A standard for an
Advanced Library Format (ALF)
describing Integrated Circuit (IC)

technology, cells, and blocks

This is an unapproved draft for an IEEE standard
and subject to change

IEEE P1603 Draft 5
June 21, 2002

Copyright© 2001, 2002, 2003 by IEEE. All rights reserved.

put in |[EEE verbiage

ii Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 5

The following individual s contributed to the creation, editing, and review of this document

Wolfgang Roethig, Ph.D. wroethig@eda.org Official Reporter and WG Chair
Joe Daniels chippewea@aol.com Technical Editor

IEEE P1603 Draft 5 Advanced Library Format (ALF) Reference Manual

Revision history:

|EEE P1596 Draft O
|EEE P1603 Draft 1
|EEE P1603 Draft 2
|EEE P1596 Draft 3
|EEE P1603 Draft 4
|EEE P1603 Draft 5

August 19, 2001
September 17, 2001
November 12, 2001
April 17, 2002
May 15, 2002

June 21, 2002

Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 5

Table of Contents

O 1 1o o 1 o PSSR 1
L1 IMIOLIVELION. ..c.eiuitiriitisites ettt ettt es bt b et bbbttt st et 1

0 T S 2

1.3 Target @DPliCALIONS. ...covieieieieiieteeee ettt b et bbbttt ettt bene 2

O o0 1V/= 011 o =SSO 5

1.5 Contents of thiS StANAr..........ccevviiiirere e s re et sae et e e e eeneenens 5

2. REFEIENCES. ..ottt b bt b e h b b e bR £ A e At R e R e e Rt eRe bt Rt b e bRt e ebeeeesrenean 7
T B 1< 1oL o] o USRS 9
4. Acronyms and @DDIEVIBLIONScoueiiierieieeei ettt et ettt eb e s b b e e et ene e eneenea 11
5. ALF language construction prinCiples and OVEIVIEWccceoeieririenesieneeseeeseeee e sre e seessesee e 13
LN Y e o1 = =g To 0o T USSR 13

5.2 Categories Of ALF SLALEMENTS........coiiiieiieie ettt sttt b e st e e e e et 14

5.3 Generic abjects and library-specifiC ODJECES..........coiiiriiiiiee e 16

5.4 Singular statements and plural SEBEEMENLS..........ooueeiriiirirerere e e e 18

5.5 Instantiation statement and assignment SEAEEMENLcccoveriiirere e e e 20

5.6 Annotation, arithmetic model, and related StAEEMENES.........cccooerererieieiree e 21

5.7 StatementSfor Parser CONIOottt sb e s sbesae 23

5.8 Name space and visibility Of SEEEEMENTS.........ccooiiiiiiiieeee e e 23

B. LEXICEI FUIES... e ettt b et b e bt b s b e e et e st e e e he e Rt e R e e Re e Rt ehe s b e eheebe s be e et enre e e 25
L R O =T £ = PP S PSS 25

6.2 COMUMENT.eieieiiitee ittt ettt ettt r ek ea bt e e b e ehe e sb e s ae e sae s e e ebe e besheeseesheemeeeaeenbeabeenbeeaeeneesaeenesnneneas 27

LRSI B = [011 = SO U TSP 27

(O @ o= = (0] SRR 27
(30 R AN 1 00 (o0 0= = o TSR 28

(S N = oo == T e 0= = o S 29

(S G B = (= = o = 0] 1= 1 o) S 29

(3 RS g 1110 0= = o S 30

6.4.5 EVENT SEQUENCE OPEIELONeciueetetesieesissteesseessseesessssesssassseessessssessssesssesssessssesssessnsessssesssnans 30

(O I (Y 1= = 0] < = (o | S PSS 30

B.5 INUMDET ...ttt b e et b et h e h e bt he bt e be b s b e b e s bese et e e e e e e 31

6.6 UNITSYMIDIOLottt e et e et e e see st e essesaeeat e seentesaeensesaeenesneennens 31

LA = T A 11 - OSSR 32

6.8 BASEU HLEIEl ...ecveeeeeieeie ettt sttt b e bR sttt nennene 33

Lo T o (0T 1= = | S 33

Lo L0 o] (o =1 o S 34

L3 o = o 1) 1T OSSOSO 35
(300 I 0 A o =S o= o o I T U= 011 = S 35

(0 o o= o o (= o = P 35

6.11.3 Placeholder IdENtITIErcoiii i b e 35

6.11.4 HierarchiCal iIdentifier........cccoiiiiiie e e 36

IEEE P1603 Draft 5 Advanced Library Format (ALF) Reference Manual Y

Vi

L0 (=LY o 36

6.13 RUIES FOr WhitESPACE USAGE. ... euveseeeeererieeeeteste st ste sttt st e e seese e ense e e se s e saesrentesaesaeneenaeseenesnnenensenns 36
6.14 Rules against parser ambigUILYcceeeieiirieiicesi e e eneeneere e 37
F N T L VY 1= G (1= 39
8 o0 oo 1S S = T O 39
T2 UNITVAIUB.....cticteecte ettt sttt ettt e e te s e s beebe e sheeaeesbeeabe b e eabesbeeseeebeennesbeensesbeesbennsetens 39
RS TS {12 TSSO 39
A N 11 0001 TRz LU 39
7.5 BOOIEAN VBIUE.......cceveeiee ettt ettt ettt s e s et e e e e ste e saessabeesbessateestessabesasessnbessbessnseesreesns 40
T8 EQQEVEIUB. ...ttt b et bbb bbbttt 40
A A 1110 (= Q7= LU =T 40
8 T 1 (= 40
7.9 Pinvariable @and PiN VAIUE.......cc.oi ettt bbbt ebe e 41
A Ol T =SS Lo a0 oL USSR 41
O N N 910 = 1 o o TO TR SRUR RSO SRRR 41
7.02 ANNOLALION COMEAINETcvieiteeitieeeteeeeteectte et e eteeetee e st e stbessbeesaseesteeseesaseessseeseessesebeesssesnresssseenseesseeans 42
TA3 ATTRIBUTE SLAEMENEuviieiititiccie ettt ettt et e st ees et steeste st estesaaesbessbesbesbessbessssstsensesaeesaesresrenss 42
7.14 PROPERTY SEAEEIMENTociviiieeiieiie ittt ete et e et s eteeessteestesressaesseestessaesbesstesbessessbessssasssnsssseensessessenss 43
7.15 INCLUDE SEAEIMENT.c.eeitiiieeitiitie i cte st ete bt et e stessessteeassteestesbeessesbasssesssessesbeebessesssssasesesnsestessenss 43
7.16 ASSOCIATE SEALEMENLeveeieeieeiteceeecteeteesteetee st e et et e et e steeaeesaeseesbessaesbessbebessessbesssssssensssaeesesressenss 44
7.17 REVISION SEAEEIMENT.......eeitiiieeitiitie ittt etteste et e steesessteeaesteesaesbessaesbasssessaessesbesbessesssssasessesnsestessenss 44
FA R R T 0T Tl o] o 1= ol AUV U TR 45
7.19 Library-speCifiC ODJECLc.oiii e e e e e 45
7. 20 All PUIPOSE ITBIM....cuei ittt ettt sttt sttt b et b e e e bt eh e b e s he e b e s b e b sbe b e be e et ensese e e eneeneereene 45
Generic objects and related SLALEMENTS ..ot e e e 47
8.1 ALIASAECIAraLIONcccveecee ettt ettt et e et e et e s b e e be e sbe e e sbeeebeesabeesbeesaeeesaeesnsesabessbseenseesaneans 47
8.2 CONSTANT AECIAIALION.......ccviieeiiiieeiteetee ettt sttt et e te e sae s st e s ae b e ssbebesbeesbessessrssnsssseensesbesrenas 47
8.3 CLASS AECIAraLIONccveeiee ettt ettt st et e st e e ete et e s e e eteesaeesbeeaeesaseesbeesatesnbenseessbessanesnsensns 47
8.4 KEYWORD GECIAraLIONuviiviiiieeceiee st cteectee ettt e eeeebe s teesre e steeseesbeesasesnbeessessnbeessaesareenbeseseesanesns 48
8.5 ANNOLAiONSFOr A KEYWORDcociiiitieiieetee ettt sttt s e e eae e be e sateesteesbeesaaeeareebeseneenteeens 49

8.5.1 VALUETYPE GNNOELION......cceiiiiiiteiieiteeeeecteetiesteetessts et sts e steereesaesbaestesnaessesaeenresreensesns 49

8.5.2 VALUES GNNOLALION......cciiiiieeiieccieectee et ceeste s teeeee e ste s s eaeesaaesabeesbeesaeeesteesnsesnbessaseenseesaneens 50

8.5.3 DEFAULT @NNOLBLIONc.viiitieeieeitie ettt ettt ste e et e see s aeeeareesbeesreesabeesaaesaseenbessnesnseeses 50

8.5.4 CONTEXT @NNOALION.......ccciieiieciieitie et e seeecteeeteesreeereeseessreeeaseesbeesseesabeesaeesaseenbesensessseesas 50

8.5.5 S| _MODEL annNOalioN........ccceeiiiieiieiieiecieste ettt st sae s se et be e teeneennesnaennas 51
8.6 SEMANTICS AECIAraIiONccveeevetieeectectee sttt st ete bt e st ee e st ee st e s aesbeesbesbeesessbesssssseensesaeessesbesrenns 51
8.7 GROUP ECIAraLIONveeeueeciee ittt ettt et e e e et e s b e e ae e sbesesaeeebeesabeenbeesteeesbeesneesaseebesenseesaneans 52
8.8 TEMPLATE GECIArAIIONcccviieeeeeiceectectee ettt ettt e te et e et ere e st s e sbesaae st e ssbebesbeesbessesesssnsssseensesbesrenns 53
8.9 TEMPLATE INSLANMIALIONccciiitieitecieitectesteeie et eeeeteesresreestesteestesaaesbessbebesseesbessessssensssaeessessessenss 54
Library-specific objects and related StateMENtS.........ccoveeeie e 59
9.1 LIBRARY and SUBLIBRARY OECIAraliONc.ccveevriieiecteecreiteestesteete st ereesressessnssneesseenaesveeseens 59
9.2 Annotationsfor LIBRARY and SUBLIBRARYcooioiicie ettt st 59

9.2.1 INFORMATION annotation COMTAINETcccccieireeieeeiieeeieeesreesireesseeseeesteesseessseessessnsessseesns 59
Lo G I O =l I 0 = == 1 o PO TSROSO 61
9.4 CELL INStANTIGHION.......cueeiieiiieeitie et e et e scte et e steeeteesree s beesaseeseestesasseeaseesabessseesaeeesseesasesnsesssseenseesanesns 61
9.5 ANNOLAIONSFOr @CELLccviiiiiiciie ettt et e e e et st e e sbe e saee e saeesaaesabessareenseesaneens 62

9.5.1 CELLTYPE @NNOLALIONvecvviitiiiieitectetecieete ettt sttt sbeesae st e esaesbesnsensesnnesneennesnesnens 62

9.5.2 SWAP_CLASS @NNOALION......cceiieeiieeieieeiesteeeeseseese e sreesaesteesaessesssesseessenseesesseeneessesnes 63

Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 5

9.5.3 RESTRICT _CLASS @NNOALION....ceiveeveiereeieseeseeseeeeseseesessessessessessessesseseseessssseseessssesssssenns 63

954 SCAN_TYPE @NMNOLALIONocvviviieiereiieieseeeee e s steseeseeseesaesee e esessessessessessensesseneensnseessnsenses 65
955 SCAN_USAGE @NNOAiONcevveieiieriesieseeeseeseeeeteseseesee e seeseeseeaeseesessessesssssesseseessenseneenes 65
9.5.6 BUFFERTYPE @NNOtALION......cccieiiierieiicie ettt e sttt ste s be et sbesbeesbesseeeresnesneenaesreeseessennsens 66
9.5.7 DRIVERTYPE @QNNOAIONvoiieiiicieiteeiecteeeecteeee et eere et stee st beseesbesbeesbeeseesresnnenneenne 66
95.8 PARALLEL DRIVE @NNOAtiONccveveeieeceeesese e se st seeie s eesse s s eenaeseenes 67
959 PLACEMENT _TYPE @MNOtALONccvevieeieeesese e seesie s esae s e st e e eanseenes 67
9.5.10 SITE referenCe anNOtatiON........c.coveiveereeiiee ettt ecre e see st te e e sbeebeesbesaeeereesesseenaesbeeseesaeensenns 68
9.6 ATTRIBUTE VAIUESTOr @ CELL.....ociviiviiieeecetee ettt st s sve s sabesssessne s saessnneenrenen 68
L A = V0 5 = = 1 o o R 70
9.8 PINGROUP ECIArGLI ON......eeeueeieeeciieceiieteeceeeeteesteete e esestessseessresssesssessssesssessnssssbessressabessseesasesssenens 71
9.9 Annotationsfor aPIN and @PINGROUPooiiicee ettt s e st s s saeevessree e 72
L R T R VA | VAV AT o = 1 o 72
LR I = N N I = =00 10 = 1 o o 1O 72
9.9.3 DIRECTION @NNOAION.......cccviiuiictiericreeetestee st seesteesee st esaeebaesbesreebessessssssessseesaesresseesasensenns 73
9.9.4 SIGNALTYPE GNNOLELIONc.veviiiicriceiecte et este st st steete st beereesbesseserssnessaessaesreeseesaeensenns 74
9.95 ACTION GNNOLALIONccuiiiiiecieeetie ettt cre et seeeesteeetre s ebeeeteeesbeesatesabeesbeeeaseesaessbeesseessreans 76
9.9.6 POLARITY GNNOLALIONveeiiieiii ettt ettt et s et eetee e steesatesbeesbseeareesaessbeenseesnreans 77
9.9.7 DATATYPE @NNOALION.......cueiiviirieiectieie e eteeteestssteestesreesaessaesbesbeesbessessssssessesnsesresteessesseenns 78
9.9.8 INITIAL_VALUE @NNOLBIION......cciitiiieieiececieeee et ete st et e seese e e e sbesbe b sbe b sbe s enaeneens 79
9.9.9 SCAN_POSITION @NNOALiONcoeeviereiriieeiesieieeeeteete e ereste e sree et eeeebessesresbesbesaessebensenes 79
9.9.10 STUCK @NNOLALION......ccviiitieeeiitee e et e steeeteeeteeesteeeeesbeesseesseeesbeessessbeessseeseesansesseessssssreens 79
9.9.11 SUPPLY TYPE @NNOLAIIONccveivieiteciieie ettt e et ees e saesbeestesbeereesbesssssrssnsssaeesaesressessresnsens 80
9.9.12 SIGNAL_CLASS @NNOLALION.....c.cciiticieiieieeiesieieeseetestesreeresteseessessesseseesassessessessessesaessensensenes 8l
9.9.13 SUPPLY _CLASS GNNOAION.....cveiuiitiiieieiecieieeee e e st erestesae st eseesaese s e sressessesressesaessenseseenes 81
9.9.14 DRIVETYPE QNNOLALION........ccviitiiieitiitie ittt ettt sreeres e enssressassteesassbaessessaesbesbeenbesseenns 82
9.9.15 SCOPE @NNOLBLION......cccitieiieeteeitee et e et e seteeeteeetreesteeseesebeessessseesbessaseesseesabeesseesseesseesssesssenns 83
9.9.16 CONNECT_CLASS QNNOLALION......c.ccueeiiiuierietisieseesteteeeseeseeeeeesesresesrestestesaessestesseseesessssseens 84
9.9.17 SIDE @QNNOLALIONeeecuieiie e ciee ettt ettt stte e e be e e ereesaeesabe e s beesaeeesbeesabesabeesbsesaseesaeesabesseessreens 84
9.9.18 ROW and COLUMN @NNOLBLION........ccceeiieirieiieeiiteeeee sttt eereeereeesreessesseesteeesseessesssesnseessseens 85
9.9.19 ROUTING _TYPE @NNOALIONccueiiiieieieeeceeeee sttt st st ve st st ne st st sn e aeneenes 86
9.9.20 PULL @NNOLALIONeccuiiiitiecie et ctee et et ste et stee e steesaeesbeesaaesseeesbesentesnbeesaseenseesanesseensnessseens 87
9.10 ATTRIBUTE values for aPIN and aPINGROUP............cccccvuiiieitieie ettt s 87
Q.11 PRIMITIVE QECIAIGHION ...eceveiveceeeiteeie ittt ettt ettt e ste s e stesaaesbesasebesbassbesnesssssnsenessnnensens 89
Q.12 WIRE AECIAIAHIONoeeuveiiireeiee et cctee et st eeteesete e s tae st e e be e sbeeebeesabeebeesaeeesbeesasesabeesbaeeaseestessnseensesssreens 20
9.12.1 ANNOLatioNSTOr AWIRE..........oooiiiee ettt ettt s re e e e saeeeaneebeens 20
9.12.2 SELECT CLASS @NNOALiON....c.veieieieuieieeieceeteee st erestesrestesaesseeesesaesee e esesseeseesesaesnesrenseses 90
.13 NODE ECIAIALION......cciiiitiecee ettt ettt et et e sbeeee e st e e s aaesabe e sbeesbeenbaesateenseesanesbeensesssreens 20
9.13.1 NODETY PE @NNOALION.......cvciitiirieieerieiecteete e estesaeesaesseetessaesbeesesssessssessensssseessesresssesasensenns 91
9.13.2 NODE_CLASS GNNOAION.......ueitiieieiieieieeeeieeeeestestesteseestesaesseseesaesessessessessessessessessensessenes 91
.14 VECTOR ECIAIrAiON.....cocviiieiiecteesieeie sttt e e bt et e eteeessaesaesbeestesbeesaesbsesbesssenbessessbessssssssseensssneesens 92
9.15 ANNOLALIONS FOr VECTORoiiitii ettt ettt sttt ettt e st e sae e s ste e saaesabeesbaeeaseesteesabesnessnreens 92
9.15.1 PURPOSE QNNOLALION........ceiiiiiiieeeeeeiteeiteeereesteeesteesteesbeesseessseestessasessseesaseessessseesseesssesnsenns 92
9.15.2 OPERATION @NNOALIONveivveericeieericieere et ettt seesreesae et e sbeebessesssssseessesaesresseesresnsens 93
9.15.3 LABEL @NNOALIONocovi ittt ettt ettt steeeae e s be e sneesaee e sbessteenbeesabeenseesnneesseessnesnneens 94
9.15.4 EXISTENCE_CONDITION @nNNOafioNccceieeieriirerieeresiesiesreeessereeessessessesresseseessessensenes 94
9.15.5 EXISTENCE _CLASS @NNOaiON......ccciveieeieieieeecteste e e steseeseese e tesse s stessesrensesseseseseenes 95
9.15.6 CHARACTERIZATION_CONDITION annotationccccceeveveeeeesesreseseesresreseesnesennens 95
9.15.7 CHARACTERIZATION_VECTOR @nnOtafion.........cccoereeiuereereeeereeesessesressessesseseeseessssennes 95
9.15.8 CHARACTERIZATION_CLASS aNNOtAtiONccveiveiteieeiieseeieeeseeesesresressesseeeseeseenseseenes 96
Q.16 LAY ER GECIAIAION ...ttt ettt ettt e et e st esaaesaae e sbe e sbesnbaesaaeenneesanesbeenneesnreens 96
9.17 ANNOLALIONS TOr LAY ER ...ttt ettt st sre e s ste e satesab e e baeeaeeesteesnbeenneesnreens 96
9.17.1 LAYERTYPE QNNOLALION.......cciiviitiiieireeieiteciee et eee e esresreesresaeesresaeesbesasebesbaesbessesssssnssnseenns 96
9.17.2 PITCH GNNOALION.ueiiiiieiie ettt et e et st e e e steeete e sttesteesseesabeesaeesabessbaesnseesbessseenseessren 97

IEEE P1603 Draft 5 Advanced Library Format (ALF) Reference Manual vii

10.

viii

9.17.3 PREFERENCE GNNOALIONcccvviiieieiieirieceteestieceveeseesstessessvesssesssessressssesssessnsesssessssesssnsens 97

Q.18 VIA TECIAIAION......eevectiiete ettt st st et sttt e e e e et e b e s e e sbeebeesaesbeesbesbeesbesssenbesbeenbesaeessesnnennens 98
0.19 VIA INSEANTIBEION.......eiiveiieiteeeee sttt ettt be et e e seeste e b e steesbeereesbesaeesbesasesbeenbesbeessesbenssesresnsesennsesbensenss 98
.20 ANNOLALIONS O AV IA ... oottt ettt ettt sbe e st e s aa et e eabebeebeeebeeasesreenbesreensesbenseens 99
9.20.1 VIATYPE QNNOAIONceiivieiiiiieite ettt ettt e see st stesbeesaesbeessesaeesbenbeenbesseeneesnesnnes 99
.21 RULE ECIAIAION ..ottt sttt ettt ettt st e te e ste s e sbesaae st e sabenbeebeebesaeessesnseseensesbensenss 99
.22 ANTENNA GECIArAION.....cveeiteiieteeeeeteetee ettt ettt steesaesreete s e e be st e et e ebeeebesasenseensesaeereesaesnsesresnsenss 100
.23 BLOCKAGE ECIArationccoeiveeiieiteeiecie ettt ettt s be st et ebe et saesnsesneessesbeesbesbeesbesnrenns 100
.24 PORT AECIAIAIION......ccviieveeiueieteeeteeeete e steeeeestesestessaessbeeesesssesssbesssessbessatessessbesessesssessntessessnssesrens 101
9.25 ANNOLALTIONS FOF PORToeiteiiete ettt et s s st s be s s ste s ebessab e e bessaeesstessabesabessbessnressnnessreas 101
9.25.1 PORT_VIEW @NNOALION......c.ciiririiririirinierieeesieiestee ettt 101
L SIS I o [ox = oo 102
L AN 04T = o T o o I 102
9.27.1 ORIENTATION_CLASS @NNOLALION.....ccvveeeeeeierieeeesiesieseeseesieeeseeeeseseeessessessessessessessesees 102
9.27.2 SYMMETRY _CLASS @NNOALONvccveviicietieecteeeete ettt s sre st ae e ae e e eneenas 102
.28 ARRAY ECIAIGLION.......ccueecieiiteectee ettt ettt e e bt e e ae e e st e e e eeebeesabeenbeesbeeesbeessaesabeesseesnneesaeas 103
9.29 ANNOLALIONS FOr ARRAY ..ttt ettt et et eeate e sbe e s beeebeesateenbeeenneesaeas 104
9.29.1 ARRAYTYPE GNNOLALONc.vccvveiicticiictee ettt ettt see sttt st be v e be b s snssntesteeeesaeeneesaean 104
9.29.2 SITE referenCe annOLatioN...........cocueeiviiiieecee ettt ettt ettt e b e e sbe e aaesabeesbeeeneesaeas 104
9.29.3 LAYER reference annotalionc.ccceiiiieeee ettt st e ereeereesbeesanesane e e 105
9.30 PATTERN AECIAIatioNccuveiveiieiiieee ettt ettt sttt sttt et et ba e st entebsentesaeeseesaeenaesaeentenns 105
9.31 ANNOLAtiONS FOr PATTERNoiiitieiii ettt ettt ettt sareeae e sbe e e saeeeaaesnbeesaneereesaeas 105
9.31.1 LAYER reference annotalionccccceiiiieeee ettt et s e aeestee e sreesaeesbeesanesnneesrs 105
0.31.2 SHAPE GNNOALION......ccuviiieeitie it ceee st stee et e s e eeteeeteeebeesreesabeesabessseebesesseesseesabeesasesaseesses 106
9.31.3 VERTEX GNNOLAIION......ccviiviciiiiriiiiiri et ettt et seestssseestesteestesaaesreestesbesnsesbessesssesnssstessens 106
9.32 REGION AECIAIGLION.......ccveiveeiieiiiiiie ittt sttt st st st st ebae s b eaa e st eeabesbeenbesbesasesreestesbeesbesseesresnbenss 107
9.33 GEOMELTTC MOUEoeiiei ettt et e e e s be s ae e e ab e e sbeeeeeebaesabeebeesbeeesaeesasesabeeseesnneesaeas 107
9.34 Predefined geometric modelsusing TEMPLATE ... 110
9.35 GEOMELNTC traNS OMMIELIONcouviiiieeie et e e et s b e e re e sbee e saeesaaesabeesaeesnneesaeas 111
9.36 ARTWORK SLAEEMENLoeiveeiveieeireieete et ettt et esteeseesbeeseesbeeabe st e e besbessbessesssssnsesteeressbesseesresnsenss 113
.37 FUNCTION SLAEEMENLc.veveeiteieiereieeteetee et ereeereestesreestesaeesaesaassbesbeesbessessbesassssssnsesaeesessaesssessesssenss 114
0.38 TEST SLALEMENE....c.eciviitiectictie et ete ettt eteese s st e et et e e te st e ebesebaeassebeensesaeeaesbeessesbeestesbesabenbeenbesbenaes 114
9.39 BEHAVIOR SLALEMENL......ccueiiteiietecieecteetee et et eetesteesaesteestesaaesbesbeesbessessbesssessesntesaeesessaesnsessesssenss 114
9.40 STRUCTURE SEALEMENTcoiviiiieieiietecrieete ettt et st see st esassaaesbe st e et e sbessbesseensssntesaesressaesssesaesnsenns 115
.41 STATETABLE SIAlEMENLccuiitiiieieictecte ettt ettt st ebee s eaae st e et eebeebesbesasssaeestesreesbesbeesbesneenss 116
9.42 NON_SCAN_CELL StAEMENEccviieeieeececteeeetec ettt sresn e b see e e e enaens 118
.43 RANGE SEALEIMENE.......cueiitiiiee ittt ettt et e ete et e ste e seesbeeteesbeeabe st e enbeebeebesbesasssreetesbeesbesseesreensenss 119
Constructs for modeling of digital DENAVIONc.ooeeiiiieee e 121
10.1 Variabl @ ECIArationS.........cceiiiieiie ettt e s b e e aae e be e saeebe e sabeenseenbeesnseeeseesabenns 121
10.2 BOOIEAN VAIUE SYSLEM.......cvicieiecee ettt sttt e s ae e e steea e seeseesseentesneenteeneensennnennen 121
10.3 Combinational TUNCLIONS.........cciiiieie ittt ettt e et eeabe e saeesabe e beesabeeabeesseenseesabenns 123
0 C T/ R e .01 o 1T =10 4 = oo | o PSP 123
10.3.2 BO0O0I€aN OPEratorS ON SCAIASccuiieeireeteestisiiesteeieste e e s e eeessessesseessesseesaessaessesssesessensenns 124
10.3.3 BO0O0I€aN OPErators ON WOFGSccieieeiieeiestiereesteeteestesteeseessesseessesssesreesaessaessessaensessensenns 124
O G I @ o= = (o gl o Lo 1 (1= TSRS 126
N0 RCRSIN D= = 4] 01=] 1172 o o o [TS 126
10.3.6 Rulesfor combinational TUNCLIONS............coceiiiiiiiei et sare s 128
10.3.7 Concurrency in combinational fUNCLIONS...........cccceieeiinieieniece e 129
10.4 SequENtial fFUNCLIONS.........ciie et e e s te e nesre e seesseentesreentenreensennnennes 129
10.4.1 Level-sensitive sequential [OQIC.......cccoveeeiiiie i st 130
10.4.2 Edge-sensitive SequeNtial 0gICcccveveieeieiie ettt 130
10.4.3 Unary operators for VECIOr EXPrESSIONS.civeciverreeeeeiesteeeesteseeseessesreesaesseessesseessesssessenes 132

Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 5

10.4.4 Basicrulesfor sequential fUNCLIONS.........c.ceieiereieeeie e sne 133

10.4.5 Concurrency in sequential fUNCLIONS.........ccceieieeirieie e 136
10.4.6 Initial valuesfor 10giC VariablES.......c.coueeeieeecese s 137
10.5 Higher-order sequential fFUNCLIONScoeiieieicieiese st s 138
10.5.1 Vector-sensitive SeqUENtial [0QIC.......ccovvvrieieiisesereereceere e e e sre e sre e seens 138
10.5.2 Canonical binary operators for VECIOr EXPreSSIONScvviveverereeriereeieeeeereeeeessesseseseens 139
10.5.3 Complex binary operators for VECIOr EXPreSSIONS.......ccvvvriereriereerieseeieeeseeseeeesessessesesnens 140
10.5.4 EXtENSION tO N OPEIANAS......ccceiieieiriesiereeseeeseeseeisses e sressesresresteseeseeseeseseessseeneeseesensessessens 141
10.5.5 Operatorsfor conditional VECIOr EXPreSSIONS.........ccuiuiverieririererierisienesiesesie s e e 143
10.5.6 Operators for SEQUENLIAl [OGICevvvuiriiiriririerere e 144
10.5.7 OpErator PriOMTIEScveueeeeirieierieiirieer ettt sttt 144
10.5.8 USING PINSIN VECTORS......cccoiitiiresterieseiesesneesesseesessessessessessessesssssessesesssssessessessessessessens 145
10.6 Modeling With VECIOr EXPIESSIONS.......civeueietereetireeterieteseereseeressese st esse s s s s b e s es et senseneneenas 145
JO.6.1 EVENL FEPOITS.veeeueeieeieetesieete sttt sre et e et r e eb b sh s e e s et eb e saeeneebenbesnenrennennea 146
10.6.2 EVENE SEOUENCESccuviiveeuiieuteteeteestesee st sieebeseesbe s e e sbeessaebesaseeaeeeesaeeseesaeessesaeenbesbeenbenseesreans 147
10.6.3 Scope and content Of EVENE SEQUENCESceerurererieriereeeie e sieste e st seeseeseesesseses e ssessesaeseens 148
10.6.4 AErNative EVENTE SEOUEBNCEScoutiuirteriereirieie e eeieiee e eteeie st saesbeseeseese e bese e e ebessesbesaesbesaeseens 150
10.6.5 SymbDOIiC UGB OPEIELOISc.coierueeueriererie ettt b e b sttt bese e sesnesbesnesae s 151
JO.6.6 NON-BVENES. ... oottt ettt se e b e e bt eae e b e eae e s besae e seesaeebe et e sbesbeesbesnnenreans 152
10.6.7 Compact and Verbose eVent SEQUENCESccuierererieieirienie et sre b e neens 153
10.6.8 Unspecified simultaneous events Within SCOPE.........ccocoerirererirenieie e 154
10.6.9 SIMUILANEOUS EVENT SEOUENCEScvverueeirteieseeseesteeeseeseeessessesseseeseessessensenseseeneesesnessessessens 155
10.6.10 IMPlicit 10CaAl VAITADIES........ceieieeeee et s 157
10.6.11 Conditional EVENt SEQUENCES.......ccurtereriiriertesiestesieseeseeseeseee et ssesbesbesbesbessesbenseseeeensesesesseas 158
10.6.12 Alternative conditional eVent SEQUENCES..........coeiueeerieiriere ettt sae e e b see s 160
10.6.13 Change of scope Within @VeCtor EXPreESSIONcceerirerrerieeesierie st see s eeessesesaens 162
10.6.14 Sequences of conditional EVENt SEOUENCES.........cocurerierererierierie e sre e s 165
10.6.15 Incompl etely specified EVeNt SEQUENCES..........ccoerreereirere et 167
10.6.16 How to determine well-specified VECtOr EXPreSSiONS........c.ccovvereriereerieneesieeeeee e 168
10.7 BOOI€AN EXPreSSiON [ANQUEBE.coeruirerterie sttt sttt eae bbb e e b e b esae e et ese e e sneesesnes 169
10.8 VECtOr eXPression |ANQUAGE.citiiree ettt sttt eee bbb ss et e e b e s e s se e s ebe s e sbesbeneas 169
10.9 Control eXpreSSiON SEMANTICScoeiereierieierieee ettt sttt s sb e e et e b et aesbesbesaesbesbenbesbeneas 170
11. Constructsfor electrical and physical MOEiNG.......ccccveiiiieiiceece e e 173
I N 11 0 o = o == Lo o S 173
11.1.1 Unary arithmetiC OPErALONccviieeieceecee st e sesteestestae e e e e s e s e sre e aeeeesteesaesresnaesreens 173
11.1.2 Binary arithmetiC OPEIrator.........ccccueiuiecee ettt e sae e ae e eneesreens 173
11.1.3 Macro arithmetiC OPEIaLOrccueeiueeieeiee ettt et e sae e e sae e enae s e entesreens 174
12.2 ArithMELIC MOGEL ...t e et b et b bbb e e b e 175
11.2.1 Trivial arithmetic MOCE! ..o e e 175
11.2.2 Partial arithmetic MOTE!c.ooieiiie e e 176
11.2.3 Full arithmetic MOGELcciiiiiiiieee e s 176
11.3 HEADER, TABLE, and EQUATIONccotitiiieitiririniei sttt 176
11.3.1 HEADER SEEBEIMENEcvveiiiieiieeeresesiete sttt sr ettt 177
11.3.2 TABLE SLAEMEN....c.iiiiiitiirireeieteeres ettt e bbb 177
11.3.3 EQUATION SEAEEMENL.....cocoiirerieiiererieteie sttt esr st bbbt 178
11.4 Statements related to arithmetic MOELcoco i e 178
1141 MOE! QUAITTIEN ceeieeieiiiesiee et 178
11.4.2 Auxiliary arithmetic MOElcccooei i e e 178
11.4.3 Arithmetic SUDMOTE!ocuiiiieieeee e 179
1144 MIN-MAX SEEEEMENEcveviiisirieiee sttt 179
1145 MIN-TYP-MAX SEBEEMENTccviviiriirieeeeresieeeiese st 179
11.4.6 Trivial MIN-MAX SEEEMENEccorieieereirerieieieessee e 179

IEEE P1603 Draft 5 Advanced Library Format (ALF) Reference Manual ix

11.4.7 Arithmetic MOTEl CONLAINETeiieeceie et re e et s e b s ssaeesreesareens 180

11.4.8 LIMIT SLAEMEN....c.viiticieire et eee et ecee st et et e sae st e eseesbeeabesbeenbesbeesbesasensesaeebesbeesbesseesbesssanss 180
11.4.9 Event referenCe StAlEMENT.........cviciiieieeeeee sttt ettt sre e st seesbeebesbeeaesbens 181
11.4.10 FROM and TO SLALEMENES.......cueeieiiieireireesreiteestesteetessaereeteesbesseesbesasesesaessesseestesseessesssenns 181
11.4.11 EARLY and LATE SLAEMENES.......ccoieiriciecriiiee st srteteeteteereestesseesresneessesaesreeseesreensesaesssenss 181
11.4.12 VIOLATION STaEMENToecceictieeice ettt sttt st st bestrebeebe et e sseesbesasestesaesresbeesbesseesaesnsenns 181
11.5 Annotations for arithmMetic MOAEIS.........cccoiiieiieie e 183
1151 UNIT @NNOAIION....c.viitiiiteiteecticreere et e ettt esreseestesre b e ssbebeeseesbesseesbesasesseensesbeeseesaesnsesaesssenss 183
11.5.2 CALCULATION GNNOLALION.....ccceiieieieeeitieeresiieeeeessteessesesssesbesssssessessssessesssesessessesssenas 183
11.5.3 INTERPOLATION GNNOLALION......ceivieieeeiieietesiteeeeeesteesreeesesesbesseeesessreesssessesessesssessnsenas 184
TS Y] s R = Vo = 1 o o 185
T T 1 185
11.6.1 TIME in context of aVECTOR deClaration..........ccoeeieuiieeeeercieeciee e sreeereeiessseeesveesneeens 186
11.6.2 TIME in context of aHEADER StAlEMENT.........ceeeeeieieieeceeeree st sres e v 186
11.6.3 TIME asauxiliary arithmetic MOdelooooiiiiiiiee e 186
11.7 FREQUENCY ...ttt sttt sttt et e b et st sbe s he st e besee s easessebeeseebeeaesbesbenbesaessentessesnnsaneas 186
11.7.1 FREQUENCY in context of aVECTOR deClarationccceeveveeviieeiieseeseeseseesie s 187
11.7.2 FREQUENCY in context of a HEADER Statement...........cccecveeeeveeieiecieecesee e e 187
11.7.3 FREQUENCY asauxiliary arithmetic modelccccoirineneninenereeesee e 187
T T I ST 187
11.8.1 DELAY incontext of aVECTOR declaration..........cccceeeuieeeiiieeitie et ennn 187
11.8.2 DELAY in context of alibrary-specific object declaration............cccccooevenierenencienncceene 188
T o AN 1 N TR 188
TLAOSLEWRATE ..ottt ettt sttt ettt b et e e b et e e bt e besbeesbesaeesbesab e beetesbeestesbeenbesbeenbesreannes 188
11.10.1 SLEWRATE in context of aVECTOR deClaration............ccceeeveeeieeeeeeeiireecieeereeeveeeee s 189
11.10.2 SLEWRATE in context of aPIN declaration...........ccocvevveeieeirieece et 189
11.10.3 SLEWRATE in context of alibrary-specific object declaration............cccceoeneiineniceenne 189
I I S g T T o = [OO 189
11.11.1 SETUP in context of aVECTOR deClarationccccoveiveeeieenieeciree et sree e v 190
11.11.2 HOLD in context of aVECTOR declarationccccoceevieieiiiee et 190
11.11.3 SETUP and HOLD in context of the same VECTOR declaration.........c.cccceeeveevveeecveennen. 190
11.12RECOVERY aN0 REMOV ALooiiiiiiieeetiitee ettt ettt stes s as sttt saesbaestesaeenbesbeenbesneenes 190
11.12.1 RECOVERY in context of aVECTOR declaration...........ccccevveeieeevee e 191
11.12.2 REMOVAL in context of aVECTOR declaration...........cccccuvecveeeeeeiee et 191
11.12.3 RECOVERY and REMOVAL in context of the same VECTOR declaration................... 191
11.13NOCHANGE AN TLLEGAL ...vvevi ettt ettt sttt sa et eaaesbesaresbeentesneennes 191
11.13.1 NOCHANGE in context of aVECTOR declaration...........cccccovveeveecieeicieeceecee e 191
11.13.2 ILLEGAL in context of a VECTOR declaration.............cceeueeiveeiieciee et 192
TLLLASKEW ..ottt ettt ettt e st e et e et e st e e steeb e eat e e bt eabesbeesaesaeesbesasasbeere e beebeeaheenbeebe e beereenes 192
11.14.1 SKEW inVOIVING tWO SIGNAISecvieeiiceeiee ettt e s seesn s s e s stesnnens 193
11.14.2 SKEW involving MUltiple SIgNaIS........ccveiiiie ittt s 193
T AEPULSEWIDTH ...ttt ettt ettt s sttt b s te b st e ebesaessaeenessteesesbeeseesaeenbesaeenbesteenbenseenes 193
11.15.1 PULSEWIDTH in context of aVECTOR declaration...........ccceeeceeeeeeiieeceeccee e 193
11.15.2 PULSEWIDTH in context of aPIN declarationccoeceeveieieeciee st 193
11.15.3 PULSEWIDTH in context of alibrary-specific object declaration.............ccccccoovvcvvrennene. 193
TLLABPERIODcveitietietie ettt ettt st e et st s bt esbesbeesbeesbebe et e sbesaessaeenteabeesbesbeesbesabenbesneebeenesereenreares 194
T A I = OSSO 194
TLABTHRESHOLD ..ottt ettt s st b e et e ebesaesebeeatesbeebesbeeseesaeenbesaeenbesbeenbessesnes 194
11.19Annotations related to tiMIiNG data...........ccceeveiceeieieeses e er e e 196
11.19.1 PIN reference anNOLaLiONeccvieiieeeite it eiteeeeteesteesteesre e stee e saeesaesbeesaseessessaneenneesseesns 196
11.19.2 EDGE_NUMBER @NNOAION......c.ccoiiiiiiiieiesieseesieseeeeseseee e stesresrestessessessessessessssesssssessens 196
T1.20PROCESS.coe oottt ettt ettt ettt s st b e et e b e et eebe e st e ebeeabesbeesbesaeesbesasenbesasenbeebeeabesabesbeenbesneenes 197
L11.21IDERATE _CASE ...ttt s ettt s et eeae et e et e s ae et e s bente st ent e teneensenaesennnaneas 197
T11.22TEMPERATURE......coe ottt ettt st st sttt et e b ebe e s be e e sbe et e s beeseesbeesbesbeenbesbeenbesneenes 198

Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 5

11.23PIN-related arithmetic models for electrical data...........oovvieeiviiiie e 199

11.23.1 CAPACITANCE, RESISTANCE, and INDUCTANCE........ccovirrerenerenereese e 199
11.23.2 VOLTAGE anNd CURRENTcctiiiriiiriitenteesie ettt 199
11.23.3 Context-SPECIfiC SEMEANLICS.cvieeerereses e et se e se e eresresresreseesreeens 200
11.24POWER @N0 ENERGYoiiiiiiiiiiiisiecnieiete ettt sbe st sttt ettt sb s sene s neens 202
L11.25FLUX AN FLUENGCE ..ottt sttt n e sene e neens 203
11.26DRIVE_STRENGTH ..ottt sttt ettt b s ene b neens 203
L1.27SWITCHING_ BITS ..ttt ettt ettt b e b bene s neens 204
11.28NOISE and NOISE_MARGINcooiiiiriiinerisie sttt eer st naens 205
11.28.1 NOISE MAIQiN...cceiuiieerieieeeereeeseesesesseseeseseeseessesensessessessesssssessessesssssessesessessessessessensessessens 205
L1282 NOISE ..ottt ettt et a e st b et be st e st e se st e et e st e e et e s ese st enentenesens 206
11.29Annotations and statements related to electrical MOdelS.......covevvvreeecirie s 206
11.29.1 MEASUREMENT @NNOAiON......cveitiiieiiiiiee ettt ettt eveere et saeesae s enneseebesreens 206
11.29.2 TIME t0 Peak MEBSUMEIMENEc.eiiieiieiiieiesieeseerie sttt ettt 207
L11.30CONNECTIVITY .oootieeirieisieeeteesteestees et ses b sessesaesesassessesessesessesessanesansesensesanessessesansnsensnsessnses 208
R S 7 ST 209
R 1N o TSRS 210
R 11T I TSR 210
R 7 |] O TSRS 210
R L I 1N TSRS 210
LL1.3BDISTANCEcetiteirteirie st te et e sttt se et e sessesaebessebessebessase s e ese st en e s e s s et eneesaneesansesensesansnsensenen 211
LT1.37OVERHANG ..ottt sttt ettt ettt st ebe st et e s e se st e st e s s e s e ssene st e sesseseasanensensesenannen 211
L11.3BPERIMETERcooietiieiiieiiiete ettt ettt ettt ettt e s s et st e s et e e sa e st saesesbese st anensansnsenannn 211
LTL1.3IEXTENSIONoiuiiiiiieirieisieseeteses e tese bttt st besasbesaebesaebessesesses e sesessesessesessesesbese s anensensnsenennen 211
LTLAOTHICKNESS ..ottt ettt a bbb s e s e seeseseesesbesenbenensansesenannen 211
11.41Annotations for PhySiCal MOTEIScouiieee e e e b 212
11.41.1 CONNECT_RULE @NNOALION......cccviiiiriririinisisisessie ettt sas e ssssesens 212
11.41.2 BETWEEN @NNOLALIONcoviiiitiiitisisiisieiesietesiees e et ses s e e essssensssesessessnsessesessaseses 212
11.41.3 DISTANCE-MEASUREMENT @nNOatiON........ccvviuieerieinieisienesiesesienesesesiesesesesenessenenns 213
11.41.4 REFERENCE annotation CONTAINEYccoeririreiineesie e sseste e see e 214
11.41.5 ANTENNA reference annotation............coeceiererieieereeieene st 214
11.41.6 PATTERN reference annOtationc.coeieiereeiieeeie e s sne e s 215
11.42Arithmetic submodels for timing and electrical data.............cccvevveiiiceeiiiee i 216
11.43Arithmetic submodels for phySiCal data............cccieeieiieieiiceecce e s 216
(iNformative) SYNtaX FUIE SUMIMEIYccueiieieieeieeeieeseesee st etee s e teste et teeseesaeeeesae e testeestessaeseesssanteentesseensesneennes 217
Al ALF MEEANQUAOEeceieiicecteee ettt sttt et ete e aesreeneesaeeneesaeeneenreens 217
A2 LexiCal defiNitIONScccoiiiieeieicre st et b e be e ee 217
A3 AUXITArY AefiNITIONS.oieee e e e e e et e e r e re e e sreenee s 220
A4 GENENIC AEFINITIONS. ...t et b e ebe bt e e 222
A5 Library defiNitiONScoociiieieceee ettt sre e e re e naenreens 223
A6 CONtrol defiNItIONS.......c.eieieeiierre et et s b et b e 229
A7 AthMELIC AEfiNITIONS.....ceiieeieee e s b e e b ee 230
(informative) SEMANti CS FUIE SUMIMEAIYcciuiieeieeseesieeseestesteesteestesteeeeste e e e sseeseesaeesseste e tesseessessaansessenneeereessesnns 235
B.1 Library definitioNSccocie ittt 235

IEEE P1603 Draft 5 Advanced Library Format (ALF) Reference Manual Xi

A N a1 1 0101 TR0 L= T T (0] 241

(informative)Bibliography

Xii

Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 5

List of Figures

Figure 1—ALF and itstarget @pPliCALIONScccveuirieiiiiesire et sr e s een e e eneenanns 4
Figure 2—Parent/child relationship between ALF SLAEEMENESccocvveieveeeceese et enees 16
Figure 3—Parent/child relationship amongst library-specific ObJECtSccovecveivii i 18
Figure 4—Parent/child relationship involving singular statements and plural statementscococoveerverieeeen 20
Figure 5—Parent/child relationship involving instantiation and assignment statementsccccoeeeveerreernienns 21
Figure 6—Scheme for construction of composite SIgNaltype ValUEScovevirriinriineeeeeeeee e 75
Figure 7—ROW and COLUMN relative to abounding box of @CELLcccoceviriinniineisenere e 86
Figure 8—Connection between layers during ManUfaCtUriNgcccoeevierirninneneeeseesee e seenes 100
Figure 9—Shapes Of rOULING PAITEIMScouiiiiiiieiieere ettt b b et se e b e e e e b e e ebesbesbesaeneens 106
Figure 10—Illustration of VERTEX @NNOBLIONcceiiiuiriirieierieceirie st sre et s nee 107
Figure 11—Ilustration of gEOMELIIC MOTELScociiiiiri i ettt s e s 108
Figure 12—Illustration of direct point-to-poiNt CONNECLIONcoeieirieeieririe et 109
Figure 13—Illustration of manhattan point-to-point CONNECLIONccceoiiiriiririre e e 109
Figure 14—Illustration of FLIP, ROTATE, @nd SHIFT ...t 113
Figure 15—Concurrency for combinational [0QICceriririririie ettt s s 129
Figure 16—Model of aflip-flop with asynchronous clear iN ALF ... 131
Figure 17—Model of aflip-flop with asynchronous clear in VErilog ... 131
Figure 18—Model of aflip-flop with asynchronous clear in VHDLccooiiiiiiiininece e 131
Figure 19—Concurrency for edge-sensitive sequential [0giCooeviireriiiinie e 136
Figure 20—Example of event sequence detection FUNCLIONc.cceeiriieiiinie e 138
Figure 21—Bounding regions for y(x) with INTERPOLATION=FItcccoiiiiiiiereee e 185
Figure 22—RETAIN 8N DELAY ..ottt sttt eb e et b ettt 188
FIQUre 23—SETUP @0 HOLDoouiiiiiiieieieesie ettt bbbttt st 190
Figure 24—RECOVERY and REMOV AL ..ottt sttt sb e et 191
Figure 25—THRESHOLD measurement defiNitionccvcceiieiiiiciee et enae 195
Figure 26—General representation of electrical models around apin ..o 199
Figure 27—Electrical models associated with input and OULPUL PINSooeeeeereririerenesese e 201
Figure 28—Definition of NOISE MAITINcccveiieieciceeee et e e e eere et e sreeseesreeneesreennesreens 205
Figure 29—Mathematical definitions for MEASUREMENT annotationscccceveevienieeieeneeieesesies e sneiens 207
Figure 30—Illustration of time to peak using FROM StateMENtccecceieeiesieiie e ccie e e e s e se e 208
Figure 31—Illustration of timeto peak using TO StALEMENLccccciiieiereere e e e nre s 208
Figure 32—Illustration of LENGTH and DISTANCEcoioiiii ettt et sre e s s enaesreens 213
Figure 33—Illustration of REFERENCE fOr DISTANCEccccooiiiiitiirneee it 214

IEEE P1603 Draft 5 Advanced Library Format (ALF) Reference Manual xiii

Xiv Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 5

List of Tables

Table 1—Target applications and models supported By ALF ...t 2
Table 2—Categories Of ALF SLAEMENTS.......ccooii ettt et a e e b s be s besae b et seeseeneseeneans 14
TahI @ 3—GENEITC ODJECLS......e ettt ettt ettt eb bt b be et sa e ke e e se e e e e e beeaesbeebesbeseenbesbesnens 16
Table 4—Library-SpeCifiC ODJECLS... ..o ettt e 17
Tahle 5—SINQUIAT SEAEEMENESceeteeitereete ettt b et b e bbb e bt seebeneebesbebe e 18
TahIE 6—PlUral SEELEIMENLScueiieeeictereet bbbttt et ettt et b et et e e b e e e b e seebeseebesbene e 19
Table 7—INStantiati ON SEALEMENES.......cciuiiierirerre sttt st et st e b et e b e b seebeseebesbene e 20
Tahl @ 8—ASSIGNMENE SLAEEMENTS. ...ttt sttt h et b et e e e et e e eb e e st besbesbesaenbesbeseeseeneeneeneane 21
Table 9—Other categories Of ALF SIAEEMENES.......co.iiiiiieeeeeirere ettt ene b b sae 22
Table 10—Annotations and annotation containers with generic KeyWordceveerenneieneineienecseeeseenins 22
Table 11—Keywords related to arithmetic MOE]coooiriiiiin s 22
Table 12—StatementS for ALF Parser CONIOLcouviiiireerieerie et neenen 23
Table 13—List of WhiteSPaCe CharGCLEN'S........cc.eiiiierie ittt et s b e s b et se e e e 25
Table 14—List Of SPECIAl CHAIBCLEIS.ot ettt b e b e e e 26
Table 15—List arithMELiC OPEIALOIScoieeeeeirieee ettt ettt et b e bt bbb be e e e e e e e 28
Table 16—List Of DOOIEAN OPEFALOIS........cuieeeieetireeierete ettt et et s st a b s bese b sbene e 29
Table 17—List Of relational OPEIEIOrS..........cireiireireeteree ettt st bese b sbenenaas 29
Table 18—List Of Shift OPEIEIOIS.ce ettt st se bbb naa 30
Table 19—List Of eVent SEOUENCE OPEIGLOIS.cueiuereeriereeterereete ettt st st et se et et ae e b it s beeaesbesbeseese e s seenene 30
Table 20—LiSt Of MELAOPEIALONSeovirieieeeiesie ettt ettt sb et s e et b et b e e bt s besbe st e sbeseeseenneseeneene 30
TahI@ 21—UNIT SYMDIOL ...ttt e e b e e e e b e e e e e b e e aesbeebesbeeaesbesbesbeseenbesbesaens 32
Table 22—Character symbols within & qUOtEd SEFNG..........co e s 34
Table 23—L egal string values within the REVISION StALEMENtcccociviiiiinieiee e 44
Table 24—Syntax ItemM THENEITIEN ... bbb b 48
Table 25—VALUETY PE GNNOBLION........c.civitieeiireeiireeieseesesiese s srese s s s ene s enese s se s e eneseeneseeseseessssesesnas 49
Table 26—Annotations within an INFORMATION SEEEMENTcovieireireerreresiere e 60
Table 27—CELLTY PE @NNOELiON VBIUES.........ccciieiiieieiriiesieesi e en s 62
Table 28—Predefined values for RESTRICT _CLASS.......cciiinennene sttt sbe b 64
Table 29—SCAN_TY PE annotations for @ CELL ODJECLcciiiiiiriiinrrereeee et 65
Table 30—SCAN_USAGE annotations for @ CELL ODJECE..........cuveiriireirercericeneres s 66
Table 31—BUFFERTY PE annotations for @ CELL ObJECtccviiiii it 66
Table 32—DRIVERTY PE annotations for a CELL ODJECEccviiiiieiice et 67
Table 33—PLACEMENT _TY PE annotations for a CELL ObJECLcceeiiiiieieeececee e s 68
Table 34—Attribute values for a CELL with CELLTY PE=MEMONYccoveiiriniiirirenee e 68
Table 35—Attributes within @ CELL with CELLTYPE=DIOCK.......cccciiiireiieenieeree e 69
Table 36—Attributes within @ CELL With CELLTY PESCOIE.......cccociiiireierieiesieiesieie st seene e 69
Table 37—Attributes within a CELL with CELLTY PE=SPECIAL.......cvcuiirirerieieeerieeeressie s 70
Table 38—VIEW annotations for aPIN ODJECLcccciiieieieeecse et s ne 72
Table 39—PINTY PE annotations for @ PIN OBJECE...........coceiiiciecccce e 73
Table A0—DIRECTION annotations for @ PIN ODJECE..........cuiiiiiiiirrerre et 73
Table 41—Fundamental SIGNALTY PE annotations for aPIN OBJECtccoceviiiiiiiieeeeeecee 75
Table 42—Composite SIGNALTY PE annotations for aPIN ODJECE ..o 76
Table 43—ACTION annotations for aPIN ODJECLccevieiii e e 76
Table 44—ACTION applicable in conjunction with SIGNALTYPE VAIUESccceceevievieeeceseee e 77

IEEE P1603 Draft 5 Advanced Library Format (ALF) Reference Manual XV

Table 45—POLARITY annotationS fOr @PINcceeiiiieiicie ettt ere e s st ebe s sbee s sae s sressbessbessnre s 77

Table 46—POLARITY applicable in conjunction with SIGNALTY PE VAIUES........cccccoiriiirieneneie e 78
Table 47—DATATY PE annotations for aPIN ODJECL........c.couiiiiiiiesee e e 79
Table 48—STUCK annotations for @ PIN ODJECL.........ccciiiiiiiiie e e 80
Table 49—SUPPLY TY PE annotations for aPIN OBJECEcccveiiiiicie s 80
Table 50—DRIVETYPE annotations for a PIN OBJECL..........cceiririie e s 83
Table 51—SCOPE annotations for @ PIN OBJECEcceeiieccecre et 84
Table 52—SIDE annotationS for @PIN ODJECL...........oiiiiieeieeieier ettt et e 85
Table 53—ROUTING-TY PE annotations for aPIN ODJECLcoiiiiiiiiiieee e 86
Table 54—PULL annotations for @PIN ObJECL. ..ottt e s 87
Table 55—Attributes Within @ PIN ODJECL.......c.coviiiee bbb s s 87
Table 56—Attributes for PINS Of A IMEMOIYciiiiiriirr e 88
Table 57—Attributes for pins representing Pairs Of SIGNEIS.......c.vvevrireireeree e 88
Table 58—PIN or PINGROUP attributes for memory BIST ..o e e s 89
Table 59—NODETY PE @nNOLatiOn VBIUES..........coiiiiieiieiieeeie ettt eeee e e e sae st sae s et see e enesnesneene 91
Table 60—PURPOSE aNNOLatiON VAIUESc.eiuiuiiiiiirieiesiene ettt sttt st et st seebeseeneneeneneas 93
Table 61—OPERATION 8NNOLELiON VAIUES.........c.eiiuiietiietireetesieie sttt se e senas 93
Table 62—LAYERTY PE @nNNOAtioN VBIUES..........c.ciiiriiiiieerierene ettt et st st st s e 97
Table 63—PREFERENCE annOtation VAIUES.cc.oiiiiiiriiie ittt s sae e 98
Table 64—VIATY PE @nNNOLELiON VAIUES.........coi ittt st s st se e e sae b e 99
Table 65—PORT_VIEW annotation VAIUEScceiiiiieie ettt ettt sre e e besre e e ennennas 102
Table 66—ARRAY TY PE anNOtatiON VAIUES.........cue ittt st sttt 104
Table 67—Geometric MOAE] IABNLIFIEIS. ..ottt sb e e sre e 108
Table 68—SiNGIE DIt CONSLANLS........ccoitiiiiie bbb bbbttt 121
Table 69—Mapping between octal base and binary base.........cccooiii e 122
Table 70—Mapping between hexadecimal base, octal base, and binary base............ccoceoiniiinniiininiie 122
Table 71—Unary DOOIEAN OPEIELOISoiuiriiieeie ettt bbb bbb e s e e e enis 124
Table 72—Binary DOOIEAN OPEIALOISoii ettt bbb ettt 124
TADIE 7T3—TEIMAIY OPEIBLON «...evevetetertete sttt sttt ettt ettt b ekt et se b s et bt s b ek e st e s e e s e et et b et et et sttt 124
Table 74—Unary reduCtiON OPEFELOIS.cociirierrie ettt ettt st b e bbbttt be e 124
Table 76—Unary DItWiSE OPEIELOISc..coiiiiie ettt et b et s b bbb e et e e e e e enis 125
Table 77—BiNary DitWiSE OPEIALOIS......cc.ciiierie ittt et s et b et s ae b be b e se et se e e e e eneenas 125
Table 75—Binary redUCHION OPEIEIOIS.........coiieriireeie ettt sttt et e bt b bbb e besbese et se e e e e eneenis 125
TahIE 78—BiNArY OPEIBIOISecuiiteiiiteteste sttt sttt st sttt b et st b e bbb bt bbbt b et bbbttt be et 126
Table 79—Case COMPAIiSON OPEIBIOIS.o uetreeerteeetereeteseste st ettt et e e bt st se st st sbesesbe st sbe st sbeseebesesbesesbe e sbeneebens 127
Table 80—Unary VECLOr OPErators ON DItS........coiiirieiriee sttt 132
Table 81—Unary vector Operators 0N DItS OF WOIGS..........ccuriiiriririnieie et e 133
Table 82—Canonical hinary VECIOr OPEIELOIS........cc.coorerieerierte ettt esse et sresbe e st sbe e se e e se e e e e ennenes 139
Table 83—Complex biNary VECLOr OPEIBLOIS.........ccueiierierieseeiesteeie e eseesseeseseeseesreessesseeseessaessesneensessessessessss 140
Table 84—Operators for conditional VECLOr EXPIrESSIONS........ccoviririeiereriesisie sttt s 143
Table 85—O0perators for SEQUENTIAl IOGICcviveirieirieire e 144
Table 86—Unary arithmMetiC OPErALOIS.coeiiieririerieie ettt bbb bbbttt et 173
Table 87—Binary arithmetiC OPEraLOrS.c.civeie ettt st e e st e e s e sre e beere e teenneenas 174
Table 88—Macro arithmMeEtiC OPEIBLOISccviivieie e ettt et re e e sre e e stessaentesaeenteereenreennennas 174
Table 89—CalCulation BNNOLELIONS...........coirererereere ettt ettt r e 184
Table 90—INterpolation BNNOLELIONS...........coieireririe ettt bbb et sttt e 184
Table 91—PredefiNed PrOCESS NAIMIESoo ittt bbbt sttt ettt 197
Table 92—Predefined derating CASES........co ittt ettt 198
Table 93—Direct association of ModelSWIth @PIN ... 201
Table 94—External association of ModelS With @PIN ..o 201

XVi Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 5

Table 95—MEASUREMENT @NNOLEEIONvecoveeiveiiriecieeceteesiteeeeestesssreesbesssbesssesssesssbessssssssesssesssessssssssesssessssens 206

Table 96—Semantic interpretation of MEASUREMENT, TIME, or FREQUENCYccccooiiiniiinnnccnenn 207
Table 97—ArgumMENtS fOr CONNECTIVITYc..oiiiei ettt e et e e b e ene e 209
Table 98—Boolean literalsin non-interpolateabl @ tabl €S..........coe i 209
Table 99—CONNECT _RULE @NNOELIONccuceeieieieiiesiesesie st e eesree e s et e e e s e eneenessesnessessessesenses 212
Table 100—Implications BEtWEEN CONNECE FUIES...........ccv i s 212
Table 101—Submodels applicable for timing and electrical MOdeling.........ccovivviieriere v 216
Table 102—Submodels applicable for physical MOEliNGcccceririiinir e 216

IEEE P1603 Draft 5 Advanced Library Format (ALF) Reference Manual XVii

XViii Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 5

IEEE Standard for an

Advanced Library Format (ALF)
describing Integrated Circuit (IC)
technology, cells, and blocks

1. Introduction

** Add alead-in OR change this to parallel an |EEE intro section**

1.1 Motivation

Designing digital integrated circuits has become an increasingly complex process. More functions get integrated
into a single chip, yet the cycle time of electronic products and technol ogies has become considerably shorter. 1t
would be impossible to successfully design a chip of today’s complexity within the time-to-market constraints
without extensive use of EDA tools, which have become an integral part of the complex design flow. The effi-
ciency of the tools and the reliability of the results for simulation, synthesis, timing and power analysis, layout
and extraction rely significantly on the quality of available information about the cellsin the technology library.

