A standard for an
Advanced Library Format (ALF)
describing Integrated Circuit (IC)

technology, cells, and blocks

This is an unapproved draft for an IEEE standard
and subject to change

IEEE P1603 Draft 6
August 15, 2002

Copyright© 2001, 2002, 2003 by IEEE. All rights reserved.

put in |[EEE verbiage

ii Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

The following individual s contributed to the creation, editing, and review of this document

Wolfgang Roethig, Ph.D. wroethig@eda.org Official Reporter and WG Chair
Joe Daniels chippewea@aol.com Technical Editor

IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual

Revision history:

|EEE P1596 Draft O
|EEE P1603 Draft 1
|EEE P1603 Draft 2
|EEE P1596 Draft 3
|EEE P1603 Draft 4
|EEE P1603 Draft 5

August 19, 2001
September 17, 2001
November 12, 2001
April 17, 2002
May 15, 2002

June 21, 2002

Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 6

Table of Contents

O 1 1o o 1 o PSSR 1
L1 IMIOLIVELION. ..c.eiuitiriitisites ettt ettt es bt b et bbbttt st et 1

0 T S 2

1.3 Target @DPliCALIONS. ...covieieieieiieteeee ettt b et bbbttt ettt bene 2

O o0 1V/= 011 o =SSO 5

1.5 Contents of thiS StANAr..........ccevviiiirere e s re et sae et e e e eeneenens 5

2. REFEIENCES. ..ottt b bt b e h b b e bR £ A e At R e R e e Rt eRe bt Rt b e bRt e ebeeeesrenean 7
T B 1< 1oL o] o USRS 9
4. Acronyms and @DDIEVIBLIONScoueiiierieieeei ettt et ettt eb e s b b e e et ene e eneenea 11
5. ALF language construction prinCiples and OVEIVIEWccceoeieririenesieneeseeeseeee e sre e seessesee e 13
LN Y e o1 = =g To 0o T USSR 13

5.2 Categories Of ALF SLALEMENTS........coiiiieiieie ettt sttt b e st e e e e et 14

5.3 Generic abjects and library-specifiC ODJECES..........coiiiriiiiiee e 16

5.4 Singular statements and plural SEBEEMENLS..........ooueeiriiirirerere e e e 18

5.5 Instantiation statement and assignment SEAEEMENLcccoveriiirere e e e 20

5.6 Annotation, arithmetic model, and related StAEEMENES.........cccooerererieieiree e 21

5.7 StatementSfor Parser CONIOottt sb e s sbesae 23

5.8 Name space and visibility Of SEEEEMENTS.........ccooiiiiiiiieeee e e 23

B. LEXICEI FUIES... e ettt b et b e bt b s b e e et e st e e e he e Rt e R e e Re e Rt ehe s b e eheebe s be e et enre e e 25
L R O =T £ = PP S PSS 25

6.2 COMUMENT.eieieiiitee ittt ettt ettt r ek ea bt e e b e ehe e sb e s ae e sae s e e ebe e besheeseesheemeeeaeenbeabeenbeeaeeneesaeenesnneneas 27

LRSI B = [011 = SO U TSP 27

(O @ o= = (0] SRR 28
6.4.1 ATITNMELIC OPEIALONeeeeee ettt e e st s e ese e aesresnaesrennaens 28

(S N = To 0 == T e 0 = o OSSR 29

(S G B = (= = o = 0] 1= = o) OO 29

L S 1110 0= = o SRS 30

6.4.5 EVENL SEQUENCE OPEIEIONeeiueeteiesieesseesieesseesseesessssessssessseessessssesssessssesssessssesssessnsesssesssees 30

(O I (Y 1= 7= 0] < = (o PSPPSR 30

B.5 INUMDET ...ttt b e et b et h e h e bt he bt e be b s b e b e s bese et e e e e e e 31

6.6 QUANLILY SYMIOLo s ee st e et et e e re e reeaaeneeeaeeneeneenneas 31

LA = T A 11 - OSSR 32

6.8 BASEU HLEIEl ...ecveeeeeieeie ettt sttt b e bR sttt nennene 33

Lo T o (0T 1= = | S 33

Lo L0 o] (o =1 o S 34

L3 o = o 1) 1T OSSOSO 35
6.11.1 NON-eSCapPed ideNtifiercccieeeecec e e e nnae 35

L oo T o [o [() S 35

6.11.3 Placeholder IHENTITIENcoeeeee e et 36

6.11.4 HierarchiCal Identifier..... oo e et 36

IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual Y

Vi

L0 (=LY o 36

6.13 RUIES FOr WhitESPACE USAGE. ... euveseeeeererieeeeteste st ste sttt st e e seese e ense e e se s e saesrentesaesaeneenaeseenesnnenensenns 37
6.14 Rules against parser ambigUILYcceeeieiirieiicesi e e eneeneere e 37
F N T L VY 1= G (1= 39
8 o0 oo 1S S = T O 39
A2 O U= 0111 Y 11 = 39
7.3 SHING VBIUE ...ttt bbbt b et bbb bbb ettt 39
T4 ATTNMELC VAIUE........oocei ettt ettt ste st e et e ebae st e ebeebesaeeseesaseabeensesbenreens 39
7.5 BOOIEAN VAIUE......c.vi ittt ettt ettt e s ae et s be e beebe e st e sbeeseeebaeasesbeenbesaeessesasebesnsesbenreens 40
T8 EQQEVEIUB. ...ttt b et bbb bbbttt 40
T.T7 INAEX VAIUB......oveeie ettt ettt ettt e te e be e e beebe e sbesbeesbeeatenbeebe e beeaeessesnsebesnsesbenreens 40
T8 INTEX ...ttt ettt ettt s et e s be et e st e e et e be et e e beeaeesheeabeebe e beebe e beebeeabeerbenbeeteesebeentenbeereens 40
7.9 Pinvariable @and PiN VAIUE.......cc.oi ettt bbbt ebe e 41
A Ol T =SS Lo a0 oL USSR 41
25 N A 110 - 4 o T SRRSO 41
7.12 ANNOLELION COMEAINETeeieeeecieiee st eie sttt e e et e s e e e e ste e eesreessesteestessaesteesaenteeseensesaeeseesnsenseenaesrensanss 42
T 13 ATTRIBUTE SEEEMENEcuvetiietiietiiieisieisiecstees st se e e bbbt besesbeseste e stenessenensens 42
7.14 PROPERTY SEALEMENT ... c.citiiitiirtiieteiesiiesesiesessesessesessesessesessasessesessessssessssessssessesessesessesssensssenssens 43
7.15 INCLUDE SEBEEIMENLc..eiteiirieiriesietesieiesesseesseessesasseseesessesessesessesessesessessssessssensesessesessesensensssenensens 43
7.16 ASSOCIATE SLALEIMENLcveveviietisierisieesieeseesseesseessesessesessesessesessesessessesessesessesessesessesessenessenessens 44
7.17 REVISION SEBEEIMIENE.euiveriieeirieseetesesiesessesesseessesessesessessesessesessesessesessessssessssensesessesessesensenessenesens 44
FA R R T 0T Tl o] o 1= ol AUV U TR 45
7.19 Library-speCifiC ODJECLc.oiii e e e e e 45
7. 20 All PUIPOSE ITBIM....cuei ittt ettt sttt sttt b et b e e e bt eh e b e s he e b e s b e b sbe b e be e et ensese e e eneeneereene 45
Generic objects and related SLALEMENTS ..ot e e e 47
S R N I NS Yo (= = 4 o o RSSO 47
8.2 CONSTANT ECIArAION.eveviietirieiisieistee et este st bbbt sesbesesbe e be e seneneens 47
oG T O I NS Yo L= = =4 o] I 47
8.4 KEYWORD UECIAraliONeeeveeiieeieiecie st eie st et e st eeesteesae e e ste e e stestaessessaensesseensesseeseesaeensesnanssessenss 48
8.5 ANNOtations fOr aKEYWORDcciiiiii ettt ettt sae e sae e enae s aenenreea 49

85.1 VALUETYPE @NNOLAiON......ciiieiirieiirieisieirie it sse sttt esessessssenessenes 49

8.5.2 VALUES GNNOLALION......ceeiuieeeeieiiiieiteeie e e et et e e et sse et sreesaesresneesaeensenseentenseennensennns 50

8.5.3 DEFAULT @nNOAiONecviiieieciecie sttt ettt et sre e s en e saeenaeneeeneenes 50

R N 60 |\ N =) I o [To = 1) o TSt 50

8.5.5 S| _MODEL annOtalion........ccceeiiiieiieeiieieeiete st et see e st esae et sre e sae s ssae e enaen e entesseeneeneenns 51
8.6 SEMANTICS AECIAIEIIONvcveeeeiieieriei ettt st s st be et e eens 51
8.7 GROUP AECIAratioNccueiueiieiceesie sttt s tee st et e e ae e e s e e s tessae s e ss e beese e besaeeseesneenseeaessensanns 52
8.8 TEMPLATE ECIArAtiONcviviieeirieiisieisiees ettt ettt bbbt 53
8.9 TEMPLATE INSLANTIGLIONcveuiiteeieieieieiieieeeieie sttt se st st se st be s neeens 54
Library-specific objects and related StatemMENtS.........ccovcieie e i 59
9.1 LIBRARY and SUBLIBRARY dECIarationccccveireirieirieininesienes et 59
9.2 Annotations for LIBRARY and SUBLIBRARYc.oooiiiie ettt 59

9.2.1 INFORMATION annotation COMLAINEYccueverrieieeseeeeseesieseeeseesesseessessaessessaesesneensesns 59
LS G T O =l I I 1= = 1 o o S STP 61
LS O I I = o) o SRS 61
9.5 ANNOLALIONS FOr @CELLeiieeiie et re et sre e e sneesaesreenaens 62

95.1 CELLTYPE @NNOALONccveuievirietirieiesistesiste st esaes st sss s e sesessesessssessesessesssessnses 62

9.5.2 SWAP_CLASS @NNOALION......cceiuieiieriieieeieieeteesteseeseseeseeesaesseeseestesseessessaenseessesesnsensesnes 63

Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

953 RESTRICT _CLASS ANNOALION....cueiveiiereeieeieseeiereeseesessestesseseesseseesseseesseseessssessessessessessessens 63

954 SCAN_TYPE @NNOLEIIONcoueeeivieeeiieciesesieseeseeieseeeeresses e saeste e seessesaesee e esesessesnessessessnsnnns 64
955 SCAN_USAGE @NMNOLALIONcceeeeeeieeceectisieseestesieseesieseeseeseesesressesaessese e ssessensessenssssssesssssens 65
9.5.6 BUFFERTYPE @NNOtALION......cccviiiieitieiece ettt seeseeseetesaebesteesbeeseessssaesnnesnnessesseesaessness 66
9.5.7 DRIVERTYPE @NNOAiONcuvetiiieerieiecte ettt ettt s teebesbesre et eresreenesneesaesaeensesnnensens 66
958 PARALLEL DRIVE @MNOALiONocvviviieieeseireeiereeeetesesese e stesee st e seessseeessessessesssssens 67
959 PLACEMENT _TYPE @NNOtAtiONccveivereeeireeeieieseeee st seestesee st e e sesse e sre e e 67
9.5.10 SITE referenCe anNOtatiON.........ccieeieeerieieeecee e ecte st e see s eeeseebesre e beeseessesaeesessesseeseesressnens 68
9.6 ATTRIBUTE VAIUESTOr @ CELL.....ociviiviiieeecetee ettt st s sve s sabesssessne s saessnneenrenen 68
L A = V0 5 = = 1 o o R 70
9.8 PINGROUP ECIArGLI ON......eeeueeieeeciieceiieteeceeeeteesteete e esestessseessresssesssessssesssessnssssbessressabessseesasesssenens 71
9.9 Annotationsfor aPIN and @PINGROUPooiiicee ettt s e st s s saeevessree e 71
LR T R VA1 VAV AT o = 1 o 72
LR I = NN I = a0 o) = 1 o o O 72
9.9.3 DIRECTION @NNOAION.......cccviiuiiitiirieteeeteseestesieesteeseesteeseessaebesreesbessesssssasssseesaesresssesseenrens 73
9.9.4 SIGNALTYPE GNNOLBLIONuveveiicrictiece ettt e seesreesae s besbe e beesessessneesssnesaeeressaesneeas 74
9.95 ACTION GNNOLALIONveiitieieectee e ctee ettt seee e ete e etre s eteesree e sbeesabesabeesbaeeareesaeesbeeseesarens 76
9.9.6 POLARITY GNNOLALONvieiiiiciii ettt ettt ettt et e eree e ste e saeeabeesbeeeareesaeeebeeneesnreas 77
9.9.7 DATATYPE @NNOLALION.......cveiietiiieitietieeteeee e eetesteeseesteeseesteesbesreesbesssessssaesssssasensestesssessenns 78
9.9.8 INITIAL_VALUE @NNOLEHION........ccoiiitietiiieiteeieieceeeeteeeete e ere et sbe e st see st see s e esesbesnesneas 78
9.9.9 SCAN_POSITION @NNOLALIONceeuieiierieiecteetecieseeeteseeseeeeeete s e sresbes e saesresbesesaenseeeseeneeneas 79
9.9.10 STUCK @NNOLALION.....ccccviiitieeiietiecee et e steeereesteeesteeeteesbeesseeesaeesbeessesbeesssesseesaseasseessssssrens 79
9.9.11 SUPPLY T TYPE @NNOLAIIONecveivieiieieieie ettt et seesreseetesaesbesbeesbeesessssssssssssnsesssssessaessenss 80
9.9.12 SIGNAL_CLASS ANNOLALIONcucciiiiietietiiteiteetesieseesteseeseeeeseetesessesrestesaessestessesaensesessessessens 80
9.9.13 SUPPLY _CLASS GNNOALiON......cveoeiueerieriiieiteetesieseesieseeseeeeestessessestestestessestessesssssesessessessens 81
9.9.14 DRIVETYPE QNNOLALION.......ccoiiitieitiitieticecete e cteeiee e estesteestesreesbesssebesbessbesssssbsennssaeessesaens 82
9.9.15 SCOPE QNNOLBLION.......cciieiieeiieitie e e et e scte et e st e steeeeesebeesaseebeesbeessseesseesabeasessseesseesnsessrens 83
9.9.16 CONNECT_CLASS QNNOLALION.......cceieiviireiteiiesteseeieeeeeteseerestestestessessesaessesesssssessessessessens 84
9.9.17 SIDE @QNNOLALIONoecctieiiee ettt ettt ste et e st e e steeeteesab e e beeeaeeesbeesabesabeesbaesaseesaeesabesnnessarens 84
9.9.18 ROW and COLUMN @NNOtBLION........cceeiuieiirieireeiiteeeeectreeeteeereeesreesaesreesreesareesseesbesneessnes 85
9.9.19 ROUTING _TYPE @NNOALIONccceiuiitieieiieciiceeieseeeeteeee e sseete e sresres e s e ssesbesaesasneesessesnesnens 86
9.9.20 PULL GNNOLALONcccuiiiiieeciecieeetie ettt ste et e stae e steeeee st e e saaeeaaeesbesensesnbeesasesnseesanesseensessnrens 86
9.10 ATTRIBUTE values for aPIN and aPINGROUP............ccccovuiiieitiece sttt s eneas 87
Q.11 PRIMITIVE QECIAIGLION ...ecveiveciee ittt ettt eteest et st saeesae st e stesaeestesasesbesnsebesbassbessesssssnsennssnnensens 89
Q.12 WIRE AECIAIAHIONoeouveiiiveeieeiee ettt st e etee st s tae et e ebe e s steeeaeesabesbaesaeeesbeesasesabeesbaeenseestessnseensesssrenns 89
Q. LB WIRE INSEANTIALIONceviiiieciec ettt ettt te e te e st e e beesaeeesbeesaaesabeesbaeeaseesteesnbeensessnreens 20
9.14 ANNOLALIONS TOr AWIRE ..ottt et e s e s e e st ee e e e steesbeenneesabeens 20
9.14.1 SELECT CLASS QNNOALION....c.cciveiieeietieeiiecteetese e stesreseeaeseeeeseesaesessestesaesrestessessessensensens 90
.15 NODE AECIAIALION......cccuiiitieciie ettt ettt ettt e sbe e st e s beesaaeease e sbeesbeebaesabeeseesaeesseensenssreens 20
9.15.1 NODETY PE @NNOALION.......cvcciveitieiieerieieeeeeteereesteseesaesaesbessesbessessseessssssesssseessessesssessssnsens 91
9.15.2 NODE_CLASS GNNOLAION......ccitiitiitiitieteitestisteteseereeseeeesesseetestessessessessessessessesssssesessessessens 91
.16 VECTOR TECIAIAiON.....occvieeeiiectiestieie ittt e e ebe et s eteeessaeetesbeestesbeesaesbesssesssenbessessbessesssssreessssnnesens 92
9.17 ANNOLALIONS FOr VECTORoiiiiei ettt ettt sttt e te ettt esae e e ste e saaesabeesbaeeaseesbessnbesnnessnbeens 92
9.17.1 PURPOSE QNNOALION........c.eeiiiirieiieecieesteecreeiteeesteeseesbeessseesseesteesseessaesasesssessseesseesssesnsens 92
9.17.2 OPERATION @NNOALIONc.vevveereceectieteeee et cte e esee e ereesteesbesbeesbessessssaeensssnsesesreesressenss 93
9.17.3 LABEL @NNOALIONccuviiiiieciectee ettt ettt e ete e s et eeaae e sbeesbeenbaesabeenneesaneesaeennnesnrens 94
9.17.4 EXISTENCE_CONDITION @nNOtaliONcceeueieeriieeeeeereeteseseesresesesressessesaessesesseesessens 94
9.17.5 EXISTENCE _CLASS @nNNOLaIiON......ccecviiieiriiieieieeieteeeetesteerestessestestesseseessessessseesessessessens 94
9.17.6 CHARACTERIZATION_CONDITION annotationc.ccccoevereereniesesseseseesesseesesessessens 95
9.17.7 CHARACTERIZATION_VECTOR annOtatioN.........ccccceieireriseresreieesieseeseeeesesessesseseseens 95
9.17.8 CHARACTERIZATION_CLASS aNNOAtiONccvcueereeieeieiieeresiesiesteieseseesieeeseseeessessesnens 96
9.17.9 MONITOR @NNOLALIONveeiveiriete ettt et e et eere e see e eseesaeebesbe e besbesssssasesesnsesbesseesaesnnens 96
Q. 1B LAY ER UECIAIAION ...ttt ettt ettt e s b e s e e st e s aaesaae e sbeesbesabeesaaeenseesaeesnbeenneesnreans 96
9.19 ANNOLALIONS TOr LAY ER ...ttt ettt e st e s sbe e s atesab e e baesaeeesbeesnbeenneesnreens 97

IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual vii

10.

Viii

L IS N R Y N = I =00 Vo] = 1 o 97

9.19.2 PITCH ANNOLALION......ceiiiiireitieitiereeiteereereeeete e esbesaeestesaeesessesseseestesseesbesssensesssensessessesnns 97
9.19.3 PREFERENCE GNNOLALIONccviitieiieciiciecieite et et etee st saeesresaestesseesresseesaesssesbesssensesssessennns 98
.20 VIA ECIAIAION.c.eeivectiicte ettt ettt sttt st et sttt e e e e et et e saeesbeebeesaesbeesbesbeenbesssenbesbeenbesaeessesnnensens 98
.21 VIA INSEANTIBEION.......eiiviiieiteecee sttt ettt beebeeseeste e s e sreesaeereesbesaeesbesasesbeenbesbeesseebenssestesnsesesnsesbensenss 98
9.22 ANNOLALIONS O AV IAottt ettt sre s st e s e et e eabebeebeeebesasesreenbesreensesbenteens 99
9.22.1 VIATYPE @NNOALIONceeiveeie it etecte et et et e et eeesreetesbeeseesresaeesbesssenbesnbenbesanensesans 99
.23 RULE ECIAIAION ..ottt ettt ettt sttt ete e sre s sbestae st e sabenbesbeenbesaeessesnseseensesbenrenns 99
.24 ANTENNA ECIAIGLION. .. .cccveiiriiitieceei e se ettt ctee e ses s te s tessae s e sbeseeeebessatesaessresesseessessabessseesneessreas 100
.25 BLOCKAGE AECIAIGLIONveeiveeeeeeeitee et st cteesesste et s saee s stessessabessaeesssessaessaessesssessnsessnesssseas 101
LS Sl O = B0 (<ot = {0 o T 101
9.27 ANNOLALTIONS FOF PORT ...ttt ettt et s e st s be s s ste s ebe s sab e e bessaeesstessabesabessbessnbessnneesreas 101
9.27.1 PORT_VIEW GNNOALION......cueiuiiriererierisieseete st se st et besesbese st sesbesesseseas 101
L SRS I o ['ox = oo 102
9.29 ANNOLALIONS TON SITEuei ittt ettt et e e e e et e e s et e e te e sbeeesaeesaaesabesereesnneesaeas 102
9.29.1 ORIENTATION_CLASS anNOtaliON........ccceeeiieirieieieieeiereeieereeeetesesrestessestessesaeseesseseens 102
9.29.2 SYMMETRY _CLASS @NNOLALONecveeeieeictecieete ettt sre st sbe e eneere st s 103
.30 ARRAY ECIAIALION......cccuiecieiitiectie ettt ettt e st e bt e eae e e sbe e eeeebeesabeebeesbesesbeessaesabeesseesnseesaeas 103
9.31 ANNOLALIONS FOr ARRAY ..ot ettt et e et e et e e ate e sbe e s beeebeesateenbeeenneesaeas 104
9.31.1 ARRAYTYPE GNNOALONc.eccviieieiticiietecte ettt et ste s st sttt e e e b e enesebeenresreenees 104
9.31.2 SITE referenCe annOtatioN...........cooeeiriiiieeeee ettt ettt sre et eaaesabeesbeeenne e enas 104
9.31.3 LAYER reference annotalionc.coceiiieeeeeiiee et cctee et et st e e stee e sreesaeesbeessneeanee e 105
.32 PATTERN AECIAIatiONccvviiviiiecticeie ettt ettt sttt sttt st st ba e st satebeentesaeeneesaeenbesresnbenns 105
9.33 ANNOaLioNS FOr PATTERNveiiiiicticteecte ettt ettt st bbb sre s st saeeressbeenresaeennenns 105
9.33.1 LAYER reference annotalioncccceiiieeieeiieeeciee et eteeeee et sreeteestee e sreesaeesbeesnnesanee e 105
0.33.2 SHAPE GNNOLALION......cuiiiieeitie ettt esteeeree et eeteeebe e sareeereesabeesbeessseeabeseseebeesaresnseesresenns 106
9.33.3 VERTEX @NNOAIION.....ccceeiviivieitiieie ettt ete ettt as s stesteesaesbaestesssenbesneesbesneesbesnnssresnnes 106
9.33.4 ROUTE GNNOALIONvviiveeieecitee ettt ettt s ereestee s steesaeesabeesaseenseesbessbeessaesabeenseesanessaes 107
9.34 REGION AECIAIGLION.......ccveiveeiieiiiiie ittt ettt sttt ebae st saae st e esbesbeebesbesssssaeestesbeesbesseesaeenbenns 107
9.34.1 BOOLEAN GNNOLBHIONcveivieitieieitecteere ettt sttt seestesaessaesaaesbeesbesbeessesbeenssereenresreenees 108
9.35 GEOMELTTC MOUELoei ittt et e s s be et eeab e et b e e eee e baesabeebeesbeeesaeesatesabeenseesnneesanas 108
9.36 Predefined geometric modelsusing TEMPLATE ...t 111
9.37 GEOMELNTC traNSIOMMIELIONouveiiieeie ettt et e e ee et ae st e e sre e sbee e saeesaaesabeesaeesaneesaeas 112
9.38 ARTWORK SLAEEMENLveveeiieiiiereie et et et e et et e steeseesaeeaaesbeeabe st e e besbesbessesssssnsesaeebessbesseesresnsenss 114
Constructs for modeling of functional DENAVIONccviieii e 117
T10.1 FUNCTION SEAEEMENTecveectictiere et eiee st seestesaaestesstebeesesbessessssesesstessesseessessesssessesssesseesessessns 117
T0.2 TEST SEALEIMENTeiueeiteiieiteieeeteeteeeteeteeteetesteestesteeaeesaeesbesbessbesbesasesbesssssasesesbeesbesbenssesssenbesnbensennes 117
10.3 Declaration oOf PiN VariablES........ccveiiiiece ettt er e et eae e 118
10.4 BEHAVIOR SLALEMENL.......cvveitiiuiireeteiteeeee st seese st steetesbeesteebessesstsessssteessesbeesaesbesssesseensestesnbessesnes 119
10.5 STRUCTURE SEBEEMENLeeviiviereceeeiteeeee st steestesteestesstebeeeesbessesssessesssesnsessesssessessssssesssssseesessesans 120
10.6 STATETABLE SEAEIMENTc.viiviiiecieee ettt ettt ettt eeesteesaesbeesaesaeeabesaeenbesbeebesseenes 121
10.7 NON_SCAN_CELL SAEMENE......c.cieetiiieieieetieieee e eteste e ere st saesseseeaeseeeeressessessestesaessessessessessenens 121
10.8 RANGE SLALEMENL.......c.eeitiirieiticieite et eeee st e e s e e st e e besbe e st e ebesaeseseenseebeessesaeesaesasesbesaeenbesseenbessesnes 122
O RSN = ToTo == g I o] =S Lo o IS 123
10.10BO0I €8N VAIUE SYSEEIM......ecveeiiceieie ettt esee st ee s e e teste e et e st e esesssesaeeseeseesaesseeseesnsentesnsetenseensenneennes 124
10.10.1 Scalar DOOIEAN VAIUE...........ccuiitiicieecie ettt sttt are et e e eeeebe e sabeebeebeeesteeeneesnrenn 124
10.10.2 Vectorized DOOIEAN VAIUEeeceeeie ettt ettt sre e st e re e sb e eabe e enee e 124
10.10.3 Non-assignable bool€an VAIUE............c.coveiiiee et 127
10.11Boolean operations and OPErELOIS.ccceiiieeieeiese e e e e see e eeeseesaesreesae e e seesseessesneensesseensesneannes 127
10.11.1 LOQiCal OPEIELION......cceeiieiteeieieteete et esteereesteseesteseeteseetessaesesseasseessessesnsesseeseesaesnensanssenns 127
10.11.2 BitWiSE OPEIELION......cctieieteeeesteeee st eeesteestesteesae st e eseesteeseesseessesseensesseeseesaesneesresnsensennsessenns 128
10.11.3 Conditional OPEraLiONcccveiueeieieeeie et este st ste s ee e e sre e e e e te e eeesaessesreesaesnaesaesnnens 128

Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

10.11.4 Integer arithmMEtiC OPEratiONcccccveeeere et e e er e e srees 129

050 I IS T o= = 4 o o TS 130
10.11.6 COMPAIiSON OPEIAIONecueeueeeeriereereesteieseeeesteeeseeseeseseesessessessesseseseesseseesseseessssessesssssenses 130
MO B ® o= = o g o o 1 = 132
10.12V ECLOI EXPIESSIONcveeueereeeesiessessestesteseestesseseesseseesesseesessessessessesseseessessessessensesessesseesessessessessessessenses 132
10.130perators for event SPECITICALION.........cucvierer et sresrenes 133
10.13.1 Specification of @SiNGIE BVENL.........cocoveeiee e srees 133
10.13.2 Temporal Order Of BVENESecv it s e e enees 134
10.13.3 Canonical Specification Of 8N EVENL...........ccooiirrireree e 136
10.13.4 Specification of a completely permutable eVent ..o 138
10.13.5 Specification of aconditional EVENTccoviiriiiieiee e 139
10.13.6 OPEraLOr PriONTTIES ...vcueiviuertereetereete sttt sttt st bbb et et e e e e et 140

11. Constructsfor electrical and physical MOJEliNG.........ccoieiriiiieie e 141
N)1 0= (o d 1= Lo o SO SUSRR 141
11.1.1 Unary arithmetiC OPEIELONceoeruiririeiierie et sttt sae st b st e e eese e e nesaeeas 141
11.1.2 Binary arithmetiC OPEILOrccceouruererie ettt e e 141
11.1.3 Macro arithmetic OPEIELOLccceoueeeeeeeeter et e 142
12.2 ArIthMELIC MOGEL ...t et et b et e b bbb e e b e 143
11.2.1 Trivial arithmetic MOc.oooee e e 143
11.2.2 Partial arithmetic MOcoooiie e e e 144
11.2.3 Full arithmetic MOccooiiirieee e et b e e 144
11.3 HEADER, TABLE, and EQUATION ..ottt ssens 144
11.3.1 HEADER SEBEMENL ...ocviieiiieeieieeie ettt sttt et ettt st e stessstesasensnsens 145
11.3.2 TABLE ST@BEMENL. ..ot sttt st s s et se e besesbesesbenens 145
11.3.3 EQUATION SEAEMENTccviiiitereeierisiesietesietesieieseeesae e see e see e st e stesestesestesessesestesessesessenensens 146
11.4 Statements related to arithmetic MOELoooo i s 146
1141 MOOEl QUAITIEN .oviiiiieiicieie et st sttt st e sttt 146
11.4.2 Auxiliary arithmetic MOGE!ooceiieecee e e 146
11.4.3 Arithmetic SUDMOGELocueiiii i s 147
11.4.4 MIN-MAX SEEEEIMENLcvetiiietereetesieiesieteseetesee e s e see et stesesbesesbesesbesestesessesessenensens 147
1145 MIN-TYP-MAX SLEEMENLcovevirieiiririesieiesiesesiesesieseseeseesesessesessesessesessesessesessessnsessnsessnsens 147
11.4.6 Trivial MIN-MAX SLEEMENLccoiveirieierieie ettt st enens 147
11.4.7 Arithmetic MOdel CONTAINEYccooiiiiie bt e 148
11.4.8 LIMIT SEEMENT....ccueiiieierieiesiere st sesieseete ettt st st saebesaetesaetesae e seenessenesseneesens 148
11.4.9 Event referenCe SLALEMENT ..o e 149
11.4.10 FROM and TO SEAEMENES.......eiiiieririerieieseeieseee st st sttt sttt ne s 149
11.4.11 EARLY and LATE SEaEMENES.ccvieieeiesieie ettt st 149
11.4.12 VIOLATION SEEEIMENL.civeverieteresiesieteseeteseeeseeesessesessesessestesesaesessesestesessesessesessenesseneesens 149
11.5 Annotations for arithmetic MOGEISoie i e 151
1151 UNIT @NNOLELON. ...eieiateiieeeieeiieieeeri ettt sttt sttt bbb bbb et et s e e enens 151
1152 CALCULATION @NNOLEIION.cteteuieririeterentesestesesteseeseseesessesessesessesessssessesessesessesessesessenens 151
1153 INTERPOLATION @MNOLAION ...voviviieieieeiesiee ettt sttt 152
1154 DEFAULT @NMNOALHON.cciiiiirietisieiesieiesiete e e see s sttt sttt e ste e senessenessens 153
11.5.5 MODEL @NNOBLION.......cotitieeieieeirieeerie sttt et sae bbb e s et e e e e e nenas 153
0TGRS 154
11.6.1 TIME in context of a VECTOR declarationccccoeveererernnenenenesee e 154
11.6.2 TIME in context of a HEADER Statement..........cccoererireneneeeeeeeesesese e 154
11.6.3 TIME asauxiliary arithmetic Modelccoveeiieieeeeeee e 155
11.7 FREQUENCY ..ottt sttt sttt sttt et b s es b sa b st b s e be s s abe st ebe st ane st enesenesenensenen 155
11.7.1 FREQUENCY in context of aVECTOR deClarationccccueviveeeneeceeneereeseeeeseeeeeeen 155
11.7.2 FREQUENCY in context of aHEADER Statementcccceoeviviienecceneesee e 155
11.7.3 FREQUENCY asauxiliary arithmetic modelccccvrveniiciene e, 155

IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual ix

LLB DELAY ittt R e e e R e e R e r e e R e R e n e e e e e 155

11.8.1 DELAY incontext of aVECTOR declaration...........ccccceevueieeiieieeireereeeeceeeeseeine s 156
11.8.2 DELAY in context of alibrary-specific object declaration............ccccevervrevnceccreseenennn, 156
TLLO RETAIN ettt ettt ettt e te sttt e s be s e e s he s be s b e e besbeeseebeaseeeaeeaseebeesbesaeesbesasenbennesbaentestesseenes 156
L1 AOSLEWRATE ..ottt ettt ettt st e st e e b et e e aeebeebeesaesaeesbesasesbeeeesbeesbesaeenbesbeenbesreannes 157
11.10.1 SLEWRATE in context of aVECTOR declaration...........cccocceeveeeeeirineeceeeeire e s eiee e 157
11.10.2 SLEWRATE in context of aPIN declaration............cccceeveveeiieeeeie e s 157
11.10.3 SLEWRATE in context of alibrary-specific object declaration...........c.cccceveveervvecennnnn. 157
I S o U =T N [0 158
11.11.1 SETUP in context of aVECTOR deClarationccocvveveeieieiee e svee e 158
11.11.2 HOLD in context of aVECTOR deClarationcccocoeeeeeeeeieeiee et 158
11.11.3 SETUP and HOLD in context of the same VECTOR declaration...........cccoeeeerevveeeeennen. 158
11.12RECOVERY AN REMOV ALoiiteiitietee ettt see et steesvessate s ssessabe s sbeessaeenbesssesnessneeans 159
11.12.1 RECOVERY in context of aVECTOR declaration.........cccccceviveeeeeiieeiveeeee e 159
11.12.2 REMOVAL in context of aVECTOR declaration...........cccccuveeveeeeeecee e 159
11.12.3 RECOVERY and REMOVAL in context of the same VECTOR declaration.................. 159
11.13NOCHANGE AN ILLEGAL ...vveti ettt ettt st ettt eaaesbeeaaesteentesaeennas 160
11.13.1 NOCHANGE in context of aVECTOR declaration...........coceoveeveeeieeicieecreeeree e 160
11.13.2 ILLEGAL in context of aVECTOR declaration............ccoceevueeiveeiceecee et 160
TLLLASKEW ..ottt ettt ettt et st e e b e be st e e steeb e eabeebeeabeebeesaesaeesteeasesbeere e beebeeaaeeabeebe e beareeanes 161
11.14.1 SKEW iNVOIVING tWO SIONAISeoueiireet ettt s e 161
11.14.2 SKEW involving Multiple SIgNalS.......cocooereieieeiereere et 161
T AEPULSEWIDTH ..ottt ettt st s be sttt e ebesaassbesatssbeebssbeeseesbsenbesaeenbesbeenbessennes 161
11.15.1 PULSEWIDTH in context of aVECTOR declaration...........cccceeeveeeeeeiiecceeccee e 162
11.15.2 PULSEWIDTH in context of aPIN deClarationcccceecveeiieeeveeeee et 162
11.15.3 PULSEWIDTH in context of alibrary-specific object declaration............cccceceevrceecennene. 162
TLLABPERIODcviitietietie ettt ettt et st e sttt esbesbe e st e e st e be et e sbesaessaeesbesbeesbesbeesbesabenbesaeebesneeereenrearis 162
T A I =1 OSSR 162
TLABTHRESHOLD ...ttt ettt b e st b e et e b e sae s e beeatssbeebesbeeseesbeeabesaeenbesbeenbessennes 163
11.19Annotations related to tiMIiNG data..........cceeiiiceiiieiiesecee e e 164
11.19.1 PIN referenCe anNOLaLiONc.veciveeeieiiieeceeereectee e eee e et st e st e st e e saeesaseebeesaeeeaseesreeeseeneesn 164
11.19.2 EDGE_NUMBER GNNOAION......c.ccoviuieictieeiieceece ettt e e et sresbe e e snesenae s 164
T1.20PROCESS.co oottt ettt ettt st et b e et e b e e st e ebee st e e bt e abesbeesbesaeesbesasesbesrsesbesbeeabeeabesbesnbesreenes 165
L11.21IDERATE CASE... ..ottt st sttt eebe st e besaeetesbenbe st ensesteneenseseeseeneaneas 166
2 W Y TN U T 167
11.23PIN-related arithmetic models for electrical data...........ccoevveeieeececieicecee e 167
11.23.1 CAPACITANCE, RESISTANCE, and INDUCTANCEcccceeieieee et 167
11.23.2 VOLTAGE anNd CURRENTocotiitiit ettt sttt sttt sttt sre e re et sresas e snesteesaesbaesaesnnens 168
11.23.3 Context-SPECIfiC SEMANLICS.........cci ettt re e e re e aesneens 168
11.24POWER AN ENERGYoiotiiticii ettt sttt ettt s st st steetasbeesaesbeesbesaeenbesteentesneenas 170
T11.25FLUX @NA FLUENCGEcootiticee ettt sttt ettt ettt s st st steetesbeesaesbeenbesaeenbesbeebesseenes 171
11.26DRIVE_STRENGTH......ocoiitiiicieiie ettt sttt se e st e eae st besaestesbebesreneestennenseseensennaneas 172
T1.27SWITCHING BITS....o ettt ettt st st st sa e e ae s ese e e et e ssesaesbebesaesresbenbeseennaneas 172
11.28NOISE and NOISE_IMARGINooieiicieceeece ettt st st e re e et ae s nesbesbesaesnennan 173
12.28.1 NOISE MAIGIN ..c.viiiiiieieeeeete ettt s st e e se e e se e e sresbesbesresteseessensessesssnsesessestessessenss 173
TA.28.2 NOISE ...ttt ettt ettt ettt et e st e et e s b e ebeesbeeasestesasebeenbesbeereesaesanesbesnsenbeesaesnnens 174
11.29Annotations and statements related to electrical MOdElS.........c.cooveeeiiiii e 174
11.29.1 MEASUREMENT @NNOAION.......ecveviiveeitiiiie e ceete st ereestee e sreersessseaesneeseesaesnnesaeennens 174
11.29.2 TIME t0 Peak MEBSUIEIMENTeceeieeiieecieetesieereesteetee st eaesteete e ete s e eeessaesnesreesaesnaesaesneens 176
11.29.3 COMPONENT @NNOALIONccuvivieeeireceicteeee et creeteestestesseesteesaesbeessessessbesseesessaesneesaesnsens 177
11.29.4 FLOW GNNOLAHION......cueiiitieeieciteeiiee ettt e seeeeteeeteesabeesseesabeesseesseeesbesssesnbeesasesnseenbesenseeaseesnsens 177
T11.30CONNECTIVITY ettt ete st s s estaesbe s te b e et e ebesaessbeensssteesesbeesaesbeestesaeenbesbeenbesseenes 177
T 3 S 7 OSSR 178
I 7 L RPN 179

Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

TLBBWIDTH .ottt r st e e e ne e n e n e nenr e en s 179

LLBAHEIGHT ..ttt bbbt b e bt b et b e et s et e st e et et e ne s b e n e e b en s e b eneebeneenis 179

0 5 I 1N RO 179
LL.3ODISTANCEcceetieeereeerie ettt bbbt st b et b e e b e eb e s e e st e e st b e st s e e et en e et e neeben e eben e e b eneeseneenes 180
L1.370OVERHANG ..ottt ettt st b bbbttt s ettt et b s e b en e b eneeneneens 180
L11.38BPERIMETER ..ottt ittt ettt ettt b et b et en e b ene b e neens 180
LTL3IEXTENSION ...ttt ettt b s b ettt b et e st s et s bt se et st e st b s et en e e b eneeneneens 180
LTLAOTHICKNESS ...ttt bbbt b et b e b e se e bt st b s b b e st en e e b eneeseneens 181
2 N S 181
11.42Annotations for phySiCal MOTEIScoeiiiiii s 181
11.42.1 CONNECT _RULE @NNOALION.....cccieirererriesesiesienie e seeseeseeseesesseseesessessessesssssessesesssessenes 181

11.42.2 BETWEEN @NNOALONcueeuieeieieieseesiesieseseeseeesaeseesesesseseesesaeseesseseessassessssesssssessessessenses 182

11.42.3 DISTANCE-MEASUREMENT annotation..........ccoovveriereeeeneeeneseseeseeseeseeseseeseseenennes 183

11.42.4 REFERENCE annotation CONtAINEYccueverireeiereeesesieseeseeseeeseeeeseeseeseeseesesseessssessesns 183

11.42.5 ANTENNA reference annotation............ccoueereienine et s 184

11.42.6 PATTERN reference annOtationcocoeeeie et s 185
11.43Arithmetic submodels for timing and electrical data.............coverireriiinenee e 185
11.44Arithmetic submodels for PhySICal ata...........ccueeereeiiririe e s 185
(INfOrMatiVE) SYNLAX FUIE SUMIMAIYueiuirieruireesteieseeeeiete ettt st sae b s beseese e eese s e et sbesbesaesbesbe e e sbaneeseeneenenseenenneas 187
ALl ALF MEGTBNQUAGE -....cveiieieiitiiteie ettt et s et e b e b b besaennens 187

A2 LexXiCal defiNItIONScceeieiieiiieecre st et b e bbb ae e 187

A3 AUXITANY AEfINITIONS....cuiitiieiie ettt e nne s 190

A4 GENENIC AEFINITIONS.eiueiececiee bbb e et b e b bbb e 192

A5 Library defiNitioNScoociiieie ettt sr e ne e e re e naenreens 193

A6 FUNCLION AEFINITIONSueiiiiiitiite ittt b e s sr e e e e e e 198

A7 AFthMELIC AEfiNITIONS.....c.eiiieiee e st b e b nee 200
(informative) SEMANti CS FUIE SUMIMEAIYcciuiiueeieeieesie st esteeteeste et e steeteste e e e saeeseesaeesseste e sessaessesseansesnennsesreesresnens 205
B.1 Library definitioNSccocooiiee et n e 205

B.2 ArithmEtiC defiNiTIONS.oiuiiieee et e et b e s bbb n s 211

(L= A=) 1S TH o Tl Tir=To] VTS S 215

IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual Xi

Xii

Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 6

List of Figures

ALF and itstarget applications 4
Parent/child relationship between ALF statements 16
Parent/child relationship amongst library-specific objects 18

Parent/child relationship involving singular statements and plural statements 20
Parent/child relationship involving instantiation and assignment statements 21

Scheme for construction of composite signaltype values 75
ROW and COLUMN relative to a bounding box of a CELL 85
Connection between layers during manufacturing 100
Shapes of routing patterns 106

[llustration of VERTEX annotation 107

[llustration of geometric models 109

[llustration of direct point-to-point connection 110
[1lustration of manhattan point-to-point connection 110
[llustration of FLIP, ROTATE, and SHIFT 114
Relationship between FUNCTION and TEST 119

Timing diagrams for single events 134

Bounding regions for y(x) with INTERPOLATION=fit 153
RETAIN and DELAY 157

SETUP and HOLD 159

RECOVERY and REMOVAL 160

THRESHOLD measurement definition 163

General representation of electrical models around a pin 167
Electrical models associated with input and output pins 169
Definition of noise margin 174

Mathematical definitionsfor MEASUREMENT annotations 175
[llustration of time to peak using FROM statement 177
[llustration of time to peak using TO statement 177
[llustration of LENGTH and DISTANCE 182

[llustration of REFERENCE for DISTANCE 184

IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual

Xiii

Xiv Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

List of Tables

TADIE L. s Target applications and models supported by ALF3
A 2 e bbb e Categories of ALF statements14
L= o= USSR Generic objects16
LI o] = TSRS Library-specific objects17
LI 0 LSS OSSPSR Singular statements18
LI o] = S Plural statements19
LI o) = Instantiation statements20
LI o= TS Assignment statements21
A G e e e Other categories of ALF statements22
TablE 10— ... Annotations and annotation containers with generic keyword22
TADIE Ll s Keywords related to arithmetic model 22
TADIE 12— ... bbb e Statements for ALF parser control 23
B o= eSO List of whitespace characters25
TADIE L. bt bbbt e ettt List of special characters26
Q= o= USSR List arithmetic operators28
L oL L SO P PPN List of boolean operators29
L oL AP TRRO List of relational operators29
L oL S eSO SRTPOTR List of shift operators30
TADIE 1O b e e List of event sequence operators30
A E 20 e ettt e e b ae e bt List of meta operators30
TaDIE 21— e Quantity symbol and corresponding Sl-prefix32
TAD @ 22— ... s Character symbols within aquoted string34
TAD @ 23— .. Legal string values within the REVISION statement44
TADIE 24 ... bbb b bbb Syntax item identifier48
TADIE 25— .. s VALUETY PE annotation49
TaD € 26— ... Annotations within an INFORMATION statement60
A € 27 .. CELLTY PE annotation val ues62
TADIE 28— ... Predefined values for RESTRICT_CLASS64
TADIE 29— ... SCAN_TY PE annotations for a CELL object65
TADIE 30— ..ot SCAN_USAGE annotations for a CELL object65
L= o LS B BUFFERTY PE annotations for a CELL object66
TaDIE 32— ... e s DRIVERTY PE annotations for a CELL object66
TablE 33— ... s PLACEMENT _TY PE annotations for a CELL object67
TahlE 34— .. Attribute values for a CELL with CELLTY PE=memory68
TAD e 35— ... Attributes within a CELL with CELLTY PE=block68
TAD € 36— ..o Attributes within a CELL with CELLTY PE=core69
TADI@ 37— . Attributes within a CELL with CELLTY PE=special69
T E B8 e ns VIEW annotationsfor aPIN object72
T E 3O ... e e re e PINTY PE annotations for a PIN object73
TADIE AD— ... DIRECTION annotations for a PIN object73
TablE AL Fundamental SIGNALTY PE annotations for a PIN object74
TablE 42— ... Composite SIGNALTY PE annotations for a PIN object75
B2 o LSRG PP ACTION annotations for a PIN object76
Tabledd—......oo e ACTION applicablein conjunction with SIGNALTY PE values76

IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual XV

L= oL S S POLARITY annotations for aPIN77

Tabled6—.....cooi POLARITY applicablein conjunction with SIGNALTY PE values77
TADIE AT . s DATATY PE annotations for a PIN object78
TADIE A8 .. e e STUCK annotations for a PIN object79
TADIEAG— ... SUPPLY TY PE annotations for a PIN object80
QL= o] =0 DRIVETY PE annotations for a PIN object82
QI o] = B SCOPE annotations for a PIN object83
A E D2 .. et SIDE annotations for a PIN object84
TaDIE 53 s ROUTING-TY PE annotations for a PIN object86
A E DA . e PULL annotations for a PIN object87
Al O D5 .t Attributes within a PIN object87
TA O 58— .. et ae e Attributes for pins of a memory87
A O 57— e Attributes for pins representing pairs of signals88
TaDIE 58— ... s PIN or PINGROUP attributes for memory BIST88
A E DO . e et ae s NODETY PE annotation values91
LIS o) =0 PURPOSE annotation values92
LI o)L= 3 OPERATION annotation val ues93
LI o)L=y LAY ERTY PE annotation val ues97
A E B3 ... e b et PREFERENCE annotation values98
TADIE B4 ... bbbttt b e b VIATY PE annotation val ues99
QL= FSY LS SRS PORT_VIEW annotation values102
QLIS o) =L ARRAYTY PE annotation values104
QI o = SRR Geometric model identifiers108
TaDIE B8 — ... Annotations for PINsinvolved in FUNCTION and TEST118
TADIE BO ...t bbb ettt ettt srennas Scalar boolean values124
TADIE 70 ... e Mapping between octal base and binary base124
TaDIE 7L Mapping between hexadecimal base and binary base125
Al 72 b e e bbb Symbolic boolean values127
Al 7 bbb bbb Logical Operation127
TADL @ T e b e b et b et b e bebeb b Bitwise Operation128
Q= o= TSP PSP Conditional Operation128
TADIE T8 e Integer Arithmetic Operation129
L o = OSSRV Shift Operation130
Al 78 bbbt Comparison Operation130
A E 79— s Equal comparison considering drive strength131
TADIE 80— ... Greater comparison considering drive strength131
A E Bl .. bbb bbb Specification of asingle event133
TaDIE B2 ... e Canonical specification of an event136
TaDlE 83— ... e Specification of a completely permutable event138
TADIE BA ... Specification a conditional event140
Al @ 85 .. bbbt b e Unary arithmetic operators141
A E BB ...t Binary arithmetic operators142
LI LS S Macro arithmetic operators142
A E BB .. e Calculation annotations152
QLI o F o TSRS I nterpol ation annotations152
TADIE OO ...t Predefined process names166
TAD E QL. b e bbb Predefined derating cases166
TADIE 02— ... e Direct association of models with a PIN169
TADIE O3 ..o External association of modelswith a PIN170
TADIE QA ... e MEASUREMENT annotation175

XVi Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

Table95—....ooi e Semantic interpretation of MEASUREMENT, TIME, or FREQUENCY 176

TADIE OB ...t et e ene s Arguments for connectivity178
TaDIE 7. e e Boolean literalsin non-interpolateable tables178
TAD B OB ..ot CONNECT_RULE annotation181
TADIE OG0t re Implications between connect rules182
LI o) = 00 Submodels applicable for timing and electrical modeling185
LI o) = 0 Submodels applicable for physical modeling185

IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual XVii

XViii Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

IEEE Standard for an

Advanced Library Format (ALF)
describing Integrated Circuit (IC)
technology, cells, and blocks

1. Introduction

** Add alead-in OR change thisto parallel an |EEE intro section**

1.1 Motivation

Designing digital integrated circuits has become an increasingly complex process. More functions get integrated
into a single chip, yet the cycle time of electronic products and technologies has become considerably shorter. It
would be impossible to successfully design a chip of today’s complexity within the time-to-market constraints
without extensive use of EDA tools, which have become an integral part of the complex design flow. The effi-
ciency of the tools and the reliability of the results for simulation, synthesis, timing and power analysis, layout
and extraction rely significantly on the quality of available information about the cells in the technology library.

