
A standard for an
Advanced Library Format (ALF)

describing Integrated Circuit (IC)
technology, cells, and blocks

This is an unapproved draft for an IEEE standard
and subject to change

IEEE P1603 Draft 6

August 15, 2002

Copyright© 2001, 2002, 2003 by IEEE. All rights reserved.

put in IEEE verbiage
ii Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

The following individuals contributed to the creation, editing, and review of this document

Wolfgang Roethig, Ph.D. wroethig@eda.org Official Reporter and WG Chair

Joe Daniels chippewea@aol.com Technical Editor
IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual iii

Revision history:

IEEE P1596 Draft 0 August 19, 2001

IEEE P1603 Draft 1 September 17, 2001

IEEE P1603 Draft 2 November 12, 2001

IEEE P1596 Draft 3 April 17, 2002

IEEE P1603 Draft 4 May 15, 2002

IEEE P1603 Draft 5 June 21, 2002
iv Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

Table of Contents
1. Introduction..1

1.1 Motivation..1
1.2 Goals ..2
1.3 Target applications...2
1.4 Conventions ...5
1.5 Contents of this standard..5

2. References..7

3. Definitions ...9

4. Acronyms and abbreviations ...11

5. ALF language construction principles and overview ..13

5.1 ALF meta-language ...13
5.2 Categories of ALF statements..14
5.3 Generic objects and library-specific objects ..16
5.4 Singular statements and plural statements ...18
5.5 Instantiation statement and assignment statement ...20
5.6 Annotation, arithmetic model, and related statements...21
5.7 Statements for parser control ...23
5.8 Name space and visibility of statements..23

6. Lexical rules...25

6.1 Character set ..25
6.2 Comment..27
6.3 Delimiter ..27
6.4 Operator ...28

6.4.1 Arithmetic operator .. 28
6.4.2 Boolean operator .. 29
6.4.3 Relational operator ... 29
6.4.4 Shift operator.. 30
6.4.5 Event sequence operator... 30
6.4.6 Meta operator ... 30

6.5 Number ..31
6.6 Quantity symbol...31
6.7 Bit literal ..32
6.8 Based literal ...33
6.9 Edge literal ...33
6.10 Quoted string..34
6.11 Identifier...35

6.11.1 Non-escaped identifier ... 35
6.11.2 Escaped identifier ... 35
6.11.3 Placeholder identifier ... 36
6.11.4 Hierarchical identifier... 36
IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual v

6.12 Keyword.. 36
6.13 Rules for whitespace usage ... 37
6.14 Rules against parser ambiguity ... 37

7. Auxiliary syntax rules ... 39

7.1 All-purpose value.. 39
7.2 Quantity value ... 39
7.3 String value ... 39
7.4 Arithmetic value.. 39
7.5 Boolean value.. 40
7.6 Edge value... 40
7.7 Index value.. 40
7.8 Index.. 40
7.9 Pin variable and pin value... 41
7.10 Pin assignment .. 41
7.11 Annotation... 41
7.12 Annotation container... 42
7.13 ATTRIBUTE statement .. 42
7.14 PROPERTY statement.. 43
7.15 INCLUDE statement... 43
7.16 ASSOCIATE statement .. 44
7.17 REVISION statement.. 44
7.18 Generic object ... 45
7.19 Library-specific object .. 45
7.20 All purpose item.. 45

8. Generic objects and related statements ... 47

8.1 ALIAS declaration .. 47
8.2 CONSTANT declaration... 47
8.3 CLASS declaration ... 47
8.4 KEYWORD declaration ... 48
8.5 Annotations for a KEYWORD ... 49

8.5.1 VALUETYPE annotation.. 49
8.5.2 VALUES annotation.. 50
8.5.3 DEFAULT annotation ... 50
8.5.4 CONTEXT annotation... 50
8.5.5 SI_MODEL annotation.. 51

8.6 SEMANTICS declaration ... 51
8.7 GROUP declaration .. 52
8.8 TEMPLATE declaration ... 53
8.9 TEMPLATE instantiation ... 54

9. Library-specific objects and related statements .. 59

9.1 LIBRARY and SUBLIBRARY declaration ... 59
9.2 Annotations for LIBRARY and SUBLIBRARY.. 59

9.2.1 INFORMATION annotation container ... 59
9.3 CELL declaration.. 61
9.4 CELL instantiation.. 61
9.5 Annotations for a CELL.. 62

9.5.1 CELLTYPE annotation ... 62
9.5.2 SWAP_CLASS annotation.. 63
vi Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

9.5.3 RESTRICT_CLASS annotation... 63
9.5.4 SCAN_TYPE annotation ... 64
9.5.5 SCAN_USAGE annotation .. 65
9.5.6 BUFFERTYPE annotation ... 66
9.5.7 DRIVERTYPE annotation ... 66
9.5.8 PARALLEL_DRIVE annotation ... 67
9.5.9 PLACEMENT_TYPE annotation .. 67
9.5.10 SITE reference annotation.. 68

9.6 ATTRIBUTE values for a CELL...68
9.7 PIN declaration ..70
9.8 PINGROUP declaration...71
9.9 Annotations for a PIN and a PINGROUP ...71

9.9.1 VIEW annotation.. 72
9.9.2 PINTYPE annotation.. 72
9.9.3 DIRECTION annotation... 73
9.9.4 SIGNALTYPE annotation ... 74
9.9.5 ACTION annotation ... 76
9.9.6 POLARITY annotation .. 77
9.9.7 DATATYPE annotation ... 78
9.9.8 INITIAL_VALUE annotation.. 78
9.9.9 SCAN_POSITION annotation ... 79
9.9.10 STUCK annotation ... 79
9.9.11 SUPPLYTYPE annotation ... 80
9.9.12 SIGNAL_CLASS annotation ... 80
9.9.13 SUPPLY_CLASS annotation... 81
9.9.14 DRIVETYPE annotation.. 82
9.9.15 SCOPE annotation.. 83
9.9.16 CONNECT_CLASS annotation... 84
9.9.17 SIDE annotation ... 84
9.9.18 ROW and COLUMN annotation.. 85
9.9.19 ROUTING_TYPE annotation .. 86
9.9.20 PULL annotation .. 86

9.10 ATTRIBUTE values for a PIN and a PINGROUP..87
9.11 PRIMITIVE declaration ..89
9.12 WIRE declaration ..89
9.13 WIRE instantiation ..90
9.14 Annotations for a WIRE ..90

9.14.1 SELECT_CLASS annotation ... 90
9.15 NODE declaration..90

9.15.1 NODETYPE annotation ... 91
9.15.2 NODE_CLASS annotation... 91

9.16 VECTOR declaration...92
9.17 Annotations for VECTOR ...92

9.17.1 PURPOSE annotation... 92
9.17.2 OPERATION annotation ... 93
9.17.3 LABEL annotation ... 94
9.17.4 EXISTENCE_CONDITION annotation .. 94
9.17.5 EXISTENCE_CLASS annotation.. 94
9.17.6 CHARACTERIZATION_CONDITION annotation ... 95
9.17.7 CHARACTERIZATION_VECTOR annotation.. 95
9.17.8 CHARACTERIZATION_CLASS annotation ... 96
9.17.9 MONITOR annotation ... 96

9.18 LAYER declaration ...96
9.19 Annotations for LAYER..97
IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual vii

9.19.1 LAYERTYPE annotation .. 97
9.19.2 PITCH annotation.. 97
9.19.3 PREFERENCE annotation .. 98

9.20 VIA declaration... 98
9.21 VIA instantiation... 98
9.22 Annotations for a VIA... 99

9.22.1 VIATYPE annotation .. 99
9.23 RULE declaration ... 99
9.24 ANTENNA declaration... 100
9.25 BLOCKAGE declaration .. 101
9.26 PORT declaration.. 101
9.27 Annotations for PORT .. 101

9.27.1 PORT_VIEW annotation... 101
9.28 SITE declaration ... 102
9.29 Annotations for SITE .. 102

9.29.1 ORIENTATION_CLASS annotation.. 102
9.29.2 SYMMETRY_CLASS annotation .. 103

9.30 ARRAY declaration.. 103
9.31 Annotations for ARRAY .. 104

9.31.1 ARRAYTYPE annotation ... 104
9.31.2 SITE reference annotation ... 104
9.31.3 LAYER reference annotation .. 105

9.32 PATTERN declaration.. 105
9.33 Annotations for PATTERN .. 105

9.33.1 LAYER reference annotation .. 105
9.33.2 SHAPE annotation... 106
9.33.3 VERTEX annotation.. 106
9.33.4 ROUTE annotation .. 107

9.34 REGION declaration... 107
9.34.1 BOOLEAN annotation .. 108

9.35 Geometric model... 108
9.36 Predefined geometric models using TEMPLATE .. 111
9.37 Geometric transformation ... 112
9.38 ARTWORK statement .. 114

10. Constructs for modeling of functional behavior ... 117

10.1 FUNCTION statement .. 117
10.2 TEST statement... 117
10.3 Declaration of pin variables .. 118
10.4 BEHAVIOR statement.. 119
10.5 STRUCTURE statement ... 120
10.6 STATETABLE statement ... 121
10.7 NON_SCAN_CELL statement ... 121
10.8 RANGE statement... 122
10.9 Boolean expression ... 123
10.10Boolean value system... 124

10.10.1 Scalar boolean value.. 124
10.10.2 Vectorized boolean value .. 124
10.10.3 Non-assignable boolean value ... 127

10.11Boolean operations and operators .. 127
10.11.1 Logical operation... 127
10.11.2 Bitwise operation... 128
10.11.3 Conditional operation .. 128
viii Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

10.11.4 Integer arithmetic operation ... 129
10.11.5 Shift operation .. 130
10.11.6 Comparison operation .. 130
10.11.7 Operator priorities .. 132

10.12Vector expression ...132
10.13Operators for event specification..133

10.13.1 Specification of a single event.. 133
10.13.2 Temporal order of events ... 134
10.13.3 Canonical specification of an event.. 136
10.13.4 Specification of a completely permutable event .. 138
10.13.5 Specification of a conditional event ... 139
10.13.6 Operator priorities .. 140

11. Constructs for electrical and physical modeling..141

11.1 Arithmetic expression ..141
11.1.1 Unary arithmetic operator .. 141
11.1.2 Binary arithmetic operator.. 141
11.1.3 Macro arithmetic operator .. 142

11.2 Arithmetic model ...143
11.2.1 Trivial arithmetic model ... 143
11.2.2 Partial arithmetic model ... 144
11.2.3 Full arithmetic model ... 144

11.3 HEADER, TABLE, and EQUATION...144
11.3.1 HEADER statement ... 145
11.3.2 TABLE statement... 145
11.3.3 EQUATION statement ... 146

11.4 Statements related to arithmetic model..146
11.4.1 Model qualifier ... 146
11.4.2 Auxiliary arithmetic model .. 146
11.4.3 Arithmetic submodel .. 147
11.4.4 MIN-MAX statement ... 147
11.4.5 MIN-TYP-MAX statement .. 147
11.4.6 Trivial MIN-MAX statement ... 147
11.4.7 Arithmetic model container.. 148
11.4.8 LIMIT statement... 148
11.4.9 Event reference statement .. 149
11.4.10 FROM and TO statements.. 149
11.4.11 EARLY and LATE statements... 149
11.4.12 VIOLATION statement.. 149

11.5 Annotations for arithmetic models ..151
11.5.1 UNIT annotation... 151
11.5.2 CALCULATION annotation.. 151
11.5.3 INTERPOLATION annotation .. 152
11.5.4 DEFAULT annotation.. 153
11.5.5 MODEL annotation.. 153

11.6 TIME..154
11.6.1 TIME in context of a VECTOR declaration .. 154
11.6.2 TIME in context of a HEADER statement... 154
11.6.3 TIME as auxiliary arithmetic model .. 155

11.7 FREQUENCY ...155
11.7.1 FREQUENCY in context of a VECTOR declaration .. 155
11.7.2 FREQUENCY in context of a HEADER statement .. 155
11.7.3 FREQUENCY as auxiliary arithmetic model .. 155
IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual ix

11.8 DELAY ... 155
11.8.1 DELAY in context of a VECTOR declaration.. 156
11.8.2 DELAY in context of a library-specific object declaration... 156

11.9 RETAIN.. 156
11.10SLEWRATE .. 157

11.10.1 SLEWRATE in context of a VECTOR declaration .. 157
11.10.2 SLEWRATE in context of a PIN declaration.. 157
11.10.3 SLEWRATE in context of a library-specific object declaration....................................... 157

11.11SETUP and HOLD... 158
11.11.1 SETUP in context of a VECTOR declaration ... 158
11.11.2 HOLD in context of a VECTOR declaration .. 158
11.11.3 SETUP and HOLD in context of the same VECTOR declaration 158

11.12RECOVERY and REMOVAL... 159
11.12.1 RECOVERY in context of a VECTOR declaration.. 159
11.12.2 REMOVAL in context of a VECTOR declaration.. 159
11.12.3 RECOVERY and REMOVAL in context of the same VECTOR declaration 159

11.13NOCHANGE and ILLEGAL... 160
11.13.1 NOCHANGE in context of a VECTOR declaration ... 160
11.13.2 ILLEGAL in context of a VECTOR declaration... 160

11.14SKEW .. 161
11.14.1 SKEW involving two signals .. 161
11.14.2 SKEW involving multiple signals ... 161

11.15PULSEWIDTH .. 161
11.15.1 PULSEWIDTH in context of a VECTOR declaration.. 162
11.15.2 PULSEWIDTH in context of a PIN declaration ... 162
11.15.3 PULSEWIDTH in context of a library-specific object declaration................................... 162

11.16PERIOD ... 162
11.17JITTER... 162
11.18THRESHOLD.. 163
11.19Annotations related to timing data ... 164

11.19.1 PIN reference annotation ... 164
11.19.2 EDGE_NUMBER annotation.. 164

11.20PROCESS .. 165
11.21DERATE_CASE.. 166
11.22TEMPERATURE... 167
11.23PIN-related arithmetic models for electrical data .. 167

11.23.1 CAPACITANCE, RESISTANCE, and INDUCTANCE .. 167
11.23.2 VOLTAGE and CURRENT.. 168
11.23.3 Context-specific semantics .. 168

11.24POWER and ENERGY.. 170
11.25FLUX and FLUENCE ... 171
11.26DRIVE_STRENGTH... 172
11.27SWITCHING_BITS... 172
11.28NOISE and NOISE_MARGIN .. 173

11.28.1 NOISE margin ... 173
11.28.2 NOISE ... 174

11.29Annotations and statements related to electrical models ... 174
11.29.1 MEASUREMENT annotation... 174
11.29.2 TIME to peak measurement .. 176
11.29.3 COMPONENT annotation .. 177
11.29.4 FLOW annotation .. 177

11.30CONNECTIVITY.. 177
11.31SIZE ... 178
11.32AREA... 179
x Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

11.33WIDTH ...179
11.34HEIGHT..179
11.35LENGTH ..179
11.36DISTANCE...180
11.37OVERHANG ..180
11.38PERIMETER ..180
11.39EXTENSION ..180
11.40THICKNESS ..181
11.41DENSITY ...181
11.42Annotations for physical models ..181

11.42.1 CONNECT_RULE annotation... 181
11.42.2 BETWEEN annotation ... 182
11.42.3 DISTANCE-MEASUREMENT annotation... 183
11.42.4 REFERENCE annotation container ... 183
11.42.5 ANTENNA reference annotation... 184
11.42.6 PATTERN reference annotation .. 185

11.43Arithmetic submodels for timing and electrical data..185
11.44Arithmetic submodels for physical data ...185

(informative)Syntax rule summary ..187

A.1 ALF meta-language ...187

A.2 Lexical definitions ...187

A.3 Auxiliary definitions ..190

A.4 Generic definitions...192

A.5 Library definitions ...193

A.6 Function definitions ...198

A.7 Arithmetic definitions ..200

(informative)Semantics rule summary...205

B.1 Library definitions ...205

B.2 Arithmetic definitions ..211

(informative)Bibliography ...215
IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual xi

xii Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

List of Figures
ALF and its target applications 4
Parent/child relationship between ALF statements 16
Parent/child relationship amongst library-specific objects 18
Parent/child relationship involving singular statements and plural statements 20
Parent/child relationship involving instantiation and assignment statements 21
Scheme for construction of composite signaltype values 75
ROW and COLUMN relative to a bounding box of a CELL 85
Connection between layers during manufacturing 100
Shapes of routing patterns 106
Illustration of VERTEX annotation 107
Illustration of geometric models 109
Illustration of direct point-to-point connection 110
Illustration of manhattan point-to-point connection 110
Illustration of FLIP, ROTATE, and SHIFT 114
Relationship between FUNCTION and TEST 119
Timing diagrams for single events 134
Bounding regions for y(x) with INTERPOLATION=fit 153
RETAIN and DELAY 157
SETUP and HOLD 159
RECOVERY and REMOVAL 160
THRESHOLD measurement definition 163
General representation of electrical models around a pin 167
Electrical models associated with input and output pins 169
Definition of noise margin 174
Mathematical definitions for MEASUREMENT annotations 175
Illustration of time to peak using FROM statement 177
Illustration of time to peak using TO statement 177
Illustration of LENGTH and DISTANCE 182
Illustration of REFERENCE for DISTANCE 184
IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual xiii

xiv Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

List of Tables
Table 1—..Target applications and models supported by ALF3
Table 2—..Categories of ALF statements14
Table 3—...Generic objects16
Table 4—..Library-specific objects17
Table 5—.. Singular statements18
Table 6—.. Plural statements19
Table 7—..Instantiation statements20
Table 8—...Assignment statements21
Table 9—...Other categories of ALF statements22
Table 10—.. Annotations and annotation containers with generic keyword22
Table 11—...Keywords related to arithmetic model22
Table 12—...Statements for ALF parser control23
Table 13—... List of whitespace characters25
Table 14—..List of special characters26
Table 15—.. List arithmetic operators28
Table 16—..List of boolean operators29
Table 17—... List of relational operators29
Table 18—... List of shift operators30
Table 19—..List of event sequence operators30
Table 20—.. List of meta operators30
Table 21—...Quantity symbol and corresponding SI-prefix32
Table 22—..Character symbols within a quoted string34
Table 23—.. Legal string values within the REVISION statement44
Table 24—...Syntax item identifier48
Table 25—...VALUETYPE annotation49
Table 26—... Annotations within an INFORMATION statement60
Table 27—...CELLTYPE annotation values62
Table 28—... Predefined values for RESTRICT_CLASS64
Table 29—... SCAN_TYPE annotations for a CELL object65
Table 30—..SCAN_USAGE annotations for a CELL object65
Table 31—... BUFFERTYPE annotations for a CELL object66
Table 32—... DRIVERTYPE annotations for a CELL object66
Table 33—..PLACEMENT_TYPE annotations for a CELL object67
Table 34—.. Attribute values for a CELL with CELLTYPE=memory68
Table 35—...Attributes within a CELL with CELLTYPE=block68
Table 36—...Attributes within a CELL with CELLTYPE=core69
Table 37—...Attributes within a CELL with CELLTYPE=special69
Table 38—... VIEW annotations for a PIN object72
Table 39—... PINTYPE annotations for a PIN object73
Table 40—..DIRECTION annotations for a PIN object73
Table 41—... Fundamental SIGNALTYPE annotations for a PIN object74
Table 42—...Composite SIGNALTYPE annotations for a PIN object75
Table 43—.. ACTION annotations for a PIN object76
Table 44—.. ACTION applicable in conjunction with SIGNALTYPE values76
IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual xv

Table 45—.. POLARITY annotations for a PIN77
Table 46—..POLARITY applicable in conjunction with SIGNALTYPE values77
Table 47—... DATATYPE annotations for a PIN object78
Table 48—.. STUCK annotations for a PIN object79
Table 49—...SUPPLYTYPE annotations for a PIN object80
Table 50—... DRIVETYPE annotations for a PIN object82
Table 51—...SCOPE annotations for a PIN object83
Table 52—.. SIDE annotations for a PIN object84
Table 53—..ROUTING-TYPE annotations for a PIN object86
Table 54—... PULL annotations for a PIN object87
Table 55—... Attributes within a PIN object87
Table 56—...Attributes for pins of a memory87
Table 57—.. Attributes for pins representing pairs of signals88
Table 58—.. PIN or PINGROUP attributes for memory BIST88
Table 59—... NODETYPE annotation values91
Table 60—...PURPOSE annotation values92
Table 61—.. OPERATION annotation values93
Table 62—..LAYERTYPE annotation values97
Table 63—... PREFERENCE annotation values98
Table 64—..VIATYPE annotation values99
Table 65—..PORT_VIEW annotation values102
Table 66—...ARRAYTYPE annotation values104
Table 67—.. Geometric model identifiers108
Table 68—..Annotations for PINs involved in FUNCTION and TEST118
Table 69—...Scalar boolean values124
Table 70—..Mapping between octal base and binary base124
Table 71—... Mapping between hexadecimal base and binary base125
Table 72—... Symbolic boolean values127
Table 73—.. Logical Operation127
Table 74—.. Bitwise Operation128
Table 75—..Conditional Operation128
Table 76—...Integer Arithmetic Operation129
Table 77—...Shift Operation130
Table 78—...Comparison Operation130
Table 79—..Equal comparison considering drive strength131
Table 80—...Greater comparison considering drive strength131
Table 81—...Specification of a single event133
Table 82—...Canonical specification of an event136
Table 83—..Specification of a completely permutable event138
Table 84—...Specification a conditional event140
Table 85—.. Unary arithmetic operators141
Table 86—... Binary arithmetic operators142
Table 87—..Macro arithmetic operators142
Table 88—..Calculation annotations152
Table 89—... Interpolation annotations152
Table 90—..Predefined process names166
Table 91—...Predefined derating cases166
Table 92—... Direct association of models with a PIN169
Table 93—..External association of models with a PIN170
Table 94—... MEASUREMENT annotation175
xvi Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

Table 95—...Semantic interpretation of MEASUREMENT, TIME, or FREQUENCY176
Table 96—... Arguments for connectivity178
Table 97—..Boolean literals in non-interpolateable tables178
Table 98—.. CONNECT_RULE annotation181
Table 99—... Implications between connect rules182
Table 100—...Submodels applicable for timing and electrical modeling185
Table 101—.. Submodels applicable for physical modeling185
IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual xvii

xviii Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

IEEE Standard for an
Advanced Library Format (ALF)
describing Integrated Circuit (IC)
technology, cells, and blocks

1. Introduction

Add a lead-in OR change this to parallel an IEEE intro section

1.1 Motivation

Designing digital integrated circuits has become an increasingly complex process. More functions get integrated
into a single chip, yet the cycle time of electronic products and technologies has become considerably shorter. It
would be impossible to successfully design a chip of today’s complexity within the time-to-market constraints
without extensive use of EDA tools, which have become an integral part of the complex design flow. The effi-
ciency of the tools and the reliability of the results for simulation, synthesis, timing and power analysis, layout
and extraction rely significantly on the quality of available information about the cells in the technology library.

New challenges in the design flow, especially signal integrity, arise as the traditional tools and design flows hit
their limits of capability in processing complex designs. As a result, new tools emerge, and libraries are needed
in order to make them work properly. Library creation (generation) itself has become a very complex process and
the choice or rejection of a particular application (tool) is often constrained or dictated by the availability of a
library for that application. The library constraint can prevent designers from choosing an application program
that is best suited for meeting specific design challenges. Similar considerations can inhibit the development and
productization of such an application program altogether. As a result, competitiveness and innovation of the
whole electronic industry can stagnate.

In order to remove these constraints, an industry-wide standard for library formats, the Advanced Library Format
(ALF), is proposed. It enables the EDA industry to develop innovative products and ASIC designers to choose
the best product without library format constraints. Since ASIC vendors have to support a multitude of libraries
according to the preferences of their customers, a common standard library is expected to significantly reduce the
library development cycle and facilitate the deployment of new technologies sooner.

1.2 Goals

The basic goals of the proposed library standard are

— simplicity - library creation process needs to be easy to understand and not become a cumbersome pro-
cess only known by a few experts.

— generality - tools of any level of sophistication need to be able to retrieve necessary information from the
library.

— expandability - this needs to be done for early adoption and future enhancement possibilities.
— flexibility - the choice of keeping information in one library or in separate libraries needs to be in the hand

of the user not the standard.
— efficiency - the complexity of the design information requires the process of retrieving information from

the library does not become a bottleneck. The right trade-off between compactness and verbosity needs
to be established.

— ease of implementation - backward compatibility with existing libraries shall be provided and translation
to the new library needs to be an easy task.

— conciseness - unambiguous description and accuracy of contents shall be detailed.
— acceptance - there needs to be a preference for the new standard library over existing libraries.

1.3 Target applications

The fundamental purpose of ALF is to serve as the primary database for all third-party applications of ASIC
cells. In other words, it is an elaborate and formalized version of the databook.

In the early days, databooks provided all the information a designer needed for choosing a cell in a particular
application: Logic symbols, schematics, and a truth table provided the functional specification for simple cells.
For more complex blocks, the name of the cell (e.g., asynchronous ROM, synchronous 2-port RAM, or 4-bit syn-
chronous up-down counters) and timing diagrams conveyed the functional information. The performance charac-
teristics of each cell were provided by the loading characteristics, delay and timing constraints, and some
information about DC and AC power consumption. The designers chose the cell type according to the function-
ality, estimated the performance of the design, and eventually re-implemented it in an optimized way as neces-
sary to meet performance constraints.

Design automation enabled tremendous progress in efficiency, productivity, and the ability to deal with complex-
ity, yet it did not change the fundamental requirements for ASIC design. Therefore, ALF needs to provide mod-
els with functional information and performance information, primarily including timing and power. Signal
integrity characteristics, such as noise margin can also be included under performance category. Such informa-
2 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

tion is typically found in any databook for analog cells. At deep sub-micron levels, digital cells behave similar to
analog cells as electronic devices bound by physical laws and therefore are not infinitely robust against noise.

Table 1 shows a list of applications used in ASIC design flow and their relationship to ALF.

NOTE — ALF covers library data, whereas design data needs to be provided in other formats.

Historically, a functional model was virtually identical to a simulation model. A functional gate-level model was
used by the proprietary simulator of the ASIC company and it was easy to lump it together with a rudimentary
timing model. Timing analysis was done through dynamic functional simulation. However, with the advanced
level of sophistication of both functional simulation and timing analysis, this is no longer the case. The capabili-
ties of the functional simulators have evolved far beyond the gate-level and timing analysis has been decoupled
from simulation.

RTL design planning is an emerging application type aiming to produce “virtual prototypes” of complex for sys-
tem-on-chip (SOC) designs. RTL design planning is thought of as a combination of some or all of RTL floorplan-
ning and global routing, timing budgeting, power estimation, and functional verification, as well as analysis of
signal integrity, EMI, and thermal effects. The library components for RTL design planning range from simple
logic gates to parameterizeable macro-functions, such as memories, logic building blocks, and cores.

From the point of view of library requirements, applications involved in RTL design planning need functional,
performance, and physical data. The functional aspect of design planning includes RTL simulation and formal
verification. The performance aspect covers timing and power as primary issues, while signal integrity, EMI, and
thermal effects are emerging issues. The physical aspect is floorplanning. As stated previously, the functional and
performance models of components can be described in ALF.

ALF also covers the requirements for physical data, including layout. This is important for the new generation of
tools, where logical design merges with physical design. Also, all design steps involve optimization for timing,
power, signal integrity, i.e. electrical correctness and physical correctness. EDA tools need to be knowledgeable
about an increasing number of design aspects. For example, a place and route tool needs to consider congestion
as well as timing, crosstalk, electromigration, antenna rules etc. Therefore it is a logical step to combine the func-
tional, electrical and physical models needed by such a tool in a unified library.

Figure 1 shows how ALF provides information to various design tools.

Table 1—Target applications and models supported by ALF

Application Functional model Performance model Physical model

Simulation Derived from ALF N/A N/A

Synthesis Supported by ALF Supported by ALF Supported by ALF

Design for test Supported by ALF N/A N/A

Design planning Supported by ALF Supported by ALF Supported by ALF

Timing analysis N/A Supported by ALF N/A

Power analysis N/A Supported by ALF N/A

Signal integrity N/A Supported by ALF N/A

Layout N/A N/A Supported by ALF
IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 3

Figure 1—ALF and its target applications

The worldwide accepted standards for hardware description and simulation are VHDL and Verilog. Both lan-
guages have a wide scope of describing the design at various levels of abstraction: behavioral, functional, synthe-
sizable RTL, and gate level. There are many ways to describe gate-level functions. The existing simulators are
implemented in such a way that some constructs are more efficient for simulation run time than others. Also,
how the simulation model handles timing constraints is a trade-off between efficiency and accuracy. Developing
efficient simulation models which are functionally reliable (i.e., pessimistic for detecting timing constraint viola-
tion) is a major development effort for ASIC companies.

Hence, the use of a particular VHDL or Verilog simulation model as primary source of functional description of
a cell is not very practical. Moreover, the existence of two simulation standards makes it difficult to pick one as a

Cell characterization tool

ALF

universal functional model

Simulation models

Test vector generator Model generator

Verilog & VHDL
Test vectors

Verilog & VHDL

Simulators
Verilog & VHDL

Synthesis tool

universal universal

annotations
for synthesis

annotations
for scan

wireload

timing model power model

Scan insertion tool

Vendor-specific or commercial EDA tool

Commercial EDA tool

models

Timing
analysis tool

Power
analysis tool

Signal integrity
analysis tool

universal
design limits

universal signal
integrity model

Place & Route
tool

layout
models
4 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

reference with respect to the other. The purpose of a generic functional model is to serve as an absolute reference
for all applications that require functional information. Applications such as synthesis, which need functional
information merely for recognizing and choosing cell types, can use the generic functional model directly. For
other applications, such as simulation and test, the generic functional model enables automated simulation model
and test vector generation and verification, which has a tremendous benefit for the ASIC industry.

With progress of technology, the set of physical constraints under which the design functions have increased dra-
matically, along with the cost constraints. Therefore, the requirements for detailed characterization and analysis
of those constraints, especially timing and power in deep submicron design, are now much more sophisticated.
Only a subset of the increasing amount of characterization data appears in today’s databooks.

ALF provides a generic format for all type of characterization data, without restriction to state-of-the art timing
models. Power models are the most immediate extension and they have been the starter and primary driver for
ALF.

Detailed timing and power characterization needs to take into account the mode of operation of the ASIC cell,
which is related to the functionality. ALF introduces the concept of vector-based modeling, which is a generali-
zation and a superset of today’s timing and power modeling approaches. All existing timing and power analysis
applications can retrieve the necessary model information from ALF.

1.4 Conventions

The syntax for description of lexical and syntax rules uses the following conventions.
Consider using the BNF nomenclature from IEEE 1481-1999

::= definition of a syntax rule
| alternative definition
[item]an optional item
[item1 | item2 | ...] optional item with alternatives
{item}optional item that can be repeated
{item1 | item2 | ... } optional items with alternatives

which can be repeated
itemitem in boldface font is taken verbatim
itemitem in italic is for explanation purpose only

The syntax for explanation of semantics of expressions uses the following conventions.

=== left side and right side expressions are equivalent
<item>a placeholder for an item in regular syntax

1.5 Contents of this standard

The organization of the remainder of this standard is

— Clause 2 (References) provides references to other applicable standards that are assumed or required for
ALF.

— Clause 3 (Definitions) defines terms used throughout the different specifications contained in this stan-
dard.

— Clause 4 (Acronyms and abbreviations) defines the acronyms used in this standard.
— Clause 5 (ALF language construction principles and overview) defines the language construction princi-

ples.
— Clause 6 (Lexical rules) specifies the lexical rules.
— Clause 7 (Auxiliary syntax rules) defines syntax and semantics of auxiliary items used in this standard.
IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 5

— Clause 8 (Generic objects and related statements) defines syntax and semantics of generic objects used in
this standard.

— Clause 9 (Library-specific objects and related statements) defines syntax and semantics of library-spe-
cific objects used in this standard.

— Clause 10 (Constructs for modeling of functional behavior) defines syntax and semantics of the control
expression language used in this standard

— Clause 11 (Constructs for electrical and physical modeling) defines syntax and semantics of arithmetic
models used in this standard.

— Annexes. Following Clause 11are a series of normative and informative annexes.
6 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

2. References

**Fill in applicable references, i.e. standards on which the herein proposed standard depends.

This standard shall be used in conjunction with the following publication. When the following standard is super-
seded by an approved revision, the revision shall apply.

**The following is only an example. ALF does not depend on C.

ISO/IEC 9899:1990, Programming Languages—C.1

[ISO 8859-1 : 1987(E)] ASCII character set

1ISO publications are available from the ISO Central Secretariat, Case Postale 56, 1 rue de Varembé, CH-1211, Genève 20, Switzerland/
Suisse (http://www.iso.ch/). IEC publications are available from the Sales Department of the International Electrotechnical Commission,
Case Postale 131, 3, rue de Varembé, CH-1211, Genève 20, Switzerland/Suisse (http://www.iec.ch/). ISO/IEC publications are also available
in the United States from the Sales Department, American National Standards Institute, 11 West 42nd Street, 13th Floor, New York, NY
10036, USA.
IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 7

8 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

3. Definitions

For the purposes of this standard, the following terms and definitions apply. The IEEE Standard Dictionary of
Electrical and Electronics Terms [B4] should be consulted for terms not defined in this standard.

**Fill in definitions of terms which are used in the herein proposed standard.

3.1 advanced library format: The format of any file that can be parsed according to the syntax and semantics
defined within this standard.

3.2 application, electric design automation (EDA) application: Any software program that uses data repre-
sented in the Advanced Library Format (ALF). Examples include RTL (Register Transfer Level) synthesis tools,
static timing analyzers, etc. See also: advanced library format; register transfer level.

3.3 arc: See: timing arc.

3.4 argument: A data item required for the mathematical evaluation of an arithmetic model. See also: arith-
metic model.

3.5 arithmetic model: A representation of a library quantity that can be mathematically evaluated.

3.6 ...

3.7 register transfer level: A behavioral representation of a digital electronic design allowing inference of
sequential and combinational logic components.

3.8 ...

3.9 timing arc: An abstract representation of a measurement between two points in time during operation of a
library component.

3.10 ...
IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 9

10 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

4. Acronyms and abbreviations

This clause lists the acronyms and abbreviations used in this standard.

ALF advanced library format, title of the herein proposed standard

ASIC application specific integrated circuit

AWE asymptotic waveform evaluation

BIST built-in self test

BNF Backus-Naur Form

CAE computer-aided engineering [the term electronic design automation (EDA) is preferred]

CAM content-addressable memory

CLF Common Library Format from Avant! Corporation

CPU central processing unit

DCL Delay Calculation Language from IEEE 1481-1999 std

DEF Design Exchange Format from Cadence Design Systems Inc.

DLL delay-locked loop

DPCM Delay and Power Calculation Module from IEEE 1481-1999 std

DPCS Delay and Power Calculation System from IEEE 1481-1999 std

DSP digital signal processor

DSPF Detailed Standard Parasitic Format

EDA electronic design automation

EDIF Electronic Design Interchange Format

HDL hardware description language

IC integrated circuit

IP intellectual property

ILM Interface Logic Model from Synopsys Inc.

LEF Library Exchange Format from Cadence Design Systems Inc.

LIB Library Format from Synopsys Inc.

LSSD level-sensitive scan design

MPU micro processor unit

OLA Open Library Architecture from Silicon Integration Initiative Inc.

PDEF Physical Design Exchange Format from IEEE 1481-1999 std

PLL Phase-locked loop

PVT process/voltage/temperature (denoting a set of environmental conditions)

QTM Quick Timing Model

RAM random access memory

RC resistance times capacitance

RICE rapid interconnect circuit evaluator

ROM read-only memory

RSPF Reduced Standard Parasitic Format

RTL Register Transfer Level

SDF Standard Delay Format from IEEE 1497 std

SDC Synopsys Design Constraint format from Synopsys Inc.

SPEF Standard Parasitic Exchange Format from IEEE 1481-1999 std

SPF Standard Parasitic Format

SPICE Simulation Program with Integrated Circuit Emphasis

STA Static Timing Analysis
IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 11

STAMP (STA Model Parameter ?) format from Synopsys Inc.

TCL Tool Command Language (supported by multiple EDA vendors)

TLF Timing Library Format from Cadence Design Systems Inc.

VCD Value Change Dump format (from IEEE 1364 std ?)

VHDL VHSIC Hardware Description Language

VHSIC very-high-speed integrated circuit

VITAL VHDL Initiative Towards ASIC Libraries from IEEE ??? std

VLSI very-large-scale integration
12 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

5. ALF language construction principles and overview

Add lead-in text

This section presents the ALF language construction principles and gives an overview of the language features.
The types of ALF statements and rules for parent/child relationships between types are presented summarily.
Most of the types are associated with predefined keywords. The keywords in ALF shall be case-insensitive.
However, uppercase is used for keywords throughout this section for clarity.

5.1 ALF meta-language

Syntax 1 establishes an ALF meta-language.

Syntax 1—Syntax construction for ALF meta-language

An ALF statement uses the delimiters “;”, “{“ and “}” to indicate its termination.

The ALF type is defined by a keyword (see 6.12) eventually in conjunction with an index (see 7.8) or by the oper-
ator “@” (6.4) or by the delimiter “:” (see 6.3). The usage of keyword, index, operator, or delimiter as ALF type
is defined by ALF language rules concerning the particular ALF type.

The ALF name is defined by an identifier (see 6.11) eventually in conjunction with an index or by a control
expression (see 10.16). Depending on the ALF type, the ALF name is mandatory or optional or not applicable.
The usage of identifier, index, or control expression as ALF name is defined by ALF language rules concerning
the particular ALF type.

The ALF value is defined by an identifier, a number (see 6.5), an arithmetic expression (see 11.1), a boolean
expression (see 10.9), or a control expression. Depending on the type of the ALF statement, the ALF value is
mandatory or optional or not applicable. The usage of identifier, number, arithmetic expression, boolean expres-
sion or control expression as ALF value is defined by ALF language rules concerning the particular ALF type.

An ALF statement can contain one or more other ALF statements. The former is called parent of the latter. Con-
versely, the latter is called child of the former. An ALF statement with child is called a compound ALF state-
ment.

ALF_statement ::=
ALF_type [ALF_name] [= ALF_value] ALF_statement_termination

ALF_type ::=
non_escaped_identifier [index]

| @
| :

ALF_name ::=
identifier [index]

| control_expression
ALF_value ::=

identifier
| number
| arithmetic_expression
| boolean_expression
| control_expression

ALF_statement_termination ::=
;

| { { ALF_value | : | ; } }
| { { ALF_statement } }
IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 13

An ALF statement containing one or more ALF values, eventually interspersed with the delimiters “;” or “:”, is
called a semi-compound ALF statement. The items between the delimiters “{“ and “}” are called contents of the
ALF statement. The usage of the delimiters “;” or “:” within the contents of an ALF statement is defined by ALF
language rules concerning the particular ALF statement.

An ALF statement without child is called an atomic ALF statement. An ALF statement which is either com-
pound or semi-compound is called a non-atomic ALF statement.

Examples

a) ALF statement describing an unnamed object without value:
ARBITRARY_ALF_TYPE {

// put children here
}

b) ALF statement describing an unnamed object with value:
ARBITRARY_ALF_TYPE = arbitrary_ALF_value;

or
ARBITRARY_ALF_TYPE = arbitrary_ALF_value {

// put children here
}

c) ALF statement describing a named object without value:
ARBITRARY_ALF_TYPE arbitrary_ALF_name;

or
ARBITRARY_ALF_TYPE arbitrary_ALF_name {

// put children here
}

d) ALF statement describing a named object with value:
ARBITRARY_ALF_TYPE arbitrary_ALF_name = arbitrary_ALF_value;

or
ARBITRARY_ALF_TYPE arbitrary_ALF_name = arbitrary_ALF_value {

// put children here
}

5.2 Categories of ALF statements

In this section, the terms statement, type, name, value are used for shortness in lieu of ALF statement, ALF name,
ALF value, respectively.

Statements are divided into the following categories: generic object, library-specific object, arithmetic model,
arithmetic submodel, arithmetic model container, geometric model, annotation, annotation container, and auxil-
iary statement, as shown in Table 2.

Table 2—Categories of ALF statements

Category Purpose Syntax particularity

Generic object Provide a definition for use within other
ALF statements.

Statement is atomic, semi-compound or com-
pound.
Name is mandatory.
Value is either mandatory or not applicable.
14 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

Figure 2 illustrates the parent/child relationship between categories of statements.

Library-specific object Describe the contents of a IC technology
library.

Statement is atomic or compound.
Name is mandatory.
Value does not apply.
Category of parent is exclusively
library-specific object.

Arithmetic model Describe an abstract mathematical quan-
tity that can be calculated and eventually
measured within the design of an IC.

Statement is atomic or compound.
Name is optional.
Value is mandatory, if atomic.

Arithmetic submodel Describe an arithmetic model under a
specific measurement condition.

Statement is atomic or compound.
Name does not apply.
Value is mandatory, if atomic.
Category of parent is exclusively
arithmetic model.

Arithmetic model con-
tainer

Provide a context for an arithmetic
model.

Statement is compound.
Name and value do not apply.
Category of child is exclusively
arithmetic model.

Geometric model Describe an abstract geometrical form
used in physical design of an IC.

Statement is semi-compound or compound.
Name is optional.
Value does not apply.

Annotation Provide a qualifier or a set of qualifiers
for an ALF statement.

Statement is atomic, semi-compound or com-
pound.
Name does not apply.
Value is mandatory, if atomic or compound.
Value does not apply, if semi-compound.
Category of child is exclusively
annotation.

Annotation container Provide a context for an annotation. Statement is compound.
Name and value do not apply.
Category of child is exclusively
annotation.

Auxiliary statement Provide an additional description within
the context of a library-specific object,
an arithmetic model, an arithmetic sub-
model, geometric model or another aux-
iliary statement.

Dependent on subcategory.

Table 2—Categories of ALF statements (Continued)

Category Purpose Syntax particularity
IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 15

Figure 2—Parent/child relationship between ALF statements

More detailed rules for parent/child relationships for particular types of statements apply.

5.3 Generic objects and library-specific objects

Statements with mandatory name are called objects, i.e., generic object and library-specific object.

Table 3 lists the keywords and items in the category generic object. The keywords used in this category are
called generic keywords.

Table 3—Generic objects

Keyword Item Section

ALIAS Alias declaration See 8.1.

library-specific object

legend:

arithmetic model

arithmetic model container

arithmetic submodel

annotation

annotation container

auxiliary statement

geometric model

library-specific object

auxiliary statement

generic objectarithmetic model

parent child

parent child no restrictive rules

with restrictive rules

generic object

library-specific object

auxiliary statement

arithmetic model

annotation container
annotation

arithmetic submodel

arithmetic model container
16 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

Table 4 lists the keywords and items in the category library-specific object. The keywords used in this category
are called library-specific keywords.

Figure 3 illustrates the parent/child relationship between statements within the category library-specific object.

CONSTANT Constant declaration See 8.2.

CLASS Class declaration See 8.3.

GROUP Group declaration See 8.7.

KEYWORD Keyword declaration See 8.4.

SEMANTICS Semantics declaration See 8.6.

TEMPLATE Template declaration See 8.8.

Table 4—Library-specific objects

Keyword Item Section

LIBRARY Library declaration See 9.1.

SUBLIBRARY Sublibrary declaration See 9.1.

CELL Cell declaration See 9.3.

PRIMITIVE Primitive declaration See 9.11.

WIRE Wire declaration See 9.12.

PIN Pin declaration See 9.7.

PINGROUP Pin group declaration See 9.8.

VECTOR Vector declaration See 9.16.

NODE Node declaration See 9.15.

LAYER Layer declaration See 9.18.

VIA Via declaration See 9.20.

RULE Rule declaration See 9.23.

ANTENNA Antenna declaration See 9.24.

SITE Site declaration See 9.28.

ARRAY Array declaration See 9.30.

BLOCKAGE Blockage declaration See 9.25.

PORT Port declaration See 9.26.

PATTERN Pattern declaration See 9.32.

REGION Region declaration See 9.34.

Table 3—Generic objects (Continued)

Keyword Item Section
IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 17

Figure 3—Parent/child relationship amongst library-specific objects

A parent can have multiple library-specific objects of the same type as children. Each child is distinguished by
name.