New challenges in the design flow, especially signal integrity, arise as the traditional tools and design flows hit
their limits of capability in processing complex designs. As a result, new tools emerge, and libraries are needed
in order to make them work properly. Library creation (generation) itself has become a very complex process and
the choice or rejection of a particular application (tool) is often constrained or dictated by the availability of a
library for that application. The library constraint can prevent designers from choosing an application program
that is best suited for meeting specific design challenges. Similar considerations can inhibit the devel opment and
productization of such an application program altogether. As a result, competitiveness and innovation of the
whol e electronic industry can stagnate.

In order to remove these constraints, an industry-wide standard for library formats, the Advanced Library Format
(ALF), is proposed. It enables the EDA industry to develop innovative products and ASIC designers to choose
the best product without library format constraints. Since ASIC vendors have to support a multitude of libraries
according to the preferences of their customers, acommon standard library is expected to significantly reduce the
library development cycle and facilitate the deployment of new technologies sooner.

IEEE P1603 Draft 5 Advanced Library Format (ALF) Reference Manual 1

10

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

1.2 Goals
The basic goals of the proposed library standard are

— simplicity - library creation process needs to be easy to understand and not become a cumbersome pro-
cess only known by afew experts.

— generality - tools of any level of sophistication need to be able to retrieve necessary information from the
library.

— expandability - this needs to be done for early adoption and future enhancement possibilities.

— flexibility - the choice of keeping information in one library or in separate libraries needsto be in the hand
of the user not the standard.

— efficiency - the complexity of the design information requires the process of retrieving information from
the library does not become a bottleneck. The right trade-off between compactness and verbosity needsto
be established.

— ease of implementation - backward compatibility with existing libraries shall be provided and trandlation
to the new library needs to be an easy task.

— conciseness - unambiguous description and accuracy of contents shall be detailed.

— acceptance - there needs to be a preference for the new standard library over existing libraries.

1.3 Target applications

The fundamental purpose of ALF is to serve as the primary database for al third-party applications of ASIC
cells. In other words, it is an elaborate and formalized version of the databook.

In the early days, databooks provided all the information a designer needed for choosing a cell in a particular
application: Logic symbols, schematics, and a truth table provided the functional specification for simple cells.
For more complex blocks, the name of the cell (e.g., asynchronous ROM, synchronous 2-port RAM, or 4-bit syn-
chronous up-down counters) and timing diagrams conveyed the functional information. The performance charac-
teristics of each cell were provided by the loading characteristics, delay and timing constraints, and some
information about DC and AC power consumption. The designers chose the cell type according to the function-
ality, estimated the performance of the design, and eventually re-implemented it in an optimized way as neces-
sary to meet performance constraints.

Design automation enabled tremendous progressin efficiency, productivity, and the ability to deal with complex-
ity, yet it did not change the fundamental requirements for ASIC design. Therefore, ALF needs to provide mod-
els with functional information and performance information, primarily including timing and power. Signal
integrity characteristics, such as noise margin can aso be included under performance category. Such informa-
tion istypically found in any databook for analog cells. At deep sub-micron levels, digital cells behave similar to
analog cells as electronic devices bound by physical laws and therefore are not infinitely robust against noise.

Table 1 shows alist of applications used in ASIC design flow and their relationship to ALF.

NOTE — ALF covers library data, whereas design data needs to be provided in other formats.

Table 1—Target applications and models supported by ALF

Application Functional model Performance model Physical model
Smulation Derived from ALF N/A N/A
Synthesis Supported by ALF Supported by ALF Supported by ALF
Design for test Supported by ALF N/A N/A

2 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 5

Table 1—Target applications and models supported by ALF (Continued)

Application Functional model Perfor mance model Physical model
Design planning Supported by ALF Supported by ALF Supported by ALF
Timing analysis N/A Supported by ALF N/A
Power analysis N/A Supported by ALF N/A
Sgnal integrity N/A Supported by ALF N/A
Layout N/A N/A Supported by ALF

Historically, afunctional model was virtually identical to a simulation model. A functional gate-level model was
used by the proprietary simulator of the ASIC company and it was easy to lump it together with a rudimentary
timing model. Timing analysis was done through dynamic functional simulation. However, with the advanced
level of sophistication of both functional simulation and timing analysis, thisis no longer the case. The capabili-
ties of the functional simulators have evolved far beyond the gate-level and timing analysis has been decoupled
from simulation.

RTL design planning is an emerging application type aiming to produce “virtual prototypes’ of complex for sys-
tem-on-chip (SOC) designs. RTL design planning is thought of as a combination of some or al of RTL floorplan-
ning and global routing, timing budgeting, power estimation, and functional verification, as well as analysis of
signal integrity, EMI, and thermal effects. The library components for RTL design planning range from simple
logic gates to parameterizeable macro-functions, such as memories, logic building blocks, and cores.

From the point of view of library requirements, applications involved in RTL design planning need functional,
performance, and physical data. The functional aspect of design planning includes RTL simulation and formal
verification. The performance aspect coverstiming and power as primary issues, while signal integrity, EMI, and
thermal effects are emerging issues. The physical aspect isfloorplanning. As stated previously, the functional and
performance models of components can be described in ALF.

ALF also covers the requirements for physical data, including layout. Thisisimportant for the new generation of
tools, where logical design merges with physical design. Also, al design steps involve optimization for timing,
power, signal integrity, i.e. electrical correctness and physical correctness. EDA tools need to be knowledgeable
about an increasing number of design aspects. For example, a place and route tool needs to consider congestion
aswell astiming, crosstalk, electromigration, antennarules etc. Thereforeitisalogical step to combine the func-
tional, electrical and physical models needed by such atool in aunified library.

Figure 1 shows how ALF provides information to various design tools.

IEEE P1603 Draft 5 Advanced Library Format (ALF) Reference Manual 3

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

(D Vendor-specific or commercial EDA tool .
. Céll characterization tool
() Commercia EDA tool

/ \ \

[ayout
models

annotations
for scan

universal |—
annotations ALF design limits
for synthesis

wireload |/
models))))
universal functional model universal universal universal signa

— timing model power model integrity model
Test vectors Simulation model
Scan insertion tooD
Place & Route
tool

(Test vector generat@(M odel generat@
Power
analysis tool

Timing
Simulators analysis tool
Verilog & VHDL

Signal integrity
Verilog & VHDL | | Verilog & VHDL analysis tool
Figure 1—ALF and its target applications

The worldwide accepted standards for hardware description and simulation are VHDL and Verilog. Both lan-
guages have awide scope of describing the design at various levels of abstraction: behavioral, functional, synthe-
sizable RTL, and gate level. There are many ways to describe gate-level functions. The existing simulators are
implemented in such a way that some constructs are more efficient for simulation run time than others. Also,
how the simulation model handles timing constraints is a trade-off between efficiency and accuracy. Developing
efficient smulation models which are functionally reliable (i.e., pessimistic for detecting timing constraint viola-
tion) isamajor development effort for ASIC companies.

Hence, the use of a particular VHDL or Verilog simulation model as primary source of functional description of
acell isnot very practical. Moreover, the existence of two simulation standards makes it difficult to pick oneasa

4 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 5

reference with respect to the other. The purpose of a generic functional model isto serve as an absol ute reference
for all applications that require functional information. Applications such as synthesis, which need functional
information merely for recognizing and choosing cell types, can use the generic functional model directly. For
other applications, such as simulation and test, the generic functional model enables automated simulation model
and test vector generation and verification, which has atremendous benefit for the ASIC industry.

With progress of technology, the set of physical constraints under which the design functions have increased dra-
matically, along with the cost constraints. Therefore, the requirements for detailed characterization and analysis
of those constraints, especially timing and power in deep submicron design, are now much more sophisticated.
Only a subset of the increasing amount of characterization data appearsin today’s databooks.

ALF provides a generic format for all type of characterization data, without restriction to state-of-the art timing
models. Power models are the most immediate extension and they have been the starter and primary driver for
ALF

Detailed timing and power characterization needs to take into account the mode of operation of the ASIC cell,
which isrelated to the functionality. ALF introduces the concept of vector-based modeling, which is a generali-
zation and a superset of today’s timing and power modeling approaches. All existing timing and power analysis
applications can retrieve the necessary model information from ALF.

1.4 Conventions

The syntax for description of lexical and syntax rules uses the following conventions.
**Consider using the BNF nomenclature from | EEE 1481-1999* *

S definition of a syntax rule
| alternative definition
[item an optional item

[iteml | item2 | ...] optional itemwith alternatives

{itent optional itemthat can be repeated

{iteml | iten2 | ... } optional itenms with alternatives
whi ch can be repeated

item itemin boldface font is taken verbatim

item itemin italic is for explanation purpose only

The syntax for explanation of semantics of expressions uses the following conventions.

=== |l eft side and right side expressions are equival ent
<itemr a placeholder for an itemin regular syntax

1.5 Contents of this standard
The organization of the remainder of this standard is

— Clause 2 (References) provides references to other applicable standards that are assumed or required for
ALF.

— Clause 3 (Definitions) defines terms used throughout the different specifications contained in this stan-
dard.

— Clause 4 (Acronyms and abbreviations) defines the acronyms used in this standard.

— Clause 5 (ALF language construction principles and overview) defines the language construction princi-
ples.

— Clause 6 (Lexical rules) specifiesthe lexical rules.

— Clause 7 (Auxiliary syntax rules) defines syntax and semantics of auxiliary items used in this standard.

IEEE P1603 Draft 5 Advanced Library Format (ALF) Reference Manual 5

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

Clause 8 (Generic objects and related statements) defines syntax and semantics of generic objects used in
this standard.

Clause 9 (Library-specific objects and related statements) defines syntax and semantics of library-spe-
cific objectsused in this standard.

Clause 10 (Constructs for modeling of digital behavior) defines syntax and semantics of the control
expression language used in this standard

Clause 11 (Constructs for electrical and physical modeling) defines syntax and semantics of arithmetic
models used in this standard.

Annexes. Following Clause 11are a series of normative and informative annexes.

Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 5

2. References

**Fill in applicable references, i.e. standards on which the herein proposed standard depends.

This standard shall be used in conjunction with the following publication. When the following standard is super-
seded by an approved revision, the revision shall apply.

**Thefollowing is only an example. AL F does not depend on C.

| SO/IEC 9899:1990, Programming L anguages—C.*

[1SO 8859-1 : 1987(E)] ASCII character set

1130 publications are available from the 1SO Central Secretariat, Case Postale 56, 1 rue de Varembé, CH-1211, Genéve 20, Switzerland/
Suisse (http://www.iso.ch/). IEC publications are available from the Sales Department of the International Electrotechnical Commission,
Case Postale 131, 3, rue de Varembé, CH-1211, Genéve 20, Switzerland/Suisse (http://www.iec.ch/). ISO/IEC publications are aso available
in the United States from the Sales Department, American National Standards Institute, 11 West 42nd Street, 13th Floor, New York, NY
10036, USA.

IEEE P1603 Draft 5 Advanced Library Format (ALF) Reference Manual 7

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 5

3. Definitions

For the purposes of this standard, the following terms and definitions apply. The IEEE Sandard Dictionary of
Electrical and Electronics Terms [B4] should be consulted for terms not defined in this standard.

**Fill in definitions of terms which are used in the herein proposed standard.

3.1 advanced library format: The format of any file that can be parsed according to the syntax and semantics
defined within this standard.

3.2 application, electric design automation (EDA) application: Any software program that uses data repre-
sented in the Advanced Library Format (ALF). Examplesinclude RTL (Register Transfer Level) synthesistools,
static timing analyzers, etc. See also: advanced library format; register transfer level.

3.3 arc: See: timing arc.

3.4 argument: A data item required for the mathematical evaluation of an arithmetic model. See also: arith-
metic model.

3.5 arithmetic model: A representation of alibrary quantity that can be mathematically evaluated.
36..

3.7 register transfer level: A behavioral representation of a digital electronic design allowing inference of
sequential and combinational logic components.

38...

3.9timing arc: An abstract representation of a measurement between two points in time during operation of a
library component.

3.10...

IEEE P1603 Draft 5 Advanced Library Format (ALF) Reference Manual 9

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

10

Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 5

4. Acronyms and abbreviations

This clause lists the acronyms and abbreviations used in this standard.

ALF
ASIC
AWE
BIST
BNF
CAE
CAM
CLF
CPU
DCL
DEF
DLL
DPCM
DPCS
DSP
DSPF
EDA
EDIF
HDL
IC
1P
ILM
LEF
LIB
LSSD
MPU
OLA
PDEF
PLL
PVT
QTM
RAM
RC
RICE
ROM
RSPF
RTL
SDF
sDC
SPEF
SPF
SPICE
STA

advanced library format, title of the herein proposed standard
application specific integrated circuit

asymptotic waveform evaluation

built-in salf test

Backus-Naur Form

computer-aided engineering [the term electronic design automation (EDA) is preferred]

content-addressable memory

Common Library Format from Avant! Corporation

central processing unit

Delay Calculation Language from |EEE 1481-1999 std

Design Exchange Format from Cadence Design Systems Inc.
delay-locked loop

Delay and Power Calculation Module from |EEE 1481-1999 std
Delay and Power Calculation System from | EEE 1481-1999 std
digital signal processor

Detailed Standard Parasitic Format

electronic design automation

Electronic Design Interchange Format

hardware description language

integrated circuit

intellectual property

Interface Logic Model from Synopsys Inc.

Library Exchange Format from Cadence Design Systems Inc.
Library Format from Synopsys Inc.

level-sensitive scan design

MiCro processor unit

Open Library Architecture from Silicon Integration Initiative Inc.
Physical Design Exchange Format from |EEE 1481-1999 std
Phase-locked loop

process/voltage/temperature (denoting a set of environmental conditions)
Quick Timing Model

random access memory

resistance times capacitance

rapid interconnect circuit eval uator

read-only memory

Reduced Standard Parasitic Format

Register Transfer Level

Standard Delay Format from |EEE 1497 std

Synopsys Design Constraint format from Synopsys Inc.
Standard Parasitic Exchange Format from |EEE 1481-1999 std
Standard Parasitic Format

Simulation Program with Integrated Circuit Emphasis

Static Timing Analysis

IEEE P1603 Draft 5 Advanced Library Format (ALF) Reference Manual

11

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

STAMP
TCL
TLF
VCD
VHDL
VHSIC
VITAL
VLS

12

(STA Model Parameter ?) format from Synopsys Inc.

Tool Command Language (supported by multiple EDA vendors)
Timing Library Format from Cadence Design Systems Inc.
Value Change Dump format (from |EEE 1364 std ?)

VHSIC Hardware Description Language

very-high-speed integrated circuit

VHDL Initiative Towards ASIC Libraries from IEEE ??? std
very-large-scale integration

Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 5

5. ALF language construction principles and overview

** Add lead-in text**

This section presents the ALF language construction principles and gives an overview of the language features.
The types of ALF statements and rules for parent/child relationships between types are presented summarily.
Most of the types are associated with predefined keywords. The keywords in ALF shall be case-insensitive.
However, uppercase is used for keywords throughout this section for clarity.

5.1 ALF meta-language

Syntax 1 establishes an ALF meta-language.

ALF_statement ::=
ALF _type[ALF_name] [= ALF _vaue] ALF_statement_termination
ALF type::=
non_escaped_identifier [index]
@
ALF_name::=
identifier [index]
| control_expression
ALF_value::=
identifier
| number
| arithmetic_expression
| boolean_expression
| control_expression
ALF_statement_termination ::=

|{{ALF_vaIue|I|; }
| {ALF_statement}]}

Syntax 1—Syntax construction for ALF meta-language

An ALF statement uses the delimiters“;”, “{* and “}” to indicate its termination.

The ALF typeis defined by akeyword (see 6.12) eventually in conjunction with an index (see 7.8) or by the oper-
ator “@" (6.4) or by the delimiter “:” (see 6.3). The usage of keyword, index, operator, or delimiter as ALF type
isdefined by ALF language rules concerning the particular ALF type.

The ALF name is defined by an identifier (see 6.11) eventually in conjunction with an index or by a control
expression (see 10.9). Depending on the ALF type, the ALF name is mandatory or optional or not applicable.
The usage of identifier, index, or control expression as ALF name is defined by ALF language rules concerning
the particular ALF type.

The ALF value is defined by an identifier, a number (see 6.5), an arithmetic expression (see 11.1), a boolean
expression (see 10.7), or a control expression. Depending on the type of the ALF statement, the ALF vaue is
mandatory or optional or not applicable. The usage of identifier, number, arithmetic expression, boolean expres-
sion or control expression as ALF valueis defined by ALF language rules concerning the particular ALF type.

An ALF statement can contain one or more other ALF statements. The former is called parent of the latter. Con-

versely, the latter is called child of the former. An ALF statement with child is called a compound ALF state-
ment.

IEEE P1603 Draft 5 Advanced Library Format (ALF) Reference Manual 13

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

An ALF statement containing one or more ALF values, eventually interspersed with the delimiters “;” or “:”, is
called a semi-compound ALF statement. The items between the delimiters “{* and “}" are called contents of the
ALF statement. The usage of the delimiters “;” or “:” within the contents of an ALF statement isdefined by ALF
language rules concerning the particular ALF statement.

An ALF statement without child is caled an atomic ALF statement. An ALF statement which is either com-
pound or semi-compound is called anon-atomic ALF statement.

Examples

a) ALF statement describing an unnamed object without va ue:
ARBI TRARY_ALF_TYPE {
/1 put children here
}
b) ALF statement describing an unnamed object with value:
ARBI TRARY_ALF _TYPE = arbitrary_ALF val ue;
or
ARBI TRARY_ALF _TYPE = arbitrary_ALF val ue {
/1 put children here
}
c) ALF statement describing a named object without value:
ARBI TRARY_ALF _TYPE arbitrary_ALF_nane;
or
ARBI TRARY_ALF_TYPE arbitrary_ALF _name {
/1 put children here
}
d) ALF statement describing a named object with value:
ARBI TRARY_ALF_TYPE arbitrary_ALF_nane
or
ARBI TRARY_ALF _TYPE arbitrary ALF_name = arbitrary_ ALF_val ue {
/1 put children here

arbitrary_ ALF val ue;

}

5.2 Categories of ALF statements

In this section, the terms statement, type, name, value are used for shortnessin lieu of ALF statement, ALF name,
ALF value, respectively.

Statements are divided into the following categories: generic object, library-specific object, arithmetic model,

arithmetic submodel, arithmetic model container, geometric model, annotation, annotation container, and auxil-
iary statement, as shown in Table 2.

Table 2—Categories of ALF statements

Category Purpose Syntax particularity

Generic object Provide adefinition for use within other | Statement is atomic, semi-compound or com-
ALF statements. pound.

Name is mandatory.

Value is either mandatory or not applicable.

14 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 5

Table 2—Categories of ALF statements (Continued)

Category

Purpose

Syntax particularity

Library-specific object

Describe the contents of alC technology

Statement is atomic or compound.

specific measurement condition.

library. Name is mandatory.
Value does not apply.
Category of parent isexclusively
library-specific object.
Arithmetic model Describe an abstract mathematical quan- | Statement is atomic or compound.
tity that can be calculated and eventually | Nameisoptional.
measured within the design of an IC. Valueis mandatory, if atomic.
Arithmetic submodel Describe an arithmetic model under a Statement is atomic or compound.

Name does not apply.

Valueis mandatory, if atomic.
Category of parent isexclusively
arithmetic model.

Arithmetic model con-
tainer

Provide a context for an arithmetic
model.

Statement is compound.

Name and value do not apply.
Category of child isexclusively
arithmetic model.

Geometric model

Describe an abstract geometrical form
used in physical design of an IC.

Statement is semi-compound or compound.
Nameis optional.
Value does not apply.

Annotation

Provide aqualifier or aset of qualifiers
for an ALF statement.

Statement is atomic, semi-compound or com-
pound.

Name does not apply.

Valueis mandatory, if atomic or compound.
Value does not apply, if semi-compound.
Category of child isexclusively

annotation.

Annotation container

Provide a context for an annotation.

Statement is compound.

Name and value do not apply.
Category of child isexclusively
annotation.

Auxiliary statement

Provide an additional description within
the context of alibrary-specific object,
an arithmetic model, an arithmetic sub-
model, geometric model or another aux-
iliary statement.

Dependent on subcategory.

Figure 2 illustrates the parent/child relationship between categories of statements.

IEEE P1603 Draft 5

Advanced Library Format (ALF) Reference Manual

15

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

legend:
parent — > child
parent — — 3 child

no restrictive rules

with restrictive rules

|
|
arithmetic model container :

~

y
library-specific object

arithmetic model

auxiliary statement

generic object o

e

- \
- - * | \
arithmeticmodel <« | 1 _
s B -~ o~ v _ -geometric model
A - awiliary statement. _
[arithmetic submodel- , -
\ - -
- o
>
library-specific object ~a | annotation container

—® generic object
= 4

library-specific object

-~ » arithmetic model container

~ » arithmetic model

— = arithmetic submode

— . auxiliary statement

O - @nnotation container
A annotation

—® annotation
B> _

Figure 2—Parent/child relationship between ALF statements

More detailed rules for parent/child relationships for particular types of statements apply.

5.3 Generic objects and library-specific objects

Statements with mandatory name are called objects, i.e., generic object and library-specific object.

Table 3 lists the keywords and items in the category generic object. The keywords used in this category are

called generic keywords.

Table 3—Generic objects

Keyword

Item

Section

ALl AS

16

Alias declaration

Advanced Library Format (ALF) Reference Manual

See8.1.

IEEE P1603 Draft 5

Table 3—Generic objects (Continued)

Keyword Item Section
CONSTANT Constant declaration See 8.2.
CLASS Class declaration See8.3.
GROUP Group declaration See 8.7.
KEYWORD Keyword declaration See 8.4.
SEVANTI CS Semantics declaration See 8.6.
TEMPLATE Template declaration See 8.8.

Table 4—Library-specific objects

Keyword Item Section

LI BRARY Library declaration See9.1.

SUBLI BRARY Sublibrary declaration See9.1.

CELL Cell declaration See 9.3.

PRI M Tl VE Primitive declaration See9.11.
W RE Wire declaration See9.12.
PI'N Pin declaration See9.7.

Pl NGROUP Pin group declaration See 9.8.

VECTOR Vector declaration See9.14.
NODE Node declaration See 9.13.
LAYER Layer declaration See 9.16.
VI A Viadeclaration See9.18.
RULE Rule declaration See 9.21.
ANTENNA Antenna declaration See 9.22.
SITE Site declaration See 9.26.
ARRAY Array declaration See 9.28.
BLOCKAGE Blockage declaration See 9.23.
PORT Port declaration See 9.24.
PATTERN Pattern declaration See 9.30.
REG ON Region declaration See 9.32.

Table 4 lists the keywords and items in the category library-specific object. The keywords used in this category
are called library-specific keywords.

Figure 3 illustrates the parent/child relationship between statements within the category library-specific object.

IEEE P1603 Draft 5

Advanced Library Format (ALF) Reference Manual

17

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

library — = sublibrary

v

node

layer / \

wire cell

antenna pattern

port

primitive

sSte O\ / \1 ‘
vector pin pih-group pin
array
region /blockage
rule /

/ 'egend:
via parent ———>

child

Figure 3—Parent/child relationship amongst library-specific objects

A parent can have multiple library-specific objects of the same type as children. Each child is distinguished by

name.

5.4 Singular statements and plural statements

Auxiliary statements with predefined keywords are divided in the following subcategories: singular statement

and plural statement.

Aucxiliary statements with predefined keywords and without name are called singular statements. Auxiliary state-
ments with predefined keywords and with name, yet without value, are called plural statements.

Table5 liststhe singular statements.

Table 5—Singular statements

Keyword Item Value Complexity Section
FUNCTI ON Function statement N/A Compound See 9.37.
TEST Test statement N/A Compound See 9.38.
RANGE Range statement N/A Semi-compound See 9.43.
FROM From statement N/A Compound See 11.4.10.
TO To statement N/A Compound See 11.4.10.

18 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 5

Table 5—Singular statements (Continued)

Keyword Item Value Complexity Section
VI OLATI ON Violation statement N/A Compound See 11.4.12.
HEADER Header statement N/A Compound (or semi-compound?) See 11.3.1.
TABLE Table statement N/A Semi-compound See 11.3.2.
EQUATI ON Equation statement N/A Semi-compound See 11.3.3.
BEHAVI OR Behavior statement N/A Compound See 9.39.
STRUCTURE Structure statement N/A Compound See 9.40.
NON_SCAN_CELL Non-scan cell statement | Optional Compound or semi-compound See 9.42.
ARTWORK Artwork statement Mandatory Compound or atomic See 9.36.
Table 6 lists the plural statements.
Table 6—Plural statements
Keyword Item Name Complexity Section
STATETABLE State table statement Optional Semi-compound See 9.41.
@ Control statement Mandatory Compound See 9.39.
Alternative control statement Mandatory Compound See 9.39.
Figure 4 illustrates the parent/child relationship for singular statements and plural statements.
IEEE P1603 Draft 5 Advanced Library Format (ALF) Reference Manual 19

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

primitive cell p pin
non-scan cell
artwork
function test range
/ violation<e— grjthmetic model from
structure
¢ ¢ ':: to
¢ e& L arithmetic submodel | |— = header
statetable behavior table
—arithmetic submo —— equation
L
legend: -
control statement
—» child)
parent o —®alternative control statement

Figure 4—Parent/child relationship involving singular statements and plural statements

A parent can have at most one child of a particular type in the category singular statements, but multiple children
of aparticular type in the category plural statements.

5.5 Instantiation statement and assignment statement

Auxiliary statements without predefined keywords use the name of an object as keyword. Such statements are
divided in the following subcategories. instantiation statement and assignment statement.

Compound or semi-compound statements using the name of an object as keyword are called instantiation state-
ments. Their purpose is to specify an instance of the object.

Table 7 lists the instantiation statements.

Table 7—Instantiation statements

Item Name Value Section
Cell instantiation Optional N/A See9.4.
Primitive instantiation Optional N/A See 9.30.
Template instantiation N/A Optional See 8.9.
Viainstantiation Mandatory N/A See9.19.
Wire instantiation Mandatory N/A Proposed for |IEEE.

20 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 5

Atomic statements without name using an identifier as keyword which has been defined within the context of
another object are called assignment statements. A value is mandatory for assignment statements, as their pur-
poseisto assign avaue to the identifier. Such an identifier is called avariable.

Table 8 lists the assignment statements.

Table 8—Assignment statements

Item Section
Pin assignment See 7.10.
Arithmetic assignment See 8.9.
Boolean assignment See 9.30.

Figure 5 illustrates the parent/child relationship involving instantiation and assignment statements.

legend:

behavior parent ——® child no restrictive rules

parent = — —# child with restrictive rules

L primitiveinstantiation——)
- boolean assignment

—® control statement

—®alternative control statement ——
generic object

library-specific object ™
: TN A
sngular statement " A
non-scan cell structure T - templateinstantiation
I plural statement -
| . . - - » !
| y/ arithmetic model 4 |
~
artwork . cell instantiation ~ / arithmetic submodel” _ v \
\ v ¢ ’/ arithmetic model container arithmetic assignment

pin assignment e—Wwire instantiation

Figure 5—Parent/child relationship involving instantiation and assignment statements

A parent can have multiple children using the same keyword in the category instantiation statement, but at most
one child using the same variable in the category assignment statement.

5.6 Annotation, arithmetic model, and related statements

Multiple keywords are predefined in the categories arithmetic model, arithmetic model container, arithmetic
submodel, annotation, annotation container, and geometric model. Their semantics are established within the

IEEE P1603 Draft 5 Advanced Library Format (ALF) Reference Manual 21

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

context of their parent. Therefore they are called context-sensitive keywords. In addition, the ALF language
allows additional definition of keywords in these categories.

Table 9 provides areference to sections where more definitions about these categories can be found.

Table 9—Other categories of ALF statements

Item Section
Arithmetic model See 11.2.
Arithmetic submodel See11.4.3.

Arithmetic model container See11.4.7.

Annotation See 7.11.
Annotation container See7.12.
Geometric model See 9.33.

There exist predefined keywords with generic semantics in the category annotation and annotation container.
They are called generic keywords, like the keywords for generic objects.

Table 10 lists the generic keywords in the category annotation and annotation container.

Table 10—Annotations and annotation containers with generic keyword

Keyword Item / subcategory Section
PROPERTY Annotation container. See 7.14.
ATTRI BUTE Multi-value annotation. See7.13.
| NFORVMATI ON Annotation container. See9.2.1.

Table 11 lists predefined keywords in categories related to arithmetic model.

Table 11—Keywords related to arithmetic model

Keyword Item / category Section
LIMT Arithmetic model container. See11.4.8.
M N Arithmetic submodel, also operator within arithmetic expression. See11.4.3,11.1.3.
MAX Arithmetic submodel, also operator within arithmetic expression. See11.4.4,11.1.3.
TYP Arithmetic submodel. See11.45.
DEFAULT Annotation. See11.54.
ABS Operator within arithmetic expression. See11.1.3.
EXP Operator within arithmetic expression. See11.1.3.

22 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 5

Table 11—Keywords related to arithmetic model (Continued)

Keyword Item / category Section
LOG Operator within arithmetic expression. See11.1.3.

The definitions of other predefined keywords, especially in the category arithmetic model, can be self-described
in ALF using the keyword declaration statement (see 8.4).

5.7 Statements for parser control

Table 12 provides areference to statements used for ALF parser control.

Table 12—Statements for ALF parser control

Keyword Satement Section
I NCLUDE Include statement See 7.15.
ASSCCI ATE Associate statement See 7.16.
ALF_REVI SI ON Revision statement See 7.17.

The statements for parser control do not necessarily follow the ALF meta-language shown in Syntax 1.

5.8 Name space and visibility of statements

The following rules for name space and visibility shall apply:

a)
b)
0)

d)

A statement shall be visible within its parent statement, but not outside its parent statement.

A statement visible within another statement shall also be visible within a child of that other statement.
All objects (i.e., generic objects and library-specific objects) shall share a common name space within
their scope of visibility. No object shall use the same name as any other visible object. Conversely, an
object can use the same name as any other object outside the scope of itsvisibility.

The following exception of rule) is allowed for specific objects and with specific semantic implica-
tions. An abject of the same type and the same name can be redeclared, if semantic support for this
redeclaration is provided. The purpose of such aredeclaration is to supplement the original declaration
with new children statements which augment the original declaration without contradicting it.

All statements with optional names (i.e., property, arithmetic model, geometric model) shall share a com-
mon name space within their scope of visibility. No statement with optional name shall use the same
name as any other visible statement with optional name. Conversely, a statement can use the same
optional name as any other statement with optional name outside the scope of its visibility.

IEEE P1603 Draft 5 Advanced Library Format (ALF) Reference Manual 23

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

24

Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 5

6. Lexical rules
This section discusses the lexical rules.

The ALF source text files shall be a stream of Iexical tokens and whitespace. Lexical tokens shall be divided into
the categories delimiter, operator, comment, number, bit literal, based literal, edge, quoted string, and identifier.

Each lexical token shall be composed of one or more characters. Whitespace shall be used to separate lexical
tokens from each other. Whitespace shall not be allowed within alexical token with the exception of comment
and quoted string.

The specific rules for construction of lexical tokens and for usage of whitespace are defined in this section.

6.1 Character set
This standard shall use the ASCI| character set [ISO 8859-1 : 1987(E)].

The ASCII character set shall be divided into the following categories: whitespace, |etter, digit, and special, as
shown in Syntax 2.

character ::=
whitespace
| letter
| digit
| special
whitespace ::=
space | vertical_tab | horizontal_tab | new_line | carriage_return | form_feed
letter ::=
uppercase | lowercase
uppercase ::=
AIBICIDIEIFIGIHITIJIKILIM INJOIPIQIRISITIUIV W
I X1Y|Z
lowercase ::= L.
; ?|b|0|d|e|f|g|h|llj|k|l|m|n|0|p|Q|r|S|t|U|V|W|X|y|z
igit ;1=
011121314,516,718]9
ia =

special ::
&1l =1+ 21 L =N\1.1$| |#
|(||£I|<||>I+|[||l]|l{||}| e L1 1@ 1= 1NV 1S |

Syntax 2—ASCII character set

Table 13 shows the list of whitespace characters and their ASCII code.

Table 13—List of whitespace characters

Name ASCII code (octal)
Space 200
Horizontal tab 011
New line 012
Vertical tab 013

IEEE P1603 Draft 5 Advanced Library Format (ALF) Reference Manual 25

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

Table 13—List of whitespace characters (Continued)

Name ASCII code (octal)
Form feed 014
Carriage return 015

Table 14 shows the list of special characters and their names used in this standard

Table 14—List of special characters

Symbol

Name

Amperesand

Vertical bar

Carot

Tilde

Plus

Minus

Asterix

Slash

Percent

Question mark

Exclamation mark

Colon

Semicolon

Comma

Double quote

Single quote

At sign

Equal sign

Backslash

Dot

L5

Dollar

Underscore

Pound

Parenthesis (open, close)

AN F
N

Angular bracket (open, close)

26 Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 5

Table 14—List of special characters (Continued)

Symbol Name

Square bracket (open, close)

[.]
{ , } Curly bracket (open, close)

6.2 Comment

A comment shall be divided into the subcategories in-line comment and block comment, as shown in Syntax 3.

comment ::=
in_line_comment
| block_comment
in_line_comment ::=
| I{ character} new_line
|/ [{ character} carriage_return
block_comment ::=
[*{character}* /

Syntax 3—Comment

The start of an in-line comment shall be determined by the occurence of two subsequent slash characters without
whitespace in-between. The end of an in-line comment shall be determined by the occurence of anew line or of a
carriage return character.

The start of a block comment shall be determined by the occurence of a slash character followed by an asterix
without whitespace in-between. The end of a block comment shall be determined by the occurence of an asterix
character followed by a slash character.

A comment shall have the same semantic meaning as a whitespace. Therefore, no syntax rule shall involve a
comment.

6.3 Delimiter

The specia characters shown in Syntax 4 shall be considered delimiters.

delimiter ::=

(DITHI G,

Syntax 4—Delimiter

When appearing in asyntax rule, a delimiter shall be used to indicate the end of a statement or of a partial state-
ment, the begin and end of an expression or of a partial expression.

6.4 Operator

Operators shall be divided into the following subcategories: arithmetic operator, boolean operator, relational
operator, shift operator, event sequence operator, and meta operator, as shown in Syntax 5

IEEE P1603 Draft 5 Advanced Library Format (ALF) Reference Manual 27

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

operator ::=
arithmetic_operator

| boolean_operator

| relational _operator

| shift_operator

| event_sequence_operator

| meta_operator
arithmetic_operator ::=

+| -] 1% 1 **
boolean_operator ::=

E&||[1~& [~[I™M M~ &
relational _operator ::=

::|!_:|>:|<:|>|<
shift_operator ::=

<L |>>
event_sequence_operator ::=

S| <> <> | &> <& >
meta_operator ::=

=1?71@

Syntax 5—Operator

When appearing in asyntax rule, an operator shall be used within a statement or within an expression. An opera-
tor with one operand shall be called unary operator. An unary operator shall precede the operand. An operator
with two operands shall be called binary operator. A binary operator shall succeed the first operand and precede

the second operand.
6.4.1 Arithmetic operator

Table 15 shows the list of arithmetic operators and their names used in this standard.

Table 15—List arithmetic operators

Symbol Operator name Unary/ binary Section
+ Plus Binary See 10.3.3.
- Minus Both See 10.3.3.
* Multiply Binary See 10.3.3.
/ Divide Binary See 10.33.
% Modulo Binary See 10.3.3.
** Power Binary Seel1.1.

Arithmetic operators shall be used to specify arithmetic operations.

28 Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 5

6.4.2 Boolean operator

Table 16 shows the list of boolean operators and their names used in this standard.

Table 16—List of boolean operators

Symbol Operator name Unary / binary Section
! Logical invert Unary See 10.3.2.
& & Logica and Binary See10.3.2.
I Logical or Binary See10.3.2.
~ Vector invert Unary **See 10.3.7?
& Vector and Both **See 10.3.2?
~& Vector nand Both **See 10.3.2?
| Vector or Both **See 10.3.22
~ Vector nor Both **See 10.3.22
A Exclusive or Both **See 10.3.2?
N Exclusive nor Both **See10.3.22
Boolean operators shall be used to specify boolean operations.
6.4.3 Relational operator
Table 17 shows the list of relational operators and their names used in this standard.
Table 17—List of relational operators
Symbol Operator name Unary / binary Section
== Equal Binary See 10.3.3.
1= Not equal Binary See 10.3.3.
Greater Binary See 10.3.3.
Lesser Binary See 10.3.3.
>= Greater or equal Binary See 10.3.3.
<= Lesser or equal Binary See 10.3.3.

Relational operators shall be used to specify mathematical relationships between numerical quantities.

IEEE P1603 Draft 5

Advanced Library Format (ALF) Reference Manual

10

15

20

25

30

35

40

45

50

55

6.4.4 Shift operator

Table 18 shows the list of shift operators and their names used in this standard.

Table 18—List of shift operators

10

15

20

25

30

35

40

45

50

55

Symbol Operator name Unary / binary Section
<< Shift left Binary See 10.3.3.
>> Shift right Binary See 10.3.3.

Shift operators shall be used to specify manipulations of discrete mathematical values.

6.4.5 Event sequence operator

Table 19 shows the list of event sequence operators and their names used in this standard.

Table 19—List of event sequence operators

Symbol Operator name Unary / binary Section
-> Immediately followed by Binary See 10.5.2.
~> Eventually followed by Binary See 10.5.2.
<> Immediately following each other Binary See 10.5.3.
<~> Eventually following each other Binary **where??
&> Simultaneous or immediately followed by Binary See 10.5.3.
<&> Simultaneous or immediately following each other Binary See 10.5.3.

Event sequence operators shall be used to express temporal relationships between discrete events.

6.4.6 Meta operator

Table 20 shows the list of meta operators and their names used in this standard.

Table 20—List of meta operators

Symbol Operator name Unary / binary Section
= Assignment Binary See7.10, 8.9, 9.39.
? Condition Binary See10.3.2.
@ Control Unary See 10.5.6.

Meta operators shall be used to specify transactions between variables.

30

Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 5

6.5 Number

Numbers shall be divided into subcategories signed number and unsigned number, as shown in Syntax 6.

number ::=
signed_number | unsigned_number
signed_number ::=
signed_integer | signed_real
signed_integer ::=
sign unsigned_integer
sign::=
+ |-
unsigned_integer ::=
digit { [_] digit}
signed_red ::=
sign unsigned_real
unsigned_real ::=
mantisse [exponent]
| unsigned_integer exponent
mantisse ::=
. unsigned_integer
| unsigned_integer . [unsigned_integer]
exponent ::=
E [sign] unsigned_integer
| €[sign] unsigned_integer
unsigned_number ::=
unsigned_integer | unsigned_real

Syntax 6—Signed and unsigned numbers

Alternatively, numbers can be divided into subcategories integer and real, as shown in Syntax 7.

number ::=

integer | real
integer ::=

signed_integer | unsigned_integer
real ::=

signed_rea | unsigned_real

Syntax 7—Integer and real numbers

Numbers shall be used to represent numerical quantities.

6.6 Unit symbol

A unit symbol shall be defined as shown in Syntax 8.

IEEE P1603 Draft 5 Advanced Library Format (ALF) Reference Manual 31

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

unit_symbol ::=

unity { letter} |K { letter} [M EG{ letter} |G { letter }
IM { letter} |U{ letter } |N{ letter } | P{ letter } | F{ letter }

unit{:::
“ T(IK
% im
Ele
Gig
o
Nin
Pip
F |f

Z C o m =2

L

T

Syntax 8—Unit symbol

The meaning of the unit symbol is shown in Table 21.

Table 21—UNIT symbol

L eading character

Lexical value

Numerical value

F femto le- 15
P pico le-12
N nano le-9
U micro le-6
M milli le-3
unity one 1

K kilo le+3
MVEG mega le+6
G giga le+9

A unit symbol can be used to define a unit value (see 7.2).

6.7 Bit literal

Bit literals shall be divided into subcategories numeric bit literal and symbolic bit literal, as shown in Syntax 9.

Bit literals shall be used to specify scalar values within a boolean system.

32

Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 5

bit_litera ::=

numeric_bit_literal ::=

symbolic_bit literal ::=

numeric_bit_literal
| symbolic_bit_literal

X1Z|LH|UW
IX|1z|lthju|w
| ?]*

6.8 Based literal

Syntax 9—Bit literal

Based literals shall be divided into subcategories binary based literal, octal based literal, decimal based literal,
and hexadecimal based literal, as shown in Syntax 10.

based literal ::=
binary_based_literal ::=

binary base ::=
octal_based_literal ::=
octal_base ::=

octal ::=

decimal_based literal ::=
decimal_base ::=
hexadecimal_based_literal ::=
hex base ::=

hexadecimal ::=

binary_based_literal | octal_based literal | decimal_based literal | hexadecimal_based_literal
binary_base bit_literal { [_] bit_literal }
"‘B1'b
octal_base octal { [__] octal }
'‘Ol'o
bit_literal | 2131415167
decimal_base digit { [_] digit }
'D|'d
hex_base hexadecimal { [__] hexadecimal }
Hi'h
octa |8]9

|A|B|C|DI|E|F
lalb|ci|d|e|f

Syntax 10—Based literal

Based literals shall be used to specify vectorized values within a boolean system.

6.9 Edge literal

Edge literals shall be divided into subcategories bit edge literal, based edge literal, and symbolic edge literal, as

shown in Syntax 11.

Edge literals shall be used to specify a change of value within a boolean system. In general, bit edge literals shall
specify a change of a scalar value, based edge literals shall specify a change of a vectorized value, and symbolic
edge literals shall specify a change of a scalar or of avectorized value.

IEEE P1603 Draft 5

Advanced Library Format (ALF) Reference Manual 33

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

edge literal ::=

bit_edge literal

| based_edge literal

| symbolic_edge litera
bit_edge literal ::=

bit_literal bit_literal
based_edge literal ::=

based_literal based | Iiteral
symbollc edg)e literal ::

Syntax 11—Edge literal

6.10 Quoted string

A quoted string shall be a sequence of zero or more characters enclosed between two double quote characters, as
shown in Syntax 12.

quoted string ::
{ character}

Syntax 12—Quoted string

Within a quoted string, a sequence of characters starting with an escape character shall represent a symbol for
another character, as shown in Table 22.

Table 22—Character symbols within a quoted string

Symbol Character ASCII Code (octal)
\g Alert or bell. 007
\h Backspace. 010
\t Horizontal tab. 011
\n New line. 012
\v Vertical tab. 013
\ f Form feed. 014
\r Carriage return. 015
\ " Double quote. 042
\\ Backdlash. 134
\ digit digit digit ASCII character represented by three digit digit digit digit
octal ASCII code.

The start of a quoted string shall be determined by a double quote character. The end of a quoted string shall be
determined by a double quote character preceded by an even number of escape characters or by any other charac-
ter than escape character.

34 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 5

6.11 Identifier

Identifiers shall be divided into the subcategories non-escaped identifier, escaped identifier, placeholder identi-
fier, and hierarchical identifier, as shown in Syntax 13.

identifier ::=
non_escaped_identifier
| escaped_identifier
| placeholder_identifier
| hierarchical _identifier

Syntax 13—Identifier

Identifiers shall be used to specify a name of an ALF statement or a value of an ALF statement. Identifiers can
also appear in an arithmetic expression, in a boolean expression, or in avector expression, referencing an already
defined statement by name.

A lowercase character used within a keyword or within an identifier shall be considered equivalent to the corre-
sponding uppercase character. This makes ALF case-insensitive. However, wherever an identifier is used to
specify the name of a statement, the usage of the exact letters shall be preserved by the parser to enable usage of
the same name by a case-sensitive application.

6.11.1 Non-escaped identifier

A non-escaped identifier shall be defined as shown in Syntax 14.

non_escaped_identifier ::=
letter { letter | digit| | B|#}

Syntax 14—Non-escaped identifier

A non-escaped identifier shall be used, when there is no lexical conflict, i.e., no appearance of a character with
special meaning, and no semantic conflict, i.e., theidentifier is not used elsewhere as a keyword.

6.11.2 Escaped identifier

An escaped identifier shall be defined as shown in Syntax 15.

escaped_identifier ::=

\ escapable_character { escapable_character }
escapable_character ::=

letter | digit | specia

Syntax 15—Escaped identifier

An escaped identifier shall be used, when thereisalexical conflict, i.e., an appearance of acharacter with special
meaning, or a semantic conflict, i.e., the identifier is used el sewhere as a keyword.

6.11.3 Placeholder identifier

A placeholder identifier shall be defined as a non-escaped identifier enclosed by angular brackets without
whitespace, as shown in Syntax 16.

IEEE P1603 Draft 5 Advanced Library Format (ALF) Reference Manual 35

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

placeholder_identifier ::=
< non_escaped_identifier >

Syntax 16—Placeholder identifier

A placeholder identifier shall be used to represent aformal parameter in atemplate statement (see 8.8), whichis
to be replaced by an actual parameter in atemplate instantiation statement (see 8.9).

6.11.4 Hierarchical identifier

A hierarchical identifier shall be defined as shown in Syntax 17.

hierarchical_identifier ::=
identifier [\] . identifier

Syntax 17—Hierarchical identifier

A hierarchical identifier shall be used to specify a hierarchical name of a statement, i.e., the name of a child pre-
ceded by the name of its parent. A dot within a hierarchical identifier shall be used to separate a parent from a
child, unless the dot is directly preceded by an escape character.

Example
\id1.id2.\id3 isahierarchical identifier, whereid2 isachild of \id1, and \id3 isachild of id2.
id1\.id2.\id3 isahierarchical identifier, where\id3 isachild of “id1.id2".

id1\.id2\.id3 specifies the pseudo-hierarchical name “id1.id2.id3".

6.12 Keyword

Keywords shall be lexically equivalent to non-escaped identifiers. Predefined keywords are listed in Table 3 —
Table 6 and Table 10 — Table 12. Additional keywords are predefined in 8.4.

The predefined keywordsin this standard follow amore restrictive lexical rule than general non-escaped identifi-
ers, as shown in Syntax 18.

keyword_identifier ::=
letter { [_] letter }

Syntax 18—Keyword

** Should this be a normative rule or a recommended practice to follow for additional keyword definitions? **

NOTE—This document presents keywords in all-uppercase letters for clarity.

6.13 Rules for whitespace usage
Whitespace shall be used to separate lexical tokens from each other, according to the following rules:

a) Whitespace before and after adelimiter shall be optional.

36 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 5

b)
<)
d)
e

f)
0)

h)
i)

)

Whitespace before and after an operator shall be optional.

Whitespace before and after a quoted string shall be optional.

Whitespace before and after acomment shall be mandatory. This rule shall override a), b), and c).
Whitespace between subsequent quoted strings shall be mandatory. This rule shall override c).
Whitespace between subsequent lexical tokens amongst the categories number, bit literal, based literal,
and identifier shall be mandatory.

Whitespace before and after a placeholder identifier shall be mandatory. This rule shall override a), b),
and c).

Whitespace after an escaped identifier shall be mandatory. This rule shall override a), b), and c).

Either whitespace or delimiter before asigned number shall be mandatory. Thisrule shall override a), b),
and c).

Either whitespace or delimiter before a symbolic edge literal shall be mandatory. This rule shall override
a), b), and c).

Whitespace before thefirst Iexical token or after the last lexical token in afile shall be optional. Hencein all rules
prescribing mandatory whitespace, “before” shall not apply for the first lexical token in a file, and “after” shall
not apply for the last lexical token in afile.

6.14 Rules against parser ambiguity

In a syntax rule where multiple legal interpretations of alexical token are possible, the resulting ambiguity shall
be resolved according to the following rules:

a)
b)
©)
d)

In a context where both bit literal and identifier are legal, anon-escaped identifier shall take priority over
asymbolic bit literal.

In a context where both bit literal and number are legal, an unsigned integer shall take priority over a
numeric bit literal.

In a context where both edge literal and identifier are legal, a non-escaped identifier shall take priority
over abit edgeliteral.

In a context where both edge literal and number are legal, an unsigned integer shall take priority over a
bit edge literal.

If the interpretation as bit literal isdesired in case a) or b), abased literal can be substituted for a bit literal.

If the interpretation as edge literal isdesired in case €) or d), abased edge literal can be substituted for abit edge

literal.

IEEE P1603 Draft 5 Advanced Library Format (ALF) Reference Manual 37

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

38

Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 5

7. Auxiliary syntax rules

This section specifies auxiliary syntax rules which are used to build other syntax rules.

7.1 All-purpose value

An all-purpose value shall be defined as shown in Syntax 19.

al_purpose vaue::=
number
| identifier
| quoted_string
| bit_literal
| based_literal
| edge _value
| pin_variable
| control_expression

Syntax 19—All purpose value

7.2 Unit value

A unit value shall be defined as shown in Syntax 20.

unit_value::=
unsigned_number | unit_symbol

Syntax 20—Unit value

Only the leading characters of the unit symbol shall be used for identification of a unit value, as specified in
Table 21.

Optional subsequent letters can be used to make the unit symbol more readable. For example, “pF’ can be used
to denote “picofarad” etc.

7.3 String

A string shall be defined as shown in Syntax 21.

string ::=
quoted_string | identifier

Syntax 21—String value

A string shall represent textual datain general and the name of a referenced object in particular.

7.4 Arithmetic value

An arithmetic value shall be defined as shown in Syntax 22.

IEEE P1603 Draft 5 Advanced Library Format (ALF) Reference Manual 39

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

arithmetic_value ::=
number | identifier | bit_literal | based literal

Syntax 22—Arithmetic value

An arithmetic value shall represent data for an arithmetic model or for an arithmetic assignment. Semantic
restrictions apply, depending on the particular type of arithmetic model.

7.5 Boolean value

A boolean value shall be defined as shown in Syntax 23.

boolean value::=
bit_literal | based_literal | unsigned_integer

Syntax 23—Boolean value

A boolean value shall represent the contents of a pin variable (see 7.9).

7.6 Edge value

An edge value shall be defined as shown in Syntax 24.

edge vaue::=
(‘edge _literal)

Syntax 24—Edge value

An edge value shall represent a standalone edge literal that is not embedded in a vector expression.

7.7 Index value

An index value shall be defined as shown in Syntax 25.

index_vaue::=
unsigned_integer | identifier

Syntax 25—Index value

An index value shall represent a particular position within a vector pin (see 9.7). The usage of identifier shall
only be allowed, if that identifier represents a constant (see 8.2) with avalue of the category unsigned integer.

7.8 Index

An index shall be defined as shown in Syntax 26.

Anindex shall be used in conjunction with the name of a pin or a pingroup. A single index shall represent a par-
ticular scalar within a one-dimensional vector or a particular one-dimensional vector within a two-dimensional

matrix. A multi index shall represent a range of scalars or a range of vectors, wherein the most significant bit
(MSB) is specified by the left index value and the least significant bit (LSB) is specified by the right index value.

40 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 5

index ::=
single_index | multi_index
single_index ::=
T index_value |
multi_index ::=
index_value : index_value]

Syntax 26—Index

7.9 Pin variable and pin value

A pin variable and a pin value shall be defined as shown in Syntax 27.

pin_variable ::=
pin_variable_identifier [index]
pin_value ::=
pin_variable | boolean_value

Syntax 27—~Pin variable

A pinvariable shall represent the name of a pin or the name of apin group, in conjunction with an optional index.

A pin value shall represent the actual value or a pointer to the actual value associated with a pin variable. The
actual value is aboolean value. A pin variable represents a pointer to the actual value.

7.10 Pin assignment

A pin assignment shall be defined as shown in Syntax 28.

pin_assignment ::=
pin_variable = pin_value;

Syntax 28—Pin assignment

A pin assignment represents an association between a pin variable and a pin value.

The datatype of the left hand side (LHS) and the right hand side (RHS) of the assignment must be compatible
with each other. The following rules shall apply:

a) The bitwidth of the RHS must be equal to the bitwidth of the LHS.
b) A scaar pin at the LHS can be assigned a bit literal or a based literal representing asingle bit.

c) A pingroup, avector pin, or aone-dimensiona slice of a matrix pin at the LHS can be assigned a based
literal or an unsigned integer, representing a binary number.

7.11 Annotation

An annotation shall be divided into the subcategories single value annotation and multi value annotation, as
shown in Syntax 29

An annotation shall represent an association between an identifier and a set of annotation values (values for
shortness). In case of asingle value annotation, only one value shall belegal. In case of amulti value annotation,

IEEE P1603 Draft 5 Advanced Library Format (ALF) Reference Manual 41

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

annotation ::=
single_value_annotation
| multi_value_annotation
single_value_annotation ::=
annotation_identifier = annotation_value ;
annotation_value ::=
number
| identifier
| quoted_string
| bit_literal
| based_literal
| edge value
| pin_variable
| control_expression
| boolean_expression
| arithmetic_expression
multi_value_annotation ::=
annotation_identifier { annotation_value{ annotation_value} }

Syntax 29—Annotation

one or more values shall be legal. The annotation shall serve as a semantic qualifier of its parent statement. The
value shall be subject to semantic restrictions, depending on the identifier.

The annotation identifier can be akeyword used for the declaration of an object (i.e., ageneric object or alibrary-
specific object). An annotation using such an annotation identifier shall be called a reference annotation. The
annotation value of areference annotation shall be the name of an object of matching type. A reference annota-
tion can be a single-value annotation or a multi-value annotation. The semantic meaning of a reference annota-
tion shall be defined in the context of its parent statement.

7.12 Annotation container

An annotation container shall be defined as shown in Syntax 30

annotation_container ::=
annotation_container_identifier { annotation { annotation} }

Syntax 30—Annotation container
An annotation container shall represent a collection of annotations. The annotation container shall serve as a
semantic qualifier of its parent statement. The annotation container identifier shall be a keyword. An annotation
within an annotation container shall be subject to semantic restrictions, depending on the annotation container
identifier.
7.13 ATTRIBUTE statement

An attribute statement shall be defined as shown in Syntax 31.

atribute ::=
ATTRIBUTE { identifier { identifier} }

Syntax 31—ATTRIBUTE statement

42 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 5

The attribute statement shall be used to associate arbitrary identifiers with the parent of the attribute statement.
Semantics of such identifiers can be defined depending on the parent of the attribute statement. The attribute
statement has a similar syntax definition as a multi-value annotation (see 7.11). While a multi-value annotation
can have restricted semantics and a restricted set of applicable values, identifiers with and without predefined
semantics can co-exist within the same attribute statement.

