;
N2 = <nunber2> ;
}
someNurmbers = DYNAM C {
nunber2 = nunmberl + 1;
}
/1l semantically equival ent statenment, assum ng nunber 1=3 at
N1 = 3 ;
N =4 ;

The following example illustrates rule c).

TEMPLATE nor eAnnot ati ons {
KEYWORD annot ati on3 = annotation ;
KEYWORD annot ati on4 = annotation ;
annot ati on3 { <soneVal ue> }
annot ati on4 = <yet Anot her Val ue> ;
}
nmor eAnnot ati ons {
soneVal ue { val uel val ue2 }

yet Anot her Val ue = val ue3 ;
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/1 semantically equival ent statenent:

KEYWORD annot ati on3
KEYWORD annot ati on4

= annotation ;
= annotation ;

annot ati on3 { val uel val ue2 }
annot ati on4 = val ue3 ;

The following example illustrates rule €).

TEMPLATE evenMor eAnnot ati ons {

KEYWORD <t hi sAnnot ati on> = singl e_val ue_annotation ;
KEYWORD <t hat Annot ati on> = singl e_val ue_annotation ;

<t hat Annot ati on> = <t hi sVal ue> ;
<t hi sAnnot ati on> = <t hat Val ue> ;

}

/1 tenplate instantiation by reference:

evenMor eAnnot ati ons
t hat Annot ati on
t hi sAnnot ati on

= STATIC {
= day ;
= nont h;

that Val ue = April;
t hi sval ue = Monday;

}

/1 semantically equivalent tenplate instantiation by order:

evenMor eAnnot ati ons

= STATIC { day nonth Monday April

/1 semantically equival ent statenent:
KEYWORD day = singl e_val ue_annotation ;
KEYWORD nont h = singl e_val ue_annotation ;

month = April;
day = Monday;

The following example illustrates rule d).

/1 statenment using TEMPLATE declaration and instantiation:

TEMPLATE encor eAnnot ati on {

KEYWORD cont ext
KEYWORD cont ext
KEYWORD annot at

1 = annotation_container;
2 = annotati on_cont ai ner;
ion5 = single_value_annotation {

CONTEXT { contextl context2 }
VALUES { <sonet hi ng> <not hi ng> }

}

contextl { annotation5 = <nothing> ; }
context2 { annotati on5 = <sonething> ; }

}

encoreAnnot ati on {

sonmet hing = everything ;

}

/1l semantically equival ent statenent:
KEYWORD contextl = annotation_cont ai ner;
KEYWORD cont ext2 = annotati on_cont ai ner;

KEYWORD annot ati on5

= single_val ue_annotation {

CONTEXT { contextl context2 }

VALUES { everyt
}

hi ng <not hi ng> }

contextl { annotation5 = <nothing>; }
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context2 { annotation5 = all ; }
/1 Both everything (w thout brackets) and <nothing> (w th brackets)

/1 are |egal

val ues for annotati onb.
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9. Library-specific objects and related statements

** Add lead-in text**

9.1 LIBRARY and SUBLIBRARY declaration

A library and a sublibrary shall be declared as shown in Syntax 45.

library ::=
LIBRARY library identifier
|LIBRARY library identifier { { library_item} }
| library_template_instantiation
library_item ::=
sublibrary
| sublibrary_item
sublibrary ::=
SUéLI BRARY sublibrary_identifier ;
|SUBLIBRARY sublibrary identifier { { sublibrary_item} }
| sublibrary_template instantiation
sublibrary_item ::=
all_purpose_item
| cell
| primitive
| wire
| layer
| via
| rule
| antenna
| array
| site
| region

Syntax 45—LIBRARY and SUBLIBRARY declaration

A library shall serve as arepository of technology data for creation of an electronic integrated circuit. A subli-
brary may optionally be used to create different scopes of visibility for particular statements describing technol-
ogy data.

If any two objects of the same ALF type and the same ALF name appear in two libraries, or in two sublibraries
with the same library as parents, their usage for creation of an electronic circuit shall be mutually exclusive. For
example, two cells with the same name shall not be instantiated in the same integrated circuit. It shall be the

responsibility of the application tool to detect and properly handle such cases, as the selection of alibrary or a
sublibrary is controlled by the user of the application tool.

9.2 Annotations for LIBRARY and SUBLIBRARY
9.2.1 INFORMATION annotation container
An information annotation container shall be defined using ALF language as shown in Syntax 46.

The information annotation container shall be used to associate its parent statement with a product specification.
The following semantic restrictions shall apply:

a) Alibrary, asublibrary, or acell can bealegal parent of the information statement.
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KEYWORD | NFORVATI ON = annot ati on_cont ai ner {

CONTEXT { LI BRARY SUBLI BRARY CELL WRE PRI M Tl VE }
}
KEYWORD PRODUCT = si ngl e_val ue_annotati on {

VALUETYPE = string; DEFAULT = ““; CONTEXT = | NFORMATI ON;
}
KEYWORD Tl TLE = singl e_val ue_annotation {

VALUETYPE = string; DEFAULT = ““; CONTEXT = | NFORMATI ON;
}
KEYWORD VERSI ON = si ngl e_val ue_annotati on {

VALUETYPE = string; DEFAULT = ““; CONTEXT = | NFORMATI ON;
}
KEYWORD AUTHOR = singl e _val ue_annotation {

VALUETYPE = string; DEFAULT = ““; CONTEXT = | NFORMATI ON;
}
KEYWORD DATETI ME = singl e_val ue_annotation {

VALUETYPE = string; DEFAULT = “*“; CONTEXT = | NFORMATI ON;
}

Syntax 46—INFORMATION statement

b) A wire, or aprimitive can be alegal parent of the information statement, provided the parent of the wire
or the primitive isalibrary or asublibrary.

The semantics of the information contents are specified in the following Table 26.

Table 26—Annotations within an INFORMATION statement

annotation identifier semantics of annotation value
PRODUCT acode name of aproduct described herein
TITLE adescriptive title of the product described herein
VERSION aversion number of the product description
AUTHOR the name of a person or company generating this product description
DATETIME date and time of day when this product description was created

The product devel oper shall be responsible for any rules concerning the format and detailed contents of the string
value itself.

Example

LI BRARY nyProduct {
| NFORMATI ON {
PRODUCT = pl0sc;
TITLE = “0.10 standard cell”;
VERSION = “v2.1.0";
AUTHOR = “Maj or Asic Vendor, Inc.”;
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DATETI ME = “Mon Apr 8 18:33:12 PST 2002”;

9.3 CELL declaration

A cell shall be declared as shown in Syntax 47.

cel =

CELL cel_identifier ;

|CELL cellidentifier { { cell_item} }

| cell_template_instantiation
cel _item::=

all_purpose_item

| pin

| pingroup

| primitive

| function

| non_scan_cell

| test

| vector

| wire

| blockage

| artwork

| pattern

| region

Syntax 47—CELL declaration

A cell shall represent an electronic circuit which can be used as a building block for alarger electronic circuit.

9.4 CELL instantiation

A cell shall beinstantiated as shown in.

named cell_instantiation ::=
cell_identifier instance_identifier ;
| cell_identifier instance_identifier § pin_vaue{ pin_vaue} }
| cell_identifier instance_identifier { pin_assignment { pin_assignment } }
unnamed_cell_instantiation ::=
cell_identifier { pin_value{ pin vaue} }
| cell__identifier { pin_assignment { pin_assignment } }

Syntax 48—CELL instantiation

9.5 Annotations for a CELL
This section defines annotations and attribute values in the context of a cell declaration.
9.5.1 CELLTYPE annotation

A celltype annotation shall be defined using ALF language as shown in ..
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KEYWORD CELLTYPE = singl e _val ue_annotation {
CONTEXT = CELL;
VALUETYPE = identifier;

VALUES {

buf fer conbi national multiplexor flipflop |atch
menory bl ock core special

}
}

Syntax 49— annotation

The celltype shall divide cellsinto categories, as specified in Table 27.

9.5.2 SWAP_CLASS annotation

Table 27—CELLTYPE annotation values

Annotation value

Description

buf f er

Cdll isabuffer, inverting or non-inverting.

conbi nati onal

Cell isacombinational logic element.

mul ti pl exor

Cell isamultiplexor.

flipflop Cdl isaflip-flop.

| at ch Cdl isalatch.

nenory Cell isamemory or aregister file.

bl ock Cdll isahierarchical block, i.e., acomplex element which can be rep-
resented as anetlist. All instances of the netlist are library elements,
i.e., thereisa CELL model for each of them in the library.

core Cdl isacore, i.e., acomplex element which can be represented as a
netlist. At least one instance of the netlist is not alibrary element,
i.e., thereisno CELL model, but aPRI M T| VE model for that
instance.

speci al Cedl isaspecia element, which can only be used in certain applica-

tion contexts not describable by the FUNCTI ON statement. Exam-
ples: busholders, protection diodes, and fillcells.

A swap_class annotation shall be defined using ALF language as shownin .

KEYWORD SWAP_CLASS = annotation {
CONTEXT = CELL;
VALUETYPE = identifier;

}

The value is the name of a declared CLASS. Multi-value annotation can be used. Cells referring to the same

Syntax 50— annotation

CLASS can be swapped for certain applications.
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Cdll-swapping is only allowed under the following conditions:
— the RESTRI CT_CLASS annotation (see 9.5.3) authorizes usage of the cell
— the cells to be swapped are compatible from an application standpoint (functional compatibility for syn-
thesis and physical compatibility for layout)
9.5.3 RESTRICT_CLASS annotation

A xxx annotation shall be defined using ALF language as shown in .

KEYWORD RESTRI CT_CLASS = annot ation {
CONTEXT { CELL CLASS }
VALUETYPE = identifier;

}

Syntax 51— annotation

The value is the name of a declared CLASS. Multi-value annotation can be used. Cells referring to a particular
class can be used in design tools identified by the value. The restricted annotations are shown in Table 28.

Table 28—Predefined values for RESTRICT_CLASS

Annotation string Description
synt hesi s Use restricted to logic synthesis.
scan Use restricted to scan synthesis.
dat apat h Use restricted to datapath synthesis.
cl ock Userestricted to clock tree synthesis.
| ayout Userestricted to layout, i.e., place & route.

User-defined values are also possible. If a cell has no or only unknown values for RESTRI CT_CLASS, the
application tool shall not modify any instantiation of that cell in the design. However, the cell shall still be con-
sidered for analysis.

9.5.4 SCAN_TYPE annotation

A xxx annotation shall be defined using ALF language as shown in .

KEYWORD SCAN TYPE = singl e_val ue_annotation {
CONTEXT = CELL;
VALUETYPE = identifier;
VALUES { muxscan cl ocked | ssd control O control _1 }

}

Syntax 52— annotation
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can take the values shown in Table 29.

Table 29—SCAN_TYPE annotations for a CELL object

Annotation string Description
nmuxscan A multiplexor for normal data and scan data.
cl ocked A special scan clock.
| ssd Combination between flip-flop and latch with special clocking (level sen-
sitive scan design).
control _0 Combinational scan cell, controlling pin shall be 0 in scan mode.
control _1 Combinational scan cell, controlling pin shall be 1 in scan mode.

9.5.5 SCAN_USAGE annotation

A xxx annotation shall be defined using ALF language as shown in .

KEYWORD SCAN _USAGE = singl e_val ue_annotation {
CONTEXT = CELL;
VALUETYPE = identifier;
VALUES { input output hold }

}

Syntax 53— annotation

can take the values shown in Table 30.

Table 30—SCAN_USAGE annotations for a CELL object

Annotation string Description
i nput Primary input in achain of cdls.
out put Primary output in a chain of cells.
hol d Holds intermediate value in the scan chain.

The SCAN_USAGE applies for a specia cell which is designed to be the primary input, output or intermediate
stage of a scan chain. It also applies for macro blocks with connected scan chains in case there are particular
scan-ordering requirements.

9.5.6 BUFFERTYPE annotation

A xxx annotation shall be defined using ALF language as shown in .
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KEYWORD BUFFERTYPE = singl e_val ue_annotation {
CONTEXT = CELL;
VALUETYPE = identifier;
VALUES { input output inout internal }
DEFAULT = internal;

Syntax 54— annotation

can take the values shown in Table 31.

Table 31—BUFFERTYPE annotations for a CELL object

Annotation string Description
i nput Cell has at |east one external (off-chip) input pin.
out put Cell has at |east one external (off-chip) output pin.
i nout Cell has at least one external (off-chip) bidirectional pin.
i nternal Cell hasonly interna (on-chip) pins.

9.5.7 DRIVERTYPE annotation

A xxx annotation shall be defined using ALF language as shown in .

}

KEYWORD DRI VERTYPE = singl e_val ue_annot ati on {
CONTEXT = CELL,;
VALUETYPE = identifier;
VALUES { predriver slotdriver both }

Syntax 55— annotation

can take the values shown in Table 32.

Table 32—DRIVERTYPE annotations for a CELL object

Annotation string

Description

predriver

Cell isapredriver, i.e., the core part of an 10 buffer.

slotdriver

Cell isadotdriver, i.e., the pad of an 10 buffer with off-chip connection.

bot h

Cell isboth a predriver and aslot driver, i.e., acomplete 10 buffer.

NOTE—DRI VERTYPE appliesonly for cellswith BUFFERTYPE = i nput | output | inout.

IEEE P1603 Draft 4
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9.5.8 PARALLEL_DRIVE annotation

A xxx annotation shall be defined using ALF language as shown in .

KEYWORD PARALLEL DRI VE = single val ue_annotation {
CONTEXT = CELL;
VALUETYPE = unsi gned,;
DEFAULT = 1;

}

Syntax 56— annotation

specifies the number of parallel drivers. This shall be greater than zero (0) ; the default is 1.
9.5.9 PLACEMENT_TYPE annotation

A xxx annotation shall be defined using ALF language as shown in .

KEYWORD PLACEMENT_TYPE = singl e_val ue_annotati on {
CONTEXT = CELL;
VALUETYPE = identifier;
VALUES { pad core ring bl ock onnector }
DEFAULT = cor e,

Syntax 57— annotation

Theidentifiers have the following definitions:

— pad: I/O pad, to be placed in the I/O rows

— core: regular macro, to be placed in the core rows

— block: hierarchical block with regular power structure

— ring: macro with built-in power structure

— connector: macro at the end of core rows connecting with power or ground
9.5.10 SITE reference annotation

A CELL can reference one or more legal placement SI TEs. Signle-value annotation and multi-val ue annotation
shall belegal.

9.6 ATTRIBUTE values for a CELL

An attribute in the context of a cell declaration shall specify more specific information within the category given
by the celltype annotation.
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The attribute values shown in Table 33 can be used within a CELL with CELLTYPE=nenory.

Table 33—Attribute values for a CELL with CELLTYPE=memory

Attributeitem Description
RAM Random Access Memory
ROM Read Only Memory
CAM Content Addressable Memory
static Static memory (e.g., static RAM)
dynam c Dynamic memory (e.g., dynamic RAM)
asynchr onous Asynchronous memory
synchr onous Synchronous memory

The attributes shown in Table 34 can be used within a CELL with CELLTYPE=bl ock.

Table 34—Attributes within a CELL with CELLTYPE=block

Attributeitem

Description

count er

Cell isacomplex sequential cell going through a predefined
sequence of statesin its normal operation mode where each state rep-
resents an encoded control value.

shift_register

Cell isacomplex sequential cell going through a predefined
sequence of states in its normal operation mode, where each subse-
quent state can be obtained from the previous one by a shift opera-
tion. Each hit represents a data value.

adder

Cell isan adder, i.e., acombinational element performing an addition
of two operands.

subt ract or

Cdl isasubtractor, i.e., acombinational element performing a sub-
traction of two operands.

mul tiplier

Cell isamultiplier, i.e.,, acombinational element performing amulti-
plication of two operands.

conpar at or Cell isacomparator, i.e., acombinational element comparing the
maghitude of two operands.
ALU Cdl isan arithmetic logic unit, i.e., acombinational element combin-

ing the functionality of adder, subtractor, comparator in a selectable
way.
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The attributes shown in Table 35 can be used within a CELL with CELLTYPE=cor e.

Table 35—Attributes within a CELL with CELLTYPE=core

Attributeitem Description
PLL CELL isaphase-locked loop.
DSP CELL isadigital signal processor.
CPU CELL isacentra processing unit.
GPU CELL isagraphical processing unit.

The attributes shown in Table 36 can be used within a CELL with CELLTYPE=speci al .

Table 36—Attributes within a CELL with CELLTYPE=special

Attributeitem Description

bushol der CELL enables atristate bus to hold itslast value before al drivers
went into high-impedance state (see FUNCT| ON statement).

cl anp CELL connects a net to a constant value (logic value and drive
strength; see FUNCTI ON statement).

di ode CELL isadiode (no FUNCTI ON statement).

capacitor CELL isacapacitor (no FUNCTI ON statement).

resistor CELL isaresistor (no FUNCTI ON statement).

i nduct or CELL isaninductor (no FUNCTI ON statement).

fillcell CELL ismerely used to fill unused spacein layout (no FUNCTI ON
statement).

9.7 PIN declaration
A pin shall be declared as a scalar pin or as avector pin or amatrix pin, as shown in Syntax 58.

A pin shall represent aterminal of an electronic circuit for the purpose of exchanging information with the envi-
ronment of the electronic circuit. A constant value of information shall be called state. A time-dependent value
of information shall be called signal. A reference to apin in general shall be established by the pin identifier.

A scalar pin may be associated with ageneral electrical signal. However, avector pin or amatrix pin may only be
associated with digital signals. One element of avector pin or of amatrix pin shall be associated with one bit of
information, i.e., abinary digital signal.

A vector-pin can be considered as a combination of scalar pins. A reference to ascalar or to a subvector, respec-

tively, within the vector-pin shall be established by the pin identifier followed by a single index or by a multi
index, respectively.
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pin =
scalar_pin | vector_pin | matrix_pin
scalar_pin ::=
N pin_identifier ;
| PIN pin_identifier { { scalar_pin_item} }
| scalar_pin_template _instantiation
vector_pin ::=
PI'N multi_index pin_identifier ;
| PIN multi_index pin_identifier { { vector_pin_item} }
| vector_pin_template instantiation
matrix_pin ::=
PI'N first_multi_index pin_identifier second_multi_index |
| PIN first_multi_index pin_identifier second_multi_index { { matrix_pin_item} }
| matrix_pin_template_instantiation
scalar_pin_item ::=
all_purpose_item
| port
| pull
vector_pin_item ::=
all_purpose_item
| range
matrix_pin_item ::=
vector_pin_item

Syntax 58—PIN declaration

A matrix-pin can be considered as a combination of vector-pins. A reference to a vector or to a submatrix,
respectively, within the matrix-pin shall be established by the pin identifier followed by a single index or by a
multi index, respectively.

Within a matrix-pin declaration, the first multi index shall specify the range of scalars or bits, and the second
multi index shall specify the range of vectors. Support for direct reference of a scalar within a vector within a
matrix is not provided.

Example

PIN [5:8] myVectorPin ;
PIN[3:0] nyMatrixPin [1:1000] ;

The pin variable nyVect or Pi n[ 5] refersto the scalar associated with the MSB of nyVect or Pi n.
The pin variable nyVect or Pi n[ 8] refersto the scalar associated with the LSB of nyVect or Pi n.
The pin variable nyVect or Pi n[ 6: 7] refersto a subvector within myVect or Pi n.

The pinvariablenyMat ri xPi n[ 500] refersto avector within nyMat ri xPi n.

The pinvariablenyMat ri xPi n[ 500: 502] refersto 3 subsequent vectors within nyMat ri xPi n.

Consider the following pin assignment:
nyVect or Pi n=nyMat ri xPi n[ 500] ;

This establishes the following exchange of information:
nyVect or Pi n[ 5] receivesinformation from element [ 3] of myMat ri xPi n[ 500] .
nyVect or Pi n[ 6] receivesinformation from element [ 2] of myMat ri xPi n[ 500] .
nyVect or Pi n[ 7] receivesinformation from element [ 1] of myMat ri xPi n[ 500] .
nyVect or Pi n[ 8] receivesinformation from element [ 0] of myMat ri xPi n[ 500] .

IEEE P1603 Draft 4 Advanced Library Format (ALF) Reference Manual 67

10

15

20

25

30

35

40

45

50

55



1

10

15

20

25

30

35

40

45

50

55

9.8 PINGROUP declaration

A pingroup shall be declared as a simple pingroup or as a vector pingroup, as shown in Syntax 59.

A pingroup in general shall serve the purpose to specify items applicable to a combination of pins. The combina-

pingroup ::=
simple_pingroup | vector_pingroup

simple_pingroup ::=
Pﬁj\lcq:ROUP pingroup_identifier { members{ all_purpose_item} }
| simple_pingroup_template instantiation
vector_pingroup ::=
| PINGROUP [ index_value : index_value ] pingroup_identifier
{ members { vector_pingroup_item }
| vector_pingroup_template_instantiation
vector_pingroup_item ::=
al_purpose_item
| range

members ::=
M EM BERS({ pin_identifier pin_identifier { pin_identifier} }

Syntax 59—PINGROUP declaration

tion of pins shall be specified by the members statement.

A vector pingroup can only combine scalar pins. A vector pingroup can be used as a pin variable, in the same

capacity as avector pin.

A simple pingroup can combine pins of any format, i.e., scalar pins, vector pins, and matrix pins. A simple pin-

group may not be used as a pin variable.

9.9 Annotations for a PIN and a PINGROUP

This section defines annotations and attribute values in the context of a pin declaration or a pingroup declaration.

9.9.1 VIEW annotation

A xxx annotation shall be defined using ALF language as shown in .

KEYWORD VI EW = si ngl e_val ue_annotati on {
CONTEXT { PI N PI NGROUP }
VALUETYPE = identifier;
VALUES { functional physical both none }
DEFAULT = both

68
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annotates the view where the pin appears, which can take the values shown in Table 37.

Table 37—VIEW annotations for a PIN object

Annotation string

Description

functi onal

Pin appears in functional netlist.

physi cal

Pin appearsin physical netlist.

both (default)

Pin appears in both functional and physical netlist.

none

Pin does not appear in netlist.

9.9.2 PINTYPE annotation

A xxx annotation shall be defined using ALF language as shown in .

KEYWORD PI NTYPE = singl e_val ue_annot ati on {
CONTEXT = PI N,
VALUETYPE = identifier;
VALUES { digital anal og supply }
DEFAULT = digital;

Syntax 61— annotation

annotates the type of the pin, which can take the values shown in Table 38.

Table 38—PINTYPE annotations for a PIN object

Annotation string

Description

digital (default)

Digital signal pin.

anal og

Analog signal pin.

suppl y

Power supply or ground pin.

9.9.3 DIRECTION annotation

A xxx annotation shall be defined using ALF language as shownin .

}

KEYWORD DI RECTI ON = si ngl e_val ue_annot ati on {
CONTEXT = PIN;
VALUETYPE = identifier;
VALUES { input output both none }

IEEE P1603 Draft 4
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annotates the direction of the pin, which can take the values shown in Table 39.

Table 39—DIRECTION annotations for a PIN object

Annotation string Description
i nput Input pin.
out put Output pin.
bot h Bidirectional pin.
none No direction can be assigned to the pin.

Table 40 gives a more detailed semantic interpretation for using DI RECTI ON in combination with Pl NTYPE.

Table 40—DIRECTION in combination with PINTYPE

DIRECTION PINTY PE=digital PINTY PE=analog PINTYPE=supply

i nput Pin receives adigital signal. Pin receives an analog signal. Pinisapower sink.

out put Pin drivesa digital signal. Pin drives an analog signal. Pinisapower source.

bot h Pin drives or receives a digital Pindrivesor receivesananalog | Pinisboth power sink and
signal, depending on the opera- | signal, depending on the opera- | source.
tion mode. tion mode.

none Pin represents either an inter- Pin represents either an inter- Pin represents either an
nal digital signal with no exter- | nal analog signal with no exter- | internal power pin with no
nal connection or afeed nal connection or afeed external connection or a
through. through. feed through.

For pins with PINTY PE=supply, the DIRECTION describes an electrical characteristic rather than a functional
characteristic, sincethereis no functional definition for DIRECTION. For pinswith PINTY PE=digital or anaog,
the functional definition of DIRECTION actually matches the electrical definition.

Examples

— The power and ground pins of regular cells shall have DI RECTI ON=i nput .

— A level converter cell shall have a power supply pin with DI RECTI ON=i nput and another power sup-
ply pin with DI RECTI ON=out put .

— A level converter can have separate ground pins on the input and output side or a common ground pin
with DI RECTI ON=bot h.

— The power and ground pins of afeed through cell shall have DI RECTI ON=none.

9.9.4 SIGNALTYPE annotation
A xxx annotation shall be defined using ALF language as shown in .

SI GNALTYPE classifies the functionality of a pin. The currently defined values apply for pins with Pl N-
TYPE=DI G TAL.
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}
}

KEYWORD S| GNALTYPE = singl e_val ue_annotation {

CONTEXT = PIN;

VALUETYPE = identifier;

VALUES {
data scan_data address control select tie clear set
enabl e out _enabl e scan_enabl e scan_out _enabl e
cl ock master _cl ock slave_cl ock
scan_nmaster_cl ock scan_sl ave_cl ock

DEFAULT = dat a;

Conceptually, apin with Pl NTYPE = ANALOGcan also have a SI GNALTYPE annotation. However, no values

are currently defined.

Syntax 63— annotation

The fundamental SI GNALTYPE values are defined in Table 41

Table 41—Fundamental SIGNALTYPE annotations for a PIN object

Annotation string

Description

dat a (default)

Genera datasignd, i.e., asignal that carries information to be trans-
mitted, received, or subjected to logic operations within the CELL.

addr ess

Address signa of amemory, i.e., an encoded signal, usually abus or
part of abus, driving an address decoder within the CELL.

control

Genera control signal, i.e., an encoded signal that controls at |east
two modes of operation of the CELL, eventually in conjunction with
other signals. The signal value is alowed to change during real-time
circuit operation.

sel ect

Select signal of amultiplexor, i.e., adecoded or encoded signal that
selects the data path of a multiplexor or de-multiplexor within the
CELL. Each selected signal has the same SI GNALTYPE.

enabl e

Enables storage of general input datain a sequentia cell, i.e., acell
or aflipflop

tie

The signal needs to be tied to a fixed value statically in order to
define afixed or programmable mode of operation of the CELL,
eventually in conjunction with other signals. The signal valueis not
allowed to change during real-time circuit operation.

cl ear

Clear signa of aflip-flop or latch, i.e., asignal that controls the stor-
age of the value 0 within the CELL.

set

Set signal of aflip-flop or latch, i.e., asigna that controlsthe storage
of thevalue 1 within the CELL.

cl ock

Clock signal of aflip-flop or latch, i.e., atiming-critical signal that
triggers data storage within the CELL.

IEEE P1603 Draft 4

Advanced Library Format (ALF) Reference Manual

71

10

15

20

25

30

35

40

45

50

55



10

15

20

25

30

35

40

50

55

Scheme for construction of composite signaltype values:

dat a

- scan_dat a

enabl e

cl ock

- scan_enabl e

> out _enabl e > scan_out _enabl e

- scan_cl ock

> sl ave_cl ock >

> nmast er _cl ock > scan_nast er _cl ock

scan_sl ave_cl ock

The composite SI GNALTYPE values are defined in Table 41

Table 42—Composite SIGNALTYPE annotations for a PIN object

Annotation string

Description

scan_data

Scan datasignd, i.e., signal isfor testing purpose only

out _enabl e

Enables visibility of general data at the outpui.

scan_enabl e

Enables storage of scan input datain asequential cell, i.e, acell or a
flipflop

scan_out _enabl e

Enables visibility of scan data at the output.

mast er _cl ock

triggers storage of input datain 1st stage of flipflop in atwo-phase
clocking scheme

sl ave_cl ock

triggers data transfer from 1st stage to 2nd stage of flipflop in atwo-
phase clocking scheme

scan_cl ock

triggers scan data storage within the CELL.

scan_nast er _cl ock

triggers storage of input scan datain 1st stage of flipflop in atwo-
phase clocking scheme

scan_sl ave_cl ock

triggers scan data transfer from 1st stage to 2nd stage of flipflopina
two-phase clocking scheme

“Hipflop”, “latch”, “multiplexor”, and “memory” can be standalone cells or embedded in larger cells. In the
former case, the celltypeisfli pfl op, | atch, mul ti pl exor, and menory, respectively. In the latter case,

the celltypeisbl ock or cor e.

9.9.5 ACTION annotation

A xxx annotation shall be defined using ALF language as shown in .

}

KEYWORD ACTI ON = singl e _val ue_annotation {
CONTEXT = PIN,;
VALUETYPE = identifier;
VALUES { asynchronous synchronous }
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annotates the action of the signal, which can take the values shown in Table 43.

Table 43—ACTION annotations for a PIN object

Annotation string

Description

asynchr onous

Signd actsin an asynchronous way, i.e., self-triggered.

synchr onous

Signd actsin a synchronous way, i.e., triggered by a signal with
SI GNALTYPE CLOCK or acomposite SI GNALTYPE with postfix
_CLOCK.

The ACTI ON annotation applies only to pins with certain SI GNALTYPE values, as shown in Table 44. Therule

applies also to any composite SI GNALTYPE values based on the fundamental values.

Table 44—ACTION applicable in conjunction with fundamental SIGNALTYPE values

Fundamental SIGNALTYPE | APplicable Comment
data no
addr ess no
control yes
sel ect no
enabl e yes
tie no
cl ear yes
set yes
cl ock no Presence of SI GNALTYPE=cl| ock conditionsthe
validity of ACTI ON=synchr onous for other signals.

9.9.6 POLARITY annotation

A xxx annotation shall be defined using ALF language as shownin .

}

KEYWORD POLARI TY = singl e_val ue_annotati on {
CONTEXT = PIN;
VALUETYPE = identifier;
VALUES { high low rising_edge falling_edge doubl e_edge }

annotates the polarity of the pin signal.
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The polarity of aninput pin (i.e.,, DI RECTI ON = i nput ;) takesthe values shown in Table 45.

Table 45—POLARITY annotations for a PIN

Annotation string Description
hi gh Signd active high or to be driven high.
| ow Signd active low or to be driven low.
ri si ng_edge Signa sensitiveto rising edge.
falling_edge Signa sensitiveto falling edge.
doubl e_edge Signa sensitive to any edge.

The POLARI TY annotation applies only to pins with certain SI GNALTYPE values, as shown in Table 46. The
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rule applies also to any composite SI GNAL TYPE values based on the fundamental values.

Table 46—POLARITY applicable in conjunction with fundamental SIGNALTYPE values

Fundamental SIGNALTYPE l%’fxgﬂi Comment

dat a N/A

addr ess N/A

control N/A CONTROL_POLARITY hi gh, | ow

sel ect N/A

enabl e hi gh, | ow

tie hi gh, | ow

cl ear hi gh, | ow

set hi gh, | ow

cl ock hi gh, | ow CONTROL_POLARITY can apply
ri si ng_edge,
fal l'i ng_edge,
doubl e_edge,

9.9.7 DATATYPE annotation

A xxx annotation shall be defined using ALF language as shown in .

74
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KEYWORD DATATYPE = singl e _val ue_annotation {
CONTEXT { PIN Pl NGROUP }
VALUETYPE = identifier;
VALUES { signed unsigned }

}

Syntax 66— annotation

annotates the datatype of the pin, which can take the values shown in Table 47.

Table 47—DATATYPE annotations for a PIN object

Annotation string Description
si gned Result of arithmetic operation is signed 2's complement.
unsi gned Result of arithmetic operation is unsigned.

DATATYPE isonly relevant for bus pins.
9.9.8 INITIAL_VALUE annotation

A xxx annotation shall be defined using ALF language as shown in .

KEYWORD | NI TI AL_VALUE = si ngl e_val ue_annot ati on {
CONTEXT = CELL,;
VALUETYPE = bool ean_val ue;

}

Syntax 67— annotation

shall be compatible with the buswidth and DATATYPE of the signal.

I NI TI AL_VALUE is used for a downstream behavioral simulation model, as far as the simulator (e.g., a
VITAL-compliant simulator) supports the notion of initial value.

9.9.9 SCAN_POSITION annotation

A xxx annotation shall be defined using ALF language as shownin .

KEYWORD SCAN _POSI TI ON = singl e_val ue_annot ati on {
CONTEXT = PIN;
VALUETYPE = unsi gned,;
DEFAULT = 0;

}

Syntax 68— annotation

annotates the position of the pin in scan chain, starting with 1. Value 0 (default) indicates that the PIN is not on
the scan chain.
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9.9.10 STUCK annotation

A xxx annotation shall be defined using ALF language as shown in .

KEYWORD STUCK = singl e_val ue_annotation {
CONTEXT = PIN;
VALUETYPE = identifier;
VALUES { stuck_at 0 stuck_at 1 both none }
DEFAULT = bot h;

Syntax 69— annotation

annotates the stuck-at fault model as shown in Table 48.

Table 48—STUCK annotations for a PIN object

Annotation string Description
stuck_at 0O Pin can have stuck-at-0 fault.
stuck_at 1 Pin can have stuck-at-1 fault.
bot h (default) Pin can have both stuck-at-0 and stuck-at-1 faults.
none Pin can not have stuck-at faults.

