
A standard for an
Advanced Library Format (ALF)

describing Integrated Circuit (IC)
technology, cells, and blocks

This is an unapproved draft for an IEEE standard
and subject to change

IEEE P1603 Draft 4

April 17, 2002

Copyright© 2001, 2002, 2003 by IEEE. All rights reserved.

put in IEEE verbage
ii Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 4

The following individuals contributed to the creation, editing, and review of this document

Wolfgang Roethig, Ph.D. wroethig@eda.org Official Reporter and WG Chair

Joe Daniels chippewea@aol.com Technical Editor
IEEE P1603 Draft 4 Advanced Library Format (ALF) Reference Manual iii

Revision history:

IEEE P1596 Draft 0 August 19, 2001

IEEE P1603 Draft 1 September 17, 2001

IEEE P1603 Draft 2 November 12, 2001

IEEE P1603 Draft 3 January 4, 2002
iv Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 4

Table of Contents
1. Introduction..1

1.1 Motivation..1
1.2 Goals ..2
1.3 Target applications...2
1.4 Conventions ...5
1.5 Contents of this standard..5

2. References..7

3. Definitions ...9

4. Acronyms and abbreviations ...11

5. ALF language construction principles and overview ..13

5.1 ALF meta-language ...13
5.2 Categories of ALF statements..14
5.3 Generic objects and library-specific objects ..16
5.4 Singular statements and plural statements ...18
5.5 Instantiation statement and assignment statement ...20
5.6 Annotation, arithmetic model, and related statements...22
5.7 Statements for parser control ...23
5.8 Name space and visibility of statements..23

6. Lexical rules...25

6.1 Character set ..25
6.2 Comment..27
6.3 Delimiter ..27
6.4 Operator ...28

6.4.1 Arithmetic operator ...28
6.4.2 Boolean operator ...29
6.4.3 Relational operator ..29
6.4.4 Shift operator...30
6.4.5 Event sequence operator..30
6.4.6 Meta operator ..30

6.5 Number ..31
6.6 Unit symbol..31
6.7 Bit literal ..32
6.8 Based literal ...33
6.9 Edge literal ...33
6.10 Quoted string..34
6.11 Identifier...34

6.11.1 Non-escaped identifier ..35
6.11.2 Escaped identifier ..35
6.11.3 Placeholder identifier ..35
6.11.4 Hierarchical identifier..35
IEEE P1603 Draft 4 Advanced Library Format (ALF) Reference Manual v

6.12 Keyword.. 36
6.13 Rules for whitespace usage ... 36
6.14 Rules against parser ambiguity ... 37

7. Auxiliary Syntax Rules ... 39

7.1 All-purpose value.. 39
7.2 Unit value.. 39
7.3 String... 39
7.4 Arithmetic value.. 39
7.5 Boolean value.. 40
7.6 Edge value... 40
7.7 Index value.. 40
7.8 Index.. 40
7.9 Pin variable and pin value... 41
7.10 Pin assignment .. 41
7.11 Annotation... 41
7.12 Annotation container... 42
7.13 ATTRIBUTE statement .. 42
7.14 PROPERTY statement.. 43
7.15 INCLUDE statement... 43
7.16 REVISION statement.. 44
7.17 Generic object ... 44
7.18 Library-specific object .. 45
7.19 All purpose item.. 45

8. Generic objects and related statements ... 47

8.1 ALIAS declaration .. 47
8.2 CONSTANT declaration... 47
8.3 CLASS declaration ... 47
8.4 KEYWORD declaration ... 48
8.5 Annotations for a KEYWORD ... 49

8.5.1 VALUETYPE annotation... 49
8.5.2 VALUES annotation... 49
8.5.3 DEFAULT annotation .. 50
8.5.4 CONTEXT annotation.. 50
8.5.5 SI_MODEL annotation... 51

8.6 GROUP declaration .. 51
8.7 TEMPLATE declaration ... 52
8.8 TEMPLATE instantiation ... 53

9. Library-specific objects and related statements .. 57

9.1 LIBRARY and SUBLIBRARY declaration ... 57
9.2 Annotations for LIBRARY and SUBLIBRARY.. 57

9.2.1 INFORMATION annotation container .. 57
9.3 CELL declaration.. 59
9.4 CELL instantiation.. 59
9.5 Annotations for a CELL.. 59

9.5.1 CELLTYPE annotation .. 59
9.5.2 SWAP_CLASS annotation... 60
9.5.3 RESTRICT_CLASS annotation ... 61
9.5.4 SCAN_TYPE annotation.. 61
vi Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 4

9.5.5 SCAN_USAGE annotation ...62
9.5.6 BUFFERTYPE annotation ..62
9.5.7 DRIVERTYPE annotation ..63
9.5.8 PARALLEL_DRIVE annotation ..64
9.5.9 PLACEMENT_TYPE annotation ...64
9.5.10 SITE reference annotation...64

9.6 ATTRIBUTE values for a CELL...64
9.7 PIN declaration ..66
9.8 PINGROUP declaration...68
9.9 Annotations for a PIN and a PINGROUP ...68

9.9.1 VIEW annotation...68
9.9.2 PINTYPE annotation...69
9.9.3 DIRECTION annotation..69
9.9.4 SIGNALTYPE annotation ..70
9.9.5 ACTION annotation ..72
9.9.6 POLARITY annotation ...73
9.9.7 DATATYPE annotation ..74
9.9.8 INITIAL_VALUE annotation...75
9.9.9 SCAN_POSITION annotation ..75
9.9.10 STUCK annotation ..76
9.9.11 SUPPLYTYPE ..76
9.9.12 SIGNAL_CLASS..76
9.9.13 SUPPLY_CLASS..77
9.9.14 DRIVETYPE annotation...77
9.9.15 SCOPE annotation...78
9.9.16 CONNECT_CLASS annotation..78
9.9.17 SIDE annotation ..78
9.9.18 ROW and COLUMN annotation...79
9.9.19 ROUTING_TYPE annotation ...79
9.9.20 PULL annotation ...80

9.10 ATTRIBUTE values for a PIN and a PINGROUP..80
9.11 PRIMITIVE declaration ..82
9.12 WIRE declaration ..83

9.12.1 Annotations for a WIRE..83
9.12.2 SELECT_CLASS annotation ..83

9.13 NODE declaration..83
9.13.1 NODETYPE annotation ..84
9.13.2 NODE_CLASS annotation..84

9.14 VECTOR declaration...85
9.15 Annotations for VECTOR ...85

9.15.1 PURPOSE annotation..85
9.15.2 OPERATION annotation ..85
9.15.3 LABEL annotation ..86
9.15.4 EXISTENCE_CONDITION annotation ...86
9.15.5 EXISTENCE_CLASS annotation...87
9.15.6 CHARACTERIZATION_CONDITION annotation ..88
9.15.7 CHARACTERIZATION_VECTOR annotation...88
9.15.8 CHARACTERIZATION_CLASS annotation ..89

9.16 LAYER declaration ...89
9.17 Annotations for LAYER..90

9.17.1 LAYERTYPE annotation..90
9.17.2 PITCH annotation..90
9.17.3 PREFERENCE annotation ..91

9.18 VIA declaration..91
IEEE P1603 Draft 4 Advanced Library Format (ALF) Reference Manual vii

9.19 VIA instantiation... 91
9.20 Annotations for a VIA... 91

9.20.1 VIATYPE annotation ... 91
9.21 RULE declaration ... 92
9.22 ANTENNA declaration... 92
9.23 BLOCKAGE declaration .. 93
9.24 PORT declaration.. 93
9.25 Annotations for PORT .. 93

9.25.1 PORT_VIEW annotation.. 93
9.26 SITE declaration ... 94
9.27 Annotations for SITE .. 94

9.27.1 ORIENTATION_CLASS... 94
9.27.2 SYMMETRY_CLASS ... 94

9.28 ARRAY declaration.. 95
9.29 Annotations for ARRAY .. 96

9.29.1 ARRAYTYPE annotation .. 96
9.30 PATTERN declaration.. 96
9.31 Annotations for PATTERN .. 96

9.31.1 SHAPE annotation.. 96
9.31.2 VERTEX annotation... 97
9.31.3 LAYER reference annotation ... 98

9.32 Geometric model... 98
9.33 Predefined geometric models using TEMPLATE .. 101
9.34 Geometric transformation ... 102
9.35 ARTWORK statement .. 104
9.36 FUNCTION statement .. 105
9.37 TEST statement... 105
9.38 BEHAVIOR statement.. 105
9.39 STRUCTURE statement ... 106
9.40 STATETABLE statement ... 107
9.41 NON_SCAN_CELL statement ... 109
9.42 RANGE statement... 110

10. Constructs for modeling of digital behavior ... 111

10.1 Variable declarations... 111
10.2 Boolean value system.. 111
10.3 Combinational functions ... 113

10.3.1 Combinational logic ... 113
10.3.2 Boolean operators on scalars .. 114
10.3.3 Boolean operators on words ... 114
10.3.4 Operator priorities... 116
10.3.5 Datatype mapping... 116
10.3.6 Rules for combinational functions.. 118
10.3.7 Concurrency in combinational functions.. 119

10.4 Sequential functions.. 119
10.4.1 Level-sensitive sequential logic.. 120
10.4.2 Edge-sensitive sequential logic .. 120
10.4.3 Unary operators for vector expressions .. 122
10.4.4 Basic rules for sequential functions.. 123
10.4.5 Concurrency in sequential functions .. 126
10.4.6 Initial values for logic variables ... 127

10.5 Higher-order sequential functions... 128
10.5.1 Vector-sensitive sequential logic.. 128
viii Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 4

10.5.2 Canonical binary operators for vector expressions ...129
10.5.3 Complex binary operators for vector expressions...130
10.5.4 Extension to N operands..131
10.5.5 Operators for conditional vector expressions..133
10.5.6 Operators for sequential logic ...134
10.5.7 Operator priorities ...134
10.5.8 Using PINs in VECTORs..135

10.6 Modeling with vector expressions ...135
10.6.1 Event reports..136
10.6.2 Event sequences ..137
10.6.3 Scope and content of event sequences ..138
10.6.4 Alternative event sequences ..140
10.6.5 Symbolic edge operators ...141
10.6.6 Non-events...142
10.6.7 Compact and verbose event sequences ...143
10.6.8 Unspecified simultaneous events within scope ...144
10.6.9 Simultaneous event sequences ..145
10.6.10 Implicit local variables ..147
10.6.11 Conditional event sequences ...148
10.6.12 Alternative conditional event sequences ...150
10.6.13 Change of scope within a vector expression ...152
10.6.14 Sequences of conditional event sequences..155
10.6.15 Incompletely specified event sequences..157
10.6.16 How to determine well-specified vector expressions..158

10.7 Boolean expression language...159
10.8 Vector expression language ...159
10.9 Control expression semantics ..160

11. Constructs for electrical and physical modeling..163

11.1 Arithmetic expression ..163
11.2 Arithmetic model ...165
11.3 HEADER, TABLE, and EQUATION...166

11.3.1 HEADER statement ..166
11.3.2 TABLE statement..167
11.3.3 EQUATION statement ..167

11.4 Statements related to arithmetic model..168
11.4.1 Model qualifier ..168
11.4.2 Auxiliary arithmetic model ...168
11.4.3 Arithmetic submodel ...168
11.4.4 MIN-MAX statement ..168
11.4.5 MIN-TYP-MAX statement ...169
11.4.6 Trivial MIN-MAX statement ..169
11.4.7 Arithmetic model container...170
11.4.8 LIMIT statement..170
11.4.9 Event reference statement ...170
11.4.10 FROM and TO statements...171
11.4.11 EARLY and LATE statements..171
11.4.12 VIOLATION statement...171

11.5 Annotations for arithmetic models ..173
11.5.1 UNIT annotation..173
11.5.2 CALCULATION annotation...173
11.5.3 INTERPOLATION annotation ...174
11.5.4 DEFAULT annotation...175
IEEE P1603 Draft 4 Advanced Library Format (ALF) Reference Manual ix

11.6 TIME... 176
11.6.1 TIME in context of a VECTOR declaration... 176
11.6.2 TIME in context of a HEADER statement... 176
11.6.3 TIME as auxiliary arithmetic model... 176

11.7 FREQUENCY... 177
11.7.1 FREQUENCY in context of a VECTOR declaration .. 177
11.7.2 FREQUENCY in context of a HEADER statement... 177
11.7.3 FREQUENCY as auxiliary arithmetic model .. 177

11.8 DELAY ... 177
11.8.1 DELAY in context of a VECTOR declaration... 178
11.8.2 DELAY in context of a library-specific object declaration.. 178

11.9 RETAIN.. 178
11.10SLEWRATE .. 179

11.10.1 SLEWRATE in context of a VECTOR declaration ... 179
11.10.2 SLEWRATE in context of a PIN declaration... 179
11.10.3 SLEWRATE in context of a library-specific object declaration.. 179

11.11SETUP and HOLD... 179
11.11.1 SETUP in context of a VECTOR declaration .. 179
11.11.2 HOLD in context of a VECTOR declaration ... 180
11.11.3 SETUP and HOLD in context of the same VECTOR declaration 180

11.12RECOVERY and REMOVAL... 180
11.12.1 RECOVERY in context of a VECTOR declaration... 181
11.12.2 REMOVAL in context of a VECTOR declaration... 181
11.12.3 RECOVERY and REMOVAL in context of the same VECTOR declaration 181

11.13NOCHANGE and ILLEGAL... 182
11.13.1 NOCHANGE in context of a VECTOR declaration .. 182
11.13.2 ILLEGAL in context of a VECTOR declaration.. 182

11.14SKEW .. 182
11.14.1 SKEW involving two signals ... 183
11.14.2 SKEW involving multiple signals .. 183

11.15PULSEWIDTH .. 183
11.15.1 PULSEWIDTH in context of a VECTOR declaration... 183
11.15.2 PULSEWIDTH in context of a PIN declaration .. 183
11.15.3 PULSEWIDTH in context of a library-specific object declaration.................................... 184

11.16PERIOD ... 184
11.17JITTER... 184
11.18THRESHOLD.. 185
11.19Annotations related to timing data ... 186

11.19.1 PIN reference annotation .. 186
11.19.2 EDGE_NUMBER annotation... 186

11.20PROCESS .. 187
11.21DERATE_CASE.. 188
11.22TEMPERATURE... 189
11.23PIN-related arithmetic models for electrical data .. 189

11.23.1 CAPACITANCE, RESISTANCE, and INDUCTANCE ... 189
11.23.2 VOLTAGE and CURRENT... 189
11.23.3 Context-specific semantics ... 190

11.24POWER and ENERGY.. 192
11.25FLUX and FLUENCE ... 193
11.26DRIVE_STRENGTH... 194
11.27SWITCHING_BITS... 195
11.28NOISE and NOISE MARGIN ... 195

11.28.1 NOISE MARGIN ... 195
11.28.2 NOISE .. 196
x Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 4

11.29Annotations and statements related to electrical models ..196
11.29.1 MEASUREMENT annotation...196
11.29.2 TIME to peak measurement ..198

11.30CONNECTIVITY...199
11.31SIZE ..200
11.32AREA..200
11.33WIDTH ...201
11.34HEIGHT..201
11.35LENGTH ..201
11.36DISTANCE...201
11.37OVERHANG ..202
11.38PERIMETER ..202
11.39EXTENSION ..202
11.40THICKNESS ..202
11.41Annotations for physical models ..203

11.41.1 CONNECT_RULE annotation..203
11.41.2 BETWEEN annotation ..203
11.41.3 DISTANCE-MEASUREMENT annotation..204
11.41.4 REFERENCE annotation container ..205
11.41.5 ANTENNA reference annotation..205
11.41.6 PATTERN reference annotation ...206

11.42Arithmetic submodels for timing and electrical data..207
11.43Arithmetic submodels for physical data ...207

(informative)Syntax rule summary ..209

A.1 Lexical definitions ...209

A.2 Auxiliary definitions ..211

A.3 Generic definitions...213

A.4 Library definitions ...214

A.5 Control definitions ...221

A.6 Arithmetic definitions ..222

(informative)Bibliography ...225
IEEE P1603 Draft 4 Advanced Library Format (ALF) Reference Manual xi

xii Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 4

List of Figures
Figure 1—ALF and its target applications ...4
Figure 2—Parent/child relationship between ALF statements ...16
Figure 3—Parent/child relationship amongst library-specific objects ...18
Figure 4—Parent/child relationship involving singular statements and plural statements20
Figure 5—Parent/child relationship involving instantiation and assignment statements21
Figure 6—Routing layer shapes ...97
Figure 7—Illustration of VERTEX annotation ..98
Figure 8—Geometric model and its context ...98
Figure 9—Illustration of geometric models ..99
Figure 10—Illustration of direct point-to-point connection ...100
Figure 11—Illustration of manhattan point-to-point connection ..100
Figure 12—Illustration of FLIP, ROTATE, and SHIFT ..104
Figure 13—Concurrency for combinational logic ..119
Figure 14—Model of a flip-flop with asynchronous clear in ALF ...121
Figure 15—Model of a flip-flop with asynchronous clear in Verilog ..121
Figure 16—Model of a flip-flop with asynchronous clear in VHDL ...121
Figure 17—Concurrency for edge-sensitive sequential logic ...126
Figure 18—Example of event sequence detection function ...128
Figure 19—Bounding regions for y(x) with INTERPOLATION=fit ..175
Figure 20—RETAIN and DELAY ...178
Figure 21—SETUP and HOLD ..180
Figure 22—RECOVERY and REMOVAL ..181
Figure 23—THRESHOLD measurement definition ..185
Figure 24—General representation of electrical models around a pin ...189
Figure 25—Electrical models associated with input and output pins ...191
Figure 26—Definition of noise margin ..196
Figure 27—Mathematical definitions for MEASUREMENT annotations ..197
Figure 28—Illustration of time to peak using FROM statement ..198
Figure 29—Illustration of time to peak using TO statement ..199
Figure 30—Illustration of LENGTH and DISTANCE ...204
Figure 31—Illustration of REFERENCE for DISTANCE ...205
IEEE P1603 Draft 4 Advanced Library Format (ALF) Reference Manual xiii

xiv Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 4

List of Tables
Table 1—Target applications and models supported by ALF..2
Table 2—Categories of ALF statements..15
Table 3—Generic objects...17
Table 4—Library-specific objects..17
Table 5—Singular statements ..19
Table 6—Plural statements ..19
Table 7—Instantiation statements..20
Table 8—Assignment statements...21
Table 9—Other categories of ALF statements...22
Table 10—Annotations and annotation containers with generic keyword ..22
Table 11—Keywords related to arithmetic model ...22
Table 12—Statements for ALF parser control ...23
Table 13—List of whitespace characters ...25
Table 14—List of special characters..26
Table 15—List arithmetic operators ..28
Table 16—List of boolean operators..29
Table 17—List of relational operators ...29
Table 18—List of shift operators ...30
Table 19—List of event sequence operators ..30
Table 20—List of meta operators ..30
Table 21—UNIT symbol ...32
Table 22—Character symbols within a quoted string..34
Table 23—Legal string values within the REVISION statement ..44
Table 24—Syntax item identifier...48
Table 25—VALUETYPE annotation...49
Table 26—Annotations within an INFORMATION statement ...58
Table 27—CELLTYPE annotation values ...60
Table 28—Predefined values for RESTRICT_CLASS ...61
Table 29—SCAN_TYPE annotations for a CELL object ...62
Table 30—SCAN_USAGE annotations for a CELL object ..62
Table 31—BUFFERTYPE annotations for a CELL object ...63
Table 32—DRIVERTYPE annotations for a CELL object ...63
Table 33—Attribute values for a CELL with CELLTYPE=memory ..65
Table 34—Attributes within a CELL with CELLTYPE=block...65
Table 35—Attributes within a CELL with CELLTYPE=core...66
Table 36—Attributes within a CELL with CELLTYPE=special...66
Table 37—VIEW annotations for a PIN object ...69
Table 38—PINTYPE annotations for a PIN object ...69
Table 39—DIRECTION annotations for a PIN object ..70
Table 40—DIRECTION in combination with PINTYPE ...70
Table 41—Fundamental SIGNALTYPE annotations for a PIN object ...71
Table 42—Composite SIGNALTYPE annotations for a PIN object ...72
Table 43—ACTION annotations for a PIN object ..73
Table 44—ACTION applicable in conjunction with fundamental SIGNALTYPE values73
IEEE P1603 Draft 4 Advanced Library Format (ALF) Reference Manual xv

Table 45—POLARITY annotations for a PIN.. 74
Table 46—POLARITY applicable in conjunction with fundamental SIGNALTYPE values 74
Table 47—DATATYPE annotations for a PIN object ... 75
Table 48—STUCK annotations for a PIN object.. 76
Table 49—DRIVETYPE annotations for a PIN object... 77
Table 50—SCOPE annotations for a PIN object .. 78
Table 51—SIDE annotations for a PIN object .. 79
Table 52—PULL annotations for a PIN object... 80
Table 53—Attributes within a PIN object... 80
Table 54—Attributes for pins of a memory .. 81
Table 55—Attributes for pins representing double-rail signals .. 81
Table 56—PIN or PINGROUP attributes for memory BIST.. 82
Table 57—NODETYPE annotation values... 84
Table 58—OPERATION annotation values.. 86
Table 59—LAYERTYPE annotation values ... 90
Table 60—VIATYPE annotation values ... 92
Table 61—PORT_VIEW annotation values ... 94
Table 62—Geometric model identifiers.. 99
Table 63—Single bit constants...111
Table 64—Mapping between octal base and binary base ..112
Table 65—Mapping between hexadecimal base, octal base, and binary base...112
Table 66—Unary boolean operators ..114
Table 67—Binary boolean operators ...114
Table 68—Ternary operator ...114
Table 69—Unary reduction operators..114
Table 71—Unary bitwise operators ...115
Table 72—Binary bitwise operators...115
Table 70—Binary reduction operators ...115
Table 73—Binary operators ...116
Table 74—Case comparison operators...117
Table 75—Unary vector operators on bits .. 122
Table 76—Unary vector operators on bits or words ... 123
Table 77—Canonical binary vector operators... 129
Table 78—Complex binary vector operators .. 130
Table 79—Operators for conditional vector expressions.. 133
Table 80—Operators for sequential logic ... 134
Table 81—Unary arithmetic operators.. 163
Table 82—Binary arithmetic operators... 164
Table 83—Macro arithmetic operators ... 164
Table 84—... 174
Table 85—... 174
Table 86—Predefined process names ... 187
Table 87—Predefined derating cases .. 188
Table 88—Direct association of models with a PIN... 191
Table 89—External association of models with a PIN ... 192
Table 90—MEASUREMENT annotation... 197
Table 91—Semantic interpretation of MEASUREMENT, TIME, or FREQUENCY.. 198
Table 92—Arguments for connectivity... 200
Table 93—Boolean literals in non-interpolateable tables ... 200
Table 94—CONNECT_RULE annotation.. 203
xvi Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 4

Table 95—Implications between connect rules ...203
Table 96—Submodels applicable for timing and electrical modeling...207
Table 97—Submodels applicable for physical modeling ..207
IEEE P1603 Draft 4 Advanced Library Format (ALF) Reference Manual xvii

xviii Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 4

1

5

10

15

20

25

30

35

40

45

50

55
IEEE Standard for an
Advanced Library Format (ALF)
describing Integrated Circuit (IC)
technology, cells, and blocks

1. Introduction

Add a lead-in OR change this to parallel an IEEE intro section

1.1 Motivation

Designing digital integrated circuits has become an increasingly complex process. More functions get integrated
into a single chip, yet the cycle time of electronic products and technologies has become considerably shorter. It
would be impossible to successfully design a chip of today’s complexity within the time-to-market constraints
without extensive use of EDA tools, which have become an integral part of the complex design flow. The effi-
ciency of the tools and the reliability of the results for simulation, synthesis, timing and power analysis, layout
and extraction rely significantly on the quality of available information about the cells in the technology library.

New challenges in the design flow, especially signal integrity, arise as the traditional tools and design flows hit
their limits of capability in processing complex designs. As a result, new tools emerge, and libraries are needed
in order to make them work properly. Library creation (generation) itself has become a very complex process and
the choice or rejection of a particular application (tool) is often constrained or dictated by the availability of a
library for that application. The library constraint can prevent designers from choosing an application program
that is best suited for meeting specific design challenges. Similar considerations can inhibit the development and
productization of such an application program altogether. As a result, competitiveness and innovation of the
whole electronic industry can stagnate.

In order to remove these constraints, an industry-wide standard for library formats, the Advanced Library Format
(ALF), is proposed. It enables the EDA industry to develop innovative products and ASIC designers to choose
the best product without library format constraints. Since ASIC vendors have to support a multitude of libraries
according to the preferences of their customers, a common standard library is expected to significantly reduce the
library development cycle and facilitate the deployment of new technologies sooner.
IEEE P1603 Draft 4 Advanced Library Format (ALF) Reference Manual 1

1

5

10

15

20

25

30

35

40

45

50

55
1.2 Goals

The basic goals of the proposed library standard are

— simplicity - library creation process needs to be easy to understand and not become a cumbersome pro-
cess only known by a few experts.

— generality - tools of any level of sophistication need to be able to retrieve necessary information from the
library.

— expandability - this needs to be done for early adoption and future enhancement possibilities.
— flexibility - the choice of keeping information in one library or in separate libraries needs to be in the hand

of the user not the standard.
— efficiency - the complexity of the design information requires the process of retrieving information from

the library does not become a bottleneck. The right trade-off between compactness and verbosity needs to
be established.

— ease of implementation - backward compatibility with existing libraries shall be provided and translation
to the new library needs to be an easy task.

— conciseness - unambiguous description and accuracy of contents shall be detailed.
— acceptance - there needs to be a preference for the new standard library over existing libraries.

1.3 Target applications

The fundamental purpose of ALF is to serve as the primary database for all third-party applications of ASIC
cells. In other words, it is an elaborate and formalized version of the databook.

In the early days, databooks provided all the information a designer needed for choosing a cell in a particular
application: Logic symbols, schematics, and a truth table provided the functional specification for simple cells.
For more complex blocks, the name of the cell (e.g., asynchronous ROM, synchronous 2-port RAM, or 4-bit syn-
chronous up-down counters) and timing diagrams conveyed the functional information. The performance charac-
teristics of each cell were provided by the loading characteristics, delay and timing constraints, and some
information about DC and AC power consumption. The designers chose the cell type according to the function-
ality, estimated the performance of the design, and eventually re-implemented it in an optimized way as neces-
sary to meet performance constraints.

Design automation enabled tremendous progress in efficiency, productivity, and the ability to deal with complex-
ity, yet it did not change the fundamental requirements for ASIC design. Therefore, ALF needs to provide mod-
els with functional information and performance information, primarily including timing and power. Signal
integrity characteristics, such as noise margin can also be included under performance category. Such informa-
tion is typically found in any databook for analog cells. At deep sub-micron levels, digital cells behave similar to
analog cells as electronic devices bound by physical laws and therefore are not infinitely robust against noise.

Table 1 shows a list of applications used in ASIC design flow and their relationship to ALF.

NOTE — ALF covers library data, whereas design data needs to be provided in other formats.

Table 1—Target applications and models supported by ALF

Application Functional model Performance model Physical model

Simulation Derived from ALF N/A N/A

Synthesis Supported by ALF Supported by ALF Supported by ALF

Design for test Supported by ALF N/A N/A
2 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 4

1

5

10

15

20

25

30

35

40

45

50

55
Historically, a functional model was virtually identical to a simulation model. A functional gate-level model was
used by the proprietary simulator of the ASIC company and it was easy to lump it together with a rudimentary
timing model. Timing analysis was done through dynamic functional simulation. However, with the advanced
level of sophistication of both functional simulation and timing analysis, this is no longer the case. The capabili-
ties of the functional simulators have evolved far beyond the gate-level and timing analysis has been decoupled
from simulation.

RTL design planning is an emerging application type aiming to produce “virtual prototypes” of complex for sys-
tem-on-chip (SOC) designs. RTL design planning is thought of as a combination of some or all of RTL floorplan-
ning and global routing, timing budgeting, power estimation, and functional verification, as well as analysis of
signal integrity, EMI, and thermal effects. The library components for RTL design planning range from simple
logic gates to parameterizeable macro-functions, such as memories, logic building blocks, and cores.

From the point of view of library requirements, applications involved in RTL design planning need functional,
performance, and physical data. The functional aspect of design planning includes RTL simulation and formal
verification. The performance aspect covers timing and power as primary issues, while signal integrity, EMI, and
thermal effects are emerging issues. The physical aspect is floorplanning. As stated previously, the functional and
performance models of components can be described in ALF.

ALF also covers the requirements for physical data, including layout. This is important for the new generation of
tools, where logical design merges with physical design. Also, all design steps involve optimization for timing,
power, signal integrity, i.e. electrical correctness and physical correctness. EDA tools need to be knowledgeable
about an increasing number of design aspects. For example, a place and route tool needs to consider congestion
as well as timing, crosstalk, electromigration, antenna rules etc. Therefore it is a logical step to combine the func-
tional, electrical and physical models needed by such a tool in a unified library.

Figure 1 shows how ALF provides information to various design tools.

Design planning Supported by ALF Supported by ALF Supported by ALF

Timing analysis N/A Supported by ALF N/A

Power analysis N/A Supported by ALF N/A

Signal integrity N/A Supported by ALF N/A

Layout N/A N/A Supported by ALF

Table 1—Target applications and models supported by ALF (Continued)

Application Functional model Performance model Physical model
IEEE P1603 Draft 4 Advanced Library Format (ALF) Reference Manual 3

1

5

10

15

20

25

30

35

40

45

50

55
Figure 1—ALF and its target applications

The worldwide accepted standards for hardware description and simulation are VHDL and Verilog. Both lan-
guages have a wide scope of describing the design at various levels of abstraction: behavioral, functional, synthe-
sizable RTL, and gate level. There are many ways to describe gate-level functions. The existing simulators are
implemented in such a way that some constructs are more efficient for simulation run time than others. Also,
how the simulation model handles timing constraints is a trade-off between efficiency and accuracy. Developing
efficient simulation models which are functionally reliable (i.e., pessimistic for detecting timing constraint viola-
tion) is a major development effort for ASIC companies.

Hence, the use of a particular VHDL or Verilog simulation model as primary source of functional description of
a cell is not very practical. Moreover, the existence of two simulation standards makes it difficult to pick one as a

Cell characterization tool

ALF

universal functional model

Simulation models

Test vector generator Model generator

Verilog & VHDL
Test vectors

Verilog & VHDL

Simulators
Verilog & VHDL

Synthesis tool

universal universal

annotations
for synthesis

annotations
for scan

wireload

timing model power model

Scan insertion tool

Vendor-specific or commercial EDA tool

Commercial EDA tool

models

Timing
analysis tool

Power
analysis tool

Signal integrity
analysis tool

universal
design limits

universal signal
integrity model

Place & Route
tool

layout
models
4 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 4

1

5

10

15

20

25

30

35

40

45

50

55
reference with respect to the other. The purpose of a generic functional model is to serve as an absolute reference
for all applications that require functional information. Applications such as synthesis, which need functional
information merely for recognizing and choosing cell types, can use the generic functional model directly. For
other applications, such as simulation and test, the generic functional model enables automated simulation model
and test vector generation and verification, which has a tremendous benefit for the ASIC industry.

With progress of technology, the set of physical constraints under which the design functions have increased dra-
matically, along with the cost constraints. Therefore, the requirements for detailed characterization and analysis
of those constraints, especially timing and power in deep submicron design, are now much more sophisticated.
Only a subset of the increasing amount of characterization data appears in today’s databooks.

ALF provides a generic format for all type of characterization data, without restriction to state-of-the art timing
models. Power models are the most immediate extension and they have been the starter and primary driver for
ALF.

Detailed timing and power characterization needs to take into account the mode of operation of the ASIC cell,
which is related to the functionality. ALF introduces the concept of vector-based modeling, which is a generali-
zation and a superset of today’s timing and power modeling approaches. All existing timing and power analysis
applications can retrieve the necessary model information from ALF.

1.4 Conventions

The syntax for description of lexical and syntax rules uses the following conventions.
Consider using the BNF nomenclature from IEEE 1481-1999

::= definition of a syntax rule
| alternative definition
[item] an optional item
[item1 | item2 | ...] optional item with alternatives
{item} optional item that can be repeated
{item1 | item2 | ... } optional items with alternatives

which can be repeated
item item in boldface font is taken verbatim
item item in italic is for explanation purpose only

The syntax for explanation of semantics of expressions uses the following conventions.

=== left side and right side expressions are equivalent
<item> a placeholder for an item in regular syntax

1.5 Contents of this standard

The organization of the remainder of this standard is

— Clause 2 (References) provides references to other applicable standards that are assumed or required for
ALF.

— Clause 3 (Definitions) defines terms used throughout the different specifications contained in this stan-
dard.

— Clause 4 (Acronyms and abbreviations) defines the acronyms used in this standard.
— Clause 6 (Lexical rules) specifies the lexical rules.
— Clause 5 (ALF language construction principles) defines the language construction principles.
— Clause 7 (Auxiliary Syntax Rules) defines syntax and semantics of auxiliary items used in this standard.
IEEE P1603 Draft 4 Advanced Library Format (ALF) Reference Manual 5

1

5

10

15

20

25

30

35

40

45

50

55
— Clause 8 (Generic objects and related statements) defines syntax and semantics of generic objects used in
this standard.

— Clause 9 (Library-specific objects and related statements) defines syntax and semantics of library-spe-
cific objects used in this standard.

— Clause 10 (Constructs for modeling of digital behavior) defines syntax and semantics of the control
expression language used in this standard

— Clause 11 (Constructs for electrical and physical modeling) defines syntax and semantics of arithmetic
models used in this standard.

— Annexes. Following Clause 11are a series of normative and informative annexes.
6 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 4

1

5

10

15

20

25

30

35

40

45

50

55
2. References

**Fill in applicable references, i.e. standards on which the herein proposed standard depends.

This standard shall be used in conjunction with the following publication. When the following standard is super-
seded by an approved revision, the revision shall apply.

**The following is only an example. ALF does not depend on C.

ISO/IEC 9899:1990, Programming Languages—C.1

[ISO 8859-1 : 1987(E)] ASCII character set

1ISO publications are available from the ISO Central Secretariat, Case Postale 56, 1 rue de Varembé, CH-1211, Genève 20, Switzerland/
Suisse (http://www.iso.ch/). IEC publications are available from the Sales Department of the International Electrotechnical Commission,
Case Postale 131, 3, rue de Varembé, CH-1211, Genève 20, Switzerland/Suisse (http://www.iec.ch/). ISO/IEC publications are also available
in the United States from the Sales Department, American National Standards Institute, 11 West 42nd Street, 13th Floor, New York, NY
10036, USA.
IEEE P1603 Draft 4 Advanced Library Format (ALF) Reference Manual 7

1

5

10

15

20

25

30

35

40

45

50

55
8 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 4

1

5

10

15

20

25

30

35

40

45

50

55
3. Definitions

For the purposes of this standard, the following terms and definitions apply. The IEEE Standard Dictionary of
Electrical and Electronics Terms [B4] should be consulted for terms not defined in this standard.

**Fill in definitions of terms which are used in the herein proposed standard.

3.1 advanced library format: The format of any file that can be parsed according to the syntax and semantics
defined within this standard.

3.2 application, electric design automation (EDA) application: Any software program that uses data repre-
sented in the Advanced Library Format (ALF). Examples include RTL (Register Transfer Level) synthesis tools,
static timing analyzers, etc. See also: advanced library format; register transfer level.

3.3 arc: See: timing arc.

3.4 argument: A data item required for the mathematical evaluation of an artihmetic model. See also: arith-
metic model.

3.5 arithmetic model: A representation of a library quantity that can be mathematically evaluated.

3.6 ...

3.7 register transfer level: A behavioral representation of a digital electronic design allowing inference of
sequential and combinational logic components.

3.8 ...

3.9 timing arc: An abstract representation of a measurement between two points in time during operation of a
library component.

3.10 ...
IEEE P1603 Draft 4 Advanced Library Format (ALF) Reference Manual 9

1

5

10

15

20

25

30

35

40

45

50

55
10 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 4

1

5

10

15

20

25

30

35

40

45

50

55
4. Acronyms and abbreviations

This clause lists the acronyms and abbreviations used in this standard.

ALF advanced library format, title of the herein proposed standard

ASIC application specific integrated circuit

AWE asymptotic waveform evaluation

BIST built-in self test

BNF Backus-Naur Form

CAE computer-aided engineering [the term electronic design automation (EDA) is preferred]

CAM content-addressable memory

CLF Common Library Format from Avant! Corporation

CPU central processing unit

DCL Delay Calculation Language from IEEE 1481-1999 std

DEF Design Exchange Format from Cadence Design Systems Inc.

DLL delay-locked loop

DPCM Delay and Power Calculation Module from IEEE 1481-1999 std

DPCS Delay and Power Calculation System from IEEE 1481-1999 std

DSP digital signal processor

DSPF Detailed Standard Parasitic Format

EDA electronic design automation

EDIF Electronic Design Interchange Format

HDL hardware description language

IC integrated circuit

IP intellectual property

ILM Interface Logic Model from Synopsys Inc.

LEF Library Exchange Format from Cadence Design Systems Inc.

LIB Library Format from Synopsys Inc.

LSSD level-sensitive scan design

MPU micro processor unit

OLA Open Library Architecture from Silicon Integration Initiative Inc.

PDEF Physical Design Exchange Format from IEEE 1481-1999 std

PLL Phase-locked loop

PVT process/voltage/temperature (denoting a set of environmental conditions)

QTM Quick Timing Model

RAM random access memory

RC resistance times capacitance

RICE rapid interconnect circuit evaluator

ROM read-only memory

RSPF Reduced Standard Parasitic Format

RTL Register Transfer Level

SDF Standard Delay Format from IEEE 1497 std

SDC Synopsys Design Constraint format from Synopsys Inc.

SPEF Standard Parasitic Exchange Format from IEEE 1481-1999 std

SPF Standard Parasitic Format

SPICE Simulation Program with Integrated Circuit Emphasis

STA Static Timing Analysis
IEEE P1603 Draft 4 Advanced Library Format (ALF) Reference Manual 11

1

5

10

15

20

25

30

35

40

45

50

55
STAMP (STA Model Parameter ?) format from Synopsys Inc.

TCL Tool Command Language (supported by multiple EDA vendors)

TLF Timing Library Format from Cadence Design Systems Inc.

VCD Value Change Dump format (from IEEE 1364 std ?)

VHDL VHSIC Hardware Description Language

VHSIC very-high-speed integrated circuit

VITAL VHDL Initiative Towards ASIC Libraries from IEEE ??? std

VLSI very-large-scale integration
12 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 4

1

5

10

15

20

25

30

35

40

45

50

55
5. ALF language construction principles and overview

Add lead-in text

This section presents the ALF language construction principles and gives an overview of the language features.
The types of ALF statements and rules for parent/child relationships between types are presented summarily.
Most of the types are associated with predefined keywords. The keywords in ALF shall be case-insensitive.
However, uppercase is used for keywords throughout this section for clarity.

5.1 ALF meta-language

The following Syntax 1— establishes an ALF meta-language.

Syntax 1—syntax construction for ALF meta-language

An ALF statement uses the delimiters “;”, “{“ and “}” to indicate its termination.

The ALF type is defined by a keyword (see Section 6.12 on page 36) eventually in conjunction with an index (see
Section 7.8 on page 40) or by the operator “@” (Section 6.4 on page 28) or by the delimiter “:” (see Section 6.3
on page 27). The usage of keyword, index, operator, or delimiter as ALF type is defined by ALF language rules
concerning the particular ALF type.

The ALF name is defined by an identifier (see Section 6.11 on page 34) eventually in conjunction with an index
or by a control expression (see Section 10.9 on page 160). Depending on the ALF type, the ALF name is manda-
tory or optional or not applicable. The usage of identifier, index, or control expression as ALF name is defined by
ALF language rules concerning the particular ALF type.

The ALF value is defined by an identifier, a number (see Section 6.5 on page 31), an arithmetic expression (see
Section 11.1 on page 163), a boolean expression (see Section 10.7 on page 159), or a control expression.
Depending on the type of the ALF statement, the ALF value is mandatory or optional or not applicable. The
usage of identifier, number, arithmetic expression, boolean expression or control expression as ALF value is
defined by ALF language rules concerning the particular ALF type.

ALF_statement ::=
ALF_type [ALF_name] [= ALF_value] ALF_statement_termination

ALF_statement_termination ::=
;

| { { ALF_value | : | ; } }
| { { ALF_statement } }

ALF_type ::=
non_escaped_identifier [index]

| @
| :

ALF_name ::=
identifier [index]

| control_expression
ALF_value ::=

identifier
| number
| arithmetic_expression
| boolean_expression
| control_expression
IEEE P1603 Draft 4 Advanced Library Format (ALF) Reference Manual 13

1

5

10

15

20

25

30

35

40

45

50

55
An ALF statement can contain one or more other ALF statements. The former is called parent of the latter. Con-
versely, the latter is called child of the former. An ALF statement with child is called a compound ALF state-
ment.

An ALF statement containing one or more ALF values, eventually interspersed with the delimiters “;” or “:”, is
called a semi-compound ALF statement. The items between the delimiters “{“ and “}” are called contents of the
ALF statement. The usage of the delimiters “;” or “:” within the contents of an ALF statement is defined by ALF
language rules concerning the particular ALF statement.

An ALF statement without child is called an atomic ALF statement. An ALF statement which is either com-
pound or semi-compound is called a non-atomic ALF statement.

Examples

a) ALF statement describing an unnamed object without value:
ARBITRARY_ALF_TYPE {

// put children here
}

b) ALF statement describing an unnamed object with value:
ARBITRARY_ALF_TYPE = arbitrary_ALF_value;

or
ARBITRARY_ALF_TYPE = arbitrary_ALF_value {

// put children here
}

c) ALF statement describing a named object without value:
ARBITRARY_ALF_TYPE arbitrary_ALF_name;

or
ARBITRARY_ALF_TYPE arbitrary_ALF_name {

// put children here
}

d) ALF statement describing a named object with value:
ARBITRARY_ALF_TYPE arbitrary_ALF_name = arbitrary_ALF_value;

or
ARBITRARY_ALF_TYPE arbitrary_ALF_name = arbitrary_ALF_value {

// put children here
}

5.2 Categories of ALF statements

In this section, the terms statement, type, name, value are used for shortness in lieu of ALF statement, ALF name,
ALF value, respectively.
14 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 4

1

5

10

15

20

25

30

35

40

45

50

55
Statements are divided into the following categories: generic object, library-specific object, arithmetic model,
arithmetic submodel, arithmetic model container, geometric model, annotation, annotation container, and auxil-
iary statement, as shown in Table 2—.

The following Figure 2— illustrates the parent/child relationship between categories of statements.

Table 2—Categories of ALF statements

category purpose syntax particularity

generic object provide a definition for use within other
ALF statements

Statement is atomic, semi-compound or com-
pound.
Name is mandatory.
Value is either mandatory or not applicable.

library-specific object describe the contents of a IC technology
library

Statement is atomic or compound.
Name is mandatory.
Value does not apply.
Category of parent is exclusively
library-specific object

arithmetic model describe an abstract mathematical quan-
tity that can be calculated and eventually
measured within the design of an IC

Statement is atomic or compound.
Name is optional.
Value is mandatory, if atomic.

arithmetic submodel describe an arithmetic model under a
specific measurement condition

Statement is atomic or compound.
Name does not apply.
Value is mandatory, if atomic.
Category of parent is exclusively
arithmetic model

arithmetic model container provide a context for an arithmetic
model

Statement is compound.
Name and value do not apply.
Category of child is exclusively
arithmetic model

geometric model describe an abstract geometrical form
used in physical design of an IC

Statement is semi-compound or compound.
Name is optional.
Value does not apply.

annotation provide a qualifier or a set of qualifiers
for an ALF statement

Statement is atomic, semi-compound or com-
pound.
Name does not apply.
Value is mandatory, if atomic or compound.
Value does not apply, if semi-compound.
Category of child is exclusively
annotation

annotation container provide a context for an annotation Statement is compound.
Name and value do not apply.
Category of child is exclusively
annotation

auxiliary statement provide an additional description within
the context of a library-specific object,
an arithmetic model, an arithmetic sub-
model, geometric model or another aux-
liary statement

dependent on subcategory
IEEE P1603 Draft 4 Advanced Library Format (ALF) Reference Manual 15

1

5

10

15

20

25

30

35

40

45

50

55
Figure 2—Parent/child relationship between ALF statements

More detailed rules for parent/child relationships for particular types of statements apply.

5.3 Generic objects and library-specific objects

Statements with mandatory name are called objects, i.e., generic object and library-specific object.

library-specific object

legend:

arithmetic model

arithmetic model container

arithmetic submodel

annotation

annotation container

auxiliary statement

geometric model

library-specific object

auxiliary statement

generic objectarithmetic model

parent child

parent child no restrictive rules

with restrictive rules

generic object

library-specific object

auxiliary statement

arithmetic model

annotation container
annotation

arithmetic submodel

arithmetic model container
16 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 4

1

5

10

15

20

25

30

35

40

45

50

55
The following table lists the keywords and items in the category generic object. The keywords used in this cate-
gory are called generic keywords.

The following Table 3— lists the keywords and items in the category library-specific object. The keywords used
in this category are called library-specific keywords.

Table 3—Generic objects

keyword item section

ALIAS alias declaration

CONSTANT constant declaration

CLASS class declaration

GROUP group declaration

KEYWORD keyword declaration

TEMPLATE template declaration

Table 4—Library-specific objects

keyword item section

LIBRARY library

SUBLIBRARY sublibrary

CELL cell

PRIMITIVE primitive

WIRE wire

PIN pin

PINGROUP pin group

VECTOR vector

NODE node

LAYER layer

VIA via

RULE rule

ANTENNA antenna

SITE site
IEEE P1603 Draft 4 Advanced Library Format (ALF) Reference Manual 17

1

5

10

15

20

25

30

35

40

45

50

55
The following Figure 3— illustrates the parent/child relationship between statements within the category library-
specific object.

Figure 3—Parent/child relationship amongst library-specific objects

A parent can have multiple library-specific objects of the same type as children. Each child is distinguished by
name.

5.4 Singular statements and plural statements

Auxiliary statements with predefined keywords are devided in the following subcategories: singular statement
and plural statement.

ARRAY array

BLOCKAGE blockage

PORT port

PATTERN pattern

REGION region new proposal for IEEE

Table 4—Library-specific objects

keyword item section

library

legend:

parent child

sublibrary

cell primitive
wire

pinpin-groupvectornode

layer

via

rule

antenna

site

array

blockage

portpattern

region

pin
18 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 4

1

5

10

15

20

25

30

35

40

45

50

55
Auxiliary statements with predefined keywords and without name are called singular statements. Auxiliary state-
ments with predefined keywords and with name, yet without value, are called plural statements.

The following Table 5— lists the singular statements.

The following Table 6— lists the plural statements.

The following Figure 4— illustrates the parent/child relationship for singular statements and plural statements.

Table 5—Singular statements

keyword item value complexity section

FUNCTION function N/A compound

TEST test N/A compound

RANGE range N/A semi-compound

FROM from N/A compound

TO to N/A compound

VIOLATION violation N/A compound

HEADER header N/A compound (or semi-compound?)

TABLE table N/A semi-compound

EQUATION equation N/A semi-compound

BEHAVIOR behavior N/A compound

STRUCTURE structure N/A compound

NON_SCAN_CELL non-scan cell optional compound or semi-compound

ARTWORK artwork mandatory compound or atomic

Table 6—Plural statements

keyword item name complexity section

STATETABLE state table optional semi-compound

@ control statement mandatory compound

: alternative control statement mandatory compound
IEEE P1603 Draft 4 Advanced Library Format (ALF) Reference Manual 19

1

5

10

15

20

25

30

35

40

45

50

55
Figure 4—Parent/child relationship involving singular statements and plural statements

A parent can have at most one child of a particular type in the category singular statements, but multiple children
of a particular type in the category plural statements.

5.5 Instantiation statement and assignment statement

Auxiliary statements without predefined keywords use the name of an object as keyword. Such statements are
devided in the following subcategories: instantiation statement and assignment statement.

Compound or semi-compound statements using the name of an object as keyword are called instantiation state-
ments. Their purpose is to specify an instance of the object.

The following Table 7— lists the instantiation statements.

