
1

5

10

15

20

25

30

35

40

45

50

55
A standard for an
Advanced Library Format (ALF)

describing Integrated Circuit (IC)
technology, cells, and blocks

This is an unapproved draft for an IEEE standard
and subject to change

IEEE P1603 Draft 7

October 24, 2002
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual i

1

5

10

15

20

25

30

35

40

45

50

55
Copyright© 2001, 2002, 2003 by IEEE. All rights reserved.

put in IEEE verbiage
ii Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

1

5

10

15

20

25

30

35

40

45

50

55
The following individuals contributed to the creation, editing, and review of this document

Wolfgang Roethig, Ph.D. wroethig@eda.org Official Reporter and WG Chair

Joe Daniels chippewea@aol.com Technical Editor
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual iii

1

5

10

15

20

25

30

35

40

45

50

55
Revision history:

IEEE P1596 Draft 0 August 19, 2001

IEEE P1603 Draft 1 September 17, 2001

IEEE P1603 Draft 2 November 12, 2001

IEEE P1596 Draft 3 April 17, 2002

IEEE P1603 Draft 4 May 15, 2002

IEEE P1603 Draft 5 June 21, 2002
iv Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

Table of Contents
1. Introduction..1

1.1 Motivation..1
1.2 Goals ..2
1.3 Target applications...2
1.4 Conventions ...5
1.5 Contents of this standard..5

2. References..7

3. Definitions ...9

4. Acronyms and abbreviations ...11

5. ALF language construction principles and overview ..13

5.1 ALF meta-language ...13
5.2 Categories of ALF statements..14
5.3 Generic objects and library-specific objects ..16
5.4 Singular statements and plural statements ...18
5.5 Instantiation statement and assignment statement ...20
5.6 Annotation, arithmetic model, and related statements...21
5.7 Statements for parser control ...23
5.8 Name space and visibility of statements..23

6. Lexical rules...25

6.1 Character set ..25
6.2 Comment..27
6.3 Delimiter ..27
6.4 Operator ...28

6.4.1 Arithmetic operator .. 28
6.4.2 Boolean operator .. 29
6.4.3 Relational operator ... 29
6.4.4 Shift operator.. 30
6.4.5 Event sequence operator... 30
6.4.6 Meta operator ... 30

6.5 Number ..31
6.6 Multiplier prefix symbol..31
6.7 Bit literal ..32
6.8 Based literal ...33
6.9 Edge literal ...33
6.10 Quoted string..34
6.11 Identifier...35

6.11.1 Non-escaped identifier ... 35
6.11.2 Escaped identifier ... 35
6.11.3 Placeholder identifier ... 36
6.11.4 Hierarchical identifier... 36
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual v

1

5

10

15

20

25

30

35

40

45

50

55
6.12 Keyword.. 36
6.13 Vector expression macro... 37
6.14 Rules for whitespace usage ... 37
6.15 Rules against parser ambiguity ... 37

7. Auxiliary syntax rules ... 39

7.1 All-purpose value.. 39
7.2 Multiplier prefix value .. 39
7.3 String value ... 39
7.4 Arithmetic value.. 39
7.5 Boolean value.. 40
7.6 Edge value... 40
7.7 Index value.. 40
7.8 Index.. 40
7.9 Pin variable and pin value... 41
7.10 Pin assignment .. 41
7.11 Annotation... 41
7.12 Annotation container... 42
7.13 ATTRIBUTE statement .. 42
7.14 PROPERTY statement.. 43
7.15 INCLUDE statement... 43
7.16 ASSOCIATE statement and FORMAT annotation .. 44
7.17 REVISION statement.. 45
7.18 Generic object ... 45
7.19 Library-specific object .. 46
7.20 All purpose item.. 46

8. Generic objects and related statements ... 47

8.1 ALIAS declaration .. 47
8.2 CONSTANT declaration... 47
8.3 KEYWORD declaration ... 47
8.4 SEMANTICS declaration ... 48
8.5 Annotations and rules related to a KEYWORD or a SEMANTICS declaration.............................. 49

8.5.1 VALUETYPE annotation.. 49
8.5.2 VALUES annotation.. 50
8.5.3 DEFAULT annotation ... 51
8.5.4 CONTEXT annotation... 51
8.5.5 REFERENCETYPE annotation .. 52
8.5.6 SI_MODEL annotation.. 53
8.5.7 Rules for legal usage of KEYWORD and SEMANTICS declaration................................. 54

8.6 CLASS declaration ... 54
8.7 Annotations related to a CLASS declaration .. 55

8.7.1 General CLASS reference annotation ... 55
8.7.2 USAGE annotation .. 56

8.8 GROUP declaration .. 57
8.9 TEMPLATE declaration ... 58
8.10 TEMPLATE instantiation ... 58

9. Library-specific objects and related statements .. 63

9.1 LIBRARY and SUBLIBRARY declaration ... 63
9.2 Annotations related to a LIBRARY or a SUBLIBRARY declaration.. 63
vi Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

1

5

10

15

20

25

30

35

40

45

50

55
9.2.1 LIBRARY reference annotation... 63
9.2.2 INFORMATION annotation container .. 64

9.3 CELL declaration...65
9.4 Annotations related to a CELL declaration ...66

9.4.1 CELL reference annotation .. 66
9.4.2 CELLTYPE annotation .. 66
9.4.3 SWAP_CLASS annotation... 67
9.4.4 RESTRICT_CLASS annotation... 67
9.4.5 SCAN_TYPE annotation ... 69
9.4.6 SCAN_USAGE annotation .. 69
9.4.7 BUFFERTYPE annotation ... 70
9.4.8 DRIVERTYPE annotation ... 70
9.4.9 PARALLEL_DRIVE annotation ... 71
9.4.10 PLACEMENT_TYPE annotation .. 71
9.4.11 SITE reference annotation for a CELL .. 72
9.4.12 ATTRIBUTE values for a CELL ... 72

9.5 PIN declaration ..74
9.6 PINGROUP declaration...75
9.7 Annotations related to a PIN or a PINGROUP declaration...76

9.7.1 PIN reference annotation.. 76
9.7.2 MEMBERS annotation... 76
9.7.3 VIEW annotation.. 76
9.7.4 PINTYPE annotation.. 77
9.7.5 DIRECTION annotation... 78
9.7.6 SIGNALTYPE annotation ... 79
9.7.7 ACTION annotation ... 81
9.7.8 POLARITY annotation .. 82
9.7.9 CONTROL_POLARITY annotation container.. 83
9.7.10 DATATYPE annotation ... 84
9.7.11 INITIAL_VALUE annotation.. 84
9.7.12 SCAN_POSITION annotation ... 85
9.7.13 STUCK annotation ... 85
9.7.14 SUPPLYTYPE annotation ... 85
9.7.15 SIGNAL_CLASS annotation ... 86
9.7.16 SUPPLY_CLASS annotation... 87
9.7.17 DRIVETYPE annotation.. 88
9.7.18 SCOPE annotation.. 89
9.7.19 CONNECT_CLASS annotation... 90
9.7.20 SIDE annotation ... 90
9.7.21 ROW and COLUMN annotation.. 91
9.7.22 ROUTING_TYPE annotation .. 92
9.7.23 PULL annotation .. 92
9.7.24 ATTRIBUTE values for a PIN or a PINGROUP... 93

9.8 PRIMITIVE declaration ..95
9.9 WIRE declaration ..95
9.10 Annotations related to a WIRE declaration ...96

9.10.1 WIRE reference annotation .. 96
9.10.2 WIRETYPE annotation.. 96
9.10.3 SELECT_CLASS annotation ... 97

9.11 NODE declaration..98
9.12 Annotations related to a NODE declaration ..98

9.12.1 NODE reference annotation ... 98
9.12.2 NODETYPE annotation ... 99
9.12.3 NODE_CLASS annotation... 100
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual vii

1

5

10

15

20

25

30

35

40

45

50

55
9.13 VECTOR declaration.. 101
9.14 Annotations related to a VECTOR declaration... 101

9.14.1 VECTOR reference annotation ... 101
9.14.2 PURPOSE annotation.. 101
9.14.3 OPERATION annotation... 102
9.14.4 LABEL annotation .. 103
9.14.5 EXISTENCE_CONDITION annotation ... 103
9.14.6 EXISTENCE_CLASS annotation ... 104
9.14.7 CHARACTERIZATION_CONDITION annotation... 104
9.14.8 CHARACTERIZATION_VECTOR annotation... 105
9.14.9 CHARACTERIZATION_CLASS annotation .. 105
9.14.10 MONITOR annotation... 105

9.15 LAYER declaration... 106
9.16 Annotations related to a LAYER declaration ... 106

9.16.1 LAYER reference annotation .. 106
9.16.2 LAYERTYPE annotation .. 106
9.16.3 PITCH annotation.. 107
9.16.4 PREFERENCE annotation .. 107