5.4 Singular statements and plural statements

Auxiliary statements with predefined keywords are divided in the following subcategories: singular statement
and plural statement.

Auxiliary statements with predefined keywords and without name are called singular statements. Auxiliary state-
ments with predefined keywords and with name, yet without value, are called plural statements.

Table 5 lists the singular statements.

Table 5—Singular statements

Keyword Item Value Complexity Section

FUNCTION Function statement N/A Compound See 10.1.

TEST Test statement N/A Compound See 10.2.

RANGE Range statement N/A Semi-compound See 10.8.

FROM From statement N/A Compound See 11.4.10.

TO To statement N/A Compound See 11.4.10.

library

legend:

parent child

sublibrary

cell primitivewire

pinpin-groupvector

node
layer

via

rule

antenna

site

array

blockage

portpattern

region

pin
18 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

Table 6 lists the plural statements.

Figure 4 illustrates the parent/child relationship for singular statements and plural statements.

VIOLATION Violation statement N/A Compound See 11.4.12.

HEADER Header statement N/A Compound (or semi-compound?) See 11.3.1.

TABLE Table statement N/A Semi-compound See 11.3.2.

EQUATION Equation statement N/A Semi-compound See 11.3.3.

BEHAVIOR Behavior statement N/A Compound See 10.4.

STRUCTURE Structure statement N/A Compound See 10.5.

NON_SCAN_CELL Non-scan cell statement Optional Compound or semi-compound See 10.7.

ARTWORK Artwork statement Mandatory Compound or atomic See 9.38.

Table 6—Plural statements

Keyword Item Name Complexity Section

STATETABLE State table statement Optional Semi-compound See 10.6.

@ Control statement Mandatory Compound See 10.4.

: Alternative control statement Mandatory Compound See 10.4.

Table 5—Singular statements (Continued)

Keyword Item Value Complexity Section
IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 19

Figure 4—Parent/child relationship involving singular statements and plural statements

A parent can have at most one child of a particular type in the category singular statements, but multiple children
of a particular type in the category plural statements.

5.5 Instantiation statement and assignment statement

Auxiliary statements without predefined keywords use the name of an object as keyword. Such statements are
divided in the following subcategories: instantiation statement and assignment statement.

Compound or semi-compound statements using the name of an object as keyword are called instantiation state-
ments. Their purpose is to specify an instance of the object.

Table 7 lists the instantiation statements.

Table 7—Instantiation statements

Item Name Value Section

Cell instantiation Optional N/A See 9.4.

Primitive instantiation Optional N/A See 10.4.

Template instantiation N/A Optional See 8.9.

Via instantiation Mandatory N/A See 9.21.

Wire instantiation Mandatory N/A Proposed for IEEE.

legend:

parent child

function test range

from

to

violation

header

table

equation

behavior

structure

cellprimitive pin

arithmetic model

arithmetic submodel

non-scan cell

artwork

arithmetic submodel

statetable

control statement

alternative control statement
20 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

Atomic statements without name using an identifier as keyword which has been defined within the context of
another object are called assignment statements. A value is mandatory for assignment statements, as their pur-
pose is to assign a value to the identifier. Such an identifier is called a variable.

Table 8 lists the assignment statements.

Figure 5 illustrates the parent/child relationship involving instantiation and assignment statements.

Figure 5—Parent/child relationship involving instantiation and assignment statements

A parent can have multiple children using the same keyword in the category instantiation statement, but at most
one child using the same variable in the category assignment statement.

5.6 Annotation, arithmetic model, and related statements

Multiple keywords are predefined in the categories arithmetic model, arithmetic model container, arithmetic
submodel, annotation, annotation container, and geometric model. Their semantics are established within the

Table 8—Assignment statements

Item Section

Pin assignment See 7.10.

Arithmetic assignment See 8.9.

Boolean assignment See 10.4.

behavior

structurenon-scan cell

artwork

control statement

alternative control statement

pin assignment

boolean assignment

arithmetic assignment

cell instantiation

template instantiation

wire instantiation

generic object

library-specific object

arithmetic model container

arithmetic model

arithmetic submodel

singular statement

plural statement

primitive instantiation

legend:

parent child

parent child no restrictive rules

with restrictive rules
IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 21

context of their parent. Therefore they are called context-sensitive keywords. In addition, the ALF language
allows additional definition of keywords in these categories.

Table 9 provides a reference to sections where more definitions about these categories can be found.

There exist predefined keywords with generic semantics in the category annotation and annotation container.
They are called generic keywords, like the keywords for generic objects.

Table 10 lists the generic keywords in the category annotation and annotation container.

Table 11 lists predefined keywords in categories related to arithmetic model.

Table 9—Other categories of ALF statements

Item Section

Arithmetic model See 11.2.

Arithmetic submodel See 11.4.3.

Arithmetic model container See 11.4.7.

Annotation See 7.11.

Annotation container See 7.12.

Geometric model See 9.35.

Table 10—Annotations and annotation containers with generic keyword

Keyword Item / subcategory Section

PROPERTY Annotation container. See 7.14.

ATTRIBUTE Multi-value annotation. See 7.13.

INFORMATION Annotation container. See 9.2.1.

Table 11—Keywords related to arithmetic model

Keyword Item / category Section

LIMIT Arithmetic model container. See 11.4.8.

MIN Arithmetic submodel, also operator within arithmetic expression. See 11.4.3, 11.1.3.

MAX Arithmetic submodel, also operator within arithmetic expression. See 11.4.4, 11.1.3.

TYP Arithmetic submodel. See 11.4.5.

DEFAULT Annotation. See 11.5.4.

ABS Operator within arithmetic expression. See 11.1.3.

EXP Operator within arithmetic expression. See 11.1.3.
22 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

The definitions of other predefined keywords, especially in the category arithmetic model, can be self-described
in ALF using the keyword declaration statement (see 8.4).

5.7 Statements for parser control

Table 12 provides a reference to statements used for ALF parser control.

The statements for parser control do not necessarily follow the ALF meta-language shown in Syntax 1.

5.8 Name space and visibility of statements

The following rules for name space and visibility shall apply:

a) A statement shall be visible within its parent statement, but not outside its parent statement.
b) A statement visible within another statement shall also be visible within a child of that other statement.
c) All objects (i.e., generic objects and library-specific objects) shall share a common name space within

their scope of visibility. No object shall use the same name as any other visible object. Conversely, an
object can use the same name as any other object outside the scope of its visibility.

d) The following exception of rule c) is allowed for specific objects and with specific semantic implica-
tions. An object of the same type and the same name can be redeclared, if semantic support for this
redeclaration is provided. The purpose of such a redeclaration is to supplement the original declaration
with new children statements which augment the original declaration without contradicting it.

e) All statements with optional names (i.e., property, arithmetic model, geometric model) shall share a com-
mon name space within their scope of visibility. No statement with optional name shall use the same
name as any other visible statement with optional name. Conversely, a statement can use the same
optional name as any other statement with optional name outside the scope of its visibility.

LOG Operator within arithmetic expression. See 11.1.3.

Table 12—Statements for ALF parser control

Keyword Statement Section

INCLUDE Include statement See 7.15.

ASSOCIATE Associate statement See 7.16.

ALF_REVISION Revision statement See 7.17.

Table 11—Keywords related to arithmetic model (Continued)

Keyword Item / category Section
IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 23

24 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

6. Lexical rules

This section discusses the lexical rules.

The ALF source text files shall be a stream of lexical tokens and whitespace. Lexical tokens shall be divided into
the categories delimiter, operator, comment, number, bit literal, based literal, edge, quoted string, and identifier.

Each lexical token shall be composed of one or more characters. Whitespace shall be used to separate lexical
tokens from each other. Whitespace shall not be allowed within a lexical token with the exception of comment
and quoted string.

The specific rules for construction of lexical tokens and for usage of whitespace are defined in this section.

6.1 Character set

This standard shall use the ASCII character set [ISO 8859-1 : 1987(E)].

The ASCII character set shall be divided into the following categories: whitespace, letter, digit, and special, as
shown in Syntax 2.

Table 13 shows the list of whitespace characters and their ASCII code.

character ::=
whitespace

| letter
| digit
| special

whitespace ::=
space | vertical_tab | horizontal_tab | new_line | carriage_return | form_feed

letter ::=
uppercase | lowercase

uppercase ::=
A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W

| X | Y | Z
lowercase ::=

a | b | c | d | e | f | g | h | i | j | k | l | m | n | o | p | q | r | s | t | u | v | w | x | y | z
digit ::=

0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
special ::=

& | | | ^ | ~ | + | - | * | / | % | ? | ! | : | ; | , | ” | ’ | @ | = | \ | . | $ | _ | #
| (|) | < | > | [|] | { | }

Syntax 2—ASCII character set

Table 13—List of whitespace characters

Name ASCII code (octal)

Space 200

Horizontal tab 011

New line 012

Vertical tab 013
IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 25

Table 14 shows the list of special characters and their names used in this standard

Form feed 014

Carriage return 015

Table 14—List of special characters

Symbol ASCII code (octal) Name

& Amperesand

| Vertical bar

^ Caret

~ Tilde

+ Plus

- Minus

* Asterix

/ Slash

% Percent

? Question mark

! Exclamation mark

: Colon

; Semicolon

, Comma

” Double quote

’ Single quote

@ At sign

= Equal sign

\ Backslash

. Dot

$ Dollar

_ Underscore

Table 13—List of whitespace characters (Continued)

Name ASCII code (octal)
26 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

6.2 Comment

A comment shall be divided into the subcategories in-line comment and block comment, as shown in Syntax 3.

The start of an in-line comment shall be determined by the occurence of two subsequent slash characters without
whitespace in-between. The end of an in-line comment shall be determined by the occurence of a new line or of a
carriage return character.

The start of a block comment shall be determined by the occurence of a slash character followed by an asterix
without whitespace in-between. The end of a block comment shall be determined by the occurence of an asterix
character followed by a slash character.

A comment shall have the same semantic meaning as a whitespace. Therefore, no syntax rule shall involve a
comment.

6.3 Delimiter

The special characters shown in Syntax 4 shall be considered delimiters.

When appearing in a syntax rule, a delimiter shall be used to indicate the end of a statement or of a partial state-
ment, the begin and end of an expression or of a partial expression.

Pound

() Parenthesis (open, close)

< > Angular bracket (open, close)

[] Square bracket (open, close)

{ } Curly bracket (open, close)

comment ::=
in_line_comment

| block_comment
in_line_comment ::=

/ /{character}new_line
| / /{character}carriage_return

block_comment ::=
/ *{character}* /

Syntax 3—Comment

delimiter ::=
(|) | [|] | { | } | : | ; | ,

Syntax 4—Delimiter

Table 14—List of special characters (Continued)

Symbol ASCII code (octal) Name
IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 27

6.4 Operator

Operators shall be divided into the following subcategories: arithmetic operator, boolean operator, relational
operator, shift operator, event sequence operator, and meta operator, as shown in Syntax 5

When appearing in a syntax rule, an operator shall be used within a statement or within an expression. An opera-
tor with one operand shall be called unary operator. An unary operator shall precede the operand. An operator
with two operands shall be called binary operator. A binary operator shall succeed the first operand and precede
the second operand.

6.4.1 Arithmetic operator

Table 15 shows the list of arithmetic operators and their names used in this standard.

Arithmetic operators shall be used to specify arithmetic operations.

operator ::=
arithmetic_operator

| boolean_operator
| relational_operator
| shift_operator
| event_sequence_operator
| meta_operator

arithmetic_operator ::=
+ | - | * | / | % | **

boolean_operator ::=
&& | || | ~& | ~| | ^ | ~^ | ~ | ! | & | |

relational_operator ::=
== | != | >= | <= | > | <

shift_operator ::=
<< | >>

event_sequence_operator ::=
-> | ~> | <-> | <~> | &> | <&>

meta_operator ::=
= | ? | @

Syntax 5—Operator

Table 15—List arithmetic operators

Symbol Operator name Unary / binary Section

+ Plus Binary See 10.10.2.

- Minus Both See 10.10.2.

* Multiply Binary See 10.10.2.

/ Divide Binary See 10.10.2.

% Modulo Binary See 10.10.2.

** Power Binary See 11.1.
28 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

6.4.2 Boolean operator

Table 16 shows the list of boolean operators and their names used in this standard.

Boolean operators shall be used to specify boolean operations.

6.4.3 Relational operator

Table 17 shows the list of relational operators and their names used in this standard.

Relational operators shall be used to specify mathematical relationships between numerical quantities.

Table 16—List of boolean operators

Symbol Operator name Unary / binary Section

! Logical inversion Unary See 10.10.1.

&& Logical and Binary See 10.10.1.

|| Logical or Binary See 10.10.1.

~ bit-wise inversion Unary **See 10.12.??

& bit-wise and Both **See 10.12.??

~& bit-wise nand Both **See 10.12.??

| bit-wise or Both **See 10.12.??

~| bit-wise nor Both **See 10.12.??

^ Exclusive or Both **See 10.12.??

~^ Exclusive nor Both **See 10.12.??

Table 17—List of relational operators

Symbol Operator name Unary / binary Section

== Equal Binary See 10.10.2.

!= Not equal Binary See 10.10.2.

> Greater Binary See 10.10.2.

< Lesser Binary See 10.10.2.

>= Greater or equal Binary See 10.10.2.

<= Lesser or equal Binary See 10.10.2.
IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 29

6.4.4 Shift operator

Table 18 shows the list of shift operators and their names used in this standard.

Shift operators shall be used to specify manipulations of discrete mathematical values.

6.4.5 Event sequence operator

Table 19 shows the list of event sequence operators and their names used in this standard.

Event sequence operators shall be used to express temporal relationships between discrete events.

6.4.6 Meta operator

Table 20 shows the list of meta operators and their names used in this standard.

Table 18—List of shift operators

Symbol Operator name Unary / binary Section

<< Shift left Binary See 10.10.2.

>> Shift right Binary See 10.10.2.

Table 19—List of event sequence operators

Symbol Operator name Unary / binary Section

-> Immediately followed by Binary See 10.12.2.

~> Eventually followed by Binary See 10.12.2.

<-> Immediately following each other Binary See 10.12.3.

<~> Eventually following each other Binary **where??

&> Simultaneous or immediately followed by Binary See 10.12.3.

<&> Simultaneous or immediately following each other Binary See 10.12.3.

Table 20—List of meta operators

Symbol Operator name Unary / binary Section

= Assignment Binary See 7.10, 8.9, 10.4.

? Condition Binary See 10.10.1.

@ Control Unary See 10.12.6.
30 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

Meta operators shall be used to specify transactions between variables.

6.5 Number

Numbers shall be divided into subcategories signed integer, signed real, unsigned integer, and unsigned real.
Furthermore, the categories signed number, unsigned number, integer and real shall be defined as shown in
Syntax 6.

Numbers shall be used to represent numerical quantities.

6.6 Quantity symbol

A quantity symbol shall be defined as shown in Syntax 7.

number ::=
signed_integer | signed_real | unsigned_integer | unsigned_real

signed_number ::=
signed_integer | signed_real

unsigned_number ::=
unsigned_integer | unsigned_real

integer ::=
signed_integer | unsigned_integer

signed_integer ::=
sign unsigned_integer

unsigned_integer ::=
digit { [_] digit }

real ::=
signed_real | unsigned_real

signed_real ::=
sign unsigned_real

unsigned_real ::=
mantisse [exponent]

| unsigned_integer exponent
sign ::=

+ | -
mantisse ::=

. unsigned_integer
| unsigned_integer . [unsigned_integer]

exponent ::=
E [sign] unsigned_integer

| e [sign] unsigned_integer

Syntax 6—Numbers
IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 31

The meaning of the quantity symbol is shown in Table 21.

A quantity symbol can be used to define a quantity value (see Section 7.2).

6.7 Bit literal

Bit literals shall be divided into the subcategories alphanumeric bit literal and symbolic bit literal, as shown in
Syntax 8.

Bit literals shall be used to specify scalar values within a boolean value system (see Section 10.10).

quantity_symbol ::=
unity { letter } | K { letter } | M E G { letter } | G { letter }

| M { letter } | U { letter } | N { letter } | P { letter } | F { letter }
unity ::=

1
K ::=

K | k
M ::=

M | m
E ::=

E | e
G ::=

G | g
U ::=

U | u
N ::=

N | n
P ::=

P | p
F ::=

F | f

Syntax 7—Quantity symbol

Table 21—Quantity symbol and corresponding SI-prefix

Leading character SI-prefix (symbol) SI-prefix (word) Numerical value

F f femto 1e-15

P p pico 1e-12

N n nano 1e-9

U µ micro 1e-6

M m milli 1e-3

unity 1 one 1

K k kilo 1e+3

MEG M mega 1e+6

G G giga 1e+9
32 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

6.8 Based literal

Based literals shall be divided into subcategories binary based literal, octal based literal, decimal based literal,
and hexadecimal based literal, as shown in Syntax 9.

Based literals shall be used to specify vectorized values within a boolean value system.

6.9 Edge literal

Edge literals shall be divided into subcategories bit edge literal, based edge literal, and symbolic edge literal, as
shown in Syntax 10.

bit_literal ::=
alphanumeric_bit_literal

| symbolic_bit_literal
alphanumeric_bit_literal

numeric_bit_literal
| alphabetic_bit_literal

numeric_bit_literal ::=
0 | 1

alphabetic_bit_literal ::=
X | Z | L | H | U | W

| x | z | l | h | u | w
symbolic_bit_literal ::=

? | *

Syntax 8—Bit literal

based_literal ::=
binary_based_literal | octal_based_literal | decimal_based_literal | hexadecimal_based_literal

binary_based_literal ::=
binary_base bit_literal { [_] bit_literal }

binary_base ::=
'B | 'b

octal_based_literal ::=
octal_base octal_digit { [_] octal_digit }

octal_base ::=
'O | 'o

octal_digit ::=
bit_literal | 2 | 3 | 4 | 5 | 6 | 7

decimal_based_literal ::=
decimal_base digit { [_] digit }

decimal_base ::=
'D | 'd

hexadecimal_based_literal ::=
hexadecimal_base hexadecimal_digit { [_] hexadecimal_digit }

hexadecimal_base ::=
'H | 'h

hexadecimal_digit ::=
octal_digit | 8 | 9

| A | B | C | D | E | F
| a | b | c | d | e | f

Syntax 9—Based literal
IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 33

Edge literals shall be used to specify a change of value within a boolean system. In general, bit edge literals shall
specify a change of a scalar value, based edge literals shall specify a change of a vectorized value, and symbolic
edge literals shall specify a change of a scalar or of a vectorized value.

6.10 Quoted string

A quoted string shall be a sequence of zero or more characters enclosed between two double quote characters, as
shown in Syntax 11.

Within a quoted string, a sequence of characters starting with an escape character shall represent a symbol for
another character, as shown in Table 22.

edge_literal ::=
bit_edge_literal

| based_edge_literal
| symbolic_edge_literal

bit_edge_literal ::=
bit_literal bit_literal

based_edge_literal ::=
based_literal based_literal

symbolic_edge_literal ::=
?~ | ?! | ?-

Syntax 10—Edge literal

quoted_string ::=
" { character } "

Syntax 11—Quoted string

Table 22—Character symbols within a quoted string

Symbol Character ASCII Code (octal)

\g Alert or bell. 007

\h Backspace. 010

\t Horizontal tab. 011

\n New line. 012

\v Vertical tab. 013

\f Form feed. 014

\r Carriage return. 015

\" Double quote. 042

\\ Backslash. 134

\ digit digit digit ASCII character represented by three digit
octal ASCII code.

digit digit digit
34 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

The start of a quoted string shall be determined by a double quote character. The end of a quoted string shall be
determined by a double quote character preceded by an even number of escape characters or by any other charac-
ter than escape character.

6.11 Identifier

Identifiers shall be divided into the subcategories non-escaped identifier, escaped identifier, placeholder identi-
fier, and hierarchical identifier, as shown in Syntax 12.

Identifiers shall be used to specify a name of an ALF statement or a value of an ALF statement. Identifiers can
also appear in an arithmetic expression, in a boolean expression, or in a vector expression, referencing an already
defined statement by name.

A lowercase character used within a keyword or within an identifier shall be considered equivalent to the corre-
sponding uppercase character. This makes ALF case-insensitive. However, wherever an identifier is used to
specify the name of a statement, the usage of the exact letters shall be preserved by the parser to enable usage of
the same name by a case-sensitive application.

6.11.1 Non-escaped identifier

A non-escaped identifier shall be defined as shown in Syntax 13.

A non-escaped identifier shall be used, when there is no lexical conflict, i.e., no appearance of a character with
special meaning, and no semantic conflict, i.e., the identifier is not used elsewhere as a keyword.

6.11.2 Escaped identifier

An escaped identifier shall be defined as shown in Syntax 14.

An escaped identifier shall be used, when there is a lexical conflict, i.e., an appearance of a character with special
meaning, or a semantic conflict, i.e., the identifier is used elsewhere as a keyword.

identifier ::=
non_escaped_identifier

| escaped_identifier
| placeholder_identifier
| hierarchical_identifier

Syntax 12—Identifier

non_escaped_identifier ::=
letter { letter | digit | _ | $ | # }

Syntax 13—Non-escaped identifier

escaped_identifier ::=
\ escapable_character { escapable_character }

escapable_character ::=
letter | digit | special

Syntax 14—Escaped identifier
IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 35

6.11.3 Placeholder identifier

A placeholder identifier shall be defined as a non-escaped identifier enclosed by angular brackets without
whitespace, as shown in Syntax 15.

A placeholder identifier shall be used to represent a formal parameter in a template statement (see 8.8), which is
to be replaced by an actual parameter in a template instantiation statement (see 8.9).

6.11.4 Hierarchical identifier

A hierarchical identifier shall be defined as shown in Syntax 16.

A hierarchical identifier shall be used to specify a hierarchical name of a statement, i.e., the name of a child pre-
ceded by the name of its parent. A dot within a hierarchical identifier shall be used to separate a parent from a
child, unless the dot is directly preceded by an escape character.

Example

\id1.id2.\id3 is a hierarchical identifier, where id2 is a child of \id1, and \id3 is a child of id2.

id1\.id2.\id3 is a hierarchical identifier, where \id3 is a child of “id1.id2”.

id1\.id2\.id3 specifies the pseudo-hierarchical name “id1.id2.id3”.

6.12 Keyword

Keywords shall be lexically equivalent to non-escaped identifiers. Predefined keywords are listed in Table 3 —
Table 6 and Table 10 — Table 12. Additional keywords are predefined in 8.4.

The predefined keywords in this standard shall follow a more restrictive lexical rule than general non-escaped
identifiers, as shown in Syntax 17.

The reason for the more restrictive lexical rule is to encourage the use of words taken from a natural language as
keywords. Words in a natural language are constructed from lexical characters only, not from numbers. The
underscore can be used to indicate that there would be a whitespace or a dash in the word from the natural lan-
guage.

placeholder_identifier ::=
< non_escaped_identifier >

Syntax 15—Placeholder identifier

hierarchical_identifier ::=
identifier [\] . identifier

Syntax 16—Hierarchical identifier

keyword_identifier ::=
letter { [_] letter }

Syntax 17—Keyword
36 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

NOTE—This document presents keywords in all-uppercase letters for clarity.

6.13 Rules for whitespace usage

Whitespace shall be used to separate lexical tokens from each other, according to the following rules:

a) Whitespace before and after a delimiter shall be optional.
b) Whitespace before and after an operator shall be optional.
c) Whitespace before and after a quoted string shall be optional.
d) Whitespace before and after a comment shall be mandatory. This rule shall override a), b), and c).
e) Whitespace between subsequent quoted strings shall be mandatory. This rule shall override c).
f) Whitespace between subsequent lexical tokens amongst the categories number, bit literal, based literal,

and identifier shall be mandatory.
g) Whitespace before and after a placeholder identifier shall be mandatory. This rule shall override a), b),

and c).
h) Whitespace after an escaped identifier shall be mandatory. This rule shall override a), b), and c).
i) Either whitespace or delimiter before a signed number shall be mandatory. This rule shall override a), b),

and c).
j) Either whitespace or delimiter before a symbolic edge literal shall be mandatory. This rule shall override

a), b), and c).

Whitespace before the first lexical token or after the last lexical token in a file shall be optional. Hence in all rules
prescribing mandatory whitespace, “before” shall not apply for the first lexical token in a file, and “after” shall
not apply for the last lexical token in a file.

6.14 Rules against parser ambiguity

In a syntax rule where multiple legal interpretations of a lexical token are possible, the resulting ambiguity shall
be resolved according to the following rules:

a) In a context where both bit literal and identifier are legal, a non-escaped identifier shall take priority over
a symbolic bit literal.

b) In a context where both bit literal and number are legal, an unsigned integer shall take priority over a
numeric bit literal.

c) In a context where both edge literal and identifier are legal, a non-escaped identifier shall take priority
over a bit edge literal.

d) In a context where both edge literal and number are legal, an unsigned integer shall take priority over a
bit edge literal.

If the interpretation as bit literal is desired in case a) or b), a based literal can be substituted for a bit literal.

If the interpretation as edge literal is desired in case c) or d), a based edge literal can be substituted for a bit edge
literal.
IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 37

38 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

7. Auxiliary syntax rules

This section specifies auxiliary syntax rules which are used to build other syntax rules.

7.1 All-purpose value

An all-purpose value shall be defined as shown in Syntax 18.

7.2 Quantity value

A quantity value shall be defined as shown in Syntax 19.

Only the leading characters of the quantity symbol shall be used for identification of a quantity value, as speci-
fied in Table 21.

Optional subsequent letters can be used to make the quantity symbol more readable. For example, “pF” can be
used to denote “picofarad” etc.

7.3 String value

A string value shall be defined as shown in Syntax 20.

A string value shall represent textual data in general and the name of a referenced object in particular.

7.4 Arithmetic value

An arithmetic value shall be defined as shown in Syntax 21.

all_purpose_value ::=
number

| identifier
| quoted_string
| bit_literal
| based_literal
| edge_value
| pin_variable
| control_expression

Syntax 18—All purpose value

quantity_value ::=
unsigned_number | quantity_symbol

Syntax 19—Quantity value

string ::=
quoted_string | identifier

Syntax 20—String value
IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 39

An arithmetic value shall represent data for an arithmetic model or for an arithmetic assignment. Semantic
restrictions apply, depending on the particular type of arithmetic model.

7.5 Boolean value

A boolean value shall be defined as shown in Syntax 22.

A boolean value shall represent the contents of a pin variable (see 7.9).

7.6 Edge value

An edge value shall be defined as shown in Syntax 23.

An edge value shall represent a standalone edge literal that is not embedded in a vector expression.

7.7 Index value

An index value shall be defined as shown in Syntax 24.

An index value shall represent a particular position within a vector pin (see 9.7). The usage of identifier shall
only be allowed, if that identifier represents a constant (see 8.2) with a value of the category unsigned integer.

7.8 Index

An index shall be defined as shown in Syntax 25.

An index shall be used in conjunction with the name of a pin or a pingroup. A single index shall represent a par-
ticular scalar within a one-dimensional vector or a particular one-dimensional vector within a two-dimensional
matrix. A multi index shall represent a range of scalars or a range of vectors, wherein the most significant bit
(MSB) is specified by the left index value and the least significant bit (LSB) is specified by the right index value.

arithmetic_value ::=
number | identifier | bit_literal | based_literal

Syntax 21—Arithmetic value

boolean_value ::=
alphanumeric_bit_literal | based_literal | integer

Syntax 22—Boolean value

edge_value ::=
(edge_literal)

Syntax 23—Edge value

index_value ::=
unsigned_integer | identifier

Syntax 24—Index value
40 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

7.9 Pin variable and pin value

A pin variable and a pin value shall be defined as shown in Syntax 26.

A pin variable shall represent the name of a pin or the name of a pin group, in conjunction with an optional index.

A pin value shall represent the actual value or a pointer to the actual value associated with a pin variable. The
actual value is a boolean value (see Section 7.5). A pin variable represents a pointer to the actual value.

7.10 Pin assignment

A pin assignment shall be defined as shown in Syntax 27.

A pin assignment represents an association between a pin variable and a pin value.

The datatype of the left hand side (LHS) and the right hand side (RHS) of the assignment shall be compatible
with each other. The following rules shall apply:

a) The bitwidth of the RHS must be equal to the bitwidth of the LHS.
b) A scalar pin at the LHS can be assigned a bit literal or a based literal representing a single bit.
c) A pin group, a vector pin, or a one-dimensional slice of a matrix pin at the LHS can be assigned a based

literal or an unsigned integer, representing a binary number.

7.11 Annotation

An annotation shall be divided into the subcategories single value annotation and multi value annotation, as
shown in Syntax 28

An annotation shall represent an association between an identifier and a set of annotation values (values for
shortness). In case of a single value annotation, only one value shall be legal. In case of a multi value annotation,

index ::=
single_index | multi_index

single_index ::=
[index_value]

multi_index ::=
[index_value : index_value]

Syntax 25—Index

pin_variable ::=
pin_variable_identifier [index]

pin_value ::=
pin_variable | boolean_value

Syntax 26—Pin variable

pin_assignment ::=
pin_variable = pin_value ;

Syntax 27—Pin assignment
IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 41

one or more values shall be legal. The annotation shall serve as a semantic qualifier of its parent statement. The
value shall be subject to semantic restrictions, depending on the identifier.

The annotation identifier can be a keyword used for the declaration of an object (i.e., a generic object or a library-
specific object). An annotation using such an annotation identifier shall be called a reference annotation. The
annotation value of a reference annotation shall be the name of an object of matching type. A reference annota-
tion can be a single-value annotation or a multi-value annotation. The semantic meaning of a reference annota-
tion shall be defined in the context of its parent statement.

7.12 Annotation container

An annotation container shall be defined as shown in Syntax 29

An annotation container shall represent a collection of annotations. The annotation container shall serve as a
semantic qualifier of its parent statement. The annotation container identifier shall be a keyword. An annotation
within an annotation container shall be subject to semantic restrictions, depending on the annotation container
identifier.

7.13 ATTRIBUTE statement

An attribute statement shall be defined as shown in Syntax 30.

annotation ::=
single_value_annotation

| multi_value_annotation
single_value_annotation ::=

annotation_identifier = annotation_value ;
annotation_value ::=

number
| identifier
| quoted_string
| bit_literal
| based_literal
| edge_value
| pin_variable
| control_expression
| boolean_expression
| arithmetic_expression

multi_value_annotation ::=
annotation_identifier { annotation_value { annotation_value } }

Syntax 28—Annotation

annotation_container ::=
annotation_container_identifier { annotation { annotation } }

Syntax 29—Annotation container

attribute ::=
ATTRIBUTE { identifier { identifier } }

Syntax 30—ATTRIBUTE statement
42 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

The attribute statement shall be used to associate arbitrary identifiers with the parent of the attribute statement.
Semantics of such identifiers can be defined depending on the parent of the attribute statement. The attribute
statement has a similar syntax definition as a multi-value annotation (see 7.11). While a multi-value annotation
can have restricted semantics and a restricted set of applicable values, identifiers with and without predefined
semantics can co-exist within the same attribute statement.

Example

CELL myRAM8x128 {
ATTRIBUTE { rom asynchronous static }

}

7.14 PROPERTY statement

A property statement shall be defined as shown in Syntax 31.

The property statement shall be used to associate arbitrary annotations with the parent of the property statement.
The property statement has a similar syntax definition as an annotation container (see 7.12). While the keyword
of an annotation container usually restricts the semantics and the set of applicable annotations, the keyword
“property” does not. Annotations shall have no predefined semantics, when they appear within the property
statement, even if annotation identifiers with otherwise defined semantics are used.

Example

PROPERTY myProperties {
parameter1 = value1 ;
parameter2 = value2 ;
parameter3 { value3 value4 value5 }

}

7.15 INCLUDE statement

An include statement shall be defined as shown in Syntax 32.

The quoted string shall specify the name of a file. When the include statement is encountered during parsing of a
file, the application shall parse the specified file and then continue parsing the former file. The format of the file
containing the include statement and the format of the file specified by the include statement shall be the same.

Example

LIBRARY myLib {
INCLUDE “templates.alf”;

property ::=
PROPERTY [identifier] { annotation { annotation } }

Syntax 31—PROPERTY statement

include ::=
INCLUDE quoted_string ;

Syntax 32—INCLUDE statement
IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 43

INCLUDE “technology.alf”;
INCLUDE “primitives.alf”;
INCLUDE “wires.alf”;
INCLUDE “cells.alf”;

}

Note: The filename specified by the quoted string shall be interpreted according to the rules of the application and/or the oper-
ating system. The ALF parser itself shall make no semantic interpretation of the filename.

7.16 ASSOCIATE statement

An associate statement shall be defined as shown in .

7.17 REVISION statement

A revision statement shall be defined as shown in Syntax 34

A revision statement shall be used to identify the revision or version of the file to be parsed. One, and only one,
revision statement can appear at the beginning of an ALF file.

The set of legal string values within the revision statement shall be defined as shown in Table 23

The revision statement shall be optional, as the application program parsing the ALF file can provide other
means of specifying the revision or version of the file to be parsed. If a revision statement is encountered while a
revision has already been specified to the parser (e.g. if an included file is parsed), the parser shall be responsible

associate ::=
ASSOCIATE quoted_string ;

| ASSOCIATE quoted_string { FORMAT_single_value_annotation }

Syntax 33—ASSOCIATE statement

revision ::=
ALF_REVISION string_value

Syntax 34—Revision statement

Table 23—Legal string values within the REVISION statement

String value Revision or version

“1.1” Version 1.1 by Open Verilog International (OVI), released on April 6, 1999.

“2.0” Version 2.0 by Accellera, released on December 14, 2000.

“P1603.2002-06-21” IEEE draft version as described in this document.

TBD IEEE 1603 release version.
44 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

to decide whether the newly encountered revision is compatible with the originally specified revision and then
either proceed assuming the original revision or abandon.

This document suggests, but does not certify, that the IEEE version of the ALF standard proposed herein be
backward compatible with the Accellera version 2.0 and the OVI version 1.1.

7.18 Generic object

A generic object shall be defined as shown in Syntax 35.

The syntax items introduced in Syntax 35 are defined in Section 8.

7.19 Library-specific object

A library-specific object shall be defined as shown in Syntax 36.

The syntax items introduced in Syntax 36 are defined in Section 9.

7.20 All purpose item

An all purpose item shall be defined as shown in Syntax 37.

generic_object ::=
alias_declaration

| constant_declaration
| class_declaration
| keyword_declaration
| semantics_declaration
| group_declaration
| template_declaration

Syntax 35—Generic object

library_specific_object ::=
library

| sublibrary
| cell
| primitive
| wire
| pin
| pingroup
| vector
| node
| layer
| via
| rule
| antenna
| site
| array
| blockage
| port
| pattern
| region

Syntax 36—Library-specific object
IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 45

The syntax items introduced in Syntax 37 are defined in this Section 7 , in Section 8 and in Section 11.

all_purpose_item ::=
generic_object

| include_statement
| associate_statement
| annotation
| annotation_container
| arithmetic_model
| arithmetic_model_container
| all_purpose_item_template_instantiation

Syntax 37—All purpose item
46 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

8. Generic objects and related statements

Add lead-in text

8.1 ALIAS declaration

An alias shall be declared as shown in Syntax 38.

The alias declaration shall specify an identifier which can be used instead of an original identifier to specify a
name or a value of an ALF statement. The identifier shall be semantically interpreted in the same way as the orig-
inal identifier.

Example

ALIAS reset = clear;

8.2 CONSTANT declaration

A constant shall be declared as shown in Syntax 39.

The constant declaration shall specify an identifier which can be used instead of a constant value, i.e., a number
or a based literal. The identifier shall be semantically interpreted in the same way as the constant value.

Example

CONSTANT vdd = 3.3;
CONSTANT opcode = ‘h0f3a;

8.3 CLASS declaration

A class shall be declared as shown in Syntax 40.

alias_declaration ::=
ALIAS alias_identifier = original_identifier ;

Syntax 38—ALIAS declaration

constant_declaration ::=
CONSTANT constant_identifier = constant_value ;

constant_value ::=
number | based_literal

Syntax 39—CONSTANT declaration

class_declaration ::=
CLASS class_identifier ;

| CLASS class_identifier { { all_purpose_item } }

Syntax 40—CLASS declaration
IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 47

A class declaration shall be used to establish a semantic association between ALF statements, including, but not
restricted to, other class declarations. ALF statements shall be associated with each other, if they contain a refer-
ence to the same class. The semantics specified by an all purpose item within a class declaration shall be inher-
ited by the statement containing the reference.

Example

CLASS \1stclass { ATTRIBUTE { everything } }
CLASS \2ndclass { ATTRIBUTE { nothing } }
CELL cell1 { CLASS = \1stclass; }
CELL cell2 { CLASS = \2ndclass; }
CELL cell3 { CLASS { \1stclass \2ndclass } }
// cell1 inherits “everything”
// cell2 inherits “nothing”
// cell3 inherits “everything” and “nothing”

8.4 KEYWORD declaration

A keyword shall be declared as shown in Syntax 41.

A keyword declaration shall be used to define a new keyword in a category or in a subcategory of ALF state-
ments specified by a syntax item identifier. One or more annotations (see 8.5) can be used to qualify the contents
of the keyword declaration.

A legal syntax item identifier shall be defined as shown in Table 24.

keyword_declaration ::=
KEYWORD keyword_identifier = syntax_item_identifier ;

| KEYWORD keyword_identifier = syntax_item_identifier { { keyword_item } }
keyword_item ::=

VALUETYPE_single_value_annotation
| VALUES_multi_value_annotation
| DEFAULT_single_value_annotation
| CONTEXT_annotation

Syntax 41—KEYWORD declaration

Table 24—Syntax item identifier

Identifier Semantic meaning

annotation The keyword shall specify an annotation (see 7.11).

single_value_annotation The keyword shall specify a single value annotation (see 7.11).

multi_value_annotation The keyword shall specify a multi-value annotation (see 7.11).

annotation_container The keyword shall specify an annotation container (see 7.12).

arithmetic_model The keyword shall specify an arithmetic model (see 11.2).

arithmetic_submodel The keyword shall specify an arithmetic submodel (see 11.4.3).
48 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

8.5 Annotations for a KEYWORD

This subsection defines annotations which can be used as legal children of a keyword declaration statement.

8.5.1 VALUETYPE annotation

The valuetype annotation shall be a single value annotation. The set of legal values shall depend on the syntax
item identifier associated with the keyword declaration, as shown in Table 25.

The valuetype annotation shall specify the category of legal ALF values applicable for an ALF statement whose ALF type is
given by the declared keyword.

Example:

This example shows a correct and an incorrect usage of a declared keyword with specified valuetype.

arithmetic_model_container The keyword shall specify an arithmetic model container (see 11.4.7).

Table 25—VALUETYPE annotation

Syntax item identifier Set of legal values for
VALUETYPE

Default value
for

VALUETYPE
Comment

annotation
or single_value_annotation
or multi_value_annotation

number,
identifier,
quoted_string,
edge_value,
pin_variable,
control_expression,
boolean_expression,
arithmetic_expression.

identifier See Syntax 28, defi-
nition of annotation
value.

annotation_container N/A N/A An annotation con-
tainer (see
Syntax 29) has no
value.

arithmetic_model number, identifier,
bit_literal,
based_literal.

number See Syntax 21, defi-
nition of arithmetic
value.

arithmetic_submodel N/A N/A An arithmetic sub-
model (see 11.4.3)
shall always have
the same value-
type as its parent
arithmetic model.

arithmetic_model_container N/A N/A An arithmetic model
container (see
11.4.7) has no value.

Table 24—Syntax item identifier (Continued)

Identifier Semantic meaning
IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 49

KEYWORD Greeting = annotation { VALUETYPE = identifier ; }
CELL cell1 { Greeting = HiThere ; } // correct
CELL cell2 { Greeting = “Hi There” ; } // incorrect

The first usage is correct, since HiThere is an identifier. The second usage is incorrect, since “Hi There” is
a quoted string and not an identifier.

8.5.2 VALUES annotation

The values annotation shall be a multi value annotation applicable in the case where the valuetype annotation is
also applicable.

The values annotation shall specify a discrete set of legal values applicable for an ALF statement using the declared
keyword. Compatibility between the values annotation and the valuetype annotation shall be mandatory.

Example:

This example shows a correct and an incorrect usage of a declared keyword with specified valuetype and values.

KEYWORD Greeting = annotation {
VALUETYPE = identifier ;
VALUES { HiThere Hello HowDoYouDo }

}
CELL cell3 { Greeting = Hello ; } // correct
CELL cell4 { Greeting = GoodBye ; } // incorrect

The first usage is correct, since Hello is contained within the set of values. The second usage is incorrect, since
GoodBye is not contained within the set of values.

8.5.3 DEFAULT annotation

The default annotation shall be a single value annotation applicable in the case where the valuetype annotation is
also applicable. Compatibility between the default annotation, the valuetype annotation, and the values annota-
tion shall be mandatory.

The default annotation shall specify a presumed value in absence of an ALF statement specifying a value.

Example:

KEYWORD Greeting = annotation {
VALUETYPE = identifier ;
VALUES { HiThere Hello HowDoYouDo }
DEFAULT = Hello ;

}
CELL cell5 { /* no Greeting */ }

In this example, the absence of a Greeting statement is equivalent to the following:

CELL cell5 { Greeting = Hello ; }

8.5.4 CONTEXT annotation

The context annotation shall specify the ALF type of a legal parent of the statement using the declared keyword.
The ALF type of a legal parent can be a predefined keyword or a declared keyword.
50 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

Example:

KEYWORD LibraryQualifier = annotation { CONTEXT { LIBRARY SUBLIBRARY } }
KEYWORD CellQualifier = annotation { CONTEXT = CELL ; }
KEYWORD PinQualifier = annotation { CONTEXT = PIN ; }
LIBRARY library1 {

LibraryQualifier = foo ; // correct
CELL cell1 {
CellQualifier = bar ; // correct
PinQualifier = foobar ; // incorrect
}

}

The following change would legalize the example above:

KEYWORD PinQualifier = annotation { CONTEXT { PIN CELL } }

8.5.5 SI_MODEL annotation

** see IEEE proposal, June 2002, chapter 27**

8.6 SEMANTICS declaration

Semantics shall be declared as shown in Syntax 42—.

A semantics declaration shall be used to define context-specific rules in a category or in a subcategory of ALF
statements. The semantics item identifier shall make reference to a legal ALF statement or to a category or sub-
category of legal ALF statements.

The semantics identifier shall be a keyword identifier or a syntax item identifier or a hierarchical identifier. In the
latter case, the hierarchical identifier shall involve one or more keyword identifiers and/or syntax item identifi-
ers.

If the ALF type of the referenced ALF statement is annotation, the optional syntax item identifier
single_value_annotation or multi_value_annotation can be used.

A semantic item can be used to qualify the contents of the semantics declaration. Legal semantic items include
values annotation (see 8.5.2), default annotation (see 8.5.3) and context annotation (see 8.5.4).

A rule specified by a semantic item shall be compatible with the set of rules specified for the referenced ALF
statement. A rule specified within a semantics declaration can not invalidate a rule specified within the refer-
enced ALF statement.

semanics_declaration ::=
SEMANTICS semantics_identifier = syntax_item_identifier ;

| SEMANTICS semantics_identifier [= syntax_item_identifier] { { semantics_item } }
semantics_item ::=

VALUES_multi_value_annotation
| DEFAULT_single_value_annotation
| CONTEXT_annotation

Syntax 42—SEMANTICS declaration
IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 51

Example:

KEYWORD myAnnotation = annotation {
VALUETYPE = identifier ;
VALUES { value1 value2 value3 value4 value5 }
CONTEXT { CELL PIN }

}
SEMANTICS CELL.myAnnotation = multi_value_annotation {

VALUES { value1 value2 value3 }
}
SEMANTICS PIN.myAnnotation = single_value_annotation {

VALUES { value4 value5 }
DEFAULT = value4;

}
CELL myCell {

myAnnotation { value1 value2 }
PIN myPin {
myAnnotation = value5;
}

}

8.7 GROUP declaration

A group shall be declared as shown in Syntax 43.

A group declaration shall be used to specify the semantic equivalent of multiple similar ALF statements within a
single ALF statement. An ALF statement containing a group identifier shall be semantically replicated by substi-
tuting each group value for the group identifier, or, by substituting subsequent index values bound by the left
index value and by the right index value for the group identifier. The ALF parser shall verify whether each sub-
stitution results in a legal statement.