Example

CELL nmyRAMBXx128 ({
ATTRI BUTE { rom asynchronous static }

}

7.14 PROPERTY statement

A property statement shall be defined as shown in Syntax 32.

proE)erty = - _ '
ROPERTY [identifier] { annotation { annotation} }

Syntax 32—PROPERTY statement

The property statement shall be used to associate arbitrary annotations with the parent of the property statement.
The property statement has a similar syntax definition as an annotation container (see 7.12). While the keyword
of an annotation container usually restricts the semantics and the set of applicable annotations, the keyword
“property” does not. Annotations shall have no predefined semantics, when they appear within the property
statement, even if annotation identifiers with otherwise defined semantics are used.

Example

PROPERTY nyProperties {
paraneterl = val uel ;
paraneter2 = val ue2 ;
paraneter3 { val ue3 val ue4 val ue5 }

7.15 INCLUDE statement

Aninclude statement shall be defined as shown in Syntax 33.

include ::=

INCLUDE quoted_string ;

Syntax 33—INCLUDE statement

The quoted string shall specify the name of afile. When the include statement is encountered during parsing of a
file, the application shall parse the specified file and then continue parsing the former file. The format of the file
containing the include statement and the format of the file specified by the include statement shall be the same.

Example

LI BRARY nyLib {
I NCLUDE “tenpl ates.alf”;

IEEE P1603 Draft 5 Advanced Library Format (ALF) Reference Manual 43

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

I NCLUDE “technol ogy. al f”;
I NCLUDE “primtives.alf”;
I NCLUDE “wires.al f”;
I NCLUDE “cells.al f”;

}

The filename specified by the quoted string shall be interpreted according to the rules of the application and/or
the operating system. The ALF parser itself shall make no semantic interpretation of the filename.

7.16 ASSOCIATE statement

** see |EEE proposal, June 2002, chapter 16**

7.17 REVISION statement

A revision statement shall be defined as shown in Syntax 34

I

evision ::=
ALF_REVISION string_vaue

Syntax 34—Revision statement

**Shouldst ri ng_val ue bequot ed_st ri ng here??

A revision statement shall be used to identify the revision or version of the file to be parsed. One, and only one,
revision statement can appear at the beginning of an ALF file.

The set of legal string values within the revision statement shall be defined as shown in Table 23

Table 23—Legal string values within the REVISION statement

Sring value Revision or version
“1.1" Version 1.1 by Open Verilog International (OV1), released on April 6, 1999.
“2.0" Version 2.0 by Accellera, released on December 14, 2000.
“P1603. 2002- 06- 21" |EEE draft version as described in this document.
TBD |EEE 1603 release version.

The revision statement shall be optional, as the application program parsing the ALF file can provide other
means of specifying the revision or version of thefile to be parsed. If arevision statement is encountered while a
revision has already been specified to the parser (e.g. if an included fileis parsed), the parser shall be responsible
to decide whether the newly encountered revision is compatible with the originally specified revision and then
either proceed assuming the original revision or abandon.

This document suggests, but does not certify, that the IEEE version of the ALF standard proposed herein be
backward compatible with the Accelleraversion 2.0 and the OV version 1.1.

44 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 5

7.18 Generic object

A generic object shall be defined as shown in Syntax 35.

generic_object ::=

alias_declaration

| constant_declaration

| class_declaration

| keyword_declaration

| semantics_declaration

| group_declaration

| template_declaration

Syntax 35—Generic object

The syntax items introduced in Syntax 35 are defined in Section 8.

7.19 Library-specific object

A library-specific object shall be defined as shown in Syntax 36.

library_specific_object ::=

library

| sublibrary

| cell

| primitive

| wire

| pin

| pingroup

| vector

| node

| layer

| via

| rule

| antenna

| site

| array

| blockage

| port

| pattern

| region

Syntax 36—Library-specific object

The syntax items introduced in Syntax 36 are defined in Section 9.

7.20 All purpose item

An all purposeitem shall be defined as shown in Syntax 37.

The syntax items introduced in Syntax 37 are defined in this Section 7, in Section 8 and in Section 11.

IEEE P1603 Draft 5 Advanced Library Format (ALF) Reference Manual

45

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

al_purpose_item ::=
generic_object
| include_statement
| associate_statement
| annotation
| annotation_container
| arithmetic_model
| arithmetic_model _container
| all_purpose_item_template_instantiation

46

Syntax 37—All purpose item

Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 5

8. Generic objects and related statements

** Add lead-in text**

8.1 ALIAS declaration

An alias shall be declared as shown in Syntax 38.

dias declaration :;=
| ASalias identifier = original_identifier ;

Syntax 38—ALIAS declaration

The alias declaration shall specify an identifier which can be used instead of an origina identifier to specify a
name or avalue of an ALF statement. The identifier shall be semantically interpreted in the same way asthe orig-
inal identifier.

Example

ALI AS reset = cl ear;

8.2 CONSTANT declaration

A constant shall be declared as shown in Syntax 39.

constant_declaration ::=

CONSTANT constant_identifier = constant_value ;
constant_value ::=

number | based_literal

Syntax 39—CONSTANT declaration

The constant declaration shall specify an identifier which can be used instead of a constant value, i.e., a number
or abased literal. The identifier shall be semantically interpreted in the same way as the constant value.

Example

CONSTANT vdd = 3. 3;
CONSTANT opcode = * hOf 3a;

8.3 CLASS declaration

A class shall be declared as shown in Syntax 40.

class declaration ::=

CL ASSclass identifier :
| CLASSclass identifier {{ all_purpose item} }

Syntax 40—CLASS declaration

IEEE P1603 Draft 5 Advanced Library Format (ALF) Reference Manual 47

10

15

20

25

30

35

40

45

50

55

A class declaration shall be used to establish a semantic association between ALF statements, including, but not
restricted to, other class declarations. ALF statements shall be associated with each other, if they contain arefer-
ence to the same class. The semantics specified by an al purpose item within a class declaration shall be inher-

10

15

20

25

30

35

40

45

50

55

ited by the statement containing the reference.

Example

CLASS \1stclass { ATTRIBUTE { everything } }
CLASS \ 2ndcl ass { ATTRIBUTE { nothing } }
CELL celll1 { CLASS = \1stclass; }

CELL cell2 { CLASS = \2ndcl ass; }

CELL cell3 { CLASS { \1stclass \2ndclass } }
/1 celll inherits “everything”

/1 cell?2 inherits “nothing”

/1 cell3 inherits “everything” and

not hi ng”

8.4 KEYWORD declaration

A keyword shall be declared as shown in Syntax 41.

keyword declaration ::=
KEYWORD keyword identifier = syntax_item_identifier ;
| KEYWORD keyword identifier = synta_item identifier { { keyword item} }
keyword_item ::=
VALUETYPE_single value_annotation
| VALUES multi_value_annotation
| DEFAULT_single_value_annotation
| CONTEXT_annotation

Syntax 41—KEYWORD declaration

A keyword declaration shall be used to define a new keyword in a category or in a subcategory of ALF state-
ments specified by a syntax item identifier. One or more annotations (see 8.5) can be used to qualify the contents

of the keyword declaration.

A legal syntax item identifier shall be defined as shown in Table 24.

Table 24—Syntax item identifier

Identifier Semantic meaning
annot ati on The keyword shall specify an annotation (see 7.11).
si ngl e_val ue_annot ati on The keyword shall specify a single value annotation (see 7.11).
nul ti _val ue_annotation The keyword shall specify a multi-value annotation (see 7.11).
annot ati on_cont ai ner The keyword shall specify an annotation container (see 7.12).
arithneti c_nodel The keyword shall specify an arithmetic model (see 11.2).
arithnetic_subnodel The keyword shall specify an arithmetic submodel (see 11.4.3).

48 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 5

Table 24—Syntax item identifier (Continued)

I dentifier

Semantic meaning

arithneti c_nodel _cont ai ner

The keyword shall specify an arithmetic model container (see 11.4.7).

8.5 Annotations for a KEYWORD

This subsection defines annotations which can be used as |egal children of a keyword declaration statement.

8.5.1 VALUETYPE annotation

The valuetype annotation shall be a single value annotation. The set of legal values shall depend on the syntax
item identifier associated with the keyword declaration, as shown in Table 25.

Table 25—VALUETYPE annotation

Default value
Syntax item identifier Set SxﬁajEﬁj(l;?for for Comment
VALUETYPE
annot ati on nunber, identifier See Syntax 29, defi-
or si ng| e_va| ue_annot at i on identifier, nition of annotation
ormul ti _val ue_annot ati on quot ed_stri ng, value.
edge_val ue,
pi n_vari abl e,
cont r ol _expressi on,
bool ean_expr essi on,
arithmetic_expression.
annot ati on_cont ai ner N/A N/A An annotation con-
tainer (see
Syntax 30) has no
vaue.
arithnmeti c_nodel nunber,i dentifier, nunber See Syntax 22, defi-
bit literal, nition of arithmetic
based_literal. value.
arithneti c_subnodel N/A N/A An arithmetic sub-
model (see 11.4.3)
shall always have
thesameval ue-
t ype asits parent
arithmetic model.
arithnmetic_nodel cont ai ner N/A N/A An arithmetic model
container (see
11.4.7) has no value.

The valuetype annotation shall specify the category of legal ALF vaues applicable for an ALF statement whose ALF typeis

given by the declared keyword.

Example:

This example shows a correct and an incorrect usage of a declared keyword with specified valuetype.

IEEE P1603 Draft 5

Advanced Library Format (ALF) Reference Manual

49

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

KEYWORD Greeting = annotation { VALUETYPE = identifier ; }
CELL celll { Geeting = H There ; } // correct
CELL cell2 { Geeting = “H There” ; } // incorrect

Thefirst usage is correct, since Hi Ther e isan identifier. The second usage isincorrect, since“ Hi There” is
aquoted string and not an identifier.

8.5.2 VALUES annotation

The values annotation shall be a multi value annotation applicable in the case where the valuetype annotation is
also applicable.

The values annotation shall specify a discrete set of legal values applicable for an ALF statement using the declared
keyword. Compatibility between the values annotation and the valuetype annotation shall be mandatory.

Example:
This example shows a correct and an incorrect usage of a declared keyword with specified valuetype and values.

KEYWORD Greeting = annotation {
VALUETYPE = identifier ;
VALUES { Hi There Hell o HowbDoYouDo }
}
CELL cell3 { Geeting
CELL cell4 { Geeting

Hello ; } // correct
GoodBye ; } // incorrect

Thefirst usageis correct, since Hel | o is contained within the set of values. The second usage is incorrect, since
GoodBye is not contained within the set of values.

8.5.3 DEFAULT annotation
The default annotation shall be a single value annotation applicable in the case where the valuetype annotation is
also applicable. Compatibility between the default annotation, the valuetype annotation, and the values annota-
tion shall be mandatory.
The default annotation shall specify a presumed value in absence of an ALF statement specifying a value.
Example:

KEYWORD Greeting = annotation {

VALUETYPE = identifier ;

VALUES { H There Hell o HowbDoYouDo }
DEFAULT = Hello ;

i:ELL cell5{ /* no Geeting */ }

In this example, the absence of aG eet i ng statement is equivalent to the following:
CELL cell5 { Geeting = Hello ; }

8.5.4 CONTEXT annotation

The context annotation shall specify the ALF type of alegal parent of the statement using the declared keyword.
The ALF type of alegal parent can be a predefined keyword or a declared keyword.

50 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 5

Example:

KEYWORD Li braryQualifier = annotation { CONTEXT { LIBRARY SUBLI BRARY } }
KEYWORD Cel | Qualifier = annotation { CONTEXT = CELL ; }
KEYWORD Pi nQualifier = annotation { CONTEXT = PIN ; }
LI BRARY libraryl {
Li braryQualifier = foo ; // correct
CELL cell1 {
Cell Qualifier = bar ; // correct
PinQualifier = foobar ; // incorrect

}
The following change would legalize the example above:

KEYWORD Pi nQualifier = annotation { CONTEXT { PIN CELL } }
8.5.5 SI_MODEL annotation

** see |EEE proposal, June 2002, chapter 27**

8.6 SEMANTICS declaration

Semantics shall be declared as shown in Syntax 42—.

semanics_declaration ::=
SEMANT | CS semantics_identifier = syntax_item identifier ;
| SEMANT I CS semantics_identifier [= syntax_item_identifier] { { semantics_item} }
semantics_item ;=
VALUES multi_vaue annotation
| DEFAULT _single_value_annotation
| CONTEXT_annotation

Syntax 42—SEMANTICS declaration

A semantics declaration shall be used to define context-specific rulesin a category or in a subcategory of ALF
statements. The semantics item identifier shall make reference to alegal ALF statement or to a category or sub-
category of legal ALF statements.

The semanticsidentifier shall be akeyword identifier or asyntax item identifier or ahierarchical identifier. In the
latter case, the hierarchical identifier shall involve one or more keyword identifiers and/or syntax item identifi-
ers.

If the ALF type of the referenced ALF statement is annot ati on, the optional syntax item identifier
singl e_val ue_annotationormnulti _val ue_annot ati on can be used.

A semantic item can be used to qualify the contents of the semantics declaration. Legal semantic items include
values annotation (see 8.5.2), default annotation (see 8.5.3) and context annotation (see 8.5.4).

A rule specified by a semantic item shall be compatible with the set of rules specified for the referenced ALF

statement. A rule specified within a semantics declaration can not invalidate a rule specified within the refer-
enced ALF statement.

IEEE P1603 Draft 5 Advanced Library Format (ALF) Reference Manual 51

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

Example:

KEYWORD nyAnnot ati on = annotation {
VALUETYPE = identifier ;
VALUES { val uel val ue2 val ue3 val ue4 val ue5 }
CONTEXT { CELL PIN}

}

SEMANTI CS CELL. nyAnnotation = nulti_val ue_annotation {
VALUES { val uel val ue2 val ue3 }

}

SEMANTI CS PI N. nyAnnot ati on = single value_annotation {
VALUES { val ue4 val ue5 }
DEFAULT = val ue4;
}
CELL nyCell {
myAnnot ati on { val uel val ue2 }
PIN nyPin {
myAnnot ati on = val ue5;

}

8.7 GROUP declaration

A group shall be declared as shown in Syntax 43.

group_declaration ::=
GROUP group_identifier { all_purpose value{ all_purpose value} }
| GROUP group_identifier { left_index_value : right_index_value

Syntax 43—GROUP declaration

A group declaration shall be used to specify the semantic equivalent of multiple similar ALF statements within a
single ALF statement. An ALF statement containing a group identifier shall be semantically replicated by substi-
tuting each group value for the group identifier, or, by substituting subsequent index values bound by the left
index value and by the right index value for the group identifier. The ALF parser shall verify whether each sub-
gtitution resultsin alegal statement.

The ALF statement which has the same parent as the group declaration shall be semantically replicated, if the
group identifier is found within the statement itself or within a child of the statement or within a child of a child
of the statement etc. If the group identifier is found more than once within the statement or within its children,
the same group value or index value per replication shall be substituted for the group identifier, but no additional
replication shall occur.

The group identifier (i.e., the name associated with the group declaration) can be re-used as hame of another
statement. As a conseguence, the other statement shall be interpreted as multiple statements wherein the group
identifier within each replication shall be replaced by the all-purpose value. On the other hand, no name of any
visible statement shall be allowed to be re-used as group identifier.

Examples

The following example shows substitution involving group values.

52 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 5

/1 statenent using GROUP:
CELL nyCell {
GROUP data { datal data2 data3 }
PIN data { DIRECTION = input ; }
}
/1 semantically equival ent statenent:
CELL nyCell {

PIN datal { DIRECTION = input ; }
PIN data2 { DIRECTION = input ; }
PIN data3 { DIRECTION = input ; }

}

The following example shows substitution involving index values.

/1 statenent using GROUP:

CELL nyCell {
GROUP datalndex { 1 : 3}
PIN[1:3] data { DIRECTION = input ; }
PIN clock { DIRECTION = input ; }

SETUP = 0.5 { FROM{ PIN = data[datalndex]; } TO{ PIN = cl ock ;

}

/1 semantically equival ent statenent:

CELL nyCell {
GROUP datalndex { 1 : 3}
PIN[1:3] data { DIRECTION = input ; }
PIN clock { DIRECTION = input ; }

SETUP = 0.5 { FROM{ PIN = data[1]; } TO{ PIN = clock ; }
SETUP = 0.5 { FROM{ PIN = data[2]; } TO{ PIN = clock ; }
SETUP = 0.5 { FROM{ PIN = data[3]; } TO{ PIN = clock ; }

}

The following example shows multiple occurrences of the same group identifier within a statement.

/1l statenent using GROUP:

CELL nyCell {
GROUP datalndex { 1 : 3}
PIN[1:3] Din { DIRECTION = input ; }
PIN[1:3] Dout { DIRECTION = input ; }

}
}
}

bl

DELAY = 1.0 { FROM {PI N=Di n[dat al ndex] ;} TO {PI N=Dout [dat al ndex];} }

}

/!l semantically equival ent statenent:

CELL nyCell {
GROUP datalndex { 1 : 3}
PIN[1:3] Din { DIRECTION = input ; }
PIN[1:3] Dout { DIRECTION = input ; }

DELAY = 1.0 { FROM {PIN=Din[1];} TO {PIN=Dout[1];} }
DELAY = 1.0 { FROM {PIN=Din[2];} TO {PIN=Dout[2];} }
DELAY = 1.0 { FROM {PIN=Di n[3];} TO {PIN=Dout[3];} }

8.8 TEMPLATE declaration

A template shall be declared as shown in Syntax 44.

IEEE P1603 Draft 5 Advanced Library Format (ALF) Reference Manual

53

10

15

20

25

30

35

45

50

55

10

15

20

25

30

35

40

45

50

55

template declaration ::=
EMPLATE template_identifier { ALF_statement { ALF_statement } }

Syntax 44—TEMPLATE declaration
A template declaration shall be used to specify one or more ALF statements with variable contents that can be

used many times. A template instantiation (see 8.9) shall specify the usage of such an ALF statement. Within the
template declaration, the variable contents shall be specified by a placeholder identifier (see 6.11.3).

8.9 TEMPLATE instantiation

A template shall be instantiated in form of a static template instantiation or a dynamic template instantiation, as
shown in Syntax 45

template_instantiation ::=
static_template_instantiation
| dynamic_template_instantiation
static_template_instantiation ::=
template_identifier [= STATIC]
| template_identifier [= STATIC] { al_purpose value} }
| template:_identifier [= STATIC]{ { annotation} }
dynamic_template_instantiation ::=
template_identifier = DY NAM | C { { dynamic_template_instantiation_item} }
dynamic_template_instantiation_item ::=
annotation
| arithmetic_model
| arithmetic_assignment
arithmetic_assignment ::=
identifier = arithmetic_expression ;

Syntax 45—TEMPLATE instantiation

A template instantiation shall be semantically equivalent to the ALF statement or the ALF statements found
within the template declaration, after replacing the placeholder identifiers with replacement values. A static tem-
plate instantiation shall support replacement by order, using one or more all-purpose values, or aternatively,
replacement by reference, using one or more annotations (see 7.11). A dynamic template instantiation shall sup-
port replacement by reference only, using one or more annotations and/or one or more arithmetic models (see 7.11
and 11.2).

In the case of replacement by reference, the reference shall be established by a non-escaped identifier matching
the placeholder identifier when the angular brackets are removed. The matching shall be case-insensitive.

The following rules shall apply:

a) A statictemplate instantiation shall be used when the replacement value of any placeholder identifier can
be determined during compilation of the library. Only a matching identifier shall be considered a legal
annotation identifier. Each occurrence of the placeholder identifier shall be replaced by the annotation
value associated with the annotation identifier.

b) A dynamic template instantiation shall be used when the replacement value of at least one placeholder
identifier can only determined during runtime of the application. Only a matching identifier shall be con-
sidered alegal annotation identifier, or alternatively, aarithmetic model identifier, or alternatively, alegal
arithmetic value.

54 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 5

0)

d)

e

Muultiple replacement values within a multi-value annotation shall be legal if and only if the syntax rules
for the ALF statement within the template declaration allow substitution of multiple values for one place-
holder identifier.

In the case replacement by order, subsequently occurring placeholder identifiers in the template declara-
tion shall be replaced by subsequently occurring all-purpose values in the template instantiation. If a
placeholder identifier occurs more than once within the template declaration, all occurrences of that
placeholder identifier shall be immediately replaced by the same all-purpose value. The first amongst the
remaining placeholder identifiers shall then be considered the next placeholder to be replaced by the next
all-purpose value.

A static template instantiation for which a placeholder identifier is not replaced shall be legal if and only
if the semantic rules for the ALF statement support a placeholder identifier outside a template declara-
tion. However, the semantics of a placeholder identifier as an item to be substituted shall only apply
within the template declaration statement.

Examples

The following example illustrates rule a).

11

statement usi ng TEMPLATE decl arati on and instantiation:

TEMPLATE soneAnnot ati ons {

}

KEYWORD <oneAnnot ati on> = singl e_val ue_annotation ;
KEYWORD annot ati on2 = singl e_val ue_annotation ;
<oneAnnot ati on> = val uel ;

annot ati on2 = <anot her Val ue> ;

someAnnot ati ons {

}
11

oneAnnot ati on = annotationl ;
anot her Val ue = val ue2 ;

semantical |y equi val ent statenent:

KEYWORD annot ationl = single_val ue_annotation ;
KEYWORD annot ati on2 = single_val ue_annotation ;
annot ati onl = val uel ;
annot ati on2 = val ue2 ;

The following exampleillustrates rule b).

/1

stat enent usi ng TEMPLATE decl aration and instanti ati on:

TEMPLATE soreNunbers {

KEYWORD N1 = singl e_val ue_annotation { VALUETYPE=nunber ; }
KEYWORD N2 = singl e_val ue_annotation { VALUETYPE=nunber ; }

N1 = <nunberl1l> ;
N2 = <nunber2> ;
}
someNunmber s = DYNAM C {
nunber2 = nunmberl + 1;
}
/1l semantically equival ent statenent, assum ng nunber1=3 at runtine:
N1 =3 ;
N2 = 4 ;

The following example illustrates rule c).

IEEE P1603 Draft 5 Advanced Library Format (ALF) Reference Manual 55

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

TEMPLATE noreAnnot ati ons {
KEYWORD annot ati on3 = annotation ;
KEYWORD annot ati on4 = annotation ;
annot ati on3 { <soneVal ue> }
annot ati on4 = <yet Anot her Val ue> ;
}
nor eAnnot ati ons {
someVal ue { val uel val ue2 }
yet Anot her Val ue = val ue3 ;
}
/1 semantically equival ent statenent:
KEYWORD annot ati on3 = annotation ;
KEYWORD annot ati on4 = annotation ;
annotation3 { valuel value2 }
annot ati on4 = val ue3 ;

The following example illustrates rule €).

TEMPLATE evenMbr eAnnot ati ons {

KEYWORD <t hi sAnnot ati on> = singl e_val ue_annot ati on ;
KEYWORD <t hat Annot ati on> = singl e_val ue_annot ati on ;

<t hat Annot ati on> = <thi sVal ue> ;

<t hi sAnnot ati on> = <t hat Val ue> ;
}
/1 tenplate instantiation by reference:
evenMr eAnnot ati ons = STATI C {

t hat Annot ati on = day ;

t hi sAnnot ati on = nont h;

that Val ue = April;

t hi sval ue = Monday;

}

/1 semantically equivalent tenplate instantiation by order:

evenMor eAnnot ati ons = STATIC { day nonth Monday April

/!l semantically equival ent statenent:
KEYWORD day = single_val ue_annotation ;
KEYWORD nmont h = si ngl e_val ue_annotation ;
month = April;

day = Monday;

The following exampleillustrates rule d).

56

/1 statenment using TEMPLATE declaration and instantiation:

TEMPLATE encor eAnnot ati on {

KEYWORD contextl = annotati on_cont ai ner;
KEYWORD cont ext2 = annot ati on_cont ai ner;
KEYWORD annot ati on5 = singl e_val ue_annotati on {

CONTEXT { contextl context2 }
VALUES { <sonet hi ng> <not hi ng> }
}
contextl { annotationb
context2 { annotationb

<sonet hi ng> ;

}

encor eAnnot ati on {

<not hing> ; }

}

Advanced Library Format (ALF) Reference Manual

}

IEEE P1603 Draft 5

somet hi ng = everythi ng

}

/1 semantically equival ent statenent:
KEYWORD contextl = annotation_contai ner
KEYWORD context2 = annotati on_contai ner
KEYWORD annot ati on5 = single_val ue_annotation {
CONTEXT { contextl context2 }
VALUES { everything <nothi ng> }

}

contextl { annotation5 = <nothing> ; }
context2 { annotation5 = all ; }

/1 Both everything (w thout brackets) and <nothing> (w th brackets)

/1 are |egal

IEEE P1603 Draft 5

val ues for annotationb.

Advanced Library Format (ALF) Reference Manual

57

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

58

Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 5

9. Library-specific objects and related statements

** Add lead-in text**

9.1 LIBRARY and SUBLIBRARY declaration

A library and a sublibrary shall be declared as shown in Syntax 46.

library ::=
LIBRARY library identifier
|LIBRARY library identifier { { library_item} }
| library_template_instantiation
library_item ::=
sublibrary
| sublibrary_item
sublibrary ::=
SUéLI BRARY sublibrary_identifier ;
|SUBLIBRARY sublibrary identifier { { sublibrary_item} }
| sublibrary_template instantiation
sublibrary_item ::=
all_purpose_item
| cell
| primitive
| wire
| layer
| via
| rule
| antenna
| array
| site
| region

Syntax 46—LIBRARY and SUBLIBRARY declaration

A library shall serve as arepository of technology data for creation of an electronic integrated circuit. A subli-
brary can optionally be used to create different scopes of visibility for particular statements describing technol-
ogy data.

If any two objects of the same ALF type and the same ALF name appear in two libraries, or in two sublibraries
with the same library as parents, their usage for creation of an electronic circuit shall be mutually exclusive. For
example, two cells with the same name shall not be instantiated in the same integrated circuit. It shall be the
responsibility of the application tool to detect and properly handle such cases, as the selection of alibrary or a
sublibrary is controlled by the user of the application tool.

9.2 Annotations for LIBRARY and SUBLIBRARY

** Add lead-in text**

9.2.1 INFORMATION annotation container

** Single subheader* *

An information annotation container shall be defined as shown in Semantics 1.

IEEE P1603 Draft 5 Advanced Library Format (ALF) Reference Manual 59

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

KEYWORD | NFORVATI ON = annot ati on_cont ai ner {

CONTEXT { LI BRARY SUBLI BRARY CELL WRE PRI M TI VE }
}
KEYWORD PRODUCT = si ngl e_val ue_annotati on {

VALUETYPE = string; DEFAULT = ““; CONTEXT = | NFORMATI ON;
}
KEYWORD Tl TLE = si ngl e_val ue_annot ati on {

VALUETYPE = string; DEFAULT = ““; CONTEXT = | NFORMATI ON;
}
KEYWORD VERSI ON = si ngl e_val ue_annotati on {

VALUETYPE = string; DEFAULT = ““; CONTEXT = | NFORMATI ON;
}
KEYWORD AUTHOR = singl e val ue_annotation {

VALUETYPE = string; DEFAULT = ““; CONTEXT = | NFORMATI ON;
}
KEYWORD DATETI ME = singl e_val ue_annotation {

VALUETYPE = string; DEFAULT = “*“; CONTEXT = | NFORMATI ON;
}

Semantics 1—INFORMATION statement

The information annotation container shall be used to associate its parent statement with a product specification.
The following semantic restrictions shall apply:

a) Alibrary, asublibrary, or acell can bealegal parent of the information statement.
b) A wire, or aprimitive can be alegal parent of the information statement, provided the parent of the wire
or the primitive isalibrary or asublibrary.

The semantics of the information contents are specified in Table 26.

Table 26—Annotations within an INFORMATION statement

Annotation identifier Semantics of annotation value
PRCODUCT A code name of a product described herein.
TI TLE A descriptive title of the product described herein.
VERSI ON A version number of the product description.
AUTHOR The name of a person or company generating this product description.
DATETI ME Date and time of day when this product description was created.

The product devel oper shall be responsible for any rules concerning the format and detailed contents of the string
value itself.

Example

LI BRARY nyProduct {
I NFORMATI ON {
PRODUCT = pl0sc;
TITLE = “0.10 standard cell”;

60 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 5

VERSION = “v2.1.0";
AUTHOR = “Maj or Asic Vendor, Inc.”;
DATETI ME = “Mon Apr 8 18:33:12 PST 2002";

9.3 CELL declaration

A cell shall be declared as shown in Syntax 47.

cel =

CELL cel_identifier ;

|CELL cellidentifier { { cell_item} }

| cell_template_instantiation
cel_item::=

all_purpose_item

| pin

| pingroup

| primitive

| function

| non_scan_cell

| test

| vector

| wire

| blockage

| artwork

| pattern

| region

Syntax 47—CELL declaration

A cell shall represent an electronic circuit which can be used as a building block for alarger electronic circuit.

9.4 CELL instantiation

A cell shall beinstantiated as shown in Syntax 48.

named cell_instantiation ::=
cell_identifier instance_identifier ;
| cell_identifier instance_identifier § pin_vaue{ pin_vaue} }
| cell__identifier instance_identifier { pin_assignment { pin_assignment } }
unnamed_cell_instantiation ::=
cell_identifier { pin_value{ pin vaue} }
| cell__identifier { pin_assignment { pin_assignment } }

Syntax 48—CELL instantiation

The purpose of anamed cell instantiation is to describe a structural circuit or netlist in the context of a structure

statement, where multiple instances of the same cell can appear (see Section 9.40).

The purpose of an unnamed cell instantiation is to establish a correspondence between a cell and another cell in

the context of a non-scan cell statement (see Section 9.42).

The mapping between the reference cell and the cell instance can be established by order, using pin value (see
Section 7.9), or by name, using pin assignment (see Section 7.10). The left-hand side of a pin assignment shall

IEEE P1603 Draft 5 Advanced Library Format (ALF) Reference Manual

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

represent the name of a pin within reference cell, and the right-hand side of the pin assignment shall represent the
name of the corrrepsonding pin within the cell instance.

9.5 Annotations for a CELL
This section defines annotations and attribute values in the context of a cell declaration.
9.5.1 CELLTYPE annotation

A celltype annotation shall be defined as shown in Semantics 2.

KEYWORD CELLTYPE = singl e_val ue_annotation {
CONTEXT = CELL;
VALUETYPE = identifier;
VALUES {
buf f er conbi national nultiplexor flipflop |atch
menory bl ock core special

}
}

Semantics 2—CELLTYPE annotation

The celltype shall divide cellsinto categories, as specified in Table 27.

Table 27—CELLTYPE annotation values

Annotation value Description

buf fer CELL isabuffer, i.e., an element for transmission of adigital signal without per-
forming alogic operation, except for possible logic inversion.

conbi nati onal CELL isacombinatorial logic element, i.e., an element performing alogic opera-
tion on two or more digital input signals.

mul ti pl exor CELL isamultiplexor, i.e., an element for selective transmission of digital signals.

flipflop CELL isaflip-flop, i.e., aone-bit storage element with edge-sensitive clock

| at ch CELL isalatch, i.e., aone-bit storage element without edge-sensitive clock

menory CELL isamemory;, i.e., amulti-bit storage element with selectable addresses.

bl ock CELL isahierarchical block, i.e., acomplex element which has an associated

netlist for implementation purpose. All instances of the netlist arelibrary ele-
ments, i.e., thereisa CELL model for each of them in thelibrary.

core CELL isacore, i.e., acomplex element which has no associated netlist for imple-
mentation purpose. However, a netlist representation can exist for modeling pur-
pose.

speci al CELL isaspecial element, which does not fall into any other category of cells.

Examples: bus holder, protection diode, filler cell.

62 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 5

9.5.2 SWAP_CLASS annotation

A swap_class annotation shall be defined as shown in Semantics 3.

KEYWORD SWAP_CLASS = annotation {
CONTEXT = CELL;
VALUETYPE = identifier;

}

Semantics 3—SWAP_CLASS annotation

The value is the name of a declared CLASS. Multi-value annotation can be used. Cells referring to the same
CLASS can be swapped for certain applications.

Céll-swapping is only allowed under the following conditions:
— the RESTRI CT_CLASS annotation (see 9.5.3) authorizes usage of the cell
— thecells to be swapped are compatible from an application standpoint (functional compatibility for syn-
thesis and physical compatibility for layout)

** Proposed change: remove the second condition. RESTRICT CLASS should already cover the compatibility
from an application standpoint.**

9.5.3 RESTRICT_CLASS annotation

A restrict-class annotation shall be defined as shown in Semantics 4.

KEYWORD RESTRI CT_CLASS = annotation {
CONTEXT { CELL CLASS }
VALUETYPE = identifier;
}
CLASS synthesis { USAGE = RESTRI CT_CLASS ; }
CLASS scan { USAGE = RESTRICT_CLASS ; }
CLASS datapath { USAGE = RESTRICT_CLASS ; }
CLASS cl ock { USAGE = RESTRICT_CLASS ; }
CLASS | ayout { USAGE = RESTRICT_CLASS ; }

Semantics 4—RESTRICT_CLASS annotation

The value shall be the name of a declared CLASS.
The restrict-class annotation shall establish a necessary condition for the usage of a cell by an application per-

forming a design transformation. An application other than a design transformation (e.g. analysis, file format
tranglation etc.) can disregard the restrict-class annotation.

IEEE P1603 Draft 5 Advanced Library Format (ALF) Reference Manual 63

10

15

20

25

30

35

40

45

50

55

1

10

15

20

25

30

35

40

50

55

The meaning of the predefined restrict-class values in Semantics 4 is specified in Table 28.

Table 28—Predefined values for RESTRICT_CLASS

Annotation value Description
synt hesi s Cell issuitable for creation or modification of a structual design
description (i.e., anetlist) while preserving functional equivalence.
scan Cell issuitable for creation or modification of ascan chain within anetlist.
dat apat h Cell issuitable for structural implementation of a data flow graph.
cl ock Cell issuitable for distribution of aglobal synchronization signal.
| ayout Cell issuitable for creation of a physical artwork.

Additional restrict-class values can be defined within the context of a LIBRARY or a SUBLIBRARY, using the
CLASS declaration and the SEMANTICS declaration in a similar way as shown in Semantics 4.

The following paragraph is subject to discussion.

From the application standpoint, the following usage model for restrict-class shall apply:
a) A set of restrict-class values shall be associated with the application. These values are considered
“known” by the application. Usage of a cell shall only be authorized, if the set of restrict-class values
associated with the cell is a subset of the “known” restrict-class values.

a) isKevin's proposal .

b) Optionally, aboolean condition involving the set of “known” restrict-class values or a subset thereof can
be associated with the application. In addition to a), usage of a cell shall only be authorized, if the set of
restrict-class val ues associated with the cell satisfies the boolean condition.

b) is Wolfgang's proposed extension to a).

c) Optionaly, a boolean value “true” or “false” can be associated with each “known” restrict-class value.
In addition to a), usage of a cell shall only be authorized, if each restrict-class value labeled “true’ is
associated with the cell and each restrict-class value labeled “false” is not associated with the cell.

¢) is an alternative extension to a). Proposal b) and ¢) are mutually exclusive.

Example:

This example involves b).

Specification within the library:

CELL X { RESTRICT_CLASS { A B} }
CELL Y { RESTRICT_CLASS { C} }
CELL Z { RESTRICT CLASS{ ACF } }

Specification for the application:

64 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 5

Set of “known” restrict-classvalues= (A, B, C, D, E)
Boolean condition=(A andnot B) or C

Result:

Usage of CELL X isnot authorized, because boolean condition is not true.

Usage of CELL Y isauthorized, because al values are “known”, and boolean condition istrue.

Usage of CELL Z is not authorized, because value F is not “known”.

9.5.4 SCAN_TYPE annotation

A scan_type annotation shall be defined as shown in Semantics 5.

KEYWORD SCAN TYPE = singl e_val ue_annotati on {
CONTEXT = CELL;
VALUETYPE = identifier;

}

VALUES { muxscan cl ocked | ssd control_0O control _1 }

Semantics 5—SCAN_TYPE annotation

It can take the values shown in Table 29.

Table 29—SCAN_TYPE annotations for a CELL object

Annotation value Description
nmuxscan Cdl contains a multiplexor for selection between non-scan-mode and
scan-mode data.
cl ocked Cell supports a dedicated scan clock.
| ssd Cell issuitable for level sensitive scan design.
control _0 Combinatorial cell, controlling pin shall be 0 in scan mode.
control _1 Combinatorial cell, controlling pin shall be 1 in scan mode.

9.5.5 SCAN_USAGE annotation

A scan_usage annotation shall be defined as shown in Semantics 6.

KEYWORD SCAN _USAGE = singl e_val ue_annotation {
CONTEXT = CELL;
VALUETYPE = identifier;
VALUES { input output hold }

}

Semantics 6—SCAN_USAGE annotation

IEEE P1603 Draft 5 Advanced Library Format (ALF) Reference Manual

65

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

It can take the values shown in Table 30.

Table 30—SCAN_USAGE annotations for a CELL object

Annotation value Description
i nput Primary input cell in ascan chain.
out put Primary output cell in a scan chain.
hol d Intermediate cell in a scan chain.

The SCAN_USAGE annotation appliesfor a cell which is designed to be the primary input, output or intermediate

stage of a scan chain. It also appliesfor ablock in case thereis a particular scan-ordering requirement.
9.5.6 BUFFERTYPE annotation

A buffertype annotation shall be defined as shown in Semantics 7.

KEYWORD BUFFERTYPE = singl e_val ue_annotation {
CONTEXT = CELL;
VALUETYPE = identifier;
VALUES { input output inout internal }
DEFAULT = internal;

}

Semantics 7—BUFFERTYPE annotation

It can take the values shown in Table 31.

Table 31—BUFFERTYPE annotations for a CELL object

Annotation value Description
i nput CELL has an external (i.e., off-chip) input pin.
out put CELL has an external output pin.
i nout CELL has an external bidirectional pin or an external input pin and an
external output pin.
i nt ernal CELL has no externa pin.

9.5.7 DRIVERTYPE annotation

A drivertype annotation shall be defined as shown in Semantics 8.

66 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 5

}

KEYWORD DRI VERTYPE = singl e_val ue_annotation {

CONTEXT = CELL,;

VALUETYPE = identifier;
VALUES { predriver slotdriver both }

Semantics 8—DRIVERTYPE annotation

It can take the values shown in Table 32.

Table 32—DRIVERTYPE annotations for a CELL object

Annotation value

Description

predriver

CELL isapredriver, i.e., the core part of an I/O buffer.

slotdriver

CELL isasdlotdriver, i.e., the pad of an 1/O buffer with off-chip connection.

bot h

CELL isboth apredriver and aslot driver, i.e., acomplete 1/O buffer.

DRI VERTYPE applies only for acell with BUFFERTYPE valuei nput or out put ori nout .

9.5.8 PARALLEL_DRIVE annotation

A parallel_drive annotation shall be defined as shown in Semantics 9.

}

KEYWORD PARALLEL_DRI VE = singl e_val ue_annotation {

CONTEXT = CELL;
VALUETYPE = unsi gned,;
DEFAULT = 1;

The annotation value shall specify the number of cells connected in parallel. This number shall be greater than

Semantics 9—PARALLEL_DRIVE annotation

zero (0) ; the default shall be 1.

9.5.9 PLACEMENT_TYPE annotation

A placement_type annotation shall be defined as shown in Semantics 10.

KEYWORD PLACEMENT _TYPE = singl e_val ue_annotation {

CONTEXT = CELL;

VALUETYPE = identifier;

VALUES { pad core ring bl ock connector }
DEFAULT = core;

IEEE P1603 Draft 5

Semantics 10—PLACEMENT _TYPE annotation

Advanced Library Format (ALF) Reference Manual

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

The purpose of the placement-type annotation is to establish categories of cellsin terms of placement and power

routing requirements.

It can take the values shown in Table 33.

Table 33—PLACEMENT_TYPE annotations for a CELL object

Annotation value Description

pad The cell is an element to be placed in the I/O area of adie.

core Thecell isaregular element to be placed in the core area of adie, using aregular
power structure.

ring The cell isamacro element with built-in power structure.

bl ock The cell isan abstraction of acollection of regular elements, each of which uses
aregular power structure.

connect or Thecell isto be placed at the border of the core areaof adiein order to establish
a connection between aregular power structure and a power ring in the I/O area.

9.5.10 SITE reference annotation

A site reference annotation shall be defined as shown in Semantics 11.

}

SEMANTI CS SI TE = annotation {
CONTEXT { CELL CLASS }

Semantics 11—SITE reference annotation

The purpose of a site reference annotation is to indicate one or more legal placement locations for a cell. The
annotation value shall be the name of a declared site (see Section 9.26).

9.6 ATTRIBUTE values for a CELL

An attribute in the context of a cell declaration shall specify more specific information within the category given

by the celltype annotation.

The attribute values shown in Table 34 can be used within a CELL with CELLTYPE=nenory.

Table 34—Attribute values for a CELL with CELLTYPE=memory

68

Attributeitem Description
RAM Random Access Memory
ROM Read Only Memory
CAM Content Addressable Memory

Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 5

Table 34—Attribute values for a CELL with CELLTYPE=memory (Continued)

Attributeitem

Description

static

Static memory, needs no refreshment

dynami c

Dynamic memory, needs refreshment

asynchronous

operation self-timed

synchr onous

operation synchronized with a clock signal

The attributes shown in Table 35 can be used within a CELL with CELLTYPE=bl ock.

Table 35—Attributes within a CELL with CELLTYPE=block

Attributeitem

Description

count er

CELL isacounter, i.e., acomplex sequentia circuit going through a
predefined sequence of states in its normal operation mode where
each state represents an encoded control value.

shift_register

CELL isashift register, i.e., acomplex sequentid circuit going
through a predefined sequence of statesin its normal operation
mode, where each subsequent state can be obtained from the previ-
ous one by a shift operation. Each bit represents a data value.

adder

CELL isanadder, i.e., acombinatorial circuit performing an addition
of two operands.

subt ract or

CELL isasubtractor, i.e., acombinatorial circuit performing a sub-
traction of two operands.

mul tiplier

CELL isamultiplier, i.e.,, acombinatorial circuit performing amulti-
plication of two operands.

conpar at or CELL isacomparator, i.e., acombinatorial circuit comparing the
maghnitude of two operands.
ALU CELL isan arithmetic logic unit, i.e., acombinatorial circuit combin-

ing the functionality of adder, subtractor, and comparator.

The attributes shown in Table 36 can be used within a CELL with CELLTYPE=cor e.

Table 36—Attributes within a CELL with CELLTYPE=core

Attributeitem Description
PLL CELL isaphase-locked loop.
DSP CELL isadigital signal processor.
CcPU CELL isacentral processing unit.
GPU CELL isagraphical processing unit.

IEEE P1603 Draft 5

Advanced Library Format (ALF) Reference Manual

69

10

15

20

25

30

35

40

45

50

55

1

10

15

20

25

30

35

40

45

50

55

The attributes shown in Table 37 can be used within a CELL with CELLTYPE=speci al .

Table 37—Attributes within a CELL with CELLTYPE=special

Attributeitem Description

bushol der CELL enables atristate bus to hold itslast value before all drivers
went into high-impedance state (see 9.37).

cl anp CELL connects a net to a constant value (logic value and drive
strength; see 9.37).

di ode CELL isadiode (no FUNCTI ON statement).

capaci tor CELL isacapacitor (no FUNCTI ON statement).

resistor CELL isaresistor (no FUNCTI ON statement).

i nduct or CELL isaninductor (no FUNCTI ON statement).

fillcell CELL isused to fill unused spacein layout (no PIN, no FUNCTI ON
statement).

9.7 PIN declaration

A pin shall be declared as a scalar pin or asavector pin or amatrix pin, as shown in Syntax 49.

pin::=
scalar_pin | vector_pin | matrix_pin
scalar_pin ::=
N pin_identifier ;
| PIN pin_identifier { { scalar_pin item} }
| scalar_pin_template instantiation
scalar_pin_item ::=
all_purpose_item
| port
vector_pin ::=
N multi_index pin_identifier ;
| PIN multi_index pin_identifier { { vector_pin_item} }
| vector_pin_template _instantiation
vector_pin_item ::=
all_purpose_item
| range
matrix_pin ::=
PIN first_ multi_index pin_identifier second_multi_index ;
| PIN first_multi_index pin_identifier second_multi_index { { matrix_pin_item} }
| matrix_pin_template_instantiation
matrix_pin_item ::=
vector_pin_item

Syntax 49—PIN declaration
A pin shall represent a terminal of an electronic circuit. The purpose of a pin is exchange of information or
energy between the circuit and its environment. A constant value of information shall be caled state. A time-
dependent value of information shall be called signal.

A referenceto apinin genera shall be established by the pin identifier.

70 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 5

The order of pin declarations within a cell declaration shall reflect the order of appearance of pins, when the cell
isinstantiated in a netlist and the pins are refered to by order. The view annotation (see Section 9.9.1) shall fur-
ther specify which pins are visible in anetlist.

A scalar pin can be associated with a general electrical signal. However, a vector pin or a matrix pin can only be
associated with digital signals. One element of a vector pin or of amatrix pin shall be associated with one bit of
information, i.e., abinary digital signal.

A vector-pin can be considered as a bus, i.e., a combination of scalar pins. The declaration of a vector-pin shall
involve amulti index (see Section 7.8). A reference to ascalar within the vector-pin shall be established by the
pinidentifier followed by a single index (see Section 7.8). A reference to a subvector within the vector-pin shall
be established by the pinidentifier followed by a multi index.

A matrix-pin can be considered as a combination of vector-pins. A reference to a vector or to a submatrix,
respectively, within the matrix-pin shall be established by the pin identifier followed by a single index or by a
multi index, respectively.

Within a matrix-pin declaration, the first multi index shall specify the range of scalars or bits, and the second
multi index shall specify the range of vectors. Support for direct reference of a scalar within a matrix is not pro-
vided.

Example

PIN [5:8] nyVectorPin ;
PIN[3:0] nyMatrixPin [1:1000] ;

The pin variable nyVect or Pi n[5] refersto the scalar associated with the MSB of nyVect or Pi n.
The pin variable nyVect or Pi n[8] refersto the scalar associated with the LSB of nyVect or Pi n.
The pin variable nyVect or Pi n[6: 7] refersto a subvector within myVect or Pi n.

The pin variablenyMat r i xPi n[500] refersto avector within nyMat ri xPi n.

The pin variablenyMat r i xPi n[500: 502] refersto 3 subsequent vectors within nyMat ri xPi n.

Consider the following pin assignment:
myVect or Pi n=nmyMat ri xPi n[500] ;

This establishes the following exchange of information:
myVect or Pi n[5] receivesinformation from element [3] of myMat ri xPi n[500] .
myVect or Pi n[6] receivesinformation from element [2] of myMat ri xPi n[500] .

myVect or Pi n[7] receivesinformation from element[1] of myMat ri xPi n[500] .
myVect or Pi n[8] receivesinformation from element [0] of myMat ri xPi n[500] .

9.8 PINGROUP declaration
A pingroup shall be declared as a simple pingroup or as a vector pingroup, as shown in Syntax 50.

A pingroup in general shall serve the purpose to specify items applicable to acombination of pins. The combina-
tion of pins shall be specified by the members statement.

A vector pingroup can only combine scalar pins. A vector pingroup can be used as a pin variable, in the same
capacity as avector pin.

A simple pingroup can combine pins of any format, i.e., scalar pins, vector pins, and matrix pins. A simple pin-
group can not be used as a pin variable.

IEEE P1603 Draft 5 Advanced Library Format (ALF) Reference Manual 71

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

pingroup ::=
simple_pingroup | vector_pingroup

simple_pingroup ::=
Pﬁ\l qu ROUP pingroup_identifier { members {
| simple_pingroup_template_instantiation

vector_pingroup ::=

{ members { vector_pingroup_item } }
| vector_pingroup_template_instantiation
vector_pingroup_item ::=
al_purpose_item
| range

all_purpose_item} }

members ::=
MEM BERS({ pin_identifier pin_identifier { pin_identifier} }

|PINGROUP [index_value: index_value] pingroup_identifier

Syntax 50—PINGROUP declaration

9.9 Annotations for a PIN and a PINGROUP
This section defines annotations and attribute values in the context of a
9.9.1 VIEW annotation

A view annotation shall be defined as shown in Semantics 12.

pin declaration or apingroup declaration.

KEYWORD VI EW = si ngl e_val ue_ann
CONTEXT { PI'N PI NGROUP }
VALUETYPE = identifier;
VALUES { functional physical
DEFAULT = both

otation {

bot h none }

Semantics 12—VIEW annotation

The purpose of the view annotation is to specify the visibility of apinin anetlist.

It can take the values shown in Table 38.

Table 38—VIEW annotations for a PIN object

Annotation value Description
functi onal pi n appearsin functional netlist.
physi cal pi n appearsin physical netlist.
bot h (default) pi n appearsin both functional and physical netlist.
none pi n does not appear in netlist.

9.9.2 PINTYPE annotation

A pintype annotation shall be defined as shown in Semantics 13.

72 Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 5

KEYWORD PI NTYPE = singl e_val ue_annotati on {
CONTEXT = PIN;
VALUETYPE = identifier;
VALUES { digital anal og supply }
DEFAULT = digital;

Semantics 13—PINTYPE annotation

The purpose of the pintype annotation isto establish broad categories of pins.

It can take the values shown in Table 39.

Table 39—PINTYPE annotations for a PIN object

Annotation value Description
di gi tal (default) Digital signal pin.
anal og Analog signal pin.
supply Power supply or ground pin.

9.9.3 DIRECTION annotation

A direction annotation shall be defined as shown in Semantics 14.

KEYWORD DI RECTI ON = si ngl e_val ue_annot ati on {
CONTEXT = PIN;
VALUETYPE = identifier;
VALUES { input output both none }

}

Semantics 14—DIRECTION annotation

The purpose of the direction annotation is to establish the flow of information and/or electrical energy through a
pin. Information/energy can flow into a cell or out of a cell through a pin. The information/energy flow is not to
be mistaken as the flow of electrical current through a pin.

The direction annotation can take the values shown in Table 40.

Table 40—DIRECTION annotations for a PIN object

Annotation value

Description

i nput Information/energy flows through the pininto the cell. The pinis
receiver or asink.
out put Information/energy flows through the pin out of the cell. Thepinisa

IEEE P1603 Draft 5

driver or asource.

Advanced Library Format (ALF) Reference Manual 73

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

Table 40—DIRECTION annotations for a PIN object (Continued)

Annotation value Description

bot h Information/energy flows through the pinin and out of the cell. The
pinisboth areceiver/sink and driver/source, dependent on the mode
of operation.

none No information/energy flows through the pinin or out of the cell.
The pin can be an internal pin without connection to its environment
or afeedthrough where both ends are represented by the same pin.

The direction annotation shall be orthogonal to the pintype annotation, i.e., all combinations of annotation values
are possible.

Examples

The power and ground pins of aregular cell have DI RECTI ON=i nput .

A level converter cell has a power supply pin with DI RECTI ON=i nput and another power supply pin
with DI RECTI ON=out put .

A level converter can have separate ground pins related to its power supply pins or acommon ground pin
with DI RECTI ON=bot h.

The power and ground pins of afeed through cell have the DI RECTI ON=none.

9.9.4 SIGNALTYPE annotation

A signaltype annotation shall be defined as shown in Semantics 15.

KEYWORD SI GNALTYPE = singl e_val ue_annotation {

CONTEXT = PIN;

VALUETYPE = identifier;

VALUES {
data scan_data address control select tie clear set
enabl e out _enabl e scan_enabl e scan_out _enabl e
cl ock master_cl ock slave_cl ock
scan_master _cl ock scan_sl ave_cl ock

}
DEFAULT = dat a;

}

Semantics 15—SIGNALTYPE annotation

SI GNALTYPE classifies the functionality of a pin. The currently defined values apply for pins with Pl N-
TYPE=DI G TAL.

Conceptually, apin with Pl NTYPE = ANALOG can aso have a SI GNALTYPE annotation. However, no values
are currently defined.

74

Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 5

The fundamental SI GNALTYPE values are defined in Table 41

Table 41—Fundamental SIGNALTYPE annotations for a PIN object

Annotation value

Description

dat a (default)

Genera data signal, i.e., asignal that carries information to be trans-
mitted, received, or subjected to logic operations within the CELL.

addr ess

Address signal of amemory, i.e., an encoded signal, usually abus or
part of abus, driving an address decoder within the CELL.

control

Genera control signad, i.e., an encoded signal that controls at least
two modes of operation of the CELL, eventually in conjunction with
other signals. The signal value is alowed to change during red-time
circuit operation.

sel ect

Select signal of amultiplexor, i.e., asignal that selects the data path
of amultiplexor or de-multiplexor within the CELL. Each selected
signal hasthe same S| GNALTYPE.

enabl e

The signal enables storage of general input datain a latch or aflip-
flop or amemory

tie

The signal needs to be tied to afixed value statically in order to
define afixed or programmable mode of operation of the CELL,
eventualy in conjunction with other signals. The signal valueis not
allowed to change during real-time circuit operation.

cl ear

Clear or reset signal of aflip-flop or latch, i.e., asignal that controls
the storage of the value O within the CELL.

set

Preset or set signal of aflip-flop or latch, i.e., asignal that controls
the storage of the value 1 within the CELL.

cl ock

Clock signal of aflip-flop or latch, i.e., atiming-critical signal that
triggers data storage within the CELL.

Figure 6 shows how to construct composite signaltypes.

dat a

scan_data

enabl e

scan_enabl e

_>
cl ock

out _enabl e

scan_out _enabl e

scan_cl ock

|
|
—>
|
> mast er _cl ock > scan_nast er _cl ock
> sl ave_cl ock >

scan_sl ave_cl ock

Figure 6—Scheme for construction of composite signhaltype values

IEEE P1603 Draft 5

Advanced Library Format (ALF) Reference Manual

75

10

15

20

25

30

35

40

45

50

55

1

10

15

20

25

30

35

40

45

50

55

The composite SI GNALTYPE values are defined in Table 42

Table 42—Composite SIGNALTYPE annotations for a PIN object

Annotation value

Description

scan_data

Scan datasignal, i.e., signal isrelevant in scan mode only.

out _enabl e

Enables visibility of general data at an output pin of a cell.

scan_enabl e

Enables storage of scan input datain alatch or aflipflop.

scan_out _enabl e

Enables visibility of scan data at an output pin of acell.

mast er _cl ock

Triggers storage of input datain the first stage of aflipflop in atwo-
phase clocking scheme.

sl ave_cl ock

Triggers data transfer from first the stage to the second stage of a
flipflop in atwo-phase clocking scheme.

scan_cl ock

Triggers storage of scan input datawithin acell.

scan_mast er _cl ock

Triggers storage of input scan datain the first stage of aflipflopin a
two-phase clocking scheme.

scan_sl ave_cl ock

Triggers scan data transfer from the first stage to the second stage of
aflipflop in atwo-phase clocking scheme.

Within the definitions of Table 41 and Table 42, the elements flipflop, latch, multiplexor, or memory can be stan-
dalone cells or embedded in larger cells. In the former case, the celltype isflipflop, latch, multi-

pl exor, or menor y, respectively. In the latter case, the celltype can be bl ock or cor e.

9.9.5 ACTION annotation

An action annotation shall be defined as shown in Semantics 16.

}

KEYWORD ACTI ON = singl e_val ue_annotation {
CONTEXT = PIN;
VALUETYPE = identifier;
VALUES { asynchronous synchronous }

Semantics 16—ACTION annotation

The purpose of the action annotation is to define, whether asignal is self-timed or synchronized with a clock sig-

nal.

The ACTION annotation can take the values shown in Table 43.

Table 43—ACTION annotations for a PIN object

Annotation value

Description

asynchr onous

Signd actsin an asynchronous way;, i.e., self-timed.

76 Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 5

Table 43—ACTION annotations for a PIN object (Continued)

Annotation value

Description

sync

hr onous

Signa actsin a synchronous way, i.e., triggered by a clock signal.

The ACTI ON annotation applies only to pins with certain SI GNALTYPE values, as shown in Table 44. Therule

applies also to any composite SI GNAL TYPE values based on the fundamental values.

Table 44—ACTION applicable in conjunction with SIGNALTYPE values

SIGNALTYPE value ACTION applicable
data, scan_data No
addr ess No
control Yes
sel ect No
enabl e, scan_enabl e, out_enable, scan_out_enable Yes
tie No
cl ear Yes
set Yes
cl ock, scan_cl ock, master_clock, slave_cl ock, No

scan_master _cl ock, scan_sl ave cl ock

9.9.6 POLARITY annotation

A polarity annotation shall be defined as shown in Semantics 17.

KEYWORD POLARI TY = singl e_val ue_annotation {
CONTEXT = PIN;
VALUETYPE = identifier;

VALUES { high low rising_edge falling_edge doubl e_edge }

}

Semantics 17—POLARITY annotation

The purpose of the polarity annotation is to define the active state or the active edge of an input signal.

The POLARITY annotation can take the values shown in Table 45.

Table 45—POLARITY annotations for a PIN

Annotation value

Description

hi gh

IEEE P1603 D

raft 5

Signal is active high or to be driven high.

Advanced Library Format (ALF) Reference Manual

7

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

Table 45—POLARITY annotations for a PIN (Continued)

Annotation value Description
| ow Signd is active low or to be driven low.
ri si ng_edge Signd is activated by rising edge.
falling_edge Signd is activated by falling edge.
doubl e_edge Signd is activated by both rising and falling edge.

The POLARI TY annotation applies only to pinswith certain SI GNALTYPE values, as shown in Table 46..

Table 46—POLARITY applicable in conjunction with SIGNALTYPE values

SIGNALTYPE value Applicable POLARITY

data, scan_data N/A

addr ess N/A

control N/A

sel ect N/A

enabl e, scan_enabl e, out_enabl e, hi gh, | ow.

scan_out _enabl e

tie hi gh, | ow

cl ear hi gh, | ow.

set hi gh, | ow

cl ock, scan_cl ock, naster_cl ock, slave_ cl ock, hi gh,l owri si ng_edge,

scan_nast er _cl ock, scan_sl ave_cl ock

falling_edge, doubl e_edge,

9.9.7 DATATYPE annotation

A datatype annotation shall be defined as shown in Semantics 18.