9.9.11 SUPPLYTYPE

A xxx annotation shall be defined using ALF language as shown in .

KEYWORD SUPPLYTYPE = annotation {
CONTEXT = PIN,;
VALUETYPE = identifier;
VALUES { power ground reference }

}

Syntax 70— annotation
A Pl Nwith PI NTYPE = SUPPLY shall have a SUPPLYTYPE annotation, as shown in.
9.9.12 SIGNAL_CLASS

A xxx annotation shall be defined using ALF language as shownin .

KEYWORD SI GNAL_CLASS = annotation {
CONTEXT { PI N PI NGROUP }
VALUETYPE = identifier;

}

Syntax 71— annotation
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9.9.13 SUPPLY_CLASS

A xxx annotation shall be defined using ALF language as shown in .

}

KEYWORD SUPPLY_CLASS = annotation {
CONTEXT { PI N PI NGROUP CLASS }
VALUETYPE = identifier;

9.9.14 DRIVETYPE annotation

Syntax 72— annotation

A xxx annotation shall be defined using ALF language as shown in .

ttl
}

}

KEYWORD DRI VETYPE = singl e_val ue_annot ation {
CONTEXT = PIN;
VALUETYPE = identifier;
VALUES {

CNDS NNDS pNDS CNDS_pass Nnos_pass pnos_pass

open_drai n open_source

DEFAULT = cnos;

annotates the drive type for the pin

Syntax 73— annotation

, which can take the values shown in Table 49.

Table 49—DRIVETYPE annotations for a PIN object

Annotation string

Description

cnos  (default)

Standard cmos signal.

nmos Nmos or pseudo nmos signal.

pnos Pmos or pseudo pmos signal.

nmos_pass Nmos passgate signal.

pnmos_pass Pmos passgate signal.

cnos_pass Cmos passgate signal, i.e., the full transmission gate.
ttl TTL signal.

open_drain Open drain signal.

open_sour ce Open source signal.
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9.9.15 SCOPE annotation

A xxx annotation shall be defined using ALF language as shown in .

KEYWORD SCOPE = singl e_val ue_annotation {
CONTEXT = PIN;
VALUETYPE = identifier;
VALUES { behavi or neasure both none }
DEFAULT = bot h;

Syntax 74— annotation

annotates the modeling scope of a pin, which can take the va ues shown in Table 50.

Table 50—SCOPE annotations for a PIN object

Annotation string Description

behavi or The pinis used for modeling functional behavior and events on the
pin are monitored for vector expressions in BEHAVI OR statements.

tor expressions in VECTOR statements.

neasur e Measurements related to the pin can be described, e.g., timing or
power characterization, and events on the pin are monitored for vec-

bot h (default) The pinisused for functional behavior aswell asfor characterization
measurements.
none No model; only the pin exists.

9.9.16 CONNECT_CLASS annotation

A xxx annotation shall be defined using ALF language as shown in .

CONTEXT = PIN;
VALUETYPE = identifier;
}

KEYWORD CONNECT_CLASS = singl e_val ue_annotation {

Syntax 75— annotation

annotates a declared class object for connectivity determination.
Connectivity rules involving those classes shall apply for the pin.
9.9.17 SIDE annotation

A xxx annotation shall be defined using ALF language as shownin .
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KEYWORD S| DE = singl e_val ue_annotati on {
CONTEXT { PI N Pl NGROUP }
VALUETYPE = identifier;
VALUES { left right top bottom}

}

Syntax 76— annotation

which can take the values shown in Table 51.

Table 51—SIDE annotations for a PIN object

Annotation string Description
left Pin ison the left side.
ri ght Pinisontheright side.
top Pinisat the top.
bottom Pinis at the bottom.

9.9.18 ROW and COLUMN annotation

A xxx annotation shall be defined using ALF language as shown in .

KEYWORD ROW = annotation {
CONTEXT { PI'N PI NGROUP }
VALUETYPE = unsi gned,;

}

KEYWORD COLUWN = annotation {
CONTEXT { PI'N PI NGROUP }
VALUETYPE = unsi gned,;

}

Syntax 77— annotation

The following annotation shall be used for a pin in order to indicate the location of the pin within a placement
row or column, as shownin .

where r ow_assi gnment applies for pinswith SIDE = right | left andcol um_assi gnnment
appliesfor pinswithSI DE = top | bottom

For bus pins, row assignnent and colunn_assignment shal have the form of
mul ti _val ue_assi gnment s, asshownin.

9.9.19 ROUTING_TYPE annotation
A xxx annotation shall be defined using ALF language as shownin .

The identifiers have the following definitions:
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CONTEXT { PIN PORT }
VALUETYPE = identifier;

DEFAULT = regqul ar;

}

KEYWORD ROUTI NG TYPE = singl e_val ue_annotati on {

VALUES { regul ar abutnment ring feedthrough }

Syntax 78— annotation

— regular: connection by regular routing
— abutment: connection by abutment, no routing

— ring: pin forms aring around the block with connection allowed to any point of the ring

— feedthrough: both ends of the pin align and can be used for connection
9.9.20 PULL annotation

A xxx annotation shall be defined using ALF language as shown in .

KEYWORD PULL = singl e_val ue_annotation {
CONTEXT = PI N,
VALUETYPE = identifier;
VALUES { up down both none }
DEFAULT = none;

Syntax 79— annotation

annotates the pull type for the pin, which can take the values shown in Table 52.

Table 52—PULL annotations for a PIN object

Annotation string Description
up Pullup device connected to pin.
down Pulldown device connected to pin.
bot h Pullup and pulldown device connected to pin.
none (default) No pull device.

9.10 ATTRIBUTE values for a PIN and a PINGROUP

The attribute values shown in Table 53 can be used within a Pl N object.

Table 53—Attributes within a PIN object

Attributeitem Description

SCHM TT Schmitt trigger signal.
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Table 53—Attributes within a PIN object (Continued)

Attributeitem Description
TRI STATE Tristate signal.
XTAL Crystal/oscillator signal.
PAD Pad going off-chip.

The attributes shown in Table 54 are only applicable for pinswithin cellswith CELLTYPE=nmenor y and certain

values of SI GNALTYPE.

Table 54—Attributes for pins of a memory

Attributeitem SIGNALTYPE Description

ROW ADDRESS_STROBE cl ock Samples the row address of the memory.

COLUMN_ADDRESS_STROBE cl ock Samples the column address of the memory.

ROW addr ess Selects an addressable row of the memory.
(PINGROUP)

COLUWN addr ess Selects an addressable column of the memory.
(PINGROUP)

BANK addr ess Selects an addressable bank of the memory.
(PINGROUP)

The attributes shown in Table 55 are only applicable for pins representing double-rail signas.

Table 55—Attributes for pins representing double-rail signals

Attributeitem

Description

| N\VERTED

Represents the inverted value within a pair of signals car-
rying complementary values.

NON_| NVERTED

Representsthe non-inverted value within apair of signals
carrying complementary values.

DI FFERENTI AL

Signal is part of adifferential pair, i.e., both the inverted
and non-inverted values are always required for physical
implementation. (PINGROUP)

The following restrictions apply for double-rail signals:

— ThePI NTYPE, SI GNALTYPE, and DI RECTI ON of both pins shall be the same.
— One Pl Nshall have the attribute | NVERTED, the other NON_I NVERTED.

— Either both pins or no pins shall have the attribute DI FFERENTI AL.

— POLARI TY, if applicable, shall be complementary as follows:

HI GHis paired with LOW
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Rl SI NG_EDGE is paired with FALLI NG_EDGE
DOUBLE_EDGE is paired with DOUBLE_EDGE

The specia pin ATTRI BUTE values shown in Table 56 shall be defined for memory BIST.

Table 56—PIN or PINGROUP attributes for memory BIST

Attributeitem Description

ROW | NDEX Pin is abus with a contiguous range of values, indicating
aphysical row of amemory.

COLUMN_| NDEX Pin is abus with a contiguous range of values, indicating
aphysical column of amemory.

BANK_| NDEX Pin is abus with a contiguous range of values, indicating
aphysical bank of amemory.

DATA | NDEX Pin is abus with a contiguous range of values, indicating
the bit position within a data bus of a memory.

DATA VALUE Pin represents a value stored in a physical memory loca
tion.

These attributes apply to the pins of the Bl ST wrapper around the memory rather than to the pins of the memory
itself.

The BEHAVI OR statement within TEST shal involve the variables declared as Pl Ns with ATTRI BUTE
ROW | NDEX, COLUMN_| NDEX, BANK | NDEX, DATA | NDEX, or DATA VALUE.

9.11 PRIMITIVE declaration

A PRIMITIVE shall be declared as shown in Syntax 80.

rimitive ::=

P PRIMITIVE primitive_identifier { primitive_item { primitive_item} }
|PRIMITIVE primitive identifier ;
| primitive_template_instantiation

primitive_item ::=

all_purpose_item

| pin
| pingroup
| function
| test

Syntax 80—PRIMITIVE statement

A PRI M TI VE referenced in a CELL can replace the complete set of PI N and FUNCTI ON definition. Pl Ns can
be declared before the reference to the PRI M Tl VE, in order to provide supplementary annotations that cannot
be inherited from the PRI M Tl VE. However, the CELL shall be pin-compatible with the PRI M TI VE.

If the PRI M TI VE or a CELL is referenced in an annotation container such as SCAN, only the subset of Pl Ns
used in the non-scan cell shall be compatible with the Pl Ns of the cell.
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The pin names can be referenced by order or by name. In the latter case, the LHS is the pin name of the refer-
enced PRI M Tl VE or CELL (e.g., the non-scan cell), the RHS is the pin name of the actual cell. A constant
logic value can also appear at the LHS or RHS, indicating a pin needs to be tied to a constant value. If thisinfor-
mation is aready specified in an annotation inside the PI N object itself, referencing between a pin name and a
constant value is not necessary.

9.12 WIRE declaration

A wire shall be declared as shown in .

wire ;=
W RE wire_identifier { wire_items }
| WIRE wire_identifier ;
| wire_template_instantiation
wire items::=
wire_item{ wire_item}
wire item ;=
all_purpose_item
| node

Syntax 81—WIRE declaration

The purpose of awire declaration is to describe an interconnect model. The interconnect model can be a statisti-
cal wireload model, a description of boundary parasitics within a complex cell, amodel for interconnect analysis,
or a specification of aload seen by adriver.

9.12.1 Annotations for a WIRE

9.12.2 SELECT_CLASS annotation

A xxx annotation shall be defined using ALF language as shown in .

KEYWORD SELECT_CLASS = annotation {
CONTEXT = W RE;
VALUETYPE = identifier;

}

Syntax 82— annotation

Theidentifier shall refer to the name of a declared class.
The purpose of the select class annotation is to enable a convenient interconnect model selection for a given

application. The user of the application can select a set of interconnect models by specifying the name of the
class rather than specifying the name of each interconnect model.

9.13 NODE declaration
A node shall be declared as shown in Syntax 83.

The purpose of a node declaration is to specify an electrical node in the context of a wire declaration or in the
context of acell declaration.
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node ::=

NODE node identifier ;
| NODE node identifier { { node item} }
| node_template instantiation

node item ::=
al_purpose_item

9.13.1 NODETYPE annotation

Syntax 83—NODE statement

A xxx annotation shall be defined using ALF language as shown in .

KEYWORD NODETYPE = singl e_val ue_annot ati on {

CONTEXT

= NODE;

VALUETYPE = identifier;
VALUES { power ground source sink

driver

recei ver interconnect }

Syntax 84— annotation

The values shall have the following semantic meaning.

Table 57—NODETYPE annotation values

Annotation string

Description

driver The node is the interface between a cell output pin and inter-
connect

receiver The node is the interface between interconnect and a cell input
pin

sour ce Thenode isavirtual start point of signal propagation; it can be
collapsed with adriver nodein case of anideal driver

si nk The node isavirtual end point of signal propagation; it can be
collapsed with areceiver node in case of an ideal receiver

power The node provides the current for rising signals at the source/
driver side and areference for logic high signals at the sink/
receiver side

ground The node provides the current for falling signals at the source/

driver side and areference for logic low signals at the sink/
receiver side

i nt er connect (default)

The node serves for connecting purpose only

9.13.2 NODE_CLASS annotation

A xxx annotation shall be defined using ALF language as shown in .
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KEYWORD NODE _CLASS = annotation {
CONTEXT = NODE;
VALUETYPE = identifier;

}

Syntax 85— annotation
The identifier shall refer to the name of a declared class.

The purpose of the node class annotation is to associate a node with a virtual cell. The virtual cell is represented
by the declared class.

9.14 VECTOR declaration

A vector shall be declared as shown in Syntax 86.

vector ::=
VECTOR control_expression ;
IVECTOR control_expression { { vector_item} }
| vector_template_instantiation
vector_item ::=
all_purpose_item

Syntax 86—VECTOR statement

9.15 Annotations for VECTOR
9.15.1 PURPOSE annotation

A xxx annotation shall be defined using ALF language as shown in .

KEYWORD PURPCSE = annot ati on {
CONTEXT { VECTOR CLASS }
VALUETYPE = identifier ;
VALUES { bist test timng power noise reliability }

}

Syntax 87— annotation

9.15.2 OPERATION annotation
A xxx annotation shall be defined using ALF language as shownin .

The OPERATI ON statement inside a VECTOR shall be used to indicate the combined definition of signal values
or signal changes for certain operations which are not entirely controlled by asingle signal.
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CONTEXT = VECTOR;
VALUETYPE = identifier;
VALUES {

start end iddqg
}

}

KEYWORD OPERATI ON = si ngl e_val ue_annotati on {

read wite read_nodify wite refresh | oad

Syntax 88— annotation

The values shall have the following semantic meaning.

Table 58—OPERATION annotation values

Annotation string Description
read read operation at one address
wite write operation at one address
read_nmodify wite read followed by write of different value at same address
start first operation required in a particular mode
end last operation required in a particular mode
refresh operation required to maintain the contents of the memory
without modifying it
| oad operation for loading control registers
i ddg operation for supply current measurements in quiescent state

9.15.3 LABEL annotation

A xxx annotation shall be defined using ALF language as shown in .

KEYWORD = singl e_val ue_annotation {
CONTEXT = VECTOR;
VALUETYPE = string;

}

Syntax 89— annotation

ensures SDF matching with conditional delays across Verilog, VITAL, etc.
Seethe end of B.3 for an example.
9.15.4 EXISTENCE_CONDITION annotation

A xxx annotation shall be defined using ALF language as shownin .
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KEYWORD EXI STENCE_CONDI TI ON = si ngl e_val ue_annotation {
CONTEXT { VECTOR CLASS }
VALUETYPE = bool ean_expr essi on;
DEFAULT = 1;

Syntax 90— annotation

For false-path analysis tools, the existence condition shall be used to eliminate the vector from further analysisif,
and only if, the existence condition evaluates to False. For applications other than false-path analysis, the exist-
ence condition shall be treated asif the boolean expression was a co-factor to the vector itself. The default exist-
ence condition is True.

Example

VECTOR (01 a -> 01 z & (¢ | !'d) ) {

EXI STENCE_CONDI TI ON = ! scan_sel ect;

DELAY { FROM{ PIN=a; } TO{ PIN=z; } /* data */ }
}
VECTOR (01 a -> 01 z & ('c | d) ) {

EXI STENCE_CONDI TI ON = ! scan_sel ect;

DELAY { FROM{ PIN=a; } TO{ PIN=z; } /* data */ }
}

Each vector contains state-dependent delay for the same timing arc. If | scan_sel ect evaluates True, both
vectors are eliminated from timing analysis.

9.15.5 EXISTENCE_CLASS annotation

A xxx annotation shall be defined using ALF language as shown in .

KEYWORD EXI STENCE CLASS = annotation {
CONTEXT { VECTOR CLASS }
VALUETYPE = identifier;

}

Syntax 91— annotation

Reference to the same existence class by multiple vectors has the following effects:

— A common mode of operation is established between those vectors, which can be used for selective anal-
ysis, for instance mode-dependent timing analysis. The name of the mode is the name of the class.
— A common existence condition is inherited from that existence class, if thereisone.

Example

CLASS non_scan_node {
EXI STENCE_CONDI TI ON = ! scan_sel ect;
}
VECTOR (01 a -> 01 z & (c | !'d) ) {
EXI STENCE_CLASS = non_scan_node;
DELAY { FROM{ PIN=a; } TO{ PIN=z; } /* data */ }
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}
VECTOR (01 a -> 01 z & (!'c | d) ) {

EXI STENCE_CLASS = non_scan_node;

DELAY { FROM{ PIN=a; } TO{ PIN=z; } /* data */ }
}

Each vector contains state-dependent delay for the same timing arc. If the mode non_scan_node isturned off
orif ! scan_sel ect evaluates True, both vectors are eliminated from timing analysis.

9.15.6 CHARACTERIZATION_CONDITION annotation

A xxx annotation shall be defined using ALF language as shown in .

KEYWORD

CHARACTERI ZATI ON_CONDI TI ON = si ngl e_val ue_annot ati on {
CONTEXT { VECTOR CLASS }
VALUETYPE = bool ean_expr essi on;

}

Syntax 92— annotation

For characterization tools, the characterization condition shall be treated as if the boolean expression was a co-
factor to the vector itself. For all other applications, the characterization condition shall be disregarded. The
default characterization condition is True.

Example

VECTOR (01 a -> 01 z & (c | 'd) ) {

CHARACTERI ZATI ON_CONDI TION = ¢ & !d;

DELAY { FROM{ PIN=a; } TO{ PIN=z; } /* data */ }
}

The delay value for the timing arc applies for any of the following conditions: (¢ & ! d),

(c & d),or(!c & !'d),sincethey al satisfy (c | ! d).However, the only condition chosen for delay char-
acterizationis(c & !d).

9.15.7 CHARACTERIZATION_VECTOR annotation

A xxx annotation shall be defined using ALF language as shown in .

KEYWORD CHARACTERI ZATI ON_VECTOR =
si ngl e_val ue_annot ati on {
CONTEXT { VECTOR CLASS }
VALUETYPE = control _expression;

}

Syntax 93— annotation

The characterization vector is provided for the case where the vector expression cannot be constructed using the
vector and a boolean co-factor. The use of the characterization vector is restricted to characterization toolsin the
same way as the use of the characterization condition. Either a characterization condition or a characterization
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vector can be provided, but not both. If none is provided, the vector itself shall be used by the characterization
toal.

Example

VECTOR (01 A -> 01 2) {
CHARACTERI ZATI ON_VECTOR = ((01 A & 10 inv_A) -> (01 Z & 10 inv_2));

}

Analysis tools see the signals A and Z. The signalsi nv_A and i nv_Z are visible to the characterization tool
only.

9.15.8 CHARACTERIZATION_CLASS annotation

A xxx annotation shall be defined using ALF language as shown in ..

KEYWORD CHARACTERI ZATI ON_CLASS = annotation {
CONTEXT { VECTOR CLASS }
VALUETYPE = identifier;

}

Syntax 94— annotation

Reference to the same characterization class by multiple vectors has the following effects:

— A commonality is established between those vectors, which can be used for selective characterizationin a
way defined by the library characterizer, for instance, to share the characterization task between different
teams or jobs or tools.

— A common characterization condition or characterization vector is inherited from that characterization
class, if thereis one.

9.16 LAYER declaration

A layer shall be declared as shown in Syntax 95.

layer ::=
LAYER layer_identifier ;
ILAYER layer identifier { { layer item} }
| layer_template instantiation
layer_item ::=
al_purpose_item

Syntax 95—LAYER declaration

LAYER statements shall be in sequential order defined by the manufacturing process, starting bottom-up in the
following sequence: one or multiple substrate layers, followed by aternating cut and routing layers, then the
dielectric layer. Abstract layers can appear at the end of the sequence.
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9.17 Annotations for LAYER

9.17.1 LAYERTYPE annotation

A xxx annotation shall be defined using ALF language as shown in .

}

}

KEYWORD LAYERTYPE = singl e_val ue_annotati on {
CONTEXT = LAYER;
VALUETYPE = identifier;
VALUES {
routing cut substrate dielectric reserved abstract

Syntax 96— annotation

The identifiers have the following definitions:

The values shall have the following semantic meaning.

Table 59—LAYERTYPE annotation values

Annotation string Description
routing layer provides electrical connections within one plane
cut layer provides electrical connections between planes
substrate layer(s) at the bottom
dielectric provides electrical isolation between planes
reserved layer isfor proprietary use only
abstract not amanufacturable layer, used for description of boundaries
between objects

9.17.2 PITCH annotation

A xxx annotation shall be defined using ALF language as shown in .

}

KEYWORD PI TCH = singl e_val ue_annotation {
CONTEXT = LAYER,
VALUETYPE = unsi gned_nunber;

Syntax 97— annotation

The PI TCH annotation identifies the routing pitch for alayer with LAYERTYPE=r out i ng.

The pitch is measured between the center of two adjacent parallel wires routed on the layer.
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9.17.3 PREFERENCE annotation

A xxx annotation shall be defined using ALF language as shown in .

KEYWORD PREFERENCE = singl e_val ue_annotation {
CONTEXT = LAYER;
VALUETYPE = identifier;
VALUES { horizontal vertical acute obtuse }

}

Syntax 98— annotation

The purpose is to indicate the preferred routing direction.

9.18 VIA declaration

A via shall be declared as shown in Syntax 99.

via:=
V1A via_identifier
IVIA via_identifier { { via item} }
| via_template _instantiation
via_item ::=
all_purpose_item
| pattern
| artwork

Syntax 99—VIA statement

The VI A statement shall contain at least three patterns, referring to the cut layer and two adjacent routing layers.

Stacked vias can contain more than three patterns.

9.19 VIA instantiation

A via shall beinstantiated as shownin .

via instantiation :;=
via_identifier instance_identifier ;
| via_identifier instance_identifier { { geometric_transformation} }

Syntax 100—VIA instantiation

9.20 Annotations for a VIA
9.20.1 VIATYPE annotation

A xxx annotation shall be defined using ALF language as shown in .
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}

KEYWORD VI ATYPE = singl e_val ue_annotati on {
CONTEXT = VI A;
VALUETYPE = identifier;
VALUES { default non_default partial _stack full_stack }
DEFAULT = defaul t;

Syntax 101— annotation

The values shall have the following semantic meaning.

Table 60—VIATYPE annotation values

Annotation string

Description

def aul t

via can be used per default

non_def aul t

viacan only be used if authorized by aRULE

partial _stack

via contains 3 patterns; lower and upper routing layer and cut
layer in-between. It can only be used to build stacked vias.
The bottom of a stack can beadef aul t or a

non_def aul t via.

from bottom to top.

full _stack viacontains 2N+1 patterns (N>1). It describes the full stack

9.21 RULE declaration

A rule shall be declared as shown in Syntax 102.

rule ::=
RUL E rule identifier ;
| RULE rule identifier { { rule_item} }
| rule_template_instantiation
rule_item ::=
all_purpose_item
| pattern
| via_instantiation

Syntax 102—RULE statement

9.22 ANTENNA declaration

An antenna shall be declared as shown in Syntax 103.
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antenna::=
ANTENNA antenna_identifier ;
|ANTENNA antenna_identifier { { antenna_item} }
| antenna_template_instantiation
antenna_item ::=
al_purpose_item

Syntax 103—ANTENNA declaration

9.23 BLOCKAGE declaration

A blockage shall be declared as shown in Syntax 104.

blockage ::=
BL OCKAGE blockage identifier ;
| BLOCK AGE blockage identifier { { blockage_item} }
| blockage _template instantiation
blockage item ::=
all_purpose_item
| pattern
| rule
| via_instantiation

Syntax 104—BLOCKAGE statement

9.24 PORT declaration

A port shall be declared as shown in Syntax 105.

port ::=
PORT port_identifier ;{ { port_item} }
| PORT port_identifier ;
| port_template instantiation
port_item ::=
all_purpose_item
| pattern
| rule
| via_instantiation

Syntax 105—PORT declaration

A port is a collection of geometries within a pin, representing electrically equivalent points.

9.25 Annotations for PORT
9.25.1 PORT_VIEW annotation

A xxx annotation shall be defined using ALF language as shown in .
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KEYWORD PORT_VI EW = si ngl e_val ue_annotati on {
CONTEXT =
VALUETYPE = identifier;

VALUES {

DEFAULT =

PORT;

physi cal electrical both none }
bot h;

Syntax 106— annotation

The values shall have the following semantic meaning.

Table 61—PORT_VIEW annotation values

Annotation string Description
physi cal aport for layout with the possibility to connect a routing wire.
el ectri cal aport in an electrical netlist (SPEF, SPICE).
bot h both of the above.
none avirtua port for modeling purpose only.

9.26 SITE declaration

A site shall be declared as shown in Syntax 107.

site::=

SITE site identifier ;
| SI TE site identifier { { site_item} }
| site_template_instantiation

site_item ::=
all_purpose_item

Syntax 107—SITE declaration

The arithmetic models WIDTH and HEIGHT within a SITE declaration are deemed mandatory.

9.27 Annotations for SITE

9.27.1 ORIENTATION_CLASS

A xxx annotation shall be defined using ALF language as shown in .

9.27.2 SYMMETRY_CLASS

A xxx annotation shall be defined using ALF language as shown in .
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KEYWORD ORI ENTATI ON_CLASS = annotation {
CONTEXT { SITE CELL }
VALUETYPE = | DENTI FI ER;

}

Syntax 108— annotation

KEYWORD SYMVETRY_CLASS = annotation {
CONTEXT { SITE CELL }
VALUETYPE = identifier;

}

Syntax 109— annotation

The SYMVETRY_CLASS statement shall be used for a SI TE to indicate symmetry between legal orientations.
Multiple SYMVETRY statements shall be legal to enumerate all possible combinations in case they cannot be
described within asingle SYMVETRY statement.

Legal orientation of a cell within a site shall be defined as the intersection of legal cell orientation and legal site
orientation. If thereis a set of common legal orientations for both cell and site without symmetry, the orientation
of cell instance and site instance shall match.

If there is a set of common legal orientations for both cell and site with symmetry, the cell can be placed on the
side using any orientation within that set.

Case 1: no symmetry

Site has legal orientations A and B. Cell has legal orientations A and B. When the site isinstantiated in the A ori-
entation, the cell shall be placed in the A orientation.

Case 2: symmetry

Site has legal orientations A and B and symmetry between A and B. Cell haslegal orientations A and B. When the
siteisinstantiated in the A orientation, the cell can be placed in the A or B orientation.

9.28 ARRAY declaration

An array shall be declared as shown in Syntax 110.

array ::=
ARRAY array_identifier
|ARRAY array_identifier{ { array_item} }
| array_template instantiation
array_item ::=
all_purpose_item
| geometric_transformation

Syntax 110—ARRAY statement
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The geonetric_transformati ons define the locations of the starting points within the array and the

number of repetitions of the components of the array. Details are defined in the next section.

9.29 Annotations for ARRAY
9.29.1 ARRAYTYPE annotation

A xxx annotation shall be defined using ALF language as shown in .

KEYWORD ARRAYTYPE = singl e_val ue_annotati on {
CONTEXT = ARRAY;
VALUETYPE = identifier;
VALUES { fl oorplan pl acenent
gl obal _routing detailed_routing }
DEFAULT = ;

Syntax 111— annotation

9.30 PATTERN declaration

A pattern shall be declared as shown in Syntax 112.

pattern ::=
PATTERN pattern_identifier
| PATTERN pattern_identifier { { pattern_item} }
| pattern_template_instantiation
pattern_item ::=
all_purpose_item
| geometric_model
| geometric_transformation

Syntax 112—PATTERN declaration

9.31 Annotations for PATTERN
9.31.1 SHAPE annotation
A xxx annotation shall be defined using ALF language as shownin .

SHAPE applies only for aPATTERN in arouting layer, as shown in Figure 6. The default is| i ne.
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KEYWORD SHAPE = singl e_val ue_annotation {
CONTEXT = PATTERN,
VALUETYPE = identifier;
VALUES { line tee cross jog corner end }

DEFAULT = |i ne;
}
Syntax 113— annotation
tee T corner
end
Cross

Figure 6—Routing layer shapes
I i ne andj og represent routing segments, which can have an individual LENGTH and W DTH. The LENGTH
between routing segments is defined as the common run length. The DI STANCE between routing segments is
measured orthogonal to the routing direction.
t ee, cross, and cor ner represent intersections between routing segments. end represents the end of arout-
ing segment. Therefore, they have points rather than lines as references. The points can have an EXTENSI ON.
The DI STANCE between points can be measured straight or by using HORI ZONTAL and VERTI CAL.
9.31.2 VERTEX annotation

A xxx annotation shall be defined using ALF language as shown in .

KEYWORD VERTEX = si ngl e_val ue_annotati on {
CONTEXT = PATTERN;
VALUETYPE = identifier;
VALUES { round linear }
DEFAULT = li near;

Syntax 114— annotation

Thevert ex_annot ati on shall appear only in conjunction with the ext ensi on_ari t hneti c_nodel .
It specifies the form of the extended object, as shown in Figure 7.
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Y N
EXTENSION = 1 N N

\ 3

VERTEX = linear VERTEX = round

Figure 7—lllustration of VERTEX annotation
9.31.3 LAYER reference annotation

A PATTERN s associated with a LAYER.

9.32 Geometric model

This section defines the geometric model statement and how to predefine commonly used objects (using TEM
PLATE).

A geometric model describes the form of an object in aphysical library. It isin the context of a pattern, whichis
associated with physical objects, such as via, blockage, port, rule. Patterns and other physical objects can also be
subjected to geometric transformations, as shown in Figure 8.

via contans - pattern array artwork
bl ockagec‘m‘“(' \E)ntai ns ¢ contains ﬁntai ns
port  conta geometric transformation

TU| e ntains

geometric model —centans . coordinates

Figure 8—Geometric model and its context

A geometric model is defined as shown in Syntax 115.
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geometric_model ::=
nonescaped_dentifier [ geometric_model_identifier ]
{ geometric_mode!_item { geometric_model_item} }
| geometric_model_template instantiation
geometric_model_item ::=
all_purpose_item
| coordinates
coordinates ::=
COORDINATES({ point { point} }
point ::=
X_number y_number

Syntax 115—Geometric model

The following geometric model identifiers shall be defined.

Table 62—Geometric model identifiers

identifier Description
DOoT describes one point
POLYLI NE defined by N>1 directly connected points, forming an open object
Rl NG defined by N>1 directly connected points, forming a closed object,

i.e, the last point is connected with first point. The object occupies
the boundary of the enclosed space.

POLYGON defined by N>1 connected points, forming a closed object, i.e., the last
point is connected with first point. The object occupies the entire
enclosed space.

All of these are depicted in Figure 9.

DOT (5 dots) POLYLINE RING POLYGON

Figure 9—lllustration of geometric models
A xxx annotation shall be defined using ALF language as shown in .

The poi nt _to_point _annot ati on appliesfor POLYLINE, RING, and POLY GON. It specifies
how the connections between points is made. The default isdi r ect , which defines a straight connection (see
Figure 10). The value manhat t an specifies a connection by moving in the x-direction first and then moving in
the y-direction (see Figure 11). This enables a non-redundant specification of rectilinear objects using N/ 2
points instead of N points.
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KEYWORD poi nt _to_point = single value_annotation {

CONTEXT { POLYLINE RI NG POLYGON }

VALUETYPE = identifier;
VALUES { direct manhattan }
DEFAULT = direct;

}
Syntax 116— annotation
Y-axis _  direct connection direct connection

9 T from (-1/8) to (-1/5) i from (3/8) to (-1/8)
8 X X

7

6 direct connection

5 L from (-3/5) to (3/8)
4

3 direct connection

5 from (-1/5) to (3/5)

1

>
5 4 -3 -2 -1 01 2 3 4 5 X-axis

Figure 10—lllustration of direct point-to-point connection

Y-axis

P N W, 01O N 00O ©

A

manhattan connection from (-3/8) to (-1/5)

X

X

manhattan connection from (-1/5) to (3/8)

L
5 -4 -3 -2 -101 2 3 4 5 X-axis

Example

100

Figure 11—lllustration of manhattan point-to-point connection

Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 4



POLYGON {
PO NT_TO PO NT = direct;
COORDINATES { -1 53538-181}

}

POLYGON {
PO NT_TO PO NT = nanhatt an;
COORDINATES { -1 5 3 8}

}

Both objects describe the same rectangle.

9.33 Predefined geometric models using TEMPLATE

The TEMPLATE construct (see 3.2.6) can be used to predefine some commonly used objects.

The templates RECTANGLE and LINE shall be predefined as follows:

TEMPLATE RECTANGLE {
POLYGON {
PO NT_TO PO NT = nanhatt an;
COORDI NATES { <left> <bottons <right> <top> }

}
}
TEMPLATE LI NE {
POLYLI NE {
PO NT_TO PO NT = direct;
COORDI NATES { <x_start> <y start> <x_end> <y_end> }
}
}
Example 1

The following example shows the instantiation of predefined templates.