The ALF statement which has the same parent as the group declaration shall be semantically replicated, if the
group identifier is found within the statement itself or within a child of the statement or within a child of a child
of the statement etc. If the group identifier is found more than once within the statement or within its children,
the same group value or index value per replication shall be substituted for the group identifier, but no additional
replication shall occur.

The group identifier (i.e., the name associated with the group declaration) can be re-used as name of another
statement. As a consequence, the other statement shall be interpreted as multiple statements wherein the group
identifier within each replication shall be replaced by the all-purpose value. On the other hand, no name of any
visible statement shall be allowed to be re-used as group identifier.

Examples

The following example shows substitution involving group values.

group_declaration ::=
GROUP group_identifier { all_purpose_value { all_purpose_value } }

| GROUP group_identifier { left_index_value : right_index_value }

Syntax 43—GROUP declaration
52 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

// statement using GROUP:
CELL myCell {

GROUP data { data1 data2 data3 }
PIN data { DIRECTION = input ; }

}
// semantically equivalent statement:
CELL myCell {

PIN data1 { DIRECTION = input ; }
PIN data2 { DIRECTION = input ; }
PIN data3 { DIRECTION = input ; }

}

The following example shows substitution involving index values.

// statement using GROUP:
CELL myCell {

GROUP dataIndex { 1 : 3 }
PIN [1:3] data { DIRECTION = input ; }
PIN clock { DIRECTION = input ; }
SETUP = 0.5 { FROM { PIN = data[dataIndex]; } TO { PIN = clock ; } }

}
// semantically equivalent statement:
CELL myCell {

GROUP dataIndex { 1 : 3 }
PIN [1:3] data { DIRECTION = input ; }
PIN clock { DIRECTION = input ; }
SETUP = 0.5 { FROM { PIN = data[1]; } TO { PIN = clock ; } }
SETUP = 0.5 { FROM { PIN = data[2]; } TO { PIN = clock ; } }
SETUP = 0.5 { FROM { PIN = data[3]; } TO { PIN = clock ; } }

}

The following example shows multiple occurrences of the same group identifier within a statement.

// statement using GROUP:
CELL myCell {

GROUP dataIndex { 1 : 3 }
PIN [1:3] Din { DIRECTION = input ; }
PIN [1:3] Dout { DIRECTION = input ; }
DELAY = 1.0 { FROM {PIN=Din[dataIndex];} TO {PIN=Dout[dataIndex];} }

}
// semantically equivalent statement:
CELL myCell {

GROUP dataIndex { 1 : 3 }
PIN [1:3] Din { DIRECTION = input ; }
PIN [1:3] Dout { DIRECTION = input ; }
DELAY = 1.0 { FROM {PIN=Din[1];} TO {PIN=Dout[1];} }
DELAY = 1.0 { FROM {PIN=Din[2];} TO {PIN=Dout[2];} }
DELAY = 1.0 { FROM {PIN=Din[3];} TO {PIN=Dout[3];} }

}

8.8 TEMPLATE declaration

A template shall be declared as shown in Syntax 44.
IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 53

A template declaration shall be used to specify one or more ALF statements with variable contents that can be
used many times. A template instantiation (see 8.9) shall specify the usage of such an ALF statement. Within the
template declaration, the variable contents shall be specified by a placeholder identifier (see 6.11.3).

8.9 TEMPLATE instantiation

A template shall be instantiated in form of a static template instantiation or a dynamic template instantiation, as
shown in Syntax 45

A template instantiation shall be semantically equivalent to the ALF statement or the ALF statements found
within the template declaration, after replacing the placeholder identifiers with replacement values. A static tem-
plate instantiation shall support replacement by order, using one or more all-purpose values, or alternatively,
replacement by reference, using one or more annotations (see 7.11). A dynamic template instantiation shall sup-
port replacement by reference only, using one or more annotations and/or one or more arithmetic models (see 7.11
and 11.2).

In the case of replacement by reference, the reference shall be established by a non-escaped identifier matching
the placeholder identifier when the angular brackets are removed. The matching shall be case-insensitive.

The following rules shall apply:

a) A static template instantiation shall be used when the replacement value of any placeholder identifier can
be determined during compilation of the library. Only a matching identifier shall be considered a legal
annotation identifier. Each occurrence of the placeholder identifier shall be replaced by the annotation
value associated with the annotation identifier.

b) A dynamic template instantiation shall be used when the replacement value of at least one placeholder
identifier can only determined during runtime of the application. Only a matching identifier shall be con-
sidered a legal annotation identifier, or alternatively, a arithmetic model identifier, or alternatively, a legal
arithmetic value.

template_declaration ::=
TEMPLATE template_identifier { ALF_statement { ALF_statement } }

Syntax 44—TEMPLATE declaration

template_instantiation ::=
static_template_instantiation

| dynamic_template_instantiation
static_template_instantiation ::=

template_identifier [= STATIC] ;
| template_identifier [= STATIC] { { all_purpose_value } }
| template_identifier [= STATIC] { { annotation } }

dynamic_template_instantiation ::=
template_identifier = DYNAMIC { { dynamic_template_instantiation_item } }

dynamic_template_instantiation_item ::=
annotation

| arithmetic_model
| arithmetic_assignment

arithmetic_assignment ::=
identifier = arithmetic_expression ;

Syntax 45—TEMPLATE instantiation
54 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

c) Multiple replacement values within a multi-value annotation shall be legal if and only if the syntax rules
for the ALF statement within the template declaration allow substitution of multiple values for one place-
holder identifier.

d) In the case replacement by order, subsequently occurring placeholder identifiers in the template declara-
tion shall be replaced by subsequently occurring all-purpose values in the template instantiation. If a
placeholder identifier occurs more than once within the template declaration, all occurrences of that
placeholder identifier shall be immediately replaced by the same all-purpose value. The first amongst the
remaining placeholder identifiers shall then be considered the next placeholder to be replaced by the next
all-purpose value.

e) A static template instantiation for which a placeholder identifier is not replaced shall be legal if and only
if the semantic rules for the ALF statement support a placeholder identifier outside a template declara-
tion. However, the semantics of a placeholder identifier as an item to be substituted shall only apply
within the template declaration statement.

Examples

The following example illustrates rule a).

// statement using TEMPLATE declaration and instantiation:
TEMPLATE someAnnotations {

KEYWORD <oneAnnotation> = single_value_annotation ;
KEYWORD annotation2 = single_value_annotation ;
<oneAnnotation> = value1 ;
annotation2 = <anotherValue> ;

}
someAnnotations {

oneAnnotation = annotation1 ;
anotherValue = value2 ;

}
// semantically equivalent statement:
KEYWORD annotation1 = single_value_annotation ;
KEYWORD annotation2 = single_value_annotation ;
annotation1 = value1 ;
annotation2 = value2 ;

The following example illustrates rule b).

// statement using TEMPLATE declaration and instantiation:
TEMPLATE someNumbers {

KEYWORD N1 = single_value_annotation { VALUETYPE=number ; }
KEYWORD N2 = single_value_annotation { VALUETYPE=number ; }
N1 = <number1> ;
N2 = <number2> ;

}
someNumbers = DYNAMIC {

number2 = number1 + 1;
}
// semantically equivalent statement, assuming number1=3 at runtime:
N1 = 3 ;
N2 = 4 ;

The following example illustrates rule c).
IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 55

TEMPLATE moreAnnotations {
KEYWORD annotation3 = annotation ;
KEYWORD annotation4 = annotation ;
annotation3 { <someValue> }
annotation4 = <yetAnotherValue> ;

}
moreAnnotations {

someValue { value1 value2 }
yetAnotherValue = value3 ;

}
// semantically equivalent statement:
KEYWORD annotation3 = annotation ;
KEYWORD annotation4 = annotation ;
annotation3 { value1 value2 }
annotation4 = value3 ;

The following example illustrates rule e).

TEMPLATE evenMoreAnnotations {
KEYWORD <thisAnnotation> = single_value_annotation ;
KEYWORD <thatAnnotation> = single_value_annotation ;
<thatAnnotation> = <thisValue> ;
<thisAnnotation> = <thatValue> ;

}
// template instantiation by reference:
evenMoreAnnotations = STATIC {

thatAnnotation = day ;
thisAnnotation = month;
thatValue = April;
thisValue = Monday;

}
// semantically equivalent template instantiation by order:
evenMoreAnnotations = STATIC { day month Monday April }

// semantically equivalent statement:
KEYWORD day = single_value_annotation ;
KEYWORD month = single_value_annotation ;
month = April;
day = Monday;

The following example illustrates rule d).

// statement using TEMPLATE declaration and instantiation:
TEMPLATE encoreAnnotation {

KEYWORD context1 = annotation_container;
KEYWORD context2 = annotation_container;
KEYWORD annotation5 = single_value_annotation {
CONTEXT { context1 context2 }
VALUES { <something> <nothing> }
}
context1 { annotation5 = <nothing> ; }
context2 { annotation5 = <something> ; }

}
encoreAnnotation {
56 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

something = everything ;
}
// semantically equivalent statement:
KEYWORD context1 = annotation_container;
KEYWORD context2 = annotation_container;
KEYWORD annotation5 = single_value_annotation {

CONTEXT { context1 context2 }
VALUES { everything <nothing> }

}
context1 { annotation5 = <nothing> ; }
context2 { annotation5 = all ; }
// Both everything (without brackets) and <nothing> (with brackets)
// are legal values for annotation5.
IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 57

58 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

9. Library-specific objects and related statements

Add lead-in text

9.1 LIBRARY and SUBLIBRARY declaration

A library and a sublibrary shall be declared as shown in Syntax 46.

A library shall serve as a repository of technology data for creation of an electronic integrated circuit. A subli-
brary can optionally be used to create different scopes of visibility for particular statements describing technol-
ogy data.

If any two objects of the same ALF type and the same ALF name appear in two libraries, or in two sublibraries
with the same library as parents, their usage for creation of an electronic circuit shall be mutually exclusive. For
example, two cells with the same name shall not be instantiated in the same integrated circuit. It shall be the
responsibility of the application tool to detect and properly handle such cases, as the selection of a library or a
sublibrary is controlled by the user of the application tool.

9.2 Annotations for LIBRARY and SUBLIBRARY

Add lead-in text

9.2.1 INFORMATION annotation container

Single subheader

An information annotation container shall be defined as shown in Semantics 1.

library ::=
LIBRARY library_identifier ;

| LIBRARY library_identifier { { library_item } }
| library_template_instantiation

library_item ::=
sublibrary

| sublibrary_item
sublibrary ::=

SUBLIBRARY sublibrary_identifier ;
| SUBLIBRARY sublibrary_identifier { { sublibrary_item } }
| sublibrary_template_instantiation

sublibrary_item ::=
all_purpose_item

| cell
| primitive
| wire
| layer
| via
| rule
| antenna
| array
| site
| region

Syntax 46—LIBRARY and SUBLIBRARY declaration
IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 59

The information annotation container shall be used to associate its parent statement with a product specification.
The following semantic restrictions shall apply:

a) A library, a sublibrary, or a cell can be a legal parent of the information statement.
b) A wire, or a primitive can be a legal parent of the information statement, provided the parent of the wire

or the primitive is a library or a sublibrary.

The semantics of the information contents are specified in Table 26.

The product developer shall be responsible for any rules concerning the format and detailed contents of the string
value itself.

Example

KEYWORD INFORMATION = annotation_container {
CONTEXT { LIBRARY SUBLIBRARY CELL WIRE PRIMITIVE }

}
KEYWORD PRODUCT = single_value_annotation {

VALUETYPE = string_value; DEFAULT = ““;
CONTEXT = INFORMATION;

}
KEYWORD TITLE = single_value_annotation {

VALUETYPE = string_value; DEFAULT = ““;
CONTEXT = INFORMATION;

}
KEYWORD VERSION = single_value_annotation {

VALUETYPE = string_value; DEFAULT = ““;
CONTEXT = INFORMATION;

}
KEYWORD AUTHOR = single_value_annotation {

VALUETYPE = string_value; DEFAULT = ““;
CONTEXT = INFORMATION;

}
KEYWORD DATETIME = single_value_annotation {

VALUETYPE = string_value; DEFAULT = ““;
CONTEXT = INFORMATION;

}

Semantics 1—INFORMATION statement

Table 26—Annotations within an INFORMATION statement

Annotation identifier Semantics of annotation value

PRODUCT A code name of a product described herein.

TITLE A descriptive title of the product described herein.

VERSION A version number of the product description.

AUTHOR The name of a person or company generating this product description.

DATETIME Date and time of day when this product description was created.
60 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

LIBRARY myProduct {
INFORMATION {
PRODUCT = p10sc;
TITLE = “0.10 standard cell”;
VERSION = “v2.1.0”;
AUTHOR = “Major Asic Vendor, Inc.”;
DATETIME = “Mon Apr 8 18:33:12 PST 2002”;
}

}

9.3 CELL declaration

A cell shall be declared as shown in Syntax 47.

A cell shall represent an electronic circuit which can be used as a building block for a larger electronic circuit.

9.4 CELL instantiation

A cell shall be instantiated as shown in Syntax 48.

The purpose of a named cell instantiation is to describe a structural circuit or netlist in the context of a structure
statement, where multiple instances of the same cell can appear (see Section 10.5).

cell ::=
CELL cell_identifier ;

| CELL cell_identifier { { cell_item } }
| cell_template_instantiation

cell_item ::=
all_purpose_item

| pin
| pingroup
| primitive
| function
| non_scan_cell
| test
| vector
| wire
| blockage
| artwork
| pattern
| region

Syntax 47—CELL declaration

named_cell_instantiation ::=
cell_identifier instance_identifier ;

| cell_identifier instance_identifier { pin_value { pin_value } }
| cell_identifier instance_identifier { pin_assignment { pin_assignment } }

unnamed_cell_instantiation ::=
cell_identifier { pin_value { pin_value } }

| cell_identifier { pin_assignment { pin_assignment } }

Syntax 48—CELL instantiation
IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 61

The purpose of an unnamed cell instantiation is to establish a correspondence between a cell and another cell in
the context of a non-scan cell statement (see Section 10.7).

The mapping between the reference cell and the cell instance can be established by order, using pin value (see
Section 7.9), or by name, using pin assignment (see Section 7.10). The left-hand side of a pin assignment shall
represent the name of a pin within reference cell, and the right-hand side of the pin assignment shall represent the
name of the corrrepsonding pin within the cell instance.

9.5 Annotations for a CELL

This section defines annotations and attribute values in the context of a cell declaration.

9.5.1 CELLTYPE annotation

A celltype annotation shall be defined as shown in Semantics 2.

The celltype shall divide cells into categories, as specified in Table 27.

KEYWORD CELLTYPE = single_value_annotation {
CONTEXT = CELL;
VALUETYPE = identifier;
VALUES {

buffer combinational multiplexor flipflop latch
memory block core special

}
}

Semantics 2—CELLTYPE annotation

Table 27—CELLTYPE annotation values

Annotation value Description

buffer CELL is a buffer, i.e., an element for transmission of a digital signal without per-
forming a logic operation, except for possible logic inversion.

combinational CELL is a combinatorial logic element, i.e., an element performing a logic opera-
tion on two or more digital input signals.

multiplexor CELL is a multiplexor, i.e., an element for selective transmission of digital signals.

flipflop CELL is a flip-flop, i.e., a one-bit storage element with edge-sensitive clock

latch CELL is a latch, i.e., a one-bit storage element without edge-sensitive clock

memory CELL is a memory, i.e., a multi-bit storage element with selectable addresses.

block CELL is a hierarchical block, i.e., a complex element which has an associated
netlist for implementation purpose. All instances of the netlist are library ele-
ments, i.e., there is a CELL model for each of them in the library.

core CELL is a core, i.e., a complex element which has no associated netlist for imple-
mentation purpose. However, a netlist representation can exist for modeling pur-
pose.
62 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

9.5.2 SWAP_CLASS annotation

A swap_class annotation shall be defined as shown in Semantics 3.

The value is the name of a declared CLASS. Multi-value annotation can be used. Cells referring to the same
CLASS can be swapped for certain applications.

Cell-swapping is only allowed, if the RESTRICT_CLASS annotation (see 9.5.3) authorizes usage of the cell and
the cells to be swapped are compatible from an application standpoint.

9.5.3 RESTRICT_CLASS annotation

A restrict-class annotation shall be defined as shown in Semantics 4.

The value shall be the name of a declared CLASS.

The restrict-class annotation shall establish a necessary condition for the usage of a cell by an application per-
forming a design transformation involving instantiations of cells. An application other than a design transforma-
tion (e.g. analysis, file format translation) can disregard the restrict-class annotation or use it for informational
purpose only..

special CELL is a special element, which does not fall into any other category of cells.
Examples: bus holder, protection diode, filler cell.

KEYWORD SWAP_CLASS = annotation {
CONTEXT = CELL;
VALUETYPE = identifier;

}

Semantics 3—SWAP_CLASS annotation

KEYWORD RESTRICT_CLASS = annotation {
CONTEXT { CELL CLASS }
VALUETYPE = identifier;

}
CLASS synthesis { USAGE = RESTRICT_CLASS ; }
CLASS scan { USAGE = RESTRICT_CLASS ; }
CLASS datapath { USAGE = RESTRICT_CLASS ; }
CLASS clock { USAGE = RESTRICT_CLASS ; }
CLASS layout { USAGE = RESTRICT_CLASS ; }

Semantics 4—RESTRICT_CLASS annotation

Table 27—CELLTYPE annotation values (Continued)

Annotation value Description
IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 63

The meaning of the predefined restrict-class values in Semantics 4 is specified in Table 28.

Additional restrict-class values can be defined within the context of a LIBRARY or a SUBLIBRARY, using the
CLASS declaration and the SEMANTICS declaration in a similar way as shown in Semantics 4.

From the application standpoint, the following usage model for restrict-class shall apply:

a) A set of restrict-class values shall be associated with the application. These values are considered
“known” by the application. Usage of a cell shall only be authorized, if the set of restrict-class values
associated with the cell is a subset of the “known” restrict-class values.

b) Optionally, a boolean condition involving the set of “known” restrict-class values or a subset thereof can
be associated with the application. In addition to a), usage of a cell shall only be authorized, if the set of
restrict-class values associated with the cell satisfies the boolean condition.

Example:

Specification within the library:

CELL X { RESTRICT_CLASS { A B } }
CELL Y { RESTRICT_CLASS { C } }
CELL Z { RESTRICT_CLASS { A C F } }

Specification for the application:

Set of “known” restrict-class values = (A, B, C, D, E)
Boolean condition = (A and not B) or C

Result:

Usage of CELL X is not authorized, because boolean condition is not true.
Usage of CELL Y is authorized, because all values are “known”, and boolean condition is true.
Usage of CELL Z is not authorized, because value F is not “known”.

9.5.4 SCAN_TYPE annotation

A scan_type annotation shall be defined as shown in Semantics 5.

Table 28—Predefined values for RESTRICT_CLASS

Annotation value Description

synthesis Cell is suitable for creation or modification of a structual design
description (i.e., a netlist) while providing functional equivalence.

scan Cell is suitable for creation or modification of a scan chain within a netlist.

datapath Cell is suitable for structural implementation of a data flow graph.

clock Cell is suitable for distribution of a global synchronization signal.

layout Cell is suitable for usage within a physical artwork.
64 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

It can take the values shown in Table 29.

9.5.5 SCAN_USAGE annotation

A scan_usage annotation shall be defined as shown in Semantics 6.

It can take the values shown in Table 30.

The SCAN_USAGE annotation applies for a cell which is designed to be the primary input, output or intermediate
stage of a scan chain. It also applies for a block in case there is a particular scan-ordering requirement.

KEYWORD SCAN_TYPE = single_value_annotation {
CONTEXT = CELL;
VALUETYPE = identifier;
VALUES { muxscan clocked lssd control_0 control_1 }

}

Semantics 5—SCAN_TYPE annotation

Table 29—SCAN_TYPE annotations for a CELL object

Annotation value Description

muxscan Cell contains a multiplexor for selection between non-scan-mode and
scan-mode data.

clocked Cell supports a dedicated scan clock.

lssd Cell is suitable for level sensitive scan design.

control_0 Combinatorial cell, controlling pin shall be 0 in scan mode.

control_1 Combinatorial cell, controlling pin shall be 1 in scan mode.

KEYWORD SCAN_USAGE = single_value_annotation {
CONTEXT = CELL;
VALUETYPE = identifier;
VALUES { input output hold }

}

Semantics 6—SCAN_USAGE annotation

Table 30—SCAN_USAGE annotations for a CELL object

Annotation value Description

input Primary input cell in a scan chain.

output Primary output cell in a scan chain.

hold Intermediate cell in a scan chain.
IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 65

9.5.6 BUFFERTYPE annotation

A buffertype annotation shall be defined as shown in Semantics 7.

It can take the values shown in Table 31.

9.5.7 DRIVERTYPE annotation

A drivertype annotation shall be defined as shown in Semantics 8.

It can take the values shown in Table 32.

KEYWORD BUFFERTYPE = single_value_annotation {
CONTEXT = CELL;
VALUETYPE = identifier;
VALUES { input output inout internal }
DEFAULT = internal;

}

Semantics 7—BUFFERTYPE annotation

Table 31—BUFFERTYPE annotations for a CELL object

Annotation value Description

input CELL has an external (i.e., off-chip) input pin.

output CELL has an external output pin.

inout CELL has an external bidirectional pin or an external input pin and an
external output pin.

internal CELL has no external pin.

KEYWORD DRIVERTYPE = single_value_annotation {
CONTEXT = CELL;
VALUETYPE = identifier;
VALUES { predriver slotdriver both }

}

Semantics 8—DRIVERTYPE annotation

Table 32—DRIVERTYPE annotations for a CELL object

Annotation value Description

predriver CELL is a predriver, i.e., the core part of an I/O buffer.

slotdriver CELL is a slotdriver, i.e., the pad of an I/O buffer with off-chip connection.

both CELL is both a predriver and a slot driver, i.e., a complete I/O buffer.
66 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

DRIVERTYPE applies only for a cell with BUFFERTYPE value input or output or inout.

9.5.8 PARALLEL_DRIVE annotation

A parallel_drive annotation shall be defined as shown in Semantics 9.

The annotation value shall specify the number of cells connected in parallel. This number shall be greater than
zero (0) ; the default shall be 1.

9.5.9 PLACEMENT_TYPE annotation

A placement_type annotation shall be defined as shown in Semantics 10.

The purpose of the placement-type annotation is to establish categories of cells in terms of placement and power
routing requirements.

It can take the values shown in Table 33.

KEYWORD PARALLEL_DRIVE = single_value_annotation {
CONTEXT = CELL;
VALUETYPE = unsigned;
DEFAULT = 1;

}

Semantics 9—PARALLEL_DRIVE annotation

KEYWORD PLACEMENT_TYPE = single_value_annotation {
CONTEXT = CELL;
VALUETYPE = identifier;
VALUES { pad core ring block connector }
DEFAULT = core;

}

Semantics 10—PLACEMENT_TYPE annotation

Table 33—PLACEMENT_TYPE annotations for a CELL object

Annotation value Description

pad The cell is an element to be placed in the I/O area of a die.

core The cell is a regular element to be placed in the core area of a die, using a regular
power structure.

ring The cell is a macro element with built-in power structure.

block The cell is an abstraction of a collection of regular elements, each of which uses
a regular power structure.

connector The cell is to be placed at the border of the core area of a die in order to establish
a connection between a regular power structure and a power ring in the I/O area.
IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 67

9.5.10 SITE reference annotation

A site reference annotation shall be defined as shown in Semantics 11.

The purpose of a site reference annotation is to indicate one or more legal placement locations for a cell. The
annotation value shall be the name of a declared site (see Section 9.28).

9.6 ATTRIBUTE values for a CELL

An attribute in the context of a cell declaration shall specify more specific information within the category given
by the celltype annotation.

The attribute values shown in Table 34 can be used within a CELL with CELLTYPE=memory.

The attributes shown in Table 35 can be used within a CELL with CELLTYPE=block.

SEMANTICS SITE = annotation {
CONTEXT { CELL CLASS }

}

Semantics 11—SITE reference annotation

Table 34—Attribute values for a CELL with CELLTYPE=memory

Attribute item Description

RAM Random Access Memory

ROM Read Only Memory

CAM Content Addressable Memory

static Static memory, needs no refreshment

dynamic Dynamic memory, needs refreshment

asynchronous operation self-timed

synchronous operation synchronized with a clock signal

Table 35—Attributes within a CELL with CELLTYPE=block

Attribute item Description

counter CELL is a counter, i.e., a complex sequential circuit going through a
predefined sequence of states in its normal operation mode where
each state represents an encoded control value.

shift_register CELL is a shift register, i.e., a complex sequential circuit going
through a predefined sequence of states in its normal operation
mode, where each subsequent state can be obtained from the previ-
ous one by a shift operation. Each bit represents a data value.
68 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

The attributes shown in Table 36 can be used within a CELL with CELLTYPE=core.

The attributes shown in Table 37 can be used within a CELL with CELLTYPE=special.

adder CELL is an adder, i.e., a combinatorial circuit performing an addition
of two operands.

subtractor CELL is a subtractor, i.e., a combinatorial circuit performing a sub-
traction of two operands.

multiplier CELL is a multiplier, i.e., a combinatorial circuit performing a multi-
plication of two operands.

comparator CELL is a comparator, i.e., a combinatorial circuit comparing the
magnitude of two operands.

ALU CELL is an arithmetic logic unit, i.e., a combinatorial circuit combin-
ing the functionality of adder, subtractor, and comparator.

Table 36—Attributes within a CELL with CELLTYPE=core

Attribute item Description

PLL CELL is a phase-locked loop.

DSP CELL is a digital signal processor.

CPU CELL is a central processing unit.

GPU CELL is a graphical processing unit.

Table 37—Attributes within a CELL with CELLTYPE=special

Attribute item Description

busholder CELL enables a tristate bus to hold its last value before all drivers
went into high-impedance state (see 10.1).

clamp CELL connects a net to a constant value (logic value and drive
strength; see 10.1).

diode CELL is a diode (no FUNCTION statement).

capacitor CELL is a capacitor (no FUNCTION statement).

resistor CELL is a resistor (no FUNCTION statement).

inductor CELL is an inductor (no FUNCTION statement).

fillcell CELL is used to fill unused space in layout (no PIN, no FUNCTION
statement).

Table 35—Attributes within a CELL with CELLTYPE=block (Continued)

Attribute item Description
IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 69

9.7 PIN declaration

A pin shall be declared as a scalar pin or as a vector pin or a matrix pin, as shown in Syntax 49.

A pin shall represent a terminal of an electronic circuit. The purpose of a pin is exchange of information or
energy between the circuit and its environment. A constant value of information shall be called state. A time-
dependent value of information shall be called signal.

A reference to a pin in general shall be established by the pin identifier.

The order of pin declarations within a cell declaration shall reflect the order of appearance of pins, when the cell
is instantiated in a netlist and the pins are refered to by order. The view annotation (see Section 9.9.1) shall fur-
ther specify which pins are visible in a netlist.

A scalar pin can be associated with a general electrical signal. However, a vector pin or a matrix pin can only be
associated with digital signals. One element of a vector pin or of a matrix pin shall be associated with one bit of
information, i.e., a binary digital signal.

A vector-pin can be considered as a bus, i.e., a combination of scalar pins. The declaration of a vector-pin shall
involve a multi index (see Section 7.8). A reference to a scalar within the vector-pin shall be established by the
pin identifier followed by a single index (see Section 7.8). A reference to a subvector within the vector-pin shall
be established by the pin identifier followed by a multi index.

A matrix-pin can be considered as a combination of vector-pins. A reference to a vector or to a submatrix,
respectively, within the matrix-pin shall be established by the pin identifier followed by a single index or by a
multi index, respectively.

Within a matrix-pin declaration, the first multi index shall specify the range of scalars or bits, and the second
multi index shall specify the range of vectors. Support for direct reference of a scalar within a matrix is not pro-
vided.

pin ::=
scalar_pin | vector_pin | matrix_pin

scalar_pin ::=
PIN pin_identifier ;

| PIN pin_identifier { { scalar_pin_item } }
| scalar_pin_template_instantiation

scalar_pin_item ::=
all_purpose_item

| port
vector_pin ::=

PIN multi_index pin_identifier ;
| PIN multi_index pin_identifier { { vector_pin_item } }
| vector_pin_template_instantiation

vector_pin_item ::=
all_purpose_item

| range
matrix_pin ::=

PIN first_multi_index pin_identifier second_multi_index ;
| PIN first_multi_index pin_identifier second_multi_index { { matrix_pin_item } }
| matrix_pin_template_instantiation

matrix_pin_item ::=
vector_pin_item

Syntax 49—PIN declaration
70 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

Example

PIN [5:8] myVectorPin ;
PIN [3:0] myMatrixPin [1:1000] ;

The pin variable myVectorPin[5] refers to the scalar associated with the MSB of myVectorPin.
The pin variable myVectorPin[8] refers to the scalar associated with the LSB of myVectorPin.
The pin variable myVectorPin[6:7] refers to a subvector within myVectorPin.
The pin variable myMatrixPin[500] refers to a vector within myMatrixPin.
The pin variable myMatrixPin[500:502] refers to 3 subsequent vectors within myMatrixPin.

Consider the following pin assignment:
myVectorPin=myMatrixPin[500];

This establishes the following exchange of information:
myVectorPin[5] receives information from element [3] of myMatrixPin[500].
myVectorPin[6] receives information from element [2] of myMatrixPin[500].
myVectorPin[7] receives information from element [1] of myMatrixPin[500].
myVectorPin[8] receives information from element [0] of myMatrixPin[500].

9.8 PINGROUP declaration

A pingroup shall be declared as a simple pingroup or as a vector pingroup, as shown in Syntax 50.

A pingroup in general shall serve the purpose to specify items applicable to a combination of pins. The combina-
tion of pins shall be specified by the members statement.

A vector pingroup can only combine scalar pins. A vector pingroup can be used as a pin variable, in the same
capacity as a vector pin.

A simple pingroup can combine pins of any format, i.e., scalar pins, vector pins, and matrix pins. A simple pin-
group can not be used as a pin variable.

9.9 Annotations for a PIN and a PINGROUP

This section defines annotations and attribute values in the context of a pin declaration or a pingroup declaration.

pingroup ::=
simple_pingroup | vector_pingroup

simple_pingroup ::=
PINGROUP pingroup_identifier { members { all_purpose_item } }

| simple_pingroup_template_instantiation
members ::=

MEMBERS { pin_identifier pin_identifier { pin_identifier } }
vector_pingroup ::=

| PINGROUP [index_value : index_value] pingroup_identifier
{ members { vector_pingroup_item } }

| vector_pingroup_template_instantiation
vector_pingroup_item ::=

all_purpose_item
| range

Syntax 50—PINGROUP declaration
IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 71

9.9.1 VIEW annotation

A view annotation shall be defined as shown in Semantics 12.

The purpose of the view annotation is to specify the visibility of a pin in a netlist.

It can take the values shown in Table 38.

9.9.2 PINTYPE annotation

A pintype annotation shall be defined as shown in Semantics 13.

The purpose of the pintype annotation is to establish broad categories of pins.

KEYWORD VIEW = single_value_annotation {
CONTEXT { PIN PINGROUP }
VALUETYPE = identifier;
VALUES { functional physical both none }
DEFAULT = both

}

Semantics 12—VIEW annotation

Table 38—VIEW annotations for a PIN object

Annotation value Description

functional pin appears in functional netlist.

physical pin appears in physical netlist.

both (default) pin appears in both functional and physical netlist.

none pin does not appear in netlist.

KEYWORD PINTYPE = single_value_annotation {
CONTEXT = PIN;
VALUETYPE = identifier;
VALUES { digital analog supply }
DEFAULT = digital;

}

Semantics 13—PINTYPE annotation
72 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

It can take the values shown in Table 39.

9.9.3 DIRECTION annotation

A direction annotation shall be defined as shown in Semantics 14.

The purpose of the direction annotation is to establish the flow of information and/or electrical energy through a
pin. Information/energy can flow into a cell or out of a cell through a pin. The information/energy flow is not to
be mistaken as the flow of electrical current through a pin.

The direction annotation can take the values shown in Table 40.

The direction annotation shall be orthogonal to the pintype annotation, i.e., all combinations of annotation values
are possible.

Examples

Table 39—PINTYPE annotations for a PIN object

Annotation value Description

digital (default) Digital signal pin.

analog Analog signal pin.

supply Power supply or ground pin.

KEYWORD DIRECTION = single_value_annotation {
CONTEXT = PIN;
VALUETYPE = identifier;
VALUES { input output both none }

}

Semantics 14—DIRECTION annotation

Table 40—DIRECTION annotations for a PIN object

Annotation value Description

input Information/energy flows through the pin into the cell. The pin is a
receiver or a sink.

output Information/energy flows through the pin out of the cell. The pin is a
driver or a source.

both Information/energy flows through the pin in and out of the cell. The
pin is both a receiver/sink and driver/source, dependent on the mode
of operation.

none No information/energy flows through the pin in or out of the cell.
The pin can be an internal pin without connection to its environment
or a feedthrough where both ends are represented by the same pin.
IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 73

— The power and ground pins of a regular cell have DIRECTION=input.
— A level converter cell has a power supply pin with DIRECTION=input and another power supply pin

with DIRECTION=output.
— A level converter can have separate ground pins related to its power supply pins or a common ground pin

with DIRECTION=both.
— The power and ground pins of a feed through cell have the DIRECTION=none.

9.9.4 SIGNALTYPE annotation

A signaltype annotation shall be defined as shown in Semantics 15.

SIGNALTYPE classifies the functionality of a pin. The currently defined values apply for pins with PIN-
TYPE=DIGITAL.

Conceptually, a pin with PINTYPE = ANALOG can also have a SIGNALTYPE annotation. However, no values
are currently defined.

The fundamental SIGNALTYPE values are defined in Table 41

KEYWORD SIGNALTYPE = single_value_annotation {
CONTEXT = PIN;
VALUETYPE = identifier;
VALUES {

data scan_data address control select tie clear set
enable out_enable scan_enable scan_out_enable
clock master_clock slave_clock
scan_master_clock scan_slave_clock

}
DEFAULT = data;

}

Semantics 15—SIGNALTYPE annotation

Table 41—Fundamental SIGNALTYPE annotations for a PIN object

Annotation value Description

data (default) General data signal, i.e., a signal that carries information to be trans-
mitted, received, or subjected to logic operations within the CELL.

address Address signal of a memory, i.e., an encoded signal, usually a bus or
part of a bus, driving an address decoder within the CELL.

control General control signal, i.e., an encoded signal that controls at least
two modes of operation of the CELL, eventually in conjunction with
other signals. The signal value is allowed to change during real-time
circuit operation.

select Select signal, i.e., a signal that selects the data path of a multiplexor
or de-multiplexor within the CELL. Each selected signal has the
same SIGNALTYPE.

enable The signal enables storage of general input data in a latch or a flip-
flop or a memory
74 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

Figure 6 shows how to construct composite signaltypes.

Figure 6—Scheme for construction of composite signaltype values

The composite SIGNALTYPE values are defined in Table 42

tie The signal needs to be tied to a fixed value statically in order to
define a fixed or programmable mode of operation of the CELL,
eventually in conjunction with other signals. The signal value is not
allowed to change during real-time circuit operation.

clear Clear or reset signal of a flip-flop or latch, i.e., a signal that controls
the storage of the value 0 within the CELL.

set Preset or set signal of a flip-flop or latch, i.e., a signal that controls
the storage of the value 1 within the CELL.

clock Clock signal of a flip-flop or latch, i.e., a timing-critical signal that
triggers data storage within the CELL.

Table 42—Composite SIGNALTYPE annotations for a PIN object

Annotation value Description

scan_data Scan data signal, i.e., signal is relevant in scan mode only.

out_enable Enables visibility of general data at an output pin of a cell.

scan_enable Enables storage of scan input data in a latch or a flipflop.

scan_out_enable Enables visibility of scan data at an output pin of a cell.

master_clock Triggers storage of input data in the first stage of a flipflop in a two-
phase clocking scheme.

slave_clock Triggers data transfer from first the stage to the second stage of a
flipflop in a two-phase clocking scheme.

scan_clock Triggers storage of scan input data within a cell.

scan_master_clock Triggers storage of input scan data in the first stage of a flipflop in a
two-phase clocking scheme.

Table 41—Fundamental SIGNALTYPE annotations for a PIN object (Continued)

Annotation value Description

data

enable

clock

master_clock

slave_clock

out_enable

scan_data

scan_enable

scan_out_enable

scan_clock

scan_master_clock

scan_slave_clock
IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 75

Within the definitions of Table 41 and Table 42, the elements flipflop, latch, multiplexor, or memory can be stan-
dalone cells or embedded in larger cells. In the former case, the celltype is flipflop, latch, multi-
plexor, or memory, respectively. In the latter case, the celltype can be block or core.

9.9.5 ACTION annotation

An action annotation shall be defined as shown in Semantics 16.

The purpose of the action annotation is to define, whether a signal is self-timed or synchronized with a clock sig-
nal.

The ACTION annotation can take the values shown in Table 43.

The ACTION annotation applies only to pins with certain SIGNALTYPE values, as shown in Table 44. The rule
applies also to any composite SIGNALTYPE values based on the fundamental values.

scan_slave_clock Triggers scan data transfer from the first stage to the second stage of
a flipflop in a two-phase clocking scheme.

KEYWORD ACTION = single_value_annotation {
CONTEXT = PIN;
VALUETYPE = identifier;
VALUES { asynchronous synchronous }

}

Semantics 16—ACTION annotation

Table 43—ACTION annotations for a PIN object

Annotation value Description

asynchronous Signal acts in an asynchronous way, i.e., self-timed.

synchronous Signal acts in a synchronous way, i.e., triggered by a clock signal.

Table 44—ACTION applicable in conjunction with SIGNALTYPE values

SIGNALTYPE value ACTION applicable

data, scan_data No

address No

control Yes

select No

Table 42—Composite SIGNALTYPE annotations for a PIN object (Continued)

Annotation value Description
76 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

9.9.6 POLARITY annotation

A polarity annotation shall be defined as shown in Semantics 17.

The purpose of the polarity annotation is to define the active state or the active edge of an input signal.

The POLARITY annotation can take the values shown in Table 45.

The POLARITY annotation applies only to pins with certain SIGNALTYPE values, as shown in Table 46..

enable, scan_enable, out_enable, scan_out_enable Yes

tie No

clear Yes

set Yes

clock, scan_clock, master_clock, slave_clock,
scan_master_clock, scan_slave_clock

No

KEYWORD POLARITY = single_value_annotation {
CONTEXT = PIN;
VALUETYPE = identifier;
VALUES { high low rising_edge falling_edge double_edge }

}

Semantics 17—POLARITY annotation

Table 45—POLARITY annotations for a PIN

Annotation value Description

high Signal is active high or to be driven high.

low Signal is active low or to be driven low.

rising_edge Signal is activated by rising edge.

falling_edge Signal is activated by falling edge.

double_edge Signal is activated by both rising and falling edge.

Table 46—POLARITY applicable in conjunction with SIGNALTYPE values

SIGNALTYPE value Applicable POLARITY

data, scan_data N/A

Table 44—ACTION applicable in conjunction with SIGNALTYPE values (Continued)

SIGNALTYPE value ACTION applicable
IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 77

9.9.7 DATATYPE annotation

A datatype annotation shall be defined as shown in Semantics 18.

The purpose of the datatype annotation is to define the arithmetic representation of a digital signal.

The DATATYPE annotation can take the values shown in Table 47.

DATATYPE is only relevant for a vector pin.

9.9.8 INITIAL_VALUE annotation

An initial value annotation shall be defined as shown in Semantics 19.

address N/A

control N/A

select N/A

enable, scan_enable, out_enable,
scan_out_enable

high, low.

tie high, low.

clear high, low.

set high, low.

clock, scan_clock, master_clock, slave_clock,
scan_master_clock, scan_slave_clock

high, low, rising_edge,
falling_edge, double_edge,

KEYWORD DATATYPE = single_value_annotation {
CONTEXT { PIN PINGROUP }
VALUETYPE = identifier;
VALUES { signed unsigned }

}

Semantics 18—DATATYPE annotation

Table 47—DATATYPE annotations for a PIN object

Annotation value Description

signed Result of arithmetic operation is signed 2’s complement.

unsigned Result of arithmetic operation is unsigned.

Table 46—POLARITY applicable in conjunction with SIGNALTYPE values (Continued)

SIGNALTYPE value Applicable POLARITY
78 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

The purpose of the initial value annotation is to provide an initial value of a signal within a simulation model
derived from ALF. A signal shall have the initial value before a simulation event affects the signal. The default
value “U” means “uninitialized” (see Table 69).

9.9.9 SCAN_POSITION annotation

A scan position annotation shall be defined as shown in Semantics 20.

The purpose of the scan position annotation is to specify the position of the pin in scan chain, starting with 1 for
the primary input. The value 0 (which is the default) indicates that the pin is not on the scan chain.

9.9.10 STUCK annotation

A stuck annotation shall be defined as shown in Semantics 21.

The purpose of the stuck annotation is to specify a static fault model applicable for the pin.

The STUCK annotation can take the values shown in Table 48.

KEYWORD INITIAL_VALUE = single_value_annotation {
CONTEXT = CELL;
VALUETYPE = boolean_value;
DEFAULT = U;

}

Semantics 19—INITIAL_VALUE annotation

KEYWORD SCAN_POSITION = single_value_annotation {
CONTEXT = PIN;
VALUETYPE = unsigned;
DEFAULT = 0;

}

Semantics 20—SCAN_POSITION annotation

KEYWORD STUCK = single_value_annotation {
CONTEXT = PIN;
VALUETYPE = identifier;
VALUES { stuck_at_0 stuck_at_1 both none }
DEFAULT = both;

}

Semantics 21—STUCK annotation

Table 48—STUCK annotations for a PIN object

Annotation value Description

stuck_at_0 Pin can exhibit a faulty static low state.

stuck_at_1 Pin can exhibit a faulty static high state.
IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 79

9.9.11 SUPPLYTYPE annotation

A supplytype annotation shall be defined as shown in Semantics 22.

The supplytype annotation can take the values shown in Table 49.

The purpose of the supplytype annotation is to define a subcategory of pins with pintype value supply (see Table
39).

9.9.12 SIGNAL_CLASS annotation

A signal-class annotation shall be defined as shown in Semantics 23.

The value shall be the name of a declared CLASS.

both (default) Pin can exhibit a faulty static high or low state.

none Pin can not exhibit a faulty static state.

KEYWORD SUPPLYTYPE = annotation {
CONTEXT { PIN CLASS }
VALUETYPE = identifier;
VALUES { power ground reference }

}

Semantics 22—SUPPLYTYPE annotation

Table 49—SUPPLYTYPE annotations for a PIN object

Annotation value Description

power Pin is electrically connected to a power supply, i.e., a constant non-zero
voltage source providing energy for operation of a circuit.

ground Pin is electrically connected to ground, i.e., a zero voltage source providing
the return path for electrical current through a power supply.

reference Pin exhibits a constant voltage level without providing significant energy
for operation of a circuit.

KEYWORD SIGNAL_CLASS = annotation {
CONTEXT { PIN PINGROUP }
VALUETYPE = identifier;

}

Semantics 23—SIGNAL_CLASS annotation

Table 48—STUCK annotations for a PIN object (Continued)

Annotation value Description
80 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

The purpose of the signal-class annotation is to specify which terminals of a cell with are functionally related to
each other. The signal-class annotation applies for a pin with any signaltype value (see Section 9.9.4).

Example:

A multiport memory can have a data bus related to an address bus and another data bus related to another address
bus. Note that the term “port” in “multiport” does not relate to the ALF port declaration (see Section 9.26).

CELL my2PortMemory {
CLASS ReadPort { USAGE = SIGNAL_CLASS; }
CLASS WritePort { USAGE = SIGNAL_CLASS; }
PIN [3:0] addr_A { SIGNALTYPE = address; SIGNAL_CLASS = ReadPort; }
PIN [7:0] data_A { SIGNALTYPE = data; SIGNAL_CLASS = ReadPort; }
PIN [3:0] addr_B { SIGNALTYPE = address; SIGNAL_CLASS = WritePort; }
PIN [7:0] data_B { SIGNALTYPE = data; SIGNAL_CLASS = WritePort; }
PIN write_enable { SIGNALTYPE = enable; SIGNAL_CLASS = WritePort; }

}

9.9.13 SUPPLY_CLASS annotation

A supply-class annotation shall be defined as shown in Semantics 24.