9.17 VIA declaration... 108
9.18 Annotations related to a VIA declaration ... 108

9.18.1 VIA reference annotation .. 108
9.18.2 VIATYPE annotation .. 109

9.19 RULE declaration ... 109
9.20 ANTENNA declaration... 110
9.21 BLOCKAGE declaration .. 110
9.22 PORT declaration.. 111
9.23 Annotations related to a PORT declaration .. 111

9.23.1 CONNECT_TYPE annotation .. 111
9.24 SITE declaration ... 112
9.25 Annotations related to a SITE declaration .. 112

9.25.1 SITE reference annotation ... 112
9.25.2 ORIENTATION_CLASS annotation.. 113
9.25.3 SYMMETRY_CLASS annotation .. 113

9.26 ARRAY declaration.. 114
9.27 Annotations related to an ARRAY declaration... 114

9.27.1 ARRAYTYPE annotation ... 114
9.27.2 LAYER reference annotation for ARRAY ... 115
9.27.3 SITE reference annotation for ARRAY .. 115

9.28 PATTERN declaration.. 115
9.29 Annotations related to a PATTERN declaration... 116

9.29.1 PATTERN reference annotation ... 116
9.29.2 SHAPE annotation... 116
9.29.3 VERTEX annotation.. 117
9.29.4 ROUTE annotation .. 118
9.29.5 LAYER reference annotation for PATTERN ... 119

9.30 REGION declaration... 119
9.31 Annotations related to a REGION declaration ... 120

9.31.1 REGION reference annotation .. 120
9.31.2 BOOLEAN annotation .. 120

10. Description of functional and physical implementation ... 121

10.1 FUNCTION statement .. 121
10.2 TEST statement... 121
viii Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

1

5

10

15

20

25

30

35

40

45

50

55
10.3 Declaration of a pin variable..122
10.4 BEHAVIOR statement ..123
10.5 STRUCTURE statement and CELL instantiation ...124
10.6 STATETABLE statement..125
10.7 NON_SCAN_CELL statement..126
10.8 RANGE statement ...127
10.9 Boolean expression ..127
10.10Boolean value system ...128

10.10.1 Scalar boolean value... 128
10.10.2 Vectorized boolean value ... 129
10.10.3 Non-assignable boolean value.. 131

10.11Boolean operations and operators...132
10.11.1 Logical operation.. 132
10.11.2 Bitwise operation.. 132
10.11.3 Conditional operation ... 133
10.11.4 Integer arithmetic operation ... 133
10.11.5 Shift operation .. 134
10.11.6 Comparison operation .. 134
10.11.7 Operator priorities .. 136

10.12Vector expression ...136
10.13Operators for event specification..137

10.13.1 Specification of a single event.. 137
10.13.2 Temporal order within an event sequence.. 139
10.13.3 Canonical specification of a sequence of events .. 141
10.13.4 Specification of a completely permutable event .. 143
10.13.5 Specification of a conditional event ... 144
10.13.6 Operator priorities .. 145

10.14Predefined PRIMITIVE..146
10.14.1 Predefined PRIMITIVE ALF_BUF ... 146
10.14.2 Predefined PRIMITIVE ALF_NOT... 146
10.14.3 Predefined PRIMITIVE ALF_AND .. 146
10.14.4 Predefined PRIMITIVE ALF_NAND ... 146
10.14.5 Predefined PRIMITIVE ALF_OR ... 146
10.14.6 Predefined PRIMITIVE ALF_NOR .. 147
10.14.7 Predefined PRIMITIVE ALF_XOR .. 147
10.14.8 Predefined PRIMITIVE ALF_XNOR.. 147
10.14.9 Predefined PRIMITIVE ALF_BUFIF1.. 147
10.14.10Predefined PRIMITIVE ALF_BUFIF0... 147
10.14.11Predefined PRIMITIVE ALF_NOTIF1 .. 148
10.14.12Predefined PRIMITIVE ALF_NOTFIF0 .. 148
10.14.13Predefined PRIMITIVE ALF_MUX... 149
10.14.14Predefined PRIMITIVE ALF_LATCH... 149
10.14.15Predefined PRIMITIVE ALF_FLIPFLOP .. 149

10.15WIRE instantiation ...150
10.16Geometric model...151
10.17Predefined geometric models using TEMPLATE ..153

10.17.1 Predefined TEMPLATE RECTANGLE.. 153
10.17.2 Predefined TEMPLATE LINE... 154

10.18Geometric transformation ...154
10.19ARTWORK statement ..156
10.20VIA instantiation...157

11. Description of electrical and physical measurements..159
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual ix

1

5

10

15

20

25

30

35

40

45

50

55
11.1 Arithmetic expression ... 159
11.2 Arithmetic operations and operators ... 159

11.2.1 Unary arithmetic operator.. 159
11.2.2 Binary arithmetic operator... 160
11.2.3 Macro arithmetic operator ... 160
11.2.4 Operator priorities.. 161

11.3 Arithmetic model .. 161
11.4 HEADER, TABLE, and EQUATION statements .. 163
11.5 MIN, MAX, and TYP statements ... 165
11.6 Auxiliary arithmetic model ... 166
11.7 Arithmetic submodel... 167
11.8 Arithmetic model container .. 167

11.8.1 General arithmetic model container .. 167
11.8.2 Arithmetic model container LIMIT... 168
11.8.3 Arithmetic model container EARLY and LATE... 168

11.9 Generally applicable annotations for arithmetic models... 169
11.9.1 UNIT annotation.. 169
11.9.2 CALCULATION annotation... 170
11.9.3 INTERPOLATION annotation.. 170
11.9.4 DEFAULT annotation ... 172
11.9.5 MODEL reference annotation ... 173

11.10VIOLATION statement, MESSAGE TYPE and MESSAGE annotation 173
11.11Arithmetic models for timing, power and signal integrity... 175

11.11.1 TIME ... 175
11.11.2 FREQUENCY ... 177
11.11.3 DELAY.. 178
11.11.4 RETAIN... 178
11.11.5 SLEWRATE.. 179
11.11.6 SETUP and HOLD .. 181
11.11.7 RECOVERY and REMOVAL .. 181
11.11.8 NOCHANGE and ILLEGAL .. 182
11.11.9 PULSEWIDTH.. 183
11.11.10PERIOD .. 185
11.11.11JITTER.. 186
11.11.12SKEW ... 186
11.11.13THRESHOLD... 187
11.11.14NOISE and NOISE_MARGIN... 188
11.11.15POWER and ENERGY .. 191

11.12FROM and TO statements ... 192
11.13Annotations related to timing, power and signal integrity... 193

11.13.1 EDGE_NUMBER annotation.. 193
11.13.2 PIN reference and EDGE_NUMBER annotation for FROM and TO 193
11.13.3 PIN reference and EDGE_NUMBER annotation for SLEWRATE 195
11.13.4 PIN reference and EDGE_NUMBER annotation for PULSEWIDTH 195
11.13.5 PIN reference and EDGE_NUMBER annotation for SKEW ... 195
11.13.6 PIN reference annotation for NOISE and NOISE_MARGIN... 195
11.13.7 MEASUREMENT annotation... 196

11.14Arithmetic models for environmental conditions .. 197
11.14.1 PROCESS.. 197
11.14.2 DERATE_CASE ... 198
11.14.3 TEMPERATURE .. 199

11.15Arithmetic models for electrical circuits.. 199
11.15.1 VOLTAGE .. 199
11.15.2 CURRENT .. 201
x Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

1

5

10

15

20

25

30

35

40

45

50

55
11.15.3 CAPACITANCE.. 202
11.15.4 RESISTANCE.. 203
11.15.5 INDUCTANCE.. 205

11.16Annotations for electrical circuits...206
11.16.1 NODE reference annotation for electrical circuits ... 206
11.16.2 COMPONENT reference annotation ... 207
11.16.3 PIN reference annotation for electrical circuits.. 207
11.16.4 FLOW annotation... 209

11.17Miscellaneous arithmetic models..210
11.17.1 DRIVE STRENGTH.. 210
11.17.2 SWITCHING_BITS with PIN reference annotation.. 210

11.18Arithmetic models related to structural implementation ..211
11.18.1 CONNECTIVITY .. 211
11.18.2 DRIVER and RECEIVER.. 211
11.18.3 FANOUT, FANIN and CONNECTIONS.. 213

11.19Arithmetic models related to layout implementation ...214
11.19.1 SIZE.. 214
11.19.2 AREA ... 215
11.19.3 PERIMETER.. 216
11.19.4 EXTENSION.. 217
11.19.5 THICKNESS.. 218
11.19.6 HEIGHT ... 218
11.19.7 WIDTH... 219
11.19.8 LENGTH.. 220
11.19.9 DISTANCE .. 221
11.19.10OVERHANG... 221
11.19.11DENSITY .. 222

11.20Annotations related to arithmetic models for layout implementation ..223
11.20.1 CONNECT_RULE annotation... 223
11.20.2 BETWEEN annotation ... 223
11.20.3 BETWEEN annotation for CONNECTIVITY... 224
11.20.4 BETWEEN annotation for DISTANCE, LENGTH, OVERHANG 224
11.20.5 MEASURE annotation ... 225
11.20.6 REFERENCE annotation container ... 226
11.20.7 ANTENNA reference annotation... 228
11.20.8 TARGET annotation .. 228
11.20.9 PATTERN reference annotation .. 228