/1l same rectangle as in previous exanple

RECTANGLE {| eft -1; bottom=5; right = 3; top = 8; }
/1 or

RECTANGLE {-1 5 3 8 }

/1 diagonals through the rectangle

LINE {x_start = -1; y start =5; x end = 3; y end = 8; }
LINE {x_start = 3; y start = 5; x end = -1; y end = 8; }
/1 or

LINE{ -1538}

LINE{ 35-128}

The definitions for predefined templates are fixed. Therefore the keywords RECTANGLE and LINE are

reserved. On the other hand, the definitions for user-defined templates are only known by the library supplied by

the user.
Example 2

The following example shows some user-defined templ ates.
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TEMPLATE HORI ZONTAL_LI NE {
POLYLI NE {
PO NT_TO PO NT = direct;
COORDI NATES { <left> <y> <right> <y> }

}
}
TEMPLATE VERTI CAL_LI NE {
POLYLI NE {
PO NT_TO PO NT = direct;
COORDI NATES { <x> <bottonp» <x> <top> }
}
}
Example 3

The following example shows the instantiation of user-defined templates.

/1 lines bounding the rectangle

HORI ZONTAL_LINE { vy = 5; left = -1; right = 3; }
HORI ZONTAL_LINE { v = 8; left = -1; right = 3; }
VERTI CAL_LINE { x = -1; bottom=5; top = 8; }

VERTI CAL_LINE { x
/] or

HORI ZONTAL_LI NE { -1 3}
HORI ZONTAL_LINE { 8 -1 3}
VERTICAL_LINE { -1 5 8}
VERTICAL_LINE { 3 5 8}

3; bottom=15; top = 8; }

ol

9.34 Geometric transformation

A geometric transformation XXX, as shown in Syntax 117.

geometric_transformation ::=
shift
| rotate
| flip
| repeat

shift ::=
SHIFT { x_number y number }
rotate ::=

ROTATE = number ;

flip::=
FLIP= number ;
rep

eat ;=
REPEAT [ = unsigned_integer ] { geometric_transformation { geometric_transformation } }

Syntax 117—Geometric transformation

The SHI FT statement defines the horizontal and vertical offset measured between the coordinates of the geomet-
ric model and the actual placement of the object. Eventually, a layout tool only supports integer numbers. The
numbers are in units of DISTANCE. If only one annotation is given, the default value for the other oneisO. If the
SHI FT statement is not given, both values default to 0.
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The ROTATE statement defines the angle of rotation in degrees measured between the orientation of the object
described by the coordinates of the geometric model and the actual placement of the object measured in counter-
clockwise direction, specified by anumber between 0 and 360. Eventually, alayout tool can only support angles
which are multiple of 90 degrees. The default is 0. The object shall rotate around its origin.

The FLI P describes atransformation of the specified coordinates by flipping the object around an axis specified
by a number between 0 and 180. The number represents the angle of the flipping direction in degrees. Eventu-
ally, alayout tool can only support angles which are multiple of 90 degrees. The axisis orthogonal to the flipping
direction. The axis shall go through the origin of the object. For example, 0 means flip in horizontal direction,
axisisvertical whereas 90 meansflip in vertical direction, axisis horizontal.

The purpose of the REPEAT statement is to describe the replication of a physical object in a regular way, for
example S| TE (see Section 9.12). The REPEAT statement can also appear within ageonet ri ¢_nodel . The
unsi gned number defines the total number of replications. The number 1 means, the object appears just once.
If this number is not given, the REPEAT statement defines a rule for an arbitrary number of replications.
REPEAT statements can also be nested.

Examples
The following example replicates an object three times along the horizontal axisin a distance of 7 units.

REPEAT = 3 {
SHI FT { HORIZONTAL = 7; }
}

The following example replicates an object five times along a 45-degree axis.

REPEAT = 5 {
SHI FT { HORI ZONTAL = 4; VERTICAL = 4; }
}

The following example replicates an object two times along the horizontal axis and four times along the vertical
axis.

REPEAT = 2 {
SHI FT { HORI ZONTAL = 5; }
REPEAT = 4 {

SHIFT { VERTICAL = 6; }

}
}

NOTE—The order of nested REPEAT statements does not matter. The following example gives the same result as the previ-
ous example.

REPEAT = 4
SHIFT { VERTICAL = 6; }
REPEAT = 2 {

SHI FT { HORI ZONTAL = 5; }

}
}

Rules and restrictions:
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— A physical object can contain ageonetri c_transf ormati on statement of any kind, but no more
than one of a specific kind.

— Thegeonetric_transfornation statements shall apply to all geonret ri ¢_nodel s within the
context of the object.

— Thegeonetric_transfornmation statements shall refer to the origin of the object, i.e., the point
with coordinates{ 0 O }. Therefore, the result of a combined transformation shall be independent of
the order in which each individual transformation is applied.

These are demonstrated in Figure 12.

FLIP ROTATE . SHIFT
o
o [ [ IO
legend: @ origin of the object

Figure 12—Illustration of FLIP, ROTATE, and SHIFT

9.35 ARTWORK statement

An artwork statement shall be defined as shown in Syntax 118.

artwork ::=
ARTWORK = artwork _identifier
|ARTWORK = artwork_identifier{ { artwork_item} }
| artwork_template_instantiation
artwork_item ::=
geometric_transformation
| pin_assignment

Syntax 118—ARTWORK statement

The ARTWORK statement creates a reference between the cell in the library and the original cell imported from a
physical layout database (e.g., GDS2).

Thegeonetri c_transformati ons definethe operations for transformation from the artwork geometry to
the actual cell geometry. In other words, the artwork is considered as the original object whereas the cell is the
transformed object.

The imported cell can have pins with different names. The LHS of the pi n_assi gnnent s describes the pin

names of the original cell, the RHS describes the pin names of the cell in thislibrary. See 11.4 for the syntax of
pi n_assi gnnment s .
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Example

CELL my_cell {
PINA{ /* fill inpinitens */ }
PINZ { /* fill inpinitens */ }
ARTWORK = \ GCDS2$! @$ {
SH FT { HORI ZONTAL = 0; VERTICAL = 0; }

ROTATE = 0;
\ CDS28$! @$A = A
\ GDS2%! @$B = B;

9.36 FUNCTION statement

A FUNCTI ON statement shall be defined as shown in Syntax 119.

function ::=
FUNCTION { function_item { function_item} }
| function_template_instantiation
function_item ::=
al_purpose_item
| behavior
| structure
| statetable

Syntax 119—FUNCTION statement

9.37 TEST statement

A TEST statement, shall be defined as shown in Syntax 120.

test ::=
TEST { test_item { test_item} }
| test_template_instantiation
test item::=
all_purpose_item
| behavior
| statetable

Syntax 120—TEST statement

The purposeisto describe the interface between an externally applied test algorithm and the CELL. Thebehav-
i or statement within the TEST statement uses the same syntax as the behavi or statement within the FUNC-
T1 ON statement. However, the set of used variablesis different. Both the TEST and the FUNCTI ON statement
shall be self-contained, complete and complementary to each other.

9.38 BEHAVIOR statement

A BEHAVI OR statemen shall be defined as shown in Syntax 121.
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behavior ::=
BEHAVIOR { behavior_item { behavior_item}s}
| behavior_template_instantiation
behavior_item ::=
boolean_assignment
| control_statement
| primitive_instantiation
| behavior_item template _instantiation
boolean_assignments ::=
boolean_assignment { boolean _assignment }
boolean_assignment ::=
pin_variable = boolean_expression ;
primitive_instantiation ::=
primitive_identifier [ identifier ]  pin_value{ pin_value }
| primitive_identifier [ identifier] { boolean_ass gnments]t
control _statement ::=
@ control_expression{ boolean_assignments } { : control_expression { boolean_assignments } }

Syntax 121—BEHAVIOR statement

Inside BEHAVI OR, variables that appear at the LHS of an assignment conditionally controlled by a vector
expression, as opposed to an unconditional continuous assignment, hold their values, when the vector expression
evaluates False. Those variables are considered to have latch-type behavior.

Examples
BEHAVI OR {
@O {
Q=D [// both Qand QN have | atch-type behavi or
N =1!D;
}
}
BEHAVI OR {
@O {
Q=D // only Qhas latch-type behavior
}
N =1Q
}

9.39 STRUCTURE statement

A STRUCTURE statement shall be defined as shown in Syntax 122.

structure ::=
STRUCTURE { named_cell_instantiation { named_cell_instantiation } }
| structure_template_instantiation

Syntax 122—STRUCTURE statement

An optional STRUCTURE statement shall be legal in the context of a FUNCTI ON. A STRUCTURE statement
describes the structure of a complex cell composed of atomic cells, for example I/O buffers, LSSD flip-flops, or
clock trees. The STRUCTURE statement shall be legal inside the FUNCTI ON statement (see 11.17):

The STRUCTURE statement shall describe a netlist of components inside the CELL. The STRUCURE statement
shall not be a substitute for the BEHAVI OR statement. If a FUNCTI ON contains only a STRUCTURE statement
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and no BEHAVI OR statement, a behavior description for that particular cell shall be meaningless (e.g., fillcells,
diodes, vias, or analog cells).

Timing and power models shall be provided for the CELL, if such models are meaningful. Application tools are
not expected to use function, timing, or power models from the instantiated components as a substitute of a miss-
ing function, timing, or power model at the top-level. However, tools performing characterization, construction,
or verification of atop-level model shall use the models of the instantiated components for this purpose.

Test synthesis applications can use the structural information in order to define a one-to-many mapping for scan
cell replacement, such as where a single flip-flop is replaced by a pair of master/slave latches. A macro cell can
be defined whose structure is a netlist containing the master and slave latch and this shall contain the
NON_SCAN_CELL annotation to define which sequentia cellsit is replacing. No timing model is required for
this macro cell, since it should be treated as a transparent hierarchy level in the design netlist after test synthesis.

NOTES
1—Every i nstance_i denti fi er withina STRUCTURE statement shall be different from each other.

2—The STRUCTURE statement provides adirective to the application (e.g., synthesisand DFT) asto how the CELL isimple-
mented. A CELL referenced in naned_cel | _i nstanti ati on can be replaced by another CELL within the same
SWAP_CLASS and RESTRI CT_CLASS (recognized by the application).

3—Thecel | _i denti fi er within a STRUCTURE statement can refer to actual cells aswell asto primitives. The usage of
primitives is recommended in fault modeling for DFT.

4—BEHAVI OR statements also provide the possibility of instantiating primitives. However, those instantiations are for mod-
eling purposes only; they do not necessarily match a physical structure. The STRUCTURE statement always matches a physi-
cal structure.

9.40 STATETABLE statement

A STATETABLE statement shall be defined as shown in Syntax 123.

statetable ::=

STATETABLE [ identifier ]

{ statetable_header statetable row { statetable row} }
| statetable template instantiation

statetable_header ::=

input_pin_variables . output_pin variables,
statetable row ::=

statetable_control_values . statetable data values;
statetable _control_values ::=

statetable _control_value { statetable control_value }
statetable_control_value ::=

bit_literal

| based_literal

| unsigned

| edge _value
dtatetable data values::=

statetable_data value { statetable data value}
statetable data value ::=

bit_literal

| based_literal

| unsigned

[([!]pin_variable)

| ([~] pin_variable)

Syntax 123—STATETABLE statement
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The functional description can be supplemented by a STATETABLE, the first row of which contains the argu-
ments that are object | Ds of the declared PI Ns. The arguments appear in two fields, the first is input and the sec-
ond is output. The fields are separated by a: . The rows are separated by a; . The arguments can appear in both
fields if the PI Ns have attribute di r ect i on=out put or di recti on=bot h. If di r ecti on=out put,
then the argument has latch-type behavior. The argument on the input field is considered previous state and the
argument on the output field is considered the next state. If di r ect i on=bot h, then the argument on the input
field applies for input direction and the argument on the output field applies for output direction of the bidirec-
tiona PI N.

Example

CELL ff_sd {
PIN g {D RECTI ON=out put;}
PIN d {D RECTI ON=i nput;}
PI N cp {DI RECTI ON=i nput ;
SI GNALTYPE=cl| ock;
PCOLARI TY=ri si ng_edge; }
PI' N cd {DI RECTI ON=i nput; SI GNALTYPE=cl ear; POLARI TY=l ow; }
PI' N sd {DI RECTI ON=i nput; SI GNALTYPE=set; POLARI TY=l ow; }

FUNCTI ON {

BEHAVI OR {

} @'cd) {q =0;} :(!sd) {qg =1;} :(01 cp) {q = d;}

STATETABLE {
cd sd cp d q : q;
o 2 2?22 2?2 ? :0;
1 0 2?2 ? 2 :1;
1 1 1?7 ? 0 : 0 ;
1 1 20 ? 1 : 1;
1 1 1?7 ? 0 : 0 ;
1 1 20 ? 1 : 1;
1 1 01 2?2 2 :(d);

}

If the output variable with latch-type behavior depends only on the previous state of itself, as opposed to the pre-
vious state of other output variables with latch-type behavior, it is not necessary to use that output variablein the
input field. This allows a more compact form of the STATETABLE.

Example
STATETABLE ({
cdsd cp d : q;
0o 2 ?2?2 ? 0
1 0 ?2?2 ? 1
1 1 1?7 ? :(qQ);
1 1 20 7?7 (qQ);
1 1 01 7?7 :(d);

}

A generic ALF parser shall make the following semantic checks.

— Areadl variables of a FUNCTI ON declared either by declaration as PI N hames or through assignment?
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— Doesthe STATETABLE exclusively contain declared Pl Ns?

— Istheformat of the STATETABLE, i.e., the number of elementsin each field of each row, consistent?
— Arethe values consistently either state or transition digits?

— Isthe number of digitsin each TABLE entry compatible with the signal bus width?

A more sophisticated checker for complete verification of logical consistency of a FUNCTI ON given in both
equation and tabular representation is out of scope for a generic ALF parser, which checks only syntax and com-

pliance to semantic rules. However, formal verification algorithms can be implemented in special-purpose ALF
analyzers or model generators/compilers.

9.41 NON_SCAN_CELL statement

A non-scan cell statement shall be defined as shown in Syntax 124.

non_scan cell ::=
"NON_SCAN_CELL { unnamed_cell_instantiation { unnamed_cell_instantiation} }
INONTSCANCELL = unnamed_cell_instantiation

| non_scan_cell_template_instantiation

Syntax 124—NON_SCAN_CELL statement

A non-scan cell statement applies for a scan cell. A scan cell is a cell with extra pins for testing purpose. The
unnamed cell instantiation within the non-scan cell statement specifiesacell that isfunctionally equivalent to the
scan cell, if the extrapins are not used. The cell without extra pinsis refered to as non-scan cell. The name of the
non-scan cell is given by the cell identifier.

The pin mapping is given either by order, using pin value, or by name, using pin assignment. In the former case,
the pin values shall refer to pin names of the scan cell. The order of the pin values corresponds to the pin declara-
tions within the non-scan cell. In the latter case, the pin names of the non-scan cell shall appear at the LHS of the
assignment, and the pin names of the scan cell shall appear at the RHS of the assignment. The order of the pin
assignmentsis arbitrary.

Example

/1 declaration of a non-scan cell
CELL myNonScanFl op {
PIN D { DI RECTI ON=i nput; SI GNALTYPE=data; }
PIN C { DI RECTI ON=i nput; SI GNALTYPE=cl ock; POLARI TY=ri si ng_edge; }
PIN Q { DI RECTI ON=out put; SI GNALTYPE=data; }
}
/1 declaration of a scan cell
CELL myScanFl op {
PIN CK { DI RECTI ON=i nput; SI GNALTYPE=cl ock; }
PIN DI { DI RECTI ON=i nput; Sl GNALTYPE=data; }
PIN SI { DI RECTI ON=i nput; SIGNALTYPE=scan_data; }
PIN SE { DI RECTI ON=i nput; SIGNALTYPE=scan_enabl e; POLARI TY=hi gh; }
PI N DO { DI RECTI ON=out put; S| GNALTYPE=dat a; }
/1 put NON SCAN CELL statenment here

}

The non-scan cell statement with pin mapping by order looks as follows:
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NON_SCAN CELL { nyNonScanFlop { DI CK DO} }
/1 correspondi ng pins by order: D C Q

The non-scan cell statement with pin mapping by name looks as follows:

NON_SCAN_CELL { nyNonScanFlop { @=DO, D=DI; C=CK; } }

9.42 RANGE statement

A range statement shall be defined as shown in Syntax 125.

range ::=
%QANGE { index_value : index_value }

Syntax 125—RANGE statement

The range statement shall be used to specify a valid address space for elements of a vector- or matrix-pin.
If no range statement is specified, the valid address space a is given by the following mathematical relationship:
0<as<2’-1

b= [ 1+LSB—MSB if(LSB > MSB)
1+MSB—LSB if(LSB < MSB)

where

aisan unsigned number representing the address space within a vector- or matrix-pin,
b isthe bitwidth of the vector-or matrix-pin,

and

MSB isthe leftmost bit within the vector- or matrix-pin,
L SB isthe rightmost bit within the vector or- matrix-pin,

in accordance with Section 7.8 on page 40.

The index values within a range statement shall be bound by the address space a, otherwise the range statement
shall not be considered valid.

Example

PIN [5:8] nyVectorPin {| RANGE { 3 : 13 } }
bitwidith: b=14

default address space: O<a<15
address space defined by range statement:  3<as<13
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10. Constructs for modeling of digital behavior

** Add lead-in text**

10.1 Variable declarations

Inside a CELL object, the Pl N objects with the PI NTYPE di gi t al define variables for FUNCTI ON objects
inside the same CELL. A primary input variable inside a FUNCTI ON shall be declared as a PI N with DI REC-

Tl ONEi nput or bot h (since DI RECTI ON=bot h is a bidirectional pin). However, it is not required that all
declared pins are used in the function. Output variablesinside a FUNCTI ON need not be declared pins, since they
are implicitly declared when they appear at the left-hand side (LHS) of an assignment.

Example

CELL ny_cel |l {
PIN A {Dl RECTI ON
PIN B { Dl RECTI ON
PIN C {Dl RECTI ON
FUNCTI ON {
BEHAVI OR {
D = A && B;
C=1D

i nput;}
i nput; }
out put ; }

}

C and Dare output variables that need not be declared prior to use. After implicit declaration, D
isreused as an input variable. A and B are primary input variables.

10.2 Boolean value system

**this paragraph needs to move into another section**

A bit literal shall represent a single bit constant, as shown in Table 63.

Table 63—Single bit constants

Literal Description
0 Valueislogic zero.
1 Valueislogic one.
Xorx Valueis unknown.
Lorl Valueislogic zero with wesk drive strength.
Horh Valueislogic one with weak drive strength.
Wor w Value is unknown with weak drive strength.
Zorz Value is high-impedance.
Uoru Valueis uninitialized.
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Table 63—Single bit constants (Continued)

Literal Description
? Valueisany of the above, yet stable.
* Value can randomly change.

The following symbols within an octal based literal shall represent numerical values, which can be mapped into
equivaent symbols within a binary based literal, as shownin .

Table 64—Mapping between octal base and binary base

Octal Binary (bit literal) Numerical value

000
001
010
011
100
101
110
11

N O O~ W DN PO
N~N|lo ||~ w| NP ]|O

The following symbols within a hexadecimal based literal shall represent numerical values, which can be
mapped into equivalent symbols within an octal based literal and abinary based literal, as shownin .

Table 65—Mapping between hexadecimal base, octal base, and binary base

Hexadecimal Octal Binary (bit literal) Numerical value
0 00 0000 0
1 01 0001 1
2 02 0010 2
3 03 0011 3
4 04 0100 4
5 05 0101 5
6 06 0110 6
7 07 0111 7
8 10 1000 8
9 11 1001 9
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Table 65—Mapping between hexadecimal base, octal base, and binary base (Continued)

Hexadecimal Octal Binary (bit literal) Numerical value
aorA 12 1010 10
borB 13 1011 1
corC 14 1100 12
do D 15 1101 13
eorE 16 1110 14
forF 17 1111 15

Based literals involving symbolic bit literals shall not be used to represent numerical values. They shall be
mapped from one base into another base according to the following rules:

a) A symbolic bit literal in a hexadecimal based literal shall be mapped into two subsequent occurences of
the same symbolic bit literal in an octal based literal.

b) A symbolic bit literal in an octal based literal shall be mapped into three subsequent occurences of the
same symbolic bit literal in a binary based literal.

¢) A symbolic bit literal in an hexadecimal based literal shall be mapped into four subsequent occurences of
the same symbolic bit literal in abinary based literal.

Example

' 02xwOu isequivalent to' b010_xxx_ww_000_uuu
"hLux isequivalent to' bLLLL_uuuu_xxxx

10.3 Combinational functions
This section defines the different types of combinational functionsin ALF.
10.3.1 Combinational logic
Combinational logic can be described by continuous assignments of boolean values (True or False) to output
variables as a function of boolean values of input variables. Such functions can be expressed in either boolean
expression format or statetable format.
Let us consider an arbitrary continuous assignment
z =f(ag ..,.. ap)
In adynamic or simulation context, the left-hand side (LHS) variable zis evaluated whenever there isachangein

one of the right-hand side (RHS) variables ai. No storage of previous states is needed for dynamic simulation of
combinational logic.
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10.3.2 Boolean operators on scalars

Table 66, Table 67, and Table 68 list unary, binary, and ternary boolean operators on scalars.

Table 66—Unary boolean operators

Operator Description

I~ Logical inversion.

Table 67—Binary boolean operators

Operator Description
&&, & Logical AND.
1] | Logical OR.
~N Logic equivalence (XNOR).
N Logic anti valence (XOR).

Table 68—Ternary operator

Operator Description

? Boolean condition operator for construction of combinational

if-then-else clause.

Boolean else operator for construction of combinational if-
then-else clause.

Combinational if-then-else clauses are constructed as follows:

<condl>? <val uel>:. <cond2>? <val ue2>: <cond3>? <val ue3>: <default_val ue>
If cond1 evaluates to boolean True, then val uel isthe result; else if cond2 evaluates to boolean True, then
val ue2 is the result; else if cond3 evaluates to boolean True, then val ue3 is the result; else
def aul t _val ue istheresult of this clause.

10.3.3 Boolean operators on words

Table 69 and Table 70 list unary and binary reduction operators on words (logic variables with one or more bits).
The result of an expression using these operators shall be alogic value.

Table 69—Unary reduction operators

Operator Description

& AND al bits.

114 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 4



Table 69—Unary reduction operators (Continued)

Operator Description
~& NAND all bits.
| ORall hits.
~ NCR all bits.
N XOR dl bits.
~N XNOR all hits.

Table 70—Binary reduction operators

Operator Description

== Equality for case comparison.

I= Non-equality for case comparison.

Greater.

Smaller.
>= Greater or equal.
<= Smaller or equal.

Table 71 and Table 72 list unary and binary bitwise operators. The result of an expression using these operators
shall be an array of bits.

Table 71—Unary bitwise operators

Oper ator Description

~ Bitwise inversion.

Table 72—Binary bitwise operators

Operator Description
& Bitwise AND.
| Bitwise OR.
A Bitwise XOR.
b Bitwise XNOR.
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The following arithmetic operators, listed in Table 73, are also defined for boolean operations on words. The
result of an expression using these operators shall be an extended array of bits.

Table 73—Binary operators

Operator Description
<< Shift left.
>> Shift right.
+ Addition.
- Subtraction.
* Multiplication.
/ Division.
% Modulo division.

The arithmetic operations addition, subtraction, multiplication, and division shall be unsigned if all the operands
have the datatype unsigned. If any of the operands have the datatype signed, the operation shall be signed. See
Table 6-25 for the DATATYPE definitions.

10.3.4 Operator priorities

The priority of binding operators to operands in boolean expressions shall be from strongest to weakest in the
following order:

a)
b)
0)
d)
e

unary boolean operator (! , ~, & ~& | ,~| , ", ~")

XNOR (=), XOR (M), relational (>, <, >=, <=, ==, | =), shift (<<, >>)
AND (&, &&), NAND (~&), multiply (*), divide (/ ), modulus (%
OR(],]| ), NOR(~| ), add (+), subtract (- )

ternary operators (?, : )

10.3.5 Datatype mapping

Logical operations can be applied to scalars and words. For that purpose, the values of the operands are reduced
to asystem of three logic valuesin the following way:

116

Hhasthelogic value 1

L hasthelogic value 0

WZ, Uhavethelogic value X

A word hasthelogic value 1, if the unary OR reduction of all bitsresultsin 1
A word hasthelogic value 0, if the unary OR reduction of all bitsresultsin O
A word hasthelogic value X, if the unary OR reduction of all bitsresultsin X

Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 4



Case comparison operations can also be applied to scalars and words. For scalars, they are defined in Table 74.

Table 74—Case comparison operators
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A<B

A>B

Al=

A==B

0

0

0

0

0

X

Z,

Wy

X

Z,

Wy

X

Z,

Wy

X

Z,

Wy

L,

H,
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Table 74—Case comparison operators (Continued)

A B A==B Al=B A>B A<B
U 0, 1, H L, X X X X
X, W Z U

For word operands, the operations > and < are performed after reducing all bits to the 3-value system first and
then interpreting the resulting number according to the datatype of the operands. For example, if datatype is
signed,' b1111 issmaller than' b000O; if datatypeisunsigned, ' b1111 isgreater than' b000O. If two oper-
ands have the same value ' b1111 and a different datatype, the unsigned ' b1111 is greater than the signed
"b1111.

The operations >= and <= are defined in the following way:

(a >=Db) === (a >b) || (a==Dh)
(a <=Db) === (a <b) [| (a==0Dh)

10.3.6 Rules for combinational functions

If a boolean expression evaluates True, the assigned output value is 1. If a boolean expression evaluates False,
the assigned output value is 0. If the value of a boolean expression cannot be determined, the assigned output
value is X. Assignment of values other than 1, 0, or X needs to be specified explicitly.

For evaluation of the boolean expression, input value ' bH shall be treated as' b1. Input value ' bL shall be
treated as' b0. All other input values shall be treated as' bX.

Examples
In equation form, these rules can be expressed as follows.

BEHAVI OR {
Z = A
}

isequivalent to

BEHAVI OR {
Z=A?"bl: ’bo;
}

More explicitly, thisis also equivalent to

BEHAVI OR {
Z = (A=="bl || A== bH)? "bl : (A=="Db0 || A=="bL)? 'b0 : ’bX;
}

In table form, this can be expressed as follows:
STATETABLE {

A : Z;
? (A);
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which isequivaent to

STATETABLE {

A : Z;
0 : 0;
1 1;

}

More explicitly, thisisalso equivalent to

STATETABLE ({

XXXXPEROON

CNEXII—‘I_O:D

}

10.3.7 Concurrency in combinational functions

Multiple boolean assignmentsin combinational functions are understood to be concurrent. The order in the func-
tional description does not matter, as each boolean assignment describes a piece of alogic circuit. Thisisillus-

trated in Figure 13.

BEHAVI OR {
QL

n
| -
1st bool ean expression Q
C )
® > :
nth bool ean expression (@)
C )

D1 Di

<1st _bool ean_expression(D1..Di)> ;

<nt h_bool ean_expression(Dl1..Di)> ;

Figure 13—Concurrency for combinational logic

10.4 Sequential functions

This section defines the different types of sequentia functionsin ALF.
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10.4.1 Level-sensitive sequential logic

In sequential logic, an output variable zj can also be a function of itself, i.e., of its previous state. The sequential
assignment has the form

zp =f(ag ..,.. ag, Z3 ..,.. Zp
The RHS cannot be evaluated continuously, since a change in the LHS as aresult of a RHS evaluation shall trig-
ger anew RHS evaluation repeatedly, unless the variables attain stable values. Modeling capabilities of sequen-

tial logic with continuous assignments are restricted to systems with oscillating or self-stabilizing behavior.

However, using the concept of triggering conditions for the LHS enables everything which is necessary for mod-
eling level-sensitive sequential logic. The expression of atriggered assignment can look like this:

@g(by ..,.. by z; =f(ay ..,.. ay, zy ..,.. Zp
The evaluation of f is activated whenever the triggering function g is True. The evaluation of g is self-triggered,
i.e. at each time when an argument of g changes its value. If g is a boolean expression like f, we can model all

types of |evel-sensitive sequential logic.

During the time when g is True, the logic cell behaves exactly like combinational logic. During the time when g
isFalse, thelogic cell holdsits value. Hence, one memory element per state bit is needed.

10.4.2 Edge-sensitive sequential logic

In order to model edge-sensitive sequential logic, notations for logical transitions and logical states are needed.
If the triggering function g is sensitive to logical transitions rather than to logical states, the function g evaluates
to True only for aninfinitely small time, exactly at the moment when the transition happens. The sole purpose of
g isto trigger an assignment to the output variable through evaluation of the function f exactly at thistime.
Edge-sensitive logic requires storage of the previous output state and the input state (to detect a transition). In
fact, all implementations of edge-triggered flip-flops require at least two storage elements. For instance, the most
popul ar flip-flop architecture features a master latch driving a slave latch.

Using transitions in the triggering function for value assignment, the functionality of a positive edge triggered
flip-flop can be described asfollowsin ALF:

@(01 CP) {Q=D}
which reads “at rising edge of CP, assign Qthe value of D".

If the flip-flop aso has an asynchronous direct clear pin (CD), the functional description consists of either two
concurrent statements or two statements ordered by priority, as shown in Figure 14.

/1l concurrent style

@(!'CO {Q = 0;}
@ (01 CP && CD) {Q =D}

[l priority (if-then-else) style
@(!c {Q=20} : (01 CP) {Q=D}
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Figure 14—Model of a flip-flop with asynchronous clear in ALF

The following two examples show corresponding simulation modelsin Verilog and VHDL.

/] full simulation nodel

al ways @ negedge CD or posedge CP) begin
if (! CD) Q<= 0;
else if (CP && !CP_last_value) Q <= D
el se Q <= 1’ bx;
end
al ways @ (posedge CP or negedge CP) begin
if (CP===0 | CP===1"bx) CP_last_value <= CP ;
end

/1 sinplified sinulation nodel for synthesis

al ways @ negedge CD or posedge CP) begin
if (! CD) Q<= 0;
else Q <= D

end

Figure 15—Model of a flip-flop with asynchronous clear in Verilog

[/ full simulation nodel

process (CP, CD) begin
if (CD="0") then

Q<="'0";

elsif (CPPlast _value ="'0'" and CP = '1" and CP event) then
Q <= b

elsif (CPPlast _value ='0'" and CP = 'X and CP event) then
Q<="'X;

elsif (CPPlast_value = 'X and CP = '1" and CP event) then
Q<="X;

end if;

end process;
[l sinplified sinmulation nodel for synthesis

process (CP, CD) begin
if (CD="'0") then

Q<="0";

elsif (CP ="1 and CP event) then
Q<=D

end if;

end process;

Figure 16—Model of a flip-flop with asynchronous clear in VHDL

The following differences in modeling style can be noticed: VHDL and Verilog provide the list of sensitive sig-
nals at the beginning of the pr ocess or al ways block, respectively. The information of level-or edge-sensitiv-
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ity shall beinferred by i f -t hen-el se statements inside the block. ALF shows the level-or-edge sensitivity as
well as the priority directly in the triggering expression. Verilog has another particularity: The sensitivity list
indicates whether at least one of the triggering signals is edge-sensitive by the use of negedge or posedge.
However, it does not indicate which one, since either none or all signals shall have negedge or posedge qual-
ifiers.

Furthermore, posedge isany transition with O asinitia state or 1 asfinal state. A positive-edge triggered flip-
flop shall beinferred for synthesis, yet this flip-flop shall only work correctly if both the initial stateis 0 and the
final state is 1. Therefore, a simulation model for verification needs to be more complex than the model in the
synthesizeable RTL code.

In Verilog, the extra non-synthesi zeable code needs to al so reproduce the relevant previous state of the clock sig-
nal, whereas VHDL has built-in support for | ast _val ue of asignal.

10.4.3 Unary operators for vector expressions

A transition operation is defined using unary operators on a scalar net. The scalar constants (see 6.8) shall be
used to indicate the start and end states of atransition on a scalar net.

bit bit Il apply transition from bit value to bit value
For example,
olisatransitionfromo to 1.

No whitespace shall be allowed between the two scalar constants. The transition operators shown in Table 75
shall be considered legal.

Table 75—Unary vector operators on bits

Operator Description

01 Signal togglesfrom 0 to 1.

10 Signal toggles from 1 to 0.

00 signal remains 0.

1 Signal remains 1.

0? Signal remains 0 or toggles from O to arbitrary value.

1? Signal remains 1 or toggles from 1 to arbitrary value.

?0 Signal remains 0 or toggles from arbitrary valueto 0.

?1 Signal remains 1 or toggles from arbitrary valueto 1.

7 Signal remains constant or toggles between arbitrary values.

o* A number of arbitrary signal transitions, including possibility of constant
value, with theinitial value 0.

1* A number of arbitrary signal transitions, including possibility of constant
value, with theinitial value 1.

> A number of arbitrary signal transitions, including possibility of constant
value, with arbitrary initial value.
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Table 75—Unary vector operators on bits (Continued)

Operator Description

*0 A number of arbitrary signal transitions, including possibility of constant
value, with the final value 0.

*1 A number of arbitrary signal transitions, including possibility of constant
value, with thefinal value 1.