The value shall be the name of a declared CLASS.

The purpose of the supply-class annotation is to specify which terminals of a cell with are electrically related to
each other. The supply-class annotation applies for a pin with any signaltype (see Section 9.9.4) or supplytype
value (see Section 9.9.11). The supply-class annotation also applies for a class with usage value connect-class
(see Section 9.9.16). In this case, the refered class represents a set of global nets which are electrically related to
each other.

Example 1:

A cell can provide two local power supplies. Each pin is related to at least one power supply.

CELL myLevelShifter {
CLASS supply1 { USAGE = SUPPLY_CLASS; }
CLASS supply2 { USAGE = SUPPLY_CLASS; }
PIN Vdd1 { SUPPLYTYPE = power; SUPPLY_CLASS = supply1; }
PIN Din { SIGNALTYPE = data; SUPPLY_CLASS = supply1; }
PIN Vdd2 { SUPPLYTYPE = power; SUPPLY_CLASS = supply2; }
PIN Dout { SIGNALTYPE = data; SUPPLY_CLASS = supply2; }
PIN Gnd { SUPPLYTYPE = ground; SUPPLY_CLASS { supply1 supply2 } }

}

Example 2:

KEYWORD SUPPLY_CLASS = annotation {
CONTEXT { PIN CLASS }
VALUETYPE = identifier;

}

Semantics 24—SUPPLY_CLASS annotation
IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 81

A library can provide two environmental power supplies. A supply pin of a cell has to be connected to a global
net related to an environmental power supply.

CLASS core { USAGE = SUPPLY_CLASS; }
CLASS io { USAGE = SUPPLY_CLASS; }
CLASS Vdd1 { USAGE=CONNECT_CLASS; SUPPLYTYPE=power; SUPPLY_CLASS=core; }
CLASS Vss1 { USAGE=CONNECT_CLASS; SUPPLYTYPE=ground; SUPPLY_CLASS=core; }
CLASS Vdd2 { USAGE=CONNECT_CLASS; SUPPLYTYPE=power; SUPPLY_CLASS=io; }
CLASS Vss2 { USAGE=CONNECT_CLASS; SUPPLYTYPE=ground; SUPPLY_CLASS=io; }
CELL myInternalCell {

PIN vdd { CONNECT_CLASS=Vdd1; }
PIN vss { CONNECT_CLASS=Vss1; }

}
CELL myPadCell {

PIN vdd { CONNECT_CLASS=Vdd2; }
PIN vss { CONNECT_CLASS=Vss2; }

}

9.9.14 DRIVETYPE annotation

A drivetype annotation shall be defined as shown in Semantics 25.

The purpose of the drivetype annotation is to specify a category of electrical characteristics for a pin, which
relate to the system of logic values and drive strengths specified in Table 69.

The drivetype annotation can take the values shown in Table 50.

KEYWORD DRIVETYPE = single_value_annotation {
CONTEXT { PIN CLASS }
VALUETYPE = identifier;
VALUES {

cmos nmos pmos cmos_pass nmos_pass pmos_pass
ttl open_drain open_source

}
DEFAULT = cmos;

}

Semantics 25—DRIVETYPE annotation

Table 50—DRIVETYPE annotations for a PIN object

Annotation value Description

cmos (default) Standard cmos signal. The logic high level is equal to the power sup-
ply, the logic low level is equal to ground. The drive strength is
strong. No static current flows. Signal is amplified by cmos stage.

nmos Nmos or pseudo nmos signal. The logic high level is equal to the
power supply and its drive strength is resistive. The logic low level
voltage depends on the ratio of pull-up and pull-down transistor.
Static current flows in logic low state.
82 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

9.9.15 SCOPE annotation

A scope annotation shall be defined as shown in Semantics 26.

The purpose of the scope annotation is to specify a category of modeling usage for a pin. The scope annotation
specifies whether a pin can be involved in a control expression within a vector declaration (see Section 9.16) or
within a behavior statement (see Section 10.4).

The scope annotation can take the values shown in Table 51.

pmos Pmos or pseudo pmos signal. The logic low level is equal to ground
and its drive strength is resistive. The logic high level voltage
depends on the ratio of pull-up and pull-down transistor. Static cur-
rent flows in logic high state.

nmos_pass Nmos passgate signal. Signal is not amplified by passgate stage.
Logic low voltage level is preserved, logic high voltage level is lim-
ited by power supply minus nmos threshold voltage.

pmos_pass Pmos passgate signal. Signal is not amplified by passgate stage.
Logic high voltage level is preserved, logic high voltage level is lim-
ited by pmos threshold voltage.

cmos_pass Cmos passgate signal, i.e., a full transmission gate. Signal is not
amplified by passgate stage. Voltage levels are preserved.

ttl TTL signal. Both logic high and logic low voltage levels are load-
dependent, as static current can flow.

open_drain Open drain signal. Logic low level is equal to ground. Logic high
level corresponds to high impedance state.

open_source Open source signal. Logic high level is equal to the power supply.
Logic low level corresponds to high impedance state.

KEYWORD SCOPE = single_value_annotation {
CONTEXT = PIN;
VALUETYPE = identifier;
VALUES { behavior measure both none }
DEFAULT = both;

}

Semantics 26—SCOPE annotation

Table 51—SCOPE annotations for a PIN object

Annotation value Description

behavior The pin is used for modeling functional behavior. Pin can be
involved in a control expression within a BEHAVIOR statement.

Table 50—DRIVETYPE annotations for a PIN object (Continued)

Annotation value Description
IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 83

9.9.16 CONNECT_CLASS annotation

A connect_class annotation shall be defined as shown in Semantics 27.

The value shall be the name of a declared CLASS.

The purpose of the connect-class annotation is to specify a relationship between a pin and an environmental rule
for connectivity. For application in conjunction with supply-class see Section 9.9.13. For application in conjunc-
tion with connect-rule see Section 11.42.1.

9.9.17 SIDE annotation

A side annotation shall be defined as shown in Semantics 28.

The purpose of the side annotation is to define an abstract location of a pin relative to the bounding box of a cell.

The side annotation can take the values shown in Table 52.

measure Measurements related to the pin can be described. Pin can be
involved in a control expression within a VECTOR declaration.

both (default) Pin can be involved in a control expression within a BEHAVIOR
statement or within a VECTOR declaration.

none Pin can not be involved in a control expression.

KEYWORD CONNECT_CLASS = single_value_annotation {
CONTEXT = PIN;
VALUETYPE = identifier;

}

Semantics 27—CONNECT_CLASS annotation

KEYWORD SIDE = single_value_annotation {
CONTEXT { PIN PINGROUP }
VALUETYPE = identifier;
VALUES { left right top bottom inside }

}

Semantics 28—SIDE annotation

Table 52—SIDE annotations for a PIN object

Annotation value Description

left pin is on the left side of the bounding box.

right pin is on the right side of the bounding box.

Table 51—SCOPE annotations for a PIN object (Continued)

Annotation value Description
84 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

9.9.18 ROW and COLUMN annotation

A row annotation and a column annotation shall be defined as shown in Semantics 29.

The purpose of a row and a column annotation is to indicate a location of a pin when a cell is placed within a
placement grid. The count of rows and columns shall start at the lower left corner of the bounding box of the cell,
as shown in figure 7.

Figure 7—ROW and COLUMN relative to a bounding box of a CELL

The row annotion is applicable for a pin with side value left or right. The column annotion is applicable for a pin
with side value top or bottom. Both row and column annotation are applicable for a pin with side value inside.

A single-value annotation is applicable for a scalar pin. A multi-value annotation is applicable for a vector pin or
for a vector pingroup. The number of values shall match the number of scalar pins within the vector pin or pin-
group. The order of values shall correspond to the order of scalar pins within the vector pin or pingroup.

top pin is at the top of the bounding box.

bottom pin is at the bottom of the bounding box.

inside pin is inside the bounding box.

KEYWORD ROW = annotation {
CONTEXT { PIN PINGROUP }
VALUETYPE = unsigned;

}
KEYWORD COLUMN = annotation {

CONTEXT { PIN PINGROUP }
VALUETYPE = unsigned;

}

Semantics 29—ROW and COLUMN annotations

Table 52—SIDE annotations for a PIN object (Continued)

Annotation value Description

0

1

2

3

4

0 1 2 3

bounding box of cell

column

row this quadrant has column=1, row=2
IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 85

9.9.19 ROUTING_TYPE annotation

A routing-type annotation shall be defined as shown in Semantics 30.

The purpose of the routing-type annotation is to specify the physical connection between a pin and a routed wire.

The routing-type annotation can take the values shown in Table 53.

9.9.20 PULL annotation

A pull annotation shall be defined as shown in Semantics 31.

The purpose of the pull annotation is to specify whether a pullup or a pulldown device is connected to the pin.

KEYWORD ROUTING_TYPE = single_value_annotation {
CONTEXT { PIN PORT }
VALUETYPE = identifier;
VALUES { regular abutment ring feedthrough }
DEFAULT = regular;

}

Semantics 30—ROUTING_TYPE annotation

Table 53—ROUTING-TYPE annotations for a PIN object

Annotation value Description

regular Pin has a via, connection by regular routing to the via

abutment Pin is the end of a wire segment, connection by abutment

ring Pin forms a ring around the cell, connection by abutment to any point
of the ring.

feedthrough Pin has two aligned ends of a wire segment, connection by abutment
on both ends

KEYWORD PULL = single_value_annotation {
CONTEXT = PIN;
VALUETYPE = identifier;
VALUES { up down both none }
DEFAULT = none;

}

Semantics 31—PULL annotation
86 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

The pull annotation can take the values shown in Table 54.

A pullup device ties the pin to a logic high level when no other signal is driving the pin. A pulldown device ties
the pin to a logic low level when no other signal is driving the pin. If both devices are connected, the pin is tied to
an intermediate voltage level, i.e. in-between logic high and logic low, when no other signal is driving the pin.

9.10 ATTRIBUTE values for a PIN and a PINGROUP

The attribute values shown in Table 55 can be used within a PIN object.

The attributes shown in Table 56 are applicable for a pin of a cell with celltype value memory in conjunction with
a specific signaltype value.

Table 54—PULL annotations for a PIN object

Annotation value Description

up Pullup device connected to the pin.

down Pulldown device connected to the pin.

both Both pullup and pulldown device connected to pin.

none (default) No pullup or pulldown device connected to the pin.

Table 55—Attributes within a PIN object

Attribute item Description

SCHMITT Schmitt trigger signal, i.e., the DC transfer characteristics exhibit a
hysteresis. Applicable for output pin.

TRISTATE Tristate signal, i.e., the signal can be in high impedance mode. Appli-
cable for output pin.

XTAL Crystal/oscillator signal. Applicable for output pin of an oscillator
circuit.

PAD Pin has external,i.e., off-chip connection.

Table 56—Attributes for pins of a memory

Attribute item SIGNALTYPE Description

ROW_ADDRESS_STROBE clock Samples the row address of the memory.
Applicable for scalar pin.

COLUMN_ADDRESS_STROBE clock Samples the column address of the memory.
Applicable for scalar pin.

ROW address Selects an addressable row of the memory.
Applicable for pin and pingroup.
IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 87

The attributes shown in Table 57 are applicable for a pair of signals.

In case there is more than one pair of signals related to each other by the attribute values inverted, non-inverted,
or differential, each pair shall be member of a dedicated pingroup.

The following restrictions apply for pairs of signals:

— The PINTYPE, SIGNALTYPE, and DIRECTION of both pins shall be the same.
— One PIN shall have the attribute INVERTED, the other NON_INVERTED.
— Either both pins or none of the pins shall have the attribute DIFFERENTIAL.
— POLARITY, if applicable, shall be complementary as follows:

HIGH is paired with LOW
RISING_EDGE is paired with FALLING_EDGE
DOUBLE_EDGE is paired with DOUBLE_EDGE

The attribute inverted, non-inverted also applies to pins of a cell for which the implementation of a pair of signals
is optional, i.e., one of the signals can be missing. The output pin of a flipflop or a latch is an example. The flip-
flop or the latch can have an output pin with attribute non-inverted and/or another output pin with attribute
inverted.

The pin ATTRIBUTE values shown in Table 58 shall be defined for memory BIST.

COLUMN address Selects an addressable column of the memory.
Applicable for pin and pingroup.

BANK address Selects an addressable bank of the memory.
Applicable for pin and pingroup.

Table 57—Attributes for pins representing pairs of signals

Attribute item Description

INVERTED Represents the inverted value within a pair of signals car-
rying complementary values.

NON_INVERTED Represents the non-inverted value within a pair of signals
carrying complementary values.

DIFFERENTIAL Signal is part of a differential pair, i.e., both the inverted
and non-inverted values are always required for physical
implementation.

Table 58—PIN or PINGROUP attributes for memory BIST

Attribute item Description

ROW_INDEX vector pin or pingroup with a contiguous range of values,
indicating a physical row of a memory.

Table 56—Attributes for pins of a memory (Continued)

Attribute item SIGNALTYPE Description
88 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

These attributes apply to the virtual pins associated with a BIST wrapper around the memory rather than to the
physical pins of the memory itself. The BIST wrapper can be represented as a test statement (see Section 10.2).

9.11 PRIMITIVE declaration

A primitive shall be declared as shown in Syntax 51.

The purpose of a primitive is to describe a virtual circuit. The virtual circuit can be functionally equivalent to a
physical electronic circuit represented as a cell (see Section 9.3). A primitive can be instantiated within a behav-
ior statement (see Section 10.4).

9.12 WIRE declaration

A wire shall be declared as shown in Syntax 52.

COLUMN_INDEX vector pin or pingroup with a contiguous range of values,
indicating a physical column of a memory.

BANK_INDEX vector pin or pingroup with a contiguous range of values,
indicating a physical bank of a memory.

DATA_INDEX vector pin or pingroup with a contiguous range of values,
indicating the bit position within a data bus of a memory.

DATA_VALUE scalar pin, representing a value stored in a physical mem-
ory location.

primitive ::=
PRIMITIVE primitive_identifier { { primitive_item } }

| PRIMITIVE primitive_identifier ;
| primitive_template_instantiation

primitive_item ::=
all_purpose_item

| pin
| pingroup
| function
| test

Syntax 51—PRIMITIVE statement

wire ::=
WIRE wire_identifier { wire_item { wire_item } }

| WIRE wire_identifier ;
| wire_template_instantiation

wire_item ::=
all_purpose_item

| node

Syntax 52—WIRE declaration

Table 58—PIN or PINGROUP attributes for memory BIST (Continued)

Attribute item Description
IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 89

The purpose of a wire declaration is to describe an interconnect model. The interconnect model can be a statisti-
cal wireload model, a description of boundary parasitics within a complex cell, a model for interconnect analysis,
or a specification of a load seen by a driver.

9.13 WIRE instantiation

A wire shall be instantiated as shown in .

9.14 Annotations for a WIRE

Add lead-in text

9.14.1 SELECT_CLASS annotation

A select_class annotation shall be defined as shown in Semantics 32.

The identifier shall refer to the name of a declared class.

The purpose of the select class annotation is to provide a mechanism for selection of an interconnect model by an
application. The user of the application can select a set of related interconnect models by specifying the name of
the class rather than specifying the name of each interconnect model.

9.15 NODE declaration

A node shall be declared as shown in Syntax 54.

wire_instantiation ::=
wire_identifier instance_identifier ;

| wire_identifier instance_identifier { pin_value { pin_value } }
| wire_identifier instance_identifier { pin_assignment { pin_assignment } }

Syntax 53—WIRE instantiation

KEYWORD SELECT_CLASS = annotation {
CONTEXT = WIRE;
VALUETYPE = identifier;

}

Semantics 32—SELECT_CLASS annotation

node ::=
NODE node_identifier ;

| NODE node_identifier { { node_item } }
| node_template_instantiation

node_item ::=
all_purpose_item

Syntax 54—NODE statement
90 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

The purpose of a node declaration is to specify an electrical node in the context of a wire declaration (see
Section 9.12) or in the context of a cell declaration (see Section 9.3).

9.15.1 NODETYPE annotation

A nodetype annotation shall be defined as shown in Semantics 33.

The values shall have the semantic meaning shown in Table 59.

9.15.2 NODE_CLASS annotation

A node_class annotation shall be defined as shown in Semantics 34.

KEYWORD NODETYPE = single_value_annotation {
CONTEXT = NODE;
VALUETYPE = identifier;
VALUES { power ground source sink

driver receiver interconnect }
}

Semantics 33—NODETYPE annotation

Table 59—NODETYPE annotation values

Annotation value Description

driver The node is the interface between an output pin of a cell and an
interconnect wire.

receiver The node is the interface between an interconnect wire and an
input pin of a cell.

source The node is a virtual start point of signal propagation; it can be
collapsed with a driver node in case of an ideal driver.

sink The node is a virtual end point of signal propagation; it can be
collapsed with a receiver node in case of an ideal receiver.

power The node supports electrical current for a rising signal at a
source or a driver node and a reference for a logic high signal
at a sink or receiver side.

ground The node supports electrical current for a falling signas at a
source or a driver node and a reference for logic a low signal
at a sink or a receiver node

interconnect (default) The node serves for connecting purpose only.

KEYWORD NODE_CLASS = annotation {
CONTEXT = NODE;
VALUETYPE = identifier;

}

Semantics 34—NODE_CLASS annotation
IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 91

The identifier shall refer to the name of a declared class.

The purpose of the node class annotation is to associate a node with a virtual cell. The virtual cell is represented
by the declared class.

9.16 VECTOR declaration

A vector shall be declared as shown in Syntax 55.

The purpose of a vector is to provide a context for electrical characterization data or for functional test data. The
control expression (see Section 10.16) specifies a stimulus related to the data.

9.17 Annotations for VECTOR

Add lead-in text

9.17.1 PURPOSE annotation

A purpose annotation shall be defined as shown in Semantics 35.

The purpose of the purpose annotation is to specify a category for the data found in the context of the vector. The
purpose annotation can also be inherited from a class referenced within the context of the vector.

The values shall have the semantic meaning shown in Table 61.

vector ::=
VECTOR control_expression ;

| VECTOR control_expression { { vector_item } }
| vector_template_instantiation

vector_item ::=
all_purpose_item

Syntax 55—VECTOR statement

KEYWORD PURPOSE = annotation {
CONTEXT { VECTOR CLASS }
VALUETYPE = identifier ;
VALUES { bist test timing power noise reliability }

}

Semantics 35—PURPOSE annotation

Table 60—PURPOSE annotation values

Annotation value Description

bist The vector contains data related to built-in self test

test The vector contains data related to test requiring external circuitry.

timing The vector contains an arithmetic model related to timing calculation (see
from Section 11.6 to Section 11.17)
92 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

9.17.2 OPERATION annotation

An operation annotation shall be defined as shown in Semantics 36.

The purpose of the operation annotation is to associate a mode of operation of the electronic circuit with the stim-
ulus specified within the vector declaration. This assocation can be used by an application for test vector genera-
tion or test vector verification.

The values shall have the semantic meaning shown in Table 61.

power The vector contains an arithmetic model related to power calculation (see
Section 11.24)

noise The vector contains an arithmetic model related to noise calculation (see
Section 11.28)

reliability The vector contains an arithmetic model related to reliability calculation
(see Section 11.25, also Section 11.6 and Section 11.7)

KEYWORD OPERATION = single_value_annotation {
CONTEXT = VECTOR;
VALUETYPE = identifier;
VALUES {

read write read_modify_write refresh load
start end iddq

}
}

Semantics 36—OPERATION annotation

Table 61—OPERATION annotation values

Annotation value Description

read Read operation at one address of a memory.

write Write operation at one address of a memory

read_modify_write Read followed by write of different value at same address of a
memory

start First operation within a sequence of operations required in a
particular mode.

end Last operation within a sequence of operations required in a
particular mode.

refresh Operation required to maintain the contents of the memory
without modifying it.

Table 60—PURPOSE annotation values (Continued)

Annotation value Description
IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 93

9.17.3 LABEL annotation

A label annotation shall be defined as shown in Semantics 37.

The purpose of the label annotation is to enable a cross-reference between a statement within the context of a
vector and a corresponding statement outside the ALF library. For example, a cross-reference between a delay
model in context of a vector (see Section 11.8.1) and an annotated delay within an SDF file [**put reference to
IEEE1497 here**] can be established, since the SDF standard also supports a LABEL statement.

9.17.4 EXISTENCE_CONDITION annotation

An existence-condition annotation shall be defined as shown in Semantics 38.

The purpose of the existence-condition is to define a necessary and sufficient condition for a vector to be relevant
for an application. This condition can also be inherited by the vector from a referenced class. A vector shall be
relevant unless the existence-condition evaluates False.

The set of pin variables involved in the vector declaration and the set of pin variables involved in the existence
condition shall be mutually exclusive.

For dynamic evaluation of the control expression within the vector declaration, the boolean expression within the
existence-condition can be treated as if it were a co-factor of the control expression.

9.17.5 EXISTENCE_CLASS annotation

An existence-class annotation shall be defined as shown in Semantics 39.

The identifier shall be the name of a declared class.

load Operation for supplying data to a control register.

iddq Operation for supply current measurements in quiescent state.

KEYWORD LABEL = single_value_annotation {
CONTEXT = VECTOR;
VALUETYPE = string_value;

}

Semantics 37—LABEL annotation

KEYWORD EXISTENCE_CONDITION = single_value_annotation {
CONTEXT { VECTOR CLASS }
VALUETYPE = boolean_expression;
DEFAULT = 1;

}

Semantics 38—EXISTENCE_CONDITION annotation

Table 61—OPERATION annotation values (Continued)

Annotation value Description
94 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

The purpose of the existence-class annotation is to provide a mechanism for selection of a relevant vector by an
application. The user of the application can select a set of relevant vectors by specifying the name of the class.
Another purpose is to share a common existence-condition amongst multiple vectors.

9.17.6 CHARACTERIZATION_CONDITION annotation

A characterization-condition annotation shall be defined as shown in Semantics 40.

The purpose of the characterization-condition annotation is to specify a unique condition under which the data in
the context of the vector were characterized. The characterization condition is only applicable if the vector decla-
ration eventually in conjunction with an existence-condition allows more than one condition.

The set of pin variables involved in the characterization-condition can overlap with the set of pin variables
involved in the vector declaration and/or the existence-condition, as long as the characterization condition is
compatible with the vector declaration and eventually with the existence-condition.

The characterization condition shall not be relevant for evaluation of either the vector declaration or the exist-
ence condition.

9.17.7 CHARACTERIZATION_VECTOR annotation

A characterization-vector annotation shall be defined as shown in Semantics 41.

The purpose of a characterization-vector annotation is to specify a complete stimulus for characterization in the
case where the vector declaration specifies only a partial stimulus.

The characterization-vector annotation and the characterization-condition annotation shall be mutually exclusive
within the context of the same vector.

KEYWORD EXISTENCE_CLASS = annotation {
CONTEXT { VECTOR CLASS }
VALUETYPE = identifier;

}

Semantics 39—EXISTENCE_CLASS annotation

KEYWORD
CHARACTERIZATION_CONDITION = single_value_annotation {

CONTEXT { VECTOR CLASS }
VALUETYPE = boolean_expression;

}

Semantics 40—CHARACTERIZATION_CONDITION annotation

KEYWORD CHARACTERIZATION_VECTOR =
single_value_annotation {

CONTEXT { VECTOR CLASS }
VALUETYPE = control_expression;

}

Semantics 41—CHARACTERIZATION_VECTOR annotation
IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 95

9.17.8 CHARACTERIZATION_CLASS annotation

A characterization-class annotation shall be defined as shown in Semantics 42.

The identifier shall be the name of a declared class.

The purpose of the characterization-class annotation is to provide a mechanism for classification of characteriza-
tion data. Another purpose is to share a common characterization-condition or a common characterization-vector
amongst multiple vectors.

9.17.9 MONITOR annotation

A monitor annotation shall be defined as shown inSemantics 43 .

9.18 LAYER declaration

A layer shall be declared as shown in Syntax 56.

A layer shall describe process technology for fabrication of an integrated electronic circuit and a set of related
physical data and constraints relevant for a design application.

The order of layer declarations within a library or a sublibrary shall reflect the order of physical creation of layers
by a manufacturing process.

KEYWORD CHARACTERIZATION_CLASS = annotation {
CONTEXT { VECTOR CLASS }
VALUETYPE = identifier;

}

Semantics 42—CHARACTERIZATION_CLASS annotation

KEYWORD MONITOR = annotation {
CONTEXT { VECTOR CLASS }
VALUETYPE = identifier;

}

Semantics 43—MONITOR annotation

layer ::=
LAYER layer_identifier ;

| LAYER layer_identifier { { layer_item } }
| layer_template_instantiation

layer_item ::=
all_purpose_item

Syntax 56—LAYER declaration
96 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

9.19 Annotations for LAYER

Add lead-in text

9.19.1 LAYERTYPE annotation

A layertype annotation shall be defined as shown in Semantics 44.

The values shall have the semantic meaning shown in Table 62.

9.19.2 PITCH annotation

A pitch annotation shall be defined as shown in Semantics 45.

The purpose of the pitch annotation is specification of the normative distance between parallel wire segments
within a layer with layertype value routing. This distance is measured between the center of two adjacent parallel
wires.

KEYWORD LAYERTYPE = single_value_annotation {
CONTEXT = LAYER;
VALUETYPE = identifier;
VALUES {

routing cut substrate dielectric reserved abstract
}

}

Semantics 44—LAYERTYPE annotation

Table 62—LAYERTYPE annotation values

Annotation value Description

routing Layer provides electrical connections within a plane.

cut Layer provides electrical connections between planes.

substrate Layer at the bottom.

dielectric Layer provides electrical isolation between planes.

reserved Layer is for proprietary use only.

abstract Layer is virtual, not manufacturable.

KEYWORD PITCH = single_value_annotation {
CONTEXT = LAYER;
VALUETYPE = unsigned_number;

}

Semantics 45—PITCH annotation
IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 97

9.19.3 PREFERENCE annotation

A preference annotation shall be defined as shown in Semantics 46.

The purpose is to indicate the prefered routing direction for wires within a layer with layertype value routing.

The values shall have the semantic meaning shown in Table 62.

9.20 VIA declaration

A via shall be declared as shown in Syntax 57.

A via shall describe a stack of physical artwork for electrical connection between wire segments on different lay-
ers.

9.21 VIA instantiation

A via shall be instantiated as shown in Syntax 58.

The purpose of a via instantiation is to define a design rule involving a via (see Section 9.23), to describe details
of a physical blockage (see Section 9.25) or details of a physical port (see Section 9.26).

KEYWORD PREFERENCE = single_value_annotation {
CONTEXT = LAYER;
VALUETYPE = identifier;
VALUES { horizontal vertical acute obtuse }

}

Semantics 46—PREFERENCE annotation

Table 63—PREFERENCE annotation values

Annotation value Description

horizontal Prefered routing direction is horizontal, i.e., 0 degrees.

vertical Prefered routing direction is vertical, i.e., 90 degrees.

acute Prefered routing direction is 45 degrees.

obtuse Prefered routing direction is 135 degrees.

via ::=
VIA via_identifier ;

| VIA via_identifier { { via_item } }
| via_template_instantiation

via_item ::=
all_purpose_item

| pattern
| artwork

Syntax 57—VIA statement
98 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

9.22 Annotations for a VIA

Add lead-in text

9.22.1 VIATYPE annotation

Single subheader

A viatype annotation shall be defined as shown in Semantics 47.

The values shall have the semantic meaning shown in Table 64.

9.23 RULE declaration

A rule shall be declared as shown in Syntax 59.

A rule declaration shall be used to define electrical or physical constraints involving physical objects. A physical
object shall be described as a pattern (see Section 9.32), a region (see Section 9.34), or a via instantiation (see
Section 9.21). The contraints shall be described as arithmetic models.

via_instantiation ::=
via_identifier instance_identifier ;

| via_identifier instance_identifier { { geometric_transformation } }

Syntax 58—VIA instantiation

KEYWORD VIATYPE = single_value_annotation {
CONTEXT = VIA;
VALUETYPE = identifier;
VALUES { default non_default partial_stack full_stack }
DEFAULT = default;

}

Semantics 47—VIATYPE annotation

Table 64—VIATYPE annotation values

Annotation value Description

default via can be used per default.

non_default via can only be used if authorized by a RULE.

partial_stack via contains three patterns: the lower and upper routing layer
and the cut layer in-between. This can only be used to build
stacked vias. The bottom of a stack can be a default or a
non_default via.

full_stack via contains 2N+1 patterns (N>1). It describes the full stack
from bottom to top.
IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 99

9.24 ANTENNA declaration

An antenna shall be declared as shown in Syntax 60.

An antenna declaration shall be used to define manufacturability constraints involving physical objects or
regions (see Section 9.34) created by physical objects. The physical objects shall be associated with a layer (see
Section 9.18). Within the context of an antenna declaration, arithmetic models for size (see Section 11.31), area
(see Section 11.32), perimeter (see Section 11.38) associated with a layer or with a region can be described. The
arithmetic models can be combined, based on electrical connectivity (see Section 11.30) between the layers.

To evaluate connectivity in the context of an antenna declaration, the order of manufacturing given by the order
of layer declarations shall be relevant. An object on a layer shall only be considered electrically connected to an
object on another layer, if the connection already exists when the uppermost layer of both layers is manufactured.
This is illustrated in the following figure 8.

Figure 8—Connection between layers during manufacturing

The dark objects on layer A and layer C on the left side of figure 8 are considered connected, because the connec-
tion is established through layer B which exists already when layer C is manufactured.

The dark objects on layer A and layer C on the right hand side of figure 8 are not considered connected, because
the connection involves layer D and E which do not yet exist when layer C is manufactured.

rule ::=
RULE rule_identifier ;

| RULE rule_identifier { { rule_item } }
| rule_template_instantiation

rule_item ::=
all_purpose_item

| pattern
| region
| via_instantiation

Syntax 59—RULE statement

antenna ::=
ANTENNA antenna_identifier ;

| ANTENNA antenna_identifier { { antenna_item } }
| antenna_template_instantiation

antenna_item ::=
all_purpose_item

| region

Syntax 60—ANTENNA declaration

Layer C

Layer A

Layer B

Layer D

Layer E

connected not
connected
100 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

9.25 BLOCKAGE declaration

A blockage shall be declared as shown in Syntax 61.

A blockage declaration shall be used in context of a cell (see Section 9.3) to describe a part of the physical art-
work of the cell. No short circuit shall be created between the physical artwork described by the blockage and a
physical artwork created by an application. Physical or electrical constraints involving a blockage can be
described by a rule (see Section 9.23). A rule within the context of a blockage shall only be applicable for physi-
cal objects within the blockage in relation to their environment. The physical objects within the blockage can
also be subjected to a more general rule.

9.26 PORT declaration

A port shall be declared as shown in Syntax 62.

A port declaration shall be used in context of a scalar pin (see Section 9.7) to describe a part of the physical art-
work of a cell (see Section 9.3) provided to establish electrical connection between a pin and its environment.
Physical or electrical constraints involving a port can be described by a rule (see Section 9.23). A rule within the
context of a port shall only be applicable for physical objects within the blockage in relation to their environ-
ment. The physical objects within the port can also be subjected to a more general rule.

9.27 Annotations for PORT

Add lead-in text

9.27.1 PORT_VIEW annotation

Single subheader

blockage ::=
BLOCKAGE blockage_identifier ;

| BLOCKAGE blockage_identifier { { blockage_item } }
| blockage_template_instantiation

blockage_item ::=
all_purpose_item

| pattern
| region
| rule
| via_instantiation

Syntax 61—BLOCKAGE statement

port ::=
PORT port_identifier ;{ { port_item } }

| PORT port_identifier ;
| port_template_instantiation

port_item ::=
all_purpose_item

| pattern
| region
| rule
| via_instantiation

Syntax 62—PORT declaration
IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 101

A port_view annotation shall be defined as shown in Semantics 48.

The values shall have the semantic meaning shown in Table 65.

9.28 SITE declaration

A site shall be declared as shown in Syntax 63.

A site declaration shall be used to specify a legal placement location for a cell.

9.29 Annotations for SITE

Add lead-in text

9.29.1 ORIENTATION_CLASS annotation

An orientation_class annotation shall be defined as shown in Semantics 49.

KEYWORD PORT_VIEW = single_value_annotation {
CONTEXT = PORT;
VALUETYPE = identifier;
VALUES { physical electrical both none }
DEFAULT = both;

}

Semantics 48—PORT_VIEW annotation

Table 65—PORT_VIEW annotation values

Annotation value Description

physical A port for layout with the possibility to connect a routing wire.

electrical A port in an electrical netlist (SPEF, SPICE).

both Both of the above.

none A virtual port for modeling purpose only.

site ::=
SITE site_identifier ;

| SITE site_identifier { { site_item } }
| site_template_instantiation

site_item ::=
all_purpose_item

| WIDTH_arithmetic_model
| HEIGHT_arithmetic_model

Syntax 63—SITE declaration
102 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

9.29.2 SYMMETRY_CLASS annotation

A symmetry_class annotation shall be defined as shown in Semantics 50.

The SYMMETRY_CLASS statement shall be used for a SITE to indicate symmetry between legal orientations.
Multiple SYMMETRY statements shall be legal to enumerate all possible combinations in case they cannot be
described within a single SYMMETRY statement.

Legal orientation of a cell within a site shall be defined as the intersection of legal cell orientation and legal site
orientation. If there is a set of common legal orientations for both cell and site without symmetry, the orientation
of cell instance and site instance shall match.

If there is a set of common legal orientations for both cell and site with symmetry, the cell can be placed on the
side using any orientation within that set.

Example

Case 1: no symmetry

The site has legal orientations A and B. The cell has legal orientations A and B. When the site appears in orienta-
tion A, the cell shall be placed in orientation A. When the site appears in orientation B, the cell shall be placed in
orientation B.

Case 2: symmetry

The site has legal orientations A and B and symmetry between A and B. The cell has legal orientations A and B.
When the site appears in orientation A, the cell can be placed in orientation A or B. When the site appears in ori-
entation B, the cell can also be placed in orientation A or B.

9.30 ARRAY declaration

An array shall be declared as shown in Syntax 64.

An array declaration shall be used for the purpose to describe a grid for creating physical objects within design.
The geometric transformations shift and repeat (see Section 9.37) shall be used to define the construction rule for
the array. The shift statement shall define the offset between the origin of the basic element within the array and
the origin of its context. The repeat statement shall define, how the basic element is replicated.

KEYWORD ORIENTATION_CLASS = annotation {
CONTEXT { SITE CELL }
VALUETYPE = IDENTIFIER;

}

Semantics 49—ORIENTATION_CLASS annotation

KEYWORD SYMMETRY_CLASS = annotation {
CONTEXT { SITE CELL }
VALUETYPE = identifier;

}

Semantics 50—SYMMETRY_CLASS annotation
IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 103

9.31 Annotations for ARRAY

Add lead-in text

9.31.1 ARRAYTYPE annotation

An arraytype annotation shall be defined as shown in Semantics 51.

The values shall have the semantic meaning shown in Table 66.

9.31.2 SITE reference annotation

A site reference annotation shall be defined as shown in Semantics 52.

The purpose of a site reference annotation is to establish a relation between a cell (see Section 9.3) and a site (see
Section 9.28) or between a site and an array. The site reference annotation in context of a cell shall indicate

array ::=
ARRAY array_identifier ;

| ARRAY array_identifier { { array_item } }
| array_template_instantiation

array_item ::=
all_purpose_item

| geometric_transformation

Syntax 64—ARRAY statement

KEYWORD ARRAYTYPE = single_value_annotation {
CONTEXT = ARRAY;
VALUETYPE = identifier;
VALUES { floorplan placement

global_routing detailed_routing }
}

Semantics 51—ARRAYTYPE annotation

Table 66—ARRAYTYPE annotation values

Annotation value Description

floorplan The array provides a grid for placing macrocells, i.e., cells with
celltype value can be block or core or memory.
The placement_type value shall be core.

placement The array provides a grid for placing regular cells, i.e., cells with
celltype value buffer, combinational, multiplexor, latch, flipflop
or special.
The placement_type value shall be core.

global_routing The array provides a grid for global routing.

detailed_routing The array provides a grid for global routing.
104 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

whether the site represents a legal placement location for the cell. The site reference annotation in context of an
array shall indicate that the site is the basic element from which the array is constructed.

The site reference annotation is applicable for an array with arraytype value floorplan or placement.

9.31.3 LAYER reference annotation

A layer reference annotation in the context of an array shall be defined as shown in Semantics 53.

The layer reference annotation is applicable for an array with arraytype value detailed routing. It shall specify
the applicable layer (see Section 9.18) with layertype value routing.

9.32 PATTERN declaration

A pattern shall be declared as shown in Syntax 65.

The pattern declaration shall be used to describe a physical object associated with a layer (see Section 9.18).

9.33 Annotations for PATTERN

Add lead-in text

9.33.1 LAYER reference annotation

A layer reference annotation in the context of a pattern shall be defined as shown in.

SEMANTICS SITE = single_value_annotation {
CONTEXT { ARRAY CELL }
VALUETYPE = identifier;

}

Semantics 52—SITE reference annotation

SEMANTICS ARRAY.LAYER = annotation {
VALUETYPE = identifier;

}

Semantics 53—LAYER reference annotation for ARRAY

pattern ::=
PATTERN pattern_identifier ;

| PATTERN pattern_identifier { { pattern_item } }
| pattern_template_instantiation

pattern_item ::=
all_purpose_item

| geometric_model
| geometric_transformation

Syntax 65—PATTERN declaration
IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 105

The layer reference annotation shall establish an association between a pattern and a layer (see Section 9.18).
The physical object represented by the pattern shall reside on a layer. A pattern declaration without layer refer-
ence annotation shall be considered incomplete.

9.33.2 SHAPE annotation

A shape annotation shall be defined as shown in Semantics 55.

The shape annotation applies for a pattern associated with a layer with layertype value routing. The meaning of
the shape annotation values is illustrated in Figure 9.

Figure 9—Shapes of routing patterns

The annotation values line and jog shall represent a routing segment. The annotation values tee, cross, and corner
shall represent an intersection between routing segments. The annotation value end shall represent the open end
point of an unterminated routing segment.

9.33.3 VERTEX annotation

A vertex annotation shall be defined as shown in Semantics 56.

The vertex annotation applies for a pattern in conjunction with the shape annotation. The meaning of the vertex
annotation values is illustrated Figure 10.

SEMANTICS PATTERN.LAYER = single_value_annotation {
VALUETYPE = identifier;

}

Semantics 54—LAYER reference annotation for PATTERN

KEYWORD SHAPE = single_value_annotation {
CONTEXT = PATTERN;
VALUETYPE = identifier;
VALUES { line tee cross jog corner end }
DEFAULT = line;

}

Semantics 55—SHAPE annotation

line

tee

cross

jog

corner

end
106 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

Figure 10—Illustration of VERTEX annotation

9.33.4 ROUTE annotation

A route annotation shall be defined as shown in .

9.34 REGION declaration

A region object shall be declared as shown in .

KEYWORD VERTEX = single_value_annotation {
CONTEXT = PATTERN;
VALUETYPE = identifier;
VALUES { round angular }
DEFAULT = angular;

}

Semantics 56—VERTEX annotation

KEYWORD ROUTE = single_value_annotation {
CONTEXT = PATTERN;
VALUETYPE = identifier;
VALUES { horizontal acute vertical obtuse }

}

Semantics 57—ROUTE annotation

region ::=
REGION region_name_identifier ;

| REGION region_name_identifier { { region_item } }
region_item ::=

all_purpose_item
| geometric_model
| geometric_transformation
| BOOLEAN_single_value_annotation

Syntax 66—ROUTE declaration

EXTENSION = 1

VERTEX = angular VERTEX = round
IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 107

9.34.1 BOOLEAN annotation

A boolean annotation shall be defined as shown in .

9.35 Geometric model

A geometric model shall be defined as shown in Syntax 67.

A geometric model shall describe the form of a physical object. A geometric model can appear in the context of
a pattern (see Section 9.32) or a region (see Section 9.34).

The numbers in the point statement shall be measured in units of distance (see Section 11.36).

The parent object of the geometric model can contain a geometric transformation (see Section 9.37) applicable
to the geometric model.

Table 67 specifiies the meaning of predefined geometric model identifiers.

KEYWORD BOOLEAN = single_value_annotation {
CONTEXT = REGION ;
VALUETYPE = boolean_expression ;

}

Semantics 58—BOOLEAN annotation

geometric_model ::=
nonescaped_identifier [geometric_model_identifier]

{ geometric_model_item { geometric_model_item } }
| geometric_model_template_instantiation

geometric_model_item ::=
POINT_TO_POINT_single_value_annotation

| coordinates
coordinates ::=

COORDINATES { point { point } }
point ::=

x_number y_number

Syntax 67—Geometric model

Table 67—Geometric model identifiers

Identifier Description

DOT Describes one point.

POLYLINE Defined by N>1 directly connected points, forming an open object.
108 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

The meaning of predefined geometric model identifiers is further illustrated in Figure 11.

Figure 11—Illustration of geometric models

A point_to_point annotation shall be defined as shown in Semantics 59.

The point-to-point annotation applies for a polyline, a ring or a polygon. The annotation value specifies, how
subsequent points in the coordinates statement are to be connected.

The meaning of the annotation value direct is illustrated in Figure 12. It specifies the shortest possible connection
between points.

RING Defined by N>1 directly connected points, forming a closed object,
i.e., the last point is connected with first point. The object occupies
the boundary of the enclosed space.

POLYGON Defined by N>1 connected points, forming a closed object, i.e., the last
point is connected with first point. The object occupies the entire
enclosed space.

KEYWORD POINT_TO_POINT = single_value_annotation {
CONTEXT { POLYLINE RING POLYGON }
VALUETYPE = identifier;
VALUES { direct manhattan }
DEFAULT = direct;

}

Semantics 59—POINT_TO_POINT annotation

Table 67—Geometric model identifiers (Continued)

Identifier Description

POLYLINE RING POLYGON

.

.
.

.

.

DOT (5 dots)
IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 109

Figure 12—Illustration of direct point-to-point connection

The meaning of the annotation value manhattan is illustrated in Figure 13. It specifies a connection between
points by moving in the x-direction first and then moving in the y-direction. This enables a non-redundant speci-
fication of a rectilinear object using N/2 points instead of N points.

Figure 13—Illustration of manhattan point-to-point connection

Example

POLYGON {
POINT_TO_POINT = direct;
COORDINATES { -1 5 3 5 3 8 -1 8 }

}

9

8

7

6

5

4

3

2

1

-5 -4 -3 -2 -1 0 1 2 3 4 5

x

x

direct connection

direct connection

X-axis

Y-axis

direct connection

x

x

direct connection
from (-1/8) to (-1/5)

from (-1/5) to (3/5)

from (-3/5) to (3/8)

from (3/8) to (-1/8)

9

8

7

6

5

4

3

2

1

-5 -4 -3 -2 -1 0 1 2 3 4 5

x

x

manhattan connection from (-1/5) to (3/8)

manhattan connection from (-3/8) to (-1/5)

X-axis

Y-axis
110 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

POLYGON {
POINT_TO_POINT = manhattan;
COORDINATES { -1 5 3 8 }

}

Both objects describe the same rectangle.

9.36 Predefined geometric models using TEMPLATE

A template declaration (see Section 8.8) can be used to predefine particular geometric moddels.

The templates RECTANGLE and LINE shall be predefined as follows:

TEMPLATE RECTANGLE {
POLYGON {

POINT_TO_POINT = manhattan;
COORDINATES { <left> <bottom> <right> <top> }

}
}
TEMPLATE LINE {

POLYLINE {
POINT_TO_POINT = direct;
COORDINATES { <x_start> <y_start> <x_end> <y_end> }

}
}

Example 1

The following example shows the usage of the predefined templates rectangle and line.