KEYWORD DATATYPE = singl e_val ue_annotation {
CONTEXT { PI N PI NGROUP }
VALUETYPE = identifier;
VALUES { signed unsigned }

}

Semantics 18—DATATYPE annotation

The purpose of the datatype annotation is to define the arithmetic representation of a digital signal.

78

Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 5

The DATATY PE annotation can take the values shown in Table 47.

Table 47—DATATYPE annotations for a PIN object

Annotation value Description
si gned Result of arithmetic operation is signed 2's complement.
unsi gned Result of arithmetic operation is unsigned.

DATATYPE isonly relevant for avector pin.
9.9.8 INITIAL_VALUE annotation

Aninitial value annotation shall be defined as shown in Semantics 19.

KEYWORD | NI TI AL_VALUE = singl e_val ue_annotation {
CONTEXT = CELL;
VALUETYPE = bool ean_val ue;
DEFAULT = U;

}

Semantics 19—INITIAL_VALUE annotation

The purpose of the initial value annotation is to provide an initia value of a signal within a simulation model
derived from ALF. A signa shall have the initial value before a simulation event affects the signal. The default
value “U” means “uninitialized” (see Table 68).

9.9.9 SCAN_POSITION annotation

A scan position annotation shall be defined as shown in Semantics 20.

KEYWORD SCAN_PGOSI TI ON = singl e_val ue_annotation {

CONTEXT = PIN;
VALUETYPE = unsi gned,;
DEFAULT = 0;

Semantics 20—SCAN_POSITION annotation

The purpose of the scan position annotation is to specify the position of the pin in scan chain, starting with 1 for
the primary input. The value O (which is the default) indicates that the pin is not on the scan chain.

9.9.10 STUCK annotation
A stuck annotation shall be defined as shown in Semantics 21.

The purpose of the stuck annotation is to specify a static fault model applicable for the pin.

IEEE P1603 Draft 5 Advanced Library Format (ALF) Reference Manual 79

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

KEYWORD STUCK = singl e_val ue_annotation {
CONTEXT = PIN;
VALUETYPE = identifier;
VALUES { stuck_at 0 stuck_at_ 1 both none }
DEFAULT = bot h;

Semantics 21—STUCK annotation

The STUCK annotation can take the values shown in Table 48.

Table 48—STUCK annotations for a PIN object

Annotation value Description
stuck_at O Pin can exhibit afaulty static low state.
stuck_at _1 Pin can exhibit afaulty static high state.
bot h (default) Pin can exhibit afaulty static high or low state.
none Pin can not exhibit afaulty static state.

9.9.11 SUPPLYTYPE annotation

A supplytype annotation shall be defined as shown in Semantics 22.

KEYWORD SUPPLYTYPE = annotation {
CONTEXT { PIN CLASS }
VALUETYPE = identifier;
VALUES { power ground reference }

}

Semantics 22—SUPPLYTYPE annotation

A Pl Nwith Pl NTYPE = SUPPLY shall have a SUPPLYTYPE annotation, as shown in **where's the table??

** Joe, you were supposed to create the table.

The supplytype annotation can take the values shown in Table 49.

80

Table 49—SUPPLYTYPE annotations for a PIN object

Annotation value Description

power Piniselectrically connected to a power supply, i.e., a constant non-zero
voltage source providing energy for operation of acircuit.

ground Piniséelectrically connected to ground, i.e., azero voltage source providing
the return path for electrical current through a power supply.

Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 5

Table 49—SUPPLYTYPE annotations for a PIN object (Continued)

Annotation value Description

reference Pin exhibits a constant voltage level without providing significant energy
for operation of acircuit.

The purpose of the supplytype annotation is to define a subcategory of pinswith pintype value supply (see Table
39).

9.9.12 SIGNAL_CLASS annotation

A signal-class annotation shall be defined as shown in Semantics 23.

KEYWORD SI GNAL_CLASS = annot ati on {
CONTEXT { PIN Pl NGROUP }
VALUETYPE = identifier;

}

Semantics 23—SIGNAL_CLASS annotation

The value shall be the name of adeclared CLASS.

The purpose of the signal-class annotation is to specify which terminals of a cell with are functionally related to
each other. The signal-class annotation applies for a pin with any signaltype value (see Section 9.9.4).

Example:

A multiport memory can have a data bus related to an address bus and another data bus related to another address
bus. Note that the term “port” in “multiport” does not relate to the ALF port declaration (see Section 9.24).

CELL my2Port Menory {
CLASS ReadPort { USAGE = SI GNAL_CLASS; }
CLASS WitePort { USAGE = SI GNAL_CLASS; }

PIN[3:0] addr_A { SIGNALTYPE = address; SIGNAL_CLASS = ReadPort; }
PIN[7:0] data_A { SIGNALTYPE = dat a; S| GNAL_CLASS = ReadPort; }
PIN [3:0] addr_B { SIGNALTYPE = address; SIGNAL_CLASS = WitePort; }
PIN[7:0] data_B { SIGNALTYPE = dat a; SI GNAL_CLASS = WitePort; }

PINwite_enable { SI GNALTYPE = enabl e; SI GNAL_CLASS = WitePort; }
}

9.9.13 SUPPLY_CLASS annotation

A supply-class annotation shall be defined as shown in Semantics 24.

KEYWORD SUPPLY_CLASS = annotation {
CONTEXT { PIN CLASS }
VALUETYPE = identifier;

}

Semantics 24—SUPPLY_CLASS annotation

IEEE P1603 Draft 5 Advanced Library Format (ALF) Reference Manual 81

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

The value shall be the name of adeclared CLASS.

The purpose of the supply-class annotation is to specify which terminals of a cell with are electrically related to
each other. The supply-class annotation applies for a pin with any signaltype (see Section 9.9.4) or supplytype
value (see Section 9.9.11). The supply-class annotation also applies for a class with usage value connect-class
(see Section 9.9.16). In this case, the refered class represents a set of global nets which are electrically related to
each other.

Example 1:
A cell can provide two loca power supplies. Each pin isrelated to at least one power supply.
CELL nyLevel Shifter {

CLASS supplyl { USAGE
CLASS supply2 { USAGE

SUPPLY_CLASS; }
SUPPLY_CLASS: }

PI N vddl { SUPPLYTYPE = power; SUPPLY_CLASS = supplyl; }
PIN Din { SIGNALTYPE = data; SUPPLY_CLASS = supplyl; }
PI N vdd2 { SUPPLYTYPE = power; SUPPLY_CLASS = supply2; }
PI N Dout { SIGNALTYPE = data; SUPPLY_CLASS = supply2; }

PIN Ghd { SUPPLYTYPE = ground; SUPPLY_CLASS { supplyl supply2 } }

}
Example 2:

A library can provide two environmental power supplies. A supply pin of acell has to be connected to a global
net related to an environmental power supply.

CLASS core { USAGE = SUPPLY_CLASS; }
CLASS io { USACGE = SUPPLY_CLASS; }
CLASS Vddl { USAGE=CONNECT_CLASS; SUPPLYTYPE=power; SUPPLY_CLASS=core; }
CLASS Vssl1 { USAGE=CONNECT_CLASS; SUPPLYTYPE=ground; SUPPLY_CLASS=core; }
CLASS Vdd2 { USAGE=CONNECT_CLASS; SUPPLYTYPE=power; SUPPLY_CLASS=i o; }
CLASS Vss2 { USAGE=CONNECT_CLASS; SUPPLYTYPE=ground; SUPPLY_CLASS=io; }
CELL nylnternal Cell {

PI'N vdd { CONNECT_CLASS=Vvddl; }

PIN vss { CONNECT_CLASS=Vssl1; }
}
CELL myPadCel I {

PI'N vdd { CONNECT_CLASS=Vdd2; }

PIN vss { CONNECT_CLASS=Vss2; }

9.9.14 DRIVETYPE annotation
A drivetype annotation shall be defined as shown in Semantics 25.

The purpose of the drivetype annotation is to specify a category of electrical characteristics for a pin, which
relate to the system of logic values and drive strengths specified in Table 68.

82 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 5

}
}

ttl

KEYWORD DRI VETYPE = singl e_val ue_annotation {
CONTEXT { PIN CLASS }
VALUETYPE = identifier;
VALUES {
CNDS NNDS pnNDS CNDS_pass NNDS_pass pnos_pass
open_drai n open_source

DEFAULT = cnos;

Semantics 25—DRIVETYPE annotation

The drivetype annotation can take the values shown in Table 50.

Table 50—DRIVETYPE annotations for a PIN object

Annotation value

Description

crmos (default)

Standard cmos signal. The logic high level is equal to the power sup-
ply, the logic low level is equal to ground. The drive strength is
strong. No static current flows. Signal is amplified by cmos stage.

nnos

Nmos or pseudo nmos signal. The logic high level is equal to the
power supply and its drive strength is resistive. The logic low level
voltage depends on the ratio of pull-up and pull-down transistor.
Static current flowsin logic low state.

pnos

Pmos or pseudo pmos signal. The logic low level isequal to ground
and its drive strength is resistive. The logic high level voltage
depends on the ratio of pull-up and pull-down transistor. Static cur-
rent flowsin logic high state.

nnos_pass

Nmos passgate signa. Signal is not amplified by passgate stage.
Logic low voltage level is preserved, logic high voltage level islim-
ited by power supply minus nmos threshold voltage.

pnos_pass

Pmos passgate signal. Signal is not amplified by passgate stage.
Logic high voltage level is preserved, logic high voltage level islim-
ited by pmos threshold voltage.

cnos_pass

Cmos passgate signdl, i.e., afull transmission gate. Signal is not
amplified by passgate stage. Voltage levels are preserved.

ttl

TTL signa. Both logic high and logic low voltage levels are load-
dependent, as static current can flow.

open_drain

Open drain signal. Logic low level isequal to ground. Logic high
level corresponds to high impedance state.

open_source

Open source signal. Logic high level is equal to the power supply.
Logic low level corresponds to high impedance state.

9.9.15 SCOPE annotation

A scope annotation shall be defined as shown in Semantics 26.

IEEE P1603 Draft 5

Advanced Library Format (ALF) Reference Manual

83

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

KEYWORD SCOPE = singl e_val ue_annotation {
CONTEXT = PIN;
VALUETYPE = identifier;
VALUES { behavi or nmeasure both none }
DEFAULT = bot h;

Semantics 26—SCOPE annotation
The purpose of the scope annotation is to specify a category of modeling usage for a pin. The scope annotation
specifies whether a pin can be involved in a control expression within a vector declaration (see Section 9.14) or
within a behavior statement (see Section 9.39).

The scope annotation can take the values shown in Table 51.

Table 51—SCOPE annotations for a PIN object

Annotation value Description

behavi or The pinisused for modeling functional behavior. Pin can be
involved in a control expression within a BEHAVI OR statement.

neasur e Measurements related to the pin can be described. Pin can be
involved in acontrol expression within a VECTOR declaration.

bot h (default) Pin can be involved in a control expression within aBEHAVIOR
statement or within a VECTOR declaration.

none Pin can not be involved in a control expression.

9.9.16 CONNECT_CLASS annotation

A connect_class annotation shall be defined as shown in Semantics 27.

KEYWORD CONNECT _CLASS = singl e _val ue_annotation {
CONTEXT = PIN;
VALUETYPE = identifier;

}

Semantics 27—CONNECT_CLASS annotation

The value shall be the name of adeclared CLASS.

The purpose of the connect-class annotation is to specify arelationship between a pin and an environmental rule
for connectivity. For application in conjunction with supply-class see Section 9.9.13. For application in conjunc-
tion with connect-rule see Section 11.41.1.

9.9.17 SIDE annotation

A side annotation shall be defined as shown in Semantics 28.

The purpose of the side annotation is to define an abstract location of a pin relative to the bounding box of acell.

84 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 5

KEYWORD S| DE = singl e_val ue_annotati on {
CONTEXT { PI N Pl NGROUP }
VALUETYPE = identifier;
VALUES { left right top bottominside }

}

Semantics 28—SIDE annotation

The side annotation can take the values shown in Table 52.

Table 52—SIDE annotations for a PIN object

Annotation value Description
| eft pi n ison theleft side of the bounding box.
ri ght pi n ison theright side of the bounding box.
top pi n isat thetop of the bounding box.
bott om pi n isat the bottom of the bounding box.
i nside pi n isinside the bounding box.

9.9.18 ROW and COLUMN annotation

A row annotation and a column annotation shall be defined as shown in Semantics 29.

KEYWORD ROW = annot ation {
CONTEXT { PI'N PI NGROUP }
VALUETYPE = unsi gned,;

}

KEYWORD COLUWN = annotation {
CONTEXT { PI'N PI NGROUP }
VALUETYPE = unsi gned,;

}

The purpose of arow and a column annotation is to indicate a location of a pin when a cell is placed within a
placement grid. The count of rows and columns shall start at the lower left corner of the bounding box of the cell,

asshowninfig

IEEE P1603 Dr.

Semantics 29—ROW and COLUMN annotations

ure”.

aft5

Advanced Library Format (ALF) Reference Manual

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

row | bounding box of cell | this quadrant has column=1, row=2
a_ | _ _ _ _ L _Xx_ 1 | | _ _ _ L _
| | | | | |
3_ 1 L _ 1 _L_
| | | |
2_ 1 _ _ _ L _ _ _ 1 _L_
| | | | | |
i_40____ - _ 41 __ L __ _ 1__ _ _L_
| | | | | |
o_ |\ __C___1____L___1_ _ _ _L _
| 0 1 |2 1 3 cqumn'
—

Figure 7—ROW and COLUMN relative to a bounding box of a CELL

The row annotion is applicable for a pin with side value | eft or right. The column annotion is applicable for apin
with side value top or bottom. Both row and column annotation are applicable for a pin with side value inside.

A single-value annotation is applicable for a scalar pin. A multi-value annotation is applicable for avector pin or
for a vector pingroup. The number of values shall match the number of scalar pins within the vector pin or pin-
group. The order of values shall correspond to the order of scalar pins within the vector pin or pingroup.

9.9.19 ROUTING_TYPE annotation

A routing-type annotation shall be defined as shown in Semantics 30.

}

KEYWORD ROUTI NG TYPE = singl e_val ue_annotati on {
CONTEXT { PIN PORT }
VALUETYPE = identifier;
VALUES { regul ar abutment ring feedthrough }
DEFAULT = regul ar;

Semantics 30—ROUTING_TYPE annotation

The purpose of the routing-type annotation isto specify the physical connection between a pin and arouted wire.

The routing-type annotation can take the values shown in Table 53.

Table 53—ROUTING-TYPE annotations for a PIN object

Annotation value

Description

86

regul ar Pin has avia, connection by regular routing to the via
abut nment Pin isthe end of awire segment, connection by abutment
ring Pin formsaring around the cell, connection by abutment to any point

of thering.

Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 5

Table 53—ROUTING-TYPE annotations for a PIN object (Continued)

Annotation value Description

f eedt hr ough Pin has two aligned ends of awire segment, connection by abutment
on both ends

9.9.20 PULL annotation

A pull annotation shall be defined as shown in Semantics 31.

KEYWORD PULL = singl e val ue_annotation {
CONTEXT = PIN;
VALUETYPE = identifier;
VALUES { up down both none }
DEFAULT = none;

Semantics 31—PULL annotation

The purpose of the pull annotation is to specify whether a pullup or a pulldown device is connected to the pin.

The pull annotation can take the values shown in Table 54.

Table 54—PULL annotations for a PIN object

Annotation value Description
up Pullup device connected to the pin.
down Pulldown device connected to the pin.
bot h Both pullup and pulldown device connected to pin.
none (default) No pullup or pulldown device connected to the pin.

A pullup device ties the pin to alogic high level when no other signal is driving the pin. A pulldown device ties
the pinto alogic low level when no other signal is driving the pin. If both devices are connected, the pinistied to
an intermediate voltage level, i.e. in-between logic high and logic low, when no other signal is driving the pin.

9.10 ATTRIBUTE values for a PIN and a PINGROUP

The attribute values shown in Table 55 can be used within a Pl N object.

Table 55—Attributes within a PIN object

Attributeitem Description

SCHM TT Schmitt trigger signal, i.e., the DC transfer characteristics exhibit a
hysteresis. Applicable for output pin.

IEEE P1603 Draft 5 Advanced Library Format (ALF) Reference Manual 87

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

Table 55—Attributes within a PIN object (Continued)

Attributeitem Description
TRI STATE Tristate signal, i.e., the signal can be in high impedance mode. Appli-
cable for output pin.
XTAL Crystal/oscillator signal. Applicable for output pin of an oscillator
circuit.
PAD Pin has external,i.e., off-chip connection.

The attributes shown in Table 56 are applicable for a pin of acell with celltype value memory in conjunction with

a specific signaltype value.

Table 56—Attributes for pins of a memory

Attributeitem SIGNALTYPE Description

ROW ADDRESS_STROBE cl ock Samples the row address of the memory.
Applicable for scalar pin.

COLUMN_ADDRESS_STROBE cl ock Samples the column address of the memory.
Applicable for scalar pin.

ROW addr ess Selects an addressable row of the memory.
Applicable for pin and pingroup.

COLUWN addr ess Selects an addressable column of the memory.
Applicable for pin and pingroup.

BANK address Selects an addressable bank of the memory.

Applicable for pin and pingroup.

The attributes shown in Table 57 are applicable for apair of signals.

Table 57—Attributes for pins representing pairs of signals

Attributeitem

Description

| N\VERTED

Represents the inverted value within a pair of signals car-
rying complementary values.

NON_| NVERTED

Representsthe non-inverted value within apair of signals
carrying complementary values.

DI FFERENTI AL

Signal is part of adifferentid pair, i.e., both the inverted
and non-inverted values are always required for physical
implementation.

In case there is more than one pair of signals related to each other by the attribute values inverted, non-inverted,

or differential, each pair shall be member of a dedicated pingroup.

The following restrictions apply for pairs of signas:

88 Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 5

— ThePI NTYPE, SI GNALTYPE, and DI RECTI ON of both pins shall be the same.
— One Pl Nshall havethe attribute | NVERTED, the other NON_| NVERTED.
— Either both pins or none of the pins shall have the attribute DI FFERENTI AL.
— POLARI TY, if applicable, shall be complementary as follows:
Hl GHis paired with LOW
Rl SI NG_EDGE is paired with FALLI NG_EDGE
DOUBLE_EDCGE is paired with DOUBLE_EDGE

The attribute inverted, non-inverted also applies to pins of a cell for which theimplementation of apair of signals
is optional, i.e., one of the signals can be missing. The output pin of aflipflop or alatch is an example. The flip-
flop or the latch can have an output pin with attribute non-inverted and/or another output pin with attribute
inverted.

The pin ATTRI BUTE values shown in Table 58 shall be defined for memory BIST.

Table 58—PIN or PINGROUP attributes for memory BIST

Attributeitem Description

ROW | NDEX vector pin or pingroup with a contiguous range of values,
indicating a physical row of amemory.

COLUMN_| NDEX vector pin or pingroup with a contiguous range of va ues,
indicating a physical column of amemory.

BANK_| NDEX vector pin or pingroup with a contiguous range of vaues,
indicating a physical bank of amemory.

DATA | NDEX vector pin or pingroup with a contiguous range of values,
indicating the bit position within a data bus of a memory.

DATA _VALUE scalar pin, representing a value stored in a physical mem-
ory location.

These attributes apply to the virtual pins associated with a Bl ST wrapper around the memory rather than to the
physical pins of the memory itself. The BIST wrapper can be represented as a test statement (see Section 9.38).

9.11 PRIMITIVE declaration

A primitive shall be declared as shown in Syntax 51.

primitive ::=
PRIMITIVE primitive_identifier { { primitive_item} }
|PRIMITIVE primitive identifier ;
| primitive_template_instantiation
primitive_item ::=
all_purpose_item
| pin
| pingroup
| function
| test

Syntax 51—PRIMITIVE statement

IEEE P1603 Draft 5 Advanced Library Format (ALF) Reference Manual 89

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

The purpose of a primitive is to describe a virtual circuit. The virtua circuit can be functionally equivalent to a
physical electronic circuit represented as a cell (see Section 9.3). A primitive can be instantiated within a behav-
ior statement (see Section 9.39).

9.12 WIRE declaration

A wire shall be declared as shown in Syntax 52.

wire ;=
W RE wire_identifier { wire_item { wire_item} }
| WIRE wire_identifier ;
| wire_template_instantiation
wire item ;=
all_purpose_item
| node

Syntax 52—WIRE declaration

The purpose of awire declaration is to describe an interconnect model. The interconnect model can be a statisti-
cal wireload model, a description of boundary parasitics within a complex cell, amodel for interconnect analysis,
or aspecification of aload seen by adriver.

9.12.1 Annotations for a WIRE

** Add lead-in text**

9.12.2 SELECT_CLASS annotation

A select_class annotation shall be defined as shown in Semantics 32.

KEYWORD SELECT_CLASS = annotation {
CONTEXT = W RE;
VALUETYPE = identifier;

}

Semantics 32—SELECT_CLASS annotation

Theidentifier shall refer to the name of a declared class.
The purpose of the select class annotation is to provide a mechanism for selection of an interconnect model by an

application. The user of the application can select a set of related interconnect models by specifying the name of
the class rather than specifying the name of each interconnect model.

9.13 NODE declaration
A node shall be declared as shown in Syntax 53.

The purpose of a node declaration is to specify an electrica node in the context of a wire declaration (see
Section 9.12) or in the context of a cell declaration (see Section 9.3).

90 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 5

node ::=

node item ::=
al_purpose_item

NODE node identifier ;
| NODE node identifier { { node item} }
| node_template instantiation

9.13.1 NODETYPE annotation

Syntax 53—NODE statement

A nodetype annotation shall be defined as shown in Semantics 33.

CONTEXT

KEYWORD NODETYPE = singl e_val ue_annotati on {
= NODE;
VALUETYPE = identifier;
VALUES { power ground source sink
driver

recei ver interconnect }

Semantics 33—NODETYPE annotation

The values shall have the semantic meaning shown in Table 59.

Table 59—NODETYPE annotation values

Annotation value Description

driver The node is the interface between an output pin of acell and an
interconnect wire.

recei ver The node is the interface between an interconnect wire and an
input pin of acell.

sour ce Thenode isavirtual start point of signal propagation; it can be
collapsed with adriver nodein case of anideal driver.

si nk The node isavirtual end point of signal propagation; it can be
collapsed with areceiver node in case of an ideal receiver.

power The node supports electrical current for arising signal at a
source or adriver node and areference for alogic high signal
at asink or receiver side.

ground The node supports electrical current for afalling signasat a
source or adriver node and areference for logic alow signa
at asink or areceiver node

i nt er connect (default) The node serves for connecting purpose only.

9.13.2 NODE_CLASS annotation

A node_class annotation shall be defined as shown in Semantics 34.

Theidentifier shall refer to the name of a declared class.

IEEE P1603 Draft 5 Advanced Library Format (ALF) Reference Manual

91

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

KEYWORD NODE _CLASS = annotation {
CONTEXT = NODE;
VALUETYPE = identifier;

}

Semantics 34—NODE_CLASS annotation

The purpose of the node class annotation is to associate a node with a virtual cell. The virtual cell is represented
by the declared class.

9.14 VECTOR declaration

A vector shall be declared as shown in Syntax 54.

vector ::=
VECTOR control_expression ;
|IVECTOR control_expression { { vector_item} }
| vector_template_instantiation
vector_item ::=
al_purpose_item

Syntax 54—VECTOR statement

The purpose of avector isto provide a context for electrical characterization data or for functional test data. The
control expression (see Section 10.9) specifies a stimulus related to the data.

9.15 Annotations for VECTOR

** Add lead-in text**

9.15.1 PURPOSE annotation

A purpose annotation shall be defined as shown in Semantics 35.

KEYWORD PURPCSE = annot ati on {
CONTEXT { VECTOR CLASS }
VALUETYPE = identifier ;
VALUES { bist test timng power noise reliability }

}

Semantics 35—PURPOSE annotation

The purpose of the purpose annotation is to specify a category for the datafound in the context of the vector. The
purpose annotation can also be inherited from a class referenced within the context of the vector.

92 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 5

The values shall have the semantic meaning shown in Table 61.

Table 60—PURPOSE annotation values

Annotation value Description

bi st The vector contains data related to built-in self test

t est The vector contains data related to test requiring external circuitry.

timing The vector contains an arithmetic model related to timing cal culation (see
from Section 11.6 to Section 11.17)

power The vector contains an arithmetic model related to power calculation (see
Section 11.24)

noi se The vector contains an arithmetic model related to noise calculation (see
Section 11.28)

reliability The vector contains an arithmetic model related to reliability calculation
(see Section 11.25, also Section 11.6 and Section 11.7)

9.15.2 OPERATION annotation

An operation annotation shall be defined as shown in Semantics 36.

KEYWORD OPERATI ON = singl e_val ue_annot ati on {
CONTEXT = VECTOR;
VALUETYPE = identifier;
VALUES {
read wite read_nodify wite refresh | oad
start end iddg

}
}

Semantics 36—OPERATION annotation
The purpose of the operation annotation is to associate amode of operation of the electronic circuit with the stim-
ulus specified within the vector declaration. This assocation can be used by an application for test vector genera-
tion or test vector verification.

The values shall have the semantic meaning shown in Table 61.

Table 61—OPERATION annotation values

Annotation value Description
read Read operation at one address of a memory.
wite Write operation at one address of a memory

Read followed by write of different value at same address of a
memory

read_nodify wite

IEEE P1603 Draft 5 Advanced Library Format (ALF) Reference Manual 93

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

Table 61—OPERATION annotation values (Continued)

Annotation value Description

start First operation within a sequence of operationsrequired in a
particular mode.

end Last operation within a sequence of operations required in a
particular mode.

refresh Operation required to maintain the contents of the memory
without modifying it.

| oad Operation for supplying datato a control register.

i ddg Operation for supply current measurements in quiescent state.

9.15.3 LABEL annotation

A label annotation shall be defined as shown in Semantics 37.

KEYWORD LABEL = single_val ue_annotation {
CONTEXT = VECTOR;
VALUETYPE = string;

}

Semantics 37—LABEL annotation

The purpose of the label annotation is to enable a cross-reference between a statement within the context of a
vector and a corresponding statement outside the ALF library. For example, a cross-reference between a delay
model in context of a vector (see Section 11.8.1) and an annotated delay within an SDF file [** put reference to
|EEE1497 here**] can be established, since the SDF standard also supportsa LABEL statement.

9.15.4 EXISTENCE_CONDITION annotation

An existence-condition annotation shall be defined as shown in Semantics 38.

KEYWORD EXI STENCE _CONDI TI ON = singl e_val ue_annotation {
CONTEXT { VECTOR CLASS }
VALUETYPE = bool ean_expr essi on;
DEFAULT = 1;

}

Semantics 38—EXISTENCE_CONDITION annotation

The purpose of the existence-condition is to define a necessary and sufficient condition for avector to be relevant
for an application. This condition can also be inherited by the vector from a referenced class. A vector shall be
relevant unless the existence-condition evaluates False.

The set of pin variables involved in the vector declaration and the set of pin variables involved in the existence
condition shall be mutually exclusive.

For dynamic eval uation of the control expression within the vector declaration, the boolean expression within the
existence-condition can be treated asiif it were a co-factor of the control expression.

94 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 5

9.15.5 EXISTENCE_CLASS annotation

An existence-class annotation shall be defined as shown in Semantics 39.

KEYWORD EXI STENCE _CLASS = annotation {
CONTEXT { VECTOR CLASS }
VALUETYPE = identifier;

}

Semantics 39—EXISTENCE_CLASS annotation

Theidentifier shall be the name of a declared class.

The purpose of the existence-class annotation is to provide a mechanism for selection of arelevant vector by an
application. The user of the application can select a set of relevant vectors by specifying the name of the class.
Another purpose isto share acommon existence-condition amongst multiple vectors.

9.15.6 CHARACTERIZATION_CONDITION annotation

A characterization-condition annotation shall be defined as shown in Semantics 40.

KEYWORD

CHARACTERI ZATI ON_CONDI TI ON = si ngl e_val ue_annot ati on {
CONTEXT { VECTCOR CLASS }
VALUETYPE = bool ean_expr essi on;

}

Semantics 40—CHARACTERIZATION_CONDITION annotation

The purpose of the characterization-condition annotation is to specify a unique condition under which the datain
the context of the vector were characterized. The characterization condition is only applicableif the vector decla-
ration eventually in conjunction with an existence-condition allows more than one condition.

The set of pin variables involved in the characterization-condition can overlap with the set of pin variables
involved in the vector declaration and/or the existence-condition, as long as the characterization condition is
compatible with the vector declaration and eventually with the existence-condition.

The characterization condition shall not be relevant for evaluation of either the vector declaration or the exist-
ence condition.

9.15.7 CHARACTERIZATION_VECTOR annotation

A characterization-vector annotation shall be defined as shown in Semantics 41.

KEYWORD CHARACTERI ZATI ON_VECTOR =
singl e_val ue_annotati on {
CONTEXT { VECTOR CLASS }
VALUETYPE = control _expression;

}

Semantics 41—CHARACTERIZATION_VECTOR annotation

IEEE P1603 Draft 5 Advanced Library Format (ALF) Reference Manual 95

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

The purpose of a characterization-vector annotation is to specify a complete stimulus for characterization in the
case where the vector declaration specifies only a partia stimulus.

The characterization-vector annotation and the characterizati on-condition annotation shall be mutually exclusive
within the context of the same vector.

9.15.8 CHARACTERIZATION_CLASS annotation

A characterization-class annotation shall be defined as shown in Semantics 42.

KEYWORD CHARACTERI ZATI ON_CLASS = annotation {
CONTEXT { VECTOR CLASS }
VALUETYPE = identifier;

}

Semantics 42—CHARACTERIZATION_CLASS annotation

Theidentifier shall be the name of adeclared class.
The purpose of the characterization-class annotation is to provide a mechanism for classification of characteriza-

tion data. Another purpose isto share acommon characterization-condition or a common characterizati on-vector
amongst multiple vectors.

9.16 LAYER declaration

A layer shall be declared as shown in Syntax 55.

layer ::=
LAYER layer_identifier ;
ILAYER layer identifier { { layer item} }
| layer_template_instantiation
layer_item ::=
al_purpose_item

Syntax 55—LAYER declaration

A layer shall describe process technology for fabrication of an integrated electronic circuit and a set of related
physical data and constraints relevant for a design application.

The order of layer declarations within alibrary or asublibrary shall reflect the order of physical creation of layers
by a manufacturing process.

9.17 Annotations for LAYER

** Add lead-in text**

9.17.1 LAYERTYPE annotation

A layertype annotation shall be defined as shown in Semantics 43.

96 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 5

KEYWORD LAYERTYPE = singl e_val ue_annotation {
CONTEXT = LAYER;
VALUETYPE = identifier;
VALUES {
routing cut substrate dielectric reserved abstract
}
}

Semantics 43—LAYERTYPE annotation

The values shall have the semantic meaning shown in Table 62.

Table 62—LAYERTYPE annotation values

Annotation value Description
routing Layer provides electrical connections within a plane.
cut Layer provides electrical connections between planes.
substrate Layer at the bottom.
dielectric Layer provides electrical isolation between planes.
reserved Layer isfor proprietary use only.
abstract Layer isvirtual, not manufacturable.

9.17.2 PITCH annotation

A pitch annotation shall be defined as shown in Semantics 44.

KEYWORD PI TCH = singl e_val ue_annotation {
CONTEXT = LAYER,
VALUETYPE = unsi gned_nunber;

}

Semantics 44—PITCH annotation

The purpose of the pitch annotation is specification of the normative distance between parallel wire segments
within alayer with layertype value routing. This distance is measured between the center of two adjacent parallel
wires.

9.17.3 PREFERENCE annotation

A preference annotation shall be defined as shown in Semantics 45.

The purpose is to indicate the prefered routing direction for wires within a layer with layertype value routing.
**where's the table??

** Joe, you should have created one.

IEEE P1603 Draft 5 Advanced Library Format (ALF) Reference Manual 97

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

KEYWORD PREFERENCE = singl e_val ue_annotation {
CONTEXT = LAYER;
VALUETYPE = identifier;
VALUES { horizontal vertical acute obtuse }

}

Semantics 45—PREFERENCE annotation

The values shall have the semantic meaning shown in Table 62.

Table 63—PREFERENCE annotation values

Annotation value Description
hori zont al Prefered routing direction is horizontal, i.e., O degrees.
verti cal Prefered routing direction is vertical, i.e., 90 degrees.
acute Prefered routing direction is 45 degrees.
obt use Prefered routing direction is 135 degrees.

9.18 VIA declaration

A via shall be declared as shown in Syntax 56.

via:=
V1A via_identifier
IVIA via identifier { { via item} }
| via_template_instantiation
via_item ::=
all_purpose_item
| pattern
| artwork

Syntax 56—VIA statement

A viashall describe a stack of physical artwork for electrical connection between wire segments on different lay-
ers.

9.19 VIA instantiation

A via shal be instantiated as shown in Syntax 57.

via instantiation ::=
via_identifier instance_identifier ;
| via_identifier instance_identifier { { geometric_transformation } }

Syntax 57—VIA instantiation

The purpose of aviainstantiation isto define adesign rule involving avia (see Section 9.21), to describe details
of aphysical blockage (see Section 9.23) or details of a physical port (see Section 9.24).

98 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 5

9.20 Annotations for a VIA

** Add lead-in text**

9.20.1 VIATYPE annotation

** Single subheader* *

A viatype annotation shall be defined as

shown in Semantics 46.

KEYWORD VI ATYPE = singl e_val ue_annot ati on {
CONTEXT = VI A
VALUETYPE = identifier;
VALUES { default non_default partial _stack full_stack }
DEFAULT = defaul t;

Semantics 46—VIATYPE annotation

The values shall have the semantic meaning shown in Table 64.

Table 64—VIATYPE annotation values

Annotation value

Description

defaul t

vi a can be used per default.

non_def aul t

vi a can only be used if authorized by a RULE.

partial _stack

vi a contains three patterns: the lower and upper routing layer
and the cut layer in-between. This can only be used to build
stacked vias. The bottom of astack can beadef aul t or a
non_defaul t via.

full _stack

vi a contains 2N+1 patterns (N>1). It describes the full stack
from bottom to top.

9.21 RULE declaration

A rule shall be declared as shown in Syntax 58.

rule::=

rule_item ::=
all_purpose_item
| pattern
| region
| via_instantiation

RULE rule_identifier ;
|RULE rule identifier { { rule item} }

| rule_template_instantiation

Syntax 58—RULE statement

IEEE P1603 Draft 5 Advanced Library Format (ALF) Reference Manual

99

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

A rule declaration shall be used to define electrical or physical constraintsinvolving physical objects. A physical
object shall be described as a pattern (see Section 9.30), aregion (see Section 9.32), or avia instantiation (see
Section 9.19). The contraints shall be described as arithmetic models.

9.22 ANTENNA declaration

An antenna shall be declared as shown in Syntax 59.

antenna::=
ANTENNA antenna_identifier
| ANTENNA antenna_identifier { { antenna_item} }
| antenna_template_instantiation
antenna_item :;=
all_purpose_item
| region

Syntax 59—ANTENNA declaration

An antenna declaration shall be used to define manufacturability constraints involving physical objects or
regions (see Section 9.32) created by physical objects. The physical objects shall be associated with alayer (see
Section 9.16). Within the context of an antenna declaration, arithmetic models for size (see Section 11.31), area
(see Section 11.32), perimeter (see Section 11.38) associated with alayer or with aregion can be described. The
arithmetic model s can be combined, based on electrical connectivity (see Section 11.30) between the layers.

To evaluate connectivity in the context of an antenna declaration, the order of manufacturing given by the order
of layer declarations shall be relevant. An object on alayer shall only be considered electrically connected to an
object on another layer, if the connection already exists when the uppermost layer of both layers is manufactured.
Thisisillustrated in the following figure 8.

Figure 8—Connection between layers during manufacturing

The dark objectson layer A and layer C on the left side of figure 8 are considered connected, because the connec-
tion is established through layer B which exists already when layer C is manufactured.

The dark objects on layer A and layer C on the right hand side of figure 8 are not considered connected, because
the connection involves layer D and E which do not yet exist when layer C is manufactured.

9.23 BLOCKAGE declaration

A blockage shall be declared as shown in Syntax 60.

100 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 5

blockage ::=
BL OCKAGE blockage identifier ;
| BLOCK AGE blockage identifier { { blockage_item} }
| blockage _template instantiation
blockage _item ::=
all_purpose_item
| pattern
| region
| rule
| via_instantiation

Syntax 60—BLOCKAGE statement

A blockage declaration shall be used in context of a cell (see Section 9.3) to describe a part of the physical art-
work of the cell. No short circuit shall be created between the physical artwork described by the blockage and a
physical artwork created by an application. Physical or electrical constraints involving a blockage can be
described by arule (see Section 9.21). A rule within the context of a blockage shall only be applicable for physi-
cal objects within the blockage in relation to their environment. The physical objects within the blockage can
also be subjected to a more general rule.

9.24 PORT declaration

A port shall be declared as shown in Syntax 61.

port ::=
PORT port_identifier ;{ { port_item} }
| PORT port_identifier ;
| port_template_instantiation
port_item ::=
all_purpose_item
| pattern
| region
| rule
| via_instantiation

Syntax 61—PORT declaration

A port declaration shall be used in context of a scalar pin (see Section 9.7) to describe a part of the physical art-
work of a cell (see Section 9.3) provided to establish electrical connection between a pin and its environment.
Physical or electrical constraints involving aport can be described by arule (see Section 9.21). A rule within the
context of a port shall only be applicable for physical objects within the blockage in relation to their environ-
ment. The physical objects within the port can also be subjected to a more general rule.

9.25 Annotations for PORT

** Add lead-in text**

9.25.1 PORT_VIEW annotation

** Single subheader* *

A port_view annotation shall be defined as shown in Semantics 47.

IEEE P1603 Draft 5 Advanced Library Format (ALF) Reference Manual 101

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

CONTEXT = PORT;
VALUETYPE = identifier;

DEFAULT = bot h;

}

KEYWORD PORT_VI EW = si ngl e_val ue_annot ati on {

VALUES { physical electrical both none }

Semantics 47—PORT_VIEW annotation

The values shall have the semantic meaning shown in Table 65.

Table 65—PORT_VIEW annotation values

Annotation value Description
physi cal A port for layout with the possibility to connect a routing wire.
el ectri cal A port in an electrical netlist (SPEF, SPICE).
bot h Both of the above.
none A virtual port for modeling purpose only.

9.26 SITE declaration

A site shall be declared as shown in Syntax 62.

site::=
SITE site identifier ;
| SI TE site identifier { { site_item} }
| site_template _instantiation
site_item ::=
all_purpose_item
| WIDTH_arithmetic_model
| HEIGHT _arithmetic_model

Syntax 62—SITE declaration

A site declaration shall be used to specify alegal placement location for acell.

9.27 Annotations for SITE

** Add lead-in text**

9.27.1 ORIENTATION_CLASS annotation
An orientation_class annotation shall be defined as shown in Semantics 48.
9.27.2 SYMMETRY_CLASS annotation

A symmetry_class annotation shall be defined as shown in Semantics 49.

102 Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 5

KEYWORD ORI ENTATI ON_CLASS = annotation {
CONTEXT { SITE CELL }
VALUETYPE = | DENTI FI ER;

}

Semantics 48—ORIENTATION_CLASS annotation

KEYWORD SYMVETRY_CLASS = annotation {
CONTEXT { SITE CELL }
VALUETYPE = identifier;

}

Semantics 49—SYMMETRY_CLASS annotation
The SYMVETRY_CLASS statement shall be used for a SI TE to indicate symmetry between legal orientations.
Multiple SYMVETRY statements shall be legal to enumerate all possible combinations in case they cannot be
described within asingle SYMVETRY statement.
Legal orientation of a cell within a site shall be defined as the intersection of legal cell orientation and legal site
orientation. If there isa set of common legal orientations for both cell and site without symmetry, the orientation
of cell instance and site instance shall match.

If there is a set of common legal orientations for both cell and site with symmetry, the cell can be placed on the
side using any orientation within that set.

Example

Case 1: no symmetry

The site has legal orientations A and B. The cell haslegal orientations A and B. When the site appears in orienta-
tion A, the cell shall be placed in orientation A. When the site appearsin orientation B, the cell shall be placed in
orientation B.

Case 2: symmetry

The site has legal orientations A and B and symmetry between A and B. The cell has legal orientations A and B.

When the site appears in orientation A, the cell can be placed in orientation A or B. When the site appearsin ori-
entation B, the cell can also be placed in orientation A or B.

9.28 ARRAY declaration

An array shall be declared as shown in Syntax 63.

array ::=
ARRAY array identifier
|ARRAY array_identifier{ { array_item} }
| array_template instantiation
array_item ::=
all_purpose_item
| geometric_transformation

Syntax 63—ARRAY statement

IEEE P1603 Draft 5 Advanced Library Format (ALF) Reference Manual 103

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

An array declaration shall be used for the purpose to describe a grid for creating physical objects within design.
The geometric transformations shift and repeat (see Section 9.35) shall be used to define the construction rule for
the array. The shift statement shall define the offset between the origin of the basic element within the array and
the origin of its context. The repeat statement shall define, how the basic element is replicated.

9.29 Annotations for ARRAY

** Add lead-in text**

9.29.1 ARRAYTYPE annotation

An arraytype annotation shall be defined as shown in Semantics 50.

KEYWORD ARRAYTYPE = singl e_val ue_annotati on {
CONTEXT = ARRAY;
VALUETYPE = identifier;
VALUES { fl oorplan pl acenent
gl obal _routing detailed_routing }

Semantics 50—ARRAYTYPE annotation

**where's the table??

Good guestion, again

The values shall have the semantic meaning shown in Table 66.

Table 66—ARRAYTYPE annotation values

Annotation value Description

f1 oorpl an The array provides agrid for placing macrocells, i.e., cells with
celltype value can be block or core or memory.
The placement_type value shall be core.

pl acement Thearray providesagrid for placing regular cells, i.e., cellswith
celltype value buffer, combinational, multiplexor, latch, flipflop
or special.
The placement_type value shall be core.

gl obal _routing The array provides agrid for global routing.

detail ed_routing The array provides agrid for global routing.

9.29.2 SITE reference annotation
A site reference annotation shall be defined as shown in Semantics 51.

The purpose of asite reference annotation isto establish arelation between a cell (see Section 9.3) and a site (see
Section 9.26) or between a site and an array. The site reference annotation in context of a cell shall indicate

104 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 5

SEMANTI CS SI TE = singl e_val ue_annotation {
CONTEXT { ARRAY CELL }
VALUETYPE = identifier;

}

Semantics 51—SITE reference annotation

whether the site represents a legal placement location for the cell. The site reference annotation in context of an
array shall indicate that the site is the basic element from which the array is constructed.

The site reference annotation is applicable for an array with arraytype value floorplan or placement.
9.29.3 LAYER reference annotation

A layer reference annotation in the context of an array shall be defined as shown in Semantics 52.

SEMANTI CS ARRAY. LAYER = annotation {
VALUETYPE = identifier;

}

Semantics 52—LAYER reference annotation for ARRAY

The layer reference annotation is applicable for an array with arraytype value detailed routing. It shall specify
the applicable layer (see Section 9.16) with layertype value routing.

9.30 PATTERN declaration

A pattern shall be declared as shown in Syntax 64.

pattern ::=
PATTERN pattern_identifier
| PATTERN pattern_identifier { { pattern_item} }
| pattern_template_instantiation
pattern_item ::=
all_purpose_item
| geometric_model
| geometric_transformation

Syntax 64—PATTERN declaration

The pattern declaration shall be used to describe a physical object associated with alayer (see Section 9.16).

9.31 Annotations for PATTERN

** Add lead-in text**

9.31.1 LAYER reference annotation

A layer reference annotation in the context of a pattern shall be defined as shownin.

IEEE P1603 Draft 5 Advanced Library Format (ALF) Reference Manual 105

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

SEMANTI CS PATTERN. LAYER = si ngl e_val ue_annotation {
VALUETYPE = identifier;

}

Semantics 53—LAYER reference annotation for PATTERN

The layer reference annotation shall establish an association between a pattern and a layer (see Section 9.16).
The physical object represented by the pattern shall reside on a layer. A pattern declaration without layer refer-
ence annotation shall be considered incomplete.

9.31.2 SHAPE annotation

A shape annotation shall be defined as shown in Semantics 54.

KEYWORD SHAPE = singl e_val ue_annotation {
CONTEXT = PATTERN,
VALUETYPE = identifier;
VALUES { line tee cross jog corner end }
DEFAULT = |i ne;

Semantics 54—SHAPE annotation

The shape annotation applies for a pattern associated with a layer with layertype value routing. The meaning of
the shape annotation valuesisillustrated in Figure 9.

tee ‘T corner
T end
Cross

Figure 9—Shapes of routing patterns
The annotation values line and jog shall represent a routing segment. The annotation valuestee, cross, and corner
shall represent an intersection between routing segments. The annotation value end shall represent the open end
point of an unterminated routing segment.
9.31.3 VERTEX annotation
A vertex annotation shall be defined as shown in Semantics 55.

The vertex annotation applies for a pattern in conjunction with the shape annotation. The meaning of the vertex
annotation valuesisillustrated Figure 10.

106 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 5

KEYWORD VERTEX = singl e val ue_annotation {
CONTEXT = PATTERN,
VALUETYPE = identifier;
VALUES { round angul ar }
DEFAULT = angul ar;

Semantics 55—VERTEX annotation

\ N
EXTENSION = 1 N N

4 3

VERTEX = angular VERTEX =round

Figure 10—lllustration of VERTEX annotation

9.32 REGION declaration

** see |EEE proposal, June 2002, chapter 18**

9.33 Geometric model

A geometric model shall be defined as shown in Syntax 65.

geometric_model ::=
nonescaped_identifier [geometric_model _identifier]
{ geometric_model_item { geometric_model_item } }
| geometric_model_template instantiation
geometric_model_item ::=
POINT_TO_POINT _single_vaue_annotation
| coordinates
coordinates ::=
COORDINATES({ point { point} }
point ::=
X_number y_number

Syntax 65—Geometric model

A geometric model shall describe the form of a physical object. A geometric model can appear in the context of
apattern (see Section 9.30) or aregion (see Section 9.32).

IEEE P1603 Draft 5 Advanced Library Format (ALF) Reference Manual 107

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

The numbersin the point statement shall be measured in units of distance (see Section 11.36).

The parent object of the geometric model can contain a geometric transformation (see Section 9.35) applicable
to the geometric model.

Table 67 specifiies the meaning of predefined geometric model identifiers.

Table 67—Geometric model identifiers

Identifier Description

DoT Describes one point.

POLYLI NE Defined by N>1 directly connected points, forming an open object.

RI NG Defined by N>1 directly connected points, forming a closed object,
i.e, the last point is connected with first point. The object occupies
the boundary of the enclosed space.

POLYGON Defined by N>1 connected points, forming a closed object, i.e., the last

point is connected with first point. The object occupies the entire
enclosed space.

The meaning of predefined geometric model identifiersis further illustrated in Figure 11.

DOT (5 dots)

POLYLINE RING POLYGON

Figure 11—lllustration of geometric models

A point_to_point annotation shall be defined as shown in Semantics 56.

KEYWORD PO NT_TO PO NT = single val ue_annotation {

CONTEXT { POLYLI NE RI NG POLYGON }
VALUETYPE = identifier;

VALUES { direct manhattan }
DEFAULT = direct;

Semantics 56—POINT_TO_POINT annotation

The point-to-point annotation applies for a polyline, a ring or a polygon. The annotation value specifies, how
subseguent pointsin the coordinates statement are to be connected.

108

Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 5

The meaning of the annotation value direct isillustrated in Figure 12. It specifies the shortest possible connection

between points.

Y-axis

9

P N W b~ 01O N

A

direct connection direct connection
from (-1/8) to (-/5) ™ from (3/8) to (-1/8)

X X

direct connection
from (-3/5) to (3/8)

direct connection
from (-1/5) to (3/5)

-

5 -4 -3 -2 -101 2 3 4 5 X-axis

Figure 12—lllustration of direct point-to-point connection

The meaning of the annotation value manhattan is illustrated in Figure 13. It specifies a connection between
points by moving in the x-direction first and then moving in the y-direction. This enables a non-redundant speci-
fication of arectilinear object using N/ 2 points instead of N points.

Y-axis

P N W, 01O N 0O ©

A

manhattan connection from (-3/8) to (-1/5)

X

X

manhattan connection from (-1/5) to (3/8)

|
5 -4 -3 -2 -101 2 3 4 5 X-axis

Figure 13—lllustration of manhattan point-to-point connection

Example

POLYGON {

PO NT_TO PO NT = direct;

IEEE P1603 Draft 5

Advanced Library Format (ALF) Reference Manual

109

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

COORDI NATES {

}
POLYGON {
PO NT_TO_POI NT
COORDI NATES {
}

-153538-18}

= manhat t an;
-1538}

Both objects describe the same rectangle.

9.34 Predefined geometric models using TEMPLATE

A template declaration (see Section 8.8) can be used to predefine particular geometric moddels.

The templates RECTANGLE and LINE shall be predefined as follows:

TEMPLATE RECTANGLE {

POLYGON {

PO NT_TO PO NT = nanhatt an;

COORDI NATES
}
}
TEMPLATE LI NE {
POLYLI NE {

{ <left> <bottonms <right> <top> }

PO NT_TO PO NT = direct;

COORDI NATES { <x_start> <y _start> <x_end> <y_end> }

}

Example 1

The following example shows the usage of the predefined templates rectangle and line.

/1l same rectangl e
RECTANGLE {left =
/1 or

RECTANGLE {-1 5 3

/1 diagonals throu
LINE {x_start -1
LINE {x_start 3;
/1 or

LINE{ -153
LINE{ 35 -1

(o]

}
}

(o]

Example 2

as in previous exanple
-1; bottom=5; right = 3; top = 8;

8 }
gh the rectangl e

; y_start =5; x end = 3; y_end
y start = 5; x end = -1; y_end

The following example shows user-defined template declarations.

110

TEMPLATE HORI ZONTAL_LI NE {

POLYLI NE {

PO NT_TO PO NT = direct;

COORDI NATES

{ <left> <y> <right> <y> }

Advanced Library Format (ALF) Reference Manual

}

IEEE P1603 Draft 5

}

}
TEMPLATE VERTI CAL_LI NE {
POLYLI NE {
PO NT_TO PO NT = direct;
COORDI NATES { <x> <bottonp» <x> <top> }
}
}
Example 3

The following example shows the usage of the user-defined templates from Example 2.

/1 lines bounding the rectangle

HORI ZONTAL_LINE { vy = 5; left = -1; right = 3; }
HORI ZONTAL_LINE { v = 8; left = -1; right = 3; }
VERTI CAL_LINE { x = -1; bottom=5; top = 8; }

VERTI CAL_LINE { x
/] or

HORI ZONTAL_LI NE {
HORI ZONTAL_LI NE {
VERTICAL_LINE { -1 5
VERTICAL_LINE { 3 5 8}

3; bottom=5; top = 8; }

oo ol

-1 3}
-1 3}
8}

9.35 Geometric transformation

A geometric transformation shall be defined as shown in Syntax 66.

geometric_transformation ::=
shift
| rotate
| flip
| repeat

shift ::=

SHIFT { x_number y number }
rotate ::=

ROTATE = number ;
flip ::=

FLIP= number ;

repeat ::=
REPEAT [= unsigned_integer] { geometric_transformation { geometric_transformation} }

Syntax 66—Geometric transformation

The SHI FT statement defines the horizontal and vertical offset measured between the coordinates of the geomet-
ric model and the actual placement of the object. Eventually, a layout tool only supports integer numbers. The
numbers are in units of DISTANCE. If the SHI FT statement is not defined, both values default to 0.

The ROTATE statement defines the angle of rotation in degrees measured between the orientation of the object
described by the coordinates of the geometric model and the actual placement of the object measured in counter-
clockwise direction, specified by a number between 0 and 360. Eventually, alayout tool can only support angles
which are multiple of 90 degrees. The default is 0. The object shall rotate around its origin.

IEEE P1603 Draft 5 Advanced Library Format (ALF) Reference Manual 111

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

The FLI P describes atransformation of the specified coordinates by flipping the object around an axis specified
by a number between 0 and 180. The number represents the angle of the flipping direction in degrees. Eventu-
ally, alayout tool can only support angles which are multiple of 90 degrees. The axisis orthogonal to the flipping
direction. The axis shall go through the origin of the object. For example, 0 means flip in horizontal direction,
axisisvertical whereas 90 meansflip in vertical direction, axisis horizontal.

The purpose of the REPEAT statement is to describe the replication of a physical object in a regular way, for
example S| TE (see 9.26). The REPEAT statement can also appear within a geonetri c_nodel . The
unsi gned number defines the total number of replications. The number 1 means, the object appears just once.
If this number is not given, the REPEAT statement defines a rule for an arbitrary number of replications.
REPEAT statements can also be nested.

Examples
The following example replicates an object three times along the horizontal axisin a distance of 7 units.

REPEAT = 3 {
SHIFT { HORI ZONTAL = 7; }
}

The following example replicates an object five times along a 45-degree axis.

REPEAT = 5 {
SHI FT { HORI ZONTAL = 4; VERTICAL = 4; }
}

The following example replicates an object two times along the horizontal axis and four times along the vertical
axis.

REPEAT = 2 {
SHI FT { HORIZONTAL = 5; }
REPEAT = 4 {

SHIFT { VERTICAL = 6; }

}
}

NOTE—The order of nested REPEAT statements does not matter. The following example gives the same result as the previ-
ous example.

REPEAT = 4 |
SHIFT { VERTICAL = 6; }
REPEAT = 2 {

SHI FT { HORI ZONTAL = 5; }

}
}

Rules and restrictions:

— A physical object can contain ageonetri c_transf or mati on statement of any kind, but no more
than one of a specific kind.

— Thegeonetric_transfornation statements shall apply to al geonet ri ¢c_nodel s within the
context of the object.

112 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 5

— Thegeonetric_transfornmation statements shall refer to the origin of the object, i.e., the point
with coordinates{ 0 O }. Therefore, the result of a combined transformation shall be independent of

the order in which each indivi

These are demonstrated in Figure 14.

dual transformation is applied.

FLIP ROTATE . SHIFT
—_— — —
o
o o o P
legend: @ originof theobject [| &

Figure 14—Illustration of FLIP, ROTATE, and SHIFT

9.36 ARTWORK statement

An artwork statement shall be defined as shown in Syntax 67.

artwork ::=

artwork_item ::=

ARTWORK = artwork _identifier
|ARTWORK = artwork_identifier{ { artwork_item} }

| artwork_template_instantiation

geometric_transformation
| pin_assignment

The ARTWORK statement creates a reference between the cell in the library and the original cell imported from a

Syntax 67—ARTWORK statement

physical layout database (e.g., GDS2).

Thegeonetri c_transformati ons definethe operations for transformation from the artwork geometry to
the actual cell geometry. In other words, the artwork is considered as the original object whereas the cell is the

transformed object.

The imported cell can have pins with different names. The LHS of the pi n_assi gnnment describes the pin
names of the original cell, the RHS describes the pin names of the cell in thislibrary. See 7.10 for the syntax of

pi n_assi gnment s.

Example

CELL ny_cell {

PINA{ /* fill inpinitems */ }

IEEE P1603 Draft 5 Advanced Library Format (ALF) Reference Manual

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

PINZ { /* fill inpinitens */ }
ARTWORK = \ GCDS2$! @$ {
SH FT { HORI ZONTAL = 0; VERTICAL = 0; }

ROTATE = O;
\ CDS2$! @$A = A
\ GCDS2$! @$B = B;

9.37 FUNCTION statement

A function statement shall be defined as shown in Syntax 68.

function ::=
FUNCTION { function_item { function_item} }
| function_template_instantiation
function _item ::=
all_purpose_item
| behavior
| structure
| statetable

Syntax 68—FUNCTION statement

9.38 TEST statement

A test statement shall be defined as shown in Syntax 69.

test ::=
TEST { test_item { test_item} }
| test_template_instantiation
test item::=
all_purpose_item
| behavior
| statetable

Syntax 69—TEST statement

The purposeisto describe the interface between an externally applied test algorithm and the CELL. Thebehav-
i or statement within the TEST statement uses the same syntax as the behavi or statement within the FUNC-
T1 ON statement. However, the set of used variablesis different. Both the TEST and the FUNCTI ON statement
shall be self-contained, complete and complementary to each other.

9.39 BEHAVIOR statement

A behavior statement shall be defined as shown in Syntax 70.

Inside BEHAVI OR, variables that appear at the LHS of an assignment conditionally controlled by a vector
expression, as opposed to an unconditional continuous assignment, hold their values, when the vector expression

evaluates False. Those variables are considered to have latch-type behavior.

Examples

114 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 5

behavior ::=
BEHAVIOR { behavior_item { behavior_item}s}
| behavior_template_instantiation
behavior_item ::=
boolean_assignments
| control_statement
| primitive_instantiation
| behavior_item template instantiation
boolean_assignments ::=
boolean_assignment { boolean _assignment }
boolean_assignment ::=
pin_variable = boolean_expression ;
control _statement ::=
control_expression { boolean_assignments } { : control_expression{ boolean_assignments} }
primitive_instantiation ::=
primitive_identifier [identifier] 1 pin_vaue { pin_value }
| primitive_identifier [identifier] { boolean_ass gnments]t

Syntax 70—BEHAVIOR statement

BEHAVI OR {
@O {
Q=D [// both Qand QN have | atch-type behavi or
N =1!D;
}
}
BEHAVI OR {

CLOR
Q=D // only Qhas latch-type behavior
}

AN =1Q

9.40 STRUCTURE statement

A structure statement shall be defined as shown in Syntax 71.

structure ::=
STRUCTURE { named_cell_instantiation { named_cell_instantiation } }
| structure_template_instantiation

Syntax 71—STRUCTURE statement

An optional STRUCTURE statement shall be legal in the context of a FUNCTI ON. A STRUCTURE statement
describes the structure of a complex cell composed of atomic cells, for example I/O buffers, LSSD flip-flops, or
clock trees. The STRUCTURE statement shall be legal inside the FUNCT| ON statement (see 9.37).