11.21Arithmetic submodels for timing and electrical data..229
11.22Arithmetic submodels for physical data ...230

(informative)Syntax rule summary ..233

A.1 ALF meta-language ...233

A.2 Lexical definitions ...233

A.3 Auxiliary definitions ..237

A.4 Generic definitions...238

A.5 Library definitions ...240

A.6 Function definitions ...243
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual xi

1

5

10

15

20

25

30

35

40

45

50

55
A.7 Arithmetic definitions ... 246

(informative)Semantics rule summary.. 251

B.1 Auxiliary and generic definitions.. 251

B.2 Library definitions... 252

B.3 Arithmetic definitions ... 258

(informative)Bibliography .. 261
xii Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

List of Figures
ALF and its target applications 4
Parent/child relationship between ALF statements 16
Parent/child relationship amongst library-specific objects 18
Parent/child relationship involving singular statements and plural statements 20
Parent/child relationship involving instantiation and assignment statements 21
Scheme for construction of composite signaltype values 80
ROW and COLUMN relative to a bounding box of a CELL 91
NODETYPE in context of a DC-connected net 100
Connection between layers during manufacturing 110
SHAPE annotation illustration 117
VERTEX annotation illustration 118
ROUTE annotation illustration 119
Relationship between FUNCTION and TEST 123
Timing diagrams for single events 138
Illustration of geometric models 152
Illustration of direct point-to-point connection 152
Illustration of manhattan point-to-point connection 153
Illustration of FLIP, ROTATE, and SHIFT 155
Bounding regions for y(x) with INTERPOLATION=fit 172
Illustration of RETAIN and DELAY 179
Illustration of SLEWRATE 180
Illustration of SETUP and HOLD 181
RECOVERY and REMOVAL 182
Illustration of NOCHANGE and ILLEGAL 183
Illustration of PULSEWIDTH 185
Illustration of PERIOD 185
Illustration of JITTER 186
Illustration of SKEW 187
THRESHOLD measurement definition 188
NOISE measurement definition 189
Definition of NOISE MARGIN and LIMIT for NOISE 190
Illustration of PIN reference and EDGE NUMBER annotation within FROM and TO 194
Illustration of peak measurement with FROM or TO statement 197
Electrical components and their terminals 207
Association between electrical components and an input pin 208
Association between electrical components and an output pin 209
Illustration of EXTENSION 217
Illustration of DISTANCE versus OVERHANG 222
IIllustration of DISTANCE versus OVERHANG versus LENGTH 225
Illustration of MEASURE 226
Illustration of REFERENCE for DISTANCE 227
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual xiii

1

5

10

15

20

25

30

35

40

45

50

55
xiv Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

List of Tables
Table 1—..Target applications and models supported by ALF2
Table 2—..Categories of ALF statements14
Table 3—...Generic objects16
Table 4—..Library-specific objects17
Table 5—.. Singular statements18
Table 6—.. Plural statements19
Table 7—..Instantiation statements20
Table 8—...Assignment statements21
Table 9—...Other categories of ALF statements22
Table 10—.. Annotations and annotation containers with generic keyword22
Table 11—...Keywords related to arithmetic model22
Table 12—...Statements for ALF parser control23
Table 13—... List of whitespace characters25
Table 14—..List of special characters26
Table 15—.. List arithmetic operators28
Table 16—..List of boolean operators29
Table 17—... List of relational operators29
Table 18—... List of shift operators30
Table 19—..List of event sequence operators30
Table 20—.. List of meta operators30
Table 21—..Multiplier prefix symbol and corresponding SI-prefix32
Table 22—..Character symbols within a quoted string34
Table 23—.. FORMAT annotation values44
Table 24—.. Legal string values within the REVISION statement45
Table 25—...Syntax item identifier48
Table 26—...VALUETYPE annotation49
Table 27—.. SI_MODEL annotation53
Table 28—.. USAGE annotation56
Table 29—... Annotations within an INFORMATION statement65
Table 30—...CELLTYPE annotation values66
Table 31—... Predefined values for RESTRICT_CLASS68
Table 32—... SCAN_TYPE annotations for a CELL object69
Table 33—..SCAN_USAGE annotations for a CELL object69
Table 34—... BUFFERTYPE annotations for a CELL object70
Table 35—... DRIVERTYPE annotations for a CELL object71
Table 36—..PLACEMENT_TYPE annotations for a CELL object72
Table 37—.. Attribute values for a CELL with CELLTYPE=memory72
Table 38—...Attributes within a CELL with CELLTYPE=block73
Table 39—...Attributes within a CELL with CELLTYPE=core73
Table 40—...Attributes within a CELL with CELLTYPE=special74
Table 41—... VIEW annotations for a PIN object77
Table 42—... PINTYPE annotations for a PIN object78
Table 43—..DIRECTION annotations for a PIN object78
Table 44—... Fundamental SIGNALTYPE annotations for a PIN object79
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual xv

1

5

10

15

20

25

30

35

40

45

50

55
Table 45—...Composite SIGNALTYPE annotations for a PIN object80
Table 46—.. ACTION annotations for a PIN object81
Table 47—.. ACTION applicable in conjunction with SIGNALTYPE values81
Table 48—.. POLARITY annotations for a PIN82
Table 49—..POLARITY applicable in conjunction with SIGNALTYPE values82
Table 50—... DATATYPE annotations for a PIN object84
Table 51—.. STUCK annotations for a PIN object85
Table 52—...SUPPLYTYPE annotations for a PIN object86
Table 53—... DRIVETYPE annotations for a PIN object88
Table 54—...SCOPE annotations for a PIN object89
Table 55—.. SIDE annotations for a PIN object90
Table 56—..ROUTING-TYPE annotations for a PIN object92
Table 57—... PULL annotations for a PIN object93
Table 58—... Attributes within a PIN object93
Table 59—...Attributes for pins of a memory93
Table 60—.. Attributes for pins representing pairs of signals94
Table 61—.. PIN or PINGROUP attributes for memory BIST94
Table 62—... WIRETYPE annotations for a WIRE object96
Table 63—... NODETYPE annotation values99
Table 64—...PURPOSE annotation values102
Table 65—.. OPERATION annotation values103
Table 66—..LAYERTYPE annotation values107
Table 67—... PREFERENCE annotation values108
Table 68—..VIATYPE annotation values109
Table 69—..CONNECT_TYPE annotation values112
Table 70—...ARRAYTYPE annotation values115
Table 71—..SHAPE annotation values117
Table 72—...VERTEX annotation values118
Table 73—..Annotations for PINs involved in FUNCTION and TEST122
Table 74—...Scalar boolean values128
Table 75—..Mapping between octal base and binary base129
Table 76—... Mapping between hexadecimal base and binary base129
Table 77—... Symbolic boolean values131
Table 78—.. Logical Operation132
Table 79—.. Bitwise Operation132
Table 80—..Conditional Operation133
Table 81—...Integer Arithmetic Operation133
Table 82—...Shift Operation134
Table 83—...Comparison Operation134
Table 84—..Equal comparison considering drive strength135
Table 85—...Greater comparison considering drive strength136
Table 86—...Specification of a single event137
Table 87—...Canonical specification of an event141
Table 88—..Specification of a completely permutable event143
Table 89—...Specification a conditional event145
Table 90—.. Geometric model identifiers151
Table 91—.. Unary arithmetic operators159
Table 92—... Binary arithmetic operators160
Table 93—..Macro arithmetic operators160
Table 94—... Calculation annotation170
xvi Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

1

5

10

15

20

25

30

35

40

45

50

55
Table 95—... Interpolation annotation171
Table 96—... MESSAGE_TYPE annotation175
Table 97—... MEASUREMENT annotation196
Table 98—..Predefined arithmetic values for PROCESS197
Table 99—...Predefined arithmetic values for DERATE CASE198
Table 100—.. FLOW annotation209
Table 101—...Boolean values for CONNECTIVITY211
Table 102—.. CONNECT_RULE annotation223
Table 103—.. Restrictions related to multiple requirements for connection223
Table 104—...Annotation values for MEASURE225
Table 105—...Annotation values for REFERENCE227
Table 106—...Overview of arithmetic submodels for timing and electrical data229
Table 107—...Overview of arithmetic submodels for physical data230
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual xvii

1

5

10

15

20

25

30

35

40

45

50

55
xviii Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

1

5

10

15

20

25

30

35

40

45

50

55
IEEE Standard for an
Advanced Library Format (ALF)
describing Integrated Circuit (IC)
technology, cells, and blocks

1. Introduction

Add a lead-in OR change this to parallel an IEEE intro section

1.1 Motivation

Designing digital integrated circuits has become an increasingly complex process. More functions get integrated
into a single chip, yet the cycle time of electronic products and technologies has become considerably shorter. It
would be impossible to successfully design a chip of today’s complexity within the time-to-market constraints
without extensive use of EDA tools, which have become an integral part of the complex design flow. The effi-
ciency of the tools and the reliability of the results for simulation, synthesis, timing and power analysis, layout
and extraction rely significantly on the quality of available information about the cells in the technology library.