// same rectangle as in previous example
RECTANGLE {left = -1; bottom = 5; right = 3; top = 8; }
//or
RECTANGLE {-1 5 3 8 }

// diagonals through the rectangle
LINE {x_start = -1; y_start = 5; x_end = 3; y_end = 8; }
LINE {x_start = 3; y_start = 5; x_end = -1; y_end = 8; }
//or
LINE { -1 5 3 8 }
LINE { 3 5 -1 8 }

Example 2

The following example shows user-defined template declarations.

TEMPLATE HORIZONTAL_LINE {
POLYLINE {

POINT_TO_POINT = direct;
COORDINATES { <left> <y> <right> <y> }

}
}

IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 111

TEMPLATE VERTICAL_LINE {
POLYLINE {

POINT_TO_POINT = direct;
COORDINATES { <x> <bottom> <x> <top> }

}
}

Example 3

The following example shows the usage of the user-defined templates from Example 2.

// lines bounding the rectangle
HORIZONTAL_LINE { y = 5; left = -1; right = 3; }
HORIZONTAL_LINE { y = 8; left = -1; right = 3; }
VERTICAL_LINE { x = -1; bottom = 5; top = 8; }
VERTICAL_LINE { x = 3; bottom = 5; top = 8; }
//or
HORIZONTAL_LINE { 5 -1 3 }
HORIZONTAL_LINE { 8 -1 3 }
VERTICAL_LINE { -1 5 8 }
VERTICAL_LINE { 3 5 8 }

9.37 Geometric transformation

A geometric transformation shall be defined as shown in Syntax 68.

The SHIFT statement defines the horizontal and vertical offset measured between the coordinates of the geomet-
ric model and the actual placement of the object. Eventually, a layout tool only supports integer numbers. The
numbers are in units of DISTANCE. If the SHIFT statement is not defined, both values default to 0.

The ROTATE statement defines the angle of rotation in degrees measured between the orientation of the object
described by the coordinates of the geometric model and the actual placement of the object measured in counter-
clockwise direction, specified by a number between 0 and 360. Eventually, a layout tool can only support angles
which are multiple of 90 degrees. The default is 0. The object shall rotate around its origin.

The FLIP describes a transformation of the specified coordinates by flipping the object around an axis specified
by a number between 0 and 180. The number represents the angle of the flipping direction in degrees. Eventu-
ally, a layout tool can only support angles which are multiple of 90 degrees. The axis is orthogonal to the flipping

geometric_transformation ::=
shift

| rotate
| flip
| repeat

shift ::=
SHIFT { x_number y_number }

rotate ::=
ROTATE = number ;

flip ::=
FLIP = number ;

repeat ::=
REPEAT [= unsigned_integer] { geometric_transformation { geometric_transformation } }

Syntax 68—Geometric transformation
112 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

direction. The axis shall go through the origin of the object. For example, 0 means flip in horizontal direction,
axis is vertical whereas 90 means flip in vertical direction, axis is horizontal.

The purpose of the REPEAT statement is to describe the replication of a physical object in a regular way, for
example SITE (see 9.28). The REPEAT statement can also appear within a geometric_model. The
unsigned number defines the total number of replications. The number 1 means, the object appears just once.
If this number is not given, the REPEAT statement defines a rule for an arbitrary number of replications.
REPEAT statements can also be nested.

Examples

The following example replicates an object three times along the horizontal axis in a distance of 7 units.

REPEAT = 3 {
SHIFT { 7 0 }

}

The following example replicates an object five times along a 45-degree axis in a distance of 4 units.

REPEAT = 5 {
SHIFT { 4 4 }

}

The following example replicates an object two times along the horizontal axis and four times along the vertical
axis in a horizontal distance of 5 units and a vertical distance of 6 units.

REPEAT = 2 {
SHIFT { 5 0 }
REPEAT = 4 {

SHIFT { 0 6 }
}

}

NOTE—The order of nested REPEAT statements does not matter. The following example gives the same result as the previ-
ous example.

REPEAT = 4 {
SHIFT { 0 6 }
REPEAT = 2 {

SHIFT { 5 0 }
}

}

Rules and restrictions:

— A physical object can contain a geometric_transformation statement of any kind, but no more
than one of a specific kind.

— The geometric_transformation statements shall apply to all geometric_models within the
context of the object.

— The geometric_transformation statements shall refer to the origin of the object, i.e., the point
with coordinates { 0 0 }. Therefore, the result of a combined transformation shall be independent of
the order in which each individual transformation is applied.

These are demonstrated in Figure 14.
IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 113

Figure 14—Illustration of FLIP, ROTATE, and SHIFT

9.38 ARTWORK statement

An artwork statement shall be defined as shown in Syntax 69.

The ARTWORK statement creates a reference between the cell in the library and the original cell imported from a
physical layout database, e.g., GDSII [**put reference to GDSII here**].

The geometric_transformations define the operations for transformation from the artwork geometry to
the actual cell geometry. In other words, the artwork is considered as the original object whereas the cell is the
transformed object.

The imported cell can have pins with different names. The LHS of the pin_assignment describes the pin
names of the original cell, the RHS describes the pin names of the cell in this library. See 7.10 for the syntax of
pin_assignment.

Example

CELL my_cell {
PIN A { /* fill in pin items */ }
PIN Z { /* fill in pin items */ }
ARTWORK = \GDS2$!@#$ {

SHIFT { HORIZONTAL = 0; VERTICAL = 0; }
ROTATE = 0;
\GDS2$!@#$A = A;
\GDS2$!@#$B = B;

artwork ::=
ARTWORK = artwork_identifier ;

| ARTWORK = artwork_identifier { { artwork_item } }
| artwork_template_instantiation

artwork_item ::=
geometric_transformation

| pin_assignment

Syntax 69—ARTWORK statement

SHIFTROTATEFLIP

legend: origin of the object
114 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

}
}

IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 115

116 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

10. Constructs for modeling of functional behavior

Add lead-in text

10.1 FUNCTION statement

A function statement shall be defined as shown in Syntax 70.

The purpose of the function statement is to describe a canonical specification of a digital electronic circuit imple-
mented by a cell. A cell can contain at most one function statement.

The function statement can contain a behavior statement (see Section 10.4) or a set of one or more statetable
statements (see Section 10.6). The purpose of the behavior and statetable statements in this context is to formally
specify the logic state of a cell as a response to a given stimulus.

The function statement can also contain a specification for implementation using the structure statement (see
Section 10.5).

10.2 TEST statement

A test statement shall be defined as shown in Syntax 71.

The purpose of the test statement is to describe the interface between a cell and a test algorithm applied to the
cell. A cell can contain at most one test statement.

The test statement can contain a behavior statement (see Section 10.4) or a set of one or more statetable state-
ments (see Section 10.6). The purpose of the behavior and statetable statements in this context is to model the
interface between a cell and a test algorithm as a virtual digital circuit.

A test algorithm consists of a virtual input pattern and a virtual expected output pattern. The test statement does
not specify the test algorithm per se, but the mapping of the virtual pattern into a stimulus applicable to the
device under test, i.e., the cell. This is further explained in Section 10.3.

function ::=
FUNCTION { function_item { function_item } }

| function_template_instantiation
function_item ::=

all_purpose_item
| behavior
| structure
| statetable

Syntax 70—FUNCTION statement

test ::=
TEST { test_item { test_item } }

| test_template_instantiation
test_item ::=

all_purpose_item
| behavior
| statetable

Syntax 71—TEST statement
IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 117

10.3 Declaration of pin variables

Both the variables involved in the test statement and the signals involved in the function statement shall be con-
sidered as pin variables (see Section 7.9).

Pin variables shall be declared as pins or pingroups of the cell with pintype annotation value digital. The annota-
tion values for direction and view shall specify whether a pin can be used as a signal for function or as a variable
for test, according to the following Table 68.

An pin attribute value can be used to specify a test method related to a variable. See Table 58, “PIN or PIN-
GROUP attributes for memory BIST,” for specification of a particular test method.

A primary input variable for the test statement can hold a state of a virtual input pattern. A primary output vari-
able for the test statemen can hold the state of a virtual expected output pattern. A primary bidirectional variable
for the test statement can hold the state of a virtual input or output pattern, depending on the mode of the test
algorithm. An internal variable for the test statement communicates neither with the test algorithm nor with the
device under test.

An input signal of the cell can be controlled or non-controlled by the test algorithm. An output signal of the cell
can be observed or non-observed by the test algorithm. A bidirectional signal of the cell can be controlled or
non-controlled in input mode and observed or non-observed in output mode. An internal signal of the cell com-
municates neither with the test algorithm nor with the environment of the cell.

The relationship between pin variables involved in the test statement and in the function statement is illustrated
in the following figure 15. The information flow depicted therein shall be established by a behavior statement
(see Section 10.4) and/or by a set of statetable statements (see Section 10.6).

Table 68—Annotations for PINs involved in FUNCTION and TEST

category DIRECTION VIEW

input signal for function input functional or both

output signal for function output functional or both

bidirectional signal for function both functional or both

internal signal for function none none

primary input variable for test input none

primary output variable for test output none

primary bidirectional variable for test both none

internal variable for test none none
118 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

Figure 15—Relationship between FUNCTION and TEST

10.4 BEHAVIOR statement

A behavior statement shall be defined as shown in Syntax 72.

A control statement consists of a primary control statement, optionally followed by one or more alternative con-
trol statements. A primary control statement is identified by the at character followed by a control expression.
An alternative control statement is identified by the colon character followed by a control expression. A control
expression can be either a boolean expression (see Section 10.9) or a vector expression (see Section 10.12). The
order of alternativs control statements shall specify the order of priority. If the main control statement does not
evaluate true, the first alternative control statement is evaluated. If an alternative control statement does not eval-
uate true, the next alternative control statement is evaluated.

behavior ::=
BEHAVIOR { behavior_item { behavior_item } }

| behavior_template_instantiation
behavior_item ::=

boolean_assignment
| control_statement
| primitive_instantiation
| behavior_item_template_instantiation

boolean_assignment ::=
pin_variable = boolean_expression ;

control_statement ::=
primary_control_statement { alternative_control_statement }

primary_control_statement ::=
@ control_expression { boolean_assignment { boolean_assignment } }

alternative_control_statement ::=
: control_expression { boolean_assignment { boolean_assignment } }

control_expression ::=
(vector_expression)

| (boolean_expression)
primitive_instantiation ::=

primitive_identifier [identifier] { pin_value { pin_value } }
| primitive_identifier [identifier] { boolean_assignment { boolean_assignment } }

Syntax 72—BEHAVIOR statement

FUNCTIONTEST

controlled input signals

observed output signals

controlled / observed
bidirectional signals

non-controlled
input signals

non-observed
output signals

non-controlled / non-observed
bidirectional signals

internal
signals

internal
variables

primary input
variables

primary output
variables

primary bidirectional
variables
IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 119

A boolean assignment assigns the evaluation result of a boolean expression to a pin variable (see Section 7.9). A
boolean assignment with a behavior statement as a parent shall be considered a continuous assignment, i.e. the
boolean expression is evaluated continuously.

A boolean assignment with a control statement as parent shall be considered a conditional assignment, i.e., the
boolean expression is only evaluated when the associated control expression evaluates true. When a boolean
expression is not evaluated, a pin variable shall hold its previously assigned value.

If the control expression is a boolean expression, the conditional assignment shall be called level-sensitive or
triggered by state. If the control expression is a vector expression, the conditional assignment shall be called
edge-sensitive or triggered by event.

A primitive instantiation establishes a reference to a predefined function statement within a primitive declaration
(see Section 9.11). A continuous assignment of a boolean expression to a pin variable can be given by a boolean
assignment within the primitive instantiation, wherein the pin variable shall be a declared pin within the primi-
tive declaration. Alternatively, a continuous assignment of a pin value to a pin variable can be given by a set of
pin values, wherein the order of pin values shall correspond to the order of pin declarations within the primitive
declaration.

A behavior item is further subjected to the following rules:

a) An information flow graph involving one or more continuous assignments and/or level-sensitive condi-
tional assignments can not contain a loop. The usage of a pin with direction annotation value both as a
primary input and as a primary output in an information flow graph shall not be considered as a loop.

b) An information flow graph involving one or more edge-sensitive conditional assignments can contain a
loop. The value of a pin variable immediately before the triggering event shall be considered for evalua-
tion of a boolean expression. The evaluation result shall be assigned to a pin variable immediately after
the triggering event.

c) An information flow graph established by boolean assignments can involve an implicitly declared vari-
able, i.e., the LHS of a boolean assignment has not been declared as a pin variable. An implicitly
declared variable can only be used in the context of its parent statement. An implicitly declared variable
involved in a continuous assignment can not be used in the context of a conditional assignment and vice-
versa.

10.5 STRUCTURE statement

A structure statement shall be defined as shown in Syntax 73.

The purpose of a structure statement is to specify a structural implementation, i.e., a netlist of a compound cell. A
complete or a partial netlist can be specified. The components of the netlist can be cells and/or primitives. A
structure statement shall not substitute a behavior statement or a statetable statement. The connectivity graph
established by a structure statement is complementary to the information flow graph established by a behavior
statement or by a statetable statement.

** need to extend “pin assignment” definition to include hierarchical pin.port **

structure ::=
STRUCTURE { named_cell_instantiation { named_cell_instantiation } }

| structure_template_instantiation

Syntax 73—STRUCTURE statement
120 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

10.6 STATETABLE statement

A statetable statement shall be defined as shown in Syntax 74.

A statetable shall specify the state of a set of output pin variables dependent on the state of a set of input pin vari-
ables. Sequential behavior, i.e., next state as a function of previous state shall be modeled by a pin variable which
appears both as input and output pin variable within the statetable header. A pin variable with direction annota-
tion value both can also appear as input and output pin variable within the statetable header. However, the state of
the output pin variable does not depend on the state of the corresponding input pin variable, unless there is
sequential behavior.

In each statetable row, a statetable control value shall be associated with a particular input pin variable, and a
statetable data value shall be associated with a particular output variable. The association is given by the position
at which the pin variables appear in the header. Each statetable row shall have the same number of items as the
statetable header. The delimiting colon in each statetable row shall in the same position as in the statetable
header.

A statetable control value shall be compatible with the datatype of the corresponding input pin variable. A
statetable data value shall be compatible with the datatype of the corresponding output pin variable. An input pin
variable enclosed by parentheses shall specify that the value of the input pin variable be assigned to the output
pin variable. Such input pin variable need not appear in the statetable header. A preceding exclamation mark
shall indicate that the logically inverted value be assigned to the output variable. A preceding tilde shall indicate
that the bitwise inverted value be assigned to the output variable.

10.7 NON_SCAN_CELL statement

A non_scan_cell statement shall be defined as shown in Syntax 75.

A non-scan cell statement applies for a scan cell. A scan cell is a cell with extra pins for testing purpose. The
unnamed cell instantiation within the non-scan cell statement specifies a cell that is functionally equivalent to the
scan cell, if the extra pins are not used. The cell without extra pins is referred to as non-scan cell. The name of the
non-scan cell is given by the cell identifier.

statetable ::=
STATETABLE [identifier]

{ statetable_header statetable_row { statetable_row } }
| statetable_template_instantiation

statetable_header ::=
input_pin_variable { input_pin_variable } : output_pin_variable { output_pin_variable } ;

statetable_row ::=
statetable_control_values : statetable_data_values ;

statetable_control_values ::=
statetable_control_value { statetable_control_value }

statetable_control_value ::=
boolean_value

| symbolic_bit_literal
| edge_value

statetable_data_values ::=
statetable_data_value { statetable_data_value }

statetable_data_value ::=
boolean_value

| ([!] input_pin_variable)
| ([~] input_pin_variable)

Syntax 74—STATETABLE statement
IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 121

The pin mapping is given either by order, using pin value, or by name, using pin assignment. In the former case,
the pin values shall refer to pin names of the scan cell. The order of the pin values corresponds to the pin declara-
tions within the non-scan cell. In the latter case, the pin names of the non-scan cell shall appear at the LHS of the
assignment, and the pin names of the scan cell shall appear at the RHS of the assignment. The order of the pin
assignments is arbitrary.

Example

// declaration of a non-scan cell
CELL myNonScanFlop {

PIN D { DIRECTION=input; SIGNALTYPE=data; }
PIN C { DIRECTION=input; SIGNALTYPE=clock; POLARITY=rising_edge; }
PIN Q { DIRECTION=output; SIGNALTYPE=data; }

}
// declaration of a scan cell
CELL myScanFlop {

PIN CK { DIRECTION=input; SIGNALTYPE=clock; }
PIN DI { DIRECTION=input; SIGNALTYPE=data; }
PIN SI { DIRECTION=input; SIGNALTYPE=scan_data; }
PIN SE { DIRECTION=input; SIGNALTYPE=scan_enable; POLARITY=high; }
PIN DO { DIRECTION=output; SIGNALTYPE=data; }
// put NON_SCAN_CELL statement here

}

The non-scan cell statement with pin mapping by order looks as follows:

NON_SCAN_CELL { myNonScanFlop { DI CK DO } }
// corresponding pins by order: D C Q

The non-scan cell statement with pin mapping by name looks as follows:

NON_SCAN_CELL { myNonScanFlop { Q=DO; D=DI; C=CK; } }

10.8 RANGE statement

A range statement shall be defined as shown in Syntax 76.

The range statement shall be used to specify a valid address space for elements of a vector- or matrix-pin.

non_scan_cell ::=
NON_SCAN_CELL { unnamed_cell_instantiation { unnamed_cell_instantiation } }

| NON_SCAN_CELL = unnamed_cell_instantiation
| non_scan_cell_template_instantiation

Syntax 75—NON_SCAN_CELL statement

range ::=
RANGE { index_value : index_value }

Syntax 76—RANGE statement
122 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

If no range statement is specified, the valid address space A is given by the following mathematical relationship:

where

A is an unsigned integer representing the address space within a vector- or matrix-pin,
B is the bitwidth of the vector-or matrix-pin,

and

MSB is the left-most bit within the vector- or matrix-pin,
LSB is the right-most bit within the vector or- matrix-pin,

in accordance with Section 7.8.

The index values within a range statement shall be bound by the address space a, otherwise the range statement
shall not be considered valid.

Example

PIN [5:8] myVectorPin { RANGE { 3 : 13 } }

10.9 Boolean expression

A boolean expression shall be defined as shown in Syntax 77.

The purpose of a boolean expression is to specify a boolean operation involving pin variables as operands. The
evaluation result of a boolean expression shall be a boolean value.

boolean_expression ::=
(boolean_expression)

| pin_variable
| boolean_value
| boolean_unary boolean_expression
| boolean_expression boolean_binary boolean_expression
| boolean_expression ? boolean_expression :

{ boolean_expression ? boolean_expression : }
boolean_expression

boolean_unary ::=
! | ~ | & | ~& | | | ~| | ^ | ~^

boolean_binary ::=
& | && | | | || | ^ | ~^ | != | == | >= | <= | > | < | + | - | * | / | % | >> | <<

Syntax 77—Boolean expression

B 1 LSB MSB–+ if LSB MSB>()
1 MSB LSB–+ if LSB MSB≤()

=

0 A 2B 1–≤ ≤

B 4=

0 A 15≤ ≤

3 A 13≤ ≤

bitwidth:

default address space:

address space defined by range statement:
IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 123

10.10 Boolean value system

10.10.1 Scalar boolean value

A scalar boolean value shall be described by an alphanumerical bit literal (see Section 6.7). A scalar boolean
value shall represent a logical value and optionally a drive strength. The set of logical values shall be false, true
and unknown. The set of drive strengths shall be strong, weak, and zero. The symbols used for scalar boolean val-
ues and their meaning shall be defined as shown in Table 69.

A boolean expression (see Section 10.9) can evaluate to a scalar boolean value represented by an alphanumeric
bit literal. For evaluation of a boolean expression, a scalar boolean value shall be reduced to a value 0, 1, or X
within a 3-value system, unless an alphabetic bit literal (L, H, W, Z, U) is explicitely specified as evaluation
result in the boolean expression.

10.10.2 Vectorized boolean value

A vectorized boolean value shall be described either by a based literal (see Section 6.8) or by an integer (see
Section 6.5). A vectorized boolean value can be mapped into a vector of alphanumerical bit literals. The number
of bit literals shall be called bitwidth.

An octal digit can be mapped into a three bit vector of bit literals, as shown in Table 70.

Table 69—Scalar boolean values

symbol logical value drive strength symbol for
reduced value comment

0 false strong 0

1 true strong 1

X or x unknown strong X or x

L or l false weak 0

H or h true weak 1

W or w unknown weak X or x

Z or z undefined zero X or x use for high impedance

U or u undefined undefined X or x use for uninitialized signal in simulation

Table 70—Mapping between octal base and binary base

Octal Binary (bit literal) Numerical value

0 000 0

1 001 1

2 010 2

3 011 3
124 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

A hexadecimal digit can be mapped into a four bit vector of bit literals, as shown in Table 71.

An alphabetic bit literal shall be mapped according to the following rules:

a) An alphabetic bit literal in octal base shall be mapped into three subsequent occurrences of the same bit
literal in binary base.

b) An alphabetic bit literal in hexadecimal base shall be mapped into four subsequent occurrences of the
same bit literal in binary base.

4 100 4

5 101 5

6 110 6

7 111 7

Table 71—Mapping between hexadecimal base and binary base

Hexadecimal Binary (bit literal) Numerical value

0 0000 0

1 0001 1

2 0010 2

3 0011 3

4 0100 4

5 0101 5

6 0110 6

7 0111 7

8 1000 8

9 1001 9

a or A 1010 10

b or B 1011 11

c or C 1100 12

d or D 1101 13

e or E 1110 14

f or F 1111 15

Table 70—Mapping between octal base and binary base (Continued)

Octal Binary (bit literal) Numerical value
IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 125

Example

'o2xw0u is equivalent to'b010_xxx_www_000_uuu
'hLux is equivalent to'bLLLL_uuuu_xxxx

An integer can be represented by a vector of bit literals, according to the following mathematical relationship.

where

N is the integer.
B is the bitwidth of the vector of bit literals.
p is the position of a bit within the vector, counted from 0 to B-1.
s(p) is the scalar value (zero or one) of the bit at position p.
S is the scalar value (zero or one) of the MSB, i.e., the bit at position B-1.

The bitwidth B of a vectorized boolean variable restricts the range of a corresponding integer N as follows:

A vector pin (see Section 9.7) can be used as a pin variable holding a vectorized boolean value. The position of a
bit is related to an index within the pin declaration as follows:

where

i is the index within a vector pin.
LSB is the rightmost index within a vector pin. The corresponding position is 0.
MSB is the leftmost index within a vector pin. The corresponding position is B-1.

Example:

PIN [5:8] my_vector_pin;

bit[index] position comment

my_vector_pin[5] 3 MSB

my_vector_pin[6] 2

my_vector_pin[7] 1

my_vector_pin[8] 0 LSB

N s p() 2p⋅
p 0=

B 1–

∑=

N s p() 2p⋅
p 0=

B 2–

∑ S 2B 1–⋅–=

unsigned integer

signed integer

0 N 2B 1–≤ ≤

2B 1–– N 2B 1– 1–≤ ≤

unsigned integer

signed integer

p LSB i– if LSB MSB>()
i LSB– if LSB MSB≤()

=

126 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

10.10.3 Non-assignable boolean value

A non-assignable boolean value shall be described by a symbolic bit literal (see Section 6.7), as shown in Table
72.

A symbolic bit literal or a based literal containing a symbolic bit lieteral can not be assigned to a pin variable as
a boolean value. A symbolic bit literal can be used within a statetable control value, but not within a statetable
data value.

Within the context of a vectorized boolean value, a symbolic bit literal shall be mapped according to the follow-
ing rules:

a) A symbolic bit literal in octal base shall be mapped into three subsequent occurrences of the same bit lit-
eral in binary base.

b) A symbolic bit literal in hexadecimal base shall be mapped into four subsequent occurrences of the same
bit literal in binary base.

10.11 Boolean operations and operators

10.11.1 Logical operation

The operators for a logical operation shall be defined as shown in Table 73

A boolean expression involving a logical inversion, and, or (see Table 73), nand, nor, exor, exnor (see Table 74)
shall be evaluated according to the rules of boolean algebra ** do we need a reference to a textbook on boolean
algebra here? **.

The result of the evaluation shall be true, false, or unknown.

Table 72—Symbolic boolean values

symbol logical value drive strength comment

? arbitrary arbitrary use for “don’t care”

* subject to random change arbitrary signal is not monitored

Table 73—Logical Operation

Operator Description

! logical inversion

&& logical and

|| logical or
IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 127

If an alphabetic bit literal is used as operand, only the logical value, not the drive strength, shall be considered for
evaluation. An undefined logical value within an operand shall be considered unknown.

If a vectorized boolean value is used as operand, the logical value of the operand shall be obtained by applying a
logical or to all bits of the operand.

10.11.2 Bitwise operation

The operators for a bitwise operation shall be defined as shown in Table 74

A bit-wise inversion shall invert each bit of a vectorized boolean value.

The operators for bit-wise operations, except bit-wise inversion, can be used as boolean unary or as boolean
binary operators.

A boolean unary operator for the operation and, or, exor, nand, nor, or exnor shall reduce a vectorized boolean
value to a scalar boolean value by applying a logical and, or, exor, nand, nor, or exnor to all bits of the operand.

A boolean binary operator for the operation and, or, exor, nand, nor, or exnor shall apply a logical and, or, exor,
nand, nor, or exnor to each corresponding bit of two vectorized boolean values. The operands shall be LSB-
aligned. If the operands have different bitwidths, the missing bits of the operand with smaller bitwidth shall be
considered undefined. The result of the operation shall be a vectorized boolean value.

A bit-wise operation involving only scalar boolean values or single bit vectorized boolean values as operands
shall be considered equivalent to the corresponding logical operation.

10.11.3 Conditional operation

The symbols used for a conditional operation shall be defined as shown in Table 75

Table 74—Bitwise Operation

Operator Description

~ bit-wise inversion

& bit-wise and

| bit-wise or

^ bit-wise exclusive or (exor)

~& bit-wise and with inversion (nand)

~| bit-wise or with inversion (nor)

~! bit-wise exclusive or with inversion (exnor)

Table 75—Conditional Operation

Symbol Description

? operator for a condition
128 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

If the boolean sub-expression to the left of the condition operator evaluates true, the boolean sub-expression to
the right of the condition operator shall be evaluated. Otherwise, the boolean expression to the right of the delim-
iter between alternatives shall be evaluated. If multiple conditions and alternatives exist within a boolean expres-
sion, the evaluation shall proceed from the left to the right.

10.11.4 Integer arithmetic operation

The operators for an integer arithmetic operation shall be defined as shown in Table 76.

A boolean expression involving an integer arithmetic operation with operands represented as integer shall be
evaluated according to the rules of integer arithmetic ** do we need a reference to a textbook on integer arith-
metic here? **.

If an operand is represented as a based literal, the operand shall be converted into an integer according to
Section 10.10.2. This conversion is well-defined, if each bit has the logical value true or false. The MSB of a
based literal shall be interpreted according to the datatype annotation value (see Section 9.9.7) of a pin variable
associated with the based literal.

An operand represented as a bit literal shall be treated in the same way as a single bit binary based literal.

If a bit literal or a bit of a based literal has the logical value unknown, the conversion into an integer is not well-
defined. In this case, an application can optionally perform a partial evaluation of the boolean expression, by
replacing the value unknown with the value true or false.

: delimiter between alternatives

Table 76—Integer Arithmetic Operation

Operator Description

+ add

- subtract

* multiply

/ divide

% modulus

Table 75—Conditional Operation

Symbol Description
IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 129

10.11.5 Shift operation

The operators for a shift operation shall be defined as shown in Table 77

A shift operation shall involve two operands. The LHS operand shall be a vectorized boolean value, represented
by an integer, by a based literal, or, as a trivial case, by a bit literal. The RHS operand shall be an unsigned inte-
ger N in the range between zero and the bitwidth of the LHS operand, specifying the number of positions by
which the bits of the LHS operand are to be shifted.

For shift left, N bits of the LHS operand shall be replaced with the logical value unknown, starting from the LSB.
For shift right, N bits of the LHS operand shall be replaced with the logical value unknown, starting from the
MSB.

10.11.6 Comparison operation

The operators for a comparison operation shall be defined as shown in Table 78

A comparison involving operands represented as integer shall be evaluated according to the rules of integer
arithmetic ** do we need a reference to a textbook on integer arithmetic here? **.

If an operand is represented as a based literal, the operand shall be converted into an integer according to
Section 10.10.2. This conversion is well-defined, if each bit has the logical value true or false. The MSB of a
based literal shall be interpreted according to the datatype annotation value (see Section 9.9.7) of a pin variable
associated with the based literal.

If a bit of a based literal has the logical value unknown, the conversion into an integer is not well-defined. In this
case, an application can optionally perform a partial comparison, by replacing the value unknown with the value
true or false.

Table 77—Shift Operation

Operator Description

<< shift left

>> shift right

Table 78—Comparison Operation

Operator Description

== equal

!= non equal

> greater

< less

>= greater or equal

<= lesser or equal
130 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

If the operands are integers or the conversion from based literal to integer is well-defined, a comparison shall
evaluate true or false. If the conversion from based literal to integer is not well-defined, a comparison can evalu-
ate unknown.

A comparison between scalar boolean values or single bit vectorized boolean values shall consider both the logi-
cal value and the drive strength as criterion for comparison

The equal comparison considering drive strength shall be evaluated according to the following Table 79

The non-equal comparison shall evaluate true, if the equal comparison evaluates false, and vice-versa.

Note: To compare scalar boolean values or single bit vectorized boolean values considering the logical value
only, the exor operation can be used instead of the non-equal comparison, and the exnor operation can be used
instead of the equal comparison.

The greater comparison considering drive strength shall be evaluated according to the following Table 80

Table 79—Equal comparison considering drive strength

logical value
(true, false, unknown, or undefined)

drive strength
(strong, weak, zero, or undefined) result

same for both operands same for both operands true

same for both operands different for each operand false

different for each operand arbitrary false

Table 80—Greater comparison considering drive strength

logical value
LHS operand

logical value
RHS operand drive strength result

true false arbitrary true

true unknown arbitrary unknown

false true arbitrary false

false unknown arbitrary false

unknown true arbitrary unknown

unknown false arbitrary unknown

unknown unknown arbitrary unknown

true true same for both operands false

false false same for both operands false

true true different for each operand unknown

false false different for each operand unknown
IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 131

The lesser comparision shall be evaluated in the same way as the greater comparison, when the LHS operand and
the RHS operand switch places.

The greater-or-equal comparison shall be evaluated as logical or between greater comparison and equal com-
parison.

The lesser-or-equal comparison shall be evaluated as logical or between lesser comparison and equal compari-
son.

10.11.7 Operator priorities

The binding priority of operations in a boolean expression shall be from the strongest to the weakest in the fol-
lowing order:

a) operation enclosed by parentheses
b) boolean unary (!, ~, &, ~&, |, ~|, ^, ~^)
c) exor (^), exnor (~^), comparison (>, <, >=, <=, ==, !=), shift (<<, >>)
d) and (&, &&), nand (~&), multiply (*), divide (/), modulus (%)
e) or (|, ||), nor (~|), add (+), subtract (-)
f) operator and delimiter for conditional operation (?, :)

When operations of the same binding priority are subsequently encountered in a boolean expression, the evalua-
tion shall proceed from the left to the right.

10.12 Vector expression

A vector expression shall be defined as shown in Syntax 78.

The purpose of a vector expression to specify a sequence of events. In a static application context, the vector
expression shall be evaluated against a proposed sequence of events. In a dynamic application context, a vector
expression shall be evaluated against a monitored sequence of events.

A vector expression shall evaluate true, when the specified sequence of events is satisfied or detected, i.e., the
vector expression matches a proposed or monitored sequence of events. The true evaluation of a vector expres-
sion constitutes an event by itself, which can be used as a trigger within the context of a behavior statement (see
Section 10.4).

vector_expression ::=
(vector_expression)

| vector_unary boolean_expression
| vector_expression vector_binary vector_expression
| boolean_expression ? vector_expression :

{ boolean_expression ? vector_expression : }
vector_expression

| boolean_expression control_and vector_expression
| vector_expression control_and boolean_expression

vector_unary ::=
edge_literal

vector_binary ::=
& | && | | | || | -> | ~> | <-> | <~> | &> | <&>

control_and ::=
& | &&

Syntax 78—Vector expression
132 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

10.13 Operators for event specification

The term event is used synonymously to contents of an arbitrary vector expression.

10.13.1 Specification of a single event

An edge literal (see Section 6.9) shall be used as a vector unary operator to specify a single event. The operand
shall be a boolean expression. A single event on the operand shall be interpreted according to the following Table
81.

An edge literal consisting of two consecutive alphanumerical bit literals (row 1) can be used for a scalar operand.
An edge literal consisting of two consecutive based literals (row 2) can be used for a scalar operand or for a vec-
torized operand, as long as the bitwidth of the operator is compatible ith the bitwidth of the operand. An edge lit-
eral consisting of two consecutive symbolic bit literals (row 3, 4, 5) can be used for either a scalar or a vectorized
operand. A symbolic edge literal (row 6, 7, 8) can be used for either a scalar or a vectorized operand.

An edge literal (row 8 in particular) can specify the same value before and after the event. Such a specification
shall be interpreted as event by exclusion, i.e., an event happens, but not on the operand.

An arbitrary value shall be comprised within the set of applicable values for the operand, i.e., a scalar operand or
a binary digit of a vectorized operand can have a value specified by an alphanumerical bit literal, an operand with
datatype unsigned can have an arbitrary unsigned integer value within the range of specified bitwidth, an oper-
and with datatype signed can have an arbitrary signed integer value within the range of specified bitwidth.

A random value shall be interpreted as an arbitrary value subjected to random change. In a dynamic application
context, an event on a variable is not monitored while the variable is in random value state.

Table 81—Specification of a single event

row edge literal event on operand

1 first_bit_literal second_bit_literal value before is first_bit_literal, value after is second_bit_literal

2 first_based_literal second_based_literal value before is first_based_literal, value after is second_based_literal

3 ?? value before and after the event is arbitrary

4 ?* state of operand is random after the event

5 *? state of operand is random before the event

6 ?! operand changes from arbitrary value to arbitrary different value

7 ?~ every binary digit of the operand changes from arbitrary value to
arbitrary different value

8 ?- operand does not change its value
IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 133

A single event can be described by a timing diagram as illustrated in the following figure 16.

Figure 16—Timing diagrams for single events

The specification of a single event by itself does not imply any transition time. A single event can happen instan-
taneously. The transition time in figure 16 is only for the purpose of illustrating the difference between ?? and ?!.

The operator ?? shall be considered neutral operator, since a specified single event involving ?? on an arbitrary
operand always matches a proposed single event on any operand. A single event involving the neutral operator
shall be considered neutral single event.

10.13.2 Temporal order of events

A vector binary operator shall be used to specify a temporal order between events, thus establishing an event
sequence. Each operand shall be a vector expression. The operation result shall be another vector expression.

The vector expression shall be evaluated against a proposed or monitored event sequence. The proposed or mon-
itored event sequence shall be established as follows:

a) A primary event sequence shall be established by representing in temporal order all single events on a set
of pin variables. The set of pin variables shall be specified either by the scope annotation (see
Section 9.9.15) within a pin declaration or by the monitor annotation (see Section 9.17.9) within a vector
declaration. The elapsed time between subsequently occuring single events can vary between arbitrarily
large and arbitrarily small values.

Note: In a dynamic application context, “all” single events can be eventually reduced to “the N latest relevant” single events,
where N is large enough to contain the specified vector expression.

b) The single events on pin variables involved in the vector expression shall be reduced to single events on
boolean expressions wherein the pin variables are involved. Other single events on these pin variables
shall be disregarded. The single events on pin variables not involved in the vector expression shall be not
be reduced.

Example:

vector unary operator corresponding timing diagram

01

‘d5‘d9

??

?*

*?

?!

?-

event occurence time

value=5 value=9
134 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

A set of pin variables applicable for two vector expressions v1and v2 is A, B, C, D.
The vector expression v1 reads (01 (A&B) -> 10 (B|C)).
The vector expression v2 reads (1? A -> 10 (C & ! D)).

Therefore, the primary event sequence represents the single events on A, B, C and D.
The reduced event sequence for evaluation of v1 represents the single events on (A&B), (B|C) and D.
The reduced event sequence for evaluation of v2 represents the single events on A, B and (C & ! D).

The following picture shows sample event sequences.

The temporal order concept does not specify or imply a particular time interval between consecutive single
event. Mathematically, each time interval shall be greater than zero, but it can be arbitrarily close to zero. Two
single events can occur simultaneously, i.e., at the same time, either by implication or by co-incidence.

The following rules shall apply for the temporal order of events.

a) A value change of a boolean expression and a single event on a pin variable causing this value change
shall be considered simultaneous by implication.

b) A value change of a vectorized pin variable and a corresponding value change of any part of the vector-
ized pin variable shall be considered simultaneous by implication.

c) Within the context of a behavior statement, the assignment of a boolean expression to a pin variable as a
consequence of a value change of the boolean expression shall trigger an advancement in time.

d) Within the context of a control statement as part of a behavior statement, the assignment of a boolean
expression to a pin variable as a consequence of a value change of a control expression shall trigger an
advancement in time.

e) Single events on arbitrary independent pin variables can occur simultaneously by co-incidence.
f) In the context of a vector statement, all pin variables shall be considered independent, even though a

causal dependency between some pin variables can exist in the context of a behavior statement.

It is possible that the application does not support a monitor capable of detecting simultaneously occuring events
by co-incidence. In this case, the temporal order of such events is not predictable.

Example:

primary event sequence A

B

C

D

reduced event sequence
A&B

B|C

D

reduced event sequence
A

B

C&!D

for evaluation of v1

for evaluation of v2
IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 135

A behavior statement contains the boolean assignment Z = A&B.
The single event (01 (A&B)) is caused by the single event (01 A).
The single events (01 (A&B)) and (01 A) are considered to occur simultaneously by implication.
Within the context of the behavior statement, the single event (01 Z) is considered to occur after the single event
(01 (A&B)).
Outside the context of the behavior statement, the variables A and Z are considered independent. The numerical
value of the measured propagation delay from A to Z could be greater than zero, lesser than zero, or zero. There-
fore, the single events (01 A) and (01 Z) could occur simultaneously by co-incidence.

10.13.3 Canonical specification of an event

The operators in the following Table 82 shall be used for a canonical specification of a vector expression.

The semantic meaning of the operators is furthermore detailed as follows:

The immediately followed by operator applied to a sequence of single events shall specify that the latest single
event within the LHS vector expression immediately precedes the earliest single event within the RHS vector
expression.

The eventually followed by operator applied to a sequence of single events shall specify that the latest single
event within the LHS vector expression occurs earlier than the earliest single event within the RHS vector
expression.

The simultaneous occurence operator applied to a sequence of single events shall specify that each Nth latest sin-
gle event within the LHS vector expression occurs at the same time as each Nth latest single event within the
RHS vector expression.

This rule can be formulated as follows:

a) Product involving immediately followed by and simultaneously occuring operator
(vM

1 -> vN
1) & (vM

2 -> vN
2) = (vM

1 & vM
2) -> (vN

1 & vN
2)

where vM
i and vN

i, respectively, are vector expressions describing a sequence of M single events each and N sin-
gle events each, respectively, ordered by the immediately followed by operator.

If the LHS and RHS vector expressions comprise a different number of subsequently occuring single events, the
shorter vector expression shall be left-extended with neutral single events.

Table 82—Canonical specification of an event

symbol operator name explanation

-> immediately followed by LHS event occurs before RHS event,
no event can occur in-between

~> eventually followed by LHS event occurs before RHS event,
an arbitrary number of events can occur in-between

&& or & simultaneous occurence LHS event and RHS event occur at the same time

|| or | alternative occurence Either LHS event or RHS event occur

&> closely followed by LHS event occurs immediately before RHS event,
or both events occur at the same time
136 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

b) Product involving sequences of events with different length
(vM

1 -> vN
1) & vN

2 = vM
1 -> (vN

1 & vN
2)

A set of mathematical rules for evaluation of a compound vector expression shall be established, wherein the the
symbols vi represent vector expressions within the compound vector expression.

c) Associativity for immediately followed by operator
v1 -> v2 -> v3 = (v1 -> v2) -> v3 = v1 -> (v2 -> v3)

d) Associativity for eventually followed by operator
v1 ~> v2 ~> v3 = (v1 ~> v2) ~> v3 = v1 ~> (v2 ~> v3)

e) Mixed associativity for immediately followed by and eventually followed by operator
v1 -> v2 ~> v3 = (v1 -> v2) ~> v3 = v1 -> (v2 ~> v3)
v1 ~> v2 -> v3 = (v1 ~> v2) -> v3 = v1 ~> (v2 -> v3)

f) Assocativity for simultaneous occurence operator
v1 & v2 & v3 = (v1 & v2) & v3 = v1 & (v2 & v3)

g) Commutativity for simultaneous occurence operator
v1 & v2 = v2 & v1

h) Reduction rule for simultaneous occurence operator
v1 & v1 = v1

i) Assocativity for alternative occurence operator
v1 | v2 | v3 = (v1 | v2) | v3 = v1 | (v2 | v3)

j) Commutativity for alternative occurence operator
v1 | v2 = v2 | v1

k) Reduction rule for alternative occurence operator
v1 | v1 = v1

l) Distributivity between immediately followed by operator and alternative occurence operator
(v1 | v2) -> v3 = (v1 -> v3) | (v2 -> v3)
v1 -> (v2 | v3) = (v1 -> v2) | (v1 -> v3)

m) Distributivity between eventually followed by operator and alternative occurence operator
(v1 | v2) ~> v3 = (v1 ~> v3) | (v2 ~> v3)
v1 ~> (v2 | v3) = (v1 ~> v2) | (v1 ~> v3)

n) Distributivity between simultaneous occurence operator and alternative occurence operator
(v1 | v2) & v3 = (v1 & v3) | (v2 & v3)

The closely followed by operator shall be mathematically defined as follows:

o) v1 &> v2 = (v1 & v2) | (v1 -> v2)

Therefore, the closely followed by operator applied to a sequence of single events shall specify that the latest sin-
gle event within the LHS vector expression immediately precedes the earliest single event within the RHS vector
expression, or, each Nth latest single event within the LHS vector expression occurs at the same time as each Nth
latest single event within the RHS vector expression.

A general vector expression can be mathematically formulated as a canonical “sum of products”.

vj
p

vj 1()...opj i()vj i()...opj m()vj m() opj i()vj i()

i 1=

mj

∏= =

vs v1
p...|...vj

p...|...vn
p vj

p

j 1=

n

∑= =

opj(i) = -> | ~> | &
IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 137

where vs is a vector expression in “sum” form applying the alternative occurence operator to vector expressions
vp

j, and each vp
j is a vector expression in “product” form applying the operators immediately followed by, even-

tually followed by, or simultaneous occurence to single events vj(i). The usage of the symbols opj(i), Π and Σ for
vector binary operators is only for mathematical representation, it is not a syntax feature for a vector expression.
Also, the first operator opj(1) is irrelevant when converting the mathematical representation into a vector expres-
sion.

Example:

10.13.4 Specification of a completely permutable event

Permutation operations shall be defined for events immediately followed by each other, for events eventually fol-
lowed by each other, and for events closely followed by each otheer. The operands, i.e., arbitrary vector expres-
sions vi, shall be subjected to alternative event sequences with completely permutable temporal order.

The symbols for permutation operators are shown in the following Table 83.

The permutation operator for two events immediately followed by each other shall be mathematically defined as
follows:

p) v1 <-> v2 = (v1 -> v2) | (v2 -> v1)

The permutation operator for two events eventually followed by each other shall be mathematically defined as
follows:

Table 83—Specification of a completely permutable event

symbol operator name explanation

<-> permutation of events immediately fol-
lowed by each other

LHS event immediately followed by RHS event
or
RHS event immediately followed by LHS event

<~> permutation of events eventually fol-
lowed by each other

LHS event eventually followed by RHS event
or
RHS event eventually followed by LHS event

<&> permutation of events closely followed
by each other

LHS event immediately followed by RHS event
or
RHS event eventually followed by LHS event
or
LHS event and RHS event occur simultaneously

v1
p op1 i()v1 i()

i 1=

m1

∏=

v2
p op2 i()v2 i()

i 1=

m2

∏=

op1(2) = -> op1(3) = ->m1 = 3 op1(1) = nil

v1(1) = (01 A) v1(2) = (10 A) v1(3) = (10 B)

op2(2) = -> op2(3) = ->m2 = 3 op2(1) = nil
v2(1) = (01 B) v2(2) = (10 B) v2(3) = (10 A)

v
s

vj
p

j 1=

2

∑ (01 A) -> (10 A) -> (10 B) | (01 B) -> (10 B) - > (10 A)= =
138 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

q) v1 <~> v2 = (v1 ~> v2) | (v2 ~> v1)

The permutation operator for two events closely followed by each other shall be mathematically defined as fol-
lows:

r) v1 <&> v2 = (v1 &> v2) | (v2 &> v1)

The definition of a permutation operator for N events (N>2) shall be extended for N+1 events in the following
way:

If the operator <-> is globally replaced by <~> or <&>, respectively, the operator -> shall be globally replaced by
~> or &>, respectively.