The STRUCTURE statement shall describe a netlist of components inside the CELL. The STRUCURE statement
shall not be a substitute for the BEHAVI OR statement. If a FUNCTI ON contains only a STRUCTURE statement
and no BEHAVI OR statement, a behavior description for that particular cell shall be meaningless (e.g., fillcells,
diodes, vias, or analog cells).

Timing and power models shall be provided for the CELL, if such models are meaningful. Application tools are
not expected to use function, timing, or power models from the instantiated components as a substitute of a miss-

IEEE P1603 Draft 5 Advanced Library Format (ALF) Reference Manual 115

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

ing function, timing, or power model at the top-level. However, tools performing characterization, construction,
or verification of atop-level model shall use the models of the instantiated components for this purpose.

Test synthesis applications can use the structural information in order to define a one-to-many mapping for scan
cell replacement, such as where a single flip-flop is replaced by a pair of master/slave latches. A macro cell can
be defined whose structure is a netlist containing the master and slave latch and this shall contain the
NON_SCAN_CELL annotation to define which sequential cells it is replacing. No timing model is required for
this macro cell, sinceit istreated as a transparent hierarchy level in the design netlist after test synthesis.

NOTES
1—Every i nstance_i denti fi er withina STRUCTURE statement shall be different from each other.

2—The STRUCTURE statement provides adirective to the application (e.g., synthesisand DFT) asto how the CELL isimple-
mented. A CELL referenced in naned_cel | _i nstanti ati on can be replaced by another CELL within the same
SWAP_CLASS and RESTRI CT_CLASS (recognized by the application).

3—Thecel | _i denti fi er within a STRUCTURE statement can refer to actual cells aswell asto primitives. The usage of
primitives is recommended in fault modeling for DFT.

4—BEHAVI OR statements also provide the possibility of instantiating primitives. However, those instantiations are for mod-
eling purposes only; they do not necessarily match a physical structure. The STRUCTURE statement always matches a physi-
cal structure.

9.41 STATETABLE statement

A statetable statement shall be defined as shown in Syntax 72.

statetable ::=

STATETABLE [identifier]

{ statetable_header statetable row { statetable row} }
| statetable template instantiation

statetable_header ::=

input_pin_variables : output_pin variables,
statetable row ::=

statetable_control_values . statetable data values;
statetable _control_values::=

statetable_control_value { statetable control_value }
statetable_control_value::=

bit_literal

| based_literal

| unsigned

| edge_value
statetable data values::=

statetable_data value { statetable data value}
statetable data value ::=

bit_literal

| based_literal

| unsigned
[([!]pin_variable)
| ([~] pin_variable)

Syntax 72—STATETABLE statement

The functiona description can be supplemented by a STATETABLE, the first row of which contains the argu-
ments that are object I Ds of the declared PI Ns. The arguments appear in two fields, the first is input and the sec-
ond is output. The fields are separated by a: . The rows are separated by a; . The arguments can appear in both
fields if the PI Ns have attribute di r ect i on=out put or di recti on=bot h. If di recti on=out put,

116 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 5

then the argument has latch-type behavior. The argument on the input field is considered previous state and the
argument on the output field is considered the next state. If di r ect i on=bot h, then the argument on the input
field applies for input direction and the argument on the output field applies for output direction of the bidirec-
tiona PI N.

Example

CELL ff_sd {

}

PIN g {D RECTI ON=out put;}
PIN d {D RECTI ON=i nput;}
PIN cp {D RECTI ON=i nput ;
S| GNALTYPE=cl ock;
PCOLARI TY=ri si ng_edge; }
PI N cd {DlI RECTI ON=i nput; SI GNALTYPE=cl ear; POLARI TY=l ow, }
PI N sd {DlI RECTI ON=i nput; SI GNALTYPE=set; POLARI TY=l ow; }
FUNCTI ON {
BEHAVI OR {

} @'cd) {gq =0;} :(!sd) {g =1/} : (01 cp) {g =d;}

STATETABLE {

cd sd cp

o 2 ??
??
1?
?0
1?
?0
01

ESEESEESEENEINEENEEN R o R
O RPOPFRPOFrROoOQ

~

NP OPFP OV VvQa

R e el
N e e S =

If the output variable with latch-type behavior depends only on the previous state of itself, as opposed to the pre-
vious state of other output variables with latch-type behavior, it is not necessary to use that output variablein the
input field. This allows a more compact form of the STATETABLE.

Example

STATETABLE ({
cdsd cp d : q;
0o 2 ?2?2 ? 0 ;
1 0 ?2?2 ? 1
1 1 1?7 ? :(qQ);
1 1 20 7?7 :(qQ);
1 1 01 7?7 :(d);

}

A generic ALF parser shall make the following semantic checks.

Areall variables of a FUNCTI ON declared either by declaration as Pl N names or through assignment?
Doesthe STATETABLE exclusively contain declared Pl Ns?

Isthe format of the STATETABLE, i.e., the number of elementsin each field of each row, consistent?
Arethe values consistently either state or transition digits?

Isthe number of digitsin each TABLE entry compatible with the signal bus width?

IEEE P1603 Draft 5 Advanced Library Format (ALF) Reference Manual 117

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

A more sophisticated checker for complete verification of logical consistency of a FUNCTI ON given in both
equation and tabular representation is out of scope for a generic ALF parser, which checks only syntax and com-
pliance to semantic rules. However, formal verification algorithms can be implemented in special-purpose ALF
analyzers or model generators/compilers.

9.42 NON_SCAN_CELL statement

A non_scan_cell statement shall be defined as shown in Syntax 73.

non_scan cell ::=
"NON_SCAN_CELL { unnamed_cell_instantiation { unnamed_cell_instantiation} }
INONTSCAN"CELL = unnamed_cell_instantiation

| non_scan_cell_template_instantiation

Syntax 73—NON_SCAN_CELL statement

A non-scan cell statement applies for a scan cell. A scan cell is a cell with extra pins for testing purpose. The
unnamed cell instantiation within the non-scan cell statement specifiesacell that isfunctionally equivalent to the
scan cell, if the extra pins are not used. The cell without extrapinsis referred to as non-scan cell. The name of the
non-scan cell is given by the cell identifier.

The pin mapping is given either by order, using pin value, or by name, using pin assignment. In the former case,
the pin values shall refer to pin names of the scan cell. The order of the pin values corresponds to the pin declara-
tions within the non-scan cell. In the latter case, the pin names of the non-scan cell shall appear at the LHS of the
assignment, and the pin names of the scan cell shall appear at the RHS of the assignment. The order of the pin
assignmentsis arbitrary.

Example

/1 declaration of a non-scan cell
CELL myNonScanFl op {
PIN D { DI RECTI ON=i nput; SI GNALTYPE=data; }
PIN C { DI RECTI ON=i nput; SI GNALTYPE=cl ock; POLARI TY=ri si ng_edge; }
PIN Q { DI RECTI ON~out put; SIGNALTYPE=data; }
}
/1 declaration of a scan cell
CELL myScanFl op {
PIN CK { DI RECTI ON=i nput; SI GNALTYPE=cl ock; }
PIN DI { DI RECTI ON=i nput; SIGNALTYPE=data; }
PIN SI { DI RECTI ON=i nput; SIGNALTYPE=scan_data; }
PIN SE { DI RECTI ON=i nput; SIGNALTYPE=scan_enabl e; POLARI TY=hi gh; }
PI N DO { DI RECTI ON=out put; SI GNALTYPE=dat a; }
/1 put NON SCAN CELL staterment here

}

The non-scan cell statement with pin mapping by order looks as follows:

NON_SCAN CELL { nmyNonScanFlop { DI CK DO} }
/1 correspondi ng pins by order: D C Q

The non-scan cell statement with pin mapping by name looks as follows:

NON_SCAN CELL { nyNonScanFlop { @&=DC D=DI; C=CK; } }

118 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 5

9.43 RANGE statement

A range statement shall be defined as shown in Syntax 74.

range ::=
%QANGE { index_value : index_value }

Syntax 74—RANGE statement

The range statement shall be used to specify a valid address space for elements of a vector- or matrix-pin.
If no range statement is specified, the valid address space a is given by the following mathematical relationship:
0<as<2’-1

b= [1+LSB—MSB if(LSB > MSB)
1+MSB—LSB if(LSB < MSB)

where

aisan unsigned number representing the address space within a vector- or matrix-pin,
b isthe bitwidth of the vector-or matrix-pin,

and

MSB isthe left-most bit within the vector- or matrix-pin,
L SB isthe right-most bit within the vector or- matrix-pin,

in accordance with 7.8.

The index values within a range statement shall be bound by the address space a, otherwise the range statement
shall not be considered valid.

Example

PIN [5:8] myVectorPin { RANGE { 3 : 13 } }
bitwidith: b=14

default address space: O<a<15
address space defined by range statement: 3<as<13

IEEE P1603 Draft 5 Advanced Library Format (ALF) Reference Manual 119

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

120

Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 5

10. Constructs for modeling of digital behavior

** Add lead-in text**

10.1 Variable declarations

Inside a CELL object, the Pl N objects with the PI NTYPE di gi t al define variables for FUNCTI ON objects
inside the same CELL. A primary input variable inside a FUNCTI ON shall be declared as a PI N with DI REC-

Tl ONEi nput or bot h (since DI RECTI ON=bot h is a bidirectional pin). However, it is not required that all
declared pins are used in the function. Output variablesinside a FUNCTI ON need not be declared pins, since they
are implicitly declared when they appear at the left-hand side (LHS) of an assignment.

Example

CELL ny_cel |l {
PIN A {Dl RECTI ON
PIN B { Dl RECTI ON
PIN C {Dl RECTI ON
FUNCTI ON {
BEHAVI OR {
D = A && B;
C=1D

i nput;}
i nput; }
out put ; }

}

C and Dare output variables that need not be declared prior to use. After implicit declaration, D
isreused as an input variable. A and B are primary input variables.

10.2 Boolean value system

this paragraph needs to move into another section

A bit literal shall represent a single bit constant, as shown in Table 68.

Table 68—Single bit constants

Literal Description
0 Valueislogic zero.
1 Valueislogic one.
Xorx Valueis unknown.
Lorl Valueislogic zero with wesk drive strength.
Horh Valueislogic one with weak drive strength.
Wor w Value is unknown with weak drive strength.
Zorz Value is high-impedance.
Uoru Valueis not initialized.

IEEE P1603 Draft 5 Advanced Library Format (ALF) Reference Manual 121

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

Table 68—Single bit constants (Continued)

Literal Description
? Valueisany of the above, yet stable.
* Value can randomly change.

The symbolswithin an octal based literal shall represent numerical values, which can be mapped into equivalent
symbols within a binary based literal, as shown in Table 69.

Table 69—Mapping between octal base and binary base

Octal Binary (bit literal) Numerical value

000
001
010
011
100
101
110
11

N O O~ W DN PO
N~N|lo ||~ w| NP]|O

The symbols within a hexadecimal based literal shall represent numerical values, which can be mapped into
equivalent symbols within an octal based literal and a binary based literal, as shown in Table 70.

Table 70—Mapping between hexadecimal base, octal base, and binary base

Hexadecimal Octal Binary (bit literal) Numerical value
0 00 0000 0
1 01 0001 1
2 02 0010 2
3 03 0011 3
4 04 0100 4
5 05 0101 5
6 06 0110 6
7 07 0111 7
8 10 1000 8
9 11 1001 9

122 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 5

Table 70—Mapping between hexadecimal base, octal base, and binary base (Continued)

Hexadecimal Octal Binary (bit literal) Numerical value
aorA 12 1010 10
borB 13 1011 1
corC 14 1100 12
do D 15 1101 13
eorE 16 1110 14
forF 17 1111 15

Based literals involving symbolic bit literals shall not be used to represent numerical values. They shall be
mapped from one base into another base according to the following rules:

a) A symbolic bit literal in a hexadecimal based literal shall be mapped into two subsequent occurrences of
the same symbolic bit literal in an octal based literal.

b) A symbolic bit literal in an octal based literal shall be mapped into three subsequent occurrences of the
same symbolic bit literal in a binary based literal.

¢) A symbolic bit literal in an hexadecimal based literal shall be mapped into four subsequent occurrences
of the same symbolic bit literal in abinary based literal.

Example

' 02xwOu isequivalent to' b010_xxx_ww_000_uuu
"hLux isequivalent to' bLLLL_uuuu_xxxx

10.3 Combinational functions
This section defines the different types of combinational functionsin ALF.
10.3.1 Combinational logic
Combinational logic can be described by continuous assignments of boolean values (True or False) to output
variables as a function of boolean values of input variables. Such functions can be expressed in either boolean
expression format or statetable format.
Let us consider an arbitrary continuous assignment
z =f(ag ..,.. ap)
In adynamic or simulation context, the left-hand side (LHS) variable zis evaluated whenever there isachangein

one of the right-hand side (RHS) variables ai. No storage of previous states is needed for dynamic simulation of
combinational logic.

IEEE P1603 Draft 5 Advanced Library Format (ALF) Reference Manual 123

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

10.3.2 Boolean operators on scalars

Table 71, Table 72, and Table 73 list unary, binary, and ternary boolean operators on scalars.

Table 71—Unary boolean operators

Operator Description

I~ Logical inversion.

Table 72—Binary boolean operators

Operator Description
&&, & Logical AND.
1] | Logical OR.
~N Logic equivalence (XNOR).
N Logic anti valence (XOR).

Table 73—Ternary operator

Operator Description

? Boolean condition operator for construction of combinational

if-then-else clause.

Boolean else operator for construction of combinational if-
then-else clause.

Combinational if-then-else clauses are constructed as follows:

<condl>? <val uel>:. <cond2>? <val ue2>: <cond3>? <val ue3>: <default_val ue>
If cond1 evaluates to boolean True, then val uel isthe result; else if cond2 evaluates to boolean True, then
val ue2 is the result; else if cond3 evaluates to boolean True, then val ue3 is the result; else
def aul t _val ue istheresult of this clause.

10.3.3 Boolean operators on words

Table 74 and Table 75 list unary and binary reduction operators on words (logic variables with one or more bits).
The result of an expression using these operators shall be alogic value.

Table 74—Unary reduction operators

Operator Description

& AND al bits.

124 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 5

Table 74—Unary reduction operators (Continued)

Operator Description
~& NAND all bits.
| ORall hits.
~ NCR all bits.
N XOR dl bits.
~N XNOR all hits.

Table 75—Binary reduction operators

Operator Description

== Equality for case comparison.

I= Non-equality for case comparison.

Greater.

Smaller.
>= Greater or equal.
<= Smaller or equal.

Table 76 and Table 77 list unary and binary bitwise operators. The result of an expression using these operators
shall be an array of bits.

Table 76—Unary bitwise operators

Oper ator Description

~ Bitwise inversion.

Table 77—Binary bitwise operators

Operator Description
& Bitwise AND.
| Bitwise OR.
A Bitwise XOR.
b Bitwise XNOR.

IEEE P1603 Draft 5 Advanced Library Format (ALF) Reference Manual 125

10

15

20

25

30

35

40

45

50

55

1

10

15

20

25

30

35

40

50

55

The arithmetic operators listed in Table 78 are also defined for boolean operations on words. The result of an
expression using these operators shall be an extended array of bits.

Table 78—Binary operators

Operator Description
<< Shift left.
>> Shift right.
+ Addition.
- Subtraction.
* Multiplication.
/ Division.
% Modulo division.

The arithmetic operations addition, subtraction, multiplication, and division shall be unsigned if all the operands
have the datatype unsigned. If any of the operands have the datatype signed, the operation shall be signed. See
Table 47 for the DATATYPE definitions.

10.3.4 Operator priorities

The priority of binding operators to operands in boolean expressions shall be from strongest to weakest in the
following order:

a)
b)
0)
d)
e)

unary boolean operator (! , ~, & ~& | ,~| ,*, ~")

XNOR (=), XOR (M), relational (>, <, >=, <=, ==, | =), shift (<<, >>)
AND (&, &&), NAND (~&), multiply (*), divide (/), modulus (%)
OR(],]|), NOR(~|), add (+), subtract (-)

ternary operators (?, :)

10.3.5 Datatype mapping

Logical operations can be applied to scalars and words. For that purpose, the values of the operands are reduced
to asystem of three logic valuesin the following way:

126

Hhasthelogic value 1

L hasthelogic value 0

WZ, Uhavethelogic value X

A word hasthelogic value 1, if the unary OR reduction of all bitsresultsin 1
A word hasthelogic value 0, if the unary OR reduction of all bitsresultsin O
A word hasthelogic value X, if the unary OR reduction of all bitsresultsin X

Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 5

Case comparison operations can also be applied to scalars and words. For scalars, they are defined in Table 79.

Table 79—Case comparison operators

10

15

20

25

30

35

40

45

50

A<B

A>B

Al=

A==B

0

0

0

0

0

X

Z,

Wy

X

Z,

Wy

X

Z,

Wy

X

Z,

Wy

L,

H,

55

Advanced Library Format (ALF) Reference Manual 127

IEEE P1603 Draft 5

10

15

20

25

30

35

40

50

55

Table 79—Case comparison operators (Continued)

A B A==B Al=B A>B A<B
U 0, 1, H L, X X X X
X, W Z U

For word operands, the operations > and < are performed after reducing all bits to the 3-value system first and
then interpreting the resulting number according to the datatype of the operands. For example, if datatype is
signed,' b1111 issmaller than' b000O; if datatypeisunsigned, ' b1111 isgreater than' b000O. If two oper-
ands have the same value ' b1111 and a different datatype, the unsigned ' b1111 is greater than the signed
"b1111.

The operations >= and <= are defined in the following way:

(a >=Db) === (a >b) || (a==Dh)
(a <=Db) === (a <b) [| (a==0Dh)

10.3.6 Rules for combinational functions

If a boolean expression evaluates True, the assigned output value is 1. If a boolean expression evaluates False,
the assigned output value is 0. If the value of a boolean expression cannot be determined, the assigned output
value is X. Assignment of values other than 1, 0, or X needs to be specified explicitly.

For evaluation of the boolean expression, input value ' bH shall be treated as' b1. Input value ' bL shall be
treated as' b0. All other input values shall be treated as' bX.

Examples
In equation form, these rules can be expressed as follows.

BEHAVI OR {
Z = A
}

isequivalent to

BEHAVI OR {
Z=A?"bl: ’bo;
}

More explicitly, thisis also equivalent to

BEHAVI OR {
Z = (A=="bl || A== bH)? "bl : (A=="Db0 || A=="bL)? 'b0 : ’bX;
}

In table form, this can be expressed as follows:
STATETABLE {

A : Z;
? (A);

128 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 5

which isequivaent to

STATETABLE {

A : Z;
0 : 0;
1 1;

}

More explicitly, thisisalso equivalent to

STATETABLE ({

XXXXPEROON

CNEXII—‘I_O:D

}

10.3.7 Concurrency in combinational functions

Multiple boolean assignmentsin combinational functions are understood to be concurrent. The order in the func-
tional description does not matter, as each boolean assignment describes a piece of alogic circuit. Thisisillus-

trated in Figure 15.

BEHAVI OR {
QL

n
| -
1st bool ean expression Q
C)
® > :
nth bool ean expression (@)
C)

D1 Di

<1st _bool ean_expression(D1..Di)> ;

<nt h_bool ean_expression(Dl1..Di)> ;

Figure 15—Concurrency for combinational logic

10.4 Sequential functions

This section defines the different types of sequentia functionsin ALF.

IEEE P1603 Draft 5 Advanced Library Format (ALF) Reference Manual

129

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

10.4.1 Level-sensitive sequential logic

In sequential logic, an output variable zj can also be a function of itself, i.e., of its previous state. The sequential
assignment has the form

zp =f(ag ..,.. ag, Z3 ..,.. Zp
The RHS cannot be evaluated continuously, since a change in the LHS as aresult of a RHS evaluation shall trig-
ger anew RHS evaluation repeatedly, unless the variables attain stable values. Modeling capabilities of sequen-

tial logic with continuous assignments are restricted to systems with oscillating or self-stabilizing behavior.

However, using the concept of triggering conditions for the LHS enables everything which is necessary for mod-
eling level-sensitive sequential logic. The expression of atriggered assignment can look like this:

@g(by ..,.. by z; =f(ay ..,.. ay, zy ..,.. Zp
The evaluation of f is activated whenever the triggering function g is True. The evaluation of g is self-triggered,
i.e. at each time when an argument of g changes its value. If g is a boolean expression like f, we can model all

types of |evel-sensitive sequential logic.

During the time when g is True, the logic cell behaves exactly like combinational logic. During the time when g
isFalse, thelogic cell holdsits value. Hence, one memory element per state bit is needed.

10.4.2 Edge-sensitive sequential logic

In order to model edge-sensitive sequential logic, notations for logical transitions and logical states are needed.
If the triggering function g is sensitive to logical transitions rather than to logical states, the function g evaluates
to True only for aninfinitely small time, exactly at the moment when the transition happens. The sole purpose of
g isto trigger an assignment to the output variable through evaluation of the function f exactly at thistime.
Edge-sensitive logic requires storage of the previous output state and the input state (to detect a transition). In
fact, all implementations of edge-triggered flip-flops require at least two storage elements. For instance, the most
popul ar flip-flop architecture features a master latch driving a slave latch.

Using transitions in the triggering function for value assignment, the functionality of a positive edge triggered
flip-flop can be described asfollowsin ALF:

@(01 CP) {Q=D}
which reads “at rising edge of CP, assign Qthe value of D".

If the flip-flop aso has an asynchronous direct clear pin (CD), the functional description consists of either two
concurrent statements or two statements ordered by priority, as shown in Figure 16.

/1l concurrent style

@(!'CO {Q = 0;}
@ (01 CP && CD) {Q =D}

[l priority (if-then-else) style
@(!c {Q=20} : (01 CP) {Q=D}

130 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 5

Figure 16—Model of a flip-flop with asynchronous clear in ALF

The following two examples show corresponding simulation modelsin Verilog and VHDL.

/] full simulation nodel

al ways @ negedge CD or posedge CP) begin
if (! CD) Q<= 0;
else if (CP && !CP_last_value) Q <= D
el se Q <= 1’ bx;
end
al ways @ (posedge CP or negedge CP) begin
if (CP===0 | CP===1"bx) CP_last_value <= CP ;
end

/1 sinplified sinulation nodel for synthesis

al ways @ negedge CD or posedge CP) begin
if (! CD) Q<= 0;
else Q <= D

end

Figure 17—Model of a flip-flop with asynchronous clear in Verilog

[/ full simulation nodel

process (CP, CD) begin
if (CD="0") then

Q<="'0";

elsif (CPPlast _value ="'0'" and CP = '1" and CP event) then
Q <= b

elsif (CPPlast _value ='0'" and CP = 'X and CP event) then
Q<="'X;

elsif (CPPlast_value = 'X and CP = '1" and CP event) then
Q<="X;

end if;

end process;
[l sinplified sinmulation nodel for synthesis

process (CP, CD) begin
if (CD="'0") then

Q<="0";

elsif (CP ="1 and CP event) then
Q<=D

end if;

end process;

Figure 18—Model of a flip-flop with asynchronous clear in VHDL

The following differences in modeling style can be noticed: VHDL and Verilog provide the list of sensitive sig-
nals at the beginning of the pr ocess or al ways block, respectively. The information of level-or edge-sensitiv-

IEEE P1603 Draft 5 Advanced Library Format (ALF) Reference Manual

131

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

ity shall beinferred by i f -t hen-el se statements inside the block. ALF shows the level-or-edge sensitivity as
well as the priority directly in the triggering expression. Verilog has another particularity: The sensitivity list
indicates whether at least one of the triggering signals is edge-sensitive by the use of negedge or posedge.
However, it does not indicate which one, since either none or all signals shall have negedge or posedge qual-
ifiers.

Furthermore, posedge isany transition with O asinitia state or 1 asfinal state. A positive-edge triggered flip-
flop shall beinferred for synthesis, yet this flip-flop shall only work correctly if both the initial stateis 0 and the
final state is 1. Therefore, a simulation model for verification needs to be more complex than the model in the
synthesizeable RTL code.

In Verilog, the extra non-synthesi zeable code needs to al so reproduce the relevant previous state of the clock sig-
nal, whereas VHDL has built-in support for | ast _val ue of asignal.

10.4.3 Unary operators for vector expressions

A transition operation is defined using unary operators on a scalar net. The scalar constants (see 6.8) shall be
used to indicate the start and end states of atransition on a scalar net.

bit bit Il apply transition from bit value to bit value
For example,
olisatransitionfromo to 1.

No whitespace shall be allowed between the two scalar constants. The transition operators shown in Table 80
shall be considered legal.

Table 80—Unary vector operators on bits

Operator Description

01 Signal togglesfrom 0 to 1.

10 Signal toggles from 1 to 0.

00 signal remains 0.

1 Signal remains 1.

0? Signal remains 0 or toggles from O to arbitrary value.

1? Signal remains 1 or toggles from 1 to arbitrary value.

?0 Signal remains 0 or toggles from arbitrary valueto 0.

?1 Signal remains 1 or toggles from arbitrary valueto 1.

7 Signal remains constant or toggles between arbitrary values.

o* A number of arbitrary signal transitions, including possibility of constant
value, with theinitial value 0.

1* A number of arbitrary signal transitions, including possibility of constant
value, with theinitial value 1.

> A number of arbitrary signal transitions, including possibility of constant
value, with arbitrary initial value.

132 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 5

Table 80—Unary vector operators on bits (Continued)

Operator Description

*0 A number of arbitrary signal transitions, including possibility of constant
value, with the final value 0.

*1 A number of arbitrary signal transitions, including possibility of constant
value, with thefinal value 1.

*7 A number of arbitrary signal transitions, including possibility of constant
value, with arbitrary fina value.

Unary operators for transitions can also appear in the STATETABLE.
Transition operators are also defined on words (and can appear the in STATETABLE as well):
' base word ' base word
In this context, the transition operator shall apply transition from first word value to second word value.
For example,
" hA' h5 isatransition of a4-bit signal from' b1010 t0' b0101.
No whitespace shall be allowed between base and word.

The unary and binary operatorsfor transition, listed in Table 81 and Table 82 respectively, are defined on bits and
words.

Table 81—Unary vector operators on bits or words

Operator Description
?- No transition occurs.
? Apply arbitrary transition, including possibility of constant value.
?! Apply arbitrary transition, excluding possibility of constant value.
?~ Apply arbitrary transition with all bits toggling.

10.4.4 Basic rules for sequential functions

A sequentia function is described in equation form by a boolean assignment with a condition specified by a
boolean expression or a vector expression. If the condition evaluatesto 1 (True), the boolean assignment is acti-
vated and the assigned output values follows the rules for combinational functions. If the vector expression eval-
uatesto 0 (False), the output variables hold their assigned value from the previous evaluation.

For evaluation of a condition, thevalue' bH shall be treated as True, the value' bL shall be treated as False. All
other values shall be treated as the unknown value' bX.

Example

IEEE P1603 Draft 5 Advanced Library Format (ALF) Reference Manual 133

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

The following behavior statement

BEHAVI OR {
@(E) {Zz=A}
}

isequivalent to
BEHAVI OR {
@(E=="bl || E=="bH) {Z = A}
}

The following statetabl e statement, describing the same logic function

STATETABLE ({

E A : Z,
0 ? : (2);
1 ? : (A);

}
isequivalent to

STATETABLE {

E A : Z;
0o 2?2 = (D;
L 2 (2);
1 ? A ;
(A);
H ? (A);

}

For edge-sensitive and higher-order event sensitive functions, transitions from or to ' bL shall be treated like
transitions fromor to' b0, and transitionsfrom or to ' bH shall be treated like transitionsfromor to' b1l.

Not every transition can trigger the evaluation of a function. The set of vectors triggering the evaluation of a
function are called active vectors. From the set of active vectors, a set of inactive vectors can be derived, which
shall clearly not trigger the evaluation of afunction. There areis also a set of ambiguous vectors, which can trig-
ger the evaluation of the function.

The set of active vectors is the set of vectors for which both observed states before and after the transition are
known to be logically equivalent to the corresponding states defined in the vector expression.

The set of inactive vectors is the set of vectors for which at least one of the observed states before or after the
transition is known to be not logically equivalent to the corresponding states defined in the vector expression.

Example
For the following sequential function
@(o1cp) { Z=A }
the active vectors are
(' b0’ bl CP)

(' b0' bH CP)

134 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 5

(' bL' bl CP)
(' bL' bH CP)

and the inactive vectors are

' b1’ b0 CP)
'b1’ bL CP)
' b1’ bX CP)
' b1’ bW CP)
' b1’ bZ CP)
' bH b0 CP)
' bH bL CP)
' bH bX CP)
' bH bW CP)
(" bH bz CP)
(" bX b0 CP)
(" bX bL CP)
(" bWbO CP)
(" bWbL CP)
(" bZ' b0 CP)
(" bZ bL CP)
(" bU b0 CP)
(" bU bL CP)

AN AN AN AN AN AN AN S

and the ambiguous vectors are

(" b0’ bX CP)
(’ b0’ bW CP)
(" b0’ bZ CP)
(" bL’ bX CP)
(" bL’ bW CP)
(" bL’ bZ CP)
(" bX' bl CP)
(' bW bl CP)
(" bZ bl CP)
(" bX' bH CP)
(" bW bH CP)
(" bZ' bH CP)
(" bX' bW CP)
(" bX' bZ CP)
(" bW bX CP)
(" bW bZ CP)
(" bZ' bX CP)
(" bZ' bW CP)
(" bU bX CP)
(" bU bw CP)
(" bU bz CP)

For vectors using exclusively based literals, the set of active vectorsisthe vector itself, the set of inactive vectors

10

15

20

25

30

35

40

45

50

isany vector with at least one different literal, and the set of ambiguous vectorsis empty.

Therefore, ALF does not provide a default behavior for ambiguous vectors, since the behavior for each vector
can be explicitly defined in vectors using based literals.

IEEE P1603 Draft 5 Advanced Library Format (ALF) Reference Manual 135

10

15

20

25

30

35

40

50

55

10.4.5 Concurrency in sequential functions

The principle of concurrency applies also for edge-sensitive sequentia functions, where the triggering condition
is described by avector expression rather than a boolean expression. In edge-sensitive logic, the target logic vari-
able for the boolean assignment (LHS) can also be an operand of the boolean expression defining the assigned
value (RHS). Concurrency implies that the RHS expressions are evaluated immediately before the triggering
edge, and the values are assigned to the LHS variablesimmediately after the triggering edge. Thisisillustrated in

Figure 19.
BEHAVI OR {
@ (<vector_expression(EL .Em>) { El Em
Qj_ =
<lst _bool ean_expression(Dl..D)> ; vector

expr essi on

o =

<nt h_bool ean_expression(DL..Di)> ; } }

Q

1st bool ean expression)

‘V/u

_.
L4
m

nth bool ean expressi on) d qT p

:

Figure 19—Concurrency for edge-sensitive sequential logic

Statements with multiple concurrent conditions for boolean assignments can aso be used in sequentia logic. In
that case conflicting values can be assigned to the same logic variable. A default conflict resolution is not pro-
vided for the following reasons.

Conflict resolution might not be necessary, since the conflicting situation is prohibited by specification.
For different types of analysis (e.g., logic simulation), a different conflict resolution behavior might be
desirable, while the physical behavior of the circuit shall not change. For instance, pessimistic conflict
resolution always assigns X, more accurate conflict resolution first checks whether the values are con-
flicting. Different choices can be motivated by a trade-off in analysis accuracy and runtime.

If complete library control over analysisis desired, conflict resolution can be specified explicitly.

Example

BEHAVI OR {

}

@(<condition 1>) { Q= <value_1>; }
@(<condition 2>) { Q= <value_2>; }

Explicit pessimistic conflict resolution can be described as follows:

136

Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 5

BEHAVI OR {

@(<condition 1> && <condition_ 2>) { Q= "bX }
@(<condition 1> & & ! <condition 2>) { Q= <value_1>; }
@(<condition 2> && ! <condition_1>) { Q = <value_2>; }
}
Explicit accurate conflict resolution can be described as follows:
BEHAVI OR {
@ (<condition_1> && <condition_ 2>) {
Q = (<value_l>==<val ue_2>)? <value_1> : ’'bX
}
@(<condition_1> && ! <condition_2>) { Q = <value_1>; }
@(<condition_2> && ! <condition_1>) { Q = <value_2>; }

}

Since the conditions are now rendered mutually exclusive, equivalent descriptions with priority statements can
be used. They are more elegant than descriptions with concurrent statements.

BEHAVI OR {
@(<condition_1> && <condition_2>) {
Q = <conflict_resol ution_val ue>;
}
: (<condition_1>) { Q= <value_1>; }
(<condition_2>) { Q= <value_2>; }

}

Given the various explicit description possibilities, the standard does not prescribe a default behavior. The model
developer has the freedom of incomplete specification.

10.4.6 Initial values for logic variables
Per definition, al logic variablesin abehavioral description have theinitial value U which means “uninitialized”.

This value cannot be assigned to alogic variable, yet it can be used in abehavioral description in order to assign
other values than U after initialization.

Example
BEHAVI OR {
@(A =="bUu) { AL ="bl;}
@(@ =="bU) { @ ="b0; }
/1 followed by the rest of the behavioral description

}

A template can be used to make the intent more obvious, for example:

TEVMPLATE VALUE_AFTER_I NI TI ALI ZATI ON {

@(<logic_variable> =="bU) { <logic_variable>=<initial_value>; }
}
BEHAVI OR {

VALUE_AFTER | NI TI ALI ZATION (QL 'bl')

VALUE_AFTER | NI TI ALI ZATION (@ ' b0’)

/1 followed by the rest of the behavioral description
}

IEEE P1603 Draft 5 Advanced Library Format (ALF) Reference Manual 137

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

Logic variablesin a vector expression shall be declared as Pl Ns. It is possible to annotate initial values directly
to apin. Such variables shall never take the value U. Therefore vector expressions involving U for such variables
(see the previous example) are meaningless.

Example
PINQL { INNTIAL_VALUE = "bl ; }
PINQ@ { INNTIAL_VALUE = "b0 ; }

10.5 Higher-order sequential functions

This section defines the different types of higher-order sequential functionsin ALF.

10.5.1 Vector-sensitive sequential logic

Vector expressions can be used to model generalized higher order sequential logic; they are an extension of the
boolean expressions. A vector expression describes sequences of logical events or transitions in addition to static
logical states. A vector expression represents a description of alogical stimulus without atimescale. It describes

the order of occurrence of events.

The - > operator (followed by) gives a general capability of describing a sequence of events or a vector. For
example, consider the following vector expression:

01 A->018B
which reads “rising edge on A is followed by rising edge on B”.
A vector expression is evaluated by an event sequence detection function. Like asingle event or atransition, this

function evaluates True only at an infinitely short time when the event sequence is detected, as shown in
Figure 20.

w

B
X

01 A 01 B 10 A 01 A10 B 10 A 01 B

2
A

2ndlast X X 01 AO1 B 10 A 01 A10 B 10 A

contents of
event queue

9(A B) = (01 A -> 01 B) A

sequence (01 A -> 01 B) detected

Figure 20—Example of event sequence detection function

138 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 5

The event sequence detection mechanism can be described as a queue that sorts events according to their order of
arrival. The event sequence detection function evaluates True at exactly the time when a new event enters the
gueue and forms the required sequence, i.e., the sequence specified by the vector expression with its preceding
events.

A vector-sensitive sequential logic can be called (N+1) order sequential logic, where N is the number of events
to be stored in the queue. The implementation of (N+ 1) order sequential logic requires N memory elements for
the event queue and one memory element for the output itself.

A sequence of events can also be gated with static logical conditions. In the example,

(01 CP -> 10 CP) && CD

the pin CD shall have st at e 1 from some time before the rising edge at CP to some time after the falling edge
of CP. The pin CD can not go low (st at e 0) after the rising edge of CP and go high again before the falling
edge of CP because thiswould insert eventsinto the queue and the sequence “rising edge on CP followed by fall-

ing edge on CP” would not be detected.

The formal calculation rules for general vector expressions featuring both states and transitions are detailed in
10.5.2 and 10.5.3.

The concept of vector expression supports functional modeling of devices featuring digital communication pro-
tocols with arbitrary complexity.

10.5.2 Canonical binary operators for vector expressions

The following canonical binary operators are necessary to define sequences of transitions:
— vector_fol |l owed_by for completely specified sequence of events
— vect or _and for simultaneous events
— vect or _or for aternative events

— vector_fol | owed_by for incompletely specified sequence of events

The symbols for the boolean operators for AND and OR are overloaded for vect or _and and vect or _or,
respectively. The new symbolsfor thevect or _f ol | owed_by operators are shown in Table 82.

Table 82—Canonical binary vector operators

LHS, RHS L
Operator Operands commutative Description
-> 2 vector No Left-hand side (LHS) transition is followed by Right-hand side
expressions (RHS) transition, no transition can occur in-between.
&&,& 2 vector Yes LHS and RHS transition occur simultaneously.
expressions
|| | 2 vector Yes LHS or RHS transition occur alternatively.
expressions
~> 2 vector No Left-hand side (LHS) transition is followed by Right-hand side
expressions (RHS) transition, other transitions can occur in-between.

IEEE P1603 Draft 5 Advanced Library Format (ALF) Reference Manual 139

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

Per definition, the - > and ~> operators shall not be commutative, whereas the && and | | operators on events
shall be commutative.

01 a & 01 b === 01 b && 01 a
0Ola||] 01 b===01b|| Ol a

The- > and ~> operators shall be freely associative.

0Ola->01b->01c==(01a->01b) ->01c===01a->(01b->01r°c)
0la~>01b~>01c==(01a~>01b) ~>01c==01a-~>(01b~>01c)

The && operator isdefined for single events and for event sequences with the same number of - > operators each.
(01 AL .. -> ... 01 AN) & (01 B1 .. -> ... 01 BN
01 A1 &01B1... ->... 01 AN & 01 BN

The || operator reduces the set of edge operators (unary vector operators) to canonical and non-canonical opera-
tors.

(?? a) === (?! a)||(?- a) //a does or does not change its val ue
Hence ?? is non-canonical, since it can be defined by other operators.
If <val uel><val ue2> isan edge operator consisting of two based literalsval uel and val ue2 and wor d
is an expression which can take the value val uel or val ue2, then the following vector expressions are con-

sidered equivalent:

<val uel><val ue2> <wor d>

=== 10 (<word> == <val uel>) && 01 (<word> == <val ue2>)
=== 01 (<word> != <valuel>) && 01 (<word> == <val ue2>)
=== 10 (<word> == <val uel>) && 10 (<word> != <val ue2>)
=== 01 (<word> != <valuel>) && 10 (<word> != <val ue2>)

/1 all expressions describe the same event:
/'l <word> nmakes a transition from <val uel> to <val ue2>

Hence vector expressions with edge operators using based literals can be reduced to vector expressions using
only the edge operators 01 and 10.

10.5.3 Complex binary operators for vector expressions

Table 83 defines the complex binary operators for vector operators.

Table 83—Complex binary vector operators

LHS, RHS e
Operator Operands commutative Description
<-> 2 vector Yes LHStransition follows or isfollowed by RHS transition.
expressions
&> 2 vector No LHS transition isfollowed by or occurs simultaneously with RHS
expressions transition.

140 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 5

Table 83—Complex binary vector operators (Continued)

Operator Operands Clc;r:lrﬁ’u?;iie Description
<&> 2 vector Yes LHStransition follows or isfollowed by or occurs simultaneously
expressions with RHS transition.
The following expressions shall be considered equivalent:
(01 a<->01b) ===(01 a->01b)||(01 b ->01a)
(0l a & 01 b) === (01 a ->01Db)||(01 a & 01 b)
(01 a <& 01 b) === (01 a ->01 b)||(01 b ->01a)||(01l a & 01 b)

By their symmetric definition, the <- > and <&> operators are commutative.

01l a<->01b==01b<->01a
01l a <& 01 b ===01b <& 01 a

The commutative complex binary vector operators are defined in Table 82. The commutativity rules are only
defined for two operands:

— commutative “followed by”:
vect _exprl <-> vect_expr2 ===
vect _exprl -> vect _expr2 // vect_exprl occurs first
| vect _expr2 -> vect_exprl // vect_expr2 occurs first
— commutative “followed by or simultaneously occurring”:
vect _exprl <& vect_expr2 ===
vect _exprl -> vect _expr2 // vect_exprl occurs first
| vect _expr2 -> vect _exprl // vect_expr2 occurs first
| vect _exprl && vect _expr2 // both occur simultaneously
10.5.4 Extension to N operands
This section defines how to use N operands.
A conpl ex_vect or _expr essi on of theform
vect or _expression { <-> vector_expression }
shall be commutative for all operands. The conpl ex_vect or _expr essi on describes aternative event
seguences in which the temporal order of each constituent vect or _expr essi on is completely permutable,
excluding simultaneous occurrence of each congtituent vect or _expr essi on.
A conpl ex_vect or _expr essi on of theform
vect or _expression { <& vector_expression }
shall be commutative for all operands. The conpl ex_vect or _expr essi on describes aternative event

seguences in which the temporal order of each constituent vect or _expr essi on is completely permutable,
including simultaneous occurrence of each constituent vect or _expr essi on.

IEEE P1603 Draft 5 Advanced Library Format (ALF) Reference Manual 141

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

Example

01 A<->01 B<->01 C ===
01 ->01B->01

| 01 ->01C->01

| 01C->o01 01

| 01C->o01 01

|

|

01 -> 01 01
01 -> 01 01

>WO0Om>
0> >
V V VYV
TO>T>O

01 A<& 01 B <& 01 C

01 A->01B->01C
| 01B->01C->01A
| 01C->01A->01B8B
| 0LC->01B->01A
| 01B->01LA->01C
| O0LA->01C->01B
| 01 A& 01 B->01C
| O0LA->01B&O01C
| 01B& 01 C->01A
| 01 B->01C&&O0LA
| 01 C&& 01 A->01B
| 01 C->01A&:01B
| 01 A&& 01 B&& 01 C

10.5.4.1 Boolean rules
The following rule applies for a boolean AND operation with three operands:

rule 1:
A&B&C==(A&B) &C| A& (B &C

A corresponding rule also applies to the commutative followed-by operation with three operands:

rule 2:

01 A<->01 B <->01 C ===
(01 A<->01B) <->01C

| 01 A<-> (01 B<->010

The alternative boolean expressions(A & B) & CandA & (B & C) inrul e 1 areequivaent. Therefore,
rul e 1 can bereduced to the following:

rule 3:
A&B&C===(A&B) &C===(B&CQC &A

A corresponding rule does not apply to complex vector operands, since each expression with associated operands
generates only a subset of permutations:

(01A<-> 01 B) <-> 01 C ===
(01 A<->01B ->010

| (01 C-> (01 A<->01 B)) ===
0OlLA->01B->01C

| 01 B->01A->01C

142 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 5

01 C->01
01 C->01

The permutations

A->018B
B->01A

0Ol A->01C->018B
01 B->01C->01A

are missing.

01 A<> (01 B<->010

10

(01 A -> (01 B <-> 01 Q)

| ((01 B<->01C ->01 A ===
01 A->01B->01C
| 0Ol A->01C->018B
| 01 B->01C->01A
| 01 C->01B->01A
The permutations
| 01 B->01A->01C
| 01 C->01A->018B
are missing.

10.5.5 Operators for conditional vector expressions

The definitions of the &&, ?, and : operators are also overloaded to describe a conditional vector expression

(involving boolean expressions and vector expressions), as shown in Table 84. The clauses are boolean expres-
sions; while vector expressions are subject to those clauses.

Table 84—Operators for conditional vector expressions

Operator

Operands

LHS, RHS
commutative

Description

&&, &

1 vector
expression
boolean
expression

Yes
1

Boolean expression (LHS or RHS) is True while sequence of
transitions, defined by vector expression (RHS or LHS) occurs.

1 vector
expression
boolean
expression

No
1

Boolean condition operator for construction of if-then-else clause
involving vector expressions.

1 vector
expression
boolean
expression

No
1

Boolean else operator for construction of if-then-else clause
involving vector expressions.

An examplefor conditional vector expression using && is given below:

(01 a & !b)

IEEE P1603 Draft 5

// a riseswhile b==0

Advanced Library Format (ALF) Reference Manual

143

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

The order of the operands in a conditional vector expression using && shall not matter.

<vect or _exp> && <bool ean_exp> === <bool ean_exp> && <vector _exp>
The && operator is still commutative in this case, although one operand is a boolean expression defining a static
state, the other operand is a vector expression defining an event or a sequence of events. However, since the
operands are distinguishable per sg, it is hot necessary to impose a particular order of the operands.

An example for conditional vector expression using ? and : is given below.

Ib 201l a: c?10b: 01d

b &0l a| !(!'b) &c & 10 b | !(!b) &!c & 01 d

This example shows how a conditional vector expression using ternary operators can be expressed with alterna-
tive conditional vector expressions.

A conditional vector expression can be reduced to a non-conditional vector expression in some cases (see
10.6.11).

Every binary vector operator can be applied to a conditional vector expression.
10.5.6 Operators for sequential logic

Table 85 defines the complex binary operators for vector operators.

Table 85—Operators for sequential logic

Operator Description

@ Sequential i f operator, followed by aboolean logic expression (for level-
sensitive assignment) or by a vector expression (for edge-sensitive assign-
ment).

Sequential el se i f operator, followed by a boolean logic expression (for
level-sensitive assignment) or by a vector expression (for edge-sensitive
assignment) with lower priority.

Sequentia assignments are constructed as follows:

@(<triggerl>) { <actionl>} : (<trigger2>) { <action2>}
(<trigger3>) { <action3>}

If triggerl event is detected, then acti onl is performed; else if tri gger2 event is detected, then
action2 is performed; elseif t ri gger 3 event is detected, then act i on3 is performed as a result of this
clause.

10.5.7 Operator priorities

The priority of binding operators to operands in non-conditional vector expressions shall be from strongest to
weakest in the following order:

a) unary vector operators (edge literals)

144 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 5

b) complex binary vector operators (<- >, &>, <&>)
c) vector AND (&, &&)

d) vector_followed by operators (- >, ~>)

e vectorOR(|,]])

10.5.8 Using PINs in VECTORs

A VECTOR defines state, transition, or sequence of transitions of pins that are controllable and observable for
characterization.

Within a CELL, the set of PI Nswith SCOPE=behavi or or SCOPE=neasur e or SCOPE=Dbot h isthe default
set of variablesin the event queue for vector expressions relevant for BEHAVI OR or VECTOR statements or both,
respectively.

For detection of a sequence of transitions it is necessary to observe the set of variables in the event queue. For
instance, if the set of pins consists of A, B, C, D, the vector expression

(01 A -> 01 B)
implies no transition on A, B, C, D occurs between the transitions01 Aand 01 B.
The default set of pins applies only for vector expressions without conditions. The conditional event AND opera-
tor limits the set of variables in the event queue. In this case, only the state of the condition and the variables
appearing in the vector expression are observed.
Example
(01 A->01B) & (C| D

No transition on A, B occurs between 01 Aand 01 B,and (C | D) needsto stay Truein-between 01 A and
01 Baswell. However, Cand D can change their valuesaslongas (C | D) issatisfied.

10.6 Modeling with vector expressions

Vector expressions provide a formal language to describe digital waveforms. This capability can be used for
functional specification, for timing and power characterization, and for timing and power analysis.

In particular, vector expressions add value by addressing the following modeling issues:

— Functional specification: complex sequentia functionality, e.g., bus protocols.

— Timing analysis. complex timing arcs and timing constraints involving more than two signals.

— Power analysis: temporal and spatial correlation between events relevant for power consumption.

— Circuit characterization and test: specification of characterization and/or test vectors for particular tim-
ing, power, fault, or other measurements within a circuit.

Like boolean expressions, vector expressions provide the means for describing the functionality of digital cir-
cuitsin various contexts without being self-sufficient. Vector expressions enrich this functional description capa-
bility by adding a“dynamic” dimension to the otherwise “static” boolean expressions.

The following subsections explain the semantics of vector expressions step-by-step. The vector expression con-

cept is explained using terminology from simulation event reports. However, the application of vector expres-
sionsis not restricted to post-processing event reports.

IEEE P1603 Draft 5 Advanced Library Format (ALF) Reference Manual 145

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

Some application tools (e.g., power analysis tools) can actually evaluate vector expressions during post-process-
ing of event reports from simulation. Other application tools, especially simulation model generators, need to
respect the causality between the triggering events and the actions to be triggered. While it is semantically
impossible to describe cause and effect in the same vector expression for the purpose of functional modeling,
both cause and effect can appear in avector expression used for atiming arc description.

ALF does not make assumption about the physical nature of the event report. Vector expressions can be applied
to an actual event report writtenin afile, to an internal event queue within asimulator, or to a hypothetical event
report which is merely a mathematical concept.

10.6.1 Event reports

This section describes the terminology of event reports from simulation, which is used to explain the concept of
ALF vector expressions. The intent of ALF vector expressions is not to replace existing event report formats.
Non-pertinent details of event report formats are not described here.

Simulation events (e.g., from Verilog or VHDL) can be reported in a value change dump (VCD) file, which has
the following general form:

<tinmel>
<vari abl eA> <statel>
<vari abl eB> <st at eV>
<ti me2>
<vari abl eC <st ateW
<vari abl eD> <st ateX>

<tinme3> ...

The set of variables for which simulation events are reported, i.e., the scope of the event report needs to be
defined beforehand. Each variable also has a definition for the set of states it can take. For instance, there can be
binary variables, 16-bit integer variables, 1-bit variables with drive-strength information, etc. Furthermore, the
initial state of each variable shall be defined as well. In an ALF context, the terms signal and variable are used
interchangeably. In VHDL, the corresponding term is signal. In Verilog, there is no single corresponding term.
All i nput , out put ,wi r e, andr eg variablesin Verilog correspondto asi gnal inVHDL.

Thetimevaues<ti mel>, <ti ne2>, <t i ne3>, etc. shall be in increasing order. The order in which simulta-
neous events are reported does not matter. The number of time points and the number of simultaneous events at a
certain time point are unlimited.

In the physical world, each event or change of state of avariable takes a certain amount of time. A variable can-
not change its state more than once at agiven point in time. However, in simulation, thistime can be smaller than
the resolution of the time scale or even zero (0). Therefore, a variable can change its state more than once at a
given point in simulation time. Those events are, strictly speaking, not simultaneous. They occur in a certain
order, separated by an infinitely small delta-time. Multiple simultaneous events of the same variable are not
reported in the VCD. Only the final state of each variable is reported.

A VCD file is the most compact format that allows reconstruction of entire waveforms for a given set of vari-
ables. A more verbose form is the test pattern format.

<TI ME> <vari abl eA> <vari abl eB> <vari abl eC <vari abl eD>

<tinmel> <statel> <st at eV> .
<tinme2> <statel> <st at eV> <st at eWs <st at eX>
<tinme3> ...

146 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 5

The test pattern format reports the state of each variable at every point in time, regardless of whether the state has
changed or not. Previous and following states are immediately available in the previous and next row, respec-
tively. This makes the test pattern format more readable than the VCD and well-suited for taking a snapshot of
eventsin atime window.

An example of an event report in VCD format:

/1 initial values

AO B 1 cl1 D X E 1l
/1 event dunp

109 DO

258
573
586
643
788
915
1062
1395 co

1640 0 D1

/1 end of event dunp

B1 Ccl1

>oOmMm>»>r>>r0n>
OorORrROOOR

An example of an event report in test pattern format:

tine A
0 0
109 1
258 1
573 1
586 0
643 1
788 0
915 1
1062 1
1395 1
1640 0

OCORRPRRPROOOORRLRM
OCORRPRRPROOORREREQD
RPOOO0OO0OO0OO0OO0OO0OO XU
COORRRPRRERPRERRERRERM

Both VCD and test pattern formats represent the same amount of information and can be trandated into each
other.

10.6.2 Event sequences

For specification of a functional waveform (e.g., the write cycle of a memory), it is not practical to use an event
report format, such asaVCD or test pattern format. In such waveforms, there is no absolute time. And the rela-
tive time, for example, the setup time between address change and write enable change, can vary from one
instance to the other.

The main purpose of vect or _expr essi ons is waveform specification capability. The following operators
can be used:

— vect or_unary (also called edge operator or unary vector operator)
The edge operator is a prefix to a variable in a vector expression. It contains a pair of states, the first
being the previous state, the second being the new state. Edge operators can describe a change of state or
no change of state.

IEEE P1603 Draft 5 Advanced Library Format (ALF) Reference Manual 147

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

— vect or _and (also called simultaneous event operator)
This operator uses the overloaded symbol & or && interchangeably. The & operator is the separator
between simultaneously occurring events

— vector _fol |l owed_by (aso caled followed-by operator)
The “immediately followed-by operator” using the symbol - > istreated first. The - > operator isthe sep-
arator between consecutively occurring events.

These operators are necessary and sufficient to describe the following subset of vect or _expr essi ons:

a) vector_single event
A change of state in asingle variable, for example:
01 A
b) vector_event
A simultaneous change of state in one or more variables, for example:
01 A& 10 B
Cc) vector_event_sequence
Subsequently occurring changes of state in one or more variables, for example:
01 A&10B->10 A

Thevect or _and operator has a higher binding priority than thevect or _f ol | owed_by operator.
The pattern of the sample event report can now be expressed in avect or _event _sequence expression:

0l A&X0D->10B->10C->10 A->01 A
->10A&01B&01C->01A->10E->10B &10C->10 A& 01D

The length of avect or _event _sequence expression can be defined as the number of subsequent events
described in the vect or _event _sequence expression. The length is equal to the number of - > operators
plusone (1).

Although the vector expression format contains an inherent redundancy, since the old state of each variable is
always the same as the new state of the same variable in a previous event, it is more human-readable, especially
for waveform description. On the other hand, it is more compact than the test pattern format. For short event
sequences, it is even more compact than the VCD, since it eliminates the declaration of initial values. To be accu-
rate, for variables with exactly one event the vector expression is more compact than the VCD. For variables
with more than one event the VCD is more compact than the vector expression. In summary, the vector expres-
sion format offers readability similar to the test pattern format and compactness close to the VCD format.

10.6.3 Scope and content of event sequences

The scope applicable to a vector expression defines the set of variables in the event report. The content of a vec-
tor expression isthe set of variablesthat appear in the vector expression itself. The content of avector expression
shall be a subset of variables within scope.

— PI Nswith the annotation SCOPE = BEHAVI OR are applicable variables for vector expressions within
the context of BEHAVI OR.

— PI Nswith the annotation SCOPE = MEASURE are applicable variables for vector expressions within
the context of VECTOR.

— Pl Nswith the annotation SCOPE = BOTH are applicable variables for all vector expressions.

A vector _event _sequence expression is an event pattern without time, containing only the variables

within its own content. This event pattern is evaluated against the event report containing al variables within
scope. The vector expression is True when the event pattern matches the event report.

148 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 5

Example

time
0
109
258
573
586
643
788
915
1062
1395
1640

ORRPRPROFRPRORRLRRLROD>

OCOPFrRPFRPFPOOOORPFR®

OCORRPRRPROOORREQND

P OOO0OO0OO0OO0OO0OO0OO0OX0U

/1l scopeis A, B, C D E

COoOORRRRERRERREREREM

Consider the following vector expressions in the context of the sample event report:

01 A

/] event

11
1
11

A
0
1

/1(1)

pattern expressed by (1):

(1) isTrueat time 109, time 643, and time 915.

10 B-> 10 C

!/ event
/1 B
/1 1
/1 0
/1 0

(2) isTrueat time573.

10 A->01 A

!/ event
/1 A
/1 1
/1 0
/1 1

11(2)

pattern expressed by (2):

C

1
1
0

/1(3)

pattern expressed by (3):

(3) isTrueat time 643 and time 915.

01 D

/] event

/1
/1
/1

D
0
1

I1(4)

pattern expressed by (4):

(4) isTrueat time 1640.

01 A->10C

/] event

/1

A

/1(5)

pattern expressed by (5):

C

IEEE P1603 Draft 5

Advanced Library Format (ALF) Reference Manual

cont ent

cont ent

cont ent

cont ent

cont ent

is B, C

is A C

149

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

/1 0o 1
/1 1 1
/1 1 ©

(5) isnot be True at any time, since the event pattern expressed by (5) does not match the event report at any
time.

10.6.4 Alternative event sequences

The following operator can be used to describe aternative events:
vect or _or, aso caled event-or operator or alternative-event operator, using the overloaded symbol
| or|| interchangeably. The | operator isthe separator between alternative events or aternative event

sequences.

In analogy to boolean operators, | has alower binding priority than & and - >. Parentheses can be used to change
the binding priority.

Example
(01A->01B)| 10C=01A->01B]| 10C
0Ol A->(01B|] 10C ===01A->01B|] 01 A->10C

Consider the following vector expressions in the context of the sample event report:

01 A| 10 /1(6)
//event pattern expressed by (6):

/1 A

/1 0

/1 1

/lalternative event pattern expressed by (6):

/1 C

/1 1

/1 0

(6) isTrueat time 109, time 573, time 643, time 915, and time 1395.

10B->10C| 10 A->01 A 11 (7)
/levent pattern expressed by (7):

/1 B C

/1 1 1

/1 0 1

/1 0 O

/lalternative event pattern expressed by (7):
/1 A

/1 1

/1 0

/1 1

(7) isTrueat time 573, time 643, and time 915.

01 D| 10 B-> 10 C 11(8)

150 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 5

/1 event pattern expressed by (8):

/1 D

/1 0

/1 1

/lalternative event pattern expressed by (8):
/1 B C

/1 1 1

/1 0 1

/1 0 O

(8) isTrueat time 573 and time 1640.