Table 7—Instantiation statements

item name value section

cell instantiation optional N/A

primitive instantiation optional N/A

template instantiation N/A optional

via instantiation mandatory N/A

wire instantiation mandatory N/A proposed for IEEE

legend:

parent child

function test range

from

to

violation

header

table

equation

behavior

structure

cellprimitive pin

arithmetic model

arithmetic submodel

non-scan cell

artwork

arithmetic submodel

statetable

control statement

alternative control statement
20 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 4

1

5

10

15

20

25

30

35

40

45

50

55
Atomic statements without name using an identifier as keyword which has been defined within the context of
another object are called assignment statements. A value is mandatory for assignment statements, as their pur-
pose is to assign a value to the identifier. Such an identifier is called a variable.

The following Table 8— lists the assignment statements.

The following Figure 5— illustrates the parent/child relationship involving instantiation and assigment state-
ments.

Figure 5—Parent/child relationship involving instantiation and assignment statements

A parent can have multiple children using the same keyword in the category instantiation statement, but at most
one child using the same variable in the category assignment statement.

Table 8—Assignment statements

item section

pin assignment

boolean assignment

arithmetic assignment

behavior

structurenon-scan cell

artwork

control statement

alternative control statement

pin assignment

boolean assignment

arithmetic assignment

cell instantiation

template instantiation

wire instantiation

generic object

library-specific object

arithmetic model container

arithmetic model

arithmetic submodel

singular statement

plural statement

primitive instantiation

legend:

parent child

parent child no restrictive rules

with restrictive rules
IEEE P1603 Draft 4 Advanced Library Format (ALF) Reference Manual 21

1

5

10

15

20

25

30

35

40

45

50

55
5.6 Annotation, arithmetic model, and related statements

Multiple keywords are predefined in the categories arithmetic model, arithmetic model container, arithmetic
submodel, annotation, annotation container, and geometric model. Their semantics are established within the
context of their parent. Therefore they are called context-sensitive keywords. In addition, the ALF language
allows additional definition of keywords in these categories.

The following Table 9— provides a reference to sections where more definitions about these categories can be
found.

There exist predefined keywords with generic semantics in the category annotation and annotation container.
They are called generic keywords, like the keywords for generic objects.

The following Table 10— lists the generic keywords in the category annotation and annotation container.

The following Table 11— lists predefined keywords in categories related to arithmetic model..

Table 9—Other categories of ALF statements

item section

arithmetic model

arithmetic submodel

arithmetic model container

annotation

annotation container

geometric model

Table 10—Annotations and annotation containers with generic keyword

keyword item / subcategory section

PROPERTY one_level_annotation_container

ATTRIBUTE multi_value_annotation

INFORMATION one_level_annotation_container

Table 11—Keywords related to arithmetic model

keyword item / category section

LIMIT arithmetic model container
22 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 4

1

5

10

15

20

25

30

35

40

45

50

55
The definitions of other predefined keywords, especially in the category arithmetic model, can be self-described
in ALF using the keyword declaration statement (see Section 8.4 on page 48).

5.7 Statements for parser control

The following provides a reference to statements used for ALF parser control.

The statements for parser control do not necessarily follow the ALF meta-language shown in Syntax 1.

5.8 Name space and visibility of statements

The following rules for name space and visibility shall apply:

a) A statement shall be visible within its parent statement, but not outside its parent statement.
b) A statement visible within another statement shall also be visible within a child of that other statement.
c) All objects (i.e., generic objects and library-specific objects) shall share a common name space within

their scope of visibility. No object shall use the same name as any other visible object. Conversely, an
object may use the same name as any other object outside the scope of its visibility.

d) The following exception of rule c) is allowed for specific objects and with specific semantic implica-
tions. An object of the same type and the same name may be redeclared, if semantic support for this
redeclaration is provided. The purpose of such a redeclaration is to supplement the original declaration
with new children statements which augment the original declaration without contradicting it.

MIN arithmetic submodel, operator within arithmetic expression

MAX arithmetic submodel, operator within arithmetic expression

TYP arithmetic submodel

DEFAULT arithmetic submodel, annotation

ABS operator within arithmetic expression

EXP operator within arithmetic expression

LOG operator within arithmetic expression

Table 12—Statements for ALF parser control

keyword statement section

INCLUDE include statement

ASSOCIATE associate statement

ALF_REVISION revision statement

Table 11—Keywords related to arithmetic model

keyword item / category section
IEEE P1603 Draft 4 Advanced Library Format (ALF) Reference Manual 23

1

5

10

15

20

25

30

35

40

45

50

55
e) All statements with optional names (i.e., property, arithmetic model, geometric model) shall share a com-
mon name space within their scope of visibility. No statement with optional name shall use the same
name as any other visible statement with optional name. Conversely, a statement may use the same
optional name as any other statement with optional name outside the scope of its visibility.
24 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 4

1

5

10

15

20

25

30

35

40

45

50

55
6. Lexical rules

This section discusses the lexical rules.

The ALF source text files shall be a stream of lexical tokens and whitespace. Lexical tokens shall be divided into
the categories delimiter, operator, comment, number, bit literal, based literal, edge, quoted string, and identifier.

Each lexical token shall be composed of one or more characters. Whitespace shall be used to separate lexical
tokens from each other. Whitespace shall not be allowed within a lexical token with the exception of comment
and quoted string.

The specific rules for construction of lexical tokens and for usage of whitespace are defined in this section.

6.1 Character set

This standard shall use the ASCII character set [ISO 8859-1 : 1987(E)].

The ASCII character set shall be divided into the following categories: whitespace, letter, digit, and special, as
shown in Syntax 2.

The following Table 13 shows the list of whitespace characters and their ASCII code.

character ::=
whitespace

| letter
| digit
| special

letter ::=
uppercase | lowercase

uppercase ::=
A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W
| X | Y | Z

lowercase ::=
a | b | c | d | e | f | g | h | i | j | k | l | m | n | o | p | q | r | s | t | u | v | w | x | y | z

digit ::=
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

special ::=
& | | | ^ | ~ | + | - | * | / | % | ? | ! | : | ; | , | ” | ’ | @ | = | \ | . | $ | _ | #
| (|) | < | > | [|] | { | }

whitespace ::=
space | vertical_tab | horizontal_tab | new_line | carriage_return | form_feed

Syntax 2—ASCII character

Table 13—List of whitespace characters

Name ASCII code (octal)

space 200

horizontal tab 011

new line 012

vertical tab 013
IEEE P1603 Draft 4 Advanced Library Format (ALF) Reference Manual 25

1

5

10

15

20

25

30

35

40

45

50

55
The following Table 14— shows the list of special characters and their names used in this standard

form feed 014

carriage return 015

Table 14—List of special characters

Symbol Name

& amperesand

| ??? bar

^ ??? hyphen

~ tilde

+ plus

- minus

* asterix

/ divider

% percent

? question mark

! exclamation mark

: colon

; semicolon

, comma

” double quote

’ single quote

@ ??? at

= equal

\ escape character

. dot

$ dollar

_ underscore

??? sharp

(|) parenthesis (open | close)

< | > angular bracket (open | close)

Table 13—List of whitespace characters (Continued)

Name ASCII code (octal)
26 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 4

1

5

10

15

20

25

30

35

40

45

50

55
6.2 Comment

A comment shall be divided into the subcategories in-line comment and block comment, as shown in Syntax 3.

The start of an in-line comment shall be determined by the occurence of two subsequent divider characters with-
out whitespace in-between. The end of an in-line comment shall be determined by the occurence of a new line or
of a carriage return character.

The start of a block comment shall be determined by the occurence of a divider character followed by an asterix
without whitespace in-between. The end of a block comment shall be determined by the occurence of an asterix
character followed by a divider character.

A comment shall have the same semantic meaning as a whitespace. Therefore, no syntax rule shall involve a
comment.

6.3 Delimiter

The special characters shown in Syntax 4 shall be considered delimiters.

When appearing in a syntax rule, a delimiter shall be used to indicate the end of a statement or of a partial state-
ment, the begin and end of an expression or of a partial expression.

[|] square bracket (open | close)

{ | } curly brace (open | close)

comment ::=
in_line_comment

| block_comment
in_line_comment ::=

/ /{character}new_line
| / /{character}carriage_return

block_comment ::=
/ *{character}* /

Syntax 3—Comment

delimiter ::=
(|) | [|] | { | } | : | ; | ,

Syntax 4—Delimiter

Table 14—List of special characters (Continued)

Symbol Name
IEEE P1603 Draft 4 Advanced Library Format (ALF) Reference Manual 27

1

5

10

15

20

25

30

35

40

45

50

55
6.4 Operator

Operators shall be divided into the following subcategories: arithmetic operator, boolean operator, relational
operator, shift operator, event sequence operator, and meta operator, as shown in Syntax 5

When appearing in a syntax rule, an operator shall be used within a statement or within an expression. An opera-
tor with one operand shall be called unary operator. An unary operator shall precede the operand. An operator
with two operands shall be called binary operator. A binary operator shall succede the first operand and precede
the second operand.

6.4.1 Arithmetic operator

The following Table 15— shows the list of arithmetic operators and their names used in this standard.

Arithmetic operators shall be used to specify arithmetic operations.

operator ::=
arithmetic_operator

| boolean_operator
| relational_operator
| shift_operator
| event_sequence_operator
| other_operator
| =
| ?
| @

arithmetic_operator ::=
+ | - | * | / | % | **

boolean_operator ::=
&& | || | ~& | ~| | ^ | ~^ | ~ | ! | & | |

relational_operator ::=
== | != | >= | <= | > | <

shift_operator ::=
<< | >>

event_sequence_operator ::=
-> | ~> | <-> | <~> | &> | <&>

meta_operator ::=
= | ? | @

Syntax 5—Operator

Table 15—List arithmetic operators

Symbol Operator name unary / binary section

+ plus binary

- minus both

* multiply binary

/ divide binary

% modulo binary

** power binary
28 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 4

1

5

10

15

20

25

30

35

40

45

50

55
6.4.2 Boolean operator

The following Table 16— shows the list of boolean operators and their names used in this standard.

Boolean operators shall be used to specify boolean operations.

6.4.3 Relational operator

The following Table 17— shows the list of relational operators and their names used in this standard.

Relational operators shall be used to specify mathematical relationships between numerical quantities.

Table 16—List of boolean operators

Symbol Operator name unary / binary section

! logical invert unary

&& logical and binary

|| logical or binary

~ vector invert unary

& vector and both

~& vector nand both

| vector or both

~| vector nor both

^ exclusive or both

~^ exclusive nor both

Table 17—List of relational operators

Symbol Operator name unary / binary section

== equal binary

!= not equal binary

> greater binary

< lesser binary

>= greater or equal binary

<= lesser or equal binary
IEEE P1603 Draft 4 Advanced Library Format (ALF) Reference Manual 29

1

5

10

15

20

25

30

35

40

45

50

55
6.4.4 Shift operator

The following Table 18— shows the list of shift operators and their names used in this standard.

Shift operators shall be used to specify manipulations of discrete mathematical values.

6.4.5 Event sequence operator

The following Table 19— shows the list of event sequence operators and their names used in this standard.

Event sequence operators shall be used to express temporal relationships between discrete events.

6.4.6 Meta operator

The following Table 20— shows the list of meta operators and their names used in this standard.

Meta operators shall be used to specify transactions between variables.

Table 18—List of shift operators

Symbol Operator name unary / binary section

<< shift left binary

>> shift right binary

Table 19—List of event sequence operators

Symbol Operator name unary / binary section

-> immediately followed by binary

~> eventually followed by binary

<-> immediately following each other binary

<~> eventually following each other binary

&> simultaneous or immediately followed by binary

<&> simultaneous or immediately following each other binary

Table 20—List of meta operators

Symbol Operator name unary / binary section

= assignment binary

? condition binary

@ control unary
30 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 4

1

5

10

15

20

25

30

35

40

45

50

55
6.5 Number

Numbers shall be divided into subcategories signed number and unsigned number, as shown in Syntax 6.

Alternatively, numbers shall be divided into subcategories integer and real, as shown in Syntax 7—.

Numbers shall be used to represent numerical quantities.

6.6 Unit symbol

A unit symbol shall be defined as shown in .

number ::=
signed_number | unsigned_number

signed_number ::=
signed_integer | signed_real

signed_integer ::=
sign unsigned_integer

signed_real ::=
sign unsigned_real

unsigned_number ::=
unsigned_integer | unsigned_real

unsigned_integer ::=
digit { [_] digit }

unsigned_real ::=
mantisse [exponent]

| unsigned_integer exponent
mantisse ::=

. unsigned_integer
| unsigned_integer . [unsigned_integer]

exponent ::=
E [sign] unsigned_integer

| e [sign] unsigned_integer
sign ::=

+ | -

Syntax 6—Signed and unsigned numbers

number ::=
integer | real

integer ::=
signed_integer | unsigned_integer

real ::=
signed_real | unsigned_real

Syntax 7—Integer and real numbers
IEEE P1603 Draft 4 Advanced Library Format (ALF) Reference Manual 31

1

5

10

15

20

25

30

35

40

45

50

55
The meaning of the unit symbol is shown in Table 21.

A unit symbol can be used to define a unit value (see Section 7.2).

6.7 Bit literal

Bit literals shall be divided into subcategories numeric bit literal and symbolic bit literal, as shown in Syntax 9.

unit_symbol ::=
unity { letter } | K { letter } | M E G { letter } | G { letter }

| M { letter } | U { letter } | N { letter } | P { letter } | F { letter }
unity ::= 1
K ::= K | k
M ::= M | m
E ::= E | e
G ::= G | g
U ::= U | u
N ::= N | n
P ::= P | p
F ::= F | f

Syntax 8—Unit symbol

Table 21—UNIT symbol

leading character lexical value numerical value

F femto 1e-15

P pico 1e-12

N nano 1e-9

U micro 1e-6

M milli 1e-3

unity one 1

K kilo 1e+3

MEG mega 1e+6

G giga 1e+9

bit_literal ::=
numeric_bit_literal

| symbolic_bit_literal
numeric_bit_literal ::=

0 | 1
symbolic_bit_literal ::=

X | Z | L | H | U | W
| x | z | l | h | u | w
| ? | *

Syntax 9—Bit literal
32 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 4

1

5

10

15

20

25

30

35

40

45

50

55
Bit literals shall be used to specify scalar values within a boolean system.

6.8 Based literal

Based literals shall be divided into subcategories binary based literal, octal based literal, decimal based literal,
and hexadecimal based literal, as shown in Syntax 10.

Based literals shall be used to specify vectorized values within a boolean system.

6.9 Edge literal

Edge literals shall be divided into subcategories bit edge literal, based edge literal, and symbolic edge literal, as
shown in Syntax 11—.

Edge literals shall be used to specify a change of value within a boolean system. In general, bit edge literals shall
specify a change of a scalar value, based edge literals shall specify a change of a vectorized value, and symbolic
edge literals shall specify a change of a scalar or of a vectorized value.

based_literal ::=
binary_based_literal | octal_based_literal | decimal_based_literal | hexadecimal_based_literal

binary_based_literal ::=
binary_base bit_literal { [_] bit_literal }

octal_based_literal ::=
octal_base octal { [_] octal }

decimal_based_literal ::=
decimal_base digit { [_] digit }

hexadecimal_based_literal ::=
hex_base hexadecimal { [_] hexadecimal }

binary_base ::=
'B | 'b

octal_base ::=
'O | 'o

decimal_base ::=
'D | 'd

hex_base ::=
'H | 'h

octal ::=
bit_literal | 2 | 3 | 4 | 5 | 6 | 7

hexadecimal ::=
octal | 8 | 9

| A | B | C | D | E | F
| a | b | c | d | e | f

Syntax 10—Based literal

edge_literal ::=
bit_edge_literal

| based_edge_literal
| symbolic_edge_literal

bit_edge_literal ::=
bit_literal bit_literal

based_edge_literal ::=
based_literal based_literal

symbolic_edge_literal ::=
?~ | ?! | ?-

Syntax 11—Edge literal
IEEE P1603 Draft 4 Advanced Library Format (ALF) Reference Manual 33

1

5

10

15

20

25

30

35

40

45

50

55
6.10 Quoted string

A quoted string shall be a sequence of zero or more characters enclosed between two double quote characters, as
shown in Syntax 12.

Within a quoted string, a sequence of characters starting with an escape character shall represent a symbol for
another character, as shown in Table 22.

The start of a quoted string shall be determined by a double quote character. The end of a quoted string shall be
determined by a double quote character preceded by an even number of escape characters or by any other charac-
ter than escape character.

6.11 Identifier

Identifiers shall be divided into the subcategories non-escaped identifier, escaped identifier, placeholder identi-
fier, and hierarchical identifier, as shown in Syntax 13.

quoted_string ::=
" { character } "

Syntax 12—Quoted string

Table 22—Character symbols within a quoted string

Symbol Character ASCII Code (octal)

\g Alert or bell 007

\h Backspace 010

\t Horizontal tab 011

\n New line 012

\v Vertical tab 013

\f Form feed 014

\r Carriage return 015

\" Double quote 042

\\ Escape character 134

\ digit digit digit ASCII character represented by three digit
octal ASCII code

digit digit digit

identifier ::=
non_escaped_identifier

| escaped_identifier
| placeholder_identifier
| hierarchical_identifier

Syntax 13—Identifier
34 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 4

1

5

10

15

20

25

30

35

40

45

50

55
Identifiers shall be used to specify a name of an ALF statement or a value of an ALF statement. Identifiers may
also appear in an arithmetic expression, in a boolean expression, or in a vector expression, referencing an already
defined statement by name.

A lowercase character used within a keyword or within an identifier shall be considered equivalent to the corre-
sponding uppercase character. This makes ALF case-insensitive. However, whereever an identifier is used to
specify the name of a statement, the usage of the exact letters shall be preserved by the parser to enable usage of
the same name by a case-sensitive application.

6.11.1 Non-escaped identifier

A non-escaped identifier shall be defined as shown in Syntax 14.

A non-escaped identifier shall be used, when there is no lexical conflict, i.e., no appearence of a character with
special meaning, and no semantical conflict, i.e., the identifier is not used elsewhere as a keyword.

6.11.2 Escaped identifier

An escaped identifier shall be defined as shown in Syntax 15.

An escaped identifier shall be used, when there is a lexical conflict, i.e., an appearence of a character with special
meaning, or a semantical conflict, i.e., the identifier is used elsewhere as a keyword.

6.11.3 Placeholder identifier

A placeholder identifier shall be defined as a non-escaped identifier enclosed by angular brackets without
whitespace, as shown in Syntax 16.

A placeholder identifier shall be used to represent a formal parameter in a template statement (see section ...),
which is to be replaced by an actual parameter in a template instantiation statement (see section ...).

6.11.4 Hierarchical identifier

A hierarchical identifier shall be defined as shown in Syntax 17.

non_escaped_identifier ::=
letter { letter | digit | _ | $ | # }

Syntax 14—Non-escaped identifier

escaped_identifier ::=
escape_character escapable_character { escapable_character }

escapable_character ::=
letter | digit | special

Syntax 15—Escaped identifier

placeholder_identifier ::=
< non_escaped_identifier >

Syntax 16—Placeholder identifier
IEEE P1603 Draft 4 Advanced Library Format (ALF) Reference Manual 35

1

5

10

15

20

25

30

35

40

45

50

55
A hierarchical identifier shall be used to specify a hierarchical name of a statement, i.e., the name of a child pre-
ceded by the name of its parent. A dot within a hierarchical identifier shall be used to separate a parent from a
child, unless the dot is directly preceded by an escape character.

Example

\id1.id2.\id3 is a hierarchical identifier, where id2 is a child of \id1, and \id3 is a child of id2.

id1\.id2.\id3 is a hierarchical identifier, where \id3 is a child of “id1.id2”.

id1\.id2\.id3 specifies the pseudo-hierarchical name “id1.id2.id3”.

6.12 Keyword

Keywords shall be lexically equivalent to non-escaped identifiers. Predefined keywords are listed in Table 3—,
Table 4—, Table 5—, Table 6—, Table 10—, and Table 11—. Additional keywords are predefined in section ...

The predefined keywords in this standard follow a more restrictive lexical rule than general non-escaped identifi-
ers, as shown in Syntax 18—.

**Should this be a normative rule or a recommended practice to follow for additional keyword definitions? **

Note: This document presents keywords in all-uppercase letters for clarity.

6.13 Rules for whitespace usage

Whitespace shall be used to separate lexical tokens from each other, according to the following rules:

a) Whitespace before and after a delimiter shall be optional.
b) Whitespace before and after an operator shall be optional.
c) Whitespace before and after a quoted string shall be optional.
d) Whitespace before and after a comment shall be mandatory. This rule shall override a), b), and c).
e) Whitespace between subsequent quoted strings shall be mandatory. This rule shall override c).
f) Whitespace between subsequent lexical tokens amongst the categories number, bit literal, based literal,

and identifier shall be mandatory.
g) Whitespace before and after a placeholder identifier shall be mandatory. This rule shall override a), b),

and c).
h) Whitespace after an escaped identifier shall be mandatory. This rule shall override a), b), and c).
i) Either whitespace or delimiter before a signed number shall be mandatory. This rule shall override a), b),

and c).
j) Either whitespace or delimiter before a symbolic edge literal shall be mandatory. This rule shall override

a), b), and c).

hierarchical_identifier ::=
identifier [\] . identifier

Syntax 17—Hierarchical identifier

keyword_identifier ::=
letter { [_] letter }

Syntax 18—Keyword
36 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 4

1

5

10

15

20

25

30

35

40

45

50

55
Whitespace before the first lexical token or after the last lexical token in a file shall be optional. Hence in all rules
prescribing mandatory whitespace, “before” shall not apply for the first lexical token in a file, and “after” shall
not apply for the last lexical token in a file.

6.14 Rules against parser ambiguity

In a syntax rule where multiple legal interpretations of a lexical token are possible, the resulting ambiguity shall
be resolved according to the following rules:

a) In a context where both bit literal and identifier are legal, a non-escaped identifier shall take priority over
a symbolic bit literal.

b) In a context where both bit literal and number are legal, an unsigned integer shall take priority over a
numeric bit literal.

c) In a context where both edge literal and identifier are legal, a non-escaped identifier shall take priority
over a bit edge literal.

d) In a context where both edge literal and number are legal, an unsigned integer shall take priority over a
bit edge literal.

If the interpretation as bit literal is desired in case a) or b), a based literal can be substituted for a bit literal.

If the interpretation as edge literal is desired in case c) or d), a based edge literal can be substituted for a bit edge
literal.
IEEE P1603 Draft 4 Advanced Library Format (ALF) Reference Manual 37

1

5

10

15

20

25

30

35

40

45

50

55
38 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 4

1

5

10

15

20

25

30

35

40

45

50

55
7. Auxiliary Syntax Rules

This section specifies auxiliary syntax rules which are used to build other syntax rules.

7.1 All-purpose value

An all-purpose value shall be defined as shown in Syntax 19.

7.2 Unit value

A unit value shall be defined as shown in .

Only the leading characters of the unit symbol shall be used for identification of a unit value, as specified in
Table 21.

Optional subsequent letters can be used to make the unit symbol more readable. For example, “pF” can be used
to denote “picofarad” etc.

7.3 String

A string shall be defined as shown in Syntax 21.

A string shall represent textual data in general and the name of a referenced object in particular.

7.4 Arithmetic value

An arithmetic value shall be defined as shown in Syntax 22.

all_purpose_value ::=
number

| identifier
| quoted_string
| bit_literal
| based_literal
| edge_value
| pin_variable
| control_expression

Syntax 19—All purpose value

unit_value ::=
unsigned_number | unit_symbol

Syntax 20—Unit value

string ::=
quoted_string | identifier

Syntax 21—String value
IEEE P1603 Draft 4 Advanced Library Format (ALF) Reference Manual 39

1

5

10

15

20

25

30

35

40

45

50

55
An arithmetic value shall represent data for an arithmetic model or for an arithmetic assignment. Semantic
restrictions apply, depending on the particular type of arithmetic model.

7.5 Boolean value

A boolean value shall be defined as shown in Syntax 23.

A boolean value shall represent the contents of a pin variable (see Section 7.9 on page 41).

7.6 Edge value

An edge value shall be defined as shown in Syntax 24.

An edge value shall represent a standalone edge literal that is not embedded in a vector expression.

7.7 Index value

An index value shall be defined as shown in Syntax 25.

An index value shall represent a particular position within a vector pin (see). The usage of identifier shall only
be allowed, if that identifier represents a constant (see Section 8.2) with a value of the category unsigned integer.

7.8 Index

An index shall be defined as shown in Syntax 26.

An index shall be used in conjunction with the name of a pin or a pin group. A single index shall represent a par-
ticular scalar within a one-diensional vector or a particular one-dimensional vector within a two-dimensional
matrix. A multi index shall represent a range of scalars or a range of vectors, wherein the most significant bit
(MSB) is specified by the left index value and the least significant bit (LSB) is specified by the right index value.

arithmetic_value ::=
number | identifier | bit_literal | based_literal

Syntax 22—Arithmetic value

boolean_value ::=
bit_literal | based_literal | unsigned_integer

Syntax 23—Boolean value

edge_value ::=
(edge_literal)

Syntax 24—Edge value

index_value ::=
unsigned_integer | identifier

Syntax 25—Index value
40 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 4

1

5

10

15

20

25

30

35

40

45

50

55
7.9 Pin variable and pin value

A pin variable and a pin value shall be defined as shown in Syntax 27.

A pin variable shall represent the name of a pin or the name of a pingroup, in conjunction with an optional index.

A pin value shall represent the actual value or a pointer to the actual value associated with a pin variable. The
actual value is a boolean value. A pin variable represents a pointer to the actual value.

7.10 Pin assignment

A pin assignment shall be defined as shown in Syntax 28.

A pin assignment represents an association between a pin variable and a pin value.

The datatype of the left hand side (LHS) and the right hand side (RHS) of the assignment must be compatible
with each other. The following rules shall apply:

a) The bitwidth of the RHS must be equal to the bitwidth of the LHS.
b) A scalar pin at the LHS may be assigned a bit literal or a based literal representing a single bit.
c) A pin group, a one-dimensional vector pin, or a one-dimensional slice of a two-dimensional vector pin at

the LHS may be assigned a based literal or an unsigned integer, representing a binary number.

7.11 Annotation

An annotation shall be divided into the subcategories single value annotation and multi value annotation, as
shown in Syntax 29

index ::=
single_index | multi_index

single_index ::=
[index_value]

multi_index ::=
| [index_value : index_value]

Syntax 26—Index

pin_variable ::=
pin_variable_identifier [index]

pin_value ::=
pin_variable | boolean_value

Syntax 27—Pin variable

pin_assignment ::=
pin_variable = pin_value ;

Syntax 28—Pin assignment
IEEE P1603 Draft 4 Advanced Library Format (ALF) Reference Manual 41

1

5

10

15

20

25

30

35

40

45

50

55
An annotation shall represent an assocation between an identifier and a set of annotation values (values for short-
ness). In case of a single value annotation, only one value shall be legal. In case of a multi value annotation, one
or more values shall be legal. The annotation shall serve as a semantic qualifier of its parent statement. The value
shall be subject to semantic restrictions, depending on the identifier.

The annotation identifier may be a keyword used for the declaration of an object (i.e., a generic object or a
library-specific object). An annotation using such an annotation identifier shall be called a reference annotation.
The annotation value of a reference annotation shall be the name of an object of matching type. A reference
annotation may be a single-value annotation or a multi-value annotation. The semantic meaning of a reference
annotation shall be defined in the context of its parent statement.

7.12 Annotation container

An annotation container shall be defined as shown in Syntax 29

An annotation container shall represent a collection of annotations. The annotation container shall serve as a
semantic qualifier of its parent statement. The annotation container identifier shall be a keyword. An annotation
within an annotation container shall be subject to semantic restrictions, depending on the annotation container
identifier.

7.13 ATTRIBUTE statement

An attribute statement shall be defined as shown in Syntax 31.

annotation ::=
single_value_annotation

| multi_value_annotation
single_value_annotation ::=

annotation_identifier = annotation_value ;
multi_value_annotation ::=

annotation_identifier { annotation_value { annotation_value } }
annotation_value ::=

number
| identifier
| quoted_string
| bit_literal
| based_literal
| edge_value
| pin_variable
| control_expression
| boolean_expression
| arithmetic_expression

Syntax 29—Annotation

annotation_container ::=
annotation_container_identifier { annotation { annotation } }

Syntax 30—Annotation container

attribute ::=
ATTRIBUTE { identifier { identifier } }

Syntax 31—ATTRIBUTE statement
42 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 4

1

5

10

15

20

25

30

35

40

45

50

55
The attribute statement shall be used to associate arbitrary identifiers with the parent of the attribute statement.
Semantics of such identifiers may be defined depending on the parent of the attribute statement. The attribute
statement has a similar syntax definition as a multi-value annotation (see Section 7.11). While a multi-value
annotation may have restricted semantics and a restricted set of applicable values, identifiers with and without
predefined semantics may co-exist within the same attribute statement.

Example

CELL myRAM8x128 {
ATTRIBUTE { rom asynchronous static }

}

7.14 PROPERTY statement

A property statement shall be defined as shown in Syntax 32.

The property statement shall be used to associate arbitrary annotations with the parent of the property statement.
The property statement has a similar syntax definition as an annotation container (see Section 7.12). While the
keyword of an annotation container usually restricts the semantics and the set of applicable annotations, the key-
word “property” does not. Annotations shall have no predefined semantics, when they appear within the property
statement, even if annotation identifiers with otherwise defined semantics are used.

Example

PROPERTY myProperties {
parameter1 = value1 ;
parameter2 = value2 ;
parameter3 { value3 value4 value5 }

}

7.15 INCLUDE statement

An include statement shall be defined as shown in Syntax 33.

The quoted string shall specify the name of a file. When the include statement is encountered during parsing of a
file, the application shall parse the specified file and then continue parsing the former file. The format of the file
containing the include statement and the format of the file specified by the include statement shall be the same.

Example

LIBRARY myLib {
INCLUDE “templates.alf”;

property ::=
PROPERTY [identifier] { annotation { annotation } }

Syntax 32—PROPERTY statement

include ::=
INCLUDE quoted_string ;

Syntax 33—INCLUDE statement
IEEE P1603 Draft 4 Advanced Library Format (ALF) Reference Manual 43

1

5

10

15

20

25

30

35

40

45

50

55
INCLUDE “technology.alf”;
INCLUDE “primitives.alf”;
INCLUDE “wires.alf”;
INCLUDE “cells.alf”;

}

The filename specified by the quoted string shall be interpreted according to the rules of the application and/or
the operating system. The ALF parser itself shall make no semantic interpretation of the filename.

7.16 REVISION statement

A revision statement shall be defined as shown in Syntax 29

A revision statement shall be used to identify the revision or version of the file to be parsed. One, and only one,
revision statement may appear at the beginning of an ALF file.

The set of legal string values within the revision statement shall be defined as shown in Table 23

The revision statement shall be optional, as the application program parsing the ALF file may provide other
means of specifying the revision or version of the file to be parsed. If a revision statement is encountered while a
revision has already been specified to the parser (e.g. if an included file is parsed), the parser shall be responsible
to decide whether the newly encountered revision is compatible with the originally specified revision and then
either proceed assuming the original revision or abandon.

This document suggests, but does not certify, that the IEEE version of the ALF standard proposed herein be
backward compatible with the Accellera version 2.0 and the OVI version 1.1.

7.17 Generic object

A generic object shall be defined as shown in Syntax 35.

revision ::=
ALF_REVISION string_value

Syntax 34—Revision statement

Table 23—Legal string values within the REVISION statement

string value revision or version

“1.1” Version 1.1 by Open Verilog International, released on April 6, 1999

“2.0” Version 2.0 by Accellera, released on December 14, 2000

“P1603.2002-04-16” IEEE draft version as described in this document

TBD IEEE 1603 release version
44 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 4

1

5

10

15

20

25

30

35

40

45

50

55
7.18 Library-specific object

A library-specific object shall be defined as shown in Syntax 36.

7.19 All purpose item

An all purpose item shall be defined as shown in Syntax 37.

generic_object ::=
alias_declaration

| constant_declaration
| class_declaration
| keyword_declaration
| group_declaration
| template_declaration
| generic_object_template_instantiation

Syntax 35—Generic object

library_specific_object ::=
library

| sublibrary
| cell
| primitive
| wire
| pin
| pingroup
| vector
| node
| layer
| via
| rule
| antenna
| site
| array
| blockage
| port
| pattern
| region
| library_specific_object_template_instantiation

Syntax 36—Library-specific object
IEEE P1603 Draft 4 Advanced Library Format (ALF) Reference Manual 45

1

5

10

15

20

25

30

35

40

45

50

55
all_purpose_item ::=
generic_object

| include_statement
| annotation
| annotation_container
| arithmetic_model
| arithmetic_model_container
| all_purpose_item_template_instantiation

Syntax 37—All purpose item
46 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 4

1

5

10

15

20

25

30

35

40

45

50

55
8. Generic objects and related statements

Add lead-in text

8.1 ALIAS declaration

An alias shall be declared as shown in Syntax 38.

The alias declaration shall specify an identifier which may be used instead of an original identifier to specify a
name or a value of an ALF statement. The identifier shall be semantically interpreted in the same way as the orig-
inal identifier.

Example

ALIAS reset = clear;

8.2 CONSTANT declaration

A constant shall be declared as shown in Syntax 39.

The constant declaration shall specify an identifier which can be used instead of a constant value, i.e., a number
or a based literal. The identifier shall be semantically interpreted in the same way as the constant value.

Example

CONSTANT vdd = 3.3;
CONSTANT opcode = ‘h0f3a;

8.3 CLASS declaration

A class shall be declared as shown in Syntax 40.

alias_declaration ::=
ALIAS alias_identifier = original_identifier ;

Syntax 38—ALIAS declaration

constant_declaration ::=
CONSTANT constant_identifier = constant_value ;

constant_value ::=
number | based_literal

Syntax 39—CONSTANT declaration

class_declaration ::=
CLASS class_identifier ;

| CLASS identifier { all_purpose_items }

Syntax 40—CLASS declaration
IEEE P1603 Draft 4 Advanced Library Format (ALF) Reference Manual 47

1

5

10

15

20

25

30

35

40

45

50

55
A class declaration shall be used to establish a semantic association between ALF statements, including, but not
restricted to, other class declarations. ALF statements shall be associated with each other, if they contain a refer-
ence to the same class. The semantics specified by an all purpose item within a class declaration shall be inher-
ited by the statement containing the reference.

Example

CLASS \1stclass { ATTRIBUTE { everything } }
CLASS \2ndclass { ATTRIBUTE { nothing } }
CELL cell1 { CLASS = \1stclass; }
CELL cell2 { CLASS = \2ndclass; }
CELL cell3 { CLASS { \1stclass \2ndclass } }
// cell1 inherits “everything”
// cell2 inherits “nothing”
// cell3 inherits “everything” and “nothing”

8.4 KEYWORD declaration

A keyword shall be declared as shown in Syntax 41.

A keyword declaration shall be used to define a new keyword in a category or in a subcategory of ALF state-
ments specified by a syntax item identifier. One or more annotations (see Section 8.5) may be used to qualify the
contents of the keyword declaration.

A legal syntax item identifier shall be defined as shown in Table 24.

keyword_declaration ::=
KEYWORD keyword_identifier = syntax_item_identifier ;

| KEYWORD keyword_identifier = syntax_item_identifier { annotation { annotation } }

Syntax 41—KEYWORD declaration

Table 24—Syntax item identifier

identifier semantic meaning

annotation The keyword shall specify an annotation (see Section 7.11)

single_value_annotation The keyword shall specify a single value annotation (see Section 7.11)

multi_value_annotation The keyword shall specify a multi_value_annotation (see Section 7.11)

annotation_container The keyword shall specify an annotation container (see Section 7.12)

arithmetic_model The keyword shall specify an arithmetic model (see)

arithmetic_submodel The keyword shall specify an arithmetic submodel (see)

arithmetic_model_container The keyword shall specify an arithmetic model container (see)
48 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 4

1

5

10

15

20

25

30

35

40

45

50

55
8.5 Annotations for a KEYWORD

This subsection defines annotations which may be used as legal children of a keyword declaration statement.

8.5.1 VALUETYPE annotation

The valuetype annotation shall be a single value annotation. The set of legal values shall depend on the syntax
item identifier associated with the keyword declaration, as shown in Table 25.

The valuetype annotation shall specify the category of legal ALF values applicable for an ALF statement whose ALF type is
given by the declared keyword.

Example:

This example shows a correct and an incorrect usage of a declared keyword with specified valuetype.

KEYWORD Greeting = annotation { VALUETYPE = identifier ; }
CELL cell1 { Greeting = HiThere ; } // correct
CELL cell2 { Greeting = “Hi There” ; } // incorrect

The first usage is correct, since HiThere is an identifier. The second usage is incorret, since “Hi There” is a
quoted string and not an identifier.

8.5.2 VALUES annotation

The values annotation shall be a multi value annotation applicable in the case where the valuetype annotation is
also applicable.

Table 25—VALUETYPE annotation

syntax item identifier set of legal values for
VALUETYPE

default value for
VALUETYPE comment

annotation
or single_value_annotation
or multi_value_annotation

number, identifier,
quoted_string,
edge_value,
pin_variable,
control_expression,
boolean_expression,
arithmetic_expression

identifier see Syntax 29, definition of
annotation value

annotation_container N/A N/A an annotation container (see
Syntax 30) has no value

arithmetic_model number, identifier,
bit_literal, based_literal

number see Syntax 22, definition of
arithmetic value

arithmetic_submodel N/A N/A an arithmetic submodel (see)
shall always have the same
valuetype as its parent arith-
metic mdel

arithmetic_model_container N/A N/A an arithmetic model container
(see) has no value
IEEE P1603 Draft 4 Advanced Library Format (ALF) Reference Manual 49

1

5

10

15

20

25

30

35

40

45

50

55
The values annotation shall specify a discrete set of legal values applicable for an ALF statement using the declared
keyword. Compatibility between the values annotation and the valuetype annotation shall be mandatory.

Example:

This example shows a correct and an incorrect usage of a declared keyword with specified valuetype and values.

KEYWORD Greeting = annotation {
VALUETYPE = identifier ;
VALUES { HiThere Hello HowDoYouDo }

}
CELL cell3 { Greeting = Hello ; } // correct
CELL cell4 { Greeting = GoodBye ; } // incorrect

The first usage is correct, since Hello is contained within the set of values. The second usage is incorrect, since
GoodBye is not contained within the set of values.

8.5.3 DEFAULT annotation

The default annotation shall be a single value annotation applicable in the case where the valuetype annotation is
also applicable. Compatibility between the default annotation, the valuetype annotation, and the values annota-
tion shall be mandatory.

The default annotation shall specify a presumed value in absence of an ALF statement specifying a value.

Example:

KEYWORD Greeting = annotation {
VALUETYPE = identifier ;
VALUES { HiThere Hello HowDoYouDo }
DEFAULT = Hello ;

}
CELL cell5 { /* no Greeting */ }

In this example, the absence of a Greeting statement is equivalent to the following:

CELL cell5 { Greeting = Hello ; }

8.5.4 CONTEXT annotation

The context annotation shall specify the ALF type of a legal parent of the statement using the declared keyword.
The ALF type of a legal parent may be a predefined keyword or a declared keyword.

Example:

KEYWORD LibraryQualifier = annotation { CONTEXT { LIBRARY SUBLIBRARY } }
KEYWORD CellQualifier = annotation { CONTEXT = CELL ; }
KEYWORD PinQualifier = annotation { CONTEXT = PIN ; }
LIBRARY library1 {

LibraryQualifier = foo ; // correct
CELL cell1 {

CellQualifier = bar ; // correct
PinQualifier = foobar ; // incorrect
50 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 4

1

5

10

15

20

25

30

35

40

45

50

55
}
}

The following change would legalize the example above:

KEYWORD PinQualifier = annotation { CONTEXT { PIN CELL } }

8.5.5 SI_MODEL annotation

** see IEEE proposal, January 2002, chapter 27**

8.6 GROUP declaration

A group shall be declared as shown in Syntax 42.

A group declaration shall be used to specify the semantic equivalent of multiple similar ALF statements within a
single ALF statement. An ALF statement containing a group identifier shall be semantically replicated by substi-
tuting each group value for the group identifier, or, by substituting subsequent index values bound by the left
index value and by the right index value for the group identifier. The ALF parser shall verify whether each sub-
stitution results in a legal statement.

The ALF statement which has the same parent as the group declaration shall be semantically replicated, if the
group identifier is found within the statement itself or within a child of the statement or within a child of a child
of the statement etc. If the group identifier is found more than once within the statement or within its children,
the same group value or index value per replication shall be substituted for the group identifier, but no additional
replication shall occur.

The group identifier (i.e., the name associated with the goup declaration) may be re-used as name of another
statement. As a consequence, the other statement shall be interpreted as multiple statements wherein the group
identifier within each replication shall be replaced by the all-purpose value. On the other hand, no name of any
visible statement shall be allowed to be re-used as group identifier.

Examples

The following example shows substitution involving group values.

// statement using GROUP:
CELL myCell {

GROUP data { data1 data2 data3 }
PIN data { DIRECTION = input ; }

}
// semantically equivalent statement:
CELL myCell {

PIN data1 { DIRECTION = input ; }
PIN data2 { DIRECTION = input ; }

group_declaration ::=
GROUP group_identifier { all_purpose_value { all_purpose_value } }

| GROUP group_identifier { left_index_value : right_index_value }

Syntax 42—GROUP declaration
IEEE P1603 Draft 4 Advanced Library Format (ALF) Reference Manual 51

1

5

10

15

20

25

30

35

40

45

50

55
PIN data3 { DIRECTION = input ; }
}

The following example shows substitution involving index values.

// statement using GROUP:
CELL myCell {

GROUP dataIndex { 1 : 3 }
PIN [1:3] data { DIRECTION = input ; }
PIN clock { DIRECTION = input ; }
SETUP = 0.5 { FROM { PIN = data[dataIndex]; } TO { PIN = clock ; } }

}
// semantically equivalent statement:
CELL myCell {

GROUP dataIndex { 1 : 3 }
PIN [1:3] data { DIRECTION = input ; }
PIN clock { DIRECTION = input ; }
SETUP = 0.5 { FROM { PIN = data[1]; } TO { PIN = clock ; } }
SETUP = 0.5 { FROM { PIN = data[2]; } TO { PIN = clock ; } }
SETUP = 0.5 { FROM { PIN = data[3]; } TO { PIN = clock ; } }

}

The following example shows multiple occurences of the same group identifier within a statement.

// statement using GROUP:
CELL myCell {

GROUP dataIndex { 1 : 3 }
PIN [1:3] Din { DIRECTION = input ; }
PIN [1:3] Dout { DIRECTION = input ; }
DELAY = 1.0 { FROM {PIN=Din[dataIndex];} TO {PIN=Dout[dataIndex];} }

}
// semantically equivalent statement:
CELL myCell {

GROUP dataIndex { 1 : 3 }
PIN [1:3] Din { DIRECTION = input ; }
PIN [1:3] Dout { DIRECTION = input ; }
DELAY = 1.0 { FROM {PIN=Din[1];} TO {PIN=Dout[1];} }
DELAY = 1.0 { FROM {PIN=Din[2];} TO {PIN=Dout[2];} }
DELAY = 1.0 { FROM {PIN=Din[3];} TO {PIN=Dout[3];} }

}

8.7 TEMPLATE declaration

A template shall be declared as shown in Syntax 43.

A template declaration shall be used to specify one or more ALF statements with variable contents that can be
used many times. A template instantiation (see Section 8.8) shall specify the usage of such an ALF statement.

template_declaration ::=
TEMPLATE template_identifier { ALF_statement { ALF_statement } }

Syntax 43—TEMPLATE declaration
52 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 4

1

5

10

15

20

25

30

35

40

45

50

55
Within the template declaration, the variable contents shall be specified by a placeholder identifier (see
Section 6.11.3).

8.8 TEMPLATE instantiation

A template shall be instantiated in form of a static template instantiation or a dynamic template instantiation, as
shown in Syntax 44

A template instantiation shall be semantically equivalent to the ALF statement or the ALF statements found
within the template declaration, after replacing the placeholder identifiers with replacement values. A static tem-
plate instantiation shall support replacement by order, using one or more all-purpose values, or alternatively,
replacement by reference, using one or more annotations (see). A dynamic template instantiation shall support
replacement by reference only, using one or more annotations and/or one or more arithmetic models (see).

In the case of replacement by reference, the reference shall be established by a non-escaped identifier matching
the placeholder identifier when the angular brackets are removed. The matching shall be case-insensitive.

The following rules shall apply:

a) A static template instantiation shall be used when the replacement value of any placeholder identifier can
be determined during compilation of the library. Only a matching identifier shall be considered a legal
annotation identifier. Each occurence of the placeholder identifier shall be replaced by the annotation
value associated with the annotation identifier.

b) A dynamic template instantiation shall be used when the replacement value of at least one placeholder
identifier can only determined during runtime of the application. Only a matching identifier shall be con-
sidered a legal annotation identifier, or alternatively, a arithmetic model identifier, or alternatively, a legal
arithmetic value.

c) Multiple replacement values within a multi-value annotation shall be legal if and only if the syntax rules
for the ALF statement within the template declaration allow substitution of multiple values for one place-
holder identifier.

d) In the case replacement by order, subsequently occuring placeholder identifiers in the template declara-
tion shall be replaced by subsequently occuring all-purpose values in the template instantiation. If a
placeholder identifier occurs more than once within the template declaration, all occurences of that
placeholder identifier shall be immediately replaced by the same all-purpose value. The first amongst the
remaining placeholder identifiers shall then be considered the next placeholder to be replaced by the next
all-purpose value.

template_instantiation ::=
static_template_instantiation

| dynamic_template_instantiation

static_template_instantiation ::=
template_identifier [= STATIC] ;

| template_identifier [= STATIC] { { all_purpose_value } }
| template_identifier [= STATIC] { { annotation } }

dynamic_template_instantiation ::=
template_identifier = DYNAMIC { { dynamic_template_instantiation_item } }

dynamic_template_instantiation_item ::=
annotation

| arithmetic_model

Syntax 44—TEMPLATE instantiation
IEEE P1603 Draft 4 Advanced Library Format (ALF) Reference Manual 53

1

5

10

15

20

25

30

35

40

45

50

55
e) A static template instantiation for which a placeholder identifier is not replaced shall be legal if and only
if the semantic rules for the ALF statement support a placeholder identifier outside a template declara-
tion. However, the semantics of a placeholder identifier as an item to be substituted shall only apply
within the template declaration statement.

Examples

The following example illustrates rule a).

// statement using TEMPLATE declaration and instantiation:
TEMPLATE someAnnotations {

KEYWORD <oneAnnotation> = single_value_annotation ;
KEYWORD annotation2 = single_value_annotation ;
<oneAnnotation> = value1 ;
annotation2 = <anotherValue> ;

}
someAnnotations {

oneAnnotation = annotation1 ;
anotherValue = value2 ;

}
// semantically equivalent statement:
KEYWORD annotation1 = single_value_annotation ;
KEYWORD annotation2 = single_value_annotation ;
annotation1 = value1 ;
annotation2 = value2 ;

The following example illustrates rule b).

// statement using TEMPLATE declaration and instantiation:
TEMPLATE someNumbers {

KEYWORD N1 = single_value_annotation { VALUETYPE=number ; }
KEYWORD N2 = single_value_annotation { VALUETYPE=number ; }
N1 = <number1> ;
N2 = <number2> ;

}
someNumbers = DYNAMIC {

number2 = number1 + 1;
}
// semantically equivalent statement, assuming number1=3 at runtime:
N1 = 3 ;
N2 = 4 ;

The following example illustrates rule c).

TEMPLATE moreAnnotations {
KEYWORD annotation3 = annotation ;
KEYWORD annotation4 = annotation ;
annotation3 { <someValue> }
annotation4 = <yetAnotherValue> ;

}
moreAnnotations {

someValue { value1 value2 }
yetAnotherValue = value3 ;

}

54 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 4

1

5

10

15

20

25

30

35

40

45

50

55
// semantically equivalent statement:
KEYWORD annotation3 = annotation ;
KEYWORD annotation4 = annotation ;
annotation3 { value1 value2 }
annotation4 = value3 ;

The following example illustrates rule e).