*7 A number of arbitrary signal transitions, including possibility of constant
value, with arbitrary fina value.

Unary operators for transitions can also appear in the STATETABLE.
Transition operators are also defined on words (and can appear the in STATETABLE as well):
' base word ' base word
In this context, the transition operator shall apply transition from first word value to second word value.
For example,
'hA'h5 is atransition of a4-bit signal from 'b1010 to 'b0101.
No whitespace shall be allowed between base and word.

The unary and binary operatorsfor transition, listed in Table 76 and Table 77 respectively, are defined on bits and
words.

Table 76—Unary vector operators on bits or words

Operator Description
?- No transition occurs.
? Apply arbitrary transition, including possibility of constant value.
?! Apply arbitrary transition, excluding possibility of constant value.
?~ Apply arbitrary transition with all bits toggling.

10.4.4 Basic rules for sequential functions

A sequentia function is described in equation form by a boolean assignment with a condition specified by a
boolean expression or a vector expression. If the condition evaluatesto 1 (True), the boolean assignment is acti-
vated and the assigned output values follows the rules for combinational functions. If the vector expression eval-
uatesto 0 (False), the output variables hold their assigned value from the previous eval uation.

For evaluation of a condition, thevalue' bH shall be treated as True, the value' bL shall be treated as False. All
other values shall be treated as the unknown value' bX.

Example
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The following behavior statement

BEHAVI OR {
@(E) {Zz=A}
}

isequivalent to
BEHAVI OR {
@(E=="bl || E=="bH) {Z = A}
}

The following statetabl e statement, describing the same logic function

STATETABLE ({

E A : Z,
0 ? : (2);
1 ? : (A);

}
isequivalent to

STATETABLE {

E A : Z;
0o 2?2 = (D;
L 2 (2);
1 ? A ;
(A);
H ? (A);

}

For edge-sensitive and higher-order event sensitive functions, transitions from or to ' bL shall be treated like
transitions fromor to' b0, and transitionsfrom or to ' bH shall be treated like transitionsfromor to' b1l.

Not every transition can trigger the evaluation of a function. The set of vectors triggering the evaluation of a
function are called active vectors. From the set of active vectors, a set of inactive vectors can be derived, which
shall clearly not trigger the evaluation of afunction. There areis also a set of ambiguous vectors, which can trig-
ger the evaluation of the function.

The set of active vectors is the set of vectors for which both observed states before and after the transition are
known to be logically equivalent to the corresponding states defined in the vector expression.

The set of inactive vectors is the set of vectors for which at least one of the observed states before or after the
transition is known to be not logically equivalent to the corresponding states defined in the vector expression.

Example
For the following sequential function
@(o1cp) { Z=A }
the active vectors are
(' b0’ bl CP)

(' b0' bH CP)
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(' bL' bl CP)
(' bL' bH CP)

and the inactive vectors are

' b1’ b0 CP)
'b1’ bL CP)
' b1’ bX CP)
' b1’ bW CP)
' b1’ bZ CP)
' bH b0 CP)
' bH bL CP)
' bH bX CP)
' bH bW CP)
(" bH bz CP)
(" bX b0 CP)
(" bX bL CP)
(" bWbO CP)
(" bWbL CP)
(" bZ' b0 CP)
(" bZ bL CP)
(" bU b0 CP)
(" bU bL CP)

AN AN AN AN AN AN AN S

and the ambiguous vectors are

(" b0’ bX CP)
(’ b0’ bW CP)
(" b0’ bZ CP)
(" bL’ bX CP)
(" bL’ bW CP)
(" bL’ bZ CP)
(" bX' bl CP)
(' bW bl CP)
(" bZ bl CP)
(" bX' bH CP)
(" bW bH CP)
(" bZ' bH CP)
(" bX' bW CP)
(" bX' bZ CP)
(" bW bX CP)
(" bW bZ CP)
(" bZ' bX CP)
(" bZ' bW CP)
(" bU bX CP)
(" bU bw CP)
(" bU bz CP)

For vectors using exclusively based literals, the set of active vectorsisthe vector itself, the set of inactive vectors
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isany vector with at least one different literal, and the set of ambiguous vectorsis empty.

Therefore, ALF does not provide a default behavior for ambiguous vectors, since the behavior for each vector
can be explicitly defined in vectors using based literals.
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10.4.5 Concurrency in sequential functions

The principle of concurrency applies also for edge-sensitive sequentia functions, where the triggering condition
is described by avector expression rather than a boolean expression. In edge-sensitive logic, the target logic vari-
able for the boolean assignment (LHS) can also be an operand of the boolean expression defining the assigned
value (RHS). Concurrency implies that the RHS expressions are evaluated immediately before the triggering
edge, and the values are assigned to the LHS variablesimmediately after the triggering edge. Thisisillustrated in

Figure 17.
BEHAVI OR {
@ ( <vector_expression(EL .Em> ) { El Em
Qj_ =
<lst _bool ean_expression(Dl..D)> ; vector

expr essi on

o =

<nt h_bool ean_expression(DL..Di)> ; } }

Q

1st bool ean expression )

‘V/u

_.
L4
m

nth bool ean expressi on ) d qT p

:

Figure 17—Concurrency for edge-sensitive sequential logic

Statements with multiple concurrent conditions for boolean assignments can aso be used in sequentia logic. In
that case conflicting values can be assigned to the same logic variable. A default conflict resolution is not pro-
vided for the following reasons.

Conflict resolution might not be necessary, since the conflicting situation is prohibited by specification.
For different types of analysis (e.g., logic simulation), a different conflict resolution behavior might be
desirable, while the physical behavior of the circuit shall not change. For instance, pessimistic conflict
resolution always assigns X, more accurate conflict resolution first checks whether the values are con-
flicting. Different choices can be motivated by a trade-off in analysis accuracy and runtime.

If complete library control over analysisis desired, conflict resolution can be specified explicitly.

Example

BEHAVI OR {

}

@( <condition 1> ) { Q= <value_1>; }
@( <condition 2> ) { Q= <value_2>; }

Explicit pessimistic conflict resolution can be described as follows:
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BEHAVI OR {

@( <condition 1> && <condition_ 2> ) { Q= "bX }
@( <condition 1> & & ! <condition 2>) { Q= <value_1>; }
@( <condition 2> && ! <condition_1>) { Q = <value_2>; }
}
Explicit accurate conflict resolution can be described as follows:
BEHAVI OR {
@ ( <condition_1> && <condition_ 2> ) {
Q = (<value_l>==<val ue_2>)? <value_1> : ’'bX
}
@( <condition_1> && ! <condition_2>) { Q = <value_1>; }
@( <condition_2> && ! <condition_1>) { Q = <value_2>; }

}

Since the conditions are now rendered mutually exclusive, equivalent descriptions with priority statements can
be used. They are more elegant than descriptions with concurrent statements.

BEHAVI OR {
@( <condition_1> && <condition_2> ) {
Q = <conflict_resol ution_val ue>;
}
: ( <condition_1>) { Q= <value_1>; }
( <condition_2>) { Q= <value_2>; }

}

Given the various explicit description possibilities, the standard does not prescribe a default behavior. The model
developer has the freedom of incomplete specification.

10.4.6 Initial values for logic variables
Per definition, al logic variablesin abehavioral description have theinitial value U which means “uninitialized”.

This value cannot be assigned to alogic variable, yet it can be used in abehavioral description in order to assign
other values than U after initialization.

Example
BEHAVI OR {
@( A =="bUu) { AL ="bl;}
@( @ =="bU) { @ ="b0; }
/1 followed by the rest of the behavioral description

}

A template can be used to make the intent more obvious, for example:

TEVMPLATE VALUE_AFTER_I NI TI ALI ZATI ON {

@( <logic_variable> =="bU) { <logic_variable>=<initial_value>; }
}
BEHAVI OR {

VALUE_AFTER | NI TI ALI ZATION ( QL 'bl' )

VALUE_AFTER | NI TI ALI ZATION ( @ ' b0’ )

/1 followed by the rest of the behavioral description
}
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Logic variablesin a vector expression shall be declared as Pl Ns. It is possible to annotate initial values directly
to apin. Such variables shall never take the value U. Therefore vector expressions involving U for such variables
(see the previous example) are meaningless.

Example
PINQL { INNTIAL_VALUE = "bl ; }
PINQ@ { INNTIAL_VALUE = "b0 ; }

10.5 Higher-order sequential functions

This section defines the different types of higher-order sequential functionsin ALF.

10.5.1 Vector-sensitive sequential logic

Vector expressions can be used to model generalized higher order sequential logic; they are an extension of the
boolean expressions. A vector expression describes sequences of logical events or transitions in addition to static
logical states. A vector expression represents a description of alogical stimulus without timescale. It describes

the order of occurrence of events.

The - > operator (followed by) gives a general capability of describing a sequence of events or a vector. For
example, consider the following vector expression:

01 A->018B
which reads “rising edge on A is followed by rising edge on B”.
A vector expression is evaluated by an event sequence detection function. Like asingle event or atransition, this

function evaluates True only at an infinitely short time when the event sequence is detected, as shown in
Figure 18.

w

B
X

01 A 01 B 10 A 01 A10 B 10 A 01 B

2
A

2ndlast X X 01 AO1 B 10 A 01 A10 B 10 A

contents of
event queue

9(A B) = (01 A -> 01 B) A

sequence (01 A -> 01 B) detected

Figure 18—Example of event sequence detection function
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The event sequence detection mechanism can be described as a queue that sorts events according to their order of
arrival. The event sequence detection function evaluates True at exactly the time when a new event enters the
gueue and forms the required sequence, i.e., the sequence specified by the vector expression with its preceding
events.

A vector-sensitive sequential logic can be called (N+1) order sequential logic, where N is the number of events
to be stored in the queue. The implementation of (N+ 1) order sequential logic requires N memory elements for
the event queue and one memory element for the output itself.

A sequence of events can also be gated with static logical conditions. In the example,

(01 CP -> 10 CP) && CD

the pin CD shall have st at e 1 from some time before the rising edge at CP to some time after the falling edge
of CP. The pin CD can not go low (st at e 0) after the rising edge of CP and go high again before the falling
edge of CP because thiswould insert eventsinto the queue and the sequence “rising edge on CP followed by fall-

ing edge on CP” would not be detected.

The formal calculation rules for general vector expressions featuring both states and transitions are detailed in
10.5.2 and 10.5.3.

The concept of vector expression supports functional modeling of devices featuring digital communication pro-
tocols with arbitrary complexity.

10.5.2 Canonical binary operators for vector expressions

The following canonical binary operators are necessary to define sequences of transitions:
— vector_fol |l owed_by for completely specified sequence of events
— vect or _and for simultaneous events
— vect or _or for aternative events

— vector_fol | owed_by for incompletely specified sequence of events

The symbols for the boolean operators for AND and OR are overloaded for vect or _and and vect or _or,
respectively. The new symbolsfor thevect or _f ol | owed_by operators are shown in Table 77.

Table 77—Canonical binary vector operators

LHS, RHS L
Operator Operands commutative Description
-> 2 vector No Left-hand side (LHS) transition is followed by Right-hand side
expressions (RHS) transition, no transition can occur in-between.
&&,& 2 vector Yes LHS and RHS transition occur simultaneously.
expressions
|| | 2 vector Yes LHS or RHS transition occur alternatively.
expressions
~> 2 vector No Left-hand side (LHS) transition is followed by Right-hand side
expressions (RHS) transition, other transitions can occur in-between.
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Per definition, the - > and ~> operators shall not be commutative, whereas the && and | | operators on events
shall be commutative.

01 a & 01 b === 01 b && 01 a
0Ola||] 01 b===01b|| Ol a

The- > and ~> operators shall be freely associative.

0Ola->01b->01c==(01a->01b) ->01c===01a->(01b->01r°c)
0la~>01b~>01c==(01a~>01b) ~>01c==01a-~>(01b~>01c)

The && operator isdefined for single events and for event sequences with the same number of - > operators each.
(01 AL .. -> ... 01 AN) & (01 B1 .. -> ... 01 BN
01 A1 &01B1... ->... 01 AN & 01 BN

The || operator reduces the set of edge operators (unary vector operators) to canonical and non-canonical opera-
tors.

(?? a) === (?! a)||(?- a) //a does or does not change its val ue
Hence ?? is non-canonical, since it can be defined by other operators.
If <val uel><val ue2> isan edge operator consisting of two based literalsval uel and val ue2 and wor d
is an expression which can take the value val uel or val ue2, then the following vector expressions are con-

sidered equivalent:

<val uel><val ue2> <wor d>

=== 10 (<word> == <val uel>) && 01 (<word> == <val ue2>)
=== 01 (<word> != <valuel>) && 01 (<word> == <val ue2>)
=== 10 (<word> == <val uel>) && 10 (<word> != <val ue2>)
=== 01 (<word> != <valuel>) && 10 (<word> != <val ue2>)

/1 all expressions describe the same event:
/'l <word> nmakes a transition from <val uel> to <val ue2>

Hence vector expressions with edge operators using based literals can be reduced to vector expressions using
only the edge operators 01 and 10.

10.5.3 Complex binary operators for vector expressions

Table 78 defines the complex binary operators for vector operators.

Table 78—Complex binary vector operators

LHS, RHS e
Operator Operands commutative Description
<-> 2 vector Yes LHStransition follows or isfollowed by RHS transition.
expressions
&> 2 vector No LHS transition isfollowed by or occurs simultaneously with RHS
expressions transition.
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Table 78—Complex binary vector operators (Continued)

Operator Operands Clc;r:lrﬁ’u?;iie Description
<&> 2 vector Yes LHStransition follows or isfollowed by or occurs simultaneously
expressions with RHS transition.
The following expressions shall be considered equivalent:
(01 a<->01b) ===(01 a->01b)||(01 b ->01a)
(0l a & 01 b) === (01 a ->01Db)||(01 a & 01 b)
(01 a <& 01 b) === (01 a ->01 b)||(01 b ->01a)||(01l a & 01 b)

By their symmetric definition, the <- > and <&> operators are commutative.

01l a<->01b==01b<->01a
01l a <& 01 b ===01b <& 01 a

The commutative complex binary vector operators are defined in Table 77. The commutativity rules are only
defined for two operands:

— commutative “followed by”:
vect _exprl <-> vect_expr2 ===
vect _exprl -> vect _expr2 // vect_exprl occurs first
| vect _expr2 -> vect_exprl // vect_expr2 occurs first
— commutative “followed by or simultaneously occurring”:
vect _exprl <& vect_expr2 ===
vect _exprl -> vect _expr2 // vect_exprl occurs first
| vect _expr2 -> vect _exprl // vect_expr2 occurs first
| vect _exprl && vect _expr2 // both occur simultaneously
10.5.4 Extension to N operands
This section defines how to use N operands.
A conpl ex_vect or _expr essi on of theform
vect or _expression { <-> vector_expression }
shall be commutative for all operands. The conpl ex_vect or _expr essi on describes aternative event
seguences in which the temporal order of each constituent vect or _expr essi on is completely permutable,
excluding simultaneous occurrence of each congtituent vect or _expr essi on.
A conpl ex_vect or _expr essi on of theform
vect or _expression { <& vector_expression }
shall be commutative for all operands. The conpl ex_vect or _expr essi on describes aternative event

seguences in which the temporal order of each constituent vect or _expr essi on is completely permutable,
including simultaneous occurrence of each constituent vect or _expr essi on.
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Example

01 A<->01 B<->01 C ===
01 ->01B->01

| 01 ->01C->01

| 01C->o01 01

| 01C->o01 01

|

|

01 -> 01 01
01 -> 01 01

>WO0Om>
0> >
V V VYV
TO>T>O

01 A<& 01 B <& 01 C

01 A->01B->01C
| 01B->01C->01A
| 01C->01A->01B8B
| 0LC->01B->01A
| 01B->01LA->01C
| O0LA->01C->01B
| 01 A& 01 B->01C
| O0LA->01B&O01C
| 01B& 01 C->01A
| 01 B->01C&&O0LA
| 01 C&& 01 A->01B
| 01 C->01A&:01B
| 01 A&& 01 B&& 01 C

10.5.4.1 Boolean rules
The following rule applies for a boolean AND operation with three operands:

rule 1:
A&B&C==(A&B) &C| A& (B &C

A corresponding rule also applies to the commutative followed-by operation with three operands:

rule 2:

01 A<->01 B <->01 C ===
(01 A<->01B) <->01C

| 01 A<-> (01 B<->010

The alternative boolean expressions(A & B) & CandA & (B & C) inrul e 1 areequivaent. Therefore,
rul e 1 can bereduced to the following:

rule 3:
A&B&C===(A&B) &C===(B&CQC &A

A corresponding rule does not apply to complex vector operands, since each expression with associated operands
generates only a subset of permutations:

(01A<-> 01 B) <-> 01 C ===
(01 A<->01B ->010

| (01 C-> (01 A<->01 B)) ===
0OlLA->01B->01C

| 01 B->01A->01C
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01 C->01
01 C->01

The permutations

A->018B
B->01A

0Ol A->01C->018B
01 B->01C->01A

are missing.

01 A<> (01 B<->010

10

(01 A -> (01 B <-> 01 Q)

| ((01 B<->01C ->01 A ===
01 A->01B->01C
| 0Ol A->01C->018B
| 01 B->01C->01A
| 01 C->01B->01A
The permutations
| 01 B->01A->01C
| 01 C->01A->018B
are missing.

10.5.5 Operators for conditional vector expressions

The definitions of the &&, ?, and : operators are also overloaded to describe a conditional vector expression

(involving boolean expressions and vector expressions), as shown in Table 79. The clauses are boolean expres-
sions; while vector expressions are subject to those clauses.

Table 79—Operators for conditional vector expressions

Operator

Operands

LHS, RHS
commutative

Description

&&, &

1 vector
expression
boolean
expression

Yes
1

Boolean expression (LHS or RHS) is True while sequence of
transitions, defined by vector expression (RHS or LHS) occurs.

1 vector
expression
boolean
expression

No
1

Boolean condition operator for construction of if-then-else clause
involving vector expressions.

1 vector
expression
boolean
expression

No
1

Boolean else operator for construction of if-then-else clause
involving vector expressions.

An examplefor conditional vector expression using && is given below:

(01 a & !b)

IEEE P1603 Draft 4
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The order of the operands in a conditional vector expression using && shall not matter.

<vect or _exp> && <bool ean_exp> === <bool ean_exp> && <vector _exp>
The && operator is still commutative in this case, although one operand is a boolean expression defining a static
state, the other operand is a vector expression defining an event or a sequence of events. However, since the
operands are distinguishable per sg, it is hot necessary to impose a particular order of the operands.

An example for conditional vector expression using ? and : is given below.

Ib 201l a: c?10b: 01d

b &0l a| !(!'b) &c & 10 b | !(!b) &!c & 01 d

This example shows how a conditional vector expression using ternary operators can be expressed with alterna-
tive conditional vector expressions.

A conditional vector expression can be reduced to a non-conditional vector expression in some cases (see
10.6.11).

Every binary vector operator can be applied to a conditional vector expression.
10.5.6 Operators for sequential logic

Table 80 defines the complex binary operators for vector operators.

Table 80—Operators for sequential logic

Operator Description

@ Sequential i f operator, followed by aboolean logic expression (for level-
sensitive assignment) or by a vector expression (for edge-sensitive assign-
ment).

Sequential el se i f operator, followed by a boolean logic expression (for
level-sensitive assignment) or by a vector expression (for edge-sensitive
assignment) with lower priority.

Sequentia assignments are constructed as follows:

@( <triggerl> ) { <actionl>} : ( <trigger2>) { <action2>}
( <trigger3>) { <action3>}

If triggerl event is detected, then acti onl is performed; else if tri gger2 event is detected, then
action2 is performed; elseif t ri gger 3 event is detected, then act i on3 is performed as a result of this
clause.

10.5.7 Operator priorities

The priority of binding operators to operands in non-conditional vector expressions shall be from strongest to
weakest in the following order:

a) unary vector operators (edge literals)
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b) complex binary vector operators (<- >, &>, <&>)
c) vector AND (&, &&)

d) vector_followed by operators (- >, ~>)

e vectorOR(|,]])

10.5.8 Using PINs in VECTORs

A VECTOR defines state, transition, or sequence of transitions of pins that are controllable and observable for
characterization.

Within a CELL, the set of PI Nswith SCOPE=behavi or or SCOPE=neasur e or SCOPE=Dbot h isthe default
set of variablesin the event queue for vector expressions relevant for BEHAVI OR or VECTOR statements or both,
respectively.

For detection of a sequence of transitions it is necessary to observe the set of variables in the event queue. For
instance, if the set of pins consists of A, B, C, D, the vector expression

(01 A -> 01 B)
implies no transition on A, B, C, D occurs between the transitions01 Aand 01 B.
The default set of pins applies only for vector expressions without conditions. The conditional event AND opera-
tor limits the set of variables in the event queue. In this case, only the state of the condition and the variables
appearing in the vector expression are observed.
Example
(01 A->01B) & (C| D

No transition on A, B occurs between 01 Aand 01 B,and (C | D) needsto stay Truein-between 01 A and
01 Baswell. However, Cand D can change their valuesaslongas (C | D) issatisfied.

10.6 Modeling with vector expressions

Vector expressions provide a formal language to describe digital waveforms. This capability can be used for
functional specification, for timing and power characterization, and for timing and power analysis.

In particular, vector expressions add value by addressing the following modeling issues:

— Functional specification: complex sequentia functionality, e.g., bus protocols.

— Timing analysis. complex timing arcs and timing constraints involving more than two signals.

— Power analysis: temporal and spatial correlation between events relevant for power consumption.

— Circuit characterization and test: specification of characterization and/or test vectors for particular tim-
ing, power, fault, or other measurements within a circuit.

Like boolean expressions, vector expressions provide the means for describing the functionality of digital cir-
cuitsin various contexts without being self-sufficient. Vector expressions enrich this functional description capa-
bility by adding a“dynamic” dimension to the otherwise “static” boolean expressions.

The following subsections explain the semantics of vector expressions step-by-step. The vector expression con-

cept is explained using terminology from simulation event reports. However, the application of vector expres-
sionsis not restricted to post-processing event reports.
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Some application tools (e.g., power analysis tools) can actually evaluate vector expressions during post-process-
ing of event reports from simulation. Other application tools, especially simulation model generators, need to
respect the causality between the triggering events and the actions to be triggered. While it is semantically
impossible to describe cause and effect in the same vector expression for the purpose of functional modeling,
both cause and effect can appear in avector expression used for atiming arc description.

ALF does not make assumption about the physical nature of the event report. Vector expressions can be applied
to an actual event report writtenin afile, to an internal event queue within asimulator, or to a hypothetical event
report which is merely a mathematical concept.

10.6.1 Event reports

This section describes the terminology of event reports from simulation, which is used to explain the concept of
ALF vector expressions. The intent of ALF vector expressions is not to replace existing event report formats.
Non-pertinent details of event report formats are not described here.

Simulation events (e.g., from Verilog or VHDL) can be reported in a value change dump (VCD) file, which has
the following general form:

<tinmel>
<vari abl eA> <statel>
<vari abl eB> <st at eV>
<ti me2>
<vari abl eC <st ateW
<vari abl eD> <st ateX>

<tinme3> ...

The set of variables for which simulation events are reported, i.e., the scope of the event report needs to be
defined beforehand. Each variable also has a definition for the set of states it can take. For instance, there can be
binary variables, 16-bit integer variables, 1-bit variables with drive-strength information, etc. Furthermore, the
initial state of each variable shall be defined as well. In an ALF context, the terms signal and variable are used
interchangeably. In VHDL, the corresponding term is signal. In Verilog, there is no single corresponding term.
All i nput , out put ,wi r e, andr eg variablesin Verilog correspondto asi gnal inVHDL.

Thetimevaues<ti mel>, <ti ne2>, <t i ne3>, etc. shall be in increasing order. The order in which simulta-
neous events are reported does not matter. The number of time points and the number of simultaneous events at a
certain time point are unlimited.

In the physical world, each event or change of state of avariable takes a certain amount of time. A variable can-
not change its state more than once at agiven point in time. However, in simulation, thistime can be smaller than
the resolution of the time scale or even zero (0). Therefore, a variable can change its state more than once at a
given point in simulation time. Those events are, strictly speaking, not simultaneous. They occur in a certain
order, separated by an infinitely small delta-time. Multiple simultaneous events of the same variable are not
reported in the VCD. Only the final state of each variable is reported.

A VCD file is the most compact format that allows reconstruction of entire waveforms for a given set of vari-
ables. A more verbose form is the test pattern format.

<TI ME> <vari abl eA> <vari abl eB> <vari abl eC <vari abl eD>

<tinmel> <statel> <st at eV> .
<tinme2> <statel> <st at eV> <st at eWs <st at eX>
<tinme3> ...
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The test pattern format reports the state of each variable at every point in time, regardless of whether the state has
changed or not. Previous and following states are immediately available in the previous and next row, respec-
tively. This makes the test pattern format more readable than the VCD and well-suited for taking a snapshot of
eventsin atime window.

An example of an event report in VCD format:

/1 initial values

AO B 1 cl1 D X E 1l
/1 event dunp

109 DO

258
573
586
643
788
915
1062
1395 co

1640 0 D1

/1 end of event dunp

B1 Ccl1

>oOmMm>»>r>>r0n>
OorORrROOOR

An example of an event report in test pattern format:

tine A
0 0
109 1
258 1
573 1
586 0
643 1
788 0
915 1
1062 1
1395 1
1640 0

OCORRPRRPROOOORRLRM
OCORRPRRPROOORREREQD
RPOOO0OO0OO0OO0OO0OO0OO XU
COORRRPRRERPRERRERRERM

Both VCD and test pattern formats represent the same amount of information and can be trandated into each
other.

10.6.2 Event sequences

For specification of a functional waveform (e.g., the write cycle of a memory), it is not practical to use an event
report format, such asaVCD or test pattern format. In such waveforms, there is no absolute time. And the rela-
tive time, for example, the setup time between address change and write enable change, can vary from one
instance to the other.

The main purpose of vect or _expr essi ons is waveform specification capability. The following operators
can be used:

— vect or_unary (also called edge operator or unary vector operator)
The edge operator is a prefix to a variable in a vector expression. It contains a pair of states, the first
being the previous state, the second being the new state. Edge operators can describe a change of state or
no change of state.
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— vect or _and (also called simultaneous event operator)
This operator uses the overloaded symbol & or && interchangeably. The & operator is the separator
between simultaneously occurring events

— vector _fol |l owed_by (aso caled followed-by operator)
The “immediately followed-by operator” using the symbol - > istreated first. The - > operator isthe sep-
arator between consecutively occurring events.

These operators are necessary and sufficient to describe the following subset of vect or _expr essi ons:

a) vector_single event
A change of state in asingle variable, for example:
01 A
b) vector_event
A simultaneous change of state in one or more variables, for example:
01 A& 10 B
Cc) vector_event_sequence
Subsequently occurring changes of state in one or more variables, for example:
01 A&10B->10 A

Thevect or _and operator has a higher binding priority than thevect or _f ol | owed_by operator.
We can now express the pattern of the sample event report inavect or _event _sequence expression:

0l A&X0D->10B->10C->10 A->01 A
->10A&01B&01C->01A->10E->10B &10C->10 A&01D

We can define the length of avect or _event _sequence expression as the number of subsequent events
described in the vect or _event _sequence expression. The length is equal to the number of - > operators
plusone (1).

Although the vector expression format contains an inherent redundancy, since the old state of each variable is
always the same as the new state of the same variable in a previous event, it is more human-readable, especially
for waveform description. On the other hand, it is more compact than the test pattern format. For short event
sequences, it is even more compact than the VCD, since it eliminates the declaration of initial values. To be accu-
rate, for variables with exactly one event the vector expression is more compact than the VCD. For variables
with more than one event the VCD is more compact than the vector expression. In summary, the vector expres-
sion format offers readability similar to the test pattern format and compactness close to the VCD format.

10.6.3 Scope and content of event sequences

The scope applicable to a vector expression defines the set of variables in the event report. The content of a vec-
tor expression isthe set of variablesthat appear in the vector expression itself. The content of avector expression
shall be a subset of variables within scope.

— PI Nswith the annotation SCOPE = BEHAVI OR are applicable variables for vector expressions within
the context of BEHAVI OR.

— PI Nswith the annotation SCOPE = MEASURE are applicable variables for vector expressions within
the context of VECTOR.

— Pl Nswith the annotation SCOPE = BOTH are applicable variables for all vector expressions.

A vector _event _sequence expression is an event pattern without time, containing only the variables

within its own content. This event pattern is evaluated against the event report containing al variables within
scope. The vector expression is True when the event pattern matches the event report.
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Example

time
0
109
258
573
586
643
788
915
1062
1395
1640

ORRPRPROFRPRORRLRRLROD>

OCOPFrRPFRPFPOOOORPFR®

OCORRPRRPROOORREQND

P OOO0OO0OO0OO0OO0OO0OO0OX0U

/1l scopeis A, B, C D E

COoOORRRRERRERREREREM

Consider the following vector expressions in the context of the sample event report:

01 A

/] event

11
1
11

A
0
1

/1(1)

pattern expressed by (1):

(1) isTrueat time 109, time 643, and time 915.

10 B-> 10 C

!/ event
/1 B
/1 1
/1 0
/1 0

(2) isTrueat time573.

10 A->01 A

!/ event
/1 A
/1 1
/1 0
/1 1

11(2)

pattern expressed by (2):

C

1
1
0

/1(3)

pattern expressed by (3):

(3) isTrueat time 643 and time 915.

01 D

/] event

/1
/1
/1

D
0
1

I1(4)

pattern expressed by (4):

(4) isTrueat time 1640.

01 A->10C

/] event

/1

A

/1(5)

pattern expressed by (5):

C
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/1 0o 1
/1 1 1
/1 1 ©

(5) isnot be True at any time, since the event pattern expressed by ( 5) does not match the event report at any
time.

10.6.4 Alternative event sequences

The following operator can be used to describe aternative events:
vect or _or, aso caled event-or operator or alternative-event operator, using the overloaded symbol
| or|| interchangeably. The | operator isthe separator between alternative events or aternative event

sequences.

In analogy to boolean operators, | has alower binding priority than & and - >. Parentheses can be used to change
the binding priority.

Example
(01A->01B)| 10C=01A->01B]| 10C
0Ol A->(01B|] 10C ===01A->01B|] 01 A->10C

Consider the following vector expressions in the context of the sample event report:

01 A| 10 /1(6)
//event pattern expressed by (6):

/1 A

/1 0

/1 1

/lalternative event pattern expressed by (6):

/1 C

/1 1

/1 0

(6) isTrueat time 109, time 573, time 643, time 915, and time 1395.

10B->10C| 10 A->01 A 11 (7)
/levent pattern expressed by (7):

/1 B C

/1 1 1

/1 0 1

/1 0 O

/lalternative event pattern expressed by (7):
/1 A

/1 1

/1 0

/1 1

(7) isTrueat time 573, time 643, and time 915.

01 D| 10 B-> 10 C 11(8)
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/1 event pattern expressed by (8):

/1 D

/1 0

/1 1

/lalternative event pattern expressed by (8):
/1 B C

/1 1 1

/1 0 1

/1 0 O

(8) isTrueat time 573 and time 1640.

10 B->10C| 10 A 11(9)
/levent pattern expressed by (9):

/1 B C

/1 1 1

/1 0 1

I 0 O

/lalternative event pattern expressed by (9):

/1 A

/1 1

/1 0

(9) isTrueat time 573, time 586, time 788, and time 1640.
The following operators provide a more compact description of certain alternative event sequences:
— &> events occur simultaneously or follow each other in the order RHS after LHS

— <->alLHSevent followed by a RHS event or aRHS event followed by a LHS event
— <&> events occur simultaneously or follow each other in arbitrary order

Example
01 A& 01 C === 01 A&01C]|] 01 A->01C
0l A<->01C == 01A->01C| 01C->01A
0l A< 01C === 0l1A<>01C| 01LA&O1C

The binding priority of these operatorsis higher than of & and - >.
10.6.5 Symbolic edge operators

Alternative events of the same variable can be described in a even more compact way through the use of edge
operators with symbolic states. The symbol ? stands for “any state”.

— edge operator with ? asthe previous state:
transition from any state to the defined new state
— edge operator with ? asthe next state:
transition from the defined previous state to any state.

Both edge operators include the possibility no transition occurred at al, i.e., the previous and the next state are
the same. This situation can be explicitly described with the following operator:

edge operator with next state = previous state, also called non-event operator
The operand stays in the state defined by the operator.
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The following symbolic edge operators also can be used:
a) ?- notransition on the operand
b) ?! transition from any state to any state different from the previous state

c) ?7? transition from any state to any state or no transition on the operand
d) ?~ transition from any state to its bitwise complementary state

Example

Let A be alogic variable with the possible states 1, 0, and X.