10 B->10C| 10 A 11(9)
/levent pattern expressed by (9):

/1 B C

/1 1 1

/1 0 1

I 0 O

/lalternative event pattern expressed by (9):

/1 A

/1 1

/1 0

(9) isTrueat time 573, time 586, time 788, and time 1640.
The following operators provide a more compact description of certain alternative event sequences:
— &> events occur simultaneously or follow each other in the order RHS after LHS

— <->alLHSevent followed by a RHS event or aRHS event followed by a LHS event
— <&> events occur simultaneously or follow each other in arbitrary order

Example
01 A& 01 C === 01 A&01C]|] 01 A->01C
0l A<->01C == 01A->01C| 01C->01A
0l A< 01C === 0l1A<>01C| 01LA&O1C

The binding priority of these operatorsis higher than of & and - >.
10.6.5 Symbolic edge operators

Alternative events of the same variable can be described in a even more compact way through the use of edge
operators with symbolic states. The symbol ? stands for “any state”.

— edge operator with ? asthe previous state:
transition from any state to the defined new state
— edge operator with ? asthe next state:
transition from the defined previous state to any state.

Both edge operators include the possibility no transition occurred at al, i.e., the previous and the next state are
the same. This situation can be explicitly described with the following operator:

edge operator with next state = previous state, also called non-event operator
The operand stays in the state defined by the operator.

IEEE P1603 Draft 5 Advanced Library Format (ALF) Reference Manual 151

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

The following symbolic edge operators also can be used:
a) ?- notransition on the operand
b) ?! transition from any state to any state different from the previous state

c) ?7? transition from any state to any state or no transition on the operand
d) ?~ transition from any state to its bitwise complementary state

Example

Let A be alogic variable with the possible states 1, 0, and X.

20 A===00 A| 10 A| X0 A

21 A===01A| 11 A| XL A

2X A === 0XA| IXA| XX A

0?7 A=== 00 A| 01 A| OX A

1?7 A=== 10 A| 11 A| 1X A

X2 A=== X0 A| XL A| XXA

2 A=== 01 A| OXA| 10 A| 1IXA| X0 A| XL A

2~ A===01A| 10 A| XXA

22 A=== 00 A| 0L A| OXA| 10 A| 11 A| 1IXA| XOA| XL A| XX A
2- A=== 00 A| 11 A| XX A

For variables with more possible states (e.g., logic states with different drive strength and multiple bits) the
explicit description of aternative eventsis quite verbose. Therefore the symbolic edge operators are useful for a
more compact description.

This completes the set of vect or _bi nary operators necessary for the description of a subset of
vect or _expressi ons caled vect or _conpl ex_event expressions. All vect or _bi nary operators
have two vect or _conpl ex_event expressions as operands. The set of vect or _event _sequence
expressions is a subset of vector_conpl ex_event expressions. Every vect or _conpl ex_event
expression can be expressed in terms of alternativevect or _event _sequence expressions. The latter can be
called minterms, in analogy to boolean algebra.

10.6.6 Non-events
A vector_singl e_event expression involving anon-event operator is called a non-event. A rigorous defi-
nition is required for vect or _conpl ex_event expressions containing non-events. Consider the following

example of aflip-flop with clock input CLK and data output Q.

01 CLK -> 01 Q // (i)
01 CLK -> 00 Q // (ii)

The vector expression (i) describes the situation where the output switches from O to 1 after the rising edge of
the clock. The vector expression (i i) describesthe situation where the output remains at O after therising edge
of the clock.

How isit possible to decide whether (i) or (i) isTrue, without knowing the delay between CLK and Q? The
only way isto wait until any event occurs after the rising edge of CLK. If the event is not on Q and the state of Q
isO during that event, then (i i) isTrue

Hence, a non-event is True every time when another event happens and the state of the variable involved in the
non-event satisfies the edge operator of the non-event.

Example

152 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 5

time
0
109
258
573
586
643
788
915
1062
1395
1640

ORRPRPROFRPRORRLRRLROD>
OCORRPRFPROOOORRLRD
OCORRPRRFPROOORREREQND
POOO0OO0OO0OO0OO0OO0OOX0U
COoOORRRRERRERRERERREM

The test pattern format represents an event, for example 01 A, in no different way than a non-event, for example
11 E. Thisnon-event is True at times 109, 258, 573, 586, 643, 788, and 915; in short, every time when an event
happens while E is constant 1.

10.6.7 Compact and verbose event sequences

A vect or _event _sequence expression in acompact form can be transformed into a verbose form by pad-
ding up every vector _event expresson with non-events. The next state of each variable within a
vect or _event expression shall be equal to the previous state of the same variable in the subsequent
vect or _event expression.

Example
01 A->10B===01 A& 11 B->11 A& 10 B

A vector expression for a complete event report in compact form resembles the VCD, whereas the verbose form
looks like the test pattern.

/1 conpact form

01l A&X0D->10B->10C->10 A->01 A
->10 A&01B&01C->01A->10E
->10B &10C->10 A& 01 D

!/l verbose form

?20A&?1 B&7?1 C&?XD&?1E ->
0l A&11 B&11 C& X0OD&11 E ->
11 A&10B & 11 C& 00 D&11 E ->
11 A&00B&10C&00 D&11 E ->
10 A&00B&00OC&0D0D&I1I1E ->
0l A&00OB &0 C&O0O0D&I11 E ->
10 A&01B&01 C&0D0D&I1I1E ->
0l A&11 B&11 C&00D&11 E ->
11 A&11 B&11 C& 00 D&10E ->
11 A&10B & 10 C& 00 D &O0O0O E ->
10 A& 00 B & 00 C&01 D&OO0 E

The transformation rule needs to be dlightly modified in case the compact form contains avect or _event

expression consisting only of non-events. By definition, the non-event is True only if areal event happens simul-
taneoudly with the non-event. Padding up avect or _event expression consisting of non-events with other
non-events make this impossible. Rather, thisvect or _event expression needs to be padded up with unspeci-

IEEE P1603 Draft 5 Advanced Library Format (ALF) Reference Manual 153

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

fied events, using the ?? operator. Eventually, unspecified events can be further transformed into partly specified
events, if aformer or future state of the involved variable is known.

Example

01 A->008B
=== 01 A&00 B->?? A&00 B

In the first transformation step, the unspecified event ?? Aisintroduced.

01 A&00 B->7?? A&00 B
=== 01 A&00 B->1? A& 00 B

In the second step, this event becomes partly specified. ?? Aisboundtobe1? A dueto the previous event on
A

10.6.8 Unspecified simultaneous events within scope

Variables which are within the scope of the vector expression yet do not appear in the vector expression, can be
used to pad up the vector expression with unspecified events as well. Thisis equivalent to omitting them from the
vector expression.

Example

01 A->10B /1 let us assune a scope containing A, B, C, D, E

01l A&10B&??2C&°??D&??E->11A&10B&??7C&°??2D&?°E

This definition allows unspecified events to occur simultaneously with specified events or specified non-events.
However, it disallows unspecified events to occur in-between specified events or specified non-events.

At first sight, this distinction seemsto be arbitrary. Why not disallow unspecified events altogether? Yet there are
several reasons why this definition is practical.

If avector expression disallows simultaneously occurring unspecified events, the application tool has the burden
not only to match the pattern of specified events with the event report but also to check whether the other vari-
ablesremain constant. Therefore, it is better to specify this extra pattern matching constraint explicitly in the vec-
tor expression by using the ?- operator.

There are many cases where it actually does not matter whether simultaneously occurring unspecified events are
allowed or disallowed:

— Case 1. Simultaneous events are impossible by design of the flip-flop. For instance, in a flip-flop it is
impossible for atriggering clock edge 01 CK and a switch of the data output ? Qto occur at the same
time. Therefore, such events can not appear in the event report. It makes no difference whether 01 CK &
?- Q01 CK & ?? Qor01 CK isspecified. Theonly occurring event patternis01 CK & ?- Q
and this pattern can be reliably detected by specifying 01 CK.

— Case 2: Simultaneous events are prohibited by design. For instance, in a flip-flop with a positive setup
time and positive hold time, the triggering clock edge 01 CK and a switch of the datainput ?! Disa
timing violation. A timing checker tool needs the violating pattern specified explicitly, i.e.,, 01 CK &
?1 D. Inthis context, it makes sense to specify the non-violating pattern also explicitly, i.e,, 01 CK &
?- D.Thepattern 01 CKhby itself isnot applicable.

— Case 3: Simultaneous events do not occur in correct design. For instance, power analysis of the event 01
CK needs no specification of ?! Dor ?- D. Inthe anaysis of an event report with timing violations, the

154 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 5

power analysis is less accurate anyway. In the analysis of the event report for the design without timing
violation, the only occurring event patternis01 CK & ?- Dand this pattern can bereliably detected by
specifying 01 CK.2

— Case 4: The effects of simultaneous events are not modeled accurately. This is the case in static timing
analysis and also to some degree in dynamic timing simulation. For instance, a NAND gate can have the
inputs A and B and the output Z. The event sequence exercising thetimingarc01 A -> 10 Zcanonly
happen if B is constant 1. No event on B can happen in-between 01 Aand 10 Z. Likewise, thetiming
arc01 B -> 10 Z canonly happenif Aisconstant 1 and no event happensin-between 01 B and 10
Z. The timing arc with simultaneously switching inputs is commonly ignored. A tool encountering the
scenario01 A & 01 B -> 10 Z hasno choice other than treating it arbitrarily as01 A -> 10 Z
oras01 B -> 10 Z

— Caseb5: The effects of simultaneous events are model ed accurately. Here it makes sense to specify all sce-
narios explicitly,eg., 01 A & ?- B -> 10 Z,01 A &?! B -> 10 Z,?- A & 01 B -> 10
Z, etc., whereas the patterns01 A -> 10 Zand01l B -> 10 Z by themselves apply only for less
accurate analysis (see Case 4).

Thereis aso aformal argument why unspecified events on a vector expression need to be alowed rather than
disallowed. Consider the following vector expressions within the scope of two variables A and B.

01 A 11 (i)
01 B 11 (i)
01 A&OLB // (iii)

The natural interpretation hereis (iii) === (i) & (ii). Thisinterpretation is only possible by allowing
simultaneously occurring unspecified events.

Allowing simultaneously occurring unspecified events, the vector expressions (i) and (i i), respectively, are
interpreted as follows:

01 A&??B [/ (i)
22 A&O01 B [/ (ii)

Disallowing simultaneously occurring unspecified events, the vector expressions (i) and (i i), respectively,
are interpreted as follows:

01 A&? B [/ (i)
2- A&O01B [/ (ii)

The vector expressions (i’) and (i i’) arecompatiblewith (iii),whereas(i’’) and(ii’’) arenot.
10.6.9 Simultaneous event sequences

The semantic meaning of the “simultaneous event operator” can be extended to describe simultaneously occur-
ring event sequences, by using the following definition:

(01 A#1 .. -> ... 01 A#N) & (01 B#1 .. -> ... 01 B#N)
=== 01 A#1 & 01 B#1 ... -> ... 01 A#N & 01 B#N

This definition is analogous to scalar multiplication of vectors with the same number of indices. The number of
indices corresponds to the number of vect or _event expressions separated by - > operators. If the number of

2The power analysistool relatesto atiming constraint checker in asimilar way as a parasitic extraction tool relatesto a DRC toal. If the lay-
out has DRC violations, for instance shorts between nets, the parasitic extraction tool shall report inaccurate wire capacitance for those nets.
After final layout, the DRC violations shall be gone and the wire capacitance shall be accurate.

IEEE P1603 Draft 5 Advanced Library Format (ALF) Reference Manual 155

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

- > in both vector expressionsis not the same, the shorter vector expression can be | eft-extended with unspecified
events, using the ?? operator, in order to align both vector expressions.

Example

(01 A->01B->01C & (01 D->01E

=== (01 A->01 B->01C & (?? D->01D-> 01 E)
=== 01 A&??2D->01B&01D->01LC&OLE

=== 01 A->01B&O01D->01C&O1E

The easiest way to understand the meaning of “simultaneous event sequences’ isto consider the event report in
test pattern format. If each vect or _event _sequence expression matches the event report in the same time
window, then the event sequences happen simultaneously.

>
m

tine
0
109
258
573
586
643
788
915
1062
1395
1640

ORRPPFPORPRORRERREO
OCORRPRRFPROOOORRLRM
OCORRPRPROOORREREQD
POOO0OO0OO0OO0OO0OO0O XU
COoOO0ORRRRRERRREPR

Example

01 A->10B==01A&11B->11 A&10 B /1 (10a)
/1 event pattern expressed by (10a):

/1 A B

/1 0 1

/1 1 1

/1 1 0

X0 D->00D /1 (10b)
/1l event pattern expressed by (10b):

/1 D

/1 X

/1 0

/1 0

(01 A->10B) & (X0 D-> 00 D) /1 (10) === (10a) & 10b)

Both (10a) and (10b) are True at time 258. Therefore (10) is True at time 258.

10 C

== ?? C->??2 C->10C

== ?? C->?1 C->10C /1 (11a)
/1l event pattern expressed by (1lla):

/1 C

/1 ?

/1 ?

/1 1

/1 0

156 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 5

(11a) isleft-extended to match the length of the following (11b) .

01 A->00 D-> 11 E ===
01 A&O0O0 D&??E
->?? A&00 D &??E
-> 7?7?27 A&??D&11 E
01 A&O0O0D&??E
->1? A&00D&?1E
->?? A&0? D& 11 E 11 (11b)
/1 event pattern expressed by (11b):
/1 A D E
/1 o o 2
/1 1 0 2
/1 ? 0 1
/1 ? 0?2 1

(11b) contains explicitly specified non-events. The non-event 00 D calls for the unspecified events ?? A and
?? E. Thenon-event 00 E callsfor the unspecified events ?? Aand ?? D. By propagating well-specified pre-
vious and next states to subsequent events, some unspecified events become partly specified.

10 C & (01 A -> 00 D -> 11 E) /1 (11) === (11a) & 11b)

(11a) isTrueat time 573 and time 1395. (11b) is True at time 573 and time 915. Therefore, (11) is True at
time 573.

10.6.10 Implicit local variables

Until now, vector expressions are evaluated against an event report containing all variables within the scope of a
cell. It ispractical for the application to work with only one event report per cell or, at most, two event reports if
the set of variables for BEHAVI OR (scope=behavi or) and VECTOR (scope=neasur e) isdifferent. How-
ever, for complex cells and megacells, it is sometimes necessary to change the scope of event observation,
depending on operation modes. Different modes can require a different set of variables to be observed in differ-
ent event reports.

The following definition allows to extend the scope of a vector expression locally:
Edge operators apply not only to variables, but also to boolean expressions involving those variables.
Those boolean expressions represent implicit local variables that are visible only within the vector

expression where they appear.

Supposethelocal variables(A & B),(A | B) areinserted into the event report:

timm A B C D E A8 AB
0 0 1 1 X 1 0 1
109 1 1 1 0 1 1 1
258 1 0 1 0 1 0 1
573 1 0 0 0 1 0 1
586 0 0 0 0 1 0 0
643 1 0 0 0 1 0 1
788 0 1 1 0 1 0 1
915 1 1 1 0 1 1 1
1062 1 1 1 0 0 1 1

IEEE P1603 Draft 5 Advanced Library Format (ALF) Reference Manual 157

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

1395 1 0O o 0 o 0 1
1640 0 0 O 1 0 0 0

Example

01 (A & B)

/1l event pattern expressed by (12):
/1 A&B

/1 0

/1 1

(12) isTrueat time 109 and time 915.

10 (A | B)

/1 event pattern expressed by (13):
I Al B

/1 1

/1 0

(13) isTrueat time 586 and time 1640.
01 (A&B) ->10 B

/1 event pattern expressed by (14):
/1 B A&GB

/1 1 0
/1 1 1
/1 0 1

(14) isTrueat time 258.

10 (A&B) &10B ->10 C
/1 event pattern expressed by (15):
/1 B C A&

/1 1 1 1
/1 0 1 0
/1 0 0 0

(15) isTrueat time573.

10 (A& B) -> 10 (A] B
/1 event pattern expressed by (16):
/1 A&B A B

11 1 1
11 0 1
/1 0 0

(16) isTrueat time 1640.
10.6.11 Conditional event sequences

The following definition restricts the scope of avector expression locally:

Il (12)

Il (13)

11 (14)

/1 (15)

Il (16)

vect or _bool ean_and, aso called conditional event operator

158 Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 5

This operator is defined between a vector expression and a boolean expression, using the overloaded
symbol & or &&. The scope of the vector expression is restricted to the variables and eventual implicit
local variables appearing within that vector expression. The boolean expression shall be True during the
enti r(3e vector expression. The boolean expression is called the Existence Condition of the vector expres-
sion.

Vector expressions using the vect or _bool ean_and operator are called vect or _condi ti onal _event
expressions. Scope and contents of such expressions are identical, as opposed to non-conditional
vect or _conpl ex_event expressions, where the content is a subset of the scope.

Example

(10 (A& B) -> 10 (A]| B)) &!'D Il (17)
/1 event pattern expressed by (17):

/1 A&B A B

/1 1 1

/1 0 1

I 0 0

/1l event report without C E

time A A&B AB

0
109
258
586
643
788
915
1062
1395
1640

=

ORRPRPRORFRORRERO
OCORRPRPFPROOORRFLD
POOOO0OO0OO0OO0OXU
OORPFRPROOOORrRO
ORRPRRPRRLPRRPLRORPR

(17) contains the same vect or _conpl ex_event expression as (16) . However, although (16) is not
Trueat time 586, (17) isTrue at time 586, since the scope of observation is narrowed to A, B, A&B, and A| B by
the existence condition ! D, which is statically True while the specified event sequence is observed.

Within, and only within, the narrowed scope of thevect or _condi ti onal _event expression, (17) canbe
considered equivalent to the following:

(10 (A& B) -> 10 (A| B)) &!'D

(10 (A& B) -> 10 (A| B)) & (11 (!D) -> 11 (! D))

10 (A&B) &11 (!D -> 10 (A]| B & 11 (!'D
The transformation consists of the following steps:

a) Transform the boolean condition into a non-event.
For example, ! Dbecomes11l (! D).

3An Existence Condition can also appear as annotation to a VECTOR object instead of appearing in the vector expression. This enables recog-
nition of existence conditions by application tools which can not evaluate vector expressions (e.g., static timing analysis tools). However, for
tools that can evaluate vector expressions, there is no difference between existence condition as a co-factor in the vector expression or as an
annotation.

IEEE P1603 Draft 5 Advanced Library Format (ALF) Reference Manual 159

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

b) Left-extend the vect or _si ngl e_event expression containing the non-event in order to match the
length of thevect or _conpl ex_event expression.
For example, 11 (! D) becomes1l (! D) -> 11 (! D) to match thelength of
10 (A& B) -> 10 (A | B).

¢) Apply scalar multiplication rule for simultaneously occurring event sequences.

Thus, a vector_conditional event expresson can be transformed into an equivaent
vect or _conpl ex_event expression, but the change of scope needs to be kept in mind. An operator which
can express the change of scope in the vector expression language is defined in 10.6.13. This can make the trans-
formation more rigorous.

Regardless of scope, the transformation from vector _conditional event expresson to
vector _conpl ex_event expression aso provides the means of detecting ill-specified
vect or _condi ti onal _event expressions.

Example

(10 A->01B->01LA) &A

10 A&11 A->01B&11 A->01 A&11 A
The first expression 10 A & 11 A and the third expresson 01 A & 11 A within the
vect or _conpl ex_event expression are contradictory. Hence, the vect or _conditi onal _event
expression can never be True.

10.6.12 Alternative conditional event sequences

All vector_binary operators, in particular the vector_or operator, can be applied to
vect or _conditional _event expressionsaswell astovect or _conpl ex_event expressions.

Consider again the event report:

>
@]

tine
0
109
258
573
586
643
788
915
1062
1395
1640

ORPFPRFRPORORREO
OCORRPRRPRPROOOORRLRM
OORRFPRFRPROOORRR

RPOOO0OO0OO0OO0OO0OO0OO XU
COO0ORRRRERPRRERERERM

Concurrent alternative vect or _condi ti onal _event expressions can be paraphrased in the following
way:
| F <bool ean_expressi on;> THEN <vect or _expr essi on,>
OR | F <bool ean_expressi on,> THEN <vect or _expressi ony,>
OR | F <bool ean_expressi ony> THEN <vect or _expressi ony>

The conditions can be True within overlapping time windows and thus the vector expressions are evaluated con-
currently. Thevect or _bool ean_and operator and vect or _or operator describe such vector expressions.

160 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 5

Example

C&01 A->10B) | 'D&10 B -> 10 A) | E&10 B -> 10 O // (18)
/1 Event pattern expressed by (18):

/1 A B C

/1 0 1 1

/1 1 1 1

/1 1 0 1

(18) isTrueat time 258 becauseof C & (01 A -> 10 B).

/1 Aternative event pattern expressed by (18):
/1 A B D

/1 1 1 o0

/1 1 0 O

/1 0O 0 O

(18) isdso Trueat time586 becauseof ! D & (10 B -> 10 A).

/1 Alternative event pattern expressed by (18):

/1 B C E

/1 1 1 1

/1 0 1 1

/1 0O 0 1

(18) isadso Trueat time573 becauseof E & (10 B -> 10 C).

Prioritized alternative vect or _condi ti onal _event expressions can be paraphrased in the following way:

| F <bool ean_expressi on;> THEN <vect or _expr essi on,>

ELSE | F <bool ean_expressi ony,> THEN <vect or _expressi ony>
ELSE | F <bool ean_expressi ony> THEN <vect or _expressi onp>

(optional) ELSE <vector_expressi ONgefault>

Only the vector expresson with the highest priority True condition is evaluated. The
vect or _bool ean_cond operator and vect or _bool ean_el se operator are used in ALF to describe
such vector expressions.

Example
C? (01 A->10B): 'D? (10 B-> 10 A: E? (10 B->10 C // (19

The prioritized aternative vect or _condi ti onal _event expression can be transformed into concurrent
dternativevect or _condi ti onal _event expression as shown:

C? (01 A->10B) : 'D? (10 B->10A) : E? (10 B -> 10 O

C& (0L A->10 B)
| 1C&!D& (10 B -> 10 A
| '1C&!(!D) & E & (10 B -> 10 Q)

(19) isTrueat time 258 becauseof C & (01 A -> 10 B), but not at time 586 because of higher priority C

while! D & (10 B -> 10 A), nor at time 573 because of higher priority ! Dwhile
E & (10 B -> 10 O).

IEEE P1603 Draft 5 Advanced Library Format (ALF) Reference Manual 161

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

10.6.13 Change of scope within a vector expression

Conditions on vector expressions redefine the scope of vector expressions locally. The following definition can
be used to change the scope even within a part of a vector expression. For this purpose, the symbolic state * can
be used, which means “don’t care about events”. Thisis different from the symbolic state ? which means “don’'t
care about state”. When the state of avariableis*, arbitrary events occurring on that variable are disregarded.

— Edge operator with * as next state:
The variable to which the operator appliesis no longer within the scope of the vector expression.
— [Edge operator with * as previous state:
The variable to which the edge operator applies is now within the scope of the vector expression.
Asopposedto ?, * stands for an infinite variety of possibilities.
Example

Let A bealogic variable with the possible states 1, 0, and X.

*0 A ===

00 A| 10 A| X0 A

| 00A->00A| 10A->00A| X0 A->00A
| OLA->10A| 11 A->10 A| XL A-> 10 A
| OXA->X0 A| 1IXA->X0 A| XX A->X0 A
| 00 A->00A->00A |

0* A ===

00 A| 0L A| OX A

| 00OA->00A| 00A->01A| 00A->0XA
| OLA->10 A| 0L A->11 A| 01 A-> 1X A
| OXA->X0 A| OXA->XL A| OXA-> XX A
| 00 A->00A->00A |

A vector expression with an infinite variety of possible event sequences cannot be directly matched with an event
report. However, there are feasible ways to implement event sequence detection involving * . In principle, there
isa“static” and “dynamic” way. The following parts of the vector expression are separated by * sub-sequences
of events.

— “Static” event sequence detection with * :
The event report with all variables can be maintained, but certain variables are masked for the purpose of
detection of certain sub-sequences.

— “Dynamic” event sequence detection with * :
The event report shall contain the set of variables necessary for detection of a relevant sub-sequence.
When such a sub-sequence is detected, the set of variables in the event report shall change until the next
sub-sequence is detected, etc.

Examples

01 A->1* B-> 10 C /1 (20)
/1 Event pattern expressed by (20):

/1 A B C

/1 0 1 1

/1 1 1 1

/1 1 * 1

/1 1 * 0

162 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 5

/1 pattern for

1st sub-sequence:

/1 pattern for 2nd sub-sequence:

/1 A B C
/1 0 1 1
/1 1 1 1
/1 1 = 1
/1 A B C
/1 1 = 1
/1 1 = 0

The event report with masking relevant for (20) :

time
0
109
258
573
586
643
788
915
1062
1395
1640

ORrRPRPROFRORRLRRLROD>

O * * P R OO * Rk

OCORRPRRFRPROOORREREQND

P OOOOOO0OO0OO0OO0O XU

/1 detection of 1st sub-sequence
/1 detection of 2nd sub-sequence

/1 detection of 1st sub-sequence
/] detection of 2nd sub-sequence

OCOoOORRRPRRERPRERREREREM

(20) isTrueat time 573 and time 1395. The first sub-sequence01 A -> 1* Bisdetected at time 258, since
* maps to any state. From time 258 onwards, B is masked. The second sub-sequence 10 Cis detected at time
573. From time 573 onwards, B is unmasked. The first sub-sequence is detected again at time 1062. The second
sub-sequence is detected again at time 1395.

E->10 C
pattern expressed by (21):

11 (21)

1st sub-sequence:

/1l pattern for 2nd sub-sequence:

01 A & 1*

/1 Event

/1 A C E
/1 0 1 1
/1 1 1 *
/1 1 o *
/1l pattern for
/1 A C E
/1 0 1 1
/1 1 1 *
/1 A C E
/1 1 1 *
/1 1 o *

The event report with masking relevant for (21) :

tine
0
109
258
573
586
643

A
0
1
1
1
0
1

[eoNeNoNel i i)

IEEE P1603 Draft 5

coOoORrRLELRQO

o000 XU

/1 detection of 1st sub-sequence
/1 abortion of detection process

O N N 1l

Advanced Library Format (ALF) Reference Manual

163

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

788 0 1 1 o0 1
915 1 1 1 0 * /1 detection of 1st sub-sequence
1062 1 1 1 0 * /1 disregard event out of scope
1395 1 0 0 0 0 /1 detection of 2nd sub-sequence
1640 0 O O 1 o0

(21) is True at time 1395. The first sub-sequence 01 A & 1* E is detected at time 109. From time 109
onwards, E ismasked. The event on B at time 258 aborts continuation of the detection process and triggers restart
from the beginning. The first sub-sequence is detected again at time 915. From time 915 onwards, E is masked.
The event at time 1062 is therefore out of scope. The second sub-sequence 10 Cis detected at time 1395.

0OlA->*1B->10B&10C Il (22)
/1 Event pattern expressed by (22):
/1 A
/1 0
/1 1
/1 1
/1 1
/1 pat
/1 A
0
1
t
A
1
1
1

_..,
o

1st sub-sequence:

/1
/1
/1 pa
/1
/1
/1
/1

* xS OF * @

_.,
o
ORRPOTRPRRPOTORRLRERQND

2nd sub-sequence:

OrFr *mW?>S

The event report with masking relevant for (22) :

>

tine
0
109
258
573
586
643
788
915
1062
1395
1640

/1 detection of 1st sub-sequence
/] abort

/1 detection of 1st sub-sequence
/1 continue
/1 detection of 2nd sub-sequence

ORRPPFPORFRPRORRERREO
OOR % % % ¥ *ORRLR®m
OCORRPRRPROOORRERE(QD
RPOOO0OO0OO0OO0OO0OO0OO XU
OCOoOO0ORRRPRRERPRERRERREM

(22) is True at time 1395. The first sub-sequence 01 A is detected at time 109. Therefore, B is unmasked.
Since B=0 at time 258, the attempt to detect the second sub-sequence is aborted and the detection process restarts
from the beginning. The first sub-sequence 01 A is detected again at time 109. The second sub-sequence*1 B
-> 10 B & 10 Cisdetected at time 1395.

01 A->1? A&0* B&1* E-> 10 C 1 (23)
/1l Event pattern expressed by (23):

/1 A B C E

/1 0 0 1 1

/1 1 0 1 1

164 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 5

/1 1 * 1 *
/1 1 * 0o =
/1 pattern for 1st sub-sequence:
/1 A B C E

/1 0 O 1 1
/1 1 0 1 1
/1 ? 1 =

/1 pattern for 2nd sub-sequence:
/1 A B C E
/1 ? (R
/1 ? 0o =

The event report with masking relevant for (23):

>

tine
0
109
258
573
586
643
788
915
1062
1395
1640

/1 detection of 1st sub-sequence
/] abort

ORRPPRPRORORRERREO
OOR * xOOO0OORRLRM®
OCORRPRRFRPROOORRERE(QD
POOO0OO0OO0OO0OO0OO0OO XU
QOO * *RPRREPRRREREPM

(23) isnot True at any time. The first sub-sequence is detected at time 788. The event at time 915 does not
match the expected second sub-sequence.

10.6.14 Sequences of conditional event sequences

The symbol * can be used to describe the scope of avector expression directly in the vector expression language.
Thisis particularly useful for sequences of vect or _condi ti onal _event expressions.

Inreusing (17) asexample:

(10 (A& B) ->10 (A] B)) &!'D
the scope of the sample event report contains contain the variables A, B, C, D, and E. The
vector _conditional _event expression (17) contains only the variables A, B, and D and the implicit
local variables A&B and A| B. Therefore, the global variables C and E are out of scope within (17) . Theimplicit
local variables A&B and A| B are in scope within, and only within, (17) .
Now consider a sequence of vect or _condi ti onal _event expressions, where variables move in and out
of scope. With the following formalism, it is possible to transform such a sequence into an equivalent
vector_conpl ex_event expression, alowing for a change of scope within each
vector _conditional _event expression.

<vector_conditional _event#l1> .. -> .. <vector_conditional _event#N>

where

IEEE P1603 Draft 5 Advanced Library Format (ALF) Reference Manual 165

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

<vector_conditional event#i >
=== <vector_conpl ex_event #i > & <bool ean_expression#i > // 1 <i < N

The principleisto decompose each vect or _condi ti onal _event expression into a sequence of three vec-
tor expressions prefix, kernel, and postfix and then to reassembl e the decomposed expressions.

<vector_conditional event#i >
=== <prefix#i > -> <kernel #i > -> <postfix#i>// 1 <i <N

a) Definethe prefix for eachvect or _condi ti onal _event expression.
Theprefixisavect or _event expression defining all implicit local variables.

Example
*? (A&B) & *? (A B)

b) Definethekernel for eachvect or _condi ti onal _event expression.

The kernel is the vector_conpl ex_event expresson equivalent to the
vector _conditi onal _event expression.

<vect or _conpl ex_event #i > & <bool ean_expr essi on#i >

=== <vect or _conpl ex_event #i >

& (11 <bool ean_expression#i > ..->.. 11 <bool ean_expr essi on#i >)
The kernel can consist of one or severa alternative vect or _event _sequence expressions. Within
eachvect or _event _sequence expression, the same set of global variables are pulled out of scope
at the first vect or _event expression and pushed back in scope at the last vect or _event expres-
sion.

Example

?* C& ?* E /] global variables out of scope

& 10 (A&B) &11 (!D -> 10 (A] B) & 11 (!'D

& *? C& *? E // global variables back in scope

c) Definethe postfix for eachvect or _condi ti onal _event expression.
The postfixisavect or _event expression removing all implicit local variables.

Example
?* (A&B) & ?* (A B)

d) Jointhesubsequentvect or _conpl ex_event expressionswiththevect or _and operator between
prefix#i+1and kernel# and also between postfix#i and kernel#i+1.
<vector_conditional _event#i > -> <vector_conditional _event#i +1> ..
=== .. <prefix#i>
-> <postfix#i-1> & <kernel #i > & <prefi x#i +1>
-> <postfix#i > & <kernel #i +1> & <prefi x#i +2>
-> <postfix#i +1> ..

The complete example:

(10 (A& B) -> 10 (A| B)) &!D

*2 (A&B) & *? (Al B)

> 7?2 C& ™ E

& 10 (A&B) &11 (!D -> 10 (A| B) & 11 (!D)
&*? C&*? E

-> 2% (A&B) & ?* (A B)

166 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 5

NOTE —The in-and-out-of-scope definitions for global variables are within the kernel, whereas the in-and-out-of-scope def-
initions for globa variables are within the prefix and postfix. In this way, the resulting vect or _conpl ex_event expres-
sion contains the same uninterrupted sequence of events as the original sequence of vect or _condi ti onal _event
expressions.

10.6.15 Incompletely specified event sequences

So far the vector expression language has provided support for completely specified event sequences and also the
capability to put variables temporarily in and out of scope for event observation. As opposed to changing the
scope of event observation, incompletely specified event sequences require continuous observation of al vari-
ables while allowing the occurrence of intermediate events between the specified events. The following operator
can be used for that purpose:

vect or _fol | owed_by, aso called followed-by operator, using the symbol ~>.
The ~> operator is the separator between consecutively occurring events, with possible unspecified
events in-between.

Detection of event sequences involving ~> requires detection of the sub-sequence before ~>, setting a flag,
detection of the sub-sequence after ~>, and clearing the flag.

This can beillustrated with a sample event report:

tinme
0
109
258
573
586
643
788
915
1062
1395
1640

~
~

01 A detected, set flag
/1 10 C detected, clear flag
/1 01 A detected, set flag
/1 01 A detected again

/1 10 C detected, clear flag

ORRPRPROFRPRORRLRRELROD>
OCORRPRFRPROOOORRD
OCORRPRRPROOORREQND
RFPOOO0OO0OO0OO0OO0OO0OOX0U
COoOORRRPRRERRERREREREM

Example

01 A~>10 C Il (24)
/1 as opposed to previous exanple (5):01 A-> 10 C

(24) isTrue at time 573 because of 01 A at time 109 and 10 C at time 573. It is True again at time 1395
because of 01 Aattime643and 10 Cat 1395. On the other hand, (5) is never True because there are always
eventsin-between 01 Aand10 C.

Vector expressions consisting of vector_event expressions separated by -> or by ~> are caled
vect or _event _sequence expressions, using the same syntax rules for the two different
vector _fol |l owed_by operators. Consequently, al vector expressions involving
vect or _event _sequence expressions and vector _binary operators are called
vect or _conpl ex_event expressions.

However, only a subset of the semantic transformation rules can be applied to vector expressions containing ~>.

Associative rule applies for both - > and ~>.

IEEE P1603 Draft 5 Advanced Library Format (ALF) Reference Manual 167

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

(01 A~>01B) ~>01 C===01A~> (0L C~>01B~>010
(01 A->01B) ->01 C===01A-> (0L C->01B->010
(01 A~>01B) ->01 C===01A~> (0L C~>01B->010
(01 A->01B) ~>01 C===01A-> (0L C->01B~>010

Distributive rule applies for both - > and ~>.

(0L A| 01 B) ->01 C===01A~>01C| 01 B->01C
(01 A| 01 B) ~>01 C===01A~>01LC| 01 B~>01C
(0L A| 01 B) ->01 C===01A~>01LC| 0L B->01C

Scalar multiplication rule applies only for - >. The transformation involving ~> is more complicated.

(01 A->01B) & (01 C->01 D)
=== (01 A&01 C -> (01 B&O01 D

(01 A~>01B) & (01 C->01D)
=== (01 A&01 C -> (01 B&O01 D
| 01 A~>01 C-> (01 B & 01 D

(01 A ~> 01 B) & (01 C ~> 01 D)

=== (01 A & 01 C) ~> (01 B & 01 D)
| 01 A ~>01 C~> (01 B & 01 D)
| 01 C~> 01 A ~> (01 B & 01 D)

Transformation of vect or _condi ti onal _event expressions into vect or _conpl ex_event expres
sions applies only for - >.

(01 A->01B) &C
=== 01 A& 11 C->01 B&11 C

(01 A~>01B) &C
=== 01 A&11 C~>01B&11l C

Since the ~> operator allows intermediate events, there is no way to express the continuously True condition C.
10.6.16 How to determine well-specified vector expressions
By defining semantics for
dternativevect or _event _sequence expressions
and establishing calculation rules for

transforming vect or _conpl ex_event expressions into alternative vect or _event _sequence
expressions

and for

transforming aternative vect or _condi ti onal _event expressions into aternative
vect or _conpl ex_event expressions,

semantics are now defined for all vector expressions.

168 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 5

The calculation rules also provide means to determine whether a vector expression is well-specified or ill-speci-
fied. Anill-specified vector expression is contradictory in itself and can therefore never be True.

Once avector expression is reduced to a set of alternativevect or _event _sequence expressions, two crite-
ria define whether avector expression is well-defined or not.

— Compatibility between subseguent events on the same variable:
The next state of earlier event shall be compatible with previous state of later event. This check applies
only if no ~> operator isfound between the events.
— Compatibility between simultaneous events on the same variable:
Both the previous and next state of both events shall be compatible. Such events commonly occur as
intermediate cal culation results within vector expression transformation.
The following compatibility rules apply:
a) ? iscompatible with any other state. If the other stateis*, the resulting stateis ?. Otherwise, the result-
ing state is the other state.
b) * iscompatible with any other state. The resulting state is the other state.
c¢) Any other state is only compatible with itself.
Examples
01 A->01B->10 A
The next state of 01 A is compatible with the previous state of 10 A.
OXA->01B->10 A
The next state of 0X A isnot compatible with the previous state of 10 A.
OXA~>01B->10 A
Compatibility check does not apply, since intermediate events are allowed.
01 A& 10 A
Both the previous and next state of A are contradictory; this resultsin an impossible event.

?1 A& 1? A

Both previous and next state of A are compatible; thisresultsin the non-event 11 A.

10.7 Boolean expression language

The boolean expression language XXX, as shown in Syntax 75.

10.8 Vector expression language

The vector expression language XXX, as shown in Syntax 76.

IEEE P1603 Draft 5 Advanced Library Format (ALF) Reference Manual 169

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

boolean_expression ::
(boolean_expressi on)
| pin_value
| boolean_unary boolean_expression
| boolean_expression boolean |_binary boolean |_expression
| boolean_expression boolean _expression .
{ boolean expron ? boolean_expression : }
boolean_expression
boal ?an_unary u=
| ~
| &
| ~&
I
3
| ~N
boolean_binary
&
| & &
I
I
I
| ~N
! =
| ==
|>
I<—
|>
| <
|+
5
|/
| %
|>>
| <<

Syntax 75—Boolean expression language

10.9 Control expression semantics

** Syntax 76 also shows the control expression syntax (at the bottom); is this deliberate??

170 Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 5

vector_expression ::=
(‘vector_expression)
| vector_unary boolean_expression
| vector_expression vector_binary vector_expression
| boolean_expression ? vector_expression :
{ boolean_expression ? vector_expression . }
Vector_expression
| boolean_expression control_and vector_expression
| vector_expression control_and boolean_expression
vector_unary ::=
edge literal
vector_binary ::=

1& &
|
il

->
>

l

AWAN

->
~>
>

Ro

| <& >
control_and ::=
& |1&&
control_expression ::=
vector_expression)
| (boolean_expression)

IEEE P1603 Draft 5

Syntax 76—Vector expression language

Advanced Library Format (ALF) Reference Manual

171

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

172

Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 5

11. Constructs for electrical and physical modeling

** Add lead-in text**

11.1 Arithmetic expression

An arithmetic expression shall be defined as shown in Syntax 77.

arithmetic_expression ::=
(‘arithmetic_expression)
| arithmetic_value
| { boolean_expression ? arithmetic_expression : } arithmetic_expression
| [unary_arithmetic_operator] arithmetic_operand
| arithmetic_operand binary_arithmetic_operator arithmetic_operand

arithmetic_operand ::=
arithmetic_expression

| macro_arithmetic_operator (arithmetic_operand { , arithmetic_operand })

Syntax 77—Arithmetic expression

11.1.1 Unary arithmetic operator

An unary arithmetic operator shall be defined as shown in Syntax 78.

unary_arithmetic_operator ::=
+

Syntax 78—Unary arithmetic operator

Table 86 defines the semantics of unary arithmetic operators.

Table 86—Unary arithmetic operators

Operator Description Comment
+ Positive sign. Neutral operator.
- Negative sign.

11.1.2 Binary arithmetic operator

A binary arithmetic operator shall be defined as shown in Syntax 79.

IEEE P1603 Draft 5 Advanced Library Format (ALF) Reference Manual

173

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

binary_arithmetic_operator ::=
+

%

};
|/
|**
I

Syntax 79—Binary arithmetic operator

Table 87 defines the semantics of binary arithmetic operators.

Table 87—Binary arithmetic operators

Operator Description Comment
+ Addition
- Subtraction
* Multiplication
/ Division Result includes fractional part.
** Power
% Modulus Remainder of division.

11.1.3 Macro arithmetic operator

A macro arithmetic operator shall be defined as shown in Syntax 80.

macro_arithmetic_operator ::=
S
| eXp
|log
[min
| max

Syntax 80—Macro arithmetic operator

Table 88 defines the semantics of macro arithmetic operators.

Table 88—Macro arithmetic operators

Operator Description Comment
| og Natural logarithm. 1 operand, oper and > O.
exp Natural exponential. 1 operand.
abs Absolute value. 1 operand.
mn Minimum. N>1 operands.

174 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 5

Table 88—Macro arithmetic operators (Continued)

Operator Description Comment

max Maximum. N>1 operands.

The priority of operatorsin arithmetic expressions shall be from strongest to weakest in the following order:

a) unary arithmetic operator (+, -)

b) power (**)

c¢) multiplication (*), division (/), modulo division (%
d) addition (+), subtraction (-)

Examples for arithmetic expressions

1.24

- vdd

Cl + C2

MAX (3.5*C, -vdd/2 , 0.0)
(C>10) ? vdd**2 : 1/2*vdd - 0.5*C

11.2 Arithmetic model

An arithmetic model shall be defined as a trivial arithmetic_ model, a partial arithmetic model, or a full arith-
metic model, as shown in Syntax 81.

arithmetic_model ::=
trivia_arithmetic_model
| partial_arithmetic_model
| full_arithmetic_model
| arithmetic_model_template_instantiation

Syntax 81—Arithmetic model statement
The purpose of an arithmetic model isto specify a measurable or a calculable quantity.
11.2.1 Trivial arithmetic model

A trivial arithmetic model shall be defined as shown in Syntax 82.

trivial_arithmetic_model ::=
nonescaped_identifier [name_identifier] = arithmetic_value

| nonescaped_identifier [name_identifier] = arithmetic_value{ { model_qualifier } }

Syntax 82—Trivial arithmetic model

No mathematical operation is necessary to evaluate a trivial arithmetic model. The arithmetic value associated
with the arithmetic model represents the evaluation result. One or more model qualifier statements can be associ-
ated with atrivial arithmetic model.

IEEE P1603 Draft 5 Advanced Library Format (ALF) Reference Manual 175

10

15

20

25

30

35

40

45

50

55

1

10

15

20

25

30

35

40

45

50

55

11.2.2 Partial arithmetic model

A partial arithmetic model shall be defined as shown in Syntax 83.

partial_arithmetic_model ::=
nonescaped_identifier [name_identifier | { { partial_arithmetic_ model_item} }
partial_arithmetic_model_item ::=
model_qualifier
| table
| trivial_min-max

Syntax 83—~Partial arithmetic model

A partial arithmetic model does not specify a mathematical operation or an arithmetic value. Therefore it can not
be mathematically evaluated.

The purpose of apartia arithmetic model isto specify one or more model qualifier statements, a table statement,
or atrivial min-max statement. The specification contained within a partial arithmetic model can be inherited by
another arithmetic model of the same type, according to the following rules:

a) If the partia arithmetic model has no name, the specification shall be inherited by all arithmetic models
of the same type appearing within the same parent statement or within a descendant of the same parent
Statement.

b) If the partia arithmetic model has a name, the specification shall be only inherited by an arithmetic
model containing a reference to the partia arithmetic model, using the model reference annotation (see
**event_reference??).

¢) Anarithmetic model can override an inherited specification by its own specification.

11.2.3 Full arithmetic model

A full arithmetic model shall be defined as shown in Syntax 84.

full_arithmetic_model ::=
nonescaped_identifier [name_identifier] { { model_qualifier } model_body { model_qualifier } }
model_body ::=
header-table-equation [trivial_min-max]
| min-typ-max
| arithmetic_submodel { arithmetic_submodel }

Syntax 84—Full arithmetic model

The model body specifies mathematical data associated with the arithmetic model. The datais represented either
by a header-table-equation statement, or by a min-typ-max statement, or by one or more arithmetic submodel
statements.

The mathematical operation or the arithmetic value for evaluation of the arithmetic model can be contained

within one or more arithmetic submodels (see 11.4.3). The selection of an applicable submodel is controlled by
the semantics of the keyword that identifies the type of the arithmetic submodel.

11.3 HEADER, TABLE, and EQUATION

A header table egquation statement shall be defines as shown in Syntax 85.

176 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 5

header-table-equation ::=
header table
| header equation

Syntax 85—Header table equation
A header-table-equation statement specifies a procedure for evaluation of the mathematical data.
11.3.1 HEADER statement

A header statement shall be defined as shown in Syntax 86.

header ::=
HEADER { partia_arithmetic model { partial_arithmetic_model } }

Syntax 86—HEADER statement
Each partial arithmetic model within the header statement shall represent a dimension of an arithmetic model.
11.3.2 TABLE statement

A table statement shall be defined as shown in Syntax 87.

le::=
TABLE { arithmetic_value{ arithmetic value} }

Syntax 87—TABLE statement

A table statement within a partial arithmetic model shall define the set of legal values for an arithmetic model
that inherits the specification of the partial arithmetic model.

A table statement within afull arithmetic model shall represent alookup table. If the model body contains atable
statement, each dimension within the header statement shall also contain atable statement.

The mathematical relation between alookup table and its dimensions shall be established as follows:

N N>1
S=] s21
=t 0<P<S-1
N i—-1 S(i)>1
P =3 P(i) M S(k) -
El kll 0<P(i)<S(i)-1

where

N denotes the number of dimensions

Sdenotes the size of the lookup table, i.e., the number of arithmetic values within the lookup table

P denotes the position of an arithmetic value within the lookup table

(i) denotes the size of adimension, i.e., the number of arithmetic valuesin the table within adimension
P(i) denotes the position of an arithmetic value within a dimension

IEEE P1603 Draft 5 Advanced Library Format (ALF) Reference Manual 177

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

A dimension can be either discrete or continuous. In the latter case, interpolation and extrapolation of table val-
ues is allowed, and the arithmetic values in this dimension shall appear in strictly monotonous ascending order.

11.3.3 EQUATION statement

An equation statement shall be defined as shown in Syntax 88.

equation ::=
EQUATION { arithmetic_expression }

| equation_template_instantiation

Syntax 88—EQUATION statement

The arithmetic expression within the equation statement shall represent the mathematical operation for evalua
tion of the arithmetic model.

Each dimension shall be involved in the arithmetic expression. The arithmetic expression shall refer to a dimen-

sion by name, if aname identifier exists or by type otherwise. Consequently, the type or the name of adimension
shall be unique.

11.4 Statements related to arithmetic model

** Add lead-in text**

11.4.1 Model qualifier

A model qualifier statement shall be defined as shown in Syntax 89.

model_qualifier ::=
annotation
| annotation_container
| event_reference
| from-to
| auxiliary_arithmetic_model
| violation

Syntax 89—Model qualifier statement

11.4.2 Auxiliary arithmetic model

An auxiliary arithmetic model shall be defined as shown in Syntax 90.

auxiliary_arithmetic_model ::=
nonescaped_identifier = arithmetic_value;
| nonescaped_identifier [= arithmetic_value] { auxiliary_qualifier { auxiliary_qualifier } }
auxiliary_qualifier
annotation
| annotation_container
| event_reference
| from-to

Syntax 90—Auxiliary arithmetic model

178 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 5

An auxiliary arithmetic model can be considered as a special case of either atrivial arithmetic model or a partial
arithmetic model, since the rule for auxiliary qualifier is a true subset of the rule for model qualifier. In particu-
lar, the items auxiliary arithmetic model and violation are disallowed in the rule for auxiliary qualifier.

11.4.3 Arithmetic submodel

An arithmetic submodel shall be defined as shown in Syntax 91.

arithmetic_submodd ::=
nonescaped_identifier = arithmetic_value ;
| nonescaped_identifier { [violation] min-max }
| nonescaped_identifier { header-table-equation [trivial_min-max] }
| nonescaped_identifier { min-typ-max }
| arithmetic_submodel_template_instantiation

Syntax 91—Arithmetic submodel

11.4.4 MIN-MAX statement

A min-max statement shall be defined as shown in Syntax 92.

min-max ::=
min [max]
| max [min]
min ::=
N = arithmetic_value;
= arithmetic_value{ violation }
{ [violation] header-table-equation }

i S5
zz

MAX = arithmetic_value;
MAX = arithmetic_value{ violation }
M AX { [violation] header-table-equation }

Syntax 92—MIN-MAX statement

11.4.5 MIN-TYP-MAX statement

A min-typ-max statement shall be defined as shown in Syntax 93.

min-typ-max ::=
[min-max] typ [min-max]
typ =
TYP = arithmetic_value;
| TY P { header-table-equation }

Syntax 93—MIN-TYP-MAX statement

11.4.6 Trivial MIN-MAX statement

A trivial min-max statement shall be defined as shown in Syntax 94

A trivial min-max statement defines the legal range of valuesfor an arithmetic model. The arithmetic value asso-
ciated with the trivial min statement represent the smallest legal number. The arithmetic value associated with the

trivial max statement represents the greatest legal number. Per default, the range includes between negative and
positive infinity.

IEEE P1603 Draft 5 Advanced Library Format (ALF) Reference Manual 179

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

trivial_min-max ::=
trivial_min [trivial_max]
| trivia_max [trivia_min]
trivial_min ::=
MTN = arithmetic_value;
trivia_max ::=
MAX = arithmetic_value

Syntax 94—Trivial MIN-MAX statement

A trivial min-max statement within a dimension of afull arithmetic model defines the range of validity of a par-
ticular dimension. An application tool can still evaluate the header-table-equation statement outside the range of
validity, however, the accuracy of the evaluation can not be guaranteed.

The following semantic restrictions shall apply:

a) A partia arithmetic model that is not a dimension of alookup table can either contain atrivial min-max
statement or a table statement but not both.

b) If asyntax rule alows both partial arithmetic model and full arithmetic model, a trivial min-max state-
ment shall be interpreted as a min-typ-max statement, if the arithmetic model contains neither a header-
table-equation statement nor a arithmetic submodel and no other arithmetic model can inherit the trivial
min-max statement.

Rule @) is established because a trivial min-max statement would be redundant or eventually contradictory to a
table statement, since the table statement already defines a discrete set of legal values.

Rule b) is established because the syntax rule for trivial min-max statement is a true subset of the syntax rule for
min-typ-max statement.

11.4.7 Arithmetic model container

An arithmetic model container shall be defined as shown in Syntax 95.

arithmetic_model_container ::=
arithmetic_model_container_identifier { arithmetic_model { arithmetic_model } }

Syntax 95—Arithmetic model container

11.4.8 LIMIT statement

A limit statement shall be defined as shown in Syntax 96.

limit ::=
LIMIT { limit_item{ limit_item} }
limit_item ::=
limit_arithmetic_model
limit_arithmetic_model ::=
nonescaped_identifier [name_identifier] { { model_qualifier } Iimit_arithmetic_model_body}
limit_arithmetic_model_body ::=
limit_arithmetic_submodel { limit_arithmetic_submode }
| min_max
limit_arithmetic_submodel ::=
nonescaped_identifier { [violation] min-max }

Syntax 96—LIMIT statement

180 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 5

11.4.9 Event reference statement

An event reference statement shall be defined as shown in Syntax 97.

event_reference ::=
PIN_reference_single_value_annotation [EDGE_NUMBER single value _annotation]

Syntax 97—Event reference statement

11.4.10 FROM and TO statements

A fromor to statement shall be defined as shown in Syntax 98.

from-to ::=
from [to]
|[from]to

rom ::=
FROM { from-to_item { from-to_item} }
from-to_item ::=
event_reference
| THRESHOLD_arithmetic_model
t

0:=
TO { from-to_item { from-to_item} }

Syntax 98—FROM and TO statements

The event referred by the from-statement and the to-statement, respectively, shall be called from-event and to-
event, respectively.

The from-and to-statements are subjected to the semantic restriction shown in Syntax 99.

SEMANTI CS FROM {
CONTEXT {
TI ME DELAY RETAI N SLEWRATE PULSSEW DTH
SETUP HOLD RECOVERY REMOVAL NOCHANGE | LLEGAL SKEW

}

}
SEMANTI CS TO {

CONTEXT {
TI ME DELAY RETAI N SLEWRATE PULSSEW DTH
SETUP HOLD RECOVERY REMOVAL NOCHANGE | LLEGAL SKEW

Syntax 99— Semantic restriction
11.4.11 EARLY and LATE statements
An early or alate statement shall be defined as shown in Syntax 100.
11.4.12 VIOLATION statement

A violation statement shall be defined as shown in Syntax 101.

IEEE P1603 Draft 5 Advanced Library Format (ALF) Reference Manual 181

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

early-late ::=
early late

early ;=
EARLY { early-late_item { early-late_item} }
early-late_item ::=
DELAY _arithmetic_model
| RETAIN_arithmetic_model
| SLEWRATE_arithmetic_model

ate ::=
LATE { early-late_item { early-late item} }

Syntax 100—EARLY and LATE statements

violation ::=
VIOLATION { violation_item { violation_item} }
| violation_template_instantiation
violation_item ::=
MESSAGE_TYPE_single_value_annotation
| MESSAGE_single_value_annotation
| behavior

Syntax 101—VIOLATION statement

A violation statement is subjected to the semantic restriction shown in Semantics 57.

SEMANTI CS VI OLATI ON {
CONTEXT {

SETUP HOLD RECOVERY REMOVAL SKEW NOCHANGE | LLEGAL
LIMT. arithnetic_nodel
LIMT.arithnetic_nodel . M N
LIMT. arithnetic_nodel . MAX
LIMT. arithnetic_nodel . arithmetic_subnodel
LIMT.arithnetic_nodel .arithmetic_subnodel . M N
LIMT.arithnetic_nodel . arithmetic_subnodel . MAX

Semantics 57—VIOLATION restriction

A violation statement can contain a behavior statement, as shown in Semantics 58.

SEMANTI CS VI OLATI ON. BEHAVI OR {
CONTEXT {
VECTOR. ari t hnmeti c_nodel
VECTOR. LIM T. ari t hneti c_nodel
VECTOR LIM T. arithmetic_nodel . M N
VECTOR LIM T. ari t hmeti c_nodel . MAX
VECTOR. LIM T. arithmeti c_nodel . arithnetic_subnodel

LIMT.

VECTOR. LIM T. ari t hmeti c_nodel
VECTOR.

arithmetic_nodel

.arithmetic_subnodel . M N
.arithmetic_subnodel . MAX

Semantics 58—VIOLATION.BEHAVIOR restriction

182 Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 5

The violation statement can contain a message-type annotation and a message annotation.

A message_type annotation shall be defined as shown in Semantics 59.

KEYWORD MESSAGE TYPE = singl e_val ue_annotati on {
CONTEXT = VI OLATI ON ;
VALUETYPE = identifier ;
VALUES { infornation warning error }

}

Semantics 59—MESSAGE_TYPE annotation

A message annotation shall be defined as shown in Semantics 60.

KEYWORD MESSAGE = singl e_val ue_annotati on {
CONTEXT = VI OLATI ON ;
VALUETYPE = quoted_string ;

}

Semantics 60—MESSAGE annotation

11.5 Annotations for arithmetic models

** Add lead-in text**

11.5.1 UNIT annotation

A unit annotation shall be defined as shown in Semantics 61.

KEYWORD UNI T = annotation {
CONTEXT = arithnetic_nodel ;
VALUETYPE = unit_val ue ;
DEFAULT = 1 ;

Semantics 61—UNIT annotation

11.5.2 CALCULATION annotation

A calculation annotation shall be defined as shown in Semantics 62.

KEYWORD CALCULATI ON = annotation {
CONTEXT = library_specific_object.arithmetic_nodel
VALUES { absol ute increnental }
DEFAULT = absolute ;

IEEE P1603 Draft 5

Semantics 62—CALCULATION annotation

Advanced Library Format (ALF) Reference Manual

183

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

The meaning of the annotation valuesis shown in Table 89.

Table 89—Calculation annotations

Annotation value Description
absol ute The arithmetic model datais complete within itself.
i ncrenent al The arithmetic model data shall be combined with other arithmetic model data.

11.5.3 INTERPOLATION annotation

A interpolation annotation shall be defined as shown in Semantics 63.

CONTEXT = HEADER arithmetic_nodel ;
VALUES { linear fit ceiling floor }
DEFAULT = fit ;

KEYWORD | NTERPOLATI ON = si ngl e_val ue_annotati on {

Semantics 63—INTERPOLATION annotation

The interpolation annotation shall apply for a dimension of a lookup table with a continuous range of values.

Every dimension in alookup table can have its own interpolation annotation.

The meaning of the annotation values is shown in Table 90.

Table 90—Interpolation annotations

Annotation value Description
I'i near Linear interpolation shall be used.
ceiling The next greater value in the table shall be used.
f1 oor The next lesser value in the table shall be used.
fit Linear or higher-order interpolation shall be used.