New challenges in the design flow, especially signal integrity, arise as the traditional tools and design flows hit
their limits of capability in processing complex designs. As a result, new tools emerge, and libraries are needed
in order to make them work properly. Library creation (generation) itself has become a very complex process and
the choice or rejection of a particular application (tool) is often constrained or dictated by the availability of a
library for that application. The library constraint can prevent designers from choosing an application program
that is best suited for meeting specific design challenges. Similar considerations can inhibit the development and
productization of such an application program altogether. As a result, competitiveness and innovation of the
whole electronic industry can stagnate.

In order to remove these constraints, an industry-wide standard for library formats, the Advanced Library Format
(ALF), is proposed. It enables the EDA industry to develop innovative products and ASIC designers to choose
the best product without library format constraints. Since ASIC vendors have to support a multitude of libraries
according to the preferences of their customers, a common standard library is expected to significantly reduce the
library development cycle and facilitate the deployment of new technologies sooner.
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 1

1

5

10

15

20

25

30

35

40

45

50

55
1.2 Goals

The basic goals of the proposed library standard are

— simplicity - library creation process needs to be easy to understand and not become a cumbersome pro-
cess only known by a few experts.

— generality - tools of any level of sophistication need to be able to retrieve necessary information from the
library.

— expandability - this needs to be done for early adoption and future enhancement possibilities.
— flexibility - the choice of keeping information in one library or in separate libraries needs to be in the hand

of the user not the standard.
— efficiency - the complexity of the design information requires the process of retrieving information from

the library does not become a bottleneck. The right trade-off between compactness and verbosity needs
to be established.

— ease of implementation - backward compatibility with existing libraries shall be provided and translation
to the new library needs to be an easy task.

— conciseness - unambiguous description and accuracy of contents shall be detailed.
— acceptance - there needs to be a preference for the new standard library over existing libraries.

1.3 Target applications

The fundamental purpose of ALF is to serve as the primary database for all third-party applications of ASIC
cells. In other words, it is an elaborate and formalized version of the databook.

In the early days, databooks provided all the information a designer needed for choosing a cell in a particular
application: Logic symbols, schematics, and a truth table provided the functional specification for simple cells.
For more complex blocks, the name of the cell (e.g., asynchronous ROM, synchronous 2-port RAM, or 4-bit syn-
chronous up-down counters) and timing diagrams conveyed the functional information. The performance charac-
teristics of each cell were provided by the loading characteristics, delay and timing constraints, and some
information about DC and AC power consumption. The designers chose the cell type according to the function-
ality, estimated the performance of the design, and eventually re-implemented it in an optimized way as neces-
sary to meet performance constraints.

Design automation enabled tremendous progress in efficiency, productivity, and the ability to deal with complex-
ity, yet it did not change the fundamental requirements for ASIC design. Therefore, ALF needs to provide mod-
els with functional information and performance information, primarily including timing and power. Signal
integrity characteristics, such as noise margin can also be included under performance category. Such informa-
tion is typically found in any databook for analog cells. At deep sub-micron levels, digital cells behave similar to
analog cells as electronic devices bound by physical laws and therefore are not infinitely robust against noise.

Table 1 shows a list of applications used in ASIC design flow and their relationship to ALF.

NOTE — ALF covers library data, whereas design data needs to be provided in other formats.

Table 1—Target applications and models supported by ALF

Application Functional model Performance model Physical model

Simulation Derived from ALF N/A N/A

Synthesis Supported by ALF Supported by ALF Supported by ALF

Design for test Supported by ALF N/A N/A
2 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

1

5

10

15

20

25

30

35

40

45

50

55
Historically, a functional model was virtually identical to a simulation model. A functional gate-level model was
used by the proprietary simulator of the ASIC company and it was easy to lump it together with a rudimentary
timing model. Timing analysis was done through dynamic functional simulation. However, with the advanced
level of sophistication of both functional simulation and timing analysis, this is no longer the case. The capabili-
ties of the functional simulators have evolved far beyond the gate-level and timing analysis has been decoupled
from simulation.

RTL design planning is an emerging application type aiming to produce “virtual prototypes” of complex for sys-
tem-on-chip (SOC) designs. RTL design planning is thought of as a combination of some or all of RTL floorplan-
ning and global routing, timing budgeting, power estimation, and functional verification, as well as analysis of
signal integrity, EMI, and thermal effects. The library components for RTL design planning range from simple
logic gates to parameterizeable macro-functions, such as memories, logic building blocks, and cores.

From the point of view of library requirements, applications involved in RTL design planning need functional,
performance, and physical data. The functional aspect of design planning includes RTL simulation and formal
verification. The performance aspect covers timing and power as primary issues, while signal integrity, EMI, and
thermal effects are emerging issues. The physical aspect is floorplanning. As stated previously, the functional and
performance models of components can be described in ALF.

ALF also covers the requirements for physical data, including layout. This is important for the new generation of
tools, where logical design merges with physical design. Also, all design steps involve optimization for timing,
power, signal integrity, i.e. electrical correctness and physical correctness. EDA tools need to be knowledgeable
about an increasing number of design aspects. For example, a place and route tool needs to consider congestion
as well as timing, crosstalk, electromigration, antenna rules etc. Therefore it is a logical step to combine the func-
tional, electrical and physical models needed by such a tool in a unified library.

Figure 1 shows how ALF provides information to various design tools.

Design planning Supported by ALF Supported by ALF Supported by ALF

Timing analysis N/A Supported by ALF N/A

Power analysis N/A Supported by ALF N/A

Signal integrity N/A Supported by ALF N/A

Layout N/A N/A Supported by ALF

Table 1—Target applications and models supported by ALF (Continued)

Application Functional model Performance model Physical model
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 3

1

5

10

15

20

25

30

35

40

45

50

55
Figure 1—ALF and its target applications

The worldwide accepted standards for hardware description and simulation are VHDL and Verilog. Both lan-
guages have a wide scope of describing the design at various levels of abstraction: behavioral, functional, synthe-
sizable RTL, and gate level. There are many ways to describe gate-level functions. The existing simulators are
implemented in such a way that some constructs are more efficient for simulation run time than others. Also,
how the simulation model handles timing constraints is a trade-off between efficiency and accuracy. Developing
efficient simulation models which are functionally reliable (i.e., pessimistic for detecting timing constraint viola-
tion) is a major development effort for ASIC companies.

Hence, the use of a particular VHDL or Verilog simulation model as primary source of functional description of
a cell is not very practical. Moreover, the existence of two simulation standards makes it difficult to pick one as a

Cell characterization tool

ALF

universal functional model

Simulation models

Test vector generator Model generator

Verilog & VHDL
Test vectors

Verilog & VHDL

Simulators
Verilog & VHDL

Synthesis tool

universal universal

annotations
for synthesis

annotations
for scan

wireload

timing model power model

Scan insertion tool

Vendor-specific or commercial EDA tool

Commercial EDA tool

models

Timing
analysis tool

Power
analysis tool

Signal integrity
analysis tool

universal
design limits

universal signal
integrity model

Place & Route
tool

layout
models
4 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

1

5

10

15

20

25

30

35

40

45

50

55
reference with respect to the other. The purpose of a generic functional model is to serve as an absolute reference
for all applications that require functional information. Applications such as synthesis, which need functional
information merely for recognizing and choosing cell types, can use the generic functional model directly. For
other applications, such as simulation and test, the generic functional model enables automated simulation model
and test vector generation and verification, which has a tremendous benefit for the ASIC industry.

With progress of technology, the set of physical constraints under which the design functions have increased dra-
matically, along with the cost constraints. Therefore, the requirements for detailed characterization and analysis
of those constraints, especially timing and power in deep submicron design, are now much more sophisticated.
Only a subset of the increasing amount of characterization data appears in today’s databooks.

ALF provides a generic format for all type of characterization data, without restriction to state-of-the art timing
models. Power models are the most immediate extension and they have been the starter and primary driver for
ALF.

Detailed timing and power characterization needs to take into account the mode of operation of the ASIC cell,
which is related to the functionality. ALF introduces the concept of vector-based modeling, which is a generali-
zation and a superset of today’s timing and power modeling approaches. All existing timing and power analysis
applications can retrieve the necessary model information from ALF.

1.4 Conventions

The syntax for description of lexical and syntax rules uses the following conventions.
Consider using the BNF nomenclature from IEEE 1481-1999

::= definition of a syntax rule
| alternative definition
[item]an optional item
[item1 | item2 | ...] optional item with alternatives
{item}optional item that can be repeated
{item1 | item2 | ... } optional items with alternatives

which can be repeated
itemitem in boldface font is taken verbatim
itemitem in italic is for explanation purpose only

The syntax for explanation of semantics of expressions uses the following conventions.