A vector expression with N operands vk subjected to a permutation operator (i.e., <-> or <~> or <&>) is equiva-
lent to a vector expression with N! sum terms wherein each sum term represents a particular permutation of vk.
Each sum term consists of N product terms, i.e., a sequence of N events vj(i) subjected to a corresponding fol-
lowed by operator (i.e., -> or ~> or &>). There are N! such sequences of events. The (N+1)th operand can be
inserted in N+1 places within each sum term. Therefore a vector expression with N+1 operands vk subjected to a
permutation operator is equivalent to a vector expression with (N+1)! sum terms, each of which consists of N+1
product terms.

As each permutation operator is defined for N=2 events, the definition can be immediatley extended to N=3
events.

Permutation of 3 immediately followed events:

v1 <-> v2 <-> v3 =
(v1 -> v2 -> v3) | (v1 -> v3 -> v2) | (v3 -> v1 -> v2) | (v2 -> v1 -> v3) | (v2 -> v3 -> v1) | (v3 -> v2 -> v1)

Permutation of 3 eventually followed events:

v1 <~> v2 <~> v3 =
(v1 ~> v2 ~> v3) | (v1 ~> v3 ~> v2) | (v3 ~> v1 ~> v2) | (v2 ~> v1 ~> v3) | (v2 ~> v3 ~> v1) | (v3 ~> v2 ~> v1)

Permutation of 3 closely followed events:

v1 <&> v2 <&> v3 =
(v1 &>v2 &>v3) | (v1 &>v3 &>v2) | (v3 &>v1 &>v2) | (v2 &>v1 &>v3) | (v2 &>v3 &>v1) | (v3 &>v2 &>v1)

From N=3 events, the definition can be extended to N=4 events, and so forth.

10.13.5 Specification of a conditional event

A conditional event shall be defined by a condition operator with a vector expression and a boolean expression as
operands.

<->vk

k 1=

N 1+

∏ ->vj i()

i 1=

k 1–

∏

->vj N 1+() ->vj i()

i k=

N

∏

k 1=

N 1+

∑
j 1=

N!

∑ vj
p K 1+()

j 1=

N 1+()!

∑= =

<->vk

k 1=

N

∏ ->vj i()

i 1=

N

∏
j 1=

N!

∑ vj
p N()

j 1=

N!

∑= = vj
p N() ->vj i()

i 1=

N

∏=

vj
p N 1+() ->vj i()

i 1=

N 1+

∏=

with

with

vj i() vk()⊂where
IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 139

The symbols for condition operators are shown in the following Table 83.

A conditional event involving the control-and operator, an arbitrary vector expression v and an arbitrary boolean
expression b shall be mathematically defined as follows:

s) v & b = (*1 b) -> v -> (1* b)

The vector expression v shall be evaluated while b is true. Commutativity shall apply for the operands v and b.

t) v & b = b & v

A conditional event involving the condition operator, the delimiter between alternatives, arbitrary vector expres-
sions v1 and v2 and an arbitrary boolean expression b shall be mathematically defined as follows:

u) b ? v1 : v2 = v1 & b | v2 & ! b

If the boolean expression to the left of the condition operator evaluates true, the vector expression to the right of
the condition operator shall be evaluated. Otherwise, the boolean expression to the right of the delimiter between
alternatives shall be evaluated. If multiple conditions and alternatives exist, the evaluation shall proceed from the
left to the right.

10.13.6 Operator priorities

The binding priority of operations in a vector expression shall be from the strongest to the weakest in the follow-
ing order:

a) operation enclosed by parentheses
b) vector unary , i.e., edge literal
c) permutation operators (<->, <~>, <&>)
d) and operator (&, &&), to be interpreted as simultaneous occurence or as control-and
e) followed-by operators (->, ~>, &>)
f) or operator (|, ||), to be interpreted as alternative
g) operator and delimiter for conditional operation (?, :)

When operations of the same binding priority are subsequently encountered in a boolean expression, the evalua-
tion shall proceed from the left to the right.

Table 84—Specification a conditional event

symbol operator name comment

&&
or
&

control-and operator overloaded symbol, also used for logical and (see
Table 73) and bitwise and (Table 74)

? condition operator see also Table 75

: delimiter between alternatives see also Table 75
140 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

11. Constructs for electrical and physical modeling

Add lead-in text

11.1 Arithmetic expression

An arithmetic expression shall be defined as shown in Syntax 79.

11.1.1 Unary arithmetic operator

An unary arithmetic operator shall be defined as shown in Syntax 80.

Table 85 defines the semantics of unary arithmetic operators.

11.1.2 Binary arithmetic operator

A binary arithmetic operator shall be defined as shown in Syntax 81.

arithmetic_expression ::=
(arithmetic_expression)

| arithmetic_value
| { boolean_expression ? arithmetic_expression : } arithmetic_expression
| [unary_arithmetic_operator] arithmetic_operand
| arithmetic_operand binary_arithmetic_operator arithmetic_operand
| macro_arithmetic_operator (arithmetic_operand { , arithmetic_operand })

arithmetic_operand ::=
arithmetic_expression

Syntax 79—Arithmetic expression

unary_arithmetic_operator ::=
+

| -

Syntax 80—Unary arithmetic operator

Table 85—Unary arithmetic operators

Operator Description Comment

+ Positive sign. Neutral operator.

- Negative sign.
IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 141

Table 86 defines the semantics of binary arithmetic operators.

11.1.3 Macro arithmetic operator

A macro arithmetic operator shall be defined as shown in Syntax 82.

Table 87 defines the semantics of macro arithmetic operators.

binary_arithmetic_operator ::=
+

| -
| *
| /
| **
| %

Syntax 81—Binary arithmetic operator

Table 86—Binary arithmetic operators

Operator Description Comment

+ Addition

- Subtraction

* Multiplication

/ Division Result includes fractional part.

** Power

% Modulus Remainder of division.

macro_arithmetic_operator ::=
abs

| exp
| log
| min
| max

Syntax 82—Macro arithmetic operator

Table 87—Macro arithmetic operators

Operator Description Comment

log Natural logarithm. 1 operand, operand > 0.

exp Natural exponential. 1 operand.

abs Absolute value. 1 operand.

min Minimum. N>1 operands.
142 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

The priority of operators in arithmetic expressions shall be from strongest to weakest in the following order:

a) unary arithmetic operator (+, -)
b) power (**)
c) multiplication (*), division (/), modulo division (%)
d) addition (+), subtraction (-)

Examples for arithmetic expressions

1.24
- Vdd
C1 + C2
MAX (3.5*C , -Vdd/2 , 0.0)
(C > 10) ? Vdd**2 : 1/2*Vdd - 0.5*C

11.2 Arithmetic model

An arithmetic model shall be defined as a trivial arithmetic_model, a partial arithmetic model, or a full arith-
metic model, as shown in Syntax 83.

The purpose of an arithmetic model is to specify a measurable or a calculable quantity.

11.2.1 Trivial arithmetic model

A trivial arithmetic model shall be defined as shown in Syntax 84.

No mathematical operation is necessary to evaluate a trivial arithmetic model. The arithmetic value associated
with the arithmetic model represents the evaluation result. One or more model qualifier statements can be associ-
ated with a trivial arithmetic model.

max Maximum. N>1 operands.

arithmetic_model ::=
trivial_arithmetic_model

| partial_arithmetic_model
| full_arithmetic_model
| arithmetic_model_template_instantiation

Syntax 83—Arithmetic model statement

trivial_arithmetic_model ::=
nonescaped_identifier [name_identifier] = arithmetic_value ;

| nonescaped_identifier [name_identifier] = arithmetic_value { { model_qualifier } }

Syntax 84—Trivial arithmetic model

Table 87—Macro arithmetic operators (Continued)

Operator Description Comment
IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 143

11.2.2 Partial arithmetic model

A partial arithmetic model shall be defined as shown in Syntax 85.

A partial arithmetic model does not specify a mathematical operation or an arithmetic value. Therefore it can not
be mathematically evaluated.

The purpose of a partial arithmetic model is to specify one or more model qualifier statements, a table statement,
or a trivial min-max statement. The specification contained within a partial arithmetic model can be inherited by
another arithmetic model of the same type, according to the following rules:

a) If the partial arithmetic model has no name, the specification shall be inherited by all arithmetic models
of the same type appearing within the same parent statement or within a descendant of the same parent
statement.

b) If the partial arithmetic model has a name, the specification shall be only inherited by an arithmetic
model containing a reference to the partial arithmetic model, using the model reference annotation (see
**event_reference??).

c) An arithmetic model can override an inherited specification by its own specification.

11.2.3 Full arithmetic model

A full arithmetic model shall be defined as shown in Syntax 86.

The model body specifies mathematical data associated with the arithmetic model. The data is represented either
by a header-table-equation statement, or by a min-typ-max statement, or by one or more arithmetic submodel
statements.

The mathematical operation or the arithmetic value for evaluation of the arithmetic model can be contained
within one or more arithmetic submodels (see 11.4.3). The selection of an applicable submodel is controlled by
the semantics of the keyword that identifies the type of the arithmetic submodel.

11.3 HEADER, TABLE, and EQUATION

A header table equation statement shall be defines as shown in Syntax 87.

partial_arithmetic_model ::=
nonescaped_identifier [name_identifier] { { partial_arithmetic_model_item } }

partial_arithmetic_model_item ::=
model_qualifier

| table
| trivial_min-max

Syntax 85—Partial arithmetic model

full_arithmetic_model ::=
nonescaped_identifier [name_identifier] { { model_qualifier } model_body { model_qualifier } }

model_body ::=
header-table-equation [trivial_min-max]

| min-typ-max
| arithmetic_submodel { arithmetic_submodel }

Syntax 86—Full arithmetic model
144 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

A header-table-equation statement specifies a procedure for evaluation of the mathematical data.

11.3.1 HEADER statement

A header statement shall be defined as shown in Syntax 88.

Each partial arithmetic model within the header statement shall represent a dimension of an arithmetic model.

11.3.2 TABLE statement

A table statement shall be defined as shown in Syntax 89.

A table statement within a partial arithmetic model shall define the set of legal values for an arithmetic model
that inherits the specification of the partial arithmetic model.

A table statement within a full arithmetic model shall represent a lookup table. If the model body contains a table
statement, each dimension within the header statement shall also contain a table statement.

The mathematical relation between a lookup table and its dimensions shall be established as follows:

where

N denotes the number of dimensions
S denotes the size of the lookup table, i.e., the number of arithmetic values within the lookup table
P denotes the position of an arithmetic value within the lookup table
S(i) denotes the size of a dimension, i.e., the number of arithmetic values in the table within a dimension
P(i) denotes the position of an arithmetic value within a dimension

header-table-equation ::=
header table

| header equation

Syntax 87—Header table equation

header ::=
HEADER { partial_arithmetic_model { partial_arithmetic_model } }

Syntax 88—HEADER statement

table ::=
TABLE { arithmetic_value { arithmetic value } }

Syntax 89—TABLE statement

S S i()
i 1=

N

∏=

P P i() S k()
k 1=

i 1–

∏
i 1=

N

∑=
0 P i() S i() 1–≤ ≤

0 P S 1–≤ ≤

N 1≥

S i() 1≥

S 1≥
IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 145

A dimension can be either discrete or continuous. In the latter case, interpolation and extrapolation of table val-
ues is allowed, and the arithmetic values in this dimension shall appear in strictly monotonous ascending order.

11.3.3 EQUATION statement

An equation statement shall be defined as shown in Syntax 90.

The arithmetic expression within the equation statement shall represent the mathematical operation for evalua-
tion of the arithmetic model.

Each dimension shall be involved in the arithmetic expression. The arithmetic expression shall refer to a dimen-
sion by name, if a name identifier exists or by type otherwise. Consequently, the type or the name of a dimension
shall be unique.

11.4 Statements related to arithmetic model

Add lead-in text

11.4.1 Model qualifier

A model qualifier statement shall be defined as shown in Syntax 91.

11.4.2 Auxiliary arithmetic model

An auxiliary arithmetic model shall be defined as shown in Syntax 92.

equation ::=
EQUATION { arithmetic_expression }

| equation_template_instantiation

Syntax 90—EQUATION statement

model_qualifier ::=
annotation

| annotation_container
| event_reference
| from-to
| auxiliary_arithmetic_model
| violation

Syntax 91—Model qualifier statement

auxiliary_arithmetic_model ::=
nonescaped_identifier = arithmetic_value ;

| nonescaped_identifier [= arithmetic_value] { auxiliary_qualifier { auxiliary_qualifier } }
auxiliary_qualifier

annotation
| annotation_container
| event_reference
| from-to

Syntax 92—Auxiliary arithmetic model
146 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

An auxiliary arithmetic model can be considered as a special case of either a trivial arithmetic model or a partial
arithmetic model, since the rule for auxiliary qualifier is a true subset of the rule for model qualifier. In particu-
lar, the items auxiliary arithmetic model and violation are disallowed in the rule for auxiliary qualifier.

11.4.3 Arithmetic submodel

An arithmetic submodel shall be defined as shown in Syntax 93.

11.4.4 MIN-MAX statement

A min-max statement shall be defined as shown in Syntax 94.

11.4.5 MIN-TYP-MAX statement

A min-typ-max statement shall be defined as shown in Syntax 95.

11.4.6 Trivial MIN-MAX statement

A trivial min-max statement shall be defined as shown in Syntax 96

A trivial min-max statement defines the legal range of values for an arithmetic model. The arithmetic value asso-
ciated with the trivial min statement represent the smallest legal number. The arithmetic value associated with the
trivial max statement represents the greatest legal number. Per default, the range includes between negative and
positive infinity.

arithmetic_submodel ::=
nonescaped_identifier = arithmetic_value ;

| nonescaped_identifier { [violation] min-max }
| nonescaped_identifier { header-table-equation [trivial_min-max] }
| nonescaped_identifier { min-typ-max }
| arithmetic_submodel_template_instantiation

Syntax 93—Arithmetic submodel

min-max ::=
min [max]

| max [min]
min ::=

MIN = arithmetic_value ;
| MIN = arithmetic_value { violation }
| MIN { [violation] header-table-equation }

max ::=
MAX = arithmetic_value ;

| MAX = arithmetic_value { violation }
| MAX { [violation] header-table-equation }

Syntax 94—MIN-MAX statement

min-typ-max ::=
[min-max] typ [min-max]

typ ::=
TYP = arithmetic_value ;

| TYP { header-table-equation }

Syntax 95—MIN-TYP-MAX statement
IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 147

A trivial min-max statement within a dimension of a full arithmetic model defines the range of validity of a par-
ticular dimension. An application tool can still evaluate the header-table-equation statement outside the range of
validity, however, the accuracy of the evaluation can not be guaranteed.

The following semantic restrictions shall apply:

a) A partial arithmetic model that is not a dimension of a lookup table can either contain a trivial min-max
statement or a table statement but not both.

b) If a syntax rule allows both partial arithmetic model and full arithmetic model, a trivial min-max state-
ment shall be interpreted as a min-typ-max statement, if the arithmetic model contains neither a header-
table-equation statement nor a arithmetic submodel and no other arithmetic model can inherit the trivial
min-max statement.

Rule a) is established because a trivial min-max statement would be redundant or eventually contradictory to a
table statement, since the table statement already defines a discrete set of legal values.

Rule b) is established because the syntax rule for trivial min-max statement is a true subset of the syntax rule for
min-typ-max statement.

11.4.7 Arithmetic model container

An arithmetic model container shall be defined as shown in Syntax 97.

11.4.8 LIMIT statement

A limit statement shall be defined as shown in Syntax 98.

trivial_min-max ::=
trivial_min [trivial_max]

| trivial_max [trivial_min]
trivial_min ::=

MIN = arithmetic_value ;
trivial_max ::=

MAX = arithmetic_value ;

Syntax 96—Trivial MIN-MAX statement

arithmetic_model_container ::=
arithmetic_model_container_identifier { arithmetic_model { arithmetic_model } }

Syntax 97—Arithmetic model container

limit ::=
LIMIT { limit_item { limit_item } }

limit_item ::=
limit_arithmetic_model

limit_arithmetic_model ::=
nonescaped_identifier [name_identifier] { { model_qualifier } limit_arithmetic_model_body }

limit_arithmetic_model_body ::=
limit_arithmetic_submodel { limit_arithmetic_submodel }

| min_max
limit_arithmetic_submodel ::=

nonescaped_identifier { [violation] min-max }

Syntax 98—LIMIT statement
148 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

11.4.9 Event reference statement

An event reference statement shall be defined as shown in Syntax 99.

11.4.10 FROM and TO statements

A from or to statement shall be defined as shown in Syntax 100.

The event referred by the from-statement and the to-statement, respectively, shall be called from-event and to-
event, respectively.

The from-and to-statements are subjected to the semantic restriction shown in Syntax 101.

11.4.11 EARLY and LATE statements

An early or a late statement shall be defined as shown in Syntax 102.

11.4.12 VIOLATION statement

A violation statement shall be defined as shown in Syntax 103.

event_reference ::=
PIN_reference_single_value_annotation [EDGE_NUMBER_single_value_annotation]

Syntax 99—Event reference statement

from-to ::=
from [to]

| [from] to
from ::=

FROM { from-to_item { from-to_item } }
from-to_item ::=

event_reference
| THRESHOLD_arithmetic_model

to ::=
TO { from-to_item { from-to_item } }

Syntax 100—FROM and TO statements

SEMANTICS FROM {
CONTEXT {

TIME DELAY RETAIN SLEWRATE PULSSEWIDTH
SETUP HOLD RECOVERY REMOVAL NOCHANGE ILLEGAL SKEW

}
}
SEMANTICS TO {

CONTEXT {
TIME DELAY RETAIN SLEWRATE PULSSEWIDTH
SETUP HOLD RECOVERY REMOVAL NOCHANGE ILLEGAL SKEW

}
}

Syntax 101— Semantic restriction
IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 149

A violation statement is subjected to the semantic restriction shown in Semantics 60.

A violation statement can contain a behavior statement, as shown in Semantics 61.

early-late ::=
early late

early ::=
EARLY { early-late_item { early-late_item } }

early-late_item ::=
DELAY_arithmetic_model

| RETAIN_arithmetic_model
| SLEWRATE_arithmetic_model

late ::=
LATE { early-late_item { early-late_item } }

Syntax 102—EARLY and LATE statements

violation ::=
VIOLATION { violation_item { violation_item } }

| violation_template_instantiation
violation_item ::=

MESSAGE_TYPE_single_value_annotation
| MESSAGE_single_value_annotation
| behavior

Syntax 103—VIOLATION statement

SEMANTICS VIOLATION {
CONTEXT {

SETUP HOLD RECOVERY REMOVAL SKEW NOCHANGE ILLEGAL
LIMIT.arithmetic_model
LIMIT.arithmetic_model.MIN
LIMIT.arithmetic_model.MAX
LIMIT.arithmetic_model.arithmetic_submodel
LIMIT.arithmetic_model.arithmetic_submodel.MIN
LIMIT.arithmetic_model.arithmetic_submodel.MAX

}
}

Semantics 60—VIOLATION restriction

SEMANTICS VIOLATION.BEHAVIOR {
CONTEXT {

VECTOR.arithmetic_model
VECTOR.LIMIT.arithmetic_model
VECTOR.LIMIT.arithmetic_model.MIN
VECTOR.LIMIT.arithmetic_model.MAX
VECTOR.LIMIT.arithmetic_model.arithmetic_submodel
VECTOR.LIMIT.arithmetic_model.arithmetic_submodel.MIN
VECTOR.LIMIT.arithmetic_model.arithmetic_submodel.MAX

}
}

Semantics 61—VIOLATION.BEHAVIOR restriction
150 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

The violation statement can contain a message-type annotation and a message annotation.

A message_type annotation shall be defined as shown in Semantics 62.

A message annotation shall be defined as shown in Semantics 63.

11.5 Annotations for arithmetic models

Add lead-in text

11.5.1 UNIT annotation

A unit annotation shall be defined as shown in Semantics 64.

11.5.2 CALCULATION annotation

A calculation annotation shall be defined as shown in Semantics 65.

KEYWORD MESSAGE_TYPE = single_value_annotation {
CONTEXT = VIOLATION ;
VALUETYPE = identifier ;
VALUES { information warning error }

}

Semantics 62—MESSAGE_TYPE annotation

KEYWORD MESSAGE = single_value_annotation {
CONTEXT = VIOLATION ;
VALUETYPE = quoted_string ;

}

Semantics 63—MESSAGE annotation

KEYWORD UNIT = annotation {
CONTEXT = arithmetic_model ;
VALUETYPE = quantity_value ;
DEFAULT = 1 ;

}

Semantics 64—UNIT annotation

KEYWORD CALCULATION = annotation {
CONTEXT = library_specific_object.arithmetic_model ;
VALUES { absolute incremental }
DEFAULT = absolute ;

}

Semantics 65—CALCULATION annotation
IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 151

The meaning of the annotation values is shown in Table 88.

11.5.3 INTERPOLATION annotation

A interpolation annotation shall be defined as shown in Semantics 66.

The interpolation annotation shall apply for a dimension of a lookup table with a continuous range of values.
Every dimension in a lookup table can have its own interpolation annotation.

The meaning of the annotation values is shown in Table 89.

The mathematical operations for floor, ceiling, and linear are specified as follows:

where

Table 88—Calculation annotations

Annotation value Description

absolute The arithmetic model data is complete within itself.

incremental The arithmetic model data shall be combined with other arithmetic model data.

KEYWORD INTERPOLATION = single_value_annotation {
CONTEXT = HEADER.arithmetic_model ;
VALUES { linear fit ceiling floor }
DEFAULT = fit ;

}

Semantics 66—INTERPOLATION annotation

Table 89—Interpolation annotations

Annotation value Description

linear Linear interpolation shall be used.

ceiling The next greater value in the table shall be used.

floor The next lesser value in the table shall be used.

fit Linear or higher-order interpolation shall be used.

y x() y x-()=

y x() x x-–() y x+()⋅ x+ x–() y x-()⋅+

x+ x-–
---=

y x() y x+()=

floor

ceiling

linear
152 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

x denotes the value in a dimension subjected to interpolation.
x- and x+ denote two subsequent values in the table associated with that dimension.

x- denotes the value to the left of x, such that x- < x, or else x- denotes the smallest value in the table.
x+ denotes the value to the right of x, such that x < x+, or else x+ denotes the largest value in the table.

y denotes the evaluation result of the arithmetic model.

The mathematical operation for fit can be chosen by the application, as long as the following conditions are satis-
fied:

y(x) is a continuous function of order N>0.
The first N-1 derivatives of y(x) are continuous.
y(x) is bound by y(x-) and y(x+).
In case of monotony, y(x) is also bound by linear interpolation applied to the left and the right neighbor of x.
In case of monotonous derivative, y(x) is also bound by linear interpolation applied to x itself.

These conditions are illustrated in Figure 17.

Figure 17—Bounding regions for y(x) with INTERPOLATION=fit

11.5.4 DEFAULT annotation

A default annotation shall be defined as shown in Semantics 67.

11.5.5 MODEL annotation

A model annotation shall be defined as shown in Semantics 68.

KEYWORD DEFAULT = single_value_annotation {
CONTEXT { arithmetic_model KEYWORD }
VALUETYPE = all_purpose_value ;

}

Semantics 67—DEFAULT annotation

x- x+

y(x+)

y(x-)

x- x+

y(x+)

y(x-)

x- x+

y(x+)

y(x-)

arbitrary y(x) monotonous y(x) monotonous d y/dx
IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 153

11.6 TIME

**Is this (and some 35 other constucts after this) a statement, an annotation, or some ‘other grouping’??
**and should their label(s), therefore, be Syntax, Semantics, or some new_name??

If these constructs are really statements, they need to be converted in (true BNF) syntax boxes

A time statement shall be defined as shown in Syntax 104.

A time statement can have a from-to statement as model qualifier.

11.6.1 TIME in context of a VECTOR declaration

A time statement can be a child or a grandchild of a vector declaration. In particular, the parent of the time state-
ment can be a limit statement. In the context of a limit statement, the time statement shall specify a smallest
required time or a largest allowed time interval. Otherwise, the time statement shall specify an actually measured
time interval.

If the vector declaration involves a vector expression, from-to statements featuring event reference statements
shall be used as model qualifier. The time statement shall model the measured time interval between the referred
events.

If the vector declaration involves a boolean expression, the time statement applies to a time interval during which
the boolean expression is true. A from-to statement shall not be used as model qualifier.

11.6.2 TIME in context of a HEADER statement

A time statement can be child of a header statement, thus representing a dimension of an arithmetic model.

If the arithmetic model is not a child of a limit statement, the time dimension shall be used to describe a quantity
changing over time, which can be visualized by a waveform.

If the arithmetic model is a child of a vector declaration, either a from statement or a to statement can be used as
model qualifier to define a temporal relationship between a referred event and the time dimension.

If the arithmetic model is a child of a limit statement, the time dimension shall be used to describe a dependency
between a limit for a measured quantity and the expected lifetime of an electronic circuit. A from-to statement
shall not be used as model qualifier.

KEYWORD MODEL = single_value_annotation {
CONTEXT = arithmetic_model ;
VALUETYPE = identifier ;

}

Semantics 68—MODEL annotation

KEYWORD TIME = arithmetic_model {
VALUETYPE = number ;

}
TIME { UNIT = 1e-9; }

Syntax 104—TIME statement
154 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

11.6.3 TIME as auxiliary arithmetic model

A time statement can be a child of an arithmetic model, thus representing an auxiliary arithmetic model.

A measurement annotation (see 11.29.1) shall be used in conjunction with the time statement. The time statement
shall specify the time interval during which the measurement is taken.

If the parent arithmetic model is a child of a vector declaration, a from-to statement can be used to define a tem-
poral relationship between one or two events in the vector expression and the time interval.

11.7 FREQUENCY

A frequency statement shall be defined as shown in Syntax 105.

11.7.1 FREQUENCY in context of a VECTOR declaration

A frequency statement can be a child or a grandchild of a vector declaration. In particular, the parent of the fre-
quency statement can be a limit statement. In the context of a limit statement, the frequency statement shall spec-
ify a smallest required occurrence frequency or a largest allowed occurrence frequency of the vector. Otherwise,
the frequency statement shall specify an actually measured occurrence frequency of the vector.

11.7.2 FREQUENCY in context of a HEADER statement

A frequency statement can be child of a header statement, thus representing a dimension of an arithmetic model.

If the arithmetic model is a child of a vector declaration, the frequency dimension shall represent the occurrence
frequency of the vector.

If the arithmetic model is not a child of a vector declaration, the frequency dimension shall be used to describe a
spectral properties of the arithmetic model in the frequency domain.

11.7.3 FREQUENCY as auxiliary arithmetic model

A frequency statement can be a child of an arithmetic model, thus representing an auxiliary arithmetic model.

A measurement annotation (see 11.29.1) shall be used in conjunction with the frequency statement. The fre-
quency statement shall specify the repetition frequency of the measurement.

A frequency statement can substitute a time statement in the capacity of an auxiliary arithmetic model, if no
from-to statement is used as model qualifier. In this case, the measurement repetition frequency f and the mea-
surement time interval t can be related by the equation f = 1 / t.

11.8 DELAY

A delay statement shall be defined using ALF language as shown in Syntax 106.

KEYWORD FREQUENCY = arithmetic_model {
VALUETYPE = number ;

}
FREQUENCY { UNIT = 1e9; MIN = 0; }

Syntax 105—FREQUENCY statement
IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 155

11.8.1 DELAY in context of a VECTOR declaration

A delay statement can be a child or a grandchild of a vector declaration involving a vector expression. A delay
statement shall have a from-to statement featuring event references as model qualifier. The delay statement shall
define the measured time interval between a from-event and a to-event. Both events shall be part of the vector
expression. A causal relationship between the from-event and the to-event is implied.

A delay statement with an incomplete model qualifier featuring only a from statement or only a to statement can
be used to specify an incremental time interval to be added to another time interval. The calculation annotation
(see 11.5.2) shall be used in conjunction with such an incomplete model qualifier.

11.8.2 DELAY in context of a library-specific object declaration

A delay statement can be a child of a library-specific object which can be a parent of a vector. Possible parents of
a vector include library, sublibrary, cell and wire. Within such a context, a delay statement can not have an event
reference within a from-to statement as model qualifier. A from-to statement can only feature threshold state-
ments. The specification given by the threshold statements shall be inherited by delay statements which are child
of a vector.

11.9 RETAIN

A retain statement shall be defined as shown in Syntax 107.

A retain statement can be a child or a grandchild of a vector declaration involving a vector expression. A retain
statement can be used as a substitution for a delay statement in the case where the vector expression features
more than one possible to-event. Retain represents the time interval between the from-event and the earliest to-
event. Later to-events can be involved in a delay statement.

Retain in conjunction with delay is illustrated in Figure 18.

KEYWORD DELAY = arithmetic_model {
SI_MODEL = TIME ;

}

Syntax 106—DELAY statement

KEYWORD RETAIN = arithmetic_model {
SI_MODEL = TIME ;

}

Syntax 107—RETAIN statement
156 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

Figure 18—RETAIN and DELAY

11.10 SLEWRATE

A slewrate statement shall be defined as shown in Syntax 108.

Slewrate shall define the duration of a single event, measured between two reference transition points. If the par-
ent of the slewrate statement is a limit statement, the slewrate statement defines a minimum required or a maxi-
mum allowed duration of an event. Otherwise, slewrate defines the actually measured duration of an event.

11.10.1 SLEWRATE in context of a VECTOR declaration

A slewrate statement can be a child or a grandchild of a vector declaration. Slewrate can also be a dimension of
an arithmetic model in the context of a vector.

The slewrate statement can have an event reference statement and a from-to statement without event reference
as model qualifier. The from-and the to-statement can involve threshold statements.

11.10.2 SLEWRATE in context of a PIN declaration

A slewrate statement can be a child or a grandchild of a pin declaration. In this context, no from-to statement and
no event-reference statement is allowed as model qualifier.

The slewrate statement can have a rise statement or a fall statement as arithmetic submodel.

11.10.3 SLEWRATE in context of a library-specific object declaration

A slewrate statement can be a child of a library-specific object which can be a parent of a vector. Possible parents
of a vector include library, sublibrary, cell and wire. Within such a context, a slewrate statement can not have an
event reference as model qualifier. A from-to statement with threshold statements can be used as model qualifier.

KEYWORD SLEWRATE = arithmetic_model {
SI_MODEL = TIME ;

}
SLEWRATE { MIN = 0; }

Syntax 108—SLEWRATE statement

<fromPin>

<toPin>

RETAIN

DELAY

<toEdge> <toEdge>

<fromEdge>
IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 157

The specification given by the threshold statements can be inherited by slewrate statements which are child of a
vector.

The slewrate statement can have a rise statement or a fall statement as arithmetic submodel.

11.11 SETUP and HOLD

A setup or hold statement shall be defined as shown in Syntax 109.

11.11.1 SETUP in context of a VECTOR declaration

A setup statement can be a child of a vector declaration. Setup represents the minimal required time interval
between a signal event and a synchronization event such that the signal is already stable when the synchroniza-
tion event occurs. The signal event and the synchronization event shall be represented as a from-event and a to-
event, respectively, within a from-to statement.

11.11.2 HOLD in context of a VECTOR declaration

A hold statement can be a child of a vector declaration.Hold represents the minimal required time interval
between a synchronization event and a signal event such that the synchronization event occurs while the signal is
still stable. The synchronization event and the signal event shall be represented as a from-event and a to-event,
respectively, within a from-to statement.

11.11.3 SETUP and HOLD in context of the same VECTOR declaration

A setup and a hold statement can be a child of the same vector, provided the vector expression features at least
one synchronization event and two signal events related to the synchronization event. The sum of the time inter-
vals represented by setup and hold represents a minimum required stability interval for the signal. This interval
shall be greater than zero.

Setup in conjunction with hold is illustrated in Figure 19.

KEYWORD SETUP = arithmetic_model {
SI_MODEL = TIME ;

}
KEYWORD HOLD = arithmetic_model {

SI_MODEL = TIME ;
}

Syntax 109—SETUP and HOLD statements
158 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

Figure 19—SETUP and HOLD

11.12 RECOVERY and REMOVAL

A recovery or removal statement shall be defined as shown in Syntax 110.

11.12.1 RECOVERY in context of a VECTOR declaration

A recovery statement can be a child of a vector declaration. Recovery represents the minimal required time inter-
val between a controlling event with higher priority and a controlling event with lower priority such that the sig-
nal with higher priority is already inactive when the event on the signal with lower priority occurs. The event
with higher priority and the event with lower priority shall be represented as a from-event and a to-event, respec-
tively, within a from-to statement.

11.12.2 REMOVAL in context of a VECTOR declaration

A removal statement can be a child of a vector declaration. Removal represents the minimal required time inter-
val between a controlling event with lower priority and a controlling event with higher priority such that the sig-
nal with higher priority is still active when the event with lower priority occurs. The event with higher priority
and the event with lower priority shall be represented as a from-event and a to-event, respectively, within a from-
to statement.

11.12.3 RECOVERY and REMOVAL in context of the same VECTOR declaration

A recovery and a removal statement can be a child of the same vector, provided the vector expression features at
least one event with lower priority and two alternative events with higher priority. The sum of the time intervals
represented by recovery and removal represents a minimum required stability interval for the signal with higher
priority. This interval shall be greater than zero.

Recovery in conjunction with removal is illustrated in Figure 20.

KEYWORD RECOVERY = arithmetic_model {
SI_MODEL = TIME ;

}
KEYWORD REMOVAL = arithmetic_model {

SI_MODEL = TIME ;
}

Syntax 110—RECOVERY and REMOVAL statements

SETUP

HOLD

<toEdge>

<toEdge>

<fromEdge>

<fromEdge>data

clock
IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 159

Figure 20—RECOVERY and REMOVAL

11.13 NOCHANGE and ILLEGAL

A nochange or an illegal statement shall be defined as shown in Syntax 111.

11.13.1 NOCHANGE in context of a VECTOR declaration

A nochange statement can be a child of a vector declaration.

If the vector declaration involves a boolean expression, nochange shall specify a minimum required time interval
during which the boolean expression is true. Nochange as a partial arithmetic model shall indicate a requirement
for the boolean expression to be forever true.

If the vector declaration involves a vector expression, nochange as a partial arithmetic model shall indicate a
requirement for the vector expression to be observed as specified. An optional from-to statement as model quali-
fier can indicate a requirement for the part of the vector expression within the time interval between the from-
event and the to-event to be observed as specified. Nochange as a full arithmetic model or as a trivial arithmetic
model shall furthermore specify a minimum required duration of the vector expression or part thereof.

11.13.2 ILLEGAL in context of a VECTOR declaration

An illegal statement can be a child of a vector declaration.

KEYWORD NOCHANGE = arithmetic_model {
SI_MODEL = TIME ;

}
KEYWORD ILLEGAL = arithmetic_model {

SI_MODEL = TIME ;
}
NOCHANGE { MIN = 0; }
ILLEGAL { MIN = 0; }

Syntax 111—NOCHANGE and ILLEGAL statements

RECOVERY

REMOVAL

<toEdge>

<toEdge>

<fromEdge>

<fromEdge>

set, reset

clock

or

set, reset
160 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

If the vector declaration involves a boolean expression, illegal shall specify a maximum allowed time interval
during which the boolean expression is true. Illegal as a partial arithmetic model shall indicate a requirement for
the boolean expression to be never true.

If the vector declaration involves a vector expression, illegal as a partial arithmetic model shall indicate that the
vector expression is not allowed to occur. An optional from-to statement as model qualifier can indicate that a
part of the vector expression within the time interval between the from-event and the to-event is not allowed to
occur. Illegal as a full arithmetic model or as a trivial arithmetic model shall furthermore specify a maximum tol-
erated duration of the vector expression or part thereof.

11.14 SKEW

A skew statement shall be defined as shown in Syntax 112.

A skew statement can be a child of a vector declaration.

11.14.1 SKEW involving two signals

A skew statement can specify a maximum allowed time interval between a from-event and a to-event. In this
case, a from-to statement is mandatory as model qualifier. The vector declaration shall specify a vector expres-
sion such that the to-event cannot occur before the from-event.

11.14.2 SKEW involving multiple signals

A skew statement can specify a maximum allowed time separation between multiple events. In this case, a multi-
value annotation containing pin references is mandatory as model qualifier. Optionally, this multi-value annota-
tion can be accompanied by another multi-value annotation containing a matching number of edge numbers. The
vector declaration shall specify a vector expression such that all events can occur simultaneously.

11.15 PULSEWIDTH

A pulsewidth statement shall be defined as shown in Syntax 113.

A pulsewidth statement shall define the time interval between two consecutive events on the same signal. If the
parent of the pulsewidth statement is a limit statement, pulsewidth defines a minimum required or a maximum
allowed duration of the time interval. Otherwise, pulsewidth defines the actually measured time interval.

KEYWORD SKEW = arithmetic_model {
SI_MODEL = TIME ;

}
SKEW { MIN = 0; }

Syntax 112—SKEW statement

KEYWORD PULSEWIDTH = arithmetic_model {
SI_MODEL = TIME ;

}
PULSEWIDTH { MIN = 0; }

Syntax 113—PULSEWIDTH statement
IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 161

11.15.1 PULSEWIDTH in context of a VECTOR declaration

A pulsewidth statement can be a child of a vector declaration. Pulsewidth can also be a dimension of an arith-
metic model in the context of a vector.

The pulsewidth statement can have an event-reference statement and a from-to statement without event reference
as model qualifier. The from-and the to-statement can involve threshold statements. The event reference shall
refer to the first of two consecutive events.

11.15.2 PULSEWIDTH in context of a PIN declaration

A pulsewidth statement can be a child or a grandchild of a pin declaration. In this context, no from-to statement
and no event-reference statement is allowed as model qualifier.

The pulsewidth statement can have a rise statement and/or a fall statement as arithmetic submodel. The switching
direction indicated by rise or fall shall refer to the first of two consequtive events.

11.15.3 PULSEWIDTH in context of a library-specific object declaration

A pulsewidth statement can be a child of a library-specific object which can be a parent of a vector. Possible par-
ents of a vector include library, sublibrary, cell and wire. Within such a context, a pulsewidth statement can not
have an event reference as model qualifier. A from-to statement with threshold statements can be used as model
qualifier. The specification given by the threshold statements can be inherited by pulsewidth statements which
are child of a vector.

The pulsewidth statement can have a rise statement or a fall statement as arithmetic submodel. The switching
direction indicated by rise or fall shall refer to the first of two consecutive events.

11.16 PERIOD

A period statement shall be defined as shown in Syntax 114.

A period statement can be a child or a grandchild of a vector. Period can also be a dimension of an arithmetic
model in the context of a vector. Period shall define the time interval between two consecutive occurrences of a
periodically repeating vector.

If the parent of the period statement is a limit statement, period defines a minimum required or a maximum
allowed time interval. Otherwise, period defines the actually measured time interval.

11.17 JITTER

A jitter statement shall be defined as shown in Syntax 115.

KEYWORD PERIOD = arithmetic_model {
SI_MODEL = TIME ;

}
PERIOD { MIN = 0; }

Syntax 114—PERIOD statement
162 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

A jitter statement can be a child or a grandchild of a vector. Jitter can also be a dimension of an arithmetic model
in the context of a vector. Jitter shall define the variability of a time interval between two consecutive occur-
rences of the periodically repeating vector.

If the parent of the jitter statement is a limit statement, jitter defines a minimum required or a maximum allowed
variability of the time interval. Otherwise, jitter defines the actually measured variability of the time interval.

The measurement annotation (see 11.29.1) is applicable as model qualifier.

11.18 THRESHOLD

A threshold statement shall be defined using ALF language as shown in Syntax 116.

The THRESHOLD represents a reference voltage level for timing measurements, normalized to the signal voltage
swing and measured with respect to the logic 0 voltage level, as shown in Figure 21.

Figure 21—THRESHOLD measurement definition

The voltage levels for logic 1 and 0 represent a full voltage swing.

KEYWORD JITTER = arithmetic_model {
SI_MODEL = TIME ;

}
JITTER { MIN = 0; }

Syntax 115—JITTER statement

KEYWORD THRESHOLD = arithmetic_model {
CONTEXT { PIN FROM TO }

}
THRESHOLD { MIN = 0; MAX = 1; }

Syntax 116—THRESHOLD statement

V (logic 1)

V (logic 0)

∆Vrise ∆Vfall

time

threshold (rise) =
∆Vrise

∆V
threshold (fall) =

∆Vfall

∆V

∆V
IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 163

Different threshold data for RISE and FALL can be specified or else the data shall apply for both rising and fall-
ing transitions.

The THRESHOLD statement has the form of an arithmetic model. If the submodel keywords RISE and FALL are
used, it has the form of an arithmetic model container.

The THRESHOLD statement can appear in the context of a FROM or TO container. In this case, it specifies the
applicable reference for the start and end point of the timing measurement, respectively.

The THRESHOLD statement can also appear in the context of a PIN. In this case, it specifies the applicable refer-
ence for the start or end point of timing measurements indicated by the PIN annotation inside a FROM or TO con-
tainer, unless a THRESHOLD is specified explicitly inside the FROM or TO container.

If both the RISE and FALL thresholds are specified and the switching direction of the applicable pin is clearly
indicated in the context of a VECTOR, the RISE or FALL data shall be applied accordingly.

If thresholds are needed for exact definition of the model data, the FROM and TO containers shall each contain an
arithmetic model for THRESHOLD.

FROM and TO containers with THRESHOLD definitions, yet without PIN annotations, can appear within
unnamed timing model definitions in the context of a VECTOR, CELL, WIRE, SUBLIBRARY, or LIBRARY
object for the purpose of specifying global threshold definitions for all timing models within scope of the defini-
tion. The following priorities apply:

a) THRESHOLD in the HEADER of the timing model
b) THRESHOLD in the FROM or TO statement within the timing model
c) THRESHOLD for timing model definition in the context of the same VECTOR
d) THRESHOLD within the PIN definition
e) THRESHOLD for timing model definition in the context of the same CELL or WIRE
f) THRESHOLD for timing model definition in the context of the same SUBLIBRARY
g) THRESHOLD for timing model definition in the context of the same LIBRARY
h) THRESHOLD for timing model definition outside LIBRARY

11.19 Annotations related to timing data

Add lead-in text

11.19.1 PIN reference annotation

If the timing measurements or timing constraints, respectively, apply semantically for two pins (see 11.9.1.1),
the FROM and TO containers shall each contain the PIN annotation.

Otherwise, if the timing measurements or timing constraints apply semantically only to one pin (see 11.9.1.3),
the PIN annotation shall be outside the FROM or TO container.

The semantic restrictions shown in Semantics 69 shall apply.

11.19.2 EDGE_NUMBER annotation

A edge_number annotation shall be defined as shown in Semantics 70.

The EDGE_NUMBER annotation within the context of a timing model shall specify the edge where the timing
measurement applies. The timing model shall be in the context of a VECTOR. The EDGE_NUMBER shall have an
164 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

unsigned value pointing to exactly one of subsequent vector_single_event expressions applicable to the
referenced pin. The EDGE_NUMBER shall be counted individually for each pin which appears in the VECTOR,
starting with zero (0).

If the timing measurements or timing constraints apply semantically to two pins (see 11.9.1.1), the
EDGE_NUMBER annotation shall be legal inside the FROM or TO container in conjunction with the PIN annota-
tion.

Otherwise, if the timing measurements or timing constraints apply semantically only to one pin (see 11.9.1.3),
the EDGE_NUMBER annotation shall be legal outside the FROM or TO container in conjunction with the PIN
annotation.

11.20 PROCESS

A process statement shall be defined as shown in Syntax 117.