20 A===00 A| 10 A| X0 A

21 A===01A| 11 A| XL A

2X A === 0XA| IXA| XX A

0?7 A=== 00 A| 01 A| OX A

1?7 A=== 10 A| 11 A| 1X A

X2 A=== X0 A| XL A| XXA

2 A=== 01 A| OXA| 10 A| 1IXA| X0 A| XL A

2~ A===01A| 10 A| XXA

22 A=== 00 A| 0L A| OXA| 10 A| 11 A| 1IXA| XOA| XL A| XX A
2- A=== 00 A| 11 A| XX A

For variables with more possible states (e.g., logic states with different drive strength and multiple bits) the
explicit description of aternative eventsis quite verbose. Therefore the symbolic edge operators are useful for a
more compact description.

This completes the set of vect or _bi nary operators necessary for the description of a subset of
vect or _expressi ons caled vect or _conpl ex_event expressions. All vect or _bi nary operators
have two vect or _conpl ex_event expressions as operands. The set of vect or _event _sequence
expressions is a subset of vector_conpl ex_event expressions. Every vect or _conpl ex_event
expression can be expressed in terms of alternativevect or _event _sequence expressions. The latter could
be called minterms, in analogy to boolean algebra.

10.6.6 Non-events
A vector_singl e_event expression involving anon-event operator is called a non-event. A rigorous defi-
nition is required for vect or _conpl ex_event expressions containing non-events. Consider the following

example of aflip-flop with clock input CLK and data output Q.

01 CLK -> 01 Q // (i)
01 CLK -> 00 Q // (ii)

The vector expression (i ) describes the situation where the output switches from O to 1 after the rising edge of
the clock. The vector expression (i i ) describesthe situation where the output remains at O after therising edge
of the clock.

How isit possible to decide whether (i) or (i) isTrue, without knowing the delay between CLK and Q? The
only way isto wait until any event occurs after the rising edge of CLK. If the event is not on Q and the state of Q
isO during that event, then (i i) isTrue

Hence, a non-event is True every time when another event happens and the state of the variable involved in the
non-event satisfies the edge operator of the non-event.

Example
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time
0
109
258
573
586
643
788
915
1062
1395
1640

ORRPRPROFRPRORRLRRLROD>
OCORRPRFPROOOORRLRD
OCORRPRRFPROOORREREQND
POOO0OO0OO0OO0OO0OO0OOX0U
COoOORRRRERRERRERERREM

The test pattern format represents an event, for example 01 A, in no different way than a non-event, for example
11 E. Thisnon-event is True at times 109, 258, 573, 586, 643, 788, and 915; in short, every time when an event
happens while E is constant 1.

10.6.7 Compact and verbose event sequences

A vect or _event _sequence expression in acompact form can be transformed into a verbose form by pad-
ding up every vector _event expresson with non-events. The next state of each variable within a
vect or _event expression shall be equal to the previous state of the same variable in the subsequent
vect or _event expression.

Example
01 A->10B===01 A& 11 B->11 A& 10 B

A vector expression for a complete event report in compact form resembles the VCD, whereas the verbose form
looks like the test pattern.

/1 conpact form

01l A&X0D->10B->10C->10 A->01 A
->10 A&01B&01C->01A->10E
->10B &10C->10 A& 01 D

!/l verbose form

?20A&?1 B&7?1 C&?XD&?1E ->
0l A&11 B&11 C& X0OD&11 E ->
11 A&10B & 11 C& 00 D&11 E ->
11 A&00B&10C&00 D&11 E ->
10 A&00B&00OC&0D0D&I1I1E ->
0l A&00OB &0 C&O0O0D&I11 E ->
10 A&01B&01 C&0D0D&I1I1E ->
0l A&11 B&11 C&00D&11 E ->
11 A&11 B&11 C& 00 D&10E ->
11 A&10B & 10 C& 00 D &O0O0O E ->
10 A& 00 B & 00 C&01 D&OO0 E

The transformation rule needs to be dlightly modified in case the compact form contains avect or _event

expression consisting only of non-events. By definition, the non-event is True only if areal event happens simul-
taneoudly with the non-event. Padding up avect or _event expression consisting of non-events with other
non-events make this impossible. Rather, thisvect or _event expression needs to be padded up with unspeci-
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fied events, using the ?? operator. Eventually, unspecified events can be further transformed into partly specified
events, if aformer or future state of the involved variable is known.

Example

01 A->008B
=== 01 A&00 B->?? A&00 B

In the first transformation step, the unspecified event ??  Aisintroduced.

01 A&00 B->7?? A&00 B
=== 01 A&00 B->1? A& 00 B

In the second step, this event becomes partly specified. ?? Aisboundtobe1? A dueto the previous event on
A

10.6.8 Unspecified simultaneous events within scope

Variables which are within the scope of the vector expression yet do not appear in the vector expression, can be
used to pad up the vector expression with unspecified events as well. Thisis equivalent to omitting them from the
vector expression.

Example

01 A->10B /1 let us assune a scope containing A, B, C, D, E

01l A&10B&??2C&°??D&??E->11A&10B&??7C&°??2D&?°E

This definition allows unspecified events to occur simultaneously with specified events or specified non-events.
However, it disallows unspecified events to occur in-between specified events or specified non-events.

At first sight, this distinction seemsto be arbitrary. Why not disallow unspecified events altogether? Yet there are
several reasons why this definition is practical.

If avector expression disallows simultaneously occurring unspecified events, the application tool has the burden
not only to match the pattern of specified events with the event report but also to check whether the other vari-
ablesremain constant. Therefore, it is better to specify this extra pattern matching constraint explicitly in the vec-
tor expression by using the ?- operator.

There are many cases where it actually does not matter whether simultaneously occurring unspecified events are
allowed or disallowed:

— Case 1. Simultaneous events are impossible by design of the flip-flop. For instance, in a flip-flop it is
impossible for atriggering clock edge 01 CK and a switch of the data output ? Qto occur at the same
time. Therefore, such events can not appear in the event report. It makes no difference whether 01 CK &
?- Q01 CK & ?? Qor01 CK isspecified. Theonly occurring event patternis01 CK & ?- Q
and this pattern can be reliably detected by specifying 01 CK.

— Case 2: Simultaneous events are prohibited by design. For instance, in a flip-flop with a positive setup
time and positive hold time, the triggering clock edge 01 CK and a switch of the datainput ?! Disa
timing violation. A timing checker tool needs the violating pattern specified explicitly, i.e.,, 01 CK &
?1 D. Inthis context, it makes sense to specify the non-violating pattern also explicitly, i.e,, 01 CK &
?- D.Thepattern 01 CKhby itself isnot applicable.

— Case 3: Simultaneous events do not occur in correct design. For instance, power analysis of the event 01
CK needs no specification of ?! Dor ?- D. Inthe anaysis of an event report with timing violations, the
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power analysis is less accurate anyway. In the analysis of the event report for the design without timing
violation, the only occurring event patternis01 CK & ?- Dand this pattern can bereliably detected by
specifying 01 CK.2

— Case 4: The effects of simultaneous events are not modeled accurately. This is the case in static timing
analysis and also to some degree in dynamic timing simulation. For instance, a NAND gate can have the
inputs A and B and the output Z. The event sequence exercising thetimingarc01 A -> 10 Zcanonly
happen if B is constant 1. No event on B can happen in-between 01 Aand 10 Z. Likewise, thetiming
arc01 B -> 10 Z canonly happenif Aisconstant 1 and no event happensin-between 01 B and 10
Z. The timing arc with simultaneously switching inputs is commonly ignored. A tool encountering the
scenario01 A & 01 B -> 10 Z hasno choice other than treating it arbitrarily as01 A -> 10 Z
oras01 B -> 10 Z

— Caseb5: The effects of simultaneous events are model ed accurately. Here it makes sense to specify all sce-
narios explicitly,eg., 01 A & ?- B -> 10 Z,01 A &?! B -> 10 Z,?- A & 01 B -> 10
Z, etc., whereas the patterns01 A -> 10 Zand01l B -> 10 Z by themselves apply only for less
accurate analysis (see Case 4).

Thereis aso aformal argument why unspecified events on a vector expression need to be alowed rather than
disallowed. Consider the following vector expressions within the scope of two variables A and B.

01 A 11 (i)
01 B 11 (i)
01 A&OLB // (iii)

The natural interpretation hereis (iii) === (i) & (ii). Thisinterpretation is only possible by allowing
simultaneously occurring unspecified events.

Allowing simultaneously occurring unspecified events, the vector expressions (i ) and (i i), respectively, are
interpreted as follows:

01 A&??B [/ (i)
22 A&O01 B [/ (ii)

Disallowing simultaneously occurring unspecified events, the vector expressions (i) and (i i), respectively,
are interpreted as follows:

01 A&? B [/ (i)
2- A&O01B [/ (ii)

The vector expressions (i’ ) and (i i’ ) arecompatiblewith (iii),whereas(i’’) and(ii’’) arenot.
10.6.9 Simultaneous event sequences

The semantic meaning of the “simultaneous event operator” can be extended to describe simultaneously occur-
ring event sequences, by using the following definition:

(01 A#1 .. -> ... 01 A#N) & (01 B#1 .. -> ... 01 B#N)
=== 01 A#1 & 01 B#1 ... -> ... 01 A#N & 01 B#N

This definition is analogous to scalar multiplication of vectors with the same number of indices. The number of
indices corresponds to the number of vect or _event expressions separated by - > operators. If the number of

2The power analysistool relatesto atiming constraint checker in asimilar way as a parasitic extraction tool relatesto a DRC toal. If the lay-
out has DRC violations, for instance shorts between nets, the parasitic extraction tool shall report inaccurate wire capacitance for those nets.
After final layout, the DRC violations shall be gone and the wire capacitance shall be accurate.
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- > in both vector expressionsis not the same, the shorter vector expression can be | eft-extended with unspecified
events, using the ?? operator, in order to align both vector expressions.

Example

(01 A->01B->01C & (01 D->01E

=== (01 A->01 B->01C & (?? D->01D-> 01 E)
=== 01 A&??2D->01B&01D->01LC&OLE

=== 01 A->01B&O01D->01C&O1E

The easiest way to understand the meaning of “simultaneous event sequences’ isto consider the event report in
test pattern format. If each vect or _event _sequence expression matches the event report in the same time
window, then the event sequences happen simultaneously.

>
m

tine
0
109
258
573
586
643
788
915
1062
1395
1640

ORRPPFPORPRORRERREO
OCORRPRRFPROOOORRLRM
OCORRPRPROOORREREQD
POOO0OO0OO0OO0OO0OO0O XU
COoOO0ORRRRRERRREPR

Example

01 A->10B==01A&11B->11 A&10 B /1 (10a)
/1 event pattern expressed by (10a):

/1 A B

/1 0 1

/1 1 1

/1 1 0

X0 D->00D /1 (10b)
/1l event pattern expressed by (10b):

/1 D

/1 X

/1 0

/1 0

(01 A->10B) & (X0 D-> 00 D) /1 (10) === (10a) & 10b)

Both ( 10a) and ( 10b) are True at time 258. Therefore ( 10) is True at time 258.

10 C

== ?? C->??2 C->10C

== ?? C->?1 C->10C /1 (11a)
/1l event pattern expressed by (1lla):

/1 C

/1 ?

/1 ?

/1 1

/1 0
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(11a) isleft-extended to match the length of the following ( 11b) .

01 A->00 D-> 11 E ===
01 A&O0O0 D&??E
->?? A&00 D &??E
-> 7?7?27 A&??D&11 E
01 A&O0O0D&??E
->1? A&00D&?1E
->?? A&0? D& 11 E 11 (11b)
/1 event pattern expressed by (11b):
/1 A D E
/1 o o 2
/1 1 0 2
/1 ? 0 1
/1 ? 0?2 1

(11b) contains explicitly specified non-events. The non-event 00 D calls for the unspecified events ?? A and
?? E. Thenon-event 00 E callsfor the unspecified events ?? Aand ?? D. By propagating well-specified pre-
vious and next states to subsequent events, some unspecified events become partly specified.

10 C & (01 A -> 00 D -> 11 E) /1 (11) === (11a) & 11b)

(11a) isTrueat time 573 and time 1395. ( 11b) is True at time 573 and time 915. Therefore, ( 11) is True at
time 573.

10.6.10 Implicit local variables

Until now, vector expressions are evaluated against an event report containing all variables within the scope of a
cell. It ispractical for the application to work with only one event report per cell or, at most, two event reports if
the set of variables for BEHAVI OR (scope=behavi or) and VECTOR (scope=neasur e) isdifferent. How-
ever, for complex cells and megacells, it is sometimes necessary to change the scope of event observation,
depending on operation modes. Different modes can require a different set of variables to be observed in differ-
ent event reports.

The following definition allows to extend the scope of a vector expression locally:
Edge operators apply not only to variables, but also to boolean expressions involving those variables.
Those boolean expressions represent implicit local variables that are visible only within the vector

expression where they appear.

Supposethelocal variables(A & B),(A | B) areinserted into the event report:

timm A B C D E A8 AB
0 0 1 1 X 1 0 1
109 1 1 1 0 1 1 1
258 1 0 1 0 1 0 1
573 1 0 0 0 1 0 1
586 0 0 0 0 1 0 0
643 1 0 0 0 1 0 1
788 0 1 1 0 1 0 1
915 1 1 1 0 1 1 1
1062 1 1 1 0 0 1 1
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1395 1 0O o 0 o 0 1
1640 0 0 O 1 0 0 0

Example

01 (A & B)

/1l event pattern expressed by (12):
/1 A&B

/1 0

/1 1

(12) isTrueat time 109 and time 915.

10 (A | B)

/1 event pattern expressed by (13):
I Al B

/1 1

/1 0

(13) isTrueat time 586 and time 1640.
01 (A&B) ->10 B

/1 event pattern expressed by (14):
/1 B A&GB

/1 1 0
/1 1 1
/1 0 1

(14) isTrueat time 258.

10 ( A&B) &10B ->10 C
/1 event pattern expressed by (15):
/1 B C A&

/1 1 1 1
/1 0 1 0
/1 0 0 0

(15) isTrueat time573.

10 (A& B) -> 10 (A] B
/1 event pattern expressed by (16):
/1 A&B A B

11 1 1
11 0 1
/1 0 0

(16) isTrueat time 1640.
10.6.11 Conditional event sequences

The following definition restricts the scope of avector expression locally:

Il (12)

Il (13)

11 (14)

/1 (15)

Il (16)

vect or _bool ean_and, aso called conditional event operator
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This operator is defined between a vector expression and a boolean expression, using the overloaded
symbol & or &&. The scope of the vector expression is restricted to the variables and eventual implicit
local variables appearing within that vector expression. The boolean expression shall be True during the
enti r(3e vector expression. The boolean expression is called the Existence Condition of the vector expres-
sion.

Vector expressions using the vect or _bool ean_and operator are called vect or _condi ti onal _event
expressions. Scope and contents of such expressions are identical, as opposed to non-conditional
vect or _conpl ex_event expressions, where the content is a subset of the scope.

Example

(10 (A& B) -> 10 (A]| B)) &!'D Il (17)
/1 event pattern expressed by (17):

/1 A&B A B

/1 1 1

/1 0 1

I 0 0

/1l event report without C E

time A A&B AB

0
109
258
586
643
788
915
1062
1395
1640

=

ORRPRPRORFRORRERO
OCORRPRPFPROOORRFLD
POOOO0OO0OO0OO0OXU
OORPFRPROOOORrRO
ORRPRRPRRLPRRPLRORPR

(17) contains the same vect or _conpl ex_event expression as ( 16) . However, although ( 16) is not
Trueat time 586, (17) isTrue at time 586, since the scope of observation is narrowed to A, B, A&B, and A| B by
the existence condition ! D, which is statically True while the specified event sequence is observed.

Within, and only within, the narrowed scope of thevect or _condi ti onal _event expression, (17) canbe
considered equivalent to the following:

(10 (A& B) -> 10 (A| B)) &!'D

(10 (A& B) -> 10 (A| B)) & (11 (!D) -> 11 (! D))

10 (A&B) &11 (!D -> 10 (A]| B & 11 (!'D
The transformation consists of the following steps:

a) Transform the boolean condition into a non-event.
For example, ! Dbecomes11l (! D).

3An Existence Condition can also appear as annotation to a VECTOR object instead of appearing in the vector expression. This enables recog-
nition of existence conditions by application tools which can not evaluate vector expressions (e.g., static timing analysis tools). However, for
tools that can evaluate vector expressions, there is no difference between existence condition as a co-factor in the vector expression or as an
annotation.

IEEE P1603 Draft 4 Advanced Library Format (ALF) Reference Manual 149

10

15

20

25

30

35

40

45

50

55



10

15

20

25

30

35

40

50

55

b) Left-extend the vect or _si ngl e_event expression containing the non-event in order to match the
length of thevect or _conpl ex_event expression.
For example, 11 (! D) becomes1l (! D) -> 11 (! D) to match thelength of
10 (A& B) -> 10 (A | B).

¢) Apply scalar multiplication rule for simultaneously occurring event sequences.

Thus, a vector_conditional event expresson can be transformed into an equivaent
vect or _conpl ex_event expression, but the change of scope needs to be kept in mind. An operator which
can express the change of scope in the vector expression language is defined in 10.6.13. This can make the trans-
formation more rigorous.

Regardless of scope, the transformation from vector _conditional event expresson to
vector _conpl ex_event expression aso provides the means of detecting ill-specified
vect or _condi ti onal _event expressions.

Example

(10 A->01B->01LA) &A

10 A&11 A->01B&11 A->01 A&11 A
The first expression 10 A & 11 A and the third expresson 01 A & 11 A within the
vect or _conpl ex_event expression are contradictory. Hence, the vect or _conditi onal _event
expression can never be True.

10.6.12 Alternative conditional event sequences

All vector_binary operators, in particular the vector_or operator, can be applied to
vect or _conditional _event expressionsaswell astovect or _conpl ex_event expressions.

Consider again the event report:

>
@]

tine
0
109
258
573
586
643
788
915
1062
1395
1640

ORPFPRFRPORORREO
OCORRPRRPRPROOOORRLRM
OORRFPRFRPROOORRR

RPOOO0OO0OO0OO0OO0OO0OO XU
COO0ORRRRERPRRERERERM

Concurrent alternative vect or _condi ti onal _event expressions can be paraphrased in the following
way:
| F <bool ean_expressi on;> THEN <vect or _expr essi on,>
OR | F <bool ean_expressi on,> THEN <vect or _expressi ony,>
OR | F <bool ean_expressi ony> THEN <vect or _expressi ony>

The conditions can be True within overlapping time windows and thus the vector expressions are evaluated con-
currently. Thevect or _bool ean_and operator and vect or _or operator describe such vector expressions.
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Example

C&01 A->10B) | 'D&10 B -> 10 A) | E&10 B -> 10 O // (18)
/1 Event pattern expressed by (18):

/1 A B C

/1 0 1 1

/1 1 1 1

/1 1 0 1

(18) isTrueat time 258 becauseof C & (01 A -> 10 B).

/1 Aternative event pattern expressed by (18):
/1 A B D

/1 1 1 o0

/1 1 0 O

/1 0O 0 O

(18) isdso Trueat time586 becauseof ! D & (10 B -> 10 A).

/1 Alternative event pattern expressed by (18):

/1 B C E

/1 1 1 1

/1 0 1 1

/1 0O 0 1

(18) isadso Trueat time573 becauseof E & (10 B -> 10 C).

Prioritized alternative vect or _condi ti onal _event expressions can be paraphrased in the following way:

| F <bool ean_expressi on;> THEN <vect or _expr essi on,>

ELSE | F <bool ean_expressi ony,> THEN <vect or _expressi ony>
ELSE | F <bool ean_expressi ony> THEN <vect or _expressi onp>

(optional) ELSE <vector_expressi ONgefault>

Only the vector expresson with the highest priority True condition is evaluated. The
vect or _bool ean_cond operator and vect or _bool ean_el se operator are used in ALF to describe
such vector expressions.

Example
C? (01 A->10B): 'D? (10 B-> 10 A: E? (10 B->10 C // (19

The prioritized aternative vect or _condi ti onal _event expression can be transformed into concurrent
dternativevect or _condi ti onal _event expression as shown:

C? (01 A->10B) : 'D? (10 B->10A) : E? (10 B -> 10 O

C& (0L A->10 B)
| 1C&!D& (10 B -> 10 A
| '1C&!(!D) & E & (10 B -> 10 Q)

(19) isTrueat time 258 becauseof C & (01 A -> 10 B), but not at time 586 because of higher priority C

while! D & (10 B -> 10 A), nor at time 573 because of higher priority ! Dwhile
E & (10 B -> 10 O).
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10.6.13 Change of scope within a vector expression

Conditions on vector expressions redefine the scope of vector expressions locally. The following definition can
be used to change the scope even within a part of a vector expression. For this purpose, the symbolic state * can
be used, which means “don’t care about events”. Thisis different from the symbolic state ? which means “don’'t
care about state”. When the state of avariableis*, arbitrary events occurring on that variable are disregarded.

— Edge operator with * as next state:
The variable to which the operator appliesis no longer within the scope of the vector expression.
— [Edge operator with * as previous state:
The variable to which the edge operator applies is now within the scope of the vector expression.
Asopposedto ?, * stands for an infinite variety of possibilities.
Example

Let A bealogic variable with the possible states 1, 0, and X.

*0 A ===

00 A| 10 A| X0 A

| 00A->00A| 10A->00A| X0 A->00A
| OLA->10A| 11 A->10 A| XL A-> 10 A
| OXA->X0 A| 1IXA->X0 A| XX A->X0 A
| 00 A->00A->00A |

0* A ===

00 A| 0L A| OX A

| 00OA->00A| 00A->01A| 00A->0XA
| OLA->10 A| 0L A->11 A| 01 A-> 1X A
| OXA->X0 A| OXA->XL A| OXA-> XX A
| 00 A->00A->00A |

A vector expression with an infinite variety of possible event sequences cannot be directly matched with an event
report. However, there are feasible ways to implement event sequence detection involving * . In principle, there
isa“static” and “dynamic” way. The following parts of the vector expression are separated by * sub-sequences
of events.

— “Static” event sequence detection with * :
The event report with all variables can be maintained, but certain variables are masked for the purpose of
detection of certain sub-sequences.

— “Dynamic” event sequence detection with * :
The event report shall contain the set of variables necessary for detection of a relevant sub-sequence.
When such a sub-sequence is detected, the set of variables in the event report shall change until the next
sub-sequence is detected, etc.

Examples

01 A->1* B-> 10 C /1 (20)
/1 Event pattern expressed by (20):

/1 A B C

/1 0 1 1

/1 1 1 1

/1 1 * 1

/1 1 * 0
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/1 pattern for

1st sub-sequence:

/1 pattern for 2nd sub-sequence:

/1 A B C
/1 0 1 1
/1 1 1 1
/1 1 = 1
/1 A B C
/1 1 = 1
/1 1 = 0

The event report with masking relevant for ( 20) :

time
0
109
258
573
586
643
788
915
1062
1395
1640

ORrRPRPROFRORRLRRLROD>

O * * P R OO * Rk

OCORRPRRFRPROOORREREQND

P OOOOOO0OO0OO0OO0O XU

/1 detection of 1st sub-sequence
/1 detection of 2nd sub-sequence

/1 detection of 1st sub-sequence
/] detection of 2nd sub-sequence

OCOoOORRRPRRERPRERREREREM

(20) isTrueat time 573 and time 1395. The first sub-sequence01 A -> 1* Bisdetected at time 258, since
* maps to any state. From time 258 onwards, B is masked. The second sub-sequence 10 Cis detected at time
573. From time 573 onwards, B is unmasked. The first sub-sequence is detected again at time 1062. The second
sub-sequence is detected again at time 1395.

E->10 C
pattern expressed by (21):

11 (21)

1st sub-sequence:

/1l pattern for 2nd sub-sequence:

01 A & 1*

/1 Event

/1 A C E
/1 0 1 1
/1 1 1 *
/1 1 o *
/1l pattern for
/1 A C E
/1 0 1 1
/1 1 1 *
/1 A C E
/1 1 1 *
/1 1 o *

The event report with masking relevant for ( 21) :

tine
0
109
258
573
586
643

A
0
1
1
1
0
1

[eoNeNoNel i i)

IEEE P1603 Draft 4

coOoORrRLELRQO

o000 XU

/1 detection of 1st sub-sequence
/1 abortion of detection process

O N N 1l
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788 0 1 1 o0 1
915 1 1 1 0 * /1 detection of 1st sub-sequence
1062 1 1 1 0 * /1 disregard event out of scope
1395 1 0 0 0 0 /1 detection of 2nd sub-sequence
1640 0 O O 1 o0

(21) is True at time 1395. The first sub-sequence 01 A & 1* E is detected at time 109. From time 109
onwards, E ismasked. The event on B at time 258 aborts continuation of the detection process and triggers restart
from the beginning. The first sub-sequence is detected again at time 915. From time 915 onwards, E is masked.
The event at time 1062 is therefore out of scope. The second sub-sequence 10 Cis detected at time 1395.

0OlA->*1B->10B&10C Il (22)
/1 Event pattern expressed by (22):
/1 A
/1 0
/1 1
/1 1
/1 1
/1 pat
/1 A
0
1
t
A
1
1
1

_..,
o

1st sub-sequence:

/1
/1
/1 pa
/1
/1
/1
/1

* xS OF * @

_.,
o
ORRPOTRPRRPOTORRLRERQND

2nd sub-sequence:

OrFr *mW?>S

The event report with masking relevant for ( 22) :

>

tine
0
109
258
573
586
643
788
915
1062
1395
1640

/1 detection of 1st sub-sequence
/] abort

/1 detection of 1st sub-sequence
/1 continue
/1 detection of 2nd sub-sequence

ORRPPFPORFRPRORRERREO
OOR % % % ¥ *ORRLR®m
OCORRPRRPROOORRERE(QD
RPOOO0OO0OO0OO0OO0OO0OO XU
OCOoOO0ORRRPRRERPRERRERREM

(22) is True at time 1395. The first sub-sequence 01 A is detected at time 109. Therefore, B is unmasked.
Since B=0 at time 258, the attempt to detect the second sub-sequence is aborted and the detection process restarts
from the beginning. The first sub-sequence 01 A is detected again at time 109. The second sub-sequence*1 B
-> 10 B & 10 Cisdetected at time 1395.

01 A->1? A&0* B&1* E-> 10 C 1 (23)
/1l Event pattern expressed by (23):

/1 A B C E

/1 0 0 1 1

/1 1 0 1 1
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/1 1 * 1 *
/1 1 * 0o =
/1 pattern for 1st sub-sequence:
/1 A B C E

/1 0 O 1 1
/1 1 0 1 1
/1 ? 1 =

/1 pattern for 2nd sub-sequence:
/1 A B C E
/1 ? (R
/1 ? 0o =

The event report with masking relevant for (23):

>

tine
0
109
258
573
586
643
788
915
1062
1395
1640

/1 detection of 1st sub-sequence
/] abort

ORRPPRPRORORRERREO
OOR * xOOO0OORRLRM®
OCORRPRRFRPROOORRERE(QD
POOO0OO0OO0OO0OO0OO0OO XU
QOO * *RPRREPRRREREPM

(23) isnot True at any time. The first sub-sequence is detected at time 788. The event at time 915 does not
match the expected second sub-sequence.

10.6.14 Sequences of conditional event sequences

The symbol * can be used to describe the scope of avector expression directly in the vector expression language.
Thisis particularly useful for sequences of vect or _condi ti onal _event expressions.

Inreusing (17) asexample:

(10 (A& B) ->10 (A] B)) &!'D
the scope of the sample event report contains contain the variables A, B, C, D, and E. The
vector _conditional _event expression (17) contains only the variables A, B, and D and the implicit
local variables A&B and A| B. Therefore, the global variables C and E are out of scope within ( 17) . Theimplicit
local variables A&B and A| B are in scope within, and only within, ( 17) .
Now consider a sequence of vect or _condi ti onal _event expressions, where variables move in and out
of scope. With the following formalism, it is possible to transform such a sequence into an equivalent
vector_conpl ex_event  expression, alowing for a change of scope within each
vector _conditional _event expression.

<vector_conditional _event#l1> .. -> .. <vector_conditional _event#N>

where
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<vector_conditional event#i >
=== <vector_conpl ex_event #i > & <bool ean_expression#i > // 1 <i < N

The principleisto decompose each vect or _condi ti onal _event expression into a sequence of three vec-
tor expressions prefix, kernel, and postfix and then to reassembl e the decomposed expressions.

<vector_conditional event#i >
=== <prefix#i > -> <kernel #i > -> <postfix#i>// 1 <i <N

a) Definethe prefix for eachvect or _condi ti onal _event expression.
Theprefixisavect or _event expression defining all implicit local variables.

Example
*? (A&B) & *? (A B)

b) Definethekernel for eachvect or _condi ti onal _event expression.

The kernel is the vector_conpl ex_event expresson  equivalent to the
vector _conditi onal _event expression.

<vect or _conpl ex_event #i > & <bool ean_expr essi on#i >

=== <vect or _conpl ex_event #i >

& (11 <bool ean_expression#i > ..->.. 11 <bool ean_expr essi on#i >)
The kernel can consist of one or severa alternative vect or _event _sequence expressions. Within
eachvect or _event _sequence expression, the same set of global variables are pulled out of scope
at the first vect or _event expression and pushed back in scope at the last vect or _event expres-
sion.

Example

?* C& ?* E /] global variables out of scope

& 10 (A&B) &11 (!D -> 10 (A] B) & 11 (!'D

& *? C& *? E // global variables back in scope

c) Definethe postfix for eachvect or _condi ti onal _event expression.
The postfixisavect or _event expression removing all implicit local variables.

Example
?* (A&B) & ?* (A B)

d) Jointhesubsequentvect or _conpl ex_event expressionswiththevect or _and operator between
prefix#i+1and kernel# and also between postfix#i and kernel#i+1.
<vector_conditional _event#i > -> <vector_conditional _event#i +1> ..
=== .. <prefix#i>
-> <postfix#i-1> & <kernel #i > & <prefi x#i +1>
-> <postfix#i > & <kernel #i +1> & <prefi x#i +2>
-> <postfix#i +1> ..

The complete example:

(10 (A& B) -> 10 (A| B)) &!D

*2 (A&B) & *? (Al B)

> 7?2 C& ™ E

& 10 (A&B) &11 (!D -> 10 (A| B) & 11 (!D)
&*? C&*? E

-> 2% (A&B) & ?* (A B)
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NOTE —The in-and-out-of-scope definitions for global variables are within the kernel, whereas the in-and-out-of-scope def-
initions for globa variables are within the prefix and postfix. In this way, the resulting vect or _conpl ex_event expres-
sion contains the same uninterrupted sequence of events as the original sequence of vect or _condi ti onal _event
expressions.

10.6.15 Incompletely specified event sequences

So far the vector expression language has provided support for completely specified event sequences and also the
capability to put variables temporarily in and out of scope for event observation. As opposed to changing the
scope of event observation, incompletely specified event sequences require continuous observation of al vari-
ables while allowing the occurrence of intermediate events between the specified events. The following operator
can be used for that purpose:

vect or _fol | owed_by, aso called followed-by operator, using the symbol ~>.
The ~> operator is the separator between consecutively occurring events, with possible unspecified
events in-between.

Detection of event sequences involving ~> requires detection of the sub-sequence before ~>, setting a flag,
detection of the sub-sequence after ~>, and clearing the flag.

This can beillustrated with a sample event report:

tinme
0
109
258
573
586
643
788
915
1062
1395
1640

~
~

01 A detected, set flag
/1 10 C detected, clear flag
/1 01 A detected, set flag
/1 01 A detected again

/1 10 C detected, clear flag

ORRPRPROFRPRORRLRRELROD>
OCORRPRFRPROOOORRD
OCORRPRRPROOORREQND
RFPOOO0OO0OO0OO0OO0OO0OOX0U
COoOORRRPRRERRERREREREM

Example

01 A~>10 C Il (24)
/1 as opposed to previous exanple (5):01 A-> 10 C

(24) isTrue at time 573 because of 01 A at time 109 and 10 C at time 573. It is True again at time 1395
because of 01 Aattime643and 10 Cat 1395. On the other hand, ( 5) is never True because there are always
eventsin-between 01 Aand10 C.

Vector expressions consisting of vector_event expressions separated by -> or by ~> are caled
vect or _event _sequence expressions, using the same syntax rules for the two different
vector _fol |l owed_by operators. Consequently, al vector expressions involving
vect or _event _sequence expressions  and vector _binary operators are  called
vect or _conpl ex_event expressions.

However, only a subset of the semantic transformation rules can be applied to vector expressions containing ~>.

Associative rule applies for both - > and ~>.
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(01 A~>01B) ~>01 C===01A~> (0L C~>01B~>010
(01 A->01B) ->01 C===01A-> (0L C->01B->010
(01 A~>01B) ->01 C===01A~> (0L C~>01B->010
(01 A->01B) ~>01 C===01A-> (0L C->01B~>010

Distributive rule applies for both - > and ~>.

(0L A| 01 B) ->01 C===01A~>01C| 01 B->01C
(01 A| 01 B) ~>01 C===01A~>01LC| 01 B~>01C
(0L A| 01 B) ->01 C===01A~>01LC| 0L B->01C

Scalar multiplication rule applies only for - >. The transformation involving ~> is more complicated.