TEMPLATE evenMoreAnnotations {
KEYWORD <thisAnnotation> = single_value_annotation ;
KEYWORD <thatAnnotation> = single_value_annotation ;
<thatAnnotation> = <thisValue> ;
<thisAnnotation> = <thatValue> ;

}
// template instantiation by reference:
evenMoreAnnotations = STATIC {

thatAnnotation = day ;
thisAnnotation = month;
thatValue = April;
thisValue = Monday;

}
// semantically equivalent template instantiation by order:
evenMoreAnnotations = STATIC { day month Monday April }

// semantically equivalent statement:
KEYWORD day = single_value_annotation ;
KEYWORD month = single_value_annotation ;
month = April;
day = Monday;

The following example illustrates rule d).

// statement using TEMPLATE declaration and instantiation:
TEMPLATE encoreAnnotation {

KEYWORD context1 = annotation_container;
KEYWORD context2 = annotation_container;
KEYWORD annotation5 = single_value_annotation {

CONTEXT { context1 context2 }
VALUES { <something> <nothing> }

}
context1 { annotation5 = <nothing> ; }
context2 { annotation5 = <something> ; }

}
encoreAnnotation {

something = everything ;
}
// semantically equivalent statement:
KEYWORD context1 = annotation_container;
KEYWORD context2 = annotation_container;
KEYWORD annotation5 = single_value_annotation {

CONTEXT { context1 context2 }
VALUES { everything <nothing> }

}
context1 { annotation5 = <nothing> ; }
IEEE P1603 Draft 4 Advanced Library Format (ALF) Reference Manual 55

1

5

10

15

20

25

30

35

40

45

50

55
context2 { annotation5 = all ; }
// Both everything (without brackets) and <nothing> (with brackets)
// are legal values for annotation5.
56 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 4

1

5

10

15

20

25

30

35

40

45

50

55
9. Library-specific objects and related statements

Add lead-in text

9.1 LIBRARY and SUBLIBRARY declaration

A library and a sublibrary shall be declared as shown in Syntax 45.

A library shall serve as a repository of technology data for creation of an electronic integrated circuit. A subli-
brary may optionally be used to create different scopes of visibility for particular statements describing technol-
ogy data.

If any two objects of the same ALF type and the same ALF name appear in two libraries, or in two sublibraries
with the same library as parents, their usage for creation of an electronic circuit shall be mutually exclusive. For
example, two cells with the same name shall not be instantiated in the same integrated circuit. It shall be the
responsibility of the application tool to detect and properly handle such cases, as the selection of a library or a
sublibrary is controlled by the user of the application tool.

9.2 Annotations for LIBRARY and SUBLIBRARY

9.2.1 INFORMATION annotation container

An information annotation container shall be defined using ALF language as shown in Syntax 46.

The information annotation container shall be used to associate its parent statement with a product specification.
The following semantic restrictions shall apply:

a) A library, a sublibrary, or a cell can be a legal parent of the information statement.

library ::=
LIBRARY library_identifier ;

| LIBRARY library_identifier { { library_item } }
| library_template_instantiation

library_item ::=
sublibrary

| sublibrary_item
sublibrary ::=

SUBLIBRARY sublibrary_identifier ;
| SUBLIBRARY sublibrary_identifier { { sublibrary_item } }
| sublibrary_template_instantiation

sublibrary_item ::=
all_purpose_item

| cell
| primitive
| wire
| layer
| via
| rule
| antenna
| array
| site
| region

Syntax 45—LIBRARY and SUBLIBRARY declaration
IEEE P1603 Draft 4 Advanced Library Format (ALF) Reference Manual 57

1

5

10

15

20

25

30

35

40

45

50

55
b) A wire, or a primitive can be a legal parent of the information statement, provided the parent of the wire
or the primitive is a library or a sublibrary.

The semantics of the information contents are specified in the following Table 26.

The product developer shall be responsible for any rules concerning the format and detailed contents of the string
value itself.

Example

LIBRARY myProduct {
INFORMATION {

PRODUCT = p10sc;
TITLE = “0.10 standard cell”;
VERSION = “v2.1.0”;
AUTHOR = “Major Asic Vendor, Inc.”;

KEYWORD INFORMATION = annotation_container {
CONTEXT { LIBRARY SUBLIBRARY CELL WIRE PRIMITIVE }

}
KEYWORD PRODUCT = single_value_annotation {
VALUETYPE = string; DEFAULT = ““; CONTEXT = INFORMATION;

}
KEYWORD TITLE = single_value_annotation {
VALUETYPE = string; DEFAULT = ““; CONTEXT = INFORMATION;

}
KEYWORD VERSION = single_value_annotation {
VALUETYPE = string; DEFAULT = ““; CONTEXT = INFORMATION;

}
KEYWORD AUTHOR = single_value_annotation {
VALUETYPE = string; DEFAULT = ““; CONTEXT = INFORMATION;

}
KEYWORD DATETIME = single_value_annotation {
VALUETYPE = string; DEFAULT = ““; CONTEXT = INFORMATION;

}

Syntax 46—INFORMATION statement

Table 26—Annotations within an INFORMATION statement

annotation identifier semantics of annotation value

PRODUCT a code name of a product described herein

TITLE a descriptive title of the product described herein

VERSION a version number of the product description

AUTHOR the name of a person or company generating this product description

DATETIME date and time of day when this product description was created
58 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 4

1

5

10

15

20

25

30

35

40

45

50

55
DATETIME = “Mon Apr 8 18:33:12 PST 2002”;
}

}

9.3 CELL declaration

A cell shall be declared as shown in Syntax 47.

A cell shall represent an electronic circuit which can be used as a building block for a larger electronic circuit.

9.4 CELL instantiation

A cell shall be instantiated as shown in .

9.5 Annotations for a CELL

This section defines annotations and attribute values in the context of a cell declaration.

9.5.1 CELLTYPE annotation

A celltype annotation shall be defined using ALF language as shown in .

cell ::=
CELL cell_identifier ;

| CELL cell_identifier { { cell_item } }
| cell_template_instantiation

cell_item ::=
all_purpose_item

| pin
| pingroup
| primitive
| function
| non_scan_cell
| test
| vector
| wire
| blockage
| artwork
| pattern
| region

Syntax 47—CELL declaration

named_cell_instantiation ::=
cell_identifier instance_identifier ;

| cell_identifier instance_identifier { pin_value { pin_value } }
| cell_identifier instance_identifier { pin_assignment { pin_assignment } }

unnamed_cell_instantiation ::=
cell_identifier { pin_value { pin_value } }

| cell_identifier { pin_assignment { pin_assignment } }

Syntax 48—CELL instantiation
IEEE P1603 Draft 4 Advanced Library Format (ALF) Reference Manual 59

1

5

10

15

20

25

30

35

40

45

50

55
The celltype shall divide cells into categories, as specified in Table 27.

9.5.2 SWAP_CLASS annotation

A swap_class annotation shall be defined using ALF language as shown in .

The value is the name of a declared CLASS. Multi-value annotation can be used. Cells referring to the same
CLASS can be swapped for certain applications.

KEYWORD CELLTYPE = single_value_annotation {
CONTEXT = CELL;
VALUETYPE = identifier;
VALUES {

buffer combinational multiplexor flipflop latch
memory block core special

}
}

Syntax 49— annotation

Table 27—CELLTYPE annotation values

Annotation value Description

buffer Cell is a buffer, inverting or non-inverting.

combinational Cell is a combinational logic element.

multiplexor Cell is a multiplexor.

flipflop Cell is a flip-flop.

latch Cell is a latch.

memory Cell is a memory or a register file.

block Cell is a hierarchical block, i.e., a complex element which can be rep-
resented as a netlist. All instances of the netlist are library elements,
i.e., there is a CELL model for each of them in the library.

core Cell is a core, i.e., a complex element which can be represented as a
netlist. At least one instance of the netlist is not a library element,
i.e., there is no CELL model, but a PRIMITIVE model for that
instance.

special Cell is a special element, which can only be used in certain applica-
tion contexts not describable by the FUNCTION statement. Exam-
ples: busholders, protection diodes, and fillcells.

KEYWORD SWAP_CLASS = annotation {
CONTEXT = CELL;
VALUETYPE = identifier;

}

Syntax 50— annotation
60 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 4

1

5

10

15

20

25

30

35

40

45

50

55
Cell-swapping is only allowed under the following conditions:

— the RESTRICT_CLASS annotation (see 9.5.3) authorizes usage of the cell
— the cells to be swapped are compatible from an application standpoint (functional compatibility for syn-

thesis and physical compatibility for layout)

9.5.3 RESTRICT_CLASS annotation

A xxx annotation shall be defined using ALF language as shown in .

The value is the name of a declared CLASS. Multi-value annotation can be used. Cells referring to a particular
class can be used in design tools identified by the value. The restricted annotations are shown in Table 28.

User-defined values are also possible. If a cell has no or only unknown values for RESTRICT_CLASS, the
application tool shall not modify any instantiation of that cell in the design. However, the cell shall still be con-
sidered for analysis.

9.5.4 SCAN_TYPE annotation

A xxx annotation shall be defined using ALF language as shown in .

KEYWORD RESTRICT_CLASS = annotation {
CONTEXT { CELL CLASS }
VALUETYPE = identifier;

}

Syntax 51— annotation

Table 28—Predefined values for RESTRICT_CLASS

Annotation string Description

synthesis Use restricted to logic synthesis.

scan Use restricted to scan synthesis.

datapath Use restricted to datapath synthesis.

clock Use restricted to clock tree synthesis.

layout Use restricted to layout, i.e., place & route.

KEYWORD SCAN_TYPE = single_value_annotation {
CONTEXT = CELL;
VALUETYPE = identifier;
VALUES { muxscan clocked lssd control_0 control_1 }

}

Syntax 52— annotation
IEEE P1603 Draft 4 Advanced Library Format (ALF) Reference Manual 61

1

5

10

15

20

25

30

35

40

45

50

55
can take the values shown in Table 29.

9.5.5 SCAN_USAGE annotation

A xxx annotation shall be defined using ALF language as shown in .

can take the values shown in Table 30.

The SCAN_USAGE applies for a special cell which is designed to be the primary input, output or intermediate
stage of a scan chain. It also applies for macro blocks with connected scan chains in case there are particular
scan-ordering requirements.

9.5.6 BUFFERTYPE annotation

A xxx annotation shall be defined using ALF language as shown in .

Table 29—SCAN_TYPE annotations for a CELL object

Annotation string Description

muxscan A multiplexor for normal data and scan data.

clocked A special scan clock.

lssd Combination between flip-flop and latch with special clocking (level sen-
sitive scan design).

control_0 Combinational scan cell, controlling pin shall be 0 in scan mode.

control_1 Combinational scan cell, controlling pin shall be 1 in scan mode.

KEYWORD SCAN_USAGE = single_value_annotation {
CONTEXT = CELL;
VALUETYPE = identifier;
VALUES { input output hold }

}

Syntax 53— annotation

Table 30—SCAN_USAGE annotations for a CELL object

Annotation string Description

input Primary input in a chain of cells.

output Primary output in a chain of cells.

hold Holds intermediate value in the scan chain.
62 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 4

1

5

10

15

20

25

30

35

40

45

50

55
can take the values shown in Table 31.

9.5.7 DRIVERTYPE annotation

A xxx annotation shall be defined using ALF language as shown in .

can take the values shown in Table 32.

NOTE—DRIVERTYPE applies only for cells with BUFFERTYPE = input | output | inout.

KEYWORD BUFFERTYPE = single_value_annotation {
CONTEXT = CELL;
VALUETYPE = identifier;
VALUES { input output inout internal }
DEFAULT = internal;

}

Syntax 54— annotation

Table 31—BUFFERTYPE annotations for a CELL object

Annotation string Description

input Cell has at least one external (off-chip) input pin.

output Cell has at least one external (off-chip) output pin.

inout Cell has at least one external (off-chip) bidirectional pin.

internal Cell has only internal (on-chip) pins.

KEYWORD DRIVERTYPE = single_value_annotation {
CONTEXT = CELL;
VALUETYPE = identifier;
VALUES { predriver slotdriver both }

}

Syntax 55— annotation

Table 32—DRIVERTYPE annotations for a CELL object

Annotation string Description

predriver Cell is a predriver, i.e., the core part of an IO buffer.

slotdriver Cell is a slotdriver, i.e., the pad of an IO buffer with off-chip connection.

both Cell is both a predriver and a slot driver, i.e., a complete IO buffer.
IEEE P1603 Draft 4 Advanced Library Format (ALF) Reference Manual 63

1

5

10

15

20

25

30

35

40

45

50

55
9.5.8 PARALLEL_DRIVE annotation

A xxx annotation shall be defined using ALF language as shown in .

specifies the number of parallel drivers. This shall be greater than zero (0) ; the default is 1.

9.5.9 PLACEMENT_TYPE annotation

A xxx annotation shall be defined using ALF language as shown in .

The identifiers have the following definitions:

— pad: I/O pad, to be placed in the I/O rows
— core: regular macro, to be placed in the core rows
— block: hierarchical block with regular power structure
— ring: macro with built-in power structure
— connector: macro at the end of core rows connecting with power or ground

9.5.10 SITE reference annotation

A CELL can reference one or more legal placement SITEs. Signle-value annotation and multi-value annotation
shall be legal.

9.6 ATTRIBUTE values for a CELL

An attribute in the context of a cell declaration shall specify more specific information within the category given
by the celltype annotation.

KEYWORD PARALLEL_DRIVE = single_value_annotation {
CONTEXT = CELL;
VALUETYPE = unsigned;
DEFAULT = 1;

}

Syntax 56— annotation

KEYWORD PLACEMENT_TYPE = single_value_annotation {
CONTEXT = CELL;
VALUETYPE = identifier;
VALUES { pad core ring block onnector }
DEFAULT = core;

}

Syntax 57— annotation
64 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 4

1

5

10

15

20

25

30

35

40

45

50

55
The attribute values shown in Table 33 can be used within a CELL with CELLTYPE=memory.

The attributes shown in Table 34 can be used within a CELL with CELLTYPE=block.

Table 33—Attribute values for a CELL with CELLTYPE=memory

Attribute item Description

RAM Random Access Memory

ROM Read Only Memory

CAM Content Addressable Memory

static Static memory (e.g., static RAM)

dynamic Dynamic memory (e.g., dynamic RAM)

asynchronous Asynchronous memory

synchronous Synchronous memory

Table 34—Attributes within a CELL with CELLTYPE=block

Attribute item Description

counter Cell is a complex sequential cell going through a predefined
sequence of states in its normal operation mode where each state rep-
resents an encoded control value.

shift_register Cell is a complex sequential cell going through a predefined
sequence of states in its normal operation mode, where each subse-
quent state can be obtained from the previous one by a shift opera-
tion. Each bit represents a data value.

adder Cell is an adder, i.e., a combinational element performing an addition
of two operands.

subtractor Cell is a subtractor, i.e., a combinational element performing a sub-
traction of two operands.

multiplier Cell is a multiplier, i.e., a combinational element performing a multi-
plication of two operands.

comparator Cell is a comparator, i.e., a combinational element comparing the
magnitude of two operands.

ALU Cell is an arithmetic logic unit, i.e., a combinational element combin-
ing the functionality of adder, subtractor, comparator in a selectable
way.
IEEE P1603 Draft 4 Advanced Library Format (ALF) Reference Manual 65

1

5

10

15

20

25

30

35

40

45

50

55
The attributes shown in Table 35 can be used within a CELL with CELLTYPE=core.

The attributes shown in Table 36 can be used within a CELL with CELLTYPE=special.

9.7 PIN declaration

A pin shall be declared as a scalar pin or as a vector pin or a matrix pin, as shown in Syntax 58.

A pin shall represent a terminal of an electronic circuit for the purpose of exchanging information with the envi-
ronment of the electronic circuit. A constant value of information shall be called state. A time-dependent value
of information shall be called signal. A reference to a pin in general shall be established by the pin identifier.

A scalar pin may be associated with a general electrical signal. However, a vector pin or a matrix pin may only be
associated with digital signals. One element of a vector pin or of a matrix pin shall be associated with one bit of
information, i.e., a binary digital signal.

A vector-pin can be considered as a combination of scalar pins. A reference to a scalar or to a subvector, respec-
tively, within the vector-pin shall be established by the pin identifier followed by a single index or by a multi
index, respectively.

Table 35—Attributes within a CELL with CELLTYPE=core

Attribute item Description

PLL CELL is a phase-locked loop.

DSP CELL is a digital signal processor.

CPU CELL is a central processing unit.

GPU CELL is a graphical processing unit.

Table 36—Attributes within a CELL with CELLTYPE=special

Attribute item Description

busholder CELL enables a tristate bus to hold its last value before all drivers
went into high-impedance state (see FUNCTION statement).

clamp CELL connects a net to a constant value (logic value and drive
strength; see FUNCTION statement).

diode CELL is a diode (no FUNCTION statement).

capacitor CELL is a capacitor (no FUNCTION statement).

resistor CELL is a resistor (no FUNCTION statement).

inductor CELL is an inductor (no FUNCTION statement).

fillcell CELL is merely used to fill unused space in layout (no FUNCTION
statement).
66 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 4

1

5

10

15

20

25

30

35

40

45

50

55
A matrix-pin can be considered as a combination of vector-pins. A reference to a vector or to a submatrix,
respectively, within the matrix-pin shall be established by the pin identifier followed by a single index or by a
multi index, respectively.

Within a matrix-pin declaration, the first multi index shall specify the range of scalars or bits, and the second
multi index shall specify the range of vectors. Support for direct reference of a scalar within a vector within a
matrix is not provided.

Example

PIN [5:8] myVectorPin ;
PIN [3:0] myMatrixPin [1:1000] ;

The pin variable myVectorPin[5] refers to the scalar associated with the MSB of myVectorPin.
The pin variable myVectorPin[8] refers to the scalar associated with the LSB of myVectorPin.
The pin variable myVectorPin[6:7] refers to a subvector within myVectorPin.
The pin variable myMatrixPin[500] refers to a vector within myMatrixPin.
The pin variable myMatrixPin[500:502] refers to 3 subsequent vectors within myMatrixPin.

Consider the following pin assignment:
myVectorPin=myMatrixPin[500];

This establishes the following exchange of information:
myVectorPin[5] receives information from element [3] of myMatrixPin[500].
myVectorPin[6] receives information from element [2] of myMatrixPin[500].
myVectorPin[7] receives information from element [1] of myMatrixPin[500].
myVectorPin[8] receives information from element [0] of myMatrixPin[500].

pin ::=
scalar_pin | vector_pin | matrix_pin

scalar_pin ::=
PIN pin_identifier ;

| PIN pin_identifier { { scalar_pin_item } }
| scalar_pin_template_instantiation

vector_pin ::=
PIN multi_index pin_identifier ;

| PIN multi_index pin_identifier { { vector_pin_item } }
| vector_pin_template_instantiation

matrix_pin ::=
PIN first_multi_index pin_identifier second_multi_index ;

| PIN first_multi_index pin_identifier second_multi_index { { matrix_pin_item } }
| matrix_pin_template_instantiation

scalar_pin_item ::=
all_purpose_item

| port
| pull

vector_pin_item ::=
all_purpose_item

| range
matrix_pin_item ::=

vector_pin_item

Syntax 58—PIN declaration
IEEE P1603 Draft 4 Advanced Library Format (ALF) Reference Manual 67

1

5

10

15

20

25

30

35

40

45

50

55
9.8 PINGROUP declaration

A pingroup shall be declared as a simple pingroup or as a vector pingroup, as shown in Syntax 59.

A pingroup in general shall serve the purpose to specify items applicable to a combination of pins. The combina-
tion of pins shall be specified by the members statement.

A vector pingroup can only combine scalar pins. A vector pingroup can be used as a pin variable, in the same
capacity as a vector pin.

A simple pingroup can combine pins of any format, i.e., scalar pins, vector pins, and matrix pins. A simple pin-
group may not be used as a pin variable.

9.9 Annotations for a PIN and a PINGROUP

This section defines annotations and attribute values in the context of a pin declaration or a pingroup declaration.

9.9.1 VIEW annotation

A xxx annotation shall be defined using ALF language as shown in .

pingroup ::=
simple_pingroup | vector_pingroup

simple_pingroup ::=
PINGROUP pingroup_identifier { members { all_purpose_item } }

| simple_pingroup_template_instantiation
vector_pingroup ::=

| PINGROUP [index_value : index_value] pingroup_identifier
{ members { vector_pingroup_item } }

| vector_pingroup_template_instantiation
vector_pingroup_item ::=

all_purpose_item
| range

members ::=
MEMBERS { pin_identifier pin_identifier { pin_identifier } }

Syntax 59—PINGROUP declaration

KEYWORD VIEW = single_value_annotation {
CONTEXT { PIN PINGROUP }
VALUETYPE = identifier;
VALUES { functional physical both none }
DEFAULT = both

}

Syntax 60— annotation
68 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 4

1

5

10

15

20

25

30

35

40

45

50

55
annotates the view where the pin appears, which can take the values shown in Table 37.

9.9.2 PINTYPE annotation

A xxx annotation shall be defined using ALF language as shown in .

annotates the type of the pin, which can take the values shown in Table 38.

9.9.3 DIRECTION annotation

A xxx annotation shall be defined using ALF language as shown in .

Table 37—VIEW annotations for a PIN object

Annotation string Description

functional Pin appears in functional netlist.

physical Pin appears in physical netlist.

both (default) Pin appears in both functional and physical netlist.

none Pin does not appear in netlist.

KEYWORD PINTYPE = single_value_annotation {
CONTEXT = PIN;
VALUETYPE = identifier;
VALUES { digital analog supply }
DEFAULT = digital;

}

Syntax 61— annotation

Table 38—PINTYPE annotations for a PIN object

Annotation string Description

digital (default) Digital signal pin.

analog Analog signal pin.

supply Power supply or ground pin.

KEYWORD DIRECTION = single_value_annotation {
CONTEXT = PIN;
VALUETYPE = identifier;
VALUES { input output both none }

}

Syntax 62— annotation
IEEE P1603 Draft 4 Advanced Library Format (ALF) Reference Manual 69

1

5

10

15

20

25

30

35

40

45

50

55
annotates the direction of the pin, which can take the values shown in Table 39.

Table 40 gives a more detailed semantic interpretation for using DIRECTION in combination with PINTYPE.

For pins with PINTYPE=supply, the DIRECTION describes an electrical characteristic rather than a functional
characteristic, since there is no functional definition for DIRECTION. For pins with PINTYPE=digital or analog,
the functional definition of DIRECTION actually matches the electrical definition.

Examples

— The power and ground pins of regular cells shall have DIRECTION=input.
— A level converter cell shall have a power supply pin with DIRECTION=input and another power sup-

ply pin with DIRECTION=output.
— A level converter can have separate ground pins on the input and output side or a common ground pin

with DIRECTION=both.
— The power and ground pins of a feed through cell shall have DIRECTION=none.

9.9.4 SIGNALTYPE annotation

A xxx annotation shall be defined using ALF language as shown in .

SIGNALTYPE classifies the functionality of a pin. The currently defined values apply for pins with PIN-
TYPE=DIGITAL.

Table 39—DIRECTION annotations for a PIN object

Annotation string Description

input Input pin.

output Output pin.

both Bidirectional pin.

none No direction can be assigned to the pin.

Table 40—DIRECTION in combination with PINTYPE

DIRECTION PINTYPE=digital PINTYPE=analog PINTYPE=supply

input Pin receives a digital signal. Pin receives an analog signal. Pin is a power sink.

output Pin drives a digital signal. Pin drives an analog signal. Pin is a power source.

both Pin drives or receives a digital
signal, depending on the opera-
tion mode.

Pin drives or receives an analog
signal, depending on the opera-
tion mode.

Pin is both power sink and
source.

none Pin represents either an inter-
nal digital signal with no exter-
nal connection or a feed
through.

Pin represents either an inter-
nal analog signal with no exter-
nal connection or a feed
through.

Pin represents either an
internal power pin with no
external connection or a
feed through.
70 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 4

1

5

10

15

20

25

30

35

40

45

50

55
Conceptually, a pin with PINTYPE = ANALOG can also have a SIGNALTYPE annotation. However, no values
are currently defined.

The fundamental SIGNALTYPE values are defined in Table 41

KEYWORD SIGNALTYPE = single_value_annotation {
CONTEXT = PIN;
VALUETYPE = identifier;
VALUES {

data scan_data address control select tie clear set
enable out_enable scan_enable scan_out_enable
clock master_clock slave_clock
scan_master_clock scan_slave_clock

}
DEFAULT = data;

}

Syntax 63— annotation

Table 41—Fundamental SIGNALTYPE annotations for a PIN object

Annotation string Description

data (default) General data signal, i.e., a signal that carries information to be trans-
mitted, received, or subjected to logic operations within the CELL.

address Address signal of a memory, i.e., an encoded signal, usually a bus or
part of a bus, driving an address decoder within the CELL.

control General control signal, i.e., an encoded signal that controls at least
two modes of operation of the CELL, eventually in conjunction with
other signals. The signal value is allowed to change during real-time
circuit operation.

select Select signal of a multiplexor, i.e., a decoded or encoded signal that
selects the data path of a multiplexor or de-multiplexor within the
CELL. Each selected signal has the same SIGNALTYPE.

enable Enables storage of general input data in a sequential cell, i.e., a cell
or a flipflop

tie The signal needs to be tied to a fixed value statically in order to
define a fixed or programmable mode of operation of the CELL,
eventually in conjunction with other signals. The signal value is not
allowed to change during real-time circuit operation.

clear Clear signal of a flip-flop or latch, i.e., a signal that controls the stor-
age of the value 0 within the CELL.

set Set signal of a flip-flop or latch, i.e., a signal that controls the storage
of the value 1 within the CELL.

clock Clock signal of a flip-flop or latch, i.e., a timing-critical signal that
triggers data storage within the CELL.
IEEE P1603 Draft 4 Advanced Library Format (ALF) Reference Manual 71

1

5

10

15

20

25

30

35

40

45

50

55
Scheme for construction of composite signaltype values:

The composite SIGNALTYPE values are defined in Table 41

“Flipflop”, “latch”, “multiplexor”, and “memory” can be standalone cells or embedded in larger cells. In the
former case, the celltype is flipflop, latch, multiplexor, and memory, respectively. In the latter case,
the celltype is block or core.

9.9.5 ACTION annotation

A xxx annotation shall be defined using ALF language as shown in .

Table 42—Composite SIGNALTYPE annotations for a PIN object

Annotation string Description

scan_data Scan data signal, i.e., signal is for testing purpose only

out_enable Enables visibility of general data at the output.

scan_enable Enables storage of scan input data in a sequential cell, i.e., a cell or a
flipflop

scan_out_enable Enables visibility of scan data at the output.

master_clock triggers storage of input data in 1st stage of flipflop in a two-phase
clocking scheme

slave_clock triggers data transfer from 1st stage to 2nd stage of flipflop in a two-
phase clocking scheme

scan_clock triggers scan data storage within the CELL.

scan_master_clock triggers storage of input scan data in 1st stage of flipflop in a two-
phase clocking scheme

scan_slave_clock triggers scan data transfer from 1st stage to 2nd stage of flipflop in a
two-phase clocking scheme

KEYWORD ACTION = single_value_annotation {
CONTEXT = PIN;
VALUETYPE = identifier;
VALUES { asynchronous synchronous }

}

Syntax 64— annotation

data

enable

clock

master_clock

slave_clock

out_enable

scan_data

scan_enable

scan_out_enable

scan_clock

scan_master_clock

scan_slave_clock
72 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 4

1

5

10

15

20

25

30

35

40

45

50

55
annotates the action of the signal, which can take the values shown in Table 43.

The ACTION annotation applies only to pins with certain SIGNALTYPE values, as shown in Table 44. The rule
applies also to any composite SIGNALTYPE values based on the fundamental values.

9.9.6 POLARITY annotation

A xxx annotation shall be defined using ALF language as shown in .

annotates the polarity of the pin signal.

Table 43—ACTION annotations for a PIN object

Annotation string Description

asynchronous Signal acts in an asynchronous way, i.e., self-triggered.

synchronous Signal acts in a synchronous way, i.e., triggered by a signal with
SIGNALTYPE CLOCK or a composite SIGNALTYPE with postfix
_CLOCK.

Table 44—ACTION applicable in conjunction with fundamental SIGNALTYPE values

Fundamental SIGNALTYPE Applicable
ACTION Comment

data no

address no

control yes

select no

enable yes

tie no

clear yes

set yes

clock no Presence of SIGNALTYPE=clock conditions the
validity of ACTION=synchronous for other signals.

KEYWORD POLARITY = single_value_annotation {
CONTEXT = PIN;
VALUETYPE = identifier;
VALUES { high low rising_edge falling_edge double_edge }

}

Syntax 65— annotation
IEEE P1603 Draft 4 Advanced Library Format (ALF) Reference Manual 73

1

5

10

15

20

25

30

35

40

45

50

55
The polarity of an input pin (i.e., DIRECTION = input;) takes the values shown in Table 45.

The POLARITY annotation applies only to pins with certain SIGNALTYPE values, as shown in Table 46. The
rule applies also to any composite SIGNALTYPE values based on the fundamental values.

9.9.7 DATATYPE annotation

A xxx annotation shall be defined using ALF language as shown in .

Table 45—POLARITY annotations for a PIN

Annotation string Description

high Signal active high or to be driven high.

low Signal active low or to be driven low.

rising_edge Signal sensitive to rising edge.

falling_edge Signal sensitive to falling edge.

double_edge Signal sensitive to any edge.

Table 46—POLARITY applicable in conjunction with fundamental SIGNALTYPE values

Fundamental SIGNALTYPE Applicable
POLARITY Comment

data N/A

address N/A

control N/A CONTROL_POLARITY high, low

select N/A

enable high, low.

tie high, low.

clear high, low.

set high, low.

clock high, low,
rising_edge,
falling_edge,
double_edge,

CONTROL_POLARITY can apply
74 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 4

1

5

10

15

20

25

30

35

40

45

50

55
annotates the datatype of the pin, which can take the values shown in Table 47.

DATATYPE is only relevant for bus pins.

9.9.8 INITIAL_VALUE annotation

A xxx annotation shall be defined using ALF language as shown in .

shall be compatible with the buswidth and DATATYPE of the signal.

INITIAL_VALUE is used for a downstream behavioral simulation model, as far as the simulator (e.g., a
VITAL-compliant simulator) supports the notion of initial value.

9.9.9 SCAN_POSITION annotation

A xxx annotation shall be defined using ALF language as shown in .

annotates the position of the pin in scan chain, starting with 1. Value 0 (default) indicates that the PIN is not on
the scan chain.

KEYWORD DATATYPE = single_value_annotation {
CONTEXT { PIN PINGROUP }
VALUETYPE = identifier;
VALUES { signed unsigned }

}

Syntax 66— annotation

Table 47—DATATYPE annotations for a PIN object

Annotation string Description

signed Result of arithmetic operation is signed 2’s complement.

unsigned Result of arithmetic operation is unsigned.

KEYWORD INITIAL_VALUE = single_value_annotation {
CONTEXT = CELL;
VALUETYPE = boolean_value;

}

Syntax 67— annotation

KEYWORD SCAN_POSITION = single_value_annotation {
CONTEXT = PIN;
VALUETYPE = unsigned;
DEFAULT = 0;

}

Syntax 68— annotation
IEEE P1603 Draft 4 Advanced Library Format (ALF) Reference Manual 75

1

5

10

15

20

25

30

35

40

45

50

55
9.9.10 STUCK annotation

A xxx annotation shall be defined using ALF language as shown in .

annotates the stuck-at fault model as shown in Table 48.

9.9.11 SUPPLYTYPE

A xxx annotation shall be defined using ALF language as shown in .

A PIN with PINTYPE = SUPPLY shall have a SUPPLYTYPE annotation, as shown in.

9.9.12 SIGNAL_CLASS

A xxx annotation shall be defined using ALF language as shown in .

KEYWORD STUCK = single_value_annotation {
CONTEXT = PIN;
VALUETYPE = identifier;
VALUES { stuck_at_0 stuck_at_1 both none }
DEFAULT = both;

}

Syntax 69— annotation

Table 48—STUCK annotations for a PIN object

Annotation string Description

stuck_at_0 Pin can have stuck-at-0 fault.

stuck_at_1 Pin can have stuck-at-1 fault.

both (default) Pin can have both stuck-at-0 and stuck-at-1 faults.

none Pin can not have stuck-at faults.

KEYWORD SUPPLYTYPE = annotation {
CONTEXT = PIN;
VALUETYPE = identifier;
VALUES { power ground reference }

}

Syntax 70— annotation

KEYWORD SIGNAL_CLASS = annotation {
CONTEXT { PIN PINGROUP }
VALUETYPE = identifier;

}

Syntax 71— annotation
76 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 4

1

5

10

15

20

25

30

35

40

45

50

55
9.9.13 SUPPLY_CLASS

A xxx annotation shall be defined using ALF language as shown in .

9.9.14 DRIVETYPE annotation

A xxx annotation shall be defined using ALF language as shown in .

annotates the drive type for the pin, which can take the values shown in Table 49.

KEYWORD SUPPLY_CLASS = annotation {
CONTEXT { PIN PINGROUP CLASS }
VALUETYPE = identifier;

}

Syntax 72— annotation

KEYWORD DRIVETYPE = single_value_annotation {
CONTEXT = PIN;
VALUETYPE = identifier;
VALUES {

cmos nmos pmos cmos_pass nmos_pass pmos_pass
ttl open_drain open_source

}
DEFAULT = cmos;

}

Syntax 73— annotation

Table 49—DRIVETYPE annotations for a PIN object

Annotation string Description

cmos (default) Standard cmos signal.

nmos Nmos or pseudo nmos signal.

pmos Pmos or pseudo pmos signal.

nmos_pass Nmos passgate signal.

pmos_pass Pmos passgate signal.

cmos_pass Cmos passgate signal, i.e., the full transmission gate.

ttl TTL signal.

open_drain Open drain signal.

open_source Open source signal.
IEEE P1603 Draft 4 Advanced Library Format (ALF) Reference Manual 77

1

5

10

15

20

25

30

35

40

45

50

55
9.9.15 SCOPE annotation

A xxx annotation shall be defined using ALF language as shown in .

annotates the modeling scope of a pin, which can take the values shown in Table 50.

9.9.16 CONNECT_CLASS annotation

A xxx annotation shall be defined using ALF language as shown in .

annotates a declared class object for connectivity determination.

Connectivity rules involving those classes shall apply for the pin.

9.9.17 SIDE annotation

A xxx annotation shall be defined using ALF language as shown in .

KEYWORD SCOPE = single_value_annotation {
CONTEXT = PIN;
VALUETYPE = identifier;
VALUES { behavior measure both none }
DEFAULT = both;

}

Syntax 74— annotation

Table 50—SCOPE annotations for a PIN object

Annotation string Description

behavior The pin is used for modeling functional behavior and events on the
pin are monitored for vector expressions in BEHAVIOR statements.

measure Measurements related to the pin can be described, e.g., timing or
power characterization, and events on the pin are monitored for vec-
tor expressions in VECTOR statements.

both (default) The pin is used for functional behavior as well as for characterization
measurements.

none No model; only the pin exists.

KEYWORD CONNECT_CLASS = single_value_annotation {
CONTEXT = PIN;
VALUETYPE = identifier;

}

Syntax 75— annotation
78 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 4

1

5

10

15

20

25

30

35

40

45

50

55
which can take the values shown in Table 51.

9.9.18 ROW and COLUMN annotation

A xxx annotation shall be defined using ALF language as shown in .

The following annotation shall be used for a pin in order to indicate the location of the pin within a placement
row or column, as shown in .

where row_assignment applies for pins with SIDE = right | left and column_assignment
applies for pins with SIDE = top | bottom.

For bus pins, row_assignment and column_assignment shall have the form of
multi_value_assignments, as shown in .

9.9.19 ROUTING_TYPE annotation

A xxx annotation shall be defined using ALF language as shown in .

The identifiers have the following definitions:

KEYWORD SIDE = single_value_annotation {
CONTEXT { PIN PINGROUP }
VALUETYPE = identifier;
VALUES { left right top bottom }

}

Syntax 76— annotation

Table 51—SIDE annotations for a PIN object

Annotation string Description

left Pin is on the left side.

right Pin is on the right side.

top Pin is at the top.

bottom Pin is at the bottom.

KEYWORD ROW = annotation {
CONTEXT { PIN PINGROUP }
VALUETYPE = unsigned;

}
KEYWORD COLUMN = annotation {

CONTEXT { PIN PINGROUP }
VALUETYPE = unsigned;

}

Syntax 77— annotation
IEEE P1603 Draft 4 Advanced Library Format (ALF) Reference Manual 79

1

5

10

15

20

25

30

35

40

45

50

55
— regular: connection by regular routing
— abutment: connection by abutment, no routing
— ring: pin forms a ring around the block with connection allowed to any point of the ring
— feedthrough: both ends of the pin align and can be used for connection

9.9.20 PULL annotation

A xxx annotation shall be defined using ALF language as shown in .

annotates the pull type for the pin, which can take the values shown in Table 52.

9.10 ATTRIBUTE values for a PIN and a PINGROUP

The attribute values shown in Table 53 can be used within a PIN object.

KEYWORD ROUTING_TYPE = single_value_annotation {
CONTEXT { PIN PORT }
VALUETYPE = identifier;
VALUES { regular abutment ring feedthrough }
DEFAULT = regular;

}

Syntax 78— annotation

KEYWORD PULL = single_value_annotation {
CONTEXT = PIN;
VALUETYPE = identifier;
VALUES { up down both none }
DEFAULT = none;

}

Syntax 79— annotation

Table 52—PULL annotations for a PIN object

Annotation string Description

up Pullup device connected to pin.

down Pulldown device connected to pin.

both Pullup and pulldown device connected to pin.

none (default) No pull device.

Table 53—Attributes within a PIN object

Attribute item Description

SCHMITT Schmitt trigger signal.
80 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 4

1

5

10

15

20

25

30

35

40

45

50

55
The attributes shown in Table 54 are only applicable for pins within cells with CELLTYPE=memory and certain
values of SIGNALTYPE.

The attributes shown in Table 55 are only applicable for pins representing double-rail signals.

The following restrictions apply for double-rail signals:

— The PINTYPE, SIGNALTYPE, and DIRECTION of both pins shall be the same.
— One PIN shall have the attribute INVERTED, the other NON_INVERTED.
— Either both pins or no pins shall have the attribute DIFFERENTIAL.
— POLARITY, if applicable, shall be complementary as follows:

HIGH is paired with LOW

TRISTATE Tristate signal.

XTAL Crystal/oscillator signal.

PAD Pad going off-chip.

Table 54—Attributes for pins of a memory

Attribute item SIGNALTYPE Description

ROW_ADDRESS_STROBE clock Samples the row address of the memory.

COLUMN_ADDRESS_STROBE clock Samples the column address of the memory.

ROW address Selects an addressable row of the memory.
(PINGROUP)

COLUMN address Selects an addressable column of the memory.
(PINGROUP)

BANK address Selects an addressable bank of the memory.
(PINGROUP)

Table 55—Attributes for pins representing double-rail signals

Attribute item Description

INVERTED Represents the inverted value within a pair of signals car-
rying complementary values.

NON_INVERTED Represents the non-inverted value within a pair of signals
carrying complementary values.

DIFFERENTIAL Signal is part of a differential pair, i.e., both the inverted
and non-inverted values are always required for physical
implementation. (PINGROUP)

Table 53—Attributes within a PIN object (Continued)

Attribute item Description
IEEE P1603 Draft 4 Advanced Library Format (ALF) Reference Manual 81

1

5

10

15

20

25

30

35

40

45

50

55
RISING_EDGE is paired with FALLING_EDGE
DOUBLE_EDGE is paired with DOUBLE_EDGE

The special pin ATTRIBUTE values shown in Table 56 shall be defined for memory BIST.

These attributes apply to the pins of the BIST wrapper around the memory rather than to the pins of the memory
itself.

The BEHAVIOR statement within TEST shall involve the variables declared as PINs with ATTRIBUTE
ROW_INDEX, COLUMN_INDEX, BANK_INDEX, DATA_INDEX, or DATA_VALUE.

9.11 PRIMITIVE declaration

A PRIMITIVE shall be declared as shown in Syntax 80.

A PRIMITIVE referenced in a CELL can replace the complete set of PIN and FUNCTION definition. PINs can
be declared before the reference to the PRIMITIVE, in order to provide supplementary annotations that cannot
be inherited from the PRIMITIVE. However, the CELL shall be pin-compatible with the PRIMITIVE.

If the PRIMITIVE or a CELL is referenced in an annotation container such as SCAN, only the subset of PINs
used in the non-scan cell shall be compatible with the PINs of the cell.

Table 56—PIN or PINGROUP attributes for memory BIST

Attribute item Description

ROW_INDEX Pin is a bus with a contiguous range of values, indicating
a physical row of a memory.

COLUMN_INDEX Pin is a bus with a contiguous range of values, indicating
a physical column of a memory.

BANK_INDEX Pin is a bus with a contiguous range of values, indicating
a physical bank of a memory.

DATA_INDEX Pin is a bus with a contiguous range of values, indicating
the bit position within a data bus of a memory.

DATA_VALUE Pin represents a value stored in a physical memory loca-
tion.

primitive ::=
PRIMITIVE primitive_identifier { primitive_item { primitive_item } }

| PRIMITIVE primitive_identifier ;
| primitive_template_instantiation

primitive_item ::=
all_purpose_item

| pin
| pingroup
| function
| test

Syntax 80—PRIMITIVE statement
82 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 4

1

5

10

15

20

25

30

35

40

45

50

55
The pin names can be referenced by order or by name. In the latter case, the LHS is the pin name of the refer-
enced PRIMITIVE or CELL (e.g., the non-scan cell), the RHS is the pin name of the actual cell. A constant
logic value can also appear at the LHS or RHS, indicating a pin needs to be tied to a constant value. If this infor-
mation is already specified in an annotation inside the PIN object itself, referencing between a pin name and a
constant value is not necessary.

9.12 WIRE declaration

A wire shall be declared as shown in .

The purpose of a wire declaration is to describe an interconnect model. The interconnect model can be a statisti-
cal wireload model, a description of boundary parasitics within a complex cell, a model for interconnect analysis,
or a specification of a load seen by a driver.

9.12.1 Annotations for a WIRE

9.12.2 SELECT_CLASS annotation

A xxx annotation shall be defined using ALF language as shown in .

The identifier shall refer to the name of a declared class.

The purpose of the select class annotation is to enable a convenient interconnect model selection for a given
application. The user of the application can select a set of interconnect models by specifying the name of the
class rather than specifying the name of each interconnect model.

9.13 NODE declaration

A node shall be declared as shown in Syntax 83.

The purpose of a node declaration is to specify an electrical node in the context of a wire declaration or in the
context of a cell declaration.

wire ::=
WIRE wire_identifier { wire_items }

| WIRE wire_identifier ;
| wire_template_instantiation

wire_items ::=
wire_item { wire_item }

wire_item ::=
all_purpose_item

| node

Syntax 81—WIRE declaration

KEYWORD SELECT_CLASS = annotation {
CONTEXT = WIRE;
VALUETYPE = identifier;

}

Syntax 82— annotation
IEEE P1603 Draft 4 Advanced Library Format (ALF) Reference Manual 83

1

5

10

15

20

25

30

35

40

45

50

55
9.13.1 NODETYPE annotation

A xxx annotation shall be defined using ALF language as shown in .

The values shall have the following semantic meaning.

9.13.2 NODE_CLASS annotation

A xxx annotation shall be defined using ALF language as shown in .

node ::=
NODE node_identifier ;

| NODE node_identifier { { node_item } }
| node_template_instantiation

node_item ::=
all_purpose_item

Syntax 83—NODE statement

KEYWORD NODETYPE = single_value_annotation {
CONTEXT = NODE;
VALUETYPE = identifier;
VALUES { power ground source sink

driver receiver interconnect }
}

Syntax 84— annotation

Table 57—NODETYPE annotation values

Annotation string Description

driver The node is the interface between a cell output pin and inter-
connect

receiver The node is the interface between interconnect and a cell input
pin

source The node is a virtual start point of signal propagation; it can be
collapsed with a driver node in case of an ideal driver

sink The node is a virtual end point of signal propagation; it can be
collapsed with a receiver node in case of an ideal receiver

power The node provides the current for rising signals at the source/
driver side and a reference for logic high signals at the sink/
receiver side

ground The node provides the current for falling signals at the source/
driver side and a reference for logic low signals at the sink/
receiver side

interconnect (default) The node serves for connecting purpose only
84 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 4

1

5

10

15

20

25

30

35

40

45

50

55
The identifier shall refer to the name of a declared class.

The purpose of the node class annotation is to associate a node with a virtual cell. The virtual cell is represented
by the declared class.

9.14 VECTOR declaration

A vector shall be declared as shown in Syntax 86.

9.15 Annotations for VECTOR

9.15.1 PURPOSE annotation

A xxx annotation shall be defined using ALF language as shown in .

9.15.2 OPERATION annotation

A xxx annotation shall be defined using ALF language as shown in .

The OPERATION statement inside a VECTOR shall be used to indicate the combined definition of signal values
or signal changes for certain operations which are not entirely controlled by a single signal.

KEYWORD NODE_CLASS = annotation {
CONTEXT = NODE;
VALUETYPE = identifier;

}

Syntax 85— annotation

vector ::=
VECTOR control_expression ;

| VECTOR control_expression { { vector_item } }
| vector_template_instantiation

vector_item ::=
all_purpose_item

Syntax 86—VECTOR statement

KEYWORD PURPOSE = annotation {
CONTEXT { VECTOR CLASS }
VALUETYPE = identifier ;
VALUES { bist test timing power noise reliability }

}

Syntax 87— annotation
IEEE P1603 Draft 4 Advanced Library Format (ALF) Reference Manual 85

1

5

10

15

20

25

30

35

40

45

50

55
The values shall have the following semantic meaning.

9.15.3 LABEL annotation

A xxx annotation shall be defined using ALF language as shown in .

ensures SDF matching with conditional delays across Verilog, VITAL, etc.

See the end of B.3 for an example.

9.15.4 EXISTENCE_CONDITION annotation

A xxx annotation shall be defined using ALF language as shown in .

KEYWORD OPERATION = single_value_annotation {
CONTEXT = VECTOR;
VALUETYPE = identifier;
VALUES {

read write read_modify_write refresh load
start end iddq

}
}

Syntax 88— annotation

Table 58—OPERATION annotation values

Annotation string Description

read read operation at one address

write write operation at one address

read_modify_write read followed by write of different value at same address

start first operation required in a particular mode

end last operation required in a particular mode

refresh operation required to maintain the contents of the memory
without modifying it

load operation for loading control registers

iddq operation for supply current measurements in quiescent state

KEYWORD = single_value_annotation {
CONTEXT = VECTOR;
VALUETYPE = string;

}

Syntax 89— annotation
86 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 4

1

5

10

15

20

25

30

35

40

45

50

55
For false-path analysis tools, the existence condition shall be used to eliminate the vector from further analysis if,
and only if, the existence condition evaluates to False. For applications other than false-path analysis, the exist-
ence condition shall be treated as if the boolean expression was a co-factor to the vector itself. The default exist-
ence condition is True.

Example

VECTOR (01 a -> 01 z & (c | !d)) {
EXISTENCE_CONDITION = !scan_select;
DELAY { FROM { PIN=a; } TO { PIN=z; } /* data */ }

}
VECTOR (01 a -> 01 z & (!c | d)) {

EXISTENCE_CONDITION = !scan_select;
DELAY { FROM { PIN=a; } TO { PIN=z; } /* data */ }

}

Each vector contains state-dependent delay for the same timing arc. If !scan_select evaluates True, both
vectors are eliminated from timing analysis.

9.15.5 EXISTENCE_CLASS annotation

A xxx annotation shall be defined using ALF language as shown in .

Reference to the same existence class by multiple vectors has the following effects:

— A common mode of operation is established between those vectors, which can be used for selective anal-
ysis, for instance mode-dependent timing analysis. The name of the mode is the name of the class.

— A common existence condition is inherited from that existence class, if there is one.

Example

CLASS non_scan_mode {
EXISTENCE_CONDITION = !scan_select;

}
VECTOR (01 a -> 01 z & (c | !d)) {

EXISTENCE_CLASS = non_scan_mode;
DELAY { FROM { PIN=a; } TO { PIN=z; } /* data */ }

KEYWORD EXISTENCE_CONDITION = single_value_annotation {
CONTEXT { VECTOR CLASS }
VALUETYPE = boolean_expression;
DEFAULT = 1;

}

Syntax 90— annotation

KEYWORD EXISTENCE_CLASS = annotation {
CONTEXT { VECTOR CLASS }
VALUETYPE = identifier;

}

Syntax 91— annotation
IEEE P1603 Draft 4 Advanced Library Format (ALF) Reference Manual 87

1

5

10

15

20

25

30

35

40

45

50

55
}
VECTOR (01 a -> 01 z & (!c | d)) {

EXISTENCE_CLASS = non_scan_mode;
DELAY { FROM { PIN=a; } TO { PIN=z; } /* data */ }

}

Each vector contains state-dependent delay for the same timing arc. If the mode non_scan_mode is turned off
or if !scan_select evaluates True, both vectors are eliminated from timing analysis.