New challenges in the design flow, especialy signal integrity, arise as the traditional tools and design flows hit
their limits of capability in processing complex designs. As aresult, new tools emerge, and libraries are needed
in order to make them work properly. Library creation (generation) itself has become a very complex process and
the choice or rejection of a particular application (tool) is often constrained or dictated by the availability of a
library for that application. The library constraint can prevent designers from choosing an application program
that is best suited for meeting specific design challenges. Similar considerations can inhibit the development and
productization of such an application program altogether. As a result, competitiveness and innovation of the
whole electronic industry can stagnate.

In order to remove these constraints, an industry-wide standard for library formats, the Advanced Library Format
(ALF), is proposed. It enables the EDA industry to develop innovative products and ASIC designers to choose
the best product without library format constraints. Since ASIC vendors have to support a multitude of libraries
according to the preferences of their customers, acommon standard library is expected to significantly reduce the
library development cycle and facilitate the deployment of new technologies sooner.

1.2 Goals
The basic goals of the proposed library standard are

— simplicity - library creation process needs to be easy to understand and not become a cumbersome pro-
cess only known by afew experts.

— generality - tools of any level of sophistication need to be able to retrieve necessary information from the
library.

— expandability - this needs to be done for early adoption and future enhancement possibilities.

— flexibility - the choice of keeping information in one library or in separate libraries needsto be in the hand
of the user not the standard.

— efficiency - the complexity of the design information requires the process of retrieving information from
the library does not become a bottleneck. The right trade-off between compactness and verbosity needs
to be established.

— ease of implementation - backward compatibility with existing libraries shall be provided and translation
to the new library needs to be an easy task.

— conciseness - unambiguous description and accuracy of contents shall be detailed.

— acceptance - there needs to be a preference for the new standard library over existing libraries.

1.3 Target applications

The fundamental purpose of ALF is to serve as the primary database for al third-party applications of ASIC
cells. In other words, it is an elaborate and formalized version of the databook.

In the early days, databooks provided al the information a designer needed for choosing a cell in a particular
application: Logic symbols, schematics, and a truth table provided the functional specification for simple cells.
For more complex blocks, the name of the cell (e.g., asynchronous ROM, synchronous 2-port RAM, or 4-hit syn-
chronous up-down counters) and timing diagrams conveyed the functional information. The performance charac-
teristics of each cell were provided by the loading characteristics, delay and timing constraints, and some
information about DC and AC power consumption. The designers chose the cell type according to the function-
aity, estimated the performance of the design, and eventually re-implemented it in an optimized way as neces-
sary to meet performance constraints.

Design automation enabled tremendous progress in efficiency, productivity, and the ability to deal with complex-
ity, yet it did not change the fundamental requirements for ASIC design. Therefore, ALF needs to provide mod-
els with functional information and performance information, primarily including timing and power. Signal
integrity characteristics, such as noise margin can aso be included under performance category. Such informa-

2 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

tionistypically found in any databook for analog cells. At deep sub-micron levels, digital cells behave similar to
analog cells as electronic devices bound by physical laws and therefore are not infinitely robust against noise.

Table 1 shows alist of applications used in ASIC design flow and their relationship to ALF.

NOTE — ALF coverslibrary data, whereas design data needs to be provided in other formats.

Table 1—Target applications and models supported by ALF

Application Functional model Perfor mance model Physical model
Smulation Derived from ALF N/A N/A
Synthesis Supported by ALF Supported by ALF Supported by ALF
Design for test Supported by ALF N/A N/A
Design planning Supported by ALF Supported by ALF Supported by ALF
Timing analysis N/A Supported by ALF N/A
Power analysis N/A Supported by ALF N/A
Sgnal integrity N/A Supported by ALF N/A
Layout N/A N/A Supported by ALF

Historically, afunctional model was virtually identical to a simulation model. A functional gate-level model was
used by the proprietary simulator of the ASIC company and it was easy to lump it together with a rudimentary
timing model. Timing analysis was done through dynamic functional simulation. However, with the advanced
level of sophistication of both functional simulation and timing analysis, thisis no longer the case. The capabili-
ties of the functional simulators have evolved far beyond the gate-level and timing analysis has been decoupled
from simulation.

RTL design planning is an emerging application type aiming to produce “virtual prototypes’ of complex for sys-
tem-on-chip (SOC) designs. RTL design planning is thought of as a combination of some or al of RTL floorplan-
ning and global routing, timing budgeting, power estimation, and functional verification, as well as analysis of
signal integrity, EMI, and thermal effects. The library components for RTL design planning range from simple
logic gates to parameterizeable macro-functions, such as memories, logic building blocks, and cores.

From the point of view of library requirements, applications involved in RTL design planning need functional,
performance, and physical data. The functional aspect of design planning includes RTL simulation and formal
verification. The performance aspect coverstiming and power as primary issues, while signal integrity, EMI, and
thermal effects are emerging issues. The physical aspect isfloorplanning. As stated previously, the functional and
performance models of components can be described in ALF.

ALF aso covers the requirements for physical data, including layout. Thisisimportant for the new generation of
tools, where logical design merges with physical design. Also, al design steps involve optimization for timing,
power, signal integrity, i.e. electrical correctness and physical correctness. EDA tools need to be knowledgeable
about an increasing number of design aspects. For example, a place and route tool needs to consider congestion
aswell astiming, crosstalk, electromigration, antennarules etc. Thereforeitisalogical step to combine the func-
tional, electrical and physical models needed by such atool in aunified library.

Figure 1 shows how ALF provides information to various design tools.

IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 3

(D Vendor-specific or commercial EDA tool .
. Céll characterization tool
() Commercia EDA tool

/ \ \

[ayout
models

annotations
for scan

universal |—
annotations ALF design limits
for synthesis

wireload |/
models _ _ _ _
universal functional model universal universal universal signdl
— timing model power model integrity model

/)

(Test vector generat@(M odel generat@

: \y

Test vectors Simulation model

Signal integrity
Verilog & VHDL | | Verilog & VHDL analysis tool

Power
analysis tool
Timi ng
Simulators analysis tool
Verilog & VHDL
Synthes stool
Scan insertion tooD
Place & Route
tool

Figure 1—ALF and its target applications

The worldwide accepted standards for hardware description and simulation are VHDL and Verilog. Both lan-
guages have awide scope of describing the design at various levels of abstraction: behavioral, functional, synthe-
sizable RTL, and gate level. There are many ways to describe gate-level functions. The existing simulators are
implemented in such a way that some constructs are more efficient for simulation run time than others. Also,
how the simulation model handles timing constraints is a trade-off between efficiency and accuracy. Developing
efficient smulation models which are functionally reliable (i.e., pessimistic for detecting timing constraint viola-
tion) isamajor development effort for ASIC companies.

Hence, the use of a particular VHDL or Verilog simulation model as primary source of functional description of
acell isnot very practical. Moreover, the existence of two simulation standards makes it difficult to pick oneasa

4 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

reference with respect to the other. The purpose of a generic functional model isto serve as an absol ute reference
for all applications that require functional information. Applications such as synthesis, which need functional
information merely for recognizing and choosing cell types, can use the generic functional model directly. For
other applications, such as simulation and test, the generic functional model enables automated simulation model
and test vector generation and verification, which has atremendous benefit for the ASIC industry.

With progress of technology, the set of physical constraints under which the design functions have increased dra-
matically, along with the cost constraints. Therefore, the requirements for detailed characterization and analysis
of those constraints, especially timing and power in deep submicron design, are now much more sophisticated.
Only a subset of the increasing amount of characterization data appearsin today’s databooks.

ALF provides a generic format for all type of characterization data, without restriction to state-of-the art timing
models. Power models are the most immediate extension and they have been the starter and primary driver for
ALF

Detailed timing and power characterization needs to take into account the mode of operation of the ASIC cell,
which isrelated to the functionality. ALF introduces the concept of vector-based modeling, which is a generali-
zation and a superset of today’s timing and power modeling approaches. All existing timing and power analysis
applications can retrieve the necessary model information from ALF.

1.4 Conventions

The syntax for description of lexical and syntax rules uses the following conventions.
**Consider using the BNF nomenclature from | EEE 1481-1999* *

;= definition of a syntax rule
| alternative definition
[item an optional item

[iteml | item2 | ...] optional itemwith alternatives
{itentoptional itemthat can be repeated
{iteml | iten2 | ... } optional itenms with alternatives

whi ch can be repeated
itemitemin bol dface font is taken verbatim
itemtemin italic is for explanation purpose only

The syntax for explanation of semantics of expressions uses the following conventions.

=== | eft side and right side expressions are equival ent
<itemra placeholder for an itemin regular syntax

1.5 Contents of this standard
The organization of the remainder of this standard is

— Clause 2 (References) provides references to other applicable standards that are assumed or required for
ALF.

— Clause 3 (Definitions) defines terms used throughout the different specifications contained in this stan-
dard.

— Clause 4 (Acronyms and abbreviations) defines the acronyms used in this standard.

— Clause 5 (ALF language construction principles and overview) defines the language construction princi-
ples.

— Clause 6 (Lexical rules) specifiesthe lexical rules.

— Clause 7 (Auxiliary syntax rules) defines syntax and semantics of auxiliary items used in this standard.

IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 5

Clause 8 (Generic objects and related statements) defines syntax and semantics of generic objects used in
this standard.

Clause 9 (Library-specific objects and related statements) defines syntax and semantics of library-spe-
cific objectsused in this standard.

Clause 10 (Constructs for modeling of functional behavior) defines syntax and semantics of the control
expression language used in this standard

Clause 11 (Constructs for electrical and physical modeling) defines syntax and semantics of arithmetic
models used in this standard.

Annexes. Following Clause 11are a series of normative and informative annexes.

Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

2. References

**Fill in applicable references, i.e. standards on which the herein proposed standard depends.

This standard shall be used in conjunction with the following publication. When the following standard is super-
seded by an approved revision, the revision shall apply.

**Thefollowing is only an example. AL F does not depend on C.

| SO/IEC 9899:1990, Programming L anguages—C.*

[1SO 8859-1 : 1987(E)] ASCII character set

1130 publications are available from the 1SO Central Secretariat, Case Postale 56, 1 rue de Varembé, CH-1211, Genéve 20, Switzerland/
Suisse (http://www.iso.ch/). IEC publications are available from the Sales Department of the International Electrotechnical Commission,
Case Postale 131, 3, rue de Varembé, CH-1211, Genéve 20, Switzerland/Suisse (http://www.iec.ch/). ISO/IEC publications are aso available
in the United States from the Sales Department, American National Standards Institute, 11 West 42nd Street, 13th Floor, New York, NY
10036, USA.

IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 7

Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

3. Definitions

For the purposes of this standard, the following terms and definitions apply. The IEEE Sandard Dictionary of
Electrical and Electronics Terms [B4] should be consulted for terms not defined in this standard.

**Fill in definitions of terms which are used in the herein proposed standard.

3.1 advanced library format: The format of any file that can be parsed according to the syntax and semantics
defined within this standard.

3.2 application, electric design automation (EDA) application: Any software program that uses data repre-
sented in the Advanced Library Format (ALF). Examplesinclude RTL (Register Transfer Level) synthesistools,
static timing analyzers, etc. See also: advanced library format; register transfer level.

3.3 arc: See: timing arc.

3.4 argument: A data item required for the mathematical evaluation of an arithmetic model. See also: arith-
metic model.

3.5 arithmetic model: A representation of alibrary quantity that can be mathematically evaluated.
36..

3.7 register transfer level: A behavioral representation of a digital electronic design allowing inference of
sequential and combinational logic components.

38...

3.9timing arc: An abstract representation of a measurement between two points in time during operation of a
library component.

3.10...

IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 9

10

Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 6

4. Acronyms and abbreviations

This clause lists the acronyms and abbreviations used in this standard.

ALF
ASIC
AWE
BIST
BNF
CAE
CAM
CLF
CPU
DCL
DEF
DLL
DPCM
DPCS
DSP
DSPF
EDA
EDIF
HDL
IC
1P
ILM
LEF
LIB
LSSD
MPU
OLA
PDEF
PLL
PVT
QTM
RAM
RC
RICE
ROM
RSPF
RTL
SDF
sDC
SPEF
SPF
SPICE
STA

advanced library format, title of the herein proposed standard
application specific integrated circuit

asymptotic waveform evaluation

built-in salf test

Backus-Naur Form

computer-aided engineering [the term electronic design automation (EDA) is preferred]
content-addressable memory

Common Library Format from Avant! Corporation

central processing unit

Delay Calculation Language from |EEE 1481-1999 std

Design Exchange Format from Cadence Design Systems Inc.
delay-locked loop

Delay and Power Calculation Module from |EEE 1481-1999 std
Delay and Power Calculation System from | EEE 1481-1999 std
digital signal processor

Detailed Standard Parasitic Format

electronic design automation

Electronic Design Interchange Format

hardware description language

integrated circuit

intellectual property

Interface Logic Model from Synopsys Inc.

Library Exchange Format from Cadence Design Systems Inc.
Library Format from Synopsys Inc.

level-sensitive scan design

MiCro processor unit

Open Library Architecture from Silicon Integration Initiative Inc.
Physical Design Exchange Format from |EEE 1481-1999 std
Phase-locked loop

process/voltage/temperature (denoting a set of environmental conditions)
Quick Timing Model

random access memory

resistance times capacitance

rapid interconnect circuit eval uator

read-only memory

Reduced Standard Parasitic Format

Register Transfer Level

Standard Delay Format from |EEE 1497 std

Synopsys Design Constraint format from Synopsys Inc.
Standard Parasitic Exchange Format from |EEE 1481-1999 std
Standard Parasitic Format

Simulation Program with Integrated Circuit Emphasis

Static Timing Analysis

IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 11

STAMP
TCL
TLF
VCD
VHDL
VHSIC
VITAL
VLS

12

(STA Model Parameter ?) format from Synopsys Inc.

Tool Command Language (supported by multiple EDA vendors)
Timing Library Format from Cadence Design Systems Inc.
Value Change Dump format (from |EEE 1364 std ?)

VHSIC Hardware Description Language

very-high-speed integrated circuit

VHDL Initiative Towards ASIC Libraries from IEEE ??? std
very-large-scale integration

Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 6

5. ALF language construction principles and overview

** Add lead-in text**

This section presents the ALF language construction principles and gives an overview of the language features.
The types of ALF statements and rules for parent/child relationships between types are presented summarily.
Most of the types are associated with predefined keywords. The keywords in ALF shall be case-insensitive.
However, uppercase is used for keywords throughout this section for clarity.

5.1 ALF meta-language

Syntax 1 establishes an ALF meta-language.

ALF_statement ::=
ALF _type[ALF_name] [= ALF _vaue] ALF_statement_termination
ALF type::=
non_escaped_identifier [index]
@
ALF_name::=
identifier [index]
| control_expression
ALF_value::=
identifier
| number
| arithmetic_expression
| boolean_expression
| control_expression
ALF_statement_termination ::=

|{{ALF_vaIue|I|; }
| {ALF_statement}]}

Syntax 1—Syntax construction for ALF meta-language

An ALF statement uses the delimiters“;”, “{* and “}” to indicate its termination.

The ALF typeis defined by akeyword (see 6.12) eventually in conjunction with an index (see 7.8) or by the oper-
ator “@" (6.4) or by the delimiter “:” (see 6.3). The usage of keyword, index, operator, or delimiter as ALF type
isdefined by ALF language rules concerning the particular ALF type.

The ALF name is defined by an identifier (see 6.11) eventually in conjunction with an index or by a control
expression (see 10.16). Depending on the ALF type, the ALF name is mandatory or optional or not applicable.
The usage of identifier, index, or control expression as ALF name is defined by ALF language rules concerning
the particular ALF type.

The ALF value is defined by an identifier, a number (see 6.5), an arithmetic expression (see 11.1), a boolean
expression (see 10.9), or a control expression. Depending on the type of the ALF statement, the ALF vaue is
mandatory or optional or not applicable. The usage of identifier, number, arithmetic expression, boolean expres-
sion or control expression as ALF valueis defined by ALF language rules concerning the particular ALF type.

An ALF statement can contain one or more other ALF statements. The former is called parent of the latter. Con-

versely, the latter is called child of the former. An ALF statement with child is called a compound ALF state-
ment.

IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 13

An ALF statement containing one or more ALF values, eventually interspersed with the delimiters “;” or “:”, is
called a semi-compound ALF statement. The items between the delimiters “{* and “}" are called contents of the
ALF statement. The usage of the delimiters “;” or “:” within the contents of an ALF statement isdefined by ALF

language rules concerning the particular ALF statement.

An ALF statement without child is caled an atomic ALF statement. An ALF statement which is either com-
pound or semi-compound is called anon-atomic ALF statement.

Examples

a) ALF statement describing an unnamed object without va ue:
ARBI TRARY_ALF_TYPE {
/1 put children here
}

b) ALF statement describing an unnamed object with value:
ARBI TRARY_ALF _TYPE = arbitrary_ALF val ue;
or
ARBI TRARY_ALF _TYPE = arbitrary_ALF val ue {
/1 put children here
}

c) ALF statement describing a named object without value:
ARBI TRARY_ALF _TYPE arbitrary_ALF_nane;
or
ARBI TRARY_ALF_TYPE arbitrary_ALF _name {
/1 put children here
}

d) ALF statement describing a named object with value:
ARBI TRARY_ALF_TYPE arbitrary_ALF_nane
or
ARBI TRARY_ALF _TYPE arbitrary ALF_name = arbitrary_ ALF_val ue {
/1 put children here
}

arbitrary_ ALF val ue;

5.2 Categories of ALF statements

In this section, the terms statement, type, name, value are used for shortnessin lieu of ALF statement, ALF name,
ALF value, respectively.

Statements are divided into the following categories: generic object, library-specific object, arithmetic model,
arithmetic submodel, arithmetic model container, geometric model, annotation, annotation container, and auxil-
iary statement, as shown in Table 2.

Table 2—Categories of ALF statements

Category Purpose Syntax particularity

Generic object Provide adefinition for use within other | Statement is atomic, semi-compound or com-
ALF statements. pound.

Name is mandatory.

Value is either mandatory or not applicable.

14 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

Table 2—Categories of ALF statements (Continued)

Category

Purpose

Syntax particularity

Library-specific object

Describe the contents of alC technology
library.

Statement is atomic or compound.
Name is mandatory.

specific measurement condition.

Value does not apply.
Category of parent isexclusively
library-specific object.
Arithmetic model Describe an abstract mathematical quan- | Statement is atomic or compound.
tity that can be calculated and eventually | Nameisoptional.
measured within the design of an IC. Valueis mandatory, if atomic.
Arithmetic submodel Describe an arithmetic model under a Statement is atomic or compound.

Name does not apply.

Valueis mandatory, if atomic.
Category of parent isexclusively
arithmetic model.

Arithmetic model con-
tainer

Provide a context for an arithmetic
model.

Statement is compound.

Name and value do not apply.
Category of child isexclusively
arithmetic model.

Geometric model

Describe an abstract geometrical form
used in physical design of an IC.

Statement is semi-compound or compound.
Nameis optional.
Value does not apply.

Annotation

Provide aqualifier or aset of qualifiers
for an ALF statement.

Statement is atomic, semi-compound or com-
pound.

Name does not apply.

Valueis mandatory, if atomic or compound.
Value does not apply, if semi-compound.
Category of child isexclusively

annotation.

Annotation container

Provide a context for an annotation.

Statement is compound.

Name and value do not apply.
Category of child isexclusively
annotation.

Auxiliary statement

Provide an additional description within
the context of alibrary-specific object,
an arithmetic model, an arithmetic sub-
model, geometric model or another aux-
iliary statement.

Dependent on subcategory.

Figure 2 illustrates the parent/child relationship between categories of statements.

IEEE P1603 Draft 6

Advanced Library Format (ALF) Reference Manual

15

auxiliary statement

generic object -

~

legend:
parent —® child no restrictive rules _ y 2 Y)
parent - — B> child with restrictive rules I|brary-|specn‘|c Ob{eCt
| \
arithmetic model container : \\
_ * | \
arithmeticmodel <«—————— | \ _
> ~ - o v _ —geometric model
Y - auxiliary statement _
([arithmetic submodel - — , -~
\ o _ -
- __ _
>
library-specific object I G - annotation container
arithmetic model —» generic object

= 4

library-specific object

-~ » arithmetic model container

~ » arithmetic model

— = arithmetic submode

— . auxiliary statement

O - @nnotation container
A annotation

—® annotati

on
N> _

Figure 2—Parent/child relationship between ALF statements

More detailed rules for parent/child relationships for particular types of statements apply.

5.3 Generic objects and library-specific objects

Statements with mandatory name are called objects, i.e., generic object and library-specific object.

Table 3 lists the keywords and items in the category generic object. The keywords used in this category are

called generic keywords.

Table 3—Generic objects

Keyword

Item

Section

ALl AS

16

Alias declaration

Advanced Library Format (ALF) Reference Manual

See8.1.

IEEE P1603 Draft 6

Table 3—Generic objects (Continued)

Keyword Item Section
CONSTANT Constant declaration See 8.2.
CLASS Class declaration See8.3.
GROUP Group declaration See 8.7.
KEYWORD Keyword declaration See 8.4.
SEVANTI CS Semantics declaration See 8.6.
TEMPLATE Template declaration See 8.8.

Table 4—Library-specific objects

Keyword Item Section

LI BRARY Library declaration See9.1.

SUBLI BRARY Sublibrary declaration See9.1.

CELL Cell declaration See 9.3.

PRI M Tl VE Primitive declaration See9.11.
W RE Wire declaration See9.12.
PI'N Pin declaration See9.7.

Pl NGROUP Pin group declaration See 9.8.

VECTOR Vector declaration See 9.16.
NODE Node declaration See9.15.
LAYER Layer declaration See9.18.
VI A Viadeclaration See 9.20.
RULE Rule declaration See 9.23.
ANTENNA Antenna declaration See 9.24.
SITE Site declaration See 9.28.
ARRAY Array declaration See 9.30.
BLOCKAGE Blockage declaration See 9.25.
PORT Port declaration See 9.26.
PATTERN Pattern declaration See9.32.
REG ON Region declaration See 9.34.

IEEE P1603 Draft 6

Advanced Library Format (ALF) Reference Manual

Table 4 lists the keywords and items in the category library-specific object. The keywords used in this category
are called library-specific keywords.

Figure 3 illustrates the parent/child relationship between statements within the category library-specific object.

17

library — = sublibrary

¢

vector

region

- » layer /
wire
L array
L rule
antenna
via /

'
node
AN

pattern

\pin pin-group pin
bl V

port

primitive

legend:

parent —® child

Figure 3—Parent/child relationship amongst library-specific objects

A parent can have multiple library-specific objects of the same type as children. Each child is distinguished by

name.

5.4 Singular statements and plural statements

Auxiliary statements with predefined keywords are divided in the following subcategories: singular statement

and plural statement.

Aucxiliary statements with predefined keywords and without name are called singular statements. Auxiliary state-
ments with predefined keywords and with name, yet without value, are called plural statements.

Table5 liststhe singular statements.

Table 5—Singular statements

Keyword Item Value Complexity Section
FUNCTI ON Function statement N/A Compound See 10.1.
TEST Test statement N/A Compound See 10.2.
RANGE Range statement N/A Semi-compound See 10.8.
FROM From statement N/A Compound See 11.4.10.
TO To statement N/A Compound See 11.4.10.

18 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

Table 5—Singular statements (Continued)

Keyword Item Value Complexity Section
VI OLATI ON Violation statement N/A Compound See 11.4.12.
HEADER Header statement N/A Compound (or semi-compound?) See 11.3.1.
TABLE Table statement N/A Semi-compound See 11.3.2.
EQUATI ON Equation statement N/A Semi-compound See 11.3.3.
BEHAVI OR Behavior statement N/A Compound See 10.4.
STRUCTURE Structure statement N/A Compound See 10.5.
NON_SCAN_CELL Non-scan cell statement | Optional Compound or semi-compound See 10.7.
ARTWORK Artwork statement Mandatory Compound or atomic See 9.38.
Table 6 lists the plural statements.
Table 6—Plural statements
Keyword Item Name Complexity Section
STATETABLE State table statement Optional Semi-compound See 10.6.
@ Control statement Mandatory Compound See 10.4.
Alternative control statement Mandatory Compound See 10.4.
Figure 4 illustrates the parent/child relationship for singular statements and plural statements.
IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 19

primitive cell p pin

non-scan cell
artwork
function test range
/ violatione— grjthmetic model—|:: trom
structure —
: ¢ :
¢ e& L arithmetic submodel | |— = header
statetable behavior able
—arithmetic submo - Equation
L

legend:
parent —® child

—®>control statement

—®alternative control statement

Figure 4—Parent/child relationship involving singular statements and plural statements

A parent can have at most one child of a particular type in the category singular statements, but multiple children
of aparticular type in the category plural statements.

5.5 Instantiation statement and assignment statement

Auxiliary statements without predefined keywords use the name of an object as keyword. Such statements are
divided in the following subcategories. instantiation statement and assignment statement.

Compound or semi-compound statements using the name of an object as keyword are called instantiation state-
ments. Their purpose is to specify an instance of the object.

Table 7 lists the instantiation statements.

Table 7—Instantiation statements

Item Name Value Section
Cell instantiation Optional N/A See9.4.
Primitive instantiation Optional N/A See 10.4.
Template instantiation N/A Optional See 8.9.
Viainstantiation Mandatory N/A See9.21.
Wire instantiation Mandatory N/A Proposed for |IEEE.

20 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

Atomic statements without name using an identifier as keyword which has been defined within the context of
another object are called assignment statements. A value is mandatory for assignment statements, as their pur-
poseisto assign avaue to the identifier. Such an identifier is called avariable.

Table 8 lists the assignment statements.

Table 8—Assignment statements

Item Section
Pin assignment See 7.10.
Arithmetic assignment See 8.9.
Boolean assignment See 10.4.

Figure 5 illustrates the parent/child relationship involving instantiation and assignment statements.

legend:
behavior parent ——® child no restrictive rules
parent = — —# child with restrictive rules

L primitiveinstantiation——)
- boolean assignment

—® control statement

—®alternative control statement ——
generic object

library-specific object ™
: TN A
sngular statement " A
non-scan cell structure T - templateinstantiation
I plural statement -
| . . - - » !
| | y/ arithmetic model 4 |
~
artwork . cell instantiation ~ / arithmetic submodel” _ v \
\ v ¢ ’/ arithmetic model container arithmetic assignment

pin assignment e—Wwire instantiation

Figure 5—Parent/child relationship involving instantiation and assignment statements

A parent can have multiple children using the same keyword in the category instantiation statement, but at most
one child using the same variable in the category assignment statement.

5.6 Annotation, arithmetic model, and related statements

Multiple keywords are predefined in the categories arithmetic model, arithmetic model container, arithmetic
submodel, annotation, annotation container, and geometric model. Their semantics are established within the

IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 21

context of their parent. Therefore they are called context-sensitive keywords. In addition, the ALF language
allows additional definition of keywords in these categories.

Table 9 provides areference to sections where more definitions about these categories can be found.

Table 9—Other categories of ALF statements

Item Section
Arithmetic model See 11.2.
Arithmetic submodel See11.4.3.

Arithmetic model container See11.4.7.

Annotation See 7.11.
Annotation container See7.12.
Geometric model See 9.35.

There exist predefined keywords with generic semantics in the category annotation and annotation container.
They are called generic keywords, like the keywords for generic objects.

Table 10 lists the generic keywords in the category annotation and annotation container.

Table 10—Annotations and annotation containers with generic keyword

Keyword Item / subcategory Section
PROPERTY Annotation container. See 7.14.
ATTRI BUTE Multi-value annotation. See7.13.
| NFORVMATI ON Annotation container. See9.2.1.

Table 11 lists predefined keywords in categories related to arithmetic model.

Table 11—Keywords related to arithmetic model

Keyword Item / category Section
LIMT Arithmetic model container. See11.4.8.
M N Arithmetic submodel, also operator within arithmetic expression. See11.4.3,11.1.3.
MAX Arithmetic submodel, also operator within arithmetic expression. See11.4.4,11.1.3.
TYP Arithmetic submodel. See11.45.
DEFAULT Annotation. See11.54.
ABS Operator within arithmetic expression. See11.1.3.
EXP Operator within arithmetic expression. See11.1.3.

22 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

Table 11—Keywords related to arithmetic model (Continued)

Keyword Item / category Section
LOG Operator within arithmetic expression. See11.1.3.

The definitions of other predefined keywords, especially in the category arithmetic model, can be self-described
in ALF using the keyword declaration statement (see 8.4).

5.7 Statements for parser control

Table 12 provides areference to statements used for ALF parser control.

Table 12—Statements for ALF parser control

Keyword Satement Section
I NCLUDE Include statement See 7.15.
ASSCCI ATE Associate statement See 7.16.
ALF_REVI SI ON Revision statement See 7.17.

The statements for parser control do not necessarily follow the ALF meta-language shown in Syntax 1.

5.8 Name space and visibility of statements

The following rules for name space and visibility shall apply:

a)
b)
0)

d)

A statement shall be visible within its parent statement, but not outside its parent statement.

A statement visible within another statement shall also be visible within a child of that other statement.
All objects (i.e., generic objects and library-specific objects) shall share a common name space within
their scope of visibility. No object shall use the same name as any other visible object. Conversely, an
object can use the same name as any other object outside the scope of itsvisibility.

The following exception of rule) is allowed for specific objects and with specific semantic implica-
tions. An abject of the same type and the same name can be redeclared, if semantic support for this
redeclaration is provided. The purpose of such aredeclaration is to supplement the original declaration
with new children statements which augment the original declaration without contradicting it.

All statements with optional names (i.e., property, arithmetic model, geometric model) shall share a com-
mon name space within their scope of visibility. No statement with optional name shall use the same
name as any other visible statement with optional name. Conversely, a statement can use the same
optional name as any other statement with optional name outside the scope of its visibility.

IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 23

24

Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 6

6. Lexical rules
This section discusses the lexical rules.

The ALF source text files shall be a stream of Iexical tokens and whitespace. Lexical tokens shall be divided into
the categories delimiter, operator, comment, number, bit literal, based literal, edge, quoted string, and identifier.

Each lexical token shall be composed of one or more characters. Whitespace shall be used to separate lexical
tokens from each other. Whitespace shall not be allowed within alexical token with the exception of comment
and quoted string.

The specific rules for construction of lexical tokens and for usage of whitespace are defined in this section.

6.1 Character set
This standard shall use the ASCI| character set [ISO 8859-1 : 1987(E)].

The ASCII character set shall be divided into the following categories: whitespace, |etter, digit, and special, as
shown in Syntax 2.

character ::=
whitespace
| letter
| digit
| special
whitespace ::=
space | vertical_tab | horizontal_tab | new_line | carriage_return | form_feed
letter ::=
uppercase | lowercase
uppercase ::=
AIBICIDIEIFIGIHITIJIKILIM INJOIPIQIRISITIUIV W
I X1Y|Z
lowercase ::= L.
; ?|b|0|d|e|f|g|h|llj|k|l|m|n|0|p|Q|r|S|t|U|V|W|X|y|z
igit ;1=
011121314,516,718]9
ia =

special ::
&1l =1+ 21 L =N\1.1$| |#
|(||£I|<||>I+|[||l]|l{||}| e L1 1@ 1= 1NV 1S |

Syntax 2—ASCII character set

Table 13 shows the list of whitespace characters and their ASCII code.

Table 13—List of whitespace characters

Name ASCII code (octal)
Space 200
Horizontal tab 011
New line 012
Vertical tab 013

IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 25

Table 13—List of whitespace characters (Continued)

Name ASCII code (octal)
Form feed 014
Carriage return 015

Table 14 shows the list of special characters and their names used in this standard

26

Table 14—List of special characters

Symbol

ASCII code (octal)

Name

Amperesand

Vertical bar

Caret

Tilde

Plus

Minus

Asterix

Slash

Percent

Question mark

Exclamation mark

Colon

Semicolon

Comma

Double quote

Single quote

At sign

Equal sign

Backslash

Dot

Dollar

Underscore

Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 6

Table 14—List of special characters (Continued)

Symbol ASCII code (octal) Name
Pound
() Parenthesis (open, close)
< > Angular bracket (open, close)
[] Square bracket (open, close)
{ } Curly bracket (open, close)

6.2 Comment

A comment shall be divided into the subcategories in-line comment and block comment, as shown in Syntax 3.

comment ::=
in_line_comment
| block_comment
in_line_comment ::=
| I{ character} new_line
|/ [{ character} carriage_return
block_comment ::=
| *{character} * |

Syntax 3—Comment

The start of an in-line comment shall be determined by the occurence of two subsequent slash characters without
whitespace in-between. The end of an in-line comment shall be determined by the occurence of anew line or of a
carriage return character.

The start of a block comment shall be determined by the occurence of a slash character followed by an asterix
without whitespace in-between. The end of a block comment shall be determined by the occurence of an asterix
character followed by a slash character.

A comment shall have the same semantic meaning as a whitespace. Therefore, no syntax rule shall involve a
comment.

6.3 Delimiter

The specia characters shown in Syntax 4 shall be considered delimiters.

delimiter ;=

(DI,

Syntax 4—Delimiter

When appearing in a syntax rule, a delimiter shall be used to indicate the end of a statement or of a partial state-
ment, the begin and end of an expression or of a partial expression.

IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 27

6.4 Operator

Operators shall be divided into the following subcategories: arithmetic operator, boolean operator, relational
operator, shift operator, event sequence operator, and meta operator, as shown in Syntax 5

operator ::=
arithmetic_operator

| boolean_operator

| relational _operator

| shift_operator

| event_sequence_operator

| meta_operator
arithmetic_operator ::=

L AR
boolean_operator ::=

E&II~& I~[I™ M~ 1 &]
relational _operator ::=

::|!_:|>:|<:|>|<
shift_operator ::=

<L |>>
event_sequence_operator ::=

S|~ <> <> &> <& >
meta_op)erator =

=1?71@

Syntax 5—Operator

When appearing in a syntax rule, an operator shall be used within a statement or within an expression. An opera-
tor with one operand shall be called unary operator. An unary operator shall precede the operand. An operator
with two operands shall be called binary operator. A binary operator shall succeed the first operand and precede
the second operand.

6.4.1 Arithmetic operator

Table 15 shows the list of arithmetic operators and their names used in this standard.

Table 15—List arithmetic operators

Symboal Operator name Unary / binary Section
+ Plus Binary See 10.10.2.
- Minus Both See 10.10.2.
* Multiply Binary See 10.10.2.
/ Divide Binary See 10.10.2.
% Modulo Binary See 10.10.2.
*% Power Binary See1l.1.

Arithmetic operators shall be used to specify arithmetic operations.

28 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

6.4.2 Boolean operator

Table 16 shows the list of boolean operators and their names used in this standard.

Table 16—List of boolean operators

Symbol Operator name Unary / binary Section
| Logical inversion Unary See 10.10.1.
& & Logical and Binary See 10.10.1.
|| Logical or Binary See 10.10.1.
~ bit-wise inversion Unary **See 10.12.?7?
& bit-wise and Both **See 10.12.2?
~& bit-wise nand Both **See 10.12.?7?
| bit-wise or Both **See 10.12.7?
~| bit-wise nor Both **See 10.12.?2?
N Exclusive or Both **See 10.12.2?
~N Exclusive nor Both **See 10.12.?2?

Boolean operators shall be used to specify boolean operations.
6.4.3 Relational operator

Table 17 shows the list of relational operators and their names used in this standard.

Table 17—List of relational operators

Symbol Operator name Unary / binary Section
== Equal Binary See 10.10.2.
1= Not equal Binary See 10.10.2.
> Greater Binary See 10.10.2.
< Lesser Binary See 10.10.2.
>= Greater or equa Binary See 10.10.2.
<= Lesser or equa Binary See 10.10.2.

Relational operators shall be used to specify mathematical relationships between numerical quantities.

IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual

6.4.4 Shift operator

Table 18 shows the list of shift operators and their names used in this standard.

Table 18—List of shift operators

Symbol Operator name Unary / binary Section
<< Shift left Binary See 10.10.2.
>> Shift right Binary See 10.10.2.

Shift operators shall be used to specify manipulations of discrete mathematical values.
6.4.5 Event sequence operator

Table 19 shows the list of event sequence operators and their names used in this standard.

Table 19—List of event sequence operators

Symbol Operator name Unary / binary Section
> Immediately followed by Binary See 10.12.2.
~> Eventually followed by Binary See 10.12.2.
<-> Immediately following each other Binary See 10.12.3.
<~> Eventually following each other Binary **where??
&> Simultaneous or immediately followed by Binary See 10.12.3.
<& > Simultaneous or immediately following each other Binary See 10.12.3.

Event sequence operators shall be used to express temporal relationships between discrete events.
6.4.6 Meta operator

Table 20 shows the list of meta operators and their names used in this standard.

Table 20—List of meta operators

Symbol Operator name Unary / binary Section
= Assignment Binary See 7.10, 8.9, 104.
? Condition Binary See 10.10.1.
@ Control Unary See 10.12.6.

30 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

Meta operators shall be used to specify transactions between variables.

6.5 Number

Numbers shall be divided into subcategories signed integer, signed real, unsigned integer, and unsigned real.
Furthermore, the categories signed number, unsigned number, integer and real shall be defined as shown in
Syntax 6.

number ::=
signed_integer | signed_real | unsigned_integer | unsigned_real
signed_number ::=
signed_integer | signed_real
unsigned_number ::=
unsigned_integer | unsigned_real
integer ::=
signed_integer | unsigned_integer
signed_integer ::=
sign unsigned_integer
unsigned_integer ::=
digit {[_]digit}
real ::=
signed_rea | unsigned rea
signed_real ::=
sign unsigned_real
unsigned_real ::=
mantisse [exponent]
| unsigned_integer exponent
sign::=
+ |-
mantisse ::=
. unsigned_integer
| unsigned_integer . [unsigned_integer]
exponent ::=
E [sign] unsigned_integer
| €[sign] unsigned_integer

Syntax 6—Numbers

Numbers shall be used to represent numerical quantities.

6.6 Quantity symbol

A guantity symbol shall be defined as shown in Syntax 7.

IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 31

quantity_symbol ::=
unity { letter} | K { letter} |M EG{ letter } |G { letter }
[M {letter} |U{ letter} | N { letter } | P{ letter } | F{ letter}

unit{:::
“ T(IK
% im
Ele
Gig
o
Nin
Pip
F |f

Z C o m =2

L

T

Syntax 7—Quantity symbol

The meaning of the quantity symbol is shown in Table 21.

Table 21—Quantity symbol and corresponding Sl-prefix

L eading char acter Sl-prefix (symbol) | Sl-prefix (word) Numerical value
F f femto le-15

P p pico le-12

N n nano le-9

U V] micro le-6

M m milli le-3

unity 1 one 1

K k kilo le+3

MEG M mega le+6

G G giga le+9

A quantity symbol can be used to define a quantity value (see Section 7.2).

6.7 Bit literal

Bit literals shall be divided into the subcategories alphanumeric bit literal and symbolic bit literal, as shown in
Syntax 8.

Bit literals shall be used to specify scalar values within a boolean val ue system (see Section 10.10).

32 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

bit_litera ::=
alphanumeric_hit_literal
| symbolic_bit_literal
aphanumeric_bit_literal
numeric_bit_literal
| alphabetic_hit_literal
numeric_bit_literal ::=

alphabetic_bit_literal ::=
X|1Z|L1H |UW
IX1z|I'1hjujw

symbolic_bit_literal ::=
?21*

Syntax 8—Bit literal

6.8 Based literal

Based literals shall be divided into subcategories binary based literal, octal based literal, decimal based literal,
and hexadecimal based literal, as shown in Syntax 9.

based literal ::=

binary_based_literal | octal_based literal | decimal_based_literal | hexadecimal _based_literal
binary_based_literal ::=

binary_base bit_literal { [_] bit_literal }
bi naré_base n=

1 I 1 b

octal_based_literal ::=
octal_base octal_digit { [__] octal_digit }
octal_base ::=
'‘Ol'o
octal_digit ::=
bit_literal | 2131415167
decimal_based literal ::=
decimal_basedigit{ [_] digit}
decima_base ::=
'‘D|'d
hexadecimal_based_literal ::=
hexadecimal_base hexadecimal _digit { [__] hexadecimal_digit }
hexadecimal _base ::=
'H|'h
hexadecimal_digit ::=
octal_digit|8]9
|A|B|?:AD|E|F
lajbicidie|f

Syntax 9—Based literal

Based literals shall be used to specify vectorized values within a boolean value system.

6.9 Edge literal

Edge literals shall be divided into subcategories bit edge literal, based edge literal, and symbolic edge literal, as
shown in Syntax 10.

IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 33

edge literal ::=

bit_edge literal

| based_edge literal

| symbolic_edge litera
bit_edge literal ::=

bit_literal bit_literal
based_edge literal ::=

based_literal based | Iiteral
symbollc edg)e literal ::

Syntax 10—Edge literal

Edge literals shall be used to specify a change of value within a boolean system. In general, bit edge literals shall
specify achange of a scalar value, based edge literals shall specify a change of a vectorized value, and symbolic
edge literals shall specify a change of ascalar or of avectorized value.

6.10 Quoted string

A quoted string shall be a sequence of zero or more characters enclosed between two double quote characters, as

shown in Syntax 11.

quoted string ::

{ character}

Syntax 11—Quoted string

Within a quoted string, a sequence of characters starting with an escape character shall represent a symbol for
another character, as shown in Table 22.

Table 22—Character symbols within a quoted string

Symbol Character ASCII Code (octal)
\g Alert or bell. 007
\h Backspace. 010
\t Horizontal tab. 011
\n New line. 012
\v Vertical tab. 013
\ f Form feed. 014
\r Carriage return. 015
\ " Double quote. 042
\\ Backdlash. 134
\ digit digit digit ASCII character represented by three digit digit digit digit
octal ASCII code.

34

Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 6

The start of a quoted string shall be determined by a double quote character. The end of a quoted string shall be
determined by a double quote character preceded by an even number of escape characters or by any other charac-
ter than escape character.

6.11 Identifier

Identifiers shall be divided into the subcategories non-escaped identifier, escaped identifier, placeholder identi-
fier, and hierarchical identifier, as shown in Syntax 12.

identifier ::=
non_escaped_identifier
| escaped_identifier
| placeholder_identifier
| hierarchical _identifier

Syntax 12—Identifier

Identifiers shall be used to specify a name of an ALF statement or a value of an ALF statement. Identifiers can
also appear in an arithmetic expression, in a boolean expression, or in avector expression, referencing an already
defined statement by name.

A lowercase character used within a keyword or within an identifier shall be considered equivalent to the corre-
sponding uppercase character. This makes ALF case-insensitive. However, wherever an identifier is used to
specify the name of a statement, the usage of the exact letters shall be preserved by the parser to enable usage of
the same name by a case-sensitive application.

6.11.1 Non-escaped identifier

A non-escaped identifier shall be defined as shown in Syntax 13.

non_escaped_identifier ::=
letter { letter |digit| | B|#}

Syntax 13—Non-escaped identifier

A non-escaped identifier shall be used, when there is no lexical conflict, i.e., no appearance of a character with
special meaning, and no semantic conflict, i.e., theidentifier is not used elsewhere as a keyword.

6.11.2 Escaped identifier

An escaped identifier shall be defined as shown in Syntax 14.

escaped_identifier ::=

\ escapable_character { escapable_character }
escapable_character ::=

letter | digit | specia

Syntax 14—Escaped identifier

An escaped identifier shall be used, when thereisalexical conflict, i.e., an appearance of acharacter with special
meaning, or a semantic conflict, i.e., the identifier is used el sewhere as a keyword.

IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 35

6.11.3 Placeholder identifier

A placeholder identifier shall be defined as a non-escaped identifier enclosed by angular brackets without
whitespace, as shown in Syntax 15.

placeholder_identifier ::=
< non_escaped_identifier >

Syntax 15—Placeholder identifier

A placeholder identifier shall be used to represent aformal parameter in atemplate statement (see 8.8), whichis
to be replaced by an actual parameter in atemplate instantiation statement (see 8.9).

6.11.4 Hierarchical identifier

A hierarchical identifier shall be defined as shown in Syntax 16.

hierarchical_identifier ::=
identifier [\] . identifier

Syntax 16—Hierarchical identifier

A hierarchical identifier shall be used to specify a hierarchical name of a statement, i.e., the name of a child pre-
ceded by the name of its parent. A dot within a hierarchical identifier shall be used to separate a parent from a
child, unless the dot is directly preceded by an escape character.

Example
\id1l.id2.\id3 isahierarchical identifier, whereid2 isachild of \id1, and \id3 isachild of id2.
id1\.id2\id3 isahierarchical identifier, where\id3 isachild of “id1.id2".

id1\.id2\.id3 specifies the pseudo-hierarchical name “id1.id2.id3".

6.12 Keyword

Keywords shall be lexically equivalent to non-escaped identifiers. Predefined keywords are listed in Table 3 —
Table 6 and Table 10 — Table 12. Additional keywords are predefined in 8.4.

The predefined keywords in this standard shall follow a more restrictive lexical rule than general non-escaped
identifiers, as shown in Syntax 17.

keyword_identifier ::=
letter { [_] letter}

Syntax 17—Keyword

The reason for the more restrictive lexical rule is to encourage the use of words taken from a natural language as
keywords. Words in a natural language are constructed from lexical characters only, not from numbers. The
underscore can be used to indicate that there would be a whitespace or a dash in the word from the natural lan-

guage.

36 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

NOTE—This document presents keywords in all-uppercase letters for clarity.

6.13 Rules for whitespace usage

Whitespace shall be used to separate lexical tokens from each other, according to the following rules:

a)
b)
<)
d)
e

f)
0)

h)
i)

)

Whitespace before and after adelimiter shall be optional.

Whitespace before and after an operator shall be optional.

Whitespace before and after a quoted string shall be optional.

Whitespace before and after acomment shall be mandatory. This rule shall override a), b), and c).
Whitespace between subsequent quoted strings shall be mandatory. This rule shall override c).
Whitespace between subsequent lexical tokens amongst the categories number, bit literal, based literal,
and identifier shall be mandatory.

Whitespace before and after a placeholder identifier shall be mandatory. This rule shall override a), b),
and c).

Whitespace after an escaped identifier shall be mandatory. This rule shall override a), b), and c).

Either whitespace or delimiter before asigned number shall be mandatory. Thisrule shall override a), b),
and c).

Either whitespace or delimiter before a symbolic edge literal shall be mandatory. This rule shall override
a), b), and c).

Whitespace before thefirst lexical token or after the last lexical token in afile shall be optional. Hencein dl rules
prescribing mandatory whitespace, “before” shall not apply for the first lexical token in a file, and “after” shall
not apply for the last lexical token in afile.

6.14 Rules against parser ambiguity

In a syntax rule where multiple legal interpretations of alexical token are possible, the resulting ambiguity shall
be resolved according to the following rules:

a)
b)
0)

d)

In a context where both bit literal and identifier are legal, anon-escaped identifier shall take priority over
asymbolic bit literal.

In a context where both bit literal and number are legal, an unsigned integer shall take priority over a
numeric bit literal.

In a context where both edge literal and identifier are legal, a non-escaped identifier shall take priority
over abit edgeliteral.

In a context where both edge literal and number are legal, an unsigned integer shall take priority over a
bit edge literal.

If the interpretation as bit literal is desired in case @) or b), a based literal can be substituted for a bit literal.

If the interpretation as edge literal isdesired in case €) or d), abased edge literal can be substituted for abit edge

literal.

IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 37

38

Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 6

7. Auxiliary syntax rules

This section specifies auxiliary syntax rules which are used to build other syntax rules.

7.1 All-purpose value

An all-purpose value shall be defined as shown in Syntax 18.

al_purpose vaue::=
number
| identifier
| quoted_string
| bit_literal
| based_literal
| edge _value
| pin_variable
| control_expression

Syntax 18—All purpose value

7.2 Quantity value

A quantity value shall be defined as shown in Syntax 19.

quantity_value ::=
unsigned_number | quantity_symbol

Syntax 19—Quantity value

Only the leading characters of the quantity symbol shall be used for identification of a quantity value, as speci-
fied in Table 21.

Optional subsequent letters can be used to make the quantity symbol more readable. For example, “pF’ can be
used to denote “picofarad” etc.

7.3 String value

A string value shall be defined as shown in Syntax 20.

string ::=
quoted_string | identifier

Syntax 20—String value

A string value shall represent textual datain general and the name of areferenced object in particular.

7.4 Arithmetic value

An arithmetic value shall be defined as shown in Syntax 21.

IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 39

arithmetic_value ::=
number | identifier | bit_literal | based literal

Syntax 21—Arithmetic value

An arithmetic value shall represent data for an arithmetic model or for an arithmetic assignment. Semantic
restrictions apply, depending on the particular type of arithmetic model.

7.5 Boolean value

A boolean value shall be defined as shown in Syntax 22.

boolean value::=
aphanumeric_hit_literal | based literal | integer

Syntax 22—Boolean value

A boolean value shall represent the contents of a pin variable (see 7.9).

7.6 Edge value

An edge value shall be defined as shown in Syntax 23.

edge vaue::=
(‘edge _literal)

Syntax 23—Edge value

An edge value shall represent a standalone edge literal that is not embedded in a vector expression.

7.7 Index value

An index value shall be defined as shown in Syntax 24.

index_vaue::=
unsigned_integer | identifier

Syntax 24—Index value

An index value shall represent a particular position within a vector pin (see 9.7). The usage of identifier shall
only be allowed, if that identifier represents a constant (see 8.2) with avalue of the category unsigned integer.

7.8 Index

An index shall be defined as shown in Syntax 25.

Anindex shall be used in conjunction with the name of a pin or a pingroup. A single index shall represent a par-
ticular scalar within a one-dimensional vector or a particular one-dimensional vector within a two-dimensional

matrix. A multi index shall represent a range of scalars or a range of vectors, wherein the most significant bit
(MSB) is specified by the left index value and the least significant bit (LSB) is specified by the right index value.

40 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

index ::=
single_index | multi_index
single_index ::=
T index_value |
multi_index ::=
index_value : index_value]

Syntax 25—Index

7.9 Pin variable and pin value

A pin variable and a pin value shall be defined as shown in Syntax 26.

pin_variable ::=
pin_variable_identifier [index]
pin_value ::=
pin_variable | boolean_value

Syntax 26—Pin variable

A pinvariable shall represent the name of a pin or the name of apin group, in conjunction with an optional index.

A pin value shall represent the actual value or a pointer to the actual value associated with a pin variable. The
actual value is aboolean value (see Section 7.5). A pin variable represents a pointer to the actual value.

7.10 Pin assignment

A pin assignment shall be defined as shown in Syntax 27.

pin_assignment ::=
pin_variable = pin_value;

Syntax 27—Pin assignment

A pin assignment represents an association between a pin variable and a pin value.

The datatype of the left hand side (LHS) and the right hand side (RHS) of the assignment shall be compatible
with each other. The following rules shall apply:

a) The bitwidth of the RHS must be equal to the bitwidth of the LHS.
b) A scaar pin at the LHS can be assigned a bit literal or a based literal representing asingle bit.

c) A pingroup, avector pin, or aone-dimensiona slice of a matrix pin at the LHS can be assigned a based
literal or an unsigned integer, representing a binary number.

7.11 Annotation

An annotation shall be divided into the subcategories single value annotation and multi value annotation, as
shown in Syntax 28

An annotation shall represent an association between an identifier and a set of annotation values (values for
shortness). In case of asingle value annotation, only one value shall belegal. In case of amulti value annotation,

IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 41

annotation ::=
single_value_annotation
| multi_value_annotation
single_value_annotation ::=
annotation_identifier = annotation_value ;
annotation_value ::=
number
| identifier
| quoted_string
| bit_literal
| based_literal
| edge value
| pin_variable
| control_expression
| boolean_expression
| arithmetic_expression
multi_value_annotation ::=
annotation_identifier { annotation_value{ annotation_value} }

Syntax 28—Annotation

one or more values shall be legal. The annotation shall serve as a semantic qualifier of its parent statement. The
value shall be subject to semantic restrictions, depending on the identifier.

The annotation identifier can be akeyword used for the declaration of an object (i.e., ageneric object or alibrary-
specific object). An annotation using such an annotation identifier shall be called a reference annotation. The
annotation value of areference annotation shall be the name of an object of matching type. A reference annota-
tion can be a single-value annotation or a multi-value annotation. The semantic meaning of a reference annota-
tion shall be defined in the context of its parent statement.

7.12 Annotation container

An annotation container shall be defined as shown in Syntax 29

annotation_container ::=
annotation_container_identifier { annotation { annotation} }

Syntax 29—Annotation container
An annotation container shall represent a collection of annotations. The annotation container shall serve as a
semantic qualifier of its parent statement. The annotation container identifier shall be a keyword. An annotation
within an annotation container shall be subject to semantic restrictions, depending on the annotation container
identifier.
7.13 ATTRIBUTE statement

An attribute statement shall be defined as shown in Syntax 30.

atribute ::=
ATTRIBUTE { identifier { identifier} }

Syntax 30—ATTRIBUTE statement

42 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

The attribute statement shall be used to associate arbitrary identifiers with the parent of the attribute statement.
Semantics of such identifiers can be defined depending on the parent of the attribute statement. The attribute
statement has a similar syntax definition as a multi-value annotation (see 7.11). While a multi-value annotation
can have restricted semantics and a restricted set of applicable values, identifiers with and without predefined
semantics can co-exist within the same attribute statement.

Example

CELL nmyRAMBXx128 ({
ATTRI BUTE { rom asynchronous static }
}

7.14 PROPERTY statement

A property statement shall be defined as shown in Syntax 31.

proE)erty = - _ '
ROPERTY [identifier] { annotation { annotation} }

Syntax 31—PROPERTY statement

The property statement shall be used to associate arbitrary annotations with the parent of the property statement.
The property statement has a similar syntax definition as an annotation container (see 7.12). While the keyword
of an annotation container usually restricts the semantics and the set of applicable annotations, the keyword
“property” does not. Annotations shall have no predefined semantics, when they appear within the property
statement, even if annotation identifiers with otherwise defined semantics are used.

Example

PROPERTY nyProperties {
paranmeterl = val uel ;
parameter2 = val ue2 ;
paranmeter3 { val ue3 val ued4 val ue5 }

7.15 INCLUDE statement

Aninclude statement shall be defined as shown in Syntax 32.

include ::=

INCLUDE quoted_string ;

Syntax 32—INCLUDE statement

The quoted string shall specify the name of afile. When the include statement is encountered during parsing of a
file, the application shall parse the specified file and then continue parsing the former file. The format of the file
containing the include statement and the format of the file specified by the include statement shall be the same.

Example

LI BRARY nyLib {
I NCLUDE “tenpl ates.alf”;

IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 43

I NCLUDE “technol ogy. al f”;
I NCLUDE “primtives.alf”;
| NCLUDE “wires.al f”;
| NCLUDE “cells.al f”;

}

Note: The filename specified by the quoted string shall be interpreted according to the rules of the application and/or the oper-
ating system. The ALF parser itself shall make no semantic interpretation of the filename.

7.16 ASSOCIATE statement

An associate statement shall be defined as shownin .

associate ::=
ASSOCIATE quoted_string ;
| ASSOCI AT E quoted_string { FORMAT_single value annotation }

Syntax 33—ASSOCIATE statement

7.17 REVISION statement

A revision statement shall be defined as shown in Syntax 34

I

evision ::=
ALF_REVISION string_vaue

Syntax 34—Revision statement

A revision statement shall be used to identify the revision or version of the file to be parsed. One, and only one,
revision statement can appear at the beginning of an ALF file.

The set of legal string values within the revision statement shall be defined as shown in Table 23

Table 23—Legal string values within the REVISION statement

Sring value Revision or version
“1.1" Version 1.1 by Open Verilog International (OV1), released on April 6, 1999.
“2.0" Version 2.0 by Accellera, released on December 14, 2000.
“P1603. 2002- 06- 21" |EEE draft version as described in this document.
TBD |EEE 1603 release version.

The revision statement shall be optional, as the application program parsing the ALF file can provide other
means of specifying the revision or version of thefile to be parsed. If arevision statement is encountered while a
revision has already been specified to the parser (e.g. if an included fileis parsed), the parser shall be responsible

44 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

to decide whether the newly encountered revision is compatible with the originally specified revision and then
either proceed assuming the original revision or abandon.

This document suggests, but does not certify, that the IEEE version of the ALF standard proposed herein be
backward compatible with the Accelleraversion 2.0 and the OV version 1.1.

7.18 Generic object

A generic object shall be defined as shown in Syntax 35.

generic_object ::=

dlias_declaration

| constant_declaration

| class_declaration

| keyword_declaration

| semantics_declaration

| group_declaration

| template_declaration

Syntax 35—Generic object

The syntax items introduced in Syntax 35 are defined in Section 8.

7.19 Library-specific object

A library-specific object shall be defined as shown in Syntax 36.

library_specific_object ::=

library

| sublibrary

| cell

| primitive

| wire

| pin

| pingroup

| vector

| node

| layer

| via

| rule

| antenna

| site

| array

| blockage

| port

| pattern

| region

Syntax 36—Library-specific object

The syntax items introduced in Syntax 36 are defined in Section 9.

7.20 All purpose item

An all purposeitem shall be defined as shown in Syntax 37.

IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 45

al_purpose_item ::=
generic_object
| include_statement
| associate_statement
| annotation
| annotation_container
| arithmetic_model
| arithmetic_model _container
| all_purpose_item_template_instantiation

Syntax 37—All purpose item

The syntax items introduced in Syntax 37 are defined in this Section 7 , in Section 8 and in Section 11.

46 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

8. Generic objects and related statements

** Add lead-in text**

8.1 ALIAS declaration

An alias shall be declared as shown in Syntax 38.

dias declaration :;=
| ASalias identifier = original_identifier ;

Syntax 38—ALIAS declaration

The alias declaration shall specify an identifier which can be used instead of an origina identifier to specify a
name or avalue of an ALF statement. The identifier shall be semantically interpreted in the same way asthe orig-
inal identifier.

Example

ALI AS reset = cl ear;

8.2 CONSTANT declaration

A constant shall be declared as shown in Syntax 39.

constant_declaration ::=

CONSTANT constant_identifier = constant_value ;
constant_value ::=

number | based_literal

Syntax 39—CONSTANT declaration

The constant declaration shall specify an identifier which can be used instead of a constant value, i.e., a number
or abased literal. The identifier shall be semantically interpreted in the same way as the constant value.

Example

CONSTANT vdd = 3. 3;
CONSTANT opcode = * hOf 3a;

8.3 CLASS declaration

A class shall be declared as shown in Syntax 40.

class declaration ::=

CL ASSclass identifier :
| CLASSclass identifier {{ all_purpose item} }

Syntax 40—CLASS declaration

IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 47

A class declaration shall be used to establish a semantic association between ALF statements, including, but not
restricted to, other class declarations. ALF statements shall be associated with each other, if they contain arefer-
ence to the same class. The semantics specified by an al purpose item within a class declaration shall be inher-
ited by the statement containing the reference.

Example

CLASS \1stclass { ATTRIBUTE { everything } }
CLASS \ 2ndcl ass { ATTRIBUTE { nothing } }
CELL celll1 { CLASS = \1stclass; }

CELL cell2 { CLASS = \2ndcl ass; }

CELL cell3 { CLASS { \1stclass \2ndclass } }
/1 celll inherits “everything”

/1 cell?2 inherits “nothing”

/1 cell3 inherits “everything” and “not hing”

8.4 KEYWORD declaration

A keyword shall be declared as shown in Syntax 41.

keyword declaration ::=
KEYWORD keyword identifier = syntax_item_identifier ;
| KEYWORD keyword identifier = synta_item identifier { { keyword item} }
keyword_item ::=
VALUETYPE_single value_annotation
| VALUES multi_value_annotation
| DEFAULT_single_value_annotation
| CONTEXT_annotation

Syntax 41—KEYWORD declaration

A keyword declaration shall be used to define a new keyword in a category or in a subcategory of ALF state-
ments specified by a syntax item identifier. One or more annotations (see 8.5) can be used to qualify the contents
of the keyword declaration.

A legal syntax item identifier shall be defined as shown in Table 24.

Table 24—Syntax item identifier

Identifier Semantic meaning
annot ati on The keyword shall specify an annotation (see 7.11).
si ngl e_val ue_annot ati on The keyword shall specify a single value annotation (see 7.11).
nul ti _val ue_annotation The keyword shall specify a multi-value annotation (see 7.11).
annot ati on_cont ai ner The keyword shall specify an annotation container (see 7.12).
arithneti c_nodel The keyword shall specify an arithmetic model (see 11.2).
arithnetic_subnodel The keyword shall specify an arithmetic submodel (see 11.4.3).

48 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

Table 24—Syntax item identifier (Continued)

I dentifier

Semantic meaning

arithneti c_nodel _cont ai ner

The keyword shall specify an arithmetic model container (see 11.4.7).

8.5 Annotations for a KEYWORD

This subsection defines annotations which can be used as |egal children of a keyword declaration statement.

8.5.1 VALUETYPE annotation

The valuetype annotation shall be a single value annotation. The set of legal values shall depend on the syntax
item identifier associated with the keyword declaration, as shown in Table 25.

Table 25—VALUETYPE annotation

Default value
Syntax item identifier Set SxﬁajEﬁj(l;?for for Comment
VALUETYPE
annot ati on nunber, identifier See Syntax 28, defi-
or si ng| e_va| ue_annot at i on identifier, nition of annotation
ormul ti _val ue_annot ati on quot ed_stri ng, value.
edge_val ue,
pi n_vari abl e,
cont r ol _expressi on,
bool ean_expr essi on,
arithmetic_expression.
annot ati on_cont ai ner N/A N/A An annotation con-
tainer (see
Syntax 29) has no
vaue.
arithnmeti c_nodel nunber,i dentifier, nunber See Syntax 21, defi-
bit literal, nition of arithmetic
based_literal. value.
arithneti c_subnodel N/A N/A An arithmetic sub-
model (see 11.4.3)
shall always have
thesameval ue-
t ype asits parent
arithmetic model.
arithnmetic_nodel cont ai ner N/A N/A An arithmetic model
container (see
11.4.7) has no value.

The valuetype annotation shall specify the category of legal ALF vaues applicable for an ALF statement whose ALF typeis

given by the declared keyword.

Example:

This example shows a correct and an incorrect usage of a declared keyword with specified valuetype.

IEEE P1603 Draft 6

Advanced Library Format (ALF) Reference Manual

49

KEYWORD Greeting = annotation { VALUETYPE = identifier ; }
CELL celll { Geeting = H There ; } // correct
CELL cell2 { Geeting = “H There” ; } // incorrect

Thefirst usage is correct, since Hi Ther e isan identifier. The second usage isincorrect, since“ Hi There” is
aquoted string and not an identifier.

8.5.2 VALUES annotation

The values annotation shall be a multi value annotation applicable in the case where the valuetype annotation is
also applicable.

The values annotation shall specify a discrete set of legal values applicable for an ALF statement using the declared
keyword. Compatibility between the values annotation and the valuetype annotation shall be mandatory.

Example:
This example shows a correct and an incorrect usage of a declared keyword with specified valuetype and values.

KEYWORD Greeting = annotation {
VALUETYPE = identifier ;
VALUES { Hi There Hell o HowboYouDo }
}
CELL cell3 { Geeting
CELL cell4 { Geeting

Hello ; } // correct
GoodBye ; } // incorrect

Thefirst usageis correct, since Hel | o is contained within the set of values. The second usage is incorrect, since
GoodBye is not contained within the set of values.

8.5.3 DEFAULT annotation
The default annotation shall be a single value annotation applicable in the case where the valuetype annotation is
also applicable. Compatibility between the default annotation, the valuetype annotation, and the values annota-
tion shall be mandatory.
The default annotation shall specify a presumed value in absence of an ALF statement specifying a value.
Example:

KEYWORD Greeting = annotation {

VALUETYPE = identifier ;

VALUES { Hi There Hell o HowDoYouDo }
DEFAULT = Hello ;

i:ELL cell5{ /* no Geeting */ }

In this example, the absence of aG eet i ng statement is equivalent to the following:
CELL cell5 { Geeting = Hello ; }

8.5.4 CONTEXT annotation

The context annotation shall specify the ALF type of alegal parent of the statement using the declared keyword.
The ALF type of alegal parent can be a predefined keyword or a declared keyword.

50 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

Example:

KEYWORD Li braryQualifier = annotation { CONTEXT { LIBRARY SUBLI BRARY } }
KEYWORD Cel | Qualifier = annotation { CONTEXT = CELL ; }
KEYWORD Pi nQualifier = annotation { CONTEXT = PIN ; }
LI BRARY libraryl {
LibraryQualifier = foo ; // correct
CELL cell 1 {
Cell Qualifier = bar ; // correct
Pi nQualifier = foobar ; // incorrect
}
}

The following change would legalize the example above:
KEYWORD Pi nQualifier = annotation { CONTEXT { PIN CELL } }
8.5.5 SI_MODEL annotation

** see |EEE proposal, June 2002, chapter 27**

8.6 SEMANTICS declaration

Semantics shall be declared as shown in Syntax 42—.

semanics_declaration ::=
SEMANT | CS semantics_identifier = syntax_item identifier ;
| SEMANT I CS semantics_identifier [= syntax_item_identifier] { { semantics_item} }
semantics_item ;=
VALUES multi_vaue annotation
| DEFAULT _single_value_annotation
| CONTEXT_annotation

Syntax 42—SEMANTICS declaration

A semantics declaration shall be used to define context-specific rulesin a category or in a subcategory of ALF
statements. The semantics item identifier shall make reference to alegal ALF statement or to a category or sub-
category of legal ALF statements.

The semanticsidentifier shall be akeyword identifier or asyntax item identifier or ahierarchical identifier. In the
latter case, the hierarchical identifier shall involve one or more keyword identifiers and/or syntax item identifi-
ers.

If the ALF type of the referenced ALF statement is annot ati on, the optional syntax item identifier
singl e_val ue_annotationormnulti _val ue_annot ati on can be used.

A semantic item can be used to qualify the contents of the semantics declaration. Legal semantic items include
values annotation (see 8.5.2), default annotation (see 8.5.3) and context annotation (see 8.5.4).

A rule specified by a semantic item shall be compatible with the set of rules specified for the referenced ALF

statement. A rule specified within a semantics declaration can not invalidate a rule specified within the refer-
enced ALF statement.

IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 51

Example:

KEYWORD nyAnnot ati on = annotation {
VALUETYPE = identifier ;
VALUES { val uel val ue2 val ue3 val ue4 val ue5 }
CONTEXT { CELL PIN }

}

SEMANTI CS CELL. nyAnnotation = nulti_val ue_annotation {
VALUES { val uel val ue2 val ue3 }

}

SEMANTI CS PI N. nyAnnot ati on = single value_annotation {
VALUES { val ue4 val ue5 }
DEFAULT = val ue4;
}
CELL nyCell {
myAnnot ati on { val uel val ue2 }
PIN myPi n {
myAnnot ati on = val ue5;

}

8.7 GROUP declaration

A group shall be declared as shown in Syntax 43.

group_declaration ::=
GROUP group_identifier { all_purpose value{ all_purpose value} }
| GROUP group_identifier { left_index_value : right_index_value

Syntax 43—GROUP declaration

A group declaration shall be used to specify the semantic equivalent of multiple similar ALF statements within a
single ALF statement. An ALF statement containing a group identifier shall be semantically replicated by substi-
tuting each group value for the group identifier, or, by substituting subsequent index values bound by the left
index value and by the right index value for the group identifier. The ALF parser shall verify whether each sub-
gtitution resultsin alegal statement.

The ALF statement which has the same parent as the group declaration shall be semantically replicated, if the
group identifier is found within the statement itself or within a child of the statement or within a child of a child
of the statement etc. If the group identifier is found more than once within the statement or within its children,
the same group value or index value per replication shall be substituted for the group identifier, but no additional
replication shall occur.

The group identifier (i.e., the name associated with the group declaration) can be re-used as hame of another
statement. As a conseguence, the other statement shall be interpreted as multiple statements wherein the group
identifier within each replication shall be replaced by the all-purpose value. On the other hand, no name of any
visible statement shall be allowed to be re-used as group identifier.

Examples

The following example shows substitution involving group values.

52 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

/1 statenent using GROUP:
CELL nyCell {
GROUP data { datal data2 data3 }
PIN data { DORECTION = input ; }
}
/1 semantically equival ent statenent:
CELL nyCell {

PIN datal { DIRECTION = input ; }
PIN data2 { DI RECTION = input ; }
PIN data3 { DIRECTION = input ; }

}

The following example shows substitution involving index values.

/1 statenent using GROUP:

CELL nyCell {
GROUP datalndex { 1 : 31}
PIN[1:3] data { DIRECTION = input ; }
PIN clock { DIRECTION = input ; }

SETUP = 0.5 { FROM{ PIN = data[datalndex]; } TO{ PIN = clock ;

}

/1 semantically equival ent statenent:
CELL nyCell {
GROUP datalndex { 1 : 31}
PIN[1:3] data { DIRECTION = input ; }
PIN clock { DIRECTION = input ; }

SETUP = 0.5 { FROM{ PIN = data[1]; } TO{ PIN = clock ; } }
SETUP = 0.5 { FROM{ PIN = data[2]; } TO{ PIN = clock ; } }
SETUP = 0.5 { FROM{ PIN = data[3]; } TO{ PIN = clock ; } }

}

The following example shows multiple occurrences of the same group identifier within a statement.

/1l statenent using GROUP:

CELL nyCell {
CGROUP datalndex { 1 : 3}
PIN[1:3] Din { DIRECTION = input ; }
PIN[1:3] Dout { DIRECTION = input ; }

b}

DELAY = 1.0 { FROM {PI N=Di n[dat al ndex] ;} TO {PI N=Dout [dat al ndex] ;} }

}

/!l semantically equival ent statenent:
CELL nyCell {
CGROUP datalndex { 1 : 3}
PIN[1:3] Din { DIRECTION = input ; }
PIN[1:3] Dout { DIRECTION = input ; }

DELAY = 1.0 { FROM {PIN=Din[1];} TO {PIN=Dout[1];} }
DELAY = 1.0 { FROM {PIN=Din[2];} TO {PIN=Dout[2];} }
DELAY = 1.0 { FROM {PIN=Din[3];} TO {PIN=Dout[3];} }

8.8 TEMPLATE declaration

A template shall be declared as shown in Syntax 44.

IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual

53

template declaration ::=
EMPLATE template_identifier { ALF_statement { ALF_statement } }

Syntax 44—TEMPLATE declaration
A template declaration shall be used to specify one or more ALF statements with variable contents that can be

used many times. A template instantiation (see 8.9) shall specify the usage of such an ALF statement. Within the
template declaration, the variable contents shall be specified by a placeholder identifier (see 6.11.3).

8.9 TEMPLATE instantiation

A template shall be instantiated in form of a static template instantiation or a dynamic template instantiation, as
shown in Syntax 45

template_instantiation ::=
static_template_instantiation
| dynamic_template_instantiation
static_template_instantiation ::=
template_identifier [= STATIC]
| template_identifier [= STATIC] { al_purpose value} }
| template:_identifier [= STATIC]{ { annotation} }
dynamic_template_instantiation ::=
template_identifier = DY NAM | C { { dynamic_template_instantiation_item} }
dynamic_template_instantiation_item ::=
annotation
| arithmetic_model
| arithmetic_assignment
arithmetic_assignment ::=
identifier = arithmetic_expression ;

Syntax 45—TEMPLATE instantiation

A template instantiation shall be semantically equivalent to the ALF statement or the ALF statements found
within the template declaration, after replacing the placeholder identifiers with replacement values. A static tem-
plate instantiation shall support replacement by order, using one or more all-purpose values, or aternatively,
replacement by reference, using one or more annotations (see 7.11). A dynamic template instantiation shall sup-
port replacement by reference only, using one or more annotations and/or one or more arithmetic models (see 7.11
and 11.2).

In the case of replacement by reference, the reference shall be established by a non-escaped identifier matching
the placeholder identifier when the angular brackets are removed. The matching shall be case-insensitive.

The following rules shall apply:

a) A statictemplate instantiation shall be used when the replacement value of any placeholder identifier can
be determined during compilation of the library. Only a matching identifier shall be considered a legal
annotation identifier. Each occurrence of the placeholder identifier shall be replaced by the annotation
value associated with the annotation identifier.

b) A dynamic template instantiation shall be used when the replacement value of at least one placeholder
identifier can only determined during runtime of the application. Only a matching identifier shall be con-
sidered alegal annotation identifier, or alternatively, aarithmetic model identifier, or alternatively, alegal
arithmetic value.

54 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

0)

d)

e

Muultiple replacement values within a multi-value annotation shall be legal if and only if the syntax rules
for the ALF statement within the template declaration allow substitution of multiple values for one place-
holder identifier.

In the case replacement by order, subsequently occurring placeholder identifiers in the template declara-
tion shall be replaced by subsequently occurring all-purpose values in the template instantiation. If a
placeholder identifier occurs more than once within the template declaration, all occurrences of that
placeholder identifier shall be immediately replaced by the same all-purpose value. The first amongst the
remaining placeholder identifiers shall then be considered the next placeholder to be replaced by the next
all-purpose value.

A static template instantiation for which a placeholder identifier is not replaced shall be legal if and only
if the semantic rules for the ALF statement support a placeholder identifier outside a template declara-
tion. However, the semantics of a placeholder identifier as an item to be substituted shall only apply
within the template declaration statement.

Examples

The following example illustrates rule a).

11

statement usi ng TEMPLATE decl arati on and instantiation:

TEMPLATE soneAnnot ati ons {

}

KEYWORD <oneAnnot ati on> = singl e_val ue_annot ati on ;
KEYWORD annot ati on2 = singl e_val ue_annotation ;
<oneAnnot ati on> = val uel ;

annot ati on2 = <anot her Val ue> ;

someAnnot ati ons {

}
11

oneAnnot ati on = annotationl ;
anot her Val ue = val ue2 ;

semantical |y equi val ent statenent:

KEYWORD annot ationl = single_val ue_annotation ;
KEYWORD annot ati on2 = single_val ue_annotation ;
annot ati onl = val uel ;
annot ati on2 = val ue2 ;

The following exampleillustrates rule b).

/1

stat enent usi ng TEMPLATE decl aration and instanti ati on:

TEMPLATE soreNunbers {

KEYWORD N1 = single_val ue_annotation { VALUETYPE=number ; }
KEYWORD N2 = singl e_val ue_annotation { VALUETYPE=number ; }

N1 = <numnber1> ;
N2 = <nunber 2> ;
}
someNunmber s = DYNAM C {
nunber2 = nunberl + 1;
}
/1l semantically equival ent statenent, assum ng nunber1=3 at runtine:
N1 = 3 ;
N2 = 4 ;

The following example illustrates rule c).

IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 55

TEMPLATE noreAnnot ati ons {

}

KEYWORD annot ati on3 = annotation ;
KEYWORD annot ati on4 = annotation ;
annot ati on3 { <soneVal ue> }

annot ati on4 = <yet Anot her Val ue> ;

nor eAnnot ati ons {

}

soneVal ue { val uel val ue2 }
yet Anot her Val ue = val ue3 ;

/1 semantically equival ent statenent:
KEYWORD annot ati on3 = annotation ;
KEYWORD annot ati on4 = annotation ;
annotation3 { valuel value2 }

annot ati on4 = val ue3 ;

The following example illustrates rule €).

TEMPLATE evenMbr eAnnot ati ons {

}

KEYWORD <t hi sAnnot ati on> = singl e_val ue_annotati on ;
KEYWORD <t hat Annot ati on> = singl e_val ue_annotati on ;

<t hat Annot ati on> = <t hi sVal ue> ;

<t hi sAnnot ati on> = <t hat Val ue> ;

/1 tenplate instantiation by reference:
evenMr eAnnot ati ons = STATI C {

}

/1l semantically

t hat Annot ati on = day ;
t hi sAnnot ati on = nont h;
t hat Val ue = April;

t hi sval ue = Monday;

evenMor eAnnot ati ons = STATIC { day nonth Monday April

/!l semantically equival ent statenent:
KEYWORD day = single_val ue_annotation ;
KEYWORD nmont h = si ngl e_val ue_annotation ;
month = April;

day

= Monday;

The following exampleillustrates rule d).

/1 statenment using TEMPLATE declaration and instantiation:

TEMPLATE encor eAnnot ati on {

}

KEYWORD contextl = annotation_cont ai ner;
KEYWORD cont ext2 = annotati on_cont ai ner;
KEYWORD annot ati on5 = single_val ue_annotation {
CONTEXT { contextl context2 }

VALUES { <sonet hi ng> <not hi ng> }

}

contextl { annotation5
context2 { annotation5

<not hi ng> ; }
<sonet hing> ; }

encor eAnnot ati on {

56

Advanced Library Format (ALF) Reference Manual

equi val ent tenplate instantiation by order:

}

IEEE P1603 Draft 6

sonet hi ng = everything ;
}
/1 semantically equival ent statenent:
KEYWORD contextl = annotation_contai ner
KEYWORD context2 = annotati on_contai ner
KEYWORD annot ati on5 = single_val ue_annotation {
CONTEXT { contextl context2 }
VALUES { everything <nothing> }

}
contextl { annotation5 = <nothing> ; }
context2 { annotation5 = all ; }

/1 Both everything (w thout brackets) and <nothing> (w th brackets)
/1 are legal values for annotationb.

IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual

57

58

Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 6

9. Library-specific objects and related statements

** Add lead-in text**

9.1 LIBRARY and SUBLIBRARY declaration

A library and a sublibrary shall be declared as shown in Syntax 46.

library ::=
LIBRARY library identifier
|LIBRARY library identifier { { library_item} }
| library_template_instantiation
library_item ::=
sublibrary
| sublibrary_item
sublibrary ::=
SUéLI BRARY sublibrary_identifier ;
|SUBLIBRARY sublibrary identifier { { sublibrary_item} }
| sublibrary_template instantiation
sublibrary_item ::=
all_purpose_item
| cell
| primitive
| wire
| layer
| via
| rule
| antenna
| array
| site
| region

Syntax 46—LIBRARY and SUBLIBRARY declaration

A library shall serve as arepository of technology data for creation of an electronic integrated circuit. A subli-
brary can optionally be used to create different scopes of visibility for particular statements describing technol-
ogy data.

If any two objects of the same ALF type and the same ALF name appear in two libraries, or in two sublibraries
with the same library as parents, their usage for creation of an electronic circuit shall be mutually exclusive. For
example, two cells with the same name shall not be instantiated in the same integrated circuit. It shall be the
responsibility of the application tool to detect and properly handle such cases, as the selection of alibrary or a
sublibrary is controlled by the user of the application tool.

9.2 Annotations for LIBRARY and SUBLIBRARY

** Add lead-in text**

9.2.1 INFORMATION annotation container

** Single subheader* *

An information annotation container shall be defined as shown in Semantics 1.

IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 59

KEYWORD | NFORVATI ON = annot ati on_cont ai ner {
CONTEXT { LI BRARY SUBLI BRARY CELL WRE PRI M Tl VE }

}

KEYWORD PRODUCT = si ngl e_val ue_annotati on {
VALUETYPE = string val ue; DEFAULT = “*;
CONTEXT = | NFORMATI ON;

}

KEYWORD Tl TLE = singl e_val ue_annotation {
VALUETYPE = string val ue; DEFAULT = “*;
CONTEXT = | NFORMATI ON;

}

KEYWORD VERSI ON = si ngl e_val ue_annotati on {
VALUETYPE = string val ue; DEFAULT = “*;
CONTEXT = | NFORMATI ON;

}

KEYWORD AUTHOR = singl e_val ue_annotation {
VALUETYPE = string_val ue; DEFAULT = “*;
CONTEXT = | NFORNMATI ON,;

}

KEYWORD DATETI ME = singl e_val ue_annotati on {
VALUETYPE = string_val ue; DEFAULT = “*;
CONTEXT = | NFORMATI ON;

}

Semantics 1—INFORMATION statement

The information annotation container shall be used to associate its parent statement with a product specification.
The following semantic restrictions shall apply:

a) Alibrary, asublibrary, or acell can bealegal parent of the information statement.
b) A wire, or aprimitive can be alegal parent of the information statement, provided the parent of the wire
or the primitive isalibrary or asublibrary.

The semantics of the information contents are specified in Table 26.

Table 26—Annotations within an INFORMATION statement

Annotation identifier Semantics of annotation value
PRCDUCT A code name of aproduct described herein.
TI TLE A descriptive title of the product described herein.
VERSI ON A version number of the product description.
AUTHOR The name of a person or company generating this product description.
DATETI ME Date and time of day when this product description was created.

The product devel oper shall be responsible for any rules concerning the format and detailed contents of the string
value itself.

Example

60 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

LI BRARY nyProduct {
| NFORVMATI ON {
PRODUCT = pl0sc;
TITLE = “0. 10 standard cel | ”;
VERSION = “v2.1.0";
AUTHOR = “Maj or Asic Vendor, Inc.”;
DATETI ME = “Mon Apr 8 18:33:12 PST 2002";

}

9.3 CELL declaration

A cell shall be declared as shown in Syntax 47.

cel =
CELL cel_identifier ;

| CELL cellidentifier { { cell_item} }

| cell_template_instantiation
cel_item::=

all_purpose_item

| pin

| pingroup

| primitive

| function

| non_scan_cell

| test

| vector

| wire

| blockage

| artwork

| pattern

| region

Syntax 47—CELL declaration

A cell shall represent an electronic circuit which can be used as a building block for alarger electronic circuit.

9.4 CELL instantiation

A cell shall beinstantiated as shown in Syntax 48.

named cell_instantiation ::=
cell_identifier instance_identifier ;
| cell_identifier instance_identifier § pin_vaue{ pin_vaue} }
| cell_identifier instance_identifier { pin_assignment { pin_assignment } }
unnamed_cell_instantiation ::=
cell_identifier { pin_value{ pin vaue} }
| cell__identifier { pin_assignment { pin_assignment } }

Syntax 48—CELL instantiation

The purpose of anamed cell instantiation is to describe a structural circuit or netlist in the context of a structure
statement, where multiple instances of the same cell can appear (see Section 10.5).

IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 61

The purpose of an unnamed cell instantiation is to establish a correspondence between a cell and another cell in
the context of anon-scan cell statement (see Section 10.7).

The mapping between the reference cell and the cell instance can be established by order, using pin value (see
Section 7.9), or by name, using pin assignment (see Section 7.10). The left-hand side of a pin assignment shall

represent the name of a pin within reference cell, and the right-hand side of the pin assignment shall represent the
name of the corrrepsonding pin within the cell instance.

9.5 Annotations for a CELL
This section defines annotations and attribute values in the context of a cell declaration.
9.5.1 CELLTYPE annotation

A celltype annotation shall be defined as shown in Semantics 2.

KEYWORD CELLTYPE = singl e_val ue_annotation {
CONTEXT = CELL;
VALUETYPE = identifier;
VALUES {
buf f er conbi national multiplexor flipflop |atch
menory bl ock core speci al

}
}

Semantics 2—CELLTYPE annotation

The celltype shall divide cellsinto categories, as specified in Table 27.

Table 27—CELLTYPE annotation values

Annotation value Description

buf fer CELL isabuffer, i.e., an element for transmission of adigital signal without per-
forming alogic operation, except for possible logic inversion.

conbi nati onal CELL isacombinatorial logic element, i.e., an element performing alogic opera-
tion on two or more digital input signals.

mul ti pl exor CELL isamultiplexor, i.e., an element for selective transmission of digital signals.

flipflop CELL isaflip-flop, i.e., aone-bit storage element with edge-sensitive clock

| atch CELL isalatch, i.e., aone-bit storage element without edge-sensitive clock

menory CELL isamemory, i.e., amulti-bit storage element with selectable addresses.

bl ock CELL isahierarchical block, i.e., acomplex element which has an associated

netlist for implementation purpose. All instances of the netlist arelibrary ele-
ments, i.e., thereisa CELL model for each of them in thelibrary.

core CELL isacore, i.e., acomplex element which has no associated netlist for imple-
mentation purpose. However, a netlist representation can exist for modeling pur-
pose.

62 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

Table 27—CELLTYPE annotation values (Continued)

Annotation value Description

speci al CELL isaspecial dement, which does not fall into any other category of cells.
Examples: bus holder, protection diode, filler cell.

9.5.2 SWAP_CLASS annotation

A swap_class annotation shall be defined as shown in Semantics 3.

KEYWORD SWAP_CLASS = annot ation {
CONTEXT = CELL;
VALUETYPE = identifier;

}

Semantics 3—SWAP_CLASS annotation

The value is the name of a declared CLASS. Multi-value annotation can be used. Cells referring to the same
CLASS can be swapped for certain applications.

Cell-swapping isonly alowed, if the RESTRI CT_CLASS annotation (see 9.5.3) authorizes usage of the cell and
the cells to be swapped are compatible from an application standpoint.

9.5.3 RESTRICT_CLASS annotation

A restrict-class annotation shall be defined as shown in Semantics 4.

KEYWORD RESTRI CT_CLASS = annot ation {
CONTEXT { CELL CLASS }
VALUETYPE = identifier;
}
CLASS synthesis { USAGE = RESTRI CT_CLASS ; }
CLASS scan { USAGE = RESTRICT_CLASS ; }
CLASS datapath { USAGE = RESTRICT_CLASS ; }
CLASS cl ock { USAGE = RESTRICT_CLASS ; }
CLASS | ayout { USAGE = RESTRICT_CLASS ; }

Semantics 4—RESTRICT_CLASS annotation
The value shall be the name of a declared CLASS.
The restrict-class annotation shall establish a necessary condition for the usage of a cell by an application per-
forming a design transformation involving instantiations of cells. An application other than a design transforma-

tion (e.g. anaysis, file format translation) can disregard the restrict-class annotation or use it for informational
purpose only..

IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 63

The meaning of the predefined restrict-class values in Semantics 4 is specified in Table 28.

Table 28—Predefined values for RESTRICT_CLASS

Annotation value Description
synt hesi s Cell issuitable for creation or modification of a structual design
description (i.e., anetlist) while providing functional equivalence.
scan Cell issuitable for creation or modification of ascan chain within anetlist.
dat apat h Cdll issuitable for structural implementation of a data flow graph.
cl ock Cdll is suitable for distribution of aglobal synchronization signal.
| ayout Cdll is suitable for usage within a physical artwork.

Additional restrict-class values can be defined within the context of a LIBRARY or a SUBLIBRARY, using the
CLASS declaration and the SEMANTICS declaration in a similar way as shown in Semantics 4.

From the application standpoint, the following usage model for restrict-class shall apply:

a) A set of restrict-class values shall be associated with the application. These values are considered
“known” by the application. Usage of a cell shall only be authorized, if the set of restrict-class values
associated with the cell is a subset of the “known” restrict-class values.

b) Optionally, aboolean condition involving the set of “known” restrict-class values or a subset thereof can
be associated with the application. In addition to a), usage of a cell shall only be authorized, if the set of
restrict-class val ues associated with the cell satisfies the boolean condition.

Example:

Specification within the library:

CELL X { RESTRICT_CLASS { A B} }
CELL Y { RESTRICT_CLASS { C} }
CELL Z { RESTRICT_CLASS{ ACF } }

Specification for the application:

Set of “known” restrict-classvalues= (A, B, C, D, E)
Boolean condition=(Aandnot B) or C

Result:
Usage of CELL X isnot authorized, because boolean condition is not true.

Usage of CELL Y isauthorized, because all values are “known”, and boolean condition is true.
Usage of CELL Z isnot authorized, because value F is not “known”.

9.5.4 SCAN_TYPE annotation

A scan_type annotation shall be defined as shown in Semantics 5.

64 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

KEYWORD SCAN TYPE = singl e_val ue_annotation {
CONTEXT = CELL;
VALUETYPE = identifier;
VALUES { nuxscan cl ocked | ssd control O control 1 }

}

Semantics 5—SCAN_TYPE annotation

It can take the values shown in Table 29.

Table 29—SCAN_TYPE annotations for a CELL object

Annotation value Description
nmuxscan Cell contains amultiplexor for selection between non-scan-mode and
scan-mode data.
cl ocked Cell supports a dedicated scan clock.
| ssd Cell issuitable for level sensitive scan design.
control _0 Combinatorial cell, controlling pin shall be 0 in scan mode.
control _1 Combinatorial cell, controlling pin shall be 1 in scan mode.

9.5.5 SCAN_USAGE annotation

A scan_usage annotation shall be defined as shown in Semantics 6.

KEYWORD SCAN _USAGE = singl e_val ue_annotation {
CONTEXT = CELL;
VALUETYPE = identifier;
VALUES { input output hold }

}

Semantics 6—SCAN_USAGE annotation

It can take the values shown in Table 30.

Table 30—SCAN_USAGE annotations for a CELL object

Annotation value Description
i nput Primary input cell in a scan chain.
out put Primary output cell in ascan chain.
hol d Intermediate cell in a scan chain.

The SCAN_USAGE annotation applies for a cell which is designed to be the primary input, output or intermediate
stage of a scan chain. It al'so applies for ablock in case there is a particular scan-ordering requirement.

IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 65

9.5.6 BUFFERTYPE annotation

A buffertype annotation shall be defined as shown in Semantics 7.

KEYWORD BUFFERTYPE = singl e_val ue_annotation {

CONTEXT = CELL;

VALUETYPE = identifier;

VALUES { input output inout internal }
DEFAULT = internal;

Semantics 7—BUFFERTYPE annotation

It can take the values shown in Table 31.

Table 31—BUFFERTYPE annotations for a CELL object

Annotation value Description
i nput CELL has an external (i.e., off-chip) input pin.
out put CELL has an external output pin.
i nout CELL has an external bidirectional pin or an external input pin and an
externa output pin.
i nternal CELL has no external pin.

9.5.7 DRIVERTYPE annotation

A drivertype annotation shall be defined as shown in Semantics 8.

KEYWORD DRI VERTYPE = singl e_val ue_annot ati on {

CONTEXT = CELL,;
VALUETYPE = identifier;
VALUES { predriver slotdriver both }

}

Semantics 8—DRIVERTYPE annotation

It can take the values shown in Table 32.

Table 32—DRIVERTYPE annotations for a CELL object

Annotation value

Description

predriver

CELL isapredriver, i.e., the core part of an I/O buffer.

slotdriver

CELL isasdlotdriver, i.e., the pad of an 1/O buffer with off-chip connection.

bot h

CELL isboth apredriver and aslot driver, i.e., acomplete 1/O buffer.

66

Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 6

DRI VERTYPE applies only for acell with BUFFERTYPE valuei nput or out put ori nout .
9.5.8 PARALLEL_DRIVE annotation

A parallel_drive annotation shall be defined as shown in Semantics 9.

KEYWORD PARALLEL DRI VE = single val ue_annotation {
CONTEXT = CELL;
VALUETYPE = unsi gned,;
DEFAULT = 1;

}

Semantics 9—PARALLEL_DRIVE annotation

The annotation value shall specify the number of cells connected in parallel. This number shall be greater than
zero (0) ; the default shall be 1.

9.5.9 PLACEMENT_TYPE annotation

A placement_type annotation shall be defined as shown in Semantics 10.

KEYWORD PLACEMENT_TYPE = singl e_val ue_annot ati on {
CONTEXT = CELL,;
VALUETYPE = identifier;
VALUES { pad core ring block connector }
DEFAULT = cor e,

Semantics 10—PLACEMENT_TYPE annotation

The purpose of the placement-type annotation is to establish categories of cellsin terms of placement and power
routing requirements.

It can take the values shown in Table 33.

Table 33—PLACEMENT_TYPE annotations for a CELL object

Annotation value Description
pad The cell is an element to be placed in the I/O area of adie.
core Thecell isaregular element to be placed in the core area of adie, using aregular
power structure.
ring The cell isamacro element with built-in power structure.
bl ock The cell isan abstraction of acollection of regular elements, each of which uses

aregular power structure.

connect or Thecell isto be placed at the border of the core areaof adiein order to establish
a connection between aregular power structure and a power ring in the I/O area.

IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 67

9.5.10 SITE reference annotation

A site reference annotation shall be defined as shown in Semantics 11.

SEMANTI CS SI TE = annotation {
CONTEXT { CELL CLASS }

}

Semantics 11—SITE reference annotation

The purpose of a site reference annotation is to indicate one or more legal placement locations for a cell. The
annotation value shall be the name of a declared site (see Section 9.28).

9.6 ATTRIBUTE values for a CELL

An attribute in the context of a cell declaration shall specify more specific information within the category given
by the celltype annotation.

The attribute values shown in Table 34 can be used within a CELL with CELLTYPE=menor y.

Table 34—Attribute values for a CELL with CELLTYPE=memory

Attributeitem Description
RAM Random Access Memory
ROM Read Only Memory
CAM Content Addressable Memory
static Static memory, needs no refreshment
dynami c Dynamic memory, needs refreshment
asynchronous operation self-timed
synchr onous operation synchronized with a clock signal

The attributes shown in Table 35 can be used within a CELL with CELLTYPE=bl ock.

Table 35—Attributes within a CELL with CELLTYPE=block

Attributeitem Description

count er CELL isacounter, i.e., acomplex sequential circuit going through a
predefined sequence of statesin its normal operation mode where
each state represents an encoded control value.

shift_register CELL isashift register, i.e., acomplex sequentia circuit going
through a predefined sequence of statesin its normal operation
mode, where each subsequent state can be obtained from the previ-
ous one by a shift operation. Each bit represents a data value.

68 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

Table 35—Attributes within a CELL with CELLTYPE=block (Continued)

Attributeitem

Description

adder

CELL isanadder, i.e., acombinatorial circuit performing an addition
of two operands.

subtract or

CELL isasubtractor, i.e., acombinatorial circuit performing a sub-
traction of two operands.

mul tiplier CELL isamultiplier, i.e.,, acombinatoria circuit performing amulti-
plication of two operands.

conpar at or CELL isacomparator, i.e., acombinatorial circuit comparing the
magnitude of two operands.

ALU CELL isan arithmetic logic unit, i.e., acombinatorial circuit combin-

ing the functionality of adder, subtractor, and comparator.

The attributes shown in Table 36 can be used within a CELL with CELLTYPE=cor e.

Table 36—Attributes within a CELL with CELLTYPE=core

Attributeitem Description
PLL CELL isaphase-locked loop.
DSP CELL isadigital signal processor.
CPU CELL isacentral processing unit.
GPU CELL isagraphical processing unit.

The attributes shown in Table 37 can be used within a CELL with CELLTYPE=speci al .

Table 37—Attributes within a CELL with CELLTYPE=special

Attributeitem Description

bushol der CELL enables atristate busto hold its last value before all drivers
went into high-impedance state (see 10.1).

cl anp CELL connects a net to a constant value (logic value and drive
strength; see 10.1).

di ode CELL isadiode (no FUNCTI ON statement).

capacitor CELL isacapacitor (no FUNCTI ON statement).

resistor CELL isaresistor (no FUNCTI ON statement).

i nduct or CELL isan inductor (no FUNCTI ON statement).

fillcell CELL isused to fill unused spacein layout (no PIN, no FUNCTI ON
statement).

IEEE P1603 Draft 6

Advanced Library Format (ALF) Reference Manual

69

9.7 PIN declaration

A pin shall be declared asa scalar pin or asavector pin or amatrix pin, as shown in Syntax 49.

pin:=
scalar_pin | vector_pin | matrix_pin
scalar_pin ::=
N pin_identifier ;
| PIN pin_identifier { { scalar_pin item} }
| scalar_pin_template _instantiation
scalar_pin_item ::=
all_purpose_item
| port
vector_pin ::=
PI'N multi_index pin_identifier ;
| PIN multi_index pin_identifier { { vector_pin_item} }
| vector_pin_template instantiation
vector_pin_item ::=
all_purpose_item
| range
matrix_pin ::=
PI'N first_multi_index pin_identifier second_multi_index |
| PIN first_multi_index pin_identifier second_multi_index { { matrix_pin_item} }
| matrix_pin_template_instantiation
matrix_pin_item ::=
vector_pin_item

Syntax 49—PIN declaration

A pin shall represent a terminal of an electronic circuit. The purpose of a pin is exchange of information or
energy between the circuit and its environment. A constant value of information shall be caled state. A time-
dependent value of information shall be called signal.