The following identifiers can be used as predefined process corners:

?n?pprocess definition with transistor strength

where ? can be

SEMANTICS PIN = single_value_annotation {
CONTEXT {

FROM TO SLEWRATE PULSEWIDTH
CAPACITANCE RESISTANCE INDUCTANCE VOLTAGE CURRENT

}
}
SEMANTICS SKEW.PIN = multi_value_annotation ;

Semantics 69—PIN restriction

KEYWORD EDGE_NUMBER = annotation {
CONTEXT { FROM TO SLEWRATE PULSEWIDTH SKEW }
VALUETYPE = unsigned_integer ;
DEFAULT = 0;

}
SEMANTICS EDGE_NUMBER = single_value_annotation {

CONTEXT { FROM TO SLEWRATE PULSEWIDTH }
}
SEMANTICS SKEW.EDGE_NUMBER = multi_value_annotation ;

Semantics 70—EDGE_NUMBER annotation

KEYWORD PROCESS = arithmetic_model {
VALUETYPE = identifier ;

}
PROCESS { DEFAULT = nom; TABLE { nom snsp snwp wnsp wnwp } }

Syntax 117—PROCESS statement
IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 165

sstrong
wweak

The possible process name combinations are shown in Table 90.

11.21 DERATE_CASE

A derate_case statement shall be defined as shown in Syntax 118.

The following identifiers can be used as predefined derating cases:

nomnominal case
bc?prefix for best case
wc?prefix for worst case

where ? can be

comsuffix for commercial case
indsuffix for industrial case
milsuffix for military case

The possible derating case combinations are defined in Table 91.

Table 90—Predefined process names

Process name Description

snsp Strong NMOS, strong PMOS.

snwp Strong NMOS, weak PMOS.

wnsp Weak NMOS, strong PMOS.

wnwp Weak NMOS, weak PMOS.

KEYWORD DERATE_CASE = arithmetic_model {
VALUETYPE = identifier ;

}
DERATE_CASE { DEFAULT = nom;

TABLE { nom bccom wccom bcind wcind bcmil wcmil }}
}

Syntax 118—DERATE_CASE statement

Table 91—Predefined derating cases

Derating case Description

bccom Best case commercial.

bcind Best case industrial.
166 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

11.22 TEMPERATURE

A temperature statement shall be defined as shown in Syntax 119.

TEMPERATURE can be used as argument in the HEADER of an arithmetic model for timing or electrical data. It
can also be used as an arithmetic model with DERATE_CASE as argument, in order to describe what temperature
applies for the specified derating case.

11.23 PIN-related arithmetic models for electrical data

Arithmetic models for electrical data can be associated with a pin of a cell. Their meaning is illustrated in
Figure 22.

Figure 22—General representation of electrical models around a pin

A pin is represented as a source node and a sink node. For pins with DIRECTION=input, the source node is
externally accessible. For pins with DIRECTION=output, the sink node is externally accessible.

11.23.1 CAPACITANCE, RESISTANCE, and INDUCTANCE

A capacitance, resistance, or inductance statement shall be defined as shown in Syntax 120.

bcmil Best case military.

wccom Worst case commercial.

wcind Worst case military.

wcmil Worst case military.

KEYWORD TEMPERATURE = arithmetic_model {
VALUETYPE = number ;

}
TEMPERATURE { MIN = -273; }

Syntax 119—TEMPERATURE statement

Table 91—Predefined derating cases (Continued)

Derating case Description

source

resistance

capacitance

inductance

sink

voltage

node node currentcurrent

voltage
IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 167

RESISTANCE and INDUCTANCE apply between the source and sink node. CAPACITANCE applies between
the sink node and ground. By default, the values for resistance, inductance and capacitance shall be zero (0).

11.23.2 VOLTAGE and CURRENT

A voltage or current statement shall be defined as shown in Syntax 121.

VOLTAGE and CURRENT can be measured at either source or sink node, depending on which node is externally
accessible. However, a voltage source can only be connected to a source node. The sense of measurement for
voltage shall be from the node to ground. The sense of measurement for current shall be into the node.

11.23.3 Context-specific semantics

An arithmetic model for VOLTAGE, CURRENT, SLEWRATE, RESISTANCE, INDUCTANCE, and CAPACI-
TANCE can be associated with a PIN in one of the following ways.

a) A model in the context of a PIN

Example

PIN my_pin {
CAPACITANCE = 0.025;

b) A model in the context of a CELL, WIRE, or VECTOR with PIN annotation

Example

KEYWORD CAPACITANCE = arithmetic_model {
VALUETYPE = number ;

}
KEYWORD RESISTANCE = arithmetic_model {

VALUETYPE = number ;
}
KEYWORD INDUCTANCE = arithmetic_model {

VALUETYPE = number ;
}
CAPACITANCE { UNIT = 1e-12; MIN = 0; }
RESISTANCE { UNIT = 1e3; MIN = 0; }
INDUCTANCE { UNIT = 1e-6; MIN = 0; }

Syntax 120—CAPACITANCE, RESISTANCE, and INDUCTANCE statements

KEYWORD VOLTAGE = arithmetic_model {
VALUETYPE = number ;

}
KEYWORD CURRENT = arithmetic_model {

VALUETYPE = number ;
}
VOLTAGE { UNIT = 1; }
CURRENT { UNIT = 1e-3; }

Syntax 121—VOLTAGE and CURRENT statements
168 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

VOLTAGE = 1.8 { PIN = my_pin; }

The model in the context of a PIN shall be used if the data is completely confined to the pin. That means, no
argument of the model shall make reference to any pin, since such reference implies an external dependency. A
model with dependency only on environmental data not associated with a pin (e.g., TEMPERATURE, PROCESS,
and DERATE_CASE) can be described within the context of the PIN.

A model with dependency on external data applied to a pin (e.g., load capacitance) shall be described outside the
context of the PIN, using a PIN annotation. In particular, if the model involves a dependency on logic state or
logic transition of other PINs, the model shall be described within the context of a VECTOR.

Figure 23 illustrates electrical models associated with input and output pins.

Figure 23—Electrical models associated with input and output pins

Table 92 and Table 93 define how models are associated with the pin, depending on the context.

Table 92—Direct association of models with a PIN

Model Model in context of PIN Model in context of CELL, WIRE, and
VECTOR with PIN annotation

CAPACITANCE Pin self-capacitance. Externally controlled capacitance at the pin,
e.g., voltage-dependent.

INDUCTANCE Pin self-inductance. Externally controlled inductance at the pin,
e.g., voltage-dependent.

RESISTANCE Pin self-resistance. Externally controlled resistance at the pin,
e.g., voltage-dependent, in the context of a
VECTOR for timing-arc specific driver
resistance.

VOLTAGE Operational voltage measured at pin. Externally controlled voltage at the pin.

CURRENT Operational current measured into pin. Externally controlled current into pin.

SAME_PIN_TIMING_
MEASUREMENT

For model definition, default, etc.;
not for the timing arc.

In context of VECTOR for timing arc, other
context for definition, default, etc.

SAME_PIN_TIMING_
CONSTRAINT

For model definition, default, etc.;
not for the timing arc.

In context of VECTOR for timing arc, other
context for definition, default, etc.

input pin output pin

source sink sinksource

voltage

current

voltage

current

external loadexternal driver
IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 169

Example

CELL my_cell {
PIN pin1 { DIRECTION=input; CAPACITANCE = 0.05; }
PIN pin2 { DIRECTION=output; LIMIT { CAPACITANCE { MAX=1.2; } } }
PIN pin3 { DIRECTION=input; }
PIN pin4 { DIRECTION=input; }
CAPACITANCE {

PIN=pin3;
HEADER { VOLTAGE { PIN=pin4; } }
EQUATION { 0.25 + 0.34*VOLTAGE }

}
}

The capacitance on pin1 is 0.05. The maximum allowed load capacitance on pin2 is 1.2. The capacitance
on pin3 depends on the voltage on pin4.

11.24 POWER and ENERGY

A power or an energy statement shall be defined as shown in Syntax 122.

The purpose of power calculation is to evaluate the electrical power supply demand and electrical power dissipa-
tion of an electronic circuit. In general, both power supply demand and power dissipation are the same, due to the

Table 93—External association of models with a PIN

Model / context LIMIT within PIN or with PIN annotation Model argument with PIN
annotation

CAPACITANCE Min or max limit for applicable load. Load for model characterization.

INDUCTANCE Min or max limit for applicable load. Load for model characterization.

RESISTANCE Min or max limit for applicable load. Load for model characterization.

VOLTAGE Min or max limit for applicable voltage. Voltage for model characterization.

CURRENT Min or max limit for applicable current. Current for model characterization.

SAME_PIN_TIMING_
MEASUREMENT

Currently applicable for min or max limit for
SLEWRATE.

Stimulus with SLEWRATE for model
characterization.

SAME_PIN_TIMING_
CONSTRAINT

N/A, since the keyword means a min or max
limit by itself.

N/A

KEYWORD POWER = arithmetic_model {
VALUETYPE = number ;

}
KEYWORD ENERGY = arithmetic_model {

VALUETYPE = number ;
}
POWER { UNIT = 1e-3; }
ENERGY { UNIT = 1e-12; }

Syntax 122—POWER and ENERGY statements
170 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

energy conservation law. However, there are scenarios where power is supplied and dissipated locally in different
places. The power models in ALF shall be specified in such a way that the total power supply and dissipation of
a circuit adds up correctly to the same number.

Example

A capacitor C is charged from 0 volt to V volt by a switched DC source. The energy supplied by the
source is C*V2. The energy stored in the capacitor is 1/2*C*V2. Hence the dissipated energy is also 1/
2*C*V2. Later the capacitor is discharged from V volt to 0 volt. The supplied energy is 0. The dissipated
energy is 1/2*C*V2. A supply-oriented power model can associate the energy E1=C*V

2 with the charg-
ing event and E2=0 with the discharging event. The total energy is E=E1+E2=C*V

2. A dissipation-ori-
ented power model can associate the energy E3=1/2*C*V

2 with both the charging and discharging
event. The total energy is also E=2*E3=C*V

2.

In many cases, it is not so easy to decide when and where the power is supplied and where it is dissipated. The
choice between a supply-oriented and dissipation-oriented model or a mixture of both is subjective. Hence the
ALF language provides no means to specify, which modeling approach is used. The choice is up to the model
developer, as long as the energy conservation law is respected.

POWER and/or ENERGY models shall be in the context of a CELL or within a VECTOR. The total energy and/or
power of a cell shall be calculated by combining the data of all models within the scope of the CELL or the VEC-
TORs within the cell.

The data for POWER and/or ENERGY shall be positive when energy is actually supplied to the CELL and/or dissi-
pated within the CELL. The data shall be negative when energy is actually supplied or restored by the CELL.

11.25 FLUX and FLUENCE

A flux or fluence statement shall be defined as shown in Syntax 123.

The purpose of hot electron calculation is to evaluate the damage done to the performance of an electronic device
due to the hot electron effect. The hot electron effect consists in accumulation of electrons trapped in the gate
oxide of a transistor. The more electrons are trapped, the more the device slows down. At a certain point, the per-
formance specification no longer is met and the device is considered to be damaged.

FLUX and/or FLUENCE models shall be in the context of a CELL or within a VECTOR. Total fluence and/or flux
of a cell shall be calculated by combining the data of all models within the scope of the CELL or the VECTORs
within the cell.

Both FLUX and FLUENCE are measures for hot electron damage. FLUX relates to FLUENCE in the same way as
POWER relates to ENERGY.

KEYWORD FLUX = arithmetic_model {
VALUETYPE = number ;

}
KEYWORD FLUENCE = arithmetic_model {

VALUETYPE = number ;
}
FLUX { UNIT = 1e-3; }
FLUENCE { UNIT = 1e-12; }

Syntax 123—FLUX and FLUENCE statements
IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 171

11.26 DRIVE_STRENGTH

A drive_strength statement shall be defined as shown in Syntax 124.

DRIVE_STRENGTH is a unit-less, abstract measure for the drivability of a PIN. It can be used as a substitute of
driver RESISTANCE. The higher the DRIVE_STRENGTH, the lower the driver RESISTANCE. However,
DRIVE_STRENGTH can only be used within a coherent system of calculation models, since it does not represent
an absolute quantity, as opposed to RESISTANCE. For example, the weakest driver of a library can have drive
strength 1, the next stronger driver can have drive strength 2 and so forth. This does not necessarily mean the
resistance of the stronger driver is exactly half of the resistance of the weaker driver.

An arithmetic model for conversion from DRIVE_STRENGTH to RESISTANCE can be given to relate the quan-
tity DRIVE_STRENGTH across technology libraries.

Example

SUBLIBRARY high_speed_library {
RESISTANCE {

HEADER { DRIVE_STRENGTH } EQUATION { 800 / DRIVE_STRENGTH }
}
CELL high_speed_std_driver {

PIN Z { DIRECTION = output; DRIVE_STRENGTH = 1; }
}

}
SUBLIBRARY low_power_library {

RESISTANCE {
HEADER { DRIVE_STRENGTH } EQUATION { 1600 / DRIVE_STRENGTH }

}
CELL low_power_std_driver {

PIN Z { DIRECTION = output; DRIVE_STRENGTH = 1; }
}

}

Drive strength 1 in the high speed library corresponds to 800 ohm. Drive strength 1 in the low power library cor-
responds to 1600 ohm.

NOTE—Any particular arithmetic model for RESISTANCE in either library shall locally override the conversion formula
from drive strength to resistance.

11.27 SWITCHING_BITS

A switching_bits statement shall be defined as shown in Syntax 125.

The quantity SWITCHING_BITS applies only for bus pins. The range is from 0 to the width of the bus. Usually,
the quantity SWITCHING_BITS is not calculated by an arithmetic model, since the number of switching bits on
a bus depends on the functional specification rather than the electrical specification. However,

KEYWORD DRIVE_STRENGTH = arithmetic_model {
VALUETYPE = number ;

}
DRIVE_STRENGTH { MIN = 0; }

Syntax 124—DRIVE_STRENGTH statement
172 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

SWITCHING_BITS can be used as argument in the HEADER of an arithmetic model to calculate electrical quan-
tities, for instance, energy consumption.

Example

CELL my_rom {
PIN [3:0] addr { DIRECTION=input; SIGNALTYPE=address; }
PIN [7:0] dout { DIRECTION=output; SIGNALTYPE=data; }
VECTOR (?! addr -> ?! dout) {

ENERGY {
HEADER {

SWITCHING_BITS addr_bits { PIN = addr; }
SWITCHING_BITS dout_bits { PIN = dout; }

}
EQUATION { 0.45*LOG(addr_bits) + 2.6*dout_bits }

}
}

}

The energy consumption of my_rom depends on the number of switching data bits and on the logarithm of the
number of switching address bits.

11.28 NOISE and NOISE_MARGIN

A noise or noise_margin statement shall be defined as shown in Syntax 126.

11.28.1 NOISE margin

Noise margin is defined as the maximal allowed difference between the ideal signal voltage under a well-speci-
fied operation condition and the actual signal voltage normalized to the ideal voltage swing. This is illustrated in
Figure 24.

KEYWORD SWITCHING_BITS = arithmetic_model {
VALUETYPE = unsigned_integer ;

}

Syntax 125—SWITCHING_BITS statement

KEYWORD NOISE = arithmetic_model {
VALUETYPE = number ;

}
KEYWORD NOISE_MARGIN = arithmetic_model {

VALUETYPE = number ;
}
NOISE { MIN = 0; }
NOISE_MARGIN { MIN = 0; MAX = 1; }

Syntax 126—NOISE and NOISE_MARGIN statements
IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 173

Figure 24—Definition of noise margin

NOISE_MARGIN is a pin-related quantity. It can appear either in the context of a PIN statement or in the context
of a VECTOR statement with PIN annotation. It can also appear in the global context of a CELL, SUBLIBRARY,
or LIBRARY statement.

If a NOISE_MARGIN statement appears in multiple contexts, the following priorities apply:

a) NOISE_MARGIN with PIN annotation in the context of the VECTOR, NOISE_MARGIN with PIN
annotation in the context of the CELL, or NOISE_MARGIN in the context of the PIN

b) NOISE_MARGIN without PIN annotation in the context of the CELL
c) NOISE_MARGIN in the context of the SUBLIBRARY
d) NOISE_MARGIN in the context of the LIBRARY
e) NOISE_MARGIN outside the LIBRARY

11.28.2 NOISE

Noise is defined as the actual measured noise against which the noise margin is compared.

11.29 Annotations and statements related to electrical models

Add lead-in text

11.29.1 MEASUREMENT annotation

A measurement annotation shall be defined as shown in Semantics 71.

KEYWORD MEASUREMENT = single_value_annotation {
VALUETYPE = identifier ;
VALUES {

transient static average absolute_average rms peak
}
CONTEXT {

ENERGY POWER CURRENT VOLTAGE FLUX FLUENCE JITTER
}

}

Semantics 71—MEASUREMENT annotation

V ideal (logic 0)

V ideal (logic 1)

V min (logic 1)

V max (logic 0)

∆V1

∆V0

∆V

noise margin (high) =

noise margin (low) =

∆V1

∆V

∆V

∆V0
174 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

Arithmetic models can have a MEASUREMENT annotation. This annotation indicates the type of measurement
used for the computation in arithmetic model.

The meaning of the annotation values is shown in Table 94.

Their mathematical definitions are shown in Figure 25.

Figure 25—Mathematical definitions for MEASUREMENT annotations

Arithmetic models with certain values of MEASUREMENT annotation can also have either TIME or FREQUENCY
as auxiliary arithmetic models.

Table 94—MEASUREMENT annotation

Annotation value Description

transient Measurement is a transient value.

static Measurement is a static value.

average Measurement is an average value.

absolute_verage Measurement is an average over absolute values.

rms Measurement is the root mean square value.

peak Measurement is a peak value.

max E t()() E t()sgn⋅ t T=

E t()d

t 0=

t T=

∫ E t() td

t 0=

t T=

∫

T

E t()2
td

t 0=

t T=

∫

T

E constant=

transient

static

average

rmspeak

E t() td

t 0=

t T=

∫

T

absolute_average
IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 175

The semantics are defined in Table 95.

In the case of average and rms, the interpretation FREQUENCY = 1 / TIME is valid. Either one of these
annotations shall be mandatory. The values for average measurements and for rms measurements scale lin-
early with FREQUENCY and 1 / TIME, respectively.

In the case of transient and peak, the interpretation FREQUENCY = 1 / TIME is not valid. Either one
of these annotations shall be optional. The values do not necessarily scale with TIME or FREQUENCY. The TIME
or FREQUENCY annotations for transient measurements are purely informational.

11.29.2 TIME to peak measurement

For a model in the context of a VECTOR, with a peak measurement, the TIME annotation shall define the time
between a reference event within the vector_expression and the instant when the peak value occurs.

For that purpose, either the FROM or the TO statement shall be used in the context of the TIME annotation, con-
taining a PIN annotation and, if necessary, a THRESHOLD and/or an EDGE_NUMBER annotation.

If the FROM statement is used, the start point shall be the reference event and the end point shall be the occur-
rence time of the peak, as shown in Figure 26.

Table 95—Semantic interpretation of MEASUREMENT, TIME, or FREQUENCY

MEASUREMENT
annotation Semantic meaning of TIME Semantic meaning of FREQUENCY

transient Integration of analog measurement is done
during that time window.

Integration of analog measurement is
repeated with that frequency.

static N/A N/A

average Average value is measured over that time
window.

Average value measurement is repeated
with that frequency.

absolute_average Absolute average value is measured over
that time window.

Absolute average value measurement is
repeated with that frequency.

rms Root-mean-square value is measured over
that time window.

Root-mean-square measurement is repeated
with that frequency.

peak Peak value occurs at that time (only within
context of VECTOR).

Observation of peak value is repeated with
that frequency.

TIME

<fromPin> <fromThreshold>

<fromEdge>

<modelValue>
MEASUREMENT = peak
176 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

Figure 26—Illustration of time to peak using FROM statement

If the TO statement is used, the start point shall be the occurrence time of the peak and the end point shall be the
reference event, as shown in Figure 27.

Figure 27—Illustration of time to peak using TO statement

11.29.3 COMPONENT annotation

A component annotation shall be defined as shown in Semantics 72.

11.29.4 FLOW annotation

A flow annotation shall be defined as shown in Semantics 73.

11.30 CONNECTIVITY

A connectivity statement shall be defined as shown in Syntax 127.

A driver or receiver statement shall be defined as shown in Syntax 128.

Connectivity can also be described as a lookup table model. This description is usually more compact than the
description using the BETWEEN statements.

KEYWORD COMPONENT = single_value_annotation {
CONTEXT = CURRENT ;
VALUETYPE = identifier ;

}

Semantics 72—COMPONENT annotation

KEYWORD FLOW = single_value_annotation {
CONTEXT = CURRENT ;
VALUETYPE = identifier ;
VALUES { IN OUT }

}

Semantics 73—FLOW annotation

TIME

<toPin> <toThreshold>

<toEdge>

MEASUREMENT = peak

<modelValue>
IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 177

The connectivity model can have the arguments shown in Table 96 in the HEADER.

Each dimension shall contain a TABLE.

The connectivity model specifies the allowed and disallowed connections amongst drivers or receivers in one-
dimensional tables or between drivers and receivers in two-dimensional tables.The boolean literals in the table
refer to the CONNECT_RULE as shown in Table 97.

11.31 SIZE

A size statement shall be defined as shown in Syntax 129.

KEYWORD CONNECTIVITY = arithmetic_model {
VALUETYPE = boolean ;
VALUES { 1 0 ? }

}

Syntax 127—CONNECTIVITY statement

KEYWORD DRIVER = arithmetic_model {
VALUETYPE = identifier ;
CONTEXT = CONNECTIVITY.HEADER

}
KEYWORD RECEIVER = arithmetic_model {

VALUETYPE = identifier ;
CONTEXT = CONNECTIVITY.HEADER

}

Syntax 128— DRIVER and RECEIVER statements

Table 96—Arguments for connectivity

Argument Value type Description

DRIVER identifier Dimension of connectivity function.

RECEIVER identifier Dimension of connectivity function.

Table 97—Boolean literals in non-interpolateable tables

Boolean literal Description

1 CONNECT_RULE is True.

0 CONNECT_RULE is False.

? CONNECT_RULE does not apply.
178 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

11.32 AREA

A area statement shall be defined as shown in Syntax 130.

11.33 WIDTH

A width statement shall be defined as shown in Syntax 131.

Width can be associated with a routing segment (see Section 9.33.2). Width shall be measured orthogonal to the
routing direction.

11.34 HEIGHT

A height statement shall be defined as shown in Syntax 132.

11.35 LENGTH

A length statement shall be defined as shown in Syntax 133.

KEYWORD SIZE = arithmetic_model {
VALUETYPE = unsigned_number ;

}

Syntax 129—SIZE statement

KEYWORD AREA = arithmetic_model {
VALUETYPE = unsigned_number ;

}

Syntax 130—AREA statement

KEYWORD WIDTH = arithmetic_model {
VALUETYPE = unsigned_number ;

}

Syntax 131—WIDTH statement

KEYWORD HEIGHT = arithmetic_model {
VALUETYPE = unsigned_number ;

}

Syntax 132—HEIGHT statement

KEYWORD LENGTH = arithmetic_model {
VALUETYPE = unsigned_number ;

}

Syntax 133—LENGTH statement
IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 179

Length can be associated with a routing segment (see Section 9.33.2). Length shall be measured parallel to the
routing direction. Length can also be associated with two parallel routing segments. In this case, length shall rep-
resent the distance between two lines which are orthogonal to the routing segments, cross both routing segments
and are as far apart from each other as possible.

11.36 DISTANCE

A distance statement shall be defined as shown in Syntax 134.

Distance can be associated with two parallel routing segments (see Section 9.33.2). Distance shall be measured
orthogonal to the routing direction.

11.37 OVERHANG

A overhang statement shall be defined as shown in Syntax 135.

11.38 PERIMETER

A perimeter statement shall be defined as shown in Syntax 136.

11.39 EXTENSION

An extension statement shall be defined as shown in Syntax 137.

KEYWORD DISTANCE = arithmetic_model {
VALUETYPE = unsigned_number ;

}

Syntax 134—DISTANCE statement

KEYWORD OVERHANG = arithmetic_model {
VALUETYPE = unsigned_number ;

}

Syntax 135—OVERHANG statement

KEYWORD PERIMETER = arithmetic_model {
VALUETYPE = unsigned_number ;

}

Syntax 136—PERIMETER statement

KEYWORD EXTENSION = arithmetic_model {
VALUETYPE = unsigned_number ;

}

Syntax 137—EXTENSION statement
180 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

11.40 THICKNESS

A thickness statement shall be defined as shown in Syntax 138.

11.41 DENSITY

A density statement shall be defined as shown in Syntax 139.

11.42 Annotations for physical models

Add lead-in text

11.42.1 CONNECT_RULE annotation

A connect_rule annotation shall be defined as shown in Semantics 74.

The meaning of the annotation values is shown in Table 98.

KEYWORD THICKNESS = arithmetic_model {
VALUETYPE = unsigned_number ;

}

Syntax 138—THICKNESS statement

KEYWORD DENSITY = arithmetic_model {
VALUETYPE = unsigned_number ;
MIN = 0;
MAX = 1;

}

Syntax 139—DENSITY statement

KEYWORD CONNECT_RULE = single_value_annotation {
VALUETYPE = identifier ;
VALUES { must_short can_short cannot_short }
CONTEXT = CONNECTIVITY;

}

Semantics 74—CONNECT_RULE annotation

Table 98—CONNECT_RULE annotation

Annotation value Description

must_short Electrical connection required.

can_short Electrical connection allowed.

cannot_short Electrical connection disallowed.
IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 181

It is not necessary to specify more than one rule between a given set of objects. If one rule is specified to be True,
the logical value of the other rules can be implied shown in Table 99.

11.42.2 BETWEEN annotation

A between annotation shall be defined as shown in Semantics 75.

If the BETWEEN statement contains only one identifier, than the CONNECTIVITY shall apply between multiple
instances of the same object.

The BETWEEN statement within DISTANCE or LENGTH shall identify the objects for which the measurement
applies.

If the BETWEEN statement contains only one identifier, than the DISTANCE or LENGTH, respectively, shall
apply between multiple instances of the same object, as shown in the following example and Figure 28.

Example

DISTANCE = 4 { BETWEEN { object1 object2 } }
LENGTH = 2 { BETWEEN { object1 object2 } }

Figure 28—Illustration of LENGTH and DISTANCE

Table 99—Implications between connect rules

must_short cannot_short can_short

False False True

False True False

True False N/A

KEYWORD BETWEEN = multi_value_annotation {
VALUETYPE = identifier ;
CONTEXT { DISTANCE LENGTH OVERHANG CONNECTIVITY }

}

Semantics 75—BETWEEN annotation

object1 object2
LENGTH=2

DISTANCE=4
182 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

11.42.3 DISTANCE-MEASUREMENT annotation

A distance_measurement annotation shall be defined as shown in Semantics 76.

The mathematical definitions for distance measurements between two points with differential coordinates ∆x and
∆y are:

— euclidean distance = (∆x2 + ∆y2)1/2

— horizontal distance = ∆x
— vertical distance = ∆y
— manhattan distance = ∆x + ∆y

11.42.4 REFERENCE annotation container

A reference annotation shall be defined as shown in Semantics 77.

The meaning of the annotation values is illustrated in Figure 29.

KEYWORD DISTANCE_MEASUREMENT = single_value_annotation {
VALUETYPE = identifier ;
VALUES { euclidean horizontal vertical manhattan }
DEFAULT = euclidean ;
CONTEXT = DISTANCE ;

}

Semantics 76—DISTANCE_MEASUREMENT annotation

KEYWORD REFERENCE = annotation_container {
CONTEXT = DISTANCE ;

}
SEMANTICS REFERENCE.identifier = single_value_annotation {

VALUETYPE = identifier ;
VALUES { center origin near_edge far_edge }
DEFAULT = origin ;

}

Semantics 77—REFERENCE annotation

DISTANCE

REFERENCE = near_edge

object 1 object 2

DISTANCE

REFERENCE = center

object 1 object 2
IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 183

Figure 29—Illustration of REFERENCE for DISTANCE

11.42.5 ANTENNA reference annotation

An antenna annotation shall be defined as shown in Semantics 78.

In hierarchical design, a PIN with physical PORTs can be abstracted. Therefore, an arithmetic model for SIZE,
AREA, PERIMETER, etc. for certain antenna rules can be precalculated. An ANTENNA statement within the
arithmetic model enables references to the set of antenna rules for which the arithmetic model applies

Example

CELL cell1 {
PIN pin1 {

AREA poly_area = 1.5 {
LAYER = poly;
ANTENNA { individual_m1 individual_via1 }

}
AREA m1_area = 1.0 {

LAYER = metal1;
ANTENNA { individual_m1 }

}
AREA via1_area = 0.5 {

LAYER = via1;
ANTENNA { individual_via1 }

}
}

}

The area poly_area is used in the rules individual_m1 and individual_via1.
The area m1_area is used in the rule individual_m1 only.
The area via1_area is used in the rule individual_via1 only.

The case with diffusion is illustrated in the following example:

CELL my_diode {
CELLTYPE = special; ATTRIBUTE { DIODE }
PIN my_diode_pin {

AREA = 3.75 {
LAYER = diffusion;
ANTENNA { rule1_for_diffusion rule2_for_diffusion }

}
}

}

SEMANTICS ANTENNA = annotation {
VALUETYPE = identifier ;
CONTEXT { PIN.SIZE PIN.AREA PIN.PERIMETER }

}

Semantics 78—ANTENNA annotation
184 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

11.42.6 PATTERN reference annotation

A pattern annotation shall be defined as shown in Semantics 79.

Reference to a PATTERN shall be legal within arithmetic models, if the pattern and the model are within the
scope of the same parent object.

11.43 Arithmetic submodels for timing and electrical data

The arithmetic submodels shown in Table 100 are only applicable in the context of electrical modeling.

11.44 Arithmetic submodels for physical data

The arithmetic submodels shown in Table 101 are only applicable in the context of physical modeling.

SEMANTICS PATTERN = single_value_annotation {
VALUETYPE = identifier ;
CONTEXT {

LENGTH WIDTH HEIGHT SIZE AREA THICKNESS
PERIMETER EXTENSION

}
}

Semantics 79—PATTERN annotation

Table 100—Submodels applicable for timing and electrical modeling

Object Description

HIGH Applicable for electrical data measured at a logic high state of a pin.

LOW Applicable for electrical data measured at a logic low state of a pin.

RISE Applicable for electrical data measured during a logic low to high transition of a pin.

FALL Applicable for electrical data measured during a logic high to low transition of a pin.

Table 101—Submodels applicable for physical modeling

Object Description

HORIZONTAL Applicable for layout measurements in 0 degree, i.e., horizontal direction.

VERTICAL Applicable for layout measurements in 90 degree, i.e., vertical direction.

ACUTE Applicable for layout measurements in 45 degree direction.

OBTUSE Applicable for layout measurements in 135 degree direction.
IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 185

186 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

Annex A

(informative)

Syntax rule summary

This summary replicates the syntax detailed in the preceding clauses. If there is any conflict, in detail or com-
pleteness, the syntax presented in the clauses shall considered as the normative definition.

The current ordering is as each item appears in its subchapter; this needs to be updated to be complete.

A.1 ALF meta-language

ALF_statement ::= (see 5.1)
ALF_type [ALF_name] [= ALF_value] ALF_statement_termination

ALF_type ::=
non_escaped_identifier [index]

| @
| :

ALF_name ::=
identifier [index]

| control_expression
ALF_value ::=

identifier
| number
| arithmetic_expression
| boolean_expression
| control_expression

ALF_statement_termination ::=
;

| { { ALF_value | : | ; } }
| { { ALF_statement } }

A.2 Lexical definitions

character ::= (see 6.1)
whitespace

| letter
| digit
| special

whitespace ::=
space | vertical_tab | horizontal_tab | new_line | carriage_return | form_feed

letter ::=
uppercase | lowercase

uppercase ::=
A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W

| X | Y | Z
lowercase ::=

a | b | c | d | e | f | g | h | i | j | k | l | m | n | o | p | q | r | s | t | u | v | w | x | y | z
IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 187

digit ::=
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

special ::=
& | | | ^ | ~ | + | - | * | / | % | ? | ! | : | ; | , | ” | ’ | @ | = | \ | . | $ | _ | #

| (|) | < | > | [|] | { | }
comment ::= (see 6.2)

in_line_comment
| block_comment

in_line_comment ::=
/ /{character}new_line

| / /{character}carriage_return
block_comment ::=

/ *{character}* /
delimiter ::= (see 6.3)

(|) | [|] | { | } | : | ; | ,
operator ::= (see 6.4)

arithmetic_operator
| boolean_operator
| relational_operator
| shift_operator
| event_sequence_operator
| meta_operator

arithmetic_operator ::=
+ | - | * | / | % | **

boolean_operator ::=
&& | || | ~& | ~| | ^ | ~^ | ~ | ! | & | |

relational_operator ::=
== | != | >= | <= | > | <

shift_operator ::=
<< | >>

event_sequence_operator ::=
-> | ~> | <-> | <~> | &> | <&>

meta_operator ::=
= | ? | @

number ::= (see 6.5)
signed_integer | signed_real | unsigned_integer | unsigned_real

signed_number ::=
signed_integer | signed_real

unsigned_number ::=
unsigned_integer | unsigned_real

integer ::=
signed_integer | unsigned_integer

signed_integer ::=
sign unsigned_integer

unsigned_integer ::=
digit { [_] digit }

real ::=
signed_real | unsigned_real

signed_real ::=
sign unsigned_real

unsigned_real ::=
mantisse [exponent]
188 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

| unsigned_integer exponent
sign ::=

+ | -
mantisse ::=

. unsigned_integer
| unsigned_integer . [unsigned_integer]

exponent ::=
E [sign] unsigned_integer

| e [sign] unsigned_integer
quantity_symbol ::= (see 6.6)

unity { letter } | K { letter } | M E G { letter } | G { letter }
| M { letter } | U { letter } | N { letter } | P { letter } | F { letter }

unity ::=
1

K ::=
K | k

M ::=
M | m

E ::=
E | e

G ::=
G | g

U ::=
U | u

N ::=
N | n

P ::=
P | p

F ::=
F | f

bit_literal ::= (see 6.7)
alphanumeric_bit_literal

| symbolic_bit_literal
alphanumeric_bit_literal ::=

numeric_bit_literal
| alphabetic_bit_literal

numeric_bit_literal ::=
0 | 1

alphabetic_bit_literal ::=
X | Z | L | H | U | W

| x | z | l | h | u | w
symbolic_bit_literal ::=

? | *
based_literal ::= (see 6.8)

binary_based_literal | octal_based_literal | decimal_based_literal | hexadecimal_based_literal
binary_based_literal ::=

binary_base bit_literal { [_] bit_literal }
binary_base ::=

'B | 'b

octal_based_literal ::=
IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 189

octal_base octal_digit { [_] octal_digit }
octal_base ::=

'O | 'o
octal_digit ::=

bit_literal | 2 | 3 | 4 | 5 | 6 | 7
decimal_based_literal ::=

decimal_base digit { [_] digit }
decimal_base ::=

'D | 'd
hexadecimal_based_literal ::=

hexadecimal_base hexadecimal_digit { [_] hexadecimal_digit }
hexadecimal_base ::=

'H | 'h
hexadecimal_digit ::=

octal | 8 | 9
| A | B | C | D | E | F
| a | b | c | d | e | f

edge_literal ::= (see 6.9)
bit_edge_literal

| based_edge_literal
| symbolic_edge_literal

bit_edge_literal ::=
bit_literal bit_literal

based_edge_literal ::=
based_literal based_literal

symbolic_edge_literal ::=
?~ | ?! | ?-

quoted_string ::= (see 6.10)
" { character } "

identifier ::= (see 6.11)
non_escaped_identifier

| escaped_identifier
| placeholder_identifier
| hierarchical_identifier

non_escaped_identifier ::= (see 6.11.1)
letter { letter | digit | _ | $ | # }

escaped_identifier ::= (see 6.11.2)
backslash escapable_character { escapable_character }

escapable_character ::=
letter | digit | special

placeholder_identifier ::= (see 6.11.3)
< non_escaped_identifier >

hierarchical_identifier ::= (see 6.11.4)
identifier [\] . identifier

keyword_identifier ::= (see 6.12)
letter { [_] letter }

A.3 Auxiliary definitions

all_purpose_value ::= (see 7.1)
number
190 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

| identifier
| quoted_string
| bit_literal
| based_literal
| edge_value
| pin_variable
| control_expression

quantity_value ::= (see 7.2)
unsigned_number | quantity_symbol

string_value ::= (see 7.3)
quoted_string | identifier

arithmetic_value ::= (see 7.4)
number | identifier | bit_literal | based_literal

boolean_value ::= (see 7.5)
alphanumeric_bit_literal | based_literal | integer

edge_value ::= (see 7.6)
(edge_literal)

index_value ::= (see 7.7)
unsigned_integer | identifier

index ::= (see 7.8)
single_index | multi_index

single_index ::=
[index_value]

multi_index ::=
[index_value : index_value]

pin_variable ::= (see 7.9)
pin_variable_identifier [index]

pin_value ::=
pin_variable | boolean_value

pin_assignment ::= (see 7.10)
pin_variable = pin_value ;

annotation ::= (see 7.11)
single_value_annotation

| multi_value_annotation
single_value_annotation ::=

annotation_identifier = annotation_value ;
annotation_value ::=

number
| identifier
| quoted_string
| bit_literal
| based_literal
| edge_value
| pin_variable
| control_expression
| boolean_expression
| arithmetic_expression

multi_value_annotation ::=
annotation_identifier { annotation_value { annotation_value } }

annotation_container ::= (see 7.12)
annotation_container_identifier { annotation { annotation } }

attribute ::= (see 7.13)
IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 191

ATTRIBUTE { identifier { identifier } }
property ::= (see 7.14)

PROPERTY [identifier] { annotation { annotation } }
include ::= (see 7.15)

INCLUDE quoted_string ;
revision ::= (see 7.17)

ALF_REVISION string_value
generic_object ::= (see 7.18)

alias_declaration
| constant_declaration
| class_declaration
| keyword_declaration
| semantics_declaration
| group_declaration
| template_declaration

library_specific_object ::= (see 7.19)
library

| sublibrary
| cell
| primitive
| wire
| pin
| pingroup
| vector
| node
| layer
| via
| rule
| antenna
| site
| array
| blockage
| port
| pattern
| region

all_purpose_item ::= (see 7.20)
generic_object

| include_statement
| associate_statement
| annotation
| annotation_container
| arithmetic_model
| arithmetic_model_container
| all_purpose_item_template_instantiation

A.4 Generic definitions

alias_declaration ::= (see 8.1)
ALIAS alias_identifier = original_identifier ;

constant_declaration ::= (see 8.2)
CONSTANT constant_identifier = constant_value ;

constant_value ::=
number | based_literal

class_declaration ::= (see 8.3)
192 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

CLASS class_identifier ;
| CLASS class_identifier { { all_purpose_item } }

keyword_declaration ::= (see 8.4)
KEYWORD keyword_identifier = syntax_item_identifier ;

| KEYWORD keyword_identifier = syntax_item_identifier { { keyword_item } }
keyword_item ::=

VALUETYPE_single_value_annotation
| VALUES_multi_value_annotation
| DEFAULT_single_value_annotation
| CONTEXT_annotation

semantics_declaration ::= (see 8.6)
SEMANTICS semantics_identifier = syntax_item_identifier ;

| SEMANTICS semantics_identifier [= syntax_item_identifier] { { semantics_item } }
semantics_item ::=

VALUES_multi_value_annotation
| DEFAULT_single_value_annotation
| CONTEXT_annotation

group_declaration ::= (see 8.7)
GROUP group_identifier { all_purpose_value { all_purpose_value } }

| GROUP group_identifier { left_index_value : right_index_value }
template_declaration ::= (see 8.8)

TEMPLATE template_identifier { ALF_statement { ALF_statement } }
template_instantiation ::= (see 8.9)

static_template_instantiation
| dynamic_template_instantiation

static_template_instantiation ::=
template_identifier [= STATIC] ;

| template_identifier [= STATIC] { { all_purpose_value } }
| template_identifier [= STATIC] { { annotation } }

dynamic_template_instantiation ::=
template_identifier = DYNAMIC { { dynamic_template_instantiation_item } }

dynamic_template_instantiation_item ::=
annotation

| arithmetic_model
| arithmetic_assignment

arithmetic_assignment ::=
identifier = arithmetic_expression ;

A.5 Library definitions

library ::= (see 9.1)
LIBRARY library_identifier ;

| LIBRARY library_identifier { { library_item } }
| library_template_instantiation

library_item ::=
sublibrary

| sublibrary_item
sublibrary ::=

SUBLIBRARY sublibrary_identifier ;
| SUBLIBRARY sublibrary_identifier { { sublibrary_item } }
| sublibrary_template_instantiation
IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 193

sublibrary_item ::=
all_purpose_item

| cell
| primitive
| wire
| layer
| via
| rule
| antenna
| array
| site
| region

cell ::= (see 9.3)
CELL cell_identifier ;

| CELL cell_identifier { { cell_item } }
| cell_template_instantiation

cell_item ::=
all_purpose_item

| pin
| pingroup
| primitive
| function
| non_scan_cell
| test
| vector
| wire
| blockage
| artwork
| pattern
| region

named_cell_instantiation ::= (see 9.4)
cell_identifier instance_identifier ;

| cell_identifier instance_identifier { pin_value { pin_value } }
| cell_identifier instance_identifier { pin_assignment { pin_assignment } }

unnamed_cell_instantiation ::=
cell_identifier { pin_value { pin_value } }

| cell_identifier { pin_assignment { pin_assignment } }
pin ::= (see 9.7)

scalar_pin | vector_pin | matrix_pin
scalar_pin ::=

PIN pin_identifier ;
| PIN pin_identifier { { scalar_pin_item } }
| scalar_pin_template_instantiation

scalar_pin_item ::=
all_purpose_item

| port
vector_pin ::=

PIN multi_index pin_identifier ;
| PIN multi_index pin_identifier { { vector_pin_item } }
| vector_pin_template_instantiation

vector_pin_item ::=
all_purpose_item

| range
194 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

matrix_pin ::=
PIN first_multi_index pin_identifier second_multi_index ;

| PIN first_multi_index pin_identifier second_multi_index { { matrix_pin_item } }
| matrix_pin_template_instantiation

matrix_pin_item ::=
vector_pin_item

pingroup ::= (see 9.8)
simple_pingroup | vector_pingroup

simple_pingroup ::=
PINGROUP pingroup_identifier { members { all_purpose_item } }

| simple_pingroup_template_instantiation
members ::=

MEMBERS { pin_identifier pin_identifier { pin_identifier } }
vector_pingroup ::=

| PINGROUP [index_value : index_value] pingroup_identifier
{ members { vector_pingroup_item } }

| vector_pingroup_template_instantiation
vector_pingroup_item ::=

all_purpose_item
| range

primitive ::= (see 9.11)
PRIMITIVE primitive_identifier { { primitive_item } }

| PRIMITIVE primitive_identifier ;
| primitive_template_instantiation

primitive_item ::=
all_purpose_item

| pin
| pingroup
| function
| test

wire ::= (see 9.12)
WIRE wire_identifier { wire_items }

| WIRE wire_identifier ;
| wire_template_instantiation

wire_item ::=
all_purpose_item

| node
node ::= (see 9.15)

NODE node_identifier ;
| NODE node_identifier { { node_item } }
| node_template_instantiation

node_item ::=
all_purpose_item

vector ::= (see 9.16)
VECTOR control_expression ;

| VECTOR control_expression { { vector_item } }
| vector_template_instantiation

vector_item ::=
all_purpose_item

layer ::= (see 9.18)
LAYER layer_identifier ;

| LAYER layer_identifier { { layer_item } }
| layer_template_instantiation
IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 195

layer_item ::=
all_purpose_item

via ::= (see 9.20)
VIA via_identifier ;

| VIA via_identifier { { via_item } }
| via_template_instantiation

via_item ::=
all_purpose_item

| pattern
| artwork

via_instantiation ::= (see 9.21)
via_identifier instance_identifier ;

| via_identifier instance_identifier { { geometric_transformation } }
rule ::= (see 9.23)