9.15.6 CHARACTERIZATION_CONDITION annotation

A xxx annotation shall be defined using ALF language as shown in .

For characterization tools, the characterization condition shall be treated as if the boolean expression was a co-
factor to the vector itself. For all other applications, the characterization condition shall be disregarded. The
default characterization condition is True.

Example

VECTOR (01 a -> 01 z & (c | !d)) {
CHARACTERIZATION_CONDITION = c & !d;
DELAY { FROM { PIN=a; } TO { PIN=z; } /* data */ }

}

The delay value for the timing arc applies for any of the following conditions: (c & !d),
(c & d), or (!c & !d), since they all satisfy (c | !d) . However, the only condition chosen for delay char-
acterization is (c & !d).

9.15.7 CHARACTERIZATION_VECTOR annotation

A xxx annotation shall be defined using ALF language as shown in .

The characterization vector is provided for the case where the vector expression cannot be constructed using the
vector and a boolean co-factor. The use of the characterization vector is restricted to characterization tools in the
same way as the use of the characterization condition. Either a characterization condition or a characterization

KEYWORD
CHARACTERIZATION_CONDITION = single_value_annotation {

CONTEXT { VECTOR CLASS }
VALUETYPE = boolean_expression;

}

Syntax 92— annotation

KEYWORD CHARACTERIZATION_VECTOR =
single_value_annotation {

CONTEXT { VECTOR CLASS }
VALUETYPE = control_expression;

}

Syntax 93— annotation
88 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 4

1

5

10

15

20

25

30

35

40

45

50

55
vector can be provided, but not both. If none is provided, the vector itself shall be used by the characterization
tool.

Example

VECTOR (01 A -> 01 Z) {
CHARACTERIZATION_VECTOR = ((01 A & 10 inv_A) -> (01 Z & 10 inv_Z));

}

Analysis tools see the signals A and Z. The signals inv_A and inv_Z are visible to the characterization tool
only.

9.15.8 CHARACTERIZATION_CLASS annotation

A xxx annotation shall be defined using ALF language as shown in .

Reference to the same characterization class by multiple vectors has the following effects:

— A commonality is established between those vectors, which can be used for selective characterization in a
way defined by the library characterizer, for instance, to share the characterization task between different
teams or jobs or tools.

— A common characterization condition or characterization vector is inherited from that characterization
class, if there is one.

9.16 LAYER declaration

A layer shall be declared as shown in Syntax 95.

LAYER statements shall be in sequential order defined by the manufacturing process, starting bottom-up in the
following sequence: one or multiple substrate layers, followed by alternating cut and routing layers, then the
dielectric layer. Abstract layers can appear at the end of the sequence.

KEYWORD CHARACTERIZATION_CLASS = annotation {
CONTEXT { VECTOR CLASS }
VALUETYPE = identifier;

}

Syntax 94— annotation

layer ::=
LAYER layer_identifier ;

| LAYER layer_identifier { { layer_item } }
| layer_template_instantiation

layer_item ::=
all_purpose_item

Syntax 95—LAYER declaration
IEEE P1603 Draft 4 Advanced Library Format (ALF) Reference Manual 89

1

5

10

15

20

25

30

35

40

45

50

55
9.17 Annotations for LAYER

9.17.1 LAYERTYPE annotation

A xxx annotation shall be defined using ALF language as shown in .

The identifiers have the following definitions:

The values shall have the following semantic meaning.

9.17.2 PITCH annotation

A xxx annotation shall be defined using ALF language as shown in .

The PITCH annotation identifies the routing pitch for a layer with LAYERTYPE=routing.

The pitch is measured between the center of two adjacent parallel wires routed on the layer.

KEYWORD LAYERTYPE = single_value_annotation {
CONTEXT = LAYER;
VALUETYPE = identifier;
VALUES {

routing cut substrate dielectric reserved abstract
}

}

Syntax 96— annotation

Table 59—LAYERTYPE annotation values

Annotation string Description

routing layer provides electrical connections within one plane

cut layer provides electrical connections between planes

substrate layer(s) at the bottom

dielectric provides electrical isolation between planes

reserved layer is for proprietary use only

abstract not a manufacturable layer, used for description of boundaries
between objects

KEYWORD PITCH = single_value_annotation {
CONTEXT = LAYER;
VALUETYPE = unsigned_number;

}

Syntax 97— annotation
90 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 4

1

5

10

15

20

25

30

35

40

45

50

55
9.17.3 PREFERENCE annotation

A xxx annotation shall be defined using ALF language as shown in .

The purpose is to indicate the preferred routing direction.

9.18 VIA declaration

A via shall be declared as shown in Syntax 99.

The VIA statement shall contain at least three patterns, referring to the cut layer and two adjacent routing layers.
Stacked vias can contain more than three patterns.

9.19 VIA instantiation

A via shall be instantiated as shown in .

9.20 Annotations for a VIA

9.20.1 VIATYPE annotation

A xxx annotation shall be defined using ALF language as shown in .

KEYWORD PREFERENCE = single_value_annotation {
CONTEXT = LAYER;
VALUETYPE = identifier;
VALUES { horizontal vertical acute obtuse }

}

Syntax 98— annotation

via ::=
VIA via_identifier ;

| VIA via_identifier { { via_item } }
| via_template_instantiation

via_item ::=
all_purpose_item

| pattern
| artwork

Syntax 99—VIA statement

via_instantiation ::=
via_identifier instance_identifier ;

| via_identifier instance_identifier { { geometric_transformation } }

Syntax 100—VIA instantiation
IEEE P1603 Draft 4 Advanced Library Format (ALF) Reference Manual 91

1

5

10

15

20

25

30

35

40

45

50

55
The values shall have the following semantic meaning.

9.21 RULE declaration

A rule shall be declared as shown in Syntax 102.

9.22 ANTENNA declaration

An antenna shall be declared as shown in Syntax 103.

KEYWORD VIATYPE = single_value_annotation {
CONTEXT = VIA;
VALUETYPE = identifier;
VALUES { default non_default partial_stack full_stack }
DEFAULT = default;

}

Syntax 101— annotation

Table 60—VIATYPE annotation values

Annotation string Description

default via can be used per default

non_default via can only be used if authorized by a RULE

partial_stack via contains 3 patterns: lower and upper routing layer and cut
layer in-between. It can only be used to build stacked vias.
The bottom of a stack can be a default or a
non_default via.

full_stack via contains 2N+1 patterns (N>1). It describes the full stack
from bottom to top.

rule ::=
RULE rule_identifier ;

| RULE rule_identifier { { rule_item } }
| rule_template_instantiation

rule_item ::=
all_purpose_item

| pattern
| via_instantiation

Syntax 102—RULE statement
92 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 4

1

5

10

15

20

25

30

35

40

45

50

55
9.23 BLOCKAGE declaration

A blockage shall be declared as shown in Syntax 104.

9.24 PORT declaration

A port shall be declared as shown in Syntax 105.

A port is a collection of geometries within a pin, representing electrically equivalent points.

9.25 Annotations for PORT

9.25.1 PORT_VIEW annotation

A xxx annotation shall be defined using ALF language as shown in .

antenna ::=
ANTENNA antenna_identifier ;

| ANTENNA antenna_identifier { { antenna_item } }
| antenna_template_instantiation

antenna_item ::=
all_purpose_item

Syntax 103—ANTENNA declaration

blockage ::=
BLOCKAGE blockage_identifier ;

| BLOCKAGE blockage_identifier { { blockage_item } }
| blockage_template_instantiation

blockage_item ::=
all_purpose_item

| pattern
| rule
| via_instantiation

Syntax 104—BLOCKAGE statement

port ::=
PORT port_identifier ;{ { port_item } }

| PORT port_identifier ;
| port_template_instantiation

port_item ::=
all_purpose_item

| pattern
| rule
| via_instantiation

Syntax 105—PORT declaration
IEEE P1603 Draft 4 Advanced Library Format (ALF) Reference Manual 93

1

5

10

15

20

25

30

35

40

45

50

55
The values shall have the following semantic meaning.

9.26 SITE declaration

A site shall be declared as shown in Syntax 107.

The arithmetic models WIDTH and HEIGHT within a SITE declaration are deemed mandatory.

9.27 Annotations for SITE

9.27.1 ORIENTATION_CLASS

A xxx annotation shall be defined using ALF language as shown in .

9.27.2 SYMMETRY_CLASS

A xxx annotation shall be defined using ALF language as shown in .

KEYWORD PORT_VIEW = single_value_annotation {
CONTEXT = PORT;
VALUETYPE = identifier;
VALUES { physical electrical both none }
DEFAULT = both;

}

Syntax 106— annotation

Table 61—PORT_VIEW annotation values

Annotation string Description

physical a port for layout with the possibility to connect a routing wire.

electrical a port in an electrical netlist (SPEF, SPICE).

both both of the above.

none a virtual port for modeling purpose only.

site ::=
SITE site_identifier ;

| SITE site_identifier { { site_item } }
| site_template_instantiation

site_item ::=
all_purpose_item

Syntax 107—SITE declaration
94 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 4

1

5

10

15

20

25

30

35

40

45

50

55
The SYMMETRY_CLASS statement shall be used for a SITE to indicate symmetry between legal orientations.
Multiple SYMMETRY statements shall be legal to enumerate all possible combinations in case they cannot be
described within a single SYMMETRY statement.

Legal orientation of a cell within a site shall be defined as the intersection of legal cell orientation and legal site
orientation. If there is a set of common legal orientations for both cell and site without symmetry, the orientation
of cell instance and site instance shall match.

If there is a set of common legal orientations for both cell and site with symmetry, the cell can be placed on the
side using any orientation within that set.

Case 1: no symmetry

Site has legal orientations A and B. Cell has legal orientations A and B. When the site is instantiated in the A ori-
entation, the cell shall be placed in the A orientation.

Case 2: symmetry

Site has legal orientations A and B and symmetry between A and B. Cell has legal orientations A and B. When the
site is instantiated in the A orientation, the cell can be placed in the A or B orientation.

9.28 ARRAY declaration

An array shall be declared as shown in Syntax 110.

KEYWORD ORIENTATION_CLASS = annotation {
CONTEXT { SITE CELL }
VALUETYPE = IDENTIFIER;

}

Syntax 108— annotation

KEYWORD SYMMETRY_CLASS = annotation {
CONTEXT { SITE CELL }
VALUETYPE = identifier;

}

Syntax 109— annotation

array ::=
ARRAY array_identifier ;

| ARRAY array_identifier { { array_item } }
| array_template_instantiation

array_item ::=
all_purpose_item

| geometric_transformation

Syntax 110—ARRAY statement
IEEE P1603 Draft 4 Advanced Library Format (ALF) Reference Manual 95

1

5

10

15

20

25

30

35

40

45

50

55
The geometric_transformations define the locations of the starting points within the array and the
number of repetitions of the components of the array. Details are defined in the next section.

9.29 Annotations for ARRAY

9.29.1 ARRAYTYPE annotation

A xxx annotation shall be defined using ALF language as shown in .

9.30 PATTERN declaration

A pattern shall be declared as shown in Syntax 112.

9.31 Annotations for PATTERN

9.31.1 SHAPE annotation

A xxx annotation shall be defined using ALF language as shown in .

SHAPE applies only for a PATTERN in a routing layer, as shown in Figure 6. The default is line.

KEYWORD ARRAYTYPE = single_value_annotation {
CONTEXT = ARRAY;
VALUETYPE = identifier;
VALUES { floorplan placement

global_routing detailed_routing }
DEFAULT = ;

}

Syntax 111— annotation

pattern ::=
PATTERN pattern_identifier ;

| PATTERN pattern_identifier { { pattern_item } }
| pattern_template_instantiation

pattern_item ::=
all_purpose_item

| geometric_model
| geometric_transformation

Syntax 112—PATTERN declaration
96 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 4

1

5

10

15

20

25

30

35

40

45

50

55
Figure 6—Routing layer shapes

line and jog represent routing segments, which can have an individual LENGTH and WIDTH. The LENGTH
between routing segments is defined as the common run length. The DISTANCE between routing segments is
measured orthogonal to the routing direction.

tee, cross, and corner represent intersections between routing segments. end represents the end of a rout-
ing segment. Therefore, they have points rather than lines as references. The points can have an EXTENSION.
The DISTANCE between points can be measured straight or by using HORIZONTAL and VERTICAL.

9.31.2 VERTEX annotation

A xxx annotation shall be defined using ALF language as shown in .

The vertex_annotation shall appear only in conjunction with the extension_arithmetic_model.
It specifies the form of the extended object, as shown in Figure 7.

KEYWORD SHAPE = single_value_annotation {
CONTEXT = PATTERN;
VALUETYPE = identifier;
VALUES { line tee cross jog corner end }
DEFAULT = line;

}

Syntax 113— annotation

KEYWORD VERTEX = single_value_annotation {
CONTEXT = PATTERN;
VALUETYPE = identifier;
VALUES { round linear }
DEFAULT = linear;

}

Syntax 114— annotation

line

tee

cross

jog

corner

end
IEEE P1603 Draft 4 Advanced Library Format (ALF) Reference Manual 97

1

5

10

15

20

25

30

35

40

45

50

55
Figure 7—Illustration of VERTEX annotation

9.31.3 LAYER reference annotation

A PATTERN is associated with a LAYER.

9.32 Geometric model

This section defines the geometric model statement and how to predefine commonly used objects (using TEM-
PLATE).

A geometric model describes the form of an object in a physical library. It is in the context of a pattern, which is
associated with physical objects, such as via, blockage, port, rule. Patterns and other physical objects can also be
subjected to geometric transformations, as shown in Figure 8.

Figure 8—Geometric model and its context

A geometric model is defined as shown in Syntax 115.

EXTENSION = 1

VERTEX = linear VERTEX = round

geometric model contains coordinates

pattern

geometric transformation

via

blockage

port

rule

array artwork
contains containscontains

contains

contains

contains

contains
98 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 4

1

5

10

15

20

25

30

35

40

45

50

55
The following geometric model identifiers shall be defined.

All of these are depicted in Figure 9.

Figure 9—Illustration of geometric models

A xxx annotation shall be defined using ALF language as shown in .

The point_to_point_annotation applies for POLYLINE, RING, and POLYGON. It specifies
how the connections between points is made. The default is direct, which defines a straight connection (see
Figure 10). The value manhattan specifies a connection by moving in the x-direction first and then moving in
the y-direction (see Figure 11). This enables a non-redundant specification of rectilinear objects using N/2
points instead of N points.

geometric_model ::=
nonescaped_dentifier [geometric_model_identifier]

{ geometric_model_item { geometric_model_item } }
| geometric_model_template_instantiation

geometric_model_item ::=
all_purpose_item

| coordinates
coordinates ::=

COORDINATES { point { point } }
point ::=

x_number y_number

Syntax 115—Geometric model

Table 62—Geometric model identifiers

identifier Description

DOT describes one point

POLYLINE defined by N>1 directly connected points, forming an open object

RING defined by N>1 directly connected points, forming a closed object,
i.e., the last point is connected with first point. The object occupies
the boundary of the enclosed space.

POLYGON defined by N>1 connected points, forming a closed object, i.e., the last
point is connected with first point. The object occupies the entire
enclosed space.

POLYLINE RING POLYGON

.

.
.

.

.

DOT (5 dots)
IEEE P1603 Draft 4 Advanced Library Format (ALF) Reference Manual 99

1

5

10

15

20

25

30

35

40

45

50

55
Figure 10—Illustration of direct point-to-point connection

Figure 11—Illustration of manhattan point-to-point connection

Example

KEYWORD point_to_point = single_value_annotation {
CONTEXT { POLYLINE RING POLYGON }
VALUETYPE = identifier;
VALUES { direct manhattan }
DEFAULT = direct;

}

Syntax 116— annotation

9

8

7

6

5

4

3

2

1

-5 -4 -3 -2 -1 0 1 2 3 4 5

x

x

direct connection

direct connection

X-axis

Y-axis

direct connection

x

x

direct connection
from (-1/8) to (-1/5)

from (-1/5) to (3/5)

from (-3/5) to (3/8)

from (3/8) to (-1/8)

9

8

7

6

5

4

3

2

1

-5 -4 -3 -2 -1 0 1 2 3 4 5

x

x

manhattan connection from (-1/5) to (3/8)

manhattan connection from (-3/8) to (-1/5)

X-axis

Y-axis
100 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 4

1

5

10

15

20

25

30

35

40

45

50

55
POLYGON {
POINT_TO_POINT = direct;
COORDINATES { -1 5 3 5 3 8 -1 8 }

}
POLYGON {

POINT_TO_POINT = manhattan;
COORDINATES { -1 5 3 8 }

}

Both objects describe the same rectangle.

9.33 Predefined geometric models using TEMPLATE

The TEMPLATE construct (see 3.2.6) can be used to predefine some commonly used objects.

The templates RECTANGLE and LINE shall be predefined as follows:

TEMPLATE RECTANGLE {
POLYGON {

POINT_TO_POINT = manhattan;
COORDINATES { <left> <bottom> <right> <top> }

}
}
TEMPLATE LINE {

POLYLINE {
POINT_TO_POINT = direct;
COORDINATES { <x_start> <y_start> <x_end> <y_end> }

}
}

Example 1

The following example shows the instantiation of predefined templates.

// same rectangle as in previous example
RECTANGLE {left = -1; bottom = 5; right = 3; top = 8; }
//or
RECTANGLE {-1 5 3 8 }

// diagonals through the rectangle
LINE {x_start = -1; y_start = 5; x_end = 3; y_end = 8; }
LINE {x_start = 3; y_start = 5; x_end = -1; y_end = 8; }
//or
LINE { -1 5 3 8 }
LINE { 3 5 -1 8 }

The definitions for predefined templates are fixed. Therefore the keywords RECTANGLE and LINE are
reserved. On the other hand, the definitions for user-defined templates are only known by the library supplied by
the user.

Example 2

The following example shows some user-defined templates.
IEEE P1603 Draft 4 Advanced Library Format (ALF) Reference Manual 101

1

5

10

15

20

25

30

35

40

45

50

55
TEMPLATE HORIZONTAL_LINE {
POLYLINE {

POINT_TO_POINT = direct;
COORDINATES { <left> <y> <right> <y> }

}
}
TEMPLATE VERTICAL_LINE {

POLYLINE {
POINT_TO_POINT = direct;
COORDINATES { <x> <bottom> <x> <top> }

}
}

Example 3

The following example shows the instantiation of user-defined templates.

// lines bounding the rectangle
HORIZONTAL_LINE { y = 5; left = -1; right = 3; }
HORIZONTAL_LINE { y = 8; left = -1; right = 3; }
VERTICAL_LINE { x = -1; bottom = 5; top = 8; }
VERTICAL_LINE { x = 3; bottom = 5; top = 8; }
//or
HORIZONTAL_LINE { 5 -1 3 }
HORIZONTAL_LINE { 8 -1 3 }
VERTICAL_LINE { -1 5 8 }
VERTICAL_LINE { 3 5 8 }

9.34 Geometric transformation

A geometric transformation XXX, as shown in Syntax 117.

The SHIFT statement defines the horizontal and vertical offset measured between the coordinates of the geomet-
ric model and the actual placement of the object. Eventually, a layout tool only supports integer numbers. The
numbers are in units of DISTANCE. If only one annotation is given, the default value for the other one is 0. If the
SHIFT statement is not given, both values default to 0.

geometric_transformation ::=
shift

| rotate
| flip
| repeat

shift ::=
SHIFT { x_number y_number }

rotate ::=
ROTATE = number ;

flip ::=
FLIP = number ;

repeat ::=
REPEAT [= unsigned_integer] { geometric_transformation { geometric_transformation } }

Syntax 117—Geometric transformation
102 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 4

1

5

10

15

20

25

30

35

40

45

50

55
The ROTATE statement defines the angle of rotation in degrees measured between the orientation of the object
described by the coordinates of the geometric model and the actual placement of the object measured in counter-
clockwise direction, specified by a number between 0 and 360. Eventually, a layout tool can only support angles
which are multiple of 90 degrees. The default is 0. The object shall rotate around its origin.

The FLIP describes a transformation of the specified coordinates by flipping the object around an axis specified
by a number between 0 and 180. The number represents the angle of the flipping direction in degrees. Eventu-
ally, a layout tool can only support angles which are multiple of 90 degrees. The axis is orthogonal to the flipping
direction. The axis shall go through the origin of the object. For example, 0 means flip in horizontal direction,
axis is vertical whereas 90 means flip in vertical direction, axis is horizontal.

The purpose of the REPEAT statement is to describe the replication of a physical object in a regular way, for
example SITE (see Section 9.12). The REPEAT statement can also appear within a geometric_model. The
unsigned number defines the total number of replications. The number 1 means, the object appears just once.
If this number is not given, the REPEAT statement defines a rule for an arbitrary number of replications.
REPEAT statements can also be nested.

Examples

The following example replicates an object three times along the horizontal axis in a distance of 7 units.

REPEAT = 3 {
SHIFT { HORIZONTAL = 7; }

}

The following example replicates an object five times along a 45-degree axis.

REPEAT = 5 {
SHIFT { HORIZONTAL = 4; VERTICAL = 4; }

}

The following example replicates an object two times along the horizontal axis and four times along the vertical
axis.

REPEAT = 2 {
SHIFT { HORIZONTAL = 5; }
REPEAT = 4 {

SHIFT { VERTICAL = 6; }
}

}

NOTE—The order of nested REPEAT statements does not matter. The following example gives the same result as the previ-
ous example.

REPEAT = 4 {
SHIFT { VERTICAL = 6; }
REPEAT = 2 {

SHIFT { HORIZONTAL = 5; }
}

}

Rules and restrictions:
IEEE P1603 Draft 4 Advanced Library Format (ALF) Reference Manual 103

1

5

10

15

20

25

30

35

40

45

50

55
— A physical object can contain a geometric_transformation statement of any kind, but no more
than one of a specific kind.

— The geometric_transformation statements shall apply to all geometric_models within the
context of the object.

— The geometric_transformation statements shall refer to the origin of the object, i.e., the point
with coordinates { 0 0 }. Therefore, the result of a combined transformation shall be independent of
the order in which each individual transformation is applied.

These are demonstrated in Figure 12.

Figure 12—Illustration of FLIP, ROTATE, and SHIFT

9.35 ARTWORK statement

An artwork statement shall be defined as shown in Syntax 118.

The ARTWORK statement creates a reference between the cell in the library and the original cell imported from a
physical layout database (e.g., GDS2).

The geometric_transformations define the operations for transformation from the artwork geometry to
the actual cell geometry. In other words, the artwork is considered as the original object whereas the cell is the
transformed object.

The imported cell can have pins with different names. The LHS of the pin_assignments describes the pin
names of the original cell, the RHS describes the pin names of the cell in this library. See 11.4 for the syntax of
pin_assignments .

artwork ::=
ARTWORK = artwork_identifier ;

| ARTWORK = artwork_identifier { { artwork_item } }
| artwork_template_instantiation

artwork_item ::=
geometric_transformation

| pin_assignment

Syntax 118—ARTWORK statement

SHIFTROTATEFLIP

legend: origin of the object
104 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 4

1

5

10

15

20

25

30

35

40

45

50

55
Example

CELL my_cell {
PIN A { /* fill in pin items */ }
PIN Z { /* fill in pin items */ }
ARTWORK = \GDS2$!@#$ {

SHIFT { HORIZONTAL = 0; VERTICAL = 0; }
ROTATE = 0;
\GDS2$!@#$A = A;
\GDS2$!@#$B = B;

}
}

9.36 FUNCTION statement

A FUNCTION statement shall be defined as shown in Syntax 119.

9.37 TEST statement

A TEST statement, shall be defined as shown in Syntax 120.

The purpose is to describe the interface between an externally applied test algorithm and the CELL. The behav-
ior statement within the TEST statement uses the same syntax as the behavior statement within the FUNC-
TION statement. However, the set of used variables is different. Both the TEST and the FUNCTION statement
shall be self-contained, complete and complementary to each other.

9.38 BEHAVIOR statement

A BEHAVIOR statemen shall be defined as shown in Syntax 121.

function ::=
FUNCTION { function_item { function_item } }

| function_template_instantiation
function_item ::=

all_purpose_item
| behavior
| structure
| statetable

Syntax 119—FUNCTION statement

test ::=
TEST { test_item { test_item } }

| test_template_instantiation
test_item ::=

all_purpose_item
| behavior
| statetable

Syntax 120—TEST statement
IEEE P1603 Draft 4 Advanced Library Format (ALF) Reference Manual 105

1

5

10

15

20

25

30

35

40

45

50

55
Inside BEHAVIOR, variables that appear at the LHS of an assignment conditionally controlled by a vector
expression, as opposed to an unconditional continuous assignment, hold their values, when the vector expression
evaluates False. Those variables are considered to have latch-type behavior.

Examples

BEHAVIOR {
@(G){

Q = D; // both Q and QN have latch-type behavior
QN = !D;

}
}
BEHAVIOR {

@(G){
Q = D; // only Q has latch-type behavior

}
QN = !Q;

}

9.39 STRUCTURE statement

A STRUCTURE statement shall be defined as shown in Syntax 122.

An optional STRUCTURE statement shall be legal in the context of a FUNCTION. A STRUCTURE statement
describes the structure of a complex cell composed of atomic cells, for example I/O buffers, LSSD flip-flops, or
clock trees. The STRUCTURE statement shall be legal inside the FUNCTION statement (see 11.17):

The STRUCTURE statement shall describe a netlist of components inside the CELL. The STRUCURE statement
shall not be a substitute for the BEHAVIOR statement. If a FUNCTION contains only a STRUCTURE statement

behavior ::=
BEHAVIOR { behavior_item { behavior_item }s }

| behavior_template_instantiation
behavior_item ::=

boolean_assignment
| control_statement
| primitive_instantiation
| behavior_item_template_instantiation

boolean_assignments ::=
boolean_assignment { boolean_assignment }

boolean_assignment ::=
pin_variable = boolean_expression ;

primitive_instantiation ::=
primitive_identifier [identifier] { pin_value { pin_value } }

| primitive_identifier [identifier] { boolean_assignments }
control_statement ::=

@ control_expression { boolean_assignments } { : control_expression { boolean_assignments } }

Syntax 121—BEHAVIOR statement

structure ::=
STRUCTURE { named_cell_instantiation { named_cell_instantiation } }

| structure_template_instantiation

Syntax 122—STRUCTURE statement
106 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 4

1

5

10

15

20

25

30

35

40

45

50

55
and no BEHAVIOR statement, a behavior description for that particular cell shall be meaningless (e.g., fillcells,
diodes, vias, or analog cells).

Timing and power models shall be provided for the CELL, if such models are meaningful. Application tools are
not expected to use function, timing, or power models from the instantiated components as a substitute of a miss-
ing function, timing, or power model at the top-level. However, tools performing characterization, construction,
or verification of a top-level model shall use the models of the instantiated components for this purpose.

Test synthesis applications can use the structural information in order to define a one-to-many mapping for scan
cell replacement, such as where a single flip-flop is replaced by a pair of master/slave latches. A macro cell can
be defined whose structure is a netlist containing the master and slave latch and this shall contain the
NON_SCAN_CELL annotation to define which sequential cells it is replacing. No timing model is required for
this macro cell, since it should be treated as a transparent hierarchy level in the design netlist after test synthesis.

NOTES

1—Every instance_identifier within a STRUCTURE statement shall be different from each other.

2—The STRUCTURE statement provides a directive to the application (e.g., synthesis and DFT) as to how the CELL is imple-
mented. A CELL referenced in named_cell_instantiation can be replaced by another CELL within the same
SWAP_CLASS and RESTRICT_CLASS (recognized by the application).

3—The cell_identifier within a STRUCTURE statement can refer to actual cells as well as to primitives. The usage of
primitives is recommended in fault modeling for DFT.

4—BEHAVIOR statements also provide the possibility of instantiating primitives. However, those instantiations are for mod-
eling purposes only; they do not necessarily match a physical structure. The STRUCTURE statement always matches a physi-
cal structure.

9.40 STATETABLE statement

A STATETABLE statement shall be defined as shown in Syntax 123.

statetable ::=
STATETABLE [identifier]

{ statetable_header statetable_row { statetable_row } }
| statetable_template_instantiation

statetable_header ::=
input_pin_variables : output_pin_variables ;

statetable_row ::=
statetable_control_values : statetable_data_values ;

statetable_control_values ::=
statetable_control_value { statetable_control_value }

statetable_control_value ::=
bit_literal

| based_literal
| unsigned
| edge_value

statetable_data_values ::=
statetable_data_value { statetable_data_value }

statetable_data_value ::=
bit_literal

| based_literal
| unsigned
| ([!] pin_variable)
| ([~] pin_variable)

Syntax 123—STATETABLE statement
IEEE P1603 Draft 4 Advanced Library Format (ALF) Reference Manual 107

1

5

10

15

20

25

30

35

40

45

50

55
The functional description can be supplemented by a STATETABLE, the first row of which contains the argu-
ments that are object IDs of the declared PINs. The arguments appear in two fields, the first is input and the sec-
ond is output. The fields are separated by a :. The rows are separated by a ;. The arguments can appear in both
fields if the PINs have attribute direction=output or direction=both. If direction=output,
then the argument has latch-type behavior. The argument on the input field is considered previous state and the
argument on the output field is considered the next state. If direction=both, then the argument on the input
field applies for input direction and the argument on the output field applies for output direction of the bidirec-
tional PIN.

Example

CELL ff_sd {
PIN q {DIRECTION=output;}
PIN d {DIRECTION=input;}
PIN cp {DIRECTION=input;

SIGNALTYPE=clock;
POLARITY=rising_edge;}

PIN cd {DIRECTION=input; SIGNALTYPE=clear; POLARITY=low;}
PIN sd {DIRECTION=input; SIGNALTYPE=set; POLARITY=low;}
FUNCTION {

BEHAVIOR {
@(!cd) {q = 0;} :(!sd) {q = 1;} :(01 cp) {q = d;}

}
STATETABLE {

cd sd cp d q : q ;
0 ? ?? ? ? : 0 ;
1 0 ?? ? ? : 1 ;
1 1 1? ? 0 : 0 ;
1 1 ?0 ? 1 : 1 ;
1 1 1? ? 0 : 0 ;
1 1 ?0 ? 1 : 1 ;
1 1 01 ? ? :(d);

}
}

}

If the output variable with latch-type behavior depends only on the previous state of itself, as opposed to the pre-
vious state of other output variables with latch-type behavior, it is not necessary to use that output variable in the
input field. This allows a more compact form of the STATETABLE.

Example

STATETABLE {
cd sd cp d : q ;
0 ? ?? ? : 0 ;
1 0 ?? ? : 1 ;
1 1 1? ? :(q);
1 1 ?0 ? :(q);
1 1 01 ? :(d);

}

A generic ALF parser shall make the following semantic checks.

— Are all variables of a FUNCTION declared either by declaration as PIN names or through assignment?
108 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 4

1

5

10

15

20

25

30

35

40

45

50

55
— Does the STATETABLE exclusively contain declared PINs?
— Is the format of the STATETABLE, i.e., the number of elements in each field of each row, consistent?
— Are the values consistently either state or transition digits?
— Is the number of digits in each TABLE entry compatible with the signal bus width?

A more sophisticated checker for complete verification of logical consistency of a FUNCTION given in both
equation and tabular representation is out of scope for a generic ALF parser, which checks only syntax and com-
pliance to semantic rules. However, formal verification algorithms can be implemented in special-purpose ALF
analyzers or model generators/compilers.

9.41 NON_SCAN_CELL statement

A non-scan cell statement shall be defined as shown in Syntax 124.

A non-scan cell statement applies for a scan cell. A scan cell is a cell with extra pins for testing purpose. The
unnamed cell instantiation within the non-scan cell statement specifies a cell that is functionally equivalent to the
scan cell, if the extra pins are not used. The cell without extra pins is refered to as non-scan cell. The name of the
non-scan cell is given by the cell identifier.

The pin mapping is given either by order, using pin value, or by name, using pin assignment. In the former case,
the pin values shall refer to pin names of the scan cell. The order of the pin values corresponds to the pin declara-
tions within the non-scan cell. In the latter case, the pin names of the non-scan cell shall appear at the LHS of the
assignment, and the pin names of the scan cell shall appear at the RHS of the assignment. The order of the pin
assignments is arbitrary.

Example

// declaration of a non-scan cell
CELL myNonScanFlop {

PIN D { DIRECTION=input; SIGNALTYPE=data; }
PIN C { DIRECTION=input; SIGNALTYPE=clock; POLARITY=rising_edge; }
PIN Q { DIRECTION=output; SIGNALTYPE=data; }

}
// declaration of a scan cell
CELL myScanFlop {

PIN CK { DIRECTION=input; SIGNALTYPE=clock; }
PIN DI { DIRECTION=input; SIGNALTYPE=data; }
PIN SI { DIRECTION=input; SIGNALTYPE=scan_data; }
PIN SE { DIRECTION=input; SIGNALTYPE=scan_enable; POLARITY=high; }
PIN DO { DIRECTION=output; SIGNALTYPE=data; }
// put NON_SCAN_CELL statement here

}

The non-scan cell statement with pin mapping by order looks as follows:

non_scan_cell ::=
NON_SCAN_CELL { unnamed_cell_instantiation { unnamed_cell_instantiation } }

| NON_SCAN_CELL = unnamed_cell_instantiation
| non_scan_cell_template_instantiation

Syntax 124—NON_SCAN_CELL statement
IEEE P1603 Draft 4 Advanced Library Format (ALF) Reference Manual 109

1

5

10

15

20

25

30

35

40

45

50

55
NON_SCAN_CELL { myNonScanFlop { DI CK DO } }
// corresponding pins by order: D C Q

The non-scan cell statement with pin mapping by name looks as follows:

NON_SCAN_CELL { myNonScanFlop { Q=DO; D=DI; C=CK; } }

9.42 RANGE statement

A range statement shall be defined as shown in Syntax 125.

The range statement shall be used to specify a valid address space for elements of a vector- or matrix-pin.

If no range statement is specified, the valid address space a is given by the following mathematical relationship:

where

a is an unsigned number representing the address space within a vector- or matrix-pin,
b is the bitwidth of the vector-or matrix-pin,

and

MSB is the leftmost bit within the vector- or matrix-pin,
LSB is the rightmost bit within the vector or- matrix-pin,

in accordance with Section 7.8 on page 40.

The index values within a range statement shall be bound by the address space a, otherwise the range statement
shall not be considered valid.

Example

PIN [5:8] myVectorPin { RANGE { 3 : 13 } }

range ::=
RANGE { index_value : index_value }

Syntax 125—RANGE statement

b 1 LSB MSB–+ if LSB MSB>()
1 MSB LSB–+ if LSB MSB≤()




=

0 a 2b 1–≤ ≤

b 4=

0 a 15≤ ≤

3 a 13≤ ≤

bitwidth:

default address space:

address space defined by range statement:
110 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 4

1

5

10

15

20

25

30

35

40

45

50

55
10. Constructs for modeling of digital behavior

Add lead-in text

10.1 Variable declarations

Inside a CELL object, the PIN objects with the PINTYPE digital define variables for FUNCTION objects
inside the same CELL. A primary input variable inside a FUNCTION shall be declared as a PIN with DIREC-
TION=input or both (since DIRECTION=both is a bidirectional pin). However, it is not required that all
declared pins are used in the function. Output variables inside a FUNCTION need not be declared pins, since they
are implicitly declared when they appear at the left-hand side (LHS) of an assignment.

Example

CELL my_cell {
PIN A {DIRECTION = input;}
PIN B {DIRECTION = input;}
PIN C {DIRECTION = output;}
FUNCTION {

BEHAVIOR {
D = A && B;
C = !D;

}
}

}

C and D are output variables that need not be declared prior to use. After implicit declaration, D
is reused as an input variable. A and B are primary input variables.

10.2 Boolean value system

this paragraph needs to move into another section

A bit literal shall represent a single bit constant, as shown in Table 63.

Table 63—Single bit constants

Literal Description

0 Value is logic zero.

1 Value is logic one.

X or x Value is unknown.

L or l Value is logic zero with weak drive strength.

H or h Value is logic one with weak drive strength.

W or w Value is unknown with weak drive strength.

Z or z Value is high-impedance.

U or u Value is uninitialized.
IEEE P1603 Draft 4 Advanced Library Format (ALF) Reference Manual 111

1

5

10

15

20

25

30

35

40

45

50

55
The following symbols within an octal based literal shall represent numerical values, which can be mapped into
equivalent symbols within a binary based literal, as shown in .

The following symbols within a hexadecimal based literal shall represent numerical values, which can be
mapped into equivalent symbols within an octal based literal and a binary based literal, as shown in .

? Value is any of the above, yet stable.

* Value can randomly change.

Table 64—Mapping between octal base and binary base

Octal Binary (bit literal) Numerical value

0 000 0

1 001 1

2 010 2

3 011 3

4 100 4

5 101 5

6 110 6

7 111 7

Table 65—Mapping between hexadecimal base, octal base, and binary base

Hexadecimal Octal Binary (bit literal) Numerical value

0 00 0000 0

1 01 0001 1

2 02 0010 2

3 03 0011 3

4 04 0100 4

5 05 0101 5

6 06 0110 6

7 07 0111 7

8 10 1000 8

9 11 1001 9

Table 63—Single bit constants (Continued)

Literal Description
112 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 4

1

5

10

15

20

25

30

35

40

45

50

55
Based literals involving symbolic bit literals shall not be used to represent numerical values. They shall be
mapped from one base into another base according to the following rules:

a) A symbolic bit literal in a hexadecimal based literal shall be mapped into two subsequent occurences of
the same symbolic bit literal in an octal based literal.

b) A symbolic bit literal in an octal based literal shall be mapped into three subsequent occurences of the
same symbolic bit literal in a binary based literal.

c) A symbolic bit literal in an hexadecimal based literal shall be mapped into four subsequent occurences of
the same symbolic bit literal in a binary based literal.

Example

'o2xw0u is equivalent to'b010_xxx_www_000_uuu
'hLux is equivalent to'bLLLL_uuuu_xxxx

10.3 Combinational functions

This section defines the different types of combinational functions in ALF.

10.3.1 Combinational logic

Combinational logic can be described by continuous assignments of boolean values (True or False) to output
variables as a function of boolean values of input variables. Such functions can be expressed in either boolean
expression format or statetable format.

Let us consider an arbitrary continuous assignment

z = f(a1 ..,.. an)

In a dynamic or simulation context, the left-hand side (LHS) variable z is evaluated whenever there is a change in
one of the right-hand side (RHS) variables ai. No storage of previous states is needed for dynamic simulation of
combinational logic.

a or A 12 1010 10

b or B 13 1011 11

c or C 14 1100 12

d or D 15 1101 13

e or E 16 1110 14

f or F 17 1111 15

Table 65—Mapping between hexadecimal base, octal base, and binary base (Continued)

Hexadecimal Octal Binary (bit literal) Numerical value
IEEE P1603 Draft 4 Advanced Library Format (ALF) Reference Manual 113

1

5

10

15

20

25

30

35

40

45

50

55
10.3.2 Boolean operators on scalars

Table 66, Table 67, and Table 68 list unary, binary, and ternary boolean operators on scalars.

Combinational if-then-else clauses are constructed as follows:

<cond1>? <value1>: <cond2>? <value2>: <cond3>? <value3>: <default_value>

If cond1 evaluates to boolean True, then value1 is the result; else if cond2 evaluates to boolean True, then
value2 is the result; else if cond3 evaluates to boolean True, then value3 is the result; else
default_value is the result of this clause.

10.3.3 Boolean operators on words

Table 69 and Table 70 list unary and binary reduction operators on words (logic variables with one or more bits).
The result of an expression using these operators shall be a logic value.

Table 66—Unary boolean operators

Operator Description

!, ~ Logical inversion.

Table 67—Binary boolean operators

Operator Description

&&, & Logical AND.

||, | Logical OR.

~^ Logic equivalence (XNOR).

^ Logic anti valence (XOR).

Table 68—Ternary operator

Operator Description

? Boolean condition operator for construction of combinational
if-then-else clause.

: Boolean else operator for construction of combinational if-
then-else clause.

Table 69—Unary reduction operators

Operator Description

& AND all bits.
114 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 4

1

5

10

15

20

25

30

35

40

45

50

55
Table 71 and Table 72 list unary and binary bitwise operators. The result of an expression using these operators
shall be an array of bits.

~& NAND all bits.

| OR all bits.

~| NOR all bits.

^ XOR all bits.

~^ XNOR all bits.

Table 70—Binary reduction operators

Operator Description

== Equality for case comparison.

!= Non-equality for case comparison.

> Greater.

< Smaller.

>= Greater or equal.

<= Smaller or equal.

Table 71—Unary bitwise operators

Operator Description

~ Bitwise inversion.

Table 72—Binary bitwise operators

Operator Description

& Bitwise AND.

| Bitwise OR.

^ Bitwise XOR.

~^ Bitwise XNOR.

Table 69—Unary reduction operators (Continued)

Operator Description
IEEE P1603 Draft 4 Advanced Library Format (ALF) Reference Manual 115

1

5

10

15

20

25

30

35

40

45

50

55
The following arithmetic operators, listed in Table 73, are also defined for boolean operations on words. The
result of an expression using these operators shall be an extended array of bits.

The arithmetic operations addition, subtraction, multiplication, and division shall be unsigned if all the operands
have the datatype unsigned. If any of the operands have the datatype signed, the operation shall be signed. See
Table 6-25 for the DATATYPE definitions.

10.3.4 Operator priorities

The priority of binding operators to operands in boolean expressions shall be from strongest to weakest in the
following order:

a) unary boolean operator (!, ~, &, ~&, |, ~|, ^, ~^)
b) XNOR (~^), XOR (^), relational (>, <, >=, <=, ==, !=), shift (<<, >>)
c) AND (&, &&), NAND (~&), multiply (*), divide (/), modulus (%)
d) OR (|, ||), NOR (~|), add (+), subtract (-)
e) ternary operators (?, :)

10.3.5 Datatype mapping

Logical operations can be applied to scalars and words. For that purpose, the values of the operands are reduced
to a system of three logic values in the following way:

H has the logic value 1
L has the logic value 0
W, Z, U have the logic value X
A word has the logic value 1, if the unary OR reduction of all bits results in 1
A word has the logic value 0, if the unary OR reduction of all bits results in 0
A word has the logic value X, if the unary OR reduction of all bits results in X

Table 73—Binary operators

Operator Description

<< Shift left.

>> Shift right.

+ Addition.

- Subtraction.

* Multiplication.

/ Division.

% Modulo division.
116 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 4

1

5

10

15

20

25

30

35

40

45

50

55
Case comparison operations can also be applied to scalars and words. For scalars, they are defined in Table 74.

Table 74—Case comparison operators

A B A==B A!=B A>B A<B

1 1 1 0 0 0

1 H 0 1 X X

1 0 0 1 1 0

1 L 0 1 1 0

1 W, U, Z, X 0 1 X 0

H 1 0 1 X X

H H 1 0 0 0

H 0 0 1 1 0

H L 0 1 1 0

H W, U, Z, X 0 1 X 0

0 1 0 1 0 1

0 H 0 1 0 1

0 0 1 0 0 0

0 L 0 1 X X

0 W, U, Z, X 0 1 0 X

L 1 0 1 0 1

L H 0 1 0 1

L 0 0 1 X X

L L 1 0 0 0

L W, U, Z, X 0 1 0 X

X X 1 0 X X

X U X X X X

X 0, 1, H, L,
W, Z

0 1 X X

W W 1 0 X X

W U X X X X

W 0, 1, H, L,
X, Z

0 1 X X

Z Z 1 0 X X

Z U X X X X

Z 0, 1, H, L,
X, W

0 1 X X
IEEE P1603 Draft 4 Advanced Library Format (ALF) Reference Manual 117

1

5

10

15

20

25

30

35

40

45

50

55
For word operands, the operations > and < are performed after reducing all bits to the 3-value system first and
then interpreting the resulting number according to the datatype of the operands. For example, if datatype is
signed, 'b1111 is smaller than 'b0000; if datatype is unsigned, 'b1111 is greater than 'b0000. If two oper-
ands have the same value 'b1111 and a different datatype, the unsigned 'b1111 is greater than the signed
'b1111.

The operations >= and <= are defined in the following way:

(a >= b) === (a > b) || (a == b)
(a <= b) === (a < b) || (a == b)

10.3.6 Rules for combinational functions

If a boolean expression evaluates True, the assigned output value is 1. If a boolean expression evaluates False,
the assigned output value is 0. If the value of a boolean expression cannot be determined, the assigned output
value is X. Assignment of values other than 1, 0, or X needs to be specified explicitly.

For evaluation of the boolean expression, input value 'bH shall be treated as 'b1. Input value 'bL shall be
treated as 'b0. All other input values shall be treated as 'bX.

Examples

In equation form, these rules can be expressed as follows.

BEHAVIOR {
Z = A;

}

is equivalent to

BEHAVIOR {
Z = A ? ’b1 : ’b0;

}

More explicitly, this is also equivalent to

BEHAVIOR {
Z = (A==’b1 || A==’bH)? ’b1 : (A==’b0 || A==’bL)? ’b0 : ’bX;

}

In table form, this can be expressed as follows:

STATETABLE {
A : Z;
? : (A);

}

U 0, 1, H, L,
X, W, Z, U

X X X X

Table 74—Case comparison operators (Continued)

A B A==B A!=B A>B A<B
118 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 4

1

5

10

15

20

25

30

35

40

45

50

55
which is equivalent to

STATETABLE {
A : Z;
0 : 0;
1 : 1;

}

More explicitly, this is also equivalent to

STATETABLE {
A : Z;
0 : 0;
L : 0;
1 : 1;
H : 1;
X : X;
W : X;
Z : X;
U : X;

}

10.3.7 Concurrency in combinational functions

Multiple boolean assignments in combinational functions are understood to be concurrent. The order in the func-
tional description does not matter, as each boolean assignment describes a piece of a logic circuit. This is illus-
trated in Figure 13.

Figure 13—Concurrency for combinational logic

10.4 Sequential functions

This section defines the different types of sequential functions in ALF.

BEHAVIOR {
Q1 = <1st_boolean_expression(D1..Di)> ;
...
Qn = <nth_boolean_expression(D1..Di)> ;

}

Q1

Qn

D1 Di

nth boolean expression

1st boolean expression
IEEE P1603 Draft 4 Advanced Library Format (ALF) Reference Manual 119

1

5

10

15

20

25

30

35

40

45

50

55
10.4.1 Level-sensitive sequential logic

In sequential logic, an output variable zj can also be a function of itself, i.e., of its previous state. The sequential
assignment has the form

zj = f(a1 ..,.. an , z1 ..,.. zm)

The RHS cannot be evaluated continuously, since a change in the LHS as a result of a RHS evaluation shall trig-
ger a new RHS evaluation repeatedly, unless the variables attain stable values. Modeling capabilities of sequen-
tial logic with continuous assignments are restricted to systems with oscillating or self-stabilizing behavior.

However, using the concept of triggering conditions for the LHS enables everything which is necessary for mod-
eling level-sensitive sequential logic. The expression of a triggered assignment can look like this:

@ g(b1 ..,.. bk) zj = f(a1 ..,.. an , z1 ..,.. zm)

The evaluation of f is activated whenever the triggering function g is True. The evaluation of g is self-triggered,
i.e. at each time when an argument of g changes its value. If g is a boolean expression like f, we can model all
types of level-sensitive sequential logic.

During the time when g is True, the logic cell behaves exactly like combinational logic. During the time when g
is False, the logic cell holds its value. Hence, one memory element per state bit is needed.

10.4.2 Edge-sensitive sequential logic

In order to model edge-sensitive sequential logic, notations for logical transitions and logical states are needed.

If the triggering function g is sensitive to logical transitions rather than to logical states, the function g evaluates
to True only for an infinitely small time, exactly at the moment when the transition happens. The sole purpose of
g is to trigger an assignment to the output variable through evaluation of the function f exactly at this time.