=== left side and right side expressions are equivalent
<item>a placeholder for an item in regular syntax

1.5 Contents of this standard

The organization of the remainder of this standard is

— Clause 2 (References) provides references to other applicable standards that are assumed or required for
ALF.

— Clause 3 (Definitions) defines terms used throughout the different specifications contained in this stan-
dard.

— Clause 4 (Acronyms and abbreviations) defines the acronyms used in this standard.
— Clause 5 (ALF language construction principles and overview) defines the language construction princi-

ples.
— Clause 6 (Lexical rules) specifies the lexical rules.
— Clause 7 (Auxiliary syntax rules) defines syntax and semantics of auxiliary items used in this standard.
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 5

1

5

10

15

20

25

30

35

40

45

50

55
— Clause 8 (Generic objects and related statements) defines syntax and semantics of generic objects used in
this standard.

— Clause 9 (Library-specific objects and related statements) defines syntax and semantics of library-spe-
cific objects used in this standard.

— Clause 10 (Description of functional and physical implementation) defines syntax and semantics of the
control expression language used in this standard

— Clause 11 (Description of electrical and physical measurements) defines syntax and semantics of arith-
metic models used in this standard.

— Annexes. Following Clause 11are a series of normative and informative annexes.
6 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

1

5

10

15

20

25

30

35

40

45

50

55
2. References

**Fill in applicable references, i.e. standards on which the herein proposed standard depends.

This standard shall be used in conjunction with the following publication. When the following standard is super-
seded by an approved revision, the revision shall apply.

**The following is only an example. ALF does not depend on C.

ISO/IEC 9899:1990, Programming Languages—C.1

[ISO 8859-1 : 1987(E)] ASCII character set

1ISO publications are available from the ISO Central Secretariat, Case Postale 56, 1 rue de Varembé, CH-1211, Genève 20, Switzerland/
Suisse (http://www.iso.ch/). IEC publications are available from the Sales Department of the International Electrotechnical Commission,
Case Postale 131, 3, rue de Varembé, CH-1211, Genève 20, Switzerland/Suisse (http://www.iec.ch/). ISO/IEC publications are also available
in the United States from the Sales Department, American National Standards Institute, 11 West 42nd Street, 13th Floor, New York, NY
10036, USA.
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 7

1

5

10

15

20

25

30

35

40

45

50

55
8 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

1

5

10

15

20

25

30

35

40

45

50

55
3. Definitions

For the purposes of this standard, the following terms and definitions apply. The IEEE Standard Dictionary of
Electrical and Electronics Terms [B4] should be consulted for terms not defined in this standard.

**Fill in definitions of terms which are used in the herein proposed standard.

3.1 advanced library format: The format of any file that can be parsed according to the syntax and semantics
defined within this standard.

3.2 application, electric design automation (EDA) application: Any software program that uses data repre-
sented in the Advanced Library Format (ALF). Examples include RTL (Register Transfer Level) synthesis tools,
static timing analyzers, etc. See also: advanced library format; register transfer level.

3.3 arc: See: timing arc.

3.4 argument: A data item required for the mathematical evaluation of an arithmetic model. See also: arith-
metic model.

3.5 arithmetic model: A representation of a library quantity that can be mathematically evaluated.

3.6 ...

3.7 register transfer level: A behavioral representation of a digital electronic design allowing inference of
sequential and combinational logic components.

3.8 ...

3.9 timing arc: An abstract representation of a measurement between two points in time during operation of a
library component.

3.10 ...
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 9

1

5

10

15

20

25

30

35

40

45

50

55
10 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

1

5

10

15

20

25

30

35

40

45

50

55
4. Acronyms and abbreviations

This clause lists the acronyms and abbreviations used in this standard.

ALF advanced library format, title of the herein proposed standard

ASIC application specific integrated circuit

AWE asymptotic waveform evaluation

BIST built-in self test

BNF Backus-Naur Form

CAE computer-aided engineering [the term electronic design automation (EDA) is preferred]

CAM content-addressable memory

CLF Common Library Format from Avant! Corporation

CPU central processing unit

DCL Delay Calculation Language from IEEE 1481-1999 std

DEF Design Exchange Format from Cadence Design Systems Inc.

DLL delay-locked loop

DPCM Delay and Power Calculation Module from IEEE 1481-1999 std

DPCS Delay and Power Calculation System from IEEE 1481-1999 std

DSP digital signal processor

DSPF Detailed Standard Parasitic Format

EDA electronic design automation

EDIF Electronic Design Interchange Format

HDL hardware description language

IC integrated circuit

IP intellectual property

ILM Interface Logic Model from Synopsys Inc.

LEF Library Exchange Format from Cadence Design Systems Inc.

LIB Library Format from Synopsys Inc.

LSSD level-sensitive scan design

MPU micro processor unit

OLA Open Library Architecture from Silicon Integration Initiative Inc.

PDEF Physical Design Exchange Format from IEEE 1481-1999 std

PLL Phase-locked loop

PVT process/voltage/temperature (denoting a set of environmental conditions)

QTM Quick Timing Model

RAM random access memory

RC resistance times capacitance

RICE rapid interconnect circuit evaluator

ROM read-only memory

RSPF Reduced Standard Parasitic Format

RTL Register Transfer Level

SDF Standard Delay Format from IEEE 1497 std

SDC Synopsys Design Constraint format from Synopsys Inc.

SPEF Standard Parasitic Exchange Format from IEEE 1481-1999 std

SPF Standard Parasitic Format

SPICE Simulation Program with Integrated Circuit Emphasis

STA Static Timing Analysis
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 11

1

5

10

15

20

25

30

35

40

45

50

55
STAMP (STA Model Parameter ?) format from Synopsys Inc.

TCL Tool Command Language (supported by multiple EDA vendors)

TLF Timing Library Format from Cadence Design Systems Inc.

VCD Value Change Dump format (from IEEE 1364 std ?)

VHDL VHSIC Hardware Description Language

VHSIC very-high-speed integrated circuit

VITAL VHDL Initiative Towards ASIC Libraries from IEEE ??? std

VLSI very-large-scale integration
12 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

1

5

10

15

20

25

30

35

40

45

50

55
5. ALF language construction principles and overview

Add lead-in text

This section presents the ALF language construction principles and gives an overview of the language features.
The types of ALF statements and rules for parent/child relationships between types are presented summarily.
Most of the types are associated with predefined keywords. The keywords in ALF shall be case-insensitive.
However, uppercase is used for keywords throughout this section for clarity.

5.1 ALF meta-language

Syntax 1 establishes an ALF meta-language.

Syntax 1—Syntax construction for ALF meta-language

An ALF statement uses the delimiters “;”, “{“ and “}” to indicate its termination.

The ALF type is defined by a keyword (see 6.12) eventually in conjunction with an index (see 7.8) or by the oper-
ator “@” (6.4) or by the delimiter “:” (see 6.3). The usage of keyword, index, operator, or delimiter as ALF type
is defined by ALF language rules concerning the particular ALF type.

The ALF name is defined by an identifier (see 6.11) eventually in conjunction with an index or by a control
expression (see 10.4). Depending on the ALF type, the ALF name is mandatory or optional or not applicable.
The usage of identifier, index, or control expression as ALF name is defined by ALF language rules concerning
the particular ALF type.

The ALF value is defined by an identifier, a number (see 6.5), an arithmetic expression (see 11.1), a boolean
expression (see 10.9), or a control expression. Depending on the type of the ALF statement, the ALF value is
mandatory or optional or not applicable. The usage of identifier, number, arithmetic expression, boolean expres-
sion or control expression as ALF value is defined by ALF language rules concerning the particular ALF type.

An ALF statement can contain one or more other ALF statements. The former is called parent of the latter. Con-
versely, the latter is called child of the former. An ALF statement with child is called a compound ALF state-
ment.

ALF_statement ::=
ALF_type [ALF_name] [= ALF_value] ALF_statement_termination

ALF_type ::=
non_escaped_identifier [index]

| @
| :

ALF_name ::=
identifier [index]

| control_expression
ALF_value ::=

identifier
| number
| arithmetic_expression
| boolean_expression
| control_expression

ALF_statement_termination ::=
;

| { { ALF_value | : | ; } }
| { { ALF_statement } }
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 13

1

5

10

15

20

25

30

35

40

45

50

55
An ALF statement containing one or more ALF values, eventually interspersed with the delimiters “;” or “:”, is
called a semi-compound ALF statement. The items between the delimiters “{“ and “}” are called contents of the
ALF statement. The usage of the delimiters “;” or “:” within the contents of an ALF statement is defined by ALF
language rules concerning the particular ALF statement.

An ALF statement without child is called an atomic ALF statement. An ALF statement which is either com-
pound or semi-compound is called a non-atomic ALF statement.