RULE rule_identifier ;
| RULE rule_identifier { { rule_item } }
| rule_template_instantiation

rule_item ::=
all_purpose_item

| pattern
| region
| via_instantiation

antenna ::= (see 9.24)
ANTENNA antenna_identifier ;

| ANTENNA antenna_identifier { { antenna_item } }
| antenna_template_instantiation

antenna_item ::=
all_purpose_item

blockage ::= (see 9.25)
BLOCKAGE blockage_identifier ;

| BLOCKAGE blockage_identifier { { blockage_item } }
| blockage_template_instantiation

blockage_item ::=
all_purpose_item

| pattern
| region
| rule
| via_instantiation

port ::= (see 9.26)
PORT port_identifier ;{ { port_item } }

| PORT port_identifier ;
| port_template_instantiation

port_item ::=
all_purpose_item

| pattern
| region
| rule
| via_instantiation

site ::= (see 9.28)
SITE site_identifier ;

| SITE site_identifier { { site_item } }
| site_template_instantiation

site_item ::=
all_purpose_item
196 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

| WIDTH_arithmetic_model
| HEIGHT_arithmetic_model

array ::= (see 9.30)
ARRAY array_identifier ;

| ARRAY array_identifier { { array_item } }
| array_template_instantiation

array_item ::=
all_purpose_item

| geometric_transformation
pattern ::= (see 9.32)

PATTERN pattern_identifier ;

| PATTERN pattern_identifier { { pattern_item } }
| pattern_template_instantiation

pattern_item ::=
all_purpose_item

| geometric_model
| geometric_transformation

geometric_model ::= (see 9.35)
nonescaped_identifier [geometric_model_identifier]

{ geometric_model_item { geometric_model_item } }
| geometric_model_template_instantiation

geometric_model_item ::=
POINT_TO_POINT_single_value_annotation

| coordinates
coordinates ::=

COORDINATES { point { point } }
point ::=

x_number y_number

geometric_transformation ::= (see 9.37)
shift

| rotate
| flip
| repeat

shift ::=
SHIFT { x_number y_number }

rotate ::=
ROTATE = number ;

flip ::=
FLIP = number ;

repeat ::=
REPEAT [= unsigned_integer] { geometric_transformation { geometric_transformation } }

artwork ::= (see 9.38)
ARTWORK = artwork_identifier ;

| ARTWORK = artwork_identifier { { artwork_item } }
| artwork_template_instantiation

artwork_item ::=
geometric_transformation

| pin_assignment
IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 197

A.6 Function definitions

function ::= (see 10.1)
FUNCTION { function_item { function_item } }

| function_template_instantiation
function_item ::=

all_purpose_item
| behavior
| structure
| statetable

test ::= (see 10.2)
TEST { test_item { test_item } }

| test_template_instantiation
test_item ::=

all_purpose_item
| behavior
| statetable

behavior ::= (see 10.4)
BEHAVIOR { behavior_item { behavior_item }s }

| behavior_template_instantiation
behavior_item ::=

boolean_assignment
| control_statement
| primitive_instantiation
| behavior_item_template_instantiation

boolean_assignment ::=
pin_variable = boolean_expression ;

control_statement ::=
primary_control_statement { alternative_control_statement }

primary_control_statement ::=
@ control_expression { boolean_assignment { boolean_assignment } }

alternative_control_statement ::=
: control_expression { boolean_assignment { boolean_assignment } }

primitive_instantiation ::=
primitive_identifier [identifier] { pin_value { pin_value } }

| primitive_identifier [identifier] { boolean_assignment { boolean_assignment } }
structure ::= (see 10.5)

STRUCTURE { named_cell_instantiation { named_cell_instantiation } }
| structure_template_instantiation

statetable ::= (see 10.6)
STATETABLE [identifier]

{ statetable_header statetable_row { statetable_row } }
| statetable_template_instantiation

statetable_header ::=
input_pin_variable { input_pin_variable } : output_pin_variable { output_pin_variable } ;

statetable_row ::=
statetable_control_values : statetable_data_values ;

statetable_control_values ::=
statetable_control_value { statetable_control_value }

statetable_control_value ::=
boolean_value

| symbolic_bit_literal
198 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

| edge_value
statetable_data_values ::=

statetable_data_value { statetable_data_value }
statetable_data_value ::=

boolean_value
| ([!] input_pin_variable)
| ([~] input_pin_variable)

non_scan_cell ::= (see 10.7)
NON_SCAN_CELL { unnamed_cell_instantiation { unnamed_cell_instantiation } }

| NON_SCAN_CELL = unnamed_cell_instantiation
| non_scan_cell_template_instantiation

range ::= (see 10.8)
RANGE { index_value : index_value }

boolean_expression ::= (see 10.9)
(boolean_expression)

| pin_variable
| boolean_value
| boolean_unary boolean_expression
| boolean_expression boolean_binary boolean_expression
| boolean_expression ? boolean_expression :

{ boolean_expression ? boolean_expression : }
boolean_expression

boolean_unary ::=
!

| ~
| &
| ~&
| |
| ~|
| ^
| ~^

boolean_binary ::=
&

| &&
| |
| ||
| ^
| ~^
| !=
| ==
| >=
| <=
| >
| <
+
*
/
%
>>
<<
IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 199

vector_expression ::= (see 10.12)
(vector_expression)

| vector_unary boolean_expression
| vector_expression vector_binary vector_expression
| boolean_expression ? vector_expression :

{ boolean_expression ? vector_expression : }
vector_expression

| boolean_expression control_and vector_expression
| vector_expression control_and boolean_expression

vector_unary ::=
edge_literal

vector_binary ::=
&

| &&
| |
| ||
| ->
| ~>
| <->
| <~>
| &>
| <&>

control_and ::=
& | &&

control_expression ::=
(vector_expression)

| (boolean_expression)

A.7 Arithmetic definitions

arithmetic_expression ::= (see 11.1)
(arithmetic_expression)

| arithmetic_value
| { boolean_expression ? arithmetic_expression : } arithmetic_expression
| [unary_arithmetic_operator] arithmetic_operand
| arithmetic_operand binary_arithmetic_operator arithmetic_operand
| macro_arithmetic_operator (arithmetic_operand { , arithmetic_operand })

arithmetic_operand ::=
arithmetic_expression

unary_arithmetic_operator ::= (see 11.1.1)
+

| -
binary_arithmetic_operator ::= (see 11.1.2)

+
| -
| *
| /
| **
| %
200 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

macro_arithmetic_operator ::= (see 11.1.3)
abs

| exp
| log
| min
| max

arithmetic_model ::= (see 11.2)
trivial_arithmetic_model

| partial_arithmetic_model
| full_arithmetic_model
| arithmetic_model_template_instantiation

trivial_arithmetic_model ::= (see 11.2.1)
nonescaped_identifier [name_identifier] = arithmetic_value ;

| nonescaped_identifier [name_identifier] = arithmetic_value { { model_qualifier } }
partial_arithmetic_model ::= (see 11.2.2)

nonescaped_identifier [name_identifier] { { partial_arithmetic_model_item } }
partial_arithmetic_model_item ::=

model_qualifier
| table
| trivial_min-max

full_arithmetic_model ::= (see 11.2.3)
nonescaped_identifier [name_identifier] { { model_qualifier } model_body { model_qualifier } }

model_body ::=
header-table-equation [trivial_min-max]

| min-typ-max
| arithmetic_submodel { arithmetic_submodel }

header-table-equation ::= (see 11.3)
header table

| header equation
header ::= (see 11.3.1)

HEADER { partial_arithmetic_model { partial_arithmetic_model } }
table ::= (see 11.3.2)

TABLE { arithmetic_value { arithmetic value } }
equation ::= (see 11.3.3)

EQUATION { arithmetic_expression }
| equation_template_instantiation

model_qualifier ::= (see 11.4.1)
annotation

| annotation_container
| event_reference
| from-to
| auxiliary_arithmetic_model
| violation

auxiliary_arithmetic_model ::= (see 11.4.2)
nonescaped_identifier = arithmetic_value ;

| nonescaped_identifier [= arithmetic_value] { auxiliary_qualifier { auxiliary_qualifier } }
auxiliary_qualifier

annotation
| annotation_container
| event_reference
| from-to

arithmetic_submodel ::= (see 11.4.3)
IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 201

nonescaped_identifier = arithmetic_value ;
| nonescaped_identifier { [violation] min-max }
| nonescaped_identifier { header-table-equation [trivial_min-max] }
| nonescaped_identifier { min-typ-max }
| arithmetic_submodel_template_instantiation

min-max ::= (see 11.4.4)
min [max]

| max [min]
min ::=

MIN = arithmetic_value ;
| MIN = arithmetic_value { violation }
| MIN { [violation] header-table-equation }

max ::=
MAX = arithmetic_value ;

| MAX = arithmetic_value { violation }
| MAX { [violation] header-table-equation }

min-typ-max ::= (see 11.4.5)
[min-max] typ [min-max]

typ ::=
TYP = arithmetic_value ;

| TYP { header-table-equation }
trivial_min-max ::= (see 11.4.6)

trivial_min [trivial_max]
| trivial_max [trivial_min]

trivial_min ::=
MIN = arithmetic_value ;

trivial_max ::=
MAX = arithmetic_value ;

arithmetic_model_container ::= (see 11.4.7)
arithmetic_model_container_identifier { arithmetic_model { arithmetic_model } }

limit ::= (see 11.4.8)
LIMIT { limit_item { limit_item } }

limit_item ::=
limit_arithmetic_model

limit_arithmetic_model ::=
nonescaped_identifier [name_identifier] { { model_qualifier } limit_arithmetic_model_body }

limit_arithmetic_model_body ::=
limit_arithmetic_submodel { limit_arithmetic_submodel }

| min_max
limit_arithmetic_submodel ::=

nonescaped_identifier { [violation] min-max }
event_reference ::= (see 11.4.9)

PIN_reference_single_value_annotation [EDGE_NUMBER_single_value_annotation]
from-to ::= (see 11.4.10)

from [to]
| [from] to

from ::=
FROM { from-to_item { from-to_item } }

from-to_item ::=
event_reference

| THRESHOLD_arithmetic_model
to ::=
202 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

TO { from-to_item { from-to_item } }
early-late ::= (see 11.4.11)

early late
early ::=

EARLY { early-late_item { early-late_item } }
early-late_item ::=

DELAY_arithmetic_model
| RETAIN_arithmetic_model
| SLEWRATE_arithmetic_model

late ::=
LATE { early-late_item { early-late_item } }

violation ::= (see 11.4.12)
VIOLATION { violation_item { violation_item } }

| violation_template_instantiation
violation_item ::=

MESSAGE_TYPE_single_value_annotation
| MESSAGE_single_value_annotation
| behavior
IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 203

204 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

Annex B

(informative)

Semantics rule summary

This summary replicates the semantics detailed in the preceding clauses. If there is any conflict, in detail or com-
pleteness, the semantics presented in the clauses shall considered as the normative definition.

The current ordering is as each item appears in its subchapter; this needs to be updated to be complete.

**I kept the font/formatting as it is from the original semantics sections; let me know if you want to change this
(how it appears in print)**

B.1 Library definitions

KEYWORD INFORMATION = annotation_container { (see 9.2.1)
CONTEXT { LIBRARY SUBLIBRARY CELL WIRE PRIMITIVE }

}

KEYWORD PRODUCT = single_value_annotation {
VALUETYPE = string_value; DEFAULT = ““; CONTEXT = INFORMATION;

}

KEYWORD TITLE = single_value_annotation {
VALUETYPE = string_value; DEFAULT = ““; CONTEXT = INFORMATION;

}

KEYWORD VERSION = single_value_annotation {
VALUETYPE = string_value; DEFAULT = ““; CONTEXT = INFORMATION;

}

KEYWORD AUTHOR = single_value_annotation {
VALUETYPE = string_value; DEFAULT = ““; CONTEXT = INFORMATION;

}

KEYWORD DATETIME = single_value_annotation {
VALUETYPE = string_value; DEFAULT = ““; CONTEXT = INFORMATION;

}

KEYWORD CELLTYPE = single_value_annotation { (see 9.5.1)
CONTEXT = CELL;
VALUETYPE = identifier;
VALUES {

buffer combinational multiplexor flipflop latch
memory block core special

}
}

KEYWORD SWAP_CLASS = annotation { (see 9.5.2)
CONTEXT = CELL;
VALUETYPE = identifier;

}

KEYWORD RESTRICT_CLASS = annotation { (see 9.5.3)
CONTEXT { CELL CLASS }
VALUETYPE = identifier;

}

IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 205

KEYWORD SCAN_TYPE = single_value_annotation { (see 9.5.4)
CONTEXT = CELL;
VALUETYPE = identifier;
VALUES { muxscan clocked lssd control_0 control_1 }

}

KEYWORD SCAN_USAGE = single_value_annotation { (see 9.5.5)
CONTEXT = CELL;
VALUETYPE = identifier;
VALUES { input output hold }

}

KEYWORD BUFFERTYPE = single_value_annotation { (see 9.5.6)
CONTEXT = CELL;
VALUETYPE = identifier;
VALUES { input output inout internal }
DEFAULT = internal;

}

KEYWORD DRIVERTYPE = single_value_annotation { (see 9.5.7)
CONTEXT = CELL;
VALUETYPE = identifier;
VALUES { predriver slotdriver both }

}

KEYWORD PARALLEL_DRIVE = single_value_annotation { (see 9.5.8)
CONTEXT = CELL;
VALUETYPE = unsigned;
DEFAULT = 1;

}

KEYWORD PLACEMENT_TYPE = single_value_annotation { (see 9.5.9)
CONTEXT = CELL;
VALUETYPE = identifier;
VALUES { pad core ring block connector }
DEFAULT = core;

}

KEYWORD VIEW = single_value_annotation { (see 9.9.1)
CONTEXT { PIN PINGROUP }
VALUETYPE = identifier;
VALUES { functional physical both none }
DEFAULT = both

}

KEYWORD PINTYPE = single_value_annotation { (see 9.9.2)
CONTEXT = PIN;
VALUETYPE = identifier;
VALUES { digital analog supply }
DEFAULT = digital;

}

KEYWORD DIRECTION = single_value_annotation { (see 9.9.3)
CONTEXT = PIN;
VALUETYPE = identifier;
VALUES { input output both none }

}

KEYWORD SIGNALTYPE = single_value_annotation { (see 9.9.4)
CONTEXT = PIN;
VALUETYPE = identifier;
206 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

VALUES {
data scan_data address control select tie clear set
enable out_enable scan_enable scan_out_enable
clock master_clock slave_clock
scan_master_clock scan_slave_clock

}
DEFAULT = data;

}

KEYWORD ACTION = single_value_annotation { (see 9.9.5)
CONTEXT = PIN;
VALUETYPE = identifier;
VALUES { asynchronous synchronous }

}

KEYWORD POLARITY = single_value_annotation { (see 9.9.6)
CONTEXT = PIN;
VALUETYPE = identifier;
VALUES { high low rising_edge falling_edge double_edge }

}

KEYWORD DATATYPE = single_value_annotation { (see 9.9.7)
CONTEXT { PIN PINGROUP }
VALUETYPE = identifier;
VALUES { signed unsigned }

}

KEYWORD INITIAL_VALUE = single_value_annotation { (see 9.9.8)
CONTEXT = CELL;
VALUETYPE = boolean_value;

}

KEYWORD SCAN_POSITION = single_value_annotation { (see 9.9.9)
CONTEXT = PIN;
VALUETYPE = unsigned;
DEFAULT = 0;

}

KEYWORD STUCK = single_value_annotation { (see 9.9.10)
CONTEXT = PIN;
VALUETYPE = identifier;
VALUES { stuck_at_0 stuck_at_1 both none }

DEFAULT = both;
}

KEYWORD SUPPLYTYPE = annotation { (see 9.9.11)
CONTEXT = PIN;
VALUETYPE = identifier;
VALUES { power ground reference }

}

KEYWORD SIGNAL_CLASS = annotation { (see 9.9.12)
CONTEXT { PIN PINGROUP }
VALUETYPE = identifier;

}

KEYWORD SUPPLY_CLASS = annotation { (see 9.9.13)
CONTEXT { PIN PINGROUP CLASS }
VALUETYPE = identifier;

}

IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 207

KEYWORD DRIVETYPE = single_value_annotation { (see 9.9.14)
CONTEXT = PIN;
VALUETYPE = identifier;
VALUES {

cmos nmos pmos cmos_pass nmos_pass pmos_pass
ttl open_drain open_source

}
DEFAULT = cmos;

}

KEYWORD SCOPE = single_value_annotation { (see 9.9.15)
CONTEXT = PIN;
VALUETYPE = identifier;
VALUES { behavior measure both none }
DEFAULT = both;

}

KEYWORD CONNECT_CLASS = single_value_annotation { (see 9.9.16)
CONTEXT = PIN;
VALUETYPE = identifier;

}

KEYWORD SIDE = single_value_annotation { (see 9.9.17)
CONTEXT { PIN PINGROUP }
VALUETYPE = identifier;
VALUES { left right top bottom inside }

}

KEYWORD ROW = annotation { (see 9.9.18)
CONTEXT { PIN PINGROUP }
VALUETYPE = unsigned;

}

KEYWORD COLUMN = annotation {
CONTEXT { PIN PINGROUP }
VALUETYPE = unsigned;

}

KEYWORD ROUTING_TYPE = single_value_annotation { (see 9.9.19)
CONTEXT { PIN PORT }
VALUETYPE = identifier;
VALUES { regular abutment ring feedthrough }
DEFAULT = regular;

}

KEYWORD PULL = single_value_annotation { (see 9.9.20)
CONTEXT = PIN;
VALUETYPE = identifier;
VALUES { up down both none }
DEFAULT = none;

}

KEYWORD SELECT_CLASS = annotation {
CONTEXT = WIRE; (see 9.14.1)
VALUETYPE = identifier;

}

KEYWORD NODETYPE = single_value_annotation { (see 9.15.1)
CONTEXT = NODE;
VALUETYPE = identifier;
208 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

VALUES { power ground source sink
driver receiver interconnect }

}

KEYWORD NODE_CLASS = annotation { (see 9.15.2)
CONTEXT = NODE;
VALUETYPE = identifier;

}

KEYWORD PURPOSE = annotation { (see 9.17.1)
CONTEXT { VECTOR CLASS }
VALUETYPE = identifier ;
VALUES { bist test timing power noise reliability }

}

KEYWORD OPERATION = single_value_annotation { (see 9.17.2)
CONTEXT = VECTOR;
VALUETYPE = identifier;
VALUES {

read write read_modify_write refresh load
start end iddq

}
}

KEYWORD LABEL = single_value_annotation { (see 9.17.3)
CONTEXT = VECTOR;
VALUETYPE = string_value;

}

KEYWORD EXISTENCE_CONDITION = single_value_annotation { (see 9.17.4)
CONTEXT { VECTOR CLASS }
VALUETYPE = boolean_expression;
DEFAULT = 1;

}

KEYWORD EXISTENCE_CLASS = annotation { (see 9.17.5)
CONTEXT { VECTOR CLASS }
VALUETYPE = identifier;

}

KEYWORD
CHARACTERIZATION_CONDITION = single_value_annotation { (see 9.17.6)

CONTEXT { VECTOR CLASS }
VALUETYPE = boolean_expression;

}

KEYWORD CHARACTERIZATION_VECTOR = single_value_annotation { (see 9.17.7)
CONTEXT { VECTOR CLASS }
VALUETYPE = control_expression;

}

KEYWORD CHARACTERIZATION_CLASS = annotation {
CONTEXT { VECTOR CLASS } (see 9.17.8)
VALUETYPE = identifier;

}

KEYWORD LAYERTYPE = single_value_annotation { (see 9.19.1)
CONTEXT = LAYER;
VALUETYPE = identifier;
VALUES {

routing cut substrate dielectric reserved abstract
IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 209

}
}

KEYWORD PITCH = single_value_annotation { (see 9.19.2)
CONTEXT = LAYER;
VALUETYPE = unsigned_number;

}

KEYWORD PREFERENCE = single_value_annotation { (see 9.19.3)
CONTEXT = LAYER;
VALUETYPE = identifier;
VALUES { horizontal vertical acute obtuse }

}

KEYWORD VIATYPE = single_value_annotation { (see 9.22.1)
CONTEXT = VIA;
VALUETYPE = identifier;
VALUES { default non_default partial_stack full_stack }
DEFAULT = default;

}

KEYWORD PORT_VIEW = single_value_annotation { (see 9.27.1)
CONTEXT = PORT;
VALUETYPE = identifier;
VALUES { physical electrical both none }
DEFAULT = both;

}

KEYWORD ORIENTATION_CLASS = annotation { (see 9.29.1)
CONTEXT { SITE CELL }
VALUETYPE = IDENTIFIER;

}

KEYWORD SYMMETRY_CLASS = annotation { (see 9.29.2)
CONTEXT { SITE CELL }
VALUETYPE = identifier;

}

KEYWORD ARRAYTYPE = single_value_annotation { (see 9.31.1)
CONTEXT = ARRAY;
VALUETYPE = identifier;
VALUES { floorplan placement

global_routing detailed_routing }
}

KEYWORD SHAPE = single_value_annotation { (see 9.33.2)
CONTEXT = PATTERN;
VALUETYPE = identifier;
VALUES { line tee cross jog corner end }
DEFAULT = line;

}

KEYWORD VERTEX = single_value_annotation { (see 9.33.3)
CONTEXT = PATTERN;
VALUETYPE = identifier;
VALUES { round linear }
DEFAULT = linear;

}

KEYWORD POINT_TO_POINT = single_value_annotation { (see 9.35)
CONTEXT { POLYLINE RING POLYGON }
210 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

VALUETYPE = identifier;
VALUES { direct manhattan }
DEFAULT = direct;

}

B.2 Arithmetic definitions

SEMANTICS VIOLATION { (see 11.4.12)
CONTEXT {

SETUP HOLD RECOVERY REMOVAL SKEW NOCHANGE ILLEGAL
LIMIT.arithmetic_model
LIMIT.arithmetic_model.MIN
LIMIT.arithmetic_model.MAX
LIMIT.arithmetic_model.arithmetic_submodel
LIMIT.arithmetic_model.arithmetic_submodel.MIN
LIMIT.arithmetic_model.arithmetic_submodel.MAX

}
}

SEMANTICS VIOLATION.BEHAVIOR {
CONTEXT {

VECTOR.arithmetic_model
VECTOR.LIMIT.arithmetic_model
VECTOR.LIMIT.arithmetic_model.MIN
VECTOR.LIMIT.arithmetic_model.MAX
VECTOR.LIMIT.arithmetic_model.arithmetic_submodel
VECTOR.LIMIT.arithmetic_model.arithmetic_submodel.MIN
VECTOR.LIMIT.arithmetic_model.arithmetic_submodel.MAX

}
}

KEYWORD MESSAGE_TYPE = single_value_annotation {
CONTEXT = VIOLATION ;
VALUETYPE = identifier ;
VALUES { information warning error }

}

KEYWORD MESSAGE = single_value_annotation {
CONTEXT = VIOLATION ;
VALUETYPE = quoted_string ;

}

KEYWORD UNIT = annotation { (see 11.5.1)
CONTEXT = arithmetic_model ;
VALUETYPE = quantity_value ;
DEFAULT = 1 ;

}

KEYWORD CALCULATION = annotation { (see 11.5.2)
CONTEXT = library_specific_object.arithmetic_model ;
VALUES { absolute incremental }
DEFAULT = absolute ;

}

KEYWORD INTERPOLATION = single_value_annotation { (see 11.5.3)
CONTEXT = HEADER.arithmetic_model ;
IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 211

VALUES { linear fit ceiling floor }
DEFAULT = fit ;

}

KEYWORD DEFAULT = single_value_annotation { (see 11.5.4)
CONTEXT { arithmetic_model KEYWORD }
VALUETYPE = all_purpose_value ;

}

SEMANTICS PIN = single_value_annotation { (see 11.19.1)
CONTEXT {

FROM TO SLEWRATE PULSEWIDTH
CAPACITANCE RESISTANCE INDUCTANCE VOLTAGE CURRENT

}
}
SEMANTICS SKEW.PIN = multi_value_annotation ;

KEYWORD EDGE_NUMBER = annotation { (see 11.19.2)
CONTEXT { FROM TO SLEWRATE PULSEWIDTH SKEW }
VALUETYPE = unsigned_integer ;
DEFAULT = 0;

}

SEMANTICS EDGE_NUMBER = single_value_annotation {
CONTEXT { FROM TO SLEWRATE PULSEWIDTH }

}

SEMANTICS SKEW.EDGE_NUMBER = multi_value_annotation ;

KEYWORD MEASUREMENT = single_value_annotation { (see 11.29.1)
VALUETYPE = identifier ;
VALUES {

transient static average absolute_average rms peak
}
CONTEXT {

ENERGY POWER CURRENT VOLTAGE FLUX FLUENCE JITTER
}

}

KEYWORD CONNECT_RULE = single_value_annotation { (see 11.42.1)
VALUETYPE = identifier ;
VALUES { must_short can_short cannot_short }
CONTEXT = CONNECTIVITY;

}

KEYWORD BETWEEN = multi_value_annotation { (see 11.42.2)
VALUETYPE = identifier ;
CONTEXT { DISTANCE LENGTH OVERHANG CONNECTIVITY }

}

KEYWORD DISTANCE_MEASUREMENT = single_value_annotation { (see 11.42.3)
VALUETYPE = identifier ;
VALUES { euclidean horizontal vertical manhattan }
DEFAULT = euclidean ;
CONTEXT = DISTANCE ;

}

KEYWORD REFERENCE = annotation_container { (see 11.42.4)
CONTEXT = DISTANCE ;

}

SEMANTICS REFERENCE.identifier = single_value_annotation {
VALUETYPE = identifier ;
212 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

VALUES { center origin near_edge far_edge }
DEFAULT = origin ;

}

SEMANTICS ANTENNA = annotation { (see 11.42.5)
VALUETYPE = identifier ;
CONTEXT { PIN.SIZE PIN.AREA PIN.PERIMETER }

}

SEMANTICS PATTERN = single_value_annotation { (see 11.42.6)
VALUETYPE = identifier ;
CONTEXT {

LENGTH WIDTH HEIGHT SIZE AREA THICKNESS
PERIMETER EXTENSION

}
}

IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 213

214 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

Annex C

(informative)

Bibliography

[B1] Ratzlaff, C. L., Gopal, N., and Pillage, L. T., “RICE: Rapid Interconnect Circuit Evaluator,” Proceedings of
28th Design Automation Conference, pp. 555–560, 1991.

[B2] SPICE 2G6 User’s Guide.

[B3] Standard Delay Format Specification, Version 3.0, Open Verilog International, May 1995.

[B4] The IEEE Standard Dictionary of Electrical and Electronics Terms, Sixth Edition.
IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 215

216 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

A
ABS 142
abs 142
ALIAS 47
alias 47
alphabetic_bit_literal 33
annotation

arithmetic model tables
DRIVER 178
RECEIVER 178

arithmetic models
average 175
can_short 181
cannot_short 181
must_short 181
peak 175
rms 175
static 175
transient 175

CELL
NON_SCAN_CELL 122

cell buffertype
inout 66
input 66
internal 66
output 66

cell celltype
block 62
buffer 62
combinational 62
core 62

flipflop 62
latch 62
memory 62
multiplexor 62
special 63

cell drivertype
both 66
predriver 66
slotdriver 66

cell scan_type
clocked 65
control_0 65
control_1 65
lssd 65
muxscan 65

cell scan_usage
hold 65
input 65
output 65

pin action
asynchronous 76
synchronous 76

pin datatype
signed 78
unsigned 78

pin direction
both 73
input 73
none 73
output 73

pin drivetype
cmos 82
cmos_pass 83
nmos 82
nmos_pass 83
open_drain 83
open_source 83
pmos 83
pmos_pass 83
ttl 83

pin orientation
bottom 85
left 84
right 84
top 85

pin pintype
2 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

analog 73
digital 73
supply 73

pin polarity
double_edge 77
falling_edge 77
high 77
low 77
rising_edge 77

pin pull
both 87, 91
down 87, 91, 93
none 87, 91, 93
up 87, 91, 93

pin scope
behavior 83
both 84
measure 84
none 84

pin signaltype
clear 75, 77, 78
clock 75, 77, 78
control 74, 76, 78
data 74, 76, 77
enable 74, 75, 77, 78
select 74, 76, 78
set 75, 77, 78

pin stuck
both 80
none 80
stuck_at_0 79, 80
stuck_at_1 79, 80

pin view
both 72
functional 72
none 72
physical 72

arithmetic models 14
arithmetic operators

binary 142
unary 141

arithmetic_binary_operator 142
arithmetic_expression 141, 200
arithmetic_function_operator 142
arithmetic_unary_operator 141
atomic object 14
IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 3

ATTRIBUTE 42
attribute 42

CELL 68, 69
cell

asynchronous 68
CAM 68
dynamic 68
RAM 68
ROM 68
static 68
synchronous 68

PIN 87
pin

PAD 87
SCHMITT 87
TRISTATE 87
XTAL 87

B
based literal 33
based_literal 33
behavior 119
behavior_body 119
Binary operators

arithmetic 142
binary_base 33
bit 124
bit_edge_literal 34
bit_literal 33
boolean_binary_operator 123
boolean_expression 123
boolean_unary_operator 123

C
cell 61
cell_identifier 61
cell_template_instantiation 61
characterization 5
children object 13
CLASS 47
class 47
comment 25
CONSTANT 47
constant 47
4 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

D
decimal_base 33
deep submicron 5
delimiter 25

E
edge_literal 34
equation 146
equation_template_instantiation 146
escape codes 34
escape_character 27, 28
escaped_identifier 35
EXP 142
exp 142

F
function 117
Function operators

arithmetic 142
function_template_instantiation 117
functional model 5

G
generic objects 14
group 52
group_identifier 52

H
header 145
hex_base 33

I
identifier 13, 25
INCLUDE 43
include 43, 44
index 41

L
Library creation 2
library_template_instantiation 59
library-specific objects 14
literal 25
LOG 142
log 142
logic_values 121
IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 5

M
MAX 143
max 142
MIN 142
min 142
mode of operation 5

N
nonescaped_identifier 35, 36
Number 31
numeric_bit_literal 33

O
octal_base 33
operation mode 5

P
pin_assignments 41
placeholder identifier 36
power constraint 5
Power model 5
predefined derating cases 166, 176

bccom 166
bcind 166
bcmil 167
wccom 167
wcind 167
wcmil 167

predefined process names 166
snsp 166
snwp 166
wnsp 166
wnwp 166

primitive_identifier 89, 119
primitive_instantiation 119
primitive_template_instantiation 89
PROPERTY 43
property 43

Q
quoted string 34
quoted_string 34

R
RTL 4
6 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

S
sequential_assignment 119, 198
simulation model 5
statetable 121
statetable_body 121
string 39
symbolic_edge_literal 34

T
table 145
template 54
template_identifier 54
template_instantiation 54
timing constraints 5
timing models 5

U
Unary operators

arithmetic 141
unnamed_assignment 42

V
vector 92
vector_expression 92, 132
vector_template_instantiation 92
vector_unary_operator 132
vector-based modeling 5
Verilog 4
VHDL 4

W
wire 89, 90, 96, 98, 99, 100, 101, 102, 104, 105, 114
wire_identifier 89, 90, 96, 98, 100, 102
wire_template_instantiation 89, 90, 96, 98, 100, 101, 102, 104, 105, 114
word_edge_literal 34
IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 7

8 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

	1. Introduction
	1.1 Motivation
	1.2 Goals
	1.3 Target applications
	1.4 Conventions
	1.5 Contents of this standard

	2. References
	3. Definitions
	4. Acronyms and abbreviations
	5. ALF language construction principles and overview
	5.1 ALF meta-language
	5.2 Categories of ALF statements
	5.3 Generic objects and library-specific objects
	5.4 Singular statements and plural statements
	5.5 Instantiation statement and assignment statement
	5.6 Annotation, arithmetic model, and related statements
	5.7 Statements for parser control
	5.8 Name space and visibility of statements

	6. Lexical rules
	6.1 Character set
	6.2 Comment
	6.3 Delimiter
	6.4 Operator
	6.4.1 Arithmetic operator
	6.4.2 Boolean operator
	6.4.3 Relational operator
	6.4.4 Shift operator
	6.4.5 Event sequence operator
	6.4.6 Meta operator

	6.5 Number
	6.6 Quantity symbol
	6.7 Bit literal
	6.8 Based literal
	6.9 Edge literal
	6.10 Quoted string
	6.11 Identifier
	6.11.1 Non-escaped identifier
	6.11.2 Escaped identifier
	6.11.3 Placeholder identifier
	6.11.4 Hierarchical identifier

	6.12 Keyword
	6.13 Rules for whitespace usage
	6.14 Rules against parser ambiguity

	7. Auxiliary syntax rules
	7.1 All-purpose value
	7.2 Quantity value
	7.3 String value
	7.4 Arithmetic value
	7.5 Boolean value
	7.6 Edge value
	7.7 Index value
	7.8 Index
	7.9 Pin variable and pin value
	7.10 Pin assignment
	7.11 Annotation
	7.12 Annotation container
	7.13 ATTRIBUTE statement
	7.14 PROPERTY statement
	7.15 INCLUDE statement
	7.16 ASSOCIATE statement
	7.17 REVISION statement
	7.18 Generic object
	7.19 Library-specific object
	7.20 All purpose item

	8. Generic objects and related statements
	8.1 ALIAS declaration
	8.2 CONSTANT declaration
	8.3 CLASS declaration
	8.4 KEYWORD declaration
	8.5 Annotations for a KEYWORD
	8.5.1 VALUETYPE annotation
	8.5.2 VALUES annotation
	8.5.3 DEFAULT annotation
	8.5.4 CONTEXT annotation
	8.5.5 SI_MODEL annotation

	8.6 SEMANTICS declaration
	8.7 GROUP declaration
	8.8 TEMPLATE declaration
	8.9 TEMPLATE instantiation

	9. Library-specific objects and related statements
	9.1 LIBRARY and SUBLIBRARY declaration
	9.2 Annotations for LIBRARY and SUBLIBRARY
	9.2.1 INFORMATION annotation container

	9.3 CELL declaration
	9.4 CELL instantiation
	9.5 Annotations for a CELL
	9.5.1 CELLTYPE annotation
	9.5.2 SWAP_CLASS annotation
	9.5.3 RESTRICT_CLASS annotation
	9.5.4 SCAN_TYPE annotation
	9.5.5 SCAN_USAGE annotation
	9.5.6 BUFFERTYPE annotation
	9.5.7 DRIVERTYPE annotation
	9.5.8 PARALLEL_DRIVE annotation
	9.5.9 PLACEMENT_TYPE annotation
	9.5.10 SITE reference annotation

	9.6 ATTRIBUTE values for a CELL
	9.7 PIN declaration
	9.8 PINGROUP declaration
	9.9 Annotations for a PIN and a PINGROUP
	9.9.1 VIEW annotation
	9.9.2 PINTYPE annotation
	9.9.3 DIRECTION annotation
	9.9.4 SIGNALTYPE annotation
	9.9.5 ACTION annotation
	9.9.6 POLARITY annotation
	9.9.7 DATATYPE annotation
	9.9.8 INITIAL_VALUE annotation
	9.9.9 SCAN_POSITION annotation
	9.9.10 STUCK annotation
	9.9.11 SUPPLYTYPE annotation
	9.9.12 SIGNAL_CLASS annotation
	9.9.13 SUPPLY_CLASS annotation
	9.9.14 DRIVETYPE annotation
	9.9.15 SCOPE annotation
	9.9.16 CONNECT_CLASS annotation
	9.9.17 SIDE annotation
	9.9.18 ROW and COLUMN annotation
	9.9.19 ROUTING_TYPE annotation
	9.9.20 PULL annotation

	9.10 ATTRIBUTE values for a PIN and a PINGROUP
	9.11 PRIMITIVE declaration
	9.12 WIRE declaration
	9.13 WIRE instantiation
	9.14 Annotations for a WIRE
	9.14.1 SELECT_CLASS annotation

	9.15 NODE declaration
	9.15.1 NODETYPE annotation
	9.15.2 NODE_CLASS annotation

	9.16 VECTOR declaration
	9.17 Annotations for VECTOR
	9.17.1 PURPOSE annotation
	9.17.2 OPERATION annotation
	9.17.3 LABEL annotation
	9.17.4 EXISTENCE_CONDITION annotation
	9.17.5 EXISTENCE_CLASS annotation
	9.17.6 CHARACTERIZATION_CONDITION annotation
	9.17.7 CHARACTERIZATION_VECTOR annotation
	9.17.8 CHARACTERIZATION_CLASS annotation
	9.17.9 MONITOR annotation

	9.18 LAYER declaration
	9.19 Annotations for LAYER
	9.19.1 LAYERTYPE annotation
	9.19.2 PITCH annotation
	9.19.3 PREFERENCE annotation

	9.20 VIA declaration
	9.21 VIA instantiation
	9.22 Annotations for a VIA
	9.22.1 VIATYPE annotation

	9.23 RULE declaration
	9.24 ANTENNA declaration
	9.25 BLOCKAGE declaration
	9.26 PORT declaration
	9.27 Annotations for PORT
	9.27.1 PORT_VIEW annotation

	9.28 SITE declaration
	9.29 Annotations for SITE
	9.29.1 ORIENTATION_CLASS annotation
	9.29.2 SYMMETRY_CLASS annotation

	9.30 ARRAY declaration
	9.31 Annotations for ARRAY
	9.31.1 ARRAYTYPE annotation
	9.31.2 SITE reference annotation
	9.31.3 LAYER reference annotation

	9.32 PATTERN declaration
	9.33 Annotations for PATTERN
	9.33.1 LAYER reference annotation
	9.33.2 SHAPE annotation
	9.33.3 VERTEX annotation
	9.33.4 ROUTE annotation

	9.34 REGION declaration
	9.34.1 BOOLEAN annotation

	9.35 Geometric model
	9.36 Predefined geometric models using TEMPLATE
	9.37 Geometric transformation
	9.38 ARTWORK statement

	10. Constructs for modeling of functional behavior
	10.1 FUNCTION statement
	10.2 TEST statement
	10.3 Declaration of pin variables
	10.4 BEHAVIOR statement
	10.5 STRUCTURE statement
	10.6 STATETABLE statement
	10.7 NON_SCAN_CELL statement
	10.8 RANGE statement
	10.9 Boolean expression
	10.10 Boolean value system
	10.10.1 Scalar boolean value
	10.10.2 Vectorized boolean value
	10.10.3 Non-assignable boolean value

	10.11 Boolean operations and operators
	10.11.1 Logical operation
	10.11.2 Bitwise operation
	10.11.3 Conditional operation
	10.11.4 Integer arithmetic operation
	10.11.5 Shift operation
	10.11.6 Comparison operation
	10.11.7 Operator priorities

	10.12 Vector expression
	10.13 Operators for event specification
	10.13.1 Specification of a single event
	10.13.2 Temporal order of events
	10.13.3 Canonical specification of an event
	10.13.4 Specification of a completely permutable event
	10.13.5 Specification of a conditional event
	10.13.6 Operator priorities

	11. Constructs for electrical and physical modeling
	11.1 Arithmetic expression
	11.1.1 Unary arithmetic operator
	11.1.2 Binary arithmetic operator
	11.1.3 Macro arithmetic operator

	11.2 Arithmetic model
	11.2.1 Trivial arithmetic model
	11.2.2 Partial arithmetic model
	11.2.3 Full arithmetic model

	11.3 HEADER, TABLE, and EQUATION
	11.3.1 HEADER statement
	11.3.2 TABLE statement
	11.3.3 EQUATION statement

	11.4 Statements related to arithmetic model
	11.4.1 Model qualifier
	11.4.2 Auxiliary arithmetic model
	11.4.3 Arithmetic submodel
	11.4.4 MIN-MAX statement
	11.4.5 MIN-TYP-MAX statement
	11.4.6 Trivial MIN-MAX statement
	11.4.7 Arithmetic model container
	11.4.8 LIMIT statement
	11.4.9 Event reference statement
	11.4.10 FROM and TO statements
	11.4.11 EARLY and LATE statements
	11.4.12 VIOLATION statement

	11.5 Annotations for arithmetic models
	11.5.1 UNIT annotation
	11.5.2 CALCULATION annotation
	11.5.3 INTERPOLATION annotation
	11.5.4 DEFAULT annotation
	11.5.5 MODEL annotation

	11.6 TIME
	11.6.1 TIME in context of a VECTOR declaration
	11.6.2 TIME in context of a HEADER statement
	11.6.3 TIME as auxiliary arithmetic model

	11.7 FREQUENCY
	11.7.1 FREQUENCY in context of a VECTOR declaration
	11.7.2 FREQUENCY in context of a HEADER statement
	11.7.3 FREQUENCY as auxiliary arithmetic model

	11.8 DELAY
	11.8.1 DELAY in context of a VECTOR declaration
	11.8.2 DELAY in context of a library-specific object declaration

	11.9 RETAIN
	11.10 SLEWRATE
	11.10.1 SLEWRATE in context of a VECTOR declaration
	11.10.2 SLEWRATE in context of a PIN declaration
	11.10.3 SLEWRATE in context of a library-specific object declaration

	11.11 SETUP and HOLD
	11.11.1 SETUP in context of a VECTOR declaration
	11.11.2 HOLD in context of a VECTOR declaration
	11.11.3 SETUP and HOLD in context of the same VECTOR declaration

	11.12 RECOVERY and REMOVAL
	11.12.1 RECOVERY in context of a VECTOR declaration
	11.12.2 REMOVAL in context of a VECTOR declaration
	11.12.3 RECOVERY and REMOVAL in context of the same VECTOR declaration

	11.13 NOCHANGE and ILLEGAL
	11.13.1 NOCHANGE in context of a VECTOR declaration
	11.13.2 ILLEGAL in context of a VECTOR declaration

	11.14 SKEW
	11.14.1 SKEW involving two signals
	11.14.2 SKEW involving multiple signals

	11.15 PULSEWIDTH
	11.15.1 PULSEWIDTH in context of a VECTOR declaration
	11.15.2 PULSEWIDTH in context of a PIN declaration
	11.15.3 PULSEWIDTH in context of a library-specific object declaration

	11.16 PERIOD
	11.17 JITTER
	11.18 THRESHOLD
	11.19 Annotations related to timing data
	11.19.1 PIN reference annotation
	11.19.2 EDGE_NUMBER annotation

	11.20 PROCESS
	11.21 DERATE_CASE
	11.22 TEMPERATURE
	11.23 PIN-related arithmetic models for electrical data
	11.23.1 CAPACITANCE, RESISTANCE, and INDUCTANCE
	11.23.2 VOLTAGE and CURRENT
	11.23.3 Context-specific semantics

	11.24 POWER and ENERGY
	11.25 FLUX and FLUENCE
	11.26 DRIVE_STRENGTH
	11.27 SWITCHING_BITS
	11.28 NOISE and NOISE_MARGIN
	11.28.1 NOISE margin
	11.28.2 NOISE

	11.29 Annotations and statements related to electrical models
	11.29.1 MEASUREMENT annotation
	11.29.2 TIME to peak measurement
	11.29.3 COMPONENT annotation
	11.29.4 FLOW annotation

	11.30 CONNECTIVITY
	11.31 SIZE
	11.32 AREA
	11.33 WIDTH
	11.34 HEIGHT
	11.35 LENGTH
	11.36 DISTANCE
	11.37 OVERHANG
	11.38 PERIMETER
	11.39 EXTENSION
	11.40 THICKNESS
	11.41 DENSITY
	11.42 Annotations for physical models
	11.42.1 CONNECT_RULE annotation
	11.42.2 BETWEEN annotation
	11.42.3 DISTANCE-MEASUREMENT annotation
	11.42.4 REFERENCE annotation container
	11.42.5 ANTENNA reference annotation
	11.42.6 PATTERN reference annotation

	11.43 Arithmetic submodels for timing and electrical data
	11.44 Arithmetic submodels for physical data

	Annex A
	A.1 ALF meta-language
	A.2 Lexical definitions
	A.3 Auxiliary definitions
	A.4 Generic definitions
	A.5 Library definitions
	A.6 Function definitions
	A.7 Arithmetic definitions
	Annex B
	B.1 Library definitions
	B.2 Arithmetic definitions
	Annex C