A referenceto apinin genera shall be established by the pin identifier.

The order of pin declarations within a cell declaration shall reflect the order of appearance of pins, when the cell
isinstantiated in a netlist and the pins are refered to by order. The view annotation (see Section 9.9.1) shall fur-
ther specify which pins are visible in anetlist.

A scalar pin can be associated with a general electrical signal. However, a vector pin or a matrix pin can only be
associated with digital signals. One element of avector pin or of amatrix pin shall be associated with one bit of
information, i.e., abinary digital signal.

A vector-pin can be considered as a bus, i.e., a combination of scalar pins. The declaration of a vector-pin shall
involve amulti index (see Section 7.8). A reference to ascalar within the vector-pin shall be established by the
pin identifier followed by a single index (see Section 7.8). A reference to a subvector within the vector-pin shall
be established by the pinidentifier followed by a multi index.

A matrix-pin can be considered as a combination of vector-pins. A reference to a vector or to a submatrix,
respectively, within the matrix-pin shall be established by the pin identifier followed by a single index or by a
multi index, respectively.

Within a matrix-pin declaration, the first multi index shall specify the range of scalars or bits, and the second

multi index shall specify the range of vectors. Support for direct reference of a scalar within a matrix is not pro-
vided.

70 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

Example

PIN [5:8] nyVectorPin ;
PIN[3:0] nyMatrixPin [1:1000] ;

The pin variable nyVect or Pi n[5] refersto the scalar associated with the MSB of nyVect or Pi n.
The pin variable nyVect or Pi n[8] refersto the scalar associated with the LSB of nyVect or Pi n.
The pin variable nyVect or Pi n[6: 7] refersto a subvector within myVect or Pi n.

The pinvariablenyMat ri xPi n[500] refersto avector within nyMat ri xPi n.

The pinvariablenyMat ri xPi n[500: 502] refersto 3 subsequent vectors within nyMat ri xPi n.

Consider the following pin assignment:
nyVect or Pi n=nyMat ri xPi n[500] ;

This establishes the following exchange of information:
nmyVect or Pi n[5] receivesinformation from element [3] of myMat ri xPi n[500] .
nmyVect or Pi n[6] receivesinformation from element [2] of myMat ri xPi n[500] .
nmyVect or Pi n[7] receivesinformation from element [1] of myMat ri xPi n[500] .
nmyVect or Pi n[8] receivesinformation from element [0] of myMat ri xPi n[500] .

9.8 PINGROUP declaration

A pingroup shall be declared as a simple pingroup or as a vector pingroup, as shown in Syntax 50.

pingroup ::=
simple_pingroup | vector_pingroup

simple_pingroup ::=
Pﬁj\l(% RE)U P pingroup_identifier { members { all_purpose item} }
| simple_pingroup_template instantiation

members ::=
MEM BERS({ pin_identifier pin_identifier { pin_identifier} }

vector_pingroup ::=
|P1PN&ROUP [index_value : index_value] pingroup_identifier
{ members { vector_pingroup_item }
| vector_pingroup_template_instantiation
vector_pingroup_item ::=
al_purpose_item
| range

Syntax 50—PINGROUP declaration

A pingroup in general shall serve the purpose to specify items applicable to a combination of pins. The combina-
tion of pins shall be specified by the members statement.

A vector pingroup can only combine scalar pins. A vector pingroup can be used as a pin variable, in the same
capacity as avector pin.

A simple pingroup can combine pins of any format, i.e., scalar pins, vector pins, and matrix pins. A simple pin-
group can not be used as a pin variable.

9.9 Annotations for a PIN and a PINGROUP

This section defines annotations and attribute values in the context of a pin declaration or a pingroup declaration.

IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 71

9.9.1 VIEW annotation

A view annotation shall be defined as shown in Semantics 12.

KEYWORD VI EW = si ngl e_val ue_annot ati on {
CONTEXT { PI N Pl NGROUP }
VALUETYPE = identifier;
VALUES { functional physical both none }
DEFAULT = both

Semantics 12—VIEW annotation

The purpose of the view annotation is to specify the visibility of apinin anetlist.

It can take the values shown in Table 38.

Table 38—VIEW annotations for a PIN object

Annotation value Description
functi onal pi n appearsin functional netlist.
physi cal pi n appearsin physical netlist.
bot h (default) pi n appearsin both functional and physical netlist.
none pi n does not appear in netlist.

9.9.2 PINTYPE annotation

A pintype annotation shall be defined as shown in Semantics 13.

KEYWORD PI NTYPE = singl e_val ue_annotation {
CONTEXT = PIN,;
VALUETYPE = identifier;
VALUES { digital analog supply }
DEFAULT = digital;

Semantics 13—PINTYPE annotation

The purpose of the pintype annotation is to establish broad categories of pins.

72 Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 6

It can take the values shown in Table 39.

Table 39—PINTYPE annotations for a PIN object

Annotation value

Description

digital (default)

Digital signal pin.

anal og

Analog signal pin.

supply

Power supply or ground pin.

9.9.3 DIRECTION annotation

A direction annotation shall be defined as shown in Semantics 14.

}

KEYWORD DI RECTI ON = si ngl e_val ue_annot ati on {
CONTEXT = PI N,
VALUETYPE = identifier;
VALUES { input output both none }

Semantics 14—DIRECTION annotation

The purpose of the direction annotation is to establish the flow of information and/or electrical energy through a
pin. Information/energy can flow into a cell or out of a cell through a pin. The information/energy flow is not to
be mistaken asthe flow of electrical current through a pin.

The direction annotation can take the values shown in Table 40.

Table 40—DIRECTION annotations for a PIN object

Annotation value

Description

i nput

Information/energy flows through the pininto the cell. Thepinisa
receiver or asink.

out put

Information/energy flows through the pin out of the cell. Thepinisa
driver or a source.

bot h

Information/energy flows through the pin in and out of the cell. The
pinisboth areceiver/sink and driver/source, dependent on the mode
of operation.

none

No information/energy flows through the pin in or out of the cell.
The pin can be an internal pin without connection to its environment
or afeedthrough where both ends are represented by the same pin.

The direction annotation shall be orthogonal to the pintype annotation, i.e., all combinations of annotation values

are possible.

Examples

IEEE P1603 Draft 6

Advanced Library Format (ALF) Reference Manual 73

— The power and ground pins of aregular cell have DI RECTI ON=i nput .

— A level converter cell has a power supply pin with DI RECTI ON=i nput and another power supply pin
with DI RECTI ON=out put .

— A level converter can have separate ground pins related to its power supply pins or acommon ground pin
with DI RECTI ON=bot h.
— The power and ground pins of afeed through cell have the DI RECTI ON=none.
9.9.4 SIGNALTYPE annotation

A signaltype annotation shall be defined as shown in Semantics 15.

KEYWORD S| GNALTYPE = singl e_val ue_annotation {

CONTEXT = PIN,;

VALUETYPE = identifier;

VALUES {
data scan_data address control select tie clear set
enabl e out _enabl e scan_enabl e scan_out _enabl e
cl ock master_cl ock slave_cl ock
scan_master _cl ock scan_sl ave_cl ock

}

DEFAULT = dat a;

}

Semantics 15—SIGNALTYPE annotation

S| GNALTYPE classifies the functionality of a pin. The currently defined values apply for pins with Pl N-
TYPE=DI G TAL.

Conceptually, apin with Pl NTYPE = ANALOG can aso have a SI GNALTYPE annotation. However, no values
are currently defined.

The fundamenta SI GNALTYPE values are defined in Table 41

Table 41—Fundamental SIGNALTYPE annotations for a PIN object

Annotation value Description

dat a (default) Genera data signal, i.e., asignal that carries information to be trans-
mitted, received, or subjected to logic operations within the CELL.

addr ess Address signal of amemory, i.e., an encoded signal, usually abus or
part of abus, driving an address decoder within the CELL.

control Genera control signa, i.e., an encoded signal that controls at least
two modes of operation of the CELL, eventually in conjunction with
other signals. The signal value is alowed to change during real-time
circuit operation.

sel ect Slect signal, i.e., asignal that selects the data path of a multiplexor
or de-multiplexor within the CELL. Each selected signal has the
same S| GNALTYPE.

enabl e The signal enables storage of general input datain a latch or aflip-
flop or amemory

74 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

Table 41—Fundamental SIGNALTYPE annotations for a PIN object (Continued)

Annotation value Description

tie The signal needs to betied to afixed value staticaly in order to
define afixed or programmable mode of operation of the CELL,
eventually in conjunction with other signals. The signal valueis not
allowed to change during real-time circuit operation.

cl ear Clear or reset signal of aflip-flop or latch, i.e., asignal that controls
the storage of the value O within the CELL.

set Preset or set signal of aflip-flop or latch, i.e., asignal that controls
the storage of the value 1 within the CELL.

cl ock Clock signal of aflip-flop or latch, i.e., atiming-critical signal that
triggers data storage within the CELL.

Figure 6 shows how to construct composite signaltypes.

dat a - scan_dat a

enabl e > scan_enabl e

> out _enabl e > scan_out _enabl e

cl ock > scan_cl ock

> mast er _cl ock > scan_mast er _cl ock

scan_sl ave_cl ock

> sl ave_cl ock >

Figure 6—Scheme for construction of composite sighaltype values

The composite SI GNALTYPE values are defined in Table 42

Table 42—Composite SIGNALTYPE annotations for a PIN object

Annotation value Description

scan_dat a Scan datasignal, i.e., signal isrelevant in scan mode only.

out _enabl e Enables visibility of general data at an output pin of acell.

scan_enabl e Enables storage of scan input datain alatch or aflipflop.

scan_out _enabl e Enables visihility of scan data at an output pin of acell.

mast er _cl ock Triggers storage of input datain the first stage of aflipflop in atwo-
phase clocking scheme.

sl ave_cl ock Triggers data transfer from first the stage to the second stage of a
flipflop in a two-phase clocking scheme.

scan_cl ock Triggers storage of scan input data within acell.

scan_nast er_cl ock Triggers storage of input scan datain the first stage of aflipflop ina

two-phase clocking scheme.

IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual

Table 42—Composite SIGNALTYPE annotations for a PIN object (Continued)

Annotation value Description

scan_sl ave_cl ock Triggers scan data transfer from the first stage to the second stage of
aflipflop in atwo-phase clocking scheme.

Within the definitions of Table 41 and Table 42, the elements flipflop, latch, multiplexor, or memory can be stan-
dalone cells or embedded in larger cells. In the former case, the celltypeisflipflop, latch, nulti-
pl exor, or menory, respectively. In the latter case, the celltype can be bl ock or cor e.

9.9.5 ACTION annotation

An action annotation shall be defined as shown in Semantics 16.

KEYWORD ACTI ON = singl e_val ue_annotation {
CONTEXT = PI N,
VALUETYPE = identifier;
VALUES { asynchronous synchronous }

}

Semantics 16—ACTION annotation

The purpose of the action annotation is to define, whether asignal is self-timed or synchronized with a clock sig-
nal.

The ACTION annotation can take the values shown in Table 43.

Table 43—ACTION annotations for a PIN object

Annotation value Description
asynchr onous Signd actsin an asynchronous way;, i.e., self-timed.
synchr onous Signa actsin asynchronousway, i.e., triggered by a clock signal.

The ACTI ON annotation applies only to pins with certain SI GNALTYPE values, as shown in Table 44. Therule
applies also to any composite SI GNAL TYPE values based on the fundamental values.

Table 44—ACTION applicable in conjunction with SIGNALTYPE values

SIGNALTYPE value ACTION applicable
data, scan_data No
addr ess No
control Yes
sel ect No

76 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

Table 44—ACTION applicable in conjunction with SIGNALTYPE values (Continued)

SIGNALTYPE value ACTION applicable
enabl e, scan_enabl e, out_enable, scan_out_enable Yes
tie No
cl ear Yes
set Yes
cl ock, scan_cl ock, master_clock, slave_cl ock, No
scan_master _cl ock, scan_sl ave cl ock

9.9.6 POLARITY annotation

A polarity annotation shall be defined as shown in Semantics 17.

KEYWORD POLARI TY = singl e_val ue_annotation {
CONTEXT = PI N;
VALUETYPE = identifier;
VALUES { high low rising edge falling_edge doubl e_edge }

}

Semantics 17—POLARITY annotation

The purpose of the polarity annotation is to define the active state or the active edge of an input signal.

The POLARITY annotation can take the values shown in Table 45.

Table 45—POLARITY annotations for a PIN

Annotation value Description
hi gh Signal is active high or to be driven high.
| ow Signd is active low or to be driven low.
ri si ng_edge Signd is activated by rising edge.
falling_edge Signd is activated by falling edge.
doubl e_edge Signal is activated by both rising and falling edge.

The POLARI TY annotation applies only to pins with certain SI GNALTYPE values, as shown in Table 46..

Table 46—POLARITY applicable in conjunction with SIGNALTYPE values

SIGNALTYPE value Applicable POLARITY

data, scan_data N/A

IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual

Table 46—POLARITY applicable in conjunction with SIGNALTYPE values (Continued)

SIGNALTYPE value Applicable POLARITY
addr ess N/A
control N/A
sel ect N/A
enabl e, scan_enabl e, out_enabl e, hi gh, | ow
scan_out _enabl e
tie hi gh, | ow.
cl ear hi gh, | ow.
set hi gh, | ow.
cl ock, scan_cl ock, naster _cl ock, slave_ cl ock, hi gh,l owri si ng_edge,
scan_nast er _cl ock, scan_sl ave_cl ock falling_edge, doubl e_edge,

9.9.7 DATATYPE annotation

A datatype annotation shall be defined as shown in Semantics 18.

KEYWORD DATATYPE = singl e_val ue_annotation {
CONTEXT { PI'N PI NGROUP }
VALUETYPE = identifier;
VALUES { signed unsigned }

}

Semantics 18—DATATYPE annotation

The purpose of the datatype annotation is to define the arithmetic representation of a digital signal.

The DATATY PE annotation can take the values shown in Table 47.

Table 47—DATATYPE annotations for a PIN object

Annotation value Description
si gned Result of arithmetic operation is signed 2's complement.
unsi gned Result of arithmetic operation is unsigned.

DATATYPE isonly relevant for avector pin.
9.9.8 INITIAL_VALUE annotation

An initial value annotation shall be defined as shown in Semantics 19.

78 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

KEYWORD | NI TI AL_VALUE = singl e_val ue_annotation {
CONTEXT = CELL;
VALUETYPE = bool ean_val ue;
DEFAULT = U,

}

Semantics 19—INITIAL_VALUE annotation
The purpose of the initial value annotation is to provide an initial value of a signal within a simulation model
derived from ALF. A signal shall have the initial value before a simulation event affects the signal. The default
value “U” means “uninitialized” (see Table 69).

9.9.9 SCAN_POSITION annotation

A scan position annotation shall be defined as shown in Semantics 20.

KEYWORD SCAN_POSI TI ON = singl e_val ue_annotati on {
CONTEXT = PIN;
VALUETYPE = unsi gned,;
DEFAULT = 0;

}

Semantics 20—SCAN_POSITION annotation

The purpose of the scan position annotation is to specify the position of the pin in scan chain, starting with 1 for
the primary input. The value 0 (which is the default) indicates that the pinis not on the scan chain.

9.9.10 STUCK annotation

A stuck annotation shall be defined as shown in Semantics 21.

KEYWORD STUCK = singl e_val ue_annotation {
CONTEXT = PIN;
VALUETYPE = identifier;
VALUES { stuck_at 0 stuck_at 1 both none }
DEFAULT = bot h;

Semantics 21—STUCK annotation

The purpose of the stuck annotation is to specify a static fault model applicable for the pin.

The STUCK annotation can take the values shown in Table 48.

Table 48—STUCK annotations for a PIN object

Annotation value Description
stuck_at O Pin can exhibit afaulty static low state.
stuck_at _1 Pin can exhibit afaulty static high state.

IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 79

Table 48—STUCK annotations for a PIN object (Continued)

Annotation value

Description

bot h (default)

Pin can exhibit afaulty static high or low state.

none

Pin can not exhibit afaulty static state.

9.9.11 SUPPLYTYPE annotation

A supplytype annotation shall be defined as shown in Semantics 22.

}

KEYWORD SUPPLYTYPE = annotation {
CONTEXT { PI N CLASS }
VALUETYPE = identifier;
VALUES { power ground reference }

Semantics 22—SUPPLYTYPE annotation

The supplytype annotation can take the values shown in Table 49.

Table 49—SUPPLYTYPE annotations for a PIN object

Annotation value

Description

power Piniselectrically connected to a power supply, i.e., a constant non-zero
voltage source providing energy for operation of acircuit.

ground Piniséelectrically connected to ground, i.e., azero voltage source providing
the return path for electrical current through a power supply.

ref erence Pin exhibits a constant voltage level without providing significant energy

for operation of acircuit.

The purpose of the supplytype annotation is to define a subcategory of pins with pintype value supply (see Table

39).

9.9.12 SIGNAL_CLASS annotation

A signal-class annotation shall be defined as shown in Semantics 23.

}

KEYWORD SI GNAL_CLASS = annotation {
CONTEXT { PI N PI NGROUP }
VALUETYPE = identifier;

Semantics 23—SIGNAL_CLASS annotation

The value shall be the name of adeclared CLASS.

80

Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

The purpose of the signal-class annotation is to specify which terminals of a cell with are functionally related to
each other. The signal-class annotation applies for a pin with any signaltype value (see Section 9.9.4).

Example:

A multiport memory can have a data bus related to an address bus and another data bus related to another address
bus. Note that the term “port” in “multiport” does not relate to the ALF port declaration (see Section 9.26).

CELL my2Port Menory {
CLASS ReadPort { USAGE = SIGNAL_CLASS; }
CLASS WitePort { USAGE = SI GNAL_CLASS; }
PIN [3:0] addr_A { SIGNALTYPE = address; SIGNAL CLASS = ReadPort; }

PIN[7:0] data_A { SIGNALTYPE = dat a; S| GNAL_CLASS = ReadPort; }
PIN [3:0] addr_ B { SIGNALTYPE = address; SIGNAL CLASS = WitePort; }
PIN[7:0] data_B { SI GNALTYPE = dat a; SI GNAL_CLASS = WitePort; }

PINwite_enable { SIGNALTYPE = enabl e; SIGNAL_CLASS = WitePort; }
}

9.9.13 SUPPLY_CLASS annotation

A supply-class annotation shall be defined as shown in Semantics 24.

KEYWORD SUPPLY_CLASS = annotation {
CONTEXT { PIN CLASS }
VALUETYPE = identifier;

}

Semantics 24—SUPPLY_CLASS annotation

The value shall be the name of adeclared CLASS.

The purpose of the supply-class annotation is to specify which terminals of a cell with are electrically related to
each other. The supply-class annotation applies for a pin with any signaltype (see Section 9.9.4) or supplytype
value (see Section 9.9.11). The supply-class annotation also applies for a class with usage value connect-class
(see Section 9.9.16). In this case, the refered class represents a set of global nets which are electrically related to
each other.

Example 1:
A cell can provide two local power supplies. Each pinisrelated to at least one power supply.
CELL nyLevel Shifter {

CLASS supplyl { USAGE
CLASS supply2 { USAGE

SUPPLY_CLASS; }
SUPPLY_CLASS; }

PIN Vddl { SUPPLYTYPE = power; SUPPLY_CLASS = supplyl; }
PINDin { SIGNALTYPE = data; SUPPLY_CLASS = supplyl; }
PIN Vdd2 { SUPPLYTYPE = power; SUPPLY_CLASS = supply2; }
PIN Dout { SIGNALTYPE = data; SUPPLY_CLASS = supply2; }

PIN Ghd { SUPPLYTYPE = ground; SUPPLY_CLASS { supplyl supply2 } }

}

Example 2:

IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 81

A library can provide two environmental power supplies. A supply pin of acell has to be connected to a global
net related to an environmental power supply.

CLASS core { USAGE = SUPPLY_CLASS; }
CLASS io { USAGE = SUPPLY_CLASS; }
CLASS Vddl { USAGE=CONNECT CLASS; SUPPLYTYPE=power; SUPPLY_ CLASS=core; }
CLASS Vssl1 { USAGE=CONNECT_CLASS; SUPPLYTYPE=ground; SUPPLY_ CLASS=core; }
CLASS Vdd2 { USAGE=CONNECT_CLASS; SUPPLYTYPE=power; SUPPLY_CLASS=i o; }
CLASS Vss2 { USAGE=CONNECT CLASS; SUPPLYTYPE=ground; SUPPLY_ CLASS=i o; }
CELL nylnternal Cell {

PIN vdd { CONNECT_CLASS=Vvdd1; }

PIN vss { CONNECT CLASS=Vssl; }

}
CELL nmyPadCel | {

PI'N vdd { CONNECT_CLASS=Vvdd2; }
PI N vss { CONNECT_CLASS=Vss2; }

9.9.14 DRIVETYPE annotation

A drivetype annotation shall be defined as shown in Semantics 25.

KEYWORD DRI VETYPE = singl e_val ue_annotati on {
CONTEXT { PIN CLASS }
VALUETYPE = identifier;
VALUES {
CNDS NNDS pNDS CNDS_pass nNnosS_pass phnos_pass
ttl open_drai n open_source

}
DEFAULT = cnos;

}

Semantics 25—DRIVETYPE annotation

The purpose of the drivetype annotation is to specify a category of electrical characteristics for a pin, which
relate to the system of logic values and drive strengths specified in Table 69.

The drivetype annotation can take the values shown in Table 50.

82

Table 50—DRIVETYPE annotations for a PIN object

Annotation value Description

cnos (default) Standard cmos signal. Thelogic high level is equal to the power sup-
ply, the logic low level is equal to ground. The drive strength is
strong. No static current flows. Signal is amplified by cmos stage.

nmos Nmos or pseudo nmos signal. The logic high level is equa to the
power supply and its drive strength isresistive. The logic low level
voltage depends on the ratio of pull-up and pull-down transistor.
Static current flowsin logic low state.

Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

Table 50—DRIVETYPE annotations for a PIN object (Continued)

Annotation value Description

pnos Pmos or pseudo pmos signal. Thelogic low level isequal to ground
and its drive strength is resistive. The logic high level voltage
depends on the ratio of pull-up and pull-down transistor. Static cur-
rent flowsin logic high state.

nNoS_pass Nmos passgate signa. Signal is not amplified by passgate stage.
Logic low voltage level is preserved, logic high voltage level islim-
ited by power supply minus nmos threshold voltage.

pnos_pass Pmos passgate signal. Signal is not amplified by passgate stage.
Logic high voltage level is preserved, logic high voltage level islim-
ited by pmos threshold voltage.

cnos_pass Cmos passgate signdl, i.e., afull transmission gate. Signal is not

amplified by passgate stage. VVoltage levels are preserved.

ttl TTL signa. Both logic high and logic low voltage levels are load-
dependent, as static current can flow.

open_drain Open drain signal. Logic low level is equal to ground. Logic high
level corresponds to high impedance state.

open_sour ce Open source signal. Logic high level is equal to the power supply.
Logic low level corresponds to high impedance state.

9.9.15 SCOPE annotation

A scope annotation shall be defined as shown in Semantics 26.

KEYWORD SCOPE = singl e _val ue_annotation {
CONTEXT = PIN,;
VALUETYPE = identifier;
VALUES { behavi or neasure both none }
DEFAULT = bot h;

Semantics 26—SCOPE annotation

The purpose of the scope annotation is to specify a category of modeling usage for a pin. The scope annotation
specifies whether a pin can be involved in a control expression within a vector declaration (see Section 9.16) or
within a behavior statement (see Section 10.4).

The scope annotation can take the values shown in Table 51.

Table 51—SCOPE annotations for a PIN object

Annotation value Description

behavi or The pinisused for modeling functional behavior. Pin can be
involved in a control expression within a BEHAVI OR statement.

IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 83

Table 51—SCOPE annotations for a PIN object (Continued)

Annotation value

Description

neasure

Measurements related to the pin can be described. Pin can be
involved in a control expression within a VECTOR declaration.

both (default)

Pin can be involved in a control expression withinaBEHAVIOR
statement or within a VECTOR declaration.

none

Pin can not be involved in a control expression.

9.9.16 CONNECT_CLASS annotation

A connect_class annotation shall be defined as shown in Semantics 27.

}

KEYWORD CONNECT _CLASS = singl e_val ue_annotation {
CONTEXT = PIN;
VALUETYPE = identifier;

Semantics 27—CONNECT_CLASS annotation

The value shall be the name of adeclared CLASS.

The purpose of the connect-class annotation is to specify arelationship between a pin and an environmental rule
for connectivity. For application in conjunction with supply-class see Section 9.9.13. For application in conjunc-
tion with connect-rule see Section 11.42.1.

9.9.17 SIDE annotation

A side annotation shall be defined as shown in Semantics 28.

}

KEYWORD Sl DE = singl e_val ue_annot ati on {
CONTEXT { PI N PI NGROUP }
VALUETYPE = identifier;
VALUES {

left right top bottominside }

Semantics 28—SIDE annotation

The purpose of the side annotation isto define an abstract location of a pin relative to the bounding box of a cell.

The side annotation can take the values shown in Table 52.

Table 52—SIDE annotations for a PIN object

84

Annotation value Description
| eft pi n ison theleft side of the bounding box.
right pi n ison the right side of the bounding box.

Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

Table 52—SIDE annotations for a PIN object (Continued)

Annotation value Description
top pi nisat thetop of the bounding box.
bott om pi n isat the bottom of the bounding box.
i nsi de pi n isinside the bounding box.

9.9.18 ROW and COLUMN annotation

A row annotation and a column annotation shall be defined as shown in Semantics 29.

KEYWORD ROW = annot ation {
CONTEXT { PI N PI NGROUP }
VALUETYPE = unsi gned,;

}

KEYWORD COLUWN = annotation {
CONTEXT { PI N PI NGROUP }
VALUETYPE = unsi gned,;

}

Semantics 29—ROW and COLUMN annotations

The purpose of arow and a column annotation is to indicate a location of a pin when a cell is placed within a
placement grid. The count of rows and columns shall start at the lower |eft corner of the bounding box of the cell,
as shown in figure 7.

row | bounding box of cell | this quadrant has column=1, row=2
? A_ | _ _ _ _ L _Xx_ 1 | < |_ _ _ _L_
| | | | | |
3_ 1 L _ 1 _ _L_
| | | |
2_ 1 _ _ _ L _ _ L
| | | | | |
i_40____°c_-_-_J41___ _ L ___ 1___ _L_
| | | | | |
o_ |\ __C___J1____L___1_ _ _ _L _
| 0 1 12 1 3 cqumn'
—

Figure 7—ROW and COLUMN relative to a bounding box of a CELL

The row annotion is applicable for a pin with side value left or right. The column annotion is applicable for apin
with side value top or bottom. Both row and column annotation are applicable for a pin with side value inside.

A single-value annotation is applicable for ascalar pin. A multi-value annotation is applicable for avector pin or

for a vector pingroup. The number of values shall match the number of scalar pins within the vector pin or pin-
group. The order of values shall correspond to the order of scalar pins within the vector pin or pingroup.

IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 85

9.9.19 ROUTING_TYPE annotation

A routing-type annotation shall be defined as shown in Semantics 30.

KEYWORD ROUTI NG TYPE = singl e_val ue_annotati on {
CONTEXT { PI'N PORT }
VALUETYPE = identifier;
VALUES { regul ar abutnment ring feedthrough }
DEFAULT = regul ar;

Semantics 30—ROUTING_TYPE annotation

The purpose of the routing-type annotation isto specify the physical connection between a pin and arouted wire.

The routing-type annotation can take the values shown in Table 53.

Table 53—ROUTING-TYPE annotations for a PIN object

Annotation value Description
regul ar Pin has avia, connection by regular routing to the via
abut ment Pin isthe end of awire segment, connection by abutment
ring Pin forms aring around the cell, connection by abutment to any point
of thering.
f eedt hr ough Pin has two aligned ends of awire segment, connection by abutment
on both ends

9.9.20 PULL annotation

A pull annotation shall be defined as shown in Semantics 31.

KEYWORD PULL = singl e_val ue_annotation {
CONTEXT = PI N,
VALUETYPE = identifier;
VALUES { up down both none }
DEFAULT = none;

Semantics 31—PULL annotation

The purpose of the pull annotation is to specify whether a pullup or a pulldown device is connected to the pin.

86 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

The pull annotation can take the values shown in Table 54.

Table 54—PULL annotations for a PIN object

Annotation value

Description

up Pullup device connected to the pin.
down Pulldown device connected to the pin.
bot h Both pullup and pulldown device connected to pin.

none (default)

No pullup or pulldown device connected to the pin.

A pullup device ties the pin to alogic high level when no other signal is driving the pin. A pulldown device ties
the pinto alogic low level when no other signal is driving the pin. If both devices are connected, the pinistied to

an intermediate voltage level, i.e. in-between logic high and logic low, when no other signal is driving the pin.

9.10 ATTRIBUTE values for a PIN and a PINGROUP

The attribute values shown in Table 55 can be used within a Pl N object.

Table 55—Attributes within a PIN object

Attributeitem Description

SCHM TT Schmitt trigger signal, i.e., the DC transfer characteristics exhibit a
hysteresis. Applicable for output pin.

TRI STATE Tristate signal, i.e., the signal can be in high impedance mode. Appli-
cable for output pin.

XTAL Crystal/oscillator signal. Applicable for output pin of an oscillator
circuit.

PAD Pin has external,i.e., off-chip connection.

The attributes shown in Table 56 are applicable for a pin of acell with celltype value memory in conjunction with
a specific signaltype value.

Table 56—Attributes for pins of a memory

IEEE P1603 Draft 6

Attributeitem SIGNALTYPE Description
ROW ADDRESS_STROBE cl ock Samples the row address of the memory.
Applicable for scalar pin.
COLUMN_ADDRESS_STROBE cl ock Samples the column address of the memory.
Applicable for scalar pin.
ROW addr ess Selects an addressable row of the memory.

Applicable for pin and pingroup.

Advanced Library Format (ALF) Reference Manual

87

Table 56—Attributes for pins of a memory (Continued)

Attributeitem

SIGNALTYPE Description
COLUWN addr ess Selects an addressable column of the memory.
Applicable for pin and pingroup.
BANK addr ess

Selects an addressable bank of the memory.
Applicable for pin and pingroup.

The attributes shown in Table 57 are applicable for apair of signals.

Table 57—Attributes for pins representing pairs of signals

Attributeitem

Description

| N\VERTED

Represents the inverted value within a pair of signals car-
rying complementary values.

NON_I NVERTED

Representsthe non-inverted value within apair of signals
carrying complementary values.

DI FFERENTI AL

Signal is part of adifferential pair, i.e., both the inverted
and non-inverted values are always required for physical
implementation.

In case there is more than one pair of signals related to each other by the attribute values inverted, non-inverted,
or differential, each pair shall be member of a dedicated pingroup.

The following restrictions apply for pairs of signals:

— ThePI NTYPE, SI GNALTYPE, and DI RECTI ON of both pins shall be the same.
— One Pl Nshall have the attribute | NVERTED, the other NON_I NVERTED.

— Either both pins or none of the pins shall have the attribute DI FFERENTI AL.

— POLARI TY, if applicable, shall be complementary as follows:

HI GHis paired with LOW

Rl SI NG_EDGE is paired with FALLI NG_EDGE
DOUBLE_EDGE is paired with DOUBLE_EDGE

The attribute inverted, non-inverted also appliesto pins of a cell for which the implementation of apair of signals
is optional, i.e., one of the signals can be missing. The output pin of aflipflop or alatch is an example. The flip-
flop or the latch can have an output pin with attribute non-inverted and/or another output pin with attribute

inverted.

The pin ATTRI BUTE values shown in Table 58 shall be defined for memory BIST.

Table 58—PIN or PINGROUP attributes for memory BIST

Attributeitem

Description

ROW. | NDEX

vector pin or pingroup with a contiguous range of values,
indicating a physical row of amemory.

88 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

Table 58—PIN or PINGROUP attributes for memory BIST (Continued)

Attributeitem Description

COLUMN_| NDEX vector pin or pingroup with a contiguous range of va ues,
indicating aphysical column of a memory.

BANK_| NDEX vector pin or pingroup with a contiguous range of values,
indicating a physical bank of amemory.

DATA | NDEX vector pin or pingroup with a contiguous range of va ues,
indicating the bit position within a data bus of a memory.

DATA VALUE scalar pin, representing a value stored in a physical mem-
ory location.

These attributes apply to the virtual pins associated with a Bl ST wrapper around the memory rather than to the
physical pins of the memory itself. The BIST wrapper can be represented as a test statement (see Section 10.2).

9.11 PRIMITIVE declaration

A primitive shall be declared as shown in Syntax 51.

primitive ::=
PRIMITIVE primitive_identifier { { primitive_item} }
|PRIMITIVE primitive identifier ;
| primitive_template_instantiation
primitive_item ::=
all_purpose_item
| pin
| pingroup
| function
| test

Syntax 51—PRIMITIVE statement

The purpose of a primitive is to describe a virtua circuit. The virtual circuit can be functionally equivalent to a
physical electronic circuit represented as a cell (see Section 9.3). A primitive can be instantiated within a behav-
ior statement (see Section 10.4).

9.12 WIRE declaration

A wire shall be declared as shown in Syntax 52.

wire ;=
WI RE wire_identifier { wire_item { wire item} }
| WIRE wire identifier ;
| wire_template_instantiation
wire_item ::=
all_purpose_item
| node

Syntax 52—WIRE declaration

IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 89

The purpose of awire declaration is to describe an interconnect model. The interconnect model can be a statisti-
cal wireload model, a description of boundary parasitics within a complex cell, amodel for interconnect analysis,
or a specification of aload seen by adriver.

9.13 WIRE instantiation

A wire shall be instantiated as shown in .

wire_instantiation ::=
wire_identifier instance _identifier
| wire_identifier instance_identifier { pin_value{ pin_value} }
| wire_identifier instance_identifier { pin_assignment { pin_assignment } }

Syntax 53—WIRE instantiation

9.14 Annotations for a WIRE

** Add lead-in text**

9.14.1 SELECT_CLASS annotation

A select_class annotation shall be defined as shown in Semantics 32.

KEYWORD SELECT_CLASS = annotation {
CONTEXT = W RE;
VALUETYPE = identifier;

}

Semantics 32—SELECT_CLASS annotation

Theidentifier shall refer to the name of a declared class.
The purpose of the select class annotation is to provide a mechanism for selection of an interconnect model by an

application. The user of the application can select a set of related interconnect models by specifying the name of
the class rather than specifying the name of each interconnect model.

9.15 NODE declaration

A node shall be declared as shown in Syntax 54.

node ::=
NODE node identifier ;
| NODE node identifier { { node item} }
| node_template_instantiation
node item ::=
al_purpose_item

Syntax 54—NODE statement

90 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

The purpose of a node declaration is to specify an electrical node in the context of a wire declaration (see
Section 9.12) or in the context of a cell declaration (see Section 9.3).

9.15.1 NODETYPE annotation

A nodetype annotation shall be defined as shown in Semantics 33.

KEYWORD NODETYPE = singl e_val ue_annotation {
CONTEXT = NODE;
VALUETYPE = identifier;
VALUES { power ground source sink
driver receiver interconnect }

Semantics 33—NODETYPE annotation

The values shall have the semantic meaning shown in Table 59.

Table 59—NODETYPE annotation values

Annotation value Description

driver The node is the interface between an output pin of acell and an
interconnect wire.

recei ver The node is the interface between an interconnect wire and an
input pin of acell.

sour ce Thenode isavirtual start point of signal propagation; it can be
collapsed with adriver nodein case of anideal driver.

si nk The node isavirtual end point of signal propagation; it can be
collapsed with areceiver node in case of an ideal receiver.

power The node supports electrical current for arising signal at a
source or adriver node and areference for alogic high signal
at asink or receiver side.

gr ound The node supports electrical current for afalling signasat a
source or adriver node and areference for logic alow signal
at asink or areceiver node

i nt er connect (default) The node serves for connecting purpose only.

9.15.2 NODE_CLASS annotation

A node_class annotation shall be defined as shown in Semantics 34.

KEYWORD NODE_CLASS = annotation {
CONTEXT = NODE;
VALUETYPE = identifier;

}

Semantics 34—NODE_CLASS annotation

IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 91

Theidentifier shall refer to the name of a declared class.

The purpose of the node class annotation is to associate a node with a virtual cell. The virtual cell is represented
by the declared class.

9.16 VECTOR declaration

A vector shall be declared as shown in Syntax 55.

vector ::=
VECTOR control_expression ;
IVECTOR control_expression { { vector_item} }
| vector_template_instantiation
vector_item ;=
al_purpose_item

Syntax 55—VECTOR statement

The purpose of avector isto provide a context for electrical characterization data or for functional test data. The
control expression (see Section 10.16) specifies a stimulus related to the data.

9.17 Annotations for VECTOR

** Add lead-in text**

9.17.1 PURPOSE annotation

A purpose annotation shall be defined as shown in Semantics 35.

KEYWORD PURPCSE = annot ati on {
CONTEXT { VECTOR CLASS }
VALUETYPE = identifier ;
VALUES { bist test timng power noise reliability }

}

Semantics 35—PURPOSE annotation

The purpose of the purpose annotation is to specify a category for the datafound in the context of the vector. The
purpose annotation can also be inherited from a class referenced within the context of the vector.

The values shall have the semantic meaning shown in Table 61.

Table 60—PURPOSE annotation values

Annotation value Description
bi st The vector contains data related to built-in self test
t est The vector contains data related to test requiring external circuitry.
timing The vector contains an arithmetic model related to timing cal culation (see
from Section 11.6 to Section 11.17)

92 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

Table 60—PURPOSE annotation values (Continued)

Annotation value Description
power The vector contains an arithmetic model related to power calculation (see
Section 11.24)
noi se The vector contains an arithmetic model related to noise calculation (see
Section 11.28)
reliability The vector contains an arithmetic model related to reliability calculation
(see Section 11.25, also Section 11.6 and Section 11.7)

9.17.2 OPERATION annotation

An operation annotation shall be defined as shown in Semantics 36.

KEYWORD OPERATI ON = singl e_val ue_annot ati on {
CONTEXT = VECTOR;
VALUETYPE = identifier;
VALUES {
read wite read_nmodify wite refresh | oad
start end iddg

}
}

Semantics 36—OPERATION annotation

The purpose of the operation annotation isto associate amode of operation of the electronic circuit with the stim-
ulus specified within the vector declaration. This assocation can be used by an application for test vector genera-

tion or test vector verification.

The values shall have the semantic meaning shown in Table 61.

Table 61—OPERATION annotation values

Annotation value Description
read Read operation at one address of a memory.
wite Write operation at one address of a memory
read nodify wite Read followed by write of different value at same address of a
memory
start First operation within a sequence of operations required in a

particular mode.

end Last operation within a sequence of operations required in a
particular mode.

refresh Operation required to maintain the contents of the memory
without modifying it.

IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual

93

Table 61—OPERATION annotation values (Continued)

Annotation value Description
| oad Operation for supplying data to a control register.
i ddg Operation for supply current measurements in quiescent state.

9.17.3 LABEL annotation

A label annotation shall be defined as shown in Semantics 37.

KEYWORD LABEL = singl e_val ue_annotation {
CONTEXT = VECTOR;
VALUETYPE = string_val ue;

}

Semantics 37—LABEL annotation

The purpose of the label annotation is to enable a cross-reference between a statement within the context of a
vector and a corresponding statement outside the ALF library. For example, a cross-reference between a delay
model in context of a vector (see Section 11.8.1) and an annotated delay within an SDF file [**put reference to
|EEE1497 here**] can be established, since the SDF standard also supports a LABEL statement.

9.17.4 EXISTENCE_CONDITION annotation

An existence-condition annotation shall be defined as shown in Semantics 38.

KEYWORD EXI STENCE_CONDI TI ON = si ngl e_val ue_annot ation {
CONTEXT { VECTOR CLASS }
VALUETYPE = bool ean_expr essi on;
DEFAULT = 1;

}

Semantics 38—EXISTENCE_CONDITION annotation

The purpose of the existence-condition isto define a necessary and sufficient condition for avector to be relevant
for an application. This condition can also be inherited by the vector from a referenced class. A vector shall be
relevant unless the existence-condition eval uates Fal se.

The set of pin variables involved in the vector declaration and the set of pin variables involved in the existence
condition shall be mutually exclusive.

For dynamic evaluation of the control expression within the vector declaration, the boolean expression within the
existence-condition can be treated asiif it were a co-factor of the control expression.

9.17.5 EXISTENCE_CLASS annotation
An existence-class annotation shall be defined as shown in Semantics 39.

The identifier shall be the name of a declared class.

94 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

KEYWORD EXI STENCE CLASS = annotation {
CONTEXT { VECTOR CLASS }
VALUETYPE = identifier;

}

Semantics 39—EXISTENCE_CLASS annotation
The purpose of the existence-class annotation is to provide a mechanism for selection of arelevant vector by an
application. The user of the application can select a set of relevant vectors by specifying the name of the class.
Another purpose is to share acommon existence-condition amongst multiple vectors.

9.17.6 CHARACTERIZATION_CONDITION annotation

A characterization-condition annotation shall be defined as shown in Semantics 40.

KEYWORD

CHARACTERI ZATI ON_CONDI TI ON = si ngl e_val ue_annot ati on {
CONTEXT { VECTOR CLASS }
VALUETYPE = bool ean_expr essi on;

}

Semantics 40—CHARACTERIZATION_CONDITION annotation

The purpose of the characterization-condition annotation is to specify a unique condition under which the datain
the context of the vector were characterized. The characterization condition is only applicable if the vector decla
ration eventually in conjunction with an existence-condition allows more than one condition.

The set of pin variables involved in the characterization-condition can overlap with the set of pin variables
involved in the vector declaration and/or the existence-condition, as long as the characterization condition is
compatible with the vector declaration and eventually with the existence-condition.

The characterization condition shall not be relevant for evaluation of either the vector declaration or the exist-
ence condition.

9.17.7 CHARACTERIZATION_VECTOR annotation

A characterization-vector annotation shall be defined as shown in Semantics 41.

KEYWORD CHARACTERI ZATI ON_VECTOR =
si ngl e_val ue_annot ati on {
CONTEXT { VECTOR CLASS }
VALUETYPE = control _expression;

}

Semantics 41—CHARACTERIZATION_VECTOR annotation

The purpose of a characterization-vector annotation is to specify a complete stimulus for characterization in the
case where the vector declaration specifies only apartial stimulus.

The characterization-vector annotation and the characterizati on-condition annotation shall be mutually exclusive
within the context of the same vector.

IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 95

9.17.8 CHARACTERIZATION_CLASS annotation

A characterization-class annotation shall be defined as shown in Semantics 42.

KEYWORD CHARACTERI ZATI ON_CLASS = annotation {
CONTEXT { VECTOR CLASS }
VALUETYPE = identifier;

}

Semantics 42—CHARACTERIZATION_CLASS annotation
The identifier shall be the name of a declared class.

The purpose of the characterization-class annotation is to provide a mechanism for classification of characteriza-
tion data. Another purpose isto share acommon characterization-condition or a common characterizati on-vector
amongst multiple vectors.

9.17.9 MONITOR annotation

A monitor annotation shall be defined as shown inSemantics 43 .

KEYWORD MONI TOR = annot ati on {
CONTEXT { VECTOR CLASS }
VALUETYPE = identifier;

}

Semantics 43—MONITOR annotation

9.18 LAYER declaration

A layer shall be declared as shown in Syntax 56.

layer ::=
LAYER layer_identifier ;
ILAYER layer identifier { { layer_item} }
| layer_template instantiation
layer_item ::=
al_purpose_item

Syntax 56—LAYER declaration

A layer shall describe process technology for fabrication of an integrated electronic circuit and a set of related
physical data and constraints relevant for a design application.

The order of layer declarations within alibrary or asublibrary shall reflect the order of physical creation of layers
by a manufacturing process.

96 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

9.19 Annotations for LAYER

** Add lead-in text**

9.19.1 LAYERTYPE annotation

A layertype annotation shall be defined as shown in Semantics 44.

KEYWORD LAYERTYPE = singl e_val ue_annotati on {
CONTEXT = LAYER;
VALUETYPE = identifier;
VALUES {
routing cut substrate dielectric reserved abstract

}
}

Semantics 44—LAYERTYPE annotation

The values shall have the semantic meaning shown in Table 62.

Table 62—LAYERTYPE annotation values

Annotation value Description
routing Layer provides electrical connections within a plane.
cut Layer provides electrical connections between planes.
substrate Layer at the bottom.
dielectric Layer provides electrical isolation between planes.
reserved Layer isfor proprietary use only.
abstract Layer isvirtual, not manufacturable.

9.19.2 PITCH annotation

A pitch annotation shall be defined as shown in Semantics 45.

KEYWORD PI TCH = singl e_val ue_annot ati on {
CONTEXT = LAYER;
VALUETYPE = unsi gned_nunber;

}

Semantics 45—PITCH annotation

The purpose of the pitch annotation is specification of the normative distance between parallel wire segments
within alayer with layertype value routing. This distance is measured between the center of two adjacent parallel
wires.

IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 97

9.19.3 PREFERENCE annotation

A preference annotation shall be defined as shown in Semantics 46.

KEYWORD PREFERENCE = singl e_val ue_annotation {
CONTEXT = LAYER;
VALUETYPE = identifier;
VALUES { horizontal vertical acute obtuse }

}

Semantics 46—PREFERENCE annotation

The purpose isto indicate the prefered routing direction for wires within alayer with layertype value routing.

The values shall have the semantic meaning shown in Table 62.

Table 63—PREFERENCE annotation values

Annotation value Description
hori zont al Prefered routing direction is horizontal, i.e., O degrees.
verti cal Prefered routing direction is vertical, i.e., 90 degrees.
acute Prefered routing direction is 45 degrees.
obt use Prefered routing direction is 135 degrees.

9.20 VIA declaration

A via shall be declared as shown in Syntax 57.

via:=
V1A via_identifier
IVIA via identifier { { via item} }
| via_template_instantiation
via_item ::=
all_purpose_item
| pattern
| artwork

Syntax 57—VIA statement

A viashall describe a stack of physical artwork for electrical connection between wire segments on different lay-

ers.

9.21 VIA instantiation

A via shal be instantiated as shown in Syntax 58.

The purpose of aviainstantiation isto define adesign rule involving avia (see Section 9.23), to describe details

of aphysical blockage (see Section 9.25) or details of a physical port (see Section 9.26).

98 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

via_instantiation :;=
via_identifier instance_identifier
| via_identifier instance identifier { { geometric_transformation} }

Syntax 58—VIA instantiation

9.22 Annotations for a VIA

** Add lead-in text**

9.22.1 VIATYPE annotation

** Single subheader* *

A viatype annotation shall be defined as shown in Semantics 47.

KEYWORD VI ATYPE = singl e_val ue_annot ati on {
CONTEXT = VI A
VALUETYPE = identifier;
VALUES { default non_default partial _stack full_stack }
DEFAULT = defaul t;

Semantics 47—VIATYPE annotation

The values shall have the semantic meaning shown in Table 64.

Table 64—VIATYPE annotation values

Annotation value Description
def aul t vi a can be used per default.
non_def aul t vi a can only be used if authorized by a RULE.
partial _stack vi a contains three patterns: the lower and upper routing layer

and the cut layer in-between. This can only be used to build
stacked vias. The bottom of astack can beadef aul t or a
non_defaul t via.

full _stack vi a contains 2N+1 patterns (N>1). It describes the full stack
from bottom to top.

9.23 RULE declaration
A rule shall be declared as shown in Syntax 59.
A rule declaration shall be used to define electrical or physical constraintsinvolving physical objects. A physica

object shall be described as a pattern (see Section 9.32), aregion (see Section 9.34), or avia instantiation (see
Section 9.21). The contraints shall be described as arithmetic models.

IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 99

rule::=
RUL E rule_identifier ;
|RULE rule identifier { { rule item} }
| rule_template_instantiation
rule_item ::=
al_purpose_item
| pattern
| region
| via_instantiation

Syntax 59—RULE statement

9.24 ANTENNA declaration

An antenna shall be declared as shown in Syntax 60.

antenna::=
ANTENNA antenna_identifier
| ANTENNA antenna_identifier { { antenna_item} }
| antenna_template_instantiation
antenna_item :;=
all_purpose_item
| region

Syntax 60—ANTENNA declaration

An antenna declaration shall be used to define manufacturability constraints involving physical objects or
regions (see Section 9.34) created by physical objects. The physical objects shall be associated with alayer (see
Section 9.18). Within the context of an antenna declaration, arithmetic models for size (see Section 11.31), area
(see Section 11.32), perimeter (see Section 11.38) associated with alayer or with aregion can be described. The
arithmetic model s can be combined, based on electrical connectivity (see Section 11.30) between the layers.