(01 A->01B) & (01 C->01 D)
=== (01 A&01 C -> (01 B&O01 D

(01 A~>01B) & (01 C->01D)
=== (01 A&01 C -> (01 B&O01 D
| 01 A~>01 C-> (01 B & 01 D

(01 A ~> 01 B) & (01 C ~> 01 D)

=== (01 A & 01 C) ~> (01 B & 01 D)
| 01 A ~>01 C~> (01 B & 01 D)
| 01 C~> 01 A ~> (01 B & 01 D)

Transformation of vect or _condi ti onal _event expressions into vect or _conpl ex_event expres
sions applies only for - >.

(01 A->01B) &C
=== 01 A& 11 C->01 B&11 C

(01 A~>01B) &C
=== 01 A&11 C~>01B&11l C

Since the ~> operator allows intermediate events, there is no way to express the continuously True condition C.
10.6.16 How to determine well-specified vector expressions
By defining semantics for
dternativevect or _event _sequence expressions
and establishing calculation rules for

transforming vect or _conpl ex_event expressions into alternative vect or _event _sequence
expressions

and for

transforming  aternative vect or _condi ti onal _event expressions into  aternative
vect or _conpl ex_event expressions,

semantics are now defined for all vector expressions.
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The calculation rules also provide means to determine whether a vector expression is well-specified or ill-speci-
fied. Anill-specified vector expression is contradictory in itself and can therefore never be True.

Once avector expression is reduced to a set of alternativevect or _event _sequence expressions, two crite-
ria define whether avector expression is well-defined or not.

— Compatibility between subseguent events on the same variable:
The next state of earlier event shall be compatible with previous state of later event. This check applies
only if no ~> operator isfound between the events.
— Compatibility between simultaneous events on the same variable:
Both the previous and next state of both events shall be compatible. Such events commonly occur as
intermediate cal culation results within vector expression transformation.
The following compatibility rules apply:
a) ? iscompatible with any other state. If the other stateis*, the resulting stateis ?. Otherwise, the result-
ing state is the other state.
b) * iscompatible with any other state. The resulting state is the other state.
c¢) Any other state is only compatible with itself.
Examples
01 A->01B->10 A
The next state of 01 A is compatible with the previous state of 10 A.
OXA->01B->10 A
The next state of 0X A isnot compatible with the previous state of 10 A.
OXA~>01B->10 A
Compatibility check does not apply, since intermediate events are allowed.
01 A& 10 A
Both the previous and next state of A are contradictory; this resultsin an impossible event.

?1 A& 1? A

Both previous and next state of A are compatible; thisresultsin the non-event 11 A.

10.7 Boolean expression language

The boolean expression language XXX, as shown in Syntax 126.

10.8 Vector expression language

The vector expression language XXX, as shown in Syntax 127.
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boolean_expression ::
(boolean_expressi on)
| pin_value
| boolean_unary boolean_expression
| boolean_expression boolean |_binary boolean |_expression
| boolean_expression boolean _expression .
{ boolean expron ? boolean_expression : }
boolean_expression
boal ?an_unary u=
| ~
| &
| ~&
I
3
| ~N
boolean_binary
&
| & &
I
I
I
| ~N
! =
| ==
|>
I<—
|>
| <
|+
5
|/
| %
|>>
| <<

Syntax 126—Boolean expression langauge

10.9 Control expression semantics

** Syntax 127 also shows the control expression syntax (at the bottom); is this deliberate??

160 Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 4



vector_expression ::=
(‘vector_expression )
| vector_unary boolean_expression
| vector_expression vector_binary vector_expression
| boolean_expression ? vector_expression :
{ boolean_expression ? vector_expression . }
Vector_expression
| boolean_expression control_and vector_expression
| vector_expression control_and boolean_expression
vector_unary ::=
edge literal
vector_binary ::=

1& &
|
il

->
>

l

AWAN

->
~>
>

Ro

| <& >
control_and ::=
& |1&&
control_expression ::=
vector_expression )
| ( boolean_expression )

IEEE P1603 Draft 4

Syntax 127—Vector expression language
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11. Constructs for electrical and physical modeling

** Add lead-in text**

11.1 Arithmetic expression

An arithmetic expression shall be defined as shown in Syntax 128.

arithmetic_expression ::=
(‘arithmetic_expression )
| arithmetic_value
| { boolean_expression ? arithmetic_expression : } arithmetic_expression
| [ unary_arithmetic_operator ] arithmetic_operand
| arithmetic_operand binary_arithmetic_operator arithmetic_operand
| macro_arithmetic_operator ( arithmetic_operand { , arithmetic_operand } )
arithmetic_operand ::=
arithmetic_expression

Syntax 128—Arithemetic expression

An unary arithmetic operator shall be defined as shown in Syntax 129.

unary_arithmetic_operator ::=
+

Syntax 129—Unary arithmetic operator

The following Table 81 defines the semantics of unary arithmetic operators.

Table 81—Unary arithmetic operators

Operator Description Comment
+ Positive sign neutral operator
- Negative sign

A binary arithmetic operator shall be defined as shown in Syntax 130.

binary_arithmetic_operator ::=
+

%

};
|/
|**
I

Syntax 130—Binary arithmetic operator
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The following Table 82 defines the semantics of binary arithmetic operators.

Table 82—Binary arithmetic operators

Operator

Description

Comment

+

Addition

Subtraction

*

Multiplication

/

Division

Result includes fractional part

* *

Power

%

Modulus

Remainder of division

A macro arithmetic operator shall be defined as shown in Syntax 131.

macro_arithmetic_operator ::=

abs
| eXp
|log

|min
| max

Syntax 131—Macro arithmetic operator

The following Table 83 defines the semantics of macro arithmetic operators.

The priority of operatorsin arithmetic expressions shall be from strongest to weakest in the following order:

a)
b)
<)
d)

Examples for arithmetic expressions

164

Table 83—Macro arithmetic operators

Operator Description Comment
| og Natural logarithm 1 operand, operand > 0
exp Natural exponential 1 operand
abs Absolute value 1 operand
mn Minimum N>1 operands
max Maximum N>1 operands

unary arithmetic operator (+, - )

power (**)

multiplication (*), division (/ ), modulo division (%

addition (+), subtraction (- )

Advanced Library Format (ALF) Reference Manual
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1.24
- vdd

Cl + 2

MAX ( 3.5*C, -vdd/2 , 0.0 )

(C > 10) ? Vdd**2 : 1/2*Vdd - 0.5*C

11.2 Arithmetic model

An arithmetic model shall be defined as a trivial arithmetic_model, a partial arithmetic model, or a full arith-
metic model, as shown in Syntax 132.

arithmetic_model ::=
trivial_arithmetic_model
| partial_arithmetic_model
| full_arithmetic_model
| arithmetic_model_template_instantiation

Syntax 132—Arithmetic model statement

The purpose of an arithmetic model isto specify a measurable or a calculatable quantity.

A trivial arithmetic model shall be defined as shown in Syntax 133.

trivial_arithmetic_model ::=
nonescaped_identifier [ name_identifier | = arithmetic_value
| nonescaped_identifier [ name_identifier] = arithmetic_vaJue{ { model_qualifier } }

Syntax 133—Trivial arithmetic model

No mathemetical operation is necessary to evaluate a trivial arithmetic model. The arithmetic value associated
with the arithmetic model represents the evaluation result. One or more model qualifier statements can be associ-
ated with atrivial arithmetic model.

A partial arithmetic model shall be defined as shown in Syntax 134.

partial_arithmetic_model ::=
nonescaped_identifier [ name_identifier ] { { partial_arithmetic_model_item} }
partial_arithmetic_model_item ::=
model_qualifier
| table
| trivial_min-max

Syntax 134—Partial arithmetic model

A partial arithmetic model does not specify a mathematical operation or an arithmetic value. Therefore it can not
be mathematically evaluated.

The purpose of apartia arithmetic model isto specify one or more model qualifier statements, a table statement,

or atrivial min-max statement. The specification contained within a partial arithmetic model can be inherited by
another arithmetic model of the same type, according to the following rules:
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a) If the partial arithmetic model has no name, the specification shall be inherited by all arithmetic models
of the same type appearing within the same parent statement or within a descendant of the same parent
statement.

b) If the partia arithmetic model has a name, the specification shall be only inherited by an arithmetic
model containing a reference to the partial arithmetic model, using the model reference annotation (see
NEW SUBSECTION).

¢) Anarithmetic model can override an inherited specification by its own specification.

A full arithmetic model shall be defined as shownin .

full_arithmetic_ model ::=
nonescaped_identifier [ name_identifier ] { { model_qualifier } model_body { model_qualifier } }
model_body ::=
header-table-equation [ trivial_min-max ]
| min-typ-max
| arithmetic_submodel { arithmetic_submodel }

Syntax 135—Full arithmetic model

The model body specifies mathematical data associated with the arithmetic model. The data is represented either
by a header-table-equation statement, or by a min-typ-max statement, or by one or more arithmetic submodel
Statements.

The mathematical operation or the arithmetic value for evaluation of the arithmetic model can be contained

within one or more arithmetic submodels (see NEW SUBSECTION). The selection of an applicable submodel is
controlled by the semantics of the keyword that identifies the type of the arithmetic submodel.

11.3 HEADER, TABLE, and EQUATION

A header-table-equation statement shall be defines as shown in

header-table-equation ::=
header table
| header equation

Syntax 136—
A header-table-equation statement specifies a procedure for evaluation of the mathemetical data.
11.3.1 HEADER statement

A header statement shall be defined as shown in Syntax 137.

er =
HEADER { partial_arithmetic model { partial_arithmetic_model } }

Syntax 137—HEADER statement

Each partial arithmetic model within the header statement shall represent a dimension of an arithmetic model.
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11.3.2 TABLE statement

A table statement shall be defined as shown in Syntax 138.

le:.=
TABLE { aithmetic_value{ arithmetic value} }

Syntax 138—TABLE statement

A table statement within a partial arithmetic model shall define the set of legal values for an arithmetic model
that inherits the specification of the partial arithmetic model.

A table statement within afull arithmetic model shall represent alookup table. If the model body contains atable
statement, each dimension within the header statement shall also contain atable statement.

The mathemetical relation between alookup table and its dimensions shall be established as follows:

N N>1
S= 1150 S>1

- 0<P<S-1

N i—-1 S(I)>1
P =3 P(i) M S(k) =

E:l kl:ll 0<sP(i)sH(i)-1

where

N denotes the number of dimensions

Sdenotes the size of the lookup table, i.e., the number of arithmetic values within the lookup table

P denotes the position of an arithmetic value within the lookup table

S(i) denotes the size of adimension, i.e., the number of arithmetic values in the table within adimension
P(i) denotes the position of an arithmetic value within a dimension

A dimension can be either discrete or continuous. In the latter case, interpolation and extrapolation of table val-
uesisalowed, and the arithmetic valuesin this dimension shall appear in strictly monotonous ascending order.

11.3.3 EQUATION statement

An equation statement shall be defined as shown in Syntax 139.

equation ::=
EQUATION { arithmetic_expression }

| equation_template instantiation

Syntax 139—EQUATION statement

The arithmetic expression within the equation statement shall represent the mathematical operation for evalua
tion of the arithmetic model.

Each dimension shall be involved in the arithmetic expression. The arithmetic expression shall refer to a dimen-

sion by name, if aname identifier exists or by type otherwise. Consequently, the type or the name of adimension
shall be unique.
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11.4 Statements related to arithmetic model
11.4.1 Model qualifier

A model qualifier statement shall be defined as shown in

model_qualifier ::=
annotation
| annotation_container
| event_reference
| from-to
| auxiliary_arithmetic_model
| violation

Syntax 140—Model Qualifier statement

11.4.2 Auxiliary arithmetic model

An auxiliary arithmetic model shall be defined as shown in

auxiliary_arithmetic_model ::=
nonescaped_identifier = arithmetic_value;

auxiliary_qualifier
annotation
| annotation_container
| event_reference
| from-to

| nonescaped_identifier [ = arithmetic_value ] { auxiliary_qualifier { auxiliary_qualifier } }

Syntax 141—Auxiliary arithmetic model

An auxiliary arithmetic model can be considered as a special case of either atrivial arithmetic model or a partial
arithmetic model, since the rule for auxiliary qualifier is a true subset of the rule for model qualifier. In particu-
lar, the items auxiliary arithmetic model and violation are disallowed in the rule for auxiliary qualifier.

11.4.3 Arithmetic submodel

An arithmetic submodel shall be defined as shown in Syntax 142.

arithmetic_submodel ::=
nonescaped_identifier = arithmetic_value ;
| nonescaped_identifier { [ violation ] min-max}
| nonescaped_identifier { header-table-equation [ trivial_min-max ] }
| nonescaped_identifier { min-typ-max }
| arithmetic_submodel_template instantiation

Syntax 142—Arithmetic submodel

11.4.4 MIN-MAX statement

A min-max statement shall be defined as shown in
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min-max ::=
min [ max ]
| max [ min]

N = arithmetic_value;

= arithmetic_value{ violation }
{ [ violation] header-table-equation }

==
22

= arithmetic_vaue,;
= arithmetic_value{ violation }
{ [ violation ] header-table-equation }

Syntax 143—MIN-MAX statement

11.4.5 MIN-TYP-MAX statement

A min-typ-max statement shall be defined as shown in

min-typ-max ::=
[ min-max ] typ [ min-max ]
typ =
TYP = arithmetic_value;
| TY P { header-table-equation }

Syntax 144—MIN-TYP-MAX statement

11.4.6 Trivial MIN-MAX statement

A trivial min-max statement shall be defined as shownin

trivia_min-max ::=
trivial_min [ trivial_max ]
| trivial_max [ trivia_min ]
trivia_min ::=
MIN = arithmetic_value;
trivial_max ::=
MAX = arithmetic_value

Syntax 145—

A trivial min-max statement defines the legal range of values for an arithmetic model. The arithmetic value asso-
ciated with the trivial min statement represent the smallest legal number. The arithmetic value associated with the
trivial max statement represents the greatest legal number. Per default, the range includes between negative and
positive infinity.

A trivial min-max statement within a dimension of afull arithmetic model defines the range of validity of a par-
ticular dimension. An application tool can still evaluate the header-table-equation statement outside the range of
validity, however, the accuracy of the evaluation can not be guaranteed.

The following semantic restrictions shall apply:
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a) A partia arithmetic model that is not a dimension of alookup table can either contain a trivial min-max
statement or a table statement but not both.

b) If asyntax rule alows both partial arithmetic model and full arithmetic model, a trivial min-max state-
ment shall be interpreted as a min-typ-max statement, if the arithmetic model contains neither a header-
table-equation statement nor a arithmetic submodel and no other arithmetic model can inherit the trivial
min-max statement.

Rule @) is established because a trivial min-max statement would be redundant or eventually contradictory to a
table statement, since the table statement already defines a discrete set of legal values.

Rule b) is established because the syntax rule for trivial min-max statement is a true subset of the syntax rule for
min-typ-max statement.

11.4.7 Arithmetic model container

An arithmetic model container shall be defined as shown in Syntax 146.

arithmetic_model_container ::=
arithmetic_model_container_identifier { arithmetic_model { arithmetic model } }

Syntax 146—Arithmetic model container

11.4.8 LIMIT statement

A limit statement shall be defined as shownin.

limit ::=
LIMIT { limit_item { limit_item} }
limit_item ::=
limit_arithmetic_model
limit_arithmetic_model ::=
nonescaped_identifier [ name_identifier ] { { model_qualifier } Iimit_arithmetic_model_body}
limit_arithmetic_model_body ::=
limit_arithmetic_submodel { limit_arithmetic_submode }
| min_max
limit_arithmetic_submodel ::=
nonescaped_identifier { [ violation ] min-max }

Syntax 147—LIMIT statement

11.4.9 Event reference statement

An event reference statement shall be defined as shown in .

event_reference ::=
PIN_reference_single_value_annotation [ EDGE_NUMBER single value_annotation ]

Syntax 148—Event reference statement
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11.4.10 FROM and TO statements

A from statement and ato statement shall be defined as shown in Syntax 149.

from-to ::=
from[to]
|[ from]to

om ::=
FROM ({ from-to_item { from-to_item} }
to:=
TO { from-to_item { from-to_item} }
from-to_item ::=
event_reference
| THRESHOLD _arithmetic_model

Syntax 149—FROM and TO statements

The event refered by the from-statement and the to-statement, respectively, shall be called from-event and to-

event, respectively.

The from-and to-statements are subjected to the following semantic restriction.

SEMANTI CS FROM {
CONTEXT {

}

}
SEMANTI CS TO {

CONTEXT {

TI ME DELAY RETAI N SLEWRATE PULSSEW DTH
SETUP HOLD RECOVERY REMOVAL NOCHANGE | LLEGAL SKEW

TI ME DELAY RETAI N SLEWRATE PULSSEW DTH
SETUP HOLD RECOVERY REMOVAL NOCHANGE | LLEGAL SKEW

Syntax 150— Semantic restriction

11.4.11 EARLY and LATE statements

An early statement and alate statement shall be defined as shown in Syntax 151.

11.4.12 VIOLATION statement
A violation statement shall be defined as shown in Syntax 152.

A violation statement is subjected to the following semantic restriction.
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early-late ::=
early late

early ::=
EARLY { early-late_item { early-late_item} }

e:=
LATE { early-late_item { early-late_item} }
early-late_item ::=
DELAY _arithmetic_model
| RETAIN_arithmetic_model
| SLEWRATE_arithmetic_model

Syntax 151—EARLY and LATE statements

violation ::=
VIOLATION { violation_item { violation_item} }
| violation_template_instantiation
violation_item ::=
MESSAGE_TYPE_single_value_annotation
| MESSAGE_single_value_annotation
| behavior

Syntax 152—VIOLATION statement

SEMANTI CS VI OLATI ON {
CONTEXT {

SETUP HOLD RECOVERY REMOVAL SKEW NOCHANGE | LLEGAL

LIMT. arithnetic_nodel
LIMT.arithnmetic_nodel . M N
LIMT. arithnetic_nodel . MAX

LIMT.

arithmetic_nodel

.arithnetic_subnodel

LIMT.arithnetic_nodel .arithmetic_subnodel . M N
LIMT. arithnetic_nodel . arithmetic_subnodel . MAX

Syntax 153— Semantic restriction

A violation statement can contain a behavior statement with the following semantic restriction.

SEMANTI CS VI OLATI ON. BEHAVI OR {
CONTEXT {
VECTOR. ari t hneti c_nodel
VECTOR. LIM T. ari t hmeti c_nodel
VECTOR. LIMT. arithmeti c_nodel . M N
VECTOR. LIM T. arithmeti c_nodel . MAX
VECTOR. LIM T. arithneti c_nodel . arithneti c_subnodel
VECTOR. LIM T. arithmeti c_nodel . arithnetic_subnodel . M N
VECTOR. LIM T. arithmetic_nodel . arithneti c_subnodel . MAX

Syntax 154— Semantic restriction

The violation statement can contain a message-type annotation and a message annotation.
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A xxx annotation shall be defined using ALF language as shown in .

KEYWORD MESSAGE TYPE = singl e_val ue_annotati on {
CONTEXT = VI OLATI ON ;
VALUETYPE = identifier ;
VALUES { infornation warning error }

}

Syntax 155— annotation

A xxx annotation shall be defined using ALF language as shown in .

KEYWORD MESSAGE = singl e_val ue_annotation {
CONTEXT = VI OLATI ON ;
VALUETYPE = quoted_string ;

}

Syntax 156— annotation

11.5 Annotations for arithmetic models
11.5.1 UNIT annotation

A xxx annotation shall be defined using ALF language as shown in..

KEYWORD UNI T = annotati on {
CONTEXT = arithnetic_nodel ;
VALUETYPE = unit_val ue ;
DEFAULT = 1 ;

Syntax 157— annotation

11.5.2 CALCULATION annotation

A xxx annotation shall be defined using ALF language as shown in .

KEYWORD CALCULATI ON = annotation {
CONTEXT = library_specific_object.arithnetic_nodel
VALUES { absolute incremental }
DEFAULT = absol ute ;

Syntax 158— annotation
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The meaning of the annotation valuesis showniin.

Table 84—
annotation value description
absolute The arithmetic model data is complete within itself
incremental The arithmetic model data shall be combined with other arithmetic model data

11.5.3 INTERPOLATION annotation

A xxx annotation shall be defined using ALF language as shown in .

CONTEXT = HEADER. arithmetic_nodel ;
VALUES { linear fit ceiling floor }
DEFAULT = fit ;

KEYWORD | NTERPOLATI ON = si ngl e_val ue_annotati on {

Syntax 159— annotation

The interpolation annotation shall apply for a dimension of a lokup table with a continuous range of values.

Every dimension in alookup table can have its own interpolation annotation.

The meaning of the annotation valuesis showniin.

Table 85—
annotation value description
linear linear interpolation shall be used
ceiling the next greater value in the table shall be used
floor the next lesser value in the table shall be used
fit linear or higher-order interpolation shall be used

The mathematical operations for floor, ceiling, and linear are specified as follows:

floor y(x) = y(x)
ceiling y(x) = y(x)
linear yox) = EX ) + (< -x) GY(x)

X =X

174 Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 4



where

x denotes the value in a dimension subjected to interpolation.
x" and X" denote two subsequent values in the table associated with that dimension.
X denotes the value to the left of x, such that X < x, or else X denotes the smallest value in the table.
x* denotes the val ue to the right of x, such that x < x*, or else x* denotes the largest value in the table.
y denotes the evaluation result of the arithmetic model.

The mathematical operation for fit can be chosen by the application, aslong as the following conditions are satis-
fied:

y(X) is a continuous function of order N>0.

Thefirst N-1 derivatives of y(x) are continuous.

y(X) is bound by y(x) and y(x").

In case of monotony, y(X) is aso bound by linear interpolation applied to the left and the right neighbor of x.
In case of monotonous derivative, y(x) isaso bound by linear interpolation applied to x itself.

These conditions are illustrated in the following figure.

arbitrary y(x) monotonous Y(X) monotonous d y/dx
X
A AX A \\
yxXyF — — yoOF == yXy — —
|
Yoy — — — Yy — — — — =K - Yy — — — — =% _
| | | | X | X
| | | | | |
| | | | | |
1 1 » | | > 1 1 >
X x* X x* X x*

Figure 19—Bounding regions for y(x) with INTERPOLATION=fit

11.5.4 DEFAULT annotation

A xxx annotation shall be defined using ALF language as shown in .

KEYWORD DEFAULT = singl e_val ue_annotati on {
CONTEXT { arithnetic_nodel KEYWORD }
VALUETYPE = al | _purpose_val ue ;

}

Syntax 160— annotation
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11.6 TIME

A xxx statement shall be defined using ALF language as shownin .

KEYWORD TI ME = arithmetic_nodel {
VALUETYPE = nunber ;

}
TIME{ UNIT = 1e-9; }

Syntax 161— statement

A time statement can have afrom-to statement as model qualifier.

11.6.1 TIME in context of a VECTOR declaration

A time statement can be a child or a grandchild of a vector declaration. In particular, the parent of the time state-
ment can be a limit statement. In the context of a limit statement, the time statement shall specify a smallest
required time or alargest allowed time interval. Otherwise, the time statement shall specify an actually measured
timeinterval.

If the vector declaration involves a vector expression, from-to statements featuring event reference statements
shall be used as model qualifier. The time statement shall model the measured time interval between the refered
events.

If the vector declaration involves a boolean expression, the time statement appliesto atime interval during which
the boolean expression istrue. A from-to statement shall not be used as model qualifier.

11.6.2 TIME in context of a HEADER statement
A time statement can be child of a header statement, thus representing a dimension of an arithmetic model.

If the arithmetic model is not a child of alimit statement, the time dimension shall be used to describe a quantity
changing over time, which can be visualized by awaveform.

If the arithmetic model is a child of a vector declaration, either afrom statement or ato statement can be used as
model qualifier to define atemporal relationship between arefered event and the time dimension.

If the arithmetic model isa child of alimit statement, the time dimension shall be used to describe a dependency
between a limit for a measured quantity and the expected lifetime of an electronic circuit. A from-to statement
shall not be used as model qualifier.

11.6.3 TIME as auxiliary arithmetic model

A time statement can be a child of an arithmetic model, thus representing an auxiliary arithmetic model.

A measurement annotation (see Section 11.29.1) shall be used in conjunction with the time statement. The time
statement shall specify the time interval during which the measurement is taken.

If the parent arithmetic model is a child of avector declaration, afrom-to statement can be used to define atem-
poral relationship between one or two events in the vector expression and the time interval.
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11.7 FREQUENCY

A xxx statement shall be defined using ALF language as shownin .

KEYWORD FREQUENCY = arithmeti c_nodel {
VALUETYPE = nunber ;

}
FREQUENCY { UNIT = 1e9; MN = 0; }

Syntax 162— statement

11.7.1 FREQUENCY in context of a VECTOR declaration

A frequency statement can be a child or a grandchild of a vector declaration. In particular, the parent of the fre-
guency statement can be alimit statement. In the context of alimit statement, the frequency statement shall spec-
ify a smallest required occurence frequency or alargest allowed occurency frequency of the vector. Otherwise,
the frequency statement shall specify an actually measured occurence frequency of the vector.

11.7.2 FREQUENCY in context of a HEADER statement

A frequency statement can be child of a header statement, thus representing a dimension of an arithmetic model.

If the arithmetic model is a child of a vector declaration, the frequency dimension shall represent the occurence
frequency of the vector.

If the arithmetic model is not a child of avector declaration, the frequency dimension shall be used to describe a
spectral properties of the arithmetic model in the frequency domain.

11.7.3 FREQUENCY as auxiliary arithmetic model
A frequency statement can be a child of an arithmetic model, thus representing an auxiliary arithmetic model.

A measurement annotation (see Section 11.29.1) shall be used in conjunction with the frequency statement. The
frequency statement shall specify the repetition frequency of the measurement.

A frequency statement can substitute a time statement in the capacity of an auxiliary arithmetic model, if no

from-to statement is used as model qualifier. In this case, the measurement repetition frequency f and the mea-
surement time interval t can be related by the equation f=1/1t.

11.8 DELAY

A delay statement shall be defined using ALF language as shownin .

KEYWORD DELAY = arithnetic_nodel {
SI _MODEL = TI ME ;
}

Syntax 163— statement
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11.8.1 DELAY in context of a VECTOR declaration

A delay statement can be a child or a grandchild of a vector declaration involving a vector expression. A delay
statement shall have a from-to statement featuring event references as model qualifier. The delay statement shall
define the measured time interval between a from-event and a to-event. Both events shall be part of the vector
expression. A causal relationship between the from-event and the to-event isimplied.

A delay statement with an incomplete model qualifier featuring only afrom statement or only ato statement can
be used to specify an incremental time interval to be added to another time interval. The calculation annotation
(see Section 11.5.2) shall be used in conjunction with such an incomplete model qualifier.

11.8.2 DELAY in context of a library-specific object declaration

A delay statement can be a child of alibrary-specific object which can be a parent of a vector. Possible parents of
avector include library, sublibrary, cell and wire. Within such a context, a delay statement can not have an event
reference within a from-to statement as model qualifier. A from-to statement can only feature threshold state-

ments. The specification given by the threshold statements shall be inherited by delay statements which are child
of avector.

11.9 RETAIN

A retain statement shall be defined using ALF language as shownin .

KEYWORD RETAIN = arithmetic_nodel {
SI_MODEL = TI ME
}

Syntax 164— statement

A retain statement can be a child or a grandchild of a vector declaration involving a vector expression. A retain
statement can be used as a substitution for a delay statement in the case where the vector expression features
more than one possible to-event. Retain represents the time interval between the from-event and the earliest to-
event. Later to-events can beinvolved in a delay statement.

Retain in conjunction with delay isillustrated in Figure 20.

<fronkEdge>

<fronPi n>

<t oEdge> <t oEdge>

<t oPi n>

I
I
I
!

Figure 20—RETAIN and DELAY
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11.10 SLEWRATE

A xxx statement shall be defined using ALF language as shownin .

KEYWORD SLEWRATE = arithnetic_nodel {
S| _MODEL = TIME ;

}

SLEWRATE { MN = 0; }

Syntax 165— statement

Slewrate shall define the duration of a single event, measured between two reference transition points. If the par-
ent of the slewrate statement is alimit statement, the slewrate statement defines a minimum required or a maxi-
mum allowed duration of an event. Otherwise, slewrate defines the actually measured duration of an event.
11.10.1 SLEWRATE in context of a VECTOR declaration

A dewrate statement can be a child or a granddchild of a vector declaration. Slewrate can aso be a dimension of
an arithmetic model in the context of a vector.

The slewrate statement can have an event reference statement and a from-to statement without event reference
asmodel qualifier. The from-and the to-statement can involve threshold statements.

11.10.2 SLEWRATE in context of a PIN declaration

A dewrate statement can be a child or agrandchild of apin declaration. In this context, no from-to statement and
no event-reference statement is allowed as model qualifier.

The slewrate statement can have arise statement or afall statement as arithmetic submodel.

11.10.3 SLEWRATE in context of a library-specific object declaration

A slewrate statement can be a child of alibrary-specific object which can be a parent of avector. Possible parents
of avector include library, sublibrary, cell and wire. Within such a context, a slewrate statement can not have an
event reference as model qualifier. A from-to statement with threshold statements can be used as model qualifier.
The specification given by the threshold statements can be inherited by slewrate statements which are child of a
vector.

The slewrate statement can have arise statement or afall statement as arithmetic submodel.

11.11 SETUP and HOLD

A setup and a hold statement shall be defined using ALF language as shown in .

11.11.1 SETUP in context of a VECTOR declaration

A setup statement can be a child of a vector declaration. Setup represents the minimal required time interval
between a signa event and a synchronization event such that the signal is already stable when the synchroniza-
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KEYWORD SETUP = arithnetic_nodel {
SI _MODEL = TIME ;

}

KEYWORD HOLD = arithmetic_nodel ({
SI _MODEL = TIME ;

}

Syntax 166— statement

tion event occurs. The signal event and the synchronization event shall be represented as a from-event and a to-
event, respectively, within afrom-to statement.

11.11.2 HOLD in context of a VECTOR declaration

A hold statement can be a child of a vector declaration.Hold represents the minimal required time interval
between a synchronization event and a signal event such that the synchronization event occurs while the signal is
still stable. The synchronization event and the signal event shall be represented as a from-event and a to-event,
respectively, within afrom-to statement.

11.11.3 SETUP and HOLD in context of the same VECTOR declaration

A setup and a hold statement can be a child of the same vector, provided the vector expression features at |east
one synchronization event and two signal events related to the synchronization event. The sum of the time inter-
vals represented by setup and hold represents a minimum required stability interval for the signal. This interval
shall be greater than zero.

Setup in conjunction with hold isillustrated in Figure 21.

<t oEdge>
<fr ofEdge> !
|

| SETUP |
| |
|

data | <f r onEdge> |
! HOLD
| |

<t oljz'dge>

clock

Figure 21—SETUP and HOLD

11.12 RECOVERY and REMOVAL

A recovery and aremoval statement shall be defined using ALF language as shownin .
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KEYWORD RECOVERY = arithnetic_nodel {
SI _MODEL = TIME ;

}

KEYWORD REMOVAL = arithmeti c_nodel {
SI _MODEL = TI ME ;

}

Syntax 167— statement
11.12.1 RECOVERY in context of a VECTOR declaration

A recovery statement can be a child of avector declaration. Recovery represents the minimal required time inter-
val between a controlling event with higher priority and a controlling event with lower priority such that the sig-
nal with higher priority is already inactive when the event on the signal with lower priority occurs. The event
with higher priority and the event with lower priority shall be represented as a from-event and a to-event, respec-
tively, within afrom-to statement.

11.12.2 REMOVAL in context of a VECTOR declaration

A removal statement can be a child of avector declaration. Removal represents the minimal required time inter-
val between a controlling event with lower priority and a controlling event with higher priority such that the sig-
nal with higher priority is still active when the event with lower priority occurs. The event with higher priority
and the event with lower priority shall be represented as afrom-event and a to-event, respectively, within afrom-
to statement.

11.12.3 RECOVERY and REMOVAL in context of the same VECTOR declaration

A recovery and aremoval statement can be a child of the same vector, provided the vector expression features at
least one event with lower priority and two aternative events with highwe priority. The sum of the time intervals
represented by recovery and removal represents a minimum required stability interval for the signal with higher
priority. Thisinterval shall be greater than zero.

Recovery in conjunction with removal isillustrated in Figure 22.

<t oEdge>
<fr ofEdge> ' '
clock | I
| | |
| <fromkdge> |
| <t oli:_dqe>
| I
set, reset ‘\/ »! I
/’\RECOVERY | |
|
or : |
I
! |
set, reset '
REMOVAL |

Figure 22—RECOVERY and REMOVAL
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11.13 NOCHANGE and ILLEGAL

A nochange and an illegal statement shall be defined using ALF language as shownin .

KEYWORD NOCHANGE = arithnetic_nodel {
SI _MODEL = TIME ;

}

KEYWORD | LLEGAL = arithmetic_nodel {
SI _MODEL = TIME ;

}

NOCHANGE { MN = 0; }

ILLEGAL {| MN = 0; }

Syntax 168— statement

11.13.1 NOCHANGE in context of a VECTOR declaration
A nochange statement can be a child of a vector declaration.

If the vector declaration involves a boolean expression, nochange shall specify a minimum required time interval
during which the boolean expression is true. Nochange as a partial arithmetic model shall indicate a requirement
for the boolean expression to be forever true.