The mathematical operations for floor, ceiling, and linear are specified as follows:

floor y(x) = y(x)
ceiling y(x) = y(x")
linear yox) = E) + (< 2x) GY(x)
X =X
where

184 Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 5

x denotes the value in a dimension subjected to interpolation.
x" and X" denote two subsequent values in the table associated with that dimension.
X denotes the value to the left of x, such that X < x, or else X denotes the smallest value in the table.
x* denotes the val ue to the right of x, such that x < x*, or else x* denotes the largest value in the table.
y denotes the evaluation result of the arithmetic model.

The mathematical operation for fit can be chosen by the application, aslong as the following conditions are satis-
fied:

y(X) is a continuous function of order N>0.

The first N-1 derivatives of y(x) are continuous.

y(x) is bound by y(x) and y(x").

In case of monotony, y(X) is also bound by linear interpolation applied to the left and the right neighbor of x.
In case of monotonous derivative, y(x) isaso bound by linear interpolation applied to x itself.

These conditions areillustrated in Figure 21.

arbitrary y(x) monotonous y(X) monotonous d y/dx
X
A AX A \\
yxXy — — yoor "= Yy — —
|
Yoy — — — Yy — — — — =K - Yoy — — — — =% _
| | | X | X
I | | I | |
| | | | | |
| | > 1 1 > | | >
X x X X X x

Figure 21—Bounding regions for y(x) with INTERPOLATION=fit
11.5.4 DEFAULT annotation

A default annotation shall be defined as shown in Semantics 64.

KEYWORD DEFAULT = singl e_val ue_annotati on {
CONTEXT { arithnetic_nodel KEYWORD }
VALUETYPE = al | _purpose_val ue ;

}

Semantics 64—DEFAULT annotation

11.6 TIME

**|sthis (and some 35 other constucts after this) a statement, an annotation, or some ‘other grouping’ ??
**and should their label(s), therefore, be Syntax, Semantics, or some new_nane??

|f these constructs are really statements, they need to be converted in (true BNF) syntax boxes

IEEE P1603 Draft 5 Advanced Library Format (ALF) Reference Manual 185

10

15

20

25

30

35

40

45

50

55

1

10

15

20

25

30

35

40

45

50

55

A time statement shall be defined as shown in Syntax 102.

KEYWORD TI ME = arithmetic_nodel ({
VALUETYPE = nunber ;

}
TIME{ UNIT = 1le-9; }

Syntax 102—TIME statement

A time statement can have a from-to statement as model qualifier.

11.6.1 TIME in context of a VECTOR declaration

A time statement can be a child or a grandchild of a vector declaration. In particular, the parent of the time state-
ment can be a limit statement. In the context of a limit statement, the time statement shall specify a smallest
required time or alargest allowed time interval. Otherwise, the time statement shall specify an actually measured
timeinterval.

If the vector declaration involves a vector expression, from-to statements featuring event reference statements
shall be used as model qualifier. The time statement shall model the measured time interval between the referred
events.

If the vector declaration involves a boolean expression, the time statement appliesto atime interval during which
the boolean expression istrue. A from-to statement shall not be used as model qualifier.

11.6.2 TIME in context of a HEADER statement
A time statement can be child of a header statement, thus representing a dimension of an arithmetic model.

If the arithmetic model is not a child of alimit statement, the time dimension shall be used to describe a quantity
changing over time, which can be visualized by a waveform.

If the arithmetic model is achild of avector declaration, either a from statement or ato statement can be used as
model qualifier to define atemporal relationship between areferred event and the time dimension.

If the arithmetic model is a child of alimit statement, the time dimension shall be used to describe a dependency
between a limit for a measured quantity and the expected lifetime of an electronic circuit. A from-to statement
shall not be used as model qualifier.

11.6.3 TIME as auxiliary arithmetic model

A time statement can be a child of an arithmetic model, thus representing an auxiliary arithmetic model.

A measurement annotation (see 11.29.1) shall be used in conjunction with the time statement. The time statement
shall specify the timeinterval during which the measurement is taken.

If the parent arithmetic model is a child of a vector declaration, afrom-to statement can be used to define atem-
poral relationship between one or two eventsin the vector expression and the time interval.

11.7 FREQUENCY

A frequency statement shall be defined as shown in Syntax 103.

186 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 5

KEYWORD FREQUENCY = arithmetic_nodel {
VALUETYPE = nunber ;

}
FREQUENCY { UNIT = 1e9; MN = 0; }

Syntax 103—FREQUENCY statement
11.7.1 FREQUENCY in context of a VECTOR declaration
A frequency statement can be a child or a grandchild of a vector declaration. In particular, the parent of the fre-
guency statement can be alimit statement. In the context of alimit statement, the frequency statement shall spec-
ify a smallest required occurrence frequency or alargest allowed occurrence frequency of the vector. Otherwise,
the frequency statement shall specify an actually measured occurrence frequency of the vector.
11.7.2 FREQUENCY in context of a HEADER statement

A frequency statement can be child of a header statement, thus representing a dimension of an arithmetic model.

If the arithmetic model is achild of avector declaration, the frequency dimension shall represent the occurrence
frequency of the vector.

If the arithmetic model is not a child of avector declaration, the frequency dimension shall be used to describe a
spectral properties of the arithmetic model in the frequency domain.

11.7.3 FREQUENCY as auxiliary arithmetic model
A frequency statement can be a child of an arithmetic model, thus representing an auxiliary arithmetic model.

A measurement annotation (see 11.29.1) shall be used in conjunction with the frequency statement. The fre-
guency statement shall specify the repetition frequency of the measurement.

A frequency statement can substitute a time statement in the capacity of an auxiliary arithmetic model, if no

from-to statement is used as model qualifier. In this case, the measurement repetition frequency f and the mea-
surement time interval t can be related by the equationf=1/t.

11.8 DELAY

A delay statement shall be defined using ALF language as shown in Syntax 104.

KEYWORD DELAY = arithnetic_nodel {
SI _MODEL = TI ME ;
}

Syntax 104—DELAY statement

11.8.1 DELAY in context of a VECTOR declaration

A delay statement can be a child or a grandchild of a vector declaration involving a vector expression. A delay
statement shall have a from-to statement featuring event references as model qualifier. The delay statement shall
define the measured time interval between a from-event and a to-event. Both events shall be part of the vector
expression. A causal relationship between the from-event and the to-event isimplied.

IEEE P1603 Draft 5 Advanced Library Format (ALF) Reference Manual 187

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

A delay statement with an incomplete model qualifier featuring only afrom statement or only ato statement can
be used to specify an incremental time interval to be added to another time interval. The calculation annotation
(see 11.5.2) shall be used in conjunction with such an incomplete model qualifier.

11.8.2 DELAY in context of a library-specific object declaration

A delay statement can be a child of alibrary-specific object which can be a parent of a vector. Possible parents of
avector include library, sublibrary, cell and wire. Within such a context, a delay statement can not have an event
reference within a from-to statement as model qualifier. A from-to statement can only feature threshold state-

ments. The specification given by the threshold statements shall be inherited by delay statements which are child
of avector.

11.9 RETAIN

A retain statement shall be defined as shown in Syntax 105.

KEYWORD RETAIN = arithmetic_nodel {
S| _MODEL = TIME ;
}

Syntax 105—RETAIN statement

A retain statement can be a child or a grandchild of a vector declaration involving a vector expression. A retain
statement can be used as a substitution for a delay statement in the case where the vector expression features
more than one possible to-event. Retain represents the time interval between the from-event and the earliest to-
event. Later to-events can beinvolved in a delay statement.

Retain in conjunction with delay isillustrated in Figure 22.

<fronkEdge>

<fronPi n>

<t oEdge> <t oEdge>

<t oPi n>

I
I
I
!

Figure 22—RETAIN and DELAY

11.10 SLEWRATE

A dewrate statement shall be defined as shown in Syntax 106.

188 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 5

KEYWORD SLEWRATE = arithnetic_nodel {
S| _MODEL = TIME ;

}

SLEWRATE { MN = 0; }

Syntax 106—SLEWRATE statement
Slewrate shall define the duration of a single event, measured between two reference transition points. If the par-
ent of the slewrate statement is a limit statement, the slewrate statement defines a minimum required or a maxi-
mum allowed duration of an event. Otherwise, slewrate defines the actually measured duration of an event.

11.10.1 SLEWRATE in context of a VECTOR declaration

A dlewrate statement can be a child or a grandchild of a vector declaration. Slewrate can also be a dimension of
an arithmetic model in the context of a vector.

The slewrate statement can have an event reference statement and a from-to statement without event reference
as model qualifier. The from-and the to-statement can involve threshold statements.

11.10.2 SLEWRATE in context of a PIN declaration

A dewrate statement can be a child or agrandchild of a pin declaration. In this context, no from-to statement and
no event-reference statement is allowed as model qualifier.

The slewrate statement can have arise statement or afall statement as arithmetic submodel.

11.10.3 SLEWRATE in context of a library-specific object declaration

A slewrate statement can be achild of alibrary-specific object which can be a parent of a vector. Possible parents
of avector include library, sublibrary, cell and wire. Within such a context, a lewrate statement can not have an
event reference as model qualifier. A from-to statement with threshold statements can be used as model qualifier.
The specification given by the threshold statements can be inherited by slewrate statements which are child of a

Vector.

The slewrate statement can have arise statement or afall statement as arithmetic submode!.

11.11 SETUP and HOLD

A setup or hold statement shall be defined as shown in Syntax 107.

KEYWORD SETUP = arithnetic_nodel {
SI _MODEL = TIME ;

}

KEYWORD HOLD = arithnetic_nodel {
SI _MODEL = TIME ;

}

Syntax 107—SETUP and HOLD statements

IEEE P1603 Draft 5 Advanced Library Format (ALF) Reference Manual 189

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

11.11.1 SETUP in context of a VECTOR declaration

A setup statement can be a child of a vector declaration. Setup represents the minimal required time interval
between a signal event and a synchronization event such that the signal is already stable when the synchroniza-
tion event occurs. The signal event and the synchronization event shall be represented as a from-event and ato-
event, respectively, within a from-to statement.

11.11.2 HOLD in context of a VECTOR declaration

A hold statement can be a child of a vector declaration.Hold represents the minimal required time interval
between a synchronization event and a signal event such that the synchronization event occurs whilethe signal is
till stable. The synchronization event and the signal event shall be represented as a from-event and a to-event,
respectively, within afrom-to statement.

11.11.3 SETUP and HOLD in context of the same VECTOR declaration

A setup and a hold statement can be a child of the same vector, provided the vector expression features at |east
one synchronization event and two signal events related to the synchronization event. The sum of the time inter-
vals represented by setup and hold represents a minimum required stability interval for the signal. This interval
shall be greater than zero.

Setup in conjunction with hold isillustrated in Figure 23.

<to$dqe>

<fr orl‘rEdge>
| SETUP |
| |
|

data | <f r onEdge> |
! HOLD
| |

<t oljz'dge>

clock

Figure 23—SETUP and HOLD

11.12 RECOVERY and REMOVAL

A recovery or removal statement shall be defined as shown in Syntax 108.

KEYWORD RECOVERY = arithmetic_nodel {
SI _MODEL = TI ME ;

}

KEYWORD REMOVAL = arithnetic_nodel {
SI _MODEL = TI ME ;

}

Syntax 108—RECOVERY and REMOVAL statements

190 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 5

11.12.1 RECOVERY in context of a VECTOR declaration

A recovery statement can be a child of avector declaration. Recovery represents the minimal required time inter-
val between a controlling event with higher priority and a controlling event with lower priority such that the sig-
nal with higher priority is aready inactive when the event on the signal with lower priority occurs. The event
with higher priority and the event with lower priority shall be represented as a from-event and a to-event, respec-
tively, within afrom-to statement.

11.12.2 REMOVAL in context of a VECTOR declaration

A removal statement can be a child of a vector declaration. Removal represents the minimal required time inter-
val between a controlling event with lower priority and a controlling event with higher priority such that the sig-
nal with higher priority is still active when the event with lower priority occurs. The event with higher priority
and the event with lower priority shall be represented as afrom-event and ato-event, respectively, within afrom-
to statement.

11.12.3 RECOVERY and REMOVAL in context of the same VECTOR declaration

A recovery and aremoval statement can be a child of the same vector, provided the vector expression features at
least one event with lower priority and two alternative events with higher priority. The sum of the time intervals
represented by recovery and removal represents a minimum required stability interval for the signal with higher

priority. Thisinterval shall be greater than zero.

Recovery in conjunction with removal isillustrated in Figure 24.

<t oEdge>
<fr ofEdge> ! '
clock | |
| | |
| <fromtdge> |
| <t ollque>
| I
Set, reset »! |
/\RECOVERY | |
|
or | |
| |
| |
set, reset '
REMOVAL /,

Figure 24—RECOVERY and REMOVAL

11.13 NOCHANGE and ILLEGAL
A nochange or anillegal statement shall be defined as shown in Syntax 109.
11.13.1 NOCHANGE in context of a VECTOR declaration

A nochange statement can be achild of avector declaration.

IEEE P1603 Draft 5 Advanced Library Format (ALF) Reference Manual 191

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

KEYWORD NOCHANGE = arithnetic_nodel {
SI _MODEL = TIME ;

}

KEYWORD | LLEGAL = arithmetic_nodel {
SI _MODEL = TIME ;

}

NOCHANGE { MN = 0; }

I LLEGAL { MN = 0; }

Syntax 109—NOCHANGE and ILLEGAL statements

If the vector declaration involves a bool ean expression, nochange shall specify a minimum required time interval
during which the boolean expression is true. Nochange as a partial arithmetic model shall indicate a requirement
for the boolean expression to be forever true.

If the vector declaration involves a vector expression, nochange as a partial arithmetic model shall indicate a
requirement for the vector expression to be observed as specified. An optional from-to statement as model quali-
fier can indicate a requirement for the part of the vector expression within the time interval between the from-
event and the to-event to be observed as specified. Nochange as a full arithmetic model or as atrivia arithmetic
model shall furthermore specify a minimum required duration of the vector expression or part thereof.

11.13.2 ILLEGAL in context of a VECTOR declaration

Anillegal statement can be a child of avector declaration.

If the vector declaration involves a boolean expression, illegal shall specify a maximum allowed time interval
during which the boolean expression istrue. lllegal as a partial arithmetic model shall indicate a requirement for
the boolean expression to be never true.

If the vector declaration involves a vector expression, illegal as a partial arithmetic model shall indicate that the
vector expression is not allowed to occur. An optional from-to statement as model qualifier can indicate that a
part of the vector expression within the time interval between the from-event and the to-event is not allowed to

occur. lllegal asafull arithmetic model or as atrivia arithmetic model shall furthermore specify a maximum tol-
erated duration of the vector expression or part thereof.

11.14 SKEW

A skew statement shall be defined as shown in Syntax 110.

KEYWORD SKEW = arithmneti c_nodel {
SI _MODEL = TI ME ;

}

SKEW{ M N

0; 1}

Syntax 110—SKEW statement

A skew statement can be a child of avector declaration.

192 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 5

11.14.1 SKEW involving two signals

A skew statement can specify a maximum allowed time interval between a from-event and a to-event. In this
case, a from-to statement is mandatory as model qualifier. The vector declaration shall specify a vector expres-
sion such that the to-event cannot occur before the from-event.

11.14.2 SKEW involving multiple signals

A skew statement can specify amaximum allowed time separation between multiple events. In this case, a multi-
value annotation containing pin references is mandatory as model qualifier. Optionally, this multi-value annota-

tion can be accompanied by another multi-val ue annotation containing a matching number of edge numbers. The
vector declaration shall specify avector expression such that all events can occur simultaneously.

11.15 PULSEWIDTH

A pulsewidth statement shall be defined as shown in Syntax 111.

KEYWORD PULSEW DTH = arithmetic_nodel {
SI_MODEL = TI ME

}

PULSEWDTH { MN = 0; }

Syntax 111—PULSEWIDTH statement

A pulsewidth statement shall define the time interval between two consecutive events on the same signal. If the
parent of the pulsewidth statement is a limit statement, pulsewidth defines a minimum required or a maximum
allowed duration of the timeinterval. Otherwise, pulsewidth defines the actually measured time interval.

11.15.1 PULSEWIDTH in context of a VECTOR declaration

A pulsewidth statement can be a child of a vector declaration. Pulsewidth can also be a dimension of an arith-
metic model in the context of a vector.

The pulsewidth statement can have an event-reference statement and a from-to statement without event reference
as model qualifier. The from-and the to-statement can involve threshold statements. The event reference shall
refer to the first of two consecutive events.

11.15.2 PULSEWIDTH in context of a PIN declaration

A pulsewidth statement can be a child or a grandchild of a pin declaration. In this context, no from-to statement
and no event-reference statement is allowed as model qualifier.

The pulsewidth statement can have arise statement and/or afall statement as arithmetic submodel. The switching
direction indicated by rise or fall shall refer to the first of two consequtive events.

11.15.3 PULSEWIDTH in context of a library-specific object declaration

A pulsewidth statement can be a child of alibrary-specific object which can be a parent of a vector. Possible par-
ents of a vector include library, sublibrary, cell and wire. Within such a context, a pulsewidth statement can not
have an event reference as model qualifier. A from-to statement with threshold statements can be used as model
qualifier. The specification given by the threshold statements can be inherited by pulsewidth statements which
are child of avector.

IEEE P1603 Draft 5 Advanced Library Format (ALF) Reference Manual 193

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

The pulsawidth statement can have a rise statement or a fall statement as arithmetic submodel. The switching
direction indicated by rise or fall shall refer to the first of two consecutive events.

11.16 PERIOD

A period statement shall be defined as shown in Syntax 112.

KEYWORD PERI OD = arithmetic_nodel {
S| _MODEL = TIME ;

}

PERICD { MN = 0; }

Syntax 112—PERIOD statement

A period statement can be a child or a grandchild of a vector. Period can also be a dimension of an arithmetic
model in the context of avector. Period shall define the time interval between two consecutive occurrences of a
periodically repeating vector.

If the parent of the period statement is a limit statement, period defines a minimum required or a maximum
allowed time interval. Otherwise, period defines the actually measured time interval.

11.17 JITTER

A jitter statement shall be defined as shown in Syntax 113.

KEYWORD JI TTER = arithmetic_nodel {
SI_MODEL = TIME ;

}

JITTER{ MN = 0; }

Syntax 113—JITTER statement

A jitter statement can be achild or agrandchild of avector. Jitter can also be a dimension of an arithmetic model
in the context of a vector. Jitter shall define the variability of atime interval between two consecutive occur-
rences of the periodically repeating vector.

If the parent of the jitter statement is a limit statement, jitter defines a minimum required or a maximum allowed
variability of the time interval. Otherwise, jitter defines the actually measured variability of the timeinterval.

The measurement annotation (see 11.29.1) is applicable as model qualifier.

11.18 THRESHOLD
A threshold statement shall be defined using ALF language as shown in Syntax 114.

The THRESHOL D represents a reference voltage level for timing measurements, normalized to the signal voltage
swing and measured with respect to the logic O voltage level, as shown in Figure 25.

194 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 5

KEYWORD THRESHOLD = arithmeti c_nodel {
CONTEXT { PIN FROM TO }

}
THRESHOLD { MN = 0; MAX = 1; }

Syntax 114—THRESHOLD statement

V (logic 1)
A
AV
AViise AV ¢y
|
V (logic 0) time
AV, AV
threshold (i = —1e threshold (;.ypy = —dl
(rise) AV (fall) AV

Figure 25—THRESHOLD measurement definition
The voltage levelsfor logic 1 and O represent afull voltage swing.

Different threshold data for RI SE and FALL can be specified or else the data shall apply for both rising and fall-
ing transitions.

The THRESHCOL D statement has the form of an arithmetic model. If the submodel keywords Rl SE and FALL are
used, it has the form of an arithmetic model container.

The THRESHCOLD statement can appear in the context of a FROMor TO container. In this case, it specifies the
applicable reference for the start and end point of the timing measurement, respectively.

The THRESHCL D statement can also appear in the context of aPIl N. In this case, it specifies the applicable refer-
ence for the start or end point of timing measurements indicated by the PI N annotation inside a FROMor TOcon-
tainer, unless a THRESHOL D is specified explicitly inside the FROMor TO container.

If both the RI SE and FALL thresholds are specified and the switching direction of the applicable pin is clearly
indicated in the context of a VECTOR, the Rl SE or FALL data shall be applied accordingly.

If thresholds are needed for exact definition of the model data, the FROMand TO containers shall each contain an
arithmetic model for THRESHOLD.

FROM and TO containers with THRESHOLD definitions, yet without Pl N annotations, can appear within
unnamed timing model definitions in the context of a VECTOR, CELL, W RE, SUBLI BRARY, or LI BRARY
object for the purpose of specifying global threshold definitions for all timing models within scope of the defini-
tion. The following priorities apply:

IEEE P1603 Draft 5 Advanced Library Format (ALF) Reference Manual 195

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

a) THRESHOLDin the HEADER of the timing model

b) THRESHOLDinthe FROMor TOstatement within the timing model

¢) THRESHOLDfor timing model definition in the context of the same VECTOR

d) THRESHOLDwithin the PI Ndefinition

€) THRESHOLDfor timing model definition in the context of the same CELL or W RE
f) THRESHOLD for timing model definition in the context of the same SUBLI BRARY
g) THRESHOLDfor timing model definition in the context of the same L1 BRARY

h) THRESHOLD for timing model definition outside L1 BRARY

11.19 Annotations related to timing data

** Add lead-in text**

11.19.1 PIN reference annotation

If the timing measurements or timing constraints, respectively, apply semantically for two pins—{see 11911},
the FROM and TO containers shall each contain the PI N annotation.

Otherwise, if the timing measurements or timing constraints apply semantically only to one pin—{see-31-9-1-3},
the Pl N annotation shall be outside the FROMor TO container.

The semantic restrictions shown in Semantics 65 shall apply.

SEMANTI CS PI N = singl e _val ue_annotation {
CONTEXT {
FROM TO SLEWRATE PULSEW DTH
CAPACI TANCE RESI STANCE | NDUCTANCE VOLTAGE CURRENT

}
}
SEMANTI CS SKEWPIN = multi _val ue_annotation ;

Semantics 65—PIN restriction

11.19.2 EDGE_NUMBER annotation

A edge_number annotation shall be defined as shown in Semantics 66.

KEYWORD EDGE_NUMBER = annot ation {
CONTEXT { FROM TO SLEWRATE PULSEW DTH SKEW }
VALUETYPE = unsi gned_i nteger ;
DEFAULT = 0;

}

SEMANTI CS EDGE_NUMBER = si ngl e_val ue_annot ati on {
CONTEXT { FROM TO SLEWRATE PULSEW DTH }

}
SEMANTI CS SKEW EDGE_NUMBER = mul ti _val ue_annotation ;

Semantics 66—EDGE_NUMBER annotation

The EDGE_NUMBER annotation within the context of a timing model shall specify the edge where the timing
measurement applies. The timing model shall be in the context of a VECTOR. The EDGE_NUMBER shall have an
unsigned value pointing to exactly one of subsequent vect or _si ngl e_event expressions applicable to the

196 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 5

referenced pin. The EDGE_NUMBER shall be counted individually for each pin which appears in the VECTOR,
starting with zero (0).

If the timing measurements or timing constraints apply semantically to two pins—{see—11+.9.1.1), the
EDGE_NUMBER annotation shall be legal inside the FROMor TO container in conjunction with the Pl N annota-

tion.

Otherwise, if the timing measurements or timing constraints apply semantically only to one pin—{see-11.9-1.3},
the EDGE_NUMBER annotation shall be legal outside the FROMor TO container in conjunction with the PI N

annotation.

11.20 PROCESS

A process statement shall be defined as shown in Syntax 115.

KEYWORD PROCESS = arithnetic_nodel {
VALUETYPE = identifier ;

}

PROCESS { DEFAULT = nom TABLE { nomsnsp snwp wnsp wnwp } }

Syntax 115—PROCESS statement

The following identifiers can be used as predefined process corners:

?n?p process definition with transistor strength

where ? can be

S strong
w weak

The possible process name combinations are shown in Table 91.

Table 91—Predefined process names

Process name

Description

snsp

Strong NMOS, strong PMOS.

snwp

Strong NMOS, weak PMOS.

wnsp

Weak NMOS, strong PMOS.

wnwp

Wesk NMOS, weak PMOS.

11.21 DERATE_CASE

A derate_case statement shall be defined as shown in Syntax 116.

The following identifiers can be used as predefined derating cases:

IEEE P1603 Draft 5

Advanced Library Format (ALF) Reference Manual

197

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

KEYWORD DERATE CASE = arithmetic_nodel {
VALUETYPE = identifier ;

}

DERATE _CASE { DEFAULT = nom
TABLE { nom bccom wccom bci nd wei nd bemi |

}

wermi |1}

Syntax 116—DERATE_CASE statement

nom nominal case
bc? prefix for best case
we? prefix for worst case

where ? can be

com suffix for commercia case
i nd suffix for industrial case
m | suffix for military case

The possible derating case combinations are defined in Table 92.

Table 92—Predefined derating cases

Derating case Description
bccom Best case commercial.
bci nd Best case industrial.
bcm | Best case military.
weccom Worst case commercial.
wei nd Worst case military.
wem | Worst case military.

11.22 TEMPERATURE

A temperature statement shall be defined as shown in Syntax 117.

KEYWORD TEMPERATURE = arithmetic_nodel {
VALUETYPE = nunber ;

}
TEMPERATURE { M N = -273; }

Syntax 117—TEMPERATURE statement

TEMPERATURE can be used as argument in the HEADER of an arithmetic model for timing or electrical data. It
can also be used as an arithmetic model with DERATE_CASE as argument, in order to describe what temperature
applies for the specified derating case.

198

Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 5

11.23 PIN-related arithmetic models for electrical data

Arithmetic models for electrical data can be associated with a pin of a cell. Their meaning is illustrated in
Figure 26.

source sink
current node resistance inductance node rent
— -
voltage voltage

capacitance

Figure 26—General representation of electrical models around a pin

A pin is represented as a source node and a sink node. For pins with DI RECTI ON=i nput , the source node is
externally accessible. For pinswith DI RECTI ON=out put , the sink nodeis externally accessible.

11.23.1 CAPACITANCE, RESISTANCE, and INDUCTANCE

A capacitance, resistance, or inductance statement shall be defined as shown in Syntax 118.

KEYWORD CAPACI TANCE = arithmetic_nodel {
VALUETYPE = nunber ;

}

KEYWORD RESI STANCE = arithnetic_nodel {
VALUETYPE = nunber ;

}

KEYWORD | NDUCTANCE = arithmetic_nodel {
VALUETYPE = nunber ;

}

CAPACI TANCE { UNIT = 1e-12; MN = 0; }

RESI STANCE { UNIT e3; MN=0; }

=1
I NDUCTANCE { UNIT = 1le-6; MN = 0; }

Syntax 118—CAPACITANCE, RESISTANCE, and INDUCTANCE statements

RESI STANCE and | NDUCTANCE apply between the source and sink node. CAPACI TANCE applies between
the sink node and ground. By default, the values for resistance, inductance and capacitance shall be zero (0).

11.23.2 VOLTAGE and CURRENT
A voltage or current statement shall be defined as shown in Syntax 119.
VOLTAGE and CURRENT can be measured at either source or sink node, depending on which node is externally

accessible. However, a voltage source can only be connected to a source node. The sense of measurement for
voltage shall be from the node to ground. The sense of measurement for current shall be into the node.

IEEE P1603 Draft 5 Advanced Library Format (ALF) Reference Manual 199

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

KEYWORD VOLTAGE = arithnetic_nodel
VALUETYPE = nunber ;

}

KEYWORD CURRENT = arithnetic_nodel
VALUETYPE = nunber ;

}
VOLTAGE { UNIT

CURRENT { UNIT

le-3; }

{

{

Syntax 119—VOLTAGE and CURRENT statements

11.23.3 Context-specific semantics

An arithmetic model for VOLTAGE, CURRENT, SLEVRATE, RESI STANCE, | NDUCTANCE, and CAPACI -
TANCE can be associated with a Pl Nin one of the following ways.

a) A mode inthe context of aPl N

Example

PIN my_pin {

CAPACI TANCE = 0. 025;

b) A mode in the context of aCELL, W RE, or VECTOR with PI N annotation

Example

VOLTAGE = 1.8 { PIN = ny_pin;

The model in the context of a Pl N shall be used if the data is completely confined to the pin. That means, no
argument of the model shall make reference to any pin, since such reference implies an external dependency. A
model with dependency only on environmental data not associated with a pin (e.g., TEMPERATURE, PROCESS,
and DERATE_CASE) can be described within the context of the Pl N.

A model with dependency on external data applied to apin (e.g., load capacitance) shall be described outside the
context of the PI N, using a Pl N annotation. In particular, if the model involves a dependency on logic state or
logic transition of other Pl Ns, the model shall be described within the context of a VECTOR.

Figure 27 illustrates electrical models associated with input and output pins.

external driver Input pin
current source sink
— v
voltag —

output pin

source sink

external load

current

\—

voltage =~

200

Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 5

Figure 27—Electrical models associated with input and output pins

Table 93 and Table 94 define how models are associated with the pin, depending on the context.

Table 93—Direct association of models with a PIN

. Model in context of CELL, WIRE, and
Modé Mode! in context of PIN VECTOR with PIN annotation
CAPACI TANCE Pin self-capacitance. Externally controlled capacitance at the pin,
e.g., voltage-dependent.
| NDUCTANCE Pin self-inductance. Externally controlled inductance at the pin,
e.g., voltage-dependent.
RESI STANCE Pin self-resistance. Externally controlled resistance at the pin,
e.g., voltage-dependent, in the context of a
VECTOR for timing-arc specific driver
resistance.
VOLTAGE Operationa voltage measured at pin. Externally controlled voltage at the pin.
CURRENT Operational current measured into pin. Externally controlled current into pin.
SAVE_PI N_TI M NG_ For model definition, default, etc.; In context of VECTOR for timing arc, other
MEASUREMENT not for the timing arc. context for definition, default, etc.
SAME_PI N_TI M NG_ For model definition, default, etc.; In context of VECTOR for timing arc, other
CONSTRAI NT not for the timing arc. context for definition, default, etc.

Table 94—External association of models with a PIN

Model / context

LIMIT within PIN or with PIN annotation Model argument with PIN

annotation

CAPACI TANCE Min or max limit for applicable load. Load for model characterization.
| NDUCTANCE Min or max limit for applicable load. Load for model characterization.
RES| STANCE Min or max limit for applicable load. Load for model characterization.
VOLTAGE Min or max limit for applicable voltage. Voltage for model characterization.
CURRENT Min or max limit for applicable current. Current for model characterization.
SAVE_PI N_TI M NG_ Currently applicable for min or max limit for Stimulus with SLEWRATE for model

MEASUREMENT SLEWRATE. characterization.
SAME PIN TI M NG_ N/A, since the keyword means a min or max N/A

CONSTRAI NT limit by itself.

Example

CELL ny_cell {
PIN pinl {
PI'N pin2 {
PI'N pin3 {
PIN pin4 {

IEEE P1603 Draft 5

DI RECTI ON=i nput; CAPACI TANCE = 0.05; }

DI RECTI ON=out put; LIMT { CAPACI TANCE { MAX=1.2; } } }
DI RECTI ON=i nput ; }

DI RECTI ON=i nput ; }

Advanced Library Format (ALF) Reference Manual 201

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

CAPACI TANCE {
Pl N=pi n3;
HEADER { VOLTACE { PIN=pin4; } }
EQUATION { 0.25 + 0.34*VOLTAGE }

}

The capacitance on pi n1 is0. 05. The maximum allowed load capacitance on pi n2 is 1. 2. The capacitance
on pi N3 depends on the voltage on pind.

11.24 POWER and ENERGY

A power or an energy statement shall be defined as shown in Syntax 120.

KEYWORD POAER = arithnetic_nodel {
VALUETYPE = nunber

}

KEYWORD ENERGY = arithmetic_nodel {
VALUETYPE = nunber

}

PONER { UNIT = 1le-3; }

ENERGY { UNIT = le-12; }

Syntax 120—POWER and ENERGY statements

The purpose of power calculation is to evaluate the electrical power supply demand and electrical power dissipa-
tion of an electronic circuit. In general, both power supply demand and power dissipation are the same, dueto the
energy conservation law. However, there are scenarios where power is supplied and dissipated locally in different
places. The power modelsin ALF shall be specified in such away that the total power supply and dissipation of
acircuit adds up correctly to the same number.

Example

A capacitor Cis charged from 0 volt to V volt by a switched DC source. The energy supplied by the
source is C* V2. The energy stored in the capacitor is 1/ 2* C* V2. Hence the dissipated energy isalso 1/
2* C* 2, Later the capacitor is discharged from V volt to 0 volt. The supplied energy is 0. The dissipated
energy is1/ 2* C* V2. A supply-oriented power model can associate the energy E=C V2 with the charg-
ing event and E,=0 with the discharging event. The total energy is E=E;+E,=C* V2. A dissipation-ori-
ented power model can associate the energy Eg=1/ 2* C* V2 with both the charging and discharging
event. The total energy is also E=2* Eg=C* V2,

In many cases, it is not so easy to decide when and where the power is supplied and where it is dissipated. The
choice between a supply-oriented and dissipation-oriented model or a mixture of both is subjective. Hence the
ALF language provides no means to specify, which modeling approach is used. The choice is up to the model
developer, aslong as the energy conservation law is respected.

POVER and/or ENERGY models shall be in the context of a CELL or within a VECTOR. The total energy and/or
power of acell shall be calculated by combining the data of all models within the scope of the CELL or the VEC-
TORs within the cell.

The datafor PONER and/or ENERGY shall be positive when energy is actually supplied to the CELL and/or dissi-
pated within the CELL. The data shall be negative when energy is actually supplied or restored by the CELL.

202 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 5

11.25 FLUX and FLUENCE

A flux or fluence statement shall be defined as shown in Syntax 121.

KEYWORD FLUX = arithmetic_nodel {
VALUETYPE = nunber ;

}

KEYWORD FLUENCE = arithmeti c_nodel {
VALUETYPE = nunber ;

}

FLUX { UNIT = 1le-3; }

FLUENCE { UNIT = le-12; }

Syntax 121—FLUX and FLUENCE statements

The purpose of hot electron calculation isto eval uate the damage done to the performance of an electronic device
due to the hot electron effect. The hot electron effect consists in accumulation of electrons trapped in the gate
oxide of atransistor. The more electrons are trapped, the more the device dows down. At a certain point, the per-
formance specification no longer is met and the deviceis considered to be damaged.

FLUX and/or FLUENCE models shall be in the context of a CELL or within aVECTOR. Total fluence and/or flux
of acell shall be calculated by combining the data of all models within the scope of the CELL or the VECTORs
within the cell.

Both FLUX and FLUENCE are measures for hot electron damage. FLUX relates to FLUENCE in the same way as
POVER relates to ENERGY.

11.26 DRIVE_STRENGTH

A drive_strength statement shall be defined as shown in Syntax 122.

KEYWORD DRI VE_STRENGTH = arithnetic_nodel {
VALUETYPE = nunber ;

}
DRI VE_STRENGTH { MN = 0; }

Syntax 122—DRIVE_STRENGTH statement

DRI VE_STRENGTH is a unit-less, abstract measure for the drivability of a Pl N. It can be used as a substitute of
driver RESI STANCE. The higher the DRI VE_STRENGTH, the lower the driver RESI STANCE. However,
DRI VE_STRENGTH can only be used within a coherent system of calculation models, since it does not represent
an absolute quantity, as opposed to RESI STANCE. For example, the weakest driver of alibrary can have drive
strength 1, the next stronger driver can have drive strength 2 and so forth. This does not necessarily mean the
resistance of the stronger driver is exactly half of the resistance of the weaker driver.

An arithmetic model for conversion from DRI VE_STRENGTHto RESI STANCE can be given to relate the quan-
tity DRI VE_STRENGTH across technology libraries.

Example

SUBLI BRARY hi gh_speed_l|ibrary {
RESI STANCE {

IEEE P1603 Draft 5 Advanced Library Format (ALF) Reference Manual 203

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

HEADER { DRI VE_STRENGTH } EQUATION { 800 / DRI VE_STRENGTH }
}
CELL hi gh_speed_std driver {

PIN Z { D RECTION = output; DRIVE_STRENGTH = 1; }

}
}
SUBLI BRARY | ow power library {
RESI| STANCE {
HEADER { DRI VE_STRENGTH } EQUATION { 1600 / DRI VE_STRENGTH }
}
CELL | ow power _std driver {
PIN Z { DI RECTI ON = output; DRI VE STRENGTH = 1; }
}
}

Drive strength 1 in the high speed library corresponds to 800 ohm. Drive strength 1 in the low power library cor-
responds to 1600 ohm.

NOTE—Any particular arithmetic model for RESI STANCE in either library shall locally override the conversion formula
from drive strength to resistance.

11.27 SWITCHING_BITS

A switching_bits statement shall be defined as shown in Syntax 123.

KEYWORD SW TCHI NG BI TS = arithnetic_nodel {
VALUETYPE = unsi gned_i nteger ;

}

Syntax 123—SWITCHING_BITS statement

The quantity SW TCHI NG_BI TS appliesonly for bus pins. The rangeisfrom 0 to the width of the bus. Usually,
the quantity SW TCHI NG_BI TS isnot calculated by an arithmetic model, since the number of switching bits on
a bus depends on the functional specification rather than the electrical specification. However,
SW TCHI NG_BI TS can be used as argument in the HEADER of an arithmetic model to calcul ate electrical quan-
tities, for instance, energy consumption.

Example

CELL nmy_rom/{
PIN [3:0] addr { DI RECTI ON=i nput; SIGNALTYPE=address; }
PIN [7:0] dout { DI RECTI ON=out put; SIGNALTYPE=data; }
VECTOR (?! addr -> ?! dout) {

ENERGY {
HEADER {
SW TCHI NG BI TS addr_bits { PIN = addr; }
SW TCHI NG BI TS dout_bits { PIN = dout; }

}
EQUATION { 0.45*LOG(addr_bits) + 2.6*dout_bits }

204 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 5

The energy consumption of ny_r omdepends on the number of switching data bits and on the logarithm of the
number of switching address hits.

11.28 NOISE and NOISE_MARGIN

A noise or noise_margin statement shall be defined as shown in Syntax 124.

KEYWORD NO SE = arithnetic_nodel {
VALUETYPE = nunber ;

}

KEYWORD NO SE_MARG N = arithmetic_nodel ({
VALUETYPE = nunber ;

}

NOSE { MN = 0; }

NO SE MARGN{ MN =0; MAX = 1; }

Syntax 124—NOISE and NOISE_MARGIN statements

11.28.1 NOISE margin

Noise margin is defined as the maximal alowed difference between the ideal signal voltage under a well-speci-
fied operation condition and the actual signal voltage normalized to the ideal voltage swing. Thisisillustrated in
Figure 28.

V . .
ideal (logic 1) AV, { A noise margin igh) = AAL\;
Vmin(logicl) ______]
AV
¥ max logieo) T av. A noise margin - Yo
0 (low) = o,
Videal (logic 0) 5 y &Y

Figure 28—Definition of noise margin

NO SE_MARG Nisapin-related quantity. It can appear either in the context of aPl N statement or in the context
of a VECTOR statement with Pl N annotation. It can also appear in the global context of a CELL, SUBLI BRARY,
or LI BRARY statement.

If aNO SE_MARG N statement appears in multiple contexts, the following priorities apply:

a NO SE_MARG N with PI N annotation in the context of the VECTOR, NO SE_MARG N with PI' N
annotation in the context of the CELL, or NO SE_MARG Nin the context of the PI N

b) NO SE_MARG Nwithout Pl N annotation in the context of the CELL

¢) NO SE_MARG Nin the context of the SUBLI BRARY

d) NO SE_MARG Nin the context of the LI BRARY

€) NO SE_MARG Noutsidethe LI BRARY

IEEE P1603 Draft 5 Advanced Library Format (ALF) Reference Manual 205

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

11.28.2 NOISE

Noise is defined as the actual measured noise against which the noise margin is compared.

11.29 Annotations and statements related to electrical models

** Add lead-in text**

11.29.1 MEASUREMENT annotation

A measurement annotation shall be defined as shown in Semantics 67.

}

}
}

CONTEXT {
ENERGY POAER CURRENT VOLTAGE FLUX FLUENCE JI TTER

KEYWORD MEASUREMENT = singl e_val ue_annotation {
VALUETYPE = identifier ;
VALUES {

transient static average absol ute_average rns peak

Semantics 67—MEASUREMENT annotation

Arithmetic models can have a MEASUREMENT annotation. This annotation indicates the type of measurement
used for the computation in arithmetic model.

The meaning of the annotation values is shown in Table 95.

Table 95—MEASUREMENT annotation

Annotation value Description
transi ent Measurement isatransient value.
static Measurement is a static value.
aver age Measurement is an average value.
rms M easurement is the root mean sguare value.
peak Measurement is a peak value.

Their mathematical definitions are shown in Figure 29.

206

Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 5

t=1 t="7)
transi ent J‘ dE(t) aver age .f E(t)dt
(t=0) =0
T
static E = constant
rns (t=T)
[E(t)’dt
peak max(|E(t)|) OsgnE(t) t=T =0 -

Figure 29—Mathematical definitions for MEASUREMENT annotations

Arithmetic models with certain values of MEASUREMENT annotation can also have either TI ME or FREQUENCY
as auxiliary arithmetic models.

The semantics are defined in Table 96.

Table 96—Semantic interpretation of MEASUREMENT, TIME, or FREQUENCY

MEASURE.M ENT Semantic meaning of TIME Semantic meaning of FREQUENCY
annotation

transient Integration of analog measurement isdone | Integration of analog measurement is
during that time window. repeated with that frequency.

static N/A N/A

aver age Average value is measured over that time Average value measurement is repeated
window. with that frequency.

r ms Root-mean-square value is measured over Root-mean-square measurement isrepeated
that time window. with that frequency.

peak Peak value occurs at that time (only within | Observation of peak valueis repeated with
context of VECTOR). that frequency.

Inthecaseof aver age and r ns, theinterpretation FREQUENCY = 1 / TI MEisvalid. Either one of these
annotations shall be mandatory. The values for aver age measurements and for r ms measurements scale lin-
early with FREQUENCY and 1 / TI ME, respectively.

Inthecaseof t ransi ent and peak, theinterpretation FREQUENCY = 1 / TI MEisnot valid. Either one
of these annotations shall be optional. The values do not necessarily scalewith TI ME or FREQUENCY. The TI ME
or FREQUENCY annotationsfor t r ansi ent measurements are purely informational.

11.29.2 TIME to peak measurement

For amodel in the context of a VECTOR, with a peak measurement, the TI ME annotation shall define the time
between areference event within thevect or _expr essi on and the instant when the peak value occurs.

IEEE P1603 Draft 5 Advanced Library Format (ALF) Reference Manual 207

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

For that purpose, either the FROMor the TO statement shall be used in the context of the Tl IVE annotation, con-
taining a Pl N annotation and, if necessary, a THRESHOL D and/or an EDGE_ NUMBER annotation.

If the FROM statement is used, the start point shall be the reference event and the end point shall be the occur-
rence time of the peak, as shown in Figure 30.

<f rolandqe>

<fronPi n> <froniThr eshol d>

|
|
T TIME -
MEASUREMENT = peak :
1

/@w
|
|

Figure 30—lllustration of time to peak using FROM statement

If the TO statement is used, the start point shall be the occurrence time of the peak and the end point shall be the
reference event, as shown in Figure 31.

<t oIEdqe>

<t oThr eshol d>

<t oPi n>

<nodel Val ue> |
,////////;#\\\\\\\\‘ | MEASUREMENT = peak
| |

Figure 31—lllustration of time to peak using TO statement

11.30 CONNECTIVITY

A connectivity statement shall be defined as shown in Syntax 125.

KEYWORD CONNECTI VI TY = arithmetic_nodel ({
VALUETYPE = bool ean ;
VALUES { 1 0 ? }

}

Syntax 125—CONNECTIVITY statement

A driver or receiver statement shall be defined as shown in Syntax 126.

208 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 5

KEYWORD DRI VER = arithnetic_nodel {
VALUETYPE = identifier ;
CONTEXT = CONNECTI VI TY. HEADER

}

KEYWORD RECEI VER = arithnetic_nodel {
VALUETYPE = identifier ;
CONTEXT = CONNECTI VI TY. HEADER

Syntax 126— DRIVER and RECEIVER statements

Connectivity can also be described as a lookup table model. This description is usually more compact than the
description using the BETWEEN statements.

The connectivity model can have the arguments shown in Table 97 in the HEADER.

Table 97—Arguments for connectivity

Argument Valuetype Description
DRI VER string Dimension of connectivity function.
RECEI VER string Dimension of connectivity function.

Each dimension shall contain a TABLE.
The connectivity model specifies the allowed and disallowed connections amongst drivers or receivers in one-

dimensional tables or between drivers and receivers in two-dimensional tables.The boolean literas in the table
refer to the CONNECT _RULE as shown in Table 98.

Table 98—Boolean literals in non-interpolateable tables

Boolean literal Description
1 CONNECT_RULE isTrue.
0 CONNECT_RULE isFalse.
? CONNECT_RULE does not apply.

11.31 SIZE

A size statement shall be defined as shown in Syntax 127.

KEYWORD SI ZE = arithmetic_nodel {
VALUETYPE = unsi gned_nunber ;

}

Syntax 127—SIZE statement

IEEE P1603 Draft 5 Advanced Library Format (ALF) Reference Manual 209

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

11.32 AREA

A area statement shall be defined as shown in Syntax 128.

KEYWORD AREA = arithnetic_nodel {
VALUETYPE = unsi gned_nunber ;

}

Syntax 128—AREA statement

11.33 WIDTH

A width statement shall be defined as shown in Syntax 129.

KEYWORD W DTH = arithnetic_nodel {
VALUETYPE = unsi gned_nunber ;

}

Syntax 129—WIDTH statement

Width can be associated with arouting segment (see Section 9.31.2). Width shall be measured orthogonal to the
routing direction.

11.34 HEIGHT

A height statement shall be defined as shown in Syntax 130.

KEYWORD HEI GHT = arithnetic_nodel {
VALUETYPE = unsi gned_nunber ;

}

Syntax 130—HEIGHT statement

11.35 LENGTH

A length statement shall be defined as shown in Syntax 131.

KEYWORD LENGTH = arithnetic_nodel {
VALUETYPE = unsi gned_nunber ;

}

Syntax 131—LENGTH statement

Length can be associated with a routing segment (see Section 9.31.2). Length shall be measured paralel to the
routing direction. Length can also be associated with two parallel routing segments. In this case, length shall rep-
resent the distance between two lines which are orthogonal to the routing segments, cross both routing segments
and are as far apart from each other as possible.

210 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 5

11.36 DISTANCE

A distance statement shall be defined as shown in Syntax 132.

KEYWORD DI STANCE = arithnetic_nodel {
VALUETYPE = unsi gned_nunber ;

}

Syntax 132—DISTANCE statement

Distance can be associated with two paralléel routing segments (see Section 9.31.2). Distance shall be measured

orthogonal to the routing direction.

11.37 OVERHANG

A overhang statement shall be defined as shown in Syntax 133.

KEYWORD OVERHANG = arithnetic_nodel {
VALUETYPE = unsi gned_nunber ;

}

Syntax 133—OVERHANG statement

11.38 PERIMETER

A perimeter statement shall be defined as shown in Syntax 134.

KEYWORD PERI METER = arithnetic_nodel {
VALUETYPE = unsi gned_nunber ;

}

Syntax 134—PERIMETER statement

11.39 EXTENSION

An extension statement shall be defined as shown in Syntax 135.

KEYWORD EXTENSI ON = arithnetic_nodel {
VALUETYPE = unsi gned_nunber ;

}

Syntax 135—EXTENSION statement

11.40 THICKNESS

A thickness statement shall be defined as shown in Syntax 136.

IEEE P1603 Draft 5 Advanced Library Format (ALF) Reference Manual

211

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

}

KEYWORD THI CKNESS = arithnetic_nodel ({
VALUETYPE = unsi gned_nunber

Syntax 136—THICKNESS statement

11.41 Annotations for physical models

** Add lead-in text**

11.41.1 CONNECT_RULE annotation

A connect_rule annotation shall be defined as shown in Semantics 68.

}

KEYWORD CONNECT_RULE = singl e_val ue_annot ati on {
VALUETYPE = identifier
VALUES { must_short can_short cannot_short }
CONTEXT = CONNECTI VI TY;

Semantics 68—CONNECT_RULE annotation

The meaning of the annotation values is shown in Table 99.

Table 99—CONNECT_RULE annotation

Annotation value

Description

nmust _short

Electrical connection required.

can_short

Electrical connection allowed.

cannot _short

Electrical connection disallowed.

It is not necessary to specify more than one rule between a given set of objects. If oneruleis specified to be True,
thelogical value of the other rules can be implied shown in Table 100.

Table 100—Implications between connect rules

must_short cannot_short can_short
False False True
False True False
True False N/A

11.41.2 BETWEEN annotation

A between annotation shall be defined as shown in Semantics 69.

212

Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 5

KEYWORD BETWEEN = nulti _val ue_annotation {
VALUETYPE = identifier ;
CONTEXT { DI STANCE LENGTH OVERHANG CONNECTI VI TY }

}

Semantics 69—BETWEEN annotation

If the BETWVEEN statement contains only one identifier, than the CONNECTI VI TY shall apply between multiple
instances of the same object.

The BETWEEN statement within DI STANCE or LENGTH shall identify the objects for which the measurement
applies.

If the BETVEEEN statement contains only one identifier, than the DI STANCE or LENGTH, respectively, shal
apply between multiple instances of the same object, as shown in the following example and Figure 32.

Example
DI STANCE = 4 { BETWEEN { objectl object2 } }
LENGTH = 2 { BETWEEN { objectl object2 } }

objectl obj ect 2

O sTAancE=2 ™|

Figure 32—Illustration of LENGTH and DISTANCE
11.41.3 DISTANCE-MEASUREMENT annotation

A distance_measurement annotation shall be defined as shown in Semantics 70.

KEYWORD DI STANCE MEASUREMENT = si ngl e_val ue_annotati on {
VALUETYPE = identifier ;
VALUES { euclidean horizontal vertical manhattan }
DEFAULT = eucli dean ;
CONTEXT DI STANCE ;

Semantics 70—DISTANCE_MEASUREMENT annotation

The mathematical definitions for distance measurements between two points with differential coordinates Ax and
Ay are;

— euclidean distance = (Ax? + Ay?) Y2
— horizontal distance = Ax
— vertical distance = Ay
— manhattan distance = Ax + Ay

IEEE P1603 Draft 5 Advanced Library Format (ALF) Reference Manual 213

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

11.41.4 REFERENCE annotation container

A reference annotation shall be defined as shown in Semantics 71.

KEYWORD REFERENCE = annot ati on_cont ai ner {
CONTEXT = DI STANCE ;
}

SEMANTI CS REFERENCE. i denti fier = single_value_annotation {
VALUETYPE = identifier ;
VALUES { center origin near_edge far_edge }
DEFAULT = origin ;

}

Semantics 71—REFERENCE annotation

The meaning of the annotation valuesisillustrated in Figure 33.

object 1 object 2 object 1 object 2
DISTANCE DISTANCE
<> - —
REFERENCE = near_edge REFERENCE = center

Figure 33—lllustration of REFERENCE for DISTANCE
11.41.5 ANTENNA reference annotation

An antenna annotation shall be defined as shown in Semantics 72.

SEMANTI CS ANTENNA = annotation {
VALUETYPE = identifier ;
CONTEXT { PIN. SI ZE PI N. AREA PI N. PERI METER }

}

Semantics 72—ANTENNA annotation

In hierarchical design, a Pl N with physical PORTs can be abstracted. Therefore, an arithmetic model for Sl ZE,
AREA, PERI METER, etc. for certain antenna rules can be precalculated. An ANTENNA statement within the
arithmetic model enables references to the set of antenna rules for which the arithmetic model applies

Example

CELL cell 1 {
PIN pinl {

214 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 5

AREA poly area = 1.5 {

LAYER = poly;
ANTENNA { i ndividual _ml individual _vial }
5

}
AREA ml_area = 1.0 {

LAYER = netal 1;
ANTENNA { i ndividual _nml }
10

}
AREA vial_area = 0.5 {
LAYER = vi al;

ANTENNA { i ndividual vial }
15

Theareapol y_ar eaisusedintherulesi ndi vi dual _nil andi ndi vi dual _vi al.

Theareanil_ar eaisused intherulei ndi vi dual _mil only.
Theareavi al_ar eaisusedintherulei ndi vi dual _vi al only.
20

The case with diffusion isillustrated in the following example:

CELL my_di ode {
CELLTYPE = special; ATTRI BUTE { DI ODE }
PI' N nmy_di ode_pin { 25
AREA = 3.75 {
LAYER = di f f usi on;
ANTENNA { rulel for_diffusion rule2 for_diffusion }
}
} 30
}
11.41.6 PATTERN reference annotation
| A pattern annotation shall be defined as shown in Semantics 73. 35
SEMANTI CS PATTERN = si ngl e_val ue_annot ati on {
VALUETYPE = identifier ;
CONTEXT { 40
LENGTH W DTH HEI GHT SI ZE AREA THI CKNESS
PERI METER EXTENSI ON
}
}
. . 45
Semantics 73—PATTERN annotation
Reference to a PATTERN shall be legal within arithmetic models, if the pattern and the model are within the
scope of the same parent object.
50
55

IEEE P1603 Draft 5 Advanced Library Format (ALF) Reference Manual 215

10

15

20

25

30

35

40

45

50

55

11.42 Arithmetic submodels for timing and electrical data

The arithmetic submodels shown in Table 101 are only applicable in the context of electrical modeling.

Table 101—Submodels applicable for timing and electrical modeling

Object Description
H GH Applicable for electrical data measured at alogic hi gh state of apin.
Low Applicable for electrical data measured at alogic | ow state of apin.
Rl SE Applicable for electrical data measured during alogic | owto hi gh transition of a pin.
FALL Applicable for electrical data measured during alogic hi gh tol owtransition of apin.

11.43 Arithmetic submodels for physical data

The arithmetic submodels shown in Table 102 are only applicable in the context of physical modeling.

Table 102—Submodels applicable for physical modeling

Object Description
HORI ZONTAL Applicable for layout measurementsin O degree, i.e., horizontal direction.
VERTI CAL Applicable for layout measurementsin 90 degree, i.e., vertical direction.
ACUTE Applicable for layout measurements in 45 degree direction.
OBTUSE Applicable for layout measurements in 135 degree direction.

216 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 5

Annex A

(informative)

Syntax rule summary

This summary replicates the syntax detailed in the preceding clauses. If there is any conflict, in detail or com-
pleteness, the syntax presented in the clauses shall considered as the normative definition.

The current ordering is as each item appearsin its subchapter; this needs to be updated to be complete.