Examples

a) ALF statement describing an unnamed object without value:
ARBITRARY_ALF_TYPE {

// put children here
}

b) ALF statement describing an unnamed object with value:
ARBITRARY_ALF_TYPE = arbitrary_ALF_value;

or
ARBITRARY_ALF_TYPE = arbitrary_ALF_value {

// put children here
}

c) ALF statement describing a named object without value:
ARBITRARY_ALF_TYPE arbitrary_ALF_name;

or
ARBITRARY_ALF_TYPE arbitrary_ALF_name {

// put children here
}

d) ALF statement describing a named object with value:
ARBITRARY_ALF_TYPE arbitrary_ALF_name = arbitrary_ALF_value;

or
ARBITRARY_ALF_TYPE arbitrary_ALF_name = arbitrary_ALF_value {

// put children here
}

5.2 Categories of ALF statements

In this section, the terms statement, type, name, value are used for shortness in lieu of ALF statement, ALF name,
ALF value, respectively.

Statements are divided into the following categories: generic object, library-specific object, arithmetic model,
arithmetic submodel, arithmetic model container, geometric model, annotation, annotation container, and auxil-
iary statement, as shown in Table 2.

Table 2—Categories of ALF statements

Category Purpose Syntax particularity

Generic object Provide a definition for use within other
ALF statements.

Statement is atomic, semi-compound or com-
pound.
Name is mandatory.
Value is either mandatory or not applicable.
14 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

1

5

10

15

20

25

30

35

40

45

50

55
Figure 2 illustrates the parent/child relationship between categories of statements.

Library-specific object Describe the contents of a IC technology
library.

Statement is atomic or compound.
Name is mandatory.
Value does not apply.
Category of parent is exclusively
library-specific object.

Arithmetic model Describe an abstract mathematical quan-
tity that can be calculated and eventually
measured within the design of an IC.

Statement is atomic or compound.
Name is optional.
Value is mandatory, if atomic.

Arithmetic submodel Describe an arithmetic model under a
specific measurement condition.

Statement is atomic or compound.
Name does not apply.
Value is mandatory, if atomic.
Category of parent is exclusively
arithmetic model.

Arithmetic model con-
tainer

Provide a context for an arithmetic
model.

Statement is compound.
Name and value do not apply.
Category of child is exclusively
arithmetic model.

Geometric model Describe an abstract geometrical form
used in physical design of an IC.

Statement is semi-compound or compound.
Name is optional.
Value does not apply.

Annotation Provide a qualifier or a set of qualifiers
for an ALF statement.

Statement is atomic, semi-compound or com-
pound.
Name does not apply.
Value is mandatory, if atomic or compound.
Value does not apply, if semi-compound.
Category of child is exclusively
annotation.

Annotation container Provide a context for an annotation. Statement is compound.
Name and value do not apply.
Category of child is exclusively
annotation.

Auxiliary statement Provide an additional description within
the context of a library-specific object,
an arithmetic model, an arithmetic sub-
model, geometric model or another aux-
iliary statement.

Dependent on subcategory.

Table 2—Categories of ALF statements (Continued)

Category Purpose Syntax particularity
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 15

1

5

10

15

20

25

30

35

40

45

50

55
Figure 2—Parent/child relationship between ALF statements

More detailed rules for parent/child relationships for particular types of statements apply.

5.3 Generic objects and library-specific objects

Statements with mandatory name are called objects, i.e., generic object and library-specific object.

Table 3 lists the keywords and items in the category generic object. The keywords used in this category are
called generic keywords.

Table 3—Generic objects

Keyword Item Section

ALIAS Alias declaration See 8.1.

library-specific object

legend:

arithmetic model

arithmetic model container

arithmetic submodel

annotation

annotation container

auxiliary statement

geometric model

library-specific object

auxiliary statement

generic objectarithmetic model

parent child

parent child no restrictive rules

with restrictive rules

generic object

library-specific object

auxiliary statement

arithmetic model

annotation container
annotation

arithmetic submodel

arithmetic model container
16 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

1

5

10

15

20

25

30

35

40

45

50

55
Table 4 lists the keywords and items in the category library-specific object. The keywords used in this category
are called library-specific keywords.

Figure 3 illustrates the parent/child relationship between statements within the category library-specific object.

CONSTANT Constant declaration See 8.2.

CLASS Class declaration See 8.6.

GROUP Group declaration See 8.8.

KEYWORD Keyword declaration See 8.3.

SEMANTICS Semantics declaration See 8.4.

TEMPLATE Template declaration See 8.9.

Table 4—Library-specific objects

Keyword Item Section

LIBRARY Library declaration See 9.1.

SUBLIBRARY Sublibrary declaration See 9.1.

CELL Cell declaration See 9.3.

PRIMITIVE Primitive declaration See 9.8.

WIRE Wire declaration See 9.9.

PIN Pin declaration See 9.5.

PINGROUP Pin group declaration See 9.6.

VECTOR Vector declaration See 9.13.

NODE Node declaration See 9.11.

LAYER Layer declaration See 9.15.

VIA Via declaration See 9.17.

RULE Rule declaration See 9.19.

ANTENNA Antenna declaration See 9.20.

SITE Site declaration See 9.24.

ARRAY Array declaration See 9.26.

BLOCKAGE Blockage declaration See 9.21.

PORT Port declaration See 9.22.

PATTERN Pattern declaration See 9.28.

REGION Region declaration See 9.30.

Table 3—Generic objects (Continued)

Keyword Item Section
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 17

1

5

10

15

20

25

30

35

40

45

50

55
Figure 3—Parent/child relationship amongst library-specific objects

A parent can have multiple library-specific objects of the same type as children. Each child is distinguished by
name.

5.4 Singular statements and plural statements

Auxiliary statements with predefined keywords are divided in the following subcategories: singular statement
and plural statement.

Auxiliary statements with predefined keywords and without name are called singular statements. Auxiliary state-
ments with predefined keywords and with name, yet without value, are called plural statements.

Table 5 lists the singular statements.

Table 5—Singular statements

Keyword Item Value Complexity Section

FUNCTION Function statement N/A Compound See 10.1.

TEST Test statement N/A Compound See 10.2.

RANGE Range statement N/A Semi-compound See 10.8.

FROM From statement N/A Compound See 11.12.

TO To statement N/A Compound See 11.12.

library

legend:

parent child

sublibrary

cell primitivewire

pinpin-groupvector

node
layer

via

rule

antenna

site

array

blockage

portpattern

region

pin
18 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

1

5

10

15

20

25

30

35

40

45

50

55
Table 6 lists the plural statements.

Figure 4 illustrates the parent/child relationship for singular statements and plural statements.

VIOLATION Violation statement N/A Compound See 11.10.

HEADER Header statement N/A Compound (or semi-compound?) See 11.3.1.

TABLE Table statement N/A Semi-compound See 11.3.2.

EQUATION Equation statement N/A Semi-compound See 11.3.3.

BEHAVIOR Behavior statement N/A Compound See 10.4.

STRUCTURE Structure statement N/A Compound See 10.5.

NON_SCAN_CELL Non-scan cell statement Optional Compound or semi-compound See 10.7.

ARTWORK Artwork statement Mandatory Compound or atomic See 9.38.

Table 6—Plural statements

Keyword Item Name Complexity Section

STATETABLE State table statement Optional Semi-compound See 10.6.

@ Control statement Mandatory Compound See 10.4.

: Alternative control statement Mandatory Compound See 10.4.

Table 5—Singular statements (Continued)

Keyword Item Value Complexity Section
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 19

1

5

10

15

20

25

30

35

40

45

50

55
Figure 4—Parent/child relationship involving singular statements and plural statements

A parent can have at most one child of a particular type in the category singular statements, but multiple children
of a particular type in the category plural statements.

5.5 Instantiation statement and assignment statement

Auxiliary statements without predefined keywords use the name of an object as keyword. Such statements are
divided in the following subcategories: instantiation statement and assignment statement.

Compound or semi-compound statements using the name of an object as keyword are called instantiation state-
ments. Their purpose is to specify an instance of the object.

Table 7 lists the instantiation statements.

Table 7—Instantiation statements

Item Name Value Section

Cell instantiation Optional N/A See 9.4.

Primitive instantiation Optional N/A See 10.4.

Template instantiation N/A Optional See 8.10.

Via instantiation Mandatory N/A See 9.20.

Wire instantiation Mandatory N/A Proposed for IEEE.

legend:

parent child

function test range

from

to

violation

header

table

equation

behavior

structure

cellprimitive pin

arithmetic model

arithmetic submodel

non-scan cell

artwork

arithmetic submodel

statetable

control statement

alternative control statement
20 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

1

5

10

15

20

25

30

35

40

45

50

55
Atomic statements without name using an identifier as keyword which has been defined within the context of
another object are called assignment statements. A value is mandatory for assignment statements, as their pur-
pose is to assign a value to the identifier. Such an identifier is called a variable.

Table 8 lists the assignment statements.

Figure 5 illustrates the parent/child relationship involving instantiation and assignment statements.

Figure 5—Parent/child relationship involving instantiation and assignment statements

A parent can have multiple children using the same keyword in the category instantiation statement, but at most
one child using the same variable in the category assignment statement.