Edge-sensitive logic requires storage of the previous output state and the input state (to detect a transition). In
fact, all implementations of edge-triggered flip-flops require at least two storage elements. For instance, the most
popular flip-flop architecture features a master latch driving a slave latch.

Using transitions in the triggering function for value assignment, the functionality of a positive edge triggered
flip-flop can be described as follows in ALF:

@ (01 CP) {Q = D;}

which reads “at rising edge of CP, assign Q the value of D”.

If the flip-flop also has an asynchronous direct clear pin (CD), the functional description consists of either two
concurrent statements or two statements ordered by priority, as shown in Figure 14.

// concurrent style

@ (!CD) {Q = 0;}
@ (01 CP && CD) {Q = D;}

// priority (if-then-else) style

@ (!CD) {Q = 0;} : (01 CP) {Q = D;}
120 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 4

1

5

10

15

20

25

30

35

40

45

50

55
Figure 14—Model of a flip-flop with asynchronous clear in ALF

The following two examples show corresponding simulation models in Verilog and VHDL.

Figure 15—Model of a flip-flop with asynchronous clear in Verilog

Figure 16—Model of a flip-flop with asynchronous clear in VHDL

The following differences in modeling style can be noticed: VHDL and Verilog provide the list of sensitive sig-
nals at the beginning of the process or always block, respectively. The information of level-or edge-sensitiv-

// full simulation model

always @(negedge CD or posedge CP) begin
if (! CD) Q <= 0;
else if (CP && !CP_last_value) Q <= D;
else Q <= 1’bx;

end
always @ (posedge CP or negedge CP) begin

if (CP===0 | CP===1’bx) CP_last_value <= CP ;
end

// simplified simulation model for synthesis

always @(negedge CD or posedge CP) begin
if (! CD) Q <= 0;
else Q <= D;

end

// full simulation model

process (CP, CD) begin
if (CD = '0') then

Q <= '0';
elsif (CP'last_value = '0' and CP = '1' and CP'event) then

Q <= D;
elsif (CP'last_value = '0' and CP = 'X' and CP'event) then

Q <= ’X’;
elsif (CP'last_value = 'X' and CP = '1' and CP'event) then

Q <= ’X’;
end if;

end process;

// simplified simulation model for synthesis

process (CP, CD) begin
if (CD = '0') then

Q <= '0';
elsif (CP = '1' and CP'event) then

Q <= D;
end if;

end process;
IEEE P1603 Draft 4 Advanced Library Format (ALF) Reference Manual 121

1

5

10

15

20

25

30

35

40

45

50

55
ity shall be inferred by if-then-else statements inside the block. ALF shows the level-or-edge sensitivity as
well as the priority directly in the triggering expression. Verilog has another particularity: The sensitivity list
indicates whether at least one of the triggering signals is edge-sensitive by the use of negedge or posedge.
However, it does not indicate which one, since either none or all signals shall have negedge or posedge qual-
ifiers.

Furthermore, posedge is any transition with 0 as initial state or 1 as final state. A positive-edge triggered flip-
flop shall be inferred for synthesis, yet this flip-flop shall only work correctly if both the initial state is 0 and the
final state is 1. Therefore, a simulation model for verification needs to be more complex than the model in the
synthesizeable RTL code.

In Verilog, the extra non-synthesizeable code needs to also reproduce the relevant previous state of the clock sig-
nal, whereas VHDL has built-in support for last_value of a signal.

10.4.3 Unary operators for vector expressions

A transition operation is defined using unary operators on a scalar net. The scalar constants (see 6.8) shall be
used to indicate the start and end states of a transition on a scalar net.

bit bit // apply transition from bit value to bit value

For example,

01 is a transition from 0 to 1.

No whitespace shall be allowed between the two scalar constants. The transition operators shown in Table 75
shall be considered legal.

Table 75—Unary vector operators on bits

Operator Description

01 Signal toggles from 0 to 1.

10 Signal toggles from 1 to 0.

00 signal remains 0.

11 Signal remains 1.

0? Signal remains 0 or toggles from 0 to arbitrary value.

1? Signal remains 1 or toggles from 1 to arbitrary value.

?0 Signal remains 0 or toggles from arbitrary value to 0.

?1 Signal remains 1 or toggles from arbitrary value to 1.

?? Signal remains constant or toggles between arbitrary values.

0* A number of arbitrary signal transitions, including possibility of constant
value, with the initial value 0.

1* A number of arbitrary signal transitions, including possibility of constant
value, with the initial value 1.

?* A number of arbitrary signal transitions, including possibility of constant
value, with arbitrary initial value.
122 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 4

1

5

10

15

20

25

30

35

40

45

50

55
Unary operators for transitions can also appear in the STATETABLE.

Transition operators are also defined on words (and can appear the in STATETABLE as well):

'base word 'base word

In this context, the transition operator shall apply transition from first word value to second word value.

For example,

'hA'h5 is a transition of a 4-bit signal from 'b1010 to 'b0101.

No whitespace shall be allowed between base and word.

The unary and binary operators for transition, listed in Table 76 and Table 77 respectively, are defined on bits and
words.

10.4.4 Basic rules for sequential functions

A sequential function is described in equation form by a boolean assignment with a condition specified by a
boolean expression or a vector expression. If the condition evaluates to 1 (True), the boolean assignment is acti-
vated and the assigned output values follows the rules for combinational functions. If the vector expression eval-
uates to 0 (False), the output variables hold their assigned value from the previous evaluation.

For evaluation of a condition, the value 'bH shall be treated as True, the value 'bL shall be treated as False. All
other values shall be treated as the unknown value 'bX.

Example

*0 A number of arbitrary signal transitions, including possibility of constant
value, with the final value 0.

*1 A number of arbitrary signal transitions, including possibility of constant
value, with the final value 1.

*? A number of arbitrary signal transitions, including possibility of constant
value, with arbitrary final value.

Table 76—Unary vector operators on bits or words

Operator Description

?- No transition occurs.

?? Apply arbitrary transition, including possibility of constant value.

?! Apply arbitrary transition, excluding possibility of constant value.

?~ Apply arbitrary transition with all bits toggling.

Table 75—Unary vector operators on bits (Continued)

Operator Description
IEEE P1603 Draft 4 Advanced Library Format (ALF) Reference Manual 123

1

5

10

15

20

25

30

35

40

45

50

55
The following behavior statement

BEHAVIOR {
@ (E) {Z = A;}

}

is equivalent to

BEHAVIOR {
@ (E==’b1 || E==’bH) {Z = A;}

}

The following statetable statement, describing the same logic function

STATETABLE {
E A : Z;
0 ? : (Z);
1 ? : (A);

}

is equivalent to

STATETABLE {
E A : Z;
0 ? : (Z);
L ? : (Z);
1 ? : (A);
H ? : (A);

}

For edge-sensitive and higher-order event sensitive functions, transitions from or to 'bL shall be treated like
transitions from or to 'b0, and transitions from or to 'bH shall be treated like transitions from or to 'b1.

Not every transition can trigger the evaluation of a function. The set of vectors triggering the evaluation of a
function are called active vectors. From the set of active vectors, a set of inactive vectors can be derived, which
shall clearly not trigger the evaluation of a function. There are is also a set of ambiguous vectors, which can trig-
ger the evaluation of the function.

The set of active vectors is the set of vectors for which both observed states before and after the transition are
known to be logically equivalent to the corresponding states defined in the vector expression.

The set of inactive vectors is the set of vectors for which at least one of the observed states before or after the
transition is known to be not logically equivalent to the corresponding states defined in the vector expression.

Example

For the following sequential function

@ (01 CP) { Z = A; }

the active vectors are

('b0'b1 CP)
('b0'bH CP)
124 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 4

1

5

10

15

20

25

30

35

40

45

50

55
('bL'b1 CP)
('bL'bH CP)

and the inactive vectors are

(’b1’b0 CP)
(’b1’bL CP)
(’b1’bX CP)
(’b1’bW CP)
(’b1’bZ CP)
(’bH’b0 CP)
(’bH’bL CP)
(’bH’bX CP)
(’bH’bW CP)
(’bH’bZ CP)
(’bX’b0 CP)
(’bX’bL CP)
(’bW’b0 CP)
(’bW’bL CP)
(’bZ’b0 CP)
(’bZ’bL CP)
(’bU’b0 CP)
(’bU’bL CP)

and the ambiguous vectors are

(’b0’bX CP)
(’b0’bW CP)
(’b0’bZ CP)
(’bL’bX CP)
(’bL’bW CP)
(’bL’bZ CP)
(’bX’b1 CP)
(’bW’b1 CP)
(’bZ’b1 CP)
(’bX’bH CP)
(’bW’bH CP)
(’bZ’bH CP)
(’bX’bW CP)
(’bX’bZ CP)
(’bW’bX CP)
(’bW’bZ CP)
(’bZ’bX CP)
(’bZ’bW CP)
(’bU’bX CP)
(’bU’bW CP)
(’bU’bZ CP)

For vectors using exclusively based literals, the set of active vectors is the vector itself, the set of inactive vectors
is any vector with at least one different literal, and the set of ambiguous vectors is empty.

Therefore, ALF does not provide a default behavior for ambiguous vectors, since the behavior for each vector
can be explicitly defined in vectors using based literals.
IEEE P1603 Draft 4 Advanced Library Format (ALF) Reference Manual 125

1

5

10

15

20

25

30

35

40

45

50

55
10.4.5 Concurrency in sequential functions

The principle of concurrency applies also for edge-sensitive sequential functions, where the triggering condition
is described by a vector expression rather than a boolean expression. In edge-sensitive logic, the target logic vari-
able for the boolean assignment (LHS) can also be an operand of the boolean expression defining the assigned
value (RHS). Concurrency implies that the RHS expressions are evaluated immediately before the triggering
edge, and the values are assigned to the LHS variables immediately after the triggering edge. This is illustrated in
Figure 17.

Figure 17—Concurrency for edge-sensitive sequential logic

Statements with multiple concurrent conditions for boolean assignments can also be used in sequential logic. In
that case conflicting values can be assigned to the same logic variable. A default conflict resolution is not pro-
vided for the following reasons.

— Conflict resolution might not be necessary, since the conflicting situation is prohibited by specification.
— For different types of analysis (e.g., logic simulation), a different conflict resolution behavior might be

desirable, while the physical behavior of the circuit shall not change. For instance, pessimistic conflict
resolution always assigns X, more accurate conflict resolution first checks whether the values are con-
flicting. Different choices can be motivated by a trade-off in analysis accuracy and runtime.

— If complete library control over analysis is desired, conflict resolution can be specified explicitly.

Example

BEHAVIOR {
@ (<condition_1>) { Q = <value_1>; }
@ (<condition_2>) { Q = <value_2>; }

}

Explicit pessimistic conflict resolution can be described as follows:

BEHAVIOR {
@ (<vector_expression(E1..Em)>) {

Q1 =
<1st_boolean_expression(D1..Di)> ;

...
Qn =

<nth_boolean_expression(D1..Di)> ; } }

Q1

Qn

D1 Di

1st boolean expression

nth boolean expression

vector
expression

E1 Em

d q

d q
126 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 4

1

5

10

15

20

25

30

35

40

45

50

55
BEHAVIOR {
@ (<condition_1> && <condition_2>) { Q = ’bX; }
@ (<condition_1> && ! <condition_2>) { Q = <value_1>; }
@ (<condition_2> && ! <condition_1>) { Q = <value_2>; }

}

Explicit accurate conflict resolution can be described as follows:

BEHAVIOR {
@ (<condition_1> && <condition_2>) {

Q = (<value_1>==<value_2>)? <value_1> : ’bX;
}
@ (<condition_1> && ! <condition_2>) { Q = <value_1>; }
@ (<condition_2> && ! <condition_1>) { Q = <value_2>; }

}

Since the conditions are now rendered mutually exclusive, equivalent descriptions with priority statements can
be used. They are more elegant than descriptions with concurrent statements.

BEHAVIOR {
@ (<condition_1> && <condition_2>) {

Q = <conflict_resolution_value>;
}
: (<condition_1>) { Q = <value_1>; }
: (<condition_2>) { Q = <value_2>; }

}

Given the various explicit description possibilities, the standard does not prescribe a default behavior. The model
developer has the freedom of incomplete specification.

10.4.6 Initial values for logic variables

Per definition, all logic variables in a behavioral description have the initial value U which means “uninitialized”.
This value cannot be assigned to a logic variable, yet it can be used in a behavioral description in order to assign
other values than U after initialization.

Example

BEHAVIOR {
@ (Q1 == ’bU) { Q1 = ’b1 ; }
@ (Q2 == ’bU) { Q2 = ’b0 ; }
// followed by the rest of the behavioral description

}

A template can be used to make the intent more obvious, for example:

TEMPLATE VALUE_AFTER_INITIALIZATION {
@ (<logic_variable> == ’bU) { <logic_variable> = <initial_value> ; }

}
BEHAVIOR {

VALUE_AFTER_INITIALIZATION (Q1 ’b1’)
VALUE_AFTER_INITIALIZATION (Q2 ’b0’)
// followed by the rest of the behavioral description

}

IEEE P1603 Draft 4 Advanced Library Format (ALF) Reference Manual 127

1

5

10

15

20

25

30

35

40

45

50

55
Logic variables in a vector expression shall be declared as PINs. It is possible to annotate initial values directly
to a pin. Such variables shall never take the value U. Therefore vector expressions involving U for such variables
(see the previous example) are meaningless.

Example

PIN Q1 { INITIAL_VALUE = ’b1 ; }
PIN Q2 { INITIAL_VALUE = ’b0 ; }

10.5 Higher-order sequential functions

This section defines the different types of higher-order sequential functions in ALF.

10.5.1 Vector-sensitive sequential logic

Vector expressions can be used to model generalized higher order sequential logic; they are an extension of the
boolean expressions. A vector expression describes sequences of logical events or transitions in addition to static
logical states. A vector expression represents a description of a logical stimulus without timescale. It describes
the order of occurrence of events.

The -> operator (followed by) gives a general capability of describing a sequence of events or a vector. For
example, consider the following vector expression:

01 A -> 01 B

which reads “rising edge on A is followed by rising edge on B”.

A vector expression is evaluated by an event sequence detection function. Like a single event or a transition, this
function evaluates True only at an infinitely short time when the event sequence is detected, as shown in
Figure 18.

Figure 18—Example of event sequence detection function

A

B

g(A, B) = (01 A -> 01 B)

co
nt

en
ts

of
ev

en
tq

ue
ue last

event

2nd last
event

01 A 10 A01 B 10 B 01 B10 A01 A

01 A 10 A01 B 10 B 10 A01 AX

X

X

sequence (01 A -> 01 B) detected
128 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 4

1

5

10

15

20

25

30

35

40

45

50

55
The event sequence detection mechanism can be described as a queue that sorts events according to their order of
arrival. The event sequence detection function evaluates True at exactly the time when a new event enters the
queue and forms the required sequence, i.e., the sequence specified by the vector expression with its preceding
events.

A vector-sensitive sequential logic can be called (N+1) order sequential logic, where N is the number of events
to be stored in the queue. The implementation of (N+1) order sequential logic requires N memory elements for
the event queue and one memory element for the output itself.

A sequence of events can also be gated with static logical conditions. In the example,

(01 CP -> 10 CP) && CD

the pin CD shall have state 1 from some time before the rising edge at CP to some time after the falling edge
of CP. The pin CD can not go low (state 0) after the rising edge of CP and go high again before the falling
edge of CP because this would insert events into the queue and the sequence “rising edge on CP followed by fall-
ing edge on CP” would not be detected.

The formal calculation rules for general vector expressions featuring both states and transitions are detailed in
10.5.2 and 10.5.3.

The concept of vector expression supports functional modeling of devices featuring digital communication pro-
tocols with arbitrary complexity.

10.5.2 Canonical binary operators for vector expressions

The following canonical binary operators are necessary to define sequences of transitions:

— vector_followed_by for completely specified sequence of events
— vector_and for simultaneous events
— vector_or for alternative events
— vector_followed_by for incompletely specified sequence of events

The symbols for the boolean operators for AND and OR are overloaded for vector_and and vector_or,
respectively. The new symbols for the vector_followed_by operators are shown in Table 77.

Table 77—Canonical binary vector operators

Operator Operands LHS, RHS
commutative Description

-> 2 vector
expressions

No Left-hand side (LHS) transition is followed by Right-hand side
(RHS) transition, no transition can occur in-between.

&&, & 2 vector
expressions

Yes LHS and RHS transition occur simultaneously.

||, | 2 vector
expressions

Yes LHS or RHS transition occur alternatively.

~> 2 vector
expressions

No Left-hand side (LHS) transition is followed by Right-hand side
(RHS) transition, other transitions can occur in-between.
IEEE P1603 Draft 4 Advanced Library Format (ALF) Reference Manual 129

1

5

10

15

20

25

30

35

40

45

50

55
Per definition, the -> and ~> operators shall not be commutative, whereas the && and || operators on events
shall be commutative.

01 a && 01 b === 01 b && 01 a
01 a || 01 b === 01 b || 01 a

The -> and ~> operators shall be freely associative.

01 a -> 01 b -> 01 c === (01 a -> 01 b) -> 01 c === 01 a -> (01 b -> 01 c)
01 a ~> 01 b ~> 01 c === (01 a ~> 01 b) ~> 01 c === 01 a ~> (01 b ~> 01 c)

The && operator is defined for single events and for event sequences with the same number of -> operators each.

(01 A1 .. -> ... 01 AN) & (01 B1 .. -> ... 01 BN)
===
01 A1 & 01 B1 ... -> ... 01 AN & 01 BN

The || operator reduces the set of edge operators (unary vector operators) to canonical and non-canonical opera-
tors.

(?? a) === (?! a)||(?- a) //a does or does not change its value

Hence ?? is non-canonical, since it can be defined by other operators.

If <value1><value2> is an edge operator consisting of two based literals value1 and value2 and word
is an expression which can take the value value1 or value2, then the following vector expressions are con-
sidered equivalent:

<value1><value2> <word>
=== 10 (<word> == <value1>) && 01 (<word> == <value2>)
=== 01 (<word> != <value1>) && 01 (<word> == <value2>)
=== 10 (<word> == <value1>) && 10 (<word> != <value2>)
=== 01 (<word> != <value1>) && 10 (<word> != <value2>)

// all expressions describe the same event:
// <word> makes a transition from <value1> to <value2>

Hence vector expressions with edge operators using based literals can be reduced to vector expressions using
only the edge operators 01 and 10.

10.5.3 Complex binary operators for vector expressions

Table 78 defines the complex binary operators for vector operators.

Table 78—Complex binary vector operators

Operator Operands LHS, RHS
commutative Description

<-> 2 vector
expressions

Yes LHS transition follows or is followed by RHS transition.

&> 2 vector
expressions

No LHS transition is followed by or occurs simultaneously with RHS
transition.
130 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 4

1

5

10

15

20

25

30

35

40

45

50

55
The following expressions shall be considered equivalent:

(01 a <-> 01 b) === (01 a -> 01 b)||(01 b -> 01 a)
(01 a &> 01 b) === (01 a -> 01 b)||(01 a && 01 b)
(01 a <&> 01 b) === (01 a -> 01 b)||(01 b -> 01 a)||(01 a && 01 b)

By their symmetric definition, the <-> and <&> operators are commutative.

01 a <-> 01 b === 01 b <-> 01 a
01 a <&> 01 b === 01 b <&> 01 a

The commutative complex binary vector operators are defined in Table 77. The commutativity rules are only
defined for two operands:

— commutative “followed by”:
vect_expr1 <-> vect_expr2 ===

vect_expr1 -> vect_expr2 // vect_expr1 occurs first
| vect_expr2 -> vect_expr1 // vect_expr2 occurs first

— commutative “followed by or simultaneously occurring”:
vect_expr1 <&> vect_expr2 ===

vect_expr1 -> vect_expr2 // vect_expr1 occurs first
| vect_expr2 -> vect_expr1 // vect_expr2 occurs first
| vect_expr1 && vect_expr2 // both occur simultaneously

10.5.4 Extension to N operands

This section defines how to use N operands.

A complex_vector_expression of the form

vector_expression { <-> vector_expression }

shall be commutative for all operands. The complex_vector_expression describes alternative event
sequences in which the temporal order of each constituent vector_expression is completely permutable,
excluding simultaneous occurrence of each constituent vector_expression.

A complex_vector_expression of the form

vector_expression { <&> vector_expression }

shall be commutative for all operands. The complex_vector_expression describes alternative event
sequences in which the temporal order of each constituent vector_expression is completely permutable,
including simultaneous occurrence of each constituent vector_expression.

<&> 2 vector
expressions

Yes LHS transition follows or is followed by or occurs simultaneously
with RHS transition.

Table 78—Complex binary vector operators (Continued)

Operator Operands LHS, RHS
commutative Description
IEEE P1603 Draft 4 Advanced Library Format (ALF) Reference Manual 131

1

5

10

15

20

25

30

35

40

45

50

55
Example

01 A <-> 01 B <-> 01 C ===
01 A -> 01 B -> 01 C

| 01 B -> 01 C -> 01 A
| 01 C -> 01 A -> 01 B
| 01 C -> 01 B -> 01 A
| 01 B -> 01 A -> 01 C
| 01 A -> 01 C -> 01 B

01 A <&> 01 B <&> 01 C ===
01 A -> 01 B -> 01 C

| 01 B -> 01 C -> 01 A
| 01 C -> 01 A -> 01 B
| 01 C -> 01 B -> 01 A
| 01 B -> 01 A -> 01 C
| 01 A -> 01 C -> 01 B
| 01 A && 01 B -> 01 C
| 01 A -> 01 B && 01 C
| 01 B && 01 C -> 01 A
| 01 B -> 01 C && 01 A
| 01 C && 01 A -> 01 B
| 01 C -> 01 A && 01 B
| 01 A && 01 B && 01 C

10.5.4.1 Boolean rules

The following rule applies for a boolean AND operation with three operands:

rule 1:
A & B & C === (A & B) & C | A & (B & C)

A corresponding rule also applies to the commutative followed-by operation with three operands:

rule 2:
01 A <-> 01 B <-> 01 C ===

(01 A <-> 01 B) <-> 01 C
| 01 A <-> (01 B <-> 01 C)

The alternative boolean expressions (A & B) & C and A & (B & C) in rule 1 are equivalent. Therefore,
rule 1 can be reduced to the following:

rule 3:
A & B & C === (A & B) & C === (B & C) & A

A corresponding rule does not apply to complex vector operands, since each expression with associated operands
generates only a subset of permutations:

(01 A <-> 01 B) <-> 01 C ===
(01 A <-> 01 B) -> 01 C)

| (01 C -> (01 A <-> 01 B)) ===
01 A -> 01 B -> 01 C

| 01 B -> 01 A -> 01 C
132 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 4

1

5

10

15

20

25

30

35

40

45

50

55
| 01 C -> 01 A -> 01 B
| 01 C -> 01 B -> 01 A

The permutations

01 A -> 01 C -> 01 B
01 B -> 01 C -> 01 A

are missing.

01 A <-> (01 B <-> 01 C) ===
(01 A -> (01 B <-> 01 C))

| ((01 B <-> 01 C) -> 01 A) ===
01 A -> 01 B -> 01 C

| 01 A -> 01 C -> 01 B
| 01 B -> 01 C -> 01 A
| 01 C -> 01 B -> 01 A

The permutations

| 01 B -> 01 A -> 01 C
| 01 C -> 01 A -> 01 B

are missing.

10.5.5 Operators for conditional vector expressions

The definitions of the &&, ?, and : operators are also overloaded to describe a conditional vector expression
(involving boolean expressions and vector expressions), as shown in Table 79. The clauses are boolean expres-
sions; while vector expressions are subject to those clauses.

An example for conditional vector expression using && is given below:

(01 a && !b) // a rises while b==0

Table 79—Operators for conditional vector expressions

Operator Operands
LHS, RHS
commutative Description

&&, & 1 vector
expression, 1
boolean
expression

Yes Boolean expression (LHS or RHS) is True while sequence of
transitions, defined by vector expression (RHS or LHS) occurs.

? 1 vector
expression, 1
boolean
expression

No Boolean condition operator for construction of if-then-else clause
involving vector expressions.

: 1 vector
expression, 1
boolean
expression

No Boolean else operator for construction of if-then-else clause
involving vector expressions.
IEEE P1603 Draft 4 Advanced Library Format (ALF) Reference Manual 133

1

5

10

15

20

25

30

35

40

45

50

55
The order of the operands in a conditional vector expression using && shall not matter.

<vector_exp> && <boolean_exp> === <boolean_exp> && <vector_exp>

The && operator is still commutative in this case, although one operand is a boolean expression defining a static
state, the other operand is a vector expression defining an event or a sequence of events. However, since the
operands are distinguishable per se, it is not necessary to impose a particular order of the operands.

An example for conditional vector expression using ? and : is given below.

!b ? 01 a : c ? 10 b : 01 d
===
!b & 01 a | !(!b) & c & 10 b | !(!b) & !c & 01 d

This example shows how a conditional vector expression using ternary operators can be expressed with alterna-
tive conditional vector expressions.

A conditional vector expression can be reduced to a non-conditional vector expression in some cases (see
10.6.11).

Every binary vector operator can be applied to a conditional vector expression.

10.5.6 Operators for sequential logic

Table 80 defines the complex binary operators for vector operators.

Sequential assignments are constructed as follows:

@ (<trigger1>) { <action1> } : (<trigger2>) { <action2> } :
(<trigger3>) { <action3> }

If trigger1 event is detected, then action1 is performed; else if trigger2 event is detected, then
action2 is performed; else if trigger3 event is detected, then action3 is performed as a result of this
clause.

10.5.7 Operator priorities

The priority of binding operators to operands in non-conditional vector expressions shall be from strongest to
weakest in the following order:

a) unary vector operators (edge literals)

Table 80—Operators for sequential logic

Operator Description

@ Sequential if operator, followed by a boolean logic expression (for level-
sensitive assignment) or by a vector expression (for edge-sensitive assign-
ment).

: Sequential else if operator, followed by a boolean logic expression (for
level-sensitive assignment) or by a vector expression (for edge-sensitive
assignment) with lower priority.
134 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 4

1

5

10

15

20

25

30

35

40

45

50

55
b) complex binary vector operators (<->, &>, <&>)
c) vector AND (&, &&)
d) vector_followed_by operators (->, ~>)
e) vector OR (|, ||)

10.5.8 Using PINs in VECTORs

A VECTOR defines state, transition, or sequence of transitions of pins that are controllable and observable for
characterization.

Within a CELL, the set of PINs with SCOPE=behavior or SCOPE=measure or SCOPE=both is the default
set of variables in the event queue for vector expressions relevant for BEHAVIOR or VECTOR statements or both,
respectively.

For detection of a sequence of transitions it is necessary to observe the set of variables in the event queue. For
instance, if the set of pins consists of A, B, C, D, the vector expression

(01 A -> 01 B)

implies no transition on A, B, C, D occurs between the transitions 01 A and 01 B.

The default set of pins applies only for vector expressions without conditions. The conditional event AND opera-
tor limits the set of variables in the event queue. In this case, only the state of the condition and the variables
appearing in the vector expression are observed.

Example

(01 A -> 01 B) && (C | D)

No transition on A, B occurs between 01 A and 01 B, and (C | D) needs to stay True in-between 01 A and
01 B as well. However, C and D can change their values as long as (C | D) is satisfied.

10.6 Modeling with vector expressions

Vector expressions provide a formal language to describe digital waveforms. This capability can be used for
functional specification, for timing and power characterization, and for timing and power analysis.

In particular, vector expressions add value by addressing the following modeling issues:

— Functional specification: complex sequential functionality, e.g., bus protocols.
— Timing analysis: complex timing arcs and timing constraints involving more than two signals.
— Power analysis: temporal and spatial correlation between events relevant for power consumption.
— Circuit characterization and test: specification of characterization and/or test vectors for particular tim-

ing, power, fault, or other measurements within a circuit.

Like boolean expressions, vector expressions provide the means for describing the functionality of digital cir-
cuits in various contexts without being self-sufficient. Vector expressions enrich this functional description capa-
bility by adding a “dynamic” dimension to the otherwise “static” boolean expressions.

The following subsections explain the semantics of vector expressions step-by-step. The vector expression con-
cept is explained using terminology from simulation event reports. However, the application of vector expres-
sions is not restricted to post-processing event reports.
IEEE P1603 Draft 4 Advanced Library Format (ALF) Reference Manual 135

1

5

10

15

20

25

30

35

40

45

50

55
Some application tools (e.g., power analysis tools) can actually evaluate vector expressions during post-process-
ing of event reports from simulation. Other application tools, especially simulation model generators, need to
respect the causality between the triggering events and the actions to be triggered. While it is semantically
impossible to describe cause and effect in the same vector expression for the purpose of functional modeling,
both cause and effect can appear in a vector expression used for a timing arc description.

ALF does not make assumption about the physical nature of the event report. Vector expressions can be applied
to an actual event report written in a file, to an internal event queue within a simulator, or to a hypothetical event
report which is merely a mathematical concept.

10.6.1 Event reports

This section describes the terminology of event reports from simulation, which is used to explain the concept of
ALF vector expressions. The intent of ALF vector expressions is not to replace existing event report formats.
Non-pertinent details of event report formats are not described here.

Simulation events (e.g., from Verilog or VHDL) can be reported in a value change dump (VCD) file, which has
the following general form:

<time1>
<variableA> <stateU>
<variableB> <stateV>
...

<time2>
<variableC> <stateW>
<variableD> <stateX>
...

<time3> ...

The set of variables for which simulation events are reported, i.e., the scope of the event report needs to be
defined beforehand. Each variable also has a definition for the set of states it can take. For instance, there can be
binary variables, 16-bit integer variables, 1-bit variables with drive-strength information, etc. Furthermore, the
initial state of each variable shall be defined as well. In an ALF context, the terms signal and variable are used
interchangeably. In VHDL, the corresponding term is signal. In Verilog, there is no single corresponding term.
All input, output, wire, and reg variables in Verilog correspond to a signal in VHDL.

The time values <time1>, <time2>, <time3>, etc. shall be in increasing order. The order in which simulta-
neous events are reported does not matter. The number of time points and the number of simultaneous events at a
certain time point are unlimited.

In the physical world, each event or change of state of a variable takes a certain amount of time. A variable can-
not change its state more than once at a given point in time. However, in simulation, this time can be smaller than
the resolution of the time scale or even zero (0). Therefore, a variable can change its state more than once at a
given point in simulation time. Those events are, strictly speaking, not simultaneous. They occur in a certain
order, separated by an infinitely small delta-time. Multiple simultaneous events of the same variable are not
reported in the VCD. Only the final state of each variable is reported.

A VCD file is the most compact format that allows reconstruction of entire waveforms for a given set of vari-
ables. A more verbose form is the test pattern format.

<TIME> <variableA> <variableB> <variableC> <variableD>
<time1> <stateU> <stateV>
<time2> <stateU> <stateV> <stateW> <stateX>
<time3>
136 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 4

1

5

10

15

20

25

30

35

40

45

50

55
The test pattern format reports the state of each variable at every point in time, regardless of whether the state has
changed or not. Previous and following states are immediately available in the previous and next row, respec-
tively. This makes the test pattern format more readable than the VCD and well-suited for taking a snapshot of
events in a time window.

An example of an event report in VCD format:

// initial values
A 0 B 1 C 1 D X E 1
// event dump
109 A 1 D 0
258 B 0
573 C 0
586 A 0
643 A 1
788 A 0 B 1 C 1
915 A 1
1062 E 0
1395 B 0 C 0
1640 A 0 D 1
// end of event dump

An example of an event report in test pattern format:

time A B C D E
0 0 1 1 X 1
109 1 1 1 0 1
258 1 0 1 0 1
573 1 0 0 0 1
586 0 0 0 0 1
643 1 0 0 0 1
788 0 1 1 0 1
915 1 1 1 0 1
1062 1 1 1 0 0
1395 1 0 0 0 0
1640 0 0 0 1 0

Both VCD and test pattern formats represent the same amount of information and can be translated into each
other.

10.6.2 Event sequences

For specification of a functional waveform (e.g., the write cycle of a memory), it is not practical to use an event
report format, such as a VCD or test pattern format. In such waveforms, there is no absolute time. And the rela-
tive time, for example, the setup time between address change and write enable change, can vary from one
instance to the other.

The main purpose of vector_expressions is waveform specification capability. The following operators
can be used:

— vector_unary (also called edge operator or unary vector operator)
The edge operator is a prefix to a variable in a vector expression. It contains a pair of states, the first
being the previous state, the second being the new state. Edge operators can describe a change of state or
no change of state.
IEEE P1603 Draft 4 Advanced Library Format (ALF) Reference Manual 137

1

5

10

15

20

25

30

35

40

45

50

55
— vector_and (also called simultaneous event operator)
This operator uses the overloaded symbol & or && interchangeably. The & operator is the separator
between simultaneously occurring events

— vector_followed_by (also called followed-by operator)
The “immediately followed-by operator” using the symbol -> is treated first. The -> operator is the sep-
arator between consecutively occurring events.

These operators are necessary and sufficient to describe the following subset of vector_expressions:

a) vector_single_event
A change of state in a single variable, for example:
01 A

b) vector_event
A simultaneous change of state in one or more variables, for example:
01 A & 10 B

c) vector_event_sequence
Subsequently occurring changes of state in one or more variables, for example:
01 A & 10 B -> 10 A

The vector_and operator has a higher binding priority than the vector_followed_by operator.

We can now express the pattern of the sample event report in a vector_event_sequence expression:

01 A & X0 D -> 10 B -> 10 C -> 10 A -> 01 A
-> 10 A & 01 B & 01 C -> 01 A -> 10 E -> 10 B & 10 C -> 10 A & 01 D

We can define the length of a vector_event_sequence expression as the number of subsequent events
described in the vector_event_sequence expression. The length is equal to the number of -> operators
plus one (1).

Although the vector expression format contains an inherent redundancy, since the old state of each variable is
always the same as the new state of the same variable in a previous event, it is more human-readable, especially
for waveform description. On the other hand, it is more compact than the test pattern format. For short event
sequences, it is even more compact than the VCD, since it eliminates the declaration of initial values. To be accu-
rate, for variables with exactly one event the vector expression is more compact than the VCD. For variables
with more than one event the VCD is more compact than the vector expression. In summary, the vector expres-
sion format offers readability similar to the test pattern format and compactness close to the VCD format.

10.6.3 Scope and content of event sequences

The scope applicable to a vector expression defines the set of variables in the event report. The content of a vec-
tor expression is the set of variables that appear in the vector expression itself. The content of a vector expression
shall be a subset of variables within scope.

— PINs with the annotation SCOPE = BEHAVIOR are applicable variables for vector expressions within
the context of BEHAVIOR.

— PINs with the annotation SCOPE = MEASURE are applicable variables for vector expressions within
the context of VECTOR.

— PINs with the annotation SCOPE = BOTH are applicable variables for all vector expressions.

A vector_event_sequence expression is an event pattern without time, containing only the variables
within its own content. This event pattern is evaluated against the event report containing all variables within
scope. The vector expression is True when the event pattern matches the event report.
138 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 4

1

5

10

15

20

25

30

35

40

45

50

55
Example

time A B C D E // scope is A, B, C, D, E
0 0 1 1 X 1
109 1 1 1 0 1
258 1 0 1 0 1
573 1 0 0 0 1
586 0 0 0 0 1
643 1 0 0 0 1
788 0 1 1 0 1
915 1 1 1 0 1
1062 1 1 1 0 0
1395 1 0 0 0 0
1640 0 0 0 1 0

Consider the following vector expressions in the context of the sample event report:

01 A //(1) content is A
//event pattern expressed by (1):
// A
// 0
// 1

(1) is True at time 109, time 643, and time 915.

10 B -> 10 C //(2) content is B, C
//event pattern expressed by (2):
// B C
// 1 1
// 0 1
// 0 0

(2) is True at time 573.

10 A -> 01 A //(3) content is A
//event pattern expressed by (3):
// A
// 1
// 0
// 1

(3) is True at time 643 and time 915.

01 D //(4) content is D
//event pattern expressed by (4):
// D
// 0
// 1

(4) is True at time 1640.

01 A -> 10 C //(5) content is A, C
//event pattern expressed by (5):
// A C
IEEE P1603 Draft 4 Advanced Library Format (ALF) Reference Manual 139

1

5

10

15

20

25

30

35

40

45

50

55
// 0 1
// 1 1
// 1 0

(5) is not be True at any time, since the event pattern expressed by (5) does not match the event report at any
time.

10.6.4 Alternative event sequences

The following operator can be used to describe alternative events:

vector_or, also called event-or operator or alternative-event operator, using the overloaded symbol
| or || interchangeably. The | operator is the separator between alternative events or alternative event
sequences.

In analogy to boolean operators, | has a lower binding priority than & and ->. Parentheses can be used to change
the binding priority.

Example

(01 A -> 01 B) | 10 C === 01 A -> 01 B | 10 C
01 A -> (01 B | 10 C) === 01 A -> 01 B | 01 A -> 10 C

Consider the following vector expressions in the context of the sample event report:

01 A | 10 //(6)
//event pattern expressed by (6):
// A
// 0
// 1
//alternative event pattern expressed by (6):
// C
// 1
// 0

(6) is True at time 109, time 573, time 643, time 915, and time 1395.

10 B -> 10 C | 10 A -> 01 A //(7)

//event pattern expressed by (7):
// B C
// 1 1
// 0 1
// 0 0
//alternative event pattern expressed by (7):
// A
// 1
// 0
// 1

(7) is True at time 573, time 643, and time 915.

01 D | 10 B -> 10 C //(8)
140 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 4

1

5

10

15

20

25

30

35

40

45

50

55
//event pattern expressed by (8):
// D
// 0
// 1
//alternative event pattern expressed by (8):
// B C
// 1 1
// 0 1
// 0 0

(8) is True at time 573 and time 1640.

10 B -> 10 C | 10 A //(9)
//event pattern expressed by (9):
// B C
// 1 1
// 0 1
// 0 0
//alternative event pattern expressed by (9):
// A
// 1
// 0

(9) is True at time 573, time 586, time 788, and time 1640.

The following operators provide a more compact description of certain alternative event sequences:

— &> events occur simultaneously or follow each other in the order RHS after LHS
— <-> a LHS event followed by a RHS event or a RHS event followed by a LHS event
— <&> events occur simultaneously or follow each other in arbitrary order

Example

01 A &> 01 C === 01 A & 01 C | 01 A -> 01 C
01 A <-> 01 C === 01 A -> 01 C | 01 C -> 01 A
01 A <&> 01 C === 01 A <-> 01 C | 01 A & 01 C

The binding priority of these operators is higher than of & and ->.

10.6.5 Symbolic edge operators

Alternative events of the same variable can be described in a even more compact way through the use of edge
operators with symbolic states. The symbol ? stands for “any state”.

— edge operator with ? as the previous state:
transition from any state to the defined new state

— edge operator with ? as the next state:
transition from the defined previous state to any state.

Both edge operators include the possibility no transition occurred at all, i.e., the previous and the next state are
the same. This situation can be explicitly described with the following operator:

edge operator with next state = previous state, also called non-event operator
The operand stays in the state defined by the operator.
IEEE P1603 Draft 4 Advanced Library Format (ALF) Reference Manual 141

1

5

10

15

20

25

30

35

40

45

50

55
The following symbolic edge operators also can be used:

a) ?- no transition on the operand
b) ?! transition from any state to any state different from the previous state
c) ?? transition from any state to any state or no transition on the operand
d) ?~ transition from any state to its bitwise complementary state

Example

Let A be a logic variable with the possible states 1, 0, and X.

?0 A === 00 A | 10 A | X0 A
?1 A === 01 A | 11 A | X1 A
?X A === 0X A | 1X A | XX A
0? A === 00 A | 01 A | 0X A
1? A === 10 A | 11 A | 1X A
X? A === X0 A | X1 A | XX A
?! A === 01 A | 0X A | 10 A | 1X A | X0 A | X1 A
?~ A === 01 A | 10 A | XX A
?? A === 00 A | 01 A | 0X A | 10 A | 11 A | 1X A | X0 A | X1 A | XX A
?- A === 00 A | 11 A | XX A

For variables with more possible states (e.g., logic states with different drive strength and multiple bits) the
explicit description of alternative events is quite verbose. Therefore the symbolic edge operators are useful for a
more compact description.

This completes the set of vector_binary operators necessary for the description of a subset of
vector_expressions called vector_complex_event expressions. All vector_binary operators
have two vector_complex_event expressions as operands. The set of vector_event_sequence
expressions is a subset of vector_complex_event expressions. Every vector_complex_event
expression can be expressed in terms of alternative vector_event_sequence expressions. The latter could
be called minterms, in analogy to boolean algebra.

10.6.6 Non-events

A vector_single_event expression involving a non-event operator is called a non-event. A rigorous defi-
nition is required for vector_complex_event expressions containing non-events. Consider the following
example of a flip-flop with clock input CLK and data output Q.

01 CLK -> 01 Q // (i)
01 CLK -> 00 Q // (ii)

The vector expression (i) describes the situation where the output switches from 0 to 1 after the rising edge of
the clock. The vector expression (ii) describes the situation where the output remains at 0 after the rising edge
of the clock.

How is it possible to decide whether (i) or (ii) is True, without knowing the delay between CLK and Q? The
only way is to wait until any event occurs after the rising edge of CLK. If the event is not on Q and the state of Q
is 0 during that event, then (ii) is True.

Hence, a non-event is True every time when another event happens and the state of the variable involved in the
non-event satisfies the edge operator of the non-event.

Example
142 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 4

1

5

10

15

20

25

30

35

40

45

50

55
time A B C D E
0 0 1 1 X 1
109 1 1 1 0 1
258 1 0 1 0 1
573 1 0 0 0 1
586 0 0 0 0 1
643 1 0 0 0 1
788 0 1 1 0 1
915 1 1 1 0 1
1062 1 1 1 0 0
1395 1 0 0 0 0
1640 0 0 0 1 0

The test pattern format represents an event, for example 01 A, in no different way than a non-event, for example
11 E. This non-event is True at times 109, 258, 573, 586, 643, 788, and 915; in short, every time when an event
happens while E is constant 1.

10.6.7 Compact and verbose event sequences

A vector_event_sequence expression in a compact form can be transformed into a verbose form by pad-
ding up every vector_event expression with non-events. The next state of each variable within a
vector_event expression shall be equal to the previous state of the same variable in the subsequent
vector_event expression.

Example

01 A -> 10B === 01 A & 11 B -> 11 A & 10 B

A vector expression for a complete event report in compact form resembles the VCD, whereas the verbose form
looks like the test pattern.

// compact form
01 A & X0 D -> 10 B -> 10 C -> 10 A -> 01 A
-> 10 A & 01 B & 01 C -> 01 A -> 10 E
-> 10 B & 10 C -> 10 A & 01 D
===
// verbose form
?0 A & ?1 B & ?1 C & ?X D & ?1 E ->
01 A & 11 B & 11 C & X0 D & 11 E ->
11 A & 10 B & 11 C & 00 D & 11 E ->
11 A & 00 B & 10 C & 00 D & 11 E ->
10 A & 00 B & 00 C & 00 D & 11 E ->
01 A & 00 B & 00 C & 00 D & 11 E ->
10 A & 01 B & 01 C & 00 D & 11 E ->
01 A & 11 B & 11 C & 00 D & 11 E ->
11 A & 11 B & 11 C & 00 D & 10 E ->
11 A & 10 B & 10 C & 00 D & 00 E ->
10 A & 00 B & 00 C & 01 D & 00 E

The transformation rule needs to be slightly modified in case the compact form contains a vector_event
expression consisting only of non-events. By definition, the non-event is True only if a real event happens simul-
taneously with the non-event. Padding up a vector_event expression consisting of non-events with other
non-events make this impossible. Rather, this vector_event expression needs to be padded up with unspeci-
IEEE P1603 Draft 4 Advanced Library Format (ALF) Reference Manual 143

1

5

10

15

20

25

30

35

40

45

50

55
fied events, using the ?? operator. Eventually, unspecified events can be further transformed into partly specified
events, if a former or future state of the involved variable is known.

Example

01 A -> 00 B
=== 01 A & 00 B -> ?? A & 00 B

In the first transformation step, the unspecified event ?? A is introduced.

01 A & 00 B -> ?? A & 00 B
=== 01 A & 00 B -> 1? A & 00 B

In the second step, this event becomes partly specified. ?? A is bound to be 1? A due to the previous event on
A.

10.6.8 Unspecified simultaneous events within scope

Variables which are within the scope of the vector expression yet do not appear in the vector expression, can be
used to pad up the vector expression with unspecified events as well. This is equivalent to omitting them from the
vector expression.

Example

01 A -> 10 B // let us assume a scope containing A, B, C, D, E
===
01 A & 10 B & ?? C & ?? D & ?? E -> 11 A & 10 B & ?? C & ?? D & ?? E

This definition allows unspecified events to occur simultaneously with specified events or specified non-events.
However, it disallows unspecified events to occur in-between specified events or specified non-events.

At first sight, this distinction seems to be arbitrary. Why not disallow unspecified events altogether? Yet there are
several reasons why this definition is practical.

If a vector expression disallows simultaneously occurring unspecified events, the application tool has the burden
not only to match the pattern of specified events with the event report but also to check whether the other vari-
ables remain constant. Therefore, it is better to specify this extra pattern matching constraint explicitly in the vec-
tor expression by using the ?- operator.

There are many cases where it actually does not matter whether simultaneously occurring unspecified events are
allowed or disallowed:

— Case 1: Simultaneous events are impossible by design of the flip-flop. For instance, in a flip-flop it is
impossible for a triggering clock edge 01 CK and a switch of the data output ? Q to occur at the same
time. Therefore, such events can not appear in the event report. It makes no difference whether 01 CK &
?- Q, 01 CK & ?? Q, or 01 CK is specified. The only occurring event pattern is 01 CK & ?- Q
and this pattern can be reliably detected by specifying 01 CK.

— Case 2: Simultaneous events are prohibited by design. For instance, in a flip-flop with a positive setup
time and positive hold time, the triggering clock edge 01 CK and a switch of the data input ?! D is a
timing violation. A timing checker tool needs the violating pattern specified explicitly, i.e., 01 CK &
?! D. In this context, it makes sense to specify the non-violating pattern also explicitly, i.e., 01 CK &
?- D. The pattern 01 CK by itself is not applicable.

— Case 3: Simultaneous events do not occur in correct design. For instance, power analysis of the event 01
CK needs no specification of ?! D or ?- D. In the analysis of an event report with timing violations, the
144 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 4

1

5

10

15

20

25

30

35

40

45

50

55
power analysis is less accurate anyway. In the analysis of the event report for the design without timing
violation, the only occurring event pattern is 01 CK & ?- D and this pattern can be reliably detected by
specifying 01 CK.2

— Case 4: The effects of simultaneous events are not modeled accurately. This is the case in static timing
analysis and also to some degree in dynamic timing simulation. For instance, a NAND gate can have the
inputs A and B and the output Z. The event sequence exercising the timing arc 01 A -> 10 Z can only
happen if B is constant 1. No event on B can happen in-between 01 A and 10 Z. Likewise, the timing
arc 01 B -> 10 Z can only happen if A is constant 1 and no event happens in-between 01 B and 10
Z. The timing arc with simultaneously switching inputs is commonly ignored. A tool encountering the
scenario 01 A & 01 B -> 10 Z has no choice other than treating it arbitrarily as 01 A -> 10 Z
or as 01 B -> 10 Z.

— Case 5: The effects of simultaneous events are modeled accurately. Here it makes sense to specify all sce-
narios explicitly, e.g., 01 A & ?- B -> 10 Z, 01 A &?! B -> 10 Z, ?- A & 01 B -> 10
Z, etc., whereas the patterns 01 A -> 10 Z and 01 B -> 10 Z by themselves apply only for less
accurate analysis (see Case 4).

There is also a formal argument why unspecified events on a vector expression need to be allowed rather than
disallowed. Consider the following vector expressions within the scope of two variables A and B.

01 A // (i)
01 B // (ii)
01 A & 01 B // (iii)

The natural interpretation here is (iii) === (i) & (ii). This interpretation is only possible by allowing
simultaneously occurring unspecified events.

Allowing simultaneously occurring unspecified events, the vector expressions (i) and (ii), respectively, are
interpreted as follows:

01 A & ?? B // (i’)
?? A & 01 B // (ii’)

Disallowing simultaneously occurring unspecified events, the vector expressions (i) and (ii), respectively,
are interpreted as follows:

01 A & ?- B // (i’’)
?- A & 01 B // (ii’’)

The vector expressions (i’) and (ii’) are compatible with (iii), whereas (i’’) and (ii’’) are not.