If the vector declaration involves a vector expression, nochange as a partial arithmetic model shall indicate a
requirement for the vector expression to be observed as specified. An optional from-to statement as model quali-
fier can indicate a requirement for the part of the vector expression within the time interval between the from-
event and the to-event to be observed as specified. Nochange as a full arithmetic model or as atrivia arithmetic
model shall furthermore specify a minimum required duration of the vector expression or part thereof.

11.13.2 ILLEGAL in context of a VECTOR declaration

Anillegal statement can be a child of a vector declaration.

If the vector declaration involves a boolean expression, illegal shall specify a maximum allowed time interval
during which the boolean expression istrue. Illegal as a partial arithmetic model shall indicate a requirement for
the boolean expression to be never true.

If the vector declaration involves a vector expression, illegal as a partial arithmetic model shall indicate that the
vector expression is not allowed to occur. An optional from-to statement as model qualifier can indicate that a
part of the vector expression within the time interval between the from-event and the to-event is not allowed to

occur. Illegal asafull arithmetic model or asatrivial arithmetic model shall furthermore specify a maximum tol-
erated duration of the vector expression or part thereof.

11.14 SKEW
A xxx statement shall be defined using ALF language as shown in .

A skew statement can be a child of avector declaration.
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KEYWORD SKEW = arithmeti c_nodel {
SI _MODEL = TIME ;

}

SKEW{ M N

0; }

Syntax 169— statement
11.14.1 SKEW involving two signals
A skew statement can specify a maximum allowed time interval between a from-event and a to-event. In this
case, a from-to statement is mandatory as model qualifier. The vector declaration shall specify a vector expres-
sion such that the to-event cannot occur before the from-event.
11.14.2 SKEW involving multiple signals
A skew statement can specify amaximum allowed time separation between multiple events. In this case, amulti-
value annotation containing pin references is mandatory as model qualifier. Optionally, this multi-value annota-

tion can be accompanied by another multi-value annotation containing a matching number of edge numbers. The
vector declaration shall specify avector expression such that all events can occur simultaneously.

11.15 PULSEWIDTH

A xxx statement shall be defined using ALF language as shownin .

KEYWORD PULSEW DTH = arithnetic_nodel {
S| _MODEL = TIME ;

}
PULSEWDTH { MN = 0; }

Syntax 170— statement

A pulsewidth statement shall define the time interval between two consecutive events on the same signal. If the
parent of the pulsewidth statement is a limit statement, pulsewidth defines a minimum required or a maximum
allowed duration of the timeinterval. Otherwise, pulsewidth defines the actually measured time interval.
11.15.1 PULSEWIDTH in context of a VECTOR declaration

A pulsewidth statement can be a child of a vector declaration. Pulsewidth can also be a dimension of an arith-
metic model in the context of a vector.

The pulsewidth statement can have an event-reference statement and a from-to statement without event reference
as model qualifier. The from-and the to-statement can involve threshold statements. The event reference shall
refer to the first of two consecutive events.

11.15.2 PULSEWIDTH in context of a PIN declaration

A pulsewidth statement can be a child or a grandchild of a pin declaration. In this context, no from-to statement
and no event-reference statement is allowed as model qualifier.

The pulsewidth statement can have arise statement and/or afall statement as arithmetic submodel. The switching
direction indicated by rise or fall shall refer to the first of two consequtive events.
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11.15.3 PULSEWIDTH in context of a library-specific object declaration

A pulsewidth statement can be a child of alibrary-specific object which can be a parent of avector. Possible par-
ents of a vector include library, sublibrary, cell and wire. Within such a context, a pulsewidth statement can not
have an event reference as model qualifier. A from-to statement with threshold statements can be used as model
qualifier. The specification given by the threshold statements can be inherited by pulsewidth statements which
are child of avector.

The pulsewidth statement can have a rise statement or a fall statement as arithmetic submodel. The switching
direction indicated by rise or fall shall refer to the first of two consequtive events.

11.16 PERIOD

A xxx statement shall be defined using ALF language as shownin .

KEYWORD PERI OD = arithmetic_nodel {
S| _MODEL = TIME ;

}

PERICD { MN = 0; }

Syntax 171— statement

A period statement can be a child or a grandchild of a vector. Period can also be a dimension of an arithmetic
model in the context of a vector. Period shall define the time interval between two consecutive occurences of a
periodically repeating vector.

If the parent of the period statement is a limit statement, period defines a minimum required or a maximum
allowed time interval. Otherwise, period defines the actually measured time interval.

11.17 JITTER

A xxx statement shall be defined using ALF language as showniin .

KEYWORD JI TTER = arithmetic_nodel {
SI_MODEL = TIME ;

}

JITTER{ MN = 0; }

Syntax 172— statement

A jitter statement can be a child or agrandchild of avector. Jitter can also be adimension of an arithmetic model
in the context of avector. Jitter shall define the variability of atimeinterval between two consecutive occurences
of the periodically repeating vector.

If the parent of the jitte statement is a limit statement, jitter defines a minimum required or a maximum allowed
variability of the time interval. Otherwise, jitter defines the actually measured variability of the timeinterval.

The measurement annotation (see Section 11.29.1) is applicable as model qualifier.

184 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 4



11.18 THRESHOLD

A xxx statement shall be defined using ALF language as shownin .

KEYWORD THRESHOLD = arithmeti c_nodel {
CONTEXT { PIN FROM TO }

}
THRESHOLD { MN = 0; MAX = 1; }

Syntax 173— statement

The THRESHOL D represents a reference voltage level for timing measurements, normalized to the signal voltage
swing and measured with respect to the logic O voltage level, as shown in Figure 23.

V (logic 1)
A
AV
AViise AViq
\
V (1ogic 0) t'mel
AV AV
threshold (g = —1e threshold 4 = —al
(rise AV (fall) AV

Figure 23—THRESHOLD measurement definition
The voltage levelsfor logic 1 and O represent afull voltage swing.

Different threshold data for RI SE and FALL can be specified or else the data shall apply for both rising and fall-
ing transitions.

The THRESHOL D statement has the form of an arithmetic model. If the submodel keywords RI SE and FALL are
used, it has the form of an arithmetic model container.

The THRESHOLD statement can appear in the context of a FROMor TO container. In this case, it specifies the
applicable reference for the start and end point of the timing measurement, respectively.

The THRESHOL D statement can also appear in the context of aPl N. In this case, it specifies the applicable refer-
ence for the start or end point of timing measurementsindicated by the PI N annotation inside a FROMor TOcon-
tainer, unless a THRESHOLD is specified explicitly inside the FROMor TO container.

If both the RI SE and FALL thresholds are specified and the switching direction of the applicable pin is clearly
indicated in the context of a VECTOR, the RI SE or FALL data shall be applied accordingly.
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If thresholds are needed for exact definition of the model data, the FROMand TO containers shall each contain an
arithmetic model for THRESHOLD.

FROM and TO containers with THRESHOLD definitions, yet without Pl N annotations, can appear within
unnamed timing model definitions in the context of a VECTOR, CELL, W RE, SUBLI BRARY, or LI BRARY
object for the purpose of specifying global threshold definitions for all timing models within scope of the defini-
tion. Thefollowing priorities apply:

a THRESHOLDin the HEADER of the timing model

b) THRESHOLDin the FROMor TOstatement within the timing model

¢) THRESHOLDfor timing model definition in the context of the same VECTOR

d) THRESHOLDwithin the PI Ndefinition

€) THRESHOLDfor timing model definition in the context of the same CELL or W RE
f)  THRESHOLDfor timing model definition in the context of the same SUBLI BRARY
g) THRESHOLDfor timing model definition in the context of the same L1 BRARY

h)  THRESHOLDfor timing model definition outside L1 BRARY

11.19 Annotations related to timing data
11.19.1 PIN reference annotation

If the timing measurements or timing constraints, respectively, apply semantically for two pins (see 11.9.1.1),
the FROM and TO containers shall each contain the PI N annotation.

Otherwise, if the timing measurements or timing constraints apply semantically only to one pin (see 11.9.1.3),
the PI N annotation shall be outside the FROMor TO container.

The following semantic restrictions shall apply.

SEMANTI CS PI N = singl e _val ue_annotation {
CONTEXT {
FROM TO SLEWRATE PULSEW DTH
CAPACI TANCE RESI STANCE | NDUCTANCE VOLTAGE CURRENT

}
}
SEMANTI CS SKEWPIN = mul ti _val ue_annotation ;

Syntax 174— Semantic restriction

11.19.2 EDGE_NUMBER annotation
A xxx statement shall be defined using ALF language as showniin .

The EDGE_NUMBER annotation within the context of a timing model shall specify the edge where the timing
measurement applies. The timing model shall be in the context of a VECTOR. The EDGE_NUMBER shall have an
unsigned value pointing to exactly one of subsegquent vect or _si ngl e_event expressions applicable to the
referenced pin. The EDGE_NUMBER shall be counted individually for each pin which appears in the VECTOR,
starting with zero (0).
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KEYWORD EDGE_NUMBER = annotation {
CONTEXT { FROM TO SLEWRATE PULSEW DTH SKEW }
VALUETYPE = unsi gned_i nteger ;
DEFAULT = 0;

}

SEMANTI CS EDGE_NUMBER = singl e_val ue_annotation {
CONTEXT { FROM TO SLEWRATE PULSEW DTH }

}
SEMANTI CS SKEW EDGE_NUMBER = mul ti _val ue_annotation ;

Syntax 175— statement
If the timing measurements or timing constraints, apply semanticaly to two pins (see 11.9.1.1), the
EDGE_NUMBER annotation shall be legal inside the FROMor TO container in conjunction with the Pl N annota-
tion.
Otherwise, if the timing measurements or timing constraints apply semantically only to one pin (see 11.9.1.3),

the EDGE_NUMBER annotation shall be legal outside the FROMor TO container in conjunction with the Pl N
annotation.

11.20 PROCESS

A xxx statement shall be defined using ALF language as shownin .

KEYWORD PROCESS = arithmetic_nodel {
VALUETYPE = identifier ;

}
PROCESS { DEFAULT = nom TABLE { nomsnsp snwp wnsp wnwp } }

Syntax 176— statement

The following identifiers can be used as predefined process corners:
?n?p  process definition with transistor strength
where ? can be

S strong
w weak

The possible process name combinations are shown in Table 86.

Table 86—Predefined process names

Process name Description
snsp Strong NMOS, strong PMOS.
snwp Strong NMOS, weak PMOS.
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Table 86—Predefined process names (Continued)

Process name Description

wnsp Weak NMOS, strong PMOS.

wnwp Weak NMOS, weak PMOS.

11.21 DERATE_CASE

A xxx statement shall be defined using ALF language as shownin .

KEYWORD DERATE_CASE = arithmetic_nodel {
VALUETYPE = identifier ;
}

DERATE_CASE { DEFAULT = nom
TABLE { nom bccom wccom bci nd weind bemil wem | }}
}

Syntax 177— statement

The following identifiers can be used as predefined derating cases:
nom nominal case
bc? prefix for best case
we ? prefix for worst case
where ? can be
com suffix for commercial case
i nd suffix for industrial case

m | suffix for military case

The possible derating case combinations are defined in Table 87.

Table 87—Predefined derating cases

Derating case Description
bccom Best case commercial.
bci nd Best caseindustrial.
bcm | Best case military.
wcecom Worst case commercial.
wei nd Worst case military.
wem | Worst case military.
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11.22 TEMPERATURE

A xxx statement shall be defined using ALF language as shownin .

KEYWORD TEMPERATURE = arithmetic_nodel {
VALUETYPE = nunber ;

}
TEMPERATURE { M N = -273; }

Syntax 178— statement

TEMPERATURE can be used as argument in the HEADER of an arithmetic model for timing or electrical data. It
can aso be used as an arithmetic model with DERATE _CASE as argument, in order to describe what temperature
applies for the specified derating case.

11.23 PIN-related arithmetic models for electrical data

Arithmetic models for electrical data can be associated with a pin of a cell. Their meaning is illustrated in
Figure 24.

source sink
current node resistance inductance node . rent
4> <7
voltage voltage

capacitance

Figure 24—General representation of electrical models around a pin

A pin is represented as a source node and a sink node. For pins with DI RECTI ON=i nput , the source node is
externally accessible. For pinswith DI RECTI ON=out put , the sink nodeis externally accessible.

11.23.1 CAPACITANCE, RESISTANCE, and INDUCTANCE

A xxx statement shall be defined using ALF language as shownin .

RESI STANCE and | NDUCTANCE apply between the source and sink node. CAPACI TANCE applies between
the sink node and ground. By default, the values for resistance, inductance and capacitance shall be zero (0).

11.23.2 VOLTAGE and CURRENT

A xxx statement shall be defined using ALF language as shownin .
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KEYWORD CAPACI TANCE = arithmetic_nodel {
VALUETYPE = nunber ;

}

KEYWORD RESI STANCE = arithnetic_nodel {
VALUETYPE = nunber ;

}

KEYWORD | NDUCTANCE = arithnetic_nodel {
VALUETYPE = nunber ;

}

CAPACI TANCE { UNIT = l1le-12; MN = 0;

RESI STANCE { UNIT 1le3; M N = 0;

I NDUCTANCE { UNIT le-6; MN = 0;

Syntax 179— statement

KEYWORD VOLTAGE = arithmeti c_nodel {
VALUETYPE = nunber ;

}

KEYWORD CURRENT = arithnetic_nodel {
VALUETYPE = nunber ;

}

VOLTAGE { UNIT

CURRENT { UNIT

1}
le-3; }

Syntax 180— statement

VOLTAGE and CURRENT can be measured at either source or sink node, depending on which node is externally
accessible. However, a voltage source can only be connected to a source node. The sense of measurement for
voltage shall be from the node to ground. The sense of measurement for current shall be into the node.

11.23.3 Context-specific semantics

An arithmetic model for VOLTAGE, CURRENT, SLEWRATE, RESI STANCE, | NDUCTANCE, and CAPACI -
TANCE can be associated with aPl Nin one of the following ways.

a A modd inthe context of aPl N
Example

PIN my_pin {
CAPACI TANCE = 0. 025;

b) A mode inthe context of aCELL, W RE, or VECTOR with PI N annotation
Example
VOLTAGE = 1.8 { PIN = ny_pin; }

The mode in the context of a Pl N shall be used if the data is completely confined to the pin. That means, no
argument of the model shall make reference to any pin, since such reference implies an external dependency. A
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model with dependency only on environmental data not associated with a pin (e.g., TEMPERATURE, PROCESS,
and DERATE_CASE) can be described within the context of the Pl N.

A model with dependency on external data applied to apin (e.g., load capacitance) shall be described outside the
context of the PI N, using a Pl N annotation. In particular, if the model involves a dependency on logic state or

logic transition of other Pl Ns, the model shall be described within the context of a VECTOR.

Figure 25 illustrates el ectrical models associated with input and output pins.

external driver Input pin outputpin external load
current source sink source sink current
s & N —
voltag - - voltage -

Figure 25—Electrical models associated with input and output pins

Table 88 and Table 89 define how models are associated with the pin, depending on the context.

Table 88—Direct association of models with a PIN

. Model in context of CELL, WIRE, and
Model Model in context of PIN VECTOR with PIN annotation
CAPACI TANCE Pin self-capacitance. Externally controlled capacitance at the pin,
e.g., voltage-dependent.
| NDUCTANCE Pin self-inductance. Externally controlled inductance at the pin,
e.g., voltage-dependent.
RESI STANCE Pin self-resistance. Externally controlled resistance at the pin,
e.g., voltage-dependent, in the context of a
VECTOR for timing-arc specific driver
resistance.
VOLTAGE Operationa voltage measured at pin. Externally controlled voltage at the pin.
CURRENT Operational current measured into pin. Externally controlled current into pin.
SAME PIN TI M NG_ For model definition, default, etc.; In context of VECTOR for timing arc, other
MEASUREMENT not for the timing arc. context for definition, default, etc.
SAME_PI N_TI M NG_ For model definition, default, etc.; In context of VECTOR for timing arc, other
CONSTRAI NT not for the timing arc. context for definition, default, etc.
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Table 89—External association of models with a PIN

- . . Model argument with PIN
Model / Context LIMIT within PIN or with PIN annotation annotation
CAPACI TANCE Min or max limit for applicable load. Load for model characterization.
| NDUCTANCE Min or max limit for applicable load. Load for model characterization.
RESI STANCE Min or max limit for applicable load. Load for model characterization.
VOLTAGE Min or max limit for applicable voltage. Voltage for model characterization.
CURRENT Min or max limit for applicable current. Current for model characterization.
SAVE_PIN_TI M NG_ Currently applicable for min or max limit for Stimulus with SLEWRATE for model
VEASUREMENT SLEWRATE. characterization.
SAVE_PI N_TI M NG_ N/A, since the keyword means amin or max N/A
CONSTRAI NT limit by itself.
Example
CELL my_cell {
PI' N pi nl1 { DI RECTI ON=i nput; CAPACI TANCE = 0.05; }
PIN pin2 { DI RECTI ON=output; LIMT { CAPACI TANCE { MAX=1.2; } } }
PI' N pi n3 { DI RECTI ON=i nput; }
PI' N pi n4 { DI RECTI ON=i nput; }

CAPACI TANCE {
Pl N=pi n3;
HEADER { VOLTACE { PIN=pin4; } }
EQUATION { 0.25 + 0.34*VOLTAGE }

}

The capacitance on pi n1 is0. 05. The maximum allowed load capacitance on pi n2 is 1. 2. The capacitance
on pi n3 depends on the voltage on pin4.

11.24 POWER and ENERGY

A xxx statement shall be defined using ALF language as showniin .

KEYWORD POAER = arit hnetic_nodel

VALUETYPE = nunber ;
}

KEYWORD ENERGY = arithmetic_nodel

VALUETYPE = nunber ;
}
PONER { UNIT = le-3; }
ENERGY { UNIT = le-12; }

{

{

192

Syntax 181— statement
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The purpose of power calculation isto evaluate the electrical power supply demand and electrical power dissipa-
tion of an electronic circuit. In general, both power supply demand and power dissipation are the same, due to the
energy conservation law. However, there are scenarios where power is supplied and dissipated locally in different
places. The power modelsin ALF shall be specified in such away that the total power supply and dissipation of
acircuit adds up correctly to the same number.

Example

A capacitor Cis charged from 0 volt to V volt by a switched DC source. The energy supplied by the
sourceis C* V2. The energy stored in the capacitor is 1/ 2* C* V2. Hence the dissipated energy isalso 1/
2* C* 2, Later the capacitor is discharged from V volt to 0 volt. The supplied energy is 0. The dissipated
energy is1/ 2* C* V2. A supply-oriented power model can associate the energy E=C V2 with the charg-
ing event and E,=0 with the discharging event. The total energy is E=E;+E,=C* V2. A dissipation-ori-
ented power model can associate the energy Eg=1/ 2* C* V2 with both the charging and discharging
event. Thetotal energy is also E=2* Eg=C* V2.

In many cases, it is not so easy to decide when and where the power is supplied and where it is dissipated. The
choice between a supply-oriented and dissipation-oriented model or a mixture of both is subjective. Hence the
ALF language provides no means to specify, which modeling approach is used. The choice is up to the model
developer, aslong as the energy conservation law is respected.

POVER and/or ENERGY models shall be in the context of a CELL or within a VECTOR. The total energy and/or
power of acell shall be calculated by combining the data of all models within the scope of the CELL or the VEC-
TORs within the cell.

The datafor PONER and/or ENERGY shall be positive when energy is actually supplied to the CELL and/or dissi-
pated within the CELL. The data shall be negative when energy is actually supplied or restored by the CELL.

11.25 FLUX and FLUENCE

A xxx statement shall be defined using ALF language as shownin .

KEYWORD FLUX = arithmeti c_nodel {
VALUETYPE = nunber ;

}

KEYWORD FLUENCE = arithnetic_nodel {
VALUETYPE = nunber ;

}

FLUX { UNIT = 1le-3; }

FLUENCE { UNIT = le-12; }

Syntax 182— statement

The purpose of hot electron calculation isto eval uate the damage done to the performance of an electronic device
due to the hot electron effect. The hot electron effect consists in accumulation of electrons trapped in the gate
oxide of atransistor. The more electrons are trapped, the more the device slows down. At a certain point, the per-
formance specification no longer is met and the deviceis considered to be damaged.
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FLUX and/or FLUENCE models shall be in the context of a CELL or within aVECTOR. Total fluence and/or flux
of acell shall be calculated by combining the data of all models within the scope of the CELL or the VECTORs
within the cell.

Both FLUX and FLUENCE are measures for hot electron damage. FLUX relates to FLUENCE in the same way as
POVER relates to ENERGY.

11.26 DRIVE_STRENGTH

A xxx statement shall be defined using ALF language as shownin .

KEYWORD DRI VE_STRENGTH = arithmetic_nodel {
VALUETYPE = nunber ;

}
DRI VE_STRENGTH { MN = 0; }

Syntax 183— statement

DRI VE_STRENGTH is a unit-less, abstract measure for the drivability of aPI N. It can be used as a substitute of
driver RESI STANCE. The higher the DRI VE_STRENGTH, the lower the driver RESI STANCE. However,
DRI VE_STRENGTH can only be used within a coherent system of calculation models, since it does not represent
an absolute quantity, as opposed to RESI STANCE. For example, the weakest driver of alibrary can have drive
strength 1, the next stronger driver can have drive strength 2 and so forth. This does not necessarily mean the
resistance of the stronger driver is exactly half of the resistance of the weaker driver.

An arithmetic model for conversion from DRI VE_STRENGTHto RESI STANCE can be given to relate the quan-
tity DRI VE_STRENGTH across technology libraries.

Example

SUBLI BRARY hi gh_speed_library {
RESI STANCE {
HEADER { DRI VE_STRENGTH } EQUATION { 800 / DRI VE_STRENGTH }
}
CELL hi gh_speed_std_driver {
PIN Z { DI RECTION = output; DRI VE STRENGTH = 1; }

}
}
SUBLI BRARY | ow power library {
RESI STANCE {
HEADER { DRI VE_STRENGTH } EQUATION { 1600 / DRI VE_STRENGTH }
}
CELL | ow _power _std_driver {
PIN Zz { DI RECTION = output; DRI VE STRENGTH = 1; }
}
}

Drive strength 1 in the high speed library corresponds to 800 ohm. Drive strength 1 in the low power library cor-
responds to 1600 ohm.
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NOTE—Any particular arithmetic model for RESI STANCE in either library shall locally override the conversion formula
from drive strength to resistance.

11.27 SWITCHING_BITS

A xxx statement shall be defined using ALF language as shownin .

KEYWORD SW TCHI NG BI TS = arithnetic_nodel {
VALUETYPE = unsi gned_i nt eger ;

}

Syntax 184— statement

The quantity SW TCHI NG_BI TS appliesonly for bus pins. The rangeisfrom 0 to the width of the bus. Usually,
the quantity SW TCHI NG_BI TS isnot calculated by an arithmetic model, since the number of switching bits on
a bus depends on the functional specification rather than the electrical specification. However,
SW TCHI NG_BI TS can be used as argument in the HEADER of an arithmetic model to calcul ate electrical quan-
tities, for instance, energy consumption.

Example

CELL my_rom {
PIN [3: 0] addr { DI RECTI ON=i nput; SI GNALTYPE=address; }
PIN [7:0] dout { DI RECTI ON=out put; SIGNALTYPE=data; }
VECTOR ( ?! addr -> ?! dout ) {

ENERGY {
HEADER {
SW TCHI NG BI TS addr_bits { PIN = addr; }
SW TCHI NG BI TS dout_bits { PIN = dout; }

}
EQUATI ON { 0.45*LOG(addr_bits) + 2.6*dout_bits }

}

The energy consumption of my_r omdepends on the number of switching data bits and on the logarithm of the
number of switching address bits.

11.28 NOISE and NOISE MARGIN

A xxx statement shall be defined using ALF language as shown in .

11.28.1 NOISE MARGIN
Noise margin is defined as the maximal allowed difference between the ideal signal voltage under a well-speci-

fied operation condition and the actual signal voltage normalized to the ideal voltage swing. Thisisillustrated in
Figure 26.
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KEYWORD NO SE = arithnetic_nodel {
VALUETYPE = nunber ;

}

KEYWORD NO SE MARG N = arithmetic_nodel {
VALUETYPE = nunber ;

}

NOSE{ MN = 0; }

NO SE MARGAN{ MN =0; MAX = 1; }

Syntax 185— statement

V . .
ideal (logic 1) AV, { A noise margin (high) = AAL\}
Vmin(logicl) ______ o
AV
¥ max(oge0) VAR noise Margin (o = Vo
0 (low) = 1,
V ideal (logic 0) 5 y &

Figure 26—Definition of noise margin

NO SE_MARG Nisapin-related quantity. It can appear either in the context of aPl N statement or in the context
of a VECTOR statement with Pl N annotation. It can also appear in the global context of a CELL, SUBLI BRARY,
or LI BRARY statement.
If aNO SE_MARG N statement appears in multiple contexts, the following priorities apply:

a NO SE_MARG N with PI N annotation in the context of the VECTOR, NO SE_MARG N with PI' N

annotation in the context of the CELL, or NO SE_ MARA N in the context of the PI N
b) NO SE_MARG Nwithout PI N annotation in the context of the CELL
¢) NO SE_MARA Nin the context of the SUBLI BRARY

d) NO SE_MARAG Nin the context of the LI BRARY
e) NO SE_MARG Noutsidethe LI BRARY

11.28.2 NOISE

Noiseis defined as thee actual measured noise against which the noise margin is compared.

11.29 Annotations and statements related to electrical models
11.29.1 MEASUREMENT annotation

A xxx statement shall be defined using ALF language as shownin .
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KEYWORD MEASUREMENT = singl e _val ue_annotation {
VALUETYPE = identifier ;
VALUES {

}
CONTEXT {

}
}

transient static average absol ute_average rns peak

ENERGY POWER CURRENT VOLTAGE FLUX FLUENCE JI TTER

Syntax 186— statement

Arithmetic models can have a MEASUREMENT annotation. This annotation indicates the type of measurement

used for the computation in arithmetic model.

The meaning of the annotation valuesis shown in Table 90.

Table 90—MEASUREMENT annotation

Annotation string Description
transi ent Measurement is atransient value.
static Measurement is a static value.
aver age Measurement is an average value.
rns Measurement is an root mean square value.
peak Measurement is a peak value.

Their mathematical definitions are shown in Figure 27.

(t=T t=T)
transi ent I dE(t) aver age
(t=0) t=0
T
static E = constant
rns (t=T)
peak max(|E(t)|) OsgnE(t) t=T t=0 =

j E(t)dt

[ E(t)’d

Figure 27—Mathematical definitions for MEASUREMENT annotations

Arithmetic models with certain values of MEASUREMENT annotation can also have either TI ME or FREQUENCY

as auxiliary arithmetic models.
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The semantics are defined in Table 91.

Table 91—Semantic interpretation of MEASUREMENT, TIME, or FREQUENCY

MEASUREMENT . . . .
annotation Semantic meaning of TIME Semantic meaning of FREQUENCY

transient Integration of analog measurement isdone | Integration of analog measurement is
during that time window. repeated with that frequency.

static N/A N/A

aver age Average value is measured over that time Average value measurement is repeated
window. with that frequency.

r ms Root-mean-square value is measured over Root-mean-square measurement isrepeated
that time window. with that frequency.

peak Peak value occurs at that time (only within | Observation of peak valueis repeated with
context of VECTOR). that frequency.

Inthecaseof aver age and r s, theinterpretation FREQUENCY = 1 / TI MEisvalid. Either one of these
annotations shall be mandatory. The values for aver age measurements and for r ns measurements scale lin-
early with FREQUENCY and 1 / TI ME, respectively.

Inthecaseof t ransi ent and peak, theinterpretation FREQUENCY = 1 / TI MEisnot valid. Either one
of these annotations shall be optional. The values do not necessarily scale with TI ME or FREQUENCY. The Tl ME
or FREQUENCY annotationsfor t r ansi ent measurements are purely informational.

11.29.2 TIME to peak measurement

For amodel in the context of a VECTOR, with apeak measurement, the Tl VE annotation shall define the time
between areference event withinthevect or _expr essi on and the instant when the peak value occurs.

For that purpose, either the FROMor the TO statement shall be used in the context of the Tl IME annotation, con-
taining a Pl N annotation and, if necessary, a THRESHOL D and/or an EDGE_ NUMBER annotation.

If the FROM statement is used, the start point shall be the reference event and the end point shall be the occur-
rence time of the peak, as shown in Figure 28.

<fr olrrEdqe>

<fronPi n> <fronirhr eshol d>

|

—TIME >
| ___|_<nodel Val ue>
MEASUREMENT = peak | /:\
| |

Figure 28—lllustration of time to peak using FROM statement
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If the TO statement is used, the start point shall be the occurrence time of the peak and the end point shall be the
reference event, as shown in Figure 29.

<t oIEdqe>

<t oThr eshol d>

<nodel Val ue> |
ﬂ////////;ﬁﬁ\\\\\\\‘ | MEASUREMENT = peak
| |

Figure 29—lllustration of time to peak using TO statement

<t oPi n>

11.30 CONNECTIVITY

A xxx statement shall be defined using ALF language as showniin .

KEYWORD CONNECTI VI TY = arithmetic_nodel ({
VALUETYPE = bool ean ;
VALUES { 1 0 ? }

}

Syntax 187— statement

A xxx statement shall be defined using ALF language as shownin .

KEYWORD DRI VER = arithmretic_nodel {
VALUETYPE = identifier ;
CONTEXT = CONNECTI VI TY. HEADER

}

KEYWORD RECEI VER = arithmetic_nodel {
VALUETYPE = identifier ;
CONTEXT = CONNECTI VI TY. HEADER

Syntax 188— statement

Connectivity can aso be described as a lookup table model. This description is usually more compact than the
description using the BETWEEN statements.
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The connectivity model can have the arguments shown in Table 92 in the HEADER.

Table 92—Arguments for connectivity

Argument Valuetype Description
DRI VER string Dimension of connectivity function.
RECEI VER string Dimension of connectivity function.

Each dimension shall contain a TABLE.
The connectivity model specifies the allowed and disallowed connections amongst drivers or receivers in one-

dimensional tables or between drivers and receivers in two-dimensional tables.The boolean literals in the table
refer to the CONNECT _RULE as shown in Table 93.

Table 93—Boolean literals in non-interpolateable tables

Boolean literal Description
1 CONNECT_RULE is True.
0 CONNECT_RULE isFalse.
? CONNECT_RULE does not apply.

11.31 SIZE

A xxx statement shall be defined using ALF language as showniin .

KEYWORD S| ZE = arithnetic_nodel {
VALUETYPE = unsi gned_nunber ;

}

Syntax 189— statement

11.32 AREA

A xxx statement shall be defined using ALF language as showniin .

KEYWORD AREA = arithnetic_nodel {
VALUETYPE = unsi gned_nunber ;

}

Syntax 190— statement
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11.33 WIDTH

A xxx statement shall be defined using ALF language as shownin .

KEYWORD W DTH = arithnetic_nodel {
VALUETYPE = unsi gned_nunber ;

}

Syntax 191— statement

11.34 HEIGHT

A xxx statement shall be defined using ALF language as showniin .

KEYWORD HEI GHT = arithnetic_nodel {
VALUETYPE = unsi gned_nunber ;

}

Syntax 192— statement

11.35 LENGTH

A xxx statement shall be defined using ALF language as showniin .

KEYWORD LENGTH = arithnetic_nodel {
VALUETYPE = unsi gned_nunber ;

}

Syntax 193— statement

11.36 DISTANCE

A xxx statement shall be defined using ALF language as shown in .

KEYWORD DI STANCE = arithmetic_nodel {
VALUETYPE = unsi gned_nunber ;

}

Syntax 194— statement
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11.37 OVERHANG

A xxx statement shall be defined using ALF language as shownin .

KEYWORD OVERHANG = arithnetic_nodel {
VALUETYPE = unsi gned_nunber ;

}

Syntax 195— statement

11.38 PERIMETER

A xxx statement shall be defined using ALF language as showniin .

KEYWORD PERI METER = arithnetic_nodel {
VALUETYPE = unsi gned_nunber ;

}

Syntax 196— statement

11.39 EXTENSION

A xxx statement shall be defined using ALF language as showniin .

KEYWORD EXTENSI ON = arithnetic_nodel {
VALUETYPE = unsi gned_nunber ;

}

Syntax 197— statement

11.40 THICKNESS

A xxx statement shall be defined using ALF language as shownin .

KEYWORD THI CKNESS = arithnetic_nodel {
VALUETYPE = unsi gned_nunber ;

}

Syntax 198— statement
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11.41 Annotations for physical models
11.41.1 CONNECT_RULE annotation

A xxx statement shall be defined using ALF language as shownin .