5.6 Annotation, arithmetic model, and related statements

Multiple keywords are predefined in the categories arithmetic model, arithmetic model container, arithmetic
submodel, annotation, annotation container, and geometric model. Their semantics are established within the

Table 8—Assignment statements

Item Section

Pin assignment See 7.10.

Arithmetic assignment See 8.10.

Boolean assignment See 10.4.

behavior

structurenon-scan cell

artwork

control statement

alternative control statement

pin assignment

boolean assignment

arithmetic assignment

cell instantiation

template instantiation

wire instantiation

generic object

library-specific object

arithmetic model container

arithmetic model

arithmetic submodel

singular statement

plural statement

primitive instantiation

legend:

parent child

parent child no restrictive rules

with restrictive rules
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 21

1

5

10

15

20

25

30

35

40

45

50

55
context of their parent. Therefore they are called context-sensitive keywords. In addition, the ALF language
allows additional definition of keywords in these categories.

Table 9 provides a reference to sections where more definitions about these categories can be found.

There exist predefined keywords with generic semantics in the category annotation and annotation container.
They are called generic keywords, like the keywords for generic objects.

Table 10 lists the generic keywords in the category annotation and annotation container.

Table 11 lists predefined keywords in categories related to arithmetic model.

Table 9—Other categories of ALF statements

Item Section

Arithmetic model See 11.3.

Arithmetic submodel See 11.7.

Arithmetic model container See 11.8.

Annotation See 7.11.

Annotation container See 7.12.

Geometric model See 9.35.

Table 10—Annotations and annotation containers with generic keyword

Keyword Item / subcategory Section

PROPERTY Annotation container. See 7.14.

ATTRIBUTE Multi-value annotation. See 7.13.

INFORMATION Annotation container. See 9.2.2.

Table 11—Keywords related to arithmetic model

Keyword Item / category Section

LIMIT Arithmetic model container. See 11.8.2.

MIN Arithmetic submodel, also operator within arithmetic expression. See 11.7, 11.2.3.

MAX Arithmetic submodel, also operator within arithmetic expression. See 11.4.4, 11.2.3.

TYP Arithmetic submodel. See 11.5.

DEFAULT Annotation. See 11.9.4.

ABS Operator within arithmetic expression. See 11.2.3.

EXP Operator within arithmetic expression. See 11.2.3.
22 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

1

5

10

15

20

25

30

35

40

45

50

55
The definitions of other predefined keywords, especially in the category arithmetic model, can be self-described
in ALF using the keyword declaration statement (see 8.3).

5.7 Statements for parser control

Table 12 provides a reference to statements used for ALF parser control.

The statements for parser control do not necessarily follow the ALF meta-language shown in Syntax 1.

5.8 Name space and visibility of statements

The following rules for name space and visibility shall apply:

a) A statement shall be visible within its parent statement, but not outside its parent statement.
b) A statement visible within another statement shall also be visible within a child of that other statement.
c) All objects (i.e., generic objects and library-specific objects) shall share a common name space within

their scope of visibility. No object shall use the same name as any other visible object. Conversely, an
object can use the same name as any other object outside the scope of its visibility.

d) The following exception of rule c) is allowed for specific objects and with specific semantic implica-
tions. An object of the same type and the same name can be redeclared, if semantic support for this
redeclaration is provided. The purpose of such a redeclaration is to supplement the original declaration
with new children statements which augment the original declaration without contradicting it.

e) All statements with optional names (i.e., property, arithmetic model, geometric model) shall share a com-
mon name space within their scope of visibility. No statement with optional name shall use the same
name as any other visible statement with optional name. Conversely, a statement can use the same
optional name as any other statement with optional name outside the scope of its visibility.

LOG Operator within arithmetic expression. See 11.2.3.

Table 12—Statements for ALF parser control

Keyword Statement Section

INCLUDE Include statement See 7.15.

ASSOCIATE Associate statement See 7.16.

ALF_REVISION Revision statement See 7.17.

Table 11—Keywords related to arithmetic model (Continued)

Keyword Item / category Section
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 23

1

5

10

15

20

25

30

35

40

45

50

55
24 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

1

5

10

15

20

25

30

35

40

45

50

55
6. Lexical rules

This section discusses the lexical rules.

The ALF source text files shall be a stream of lexical tokens and whitespace. Lexical tokens shall be divided into
the categories delimiter, operator, comment, number, bit literal, based literal, edge, quoted string, and identifier.

Each lexical token shall be composed of one or more characters. Whitespace shall be used to separate lexical
tokens from each other. Whitespace shall not be allowed within a lexical token with the exception of comment
and quoted string.

The specific rules for construction of lexical tokens and for usage of whitespace are defined in this section.

6.1 Character set

This standard shall use the ASCII character set [ISO 8859-1 : 1987(E)].

The ASCII character set shall be divided into the following categories: whitespace, letter, digit, and special, as
shown in Syntax 2.

Table 13 shows the list of whitespace characters and their ASCII code.

character ::=
whitespace

| letter
| digit
| special

whitespace ::=
space | vertical_tab | horizontal_tab | new_line | carriage_return | form_feed

letter ::=
uppercase | lowercase

uppercase ::=
A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W

| X | Y | Z
lowercase ::=

a | b | c | d | e | f | g | h | i | j | k | l | m | n | o | p | q | r | s | t | u | v | w | x | y | z
digit ::=

0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
special ::=

& | | | ^ | ~ | + | - | * | / | % | ? | ! | : | ; | , | ” | ’ | @ | = | \ | . | $ | _ | #
| (|) | < | > | [|] | { | }

Syntax 2—ASCII character set

Table 13—List of whitespace characters

Name ASCII code (octal)

Space 200

Horizontal tab 011

New line 012

Vertical tab 013
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 25

1

5

10

15

20

25

30

35

40

45

50

55
Table 14 shows the list of special characters and their names used in this standard

Form feed 014

Carriage return 015

Table 14—List of special characters

Symbol ASCII code (octal) Name

& Amperesand

| Vertical bar

^ Caret

~ Tilde

+ Plus

- Minus

* Asterix

/ Slash

% Percent

? Question mark

! Exclamation mark

: Colon

; Semicolon

, Comma

” Double quote

’ Single quote

@ At sign

= Equal sign

\ Backslash

. Dot

$ Dollar

_ Underscore

Table 13—List of whitespace characters (Continued)

Name ASCII code (octal)
26 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

1

5

10

15

20

25

30

35

40

45

50

55
6.2 Comment

A comment shall be divided into the subcategories in-line comment and block comment, as shown in Syntax 3.

The start of an in-line comment shall be determined by the occurence of two subsequent slash characters without
whitespace in-between. The end of an in-line comment shall be determined by the occurence of a new line or of a
carriage return character.

The start of a block comment shall be determined by the occurence of a slash character followed by an asterix
without whitespace in-between. The end of a block comment shall be determined by the occurence of an asterix
character followed by a slash character.

A comment shall have the same semantic meaning as a whitespace. Therefore, no syntax rule shall involve a
comment.

6.3 Delimiter

The special characters shown in Syntax 4 shall be considered delimiters.

When appearing in a syntax rule, a delimiter shall be used to indicate the end of a statement or of a partial state-
ment, the begin and end of an expression or of a partial expression.

Pound

() , Parenthesis (open, close)

< > , Angular bracket (open, close)

[] , Square bracket (open, close)

{ } , Curly bracket (open, close)

comment ::=
in_line_comment

| block_comment
in_line_comment ::=

/ /{character}new_line
| / /{character}carriage_return

block_comment ::=
/ *{character}* /

Syntax 3—Comment

delimiter ::=
(|) | [|] | { | } | : | ; | ,

Syntax 4—Delimiter

Table 14—List of special characters (Continued)

Symbol ASCII code (octal) Name
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 27

1

5

10

15

20

25

30

35

40

45

50

55
6.4 Operator

Operators shall be divided into the following subcategories: arithmetic operator, boolean operator, relational
operator, shift operator, event sequence operator, and meta operator, as shown in Syntax 5

When appearing in a syntax rule, an operator shall be used within a statement or within an expression. An opera-
tor with one operand shall be called unary operator. An unary operator shall precede the operand. An operator
with two operands shall be called binary operator. A binary operator shall succeed the first operand and precede
the second operand.

6.4.1 Arithmetic operator

Table 15 shows the list of arithmetic operators and their names used in this standard.

Arithmetic operators shall be used to specify arithmetic operations.

operator ::=
arithmetic_operator

| boolean_operator
| relational_operator
| shift_operator
| event_sequence_operator
| meta_operator

arithmetic_operator ::=
+ | - | * | / | % | **

boolean_operator ::=
&& | || | ~& | ~| | ^ | ~^ | ~ | ! | & | |

relational_operator ::=
== | != | >= | <= | > | <

shift_operator ::=
<< | >>

event_sequence_operator ::=
-> | ~> | <-> | <~> | &> | <&>

meta_operator ::=
= | ? | @

Syntax 5—Operator

Table 15—List arithmetic operators

Symbol Operator name Unary / binary Section

+ Plus Binary See 10.11.4.