10.6.9 Simultaneous event sequences

The semantic meaning of the “simultaneous event operator” can be extended to describe simultaneously occur-
ring event sequences, by using the following definition:

(01 A#1 .. -> ... 01 A#N) & (01 B#1 .. -> ... 01 B#N)
=== 01 A#1 & 01 B#1 ... -> ... 01 A#N & 01 B#N

This definition is analogous to scalar multiplication of vectors with the same number of indices. The number of
indices corresponds to the number of vector_event expressions separated by -> operators. If the number of

2The power analysis tool relates to a timing constraint checker in a similar way as a parasitic extraction tool relates to a DRC tool. If the lay-
out has DRC violations, for instance shorts between nets, the parasitic extraction tool shall report inaccurate wire capacitance for those nets.
After final layout, the DRC violations shall be gone and the wire capacitance shall be accurate.
IEEE P1603 Draft 4 Advanced Library Format (ALF) Reference Manual 145

1

5

10

15

20

25

30

35

40

45

50

55
-> in both vector expressions is not the same, the shorter vector expression can be left-extended with unspecified
events, using the ?? operator, in order to align both vector expressions.

Example

(01 A -> 01 B -> 01 C) & (01 D -> 01 E)
=== (01 A -> 01 B -> 01 C) & (?? D -> 01 D -> 01 E)
=== 01 A & ?? D -> 01 B & 01 D -> 01 C & 01 E
=== 01 A -> 01 B & 01 D -> 01 C & 01 E

The easiest way to understand the meaning of “simultaneous event sequences” is to consider the event report in
test pattern format. If each vector_event_sequence expression matches the event report in the same time
window, then the event sequences happen simultaneously.

time A B C D E
0 0 1 1 X 1
109 1 1 1 0 1
258 1 0 1 0 1
573 1 0 0 0 1
586 0 0 0 0 1
643 1 0 0 0 1
788 0 1 1 0 1
915 1 1 1 0 1
1062 1 1 1 0 0
1395 1 0 0 0 0
1640 0 0 0 1 0

Example

01 A -> 10 B === 01 A & 11 B -> 11 A & 10 B // (10a)
// event pattern expressed by (10a):
// A B
// 0 1
// 1 1
// 1 0
X0 D -> 00 D // (10b)
// event pattern expressed by (10b):
// D
// X
// 0
// 0
(01 A -> 10 B) & (X0 D -> 00 D) // (10) === (10a)&(10b)

Both (10a) and (10b) are True at time 258. Therefore (10) is True at time 258.

10 C
=== ?? C -> ?? C -> 10 C
=== ?? C -> ?1 C -> 10 C // (11a)
// event pattern expressed by (11a):
// C
// ?
// ?
// 1
// 0
146 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 4

1

5

10

15

20

25

30

35

40

45

50

55
(11a) is left-extended to match the length of the following (11b).

01 A -> 00 D -> 11 E ===
01 A & 00 D & ?? E

-> ?? A & 00 D & ?? E
-> ?? A & ?? D & 11 E
===

01 A & 00 D & ?? E
-> 1? A & 00 D & ?1 E
-> ?? A & 0? D & 11 E // (11b)
// event pattern expressed by (11b):
// A D E
// 0 0 ?
// 1 0 ?
// ? 0 1
// ? ? 1

(11b) contains explicitly specified non-events. The non-event 00 D calls for the unspecified events ?? A and
?? E. The non-event 00 E calls for the unspecified events ?? A and ?? D. By propagating well-specified pre-
vious and next states to subsequent events, some unspecified events become partly specified.

10 C & (01 A -> 00 D -> 11 E) // (11) === (11a)&(11b)

(11a) is True at time 573 and time 1395. (11b) is True at time 573 and time 915. Therefore, (11) is True at
time 573.

10.6.10 Implicit local variables

Until now, vector expressions are evaluated against an event report containing all variables within the scope of a
cell. It is practical for the application to work with only one event report per cell or, at most, two event reports if
the set of variables for BEHAVIOR (scope=behavior) and VECTOR (scope=measure) is different. How-
ever, for complex cells and megacells, it is sometimes necessary to change the scope of event observation,
depending on operation modes. Different modes can require a different set of variables to be observed in differ-
ent event reports.

The following definition allows to extend the scope of a vector expression locally:

Edge operators apply not only to variables, but also to boolean expressions involving those variables.
Those boolean expressions represent implicit local variables that are visible only within the vector
expression where they appear.

Suppose the local variables (A & B), (A | B) are inserted into the event report:

time A B C D E A&B A|B
0 0 1 1 X 1 0 1
109 1 1 1 0 1 1 1
258 1 0 1 0 1 0 1
573 1 0 0 0 1 0 1
586 0 0 0 0 1 0 0
643 1 0 0 0 1 0 1
788 0 1 1 0 1 0 1
915 1 1 1 0 1 1 1
1062 1 1 1 0 0 1 1
IEEE P1603 Draft 4 Advanced Library Format (ALF) Reference Manual 147

1

5

10

15

20

25

30

35

40

45

50

55
1395 1 0 0 0 0 0 1
1640 0 0 0 1 0 0 0

Example

01 (A & B) // (12)
// event pattern expressed by (12):
// A&B
// 0
// 1

(12) is True at time 109 and time 915.

10 (A | B) // (13)
// event pattern expressed by (13):
// A|B
// 1
// 0

(13) is True at time 586 and time 1640.

01 (A & B) -> 10 B // (14)
// event pattern expressed by (14):
// B A&B
// 1 0
// 1 1
// 0 1

(14) is True at time 258.

10 (A & B) & 10 B -> 10 C // (15)
// event pattern expressed by (15):
// B C A&B
// 1 1 1
// 0 1 0
// 0 0 0

(15) is True at time 573.

10 (A & B) -> 10 (A | B) // (16)
// event pattern expressed by (16):
// A&B A|B
// 1 1
// 0 1
// 0 0

(16) is True at time 1640.

10.6.11 Conditional event sequences

The following definition restricts the scope of a vector expression locally:

vector_boolean_and, also called conditional event operator
148 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 4

1

5

10

15

20

25

30

35

40

45

50

55
This operator is defined between a vector expression and a boolean expression, using the overloaded
symbol & or &&. The scope of the vector expression is restricted to the variables and eventual implicit
local variables appearing within that vector expression. The boolean expression shall be True during the
entire vector expression. The boolean expression is called the Existence Condition of the vector expres-
sion.3

Vector expressions using the vector_boolean_and operator are called vector_conditional_event
expressions. Scope and contents of such expressions are identical, as opposed to non-conditional
vector_complex_event expressions, where the content is a subset of the scope.

Example

(10 (A & B) -> 10 (A | B)) & !D // (17)
// event pattern expressed by (17):
// A&B A|B
// 1 1
// 0 1
// 0 0
// event report without C, E:
time A B D A&B A|B
0 0 1 X 0 1
109 1 1 0 1 1
258 1 0 0 0 1
586 0 0 0 0 0
643 1 0 0 0 1
788 0 1 0 0 1
915 1 1 0 1 1
1062 1 1 0 1 1
1395 1 0 0 0 1
1640 0 0 1 0 0

(17) contains the same vector_complex_event expression as (16). However, although (16) is not
True at time 586, (17) is True at time 586, since the scope of observation is narrowed to A, B, A&B, and A|B by
the existence condition !D, which is statically True while the specified event sequence is observed.

Within, and only within, the narrowed scope of the vector_conditional_event expression, (17) can be
considered equivalent to the following:

(10 (A & B) -> 10 (A | B)) & !D
===
(10 (A & B) -> 10 (A | B)) & (11 (!D) -> 11 (!D))
===
10 (A & B) & 11 (!D) -> 10 (A | B) & 11 (!D)

The transformation consists of the following steps:

a) Transform the boolean condition into a non-event.
For example, !D becomes 11 (!D).

3An Existence Condition can also appear as annotation to a VECTOR object instead of appearing in the vector expression. This enables recog-
nition of existence conditions by application tools which can not evaluate vector expressions (e.g., static timing analysis tools). However, for
tools that can evaluate vector expressions, there is no difference between existence condition as a co-factor in the vector expression or as an
annotation.
IEEE P1603 Draft 4 Advanced Library Format (ALF) Reference Manual 149

1

5

10

15

20

25

30

35

40

45

50

55
b) Left-extend the vector_single_event expression containing the non-event in order to match the
length of the vector_complex_event expression.
For example, 11 (!D) becomes 11 (!D) -> 11 (!D) to match the length of
10 (A & B) -> 10 (A | B).

c) Apply scalar multiplication rule for simultaneously occurring event sequences.

Thus, a vector_conditional_event expression can be transformed into an equivalent
vector_complex_event expression, but the change of scope needs to be kept in mind. An operator which
can express the change of scope in the vector expression language is defined in 10.6.13. This can make the trans-
formation more rigorous.

Regardless of scope, the transformation from vector_conditional_event expression to
vector_complex_event expression also provides the means of detecting ill-specified
vector_conditional_event expressions.

Example

(10 A -> 01 B -> 01 A) & A
===
10 A & 11 A -> 01 B & 11 A -> 01 A & 11 A

The first expression 10 A & 11 A and the third expression 01 A & 11 A within the
vector_complex_event expression are contradictory. Hence, the vector_conditional_event
expression can never be True.

10.6.12 Alternative conditional event sequences

All vector_binary operators, in particular the vector_or operator, can be applied to
vector_conditional_event expressions as well as to vector_complex_event expressions.

Consider again the event report:

time A B C D E
0 0 1 1 X 1
109 1 1 1 0 1
258 1 0 1 0 1
573 1 0 0 0 1
586 0 0 0 0 1
643 1 0 0 0 1
788 0 1 1 0 1
915 1 1 1 0 1
1062 1 1 1 0 0
1395 1 0 0 0 0
1640 0 0 0 1 0

Concurrent alternative vector_conditional_event expressions can be paraphrased in the following
way:

IF <boolean_expression1> THEN <vector_expression1>
OR IF <boolean_expression2> THEN <vector_expression2>
... OR IF <boolean_expressionN> THEN <vector_expressionN>

The conditions can be True within overlapping time windows and thus the vector expressions are evaluated con-
currently. The vector_boolean_and operator and vector_or operator describe such vector expressions.
150 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 4

1

5

10

15

20

25

30

35

40

45

50

55
Example

C&(01 A -> 10 B) | !D&(10 B -> 10 A) | E&(10 B -> 10 C) // (18)
// Event pattern expressed by (18):
// A B C
// 0 1 1
// 1 1 1
// 1 0 1

(18) is True at time 258 because of C & (01 A -> 10 B).

// Alternative event pattern expressed by (18):
// A B D
// 1 1 0
// 1 0 0
// 0 0 0

(18) is also True at time 586 because of !D & (10 B -> 10 A).

// Alternative event pattern expressed by (18):
// B C E
// 1 1 1
// 0 1 1
// 0 0 1

(18) is also True at time 573 because of E & (10 B -> 10 C).

Prioritized alternative vector_conditional_event expressions can be paraphrased in the following way:

IF <boolean_expression1> THEN <vector_expression1>
ELSE IF <boolean_expression2> THEN <vector_expression2>
... ELSE IF <boolean_expressionN> THEN <vector_expressionN>
(optional) ELSE <vector_expressiondefault>

Only the vector expression with the highest priority True condition is evaluated. The
vector_boolean_cond operator and vector_boolean_else operator are used in ALF to describe
such vector expressions.

Example

C? (01 A -> 10 B): !D? (10 B -> 10 A): E? (10 B -> 10 C) // (19)

The prioritized alternative vector_conditional_event expression can be transformed into concurrent
alternative vector_conditional_event expression as shown:

C ? (01 A -> 10 B) : !D ? (10 B -> 10 A) : E ? (10 B -> 10 C)
===
C & (01 A -> 10 B)
| !C & !D & (10 B -> 10 A)
| !C & !(!D) & E & (10 B -> 10 C)

(19) is True at time 258 because of C & (01 A -> 10 B), but not at time 586 because of higher priority C
while !D & (10 B -> 10 A), nor at time 573 because of higher priority !D while
E & (10 B -> 10 C).
IEEE P1603 Draft 4 Advanced Library Format (ALF) Reference Manual 151

1

5

10

15

20

25

30

35

40

45

50

55
10.6.13 Change of scope within a vector expression

Conditions on vector expressions redefine the scope of vector expressions locally. The following definition can
be used to change the scope even within a part of a vector expression. For this purpose, the symbolic state * can
be used, which means “don’t care about events”. This is different from the symbolic state ? which means “don’t
care about state”. When the state of a variable is *, arbitrary events occurring on that variable are disregarded.

— Edge operator with * as next state:
The variable to which the operator applies is no longer within the scope of the vector expression.

— Edge operator with * as previous state:
The variable to which the edge operator applies is now within the scope of the vector expression.

As opposed to ?, * stands for an infinite variety of possibilities.

Example

Let A be a logic variable with the possible states 1, 0, and X.

*0 A ===
00 A | 10 A | X0 A
| 00 A -> 00 A | 10 A -> 00 A | X0 A -> 00 A
| 01 A -> 10 A | 11 A -> 10 A | X1 A -> 10 A
| 0X A -> X0 A | 1X A -> X0 A | XX A -> X0 A
| 00 A -> 00 A -> 00 A | ...

0* A ===
00 A | 01 A | 0X A
| 00 A -> 00 A | 00 A -> 01 A | 00 A -> 0X A
| 01 A -> 10 A | 01 A -> 11 A | 01 A -> 1X A
| 0X A -> X0 A | 0X A -> X1 A | 0X A -> XX A
| 00 A -> 00 A -> 00 A | ...

A vector expression with an infinite variety of possible event sequences cannot be directly matched with an event
report. However, there are feasible ways to implement event sequence detection involving *. In principle, there
is a “static” and “dynamic” way. The following parts of the vector expression are separated by * sub-sequences
of events.

— “Static” event sequence detection with *:
The event report with all variables can be maintained, but certain variables are masked for the purpose of
detection of certain sub-sequences.

— “Dynamic” event sequence detection with *:
The event report shall contain the set of variables necessary for detection of a relevant sub-sequence.
When such a sub-sequence is detected, the set of variables in the event report shall change until the next
sub-sequence is detected, etc.

Examples

01 A -> 1* B -> 10 C // (20)
// Event pattern expressed by (20):
// A B C
// 0 1 1
// 1 1 1
// 1 * 1
// 1 * 0
152 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 4

1

5

10

15

20

25

30

35

40

45

50

55
// pattern for 1st sub-sequence:
// A B C
// 0 1 1
// 1 1 1
// 1 * 1
// pattern for 2nd sub-sequence:
// A B C
// 1 * 1
// 1 * 0

The event report with masking relevant for (20):

time A B C D E
0 0 1 1 X 1
109 1 1 1 0 1
258 1 * 1 0 1 // detection of 1st sub-sequence
573 1 * 0 0 1 // detection of 2nd sub-sequence
586 0 0 0 0 1
643 1 0 0 0 1
788 0 1 1 0 1
915 1 1 1 0 1
1062 1 * 1 0 0 // detection of 1st sub-sequence
1395 1 * 0 0 0 // detection of 2nd sub-sequence
1640 0 0 0 1 0

(20) is True at time 573 and time 1395. The first sub-sequence 01 A -> 1* B is detected at time 258, since
* maps to any state. From time 258 onwards, B is masked. The second sub-sequence 10 C is detected at time
573. From time 573 onwards, B is unmasked. The first sub-sequence is detected again at time 1062. The second
sub-sequence is detected again at time 1395.

01 A & 1* E -> 10 C // (21)
// Event pattern expressed by (21):
// A C E
// 0 1 1
// 1 1 *
// 1 0 *
// pattern for 1st sub-sequence:
// A C E
// 0 1 1
// 1 1 *
// pattern for 2nd sub-sequence:
// A C E
// 1 1 *
// 1 0 *

The event report with masking relevant for (21):

time A B C D E
0 0 1 1 X 1
109 1 1 1 0 * // detection of 1st sub-sequence
258 1 0 1 0 * // abortion of detection process
573 1 0 0 0 1
586 0 0 0 0 1
643 1 0 0 0 1
IEEE P1603 Draft 4 Advanced Library Format (ALF) Reference Manual 153

1

5

10

15

20

25

30

35

40

45

50

55
788 0 1 1 0 1
915 1 1 1 0 * // detection of 1st sub-sequence
1062 1 1 1 0 * // disregard event out of scope
1395 1 0 0 0 0 // detection of 2nd sub-sequence
1640 0 0 0 1 0

(21) is True at time 1395. The first sub-sequence 01 A & 1* E is detected at time 109. From time 109
onwards, E is masked. The event on B at time 258 aborts continuation of the detection process and triggers restart
from the beginning. The first sub-sequence is detected again at time 915. From time 915 onwards, E is masked.
The event at time 1062 is therefore out of scope. The second sub-sequence 10 C is detected at time 1395.

01 A -> *1 B -> 10 B & 10 C // (22)
// Event pattern expressed by (22):
// A B C
// 0 * 1
// 1 * 1
// 1 1 1
// 1 0 0
// pattern for 1st sub-sequence:
// A B C
// 0 * 1
// 1 * 1
// pattern for 2nd sub-sequence:
// A B C
// 1 * 1
// 1 1 1
// 1 0 0

The event report with masking relevant for (22):

time A B C D E
0 0 1 1 X 1
109 1 1 1 0 1 // detection of 1st sub-sequence
258 1 0 1 0 1 // abort
573 1 * 0 0 1
586 0 * 0 0 1
643 1 * 0 0 1
788 0 * 1 0 1
915 1 * 1 0 1 // detection of 1st sub-sequence
1062 1 1 1 0 0 // continue
1395 1 0 0 0 0 // detection of 2nd sub-sequence
1640 0 0 0 1 0

(22) is True at time 1395. The first sub-sequence 01 A is detected at time 109. Therefore, B is unmasked.
Since B=0 at time 258, the attempt to detect the second sub-sequence is aborted and the detection process restarts
from the beginning. The first sub-sequence 01 A is detected again at time 109. The second sub-sequence *1 B
-> 10 B & 10 C is detected at time 1395.

01 A -> 1? A & 0* B & 1* E -> 10 C // (23)
// Event pattern expressed by (23):
// A B C E
// 0 0 1 1
// 1 0 1 1
154 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 4

1

5

10

15

20

25

30

35

40

45

50

55
// 1 * 1 *
// 1 * 0 *
// pattern for 1st sub-sequence:
// A B C E
// 0 0 1 1
// 1 0 1 1
// ? * 1 *
// pattern for 2nd sub-sequence:
// A B C E
// ? * 1 *
// ? * 0 *

The event report with masking relevant for (23):

time A B C D E
0 0 1 1 X 1
109 1 1 1 0 1
258 1 0 1 0 1
573 1 0 0 0 1
586 0 0 0 0 1
643 1 0 0 0 1
788 0 * 1 0 * // detection of 1st sub-sequence
915 1 * 1 0 * // abort
1062 1 1 1 0 0
1395 1 0 0 0 0
1640 0 0 0 1 0

(23) is not True at any time. The first sub-sequence is detected at time 788. The event at time 915 does not
match the expected second sub-sequence.

10.6.14 Sequences of conditional event sequences

The symbol * can be used to describe the scope of a vector expression directly in the vector expression language.
This is particularly useful for sequences of vector_conditional_event expressions.

In reusing (17) as example:

(10 (A & B) -> 10 (A | B)) & !D

the scope of the sample event report contains contain the variables A, B, C, D, and E. The
vector_conditional_event expression (17) contains only the variables A, B, and D and the implicit
local variables A&B and A|B. Therefore, the global variables C and E are out of scope within (17). The implicit
local variables A&B and A|B are in scope within, and only within, (17).

Now consider a sequence of vector_conditional_event expressions, where variables move in and out
of scope. With the following formalism, it is possible to transform such a sequence into an equivalent
vector_complex_event expression, allowing for a change of scope within each
vector_conditional_event expression.

<vector_conditional_event#1> .. -> .. <vector_conditional_event#N>

where
IEEE P1603 Draft 4 Advanced Library Format (ALF) Reference Manual 155

1

5

10

15

20

25

30

35

40

45

50

55
<vector_conditional_event#i>
=== <vector_complex_event#i> & <boolean_expression#i> // 1 < i < N

The principle is to decompose each vector_conditional_event expression into a sequence of three vec-
tor expressions prefix, kernel, and postfix and then to reassemble the decomposed expressions.

<vector_conditional_event#i>
=== <prefix#i> -> <kernel#i> -> <postfix#i> // 1 < i < N

a) Define the prefix for each vector_conditional_event expression.
The prefix is a vector_event expression defining all implicit local variables.

Example
*? (A&B) & *? (A|B)

b) Define the kernel for each vector_conditional_event expression.
The kernel is the vector_complex_event expression equivalent to the
vector_conditional_event expression.
<vector_complex_event#i> & <boolean_expression#i>
=== <vector_complex_event#i>
& (11 <boolean_expression#i> ..->.. 11 <boolean_expression#i>)

The kernel can consist of one or several alternative vector_event_sequence expressions. Within
each vector_event_sequence expression, the same set of global variables are pulled out of scope
at the first vector_event expression and pushed back in scope at the last vector_event expres-
sion.

Example
?* C & ?* E // global variables out of scope
& 10 (A & B) & 11 (!D) -> 10 (A | B) & 11 (!D)
& *? C & *? E // global variables back in scope

c) Define the postfix for each vector_conditional_event expression.
The postfix is a vector_event expression removing all implicit local variables.

Example
?* (A&B) & ?* (A|B)

d) Join the subsequent vector_complex_event expressions with the vector_and operator between
prefix#i+1and kernel#i and also between postfix#i and kernel#i+1.
.. <vector_conditional_event#i> -> <vector_conditional_event#i+1> ..
=== .. <prefix#i>

-> <postfix#i-1> & <kernel#i> & <prefix#i+1>
-> <postfix#i> & <kernel#i+1> & <prefix#i+2>

-> <postfix#i+1> ..

The complete example:

(10 (A & B) -> 10 (A | B)) & !D
===
*? (A&B) & *? (A|B)
-> ?* C & ?* E
& 10 (A & B) & 11 (!D) -> 10 (A | B) & 11 (!D)
& *? C & *? E
-> ?* (A&B) & ?* (A|B)
156 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 4

1

5

10

15

20

25

30

35

40

45

50

55
NOTE —The in-and-out-of-scope definitions for global variables are within the kernel, whereas the in-and-out-of-scope def-
initions for global variables are within the prefix and postfix. In this way, the resulting vector_complex_event expres-
sion contains the same uninterrupted sequence of events as the original sequence of vector_conditional_event
expressions.

10.6.15 Incompletely specified event sequences

So far the vector expression language has provided support for completely specified event sequences and also the
capability to put variables temporarily in and out of scope for event observation. As opposed to changing the
scope of event observation, incompletely specified event sequences require continuous observation of all vari-
ables while allowing the occurrence of intermediate events between the specified events. The following operator
can be used for that purpose:

vector_followed_by, also called followed-by operator, using the symbol ~>.
The ~> operator is the separator between consecutively occurring events, with possible unspecified
events in-between.

Detection of event sequences involving ~> requires detection of the sub-sequence before ~>, setting a flag,
detection of the sub-sequence after ~>, and clearing the flag.

This can be illustrated with a sample event report:

time A B C D E
0 0 1 1 X 1
109 1 1 1 0 1 // 01 A detected, set flag
258 1 0 1 0 1
573 1 0 0 0 1 // 10 C detected, clear flag
586 0 0 0 0 1
643 1 0 0 0 1 // 01 A detected, set flag
788 0 1 1 0 1
915 1 1 1 0 1 // 01 A detected again
1062 1 1 1 0 0
1395 1 0 0 0 0 // 10 C detected, clear flag
1640 0 0 0 1 0

Example

01 A ~> 10 C // (24)
// as opposed to previous example (5):01 A -> 10 C

(24) is True at time 573 because of 01 A at time 109 and 10 C at time 573. It is True again at time 1395
because of 01 A at time 643 and 10 C at 1395. On the other hand, (5) is never True because there are always
events in-between 01 A and 10 C.

Vector expressions consisting of vector_event expressions separated by -> or by ~> are called
vector_event_sequence expressions, using the same syntax rules for the two different
vector_followed_by operators. Consequently, all vector expressions involving
vector_event_sequence expressions and vector_binary operators are called
vector_complex_event expressions.

However, only a subset of the semantic transformation rules can be applied to vector expressions containing ~>.

Associative rule applies for both -> and ~>.
IEEE P1603 Draft 4 Advanced Library Format (ALF) Reference Manual 157

1

5

10

15

20

25

30

35

40

45

50

55
(01 A ~> 01 B) ~> 01 C === 01 A ~> (01 C ~> 01 B ~> 01 C)
(01 A -> 01 B) -> 01 C === 01 A -> (01 C -> 01 B -> 01 C)
(01 A ~> 01 B) -> 01 C === 01 A ~> (01 C ~> 01 B -> 01 C)
(01 A -> 01 B) ~> 01 C === 01 A -> (01 C -> 01 B ~> 01 C)

Distributive rule applies for both -> and ~>.

(01 A | 01 B) -> 01 C === 01 A ~> 01 C | 01 B -> 01 C
(01 A | 01 B) ~> 01 C === 01 A ~> 01 C | 01 B ~> 01 C
(01 A | 01 B) -> 01 C === 01 A ~> 01 C | 01 B -> 01 C

Scalar multiplication rule applies only for ->. The transformation involving ~> is more complicated.

(01 A -> 01 B) & (01 C -> 01 D)
=== (01 A & 01 C) -> (01 B & 01 D)

(01 A ~> 01 B) & (01 C -> 01 D)
=== (01 A & 01 C) -> (01 B & 01 D)
| 01 A ~> 01 C -> (01 B & 01 D)

(01 A ~> 01 B) & (01 C ~> 01 D)
=== (01 A & 01 C) ~> (01 B & 01 D)
| 01 A ~> 01 C ~> (01 B & 01 D)
| 01 C ~> 01 A ~> (01 B & 01 D)

Transformation of vector_conditional_event expressions into vector_complex_event expres-
sions applies only for ->.

(01 A -> 01 B) & C
=== 01 A & 11 C -> 01 B & 11 C

(01 A ~> 01 B) & C
=== 01 A & 11 C ~> 01 B & 11 C

Since the ~> operator allows intermediate events, there is no way to express the continuously True condition C.

10.6.16 How to determine well-specified vector expressions

By defining semantics for

alternative vector_event_sequence expressions

and establishing calculation rules for

transforming vector_complex_event expressions into alternative vector_event_sequence
expressions

and for

transforming alternative vector_conditional_event expressions into alternative
vector_complex_event expressions,

semantics are now defined for all vector expressions.
158 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 4

1

5

10

15

20

25

30

35

40

45

50

55
The calculation rules also provide means to determine whether a vector expression is well-specified or ill-speci-
fied. An ill-specified vector expression is contradictory in itself and can therefore never be True.

Once a vector expression is reduced to a set of alternative vector_event_sequence expressions, two crite-
ria define whether a vector expression is well-defined or not.

— Compatibility between subsequent events on the same variable:
The next state of earlier event shall be compatible with previous state of later event. This check applies
only if no ~> operator is found between the events.

— Compatibility between simultaneous events on the same variable:
Both the previous and next state of both events shall be compatible. Such events commonly occur as
intermediate calculation results within vector expression transformation.

The following compatibility rules apply:

a) ? is compatible with any other state. If the other state is *, the resulting state is ?. Otherwise, the result-
ing state is the other state.

b) * is compatible with any other state. The resulting state is the other state.
c) Any other state is only compatible with itself.

Examples

01 A -> 01 B -> 10 A

The next state of 01 A is compatible with the previous state of 10 A.

0X A -> 01 B -> 10 A

The next state of 0X A is not compatible with the previous state of 10 A.

0X A ~> 01 B -> 10 A

Compatibility check does not apply, since intermediate events are allowed.

01 A & 10 A

Both the previous and next state of A are contradictory; this results in an impossible event.

?1 A & 1? A

Both previous and next state of A are compatible; this results in the non-event 11 A.

10.7 Boolean expression language

The boolean expression language XXX, as shown in Syntax 126.

10.8 Vector expression language

The vector expression language XXX, as shown in Syntax 127.
IEEE P1603 Draft 4 Advanced Library Format (ALF) Reference Manual 159

1

5

10

15

20

25

30

35

40

45

50

55
10.9 Control expression semantics

**Syntax 127 also shows the control expression syntax (at the bottom); is this deliberate??

boolean_expression ::=
(boolean_expression)

| pin_value
| boolean_unary boolean_expression
| boolean_expression boolean_binary boolean_expression
| boolean_expression ? boolean_expression :

{ boolean_expression ? boolean_expression : }
boolean_expression

boolean_unary ::=
!

| ~
| &
| ~&
| |
| ~|
| ^
| ~^

boolean_binary ::=
&

| &&
| |
| ||
| ^
| ~^
| !=
| ==
| >=
| <=
| >
| <
+
*
/
%
>>
<<

Syntax 126—Boolean expression langauge
160 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 4

1

5

10

15

20

25

30

35

40

45

50

55
vector_expression ::=
(vector_expression)

| vector_unary boolean_expression
| vector_expression vector_binary vector_expression
| boolean_expression ? vector_expression :

{ boolean_expression ? vector_expression : }
vector_expression

| boolean_expression control_and vector_expression
| vector_expression control_and boolean_expression

vector_unary ::=
edge_literal

vector_binary ::=
&

| &&
| |
| ||
| ->
| ~>
| <->
| <~>
| &>
| <&>

control_and ::=
& | &&

control_expression ::=
(vector_expression)

| (boolean_expression)

Syntax 127—Vector expression language
IEEE P1603 Draft 4 Advanced Library Format (ALF) Reference Manual 161

1

5

10

15

20

25

30

35

40

45

50

55
162 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 4

1

5

10

15

20

25

30

35

40

45

50

55
11. Constructs for electrical and physical modeling

Add lead-in text

11.1 Arithmetic expression

An arithmetic expression shall be defined as shown in Syntax 128.

An unary arithmetic operator shall be defined as shown in Syntax 129.

The following Table 81 defines the semantics of unary arithmetic operators.

A binary arithmetic operator shall be defined as shown in Syntax 130.

arithmetic_expression ::=
(arithmetic_expression)

| arithmetic_value
| { boolean_expression ? arithmetic_expression : } arithmetic_expression
| [unary_arithmetic_operator] arithmetic_operand
| arithmetic_operand binary_arithmetic_operator arithmetic_operand
| macro_arithmetic_operator (arithmetic_operand { , arithmetic_operand })

arithmetic_operand ::=
arithmetic_expression

Syntax 128—Arithemetic expression

unary_arithmetic_operator ::=
+

| -

Syntax 129—Unary arithmetic operator

Table 81—Unary arithmetic operators

Operator Description Comment

+ Positive sign neutral operator

- Negative sign

binary_arithmetic_operator ::=
+

| -
| *
| /
| **
| %

Syntax 130—Binary arithmetic operator
IEEE P1603 Draft 4 Advanced Library Format (ALF) Reference Manual 163

1

5

10

15

20

25

30

35

40

45

50

55
The following Table 82 defines the semantics of binary arithmetic operators.

A macro arithmetic operator shall be defined as shown in Syntax 131.

The following Table 83 defines the semantics of macro arithmetic operators.

The priority of operators in arithmetic expressions shall be from strongest to weakest in the following order:

a) unary arithmetic operator (+, -)
b) power (**)
c) multiplication (*), division (/), modulo division (%)
d) addition (+), subtraction (-)

Examples for arithmetic expressions

Table 82—Binary arithmetic operators

Operator Description Comment

+ Addition

- Subtraction

* Multiplication

/ Division Result includes fractional part

** Power

% Modulus Remainder of division

macro_arithmetic_operator ::=
abs

| exp
| log
| min
| max

Syntax 131—Macro arithmetic operator

Table 83—Macro arithmetic operators

Operator Description Comment

log Natural logarithm 1 operand, operand > 0

exp Natural exponential 1 operand

abs Absolute value 1 operand

min Minimum N>1 operands

max Maximum N>1 operands
164 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 4

1

5

10

15

20

25

30

35

40

45

50

55
1.24
- Vdd
C1 + C2
MAX (3.5*C , -Vdd/2 , 0.0)
(C > 10) ? Vdd**2 : 1/2*Vdd - 0.5*C

11.2 Arithmetic model

An arithmetic model shall be defined as a trivial arithmetic_model, a partial arithmetic model, or a full arith-
metic model, as shown in Syntax 132.

The purpose of an arithmetic model is to specify a measurable or a calculatable quantity.

A trivial arithmetic model shall be defined as shown in Syntax 133.

No mathemetical operation is necessary to evaluate a trivial arithmetic model. The arithmetic value associated
with the arithmetic model represents the evaluation result. One or more model qualifier statements can be associ-
ated with a trivial arithmetic model.

A partial arithmetic model shall be defined as shown in Syntax 134.

A partial arithmetic model does not specify a mathematical operation or an arithmetic value. Therefore it can not
be mathematically evaluated.

The purpose of a partial arithmetic model is to specify one or more model qualifier statements, a table statement,
or a trivial min-max statement. The specification contained within a partial arithmetic model can be inherited by
another arithmetic model of the same type, according to the following rules:

arithmetic_model ::=
trivial_arithmetic_model

| partial_arithmetic_model
| full_arithmetic_model
| arithmetic_model_template_instantiation

Syntax 132—Arithmetic model statement

trivial_arithmetic_model ::=
nonescaped_identifier [name_identifier] = arithmetic_value ;

| nonescaped_identifier [name_identifier] = arithmetic_value { { model_qualifier } }

Syntax 133—Trivial arithmetic model

partial_arithmetic_model ::=
nonescaped_identifier [name_identifier] { { partial_arithmetic_model_item } }

partial_arithmetic_model_item ::=
model_qualifier

| table
| trivial_min-max

Syntax 134—Partial arithmetic model
IEEE P1603 Draft 4 Advanced Library Format (ALF) Reference Manual 165

1

5

10

15

20

25

30

35

40

45

50

55
a) If the partial arithmetic model has no name, the specification shall be inherited by all arithmetic models
of the same type appearing within the same parent statement or within a descendant of the same parent
statement.

b) If the partial arithmetic model has a name, the specification shall be only inherited by an arithmetic
model containing a reference to the partial arithmetic model, using the model reference annotation (see
NEW SUBSECTION).

c) An arithmetic model can override an inherited specification by its own specification.

A full arithmetic model shall be defined as shown in .

The model body specifies mathematical data associated with the arithmetic model. The data is represented either
by a header-table-equation statement, or by a min-typ-max statement, or by one or more arithmetic submodel
statements.

The mathematical operation or the arithmetic value for evaluation of the arithmetic model can be contained
within one or more arithmetic submodels (see NEW SUBSECTION). The selection of an applicable submodel is
controlled by the semantics of the keyword that identifies the type of the arithmetic submodel.

11.3 HEADER, TABLE, and EQUATION

A header-table-equation statement shall be defines as shown in

A header-table-equation statement specifies a procedure for evaluation of the mathemetical data.

11.3.1 HEADER statement

A header statement shall be defined as shown in Syntax 137.

Each partial arithmetic model within the header statement shall represent a dimension of an arithmetic model.

full_arithmetic_model ::=
nonescaped_identifier [name_identifier] { { model_qualifier } model_body { model_qualifier } }

model_body ::=
header-table-equation [trivial_min-max]

| min-typ-max
| arithmetic_submodel { arithmetic_submodel }

Syntax 135—Full arithmetic model

header-table-equation ::=
header table

| header equation

Syntax 136—

header ::=
HEADER { partial_arithmetic_model { partial_arithmetic_model } }

Syntax 137—HEADER statement
166 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 4

1

5

10

15

20

25

30

35

40

45

50

55
11.3.2 TABLE statement

A table statement shall be defined as shown in Syntax 138.

A table statement within a partial arithmetic model shall define the set of legal values for an arithmetic model
that inherits the specification of the partial arithmetic model.

A table statement within a full arithmetic model shall represent a lookup table. If the model body contains a table
statement, each dimension within the header statement shall also contain a table statement.

The mathemetical relation between a lookup table and its dimensions shall be established as follows:

where

N denotes the number of dimensions
S denotes the size of the lookup table, i.e., the number of arithmetic values within the lookup table
P denotes the position of an arithmetic value within the lookup table
S(i) denotes the size of a dimension, i.e., the number of arithmetic values in the table within a dimension
P(i) denotes the position of an arithmetic value within a dimension

A dimension can be either discrete or continuous. In the latter case, interpolation and extrapolation of table val-
ues is allowed, and the arithmetic values in this dimension shall appear in strictly monotonous ascending order.

11.3.3 EQUATION statement

An equation statement shall be defined as shown in Syntax 139.

The arithmetic expression within the equation statement shall represent the mathematical operation for evalua-
tion of the arithmetic model.

Each dimension shall be involved in the arithmetic expression. The arithmetic expression shall refer to a dimen-
sion by name, if a name identifier exists or by type otherwise. Consequently, the type or the name of a dimension
shall be unique.

table ::=
TABLE { arithmetic_value { arithmetic value } }

Syntax 138—TABLE statement

equation ::=
EQUATION { arithmetic_expression }

| equation_template_instantiation

Syntax 139—EQUATION statement

S S i()
i 1=

N

∏=

P P i() S k()
k 1=

i 1–

∏
i 1=

N

∑=
0 P i() S i() 1–≤ ≤

0 P S 1–≤ ≤

N 1≥

S i() 1≥

S 1≥
IEEE P1603 Draft 4 Advanced Library Format (ALF) Reference Manual 167

1

5

10

15

20

25

30

35

40

45

50

55
11.4 Statements related to arithmetic model

11.4.1 Model qualifier

A model qualifier statement shall be defined as shown in

11.4.2 Auxiliary arithmetic model

An auxiliary arithmetic model shall be defined as shown in

An auxiliary arithmetic model can be considered as a special case of either a trivial arithmetic model or a partial
arithmetic model, since the rule for auxiliary qualifier is a true subset of the rule for model qualifier. In particu-
lar, the items auxiliary arithmetic model and violation are disallowed in the rule for auxiliary qualifier.

11.4.3 Arithmetic submodel

An arithmetic submodel shall be defined as shown in Syntax 142.

11.4.4 MIN-MAX statement

A min-max statement shall be defined as shown in

model_qualifier ::=
annotation

| annotation_container
| event_reference
| from-to
| auxiliary_arithmetic_model
| violation

Syntax 140—Model Qualifier statement

auxiliary_arithmetic_model ::=
nonescaped_identifier = arithmetic_value ;

| nonescaped_identifier [= arithmetic_value] { auxiliary_qualifier { auxiliary_qualifier } }
auxiliary_qualifier

annotation
| annotation_container
| event_reference
| from-to

Syntax 141—Auxiliary arithmetic model

arithmetic_submodel ::=
nonescaped_identifier = arithmetic_value ;

| nonescaped_identifier { [violation] min-max }
| nonescaped_identifier { header-table-equation [trivial_min-max] }
| nonescaped_identifier { min-typ-max }
| arithmetic_submodel_template_instantiation

Syntax 142—Arithmetic submodel
168 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 4

1

5

10

15

20

25

30

35

40

45

50

55
11.4.5 MIN-TYP-MAX statement

A min-typ-max statement shall be defined as shown in

11.4.6 Trivial MIN-MAX statement

A trivial min-max statement shall be defined as shown in

A trivial min-max statement defines the legal range of values for an arithmetic model. The arithmetic value asso-
ciated with the trivial min statement represent the smallest legal number. The arithmetic value associated with the
trivial max statement represents the greatest legal number. Per default, the range includes between negative and
positive infinity.

A trivial min-max statement within a dimension of a full arithmetic model defines the range of validity of a par-
ticular dimension. An application tool can still evaluate the header-table-equation statement outside the range of
validity, however, the accuracy of the evaluation can not be guaranteed.

The following semantic restrictions shall apply:

min-max ::=
min [max]

| max [min]
min ::=

MIN = arithmetic_value ;
| MIN = arithmetic_value { violation }
| MIN { [violation] header-table-equation }

max ::=
MAX = arithmetic_value ;

| MAX = arithmetic_value { violation }
| MAX { [violation] header-table-equation }

Syntax 143—MIN-MAX statement

min-typ-max ::=
[min-max] typ [min-max]

typ ::=
TYP = arithmetic_value ;

| TYP { header-table-equation }

Syntax 144—MIN-TYP-MAX statement

trivial_min-max ::=
trivial_min [trivial_max]

| trivial_max [trivial_min]
trivial_min ::=

MIN = arithmetic_value ;
trivial_max ::=

MAX = arithmetic_value ;

Syntax 145—
IEEE P1603 Draft 4 Advanced Library Format (ALF) Reference Manual 169

1

5

10

15

20

25

30

35

40

45

50

55
a) A partial arithmetic model that is not a dimension of a lookup table can either contain a trivial min-max
statement or a table statement but not both.

b) If a syntax rule allows both partial arithmetic model and full arithmetic model, a trivial min-max state-
ment shall be interpreted as a min-typ-max statement, if the arithmetic model contains neither a header-
table-equation statement nor a arithmetic submodel and no other arithmetic model can inherit the trivial
min-max statement.

Rule a) is established because a trivial min-max statement would be redundant or eventually contradictory to a
table statement, since the table statement already defines a discrete set of legal values.

Rule b) is established because the syntax rule for trivial min-max statement is a true subset of the syntax rule for
min-typ-max statement.

11.4.7 Arithmetic model container

An arithmetic model container shall be defined as shown in Syntax 146.

11.4.8 LIMIT statement

A limit statement shall be defined as shown in .

11.4.9 Event reference statement

An event reference statement shall be defined as shown in .

arithmetic_model_container ::=
arithmetic_model_container_identifier { arithmetic_model { arithmetic_model } }

Syntax 146—Arithmetic model container

limit ::=
LIMIT { limit_item { limit_item } }

limit_item ::=
limit_arithmetic_model

limit_arithmetic_model ::=
nonescaped_identifier [name_identifier] { { model_qualifier } limit_arithmetic_model_body }

limit_arithmetic_model_body ::=
limit_arithmetic_submodel { limit_arithmetic_submodel }

| min_max
limit_arithmetic_submodel ::=

nonescaped_identifier { [violation] min-max }

Syntax 147—LIMIT statement

event_reference ::=
PIN_reference_single_value_annotation [EDGE_NUMBER_single_value_annotation]

Syntax 148—Event reference statement
170 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 4

1

5

10

15

20

25

30

35

40

45

50

55
11.4.10 FROM and TO statements

A from statement and a to statement shall be defined as shown in Syntax 149.

The event refered by the from-statement and the to-statement, respectively, shall be called from-event and to-
event, respectively.

The from-and to-statements are subjected to the following semantic restriction.

11.4.11 EARLY and LATE statements

An early statement and a late statement shall be defined as shown in Syntax 151.

11.4.12 VIOLATION statement

A violation statement shall be defined as shown in Syntax 152.

A violation statement is subjected to the following semantic restriction.

from-to ::=
from [to]

| [from] to
from ::=

FROM { from-to_item { from-to_item } }
to ::=

TO { from-to_item { from-to_item } }
from-to_item ::=

event_reference
| THRESHOLD_arithmetic_model

Syntax 149—FROM and TO statements

SEMANTICS FROM {
CONTEXT {

TIME DELAY RETAIN SLEWRATE PULSSEWIDTH
SETUP HOLD RECOVERY REMOVAL NOCHANGE ILLEGAL SKEW

}
}
SEMANTICS TO {

CONTEXT {
TIME DELAY RETAIN SLEWRATE PULSSEWIDTH
SETUP HOLD RECOVERY REMOVAL NOCHANGE ILLEGAL SKEW

}
}

Syntax 150— Semantic restriction
IEEE P1603 Draft 4 Advanced Library Format (ALF) Reference Manual 171

1

5

10

15

20

25

30

35

40

45

50

55
A violation statement can contain a behavior statement with the following semantic restriction.

The violation statement can contain a message-type annotation and a message annotation.

early-late ::=
early late

early ::=
EARLY { early-late_item { early-late_item } }

late ::=
LATE { early-late_item { early-late_item } }

early-late_item ::=
DELAY_arithmetic_model

| RETAIN_arithmetic_model
| SLEWRATE_arithmetic_model

Syntax 151—EARLY and LATE statements

violation ::=
VIOLATION { violation_item { violation_item } }

| violation_template_instantiation
violation_item ::=

MESSAGE_TYPE_single_value_annotation
| MESSAGE_single_value_annotation
| behavior

Syntax 152—VIOLATION statement

SEMANTICS VIOLATION {
CONTEXT {

SETUP HOLD RECOVERY REMOVAL SKEW NOCHANGE ILLEGAL
LIMIT.arithmetic_model
LIMIT.arithmetic_model.MIN
LIMIT.arithmetic_model.MAX
LIMIT.arithmetic_model.arithmetic_submodel
LIMIT.arithmetic_model.arithmetic_submodel.MIN
LIMIT.arithmetic_model.arithmetic_submodel.MAX

}
}

Syntax 153— Semantic restriction

SEMANTICS VIOLATION.BEHAVIOR {
CONTEXT {

VECTOR.arithmetic_model
VECTOR.LIMIT.arithmetic_model
VECTOR.LIMIT.arithmetic_model.MIN
VECTOR.LIMIT.arithmetic_model.MAX
VECTOR.LIMIT.arithmetic_model.arithmetic_submodel
VECTOR.LIMIT.arithmetic_model.arithmetic_submodel.MIN
VECTOR.LIMIT.arithmetic_model.arithmetic_submodel.MAX

}
}

Syntax 154— Semantic restriction
172 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 4

1

5

10

15

20

25

30

35

40

45

50

55
A xxx annotation shall be defined using ALF language as shown in .

A xxx annotation shall be defined using ALF language as shown in .

11.5 Annotations for arithmetic models

11.5.1 UNIT annotation

A xxx annotation shall be defined using ALF language as shown in .

11.5.2 CALCULATION annotation

A xxx annotation shall be defined using ALF language as shown in .

KEYWORD MESSAGE_TYPE = single_value_annotation {
CONTEXT = VIOLATION ;
VALUETYPE = identifier ;
VALUES { information warning error }

}

Syntax 155— annotation

KEYWORD MESSAGE = single_value_annotation {
CONTEXT = VIOLATION ;
VALUETYPE = quoted_string ;

}

Syntax 156— annotation

KEYWORD UNIT = annotation {
CONTEXT = arithmetic_model ;
VALUETYPE = unit_value ;
DEFAULT = 1 ;

}

Syntax 157— annotation

KEYWORD CALCULATION = annotation {
CONTEXT = library_specific_object.arithmetic_model ;
VALUES { absolute incremental }
DEFAULT = absolute ;

}

Syntax 158— annotation
IEEE P1603 Draft 4 Advanced Library Format (ALF) Reference Manual 173

1

5

10

15

20

25

30

35

40

45

50

55
The meaning of the annotation values is shown in .

11.5.3 INTERPOLATION annotation

A xxx annotation shall be defined using ALF language as shown in .

The interpolation annotation shall apply for a dimension of a lokup table with a continuous range of values.
Every dimension in a lookup table can have its own interpolation annotation.

The meaning of the annotation values is shown in .

The mathematical operations for floor, ceiling, and linear are specified as follows:

Table 84—

annotation value description

absolute The arithmetic model data is complete within itself

incremental The arithmetic model data shall be combined with other arithmetic model data

KEYWORD INTERPOLATION = single_value_annotation {
CONTEXT = HEADER.arithmetic_model ;
VALUES { linear fit ceiling floor }
DEFAULT = fit ;

}

Syntax 159— annotation

Table 85—

annotation value description

linear linear interpolation shall be used

ceiling the next greater value in the table shall be used

floor the next lesser value in the table shall be used

fit linear or higher-order interpolation shall be used

y x() y x-()=

y x() x x-–() y x+()⋅ x+ x–() y x-()⋅+

x+ x-–
---=

y x() y x+()=

floor

ceiling

linear
174 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 4

1

5

10

15

20

25

30

35

40

45

50

55
where

x denotes the value in a dimension subjected to interpolation.
x- and x+ denote two subsequent values in the table associated with that dimension.

x- denotes the value to the left of x, such that x- < x, or else x- denotes the smallest value in the table.
x+ denotes the value to the right of x, such that x < x+, or else x+ denotes the largest value in the table.

y denotes the evaluation result of the arithmetic model.