KEYWORD CONNECT_RULE = singl e_val ue_annot ati on {
VALUETYPE = identifier ;
VALUES { must_short can_short cannot_short }
CONTEXT = CONNECTI VI TY;

}

Syntax 199— statement

The meaning of the annotation valuesis shown in Table 94.

Table 94—CONNECT_RULE annotation

Annotation string Description
must _short Electrical connection required.
can_short Electrical connection allowed.
cannot _short Electrical connection disallowed.

Itis not necessary to specify more than one rule between a given set of objects. If oneruleis specified to be True,
the logical value of the other rules can be implied shown in Table 95.

Table 95—Implications between connect rules

must_short cannot_short can_short
False False True
False True False
True False N/A

11.41.2 BETWEEN annotation
A xxx statement shall be defined using ALF language as shown in .

If the BETVEEN statement contains only one identifier, than the CONNECTI VI TY shall apply between multiple
instances of the same object.
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KEYWORD BETWEEN = nulti _val ue_annotation {
VALUETYPE = identifier ;
CONTEXT { DI STANCE LENGTH OVERHANG CONNECTI VI TY }

}

Syntax 200— statement

The BETWEEN statement within DI STANCE or LENGTH shall identify the objects for which the measurement
applies.

If the BETVEEEN statement contains only one identifier, than the DI STANCE or LENGTH, respectively, shall
apply between multiple instances of the same object, as shown in the following example and Figure 30.

Example

DI STANCE = 4 { BETWEEN { objectl object2 } }
LENGTH = 2 { BETWEEN { objectl object2 } }

objectl obj ect 2

O sTAancE=2 ™|

Figure 30—Illlustration of LENGTH and DISTANCE
11.41.3 DISTANCE-MEASUREMENT annotation

A xxx statement shall be defined using ALF language as showniin .

KEYWORD DI STANCE MEASUREMENT = si ngl e_val ue_annot ati on {
VALUETYPE = identifier ;
VALUES { euclidean horizontal vertical manhattan }
DEFAULT = eucli dean ;
CONTEXT DI STANCE ;

Syntax 201— statement

The mathematical definitions for distance measurements between two points with differential coordinates Ax and
Ay are:

— euclidean distance = (AxZ + Ay?) Y2
— horizontal distance = Ax
— vertical distance = Ay
— manhattan distance = Ax + Ay
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11.41.4 REFERENCE annotation container

A xxx statement shall be defined using ALF language as shownin .

KEYWORD REFERENCE = annot ati on_cont ai ner {
CONTEXT = DI STANCE ;
}
SEMANTI CS REFERENCE. i denti fier = single_value_annotation {
VALUETYPE = identifier ;
VALUES { center origin near_edge far_edge }
DEFAULT = origin ;
}

Syntax 202— statement

The meaning of the annotation valuesisillustrated in Figure 31.

object 1 object 2 object 1 object 2
DISTANCE DISTANCE
<> - —
REFERENCE = near_edge REFERENCE = center

Figure 31—Illlustration of REFERENCE for DISTANCE

11.41.5 ANTENNA reference annotation

A xxx statement shall be defined using ALF language as showniin .

SEMANTI CS ANTENNA = annotation {
VALUETYPE = identifier ;
CONTEXT { PIN. SI ZE PI N. AREA PI N. PERI METER }

}

Syntax 203— statement

In hierarchical design, a Pl N with physical PORTs can be abstracted. Therefore, an arithmetic model for Sl ZE,
AREA, PERI METER, etc. **relevant?? for certain antenna rules can be precalculated. An ANTENNA statement
within the arithmetic model enables references to the set of antennarules for which the arithmetic model applies

Example
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1 CELL cell 1 {

PIN pinl {
AREA poly area = 1.5 {
LAYER = poly;
5 ANTENNA { i ndividual _ml individual _vial }
}
AREA ml_area = 1.0 {
LAYER = netal 1;
10 ANTENNA { individual _ml }
}
= 0.5

AREA vi al_area
LAYER = vi al;
ANTENNA { i ndividual vial }

15
}
}
Theareapol y_ar eaisusedintherulesi ndi vi dual _nil andi ndi vi dual _vi al.
20 Theareanil_ar eaisused intherulei ndi vi dual _mil only.
Theareavi al_ar eaisusedintherulei ndi vi dual _vi al only.
The case with diffusion isillustrated in the following example:
25 CELL my_di ode {
CELLTYPE = special; ATTRI BUTE { DI ODE }
PI' N nmy_di ode_pin {
AREA = 3.75 {
LAYER = di f f usi on;
30 ANTENNA { rulel for_diffusion rule2 for_diffusion }
}

}
11.41.6 PATTERN reference annotation

35
A xxx statement shall be defined using ALF language as shownin .

SEMANTI CS PATTERN = si ngl e_val ue_annot ati on {
VALUETYPE = identifier ;
CONTEXT {
LENGTH W DTH HEI GHT SI ZE AREA THI CKNESS

PERI METER EXTENSI ON

40

45 )

Syntax 204— statement
Reference to a PATTERN shall be legal within arithmetic models, if the pattern and the model are within the

50
scope of the same parent object.

55
Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 4

206



11.42 Arithmetic submodels for timing and electrical data

The arithmetic submodels shown in Table 96 are only applicable in the context of electrical modeling.

Table 96—Submodels applicable for timing and electrical modeling

Object Description
H GH Applicable for electrical data measured at alogic hi gh state of apin.
Low Applicable for electrical data measured at alogic | ow state of apin.
Rl SE Applicable for electrical data measured during alogic | owto hi gh transition of a pin.
FALL Applicable for electrical data measured during alogic hi gh tol owtransition of apin.

11.43 Arithmetic submodels for physical data

The arithmetic submodels shown in Table 97 are only applicable in the context of physical modeling.

Table 97—Submodels applicable for physical modeling

Object Description
HORI ZONTAL Applicable for layout measurementsin O degree, i.e., horizontal direction.
VERTI CAL Applicable for layout measurementsin 90 degree, i.e., vertical direction.
ACUTE Applicable for layout measurements in 45 degree direction.
OBTUSE Applicable for layout measurements in 135 degree direction.
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Annex A

(informative)

Syntax rule summary

This summary replicates the syntax detailed in the preceding clauses. If there is any conflict, in detail or com-
pleteness, the syntax presented in the clauses shall considered as the normative definition.

**The current ordering is as each item appearsin its subchapter; this needs to be updated to be complete.**

A.l Lexical definitions

any_character ::= (seeb.2.3)
reserved character
| nonreserved_character
| escape_character
| whitespace
reserved_character ::= (see 6.2.3)
&I I=1+1-1* 1% 121N =1<1> 11D D@ L
nonreserved_character ::= (see 6.2.4)
letter | digit| | $|#

letter ::=
albicidielfiglhliljikiliminijolpiqgiri{s|tiu|v|w|x|y|z
IAIBICIDIEIFIGIH[IJIKILIM INJOIP|IQIRIS|IT|U|V W
IX1Y1Z

digit ::=
0111213141516171819

escape_character ::= (see 6.2.5)

delimiter ::= (see 6.3)
reserved_character
|& & |~& [[[|~[ | === ** |>=|<= |2V | 2~ |?- | 72| 7" |*?
|->]<-> &> | <&>|>>| <<
comment ::= (see6.2)
single_line_comment
| block_comment
integer ::= (see 6.5)
[ sign] unsigned
sign =
+ |-
unsigned ::=
digit { _|digit}
non_negative_number ::=
unsigned [ . unsigned |
| unsigned [ . unsigned ] E [ sign] unsigned
number ::=
[ sign] non_negative_number
bit_litera ::= (see6.7)
numeric_bit_literal
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| alphabetic_bit_literal
| dont_care litera
| random_literal

numeric_bit_literal ::=
0]1
alphabetic_bit_literal ::=
X|Z|LIH|JU|W
Ix1z[I1hjujw
dont_care litera ::=

?
random_literal ::=
*
based literal ::=

binary_base{ |binary_digit}
| octal_base{ |octa_digit}
| decimal_base{ _ | digit }

binary_digit ::=
bit_literal
octal_base ::=
'‘Ol'o
octal_digit ::=
binary digit|2|3[415]|6|7
decimal_base ::=
'‘D|'d
hex_base ::=
'H|'h
hex_digit ::=

octa_digit|8|9|A|B|C|D|E|F|albjc|d|e]|f

edge litera ::=
bit_edge litera
| word_edge literal
| symbolic_edge literal
bit_edge litera ::=
bit_literal bit_literal
word_edge literd ::=
based literal based literal
symbolic_edge literal ::=
27217~ |7
quoted_string ::=
" { any_character} "
identifiers::=
identifier { identifier }
identifier ::=
nonescaped_identifier
| escaped_identifier
| placeholder_identifier
| hierarchical _identifier
nonescaped _identifier ::=

nonreserved_character { nonreserved character }

210 Advanced Library Format (ALF) Reference Manual
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escaped_identifier ::=
escape_character escaped characters
escaped_characters::=
escaped_character { escaped character }
escaped_character ::=
nonreserved character
| reserved_character
| escape_character
placeholder_identifier ::=
< nonescaped_identifier >
hierarchical_identifier ::=
identifier . { identifier . } identifier
arithmetic_values ::=
arithmetic_value{ arithmetic_value}
arithmetic_value ::=
number
| identifier
| pin_value
string_value ::=
guoted_string
| identifier
edge values::=
edge value{ edge vaue}
edge vaue::=
(edge literal )
index_value::=
unsigned
| identifier

A.2 Auxiliary definitions

index ::=
[ index_range]
| [ index_value ]
index_range ::=

index_value . index_value
pin_assignments ::=

pin_assignment { pin_assignment }
pin_assignment ::=

pin_variable = pin_vaue;
pin_variables::=

pin_variable{ pin_variable}
pin_variable ::=

pin_variable identifier [ index ]
pin_values::=

pin_value{ pin_value}
pin_value::=

pin_variable

| bit_literal

| based_literal

| unsigned
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annotation ::=

one_level _annotation
| two_level _annotation
| multi_level_annotation

one_level _annotations ::=

one_level_annotation { one_level annotation }

one_level_annotation ::=

single value annotation
| multi_value _annotation

single value annotation ::=

identifier = annotation value;

multi_value annotation ::=

identifier { annotation_values }

two_level _annotations::=

two_level_annotation { two_level _annotation }

two_level_annotation ::=

one_level _annotation
| identifier [ = annotation_value ]
{ one_level_annotations }

multi_level_annotations ::=

multi_level_annotation { multi_level_annotation }

multi_level _annotation ::=

one_level _annotation
| identifier [ = annotation_value ]
{ multi_level_annotations }

annotation_values ::=

annotation_value { annotation_value }

annotation_value ::=

index_value
| string_value
| edge value
| pin_value
| arithmetic_value
| boolean_expression
| control_expression

al_purpose_items::=

al_purpose_item{ al_purpose_item}

al_purpose_item ::=

212

include
|dias
| constant
| attribute
| property
| class_declaration
| keyword_declaration
| group_declaration
| template_declaration
| template_instantiation
| annotation
| arithmetic_model
| arithmetic_model_container
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A.3 Generic definitions

include ::=

INCLUDE quoted_string ;

dias::=

ALIASidentifier = identifier ;

constant ::=

CONSTANT identifier = arithmetic_vaue;

atribute ::=

ATTRIBUTE { identifiers }

property ::=

PROPERTY [ identifier ] { one_level_annotations }

class declaration ::=
CLASS dentifier ;

| CLASS identifier { all_purpose_items}

keyword_declaration ::=

KEYWORD context_sensitive_keyword = syntax_item_identifier ;

group_declaration ::=

GROUP group_identifier { annotation_values }
| GROUP group_identifier { index_value : index_value }

template_declaration ::=

TEMPLATE template_identifier { template_items }

template items::=

template item { template item}

template item ::=
all_purpose_item
| cell
| library
| node
| pin
| pin_group
| primitive
| sublibrary
| vector
| wire
| antenna
| array
| blockage
| layer
| pattern
| port
[ rule
| site
| via
| function
| non_scan_cell
| test
| range
| artwork
| from
| to
|illegal
| violation
| header

IEEE P1603 Draft 4
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| table
| equation
| arithmetic_submodel
| behavior_item
| geometric_model
template_instantiation ::=
static_template_instantiation
| dynamic_template_instantiation
dtatic_template_instantiation ::=
template_identifier [ = static] ;
| template_identifier [ = static] { annotation_values }
| template_identifier [ = static]{ one_level_annotations }
dynamic_template instantiation ::=
template_identifier = dynamic
{ dynamic_template_instantiation_items }
dynamic_template instantiation_items ::=
dynamic_template instantiation_item
{ dynamic_template instantiation_item }
dynamic_template instantiation_item ::=
one_level _annotation
| arithmetic_model

A.4 Library definitions

library ::=
LIBRARY library_identifier { library_items }
| LIBRARY library identifier ;
| library template instantiation
library_items ::=
library_item { library_item}
library_item ::=
sublibrary
| sublibrary_item
library ::=

SUBLIBRARY sublibrary_identifier { sublibrary_items }
| SUBLIBRARY sublibrary_identifier ;
| sublibrary_template_instantiation

sublibrary_items::=
sublibrary_item { sublibrary_item}
sublibrary_item ::=

all_purpose_item
| cell
| primitive
| wire
| layer
| via
[ rule
| antenna

| array
| site
INFORMATION_two _level _annotation ::=
INFORMATION { information_one level_annotations }
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information_one level annotations ::=
information_one_level _annotation
{ information_one level annotation }

information_one level annotation ::=
AUTHOR one level _annotation
| VERSION_one level _annotation
| DATETIME_one_level _annotation
| PROJECT one_level _annotation

cell ::

(see9.3.)
CELL cell_identifier { cell_items}
| CELL cell_identifier ;
| cell_template_instantiation
cell_items::=
cell_item{ cell_item}
cell_item ::=
all_purpose_item
| pin
| pin_group
| primitive
| function
| non_scan_cell
| test
| vector
| wire
| blockage
| artwork
non_scan_cell ::= (see9.41)
NON_SCAN_CELL { unnamed_cell_instantiations }
INON_SCAN_CELL = unnamed cell_instantiation
| non_scan_cell_template_instantiation
unnamed_cell_instantiations ::=
unnamed_cell_instantiation { unnamed_cell_instantiation }
unnamed_cell_instantiation ::=
cell_identifier { pin_values }
| cell_identifier { pin_assignments }
pin::= (see9.4.1)
PIN[[ index_range] ] pin_identifier [ [ index_range] ] { pin_items}
| PIN[ [ index_range ] ] pin_identifier [ [ index_range] ] ;
| pin_template_instantiation

pin_item ::=
al_purpose_item
| range
| port
| pin_instantiation
pin_items::=

pin_item{ pin_item}

pin_instantiation ::=
pin_variable{ pin_items}

range ::= (see 9.42)
RANGE {index_range}

pin_group ::= (see9.8)
PIN_GROUP [ index_range] ] pin_group_identifier { pin_group_items }
| pin_group_template instantiation
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pin_group_items::=
pin_group_item{ pin_group_item}

pin_group_item ::=
all_purpose_item
| range
wire::=

WIRE wire identifier { wire items}
| WIRE wire_identifier ;
| wire_template_instantiation
wire items::=
wire_item{ wire_item }
wire item::=
all_purpose_item
| node
node ::=
NODE node_identifier { node_items}
| NODE node _identifier ;
| node_template_instantiation
node items::=
node_item { node_item }
node item ::=
all_purpose_item
vector ;=
VECTOR control_expression { vector_items}
|[VECTOR control_expression ;
| vector_template instantiation
vector_items ;=
vector_item { vector_item }
vector_item ::=
all_purpose_item
|illega
illegd ::=
ILLEGAL {illega_items}
| illegal_template instantiation

illegal_items::=
illegal_item { illegal_item}
illegal_item ::=
all_purpose_item
| violation
layer ::=

LAYER layer_identifier { layer_items }
| LAY ER layer_identifier ;
| layer_template instantiation
layer_items ::=
layer_item { layer_item}
layer_item ::=
all_purpose_item
via:=
V1A via_identifier { via_items}
| VIA via_identifier ;
| via_template instantiation
via items::=
via item{ via_ item}

216 Advanced Library Format (ALF) Reference Manual

(see9.5.1)

(see 9.13)

(see 9.14)

(see9.6.2)

(see9.16)

(see9.8.1)

IEEE P1603 Draft 4



via item ;=
all_purpose_item
| pattern
| artwork
via instantiations ::=
via_instantiation { via_instantiation }
via instantiation ::=
via_identifier instance_identifier { geometric_transformations }

rule::=
RULE rule_identifier { rule_items}
| RULE rule_identifier ;
| rule_template instantiation
rule items::=
rule_item{ rule_item}
rule_item ::=
all_purpose_item
| pattern
| via_instantiation
antenna::=

ANTENNA antenna_identifier { antenna_items }
| ANTENNA antenna_identifier ;
| antenna_template_instantiation
antenna items::=
antenna_item { antenna_item }
antenna item ::=
all_purpose_item
blockage ::=
BL OCKAGE blockage_identifier { blockage items}
| BLOCKAGE blockage_identifier ;
| blockage template instantiation
blockage items::=
blockage item { blockage item}
blockage item ::=
all_purpose_item
| pattern
[rule
| via_instantiation
port ::=
PORT port_identifier { port_items}
| PORT port_identifier ;
| port_template instantiation
port_items::=
port_item { port_item }
port_item ::=
al_purpose_item
| pattern
| rule
| via_instantiation

site::=
SITE site_identifier { site_items}
| SITE site identifier ;
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| site_template instantiation
site items::=
site item { site item}
site item ;=
all_purpose_item
| ORIENTATION_CLASS one level_annotation
| SYMMETRY_CLASS one level_annotation

array ::=
ARRAY array _identifier { array_items }
| ARRAY array_identifier ;
| array_template instantiation
array_items::=
array_item{ array_item}
array_item::=

all_purpose_item
| PURPOSE single value annotation
| geometric_transformation
pattern ::=
PATTERN pattern_identifier { pattern_items }
| PATTERN pattern_identifier ;
| pattern_template_instantiation
pattern_items ::=
pattern_item { pattern_item}
pattern_item ::=
all_purpose_item
| SHAPE_single value annotation
| LAYER single value annotation
| EXTENSION_single value annotation
| VERTEX_single value annotation
| geometric_model
| geometric_transformation
artwork ::=
ARTWORK = artwork_identifier { artwork_items }
|ARTWORK = artwork_identifier ;
| artwork_template instantiation
artwork_items ::=
artwork_item { artwork_item }
artwork_item ::=
geometric_transformation
| pin_assignment
geometric_model ::=
nonescaped_dentifier [ geometric_model_identifier |
{ geometric_model_items }
| geometric_model_template_instantiation
geometric_model_items ::=
geometric_model_item { geometric_model_item }
geometric_model_item ::=
al_purpose_item
| POINT_TO_POINT_one_level_annotation
| coordinates

coordinates ::=

COORDINATES{ x_number y_number { x_number y_number } }

geometric_transformations ::=
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geometric_transformation { geometric_transformation }
geometric_transformation ::=
HIFT two_level _annotation
| ROTATE one level annotation
| FLIP_one level _annotation

| repeat
repeat ::=
REPEAT [ = unsigned ] {
shi ft_two_level annotation
[ repeat |
function ::=

FUNCTION { function_items}
| function_template instantiation
function_items ::=
function_item { function_item }
function_item ::=

all_purpose_item

| behavior

| structure

| statetable
test ;1=

TEST { test_items }

| test_template instantiation
test_items::=

test_item { test_item}
test_item ::=

all_purpose_item

| behavior

| statetable
behavior ::=

BEHAVIOR { behavior_items}
| behavior_template instantiation
behavior_items::=
behavior_item { behavior_item }
behavior_item ::=
boolean_assignments
| control_statement
| primitive_instantiation
| behavior_item template_instantiation
boolean_assignments ::=
boolean assignment { boolean_assignment }
boolean_assignment ::=
pin_variable = boolean_expression ;
primitive_instantiation ::=
primitive_identifier [ identifier ] { pin_values}
| primitive_identifier [ identifier ]
{ boolean_assignments }
control_statement ::=
@ control_expression { boolean_assignments }
{ : control_expression { boolean_assignments } }
structure ::=
STRUCTURE { named_cell_instantiations }
| structure_template instantiation
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named_cell_instantiations ::=
named_cell_instantiation { named_cell_instantiation }
named_cell_instantiation ::=
cell_identifier instance_identifier { pin_values }
| cell_identifier instance_identifier { pin_assignments }
violation ::=
VIOLATION { violation_items }
| violation_template _instantiation
violation_items::=
violation_item { violation_item }
violation_item ::=
MESSAGE_TYPE_single value_annotation
| MESSAGE_single value annotation
| behavior
Statetable ::=
STATETABLE [ identifier ]
{ statetable_header statetable_row { statetable row } }
| statetable_template instantiation
statetable_header ::=
input_pin_variables : output_pin_variables ;
statetable row ::=
statetable control_values . statetable data values;
statetable _control_values ::=
statetable _control_value { statetable control_value}
statetable _control_value ::=
bit_litera
| based_litera
| unsigned
| edge value
statetable data values ::=
statetable data value { statetable data value}
statetable data value::=
bit_literal
| based_litera
| unsigned
[([!] pin_variable)
| ([ ~] pin_variable)
primitive ::=
PRIMITIVE primitive _identifier { primitive_items }
| PRIMITIVE primitive identifier ;
| primitive_template_instantiation
primitive_items ::=
primitive_item { primitive_item }
primitive_item ::=
all_purpose_item
| pin
| pin_group
| function
| test
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A.5 Control definitions

boolean_expression ::=
( boolean_expression )
| pin_value
| boolean_unary boolean_expression
| boolean_expression boolean_binary boolean_expression
| boolean_expression ? boolean_expression :
{ boolean_expression ? boolean_expression : }
boolean_expression
boolean_unary ::=

boolean binary ::=
&
| & &

I
Il
|/\
|.J\
1=

|>=
| <=
|>
| <
|+
¥
|/
| %
| >>
| <<
vector_expression ::=
('vector_expression )
| vector_unary boolean_expression
| vector_expression vector_binary vector_expression
| boolean_expression ? vector_expression :
{ boolean_expression ? vector_expression : }
Vector_expression
| boolean_expression control_and vector_expression
| vector_expression control_and boolean_expression

vector_unary ::=
edge litera
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vector_binary ::=
&
| & &

I

Il

[->

| ~>

| <->

| <~>

| &>

| <& >
control_and ::=

& |&&
control_expression ::=

('vector_expression )
| ( boolean_expression )

A.6 Arithmetic definitions

arithmetic_expression ::=
(‘arithmetic_expression )
| arithmetic_value
| [ arithmetic_unary ] arithmetic_expression
| arithmetic_expression arithmetic_binary
arithmetic_expression
| boolean_expression ? arithmetic_expression :
{ boolean_expression ? arithmetic_expression : }
arithmetic_expression
| arithmetic_macro
(‘arithmetic_expression { , arithmetic_expression } )
arithmetic_unary ::=
sign
arithmetic_binary ::
+
| -
| *
|/
| **
| %
arithmetic_macro ::
abs
|exp
|log
|min
| max
arithmetic_models ::=
arithmetic_model { arithmetic_mode }
arithmetic_model ::=
partial_arithmetic_model
| non_trivial_arithmetic_model
| trivial_arithmetic_model
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| assignment_arithmetic_model
| arithmetic_model _template instantiation
partial_arithmetic_model ::= (see11.2.3)
nonescaped_identifier [ arithmetic_model_identifier | { partial_arithmetic_model_items }
partial_arithmetic_model_items ::=
partial_arithmetic_model_item { partial_arithmetic_model_item }
partial_arithmetic_model_item ::=
any_arithmetic_model_item
| table
non_trivial_arithmetic_model ::= (see11.2.4)
nonescaped_identifier [ arithmetic_model_identifier ] {
[ any_arithmetic_model_items]
arithmetic_body
[ any_arithmetic_model_items]

trivial_arithmetic_model ::= (see11.2.5)
nonescaped _identifier [ arithmetic_model_identifier ]| = arithmetic_value;
| nonescaped_identifier [ arithmetic_model_identifier ] = arithmetic_value
{ any_arithmetic_model_items }

assignment_arithmetic_model ::= (see 11.2.6)
arithmetic_model_identifier = arithmetic_expression ;
any_arithmetic_model_items ::= (see11.2.7)

any_arithmetic_model_item { any_arithmetic_model_item }
any_arithmetic_model_item ::=
all_purpose_item
| from
| to
| violation
arithmetic_submodels ::= (see11.3.)
arithmetic_submode { arithmetic_submodel }
arithmetic_submodel ::=
non_trivial_arithmetic_submodel
| trivial_arithmetic_submodel
| arithmetic_submodel_template instantiation
non_trivial_arithmetic_submodel ::= (see11.3.2)
nonescaped_identifier {
[ any_arithmetic_submodel_items]]
arithmetic_body
[ any_arithmetic_submodel_items]]

trivial_arithmetic_submodel ::= (see11.3.3)
nonescaped_identifier = arithmetic_value;
| nonescaped_identifier = arithmetic_value{ any_arithmetic_submodel_items }
any_arithmetic_submodel_items::= (see 11.3.4)
any_arithmetic_submodel_item { any_arithmetic_submodel _item }
any_arithmetic_submodel_item ::=
all_purpose_item
| violation
arithmetic_body ::= (see11.4.1)
arithmetic_submodels
| table_arithmetic_body
| equation_arithmetic_body
table_arithmetic_body ::=
header table[ equation ]
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equation_arithmetic_body ::=
[ header ] equation [ table]
header ::=
HEADER { identifiers }
| HEADER { header_arithmetic_models }
| header _template_instantiation
header_arithmetic_ models ::=
header_arithmetic_model { header_arithmetic_model }
header_arithmetic_model ::=
non_trivial_arithmetic_model
| partial_arithmetic_model
table::=
TABLE { arithmetic_values}
| table_template_instantiation
equation ::=
EQUATION { arithmetic_expression }
| equation_template instantiation
arithmetic_model_container ::=
arithmetic_model_container_identifier { arithmetic_models }
from::=
FROM { from_to_items}
to::=
TO { from_to_items}
from_to_items::=
from_to_item { from_to_item}
from_to_item ::=
PIN_single value annotation
| EDGE_single value annotation
| THRESHOLD _arithmetic_model
EARLY_arithmetic_model_container ::=
EARLY { early_late_arithmetic_models }
LATE_arithmetic_model_container ::=
LATE { early_late arithmetic_models }
early late arithmetic_models::=
early_late arithmetic_model { early late arithmetic_model }
early_late arithmetic_model ::=
DELAY_arithmetic_model
| RETAIN_arithmetic_model
| SLEWRATE_arithmetic_model
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Symbols

(N+1) order sequential logic 129
-> operator 128

?- 210

2210

2?2210

?~210

@ 120

A

ABS 164
abs 164, 222
active vectors 124
ALIAS 47
dias47, 213
all_purpose items 212
alphabetic_bit_literal 32, 210
annotation
arithmetic modd tables
DRIVER 200
RECEIVER 200
arithmetic models
average 197
can_short 203
cannot_short 203
must_short 203
peak 197
rms 197
static 197
transient 197
CELL
NON_SCAN_CELL 109, 215
cell buffertype
inout 63
input 63
internal 63
output 63
cell celltype
block 60
buffer 60
combinational 60
core 60
flipflop 60

| ndex

latch 60
memory 60
multiplexor 60
specia 60
cell drivertype
both 63
predriver 63
slotdriver 63
cell scan_type
clocked 62
control_0 62
control_1 62
Issd 62
muxscan 62
cell scan_usage
hold 62
input 62
output 62
pin action
asynchronous 73
synchronous 73
pin datatype
signed 75
unsigned 75
pin direction
both 70
input 70
none 70
output 70
pin drivetype
cmos 77
CmMOos_pass 77
nmos 77
nmos_pass 77/
open_drain 77
open_source 77
pmos 77
pmos_pass 77
ttl 77
pin orientation
bottom 79
left 79
right 79
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top 79
pin pintype
analog 69
digital 69
supply 69
pin polarity
double_edge 74
falling_edge 74
high 74
low 74
rising_edge 74
pin pull
both 80, 84
down 80, 84, 86
none 80, 84, 86
up 80, 84, 86
pin scope
behavior 78
both 78
measure 78
none 78
pin signaltype
clear 71, 73, 74
clock 71, 73, 74
control 71, 73, 74

data7l, 73, 74

enable 71, 72, 73, 74

select 71, 73, 74

set 71,73, 74
pin stuck

both 76

none 76

stuck at 076

stuck at 176
pin view

both 69

functional 69

none 69

physical 69

any_character 209
arithmetic models 15
arithmetic operators
binary 164
unary 163

arithmetic_binary_operator 163, 222

arithmetic_expression 163, 222
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ATTRIBUTE 42
attribute 42, 213
CELL 65, 66
cell
asynchronous 65
CAM 65
dynamic 65
RAM 65
ROM 65
static 65
synchronous 65
PIN 80
pin
PAD 81
SCHMITT 80
TRISTATE 81
XTAL 81

B

based literal 33
based literal 33, 210
behavior 106, 219
behavior_body 106, 219
Binary operators

arithmetic 164

bitwise 115

boolean, scalars 114

reduction 115

vector 129, 130, 133
binary base 33, 210
binary digit 210
bit 111
bit_edge literal 33, 210
bit_literal 32, 209
Bitwise operators

binary 115

unary 115
boolean operators

binary 114

unary 114
boolean_binary_operator 160, 221
boolean_expression 160, 221
boolean unary_operator 160, 221
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C

cell 59, 215

cell identifier 59, 215

cell_items 215

cell template instantiation 59, 215
characterization 5

children object 14

CLASS 47

class47, 213

combinational logic 113
combinational _assignments 106, 219
comment 25

CONSTANT 47

constant 47, 213

D

decimal_base 33, 210
deep submicron 5
delimiter 25, 209
digit 210

E

edge literal 33, 210

edge literas 211

edge-sensitive sequential logic 120
eguation 167, 224

eguation_template instantiation 167, 224

escape codes 34
escape_character 27, 28, 209
escaped identifier 35, 211
event sequence detection 129
EXP 164

exp 164, 222

F

function 105, 219
Function operators
arithmetic 164

function_template instantiation 105, 219

functional model 5

G

generic objects 15
group 51, 213
group_identifier 51, 213
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header 166, 224
header_template instantiation 224
hex_base 33, 210

hex_digit 210

I

identifier 13, 25
identifiers 210
inactive vectors 124
INCLUDE 43
include 43, 213
index 41, 211
integer 209

L

level-sengitive sequential logic 120
Library creation 1

library_items 214
library_template instantiation 57, 214
library-specific objects 15

literal 25

LOG 164

log 164, 222

logic_values 107, 220
logic_variables 211

M

MAX 164

max 164, 222

MIN 164

min 164, 222

mode of operation 5

N

non_negative_number 209
nonescaped_identifier 35, 36, 210
nonreserved character 209
Number 31

number 209

numeric_bit_literal 32, 210

(@)

objects 213
octal_base 33, 210
octal_digit 210
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operation mode 5
operator
-> 128
followed by 128
operators
boolean, scalars 114
boolean, words 114
signed 116
unsigned 116

P
pin_assignments 41, 211
pin_identifier 215
pin_items 215
pin_template_instantiation 215
placeholder identifier 35
power constraint 5
Power model 5
predefined derating cases 188, 198

bccom 188

bcind 188

bcmil 188

wccom 188

wcind 188

wcmil 188
predefined process names 187

snsp 187

snwp 187

wnsp 188

wnwp 188
primitive_identifier 82, 106, 219, 220
primitive_instantiation 106, 219
primitive_items 220
primitive_template instantiation 82, 220
PROPERTY 43
property 43, 213

Q
guoted string 34

guoted_string 34, 210

R
Reduction operators
binary 115
unary 114
reserved_character 209
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sequential logic
edge-sensitive 120
level-sensitive 120
N+1 order 129
vector-sensitive 128
sequential_assignment 106, 219
sign 209
signed operators 116
simulation model 5
statetable 107, 220
statetable_body 107, 220
string 39, 211
symbolic_edge literal 33, 210

T

table 167, 224

table template instantiation 224
template 52, 213

template identifier 52, 213
template_instantiation 53, 214
Ternary operator 114

timing constraints 5

timing models 5

triggering conditions 120
triggering function 120

U
Unary operator
bitwise 115
Unary operators
arithmetic 163
boolean, scalar 114
reduction 114
Unary vector operators 122
unnamed_assignment 42, 212
unsigned 209
unsigned operators 116

V

vector 85, 216

vector expression 128

Vector operators
binary 129, 130
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unary, bits 122

unary, words 123
vector_expression 85, 161, 216, 221
vector_items 216
vector_template_instantiation 85, 216
vector_unary_operator 161, 221
vector-based modeling 5
Vector-Sensitive Sequential Logic 128
Verilog 4, 121
VHDL 4, 121

W

whitespace 209

wildcard_literal 210

wire 83, 84, 89, 91, 92, 93, 94, 95, 96, 104,
216, 217, 218

wire_identifier 83, 84, 89, 91, 92, 93, 94, 216,
217

wire_items 83, 216

wire_template instantiation 83, 84, 89, 91,
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word_edge literal 33, 210
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