To evaluate connectivity in the context of an antenna declaration, the order of manufacturing given by the order
of layer declarations shall be relevant. An object on alayer shall only be considered electrically connected to an
object on another layer, if the connection already exists when the uppermost layer of both layers is manufactured.
Thisisillustrated in the following figure 8.

Figure 8—Connection between layers during manufacturing

The dark objectson layer A and layer C on the left side of figure 8 are considered connected, because the connec-
tion is established through layer B which exists already when layer C is manufactured.

The dark objects on layer A and layer C on the right hand side of figure 8 are not considered connected, because
the connection involves layer D and E which do not yet exist when layer C is manufactured.

100 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

9.25 BLOCKAGE declaration

A blockage shall be declared as shown in Syntax 61.

blockage ::=
BL OCKAGE blockage identifier ;
|IBLOCKAGE blockage_identifier{ { blockage_item} }
| blockage _template instantiation
blockage item ::=
all_purpose_item
| pattern
| region
| rule
| via_instantiation

Syntax 61—BLOCKAGE statement

A blockage declaration shall be used in context of a cell (see Section 9.3) to describe a part of the physical art-
work of the cell. No short circuit shall be created between the physical artwork described by the blockage and a
physical artwork created by an application. Physical or electrical constraints involving a blockage can be
described by arule (see Section 9.23). A rule within the context of a blockage shall only be applicable for physi-
cal objects within the blockage in relation to their environment. The physical objects within the blockage can
also be subjected to a more general rule.

9.26 PORT declaration

A port shall be declared as shown in Syntax 62.

port ::=
PORT nport_identifier ;{ { port_item} }
| PORT port_identifier ;
| port_template_instantiation
port_item ::=
all_purpose_item
| pattern
| region
| rule
| via_instantiation

Syntax 62—PORT declaration

A port declaration shall be used in context of a scalar pin (see Section 9.7) to describe a part of the physical art-
work of a cell (see Section 9.3) provided to establish electrical connection between a pin and its environment.
Physical or electrical constraints involving aport can be described by arule (see Section 9.23). A rule within the
context of a port shall only be applicable for physical objects within the blockage in relation to their environ-
ment. The physical objects within the port can also be subjected to a more general rule.

9.27 Annotations for PORT

** Add lead-in text**

9.27.1 PORT_VIEW annotation

** Single subheader**

IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 101

A port_view annotation shall be defined as shown in Semantics 48.

CONTEXT = PORT;
VALUETYPE = identifier;

DEFAULT = bot h;

KEYWORD PORT_VI EW = si ngl e_val ue_annotati on {

VALUES { physical electrical both none }

Semantics 48—PORT_VIEW annotation

The values shall have the semantic meaning shown in Table 65.

Table 65—PORT_VIEW annotation values

Annotation value Description
physi cal A port for layout with the possibility to connect a routing wire.
el ectri cal A port in an electrical netlist (SPEF, SPICE).
bot h Both of the above.
none A virtual port for modeling purpose only.

9.28 SITE declaration

A site shall be declared as shown in Syntax 63.

site::=
SITE site identifier ;
| SI TE site identifier { { site_item} }
| site_template_instantiation
site_item ::=
all_purpose_item
| WIDTH_arithmetic_model
| HEIGHT _arithmetic_model

Syntax 63—SITE declaration

A site declaration shall be used to specify alegal placement location for acell.

9.29 Annotations for SITE

** Add lead-in text**

9.29.1 ORIENTATION_CLASS annotation

An orientation_class annotation shall be defined as shown in Semantics 49.

102 Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 6

KEYWORD ORI ENTATI ON_CLASS = annotation {
CONTEXT { SITE CELL }
VALUETYPE = | DENTI FI ER;

}

Semantics 49—ORIENTATION_CLASS annotation
9.29.2 SYMMETRY_CLASS annotation

A symmetry_class annotation shall be defined as shown in Semantics 50.

KEYWORD SYMVETRY_CLASS = annotation {
CONTEXT { SITE CELL }
VALUETYPE = identifier;

}

Semantics 50—SYMMETRY_CLASS annotation

The SYMVETRY_CLASS statement shall be used for a SI TE to indicate symmetry between legal orientations.
Multiple SYMVETRY statements shall be legal to enumerate all possible combinations in case they cannot be
described within asingle SYMMVETRY statement.

Legal orientation of a cell within a site shall be defined as the intersection of legal cell orientation and legal site
orientation. If thereis a set of common legal orientations for both cell and site without symmetry, the orientation
of cell instance and site instance shall match.

If there is a set of common legal orientations for both cell and site with symmetry, the cell can be placed on the
side using any orientation within that set.

Example

Case 1: no symmetry

The site has legal orientations A and B. The cell has legal orientations A and B. When the site appearsin orienta-
tion A, the cell shall be placed in orientation A. When the site appearsin orientation B, the cell shall be placed in
orientation B.

Case 2: symmetry

The site has legal orientations A and B and symmetry between A and B. The cell has legal orientations A and B.

When the site appearsin orientation A, the cell can be placed in orientation A or B. When the site appearsin ori-
entation B, the cell can also be placed in orientation A or B.

9.30 ARRAY declaration

An array shall be declared as shown in Syntax 64.

An array declaration shall be used for the purpose to describe a grid for creating physical objects within design.
The geometric transformations shift and repeat (see Section 9.37) shall be used to define the construction rule for

the array. The shift statement shall define the offset between the origin of the basic element within the array and
the origin of its context. The repeat statement shall define, how the basic element is replicated.

IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 103

array ::=
ARRAY array identifier ;
|ARRAY array _identifier { { array_item} }
| array_template instantiation
array_item ;=
all_purpose_item
| geometric_transformation

Syntax 64—ARRAY statement

9.31 Annotations for ARRAY

** Add lead-in text**

9.31.1 ARRAYTYPE annotation

An arraytype annotation shall be defined as shown in Semantics 51.

KEYWORD ARRAYTYPE = singl e_val ue_annot ation {
CONTEXT = ARRAY;
VALUETYPE = identifier;
VALUES { fl oorplan pl acenent
gl obal _routing detail ed_routing }

Semantics 51—ARRAYTYPE annotation

The values shall have the semantic meaning shown in Table 66.

Table 66—ARRAYTYPE annotation values

Annotation value Description

floorpl an The array provides agrid for placing macrocells, i.e., cellswith
celltype value can be block or core or memory.
The placement_type value shall be core.

pl acenent Thearray providesagrid for placing regular cells, i.e., cellswith
celltype value buffer, combinational, multiplexor, latch, flipflop
or special.
The placement_type value shall be core.

gl obal _routing The array providesagrid for global routing.

detail ed_routing The array provides agrid for global routing.

9.31.2 SITE reference annotation
A site reference annotation shall be defined as shown in Semantics 52.

The purpose of asite reference annotation isto establish arelation between a cell (see Section 9.3) and a site (see
Section 9.28) or between a site and an array. The site reference annotation in context of a cell shall indicate

104 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

SEMANTI CS SI TE = singl e_val ue_annotation {
CONTEXT { ARRAY CELL }
VALUETYPE = identifier;

}

Semantics 52—SITE reference annotation

whether the site represents a legal placement location for the cell. The site reference annotation in context of an
array shall indicate that the site is the basic element from which the array is constructed.

The site reference annotation is applicable for an array with arraytype value floorplan or placement.
9.31.3 LAYER reference annotation

A layer reference annotation in the context of an array shall be defined as shown in Semantics 53.

SEMANTI CS ARRAY. LAYER = annotation {
VALUETYPE = identifier;

}

Semantics 53—LAYER reference annotation for ARRAY

The layer reference annotation is applicable for an array with arraytype value detailed routing. It shall specify
the applicable layer (see Section 9.18) with layertype value routing.

9.32 PATTERN declaration

A pattern shall be declared as shown in Syntax 65.

pattern ::=
PATTERN pattern_identifier
| PATTERN pattern_identifier { { pattern_item} }
| pattern_template_instantiation
pattern_item ::=
all_purpose_item
| geometric_model
| geometric_transformation

Syntax 65—PATTERN declaration

The pattern declaration shall be used to describe a physical object associated with alayer (see Section 9.18).

9.33 Annotations for PATTERN

** Add lead-in text**

9.33.1 LAYER reference annotation

A layer reference annotation in the context of a pattern shall be defined as shownin.

IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 105

SEMANTI CS PATTERN. LAYER = si ngl e_val ue_annotation {
VALUETYPE = identifier;
}

Semantics 54—LAYER reference annotation for PATTERN
The layer reference annotation shall establish an association between a pattern and a layer (see Section 9.18).
The physical object represented by the pattern shall reside on a layer. A pattern declaration without layer refer-
ence annotation shall be considered incomplete.

9.33.2 SHAPE annotation

A shape annotation shall be defined as shown in Semantics 55.

KEYWORD SHAPE = singl e_val ue_annotation {
CONTEXT = PATTERN,
VALUETYPE = identifier;
VALUES { line tee cross jog corner end }
DEFAULT = |i ne;

}

Semantics 55—SHAPE annotation

The shape annotation applies for a pattern associated with a layer with layertype value routing. The meaning of
the shape annotation valuesisillustrated in Figure 9.

tee ‘T corner
T end
Cross

Figure 9—Shapes of routing patterns
The annotation values line and jog shall represent a routing segment. The annotation valuestee, cross, and corner
shall represent an intersection between routing segments. The annotation value end shall represent the open end
point of an unterminated routing segment.
9.33.3 VERTEX annotation
A vertex annotation shall be defined as shown in Semantics 56.

The vertex annotation applies for a pattern in conjunction with the shape annotation. The meaning of the vertex
annotation valuesisillustrated Figure 10.

106 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

KEYWORD VERTEX = singl e val ue_annotation {
CONTEXT = PATTERN,
VALUETYPE = identifier;
VALUES { round angul ar }
DEFAULT = angul ar;

Semantics 56—VERTEX annotation

v y

EXTENSION =1 AN N
A <

VERTEX = angular VERTEX =round

Figure 10—lllustration of VERTEX annotation

9.33.4 ROUTE annotation

A route annotation shall be defined as shownin .

KEYWORD ROUTE = singl e _val ue_annotation {
CONTEXT = PATTERN,;
VALUETYPE = identifier;
VALUES { horizontal acute vertical obtuse }

}

Semantics 57—ROUTE annotation

9.34 REGION declaration

A region object shall be declared as shownin.

region ::=
REGION region_name identifier |
|REGION region_name_identifier{ { region_item} }
region_item ::=
all_purpose_item
| geometric_model
| geometric_transformation
| BOOLEAN_single value_annotation

Syntax 66—ROUTE declaration

IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 107

9.34.1 BOOLEAN annotation

A boolean annotation shall be defined as shownin .

KEYWORD BOOLEAN = si ngl e_val ue_annotati on {
CONTEXT = REG ON ;
VALUETYPE = bool ean_expression ;

}

Semantics 58—BOOLEAN annotation

9.35 Geometric model

A geometric model shall be defined as shown in Syntax 67.

geometric_model ::=
nonescaped_identifier [geometric_model _identifier]
{ geometric_model_item { geometric_model_item} }
| geometric_model_template instantiation
geometric_model_item ::=
POINT_TO_POINT_single value_annotation
| coordinates
coordinates ::=
COORDINATES{ point { point} }
point ::=
X_humber y_number

Syntax 67—Geometric model

A geometric model shall describe the form of a physical object. A geometric model can appear in the context of
apattern (see Section 9.32) or aregion (see Section 9.34).

The numbersin the point statement shall be measured in units of distance (see Section 11.36).

The parent object of the geometric model can contain a geometric transformation (see Section 9.37) applicable
to the geometric model.

Table 67 specifiies the meaning of predefined geometric model identifiers.

Table 67—Geometric model identifiers

Identifier Description

DOoT Describes one point.

POLYLI NE Defined by N>1 directly connected points, forming an open object.

108 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

Table 67—Geometric model identifiers (Continued)

Identifier Description

RI NG Defined by N>1 directly connected points, forming a closed object,
i.e, the last point is connected with first point. The object occupies
the boundary of the enclosed space.

POLYGON Defined by N>1 connected points, forming a closed object, i.e., the last
point is connected with first point. The object occupies the entire
enclosed space.

The meaning of predefined geometric model identifiersis further illustrated in Figure 11.

DOT (5 dots) POLYLINE RING POLYGON

Figure 11—Illlustration of geometric models

A point_to_point annotation shall be defined as shown in Semantics 59.

KEYWORD PO NT_TO PO NT = single val ue_annotation {
CONTEXT { POLYLI NE RI NG POLYGON }
VALUETYPE = identifier;
VALUES { direct manhattan }
DEFAULT = direct;

Semantics 59—POINT_TO_POINT annotation

The point-to-point annotation applies for a polyline, a ring or a polygon. The annotation value specifies, how
subsequent pointsin the coordinates statement are to be connected.

The meaning of the annotation value direct isillustrated in Figure 12. It specifies the shortest possible connection
between points.

IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 109

Y-axis

9

P N W b 01O N

A

direct connection direct connection
from (-1/8) to (-1/5) y from (3/8) to (-1/8)
X X
direct connection
L from (-3/5) to (3/8)

direct connection
from (-1/5) to (3/5)

-
5 -4 -3 -2 -101 2 3 4 5 X-axis

Figure 12—lllustration of direct point-to-point connection

The meaning of the annotation value manhattan is illustrated in Figure 13. It specifies a connection between
points by moving in the x-direction first and then moving in the y-direction. This enables a non-redundant speci-
fication of arectilinear object using N/ 2 pointsinstead of N points.

Y-axis

P N W, 01O N 0 ©

A

manhattan connection from (-3/8) to (-1/5)

X

X

manhattan connection from (-1/5) to (3/8)

L
5 -4 -3 -2 -101 2 3 4 5 X-axis

Figure 13—lllustration of manhattan point-to-point connection

Example

110

POLYGON {

POl NT_TO_ POl NT

COORDI NATES {

= direct;
-153538-181}

Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

POLYGON {
PO NT_TO PO NT = nanhatt an;
COORDINATES { -1 5 3 8}

}

Both objects describe the same rectangle.

9.36 Predefined geometric models using TEMPLATE
A template declaration (see Section 8.8) can be used to predefine particular geometric moddels.
The templates RECTANGLE and LINE shall be predefined as follows:
TEMPLATE RECTANGLE {
POLYGON {

PO NT_TO PO NT = nanhatt an;
COORDI NATES { <left> <bottonms <right> <top> }

}
}
TEMPLATE LI NE {
POLYLI NE {
PO NT_TO PO NT = direct;
COORDI NATES { <x_start> <y start> <x_end> <y_end> }
}
}
Example 1

The following example shows the usage of the predefined templates rectangle and line.

/1 sane rectangle as in previous exanple

RECTANGLE {left = -1; bottom=5; right = 3; top = 8; }
/1 or

RECTANGLE {-1 5 3 8 }

/1 diagonals through the rectangle

LINE {x_start = -1; y start =5; x end = 3; y _end = 8; }
LINE {x_start = 3; y start = 5; x end = -1; y end = 8; }
/1 or

LINE{ -1538}

LINE{ 35-128}

Example 2
The following example shows user-defined template declarations.
TEMPLATE HORI ZONTAL_LI NE {
POLYLI NE {

PO NT_TO PO NT = direct;
COORDI NATES { <left> <y> <right> <y> }

IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 111

TEMPLATE VERTI CAL_LI NE {
POLYLI NE {
PO NT_TO PO NT = direct;
COORDI NATES { <x> <bottonp» <x> <top> }

}

Example 3

The following example shows the usage of the user-defined templates from Example 2.

/1 lines bounding the rectangle

HORI ZONTAL_LINE { yv = 5; left = -1; right = 3; }
HORI ZONTAL_LINE { v = 8; left = -1; right = 3; }
VERTI CAL_LINE { x = -1; bottom=5; top = 8; }

VERTI CAL_LINE { x
/] or

HORI ZONTAL_LI NE { -1 31}
HORI ZONTAL_LINE { 8 -1 3}
VERTICAL_LINE { -1 5 8}
VERTICAL_LINE { 3 5 8}

3; bottom=5; top = 8; }

ol

9.37 Geometric transformation

A geometric transformation shall be defined as shown in Syntax 68.

geometric_transformation ::=
shift
| rotate
| flip
| repeat

shift ::=

SHIFT { x_number y number }
rotate ::=

ROTATE = number ;
flip ::=

FLIP= number ;

repeat ::=
REPEAT [= unsigned_integer] { geometric_transformation { geometric_transformation} }

Syntax 68—Geometric transformation

The SHI FT statement defines the horizontal and vertical offset measured between the coordinates of the geomet-
ric model and the actual placement of the object. Eventually, a layout tool only supports integer numbers. The
numbers are in units of DISTANCE. If the SHI FT statement is not defined, both values default to 0.

The ROTATE statement defines the angle of rotation in degrees measured between the orientation of the object
described by the coordinates of the geometric model and the actual placement of the object measured in counter-
clockwise direction, specified by a number between 0 and 360. Eventually, alayout tool can only support angles
which are multiple of 90 degrees. The default is 0. The object shall rotate around its origin.

The FLI P describes atransformation of the specified coordinates by flipping the object around an axis specified

by a number between 0 and 180. The number represents the angle of the flipping direction in degrees. Eventu-
ally, alayout tool can only support angles which are multiple of 90 degrees. The axisis orthogonal to the flipping

112 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

direction. The axis shall go through the origin of the object. For example, 0 means flip in horizontal direction,
axisisvertical whereas 90 meansflip in vertical direction, axisis horizontal.

The purpose of the REPEAT statement is to describe the replication of a physical object in a regular way, for
example S| TE (see 9.28). The REPEAT statement can also appear within a geonetri c_nodel . The
unsi gned number defines the total number of replications. The number 1 means, the object appears just once.
If this number is not given, the REPEAT statement defines a rule for an arbitrary number of replications.
REPEAT statements can also be nested.

Examples
The following example replicates an object three times along the horizonta axisin a distance of 7 units.

REPEAT = 3 {
SHIFT { 7 0}
}

The following example replicates an object five times along a 45-degree axis in a distance of 4 units.

REPEAT = 5 {
SHIFT { 4 4}
}

The following example replicates an object two times along the horizontal axis and four times along the vertical
axisin ahorizontal distance of 5 unitsand a vertical distance of 6 units.

REPEAT = 2 {
SHFT { 50 }
REPEAT = 4 {

SHFT { 0 6 }
}
}

NOTE—The order of nested REPEAT statements does not matter. The following example gives the same result as the previ-
ous example.

REPEAT = 4 {
SHIFT { 0 6 }
REPEAT = 2 {

SHIFT { 50 }
}
}

Rules and restrictions:

— A physical object can contain ageonet ri c_transf or mati on statement of any kind, but no more
than one of a specific kind.

— Thegeonetri c_transfornation statements shall apply to al geonet ri ¢c_nodel s within the
context of the object.

— Thegeonetric_transformati on statements shall refer to the origin of the object, i.e., the point
with coordinates{ O O }. Therefore, the result of a combined transformation shall be independent of
the order in which each individual transformation is applied.

These are demonstrated in Figure 14.

IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 113

FLIP : ROTATE . SHIFT

legend: @ origin of the object

Figure 14—Illustration of FLIP, ROTATE, and SHIFT

9.38 ARTWORK statement

An artwork statement shall be defined as shown in Syntax 69.

artwork ::=
ARTWORK = artwork_identifier
|ARTWORK = artwork_identifier{ { artwork_item} }
| artwork_template_instantiation
artwork_item ::=
geometric_transformation
| pin_assignment

Syntax 69—ARTWORK statement

The ARTWORK statement creates a reference between the cell in the library and the original cell imported from a
physical layout database, e.g., GDSII [** put reference to GDSII here**].

Thegeonetri c_transformati ons definethe operations for transformation from the artwork geometry to
the actual cell geometry. In other words, the artwork is considered as the original object whereas the cell is the
transformed object.

The imported cell can have pins with different names. The LHS of the pi n_assi gnnment describes the pin
names of the original cell, the RHS describes the pin names of the cell in this library. See 7.10 for the syntax of
pi n_assi gnment .

Example
CELL ny_cell {
PINA{ /* fill inpinitems */ }
PINzZ { /* fill inpinitems */ }

ARTWORK = \ GDS2%$! @t$ {
SHI FT { HORI ZONTAL = 0; VERTICAL = 0; }

ROTATE = 0O;
\ CDS2$! @$A = A
\ GCDS2$! @$B = B;

114 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 115

116 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

10. Constructs for modeling of functional behavior

** Add lead-in text**

10.1 FUNCTION statement

A function statement shall be defined as shown in Syntax 70.

function ::=
FUNCTION { function_item { function_item} }
| function_template_instantiation
function_item ::=
all_purpose_item

| behavior

| structure

| statetable

Syntax 70—FUNCTION statement

The purpose of the function statement is to describe a canonical specification of adigital electronic circuit imple-
mented by acell. A cell can contain at most one function statement.

The function statement can contain a behavior statement (see Section 10.4) or a set of one or more statetable
statements (see Section 10.6). The purpose of the behavior and statetable statementsin this context isto formally
specify the logic state of a cell as aresponse to a given stimulus.

The function statement can also contain a specification for implementation using the structure statement (see
Section 10.5).

10.2 TEST statement

A test statement shall be defined as shown in Syntax 71.

test =
TEST { test_item { test_item} }
| test_template instantiation
test_item ::=
all_purpose_item
| behavior
| statetable

Syntax 71—TEST statement

The purpose of the test statement is to describe the interface between a cell and a test algorithm applied to the
cell. A cell can contain at most one test statement.

The test statement can contain a behavior statement (see Section 10.4) or a set of one or more statetable state-
ments (see Section 10.6). The purpose of the behavior and statetable statements in this context is to model the
interface between a cell and atest algorithm as avirtual digital circuit.

A test algorithm consists of avirtua input pattern and a virtual expected output pattern. The test statement does

not specify the test algorithm per se, but the mapping of the virtual pattern into a stimulus applicable to the
device under test, i.e., the cell. Thisisfurther explained in Section 10.3.

IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 117

10.3 Declaration of pin variables

Both the variables involved in the test statement and the signalsinvolved in the function statement shall be con-
sidered as pin variables (see Section 7.9).

Pin variables shall be declared as pins or pingroups of the cell with pintype annotation value digital. The annota-

tion values for direction and view shall specify whether a pin can be used asa signal for function or as avariable
for test, according to the following Table 68.

Table 68—Annotations for PINs involved in FUNCTION and TEST

category DIRECTION VIEW
input signa for function input functional or both
output signal for function output functional or both
bidirectional signal for function both functional or both
internal signal for function none none
primary input variable for test input none
primary output variable for test output none
primary bidirectional variablefor test | both none
internal variable for test none none

An pin attribute value can be used to specify a test method related to a variable. See Table 58, “PIN or PIN-
GROUP attributes for memory BIST,” for specification of a particular test method.

A primary input variable for the test statement can hold a state of avirtual input pattern. A primary output vari-
able for the test statemen can hold the state of avirtual expected output pattern. A primary bidirectional variable
for the test statement can hold the state of a virtual input or output pattern, depending on the mode of the test
algorithm. An internal variable for the test statement communicates neither with the test algorithm nor with the
device under test.

Aninput signal of the cell can be controlled or non-controlled by the test algorithm. An output signal of the cell
can be observed or non-observed by the test algorithm. A bidirectional signal of the cell can be controlled or
non-controlled in input mode and observed or non-observed in output mode. An internal signal of the cell com-
municates neither with the test algorithm nor with the environment of the cell.

The relationship between pin variables involved in the test statement and in the function statement is illustrated

in the following figure 15. The information flow depicted therein shall be established by a behavior statement
(see Section 10.4) and/or by a set of statetable statements (see Section 10.6).

118 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

primary input primary output non-controlled non-observed

vari Ibl es v?i ables input s glal s outp\}t signals

controlled input signals

interna > internal

variables TEST < observed output signals FUNCTION signals

controlled / observed
bidirectional signals

primary bi?irectional non-controllii / non-observed
variables bidirectional signals

Figure 15—Relationship between FUNCTION and TEST

10.4 BEHAVIOR statement

A behavior statement shall be defined as shown in Syntax 72.

behavior ::=
BEHAVIOR { behavior_item { behavior_item} }
| behavior_template_instantiation
behavior_item ::=
boolean_assignment
| control_statement
| primitive_instantiation
| behavior_item template instantiation
boolean_assignment ::=
pin_variable = boolean_expression ,
control_statement ::=
primary_control_statement { alternative _control_statement }
primary_control_statement ::=
control_expression { boolean_assignment { boolean_assignment } }
dternative _control_statement ::=
 control_expression { boolean_assignment { boolean_assignment } }
control_expression ::=
vector_expression)
| (boolean_expression
primitive_instantiation ::=
primitive_identifier [identifier] 1 pin_vaue{ pin_value} }
| primitive_identifier [identifier] { boolean_assignment { boolean_assignment } }

Syntax 72—BEHAVIOR statement

A control statement consists of a primary control statement, optionally followed by one or more alternative con-
trol statements. A primary control statement is identified by the at character followed by a control expression.
An alternative control statement is identified by the colon character followed by a control expression. A control
expression can be either a boolean expression (see Section 10.9) or a vector expression (see Section 10.12). The
order of aternativs control statements shall specify the order of priority. If the main control statement does not
evaluate true, the first alternative control statement is evaluated. If an alternative control statement does not eval-
uate true, the next alternative control statement is evaluated.

IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 119

A boolean assignment assigns the eval uation result of a boolean expression to apin variable (see Section 7.9). A
boolean assignment with a behavior statement as a parent shall be considered a continuous assignment, i.e. the
boolean expression is evaluated continuously.

A boolean assignment with a control statement as parent shall be considered a conditional assignment, i.e., the
boolean expression is only evaluated when the associated control expression evaluates true. When a boolean
expression is not evaluated, a pin variable shall hold its previously assigned value.

If the control expression is a boolean expression, the conditional assignment shall be called level-sensitive or
triggered by state. If the control expression is a vector expression, the conditional assignment shall be called
edge-sensitive or triggered by event.

A primitive instantiation establishes a reference to a predefined function statement within a primitive declaration
(see Section 9.11). A continuous assignment of a boolean expression to a pin variable can be given by a boolean
assignment within the primitive instantiation, wherein the pin variable shall be a declared pin within the primi-
tive declaration. Alternatively, a continuous assignment of a pin value to a pin variable can be given by a set of
pin values, wherein the order of pin values shall correspond to the order of pin declarations within the primitive
declaration.

A behavior itemisfurther subjected to the following rules:

a Aninformation flow graph involving one or more continuous assignments and/or level-sensitive condi-
tional assignments can not contain a loop. The usage of a pin with direction annotation value both as a
primary input and as a primary output in an information flow graph shall not be considered as a loop.

b) Aninformation flow graph involving one or more edge-sensitive conditional assignments can contain a
loop. The value of a pin variable immediately before the triggering event shall be considered for evalua-
tion of a boolean expression. The evaluation result shall be assigned to a pin variable immediately after
the triggering event.

¢) Aninformation flow graph established by boolean assignments can involve an implicitly declared vari-
able, i.e, the LHS of a boolean assignment has not been declared as a pin variable. An implicitly
declared variable can only be used in the context of its parent statement. An implicitly declared variable
involved in a continuous assignment can not be used in the context of a conditional assignment and vice-
versa

10.5 STRUCTURE statement

A structure statement shall be defined as shown in Syntax 73.

structure ;1=
STRUCTURE { named_cell_instantiation { named_cell_instantiation} }
| structure_template_instantiation

Syntax 73—STRUCTURE statement

The purpose of astructure statement is to specify astructural implementation, i.e., anetlist of acompound cell. A
complete or a partial netlist can be specified. The components of the netlist can be cells and/or primitives. A
structure statement shall not substitute a behavior statement or a statetable statement. The connectivity graph
established by a structure statement is complementary to the information flow graph established by a behavior
statement or by a statetabl e statement.

** need to extend “pin assignment” definition to include hierarchical pin.port **

120 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

10.6 STATETABLE statement

A statetable statement shall be defined as shown in Syntax 74.

statetable ::=
STATETABLE [identifier]
{ statetable_header statetable row { statetable row } }

| statetable template instantiation
statetable _header ::=

input_pin_variable{ input_pin_variable} . output_pin_variable{ output_pin variable} ,
statetable row ::=

statetable control_values . statetable data values,
statetable_control_values ::=

statetable_control_value { statetable _control_value }
statetable control_value ::=

boolean_value

| symbolic_bit_literal

| edge _value
statetable_data values::=

statetable data value { statetable data value}
statetable data value::=

boolean_value

[([!]input_pin variable)
| ([~1input_pin variable)

Syntax 74—STATETABLE statement

A statetable shall specify the state of a set of output pin variables dependent on the state of a set of input pin vari-
ables. Sequential behavior, i.e., next state as afunction of previous state shall be modeled by a pin variable which
appears both as input and output pin variable within the statetable header. A pin variable with direction annota-
tion value both can also appear asinput and output pin variable within the statetable header. However, the state of
the output pin variable does not depend on the state of the corresponding input pin variable, unless there is
sequential behavior.

In each statetable row, a statetable control value shall be associated with a particular input pin variable, and a
statetable data value shall be associated with a particular output variable. The association is given by the position
at which the pin variables appear in the header. Each statetable row shall have the same number of items as the
statetable header. The delimiting colon in each statetable row shall in the same position as in the statetable
header.

A statetable control value shal be compatible with the datatype of the corresponding input pin variable. A
statetable data value shall be compatible with the datatype of the corresponding output pin variable. Aninput pin
variable enclosed by parentheses shall specify that the value of the input pin variable be assigned to the output
pin variable. Such input pin variable need not appear in the statetable header. A preceding exclamation mark
shall indicate that the logically inverted value be assigned to the output variable. A preceding tilde shall indicate
that the bitwise inverted value be assigned to the output variable.

10.7 NON_SCAN_CELL statement

A non_scan_cell statement shall be defined as shown in Syntax 75.

A non-scan cell statement applies for a scan cell. A scan cell is a cell with extra pins for testing purpose. The
unnamed cell instantiation within the non-scan cell statement specifiesacell that isfunctionally equivalent to the

scan cell, if the extrapins are not used. The cell without extrapinsis referred to as non-scan cell. The name of the
non-scan cell is given by the cell identifier.

IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 121

non_scan cell ::=
"NON_SCAN_CELL { unnamed_cell_instantiation { unnamed_cell_instantiation} }
INON_SCAN CELL = unnamed cell_instantiation

| non_scan_cell_template_instantiation

Syntax 75—NON_SCAN_CELL statement

The pin mapping is given either by order, using pin value, or by name, using pin assignment. In the former case,
the pin values shall refer to pin names of the scan cell. The order of the pin values corresponds to the pin declara-
tions within the non-scan cell. In the latter case, the pin names of the non-scan cell shall appear at the LHS of the
assignment, and the pin names of the scan cell shall appear at the RHS of the assignment. The order of the pin
assignmentsis arbitrary.

Example

/1 declaration of a non-scan cell
CELL myNonScanFl op {
PIN D { DI RECTI ON=i nput; SI GNALTYPE=dat a; }
PIN C { DI RECTI ON=i nput; SI GNALTYPE=cl ock; POLARI TY=risi ng_edge; }
PIN Q { DI RECTI ON=out put; SI GNALTYPE=data; }
}
/1 declaration of a scan cell
CELL myScanFl op {
PIN CK { DI RECTI ON=i nput; SIGNALTYPE=cl ock; }
PIN DI { DI RECTI ON=i nput; SIGNALTYPE=dat a; }
PIN SI { DI RECTI ON=i nput; SI GNALTYPE=scan_data; }
PIN SE { DI RECTI ON=i nput; SIGNALTYPE=scan_enabl e; POLARI TY=hi gh; }
PIN DO { DI RECTI ON=out put; SI GNALTYPE=dat a; }
/1 put NON_SCAN CELL statenent here

}

The non-scan cell statement with pin mapping by order looks as follows:

NON_SCAN CELL { myNonScanFlop { DI CK DO} }
/1 correspondi ng pi ns by order: D C Q

The non-scan cell statement with pin mapping by name looks as follows:

NON_SCAN _CELL { myNonScanFlop { @&=DO D=DI; C=CK; } }

10.8 RANGE statement

A range statement shall be defined as shown in Syntax 76.

range ::=
%{ANGE { index_value : index_value }

Syntax 76—RANGE statement

The range statement shall be used to specify a valid address space for elements of a vector- or matrix-pin.

122 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

If no range statement is specified, the valid address space A is given by the following mathematical relationship:
0<A<2®-1

B = [1+LSB—MSB if(LSB > MSB)
1+MSB-LSB if(LSB < MSB)

where

Aisan unsigned integer representing the address space within a vector- or matrix-pin,
B is the bitwidth of the vector-or matrix-pin,

and

MSB isthe left-most bit within the vector- or matrix-pin,
L SB isthe right-most bit within the vector or- matrix-pin,

in accordance with Section 7.8.

The index values within a range statement shall be bound by the address space a, otherwise the range statement
shall not be considered valid.

Example

PIN [5:8] nyVectorPin { RANGE { 3 : 13 } }

bitwidth: B=4
default address space: 0<A<15
address space defined by range statement: 3<A<13

10.9 Boolean expression

A boolean expression shall be defined as shown in Syntax 77.

boolean_expression ::=
(‘boolean_expression)
| pin_variable
| boolean_value
| boolean_unary boolean_expression
| boolean_expression boolean_binary boolean_expression
| boolean_expression ? boolean_expression
{ boolean_expression ? boolean_expression : }
boolean_expression
bool ean_unaéy RE
LI~ 1& [~& (|1~ 1™ [
boolean_binary ::=
GT&& ([1M 1 1= == |>= |<= > < |+ |- | | |% |>>|<<

Syntax 77—Boolean expression

The purpose of a boolean expression is to specify a boolean operation involving pin variables as operands. The
evaluation result of aboolean expression shall be a boolean value.

IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 123

10.10 Boolean value system

10.10.1 Scalar boolean value

A scalar boolean value shall be described by an alphanumerical bit literal (see Section 6.7). A scalar boolean
value shall represent alogical value and optionally a drive strength. The set of logical values shall be false, true

and unknown. The set of drive strengths shall be strong, weak, and zero. The symbols used for scalar boolean val-
ues and their meaning shall be defined as shown in Table 69.

Table 69—Scalar boolean values

symbol logical value drive strength rg&ggl\ghe comment
0 fase strong 0
1 true strong 1
Xorx unknown strong Xorx
Lorl false weak 0
Horh true weak 1
Wor w unknown weak Xorx
Zorz undefined zero Xorx use for high impedance
Uoru undefined undefined Xorx use for uninitialized signal in simulation

A boolean expression (see Section 10.9) can evaluate to a scalar boolean value represented by an alphanumeric
bit literal. For evaluation of a boolean expression, a scalar boolean value shall be reduced to avalue 0, 1, or X
within a 3-value system, unless an alphabetic bit literal (L, H, W, Z, U) is explicitely specified as evaluation
result in the boolean expression.

10.10.2 Vectorized boolean value
A vectorized boolean value shall be described either by a based literal (see Section 6.8) or by an integer (see
Section 6.5). A vectorized boolean value can be mapped into a vector of alphanumerical bit literals. The number

of bit literals shall be called bitwidth.

An octal digit can be mapped into athree bit vector of bit literals, as shown in Table 70.

Table 70—Mapping between octal base and binary base

Octal Binary (bit literal) Numerical value
0 000 0
1 001 1
2 010 2
3 on 3

124 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

Table 70—Mapping between octal base and binary base (Continued)

Octal Binary (bit literal) Numerical value
4 100 4
5 101 5
6 110 6
7 m 7

A hexadecimal digit can be mapped into afour bit vector of bit literals, as shownin Table 71.

Table 71—Mapping between hexadecimal base and binary base

Hexadecimal Binary (bit literal) Numerical value
0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
7 o111 7
8 1000 8
9 1001 9
aorA 1010 10
borB 1011 1
coaC 1100 12
doD 1101 13
eoE 1110 14
forF 1111 15

An aphabetic bit literal shall be mapped according to the following rules:

a) Anaphabetic bit literal in octal base shall be mapped into three subsequent occurrences of the same hit
literal in binary base.

b) An aphabetic bit literal in hexadecimal base shall be mapped into four subsequent occurrences of the
same bit literal in binary base.

IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 125

Example

" 02xwou isequivalent to' b010_xxx_ww_000_uuu
"hLux isequivalent to' bLLLL_uuuu_xxxx

An integer can be represented by avector of bit literals, according to the following mathematical relationship.

B-1
unsigned integer N = z s(p) 2°
p=0
B-2
signed integer N =3 s(p) 2" -sm®*
p=0
where
N isthe integer.

B is the bitwidth of the vector of bit literals.
p isthe position of a bit within the vector, counted from O to B-1.
S(p) isthe scalar value (zero or one) of the bit at position p.
Sisthe scalar value (zero or one) of the MSB, i.e,, the bit at position B-1.
The bitwidth B of avectorized boolean variable restricts the range of a corresponding integer N as follows:
unsigned integer 0<N<28_1
signed integer 2P TaNg2® o

A vector pin (see Section 9.7) can be used as apin variable holding a vectorized boolean value. The position of a
bit isrelated to an index within the pin declaration as follows:

_ (LSB —i if(LSB > MSB)
i —LSB if(LSB < MSB)

where
i isthe index within a vector pin.
L SB isthe rightmost index within a vector pin. The corresponding position is 0.
MSB is the leftmost index within a vector pin. The corresponding position is B-1.

Example:

PIN [5:8] ny_vector_pin;

bit[index] position comment
my_vect or _pin[5] 3 MSB
my_vect or _pin[6] 2
ny_vector _pin[7] 1
ny_vect or _pi n[8] 0 LSB

126 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

10.10.3 Non-assignable boolean value

A non-assignable boolean value shall be described by a symbolic bit literal (see Section 6.7), as shown in Table
72.

Table 72—Symbolic boolean values

symbol logical value drivestrength comment
? arbitrary arbitrary use for “don’t care”
* subject to random change | arbitrary signal is not monitored

A symbolic bit literal or abased literal containing a symbolic bit lieteral can not be assigned to a pin variable as
a boolean value. A symbolic bit literal can be used within a statetable control value, but not within a statetable
datavalue.

Within the context of a vectorized boolean value, a symbolic bit literal shall be mapped according to the follow-
ing rules:

a) A symboalic bit literal in octal base shall be mapped into three subsequent occurrences of the same bit lit-
eral in binary base.

b) A symbolic bit literal in hexadecimal base shall be mapped into four subsequent occurrences of the same
bit literal in binary base.

10.11 Boolean operations and operators
10.11.1 Logical operation

The operators for alogical operation shall be defined as shown in Table 73

Table 73—Logical Operation

Operator Description

! logical inversion

&& logical and

I logical or

A boolean expression involving alogical inversion, and, or (see Table 73), nand, nor, exor, exnor (see Table 74)
shall be evaluated according to the rules of boolean algebra ** do we need a reference to a textbook on boolean
algebra here? **,

The result of the evaluation shall be true, false, or unknown.

IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 127

If an alphabetic bit literal isused as operand, only the logical value, not the drive strength, shall be considered for
evaluation. An undefined logical value within an operand shall be considered unknown.

If avectorized boolean valueis used as operand, the logical value of the operand shall be obtained by applying a
logical or to al bits of the operand.

10.11.2 Bitwise operation

The operators for a bitwise operation shall be defined as shown in Table 74

Table 74—Bitwise Operation

Operator Description

~ bit-wise inversion

& bit-wise and

| bit-wise or

bit-wise exclusive or (exor)

~& bit-wise and with inversion (nand)

~| bit-wise or with inversion (nor)

~l bit-wise exclusive or with inversion (exnor)

A bit-wiseinversion shall invert each bit of a vectorized boolean value.

The operators for bit-wise operations, except bit-wise inversion, can be used as boolean unary or as boolean
binary operators.

A boolean unary operator for the operation and, or, exor, nand, nor, or exnor shall reduce a vectorized boolean
value to a scalar boolean value by applying alogical and, or, exor, nand, nor, or exnor to all bits of the operand.

A boolean binary operator for the operation and, or, exor, nand, nor, or exnor shall apply alogical and, or, exor,
nand, nor, or exnor to each corresponding bit of two vectorized boolean values. The operands shall be LSB-
aigned. If the operands have different bitwidths, the missing bits of the operand with smaller bitwidth shall be
considered undefined. The result of the operation shall be a vectorized boolean value.

A bit-wise operation involving only scalar boolean values or single bit vectorized boolean values as operands
shall be considered equivalent to the corresponding logical operation.

10.11.3 Conditional operation

The symbols used for a conditional operation shall be defined as shown in Table 75

Table 75—Conditional Operation

Symboal Description

? operator for a condition

128 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

Table 75—Conditional Operation

Symboal Description

delimiter between aternatives

If the boolean sub-expression to the left of the condition operator evaluates true, the boolean sub-expression to
the right of the condition operator shall be evaluated. Otherwise, the boolean expression to the right of the delim-
iter between alternatives shall be evaluated. If multiple conditions and alternatives exist within a boolean expres-
sion, the evaluation shall proceed from the | eft to the right.

10.11.4 Integer arithmetic operation

The operators for an integer arithmetic operation shall be defined as shown in Table 76.

Table 76—Integer Arithmetic Operation

Operator Description
+ add
- subtract
* multiply
/ divide
% modulus

A boolean expression involving an integer arithmetic operation with operands represented as integer shall be
evaluated according to the rules of integer arithmetic ** do we need a reference to a textbook on integer arith-
metic here? **.

If an operand is represented as a based literal, the operand shall be converted into an integer according to
Section 10.10.2. This conversion is well-defined, if each bit has the logical value true or false. The MSB of a
based literal shall be interpreted according to the datatype annotation value (see Section 9.9.7) of a pin variable
associated with the based literal.

An operand represented as a bit literal shall be treated in the same way as a single bit binary based literal.
If abit literal or abit of a based literal has the logical value unknown, the conversion into an integer is not well-

defined. In this case, an application can optionally perform a partial evaluation of the boolean expression, by
replacing the value unknown with the value true or false.

IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 129

10.11.5 Shift operation

The operators for a shift operation shall be defined as shown in Table 77

Table 77—Shift Operation

Operator Description

<< shift left

>> shift right

A shift operation shall involve two operands. The LHS operand shall be a vectorized boolean value, represented
by an integer, by a based literal, or, as atrivia case, by abit literal. The RHS operand shall be an unsigned inte-
ger N in the range between zero and the bitwidth of the LHS operand, specifying the number of positions by
which the bits of the LHS operand are to be shifted.

For shift left, N bits of the LHS operand shall be replaced with the logical value unknown, starting from the L SB.

For shift right, N bits of the LHS operand shall be replaced with the logical value unknown, starting from the
MSB.

10.11.6 Comparison operation

The operators for a comparison operation shall be defined as shown in Table 78

Table 78—Comparison Operation

Operator Description

== equal

1= non equal

greater

less

>= greater or equal

<= lesser or equal

A comparison involving operands represented as integer shall be evaluated according to the rules of integer
arithmetic ** do we need a reference to atextbook on integer arithmetic here? **.

If an operand is represented as a based literal, the operand shall be converted into an integer according to
Section 10.10.2. This conversion is well-defined, if each bit has the logical value true or false. The MSB of a
based literal shall be interpreted according to the datatype annotation value (see Section 9.9.7) of a pin variable
associated with the based literal.

If abit of abased literal has the logical value unknown, the conversion into an integer is not well-defined. In this

case, an application can optionally perform apartial comparison, by replacing the value unknown with the value
true or false.

130 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

If the operands are integers or the conversion from based literal to integer is well-defined, a comparison shall
evaluate true or false. If the conversion from based literal to integer is not well-defined, a comparison can evalu-
ate unknown.

A comparison between scalar boolean values or single bit vectorized boolean values shall consider both the logi-
cal value and the drive strength as criterion for comparison

The equal comparison considering drive strength shall be evaluated according to the following Table 79

Table 79—Equal comparison considering drive strength

logical value _ drive strength . result
(true, false, unknown, or undefined) | (strong, weak, zero, or undefined)
same for both operands same for both operands true
same for both operands different for each operand false
different for each operand arbitrary false

The non-equal comparison shall evaluate true, if the equal comparison evaluates false, and vice-versa.

Note: To compare scalar boolean values or single bit vectorized boolean values considering the logical value
only, the exor operation can be used instead of the non-equal comparison, and the exnor operation can be used
instead of the equal comparison.

The greater comparison considering drive strength shall be evaluated according to the following Table 80

Table 80—Greater comparison considering drive strength

[| e desrgn e
true fase arbitrary true
true unknown arbitrary unknown
false true arbitrary false
false unknown arbitrary false
unknown true arbitrary unknown
unknown false arbitrary unknown
unknown unknown arbitrary unknown
true true same for both operands false
false fase same for both operands false
true true different for each operand unknown
false fase different for each operand | unknown

IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 131

Thelesser comparision shall be evaluated in the same way as the greater comparison, when the LHS operand and
the RHS operand switch places.

The greater-or-equal comparison shall be evaluated as logical or between greater comparison and equal com-
parison.

The lesser-or-equal comparison shall be evaluated as logical or between lesser comparison and equal compari-
son.

10.11.7 Operator priorities

The binding priority of operationsin a boolean expression shall be from the strongest to the weakest in the fol-
lowing order:

a) operation enclosed by parentheses

b) booleanunary(!,~, & ~&|,~|,", ~")

c) exor (M), exnor (=), comparison (>, <, >=, <=, ==, | =), shift (<<, >>)
d and (& &&), nand (~&), multiply (*), divide (/), modulus (%9

e or(,]||), nor(~]),add (+), subtract (-)

f) operator and delimiter for conditional operation (?, :)

When operations of the same binding priority are subsequently encountered in a boolean expression, the evalua-
tion shall proceed from the left to the right.

10.12 Vector expression

A vector expression shall be defined as shown in Syntax 78.

vector_expression ::=
vector_expression)
| vector_unary boolean_expression
| vector_expression vector_binary vector_expression
| boolean_expression ? vector_expression :
{ boolean_expression ? vector_expression : }
Vector_expression
| boolean_expression control_and vector_expression
| vector_expression control_and boolean_expression
vector_unary ::=
edge literal
vector_binary ::=
& N&& || || [->]~> <> | <> | &> |<&>
control_and ::=

& |&&

Syntax 78—Vector expression

The purpose of a vector expression to specify a sequence of events. In a static application context, the vector
expression shall be evaluated against a proposed sequence of events. In a dynamic application context, a vector
expression shall be evaluated against a monitored sequence of events.

A vector expression shall evaluate true, when the specified sequence of events is satisfied or detected, i.e., the
vector expression matches a proposed or monitored sequence of events. The true evaluation of a vector expres-
sion constitutes an event by itself, which can be used as a trigger within the context of a behavior statement (see
Section 10.4).

132 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

10.13 Operators for event specification

The term event is used synonymously to contents of an arbitrary vector expression.

10.13.1 Specification of a single event

An edge literal (see Section 6.9) shall be used as a vector unary operator to specify a single event. The operand

shall be aboolean expression. A single event on the operand shall be interpreted according to the following Table
8l

Table 81—Specification of a single event

row edgeliteral event on operand

1 first_bit literal second hit_literal value beforeisfirst_bit literal, value after is second_bit_litera

2 first_based literal second based literal | value beforeisfirst based literal, value after is second based_literal

3 ”? vaue before and after the event is arbitrary

4 * state of operand is random after the event

5 *9 state of operand is random before the event

6 ?! operand changes from arbitrary value to arbitrary different value

7 ?~ every binary digit of the operand changes from arbitrary value to
arbitrary different value

8 ?- operand does not change its value

An edge literal consisting of two consecutive alphanumerical bit literals (row 1) can be used for a scalar operand.
An edge literal consisting of two consecutive based literals (row 2) can be used for a scalar operand or for avec-
torized operand, as long as the bitwidth of the operator is compatible ith the bitwidth of the operand. An edge lit-
eral consisting of two consecutive symbolic bit literals (row 3, 4, 5) can be used for either ascalar or avectorized
operand. A symbolic edge literal (row 6, 7, 8) can be used for either a scalar or a vectorized operand.