The mathematical operation for fit can be chosen by the application, as long as the following conditions are satis-
fied:

y(x) is a continuous function of order N>0.
The first N-1 derivatives of y(x) are continuous.
y(x) is bound by y(x-) and y(x+).
In case of monotony, y(x) is also bound by linear interpolation applied to the left and the right neighbor of x.
In case of monotonous derivative, y(x) is also bound by linear interpolation applied to x itself.

These conditions are illustrated in the following figure.

Figure 19—Bounding regions for y(x) with INTERPOLATION=fit

11.5.4 DEFAULT annotation

A xxx annotation shall be defined using ALF language as shown in .

KEYWORD DEFAULT = single_value_annotation {
CONTEXT { arithmetic_model KEYWORD }
VALUETYPE = all_purpose_value ;

}

Syntax 160— annotation

x- x+

y(x+)

y(x-)

x- x+

y(x+)

y(x-)

x- x+

y(x+)

y(x-)

arbitrary y(x) monotonous y(x) monotonous d y/dx
IEEE P1603 Draft 4 Advanced Library Format (ALF) Reference Manual 175

1

5

10

15

20

25

30

35

40

45

50

55
11.6 TIME

A xxx statement shall be defined using ALF language as shown in .

A time statement can have a from-to statement as model qualifier.

11.6.1 TIME in context of a VECTOR declaration

A time statement can be a child or a grandchild of a vector declaration. In particular, the parent of the time state-
ment can be a limit statement. In the context of a limit statement, the time statement shall specify a smallest
required time or a largest allowed time interval. Otherwise, the time statement shall specify an actually measured
time interval.

If the vector declaration involves a vector expression, from-to statements featuring event reference statements
shall be used as model qualifier. The time statement shall model the measured time interval between the refered
events.

If the vector declaration involves a boolean expression, the time statement applies to a time interval during which
the boolean expression is true. A from-to statement shall not be used as model qualifier.

11.6.2 TIME in context of a HEADER statement

A time statement can be child of a header statement, thus representing a dimension of an arithmetic model.

If the arithmetic model is not a child of a limit statement, the time dimension shall be used to describe a quantity
changing over time, which can be visualized by a waveform.

If the arithmetic model is a child of a vector declaration, either a from statement or a to statement can be used as
model qualifier to define a temporal relationship between a refered event and the time dimension.

If the arithmetic model is a child of a limit statement, the time dimension shall be used to describe a dependency
between a limit for a measured quantity and the expected lifetime of an electronic circuit. A from-to statement
shall not be used as model qualifier.

11.6.3 TIME as auxiliary arithmetic model

A time statement can be a child of an arithmetic model, thus representing an auxiliary arithmetic model.

A measurement annotation (see Section 11.29.1) shall be used in conjunction with the time statement. The time
statement shall specify the time interval during which the measurement is taken.

If the parent arithmetic model is a child of a vector declaration, a from-to statement can be used to define a tem-
poral relationship between one or two events in the vector expression and the time interval.

KEYWORD TIME = arithmetic_model {
VALUETYPE = number ;

}
TIME { UNIT = 1e-9; }

Syntax 161— statement
176 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 4

1

5

10

15

20

25

30

35

40

45

50

55
11.7 FREQUENCY

A xxx statement shall be defined using ALF language as shown in .

11.7.1 FREQUENCY in context of a VECTOR declaration

A frequency statement can be a child or a grandchild of a vector declaration. In particular, the parent of the fre-
quency statement can be a limit statement. In the context of a limit statement, the frequency statement shall spec-
ify a smallest required occurence frequency or a largest allowed occurency frequency of the vector. Otherwise,
the frequency statement shall specify an actually measured occurence frequency of the vector.

11.7.2 FREQUENCY in context of a HEADER statement

A frequency statement can be child of a header statement, thus representing a dimension of an arithmetic model.

If the arithmetic model is a child of a vector declaration, the frequency dimension shall represent the occurence
frequency of the vector.

If the arithmetic model is not a child of a vector declaration, the frequency dimension shall be used to describe a
spectral properties of the arithmetic model in the frequency domain.

11.7.3 FREQUENCY as auxiliary arithmetic model

A frequency statement can be a child of an arithmetic model, thus representing an auxiliary arithmetic model.

A measurement annotation (see Section 11.29.1) shall be used in conjunction with the frequency statement. The
frequency statement shall specify the repetition frequency of the measurement.

A frequency statement can substitute a time statement in the capacity of an auxiliary arithmetic model, if no
from-to statement is used as model qualifier. In this case, the measurement repetition frequency f and the mea-
surement time interval t can be related by the equation f = 1 / t.

11.8 DELAY

A delay statement shall be defined using ALF language as shown in .

KEYWORD FREQUENCY = arithmetic_model {
VALUETYPE = number ;

}
FREQUENCY { UNIT = 1e9; MIN = 0; }

Syntax 162— statement

KEYWORD DELAY = arithmetic_model {
SI_MODEL = TIME ;

}

Syntax 163— statement
IEEE P1603 Draft 4 Advanced Library Format (ALF) Reference Manual 177

1

5

10

15

20

25

30

35

40

45

50

55
11.8.1 DELAY in context of a VECTOR declaration

A delay statement can be a child or a grandchild of a vector declaration involving a vector expression. A delay
statement shall have a from-to statement featuring event references as model qualifier. The delay statement shall
define the measured time interval between a from-event and a to-event. Both events shall be part of the vector
expression. A causal relationship between the from-event and the to-event is implied.

A delay statement with an incomplete model qualifier featuring only a from statement or only a to statement can
be used to specify an incremental time interval to be added to another time interval. The calculation annotation
(see Section 11.5.2) shall be used in conjunction with such an incomplete model qualifier.

11.8.2 DELAY in context of a library-specific object declaration

A delay statement can be a child of a library-specific object which can be a parent of a vector. Possible parents of
a vector include library, sublibrary, cell and wire. Within such a context, a delay statement can not have an event
reference within a from-to statement as model qualifier. A from-to statement can only feature threshold state-
ments. The specification given by the threshold statements shall be inherited by delay statements which are child
of a vector.

11.9 RETAIN

A retain statement shall be defined using ALF language as shown in .

A retain statement can be a child or a grandchild of a vector declaration involving a vector expression. A retain
statement can be used as a substitution for a delay statement in the case where the vector expression features
more than one possible to-event. Retain represents the time interval between the from-event and the earliest to-
event. Later to-events can be involved in a delay statement.

Retain in conjunction with delay is illustrated in Figure 20.

Figure 20—RETAIN and DELAY

KEYWORD RETAIN = arithmetic_model {
SI_MODEL = TIME ;

}

Syntax 164— statement

<fromPin>

<toPin>

RETAIN

DELAY

<toEdge> <toEdge>

<fromEdge>
178 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 4

1

5

10

15

20

25

30

35

40

45

50

55
11.10 SLEWRATE

A xxx statement shall be defined using ALF language as shown in .

Slewrate shall define the duration of a single event, measured between two reference transition points. If the par-
ent of the slewrate statement is a limit statement, the slewrate statement defines a minimum required or a maxi-
mum allowed duration of an event. Otherwise, slewrate defines the actually measured duration of an event.

11.10.1 SLEWRATE in context of a VECTOR declaration

A slewrate statement can be a child or a granddchild of a vector declaration. Slewrate can also be a dimension of
an arithmetic model in the context of a vector.

The slewrate statement can have an event reference statement and a from-to statement without event reference
as model qualifier. The from-and the to-statement can involve threshold statements.

11.10.2 SLEWRATE in context of a PIN declaration

A slewrate statement can be a child or a grandchild of a pin declaration. In this context, no from-to statement and
no event-reference statement is allowed as model qualifier.

The slewrate statement can have a rise statement or a fall statement as arithmetic submodel.

11.10.3 SLEWRATE in context of a library-specific object declaration

A slewrate statement can be a child of a library-specific object which can be a parent of a vector. Possible parents
of a vector include library, sublibrary, cell and wire. Within such a context, a slewrate statement can not have an
event reference as model qualifier. A from-to statement with threshold statements can be used as model qualifier.
The specification given by the threshold statements can be inherited by slewrate statements which are child of a
vector.

The slewrate statement can have a rise statement or a fall statement as arithmetic submodel.

11.11 SETUP and HOLD

A setup and a hold statement shall be defined using ALF language as shown in .

11.11.1 SETUP in context of a VECTOR declaration

A setup statement can be a child of a vector declaration. Setup represents the minimal required time interval
between a signal event and a synchronization event such that the signal is already stable when the synchroniza-

KEYWORD SLEWRATE = arithmetic_model {
SI_MODEL = TIME ;

}
SLEWRATE { MIN = 0; }

Syntax 165— statement
IEEE P1603 Draft 4 Advanced Library Format (ALF) Reference Manual 179

1

5

10

15

20

25

30

35

40

45

50

55
tion event occurs. The signal event and the synchronization event shall be represented as a from-event and a to-
event, respectively, within a from-to statement.

11.11.2 HOLD in context of a VECTOR declaration

A hold statement can be a child of a vector declaration.Hold represents the minimal required time interval
between a synchronization event and a signal event such that the synchronization event occurs while the signal is
still stable. The synchronization event and the signal event shall be represented as a from-event and a to-event,
respectively, within a from-to statement.

11.11.3 SETUP and HOLD in context of the same VECTOR declaration

A setup and a hold statement can be a child of the same vector, provided the vector expression features at least
one synchronization event and two signal events related to the synchronization event. The sum of the time inter-
vals represented by setup and hold represents a minimum required stability interval for the signal. This interval
shall be greater than zero.

Setup in conjunction with hold is illustrated in Figure 21.

Figure 21—SETUP and HOLD

11.12 RECOVERY and REMOVAL

A recovery and a removal statement shall be defined using ALF language as shown in .

KEYWORD SETUP = arithmetic_model {
SI_MODEL = TIME ;

}
KEYWORD HOLD = arithmetic_model {

SI_MODEL = TIME ;
}

Syntax 166— statement

SETUP

HOLD

<toEdge>

<toEdge>

<fromEdge>

<fromEdge>data

clock
180 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 4

1

5

10

15

20

25

30

35

40

45

50

55
11.12.1 RECOVERY in context of a VECTOR declaration

A recovery statement can be a child of a vector declaration. Recovery represents the minimal required time inter-
val between a controlling event with higher priority and a controlling event with lower priority such that the sig-
nal with higher priority is already inactive when the event on the signal with lower priority occurs. The event
with higher priority and the event with lower priority shall be represented as a from-event and a to-event, respec-
tively, within a from-to statement.

11.12.2 REMOVAL in context of a VECTOR declaration

A removal statement can be a child of a vector declaration. Removal represents the minimal required time inter-
val between a controlling event with lower priority and a controlling event with higher priority such that the sig-
nal with higher priority is still active when the event with lower priority occurs. The event with higher priority
and the event with lower priority shall be represented as a from-event and a to-event, respectively, within a from-
to statement.

11.12.3 RECOVERY and REMOVAL in context of the same VECTOR declaration

A recovery and a removal statement can be a child of the same vector, provided the vector expression features at
least one event with lower priority and two alternative events with highwe priority. The sum of the time intervals
represented by recovery and removal represents a minimum required stability interval for the signal with higher
priority. This interval shall be greater than zero.

Recovery in conjunction with removal is illustrated in Figure 22.

Figure 22—RECOVERY and REMOVAL

KEYWORD RECOVERY = arithmetic_model {
SI_MODEL = TIME ;

}
KEYWORD REMOVAL = arithmetic_model {

SI_MODEL = TIME ;
}

Syntax 167— statement

RECOVERY

REMOVAL

<toEdge>

<toEdge>

<fromEdge>

<fromEdge>

set, reset

clock

or

set, reset
IEEE P1603 Draft 4 Advanced Library Format (ALF) Reference Manual 181

1

5

10

15

20

25

30

35

40

45

50

55
11.13 NOCHANGE and ILLEGAL

A nochange and an illegal statement shall be defined using ALF language as shown in .

11.13.1 NOCHANGE in context of a VECTOR declaration

A nochange statement can be a child of a vector declaration.

If the vector declaration involves a boolean expression, nochange shall specify a minimum required time interval
during which the boolean expression is true. Nochange as a partial arithmetic model shall indicate a requirement
for the boolean expression to be forever true.

If the vector declaration involves a vector expression, nochange as a partial arithmetic model shall indicate a
requirement for the vector expression to be observed as specified. An optional from-to statement as model quali-
fier can indicate a requirement for the part of the vector expression within the time interval between the from-
event and the to-event to be observed as specified. Nochange as a full arithmetic model or as a trivial arithmetic
model shall furthermore specify a minimum required duration of the vector expression or part thereof.

11.13.2 ILLEGAL in context of a VECTOR declaration

An illegal statement can be a child of a vector declaration.

If the vector declaration involves a boolean expression, illegal shall specify a maximum allowed time interval
during which the boolean expression is true. Illegal as a partial arithmetic model shall indicate a requirement for
the boolean expression to be never true.

If the vector declaration involves a vector expression, illegal as a partial arithmetic model shall indicate that the
vector expression is not allowed to occur. An optional from-to statement as model qualifier can indicate that a
part of the vector expression within the time interval between the from-event and the to-event is not allowed to
occur. Illegal as a full arithmetic model or as a trivial arithmetic model shall furthermore specify a maximum tol-
erated duration of the vector expression or part thereof.

11.14 SKEW

A xxx statement shall be defined using ALF language as shown in .

A skew statement can be a child of a vector declaration.

KEYWORD NOCHANGE = arithmetic_model {
SI_MODEL = TIME ;

}
KEYWORD ILLEGAL = arithmetic_model {

SI_MODEL = TIME ;
}
NOCHANGE { MIN = 0; }
ILLEGAL { MIN = 0; }

Syntax 168— statement
182 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 4

1

5

10

15

20

25

30

35

40

45

50

55
11.14.1 SKEW involving two signals

A skew statement can specify a maximum allowed time interval between a from-event and a to-event. In this
case, a from-to statement is mandatory as model qualifier. The vector declaration shall specify a vector expres-
sion such that the to-event cannot occur before the from-event.

11.14.2 SKEW involving multiple signals

A skew statement can specify a maximum allowed time separation between multiple events. In this case, a multi-
value annotation containing pin references is mandatory as model qualifier. Optionally, this multi-value annota-
tion can be accompanied by another multi-value annotation containing a matching number of edge numbers. The
vector declaration shall specify a vector expression such that all events can occur simultaneously.

11.15 PULSEWIDTH

A xxx statement shall be defined using ALF language as shown in .

A pulsewidth statement shall define the time interval between two consecutive events on the same signal. If the
parent of the pulsewidth statement is a limit statement, pulsewidth defines a minimum required or a maximum
allowed duration of the time interval. Otherwise, pulsewidth defines the actually measured time interval.

11.15.1 PULSEWIDTH in context of a VECTOR declaration

A pulsewidth statement can be a child of a vector declaration. Pulsewidth can also be a dimension of an arith-
metic model in the context of a vector.

The pulsewidth statement can have an event-reference statement and a from-to statement without event reference
as model qualifier. The from-and the to-statement can involve threshold statements. The event reference shall
refer to the first of two consecutive events.

11.15.2 PULSEWIDTH in context of a PIN declaration

A pulsewidth statement can be a child or a grandchild of a pin declaration. In this context, no from-to statement
and no event-reference statement is allowed as model qualifier.

The pulsewidth statement can have a rise statement and/or a fall statement as arithmetic submodel. The switching
direction indicated by rise or fall shall refer to the first of two consequtive events.

KEYWORD SKEW = arithmetic_model {
SI_MODEL = TIME ;

}
SKEW { MIN = 0; }

Syntax 169— statement

KEYWORD PULSEWIDTH = arithmetic_model {
SI_MODEL = TIME ;

}
PULSEWIDTH { MIN = 0; }

Syntax 170— statement
IEEE P1603 Draft 4 Advanced Library Format (ALF) Reference Manual 183

1

5

10

15

20

25

30

35

40

45

50

55
11.15.3 PULSEWIDTH in context of a library-specific object declaration

A pulsewidth statement can be a child of a library-specific object which can be a parent of a vector. Possible par-
ents of a vector include library, sublibrary, cell and wire. Within such a context, a pulsewidth statement can not
have an event reference as model qualifier. A from-to statement with threshold statements can be used as model
qualifier. The specification given by the threshold statements can be inherited by pulsewidth statements which
are child of a vector.

The pulsewidth statement can have a rise statement or a fall statement as arithmetic submodel. The switching
direction indicated by rise or fall shall refer to the first of two consequtive events.

11.16 PERIOD

A xxx statement shall be defined using ALF language as shown in .

A period statement can be a child or a grandchild of a vector. Period can also be a dimension of an arithmetic
model in the context of a vector. Period shall define the time interval between two consecutive occurences of a
periodically repeating vector.

If the parent of the period statement is a limit statement, period defines a minimum required or a maximum
allowed time interval. Otherwise, period defines the actually measured time interval.

11.17 JITTER

A xxx statement shall be defined using ALF language as shown in .

A jitter statement can be a child or a grandchild of a vector. Jitter can also be a dimension of an arithmetic model
in the context of a vector. Jitter shall define the variability of a time interval between two consecutive occurences
of the periodically repeating vector.

If the parent of the jitte statement is a limit statement, jitter defines a minimum required or a maximum allowed
variability of the time interval. Otherwise, jitter defines the actually measured variability of the time interval.

The measurement annotation (see Section 11.29.1) is applicable as model qualifier.

KEYWORD PERIOD = arithmetic_model {
SI_MODEL = TIME ;

}
PERIOD { MIN = 0; }

Syntax 171— statement

KEYWORD JITTER = arithmetic_model {
SI_MODEL = TIME ;

}
JITTER { MIN = 0; }

Syntax 172— statement
184 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 4

1

5

10

15

20

25

30

35

40

45

50

55
11.18 THRESHOLD

A xxx statement shall be defined using ALF language as shown in .

The THRESHOLD represents a reference voltage level for timing measurements, normalized to the signal voltage
swing and measured with respect to the logic 0 voltage level, as shown in Figure 23.

Figure 23—THRESHOLD measurement definition

The voltage levels for logic 1 and 0 represent a full voltage swing.

Different threshold data for RISE and FALL can be specified or else the data shall apply for both rising and fall-
ing transitions.

The THRESHOLD statement has the form of an arithmetic model. If the submodel keywords RISE and FALL are
used, it has the form of an arithmetic model container.

The THRESHOLD statement can appear in the context of a FROM or TO container. In this case, it specifies the
applicable reference for the start and end point of the timing measurement, respectively.

The THRESHOLD statement can also appear in the context of a PIN. In this case, it specifies the applicable refer-
ence for the start or end point of timing measurements indicated by the PIN annotation inside a FROM or TO con-
tainer, unless a THRESHOLD is specified explicitly inside the FROM or TO container.

If both the RISE and FALL thresholds are specified and the switching direction of the applicable pin is clearly
indicated in the context of a VECTOR, the RISE or FALL data shall be applied accordingly.

KEYWORD THRESHOLD = arithmetic_model {
CONTEXT { PIN FROM TO }

}
THRESHOLD { MIN = 0; MAX = 1; }

Syntax 173— statement

V (logic 1)

V (logic 0)

∆Vrise ∆Vfall

time

threshold (rise) =
∆Vrise

∆V
threshold (fall) =

∆Vfall

∆V

∆V
IEEE P1603 Draft 4 Advanced Library Format (ALF) Reference Manual 185

1

5

10

15

20

25

30

35

40

45

50

55
If thresholds are needed for exact definition of the model data, the FROM and TO containers shall each contain an
arithmetic model for THRESHOLD.

FROM and TO containers with THRESHOLD definitions, yet without PIN annotations, can appear within
unnamed timing model definitions in the context of a VECTOR, CELL, WIRE, SUBLIBRARY, or LIBRARY
object for the purpose of specifying global threshold definitions for all timing models within scope of the defini-
tion. The following priorities apply:

a) THRESHOLD in the HEADER of the timing model
b) THRESHOLD in the FROM or TO statement within the timing model
c) THRESHOLD for timing model definition in the context of the same VECTOR
d) THRESHOLD within the PIN definition
e) THRESHOLD for timing model definition in the context of the same CELL or WIRE
f) THRESHOLD for timing model definition in the context of the same SUBLIBRARY
g) THRESHOLD for timing model definition in the context of the same LIBRARY
h) THRESHOLD for timing model definition outside LIBRARY

11.19 Annotations related to timing data

11.19.1 PIN reference annotation

If the timing measurements or timing constraints, respectively, apply semantically for two pins (see 11.9.1.1),
the FROM and TO containers shall each contain the PIN annotation.

Otherwise, if the timing measurements or timing constraints apply semantically only to one pin (see 11.9.1.3),
the PIN annotation shall be outside the FROM or TO container.

The following semantic restrictions shall apply.

11.19.2 EDGE_NUMBER annotation

A xxx statement shall be defined using ALF language as shown in .

The EDGE_NUMBER annotation within the context of a timing model shall specify the edge where the timing
measurement applies. The timing model shall be in the context of a VECTOR. The EDGE_NUMBER shall have an
unsigned value pointing to exactly one of subsequent vector_single_event expressions applicable to the
referenced pin. The EDGE_NUMBER shall be counted individually for each pin which appears in the VECTOR,
starting with zero (0).

SEMANTICS PIN = single_value_annotation {
CONTEXT {

FROM TO SLEWRATE PULSEWIDTH
CAPACITANCE RESISTANCE INDUCTANCE VOLTAGE CURRENT

}
}
SEMANTICS SKEW.PIN = multi_value_annotation ;

Syntax 174— Semantic restriction
186 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 4

1

5

10

15

20

25

30

35

40

45

50

55
If the timing measurements or timing constraints, apply semantically to two pins (see 11.9.1.1), the
EDGE_NUMBER annotation shall be legal inside the FROM or TO container in conjunction with the PIN annota-
tion.

Otherwise, if the timing measurements or timing constraints apply semantically only to one pin (see 11.9.1.3),
the EDGE_NUMBER annotation shall be legal outside the FROM or TO container in conjunction with the PIN
annotation.

11.20 PROCESS

A xxx statement shall be defined using ALF language as shown in .

The following identifiers can be used as predefined process corners:

?n?p process definition with transistor strength

where ? can be

s strong
w weak

The possible process name combinations are shown in Table 86.

KEYWORD EDGE_NUMBER = annotation {
CONTEXT { FROM TO SLEWRATE PULSEWIDTH SKEW }
VALUETYPE = unsigned_integer ;
DEFAULT = 0;

}
SEMANTICS EDGE_NUMBER = single_value_annotation {

CONTEXT { FROM TO SLEWRATE PULSEWIDTH }
}
SEMANTICS SKEW.EDGE_NUMBER = multi_value_annotation ;

Syntax 175— statement

KEYWORD PROCESS = arithmetic_model {
VALUETYPE = identifier ;

}
PROCESS { DEFAULT = nom; TABLE { nom snsp snwp wnsp wnwp } }

Syntax 176— statement

Table 86—Predefined process names

Process name Description

snsp Strong NMOS, strong PMOS.

snwp Strong NMOS, weak PMOS.
IEEE P1603 Draft 4 Advanced Library Format (ALF) Reference Manual 187

1

5

10

15

20

25

30

35

40

45

50

55
11.21 DERATE_CASE

A xxx statement shall be defined using ALF language as shown in .

The following identifiers can be used as predefined derating cases:

nom nominal case
bc? prefix for best case
wc? prefix for worst case

where ? can be

com suffix for commercial case
ind suffix for industrial case
mil suffix for military case

The possible derating case combinations are defined in Table 87.

wnsp Weak NMOS, strong PMOS.

wnwp Weak NMOS, weak PMOS.

KEYWORD DERATE_CASE = arithmetic_model {
VALUETYPE = identifier ;

}
DERATE_CASE { DEFAULT = nom;

TABLE { nom bccom wccom bcind wcind bcmil wcmil }}
}

Syntax 177— statement

Table 87—Predefined derating cases

Derating case Description

bccom Best case commercial.

bcind Best case industrial.

bcmil Best case military.

wccom Worst case commercial.

wcind Worst case military.

wcmil Worst case military.

Table 86—Predefined process names (Continued)

Process name Description
188 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 4

1

5

10

15

20

25

30

35

40

45

50

55
11.22 TEMPERATURE

A xxx statement shall be defined using ALF language as shown in .

TEMPERATURE can be used as argument in the HEADER of an arithmetic model for timing or electrical data. It
can also be used as an arithmetic model with DERATE_CASE as argument, in order to describe what temperature
applies for the specified derating case.

11.23 PIN-related arithmetic models for electrical data

Arithmetic models for electrical data can be associated with a pin of a cell. Their meaning is illustrated in
Figure 24.

Figure 24—General representation of electrical models around a pin

A pin is represented as a source node and a sink node. For pins with DIRECTION=input, the source node is
externally accessible. For pins with DIRECTION=output, the sink node is externally accessible.

11.23.1 CAPACITANCE, RESISTANCE, and INDUCTANCE

A xxx statement shall be defined using ALF language as shown in .

RESISTANCE and INDUCTANCE apply between the source and sink node. CAPACITANCE applies between
the sink node and ground. By default, the values for resistance, inductance and capacitance shall be zero (0).

11.23.2 VOLTAGE and CURRENT

A xxx statement shall be defined using ALF language as shown in .

KEYWORD TEMPERATURE = arithmetic_model {
VALUETYPE = number ;

}
TEMPERATURE { MIN = -273; }

Syntax 178— statement

source

resistance

capacitance

inductance

sink

voltage

node node currentcurrent

voltage
IEEE P1603 Draft 4 Advanced Library Format (ALF) Reference Manual 189

1

5

10

15

20

25

30

35

40

45

50

55
VOLTAGE and CURRENT can be measured at either source or sink node, depending on which node is externally
accessible. However, a voltage source can only be connected to a source node. The sense of measurement for
voltage shall be from the node to ground. The sense of measurement for current shall be into the node.

11.23.3 Context-specific semantics

An arithmetic model for VOLTAGE, CURRENT, SLEWRATE, RESISTANCE, INDUCTANCE, and CAPACI-
TANCE can be associated with a PIN in one of the following ways.

a) A model in the context of a PIN

Example

PIN my_pin {
CAPACITANCE = 0.025;

b) A model in the context of a CELL, WIRE, or VECTOR with PIN annotation

Example

VOLTAGE = 1.8 { PIN = my_pin; }

The model in the context of a PIN shall be used if the data is completely confined to the pin. That means, no
argument of the model shall make reference to any pin, since such reference implies an external dependency. A

KEYWORD CAPACITANCE = arithmetic_model {
VALUETYPE = number ;

}
KEYWORD RESISTANCE = arithmetic_model {

VALUETYPE = number ;
}
KEYWORD INDUCTANCE = arithmetic_model {

VALUETYPE = number ;
}
CAPACITANCE { UNIT = 1e-12; MIN = 0; }
RESISTANCE { UNIT = 1e3; MIN = 0; }
INDUCTANCE { UNIT = 1e-6; MIN = 0; }

Syntax 179— statement

KEYWORD VOLTAGE = arithmetic_model {
VALUETYPE = number ;

}
KEYWORD CURRENT = arithmetic_model {

VALUETYPE = number ;
}
VOLTAGE { UNIT = 1; }
CURRENT { UNIT = 1e-3; }

Syntax 180— statement
190 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 4

1

5

10

15

20

25

30

35

40

45

50

55
model with dependency only on environmental data not associated with a pin (e.g., TEMPERATURE, PROCESS,
and DERATE_CASE) can be described within the context of the PIN.

A model with dependency on external data applied to a pin (e.g., load capacitance) shall be described outside the
context of the PIN, using a PIN annotation. In particular, if the model involves a dependency on logic state or
logic transition of other PINs, the model shall be described within the context of a VECTOR.

Figure 25 illustrates electrical models associated with input and output pins.

Figure 25—Electrical models associated with input and output pins

Table 88 and Table 89 define how models are associated with the pin, depending on the context.

Table 88—Direct association of models with a PIN

Model Model in context of PIN Model in context of CELL, WIRE, and
VECTOR with PIN annotation

CAPACITANCE Pin self-capacitance. Externally controlled capacitance at the pin,
e.g., voltage-dependent.

INDUCTANCE Pin self-inductance. Externally controlled inductance at the pin,
e.g., voltage-dependent.

RESISTANCE Pin self-resistance. Externally controlled resistance at the pin,
e.g., voltage-dependent, in the context of a
VECTOR for timing-arc specific driver
resistance.

VOLTAGE Operational voltage measured at pin. Externally controlled voltage at the pin.

CURRENT Operational current measured into pin. Externally controlled current into pin.

SAME_PIN_TIMING_
MEASUREMENT

For model definition, default, etc.;
not for the timing arc.

In context of VECTOR for timing arc, other
context for definition, default, etc.

SAME_PIN_TIMING_
CONSTRAINT

For model definition, default, etc.;
not for the timing arc.

In context of VECTOR for timing arc, other
context for definition, default, etc.

input pin output pin

source sink sinksource

voltage

current

voltage

current

external loadexternal driver
IEEE P1603 Draft 4 Advanced Library Format (ALF) Reference Manual 191

1

5

10

15

20

25

30

35

40

45

50

55
Example

CELL my_cell {
PIN pin1 { DIRECTION=input; CAPACITANCE = 0.05; }
PIN pin2 { DIRECTION=output; LIMIT { CAPACITANCE { MAX=1.2; } } }
PIN pin3 { DIRECTION=input; }
PIN pin4 { DIRECTION=input; }
CAPACITANCE {

PIN=pin3;
HEADER { VOLTAGE { PIN=pin4; } }
EQUATION { 0.25 + 0.34*VOLTAGE }

}
}

The capacitance on pin1 is 0.05. The maximum allowed load capacitance on pin2 is 1.2. The capacitance
on pin3 depends on the voltage on pin4.

11.24 POWER and ENERGY

A xxx statement shall be defined using ALF language as shown in .

Table 89—External association of models with a PIN

Model / Context LIMIT within PIN or with PIN annotation Model argument with PIN
annotation

CAPACITANCE Min or max limit for applicable load. Load for model characterization.

INDUCTANCE Min or max limit for applicable load. Load for model characterization.

RESISTANCE Min or max limit for applicable load. Load for model characterization.

VOLTAGE Min or max limit for applicable voltage. Voltage for model characterization.

CURRENT Min or max limit for applicable current. Current for model characterization.

SAME_PIN_TIMING_
MEASUREMENT

Currently applicable for min or max limit for
SLEWRATE.

Stimulus with SLEWRATE for model
characterization.

SAME_PIN_TIMING_
CONSTRAINT

N/A, since the keyword means a min or max
limit by itself.

N/A

KEYWORD POWER = arithmetic_model {
VALUETYPE = number ;

}
KEYWORD ENERGY = arithmetic_model {

VALUETYPE = number ;
}
POWER { UNIT = 1e-3; }
ENERGY { UNIT = 1e-12; }

Syntax 181— statement
192 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 4

1

5

10

15

20

25

30

35

40

45

50

55
The purpose of power calculation is to evaluate the electrical power supply demand and electrical power dissipa-
tion of an electronic circuit. In general, both power supply demand and power dissipation are the same, due to the
energy conservation law. However, there are scenarios where power is supplied and dissipated locally in different
places. The power models in ALF shall be specified in such a way that the total power supply and dissipation of
a circuit adds up correctly to the same number.

Example

A capacitor C is charged from 0 volt to V volt by a switched DC source. The energy supplied by the
source is C*V2. The energy stored in the capacitor is 1/2*C*V2. Hence the dissipated energy is also 1/
2*C*V2. Later the capacitor is discharged from V volt to 0 volt. The supplied energy is 0. The dissipated
energy is 1/2*C*V2. A supply-oriented power model can associate the energy E1=C*V

2 with the charg-
ing event and E2=0 with the discharging event. The total energy is E=E1+E2=C*V

2. A dissipation-ori-
ented power model can associate the energy E3=1/2*C*V

2 with both the charging and discharging
event. The total energy is also E=2*E3=C*V

2.

In many cases, it is not so easy to decide when and where the power is supplied and where it is dissipated. The
choice between a supply-oriented and dissipation-oriented model or a mixture of both is subjective. Hence the
ALF language provides no means to specify, which modeling approach is used. The choice is up to the model
developer, as long as the energy conservation law is respected.

POWER and/or ENERGY models shall be in the context of a CELL or within a VECTOR. The total energy and/or
power of a cell shall be calculated by combining the data of all models within the scope of the CELL or the VEC-
TORs within the cell.

The data for POWER and/or ENERGY shall be positive when energy is actually supplied to the CELL and/or dissi-
pated within the CELL. The data shall be negative when energy is actually supplied or restored by the CELL.

11.25 FLUX and FLUENCE

A xxx statement shall be defined using ALF language as shown in .

The purpose of hot electron calculation is to evaluate the damage done to the performance of an electronic device
due to the hot electron effect. The hot electron effect consists in accumulation of electrons trapped in the gate
oxide of a transistor. The more electrons are trapped, the more the device slows down. At a certain point, the per-
formance specification no longer is met and the device is considered to be damaged.

KEYWORD FLUX = arithmetic_model {
VALUETYPE = number ;

}
KEYWORD FLUENCE = arithmetic_model {

VALUETYPE = number ;
}
FLUX { UNIT = 1e-3; }
FLUENCE { UNIT = 1e-12; }

Syntax 182— statement
IEEE P1603 Draft 4 Advanced Library Format (ALF) Reference Manual 193

1

5

10

15

20

25

30

35

40

45

50

55
FLUX and/or FLUENCE models shall be in the context of a CELL or within a VECTOR. Total fluence and/or flux
of a cell shall be calculated by combining the data of all models within the scope of the CELL or the VECTORs
within the cell.

Both FLUX and FLUENCE are measures for hot electron damage. FLUX relates to FLUENCE in the same way as
POWER relates to ENERGY.

11.26 DRIVE_STRENGTH

A xxx statement shall be defined using ALF language as shown in .

DRIVE_STRENGTH is a unit-less, abstract measure for the drivability of a PIN. It can be used as a substitute of
driver RESISTANCE. The higher the DRIVE_STRENGTH, the lower the driver RESISTANCE. However,
DRIVE_STRENGTH can only be used within a coherent system of calculation models, since it does not represent
an absolute quantity, as opposed to RESISTANCE. For example, the weakest driver of a library can have drive
strength 1, the next stronger driver can have drive strength 2 and so forth. This does not necessarily mean the
resistance of the stronger driver is exactly half of the resistance of the weaker driver.

An arithmetic model for conversion from DRIVE_STRENGTH to RESISTANCE can be given to relate the quan-
tity DRIVE_STRENGTH across technology libraries.

Example

SUBLIBRARY high_speed_library {
RESISTANCE {

HEADER { DRIVE_STRENGTH } EQUATION { 800 / DRIVE_STRENGTH }
}
CELL high_speed_std_driver {

PIN Z { DIRECTION = output; DRIVE_STRENGTH = 1; }
}

}
SUBLIBRARY low_power_library {

RESISTANCE {
HEADER { DRIVE_STRENGTH } EQUATION { 1600 / DRIVE_STRENGTH }

}
CELL low_power_std_driver {

PIN Z { DIRECTION = output; DRIVE_STRENGTH = 1; }
}

}

Drive strength 1 in the high speed library corresponds to 800 ohm. Drive strength 1 in the low power library cor-
responds to 1600 ohm.

KEYWORD DRIVE_STRENGTH = arithmetic_model {
VALUETYPE = number ;

}
DRIVE_STRENGTH { MIN = 0; }

Syntax 183— statement
194 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 4

1

5

10

15

20

25

30

35

40

45

50

55
NOTE—Any particular arithmetic model for RESISTANCE in either library shall locally override the conversion formula
from drive strength to resistance.

11.27 SWITCHING_BITS

A xxx statement shall be defined using ALF language as shown in .

The quantity SWITCHING_BITS applies only for bus pins. The range is from 0 to the width of the bus. Usually,
the quantity SWITCHING_BITS is not calculated by an arithmetic model, since the number of switching bits on
a bus depends on the functional specification rather than the electrical specification. However,
SWITCHING_BITS can be used as argument in the HEADER of an arithmetic model to calculate electrical quan-
tities, for instance, energy consumption.

Example

CELL my_rom {
PIN [3:0] addr { DIRECTION=input; SIGNALTYPE=address; }
PIN [7:0] dout { DIRECTION=output; SIGNALTYPE=data; }
VECTOR (?! addr -> ?! dout) {

ENERGY {
HEADER {

SWITCHING_BITS addr_bits { PIN = addr; }
SWITCHING_BITS dout_bits { PIN = dout; }

}
EQUATION { 0.45*LOG(addr_bits) + 2.6*dout_bits }

}
}

}

The energy consumption of my_rom depends on the number of switching data bits and on the logarithm of the
number of switching address bits.

11.28 NOISE and NOISE MARGIN

A xxx statement shall be defined using ALF language as shown in .

11.28.1 NOISE MARGIN

Noise margin is defined as the maximal allowed difference between the ideal signal voltage under a well-speci-
fied operation condition and the actual signal voltage normalized to the ideal voltage swing. This is illustrated in
Figure 26.

KEYWORD SWITCHING_BITS = arithmetic_model {
VALUETYPE = unsigned_integer ;

}

Syntax 184— statement
IEEE P1603 Draft 4 Advanced Library Format (ALF) Reference Manual 195

1

5

10

15

20

25

30

35

40

45

50

55
Figure 26—Definition of noise margin

NOISE_MARGIN is a pin-related quantity. It can appear either in the context of a PIN statement or in the context
of a VECTOR statement with PIN annotation. It can also appear in the global context of a CELL, SUBLIBRARY,
or LIBRARY statement.

If a NOISE_MARGIN statement appears in multiple contexts, the following priorities apply:

a) NOISE_MARGIN with PIN annotation in the context of the VECTOR, NOISE_MARGIN with PIN
annotation in the context of the CELL, or NOISE_MARGIN in the context of the PIN

b) NOISE_MARGIN without PIN annotation in the context of the CELL
c) NOISE_MARGIN in the context of the SUBLIBRARY
d) NOISE_MARGIN in the context of the LIBRARY
e) NOISE_MARGIN outside the LIBRARY

11.28.2 NOISE

Noise is defined as thee actual measured noise against which the noise margin is compared.

11.29 Annotations and statements related to electrical models

11.29.1 MEASUREMENT annotation

A xxx statement shall be defined using ALF language as shown in .

KEYWORD NOISE = arithmetic_model {
VALUETYPE = number ;

}
KEYWORD NOISE_MARGIN = arithmetic_model {

VALUETYPE = number ;
}
NOISE { MIN = 0; }
NOISE_MARGIN { MIN = 0; MAX = 1; }

Syntax 185— statement

V ideal (logic 0)

V ideal (logic 1)

V min (logic 1)

V max (logic 0)

∆V1

∆V0

∆V

noise margin (high) =

noise margin (low) =

∆V1

∆V

∆V

∆V0
196 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 4

1

5

10

15

20

25

30

35

40

45

50

55
Arithmetic models can have a MEASUREMENT annotation. This annotation indicates the type of measurement
used for the computation in arithmetic model.

The meaning of the annotation values is shown in Table 90.

Their mathematical definitions are shown in Figure 27.

Figure 27—Mathematical definitions for MEASUREMENT annotations

Arithmetic models with certain values of MEASUREMENT annotation can also have either TIME or FREQUENCY
as auxiliary arithmetic models.

KEYWORD MEASUREMENT = single_value_annotation {
VALUETYPE = identifier ;
VALUES {

transient static average absolute_average rms peak
}
CONTEXT {

ENERGY POWER CURRENT VOLTAGE FLUX FLUENCE JITTER
}

}

Syntax 186— statement

Table 90—MEASUREMENT annotation

Annotation string Description

transient Measurement is a transient value.

static Measurement is a static value.

average Measurement is an average value.

rms Measurement is an root mean square value.

peak Measurement is a peak value.

max E t()() E t()sgn⋅ t T=

E t()d

t 0=()

t T=()

∫ E t() td

t 0=()

t T=()

∫

T

E t()2
td

t 0=()

t T=()

∫

T

E constant=

transient

static

average

rms

peak
IEEE P1603 Draft 4 Advanced Library Format (ALF) Reference Manual 197

1

5

10

15

20

25

30

35

40

45

50

55
The semantics are defined in Table 91.

In the case of average and rms, the interpretation FREQUENCY = 1 / TIME is valid. Either one of these
annotations shall be mandatory. The values for average measurements and for rms measurements scale lin-
early with FREQUENCY and 1 / TIME, respectively.

In the case of transient and peak, the interpretation FREQUENCY = 1 / TIME is not valid. Either one
of these annotations shall be optional. The values do not necessarily scale with TIME or FREQUENCY. The TIME
or FREQUENCY annotations for transient measurements are purely informational.

11.29.2 TIME to peak measurement

For a model in the context of a VECTOR, with a peak measurement, the TIME annotation shall define the time
between a reference event within the vector_expression and the instant when the peak value occurs.

For that purpose, either the FROM or the TO statement shall be used in the context of the TIME annotation, con-
taining a PIN annotation and, if necessary, a THRESHOLD and/or an EDGE_NUMBER annotation.

If the FROM statement is used, the start point shall be the reference event and the end point shall be the occur-
rence time of the peak, as shown in Figure 28.

Figure 28—Illustration of time to peak using FROM statement

Table 91—Semantic interpretation of MEASUREMENT, TIME, or FREQUENCY

MEASUREMENT
annotation Semantic meaning of TIME Semantic meaning of FREQUENCY

transient Integration of analog measurement is done
during that time window.

Integration of analog measurement is
repeated with that frequency.

static N/A N/A

average Average value is measured over that time
window.

Average value measurement is repeated
with that frequency.

rms Root-mean-square value is measured over
that time window.

Root-mean-square measurement is repeated
with that frequency.

peak Peak value occurs at that time (only within
context of VECTOR).

Observation of peak value is repeated with
that frequency.

TIME

<fromPin> <fromThreshold>

<fromEdge>

<modelValue>
MEASUREMENT = peak
198 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 4

1

5

10

15

20

25

30

35

40

45

50

55
If the TO statement is used, the start point shall be the occurrence time of the peak and the end point shall be the
reference event, as shown in Figure 29.

Figure 29—Illustration of time to peak using TO statement

11.30 CONNECTIVITY

A xxx statement shall be defined using ALF language as shown in .

A xxx statement shall be defined using ALF language as shown in .

Connectivity can also be described as a lookup table model. This description is usually more compact than the
description using the BETWEEN statements.

KEYWORD CONNECTIVITY = arithmetic_model {
VALUETYPE = boolean ;
VALUES { 1 0 ? }

}

Syntax 187— statement

KEYWORD DRIVER = arithmetic_model {
VALUETYPE = identifier ;
CONTEXT = CONNECTIVITY.HEADER

}
KEYWORD RECEIVER = arithmetic_model {

VALUETYPE = identifier ;
CONTEXT = CONNECTIVITY.HEADER

}

Syntax 188— statement

TIME

<toPin> <toThreshold>

<toEdge>

MEASUREMENT = peak

<modelValue>
IEEE P1603 Draft 4 Advanced Library Format (ALF) Reference Manual 199

1

5

10

15

20

25

30

35

40

45

50

55
The connectivity model can have the arguments shown in Table 92 in the HEADER.

Each dimension shall contain a TABLE.

The connectivity model specifies the allowed and disallowed connections amongst drivers or receivers in one-
dimensional tables or between drivers and receivers in two-dimensional tables.The boolean literals in the table
refer to the CONNECT_RULE as shown in Table 93.

11.31 SIZE

A xxx statement shall be defined using ALF language as shown in .

11.32 AREA

A xxx statement shall be defined using ALF language as shown in .

Table 92—Arguments for connectivity

Argument Value type Description

DRIVER string Dimension of connectivity function.

RECEIVER string Dimension of connectivity function.

Table 93—Boolean literals in non-interpolateable tables

Boolean literal Description

1 CONNECT_RULE is True.

0 CONNECT_RULE is False.

? CONNECT_RULE does not apply.

KEYWORD SIZE = arithmetic_model {
VALUETYPE = unsigned_number ;

}

Syntax 189— statement

KEYWORD AREA = arithmetic_model {
VALUETYPE = unsigned_number ;

}

Syntax 190— statement
200 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 4

1

5

10

15

20

25

30

35

40

45

50

55
11.33 WIDTH

A xxx statement shall be defined using ALF language as shown in .

11.34 HEIGHT

A xxx statement shall be defined using ALF language as shown in .

11.35 LENGTH

A xxx statement shall be defined using ALF language as shown in .

11.36 DISTANCE

A xxx statement shall be defined using ALF language as shown in .

KEYWORD WIDTH = arithmetic_model {
VALUETYPE = unsigned_number ;

}

Syntax 191— statement

KEYWORD HEIGHT = arithmetic_model {
VALUETYPE = unsigned_number ;

}

Syntax 192— statement

KEYWORD LENGTH = arithmetic_model {
VALUETYPE = unsigned_number ;

}

Syntax 193— statement

KEYWORD DISTANCE = arithmetic_model {
VALUETYPE = unsigned_number ;

}

Syntax 194— statement
IEEE P1603 Draft 4 Advanced Library Format (ALF) Reference Manual 201

1

5

10

15

20

25

30

35

40

45

50

55
11.37 OVERHANG

A xxx statement shall be defined using ALF language as shown in .

11.38 PERIMETER

A xxx statement shall be defined using ALF language as shown in .

11.39 EXTENSION

A xxx statement shall be defined using ALF language as shown in .

11.40 THICKNESS

A xxx statement shall be defined using ALF language as shown in .

KEYWORD OVERHANG = arithmetic_model {
VALUETYPE = unsigned_number ;

}

Syntax 195— statement

KEYWORD PERIMETER = arithmetic_model {
VALUETYPE = unsigned_number ;

}

Syntax 196— statement

KEYWORD EXTENSION = arithmetic_model {
VALUETYPE = unsigned_number ;

}

Syntax 197— statement

KEYWORD THICKNESS = arithmetic_model {
VALUETYPE = unsigned_number ;

}

Syntax 198— statement
202 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 4

1

5

10

15

20

25

30

35

40

45

50

55
11.41 Annotations for physical models

11.41.1 CONNECT_RULE annotation

A xxx statement shall be defined using ALF language as shown in .

The meaning of the annotation values is shown in Table 94.

It is not necessary to specify more than one rule between a given set of objects. If one rule is specified to be True,
the logical value of the other rules can be implied shown in Table 95.

11.41.2 BETWEEN annotation

A xxx statement shall be defined using ALF language as shown in .

If the BETWEEN statement contains only one identifier, than the CONNECTIVITY shall apply between multiple
instances of the same object.

KEYWORD CONNECT_RULE = single_value_annotation {
VALUETYPE = identifier ;
VALUES { must_short can_short cannot_short }
CONTEXT = CONNECTIVITY;

}

Syntax 199— statement

Table 94—CONNECT_RULE annotation

Annotation string Description

must_short Electrical connection required.

can_short Electrical connection allowed.

cannot_short Electrical connection disallowed.

Table 95—Implications between connect rules

must_short cannot_short can_short

False False True

False True False

True False N/A
IEEE P1603 Draft 4 Advanced Library Format (ALF) Reference Manual 203

1

5

10

15

20

25

30

35

40

45

50

55
The BETWEEN statement within DISTANCE or LENGTH shall identify the objects for which the measurement
applies.

If the BETWEEN statement contains only one identifier, than the DISTANCE or LENGTH, respectively, shall
apply between multiple instances of the same object, as shown in the following example and Figure 30.

Example

DISTANCE = 4 { BETWEEN { object1 object2 } }
LENGTH = 2 { BETWEEN { object1 object2 } }

Figure 30—Illustration of LENGTH and DISTANCE

11.41.3 DISTANCE-MEASUREMENT annotation

A xxx statement shall be defined using ALF language as shown in .

The mathematical definitions for distance measurements between two points with differential coordinates ∆x and
∆y are:

— euclidean distance = (∆x2 + ∆y2)1/2

— horizontal distance = ∆x
— vertical distance = ∆y
— manhattan distance = ∆x + ∆y

KEYWORD BETWEEN = multi_value_annotation {
VALUETYPE = identifier ;
CONTEXT { DISTANCE LENGTH OVERHANG CONNECTIVITY }

}

Syntax 200— statement

KEYWORD DISTANCE_MEASUREMENT = single_value_annotation {
VALUETYPE = identifier ;
VALUES { euclidean horizontal vertical manhattan }
DEFAULT = euclidean ;
CONTEXT = DISTANCE ;

}

Syntax 201— statement

object1 object2
LENGTH=2

DISTANCE=4
204 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 4

1

5

10

15

20

25

30

35

40

45

50

55
11.41.4 REFERENCE annotation container

A xxx statement shall be defined using ALF language as shown in .