A.1 ALF meta-language

ALF_statement ::= (seeb5.1)
ALF_type[ALF_name] [= ALF_vaue] ALF_statement_termination
ALF type::=
non_escaped_identifier [index]
| @
|:
ALF_name::=
identifier [index]
| control_expression
ALF vaue::=
identifier
| number
| arithmetic_expression
| boolean_expression
| control_expression
ALF_statement_termination ::=

|{,{ALF_vaIue|: 151}
|{ { ALF_statement} }

A.2 Lexical definitions

character ::= (see6.1)
whitespace
| letter
| digit
| special
whitespace ::=
space | vertical_tab | horizontal _tab | new_line | carriage_return | form_feed
letter ::=
uppercase | lowercase
uppercase ::=
AIBICIDIEIFIGIHIIJIKILIM INJOIPIQIRISITIUIV W
IX1Y1Z
lowercase ::=

alblcidielfiglihlifjikiliminjolpiglr|sitiu|viw|x|y|z

IEEE P1603 Draft 5 Advanced Library Format (ALF) Reference Manual 217

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

digit ::=
0111213141516171819
special ::=
N I=1+ -1 1% 12105 L1 1@ 1=\ 18| |#
ICI) 1< 1>l 11}
comment ;= (see6.2)

in_line_comment
| block_comment
in_line_comment ::=
[I{ character} new_line
| / /{ character} carriage_return
block_comment ::=
[*{character}* /
delimiter ::= (sce6.3)
(IO,
operator ::= (see 6.4)
arithmetic_operator
| boolean_operator
| relational _operator
| shift_operator
| event_sequence_operator
| meta_operator
arithmetic_operator ::=
-1 %
boolean_operator ::=

&& [[[1~& [~[IM M~ H&]
relational_operator ::=

==|1=|>=|<=|>|<
shift_operator ::=

<<|>>

event_sequence_operator ::=

S| > <> <> | &> <& >
meta_operator ::=

=1?71@
number ::= (see 6.5)

signed_number | unsigned_number
signed_number ::=

signed_integer | signed_real
signed_integer ::=

sign unsigned_integer
sign =

+ -
unsigned _integer ::=

digit {[_] digit}
signed red ::=

sign unsigned_real
unsigned_rea ::=

mantisse [exponent]

| unsigned_integer exponent

mantisse ::=
. unsigned_integer
| unsigned_integer . [unsigned_integer]

218 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 5

exponent ::=
E [sign] unsigned integer
| e[sign] unsigned_integer
unsigned_number ::=
unsigned_integer | unsigned_real
number ::= **Thisis a confusing second [alternate] definition** (see 6.5)
integer | real
integer ::=
signed_integer | unsigned_integer
rea ::=
signed_rea |unsigned_rea
unit_symbol ::= (see 6.6)

unity { letter} |K { letter} |M E G { letter } | G { letter }
IM { letter } |U{ letter } |N{ letter } | P{ letter } | F { letter}

unity ::=

1
K:=

K |k
M=

M|m
E:=

Ele
G:=

Glg
U:=

Ulu
N =

N|n
P:=

Pip
Fu=

Fif
bit_literal ::=

numeric_bit_literal
| symbolic_hit_literal

numeric_bit_literal ::=

0|1

symbolic_bit_literal ::=

X|Z|L|H|UIW
IX|z|l|hju|w
| ?1*

based literal ::=

binary_based literal | octal_based literal | decimal_based literal | hexadecimal_based_literal

binary_based_literal ::=

binary_base bit_literal { [__] bit_literal }

binary_base ::=

'‘Bl'b

octal_based litera ::=

octal_baseoctal { [_] octal }

octal_base ::=

IEEE P1603 Draft 5

Advanced Library Format (ALF) Reference Manual

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

octal ;=

‘Ol'o

bit_literal |2]|3|415|6|7
decimal_based litera ::=
decimal_basedigit{ [_] digit}
decimal_base ::=

'‘D|'d

hexadecimal_based_literal ::=
hex_base hexadecimal { [_] hexadecimal }
hex_base ::=

'H|'h

hexadecimal ::=

octa |89
|IA|IBIC|D|E|F
lalblc|d|e|f

edge litera ::=

bit_edge literal
| based_edge literal
| symbolic_edge literal

bit_edge literal ::=

bit_literal bit_literal

based edge literal ::=
based literal based_litera
symbolic_edge litera ::=

7~ |20 |2

quoted_string ::=

" { character} "

identifier ::=

non_escaped_identifier
| escaped_identifier
| placeholder_identifier
| hierarchical _identifier

non_escaped_identifier ::=
letter { letter | digit | | $|#}
escaped_identifier ::=
backs ash escapable character { escapable character }
escapable _character ::=

letter | digit | specia

placeholder_identifier ::=
< non_escaped identifier >
hierarchical_identifier ::=

identifier [\] . identifier

keyword_identifier ::=

A.3 Auxiliary definitions

letter { [_] letter }

all_purpose vaue::=

220

number
| identifier
| quoted_string

Advanced Library Format (ALF) Reference Manual

(see 6.9)

(see6.10)

(see 6.11)

(see 6.11.1)

(see 6.11.2)

(see 6.11.3)
(see 6.11.4)

(see6.12)

(see7.2)

IEEE P1603 Draft 5

| bit_literal
| based_literal
| edge value
| pin_variable
| control_expression
unit_value::=
unsigned_number | unit_symbol
string ::=
quoted_string | identifier
arithmetic_value ::=
number | identifier | bit_literal | based literal
boolean value::=
bit_literal | based literal | unsigned_integer

edge vaue::=

(edge literal)
index_value ::=

unsigned_integer | identifier
index ::=

single_index | multi_index
single_index ::=

[index_value]
multi_index ::=

[index_value : index_value]
pin_variable::=

pin_variable identifier [index]
pin_value::=

pin_variable | boolean_value
pin_assignment ::=

pin_variable = pin_vaue;
annotation ::=

single_value_annotation

| multi_value_annotation
single value annotation ::=

annotation_identifier = annotation_value
annotation_value ::=

number

| identifier

| quoted_string

| bit_literal

| based_litera

| edge_value

| pin_variable

| control_expression

| boolean_expression

| arithmetic_expression
multi_value annotation ::=

annotation_identifier { annotation_value { annotation value} }

annotation_container ::=

annotation_container_identifier { annotation { annotation} }
attribute ::=

ATTRIBUTE { identifier { identifier} }

property ::=

IEEE P1603 Draft 5 Advanced Library Format (ALF) Reference Manual

(see7.2)
(see7.3)
(see7.4)

(see7.5)
(see 7.6)

(see7.7)

(see 7.8)

(see7.9)

(see 7.10)

(see 7.11)

(see7.12)
(see7.13)

(see 7.14)

221

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

PROPERTY [identifier] { annotation { annotation} }
include ::=
INCLUDE quoted_string ;
revision ::=
ALF_REVISION string_value
generic_object ::=
alias declaration
| constant_declaration
| class_declaration
| keyword_declaration
| semantics_declaration
| group_declaration
| template_declaration
library_specific_object ::=
library
| sublibrary
| cell
| primitive
| wire
| pin
| pingroup
| vector
| node
| layer
| via
[rule
| antenna
| site
| array
| blockage
| port
| pattern
| region
all_purpose_item ::=
generic_object
| include_statement
| associate_statement
| annotation
| annotation_container
| arithmetic_model
| arithmetic_model_container
| all_purpose item template instantiation

A.4 Generic definitions

dias declaration ::=

ALIASalias identifier = original_identifier ;
constant_declaration ::=

CONSTANT constant_identifier = constant_value ;

constant_value ::=
number | based_literal

class declaration ::=
CLASSclass identifier ;
| CLASS class identifier { { all_purpose item} }

222 Advanced Library Format (ALF) Reference Manual

(see 7.15)
(see7.17)

(see 7.18)

(see 7.19)

(see 7.20)

(see 8.1)

(see 8.2)

(see 8.3)

IEEE P1603 Draft 5

keyword_declaration ::= (see 8.4)
KEYWORD keyword identifier = syntax_item identifier ;
| KEYWORD keyword_identifier = syntax_item identifier { { keyword_item} }
keyword_item ::=
VALUETYPE single value annotation
| VALUES multi_value_annotation
| DEFAULT single value annotation
| CONTEXT _annotation
semantics_declaration ::= (see 8.6)
SEMANTICS semantics _identifier = syntax_item_identifier ;
| SEMANTICS semantics_identifier [= syntax_item identifier] { { semantics_item} }
semantics item ::=
VALUES multi_value annotation
| DEFAULT single value annotation
| CONTEXT_annotation
group_declaration ::= (see 8.7)
GROUP group_identifier { all_purpose value{ all_purpose value} }
| GROUP group_identifier { left_index_value : right_index_value }

template_declaration ::= (see 8.8)
TEMPLATE template_identifier { ALF_statement { ALF_statement } }
template _instantiation ::= (see 8.9)

static_template_instantiation
| dynamic_template instantiation
static_template_instantiation ::=
template _identifier [= STATIC];
| template_identifier [= STATIC]{ { al_purpose value} }
| template_identifier [= STATIC] { { annotation} }
dynamic_template instantiation ::=
template_identifier = DYNAMIC { { dynamic_template_instantiation_item} }
dynamic_template instantiation_item ::=
annotation
| arithmetic_model
| arithmetic_assignment
arithmetic_assignment ::=
identifier = arithmetic_expression ;

A.5 Library definitions

library ::= (see9.1)
LIBRARY library identifier ;
|LIBRARY library_identifier { { library_item} }
| library_template instantiation
library_item ::=
sublibrary
| sublibrary_item
sublibrary ::=
SUBLIBRARY sublibrary_identifier ;
| SUBLIBRARY sublibrary identifier { { sublibrary_item} }
| sublibrary_template instantiation
sublibrary_item ::=
al_purpose_item
| cell

IEEE P1603 Draft 5 Advanced Library Format (ALF) Reference Manual

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

| primitive
| wire

| layer

| via

[rule

| antenna

| array

| site

| region

cell :: (see9.3)

CELL cel_identifier ;
| CELL cell_identifier { { cell_item} }
| cell_template_instantiation
cell_item ::=
all_purpose_item
| pin
| pingroup
| primitive
| function
| non_scan_cell
| test
| vector
| wire
| blockage
| artwork
| pattern
| region
named_cell_instantiation ::= (see9.4)
cell_identifier instance_identifier ;
| cell_identifier instance_identifier { pin_value{ pin_value} }
| cell_identifier instance_identifier { pin_assignment { pin_assignment } }
unnamed_cell_instantiation ::=
cell_identifier { pin_value{ pin_value} }
| cell_identifier { pin_assignment { pin_assignment} }
pin::= (see9.7)
scalar_pin | vector_pin | matrix_pin
scalar_pin ::=
PIN pin_identifier ;
| PIN pin_identifier { { scalar_pin_item} }
| scalar_pin_template instantiation
scaar_pin_item ::=
al_purpose_item
| port
vector_pin ::=
PIN multi_index pin_identifier ;
| PIN multi_index pin_identifier { { vector_pin _item} }
| vector_pin_template_instantiation
vector_pin_item ::=
al_purpose_item
| range
matrix_pin ::=
PIN first_multi_index pin_identifier sscond_multi_index ;
| PIN first_multi_index pin_identifier second_multi_index { { matrix_pin_item} }

224 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 5

| matrix_pin_template instantiation
matrix_pin_item ::=
vector_pin_item
pingroup ::= (see9.8)
simple_pingroup | vector_pingroup
simple_pingroup ::=
PINGROUP pingroup_identifier { members{ all_purpose item} }
| ssimple_pingroup_template_instantiation
members ::=
MEMBERS({ pin_identifier pin_identifier { pin_identifier } }
vector_pingroup ::=
| PINGROUP [index_value : index_value] pingroup_identifier
{ members { vector_pingroup_item} }
| vector_pingroup_template instantiation
vector_pingroup_item ::=
all_purpose_item
| range
primitive ::= (see9.11)
PRIMITIVE primitive_identifier { { primitive_item} }
| PRIMITIVE primitive identifier ;
| primitive_template_instantiation
primitive_item ::=
all_purpose_item
| pin
| pingroup
| function
| test
wire ;= (see9.12)
WIRE wire_identifier { wire_items }
| WIRE wire_identifier ;
| wire_template_instantiation
wire_item::=
all_purpose_item
| node
node ::= (see9.13)
NODE node _identifier ;
| NODE node identifier { { node item?} }
| node_template instantiation
node item ::=
all_purpose_item
vector ;= (see9.14)
VECTOR control_expression ;
|[VECTOR control_expression { { vector_item} }
| vector_template_instantiation
vector_item ::=
all_purpose_item
layer ::= (see9.16)
LAY ER layer_identifier ;
|LAYER layer_identifier { { layer_item} }
| layer_template instantiation
layer_item ::=
all_purpose_item
via:= (see9.18)

IEEE P1603 Draft 5 Advanced Library Format (ALF) Reference Manual 225

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

V1A via identifier ;
| VIA via_identifier { { via_item} }
| via_template instantiation
via item ::=
all_purpose_item
| pattern
| artwork
via instantiation ::=
via_identifier instance identifier ;
| via_identifier instance_identifier { { geometric_transformation } }
rule::=
RULE rule identifier ;
| RULE rule_identifier { { rule_item} }
| rule_template instantiation
rule_item ::=
all_purpose_item
| pattern
| region
| via_instantiation
antenna::=
ANTENNA antenna_identifier ;
| ANTENNA antenna_identifier { { antenna_item} }
| antenna_template_instantiation
antenna_item ::=
all_purpose_item
blockage ::=
BL OCK AGE blockage identifier ;
| BLOCKAGE blockage_identifier { { blockage item} }
| blockage template instantiation
blockage item ::=
all_purpose_item
| pattern
| region
[rule
| via_instantiation
port ::=
PORT port_identifier ;{ { port_item} }
| PORT port_identifier ;
| port_template instantiation
port_item ::=
all_purpose_item
| pattern
| region
[rule
| via_instantiation
Site::=
SITE site identifier ;
| SITE site identifier { { site_item} }
| site_template instantiation
site item ;=
al_purpose_item
| WIDTH_arithmetic_model
| HEIGHT_arithmetic_model

array ::=

226 Advanced Library Format (ALF) Reference Manual

(see 9.19)

(see9.21)

(see9.22)

(see 9.23)

(see9.24)

(see 9.26)

(see 9.28)

IEEE P1603 Draft 5

ARRAY array identifier ;
| ARRAY array_identifier { { array_item} }
| array_template instantiation
array_item ::=
all_purpose_item
| geometric_transformation
pattern ::= (see9.30)
PATTERN pattern_identifier ;

| PATTERN pattern_identifier { { pattern_item} }
| pattern_template _instantiation
pattern_item ::=
all_purpose_item
| geometric_model
| geometric_transformation
geometric_model ::= (see9.33)
nonescaped_identifier [geometric_model_identifier]
{ geometric_model_item { geometric_model_item} }
| geometric_model_template_instantiation
geometric_model_item ::=
POINT_TO_POINT_single value annotation

| coordinates
coordinates ::=
COORDINATES{ point { point} }
point ::=
X_number y_number
geometric_transformation ::= (see9.35)
shift
| rotate
[flip
| repeat
shift ::=
SHIFT { x_number y _number }
rotate ::=
ROTATE = number ;
flip::=
FLIP = number ;
repeat ::=

REPEAT [= unsigned_integer] { geometric_transformation { geometric_transformation} }
artwork ::= (see 9.36)
ARTWORK = artwork_identifier ;
| ARTWORK = artwork_identifier { { artwork_item} }
| artwork_template instantiation
artwork_item ::=
geometric_transformation
| pin_assignment
function ::= (see9.37)
FUNCTION { function_item { function_item} }
| function_template_instantiation
function_item ::=
al_purpose_item
| behavior
| structure

IEEE P1603 Draft 5 Advanced Library Format (ALF) Reference Manual 227

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

| statetable
test ::= (see9.38)
TEST { test_item { test_item} }
| test_template instantiation
test item ::=
all_purpose_item
| behavior
| statetable

behavior ::= (see9.39)
BEHAVIOR { behavior_item { behavior_item}s}
| behavior_template instantiation
behavior_item ::=
boolean_assignments
| control_statement
| primitive_instantiation
| behavior_item template instantiation
boolean assignments ::=
boolean assignment { boolean assignment }
boolean_assignment ::=
pin_variable = boolean_expression ;
control_statement ::=
@ control_expression { boolean_assignments } { : control_expression { boolean_assignments } }
primitive_instantiation ::=
primitive_identifier [identifier] { pin_value{ pin_value} }
| primitive_identifier [identifier] { boolean_assignments }
structure ::= (see 9.40)
STRUCTURE { named_cell_instantiation { named_cell_instantiation } }
| structure_template instantiation
statetable ::= (see9.41)
STATETABLE [identifier]
{ statetable_header statetable_row { statetable row } }
| statetable_template instantiation
statetable_header ::=
input_pin_variables : output_pin_variables ;
statetable row ;=
statetable _control_values: statetable data values;
statetable _control_values ::=
statetable _control_value { statetable control_value}
statetable _control_value ::=
bit_literal
| based_litera
| unsigned
| edge value
statetable data values::=
statetable data value { statetable data vaue}
statetable data value::=
bit_literal
| based_litera
| unsigned
[([!] pin_variable)
| ([~] pin_variable)
non_scan cell ::= (see9.42)

228 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 5

NON_SCAN_CELL { unnamed_cell_instantiation { unnamed_cell_instantiation } }

INON_SCAN_CELL = unnamed_cell_instantiation
| non_scan_cell_template instantiation

range ::=
RANGE {index_value: index_value }

A.6 Control definitions

boolean_expression ::=
(boolean_expression)
| pin_value
| boolean_unary boolean_expression
| boolean_expression boolean_binary boolean_expression
| boolean_expression ? boolean_expression :
{ boolean_expression ? boolean_expression : }
boolean_expression
boolean unary ::=

| >>
| <<
vector_expression ::=
(vector_expression)
| vector_unary boolean_expression
| vector_expression vector_binary vector_expression
| boolean_expression ? vector_expression :

IEEE P1603 Draft 5 Advanced Library Format (ALF) Reference Manual

(see 9.43)

(see 10.7)

(see 10.8)

229

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

{ boolean_expression ? vector_expression . }
vector_expression
| boolean_expression control_and vector_expression
| vector_expression control_and boolean_expression

vector_unary ::=
edge litera

vector_binary ::=
&
| & &
I
Il
[->
| ~>
| <->
| <~>
| &>
| <& >
control_and ::=
& |&&
control_expression ::=
('vector_expression)
| (boolean_expression)

A.7 Arithmetic definitions
arithmetic_expression ::=

(‘arithmetic_expression)
| arithmetic_value

| { boolean_expression ? arithmetic_expression : } arithmetic_expression

| [unary_arithmetic_operator] arithmetic_operand

| arithmetic_operand binary_arithmetic_operator arithmetic_operand
| macro_arithmetic_operator (arithmetic_operand { , arithmetic_operand })

arithmetic_operand ::=
arithmetic_expression
unary_arithmetic_operator ::=
+
| -
binary_arithmetic_operator ::
+
| -
| *
|/
| **
| %
macro_arithmetic_operator ::
abs
| eXp
|log
|min

230 Advanced Library Format (ALF) Reference Manual

(see11.1)

(see 11.1.1)

(see11.1.2)

(see 11.1.3)

IEEE P1603 Draft 5

| max
arithmetic_model ::= (see11.2)
trivial_arithmetic_model
| partial_arithmetic_model
| full_arithmetic_model
| arithmetic_ model_template instantiation

trivial_arithmetic_model ::= (see11.2.)
nonescaped_identifier [name_identifier | = arithmetic_value;
| nonescaped_identifier [name_identifier] = arithmetic_value { { model_qualifier } }
partial_arithmetic_model ::= (see11.2.2)
nonescaped_identifier [name_identifier | { { partial_arithmetic_model_item} }
partial_arithmetic model_item ::=
model_qualifier
| table
| trivial_min-max
full_arithmetic_model ::= (see11.2.3)
nonescaped_identifier [name_identifier] { { model_qualifier } model_body { model_qualifier } }
model_body ::=
header-table-equation [trivial_min-max]
| min-typ-max
| arithmetic_submodel { arithmetic_submodel }
header-table-equation ::= (see 11.3)
header table
| header equation
header ::= (see11.3.)
HEADER { partia_arithmetic_model { partial_arithmetic_mode! } }
table ::= (see11.3.2)
TABLE { arithmetic_value { arithmetic value} }
equation ::= (see 11.3.3)
EQUATION { arithmetic_expression }
| equation_template instantiation
model_qualifier ::= (see11.4.1)
annotation
| annotation_container
| event_reference
| from-to
| auxiliary_arithmetic_model
| violation
auxiliary_arithmetic_model ::= (see11.4.2)
nonescaped_identifier = arithmetic_value;
| nonescaped_identifier [= arithmetic_value] { auxiliary_qualifier { auxiliary_qualifier } }
auxiliary_qualifier
annotation
| annotation_container
| event_reference
| from-to
arithmetic_submodel ::= (see11.4.3)
nonescaped_identifier = arithmetic_value;
| nonescaped_identifier { [violation] min-max }
| nonescaped_identifier { header-table-equation [trivial_min-max] }
| nonescaped_identifier { min-typ-max }
| arithmetic_submodel_template instantiation

IEEE P1603 Draft 5 Advanced Library Format (ALF) Reference Manual

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

min-max ::= (see11.4.4)
min [max |
| max [min]
min ::=
MIN = arithmetic_value;
|MIN = arithmetic_value{ violation }
IMIN {[violation] header-table-equation }
max ::=
MAX = arithmetic value;
IMAX = arithmetic_value{ violation }
|[MAX {[violation] header-table-equation }
min-typ-max ::= (see11.4.5)
[min-max] typ [min-max]
typ =
TYP = arithmetic_value;
| TY P { header-table-equation }
trivial_min-max ::= (see 11.4.6)
trivial_min [trivial_max]
| trivial_max [trivial_min]

trivial_min ::=
MIN = arithmetic_value;

trivial_max ::=
MAX = arithmetic_value;

arithmetic_model_container ::= (see11.4.7)
arithmetic_model_container_identifier { arithmetic_model { arithmetic_model } }

limit ::= (see 11.4.8)
LIMIT { limit_item{ limit_item} }

limit_item ::=

limit_arithmetic_model
limit_arithmetic_model ::=

nonescaped_identifier [name_identifier] { { model_qualifier } limit_arithmetic_model_body }
limit_arithmetic_model _body ::=

limit_arithmetic_submodel { limit_arithmetic_submodel }

| min_max
limit_arithmetic_submodel ::=

nonescaped_identifier { [violation] min-max }

event_reference ::= (see11.4.9)
PIN_reference single value annotation [EDGE_NUMBER single value_annotation]
from-to ::= (see11.4.10)
from [to]
|[from] to
from::=

FROM { from-to_item { from-to_item} }
from-to_item ::=
event_reference
| THRESHOLD _arithmetic_model

to::=
TO { from-to_item { from-to_item} }

early-late ::= (see11.4.11)
early late

early ::=

EARLY { ealy-late item { early-late item} }

232 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 5

early-late item ::=

DELAY _arithmetic_model
| RETAIN_arithmetic_model
| SLEWRATE_arithmetic_model

late ::=

LATE { early-late item { early-late item} }

violation ::=

VIOLATION { violation_item { violation_item} }

| violation_template instantiation

violation_item ::=

MESSAGE_TYPE_single value annotation
| MESSAGE_single value_annotation

| behavior

IEEE P1603 Draft 5

Advanced Library Format (ALF) Reference Manual

(see 11.4.12)

233

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

234

Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 5

Annex B

(informative)

Semantics rule summary

This summary replicates the semantics detailed in the preceding clauses. If thereisany conflict, in detail or com-
pleteness, the semantics presented in the clauses shall considered as the normative definition.

The current ordering is as each item appearsin its subchapter; this needs to be updated to be complete.

**| kept the font/formatting as it is from the original semantics sections; let me know if you want to change this

(how it appearsin print)**

B.1 Library definitions

KEYWORD | NFORMATI ON = annot ati on_cont ai ner {

CONTEXT { LI BRARY SUBLI BRARY CELL WRE PRI M Tl VE }

}

KEYWORD PRODUCT = singl e_val ue_annotation {
VALUETYPE = string; DEFAULT = ““; CONTEXT =

}

KEYWORD Tl TLE = singl e_val ue_annotation {
VALUETYPE = string; DEFAULT = “*; CONTEXT =

}

KEYWORD VERSI ON = si ngl e_val ue_annotation {
VALUETYPE = string; DEFAULT = ““; CONTEXT =

}

KEYWORD AUTHCOR = singl e_val ue_annotati on {
VALUETYPE = string; DEFAULT = ““; CONTEXT =

}

KEYWORD DATETI ME = singl e_val ue_annotation {
VALUETYPE = string; DEFAULT = “*“; CONTEXT =

}

KEYWORD CELLTYPE = singl e_val ue_annotation {
CONTEXT = CELL;
VALUETYPE = identifier;
VALUES ({
buffer conbinational nultiplexor flipflop
menory bl ock core speci al

}

}

KEYWORD SWAP_CLASS = annotation {
CONTEXT = CELL;
VALUETYPE = identifier;

}

KEYWORD RESTRI CT_CLASS = annotation {
CONTEXT { CELL CLASS }
VALUETYPE = identifier;

}

| NFORVATI ON,;

| NFORVATI ON,;

I NFORVATI ON,;

I NFORVATI ON,;

I NFORVATI ON,;

| at ch

IEEE P1603 Draft 5 Advanced Library Format (ALF) Reference Manual

(see 9.2.1)

(see 9.5.1)

(see 9.5.2)

(see 9.5.3)

235

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

KEYWORD SCAN TYPE = single _val ue_annotation {
CONTEXT = CELL;
VALUETYPE = identifier
VALUES { nuxscan cl ocked Issd control 0O control 1 }

}

KEYWORD SCAN_USAGE = singl e_val ue_annotation {
CONTEXT = CELL;
VALUETYPE = identifier;
VALUES { input output hold }

}

KEYWORD BUFFERTYPE = si ngl e_val ue_annotation {
CONTEXT = CELL;
VALUETYPE = identifier;
VALUES { input output inout internal }
DEFAULT = internal

}

KEYWORD DRI VERTYPE = singl e_val ue_annotation {
CONTEXT = CELL;
VALUETYPE = identifier;
VALUES { predriver slotdriver both }

}

KEYWORD PARALLEL_DRI VE
CONTEXT = CELL;
VALUETYPE = unsi gned;
DEFAULT = 1;

}

KEYWORD PLACEMENT _TYPE
CONTEXT = CELL;
VALUETYPE = identifier;

VALUES { pad core ring block connector }
DEFAULT = core

}

KEYWORD VI EW = singl e_val ue_annotati on {
CONTEXT { PI'N PI NGROUP }

VALUETYPE = identifier
VALUES { functional physical both none }
DEFAULT = both

}

KEYWORD PI NTYPE = singl e _val ue_annotation {
CONTEXT = PIN;

VALUETYPE = identifier
VALUES { digital analog supply }
DEFAULT = digital

}

KEYWORD DI RECTI ON = singl e _val ue_annotation {
CONTEXT = PIN;

VALUETYPE = identifier;
VALUES { input output both none }

}

KEYWORD SI GNALTYPE = si ngl e_val ue_annot ati on {
CONTEXT = PIN;

VALUETYPE = identifier

singl e_val ue_annot ati on {

si ngl e_val ue_annotation {

236 Advanced Library Format (ALF) Reference Manual

(see

(see

(see

(see

(see

(see

(see

(see

(see

(see

IEEE P1603 Draft 5

. 4)

.5)

. 6)

.7)

. 8)

.9)

.1)

.2)

. 3)

. 4)

VALUES {

data scan_data address control select tie clear

enabl e out _enabl e scan_enabl e scan_out _enabl e
cl ock master_cl ock sl ave_cl ock
scan_mast er _cl ock scan_sl ave_cl ock
}
DEFAULT = dat a;
}
KEYWORD ACTI ON = singl e_val ue_annotation {
CONTEXT = PIN;
VALUETYPE = identifier;
VALUES { asynchronous synchronous }

}

KEYWORD POLARI TY = single value_annotation {
CONTEXT = PIN;
VALUETYPE = identifier;

VALUES { high |low rising edge falling edge doubl e _edge }

}

KEYWORD DATATYPE = singl e_val ue_annotation {
CONTEXT { PI'N PI NGROUP }
VALUETYPE = identifier;
VALUES { signed unsigned }

}
KEYWORD | NI TI AL_VALUE = singl e_val ue_annotation {
CONTEXT = CELL;
VALUETYPE = bool ean_val ue;
}

}

KEYWORD STUCK = singl e_val ue_annotation {
CONTEXT = PIN;
VALUETYPE = identifier
VALUES { stuck_at 0O stuck_at_1 both none }

DEFAULT = bot h;

}

KEYWORD SUPPLYTYPE = annotation {
CONTEXT = PIN,
VALUETYPE = identifier;
VALUES { power ground reference }

}

KEYWORD SI GNAL_CLASS = annotation {
CONTEXT { PI'N PI NGROUP }
VALUETYPE = identifier

}

KEYWORD SUPPLY_CLASS = annotation {
CONTEXT { PI N PI NGROUP CLASS }
VALUETYPE = identifier;

}

IEEE P1603 Draft 5 Advanced Library Format (ALF) Reference Manual

(see

(see

(see

(see

(see

(see

(see

(see

(see

9.9.10)

9.9.11)

9.9.12)

9.9.13)

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

KEYWORD DRI VETYPE = single_val ue_annotation {

CONTEXT = PIN;

VALUETYPE = identifier

VALUES {

CNDS NNDS pNDS CNDS_pass NNDS_pass pnos_pass
ttl open_drain open_source

}
DEFAULT = cnos;

}

KEYWORD SCOPE = singl e_val ue_annotation {

CONTEXT = PI N,

VALUETYPE = identifier;
VALUES { behavi or nmeasure both none }

DEFAULT = bot h;
}

KEYWORD CONNECT CLASS =

CONTEXT = PI N,

si ngl e_val ue_annot ati on {

VALUETYPE = identifier;

}

KEYWORD SI DE = singl e_val ue_annotation {
CONTEXT { PI'N PI NGROUP }
VALUETYPE = identifier
VALUES { left right top bottominside }

}

KEYWORD ROW = annot ati on {
CONTEXT { PIN PI NGROUP }

VALUETYPE = unsi gned;
}

KEYWORD COLUWN = annotation {
CONTEXT { PI'N PI NGROUP }

VALUETYPE = unsi gned;
}

KEYWORD ROUTI NG TYPE = singl e_val ue_annotati on {

CONTEXT { PIN PORT }

VALUETYPE = identifier
VALUES { regul ar abutnent ring feedthrough }

DEFAULT = regul ar
}

KEYWORD PULL = single_val ue_annotation {

CONTEXT = PI N,

VALUETYPE = identifier
VALUES { up down both none }

DEFAULT = none;
}

KEYWORD SELECT_CLASS = annotation {

CONTEXT = W RE;

VALUETYPE = identifier;

}

KEYWORD NODETYPE = si ngl e_val ue_annot ati on {

CONTEXT = NCDE

VALUETYPE = identifier

238

Advanced Library Format (ALF) Reference Manual

(see

(see

(see

(see

(see

(see

(see

(see

(see

IEEE P1603 Draft 5

. 9. 14)

.9. 15)

. 9. 16)

.9.17)

.9.18)

. 9. 19)

. 9. 20)

.12.2)

.13. 1)

VALUES { power ground source sink
driver receiver interconnect }
}

KEYWORD NODE _CLASS = annotation {
CONTEXT = NODE
VALUETYPE = identifier;
}
KEYWORD PURPOSE = annotation {
CONTEXT { VECTOR CLASS }
VALUETYPE = identifier
VALUES { bist test timng power noise reliability }
}
KEYWORD OPERATI ON = singl e_val ue_annotati on {
CONTEXT = VECTOR
VALUETYPE = identifier;
VALUES ({
read wite read_nodify wite refresh | oad
start end iddq

}
}
KEYWORD LABEL = singl e_val ue_annotation {
CONTEXT = VECTOR
VALUETYPE = string;
}
KEYWORD EXI STENCE _CONDI TI ON = singl e_val ue_annotation {
CONTEXT { VECTOR CLASS }
VALUETYPE = bool ean_expr essi on
DEFAULT = 1,
}
KEYWORD EXI STENCE_CLASS = annotation {
CONTEXT { VECTOR CLASS }
VALUETYPE = identifier
}
KEYWORD
CHARACTERI ZATI ON_CONDI TI ON = si ngl e_val ue_annotati on {
CONTEXT { VECTOR CLASS }
VALUETYPE = bool ean_expressi on
}
KEYWORD CHARACTERI ZATI ON_VECTOR = si ngl e_val ue_annot ati on {
CONTEXT { VECTOR CLASS }
VALUETYPE = control _expression
}
KEYWORD CHARACTERI ZATI ON_CLASS = annot ation {
CONTEXT { VECTOR CLASS }
VALUETYPE = identifier
}
KEYWORD LAYERTYPE = singl e _val ue_annotation {
CONTEXT = LAYER;
VALUETYPE = identifier
VALUES {
routing cut substrate dielectric reserved abstract

IEEE P1603 Draft 5 Advanced Library Format (ALF) Reference Manual

(see

(see

(see

(see

(see

(see

(see

(see

(see

(see

. 13.

. 15.

. 15.

. 15.

. 15.

. 15.

. 15.

. 15.

. 15.

.17,

2)

1)

2)

3)

4)

5)

6)

7)

8)

1)

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

}
}

KEYWORD PI TCH = singl e_val ue_annotati on {

CONTEXT = LAYER;

VALUETYPE = unsi gned_nunber ;

}

KEYWORD PREFERENCE = si ngl e_val ue_annotation {

CONTEXT = LAYER

VALUETYPE = identifier;
VALUES { horizontal vertical acute obtuse }

}

KEYWORD VI ATYPE = singl e_val ue_annotation {

CONTEXT = VI A

VALUETYPE = identifier;
VALUES { default non_default partial _stack full_stack }

DEFAULT = defaul t;
}

KEYWORD PORT_VI EW = singl e_val ue_annot ati on {

CONTEXT = PORT;

VALUETYPE = identifier;
VALUES { physical electrical both none }

DEFAULT = bot h;
}

KEYWORD ORI ENTATI ON_CLASS = annotation {

CONTEXT { SI TE CELL }

VALUETYPE = | DENTI FI ER;

}
KEYWORD SYMVETRY_CLASS
CONTEXT { SITE CELL }

= annotation {

VALUETYPE = identifier

}

KEYWORD ARRAYTYPE = singl e _val ue_annotation {

CONTEXT = ARRAY;

VALUETYPE = identifier
VALUES { fl oorplan pl acenent
gl obal _routing detailed routing }

}

KEYWORD SHAPE = singl e_val ue_annotation {

CONTEXT = PATTERN;

VALUETYPE = identifier;
VALUES { line tee cross jog corner end }

DEFAULT = | i ne;
}

KEYWORD VERTEX = singl e _val ue_annotation {

CONTEXT = PATTERN,

VALUETYPE = identifier

VALUES { round li near
DEFAULT = |i near

KEYWORD PO NT_TO POl NT

}

= singl e_val ue_annotation {

CONTEXT { POLYLINE RI NG POLYGON }

240

Advanced Library Format (ALF) Reference Manual

(see 9.

(see 9.

(see 9.

(see 9.

(see 9.

(see 9.

(see 9.

(see 9.

(see 9.

(see

IEEE P1603 Draft 5

17.

17.

20.

25.

27.

27.

29.

31.

31.

2)

3)

1)

1)

1)

2)

1)

2)

3)

9. 33)

VALUETYPE = identifier;
VALUES { direct manhattan }

DEFAULT
}

= direct;

B.2 Arithmetic definitions

SEMANTI CS
CONTEXT
SETUP
LIMT.
LIMT.
LIMT.

VI OLATI ON {
{

HOLD RECOVERY REMOVAL SKEW NOCHANGE | LLEGAL

ari thnmeti c_nodel
ari thnetic_nodel .
ari thnetic_nodel .

M N
MAX

(see 11.4.12)

LIMT. arithnetic_nodel
LIMT. arithnetic_nodel
LIMT. arithneti c_nodel

}

}

SEMANTI CS VI OLATI
CONTEXT {

ON. BEHAVI OR {

VECTOR. ari t hneti ¢c_nodel

VECTOR. LIM T.
VECTOR. LIM T.
VECTOR. LIM T.
VECTOR. LIM T.
VECTOR. LIM T.
VECTOR. LIM T.

}
}

arithnetic_nodel
arithnetic_nodel

arithnmetic_nodel .

arithnetic_nodel
arithnetic_nodel
arithnetic_nodel

.arithnmetic_subnodel
.arithnmetic_subnodel . M N
.arithnmetic_subnodel . MAX

.M N

MAX
.arithmetic_subnodel
.arithmetic_subnodel . M N
.arithmetic_subnodel . MAX

KEYWORD MESSAGE TYPE = single_val ue_annotation {
CONTEXT = VI OLATI ON ;
VALUETYPE = identifier ;
VALUES { information warning error }

}

KEYWORD MESSACE = singl e _val ue_annotation {
CONTEXT = VI OLATI ON ;
VALUETYPE = quoted_string ;

}

KEYWORD UNI T = annotation {
CONTEXT = arithnetic_nodel ;

VALUETYPE = uni
DEFAULT = 1 ;
}

KEYWORD CALCULATI ON = annotation {

t _val ue ;

(see 11.5.1)

(see 11.5.2)

CONTEXT = library_specific_object.arithnmetic_nodel ;

VALUES { absol ute increnental

DEFAULT = absol

KEYWORD | NTERPOLATI ON = si ngl e_val ue_annotation {

ute ;

}

(see 11.5.3)

CONTEXT = HEADER arithnetic_nodel ;

IEEE P1603 Draft 5

Advanced Library Format (ALF) Reference Manual 241

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

VALUES { linear fit ceiling floor }
DEFAULT = fit ;

}

KEYWORD DEFAULT = singl e_val ue_annotation {
CONTEXT { arithnetic_nodel KEYWORD }
VALUETYPE = al | _purpose_val ue

}
SEMANTICS PIN = single value_annotation {
CONTEXT {
FROM TO SLEWRATE PULSEW DTH
CAPACI TANCE RESI STANCE | NDUCTANCE VOLTAGE CURRENT
}
}

SEMANTI CS SKEW PI'N = nul ti_val ue_annot ati on
KEYWORD EDGE_NUMBER = annot ation {
CONTEXT { FROM TO SLEWRATE PULSEW DTH SKEW }
VALUETYPE = unsi gned_i nt eger ;
DEFAULT = O;
}
SEMANTI CS EDGE_NUMBER = si ngl e_val ue_annot ati on {
CONTEXT { FROM TO SLEWRATE PULSEW DTH }

}
SEMANTI CS SKEW EDGE_NUMBER = nul ti _val ue_annot ati on

KEYWORD MEASUREMENT = singl e_val ue_annot ati on {
VALUETYPE = identifier

VALUES {
transient static average absol ute_average rns peak
}
CONTEXT {
ENERGY POWER CURRENT VOLTAGE FLUX FLUENCE JI TTER
}

}

KEYWORD CONNECT_RULE = si ngl e_val ue_annot ati on {
VALUETYPE = identifier
VALUES { must _short can_short cannot_short }
CONTEXT = CONNECTI VI TY;

}

KEYWORD BETWEEN = rul ti _val ue_annotation {
VALUETYPE = identifier ;
CONTEXT { DI STANCE LENGTH OVERHANG CONNECTI VI TY }

}

KEYWORD DI STANCE _MEASUREMENT = singl e_val ue_annot ati on {

VALUETYPE = identifier
VALUES { euclidean horizontal vertical nanhattan }
DEFAULT = euclidean ;
CONTEXT = DI STANCE
}
KEYWORD REFERENCE = annot ati on_contai ner {
CONTEXT = DI STANCE ;
}

SEMANTI CS REFERENCE. i denti fier = single_value_annotation {

VALUETYPE = identifier ;

242 Advanced Library Format (ALF) Reference Manual

(see 11.5.4)

(see 11.19.1)

(see 11.19.2)

(see 11.29.1)

(see 11.41.1)

(see 11.41.2)

(see 11.41.3)

(see 11.41.4)

IEEE P1603 Draft 5

VALUES { center origin near_edge far_edge }

DEFAULT = origin ;
}

SEMANTI CS ANTENNA = annotation {
VALUETYPE = identifier ;
CONTEXT { PIN. SI ZE PI N. AREA PI N. PERI METER }

}

SEMANTI CS PATTERN = singl e_val ue_annotation {
VALUETYPE = identifier

CONTEXT {
LENGTH W DTH HEI GHT
PERI METER EXTENSI ON

IEEE P1603 Draft 5

SI ZE AREA THI CKNESS

Advanced Library Format (ALF) Reference Manual

(see 11.41.5)

(see 11.41.6)

243

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

244

Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 5

Annex C

(informative)

Bibliography

[B1] Ratzlaff, C. L., Gopal, N., and Pillage, L. T., “RICE: Rapid Interconnect Circuit Evaluator,” Proceedings of

28th Design Automation Conference, pp. 555-560, 1991.

[B2] SPICE 2G6 User’'s Guide.

[B3] Standard Delay Format Specification, Version 3.0, Open Verilog International, May 1995.

[B4] The IEEE Standard Dictionary of Electrical and Electronics Terms, Sixth Edition.

IEEE P1603 Draft 5

Advanced Library Format (ALF) Reference Manual

245

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

246

Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 5

Symbols

(N+1) order sequential logic 139
-> operator 138

@ 130

A

ABS 174
abs 174
active vectors 134
ALIAS 47
dias47
alphabetic_bit_literal 33
annotation
arithmetic model tables
DRIVER 209
RECEIVER 209
arithmetic models
average 206
can_short 212
cannot_short 212
must_short 212
peak 206
rms 206
static 206
transient 206
CELL
NON_SCAN CELL 118
cell buffertype
inout 66
input 66
internal 66
output 66
cell celltype
block 62
buffer 62
combinational 62
core 62
flipflop 62
latch 62
memory 62
multiplexor 62
special 62
cell drivertype

IEEE P1603 Draft 5

| ndex

both 67
predriver 67
slotdriver 67
cell scan_type
clocked 65
control_0 65
control_1 65
Issd 65
muxscan 65
cell scan_usage
hold 66
input 66
output 66
pin action
asynchronous 77
synchronous 76
pin datatype
signed 79
unsigned 79
pin direction
both 74
input 73
none 74
output 73
pin drivetype
cmos 83
Ccmos_pass 83
nmos 83
nmos_pass 83
open_drain 83
open_source 83
pmos 83
pmos_pass 83
ttl 83
pin orientation
bottom 85
left 85
right 85
top 85
pin pintype
analog 73
digital 73
supply 73

Advanced Library Format (ALF) Reference Manual

Index-1

pin polarity
double_edge 78
falling_edge 78
high 77
low 78
rising_edge 78
pin pull
both 87, 91
down 87, 91, 93
none 87, 91, 94
up 87, 91, 93
pin scope
behavior 84
both 84
measure 84
none 84
pin signaltype
clear 75, 77, 78
clock 75, 77, 78
control 75, 77, 78

data 75, 77, 78

enable 75, 76, 77, 78

select 75, 77, 78

set 75, 77, 78
pin stuck

both 80, 81

none 80

stuck _at 080

stuck at 180
pin view

both 72

functional 72

none 72

physical 72

arithmetic models 14
arithmetic operators

binary 174

unary 173
arithmetic_binary_operator 174
arithmetic_expression 173, 230
arithmetic_function_operator 174
arithmetic_unary_operator 173
atomic object 14
ATTRIBUTE 42
attribute 42

CELL 68, 69, 70

cell
asynchronous 69
CAM 68
dynamic 69
RAM 68
ROM 68
static 69
synchronous 69
PIN 87
pin
PAD 88
SCHMITT 87
TRISTATE 88
XTAL 88

B

based literal 33

based literal 33

behavior 115

behavior_body 115

Binary operators
arithmetic 174
bitwise 125
boolean, scalars 124
reduction 125
vector 139, 140, 143

binary base 33

bit 121

bit_edge literal 34

bit_literal 33

Bitwise operators
binary 125
unary 125

boolean operators
binary 124
unary 124

boolean_binary_operator 170

boolean_expression 170

boolean_unary_operator 170

C

cell 61
cell identifier 61

cell_template _instantiation 61

characterization 5
children object 13

Index-2 Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 5

CLASS 47

class 47

combinational logic 123
combinationa_assignments 115
comment 25

CONSTANT 47

constant 47

D

decimal_base 33
deep submicron 5
delimiter 25

E

edge literal 34

edge-sensitive sequential logic 130
equation 178
equation_template_instantiation 178
escape codes 34

escape_character 27, 28

escaped _identifier 35

event sequence detection 139

EXP 174

exp 174

F

function 114
Function operators

arithmetic 174
function_template_instantiation 114
functional model 5

G

generic objects 14
group 52
group_identifier 52

H

header 177
hex_base 33

|

identifier 13, 25
inactive vectors 134
INCLUDE 43
include 43

IEEE P1603 Draft 5

index 41

L

level-sensitive sequential logic 130
Library creation 1

library template instantiation 59
library-specific objects 14

literal 25

LOG 174

log 174

logic_values 116

M

MAX 175

max 174

MIN 174

min 174

mode of operation 5

N

nonescaped_identifier 35, 36
Number 31
numeric_bit_literal 33

O

octal_base 33
operation mode 5
operator
->138
followed by 138
operators
boolean, scalars 124
boolean, words 124
signed 126
unsigned 126

P
pin_assignments 41
placeholder identifier 35
power constraint 5
Power model 5
predefined derating cases 198, 207
bccom 198
bcind 198
bcmil 198
wccom 198

Advanced Library Format (ALF) Reference Manual

wcind 198
wcmil 198

predefined process names 197

snsp 197

snwp 197

wnsp 197

wnwp 197
primitive_identifier 89, 115
primitive_instantiation 115

primitive_template_instantiation 89

PROPERTY 43
property 43

Q
quoted string 34
quoted_string 34

R

Reduction operators
binary 125
unary 124

RTL 4

S

sequential logic
edge-sensitive 130
level-sensitive 130
N+1 order 139
vector-sensitive 138

sequential_assignment 115

signed operators 126

simulation model 5

statetable 116

statetable body 116

string 39

symbolic_edge literal 34

T
table 177

template 54
template_identifier 54
template_instantiation 54
Ternary operator 124
timing constraints 5
timing models 5
triggering conditions 130

Index-4

Advanced Library Format (ALF) Reference Manual

triggering function 130

U
Unary operator
bitwise 125
Unary operators
arithmetic 173
boolean, scalar 124
reduction 124
Unary vector operators 132
unnamed_assignment 42
unsigned operators 126

V

vector 92
vector expression 138
Vector operators

binary 139, 140

unary, bits 132

unary, words 133
vector_expression 92, 171
vector_template instantiation 92
vector_unary_operator 171
vector-based modeling 5
Vector-Sensitive Sequential Logic 138
Verilog 4, 131
VHDL 4, 131

W

wire 90, 91, 96, 98, 99, 100, 101, 102, 103,
105, 113

wire_identifier 90, 91, 96, 98, 99, 100, 102

wire_template _instantiation 90, 91, 96, 98,
99, 100, 101, 102, 103, 105, 113

word_edge literal 34

IEEE P1603 Draft 5

	1. Introduction
	1.1 Motivation
	1.2 Goals
	1.3 Target applications
	1.4 Conventions
	1.5 Contents of this standard

	2. References
	3. Definitions
	4. Acronyms and abbreviations
	5. ALF language construction principles and overview
	5.1 ALF meta-language
	5.2 Categories of ALF statements
	5.3 Generic objects and library-specific objects
	5.4 Singular statements and plural statements
	5.5 Instantiation statement and assignment statement
	5.6 Annotation, arithmetic model, and related statements
	5.7 Statements for parser control
	5.8 Name space and visibility of statements

	6. Lexical rules
	6.1 Character set
	6.2 Comment
	6.3 Delimiter
	6.4 Operator
	6.4.1 Arithmetic operator
	6.4.2 Boolean operator
	6.4.3 Relational operator
	6.4.4 Shift operator
	6.4.5 Event sequence operator
	6.4.6 Meta operator

	6.5 Number
	6.6 Unit symbol
	6.7 Bit literal
	6.8 Based literal
	6.9 Edge literal
	6.10 Quoted string
	6.11 Identifier
	6.11.1 Non-escaped identifier
	6.11.2 Escaped identifier
	6.11.3 Placeholder identifier
	6.11.4 Hierarchical identifier

	6.12 Keyword
	6.13 Rules for whitespace usage
	6.14 Rules against parser ambiguity

	7. Auxiliary syntax rules
	7.1 All-purpose value
	7.2 Unit value
	7.3 String
	7.4 Arithmetic value
	7.5 Boolean value
	7.6 Edge value
	7.7 Index value
	7.8 Index
	7.9 Pin variable and pin value
	7.10 Pin assignment
	7.11 Annotation
	7.12 Annotation container
	7.13 ATTRIBUTE statement
	7.14 PROPERTY statement
	7.15 INCLUDE statement
	7.16 ASSOCIATE statement
	7.17 REVISION statement
	7.18 Generic object
	7.19 Library-specific object
	7.20 All purpose item

	8. Generic objects and related statements
	8.1 ALIAS declaration
	8.2 CONSTANT declaration
	8.3 CLASS declaration
	8.4 KEYWORD declaration
	8.5 Annotations for a KEYWORD
	8.5.1 VALUETYPE annotation
	8.5.2 VALUES annotation
	8.5.3 DEFAULT annotation
	8.5.4 CONTEXT annotation
	8.5.5 SI_MODEL annotation

	8.6 SEMANTICS declaration
	8.7 GROUP declaration
	8.8 TEMPLATE declaration
	8.9 TEMPLATE instantiation

	9. Library-specific objects and related statements
	9.1 LIBRARY and SUBLIBRARY declaration
	9.2 Annotations for LIBRARY and SUBLIBRARY
	9.2.1 INFORMATION annotation container

	9.3 CELL declaration
	9.4 CELL instantiation
	9.5 Annotations for a CELL
	9.5.1 CELLTYPE annotation
	9.5.2 SWAP_CLASS annotation
	9.5.3 RESTRICT_CLASS annotation
	9.5.4 SCAN_TYPE annotation
	9.5.5 SCAN_USAGE annotation
	9.5.6 BUFFERTYPE annotation
	9.5.7 DRIVERTYPE annotation
	9.5.8 PARALLEL_DRIVE annotation
	9.5.9 PLACEMENT_TYPE annotation
	9.5.10 SITE reference annotation

	9.6 ATTRIBUTE values for a CELL
	9.7 PIN declaration
	9.8 PINGROUP declaration
	9.9 Annotations for a PIN and a PINGROUP
	9.9.1 VIEW annotation
	9.9.2 PINTYPE annotation
	9.9.3 DIRECTION annotation
	9.9.4 SIGNALTYPE annotation
	9.9.5 ACTION annotation
	9.9.6 POLARITY annotation
	9.9.7 DATATYPE annotation
	9.9.8 INITIAL_VALUE annotation
	9.9.9 SCAN_POSITION annotation
	9.9.10 STUCK annotation
	9.9.11 SUPPLYTYPE annotation
	9.9.12 SIGNAL_CLASS annotation
	9.9.13 SUPPLY_CLASS annotation
	9.9.14 DRIVETYPE annotation
	9.9.15 SCOPE annotation
	9.9.16 CONNECT_CLASS annotation
	9.9.17 SIDE annotation
	9.9.18 ROW and COLUMN annotation
	9.9.19 ROUTING_TYPE annotation
	9.9.20 PULL annotation

	9.10 ATTRIBUTE values for a PIN and a PINGROUP
	9.11 PRIMITIVE declaration
	9.12 WIRE declaration
	9.12.1 Annotations for a WIRE
	9.12.2 SELECT_CLASS annotation

	9.13 NODE declaration
	9.13.1 NODETYPE annotation
	9.13.2 NODE_CLASS annotation

	9.14 VECTOR declaration
	9.15 Annotations for VECTOR
	9.15.1 PURPOSE annotation
	9.15.2 OPERATION annotation
	9.15.3 LABEL annotation
	9.15.4 EXISTENCE_CONDITION annotation
	9.15.5 EXISTENCE_CLASS annotation
	9.15.6 CHARACTERIZATION_CONDITION annotation
	9.15.7 CHARACTERIZATION_VECTOR annotation
	9.15.8 CHARACTERIZATION_CLASS annotation

	9.16 LAYER declaration
	9.17 Annotations for LAYER
	9.17.1 LAYERTYPE annotation
	9.17.2 PITCH annotation
	9.17.3 PREFERENCE annotation

	9.18 VIA declaration
	9.19 VIA instantiation
	9.20 Annotations for a VIA
	9.20.1 VIATYPE annotation

	9.21 RULE declaration
	9.22 ANTENNA declaration
	9.23 BLOCKAGE declaration
	9.24 PORT declaration
	9.25 Annotations for PORT
	9.25.1 PORT_VIEW annotation

	9.26 SITE declaration
	9.27 Annotations for SITE
	9.27.1 ORIENTATION_CLASS annotation
	9.27.2 SYMMETRY_CLASS annotation

	9.28 ARRAY declaration
	9.29 Annotations for ARRAY
	9.29.1 ARRAYTYPE annotation
	9.29.2 SITE reference annotation
	9.29.3 LAYER reference annotation

	9.30 PATTERN declaration
	9.31 Annotations for PATTERN
	9.31.1 LAYER reference annotation
	9.31.2 SHAPE annotation
	9.31.3 VERTEX annotation

	9.32 REGION declaration
	9.33 Geometric model
	9.34 Predefined geometric models using TEMPLATE
	9.35 Geometric transformation
	9.36 ARTWORK statement
	9.37 FUNCTION statement
	9.38 TEST statement
	9.39 BEHAVIOR statement
	9.40 STRUCTURE statement
	9.41 STATETABLE statement
	9.42 NON_SCAN_CELL statement
	9.43 RANGE statement

	10. Constructs for modeling of digital behavior
	10.1 Variable declarations
	10.2 Boolean value system
	10.3 Combinational functions
	10.3.1 Combinational logic
	10.3.2 Boolean operators on scalars
	10.3.3 Boolean operators on words
	10.3.4 Operator priorities
	10.3.5 Datatype mapping
	10.3.6 Rules for combinational functions
	10.3.7 Concurrency in combinational functions

	10.4 Sequential functions
	10.4.1 Level-sensitive sequential logic
	10.4.2 Edge-sensitive sequential logic
	10.4.3 Unary operators for vector expressions
	10.4.4 Basic rules for sequential functions
	10.4.5 Concurrency in sequential functions
	10.4.6 Initial values for logic variables

	10.5 Higher-order sequential functions
	10.5.1 Vector-sensitive sequential logic
	10.5.2 Canonical binary operators for vector expressions
	10.5.3 Complex binary operators for vector expressions
	10.5.4 Extension to N operands
	10.5.5 Operators for conditional vector expressions
	10.5.6 Operators for sequential logic
	10.5.7 Operator priorities
	10.5.8 Using PINs in VECTORs

	10.6 Modeling with vector expressions
	10.6.1 Event reports
	10.6.2 Event sequences
	10.6.3 Scope and content of event sequences
	10.6.4 Alternative event sequences
	10.6.5 Symbolic edge operators
	10.6.6 Non-events
	10.6.7 Compact and verbose event sequences
	10.6.8 Unspecified simultaneous events within scope
	10.6.9 Simultaneous event sequences
	10.6.10 Implicit local variables
	10.6.11 Conditional event sequences
	10.6.12 Alternative conditional event sequences
	10.6.13 Change of scope within a vector expression
	10.6.14 Sequences of conditional event sequences
	10.6.15 Incompletely specified event sequences
	10.6.16 How to determine well-specified vector expressions

	10.7 Boolean expression language
	10.8 Vector expression language
	10.9 Control expression semantics

	11. Constructs for electrical and physical modeling
	11.1 Arithmetic expression
	11.1.1 Unary arithmetic operator
	11.1.2 Binary arithmetic operator
	11.1.3 Macro arithmetic operator

	11.2 Arithmetic model
	11.2.1 Trivial arithmetic model
	11.2.2 Partial arithmetic model
	11.2.3 Full arithmetic model

	11.3 HEADER, TABLE, and EQUATION
	11.3.1 HEADER statement
	11.3.2 TABLE statement
	11.3.3 EQUATION statement

	11.4 Statements related to arithmetic model
	11.4.1 Model qualifier
	11.4.2 Auxiliary arithmetic model
	11.4.3 Arithmetic submodel
	11.4.4 MIN-MAX statement
	11.4.5 MIN-TYP-MAX statement
	11.4.6 Trivial MIN-MAX statement
	11.4.7 Arithmetic model container
	11.4.8 LIMIT statement
	11.4.9 Event reference statement
	11.4.10 FROM and TO statements
	11.4.11 EARLY and LATE statements
	11.4.12 VIOLATION statement

	11.5 Annotations for arithmetic models
	11.5.1 UNIT annotation
	11.5.2 CALCULATION annotation
	11.5.3 INTERPOLATION annotation
	11.5.4 DEFAULT annotation

	11.6 TIME
	11.6.1 TIME in context of a VECTOR declaration
	11.6.2 TIME in context of a HEADER statement
	11.6.3 TIME as auxiliary arithmetic model

	11.7 FREQUENCY
	11.7.1 FREQUENCY in context of a VECTOR declaration
	11.7.2 FREQUENCY in context of a HEADER statement
	11.7.3 FREQUENCY as auxiliary arithmetic model

	11.8 DELAY
	11.8.1 DELAY in context of a VECTOR declaration
	11.8.2 DELAY in context of a library-specific object declaration

	11.9 RETAIN
	11.10 SLEWRATE
	11.10.1 SLEWRATE in context of a VECTOR declaration
	11.10.2 SLEWRATE in context of a PIN declaration
	11.10.3 SLEWRATE in context of a library-specific object declaration

	11.11 SETUP and HOLD
	11.11.1 SETUP in context of a VECTOR declaration
	11.11.2 HOLD in context of a VECTOR declaration
	11.11.3 SETUP and HOLD in context of the same VECTOR declaration

	11.12 RECOVERY and REMOVAL
	11.12.1 RECOVERY in context of a VECTOR declaration
	11.12.2 REMOVAL in context of a VECTOR declaration
	11.12.3 RECOVERY and REMOVAL in context of the same VECTOR declaration

	11.13 NOCHANGE and ILLEGAL
	11.13.1 NOCHANGE in context of a VECTOR declaration
	11.13.2 ILLEGAL in context of a VECTOR declaration

	11.14 SKEW
	11.14.1 SKEW involving two signals
	11.14.2 SKEW involving multiple signals

	11.15 PULSEWIDTH
	11.15.1 PULSEWIDTH in context of a VECTOR declaration
	11.15.2 PULSEWIDTH in context of a PIN declaration
	11.15.3 PULSEWIDTH in context of a library-specific object declaration

	11.16 PERIOD
	11.17 JITTER
	11.18 THRESHOLD
	11.19 Annotations related to timing data
	11.19.1 PIN reference annotation
	11.19.2 EDGE_NUMBER annotation

	11.20 PROCESS
	11.21 DERATE_CASE
	11.22 TEMPERATURE
	11.23 PIN-related arithmetic models for electrical data
	11.23.1 CAPACITANCE, RESISTANCE, and INDUCTANCE
	11.23.2 VOLTAGE and CURRENT
	11.23.3 Context-specific semantics

	11.24 POWER and ENERGY
	11.25 FLUX and FLUENCE
	11.26 DRIVE_STRENGTH
	11.27 SWITCHING_BITS
	11.28 NOISE and NOISE_MARGIN
	11.28.1 NOISE margin
	11.28.2 NOISE

	11.29 Annotations and statements related to electrical models
	11.29.1 MEASUREMENT annotation
	11.29.2 TIME to peak measurement

	11.30 CONNECTIVITY
	11.31 SIZE
	11.32 AREA
	11.33 WIDTH
	11.34 HEIGHT
	11.35 LENGTH
	11.36 DISTANCE
	11.37 OVERHANG
	11.38 PERIMETER
	11.39 EXTENSION
	11.40 THICKNESS
	11.41 Annotations for physical models
	11.41.1 CONNECT_RULE annotation
	11.41.2 BETWEEN annotation
	11.41.3 DISTANCE-MEASUREMENT annotation
	11.41.4 REFERENCE annotation container
	11.41.5 ANTENNA reference annotation
	11.41.6 PATTERN reference annotation

	11.42 Arithmetic submodels for timing and electrical data
	11.43 Arithmetic submodels for physical data

	Annex A
	A.1 ALF meta-language
	A.2 Lexical definitions
	A.3 Auxiliary definitions
	A.4 Generic definitions
	A.5 Library definitions
	A.6 Control definitions
	A.7 Arithmetic definitions
	Annex B
	B.1 Library definitions
	B.2 Arithmetic definitions
	Annex C