An edge literal (row 8 in particular) can specify the same value before and after the event. Such a specification
shall beinterpreted as event by exclusion, i.e., an event happens, but not on the operand.

An arbitrary value shall be comprised within the set of applicable values for the operand, i.e., ascalar operand or
abinary digit of avectorized operand can have avalue specified by an a phanumerical bit literal, an operand with
datatype unsigned can have an arbitrary unsigned integer value within the range of specified bitwidth, an oper-
and with datatype signed can have an arbitrary signed integer val ue within the range of specified bitwidth.

A random value shall be interpreted as an arbitrary value subjected to random change. In a dynamic application
context, an event on a variableis not monitored while the variable isin random value state.

IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 133

A single event can be described by atiming diagram asillustrated in the following figure 16.

vector unary operator corresponding timing diagram
|
01 |
|

“d5'd9 value=5 >|< value=9

?? >|<

2 >|<

event occurence time

Figure 16—Timing diagrams for single events

The specification of asingle event by itself does not imply any transition time. A single event can happen instan-
taneously. The transition timein figure 16 is only for the purpose of illustrating the difference between ?? and ?!.

The operator ?? shall be considered neutral operator, since a specified single event involving ?? on an arbitrary
operand always matches a proposed single event on any operand. A single event involving the neutral operator
shall be considered neutral single event.

10.13.2 Temporal order of events

A vector binary operator shall be used to specify a temporal order between events, thus establishing an event
sequence. Each operand shall be a vector expression. The operation result shall be another vector expression.

The vector expression shall be evaluated against a proposed or monitored event sequence. The proposed or mon-
itored event sequence shall be established as follows:

a) A primary event sequence shall be established by representing in temporal order al single eventson a set
of pin variables. The set of pin variables shall be specified either by the scope annotation (see
Section 9.9.15) within a pin declaration or by the monitor annotation (see Section 9.17.9) within avector
declaration. The elapsed time between subsequently occuring single events can vary between arbitrarily
large and arbitrarily small values.

Note: In a dynamic application context, “all” single events can be eventually reduced to “the N latest relevant” single events,
where N is large enough to contain the specified vector expression.

b) Thesingle events on pin variables involved in the vector expression shall be reduced to single events on
boolean expressions wherein the pin variables are involved. Other single events on these pin variables

shall be disregarded. The single events on pin variables not involved in the vector expression shall be not
be reduced.

Example:

134 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

A set of pin variables applicable for two vector expressions viand v, iSA, B, C, D.
The vector expression v, reads (01 (A& B) -> 10 (B|C)).
The vector expression v, reads (1? A -> 10 (C & ! D)).

Therefore, the primary event sequence represents the single eventson A, B, C and D.
The reduced event sequence for evaluation of v; represents the single events on (A& B), (B|C) and D.
The reduced event sequence for evaluation of v, representsthe singleeventson A, B and (C & ! D).

The following picture shows sample event sequences.

T T T T T T T T T T T T
primary event sequence A | | | T 1 |
B —t —t— I I | |
I | | | | -
C | |1 | | | |
I [I I | | I I
D Ll [| || |
| L1 | | | | | 1 | |
reduced event sequence o ! ! ! P '
for evaluation of vy I I S [I
BIC [| |
D ||| | | | |
| L1 | | | | | |
reduced event sequence Pl ' ot Ll
for evaluation of v A] | I — I
B | T |
C&!D || | | ||
L1 | | | | 1

The temporal order concept does not specify or imply a particular time interval between consecutive single
event. Mathematically, each time interval shall be greater than zero, but it can be arbitrarily close to zero. Two
single events can occur simultaneously, i.e., at the same time, either by implication or by co-incidence.

The following rules shall apply for the temporal order of events.

a)
b)
0)
d)

e

f)

A value change of a boolean expression and a single event on a pin variable causing this value change
shall be considered simultaneous by implication.

A value change of a vectorized pin variable and a corresponding value change of any part of the vector-
ized pin variable shall be considered simultaneous by implication.

Within the context of abehavior statement, the assignment of a boolean expressionto apin variable asa
conseguence of a value change of the boolean expression shall trigger an advancement in time.

Within the context of a control statement as part of a behavior statement, the assignment of a boolean
expression to a pin variable as a consequence of a value change of a control expression shall trigger an
advancement in time.

Single events on arbitrary independent pin variables can occur simultaneously by co-incidence.

In the context of a vector statement, all pin variables shall be considered independent, even though a
causal dependency between some pin variables can exist in the context of abehavior statement.

It is possible that the application does not support a monitor capable of detecting simultaneously occuring events
by co-incidence. In this case, the temporal order of such eventsis not predictable.

Example:

IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 135

A behavior statement contains the boolean assignment Z = A& B.

The single event (01 (A& B)) is caused by the single event (01 A).

The single events (01 (A& B)) and (01 A) are considered to occur simultaneously by implication.

Within the context of the behavior statement, the single event (01 Z) is considered to occur after the single event
(01 (A& B)).

Outside the context of the behavior statement, the variables A and Z are considered independent. The numerical
value of the measured propagation delay from A to Z could be greater than zero, lesser than zero, or zero. There-
fore, the single events (01 A) and (01 Z) could occur simultaneously by co-incidence.

10.13.3 Canonical specification of an event

The operatorsin the following Table 82 shall be used for a canonical specification of avector expression.

Table 82—Canonical specification of an event

symbol operator name explanation
-> immediately followed by LHS event occurs before RHS event,
no event can occur in-between
~> eventually followed by LHS event occurs before RHS event,
an arbitrary number of events can occur in-between
&& or& simultaneous occurence LHS event and RHS event occur at the same time
[l or| alternative occurence Either LHS event or RHS event occur
&> closely followed by LHS event occursimmediately before RHS event,

or both events occur at the sametime

The semantic meaning of the operatorsis furthermore detailed as follows:

The immediately followed by operator applied to a sequence of single events shall specify that the latest single
event within the LHS vector expression immediately precedes the earliest single event within the RHS vector
expression.

The eventually followed by operator applied to a sequence of single events shall specify that the latest single
event within the LHS vector expression occurs earlier than the earliest single event within the RHS vector
expression.

The simultaneous occurence operator applied to a sequence of single events shall specify that each Nth latest sin-
gle event within the LHS vector expression occurs at the same time as each Nth latest single event within the
RHS vector expression.

This rule can be formulated as follows:

a) Product involving immediately followed by and simultaneously occuring operator
(WMi>Wiye (Wh>wy) =Mia Wy >N e vy

where vMi and vNi , respectively, are vector expressions describing a sequence of M single events each and N sin-
gle events each, respectively, ordered by the immediately followed by operator.

If the LHS and RHS vector expressions comprise a different number of subsequently occuring single events, the
shorter vector expression shall be left-extended with neutral single events.

136 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

b)

Product involving sequences of events with different length
(WMi>Wiye Wy =W (Wie)

A set of mathematical rules for evaluation of acompound vector expression shall be established, wherein the the
symbols v; represent vector expressions within the compound vector expression.

<)
d)

e)

f)
9)
h)

)
k)

Associativity for immediately followed by operator

Vy->Vp > V3= (Vg ->Vp) -> Vg3 =Vy -> (Vo ->V3)

Associativity for eventually followed by operator

Vp >V =>V3= (Vg ~>Vy) =>V3=V; ~>(Vp~>V3)

Mixed associativity for immediately followed by and eventually followed by operator
V1>V ~>V3 = (Vg ->Vp) ~>V3 =V -> (Vo ~>V3)

V1>V ->V3 = (V> Vp) -> V3 =Vy ~> (V> V3)

Assocativity for simultaneous occurence operator

Vl& V2& V3:(Vl& Vo)& V3:V1& (V2& V3)

Commuitativity for simultaneous occurence operator

Vi & Vo =V & Vi

Reduction rule for simultaneous occurence operator

Vi & V1=V

Assocativity for alternative occurence operator

ViIV2 V3= (V| V2) [V3=Vy[(V2]V3)

Commuitativity for alternative occurence operator

ViV =Va vy

Reduction rule for alternative occurence operator

Vi|vi=vy

Distributivity between immediately followed by operator and alter native occurence operator
(vilVz) ->v3=(Vvy->V3)|(V2->V3)

Vy-> (V2] V3) = (Ve ->Vp) [(Vy->V3)

Distributivity between eventually followed by operator and alter native occurence operator
(vilve) >v3=(v3~>V3)[(V2~>V3)

Vi ~> (V2| Vv3) = (Vi ~>V2) | (Vg ~>V3)

Distributivity between simultaneous occurence operator and alter native occurence operator
(Vilv2) & v3=(Vvy & Vv3)|(V2& V3)

The closely followed by operator shall be mathematically defined as follows:

0)

V1&>Vo =(Vi& Vo) [(V1->Vy)

Therefore, the closely followed by operator applied to a sequence of single events shall specify that the latest sin-
gle event within the LHS vector expression immediately precedes the earliest single event within the RHS vector
expression, or, each Nth |atest single event within the LHS vector expression occurs at the same time as each Nth
latest single event within the RHS vector expression.

A general vector expression can be mathematically formulated as a canonical “sum of products’.
m

1

p _ —
Vi = Vi@ Vicy - ORimVim = [PiyVia)

IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 137

where V® is a vector expression in “sum” form applying the alter native occurence operator to vector expressions
vpj, and each vpj isavector expression in “product” form applying the operators immediately followed by, even-
tually followed by, or simultaneous occurence to single events v ;. The usage of the symbols op;(;), I and Z for
vector binary operatorsis only for mathematical representation, it is not a syntax feature for a vector expression.
Also, the first operator op;(1) isirrelevant when converting the mathematical representation into a vector expres-
sion.

Example:

my

v = [%P1V m =3 opy(y) = nil opy2) = -> Opy3) = ->
i=1 Vi) = (01A) vy =(10A) vy3 =(10B)
my

p_ .

Va = [9P26)Va()y mp=3 0py(1) = Nil Opy(p) = -> Opy(z) = ->

i=1 V2(1) = (01 B) V2(2) = (10 B) V2(3) = (10 A)

2
v’ = 3 = (01A)->(10A) -> (10B) [(01 B) -> (10 B) - > (10 A)
j=1
10.13.4 Specification of a completely permutable event
Permutation operations shall be defined for events immediately followed by each other, for events eventually fol-
lowed by each other, and for events closely followed by each otheer. The operands, i.e., arbitrary vector expres-

sions v;, shall be subjected to alternative event sequences with completely permutable temporal order.

The symbols for permutation operators are shown in the following Table 83.

Table 83—Specification of a completely permutable event

symbol operator name explanation
<> permutation of eventsimmediately fol- | LHS event immediately followed by RHS event
lowed by each other or
RHS event immediately followed by LHS event
<~> permutation of events eventualy fol- LHS event eventually followed by RHS event
lowed by each other or
RHS event eventually followed by LHS event
<&> permutation of events closely followed | LHS event immediately followed by RHS event
by each other or

RHS event eventually followed by LHS event
or
LHS event and RHS event occur simultaneously

The permutation operator for two events immediately followed by each other shall be mathematically defined as
follows:

p) vi<->Vo =(Vvi->Vp)[(Va->Vy)

The permutation operator for two events eventually followed by each other shall be mathematically defined as
follows:

138 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

Q Vi<V =(vp> Vo) | (Va~>Vvp)

The permutation operator for two events closely followed by each other shall be mathematically defined as fol-
lows:

N vi<&>Vy =(V1&>Vp) | (Vo &>Vyq)

The definition of a permutation operator for N events (N>2) shall be extended for N+1 events in the following
way:

N NN N o) where Vi) O () o) N
[1<>Ve= 2 [TV = 2V with Vi = []Vio
k=1 j=1li=1 j=1 i=1
N+1 N N+1 k=1 N (N+1)! N+1

— — p(K +1) pP(N+1) _
[M<"%= 2 X (I_l '>Vi(i)j '>V1(N+1)(|_| '>Vj<i)j = 2V with Vi = 1 >vio
k=1 j=ik=1'=1 i =k j=1 i=1

If the operator <-> is globally replaced by <~> or <& >, respectively, the operator -> shall be globally replaced by
~> Or & >, respectively.

A vector expression with N operands v, subjected to a permutation operator (i.e., <-> or <~> or <&>) is equivar
lent to a vector expression with NI sum terms wherein each sum term represents a particular permutation of V.
Each sum term consists of N product terms, i.e., a sequence of N events vy subjected to a corresponding fol-
lowed by operator (i.e., -> or ~> or &>). There are N! such sequences of events. The (N+1)th operand can be
inserted in N+1 places within each sum term. Therefore a vector expression with N+1 operands vy, subjected to a
permutation operator is equivalent to a vector expression with (N+1)! sum terms, each of which consists of N+1
product terms.

As each permutation operator is defined for N=2 events, the definition can be immediatley extended to N=3
events.

Permutation of 3 immediately followed events:

Vl <-> V2 <-> V3 =
(Vg -> Vo ->Vg) | (V1 -> V3 -> V) | (V3 -> Vg -> Vo) | (Vo -> Vg -> V3) | (Vo -> V3 -> Vq) | (V3 -> Vo -> V)

Permutation of 3 eventually followed events:

Vl <~> V2 <~> V3 =
(Vg ~> Vo ~>Vg) | (V1 ~> V3 ~> V) | (V3 ~> Vg ~> Vo) | (Vo ~> V1 ~>V3) | (Vo ~> V3 ~> V) | (V3 ~> Vo ~> Vy)

Permutation of 3 closely followed events:

Vy <&>V, <&> V3=
(V1 & V) &>V3) | (Vg &V &3Vp) | (Vg &5V &5Vy) | (Vo &>Vy &>V3) | (Vo &>V3 &3Vy) | (Vg &5V, &5Vy)

From N=3 events, the definition can be extended to N=4 events, and so forth.
10.13.5 Specification of a conditional event

A conditional event shall be defined by a condition operator with avector expression and a boolean expression as
operands.

IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 139

The symbols for condition operators are shown in the following Table 83.

Table 84—Specification a conditional event

symbol operator name comment
&& control-and operator overloaded symbol, also used for logical and (see
or Table 73) and bitwise and (Table 74)
&
? condition operator see also Table 75
delimiter between alternatives see also Table 75

A conditional event involving the control-and operator, an arbitrary vector expression v and an arbitrary boolean
expression b shall be mathematically defined as follows:

s) Vv&b=(*1b)->v->(1*b)
The vector expression v shall be evaluated while b is true. Commutativity shall apply for the operands v and b.
) v&b=b&v

A conditional event involving the condition operator, the delimiter between alternatives, arbitrary vector expres-
sions v, and v, and an arbitrary boolean expression b shall be mathematically defined as follows:

u b?viiv,=vi& blv,&!b

If the boolean expression to the left of the condition operator evaluates true, the vector expression to the right of
the condition operator shall be evaluated. Otherwise, the bool ean expression to the right of the delimiter between
alternatives shall be evaluated. If multiple conditions and alternatives exist, the eval uation shall proceed from the
left to the right.

10.13.6 Operator priorities

The binding priority of operationsin avector expression shall be from the strongest to the weakest in the follow-
ing order:

a) operation enclosed by parentheses

b) vector unary, i.e., edgeliteral

C) permutation operators (<- >, <~>, <&>)

d) and operator (&, &&), to be interpreted as simultaneous occurence or as control-and
e) followed-by operators (- >, ~>, &)

f) or operator (| ,| |), to beinterpreted as alter native

g) operator and delimiter for conditional operation (?, :)

When operations of the same binding priority are subsequently encountered in a boolean expression, the evalua
tion shall proceed from the left to the right.

140 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

11. Constructs for electrical and physical modeling

** Add lead-in text**

11.1 Arithmetic expression

An arithmetic expression shall be defined as shown in Syntax 79.

arithmetic_expression ::=
arithmetic_expression)

| arithmetic_value

| { boolean_expression ? arithmetic_expression : } arithmetic_expression

| [unary_arithmetic_operator] arithmetic_operand

| arithmetic_operand binary_arithmetic_operator arithmetic_operand

| macro_arithmetic_operator (arithmetic_operand { , arithmetic_operand })
arithmetic_operand ::=

arithmetic_expression

Syntax 79—Arithmetic expression

11.1.1 Unary arithmetic operator

An unary arithmetic operator shall be defined as shown in Syntax 80.

unary_arithmetic_operator ::=
+

Syntax 80—Unary arithmetic operator

Table 85 defines the semantics of unary arithmetic operators.

Table 85—Unary arithmetic operators

Operator Description Comment
+ Positive sign. Neutral operator.
- Negative sign.

11.1.2 Binary arithmetic operator

A binary arithmetic operator shall be defined as shown in Syntax 81.

IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual

141

binary_arithmetic_operator ::=
+

%

};
|/
|**
I

Syntax 81—Binary arithmetic operator

Table 86 defines the semantics of binary arithmetic operators.

Table 86—Binary arithmetic operators

Operator Description Comment
+ Addition
- Subtraction
* Multiplication
/ Division Result includes fractional part.
** Power
% Modulus Remainder of division.

11.1.3 Macro arithmetic operator

A macro arithmetic operator shall be defined as shown in Syntax 82.

macro_arithmetic_operator ::=
S
| eXp
|log
[min
| max

Syntax 82—Macro arithmetic operator

Table 87 defines the semantics of macro arithmetic operators.

Table 87—Macro arithmetic operators

Operator Description Comment
| og Natural logarithm. 1 operand, oper and > O.
exp Natural exponential. 1 operand.
abs Absolute value. 1 operand.
mn Minimum. N>1 operands.

142 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

Table 87—Macro arithmetic operators (Continued)

Operator Description Comment

max Maximum. N>1 operands.

The priority of operatorsin arithmetic expressions shall be from strongest to weakest in the following order:

a) unary arithmetic operator (+, -)

b) power (**)

c¢) multiplication (*), division (/), modulo division (%
d) addition (+), subtraction (-)

Examples for arithmetic expressions

1.24

- vdd

Cl + C2

MAX (3.5*C, -vdd/2 , 0.0)
(C>10) ? vdd**2 : 1/2*vdd - 0.5*C

11.2 Arithmetic model

An arithmetic model shall be defined as a trivial arithmetic_ model, a partial arithmetic model, or a full arith-
metic model, as shown in Syntax 83.

arithmetic_model ::=
trivia_arithmetic_model
| partial_arithmetic_model
| full_arithmetic_model
| arithmetic_model_template_instantiation

Syntax 83—Arithmetic model statement
The purpose of an arithmetic model isto specify a measurable or a calculable quantity.
11.2.1 Trivial arithmetic model

A trivial arithmetic model shall be defined as shown in Syntax 84.

trivial_arithmetic_model ::=
nonescaped_identifier [name_identifier] = arithmetic_value
| nonescaped_identifier [name_identifier] = arithmetic_value{ { model_qualifier } }

Syntax 84—Trivial arithmetic model

No mathematical operation is necessary to evaluate a trivial arithmetic model. The arithmetic value associated
with the arithmetic model represents the evaluation result. One or more model qualifier statements can be associ-
ated with atrivial arithmetic model.

IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 143

11.2.2 Partial arithmetic model

A partial arithmetic model shall be defined as shown in Syntax 85.

partial_arithmetic_model ::=
nonescaped_identifier [name_identifier | { { partial_arithmetic_ model_item} }
partial_arithmetic_model_item ::=
model_qualifier
| table
| trivial_min-max

Syntax 85—~Partial arithmetic model

A partial arithmetic model does not specify a mathematical operation or an arithmetic value. Therefore it can not
be mathematically evaluated.

The purpose of apartia arithmetic model isto specify one or more model qualifier statements, a table statement,
or atrivial min-max statement. The specification contained within a partial arithmetic model can be inherited by
another arithmetic model of the same type, according to the following rules:

a) If the partia arithmetic model has no name, the specification shall be inherited by all arithmetic models
of the same type appearing within the same parent statement or within a descendant of the same parent
Statement.

b) If the partia arithmetic model has a name, the specification shall be only inherited by an arithmetic
model containing a reference to the partia arithmetic model, using the model reference annotation (see
**event_reference??).

¢) Anarithmetic model can override an inherited specification by its own specification.

11.2.3 Full arithmetic model

A full arithmetic model shall be defined as shown in Syntax 86.

full_arithmetic_model ::=
nonescaped_identifier [name_identifier] { { model_qualifier } model_body { model_qualifier } }
model_body ::=
header-table-equation [trivial_min-max]
| min-typ-max
| arithmetic_submodel { arithmetic_submodel }

Syntax 86—Full arithmetic model

The model body specifies mathematical data associated with the arithmetic model. The datais represented either
by a header-table-equation statement, or by a min-typ-max statement, or by one or more arithmetic submodel
statements.

The mathematical operation or the arithmetic value for evaluation of the arithmetic model can be contained

within one or more arithmetic submodels (see 11.4.3). The selection of an applicable submodel is controlled by
the semantics of the keyword that identifies the type of the arithmetic submodel.

11.3 HEADER, TABLE, and EQUATION

A header table egquation statement shall be defines as shown in Syntax 87.

144 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

header-table-equation ::=
header table
| header equation

Syntax 87—Header table equation
A header-table-equation statement specifies a procedure for evaluation of the mathematical data.
11.3.1 HEADER statement

A header statement shall be defined as shown in Syntax 88.

header ::=
HEADER { partia_arithmetic model { partial_arithmetic_model } }

Syntax 88—HEADER statement
Each partial arithmetic model within the header statement shall represent a dimension of an arithmetic model.
11.3.2 TABLE statement

A table statement shall be defined as shown in Syntax 89.

le::=
TABLE { arithmetic_value{ arithmetic value} }

Syntax 89—TABLE statement

A table statement within a partial arithmetic model shall define the set of legal values for an arithmetic model
that inherits the specification of the partial arithmetic model.

A table statement within afull arithmetic model shall represent alookup table. If the model body contains atable
statement, each dimension within the header statement shall also contain atable statement.

The mathematical relation between alookup table and its dimensions shall be established as follows:

N N>1
S=] s21
=t 0<P<S-1
N i—-1 S(i)>1
P =3 P(i) M S(k) -
El kll 0<P(i)<S(i)-1

where

N denotes the number of dimensions

Sdenotes the size of the lookup table, i.e., the number of arithmetic values within the lookup table

P denotes the position of an arithmetic value within the lookup table

(i) denotes the size of adimension, i.e., the number of arithmetic valuesin the table within adimension
P(i) denotes the position of an arithmetic value within a dimension

IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 145

A dimension can be either discrete or continuous. In the latter case, interpolation and extrapolation of table val-
ues is allowed, and the arithmetic values in this dimension shall appear in strictly monotonous ascending order.

11.3.3 EQUATION statement

An equation statement shall be defined as shown in Syntax 90.

equation ::=
EQUATION { arithmetic_expression }

| equation_template_instantiation

Syntax 90—EQUATION statement

The arithmetic expression within the equation statement shall represent the mathematical operation for evalua
tion of the arithmetic model.

Each dimension shall be involved in the arithmetic expression. The arithmetic expression shall refer to a dimen-

sion by name, if aname identifier exists or by type otherwise. Consequently, the type or the name of adimension
shall be unique.

11.4 Statements related to arithmetic model

** Add lead-in text**

11.4.1 Model qualifier

A model qualifier statement shall be defined as shown in Syntax 91.

model_qualifier ::=
annotation
| annotation_container
| event_reference
| from-to
| auxiliary_arithmetic_model
| violation

Syntax 91—Model qualifier statement

11.4.2 Auxiliary arithmetic model

An auxiliary arithmetic model shall be defined as shown in Syntax 92.

auxiliary_arithmetic_model ::=
nonescaped_identifier = arithmetic_value;
| nonescaped_identifier [= arithmetic_value] { auxiliary_qualifier { auxiliary_qualifier } }
auxiliary_qualifier
annotation
| annotation_container
| event_reference
| from-to

Syntax 92—Auxiliary arithmetic model

146 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

An auxiliary arithmetic model can be considered as a special case of either atrivial arithmetic model or a partial
arithmetic model, since the rule for auxiliary qualifier is a true subset of the rule for model qualifier. In particu-
lar, the items auxiliary arithmetic model and violation are disallowed in the rule for auxiliary qualifier.

11.4.3 Arithmetic submodel

An arithmetic submodel shall be defined as shown in Syntax 93.

arithmetic_submodd ::=
nonescaped_identifier = arithmetic_value ;
| nonescaped_identifier { [violation] min-max }
| nonescaped_identifier { header-table-equation [trivial_min-max] }
| nonescaped_identifier { min-typ-max }
| arithmetic_submodel_template_instantiation

Syntax 93—Arithmetic submodel
11.4.4 MIN-MAX statement

A min-max statement shall be defined as shown in Syntax 94.

min-max ::=
min [max]
| max [min]
min ::=
N = arithmetic_value;
= arithmetic_value{ violation }
{ [violation] header-table-equation }

i S5
zz

MAX = arithmetic_value;
MAX = arithmetic_value{ violation }
M AX { [violation] header-table-equation }

Syntax 94—MIN-MAX statement
11.4.5 MIN-TYP-MAX statement

A min-typ-max statement shall be defined as shown in Syntax 95.

min-typ-max ::=
[min-max] typ [min-max]
typ =
TYP = arithmetic_value;
| TY P { header-table-equation }

Syntax 95—MIN-TYP-MAX statement
11.4.6 Trivial MIN-MAX statement
A trivial min-max statement shall be defined as shown in Syntax 96
A trivial min-max statement defines the legal range of valuesfor an arithmetic model. The arithmetic value asso-
ciated with the trivial min statement represent the smallest legal number. The arithmetic value associated with the

trivial max statement represents the greatest legal number. Per default, the range includes between negative and
positive infinity.

IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 147

trivial_min-max ::=
trivial_min [trivial_max]
| trivia_max [trivia_min]
trivial_min ::=
MTN = arithmetic_value;
trivia_max ::=
MAX = arithmetic_value

Syntax 96—Trivial MIN-MAX statement

A trivial min-max statement within a dimension of afull arithmetic model defines the range of validity of a par-
ticular dimension. An application tool can still evaluate the header-table-equation statement outside the range of
validity, however, the accuracy of the evaluation can not be guaranteed.

The following semantic restrictions shall apply:

a) A partia arithmetic model that is not a dimension of alookup table can either contain atrivial min-max
statement or a table statement but not both.

b) If asyntax rule alows both partial arithmetic model and full arithmetic model, a trivial min-max state-
ment shall be interpreted as a min-typ-max statement, if the arithmetic model contains neither a header-
table-equation statement nor a arithmetic submodel and no other arithmetic model can inherit the trivial
min-max statement.

Rule @) is established because a trivial min-max statement would be redundant or eventually contradictory to a
table statement, since the table statement already defines a discrete set of legal values.

Rule b) is established because the syntax rule for trivial min-max statement is a true subset of the syntax rule for
min-typ-max statement.

11.4.7 Arithmetic model container

An arithmetic model container shall be defined as shown in Syntax 97.

arithmetic_model_container ::=
arithmetic_model_container_identifier { arithmetic_model { arithmetic_model } }

Syntax 97—Arithmetic model container

11.4.8 LIMIT statement

A limit statement shall be defined as shown in Syntax 98.

limit ::=
LIMIT { limit_item{ limit_item} }
limit_item ::=
limit_arithmetic_model
limit_arithmetic_model ::=
nonescaped_identifier [name_identifier] { { model_qualifier } Iimit_arithmetic_model_body}
limit_arithmetic_model_body ::=
limit_arithmetic_submodel { limit_arithmetic_submode }
| min_max
limit_arithmetic_submodel ::=
nonescaped_identifier { [violation] min-max }

Syntax 98—LIMIT statement

148 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

11.4.9 Event reference statement

An event reference statement shall be defined as shown in Syntax 99.

event_reference ::=
PIN_reference_single_value_annotation [EDGE_NUMBER single value _annotation]

Syntax 99—Event reference statement

11.4.10 FROM and TO statements

A fromor to statement shall be defined as shown in Syntax 100.

from-to ::=
from [to]
|[from]to

rom ::=
FROM { from-to_item { from-to_item} }
from-to_item ::=
event_reference
| THRESHOLD_arithmetic_model
t

0:=
TO { from-to_item { from-to_item} }

Syntax 100—FROM and TO statements

The event referred by the from-statement and the to-statement, respectively, shall be called from-event and to-
event, respectively.

The from-and to-statements are subjected to the semantic restriction shown in Syntax 101.

SEMANTI CS FROM {
CONTEXT {
TI ME DELAY RETAI N SLEWRATE PULSSEW DTH
SETUP HOLD RECOVERY REMOVAL NOCHANGE | LLEGAL SKEW
}
}
SEMANTI CS TO {
CONTEXT {
TI ME DELAY RETAI N SLEWRATE PULSSEW DTH
SETUP HOLD RECOVERY REMOVAL NOCHANGE | LLEGAL SKEW

Syntax 101— Semantic restriction
11.4.11 EARLY and LATE statements
An early or alate statement shall be defined as shown in Syntax 102.
11.4.12 VIOLATION statement

A violation statement shall be defined as shown in Syntax 103.

IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 149

early-late ::=
early late

early ;=
EARLY { early-late_item { early-late_item} }
early-late_item ::=
DELAY _arithmetic_model
| RETAIN_arithmetic_model
| SLEWRATE_arithmetic_model

ate ::=
LATE { early-late_item { early-late item} }

Syntax 102—EARLY and LATE statements

violation ::=
VIOLATION { violation_item { violation_item} }
| violation_template_instantiation
violation_item ::=
MESSAGE_TYPE_single_value_annotation
| MESSAGE_single_value_annotation
| behavior

Syntax 103—VIOLATION statement

A violation statement is subjected to the semantic restriction shown in Semantics 60.

SEMANTI CS VI OLATI ON {
CONTEXT {

SETUP HOLD RECOVERY REMOVAL SKEW NOCHANGE | LLEGAL
LIMT. arithnetic_nodel
LIMT.arithnetic_nodel . M N
LIMT. arithnetic_nodel . MAX
LIMT. arithnetic_nodel . arithmetic_subnodel
LIMT.arithnetic_nodel .arithmetic_subnodel . M N
LIMT.arithnetic_nodel . arithmetic_subnodel . MAX

Semantics 60—VIOLATION restriction

A violation statement can contain a behavior statement, as shown in Semantics 61.

SEMANTI CS VI OLATI ON. BEHAVI OR {
CONTEXT {
VECTOR. ari t hnmeti c_nodel
VECTOR. LIM T. ari t hneti c_nodel
VECTOR LIM T. arithmetic_nodel . M N
VECTOR LIM T. ari t hmeti c_nodel . MAX
VECTOR. LIM T. arithmeti c_nodel . arithnetic_subnodel
VECTOR LIM T. arithmetic_nodel . arithmetic_subrodel . M N
VECTOR LIM T. arithmetic_nodel . arithmeti c_subnodel . MAX

Semantics 61—VIOLATION.BEHAVIOR restriction

150 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

The violation statement can contain a message-type annotation and a message annotation.

A message_type annotation shall be defined as shown in Semantics 62.

KEYWORD MESSAGE TYPE = singl e_val ue_annotati on {
CONTEXT = VI OLATI ON ;
VALUETYPE = identifier ;
VALUES { infornation warning error }

}

Semantics 62—MESSAGE_TYPE annotation

A message annotation shall be defined as shown in Semantics 63.

KEYWORD MESSAGE = singl e_val ue_annotati on {
CONTEXT = VI OLATI ON ;
VALUETYPE = quoted_string ;

}

Semantics 63—MESSAGE annotation

11.5 Annotations for arithmetic models

** Add lead-in text**

11.5.1 UNIT annotation

A unit annotation shall be defined as shown in Semantics 64.

KEYWORD UNI T = annotation {
CONTEXT = arithnetic_nodel ;
VALUETYPE = quantity_val ue ;
DEFAULT = 1 ;

Semantics 64—UNIT annotation

11.5.2 CALCULATION annotation

A calculation annotation shall be defined as shown in Semantics 65.

KEYWORD CALCULATI ON = annotation {
CONTEXT = library_specific_object.arithmetic_nodel ;
VALUES { absol ute increnental }
DEFAULT = absolute ;

Semantics 65—CALCULATION annotation

IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 151

The meaning of the annotation valuesis shown in Table 88.

Table 88—Calculation annotations

Annotation value

Description

absol ute

The arithmetic model datais complete within itself.

i ncrenent al

The arithmetic model data shall be combined with other arithmetic model data.

11.5.3 INTERPOLATION annotation

A interpolation annotation shall be defined as shown in Semantics 66.

KEYWORD | NTERPOLATI ON = si ngl e_val ue_annotati on {
CONTEXT = HEADER arithmetic_nodel ;
VALUES { linear fit ceiling floor }
DEFAULT = fit ;

Semantics 66—INTERPOLATION annotation

The interpolation annotation shall apply for a dimension of a lookup table with a continuous range of values.
Every dimension in alookup table can have its own interpolation annotation.

The meaning of the annotation values is shown in Table 89.

Table 89—Interpolation annotations

Annotation value

Description

| i near

Linear interpolation shall be used.

ceiling

The next greater value in the table shall be used.

floor

The next lesser value in the table shall be used.

fit

Linear or higher-order interpolation shall be used.

The mathematical operations for floor, ceiling, and linear are specified as follows:

floor y(x) = y(x)
ceiling y(x) = y(x")
linear yox) = E) + (< 2x) GY(x)
X =X
where

152

Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 6

x denotes the value in a dimension subjected to interpolation.
x" and X" denote two subsequent values in the table associated with that dimension.
X denotes the value to the left of x, such that X < x, or else X denotes the smallest value in the table.
x* denotes the val ue to the right of x, such that x < x*, or else x* denotes the largest value in the table.
y denotes the evaluation result of the arithmetic model.

The mathematical operation for fit can be chosen by the application, aslong as the following conditions are satis-
fied:

y(X) is a continuous function of order N>0.

The first N-1 derivatives of y(x) are continuous.

y(x) is bound by y(x) and y(x").

In case of monotony, y(X) is also bound by linear interpolation applied to the left and the right neighbor of x.
In case of monotonous derivative, y(x) isaso bound by linear interpolation applied to x itself.

These conditions areillustrated in Figure 17.

arbitrary y(x) monotonous y(X) monotonous d y/dx
X
A AX A \\
yxXy — — yoor "= Yy — —
|
Yoy — — — Yy — — — — =K - Yoy — — — — =% _
| | | X | X
I | | I | |
| | | | | |
| | > 1 1 > | | >
X x X X X x

Figure 17—Bounding regions for y(x) with INTERPOLATION=fit
11.5.4 DEFAULT annotation

A default annotation shall be defined as shown in Semantics 67.

KEYWORD DEFAULT = singl e_val ue_annotati on {
CONTEXT { arithnetic_nodel KEYWORD }
VALUETYPE = al | _purpose_val ue ;

}

Semantics 67—DEFAULT annotation

11.5.5 MODEL annotation

A model annotation shall be defined as shown in Semantics 68.

IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 153

KEYWORD MODEL = singl e_val ue_annotation {
CONTEXT = arithnetic_nodel ;
VALUETYPE = identifier ;

Semantics 68—MODEL annotation

11.6 TIME

**|s this (and some 35 other constucts after this) a statement, an annotation, or some ‘other grouping’ ??
**and should their [abel(s), therefore, be Syntax, Semantics, or some new_namne??

|f these constructs are really statements, they need to be converted in (true BNF) syntax boxes

A time statement shall be defined as shown in Syntax 104.

KEYWORD TI ME = arithnetic_nodel {
VALUETYPE = nunber ;

}
TIME { UNIT = 1e-9; }

Syntax 104—TIME statement

A time statement can have afrom-to statement as model qualifier.

11.6.1 TIME in context of a VECTOR declaration

A time statement can be a child or a grandchild of a vector declaration. In particular, the parent of the time state-
ment can be a limit statement. In the context of a limit statement, the time statement shall specify a smallest
required time or alargest allowed time interval. Otherwise, the time statement shall specify an actually measured
timeinterval.

If the vector declaration involves a vector expression, from-to statements featuring event reference statements
shall be used as model qualifier. The time statement shall model the measured time interval between the referred

events.

If the vector declaration involves a boolean expression, the time statement appliesto atime interval during which
the boolean expression istrue. A from-to statement shall not be used as model qualifier.

11.6.2 TIME in context of a HEADER statement
A time statement can be child of a header statement, thus representing a dimension of an arithmetic model.

If the arithmetic model is not a child of alimit statement, the time dimension shall be used to describe a quantity
changing over time, which can be visualized by a waveform.

If the arithmetic model is achild of avector declaration, either a from statement or ato statement can be used as
model qualifier to define atemporal relationship between areferred event and the time dimension.

If the arithmetic model is a child of alimit statement, the time dimension shall be used to describe a dependency

between a limit for a measured quantity and the expected lifetime of an electronic circuit. A from-to statement
shall not be used as model qualifier.

154 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

11.6.3 TIME as auxiliary arithmetic model
A time statement can be achild of an arithmetic model, thus representing an auxiliary arithmetic model.

A measurement annotation (see 11.29.1) shall be used in conjunction with the time statement. The time statement
shall specify the time interval during which the measurement is taken.

If the parent arithmetic model is a child of avector declaration, afrom-to statement can be used to define atem-
poral relationship between one or two events in the vector expression and the time interval .

11.7 FREQUENCY

A frequency statement shall be defined as shown in Syntax 105.

KEYWORD FREQUENCY = arithmetic_nodel {
VALUETYPE = nunber ;

}
FREQUENCY { UNIT = 1e9; MN = 0; }

Syntax 105—FREQUENCY statement

11.7.1 FREQUENCY in context of a VECTOR declaration

A frequency statement can be a child or a grandchild of a vector declaration. In particular, the parent of the fre-
guency statement can be alimit statement. In the context of alimit statement, the frequency statement shall spec-
ify a smallest required occurrence frequency or alargest allowed occurrence frequency of the vector. Otherwise,
the frequency statement shall specify an actually measured occurrence frequency of the vector.

11.7.2 FREQUENCY in context of a HEADER statement

A frequency statement can be child of a header statement, thus representing a dimension of an arithmetic model.

If the arithmetic model is achild of avector declaration, the frequency dimension shall represent the occurrence
frequency of the vector.

If the arithmetic model is not a child of avector declaration, the frequency dimension shall be used to describe a
spectral properties of the arithmetic model in the frequency domain.

11.7.3 FREQUENCY as auxiliary arithmetic model
A frequency statement can be a child of an arithmetic model, thus representing an auxiliary arithmetic model.

A measurement annotation (see 11.29.1) shall be used in conjunction with the frequency statement. The fre-
guency statement shall specify the repetition frequency of the measurement.

A frequency statement can substitute a time statement in the capacity of an auxiliary arithmetic model, if no

from-to statement is used as model qualifier. In this case, the measurement repetition frequency f and the mea-
surement time interval t can be related by the equation f=1/1t.

11.8 DELAY

A delay statement shall be defined using ALF language as shown in Syntax 106.

IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 155

KEYWORD DELAY = arithnetic_nodel {
SI _MODEL = TIME ;
}

Syntax 106—DELAY statement
11.8.1 DELAY in context of a VECTOR declaration

A delay statement can be a child or a grandchild of a vector declaration involving a vector expression. A delay
statement shall have a from-to statement featuring event references as model qualifier. The delay statement shall
define the measured time interval between a from-event and a to-event. Both events shall be part of the vector
expression. A causal relationship between the from-event and the to-event isimplied.

A delay statement with an incomplete model qualifier featuring only a from statement or only ato statement can
be used to specify an incremental time interval to be added to another time interval. The calculation annotation
(see 11.5.2) shall be used in conjunction with such an incomplete model qualifier.

11.8.2 DELAY in context of a library-specific object declaration

A delay statement can be a child of alibrary-specific object which can be a parent of a vector. Possible parents of
avector include library, sublibrary, cell and wire. Within such a context, a delay statement can not have an event
reference within a from-to statement as model qualifier. A from-to statement can only feature threshold state-

ments. The specification given by the threshold statements shall be inherited by delay statements which are child
of avector.

11.9 RETAIN

A retain statement shall be defined as shown in Syntax 107.

KEYWORD RETAIN = arithmetic_nodel {
S| _MODEL = TIME ;
}

Syntax 107—RETAIN statement

A retain statement can be a child or a grandchild of a vector declaration involving a vector expression. A retain
statement can be used as a substitution for a delay statement in the case where the vector expression features
more than one possible to-event. Retain represents the time interval between the from-event and the earliest to-
event. Later to-events can beinvolved in a delay statement.

Retain in conjunction with delay isillustrated in Figure 18.

156 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

<fronEdge>

<f ronPi n>

<t oEdge> <t oEdge>

<t oPi n>

RETAIN

I
|
|
-/

Figure 18—RETAIN and DELAY

11.10 SLEWRATE

A dlewrate statement shall be defined as shown in Syntax 108.

KEYWORD SLEWRATE = arithnetic_nodel {
SI_MODEL = TI ME ;

}

SLEWRATE { MN = 0; }

Syntax 108—SLEWRATE statement

Slewrate shall define the duration of a single event, measured between two reference transition points. If the par-
ent of the slewrate statement is a limit statement, the slewrate statement defines a minimum required or a maxi-
mum allowed duration of an event. Otherwise, slewrate defines the actually measured duration of an event.
11.10.1 SLEWRATE in context of a VECTOR declaration

A dewrate statement can be a child or a grandchild of a vector declaration. Slewrate can also be a dimension of
an arithmetic model in the context of a vector.

The slewrate statement can have an event reference statement and a from-to statement without event reference
asmodel qualifier. The from-and the to-statement can involve threshold statements.

11.10.2 SLEWRATE in context of a PIN declaration

A dewrate statement can be a child or agrandchild of a pin declaration. In this context, no from-to statement and
no event-reference statement is allowed as model qualifier.

The slewrate statement can have arise statement or afall statement as arithmetic submodel.
11.10.3 SLEWRATE in context of a library-specific object declaration
A slewrate statement can be a child of alibrary-specific object which can be a parent of avector. Possible parents

of avector include library, sublibrary, cell and wire. Within such a context, a lewrate statement can not have an
event reference as model qualifier. A from-to statement with threshold statements can be used as model qualifier.

IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 157

The specification given by the threshold statements can be inherited by slewrate statements which are child of a
vector.

The slewrate statement can have arise statement or afall statement as arithmetic submodel.

11.11 SETUP and HOLD

A setup or hold statement shall be defined as shown in Syntax 109.

KEYWORD SETUP = arithnetic_nodel {
SI _MODEL = TIME ;

}

KEYWORD HOLD = arithmeti c_nodel {
SI _MODEL = TIME ;

}

Syntax 109—SETUP and HOLD statements

11.11.1 SETUP in context of a VECTOR declaration

A setup statement can be a child of a vector declaration. Setup represents the minimal required time interval
between a signa event and a synchronization event such that the signal is already stable when the synchroniza-
tion event occurs. The signal event and the synchronization event shall be represented as a from-event and ato-
event, respectively, within a from-to statement.

11.11.2 HOLD in context of a VECTOR declaration
A hold statement can be a child of a vector declaration.Hold represents the minimal required time interval
between a synchronization event and a signal event such that the synchronization event occurs while the signal is

till stable. The synchronization event and the signal event shall be represented as a from-event and a to-event,
respectively, within afrom-to statement.

11.11.3 SETUP and HOLD in context of the same VECTOR declaration

A setup and a hold statement can be a child of the same vector, provided the vector expression features at |east
one synchronization event and two signal events related to the synchronization event. The sum of the time inter-
vals represented by setup and hold represents a minimum required stability interval for the signa. Thisinterval
shall be greater than zero.

Setup in conjunction with hold isillustrated in Figure 19.

158 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

<t ollque>

<fr or‘lrEdge>
SETUP

clock

data | <f r onEdge> |
! HOLD
| |

<t oljz'dge>

Figure 19—SETUP and HOLD

11.12 RECOVERY and REMOVAL

A recovery or removal statement shall be defined as shown in Syntax 110.

KEYWORD RECOVERY = arithnetic_nodel {
SI _MODEL = TIME ;

}

KEYWORD REMOVAL = arithmeti c_nodel {
SI _MODEL = TIME ;

}

Syntax 110—RECOVERY and REMOVAL statements

11.12.1 RECOVERY in context of a VECTOR declaration

A recovery statement can be a child of avector declaration. Recovery represents the minimal required time inter-
val between a controlling event with higher priority and a controlling event with lower priority such that the sig-
nal with higher priority is aready inactive when the event on the signal with lower priority occurs. The event
with higher priority and the event with lower priority shall be represented as a from-event and a to-event, respec-
tively, within afrom-to statement.

11.12.2 REMOVAL in context of a VECTOR declaration

A removal statement can be a child of a vector declaration. Removal represents the minimal required time inter-
val between a controlling event with lower priority and a controlling event with higher priority such that the sig-
nal with higher priority is still active when the event with lower priority occurs. The event with higher priority
and the event with lower priority shall be represented as afrom-event and ato-event, respectively, within afrom-
to statement.

11.12.3 RECOVERY and REMOVAL in context of the same VECTOR declaration

A recovery and aremoval statement can be a child of the same vector, provided the vector expression features at
least one event with lower priority and two alternative events with higher priority. The sum of the time intervals
represented by recovery and removal represents a minimum required stability interval for the signal with higher
priority. Thisinterval shall be greater than zero.

Recovery in conjunction with removal isillustrated in Figure 20.

IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 159

<t ollque>

<fr ofrEdge> '
clock | I
| | |
| <f ronrEdge> |
| <t olIEdqe>

| I
Set, reset - I
/\RECOVERY |

|

or |

|
Set, reset
REMOVAL >|<

Figure 20—RECOVERY and REMOVAL

11.13 NOCHANGE and ILLEGAL

A nochange or anillegal statement shall be defined as shown in Syntax 111.

KEYWORD NOCHANGE = arithnetic_nodel {
SI _MODEL = TIME ;

}

KEYWORD | LLEGAL = arithmetic_nodel {
SI _MODEL = TIME ;

}

NOCHANGE { MN = 0; }

ILLEGAL {| MN = 0; }

Syntax 111—NOCHANGE and ILLEGAL statements

11.13.1 NOCHANGE in context of a VECTOR declaration

A nochange statement can be a child of a vector declaration.

If the vector declaration involves a boolean expression, nochange shall specify aminimum required time interval
during which the boolean expression is true. Nochange as a partial arithmetic model shall indicate a requirement
for the boolean expression to be forever true.

If the vector declaration involves a vector expression, nochange as a partial arithmetic model shall indicate a
requirement for the vector expression to be observed as specified. An optional from-to statement as model quali-
fier can indicate a requirement for the part of the vector expression within the time interval between the from-
event and the to-event to be observed as specified. Nochange as a full arithmetic model or as atrivia arithmetic
model shall furthermore specify aminimum required duration of the vector expression or part thereof.

11.13.2 ILLEGAL in context of a VECTOR declaration

Anillegal statement can be a child of avector declaration.

160 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

If the vector declaration involves a boolean expression, illegal shall specify a maximum allowed time interval
during which the boolean expression istrue. |llegal as a partial arithmetic model shall indicate a requirement for
the boolean expression to be never true.

If the vector declaration involves a vector expression, illegal as a partial arithmetic model shall indicate that the
vector expression is not allowed to occur. An optional from-to statement as model qualifier can indicate that a
part of the vector expression within the time interval between the from-event and the to-event is not allowed to
occur. lllegal asafull arithmetic model or asatrivia arithmetic model shall furthermore specify a maximum tol-
erated duration of the vector expression or part thereof.

11.14 SKEW

A skew statement shall be defined as shown in Syntax 112.

KEYWORD SKEW = arithmeti c_nodel {
S| _MODEL = TIME ;

}

SKEW{ M N

0; 1}

Syntax 112—SKEW statement

A skew statement can be a child of a vector declaration.

11.14.1 SKEW involving two signals

A skew statement can specify a maximum allowed time interval between a from-event and a to-event. In this
case, a from-to statement is mandatory as model qualifier. The vector declaration shall specify a vector expres-
sion such that the to-event cannot occur before the from-event.

11.14.2 SKEW involving multiple signals

A skew statement can specify amaximum allowed time separation between multiple events. In this case, a multi-
value annotation containing pin references is mandatory as model qualifier. Optionally, this multi-value annota-

tion can be accompanied by another multi-val ue annotation containing a matching number of edge numbers. The
vector declaration shall specify avector expression such that al events can occur simultaneously.

11.15 PULSEWIDTH

A pulsewidth statement shall be defined as shown in Syntax 113.

KEYWORD PULSEW DTH = arithmetic_nodel {
SI _MODEL = TI ME ;

}

PULSEWDTH { M N = 0; }

Syntax 113—PULSEWIDTH statement

A pulsewidth statement shall define the time interval between two consecutive events on the same signal. If the
parent of the pulsewidth statement is a limit statement, pulsewidth defines a minimum required or a maximum
alowed duration of the time interval. Otherwise, pulsewidth defines the actually measured time interval.

IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 161

11.15.1 PULSEWIDTH in context of a VECTOR declaration

A pulsewidth statement can be a child of a vector declaration. Pulsewidth can also be a dimension of an arith-
metic model in the context of a vector.

The pulsewidth statement can have an event-reference statement and afrom-to statement without event reference
as model qualifier. The from-and the to-statement can involve threshold statements. The event reference shall
refer to the first of two consecutive events.

11.15.2 PULSEWIDTH in context of a PIN declaration

A pulsewidth statement can be a child or a grandchild of a pin declaration. In this context, no from-to statement
and no event-reference statement is allowed as model qualifier.

The pulsewidth statement can have arise statement and/or afall statement as arithmetic submodel. The switching
direction indicated by rise or fall shall refer to the first of two consequtive events.

11.15.3 PULSEWIDTH in context of a library-specific object declaration

A pulsewidth statement can be a child of alibrary-specific object which can be a parent of a vector. Possible par-
ents of a vector include library, sublibrary, cell and wire. Within such a context, a pulsewidth statement can not
have an event reference as model qualifier. A from-to statement with threshold statements can be used as model
qualifier. The specification given by the threshold statements can be inherited by pulsewidth statements which
are child of avector.

The pulsewidth statement can have a rise statement or a fall statement as arithmetic submodel. The switching
direction indicated by rise or fall shall refer to the first of two consecutive events.

11.16 PERIOD

A period statement shall be defined as shown in Syntax 114.

KEYWORD PERI OD = arithmetic_nodel {
S| _MODEL = TIME ;

}

PERICD { MN = 0; }

Syntax 114—PERIOD statement

A period statement can be a child or a grandchild of a vector. Period can also be a dimension of an arithmetic
model in the context of a vector. Period shall define the time interval between two consecutive occurrences of a
periodically repeating vector.

If the parent of the period statement is a limit statement, period defines a minimum required or a maximum
allowed time interval. Otherwise, period defines the actually measured time interval.

11.17 JITTER

A jitter statement shall be defined as shown in Syntax 115.

162 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

KEYWORD JI TTER = arithnetic_nodel {
S| _MODEL = TIME ;
}

JITTER { MN = 0; }

Syntax 115—JITTER statement

A jitter statement can be a child or agrandchild of avector. Jitter can also be adimension of an arithmetic model
in the context of a vector. Jitter shall define the variability of atime interval between two consecutive occur-
rences of the periodically repeating vector.

If the parent of the jitter statement is alimit statement, jitter defines a minimum required or a maximum allowed
variability of the time interval. Otherwise, jitter defines the actually measured variability of the time interval.

The measurement annotation (see 11.29.1) is applicable as model qualifier.

11.18 THRESHOLD

A threshold statement shall be defined using ALF language as shown in Syntax 116.

KEYWORD THRESHOLD = arithmeti c_nodel {
CONTEXT { PIN FROM TO }
}

THRESHOLD { MN = 0; MAX = 1; }

Syntax 116—THRESHOLD statement

The THRESHOL D represents a reference voltage level for timing measurements, normalized to the signal voltage
swing and measured with respect to the logic O voltage level, as shown in Figure 21.

V (logic 1)
A
AV
AVrise AVfaII
|\
V (logic 0) t|mel
AV AV
threshold i = —11% threshold 4y = —al
(rise AV (fall) AV

Figure 21—THRESHOLD measurement definition

The voltage levelsfor logic 1 and O represent a full voltage swing.

IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 163

Different threshold data for RI SE and FALL can be specified or else the data shall apply for both rising and fall-
ing transitions.

The THRESHOL D statement has the form of an arithmetic model. If the submodel keywords Rl SE and FALL are
used, it has the form of an arithmetic model container.

The THRESHOLD statement can appear in the context of a FROMor TO container. In this case, it specifies the
applicable reference for the start and end point of the timing measurement, respectively.

The THRESHOL D statement can al so appear in the context of aPl N. In this case, it specifies the applicable refer-
ence for the start or end point of timing measurements indicated by the PI N annotation inside a FROMor TOcon-
tainer, unless a THRESHOL D is specified explicitly inside the FROMor TO container.

If both the RI SE and FALL thresholds are specified and the switching direction of the applicable pin is clearly
indicated in the context of a VECTOR, the RI SE or FALL data shall be applied accordingly.

If thresholds are needed for exact definition of the model data, the FROMand TO containers shall each contain an
arithmetic model for THRESHOLD.

FROM and TO containers with THRESHOLD definitions, yet without Pl N annotations, can appear within
unnamed timing model definitions in the context of a VECTOR, CELL, W RE, SUBLI BRARY, or LI BRARY
object for the purpose of specifying global threshold definitions for all timing models within scope of the defini-
tion. Thefollowing priorities apply:

a THRESHOLDin the HEADER of the timing model

b) THRESHOLDin the FROMor TO statement within the timing model

¢) THRESHOLDfor timing model definition in the context of the same VECTOR

d) THRESHOLDwithin the PI Ndefinition

e) THRESHOLDfor timing model definition in the context of the same CELL or W RE
f) THRESHOLD for timing model definition in the context of the same SUBLI BRARY
g) THRESHOLDfor timing model definition in the context of the same LI BRARY

h) THRESHOLD for timing model definition outside LI BRARY

11.19 Annotations related to timing data

** Add lead-in text**

11.19.1 PIN reference annotation

If the timing measurements or timing constraints, respectively, apply semantically for two pins—{see-11+9.1.1},
the FROM and TO containers shall each contain the Pl N annotation.

Otherwise, if the timing measurements or timing constraints apply semantically only to one pin—see-11.9-1.3),
the PI N annotation shall be outside the FROMor TO container.

The semantic restrictions shown in Semantics 69 shall apply.
11.19.2 EDGE_NUMBER annotation
A edge_number annotation shall be defined as shown in Semantics 70.

The EDGE_NUMBER annotation within the context of a timing model shall specify the edge where the timing
measurement applies. The timing model shall be in the context of a VECTOR. The EDGE_NUMBER shall have an

164 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

SEMANTI CS PI N = single value_annotation {
CONTEXT {
FROM TO SLEWRATE PULSEW DTH
CAPACI TANCE RESI STANCE | NDUCTANCE VOLTAGE CURRENT

}
}
SEMANTI CS SKEWPIN = nul ti _val ue_annotation ;

Semantics 69—PIN restriction

KEYWORD EDGE_NUMBER = annot ation {
CONTEXT { FROM TO SLEWRATE PULSEW DTH SKEW }
VALUETYPE = unsi gned_i nt eger ;
DEFAULT = O0;

}

SEMANTI CS EDGE_NUMBER = singl e_val ue_annot ati on {
CONTEXT { FROM TO SLEWRATE PULSEW DTH }

}

SEMANTI CS SKEW EDGE_NUMBER = mul ti _val ue_annot ati on ;

Semantics 70—EDGE_NUMBER annotation

unsigned value pointing to exactly one of subsegquent vect or _si ngl e_event expressions applicable to the
referenced pin. The EDGE_NUMBER shall be counted individually for each pin which appears in the VECTOR,

starting with zero (0).

If the timing measurements or timing constraints apply semantically to two pins—{see—3+9:11), the
EDGE_NUMBER annotation shall be legal inside the FROMor TO container in conjunction with the Pl N annota-

tion.

Otherwise, if the timing measurements or timing constraints apply semantically only to one pin—{see-11.9-1-3},
the EDGE_NUMBER annotation shall be legal outside the FROMor TO container in conjunction with the PI N

annotation.

11.20 PROCESS

A process statement shall be defined as shown in Syntax 117.

KEYWORD PROCESS = arithnetic_nodel ({
VALUETYPE = identifier ;

}

PROCESS { DEFAULT = nom TABLE { nomsnsp snwp wnsp wnwp } }

Syntax 117—PROCESS statement

The following identifiers can be used as predefined process corners:
?n?pprocess definition with transistor strength

where ? can be

IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual

165

sstrong
wweak

The possible process name combinations are shown in Table 90.

Table 90—Predefined process names

Process name Description
snsp Strong NMOS, strong PMOS.
snwp Strong NMOS, weak PMOS.
wnsp Weak NMOS, strong PMOS.
wnwp Weak NMOS, weak PMOS.

11.21 DERATE_CASE

A derate_case statement shall be defined as shown in Syntax 118.

KEYWORD DERATE CASE = arithmetic_nodel {
VALUETYPE = identifier ;
}
DERATE _CASE { DEFAULT = nom
TABLE { nom bccom wccom bci nd weind bemil wem | }}

}

Syntax 118—DERATE_CASE statement

The following identifiers can be used as predefined derating cases:
nomominal case
bc?prefix for best case
we ?prefix for worst case
where ? can be
consuffix for commercia case
i ndsuffix for industrial case

m | suffix for military case

The possible derating case combinations are defined in Table 91.

Table 91—Predefined derating cases

Derating case Description

bccom Best case commercial.

bci nd Best case industrial.

166 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

Table 91—Predefined derating cases (Continued)

Derating case Description
bcm | Best case military.
weccom Worst case commercial.
wei nd Worst case military.
wem | Worst case military.

11.22 TEMPERATURE

A temperature statement shall be defined as shown in Syntax 119.

KEYWORD TEMPERATURE = arithmetic_nodel {
VALUETYPE = nunber ;
}

TEMPERATURE { M N = -273; }

Syntax 119—TEMPERATURE statement

TEMPERATURE can be used as argument in the HEADER of an arithmetic model for timing or electrical data. It
can also be used as an arithmetic model with DERATE_CASE as argument, in order to describe what temperature
applies for the specified derating case.

11.23 PIN-related arithmetic models for electrical data

Arithmetic models for electrical data can be associated with a pin of a cell. Their meaning is illustrated in
Figure 22.

source sink
current node resistance inductance node o rent
—> <7
voltage voltage

capacitance

Figure 22—General representation of electrical models around a pin

A pin is represented as a source node and a sink node. For pins with DI RECTI ON=i nput , the source node is
externally accessible. For pinswith DI RECTI ON=out put , the sink nodeis externally accessible.

11.23.1 CAPACITANCE, RESISTANCE, and INDUCTANCE

A capacitance, resistance, or inductance statement shall be defined as shown in Syntax 120.

IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 167

KEYWORD CAPACI TANCE = arithmetic_nodel {
VALUETYPE = nunber ;

}

KEYWORD RESI STANCE = arithnetic_nodel {
VALUETYPE = nunber ;

}

KEYWORD | NDUCTANCE = arithnetic_nodel {
VALUETYPE = nunber ;

}

CAPACI TANCE { UNIT = l1le-12; MN = 0;

RESI STANCE { UNIT le3; M N = 0;

I NDUCTANCE { UNIT le-6; MN = 0;

Syntax 120—CAPACITANCE, RESISTANCE, and INDUCTANCE statements

RESI STANCE and | NDUCTANCE apply between the source and sink node. CAPACI TANCE applies between
the sink node and ground. By default, the values for resistance, inductance and capacitance shall be zero (0).

11.23.2 VOLTAGE and CURRENT

A voltage or current statement shall be defined as shown in Syntax 121.

KEYWORD VOLTAGE = arithmeti c_nodel {
VALUETYPE = nunber ;

}

KEYWORD CURRENT = arithmeti c_nodel {
VALUETYPE = nunber ;

}

VOLTAGE { UNIT

CURRENT { UNIT

1, }
le-3; }

Syntax 121—VOLTAGE and CURRENT statements

VOLTAGE and CURRENT can be measured at either source or sink node, depending on which node is externally
accessible. However, a voltage source can only be connected to a source node. The sense of measurement for
voltage shall be from the node to ground. The sense of measurement for current shall be into the node.

11.23.3 Context-specific semantics

An arithmetic model for VOLTAGE, CURRENT, SLEWRATE, RESI STANCE, | NDUCTANCE, and CAPACI -
TANCE can be associated with a Pl Nin one of the following ways.

a) A mode inthe context of aPl N
Example

PIN my_pin {
CAPACI TANCE = 0. 025;

b) A mode in the context of aCELL, W RE, or VECTOR with PI N annotation

Example

168 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

VOLTAGE = 1.8 { PIN = ny_pin; }

The model in the context of a Pl N shall be used if the data is completely confined to the pin. That means, no
argument of the model shall make reference to any pin, since such reference implies an external dependency. A
model with dependency only on environmental data not associated with a pin (e.g., TEMPERATURE, PROCESS,
and DERATE_CASE) can be described within the context of the Pl N.

A model with dependency on external data applied to apin (e.g., load capacitance) shall be described outside the
context of the PI N, using a Pl N annotation. In particular, if the model involves a dependency on logic state or

logic transition of other Pl Ns, the model shall be described within the context of a VECTOR.

Figure 23 illustrates el ectrical models associated with input and output pins.

external driver Input pin outputpin external load
current source sink source sink current
s & N —
voltag - - voltage -

Figure 23—Electrical models associated with input and output pins

Table 92 and Table 93 define how models are associated with the pin, depending on the context.

Table 92—Direct association of models with a PIN

. Model in context of CELL, WIRE, and
Model Model in context of PIN VECTOR with PIN annotation
CAPACI TANCE Pin self-capacitance. Externally controlled capacitance at the pin,
e.g., voltage-dependent.
| NDUCTANCE Pin self-inductance. Externally controlled inductance at the pin,
e.g., voltage-dependent.
RESI STANCE Pin self-resistance. Externally controlled resistance at the pin,
e.g., voltage-dependent, in the context of a
VECTOR for timing-arc specific driver
resistance.
VOLTAGE Operationa voltage measured at pin. Externally controlled voltage at the pin.
CURRENT Operational current measured into pin. Externally controlled current into pin.
SAME PIN TI M NG_ For model definition, default, etc.; In context of VECTOR for timing arc, other
MEASUREMENT not for the timing arc. context for definition, default, etc.
SAME_PI N_TI M NG_ For model definition, default, etc.; In context of VECTOR for timing arc, other
CONSTRAI NT not for the timing arc. context for definition, default, etc.

IEEE P1603 Draft 6

Advanced Library Format (ALF) Reference Manual

169

Table 93—External association of models with a PIN

Model / context LIMIT within PIN or with PIN annotation Model a;rg]]ggglr}to\éwth PIN

CAPACI TANCE Min or max limit for applicable load. Load for model characterization.
| NDUCTANCE Min or max limit for applicable load. Load for model characterization.
RESI STANCE Min or max limit for applicable load. Load for model characterization.
VOLTAGE Min or max limit for applicable voltage. Voltage for model characterization.
CURRENT Min or max limit for applicable current. Current for model characterization.
SAVE_PI N_TI M NG_ Currently applicable for min or max limit for Stimulus with SLEWRATE for model

VEASUREMENT SLEWRATE. characterization.
SAVE_PI N_TI M NG_ N/A, since the keyword means amin or max N/A

CONSTRAI NT limit by itself.

Example

CELL my_cell {
PI'N pinl { DI RECTI ON=i nput; CAPACI TANCE = 0.05; }
PIN pin2 { D RECTI ON=output; LIMT { CAPACI TANCE { MAX=1.2; } } }
PI' N pi n3 { DI RECTI ON=i nput; }
PI' N pi n4 { DI RECTI ON=i nput; }
CAPACI TANCE {
Pl N=pi n3;
HEADER { VOLTACE { PIN=pin4; } }
EQUATION { 0.25 + 0.34*VOLTAGE }

}

The capacitance on pi n1 is0. 05. The maximum allowed load capacitance on pi n2 is 1. 2. The capacitance
on pi n3 depends on the voltage on pin4.

11.24 POWER and ENERGY

A power or an energy statement shall be defined as shown in Syntax 122.

KEYWORD POAER = arithnetic_nodel {
VALUETYPE = nunber
}

KEYWORD ENERGY = arithmetic_nodel {
VALUETYPE = nunber
}

PONER { UNIT = le-3; }
ENERGY { UNIT = le-12; }

Syntax 122—POWER and ENERGY statements

The purpose of power calculation isto evaluate the electrical power supply demand and electrical power dissipa-
tion of an electronic circuit. In general, both power supply demand and power dissipation are the same, dueto the

170 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

energy conservation law. However, there are scenarios where power is supplied and dissipated locally in different
places. The power modelsin ALF shall be specified in such away that the total power supply and dissipation of
acircuit adds up correctly to the same number.

Example

A capacitor Cis charged from 0 volt to V volt by a switched DC source. The energy supplied by the
sourceis C* V2. The energy stored in the capacitor is 1/ 2* C* V2. Hence the dissipated energy isalso 1/
2* C* 2, Later the capacitor is discharged from V volt to 0 volt. The supplied energy is 0. The dissipated
energy is1/ 2* C* V2. A supply-oriented power model can associate the energy E=C V2 with the charg-
ing event and E,=0 with the discharging event. The total energy is E=E;+E,=C* V2. A dissipation-ori-
ented power model can associate the energy Eg=1/ 2* C* V2 with both the charging and discharging
event. The total energy is also E=2* Eg=C* V2.

In many cases, it is not so easy to decide when and where the power is supplied and where it is dissipated. The
choice between a supply-oriented and dissipation-oriented model or a mixture of both is subjective. Hence the
ALF language provides no means to specify, which modeling approach is used. The choice is up to the model
developer, aslong as the energy conservation law is respected.

POVER and/or ENERGY models shall be in the context of a CELL or within a VECTOR. The total energy and/or
power of acell shall be calculated by combining the data of all models within the scope of the CELL or the VEC-
TORs within the cell.

The datafor PONER and/or ENERGY shall be positive when energy is actually supplied to the CELL and/or dissi-
pated within the CELL. The data shall be negative when energy is actually supplied or restored by the CELL.

11.25 FLUX and FLUENCE

A flux or fluence statement shall be defined as shown in Syntax 123.

KEYWORD FLUX = arithmetic_nodel {
VALUETYPE = nunber ;

}

KEYWORD FLUENCE = arithnetic_nodel {
VALUETYPE = nunber ;

}

FLUX { UNIT = 1le-3; }

FLUENCE { UNIT = le-12; }

Syntax 123—FLUX and FLUENCE statements

The purpose of hot electron calculation isto eval uate the damage done to the performance of an electronic device
due to the hot electron effect. The hot electron effect consists in accumulation of electrons trapped in the gate
oxide of atransistor. The more electrons are trapped, the more the device dows down. At a certain point, the per-
formance specification no longer is met and the deviceis considered to be damaged.

FLUX and/or FLUENCE models shall be in the context of a CELL or within aVECTOR. Total fluence and/or flux
of acell shall be calculated by combining the data of all models within the scope of the CELL or the VECTORSs
within the cell.

Both FLUX and FLUENCE are measures for hot el ectron damage. FLUX relates to FLUENCE in the same way as
POVER relates to ENERGY.

IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 171

11.26 DRIVE_STRENGTH

A drive_strength statement shall be defined as shown in Syntax 124.

KEYWORD DRI VE_STRENGTH = arithmetic_nodel {
VALUETYPE = nunber ;

}
DRI VE_STRENGTH { MN = 0; }

Syntax 124—DRIVE_STRENGTH statement

DRI VE_STRENGTH is a unit-less, abstract measure for the drivability of aPI N. It can be used as a substitute of
driver RESI STANCE. The higher the DRI VE_STRENGTH, the lower the driver RESI STANCE. However,
DRI VE_STRENGTH can only be used within a coherent system of calculation models, since it does not represent
an absolute quantity, as opposed to RESI STANCE. For example, the weakest driver of alibrary can have drive
strength 1, the next stronger driver can have drive strength 2 and so forth. This does not necessarily mean the
resistance of the stronger driver is exactly half of the resistance of the weaker driver.

An arithmetic model for conversion from DRI VE_STRENGTHto RESI STANCE can be given to relate the quan-
tity DRI VE_STRENGTH across technology libraries.

Example

SUBLI BRARY hi gh_speed_library {
RESI STANCE {
HEADER { DRI VE_STRENGTH } EQUATION { 800 / DRI VE_STRENGTH }
}
CELL hi gh_speed_std_driver {
PIN Z { DIRECTION = output; DRI VE STRENGTH = 1; }

}
}
SUBLI BRARY | ow_power _library {
RESI STANCE {
HEADER { DRI VE_STRENGTH } EQUATION { 1600 / DRI VE_STRENGTH }
}
CELL | ow_power _std_driver {
PIN Z { DI RECTION = output; DRI VE STRENGTH = 1; }
}
}

Drive strength 1 in the high speed library corresponds to 800 ohm. Drive strength 1 in the low power library cor-
responds to 1600 ohm.

NOTE—Any particular arithmetic model for RESI STANCE in either library shall locally override the conversion formula
from drive strength to resistance.

11.27 SWITCHING_BITS
A switching_bits statement shall be defined as shown in Syntax 125.
The quantity SW TCHI NG_BI TS applies only for bus pins. The rangeisfrom O to the width of the bus. Usually,

the quantity SW TCHI NG_BI TSis not calculated by an arithmetic model, since the number of switching bits on
a bus depends on the functiona specification rather than the electrical specification. However,

172 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

KEYWORD SW TCHI NG BI TS = arithnetic_nodel {
VALUETYPE = unsi gned_i nt eger
}

Syntax 125—SWITCHING_BITS statement

SW TCHI NG_BI TS can be used as argument in the HEADER of an arithmetic model to calcul ate electrical quan-
tities, for instance, energy consumption.

Example

CELL my_rom {
PIN [3: 0] addr { DI RECTI ON=i nput; SI GNALTYPE=address; }

PIN [7:0] dout { DI RECTI ON=out put; SIGNALTYPE=data; }
VECTOR (?! addr -> ?! dout) {

ENERGY {
HEADER {
SWTCHI NG BI TS addr_bits { PIN = addr; }
SWTCHI NG BI TS dout _bits { PIN = dout; }

}
EQUATION { 0.45*LO& addr _bits) + 2.6*dout_bits }

}

The energy consumption of ny_r omdepends on the number of switching data bits and on the logarithm of the
number of switching address bits.

11.28 NOISE and NOISE_MARGIN

A noise or noise_margin statement shall be defined as shown in Syntax 126.

KEYWORD NO SE = arithnetic_nodel {
VALUETYPE = nunber

}

KEYWORD NO SE MARG@ N = arithmetic_nodel {
VALUETYPE = nunber

}

NOSE { MN = 0; }

NOSE MARGN{ MN = 0; MAX =1; }

Syntax 126—NOISE and NOISE_MARGIN statements
11.28.1 NOISE margin

Noise margin is defined as the maximal allowed difference between the ideal signal voltage under a well-speci-

fied operation condition and the actual signal voltage normalized to the ideal voltage swing. Thisisillustrated in
Figure 24.

IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 173

V . .
ideal (logic 1) AV, { A noise Margin (rign) = AVy

AV
Vmin(logicl) ______]
AV
¥ max logicq) _ _ VAR Noise margin (jou = Vo
0 (low) = \,
V ideal (logic 0) 5 y &

Figure 24—Definition of noise margin

NO SE_MARG Nisapin-related quantity. It can appear either in the context of aPl N statement or in the context
of a VECTOR statement with Pl N annotation. It can also appear in the global context of a CELL, SUBLI BRARY,
or L1 BRARY statement.

If aNO SE_MARG N statement appears in multiple contexts, the following priorities apply:

a NO SE_MARG N with PI N annotation in the context of the VECTOR, NO SE_MARG N with PI' N
annotation in the context of the CELL, or NO SE_ MARA N in the context of the PI N
b) NO SE_MARG Nwithout Pl N annotation in the context of the CELL
c) NO SE_MARA Nin the context of the SUBLI BRARY
d) NO SE_MARAG Nin the context of the LI BRARY
e) NO SE_MARG Noutsidethe LI BRARY
11.28.2 NOISE

Noise is defined as the actual measured noise against which the noise margin is compared.

11.29 Annotations and statements related to electrical models

** Add lead-in text**

11.29.1 MEASUREMENT annotation

A measurement annotation shall be defined as shown in Semantics 71.

KEYWORD MEASUREMENT = singl e_val ue_annotati on {
VALUETYPE = identifier ;
VALUES {
transient static average absol ute_average rns peak
}
CONTEXT {
ENERGY PONER CURRENT VOLTAGE FLUX FLUENCE JI TTER
}
}

174

Semantics 71—MEASUREMENT annotation

Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

Arithmetic models can have a MEASUREMENT annotation. This annotation indicates the type of measurement
used for the computation in arithmetic model.

The meaning of the annotation valuesis shown in Table 94.

Table 94—MEASUREMENT annotation

Annotation value Description
transi ent Measurement is atransient vaue.
static Measurement is a static value.
aver age Measurement is an average value.
absol ut e_ver age Measurement is an average over absolute values.
rns Measurement is the root mean square value.
peak Measurement is a peak value.

Their mathematical definitions are shown in Figure 25.

t=T
i t=T
transi ent I dE(t) aver age I E(t)dt
t=0 t=0
T
t=T
static E = constant absol ute_aver age j |[E(t)|dt
t=0
T
=T
peak max(|E(t)]) DsgnE(t) t=T s [E()’dt
t=0
T

Figure 25—Mathematical definitions for MEASUREMENT annotations

Arithmetic models with certain values of MEASUREMENT annotation can also have either TI ME or FREQUENCY
as auxiliary arithmetic models.

IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 175

The semantics are defined in Table 95.

Table 95—Semantic interpretation of MEASUREMENT, TIME, or FREQUENCY

MEASUREMENT
annotation Semantic meaning of TIME Semantic meaning of FREQUENCY

transient Integration of analog measurement isdone | Integration of analog measurement is
during that time window. repeated with that frequency.

static N/A N/A

aver age Average value is measured over that time Average value measurement is repeated
window. with that frequency.

absol ut e_average | Absolute average valueis measured over Absolute average val ue measurement is
that time window. repeated with that frequency.

rns Root-mean-square value is measured over Root-mean-square measurement is repeated
that time window. with that frequency.

peak Peak value occurs at that time (only within | Observation of peak valueis repeated with
context of VECTOR). that frequency.

Inthecaseof aver age and r s, theinterpretation FREQUENCY = 1 / TI MEisvalid. Either one of these
annotations shall be mandatory. The values for aver age measurements and for r ns measurements scale lin-
early with FREQUENCY and 1 / TI ME, respectively.

Inthecaseof t r ansi ent and peak, theinterpretation FREQUENCY = 1 / TI MEisnot valid. Either one
of these annotations shall be optional. The values do not necessarily scale with TI ME or FREQUENCY. The TI ME
or FREQUENCY annotationsfor t r ansi ent measurements are purely informational.

11.29.2 TIME to peak measurement

For amodel in the context of a VECTOR, with apeak measurement, the Tl ME annotation shall define the time
between areference event withinthe vect or _expr essi on and the instant when the peak value occurs.

For that purpose, either the FROMor the TO statement shall be used in the context of the TI ME annotation, con-
taining a Pl N annotation and, if necessary, a THRESHOL D and/or an EDGE_ NUVBER annotation.

If the FROM statement is used, the start point shall be the reference event and the end point shall be the occur-
rence time of the peak, as shown in Figure 26.

<f roInEdqe>

<fronPi n> <fronirhr eshol d>

TIME -

|

[

| ___|_<nodel Val ue>
MEASUREMENT = peak | /:\

| |

176 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

Figure 26—lllustration of time to peak using FROM statement

If the TO statement is used, the start point shall be the occurrence time of the peak and the end point shall be the
reference event, as shown in Figure 27.

<t oIEdqe>

<t oThr eshol d>

<nodel Val ue> |
/\ | MEASUREMENT = peak
| |

Figure 27—lllustration of time to peak using TO statement

<t oPi n>

11.29.3 COMPONENT annotation

A component annotation shall be defined as shown in Semantics 72.

KEYWORD COVPONENT = si ngl e_val ue_annotati on {
CONTEXT = CURRENT ;
VALUETYPE = identifier ;

Semantics 72—COMPONENT annotation

11.29.4 FLOW annotation

A flow annotation shall be defined as shown in Semantics 73.

KEYWORD FLOW = si ngl e_val ue_annotati on {
CONTEXT = CURRENT ;
VALUETYPE = identifier ;
VALUES { IN QUT }

}

Semantics 73—FLOW annotation

11.30 CONNECTIVITY
A connectivity statement shall be defined as shown in Syntax 127.
A driver or_receiver statement shall be defined as shown in Syntax 128.

Connectivity can also be described as a lookup table model. This description is usually more compact than the
description using the BETWEEN statements.

IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 177

VALUETYPE = bool ean ;
VALUES { 1 0 ? }

}

KEYWORD CONNECTI VI TY = arithnetic_nodel

{

Syntax 127—CONNECTIVITY statement

KEYWORD DRI VER = arithnetic_nodel {
VALUETYPE = identifier ;
CONTEXT = CONNECTI VI TY. HEADER

}

KEYWORD RECEI VER = arithnetic_nodel {
VALUETYPE = identifier ;
CONTEXT = CONNECTI VI TY. HEADER

Syntax 128— DRIVER and RECEIVER statements

The connectivity model can have the arguments shown in Table 96 in the HEADER.

Table 96—Arguments for connectivity

Argument Valuetype Description
DRI VER identifier Dimension of connectivity function.
RECEI VER identifier Dimension of connectivity function.

Each dimension shall contain a TABLE.

The connectivity model specifies the allowed and disallowed connections amongst drivers or receivers in one-
dimensional tables or between drivers and receivers in two-dimensiona tables.The boolean literals in the table

refer to the CONNECT _RULE as shown in Table 97.

Table 97—Boolean literals in non-interpolateable tables

Boolean literal Description
1 CONNECT_RULE isTrue.
0 CONNECT_RULE is False.
? CONNECT_RULE does not apply.

11.31 SIZE

A size statement shall be defined as shown in Syntax 129.

178 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

KEYWORD S| ZE = arithnetic_nodel {
VALUETYPE = unsi gned_nunber ;

}

Syntax 129—SIZE statement

11.32 AREA

A area statement shall be defined as shown in Syntax 130.

KEYWORD AREA = arithnetic_nodel {
VALUETYPE = unsi gned_nunber ;

}

Syntax 130—AREA statement

11.33 WIDTH

A width statement shall be defined as shown in Syntax 131.

KEYWORD W DTH = arithnetic_nodel {
VALUETYPE = unsi gned_nunber ;

}

Syntax 131—WIDTH statement

Width can be associated with a routing segment (see Section 9.33.2). Width shall be measured orthogonal to the
routing direction.

11.34 HEIGHT

A height statement shall be defined as shown in Syntax 132.

KEYWORD HEI GHT = arithmetic_nodel {
VALUETYPE = unsi gned_nunber ;

}

Syntax 132—HEIGHT statement

11.35 LENGTH

A length statement shall be defined as shown in Syntax 133.

KEYWORD LENGTH = arithmetic_nodel {
VALUETYPE = unsi gned_nunber ;

}

Syntax 133—LENGTH statement

IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 179

Length can be associated with a routing segment (see Section 9.33.2). Length shall be measured parallel to the
routing direction. Length can also be associated with two parallel routing segments. In this case, length shall rep-
resent the distance between two lines which are orthogonal to the routing segments, cross both routing segments
and are as far apart from each other as possible.

11.36 DISTANCE

A distance statement shall be defined as shown in Syntax 134.

KEYWORD DI STANCE = arithnetic_nodel {
VALUETYPE = unsi gned_nunber ;

}

Syntax 134—DISTANCE statement

Distance can be associated with two parallel routing segments (see Section 9.33.2). Distance shall be measured
orthogonal to the routing direction.

11.37 OVERHANG

A overhang statement shall be defined as shown in Syntax 135.

KEYWORD OVERHANG = arithnetic_nodel {
VALUETYPE = unsi gned_nunber ;

}

Syntax 135—OVERHANG statement

11.38 PERIMETER

A perimeter statement shall be defined as shown in Syntax 136.

KEYWORD PERI METER = arithnetic_nodel {
VALUETYPE = unsi gned_nunber ;

}

Syntax 136—PERIMETER statement

11.39 EXTENSION

An extension statement shall be defined as shown in Syntax 137.

KEYWORD EXTENSI ON = arithnetic_nodel {
VALUETYPE = unsi gned_nunber ;

}

Syntax 137—EXTENSION statement

180 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

11.40 THICKNESS

A thickness statement shall be defined as shown in Syntax 138.

KEYWORD THI CKNESS = arithmetic_nodel ({
VALUETYPE = unsi gned_nunber ;

}

Syntax 138—THICKNESS statement

11.41 DENSITY

A density statement shall be defined as shown in Syntax 139.

KEYWORD DENSI TY = arithnetic_nodel {
VALUETYPE = unsi gned_nunber ;
M N = 0;
MAX = 1;

Syntax 139—DENSITY statement

11.42 Annotations for physical models

** Add lead-in text**

11.42.1 CONNECT_RULE annotation

A connect_rule annotation shall be defined as shown in Semantics 74.

KEYWORD CONNECT _RULE = singl e_val ue_annotati on {
VALUETYPE = identifier ;
VALUES { must_short can_short cannot_short }
CONTEXT = CONNECTI VI TY;

}

Semantics 74—CONNECT_RULE annotation

The meaning of the annotation values is shown in Table 98.

Table 98—CONNECT_RULE annotation

Annotation value Description
nmust _short Electrical connection required.
can_short Electrical connection allowed.
cannot _short Electrical connection disallowed.

IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual

181

Itis not necessary to specify more than one rule between a given set of objects. If oneruleis specified to be True,
the logical value of the other rules can be implied shown in Table 99.

Table 99—Implications between connect rules

must_short cannot_short can_short
False False True
False True False
True False N/A

11.42.2 BETWEEN annotation

A between annotation shall be defined as shown in Semantics 75.

KEYWORD BETWEEN = nul ti_val ue_annotation {
VALUETYPE = identifier ;
CONTEXT { DI STANCE LENGTH OVERHANG CONNECTI VI TY }

}

Semantics 75—BETWEEN annotation

If the BETVEEN statement contains only one identifier, than the CONNECTI VI TY shall apply between multiple
instances of the same object.

The BETWEEN statement within DI STANCE or LENGTH shall identify the objects for which the measurement
applies.

If the BETVEEEN statement contains only one identifier, than the DI STANCE or LENGTH, respectively, shall
apply between multiple instances of the same object, as shown in the following example and Figure 28.

Example

DI STANCE = 4 { BETWEEN { objectl object2 } }

LENGTH = 2 { BETWEEN { objectl object2 } }

objectl obj ect 2
LENGTH=2
4 DiSTANCE=4 ™
Figure 28—Illustration of LENGTH and DISTANCE

182 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

11.42.3 DISTANCE-MEASUREMENT annotation

A distance_measurement annotation shall be defined as shown in Semantics 76.

KEYWORD DI STANCE MEASUREMENT = si ngl e_val ue_annotati on {
VALUETYPE = identifier ;
VALUES { euclidean horizontal vertical manhattan }
DEFAULT = euclidean ;
CONTEXT DI STANCE ;

Semantics 76—DISTANCE_MEASUREMENT annotation

The mathematical definitions for distance measurements between two points with differential coordinates Ax and
Ay are:

— euclidean distance = (Ax? + Ay?) 12
— horizontal distance = Ax
— vertical distance = Ay
— manhattan distance = Ax + Ay

11.42.4 REFERENCE annotation container

A reference annotation shall be defined as shown in Semantics 77.

KEYWORD REFERENCE = annot ati on_cont ai ner {
CONTEXT = DI STANCE ;
}
SEMANTI CS REFERENCE. i denti fier = single_val ue_annotation {
VALUETYPE = identifier ;
VALUES { center origin near_edge far_edge }
DEFAULT = origin ;
}

Semantics 77—REFERENCE annotation

The meaning of the annotation valuesisillustrated in Figure 29.

object 1 object 2 object 1 object 2
DISTANCE DISTANCE
- - —
REFERENCE = near_edge REFERENCE = center

IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 183

Figure 29—lllustration of REFERENCE for DISTANCE

11.42.5 ANTENNA reference annotation

An antenna annotation shall be defined as shown in Semantics 78.

SEMANTI CS ANTENNA = annotation {
VALUETYPE = identifier ;
CONTEXT { PIN. SI ZE PI N. AREA PI N. PERI VETER }

}

Semantics 78—ANTENNA annotation

In hierarchical design, aPl N with physical PORTs can be abstracted. Therefore, an arithmetic model for SI ZE,
AREA, PERI METER, etc. for certain antenna rules can be precalculated. An ANTENNA statement within the
arithmetic model enables references to the set of antenna rules for which the arithmetic model applies

Example
CELL cell1 {
PI'N pinl {
AREA poly_area = 1.5 {
LAYER = poly;
ANTENNA { individual _ml individual _vial }
}
AREA nml_area = 1.0 {
LAYER = netal 1;
ANTENNA { i ndividual _nml }
}
AREA vial_area = 0.5 {
LAYER = vi al;
ANTENNA { individual vial }
}
}
}

Theareapol y_ar eaisusedintherulesi ndi vi dual _nil andi ndi vi dual _vi al.
Theareanil_ar ea isusedintherulei ndi vi dual _mil only.
Theareavi al_ar eaisusedintherulei ndi vi dual _vi al only.

The case with diffusion isillustrated in the following example:

CELL mny_di ode {
CELLTYPE = special; ATTRI BUTE { DI CDE }
PI'N ny_di ode_pin {
AREA = 3.75 {
LAYER = di f fusi on;
ANTENNA { rulel for_diffusion rule2_for_diffusion }

184 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

11.42.6 PATTERN reference annotation

A pattern annotation shall be defined as shown in Semantics 79.

SEMANTI CS PATTERN = singl e_val ue_annotati on {
VALUETYPE = identifier ;
CONTEXT {
LENGTH W DTH HEI GHT SI ZE AREA THI CKNESS
PERI METER EXTENSI ON

Semantics 79—PATTERN annotation

Reference to a PATTERN shall be legal within arithmetic models, if the pattern and the model are within the
scope of the same parent object.

11.43 Arithmetic submodels for timing and electrical data

The arithmetic submodels shown in Table 100 are only applicable in the context of electrical modeling.

Table 100—Submodels applicable for timing and electrical modeling

Object Description
H GH Applicable for electrical data measured at alogic hi gh state of apin.
Low Applicable for electrical data measured at alogic | ow state of apin.
Rl SE Applicable for electrical data measured during alogic | owto hi gh transition of apin.
FALL Applicable for electrical data measured during alogic hi gh tol owtransition of apin.

11.44 Arithmetic submodels for physical data

The arithmetic submodels shown in Table 101 are only applicable in the context of physical modeling.

Table 101—Submodels applicable for physical modeling

Object Description
HORI ZONTAL Applicable for layout measurementsin O degree, i.e., horizontal direction.
VERTI CAL Applicable for layout measurementsin 90 degree, i.e., vertical direction.
ACUTE Applicable for layout measurements in 45 degree direction.
OBTUSE Applicable for layout measurements in 135 degree direction.

IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 185

186 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

Annex A

(informative)

Syntax rule summary

This summary replicates the syntax detailed in the preceding clauses. If there is any conflict, in detail or com-
pleteness, the syntax presented in the clauses shall considered as the normative definition.

The current ordering is as each item appearsin its subchapter; this needs to be updated to be complete.

A.1 ALF meta-language

ALF_statement ::= (seeb5.1)
ALF_type[ALF_name] [= ALF_vaue] ALF_statement_termination
ALF type::=
non_escaped_identifier [index]
| @
|:
ALF_name::=
identifier [index]
| control_expression
ALF vaue::=
identifier
| number
| arithmetic_expression
| boolean_expression
| control_expression
ALF_statement_termination ::=

|{,{ALF_vaIue|: 151}
|{ { ALF_statement} }

A.2 Lexical definitions

character ::= (see6.1)
whitespace
| letter
| digit
| special
whitespace ::=
space | vertical_tab | horizontal _tab | new_line | carriage_return | form_feed
letter ::=
uppercase | lowercase
uppercase ::=
AIBICIDIEIFIGIHIIJIKILIM INJOIPIQIRISITIUIV W
IX1Y1Z
lowercase ::=

alblcidielfiglihlifjikiliminjolpiglr|sitiu|viw|x|y|z

IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 187

digit ::=
0111213141516 1718]9

special ::=
N I=1+ -1 1% 12105 L1 1@ 1=\ 18| |#
ICI) i< t1>1i 111}

comment ;= (see6.2)
in_line_comment
| block_comment
in_line_comment ::=
[I{ character} new_line
| / /{ character} carriage_return
block_comment ::=
[*{ character}* /
delimiter ::= (sce6.3)
(IO,
operator ::= (see 6.4)
arithmetic_operator
| boolean_operator
| relational _operator
| shift_operator
| event_sequence_operator
| meta_operator
arithmetic_operator ::=
LR 1%
boolean_operator ::=

&& [[[1~& [~[IM M~ H&]
relational_operator ::=

==|1=|>=|<=|>|<
shift_operator ::=

<<|>>

event_sequence_operator ::=

S| > <> <> | &> <& >
meta_operator ::=

=1?71@
number ::= (see 6.5)

signed _integer | signed_real | unsigned _integer | unsigned real
signed_number ::=

signed_integer | signed _real
unsigned_number ::=

unsigned_integer | unsigned_real
integer ::=

signed_integer | unsigned_integer
signed_integer ::=

sign unsigned_integer
unsigned _integer ::=

digit { [_] digit}
real ::=

signed_real | unsigned_real
signed real ::=

sign unsigned_real
unsigned redl ::=

mantisse [exponent]

188 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

| unsigned_integer exponent

sign =

+] -
mantisse ::=

. unsigned_integer

| unsigned_integer . [unsigned integer]
exponent ::=

E [sign] unsigned_integer
| e[sign] unsigned_integer
quantity_symbol ::= (see 6.6)
unity { letter } |K { letter} [M EG{ letter } | G{ letter }
[M { letter} |U { letter } |N { letter } | P{ letter} | F { letter}

unity ::=

1
K:=

K |k
M :=

M|m
E:=

Ele
G:=

Glg
u:=

Ulu
N:=

N|n
P:=

Pip
Fu=

Fif
bit_literal ::= (see6.7)

alphanumeric_bit_literal
| symbolic_hit_literal
alphanumeric_bit_literal ::=
numeric_bit_literal
| alphabetic_bit_literal
numeric_bit_literal ::=
0|1
alphabetic_bit_literal ::=
X|Z|LH|UIW
IX1z|I'1hju|w
symbolic_bit_literal ::=
?1*
based_literal ::= (s 6.8)
binary_based literal | octal_based literal | decimal_based_literal | hexadecimal_based_literal
binary_based_literal ::=
binary_base bit_literal { [_] bit_litera }
binary_base ::=
'B|'b

octal_based litera ::=

IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 189

octal_base octal_digit { [_] octal_digit }
octal_base ::=
'‘Ol'o
octal_digit ::=
bit_literal |2]|3|4|5|6|7
decimal_based literal ::=
decimal_base digit{ [_] digit}
decimal_base ::=
‘D|'d
hexadecimal_based literal ::=
hexadecimal_base hexadecimal_digit { [_] hexadecimal_digit }
hexadecimal_base ::=
'H|'h
hexadecimal_digit ::=
octa |89
IAIBICIDIE|F
lalblcid|e|f
edge literal ::= (see 6.9)
bit_edge literal
| based_edge literal
| symbolic_edge literal
bit edge litera ::=
bit_literal bit_literal
based edge literal ::=
based literal based litera
symbolic_edge literal ::=
2~ 7| ?-
quoted_string ::= (see 6.10)
" { character } "
identifier ::= (see6.11)
non_escaped_identifier
| escaped_identifier
| placeholder_identifier
| hierarchical _identifier

non_escaped_identifier ::= (see6.11.1)
letter { letter | digit | | $|#}
escaped identifier ;= (see6.11.2)

backslash escapable character { escapable character }
escapable _character ::=
letter | digit | special

placeholder_identifier ::= (see 6.11.3)
< non_escaped_identifier >

hierarchical_identifier ::= (see 6.11.4)
identifier [\] . identifier

keyword_identifier ::= (see6.12)

letter { [_] letter }
A.3 Auxiliary definitions

al_purpose vaue::= (see7.1)
number

190 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

| identifier

| quoted_string
| bit_literal
| based_literal
| edge_value
| pin_variable
| control_expression

guantity_value ::= (see7.2)
unsigned_number | quantity _symbol

string_value ::= (see7.3)
quoted _string | identifier

arithmetic_value ::= (see7.4)
number | identifier | bit_literal | based_literal

boolean value::= (see7.5)
alphanumeric_bit_literal | based_litera | integer

edge vaue::= (see 7.6)
(edge literal)

index_value ::= (see7.7)
unsigned_integer | identifier

index ::= (see 7.8)
single_index | multi_index

single_index ::=
[index_value]

multi_index ::=
[index_value : index_value]

pin_variable::= (see7.9)
pin_variable identifier [index]

pin_value::=
pin_variable | boolean value

pin_assignment ::= (see 7.10)
pin_variable = pin_vaue;

annotation ::= (see7.11)

single value annotation
| multi_value annotation
single value annotation ::=
annotation_identifier = annotation_value
annotation_value ::=
number
| identifier
| quoted_string
| bit_literal
| based_litera
| edge_value
| pin_variable
| control_expression
| boolean_expression
| arithmetic_expression
multi_value annotation ::=
annotation_identifier { annotation_value { annotation_vaue} }

annotation_container ::= (see7.12)

annotation_container_identifier { annotation { annotation} }
atribute ::= (see 7.13)

IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 191

ATTRIBUTE { identifier { identifier } }

property ::= (see7.14)
PROPERTY [identifier] { annotation { annotation} }

include ::= (see7.15)
INCLUDE quoted string ;

revision ::= (see7.17)
ALF_REVISION string_value

generic_object ::= (see 7.18)

aias declaration

| constant_declaration

| class_declaration

| keyword_declaration

| semantics_declaration

| group_declaration

| template_declaration

library specific_object ::= (see7.19)

library

| sublibrary

| cell

| primitive

| wire

| pin

| pingroup

| vector

| node

| layer

| via

[rule

| antenna

| site

| array

| blockage

| port

| pattern

| region

all_purpose_item ::= (see 7.20)

generic_object

| include_statement

| associate statement

| annotation

| annotation_container

| arithmetic_model

| arithmetic_model_container

| all_purpose_item_template instantiation

A.4 Generic definitions

dias declaration ::= (see 8.1)
ALIASalias identifier = original_identifier ;
constant_declaration ::= (see8.2)

CONSTANT constant_identifier = constant_value ;

constant_value ::=
number | based_literal

class declaration ::= (see 8.3)

192 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

CLASSclass identifier ;
| CLASSclass identifier { { all_purpose item} }
keyword_declaration ::= (see 8.4)
KEYWORD keyword identifier = syntax_item identifier ;
| KEYWORD keyword_identifier = syntax_item identifier { { keyword_item} }
keyword_item ::=
VALUETYPE_single value annotation
| VALUES multi_value annotation
| DEFAULT single value annotation
| CONTEXT _annotation
semantics_declaration ::= (see 8.6)
SEMANTICS semantics_identifier = syntax_item_identifier ;
| SEMANTICS semantics_identifier [= syntax_item_identifier] { { semantics item} }
semantics item ::=
VALUES multi_value annotation
| DEFAULT single value annotation
| CONTEXT _annotation
group_declaration ::= (see 8.7)
GROUP group_identifier { all_purpose value{ all_purpose vaue} }
| GROUP group_identifier { left_index_value : right_index_value }

template_declaration ::= (see 8.8)
TEMPLATE template_identifier { ALF_statement { ALF_statement } }
template_instantiation ::= (see8.9)

static_template_instantiation
| dynamic_template instantiation
static_template_instantiation ::=
template_identifier [= STATIC];
| template_identifier [= STATIC]{ { al_purpose value} }
| template_identifier [= STATIC]{ { annotation} }
dynamic_template instantiation ::=
template_identifier = DYNAMIC { { dynamic_template_instantiation_item} }
dynamic_template instantiation_item ::=
annotation
| arithmetic_model
| arithmetic_assignment
arithmetic_assignment ::=
identifier = arithmetic_expression ,

A.5 Library definitions

library ::= (see9.1)
LIBRARY library identifier ;
|LIBRARY library_identifier { { library_item} }
|library template instantiation
library_item ::=
sublibrary
| sublibrary_item
sublibrary ::=
SUBLIBRARY sublibrary_identifier ;
| SUBLIBRARY sublibrary_identifier { { sublibrary_item} }
| sublibrary_template instantiation

IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual

sublibrary_item ::=
all_purpose_item
| cell
| primitive
| wire
| layer
| via
[rule
| antenna
| array
| site
| region

cell ::