The meaning of the annotation values is illustrated in Figure 31.

Figure 31—Illustration of REFERENCE for DISTANCE

11.41.5 ANTENNA reference annotation

A xxx statement shall be defined using ALF language as shown in .

In hierarchical design, a PIN with physical PORTs can be abstracted. Therefore, an arithmetic model for SIZE,
AREA, PERIMETER, etc. **relevant?? for certain antenna rules can be precalculated. An ANTENNA statement
within the arithmetic model enables references to the set of antenna rules for which the arithmetic model applies

Example

KEYWORD REFERENCE = annotation_container {
CONTEXT = DISTANCE ;

}
SEMANTICS REFERENCE.identifier = single_value_annotation {

VALUETYPE = identifier ;
VALUES { center origin near_edge far_edge }
DEFAULT = origin ;

}

Syntax 202— statement

SEMANTICS ANTENNA = annotation {
VALUETYPE = identifier ;
CONTEXT { PIN.SIZE PIN.AREA PIN.PERIMETER }

}

Syntax 203— statement

DISTANCE

REFERENCE = near_edge

object 1 object 2

DISTANCE

REFERENCE = center

object 1 object 2
IEEE P1603 Draft 4 Advanced Library Format (ALF) Reference Manual 205

1

5

10

15

20

25

30

35

40

45

50

55
CELL cell1 {
PIN pin1 {

AREA poly_area = 1.5 {
LAYER = poly;
ANTENNA { individual_m1 individual_via1 }

}
AREA m1_area = 1.0 {

LAYER = metal1;
ANTENNA { individual_m1 }

}
AREA via1_area = 0.5 {

LAYER = via1;
ANTENNA { individual_via1 }

}
}

}

The area poly_area is used in the rules individual_m1 and individual_via1.
The area m1_area is used in the rule individual_m1 only.
The area via1_area is used in the rule individual_via1 only.

The case with diffusion is illustrated in the following example:

CELL my_diode {
CELLTYPE = special; ATTRIBUTE { DIODE }
PIN my_diode_pin {

AREA = 3.75 {
LAYER = diffusion;
ANTENNA { rule1_for_diffusion rule2_for_diffusion }

}
}

}

11.41.6 PATTERN reference annotation

A xxx statement shall be defined using ALF language as shown in .

Reference to a PATTERN shall be legal within arithmetic models, if the pattern and the model are within the
scope of the same parent object.

SEMANTICS PATTERN = single_value_annotation {
VALUETYPE = identifier ;
CONTEXT {

LENGTH WIDTH HEIGHT SIZE AREA THICKNESS
PERIMETER EXTENSION

}
}

Syntax 204— statement
206 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 4

1

5

10

15

20

25

30

35

40

45

50

55
11.42 Arithmetic submodels for timing and electrical data

The arithmetic submodels shown in Table 96 are only applicable in the context of electrical modeling.

11.43 Arithmetic submodels for physical data

The arithmetic submodels shown in Table 97 are only applicable in the context of physical modeling.

Table 96—Submodels applicable for timing and electrical modeling

Object Description

HIGH Applicable for electrical data measured at a logic high state of a pin.

LOW Applicable for electrical data measured at a logic low state of a pin.

RISE Applicable for electrical data measured during a logic low to high transition of a pin.

FALL Applicable for electrical data measured during a logic high to low transition of a pin.

Table 97—Submodels applicable for physical modeling

Object Description

HORIZONTAL Applicable for layout measurements in 0 degree, i.e., horizontal direction.

VERTICAL Applicable for layout measurements in 90 degree, i.e., vertical direction.

ACUTE Applicable for layout measurements in 45 degree direction.

OBTUSE Applicable for layout measurements in 135 degree direction.
IEEE P1603 Draft 4 Advanced Library Format (ALF) Reference Manual 207

1

5

10

15

20

25

30

35

40

45

50

55
208 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 4

1

5

10

15

20

25

30

35

40

45

50

55
Annex A

(informative)

Syntax rule summary

This summary replicates the syntax detailed in the preceding clauses. If there is any conflict, in detail or com-
pleteness, the syntax presented in the clauses shall considered as the normative definition.

The current ordering is as each item appears in its subchapter; this needs to be updated to be complete.

A.1 Lexical definitions

any_character ::= (see6.2.3)
reserved_character

| nonreserved_character
| escape_character
| whitespace

reserved_character ::= (see 6.2.3)
& | | | ^ | ~ | + | - | * | / | % | ? | ! | = | < | > | : | (|) | [|] | { | } | @ | ; | , | . | ” | ’

nonreserved_character ::= (see 6.2.4)
letter | digit | _ | $ | #

letter ::=
a | b | c | d | e | f | g | h | i | j | k | l | m | n | o | p | q | r | s | t | u | v | w | x | y | z

| A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W
| X | Y | Z

digit ::=
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

escape_character ::= (see 6.2.5)
\

delimiter ::= (see 6.3)
reserved_character

| && | ~& | || | ~| | ~^ | == | != | ** | >= | <= | ?! | ?~ | ?- | ?? | ?* | *?
| -> | <-> | &> | <&> | >> | <<

comment ::= (see 6.2)
single_line_comment

| block_comment
integer ::= (see 6.5)

[sign] unsigned
sign ::=

+ | -
unsigned ::=

digit { _ | digit }
non_negative_number ::=

unsigned [. unsigned]
| unsigned [. unsigned] E [sign] unsigned

number ::=
[sign] non_negative_number

bit_literal ::= (see 6.7)
numeric_bit_literal
IEEE P1603 Draft 4 Advanced Library Format (ALF) Reference Manual 209

1

5

10

15

20

25

30

35

40

45

50

55
| alphabetic_bit_literal
| dont_care_literal
| random_literal

numeric_bit_literal ::=
0 | 1

alphabetic_bit_literal ::=
X | Z | L | H | U | W

| x | z | l | h | u | w
dont_care_literal ::=

?
random_literal ::=

*
based_literal ::= (see 6.8)

binary_base { _ | binary_digit }
| octal_base { _ | octal_digit }
| decimal_base { _ | digit }
| hex_base { _ | hex_digit }

binary_base ::=
'B | 'b

binary_digit ::=
bit_literal

octal_base ::=
'O | 'o

octal_digit ::=
binary_digit | 2 | 3 | 4 | 5 | 6 | 7

decimal_base ::=
'D | 'd

hex_base ::=
'H | 'h

hex_digit ::=
octal_digit | 8 | 9 | A | B | C | D | E | F | a | b | c | d | e | f

edge_literal ::= (see 6.9)
bit_edge_literal

| word_edge_literal
| symbolic_edge_literal

bit_edge_literal ::=
bit_literal bit_literal

word_edge_literal ::=
based_literal based_literal

symbolic_edge_literal ::=
?? | ?~ | ?! | ?-

quoted_string ::= (see 6.10)
" { any_character } "

identifiers ::= (see 6.11)
identifier { identifier }

identifier ::=
nonescaped_identifier

| escaped_identifier
| placeholder_identifier
| hierarchical_identifier

nonescaped_identifier ::= (see 6.11.1)
nonreserved_character { nonreserved_character }
210 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 4

1

5

10

15

20

25

30

35

40

45

50

55
escaped_identifier ::= (see 6.11.2)
escape_character escaped_characters

escaped_characters ::=
escaped_character { escaped_character }

escaped_character ::=
nonreserved_character

| reserved_character
| escape_character

placeholder_identifier ::= (see 6.11.3)
< nonescaped_identifier >

hierarchical_identifier ::= (see 6.11.4)
identifier . { identifier . } identifier

arithmetic_values ::= (see 6.6.1)
arithmetic_value { arithmetic_value }

arithmetic_value ::=
number

| identifier
| pin_value

string_value ::= (see 6.6.2)
quoted_string

| identifier
edge_values ::= (see 6.6.3)

edge_value { edge_value }

edge_value ::=
(edge_literal)

index_value ::= (see 6.6.4)
unsigned

| identifier

A.2 Auxiliary definitions

index ::= (see 7.1.1)
[index_range]

| [index_value]
index_range ::= (see 7.1.2)

index_value : index_value
pin_assignments ::= (see 7.2.1)

pin_assignment { pin_assignment }
pin_assignment ::=

pin_variable = pin_value ;
pin_variables ::= (see 7.2.2)

pin_variable { pin_variable }
pin_variable ::=

pin_variable_identifier [index]
pin_values ::= (see 7.2.3)

pin_value { pin_value }
pin_value ::=

pin_variable
| bit_literal
| based_literal
| unsigned
IEEE P1603 Draft 4 Advanced Library Format (ALF) Reference Manual 211

1

5

10

15

20

25

30

35

40

45

50

55
annotation ::= (see 7.3.1)
one_level_annotation

| two_level_annotation
| multi_level_annotation

one_level_annotations ::=
one_level_annotation { one_level_annotation }

one_level_annotation ::=
single_value_annotation

| multi_value_annotation
single_value_annotation ::=

identifier = annotation_value ;
multi_value_annotation ::=

identifier { annotation_values }
two_level_annotations ::=

two_level_annotation { two_level_annotation }
two_level_annotation ::=

one_level_annotation
| identifier [= annotation_value]

{ one_level_annotations }
multi_level_annotations ::=

multi_level_annotation { multi_level_annotation }
multi_level_annotation ::=

one_level_annotation
| identifier [= annotation_value]

{ multi_level_annotations }
annotation_values ::= (see 7.3.2)

annotation_value { annotation_value }
annotation_value ::=

index_value
| string_value
| edge_value
| pin_value
| arithmetic_value
| boolean_expression
| control_expression

all_purpose_items ::= (see 7.19)
all_purpose_item { all_purpose_item }

all_purpose_item ::=
include

| alias
| constant
| attribute
| property
| class_declaration
| keyword_declaration
| group_declaration
| template_declaration
| template_instantiation
| annotation
| arithmetic_model
| arithmetic_model_container
212 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 4

1

5

10

15

20

25

30

35

40

45

50

55
A.3 Generic definitions

include ::= (see 8.1)
INCLUDE quoted_string ;

alias ::= (see 8.1)
ALIAS identifier = identifier ;

constant ::= (see 8.2)
CONSTANT identifier = arithmetic_value ;

attribute ::= (see 8.4)
ATTRIBUTE { identifiers }

property ::= (see 8.5)
PROPERTY [identifier] { one_level_annotations }

class_declaration ::= (see 8.3)
CLASS identifier ;

| CLASS identifier { all_purpose_items }
keyword_declaration ::= (see 8.4)

KEYWORD context_sensitive_keyword = syntax_item_identifier ;
group_declaration ::= (see 8.6)

GROUP group_identifier { annotation_values }
| GROUP group_identifier { index_value : index_value }

template_declaration ::= (see 8.7)
TEMPLATE template_identifier { template_items }

template_items ::=
template_item { template_item }

template_item ::=
all_purpose_item

| cell
| library
| node
| pin
| pin_group
| primitive
| sublibrary
| vector
| wire
| antenna
| array
| blockage
| layer
| pattern
| port
| rule
| site
| via
| function
| non_scan_cell
| test
| range
| artwork
| from
| to
| illegal
| violation
| header
IEEE P1603 Draft 4 Advanced Library Format (ALF) Reference Manual 213

1

5

10

15

20

25

30

35

40

45

50

55
| table
| equation
| arithmetic_submodel
| behavior_item
| geometric_model

template_instantiation ::=
static_template_instantiation

| dynamic_template_instantiation
static_template_instantiation ::=

template_identifier [= static] ;
| template_identifier [= static] { annotation_values }
| template_identifier [= static]{ one_level_annotations }

dynamic_template_instantiation ::=
template_identifier = dynamic

{ dynamic_template_instantiation_items }
dynamic_template_instantiation_items ::=

dynamic_template_instantiation_item
{ dynamic_template_instantiation_item }

dynamic_template_instantiation_item ::=
one_level_annotation

| arithmetic_model

A.4 Library definitions

library ::= (see 9.1)
LIBRARY library_identifier { library_items }

| LIBRARY library_identifier ;
| library_template_instantiation

library_items ::=
library_item { library_item }

library_item ::=
sublibrary

| sublibrary_item
library ::=

SUBLIBRARY sublibrary_identifier { sublibrary_items }
| SUBLIBRARY sublibrary_identifier ;
| sublibrary_template_instantiation

sublibrary_items ::= (see 9.2.2)
sublibrary_item { sublibrary_item }

sublibrary_item ::=
all_purpose_item

| cell
| primitive
| wire
| layer
| via
| rule
| antenna

| array
| site

INFORMATION_two_level_annotation ::= (see 9.2.3)
INFORMATION { information_one_level_annotations }
214 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 4

1

5

10

15

20

25

30

35

40

45

50

55
information_one_level_annotations ::=
information_one_level_annotation

{ information_one_level_annotation }
information_one_level_annotation ::=

AUTHOR_one_level_annotation
| VERSION_one_level_annotation
| DATETIME_one_level_annotation
| PROJECT_one_level_annotation

cell ::= (see 9.3.1)
CELL cell_identifier { cell_items }

| CELL cell_identifier ;
| cell_template_instantiation

cell_items ::=
cell_item { cell_item }

cell_item ::=
all_purpose_item

| pin
| pin_group
| primitive
| function
| non_scan_cell
| test
| vector
| wire
| blockage
| artwork

non_scan_cell ::= (see 9.41)
NON_SCAN_CELL { unnamed_cell_instantiations }

| NON_SCAN_CELL = unnamed_cell_instantiation
| non_scan_cell_template_instantiation

unnamed_cell_instantiations ::=
unnamed_cell_instantiation { unnamed_cell_instantiation }

unnamed_cell_instantiation ::=
cell_identifier { pin_values }

| cell_identifier { pin_assignments }
pin ::= (see 9.4.1)

PIN [[index_range]] pin_identifier [[index_range]] { pin_items }
| PIN [[index_range]] pin_identifier [[index_range]] ;
| pin_template_instantiation

pin_item ::=
all_purpose_item

| range
| port
| pin_instantiation

pin_items ::=
pin_item { pin_item }

pin_instantiation ::=
pin_variable { pin_items }

range ::= (see 9.42)
RANGE { index_range }

pin_group ::= (see 9.8)
PIN_GROUP [[index_range]] pin_group_identifier { pin_group_items }
| pin_group_template_instantiation
IEEE P1603 Draft 4 Advanced Library Format (ALF) Reference Manual 215

1

5

10

15

20

25

30

35

40

45

50

55
pin_group_items ::=
pin_group_item { pin_group_item }

pin_group_item ::=
all_purpose_item

| range
wire ::= (see 9.5.1)

WIRE wire_identifier { wire_items }
| WIRE wire_identifier ;
| wire_template_instantiation

wire_items ::=
wire_item { wire_item }

wire_item ::=
all_purpose_item

| node
node ::= (see 9.13)

NODE node_identifier { node_items }
| NODE node_identifier ;
| node_template_instantiation

node_items ::=
node_item { node_item }

node_item ::=
all_purpose_item

vector ::= (see 9.14)
VECTOR control_expression { vector_items }

| VECTOR control_expression ;
| vector_template_instantiation

vector_items ::=
vector_item { vector_item }

vector_item ::=
all_purpose_item

| illegal
illegal ::= (see 9.6.2)

ILLEGAL { illegal_items }
| illegal_template_instantiation

illegal_items ::=
illegal_item { illegal_item }

illegal_item ::=
all_purpose_item

| violation
layer ::= (see 9.16)

LAYER layer_identifier { layer_items }
| LAYER layer_identifier ;
| layer_template_instantiation

layer_items ::=
layer_item { layer_item }

layer_item ::=
all_purpose_item

via ::= (see 9.8.1)
VIA via_identifier { via_items }

| VIA via_identifier ;
| via_template_instantiation

via_items ::=
via_item { via_item }
216 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 4

1

5

10

15

20

25

30

35

40

45

50

55
via_item ::=
all_purpose_item

| pattern
| artwork

via_instantiations ::=
via_instantiation { via_instantiation }

via_instantiation ::=
via_identifier instance_identifier { geometric_transformations }

rule ::= (see 9.21)
RULE rule_identifier { rule_items }

| RULE rule_identifier ;
| rule_template_instantiation

rule_items ::=
rule_item { rule_item }

rule_item ::=
all_purpose_item

| pattern
| via_instantiation

antenna ::= (see 9.22)
ANTENNA antenna_identifier { antenna_items }

| ANTENNA antenna_identifier ;
| antenna_template_instantiation

antenna_items ::=
antenna_item { antenna_item }

antenna_item ::=
all_purpose_item

blockage ::= (see 9.23)
BLOCKAGE blockage_identifier { blockage_items }

| BLOCKAGE blockage_identifier ;
| blockage_template_instantiation

blockage_items ::=
blockage_item { blockage_item }

blockage_item ::=
all_purpose_item

| pattern
| rule
| via_instantiation

port ::= (see 9.24)
PORT port_identifier { port_items }

| PORT port_identifier ;
| port_template_instantiation

port_items ::=
port_item { port_item }

port_item ::=
all_purpose_item

| pattern
| rule
| via_instantiation

site ::= (see 9.26)
SITE site_identifier { site_items }

| SITE site_identifier ;
IEEE P1603 Draft 4 Advanced Library Format (ALF) Reference Manual 217

1

5

10

15

20

25

30

35

40

45

50

55
| site_template_instantiation
site_items ::=

site_item { site_item }
site_item ::=

all_purpose_item
| ORIENTATION_CLASS_one_level_annotation
| SYMMETRY_CLASS_one_level_annotation

array ::= (see 9.28)
ARRAY array_identifier { array_items }

| ARRAY array_identifier ;
| array_template_instantiation

array_items ::=
array_item { array_item }

array_item ::=
all_purpose_item

| PURPOSE_single_value_annotation
| geometric_transformation

pattern ::= (see 9.30)
PATTERN pattern_identifier { pattern_items }

| PATTERN pattern_identifier ;
| pattern_template_instantiation

pattern_items ::=
pattern_item { pattern_item }

pattern_item ::=
all_purpose_item

| SHAPE_single_value_annotation
| LAYER_single_value_annotation
| EXTENSION_single_value_annotation
| VERTEX_single_value_annotation
| geometric_model
| geometric_transformation

artwork ::= (see 9.35)
ARTWORK = artwork_identifier { artwork_items }

| ARTWORK = artwork_identifier ;
| artwork_template_instantiation

artwork_items ::=
artwork_item { artwork_item }

artwork_item ::=
geometric_transformation

| pin_assignment
geometric_model ::= (see 9.32)

nonescaped_dentifier [geometric_model_identifier]
{ geometric_model_items }

| geometric_model_template_instantiation
geometric_model_items ::=

geometric_model_item { geometric_model_item }
geometric_model_item ::=

all_purpose_item
| POINT_TO_POINT_one_level_annotation
| coordinates

coordinates ::=
COORDINATES { x_number y_number { x_number y_number } }

geometric_transformations ::= (see 9.34)
218 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 4

1

5

10

15

20

25

30

35

40

45

50

55
geometric_transformation { geometric_transformation }
geometric_transformation ::=

SHIFT_two_level_annotation
| ROTATE_one_level_annotation
| FLIP_one_level_annotation
| repeat

repeat ::=
REPEAT [= unsigned] {

shift_two_level_annotation
[repeat]

}
function ::= (see 9.36)

FUNCTION { function_items }
| function_template_instantiation

function_items ::=
function_item { function_item }

function_item ::=
all_purpose_item
| behavior
| structure
| statetable

test ::= (see 9.37)
TEST { test_items }

| test_template_instantiation
test_items ::=

test_item { test_item }
test_item ::=

all_purpose_item
| behavior
| statetable

behavior ::= (see 9.38)
BEHAVIOR { behavior_items }

| behavior_template_instantiation
behavior_items ::=

behavior_item { behavior_item }
behavior_item ::=

boolean_assignments
| control_statement
| primitive_instantiation
| behavior_item_template_instantiation

boolean_assignments ::=
boolean_assignment { boolean_assignment }

boolean_assignment ::=
pin_variable = boolean_expression ;

primitive_instantiation ::=
primitive_identifier [identifier] { pin_values }

| primitive_identifier [identifier]
{ boolean_assignments }

control_statement ::=
@ control_expression { boolean_assignments }

{ : control_expression { boolean_assignments } }
structure ::= (see 9.39)

STRUCTURE { named_cell_instantiations }
| structure_template_instantiation
IEEE P1603 Draft 4 Advanced Library Format (ALF) Reference Manual 219

1

5

10

15

20

25

30

35

40

45

50

55
named_cell_instantiations ::=
named_cell_instantiation { named_cell_instantiation }

named_cell_instantiation ::=
cell_identifier instance_identifier { pin_values }

| cell_identifier instance_identifier { pin_assignments }
violation ::= (see 9.40)

VIOLATION { violation_items }
| violation_template_instantiation

violation_items ::=
violation_item { violation_item }

violation_item ::=
MESSAGE_TYPE_single_value_annotation

| MESSAGE_single_value_annotation
| behavior

statetable ::= (see 9.40)
STATETABLE [identifier]

{ statetable_header statetable_row { statetable_row } }
| statetable_template_instantiation

statetable_header ::=
input_pin_variables : output_pin_variables ;

statetable_row ::=
statetable_control_values : statetable_data_values ;

statetable_control_values ::=
statetable_control_value { statetable_control_value }

statetable_control_value ::=
bit_literal

| based_literal
| unsigned
| edge_value

statetable_data_values ::=
statetable_data_value { statetable_data_value }

statetable_data_value ::=
bit_literal

| based_literal
| unsigned
| ([!] pin_variable)
| ([~] pin_variable)

primitive ::= (see 9.11)
PRIMITIVE primitive_identifier { primitive_items }

| PRIMITIVE primitive_identifier ;
| primitive_template_instantiation

primitive_items ::=
primitive_item { primitive_item }

primitive_item ::=
all_purpose_item

| pin
| pin_group
| function
| test
220 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 4

1

5

10

15

20

25

30

35

40

45

50

55
A.5 Control definitions

boolean_expression ::= (see 10.7)
(boolean_expression)

| pin_value
| boolean_unary boolean_expression
| boolean_expression boolean_binary boolean_expression
| boolean_expression ? boolean_expression :

{ boolean_expression ? boolean_expression : }
boolean_expression

boolean_unary ::=
!

| ~
| &
| ~&
| |
| ~|
| ^
| ~^

boolean_binary ::=
&

| &&
| |
| ||
| ^
| ~^
| !=
| ==
| >=
| <=
| >
| <
+
*
/
%
>>
<<

vector_expression ::= (see 10.8)
(vector_expression)

| vector_unary boolean_expression
| vector_expression vector_binary vector_expression
| boolean_expression ? vector_expression :

{ boolean_expression ? vector_expression : }
vector_expression

| boolean_expression control_and vector_expression
| vector_expression control_and boolean_expression

vector_unary ::=
edge_literal
IEEE P1603 Draft 4 Advanced Library Format (ALF) Reference Manual 221

1

5

10

15

20

25

30

35

40

45

50

55
vector_binary ::=
&

| &&
| |
| ||
| ->
| ~>
| <->
| <~>
| &>
| <&>

control_and ::=
& | &&

control_expression ::=
(vector_expression)

| (boolean_expression)

A.6 Arithmetic definitions

arithmetic_expression ::= (see 11.1)
(arithmetic_expression)

| arithmetic_value
| [arithmetic_unary] arithmetic_expression
| arithmetic_expression arithmetic_binary

arithmetic_expression
| boolean_expression ? arithmetic_expression :

{ boolean_expression ? arithmetic_expression : }
arithmetic_expression

| arithmetic_macro
(arithmetic_expression { , arithmetic_expression })

arithmetic_unary ::=
sign

arithmetic_binary ::=
+

| -
| *
| /
| **
| %

arithmetic_macro ::=
abs

| exp
| log
| min
| max

arithmetic_models ::= (see 11.2.2)
arithmetic_model { arithmetic_model }

arithmetic_model ::=
partial_arithmetic_model

| non_trivial_arithmetic_model
| trivial_arithmetic_model
222 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 4

1

5

10

15

20

25

30

35

40

45

50

55
| assignment_arithmetic_model
| arithmetic_model_template_instantiation

partial_arithmetic_model ::= (see 11.2.3)
nonescaped_identifier [arithmetic_model_identifier] { partial_arithmetic_model_items }

partial_arithmetic_model_items ::=
partial_arithmetic_model_item { partial_arithmetic_model_item }

partial_arithmetic_model_item ::=
any_arithmetic_model_item

| table
non_trivial_arithmetic_model ::= (see 11.2.4)

nonescaped_identifier [arithmetic_model_identifier] {
[any_arithmetic_model_items]
arithmetic_body
[any_arithmetic_model_items]

}
trivial_arithmetic_model ::= (see 11.2.5)

nonescaped_identifier [arithmetic_model_identifier] = arithmetic_value ;
| nonescaped_identifier [arithmetic_model_identifier] = arithmetic_value

{ any_arithmetic_model_items }
assignment_arithmetic_model ::= (see 11.2.6)

arithmetic_model_identifier = arithmetic_expression ;
any_arithmetic_model_items ::= (see 11.2.7)

any_arithmetic_model_item { any_arithmetic_model_item }
any_arithmetic_model_item ::=

all_purpose_item
| from
| to
| violation

arithmetic_submodels ::= (see 11.3.1)
arithmetic_submodel { arithmetic_submodel }

arithmetic_submodel ::=
non_trivial_arithmetic_submodel

| trivial_arithmetic_submodel
| arithmetic_submodel_template_instantiation

non_trivial_arithmetic_submodel ::= (see 11.3.2)
nonescaped_identifier {

[any_arithmetic_submodel_items]
arithmetic_body
[any_arithmetic_submodel_items]

}
trivial_arithmetic_submodel ::= (see 11.3.3)

nonescaped_identifier = arithmetic_value ;
| nonescaped_identifier = arithmetic_value { any_arithmetic_submodel_items }

any_arithmetic_submodel_items ::= (see 11.3.4)
any_arithmetic_submodel_item { any_arithmetic_submodel_item }

any_arithmetic_submodel_item ::=
all_purpose_item

| violation
arithmetic_body ::= (see 11.4.1)

arithmetic_submodels
| table_arithmetic_body
| equation_arithmetic_body

table_arithmetic_body ::=
header table [equation]
IEEE P1603 Draft 4 Advanced Library Format (ALF) Reference Manual 223

1

5

10

15

20

25

30

35

40

45

50

55
equation_arithmetic_body ::=
[header] equation [table]

header ::= (see 11.4.2)
HEADER { identifiers }

| HEADER { header_arithmetic_models }
| header_template_instantiation

header_arithmetic_models ::=
header_arithmetic_model { header_arithmetic_model }

header_arithmetic_model ::=
non_trivial_arithmetic_model

| partial_arithmetic_model
table ::= (see 11.3.2)

TABLE { arithmetic_values }
| table_template_instantiation

equation ::= (see 11.3.3)
EQUATION { arithmetic_expression }

| equation_template_instantiation
arithmetic_model_container ::= (see 11.5)

arithmetic_model_container_identifier { arithmetic_models }
from ::= (see 11.4.10)

FROM { from_to_items }
to ::=

TO { from_to_items }
from_to_items ::=

from_to_item { from_to_item }
from_to_item ::=

PIN_single_value_annotation
| EDGE_single_value_annotation
| THRESHOLD_arithmetic_model

EARLY_arithmetic_model_container ::= (see 11.4.11)
EARLY { early_late_arithmetic_models }

LATE_arithmetic_model_container ::=
LATE { early_late_arithmetic_models }

early_late_arithmetic_models ::=
early_late_arithmetic_model { early_late_arithmetic_model }

early_late_arithmetic_model ::=
DELAY_arithmetic_model

| RETAIN_arithmetic_model
| SLEWRATE_arithmetic_model
224 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 4

1

5

10

15

20

25

30

35

40

45

50

55
Annex B

(informative)

Bibliography

[B1] Ratzlaff, C. L., Gopal, N., and Pillage, L. T., “RICE: Rapid Interconnect Circuit Evaluator,” Proceedings of
28th Design Automation Conference, pp. 555–560, 1991.

[B2] SPICE 2G6 User’s Guide.

[B3] Standard Delay Format Specification, Version 3.0, Open Verilog International, May 1995.

[B4] The IEEE Standard Dictionary of Electrical and Electronics Terms, Sixth Edition.
IEEE P1603 Draft 4 Advanced Library Format (ALF) Reference Manual 225

1

5

10

15

20

25

30

35

40

45

50

55
226 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 4

Index

Symbols
(N+1) order sequential logic 129
-> operator 128
?- 210
?! 210
?? 210
?~ 210
@ 120

A
ABS 164
abs 164, 222
active vectors 124
ALIAS 47
alias 47, 213
all_purpose_items 212
alphabetic_bit_literal 32, 210
annotation

arithmetic model tables
DRIVER 200
RECEIVER 200

arithmetic models
average 197
can_short 203
cannot_short 203
must_short 203
peak 197
rms 197
static 197
transient 197

CELL
NON_SCAN_CELL 109, 215

cell buffertype
inout 63
input 63
internal 63
output 63

cell celltype
block 60
buffer 60
combinational 60
core 60
flipflop 60
IEEE P1603 Draft 4 Advanced Library Forma
latch 60
memory 60
multiplexor 60
special 60

cell drivertype
both 63
predriver 63
slotdriver 63

cell scan_type
clocked 62
control_0 62
control_1 62
lssd 62
muxscan 62

cell scan_usage
hold 62
input 62
output 62

pin action
asynchronous 73
synchronous 73

pin datatype
signed 75
unsigned 75

pin direction
both 70
input 70
none 70
output 70

pin drivetype
cmos 77
cmos_pass 77
nmos 77
nmos_pass 77
open_drain 77
open_source 77
pmos 77
pmos_pass 77
ttl 77

pin orientation
bottom 79
left 79
right 79
t (ALF) Reference Manual Index-1

top 79
pin pintype

analog 69
digital 69
supply 69

pin polarity
double_edge 74
falling_edge 74
high 74
low 74
rising_edge 74

pin pull
both 80, 84
down 80, 84, 86
none 80, 84, 86
up 80, 84, 86

pin scope
behavior 78
both 78
measure 78
none 78

pin signaltype
clear 71, 73, 74
clock 71, 73, 74
control 71, 73, 74
data 71, 73, 74
enable 71, 72, 73, 74
select 71, 73, 74
set 71, 73, 74

pin stuck
both 76
none 76
stuck_at_0 76
stuck_at_1 76

pin view
both 69
functional 69
none 69
physical 69

any_character 209
arithmetic models 15
arithmetic operators

binary 164
unary 163

arithmetic_binary_operator 163, 222
arithmetic_expression 163, 222

arithmetic_function_operator 164, 222
arithmetic_unary_operator 163, 222
atomic object 14
ATTRIBUTE 42
attribute 42, 213

CELL 65, 66
cell

asynchronous 65
CAM 65
dynamic 65
RAM 65
ROM 65
static 65
synchronous 65

PIN 80
pin

PAD 81
SCHMITT 80
TRISTATE 81
XTAL 81

B
based literal 33
based_literal 33, 210
behavior 106, 219
behavior_body 106, 219
Binary operators

arithmetic 164
bitwise 115
boolean, scalars 114
reduction 115
vector 129, 130, 133

binary_base 33, 210
binary_digit 210
bit 111
bit_edge_literal 33, 210
bit_literal 32, 209
Bitwise operators

binary 115
unary 115

boolean operators
binary 114
unary 114

boolean_binary_operator 160, 221
boolean_expression 160, 221
boolean_unary_operator 160, 221
Index-2 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 4

C
cell 59, 215
cell_identifier 59, 215
cell_items 215
cell_template_instantiation 59, 215
characterization 5
children object 14
CLASS 47
class 47, 213
combinational logic 113
combinational_assignments 106, 219
comment 25
CONSTANT 47
constant 47, 213

D
decimal_base 33, 210
deep submicron 5
delimiter 25, 209
digit 210

E
edge_literal 33, 210
edge_literals 211
edge-sensitive sequential logic 120
equation 167, 224
equation_template_instantiation 167, 224
escape codes 34
escape_character 27, 28, 209
escaped_identifier 35, 211
event sequence detection 129
EXP 164
exp 164, 222

F
function 105, 219
Function operators

arithmetic 164
function_template_instantiation 105, 219
functional model 5

G
generic objects 15
group 51, 213
group_identifier 51, 213

H
header 166, 224
header_template_instantiation 224
hex_base 33, 210
hex_digit 210

I
identifier 13, 25
identifiers 210
inactive vectors 124
INCLUDE 43
include 43, 213
index 41, 211
integer 209

L
level-sensitive sequential logic 120
Library creation 1
library_items 214
library_template_instantiation 57, 214
library-specific objects 15
literal 25
LOG 164
log 164, 222
logic_values 107, 220
logic_variables 211

M
MAX 164
max 164, 222
MIN 164
min 164, 222
mode of operation 5

N
non_negative_number 209
nonescaped_identifier 35, 36, 210
nonreserved_character 209
Number 31
number 209
numeric_bit_literal 32, 210

O
objects 213
octal_base 33, 210
octal_digit 210
IEEE P1603 Draft 4 Advanced Library Format (ALF) Reference Manual Index-3

operation mode 5
operator

-> 128
followed by 128

operators
boolean, scalars 114
boolean, words 114
signed 116
unsigned 116

P
pin_assignments 41, 211
pin_identifier 215
pin_items 215
pin_template_instantiation 215
placeholder identifier 35
power constraint 5
Power model 5
predefined derating cases 188, 198

bccom 188
bcind 188
bcmil 188
wccom 188
wcind 188
wcmil 188

predefined process names 187
snsp 187
snwp 187
wnsp 188
wnwp 188

primitive_identifier 82, 106, 219, 220
primitive_instantiation 106, 219
primitive_items 220
primitive_template_instantiation 82, 220
PROPERTY 43
property 43, 213

Q
quoted string 34
quoted_string 34, 210

R
Reduction operators

binary 115
unary 114

reserved_character 209

RTL 4

S
sequential logic

edge-sensitive 120
level-sensitive 120
N+1 order 129
vector-sensitive 128

sequential_assignment 106, 219
sign 209
signed operators 116
simulation model 5
statetable 107, 220
statetable_body 107, 220
string 39, 211
symbolic_edge_literal 33, 210

T
table 167, 224
table_template_instantiation 224
template 52, 213
template_identifier 52, 213
template_instantiation 53, 214
Ternary operator 114
timing constraints 5
timing models 5
triggering conditions 120
triggering function 120

U
Unary operator

bitwise 115
Unary operators

arithmetic 163
boolean, scalar 114
reduction 114

Unary vector operators 122
unnamed_assignment 42, 212
unsigned 209
unsigned operators 116

V
vector 85, 216
vector expression 128
Vector operators

binary 129, 130
Index-4 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 4

unary, bits 122
unary, words 123

vector_expression 85, 161, 216, 221
vector_items 216
vector_template_instantiation 85, 216
vector_unary_operator 161, 221
vector-based modeling 5
Vector-Sensitive Sequential Logic 128
Verilog 4, 121
VHDL 4, 121

W
whitespace 209
wildcard_literal 210
wire 83, 84, 89, 91, 92, 93, 94, 95, 96, 104,

216, 217, 218
wire_identifier 83, 84, 89, 91, 92, 93, 94, 216,

217
wire_items 83, 216
wire_template_instantiation 83, 84, 89, 91,

92, 93, 94, 95, 96, 104, 216, 217, 218
word_edge_literal 33, 210
IEEE P1603 Draft 4 Advanced Library Format (ALF) Reference Manual Index-5

Index-6 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 4

	1. Introduction
	1.1 Motivation
	1.2 Goals
	1.3 Target applications
	1.4 Conventions
	1.5 Contents of this standard

	2. References
	3. Definitions
	4. Acronyms and abbreviations
	5. ALF language construction principles and overview
	5.1 ALF meta-language
	5.2 Categories of ALF statements
	5.3 Generic objects and library-specific objects
	5.4 Singular statements and plural statements
	5.5 Instantiation statement and assignment statement
	5.6 Annotation, arithmetic model, and related statements
	5.7 Statements for parser control
	5.8 Name space and visibility of statements

	6. Lexical rules
	6.1 Character set
	6.2 Comment
	6.3 Delimiter
	6.4 Operator
	6.4.1 Arithmetic operator
	6.4.2 Boolean operator
	6.4.3 Relational operator
	6.4.4 Shift operator
	6.4.5 Event sequence operator
	6.4.6 Meta operator

	6.5 Number
	6.6 Unit symbol
	6.7 Bit literal
	6.8 Based literal
	6.9 Edge literal
	6.10 Quoted string
	6.11 Identifier
	6.11.1 Non-escaped identifier
	6.11.2 Escaped identifier
	6.11.3 Placeholder identifier
	6.11.4 Hierarchical identifier

	6.12 Keyword
	6.13 Rules for whitespace usage
	6.14 Rules against parser ambiguity

	7. Auxiliary Syntax Rules
	7.1 All-purpose value
	7.2 Unit value
	7.3 String
	7.4 Arithmetic value
	7.5 Boolean value
	7.6 Edge value
	7.7 Index value
	7.8 Index
	7.9 Pin variable and pin value
	7.10 Pin assignment
	7.11 Annotation
	7.12 Annotation container
	7.13 ATTRIBUTE statement
	7.14 PROPERTY statement
	7.15 INCLUDE statement
	7.16 REVISION statement
	7.17 Generic object
	7.18 Library-specific object
	7.19 All purpose item

	8. Generic objects and related statements
	8.1 ALIAS declaration
	8.2 CONSTANT declaration
	8.3 CLASS declaration
	8.4 KEYWORD declaration
	8.5 Annotations for a KEYWORD
	8.5.1 VALUETYPE annotation
	8.5.2 VALUES annotation
	8.5.3 DEFAULT annotation
	8.5.4 CONTEXT annotation
	8.5.5 SI_MODEL annotation

	8.6 GROUP declaration
	8.7 TEMPLATE declaration
	8.8 TEMPLATE instantiation

	9. Library-specific objects and related statements
	9.1 LIBRARY and SUBLIBRARY declaration
	9.2 Annotations for LIBRARY and SUBLIBRARY
	9.2.1 INFORMATION annotation container

	9.3 CELL declaration
	9.4 CELL instantiation
	9.5 Annotations for a CELL
	9.5.1 CELLTYPE annotation
	9.5.2 SWAP_CLASS annotation
	9.5.3 RESTRICT_CLASS annotation
	9.5.4 SCAN_TYPE annotation
	9.5.5 SCAN_USAGE annotation
	9.5.6 BUFFERTYPE annotation
	9.5.7 DRIVERTYPE annotation
	9.5.8 PARALLEL_DRIVE annotation
	9.5.9 PLACEMENT_TYPE annotation
	9.5.10 SITE reference annotation

	9.6 ATTRIBUTE values for a CELL
	9.7 PIN declaration
	9.8 PINGROUP declaration
	9.9 Annotations for a PIN and a PINGROUP
	9.9.1 VIEW annotation
	9.9.2 PINTYPE annotation
	9.9.3 DIRECTION annotation
	9.9.4 SIGNALTYPE annotation
	9.9.5 ACTION annotation
	9.9.6 POLARITY annotation
	9.9.7 DATATYPE annotation
	9.9.8 INITIAL_VALUE annotation
	9.9.9 SCAN_POSITION annotation
	9.9.10 STUCK annotation
	9.9.11 SUPPLYTYPE
	9.9.12 SIGNAL_CLASS
	9.9.13 SUPPLY_CLASS
	9.9.14 DRIVETYPE annotation
	9.9.15 SCOPE annotation
	9.9.16 CONNECT_CLASS annotation
	9.9.17 SIDE annotation
	9.9.18 ROW and COLUMN annotation
	9.9.19 ROUTING_TYPE annotation
	9.9.20 PULL annotation

	9.10 ATTRIBUTE values for a PIN and a PINGROUP
	9.11 PRIMITIVE declaration
	9.12 WIRE declaration
	9.12.1 Annotations for a WIRE
	9.12.2 SELECT_CLASS annotation

	9.13 NODE declaration
	9.13.1 NODETYPE annotation
	9.13.2 NODE_CLASS annotation

	9.14 VECTOR declaration
	9.15 Annotations for VECTOR
	9.15.1 PURPOSE annotation
	9.15.2 OPERATION annotation
	9.15.3 LABEL annotation
	9.15.4 EXISTENCE_CONDITION annotation
	9.15.5 EXISTENCE_CLASS annotation
	9.15.6 CHARACTERIZATION_CONDITION annotation
	9.15.7 CHARACTERIZATION_VECTOR annotation
	9.15.8 CHARACTERIZATION_CLASS annotation

	9.16 LAYER declaration
	9.17 Annotations for LAYER
	9.17.1 LAYERTYPE annotation
	9.17.2 PITCH annotation
	9.17.3 PREFERENCE annotation

	9.18 VIA declaration
	9.19 VIA instantiation
	9.20 Annotations for a VIA
	9.20.1 VIATYPE annotation

	9.21 RULE declaration
	9.22 ANTENNA declaration
	9.23 BLOCKAGE declaration
	9.24 PORT declaration
	9.25 Annotations for PORT
	9.25.1 PORT_VIEW annotation

	9.26 SITE declaration
	9.27 Annotations for SITE
	9.27.1 ORIENTATION_CLASS
	9.27.2 SYMMETRY_CLASS

	9.28 ARRAY declaration
	9.29 Annotations for ARRAY
	9.29.1 ARRAYTYPE annotation

	9.30 PATTERN declaration
	9.31 Annotations for PATTERN
	9.31.1 SHAPE annotation
	9.31.2 VERTEX annotation
	9.31.3 LAYER reference annotation

	9.32 Geometric model
	9.33 Predefined geometric models using TEMPLATE
	9.34 Geometric transformation
	9.35 ARTWORK statement
	9.36 FUNCTION statement
	9.37 TEST statement
	9.38 BEHAVIOR statement
	9.39 STRUCTURE statement
	9.40 STATETABLE statement
	9.41 NON_SCAN_CELL statement
	9.42 RANGE statement

	10. Constructs for modeling of digital behavior
	10.1 Variable declarations
	10.2 Boolean value system
	10.3 Combinational functions
	10.3.1 Combinational logic
	10.3.2 Boolean operators on scalars
	10.3.3 Boolean operators on words
	10.3.4 Operator priorities
	10.3.5 Datatype mapping
	10.3.6 Rules for combinational functions
	10.3.7 Concurrency in combinational functions

	10.4 Sequential functions
	10.4.1 Level-sensitive sequential logic
	10.4.2 Edge-sensitive sequential logic
	10.4.3 Unary operators for vector expressions
	10.4.4 Basic rules for sequential functions
	10.4.5 Concurrency in sequential functions
	10.4.6 Initial values for logic variables

	10.5 Higher-order sequential functions
	10.5.1 Vector-sensitive sequential logic
	10.5.2 Canonical binary operators for vector expressions
	10.5.3 Complex binary operators for vector expressions
	10.5.4 Extension to N operands
	10.5.5 Operators for conditional vector expressions
	10.5.6 Operators for sequential logic
	10.5.7 Operator priorities
	10.5.8 Using PINs in VECTORs

	10.6 Modeling with vector expressions
	10.6.1 Event reports
	10.6.2 Event sequences
	10.6.3 Scope and content of event sequences
	10.6.4 Alternative event sequences
	10.6.5 Symbolic edge operators
	10.6.6 Non-events
	10.6.7 Compact and verbose event sequences
	10.6.8 Unspecified simultaneous events within scope
	10.6.9 Simultaneous event sequences
	10.6.10 Implicit local variables
	10.6.11 Conditional event sequences
	10.6.12 Alternative conditional event sequences
	10.6.13 Change of scope within a vector expression
	10.6.14 Sequences of conditional event sequences
	10.6.15 Incompletely specified event sequences
	10.6.16 How to determine well-specified vector expressions

	10.7 Boolean expression language
	10.8 Vector expression language
	10.9 Control expression semantics

	11. Constructs for electrical and physical modeling
	11.1 Arithmetic expression
	11.2 Arithmetic model
	11.3 HEADER, TABLE, and EQUATION
	11.3.1 HEADER statement
	11.3.2 TABLE statement
	11.3.3 EQUATION statement

	11.4 Statements related to arithmetic model
	11.4.1 Model qualifier
	11.4.2 Auxiliary arithmetic model
	11.4.3 Arithmetic submodel
	11.4.4 MIN-MAX statement
	11.4.5 MIN-TYP-MAX statement
	11.4.6 Trivial MIN-MAX statement
	11.4.7 Arithmetic model container
	11.4.8 LIMIT statement
	11.4.9 Event reference statement
	11.4.10 FROM and TO statements
	11.4.11 EARLY and LATE statements
	11.4.12 VIOLATION statement

	11.5 Annotations for arithmetic models
	11.5.1 UNIT annotation
	11.5.2 CALCULATION annotation
	11.5.3 INTERPOLATION annotation
	11.5.4 DEFAULT annotation

	11.6 TIME
	11.6.1 TIME in context of a VECTOR declaration
	11.6.2 TIME in context of a HEADER statement
	11.6.3 TIME as auxiliary arithmetic model

	11.7 FREQUENCY
	11.7.1 FREQUENCY in context of a VECTOR declaration
	11.7.2 FREQUENCY in context of a HEADER statement
	11.7.3 FREQUENCY as auxiliary arithmetic model

	11.8 DELAY
	11.8.1 DELAY in context of a VECTOR declaration
	11.8.2 DELAY in context of a library-specific object declaration

	11.9 RETAIN
	11.10 SLEWRATE
	11.10.1 SLEWRATE in context of a VECTOR declaration
	11.10.2 SLEWRATE in context of a PIN declaration
	11.10.3 SLEWRATE in context of a library-specific object declaration

	11.11 SETUP and HOLD
	11.11.1 SETUP in context of a VECTOR declaration
	11.11.2 HOLD in context of a VECTOR declaration
	11.11.3 SETUP and HOLD in context of the same VECTOR declaration

	11.12 RECOVERY and REMOVAL
	11.12.1 RECOVERY in context of a VECTOR declaration
	11.12.2 REMOVAL in context of a VECTOR declaration
	11.12.3 RECOVERY and REMOVAL in context of the same VECTOR declaration

	11.13 NOCHANGE and ILLEGAL
	11.13.1 NOCHANGE in context of a VECTOR declaration
	11.13.2 ILLEGAL in context of a VECTOR declaration

	11.14 SKEW
	11.14.1 SKEW involving two signals
	11.14.2 SKEW involving multiple signals

	11.15 PULSEWIDTH
	11.15.1 PULSEWIDTH in context of a VECTOR declaration
	11.15.2 PULSEWIDTH in context of a PIN declaration
	11.15.3 PULSEWIDTH in context of a library-specific object declaration

	11.16 PERIOD
	11.17 JITTER
	11.18 THRESHOLD
	11.19 Annotations related to timing data
	11.19.1 PIN reference annotation
	11.19.2 EDGE_NUMBER annotation

	11.20 PROCESS
	11.21 DERATE_CASE
	11.22 TEMPERATURE
	11.23 PIN-related arithmetic models for electrical data
	11.23.1 CAPACITANCE, RESISTANCE, and INDUCTANCE
	11.23.2 VOLTAGE and CURRENT
	11.23.3 Context-specific semantics

	11.24 POWER and ENERGY
	11.25 FLUX and FLUENCE
	11.26 DRIVE_STRENGTH
	11.27 SWITCHING_BITS
	11.28 NOISE and NOISE MARGIN
	11.28.1 NOISE MARGIN
	11.28.2 NOISE

	11.29 Annotations and statements related to electrical models
	11.29.1 MEASUREMENT annotation
	11.29.2 TIME to peak measurement

	11.30 CONNECTIVITY
	11.31 SIZE
	11.32 AREA
	11.33 WIDTH
	11.34 HEIGHT
	11.35 LENGTH
	11.36 DISTANCE
	11.37 OVERHANG
	11.38 PERIMETER
	11.39 EXTENSION
	11.40 THICKNESS
	11.41 Annotations for physical models
	11.41.1 CONNECT_RULE annotation
	11.41.2 BETWEEN annotation
	11.41.3 DISTANCE-MEASUREMENT annotation
	11.41.4 REFERENCE annotation container
	11.41.5 ANTENNA reference annotation
	11.41.6 PATTERN reference annotation

	11.42 Arithmetic submodels for timing and electrical data
	11.43 Arithmetic submodels for physical data

	Annex A
	Annex B