CELL cel_identifier ;
| CELL cell_identifier { { cell_item} }
| cell_template instantiation
cell_item ::=
all_purpose_item
| pin
| pingroup
| primitive
| function
| non_scan_cell
| test
| vector
| wire
| blockage
| artwork
| pattern
| region
named_cell _instantiation ::=
cell_identifier instance_identifier ;
| cell_identifier instance identifier { pin_value { pin_value} }
| cell_identifier instance_identifier { pin_assignment { pin_assignment } }
unnamed_cell_instantiation ::=
cell_identifier { pin_value{ pin_value} }
| cell_identifier { pin_assignment { pin_assignment} }
pin::=
scalar_pin | vector_pin | matrix_pin
scalar_pin ::=
PIN pin_identifier ;
| PIN pin_identifier { { scalar_pin_item} }
| scalar_pin_template instantiation
scalar_pin_item ::=
all_purpose_item
| port
vector_pin ::=
PIN multi_index pin_identifier ;
| PIN multi_index pin_identifier { { vector_pin _item} }
| vector_pin_template instantiation
vector_pin_item ::=
all_purpose_item
| range

194 Advanced Library Format (ALF) Reference Manual

(see9.3)

(see9.4)

(see9.7)

IEEE P1603 Draft 6

matrix_pin ::=

PIN first_multi_index pin_identifier second_multi_index ;

| PIN first_multi_index pin_identifier second_multi_index { { matrix_pin_item} }

| matrix_pin_template instantiation

matrix_pin_item ::=
vector_pin_item

pingroup ::=

simple_pingroup | vector_pingroup

simple_pingroup ::=

PINGROUP pingroup_identifier { members{ all_purpose item} }
| ssimple_pingroup_template instantiation

members ;=

MEMBERS({ pin_identifier pin_identifier { pin_identifier } }

vector_pingroup ::=

| PINGROUP [index_value : index_value] pingroup_identifier
{ members { vector_pingroup_item} }
| vector_pingroup_template_instantiation

vector_pingroup_item ::=
all_purpose_item
| range
primitive ::=

PRIMITIVE primitive_identifier { { primitive_item} }
| PRIMITIVE primitive identifier ;
| primitive_template_instantiation

primitive_item ::=
all_purpose_item

|[VECTOR control_expression { { vector_item} }

| pin
| pingroup
| function
| test
wire ;=
WIRE wire identifier { wire items}
| WIRE wire_identifier ;
| wire_template_instantiation
wire item ::=
all_purpose_item
| node
node ::=
NODE node _identifier ;
| NODE node identifier { { node item} }
| node_template_instantiation
node item ::=
al_purpose_item
vector ::=
VECTOR control_expression ;
| vector_template_instantiation
vector_item ::=
al_purpose_item
layer ::=

LAYER layer_identifier ;
|LAYER layer_identifier { { layer_item} }
| layer_template instantiation

IEEE P1603 Draft 6

Advanced Library Format (ALF) Reference Manual

(see9.8)

(see 9.11)

(see9.12)

(see9.15)

(see 9.16)

(see9.18)

195

layer_item ::=
all_purpose_item
via::=
V1A via identifier ;
| VIA via_identifier { { via_item} }
| via_template instantiation
via item ::=
all_purpose_item
| pattern
| artwork

via instantiation ::=
via_identifier instance identifier ;
| via_identifier instance_identifier { { geometric_transformation } }
rule ::=
RULE rule identifier ;
| RULE rule_identifier { { rule_item} }
| rule_template instantiation
rule_item ::=
all_purpose_item
| pattern

| region
| via_instantiation
antenna ;=
ANTENNA antenna_identifier ;
| ANTENNA antenna_identifier { { antenna_item} }
| antenna_template_instantiation
antenna_item ::=
all_purpose_item
blockage ::=
BL OCK AGE blockage identifier ;
| BLOCKAGE blockage_identifier { { blockage item} }
| blockage template instantiation
blockage item ::=
all_purpose_item
| pattern
| region
[rule
| via_instantiation
port ::=
PORT port_identifier ;{ { port_item} }
| PORT port_identifier ;
| port_template instantiation
port_item ::=
all_purpose_item
| pattern
| region
[rule
| via_instantiation
Site::=
SITE site identifier ;
| SITE site identifier { { site_item} }
| site_template instantiation
site item ::=
al_purpose_item

196 Advanced Library Format (ALF) Reference Manual

(see 9.20)

(see9.21)

(see 9.23)

(see 9.24)

(see 9.25)

(see 9.26)

(see 9.29)

IEEE P1603 Draft 6

| WIDTH_arithmetic_model
| HEIGHT _arithmetic_model

array .= (see9.30)
ARRAY array _identifier ;
| ARRAY array_identifier { { array_item} }
| array_template instantiation
array_item::=
all_purpose_item
| geometric_transformation
pattern ::= (see9.32)
PATTERN pattern_identifier ;

| PATTERN pattern_identifier { { pattern_item} }
| pattern_template_instantiation
pattern_item ::=
all_purpose_item
| geometric_model
| geometric_transformation
geometric_model ::= (see 9.35)
nonescaped _identifier [geometric_model_identifier]
{ geometric_model_item { geometric_model_item} }
| geometric_model_template instantiation
geometric_model_item ::=
POINT_TO_POINT single value annotation

| coordinates
coordinates ::=
COORDINATES{ point { point} }
point ::=
X_nhumber y_number
geometric_transformation ::= (see9.37)
shift
| rotate
| flip
| repeat
shift ::=
SHIFT { x_number y_number }
rotate ::=
ROTATE = number ;
flip::=
FLIP = number ;
repeat ::=

REPEAT [= unsigned_integer] { geometric_transformation { geometric_transformation} }
artwork ::= (see9.38)
ARTWORK = artwork_identifier ;

|ARTWORK = artwork_identifier { { artwork_item} }
| artwork_template instantiation
artwork_item ::=
geometric_transformation
| pin_assignment

IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual

197

A.6 Function definitions

function ::= (see10.1)
FUNCTION { function_item { function_item} }
| function_template_instantiation
function_item ::=
all_purpose_item
| behavior
| structure
| statetable
test ::= (see 10.2)
TEST { test_item{ test_item} }
| test_template instantiation
test item ::=
all_purpose_item
| behavior
| statetable

behavior ::= (see 10.4)
BEHAVIOR { behavior_item { behavior_item}s}
| behavior_template instantiation
behavior_item ::=
boolean_assignment
| control_statement
| primitive_instantiation
| behavior_item template instantiation
boolean_assignment ::=
pin_variable = boolean_expression ;
control_statement ::=
primary_control_statement { aternative_control_statement }
primary_control_statement ::=
@ control_expression { boolean_assignment { boolean_assignment } }
aternative_control_statement ::=
: control_expression { boolean_assignment { boolean_assignment } }
primitive_instantiation ::=
primitive_identifier [identifier] { pin_value{ pin_value} }
| primitive_identifier [identifier] { boolean_assignment { boolean_assignment } }
structure ::= (see 10.5)
STRUCTURE { named_cell_instantiation { named_cell_instantiation } }
| structure_template instantiation
statetable ::= (see 10.6)
STATETABLE [identifier]
{ statetable_header statetable_row { statetable row } }
| statetable_template instantiation
statetable_header ::=
input_pin_variable { input_pin_variable} : output_pin variable{ output_pin_variable} ,
statetable row ::=
statetable _control_values . statetable data values;
statetable _control_values ::=
statetable _control_value { statetable control_value}

statetable _control_value ::=
boolean value
| symbolic_hit_literal

198 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

| edge value
statetable data values::=
statetable data value { statetable data value}
statetable data value ::=
boolean_value
[([!]input_pin_variable)
| ([~]input_pin_variable)
non_scan_cell ::= (see 10.7)
NON_SCAN_CELL { unnamed_cell_instantiation { unnamed_cell_instantiation } }
INON_SCAN_CELL = unnamed_cell_instantiation
| non_scan cell_template instantiation

range ::= (see 10.8)
RANGE {index_value: index_value }
boolean_expression ::= (see 10.9)
(boolean_expression)
| pin_variable

| boolean_value
| boolean_unary boolean_expression
| boolean_expression boolean binary boolean_expression
| boolean_expression ? boolean_expression :
{ boolean_expression ? boolean_expression : }
boolean_expression
boolean _unary ::=

boolean_binary ::=

&

|1& &

I

Il

|/\

|.J\

1=

| >=
| <=
|>
| <
+
*
/

| %
| >>
| <<

IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual

199

Vector_expression ::= (see 10.12)
(vector_expression)
| vector_unary boolean_expression
| vector_expression vector_binary vector_expression
| boolean_expression ? vector_expression :
{ boolean_expression ? vector_expression : }
Vector_expression
| boolean_expression control_and vector_expression
| vector_expression control_and boolean_expression

vector_unary ::=
edge litera

vector_binary ::=
&
| & &

|

]

[->

| ~>

| <->

| <~>

| &>

|<&>
control_and ::=

& |1&&
control_expression ::=

('vector_expression)
| (boolean_expression)

A.7 Arithmetic definitions

arithmetic_expression ::= (see11.1)
(‘arithmetic_expression)
| arithmetic_value
| { boolean_expression ? arithmetic_expression : } arithmetic_expression
| [unary_arithmetic_operator] arithmetic_operand
| arithmetic_operand binary_arithmetic_operator arithmetic_operand
| macro_arithmetic_operator (arithmetic_operand { , arithmetic_operand })
arithmetic_operand ::=
arithmetic_expression
unary_arithmetic_operator ::= (see11.1.2)
+
| -
binary_arithmetic_operator ::= (see11.1.2)
+
| -
| *
|/

|**

1%

200 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

macro_arithmetic_operator ::= (see11.1.3)
abs
|exp
|log
|min
| max
arithmetic_ model ::= (see11.2)
trivial_arithmetic_model
| partial_arithmetic_model
| full_arithmetic_model
| arithmetic_model_template instantiation

trivial_arithmetic_model ::= (see11.2.1)
nonescaped_identifier [name_identifier | = arithmetic_value ;
| nonescaped_identifier [name_identifier | = arithmetic_value { { model_qualifier } }
partial_arithmetic_model ::= (see11.2.2)
nonescaped_identifier [name_identifier | { { partial_arithmetic_model_item} }
partial_arithmetic model_item ::=
model_qualifier
| table
| trivial_min-max
full_arithmetic_model ::= (see11.2.3)
nonescaped_identifier [name_identifier] { { model_qualifier } model_body { model_qualifier } }
model_body ::=
header-table-equation [trivial_min-max]
| min-typ-max
| arithmetic_submodel { arithmetic_submodel }
header-table-equation ::= (see11.3)
header table
| header equation
header ::= (see11.3.2)
HEADER { partial_arithmetic_ mode! { partial_arithmetic_model } }

table ::= (see11.3.2)
TABLE { arithmetic_value { arithmetic value} }
equation ::= (see11.3.3)
EQUATION { arithmetic_expression }
| equation_template_instantiation
model_quadlifier ::= (see11.4.1)
annotation
| annotation_container
| event_reference
| from-to
| auxiliary_arithmetic_model
| violation
auxiliary_arithmetic_modd ::= (see11.4.2)
nonescaped_identifier = arithmetic_value ;
| nonescaped_identifier [= arithmetic_value] { auxiliary_qualifier { auxiliary_qualifier } }
auxiliary_qualifier
annotation
| annotation_container
| event_reference
| from-to
arithmetic_submodel ::= (see11.4.3)

IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 201

nonescaped_identifier = arithmetic_value;
| nonescaped_identifier { [violation] min-max }
| nonescaped_identifier { header-table-equation [trivial_min-max] }
| nonescaped_identifier { min-typ-max }
| arithmetic_submodel_template instantiation
min-max ::= (see11.4.9)
min [max |
| max [min]
min ::=
M IN = arithmetic_value;
|MIN = arithmetic_value{ violation }
IMIN {[violation] header-table-equation }
max ::=
MAX = arithmetic value;
IMAX = arithmetic_value{ violation }
|[MAX {[violation] header-table-equation }
min-typ-max ::= (see11.4.5)
[min-max] typ [min-max]
typ ;=
TYP = arithmetic_value;
| TY P { header-table-equation }
trivial_min-max ::= (see 11.4.6)
trivial_min [trivial_max]
| trivial_max [trivial_min]

trivial_min ::=
MIN = arithmetic_value;

trivial_max ::=
MAX = arithmetic_value;

arithmetic_model_container ::= (see11.4.7)
arithmetic_model_container_identifier { arithmetic_model { arithmetic_model } }

limit ::= (see 11.4.8)
LIMIT { limit_item{ limit_item} }

limit_item ::=

limit_arithmetic_model
limit_arithmetic_model ::=

nonescaped_identifier [name_identifier] { { model_qualifier } limit_arithmetic_model_body }
limit_arithmetic_model _body ::=

limit_arithmetic_submodel { limit_arithmetic_submodel }

| min_max
limit_arithmetic_submodel ::=

nonescaped_identifier { [violation] min-max }

event_reference ::= (see11.4.9)
PIN_reference single value annotation [EDGE_NUMBER single value_annotation]
from-to ::= (see 11.4.10)
from [to]
|[from] to
from::=

FROM { from-to_item { from-to_item} }
from-to_item ::=
event_reference
| THRESHOLD _arithmetic_model

to::=

202 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

TO { from-to_item { from-to_item} }
early-late ::= (see11.4.11)

early late
early ;=

EARLY { ealy-late item { early-late item} }
early-late item ::=

DELAY _arithmetic_model

| RETAIN_arithmetic_model

| SLEWRATE_arithmetic_model
late ;=

LATE { early-late_item { early-late item} }

violation ::= (see11.4.12)
VIOLATION { violation_item { violation_item} }
| violation_template instantiation
violation_item ::=
MESSAGE_TYPE_single value_annotation
| MESSAGE_single value_annotation
| behavior

IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 203

204 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

Annex B

(informative)

Semantics rule summary

This summary replicates the semantics detailed in the preceding clauses. If thereisany conflict, in detail or com-
pleteness, the semantics presented in the clauses shall considered as the normative definition.

The current ordering is as each item appearsin its subchapter; this needs to be updated to be complete.

**| kept the font/formatting as it is from the original semantics sections; let me know if you want to change this
(how it appearsin print)**

B.1 Library definitions

KEYWORD | NFORMATI ON = annot ati on_cont ai ner { (see 9.2.1)
CONTEXT { LI BRARY SUBLI BRARY CELL W RE PRI M Tl VE }
}
KEYWORD PRODUCT = singl e_val ue_annotation {
VALUETYPE = string_val ue; DEFAULT = “*; CONTEXT = | NFORMATI ON;
}
KEYWORD Tl TLE = singl e_val ue_annotation {
VALUETYPE = string val ue; DEFAULT = ““; CONTEXT = | NFORVATI ON;
}
KEYWORD VERSI ON = si ngl e_val ue_annotation {
VALUETYPE = string_val ue; DEFAULT = ““; CONTEXT = | NFORMATI ON;
}
KEYWORD AUTHCOR = singl e_val ue_annotati on {
VALUETYPE = string_val ue; DEFAULT = ““; CONTEXT = | NFORVMATI ON;
}
KEYWORD DATETI ME = singl e_val ue_annotation {
VALUETYPE = string val ue; DEFAULT = ““; CONTEXT = | NFORMATI ON;
}
KEYWORD CELLTYPE = singl e_val ue_annotation { (see 9.5.1)

CONTEXT = CELL;

VALUETYPE = identifier;

VALUES ({
buf fer conbinational nultiplexor flipflop Iatch
menory bl ock core speci al

}

}

KEYWORD SWAP_CLASS = annotation { (see 9.5.2)
CONTEXT = CELL;
VALUETYPE = identifier;

}

KEYWORD RESTRI CT_CLASS = annotation { (see 9.5.3)
CONTEXT { CELL CLASS }
VALUETYPE = identifier;

}

IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 205

KEYWORD SCAN TYPE = single _val ue_annotation {
CONTEXT = CELL;
VALUETYPE = identifier
VALUES { nuxscan cl ocked Issd control 0O control 1 }

}

KEYWORD SCAN_USAGE = singl e_val ue_annotation {
CONTEXT = CELL;
VALUETYPE = identifier;
VALUES { input output hold }

}

KEYWORD BUFFERTYPE = si ngl e_val ue_annotation {
CONTEXT = CELL;
VALUETYPE = identifier;
VALUES { input output inout internal }
DEFAULT = internal

}

KEYWORD DRI VERTYPE = singl e_val ue_annotation {
CONTEXT = CELL;
VALUETYPE = identifier;
VALUES { predriver slotdriver both }

}

KEYWORD PARALLEL_DRI VE
CONTEXT = CELL;
VALUETYPE = unsi gned;
DEFAULT = 1;

}

KEYWORD PLACEMENT _TYPE
CONTEXT = CELL;
VALUETYPE = identifier;

VALUES { pad core ring block connector }
DEFAULT = core

}

KEYWORD VI EW = singl e_val ue_annotati on {
CONTEXT { PI'N PI NGROUP }

VALUETYPE = identifier
VALUES { functional physical both none }
DEFAULT = both

}

KEYWORD PI NTYPE = singl e _val ue_annotation {
CONTEXT = PIN;

VALUETYPE = identifier
VALUES { digital analog supply }
DEFAULT = digital

}

KEYWORD DI RECTI ON = singl e _val ue_annotation {
CONTEXT = PIN;

VALUETYPE = identifier;
VALUES { input output both none }

}

KEYWORD SI GNALTYPE = si ngl e_val ue_annot ati on {
CONTEXT = PIN;

VALUETYPE = identifier

singl e_val ue_annot ati on {

si ngl e_val ue_annotation {

206 Advanced Library Format (ALF) Reference Manual

(see

(see

(see

(see

(see

(see

(see

(see

(see

(see

IEEE P1603 Draft 6

. 4)

.5)

. 6)

.7)

. 8)

.9)

.1)

.2)

. 3)

. 4)

VALUES ({
data scan_data address control select tie clear set
enabl e out _enabl e scan_enabl e scan_out _enabl e
cl ock master_cl ock sl ave_cl ock
scan_mast er _cl ock scan_sl ave_cl ock

}
DEFAULT = dat a;
}
KEYWORD ACTI ON = singl e_val ue_annotation { (see 9.9.5)

CONTEXT = PIN;
VALUETYPE = identifier;
VALUES { asynchronous synchronous }

}

KEYWORD POLARI TY = singl e_val ue_annotation { (see 9.9.6)
CONTEXT = PIN,
VALUETYPE = identifier;
VALUES { high low rising_edge falling_edge doubl e_edge }

}

KEYWORD DATATYPE = singl e_val ue_annotation { (see 9.9.7)
CONTEXT { PI'N PI NGROUP }
VALUETYPE = identifier;
VALUES { signed unsigned }

}

KEYWORD | NI TI AL_VALUE = singl e_val ue_annotation { (see 9.9.8)
CONTEXT = CELL;
VALUETYPE = bool ean_val ue;

}

KEYWORD SCAN_POSI TI ON = singl e_val ue_annotation { (see 9.9.9)
CONTEXT = PIN;
VALUETYPE = unsi gned;
DEFAULT = O0;

}

KEYWORD STUCK = singl e_val ue_annotation { (see 9.9.10)

CONTEXT = PIN;
VALUETYPE = identifier
VALUES { stuck_at 0O stuck_at_1 both none }

DEFAULT = bot h;

}

KEYWORD SUPPLYTYPE = annotation { (see 9.9.11)
CONTEXT = PIN;
VALUETYPE = identifier;
VALUES { power ground reference }

}

KEYWORD SI GNAL_CLASS = annotation { (see 9.9.12)
CONTEXT { PI'N PI NGROUP }
VALUETYPE = identifier

}

KEYWORD SUPPLY_CLASS = annotation { (see 9.9.13)
CONTEXT { PI N PI NGROUP CLASS }
VALUETYPE = identifier;

}

IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 207

KEYWORD DRI VETYPE = single_val ue_annotation { (see 9.9.14)
CONTEXT = PIN;
VALUETYPE = identifier
VALUES ({
CNDS NNDS pNDS CNDS_pass NNDS_pass pnos_pass
ttl open_drain open_source

}
DEFAULT = cnos;
}
KEYWORD SCOPE = singl e_val ue_annotation { (see 9.9.15)

CONTEXT = PIN;

VALUETYPE = identifier;

VALUES { behavi or nmeasure both none }
DEFAULT = bot h;

}

KEYWORD CONNECT _CLASS = singl e _val ue_annotation { (see 9.9.16)
CONTEXT = PIN,
VALUETYPE = identifier;

}

KEYWORD SI DE = singl e_val ue_annotation { (see 9.9.17)
CONTEXT { PI'N PI NGROUP }
VALUETYPE = identifier
VALUES { left right top bottominside }

}

KEYWORD ROW = annot ati on { (see 9.9.18)
CONTEXT { PIN PI NGROUP }
VALUETYPE = unsi gned;

}
KEYWORD COLUWN = annotation {
CONTEXT { PI N PI NGROUP }
VALUETYPE = unsi gned;
}
KEYWORD ROUTI NG TYPE = singl e_val ue_annotati on { (see 9.9.19)
CONTEXT { PIN PORT }
VALUETYPE = identifier
VALUES { regul ar abutnent ring feedthrough }
DEFAULT = regul ar
}
KEYWORD PULL = single_val ue_annotation { (see 9.9.20)
CONTEXT = PIN;
VALUETYPE = identifier
VALUES { up down both none }
DEFAULT = none;

}

KEYWORD SELECT_CLASS = annotation {
CONTEXT = W RE; (see 9.14.1)
VALUETYPE = identifier;

}

KEYWORD NODETYPE = si ngl e_val ue_annot ati on { (see 9.15.1)

CONTEXT = NODE
VALUETYPE = identifier

208 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

VALUES { power ground source sink
driver receiver interconnect }

}

KEYWORD NODE _CLASS = annotation {

CONTEXT = NCDE

VALUETYPE = identifier;

}

KEYWORD PURPOSE = annotation {
CONTEXT { VECTOR CLASS }
VALUETYPE = identifier
VALUES { bist test timng power noise reliability }

}

KEYWORD OPERATI ON = singl e_val ue_annotati on {

CONTEXT = VECTOR

VALUETYPE = identifier;

VALUES {

read wite read_nodify wite refresh | oad

start end iddq

}
}

KEYWORD LABEL = singl e_val ue_annotation {

CONTEXT = VECTOR

VALUETYPE = string_val ue;

}

KEYWORD EXI STENCE _CONDI TI ON = singl e_val ue_annotation {
CONTEXT { VECTCOR CLASS }
VALUETYPE = bool ean_expr essi on

DEFAULT = 1;
}

KEYWORD EXI STENCE_CLASS = annotation {
CONTEXT { VECTOR CLASS }
VALUETYPE = identifier

}
KEYWORD

CHARACTERI ZATI ON_CONDI TI ON = si ngl e_val ue_annotati on {
CONTEXT { VECTOR CLASS }
VALUETYPE = bool ean_expressi on

}

KEYWORD CHARACTERI ZATI ON_VECTOR = si ngl e_val ue_annot ati on {

CONTEXT { VECTOR CLASS }
VALUETYPE = control _expression

}

KEYWORD CHARACTERI ZATI ON_CLASS = annotation {
CONTEXT { VECTOR CLASS }
VALUETYPE = identifier

}

KEYWORD LAYERTYPE = singl e _val ue_annotation {

CONTEXT = LAYER;

VALUETYPE = identifier

VALUES {

routing cut substrate dielectric reserved abstract

IEEE P1603 Draft 6

Advanced Library Format (ALF) Reference Manual

(see

(see

(see

(see

(see

(see

(see

(see

(see

(see

. 15.

.17,

. 17.

.17,

. 17.

.17,

.17,

. 17.

.17,

. 19.

2)

1)

2)

3)

4)

5)

6)

7)

8)

1)

209

}
}
KEYWORD PI TCH = singl e_val ue_annotati on { (see 9.19.2)
CONTEXT = LAYER;
VALUETYPE = unsi gned_nunber ;
}
KEYWORD PREFERENCE = si ngl e_val ue_annotation { (see 9.19.3)
CONTEXT = LAYER,
VALUETYPE = identifier;
VALUES { horizontal vertical acute obtuse }
}
KEYWORD VI ATYPE = singl e_val ue_annotation { (see 9.22.1)
CONTEXT = VI A
VALUETYPE = identifier;
VALUES { default non_default partial _stack full_stack }
DEFAULT = defaul t;

}
KEYWORD PORT_VI EW = singl e_val ue_annot ati on { (see 9.27.1)
CONTEXT = PORT;
VALUETYPE = identifier;
VALUES { physical electrical both none }
DEFAULT = bot h;

}

KEYWORD ORI ENTATI ON_CLASS = annotation { (see 9.29.1)
CONTEXT { SITE CELL }
VALUETYPE = | DENTI FI ER;

}

KEYWORD SYMVETRY_CLASS = annotation { (see 9.29.2)
CONTEXT { SITE CELL }
VALUETYPE = identifier;

}
KEYWORD ARRAYTYPE = singl e _val ue_annotation { (see 9.31.1)
CONTEXT = ARRAY;
VALUETYPE = identifier;
VALUES { fl oorplan pl acenent
gl obal _routing detailed routing }
}
KEYWORD SHAPE = singl e_val ue_annotation { (see 9.33.2)
CONTEXT = PATTERN,;
VALUETYPE = identifier;
VALUES { line tee cross jog corner end }
DEFAULT = li ne;
}
KEYWORD VERTEX = singl e _val ue_annotation { (see 9.33.3)
CONTEXT = PATTERN;
VALUETYPE = identifier;
VALUES { round linear }
DEFAULT = |i near;

KEYWORD PO NT_TO PO NT = single _val ue_annotation { (see 9. 35)
CONTEXT { POLYLI NE RI NG POLYGON }

210 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

VALUETYPE = identifier
VALUES { direct manhattan }
DEFAULT = direct;

}

B.2 Arithmetic definitions

SEMANTI CS VI OLATI ON {
CONTEXT {

SETUP HOLD RECOVERY REMOVAL SKEW NOCHANGE | LLEGAL
LIMT. ari thnetic_node
LIMT.arithnetic_nodel . M N
LIMT. arithnetic_nodel . MAX
LIMT. arithnetic_nodel . arithnetic_subnode
LIMT. arithnetic_nodel .arithnetic_subnodel . M N
LIMT. arithnetic_nodel .arithnetic_subnodel . MAX

}
}
SEMANTI CS VI OLATI ON. BEHAVI OR {
CONTEXT {
VECTOR. ari t hneti ¢c_nodel
VECTOR. LIM T. ari t hnmeti c_nodel
VECTOR. LIM T. ari thneti c_nodel . M N
VECTOR. LIM T. ari thneti c_nodel . MAX
VECTOR. LIM T. ari thnetic_nodel . arithnetic_subnodel
VECTOR. LIM T. ari thneti c_nodel . arithmetic_subnodel . M N
VECTOR. LIM T. arithnetic_nodel . arithnetic_subnodel . MAX
}
}

KEYWORD MESSAGE TYPE = single_val ue_annotation {
CONTEXT = VI OLATI ON ;
VALUETYPE = identifier
VALUES ({

}
KEYWORD MESSACE = singl e _val ue_annotation {
CONTEXT = VI OLATI ON ;
VALUETYPE = quoted_string
}
KEYWORD UNI T = annotation {
CONTEXT = arithnetic_nodel ;
VALUETYPE = quantity_val ue

i nformati on warning error }

DEFAULT = 1 ;
}
KEYWORD CALCULATI ON = annotation {
CONTEXT = library_specific_object.arithnmetic_nodel

VALUES { absolute increnental }
DEFAULT = absol ute

KEYWORD | NTERPOLATI ON = si ngl e_val ue_annotation {
CONTEXT = HEADER arithnetic_nodel ;

IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual

(see 11.4.12)

(see 11.5.1)

(see 11.5.2)

(see 11.5.3)

211

VALUES { linear fit ceiling floor }
DEFAULT = fit ;
}
KEYWORD DEFAULT = singl e_val ue_annotation { (see 11.5.4)
CONTEXT { arithnetic_nodel KEYWORD }
VALUETYPE = al | _purpose_val ue ;

}
SEMANTICS PIN = single value_annotation { (see 11.19.1)
CONTEXT {
FROM TO SLEWRATE PULSEW DTH
CAPACI TANCE RESI STANCE | NDUCTANCE VOLTAGE CURRENT
}
}
SEMANTI CS SKEWPIN = nul ti _val ue_annotation ;
KEYWORD EDGE_NUMBER = annot ation { (see 11.19.2)

CONTEXT { FROM TO SLEWRATE PULSEW DTH SKEW }
VALUETYPE = unsi gned_i nt eger ;
DEFAULT = 0;

}

SEMANTI CS EDGE_NUMBER = si ngl e_val ue_annot ati on {
CONTEXT { FROM TO SLEWRATE PULSEW DTH }

}
SEMANTI CS SKEW EDGE_NUMBER = nul ti _val ue_annot ati on ;
KEYWORD MEASUREMENT = singl e_val ue_annot ati on { (see 11.29.1)
VALUETYPE = identifier ;
VALUES {
transient static average absol ute_average rns peak
}
CONTEXT {
ENERGY POWER CURRENT VOLTAGE FLUX FLUENCE JI TTER
}
}
KEYWORD CONNECT_RULE = si ngl e_val ue_annot ati on { (see 11.42.1)

VALUETYPE = identifier ;
VALUES { must _short can_short cannot_short }
CONTEXT = CONNECTI VI TY;

}

KEYWORD BETWEEN = mul ti _val ue_annotation { (see 11.42.2)
VALUETYPE = identifier ;
CONTEXT { DI STANCE LENGTH OVERHANG CONNECTI VI TY }

}

KEYWORD DI STANCE _MEASUREMENT = singl e_val ue_annot ati on { (see 11.42.3)
VALUETYPE = identifier ;
VALUES { euclidean horizontal vertical nanhattan }

DEFAULT = euclidean ;
CONTEXT = DI STANCE ;

}

KEYWORD REFERENCE = annot ati on_contai ner { (see 11.42.4)
CONTEXT = DI STANCE ;

}
SEMANTI CS REFERENCE. i denti fier = single_value_annotation {
VALUETYPE = identifier ;

212 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

VALUES { center origin near_edge far_edge }
DEFAULT = origin ;
}
SEMANTI CS ANTENNA = annotation { (see 11.42.5)
VALUETYPE = identifier ;
CONTEXT { PIN. SI ZE PI N. AREA PI N. PERI METER }

}
SEMANTI CS PATTERN = singl e_val ue_annotation { (see 11.42.6)
VALUETYPE = identifier ;
CONTEXT {
LENGTH W DTH HEI GHT SI ZE AREA THI CKNESS
PERI METER EXTENSI ON
}
}

IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 213

214 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

Annex C

(informative)

Bibliography

[B1] Ratzlaff, C. L., Gopal, N., and Pillage, L. T., “RICE: Rapid Interconnect Circuit Evaluator,” Proceedings of
28th Design Automation Conference, pp. 555-560, 1991.

[B2] SPICE 2G6 User’'s Guide.
[B3] Standard Delay Format Specification, Version 3.0, Open Verilog International, May 1995.

[B4] The IEEE Standard Dictionary of Electrical and Electronics Terms, Sixth Edition.

IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual 215

216 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

A

ABS 142
abs 142
ALIAS47
dias47
alphabetic_bit_literal 33
annotation
arithmetic modd tables
DRIVER 178
RECEIVER 178
arithmetic models
averagel7s
can_short 181
cannot_short 181
must_short 181
peak 175
rms175
static 175
transient 175
CELL
NON_SCAN_ CELL 122
cell buffertype
inout 66
input 66
internal 66
output 66
cell celltype
block 62
buffer 62
combinational 62
core 62

flipflop 62
latch 62
memory 62
multiplexor 62
special 63

cell drivertype
both 66
predriver 66
slotdriver 66

cell scan_type
clocked 65
control_065
control_165
Issd 65
muxscan 65

cell scan_usage
hold 65
input 65
output 65

pin action
asynchronous 76
synchronous 76

pin datatype
signed 78
unsigned 78

pin direction
both 73
input 73
none73
output 73

pin drivetype
cmos 82
cmos_pass 83
nmos 82
nmos_pass 83
open_drain 83
open_source 83
pmos 83
pmos_pass 83
ttl 83

pin orientation
bottom 85
left 84
right 84
top 85

pin pintype

Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 6

analog 73
digital 73
supply 73
pin polarity
double_edge 77
falling_edge 77
high 77
low 77
rising_edge 77
pin pull
both 87,91
down 87,91, 93
none 87,91, 93
up 87,91,93
pin scope
behavior 83
both 84
measure 84
none 84
pin signaltype
clear 75,77, 78
clock 75,77, 78
control 74,76, 78
data74,76, 77
enable74,75,77,78
select 74,76, 78
set 75,77, 78
pin stuck
both 80
none 80
stuck_at_079,80
stuck_at_179,80
pin view
both 72
functional 72
none 72
physical 72
arithmetic models 14
arithmetic operators
binary 142
unary 141
arithmetic_binary_operator 142
arithmetic_expression 141, 200
arithmetic_function_operator 142
arithmetic_unary_operator 141
atomic object 14

IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual

ATTRIBUTE 42
attribute 42
CELL 68,69
cell
asynchronous 68
CAM 68
dynamic 68
RAM 68
ROM 68
static 638
synchronous 68
PIN 87
pin
PAD 87
SCHMITT 87
TRISTATE 87
XTAL 87

B

based literal 33
based literal 33
behavior 119
behavior_body 119
Binary operators

arithmetic 142
binary _base 33
bit 124
bit_edge litera 34
bit_literal 33
boolean_binary operator 123
boolean_expression 123
boolean_unary_operator 123

C

cell 61

cell identifier 61
cell_template instantiation 61
characterization 5

children object 13

CLASS47

class47

comment 25

CONSTANT 47

constant 47

4 Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 6

D

decimal_base 33
deep submicron5
delimiter 25

E

edge literal 34

eguation 146
equation_template_instantiation 146
escape codes 34

escape_character 27, 28
escaped_identifier 35

EXP 142

exp 142

F

function 117
Function operators

arithmetic 142
function_template instantiation 117
functional model 5

G

generic objects 14
group 52
group_identifier 52

H

header 145
hex_base 33

|

identifier 13,25
INCLUDE 43
include43, 44
index 41

L

Library creation 2

library template instantiation 59
library-specific objects 14

literal 25

LOG 142

log 142

logic_values121

IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual

M

MAX 143

max 142

MIN 142

min 142

mode of operation 5

N

nonescaped_identifier 35, 36
Number 31
numeric_bit_literal 33

O

octal_base 33
operation mode5

P
pin_assignments41
placeholder identifier 36
power constraint 5
Power model 5
predefined derating cases 166, 176

bccom 166

bcind 166

bcmil 167

wccom 167

wcind 167

wcmil 167
predefined process names 166

snsp 166

snwp 166

wnsp 166

wnwp 166
primitive_identifier 89, 119
primitive_instantiation 119
primitive_template instantiation 89
PROPERTY 43
property 43

Q
guoted string 34
guoted_string 34

R
RTL 4

6 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

S

sequential_assignment 119, 198
simulation model 5

statetable 121

statetable body 121

string 39

symbolic_edge literal 34

T
table 145

template 54
template_identifier 54
template_instantiation 54
timing constraints5
timing models5

U

Unary operators
arithmetic 141

unnamed_assignment 42

V

vector 92

vector_expression 92,132
vector_template_instantiation 92
vector_unary_operator 132
vector-based modeling 5
Verilog 4

VHDL 4

W

wire89, 90, 96, 98, 99, 100, 101, 102, 104, 105, 114

wire_identifier 89, 90, 96, 98, 100, 102

wire_template instantiation 89, 90, 96, 98, 100, 101, 102, 104, 105, 114
word_edge literal 34

IEEE P1603 Draft 6 Advanced Library Format (ALF) Reference Manual

Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 6

	1. Introduction
	1.1 Motivation
	1.2 Goals
	1.3 Target applications
	1.4 Conventions
	1.5 Contents of this standard

	2. References
	3. Definitions
	4. Acronyms and abbreviations
	5. ALF language construction principles and overview
	5.1 ALF meta-language
	5.2 Categories of ALF statements
	5.3 Generic objects and library-specific objects
	5.4 Singular statements and plural statements
	5.5 Instantiation statement and assignment statement
	5.6 Annotation, arithmetic model, and related statements
	5.7 Statements for parser control
	5.8 Name space and visibility of statements

	6. Lexical rules
	6.1 Character set
	6.2 Comment
	6.3 Delimiter
	6.4 Operator
	6.4.1 Arithmetic operator
	6.4.2 Boolean operator
	6.4.3 Relational operator
	6.4.4 Shift operator
	6.4.5 Event sequence operator
	6.4.6 Meta operator

	6.5 Number
	6.6 Quantity symbol
	6.7 Bit literal
	6.8 Based literal
	6.9 Edge literal
	6.10 Quoted string
	6.11 Identifier
	6.11.1 Non-escaped identifier
	6.11.2 Escaped identifier
	6.11.3 Placeholder identifier
	6.11.4 Hierarchical identifier

	6.12 Keyword
	6.13 Rules for whitespace usage
	6.14 Rules against parser ambiguity

	7. Auxiliary syntax rules
	7.1 All-purpose value
	7.2 Quantity value
	7.3 String value
	7.4 Arithmetic value
	7.5 Boolean value
	7.6 Edge value
	7.7 Index value
	7.8 Index
	7.9 Pin variable and pin value
	7.10 Pin assignment
	7.11 Annotation
	7.12 Annotation container
	7.13 ATTRIBUTE statement
	7.14 PROPERTY statement
	7.15 INCLUDE statement
	7.16 ASSOCIATE statement
	7.17 REVISION statement
	7.18 Generic object
	7.19 Library-specific object
	7.20 All purpose item

	8. Generic objects and related statements
	8.1 ALIAS declaration
	8.2 CONSTANT declaration
	8.3 CLASS declaration
	8.4 KEYWORD declaration
	8.5 Annotations for a KEYWORD
	8.5.1 VALUETYPE annotation
	8.5.2 VALUES annotation
	8.5.3 DEFAULT annotation
	8.5.4 CONTEXT annotation
	8.5.5 SI_MODEL annotation

	8.6 SEMANTICS declaration
	8.7 GROUP declaration
	8.8 TEMPLATE declaration
	8.9 TEMPLATE instantiation

	9. Library-specific objects and related statements
	9.1 LIBRARY and SUBLIBRARY declaration
	9.2 Annotations for LIBRARY and SUBLIBRARY
	9.2.1 INFORMATION annotation container

	9.3 CELL declaration
	9.4 CELL instantiation
	9.5 Annotations for a CELL
	9.5.1 CELLTYPE annotation
	9.5.2 SWAP_CLASS annotation
	9.5.3 RESTRICT_CLASS annotation
	9.5.4 SCAN_TYPE annotation
	9.5.5 SCAN_USAGE annotation
	9.5.6 BUFFERTYPE annotation
	9.5.7 DRIVERTYPE annotation
	9.5.8 PARALLEL_DRIVE annotation
	9.5.9 PLACEMENT_TYPE annotation
	9.5.10 SITE reference annotation

	9.6 ATTRIBUTE values for a CELL
	9.7 PIN declaration
	9.8 PINGROUP declaration
	9.9 Annotations for a PIN and a PINGROUP
	9.9.1 VIEW annotation
	9.9.2 PINTYPE annotation
	9.9.3 DIRECTION annotation
	9.9.4 SIGNALTYPE annotation
	9.9.5 ACTION annotation
	9.9.6 POLARITY annotation
	9.9.7 DATATYPE annotation
	9.9.8 INITIAL_VALUE annotation
	9.9.9 SCAN_POSITION annotation
	9.9.10 STUCK annotation
	9.9.11 SUPPLYTYPE annotation
	9.9.12 SIGNAL_CLASS annotation
	9.9.13 SUPPLY_CLASS annotation
	9.9.14 DRIVETYPE annotation
	9.9.15 SCOPE annotation
	9.9.16 CONNECT_CLASS annotation
	9.9.17 SIDE annotation
	9.9.18 ROW and COLUMN annotation
	9.9.19 ROUTING_TYPE annotation
	9.9.20 PULL annotation

	9.10 ATTRIBUTE values for a PIN and a PINGROUP
	9.11 PRIMITIVE declaration
	9.12 WIRE declaration
	9.13 WIRE instantiation
	9.14 Annotations for a WIRE
	9.14.1 SELECT_CLASS annotation

	9.15 NODE declaration
	9.15.1 NODETYPE annotation
	9.15.2 NODE_CLASS annotation

	9.16 VECTOR declaration
	9.17 Annotations for VECTOR
	9.17.1 PURPOSE annotation
	9.17.2 OPERATION annotation
	9.17.3 LABEL annotation
	9.17.4 EXISTENCE_CONDITION annotation
	9.17.5 EXISTENCE_CLASS annotation
	9.17.6 CHARACTERIZATION_CONDITION annotation
	9.17.7 CHARACTERIZATION_VECTOR annotation
	9.17.8 CHARACTERIZATION_CLASS annotation
	9.17.9 MONITOR annotation

	9.18 LAYER declaration
	9.19 Annotations for LAYER
	9.19.1 LAYERTYPE annotation
	9.19.2 PITCH annotation
	9.19.3 PREFERENCE annotation

	9.20 VIA declaration
	9.21 VIA instantiation
	9.22 Annotations for a VIA
	9.22.1 VIATYPE annotation

	9.23 RULE declaration
	9.24 ANTENNA declaration
	9.25 BLOCKAGE declaration
	9.26 PORT declaration
	9.27 Annotations for PORT
	9.27.1 PORT_VIEW annotation

	9.28 SITE declaration
	9.29 Annotations for SITE
	9.29.1 ORIENTATION_CLASS annotation
	9.29.2 SYMMETRY_CLASS annotation

	9.30 ARRAY declaration
	9.31 Annotations for ARRAY
	9.31.1 ARRAYTYPE annotation
	9.31.2 SITE reference annotation
	9.31.3 LAYER reference annotation

	9.32 PATTERN declaration
	9.33 Annotations for PATTERN
	9.33.1 LAYER reference annotation
	9.33.2 SHAPE annotation
	9.33.3 VERTEX annotation
	9.33.4 ROUTE annotation

	9.34 REGION declaration
	9.34.1 BOOLEAN annotation

	9.35 Geometric model
	9.36 Predefined geometric models using TEMPLATE
	9.37 Geometric transformation
	9.38 ARTWORK statement

	10. Constructs for modeling of functional behavior
	10.1 FUNCTION statement
	10.2 TEST statement
	10.3 Declaration of pin variables
	10.4 BEHAVIOR statement
	10.5 STRUCTURE statement
	10.6 STATETABLE statement
	10.7 NON_SCAN_CELL statement
	10.8 RANGE statement
	10.9 Boolean expression
	10.10 Boolean value system
	10.10.1 Scalar boolean value
	10.10.2 Vectorized boolean value
	10.10.3 Non-assignable boolean value

	10.11 Boolean operations and operators
	10.11.1 Logical operation
	10.11.2 Bitwise operation
	10.11.3 Conditional operation
	10.11.4 Integer arithmetic operation
	10.11.5 Shift operation
	10.11.6 Comparison operation
	10.11.7 Operator priorities

	10.12 Vector expression
	10.13 Operators for event specification
	10.13.1 Specification of a single event
	10.13.2 Temporal order of events
	10.13.3 Canonical specification of an event
	10.13.4 Specification of a completely permutable event
	10.13.5 Specification of a conditional event
	10.13.6 Operator priorities

	11. Constructs for electrical and physical modeling
	11.1 Arithmetic expression
	11.1.1 Unary arithmetic operator
	11.1.2 Binary arithmetic operator
	11.1.3 Macro arithmetic operator

	11.2 Arithmetic model
	11.2.1 Trivial arithmetic model
	11.2.2 Partial arithmetic model
	11.2.3 Full arithmetic model

	11.3 HEADER, TABLE, and EQUATION
	11.3.1 HEADER statement
	11.3.2 TABLE statement
	11.3.3 EQUATION statement

	11.4 Statements related to arithmetic model
	11.4.1 Model qualifier
	11.4.2 Auxiliary arithmetic model
	11.4.3 Arithmetic submodel
	11.4.4 MIN-MAX statement
	11.4.5 MIN-TYP-MAX statement
	11.4.6 Trivial MIN-MAX statement
	11.4.7 Arithmetic model container
	11.4.8 LIMIT statement
	11.4.9 Event reference statement
	11.4.10 FROM and TO statements
	11.4.11 EARLY and LATE statements
	11.4.12 VIOLATION statement

	11.5 Annotations for arithmetic models
	11.5.1 UNIT annotation
	11.5.2 CALCULATION annotation
	11.5.3 INTERPOLATION annotation
	11.5.4 DEFAULT annotation
	11.5.5 MODEL annotation

	11.6 TIME
	11.6.1 TIME in context of a VECTOR declaration
	11.6.2 TIME in context of a HEADER statement
	11.6.3 TIME as auxiliary arithmetic model

	11.7 FREQUENCY
	11.7.1 FREQUENCY in context of a VECTOR declaration
	11.7.2 FREQUENCY in context of a HEADER statement
	11.7.3 FREQUENCY as auxiliary arithmetic model

	11.8 DELAY
	11.8.1 DELAY in context of a VECTOR declaration
	11.8.2 DELAY in context of a library-specific object declaration

	11.9 RETAIN
	11.10 SLEWRATE
	11.10.1 SLEWRATE in context of a VECTOR declaration
	11.10.2 SLEWRATE in context of a PIN declaration
	11.10.3 SLEWRATE in context of a library-specific object declaration

	11.11 SETUP and HOLD
	11.11.1 SETUP in context of a VECTOR declaration
	11.11.2 HOLD in context of a VECTOR declaration
	11.11.3 SETUP and HOLD in context of the same VECTOR declaration

	11.12 RECOVERY and REMOVAL
	11.12.1 RECOVERY in context of a VECTOR declaration
	11.12.2 REMOVAL in context of a VECTOR declaration
	11.12.3 RECOVERY and REMOVAL in context of the same VECTOR declaration

	11.13 NOCHANGE and ILLEGAL
	11.13.1 NOCHANGE in context of a VECTOR declaration
	11.13.2 ILLEGAL in context of a VECTOR declaration

	11.14 SKEW
	11.14.1 SKEW involving two signals
	11.14.2 SKEW involving multiple signals

	11.15 PULSEWIDTH
	11.15.1 PULSEWIDTH in context of a VECTOR declaration
	11.15.2 PULSEWIDTH in context of a PIN declaration
	11.15.3 PULSEWIDTH in context of a library-specific object declaration

	11.16 PERIOD
	11.17 JITTER
	11.18 THRESHOLD
	11.19 Annotations related to timing data
	11.19.1 PIN reference annotation
	11.19.2 EDGE_NUMBER annotation

	11.20 PROCESS
	11.21 DERATE_CASE
	11.22 TEMPERATURE
	11.23 PIN-related arithmetic models for electrical data
	11.23.1 CAPACITANCE, RESISTANCE, and INDUCTANCE
	11.23.2 VOLTAGE and CURRENT
	11.23.3 Context-specific semantics

	11.24 POWER and ENERGY
	11.25 FLUX and FLUENCE
	11.26 DRIVE_STRENGTH
	11.27 SWITCHING_BITS
	11.28 NOISE and NOISE_MARGIN
	11.28.1 NOISE margin
	11.28.2 NOISE

	11.29 Annotations and statements related to electrical models
	11.29.1 MEASUREMENT annotation
	11.29.2 TIME to peak measurement
	11.29.3 COMPONENT annotation
	11.29.4 FLOW annotation

	11.30 CONNECTIVITY
	11.31 SIZE
	11.32 AREA
	11.33 WIDTH
	11.34 HEIGHT
	11.35 LENGTH
	11.36 DISTANCE
	11.37 OVERHANG
	11.38 PERIMETER
	11.39 EXTENSION
	11.40 THICKNESS
	11.41 DENSITY
	11.42 Annotations for physical models
	11.42.1 CONNECT_RULE annotation
	11.42.2 BETWEEN annotation
	11.42.3 DISTANCE-MEASUREMENT annotation
	11.42.4 REFERENCE annotation container
	11.42.5 ANTENNA reference annotation
	11.42.6 PATTERN reference annotation

	11.43 Arithmetic submodels for timing and electrical data
	11.44 Arithmetic submodels for physical data

	Annex A
	A.1 ALF meta-language
	A.2 Lexical definitions
	A.3 Auxiliary definitions
	A.4 Generic definitions
	A.5 Library definitions
	A.6 Function definitions
	A.7 Arithmetic definitions
	Annex B
	B.1 Library definitions
	B.2 Arithmetic definitions
	Annex C