- Minus Both See 10.11.4.

* Multiply Binary See 10.11.4.

/ Divide Binary See 10.11.4.

% Modulo Binary See 10.11.4.

** Power Binary See 11.2.2.
28 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

1

5

10

15

20

25

30

35

40

45

50

55
6.4.2 Boolean operator

Table 16 shows the list of boolean operators and their names used in this standard.

Boolean operators shall be used to specify boolean operations.

6.4.3 Relational operator

Table 17 shows the list of relational operators and their names used in this standard.

Relational operators shall be used to specify mathematical relationships between numerical quantities.

Table 16—List of boolean operators

Symbol Operator name Unary / binary Section

! Logical inversion Unary See 10.11.1.

&& Logical and Binary See 10.11.1.

|| Logical or Binary See 10.11.1.

~ bit-wise inversion Unary See 10.11.2.

& bit-wise and Both See 10.11.2.

~& bit-wise nand Both See 10.11.2.

| bit-wise or Both See 10.11.2.

~| bit-wise nor Both See 10.11.2.

^ Exclusive or Both See 10.11.2.

~^ Exclusive nor Both See 10.11.2.

Table 17—List of relational operators

Symbol Operator name Unary / binary Section

== Equal Binary See 10.11.6.

!= Not equal Binary See 10.11.6.

> Greater Binary See 10.11.6.

< Lesser Binary See 10.11.6.

>= Greater or equal Binary See 10.11.6.

<= Lesser or equal Binary See 10.11.6.
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 29

1

5

10

15

20

25

30

35

40

45

50

55
6.4.4 Shift operator

Table 18 shows the list of shift operators and their names used in this standard.

Shift operators shall be used to specify manipulations of discrete mathematical values.

6.4.5 Event sequence operator

Table 19 shows the list of event sequence operators and their names used in this standard.

Event sequence operators shall be used to express temporal relationships between discrete events.

6.4.6 Meta operator

Table 20 shows the list of meta operators and their names used in this standard.

Table 18—List of shift operators

Symbol Operator name Unary / binary Section

<< Shift left Binary See 10.11.5.

>> Shift right Binary See 10.11.5.

Table 19—List of event sequence operators

Symbol Operator name Unary / binary Section

-> Immediately followed by Binary See 10.13.3.

~> Eventually followed by Binary See 10.13.3.

<-> Immediately following each other Binary See 10.13.4.

<~> Eventually following each other Binary See 10.13.4.

&> Simultaneous or immediately followed by Binary See 10.13.3.

<&> Simultaneous or immediately following each other Binary See 10.13.4.

Table 20—List of meta operators

Symbol Operator name Unary / binary Section

= Assignment Binary See 7.10, 8.10, 10.4.

? Condition Binary See 10.13.5.

@ Control Unary See 10.4.
30 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

1

5

10

15

20

25

30

35

40

45

50

55
Meta operators shall be used to specify transactions between variables.

6.5 Number

Numbers shall be divided into subcategories signed integer, signed real, unsigned integer, and unsigned real.
Furthermore, the categories signed number, unsigned number, integer and real shall be defined as shown in
Syntax 6.

Numbers shall be used to represent numerical quantities.

6.6 Multiplier prefix symbol

A multiplier prefix symbol shall be defined as shown in Syntax 7.

The purpose of a multiplier prefix symbol is the specification of a multiplier for the base unit associated with an
arithmetic model (see Section 11.3). Only the leading characters of the multiplier prefix symbol shall be used for
identification of the corresponding number. Optional subsequent letters can be used to indicate the base unit. For
example, “pF” can be used to denote “picofarad”, “MegaHz” can be used to denote “megahertz”, etc.

number ::=
signed_integer | signed_real | unsigned_integer | unsigned_real

signed_number ::=
signed_integer | signed_real

unsigned_number ::=
unsigned_integer | unsigned_real

integer ::=
signed_integer | unsigned_integer

signed_integer ::=
sign unsigned_integer

unsigned_integer ::=
digit { [_] digit }

real ::=
signed_real | unsigned_real

signed_real ::=
sign unsigned_real

unsigned_real ::=
mantisse [exponent]

| unsigned_integer exponent
sign ::=

+ | -
mantisse ::=

. unsigned_integer
| unsigned_integer . [unsigned_integer]

exponent ::=
E [sign] unsigned_integer

| e [sign] unsigned_integer

Syntax 6—Numbers
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 31

1

5

10

15

20

25

30

35

40

45

50

55
A multiplier prefix symbol shall relate to the International System of Units and Measurements [** reference
needed **] as shown in Table 21.

6.7 Bit literal

Bit literals shall be divided into the subcategories alphanumeric bit literal and symbolic bit literal, as shown in
Syntax 8.

Bit literals shall be used to specify scalar values within a boolean value system (see Section 10.10).

multiplier_prefix_symbol ::=
unity { letter } | K { letter } | M E G { letter } | G { letter }

| M { letter } | U { letter } | N { letter } | P { letter } | F { letter }
unity ::=

1
K ::=

K | k
M ::=

M | m
E ::=

E | e
G ::=

G | g
U ::=

U | u
N ::=

N | n
P ::=

P | p
F ::=

F | f

Syntax 7—Multiplier prefix symbol

Table 21—Multiplier prefix symbol and corresponding SI-prefix

Lexical token SI-prefix (symbol) SI-prefix (word) Numerical value

F f femto 1e-15

P p pico 1e-12

N n nano 1e-9

U µ micro 1e-6

M m milli 1e-3

unity 1 one 1

K k kilo 1e+3

MEG M mega 1e+6

G G giga 1e+9
32 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

1

5

10

15

20

25

30

35

40

45

50

55
6.8 Based literal

Based literals shall be divided into subcategories binary based literal, octal based literal, decimal based literal,
and hexadecimal based literal, as shown in Syntax 9.

Based literals shall be used to specify vectorized values within a boolean value system.

6.9 Edge literal

Edge literals shall be divided into subcategories bit edge literal, based edge literal, and symbolic edge literal, as
shown in Syntax 10.

bit_literal ::=
alphanumeric_bit_literal

| symbolic_bit_literal
alphanumeric_bit_literal

numeric_bit_literal
| alphabetic_bit_literal

numeric_bit_literal ::=
0 | 1

alphabetic_bit_literal ::=
X | Z | L | H | U | W

| x | z | l | h | u | w
symbolic_bit_literal ::=

? | *

Syntax 8—Bit literal

based_literal ::=
binary_based_literal | octal_based_literal | decimal_based_literal | hexadecimal_based_literal

binary_based_literal ::=
binary_base bit_literal { [_] bit_literal }

binary_base ::=
'B | 'b

octal_based_literal ::=
octal_base octal_digit { [_] octal_digit }

octal_base ::=
'O | 'o

octal_digit ::=
bit_literal | 2 | 3 | 4 | 5 | 6 | 7

decimal_based_literal ::=
decimal_base digit { [_] digit }

decimal_base ::=
'D | 'd

hexadecimal_based_literal ::=
hexadecimal_base hexadecimal_digit { [_] hexadecimal_digit }

hexadecimal_base ::=
'H | 'h

hexadecimal_digit ::=
octal_digit | 8 | 9

| A | B | C | D | E | F
| a | b | c | d | e | f

Syntax 9—Based literal
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 33

1

5

10

15

20

25

30

35

40

45

50

55
Edge literals shall be used to specify a change of value within a boolean system. In general, bit edge literals shall
specify a change of a scalar value, based edge literals shall specify a change of a vectorized value, and symbolic
edge literals shall specify a change of a scalar or of a vectorized value.

6.10 Quoted string

A quoted string shall be a sequence of zero or more characters enclosed between two double quote characters, as
shown in Syntax 11.

Within a quoted string, a sequence of characters starting with an escape character shall represent a symbol for
another character, as shown in Table 22.

edge_literal ::=
bit_edge_literal

| based_edge_literal
| symbolic_edge_literal

bit_edge_literal ::=
bit_literal bit_literal

based_edge_literal ::=
based_literal based_literal

symbolic_edge_literal ::=
?~ | ?! | ?-

Syntax 10—Edge literal

quoted_string ::=
" { character } "

Syntax 11—Quoted string

Table 22—Character symbols within a quoted string

Symbol Character ASCII Code (octal)

\g Alert or bell. 007

\h Backspace. 010

\t Horizontal tab. 011

\n New line. 012

\v Vertical tab. 013

\f Form feed. 014

\r Carriage return. 015

\" Double quote. 042

\\ Backslash. 134

\ digit digit digit ASCII character represented by three digit
octal ASCII code.

digit digit digit
34 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

1

5

10

15

20

25

30

35

40

45

50

55
The start of a quoted string shall be determined by a double quote character. The end of a quoted string shall be
determined by a double quote character preceded by an even number of escape characters or by any other charac-
ter than escape character.

6.11 Identifier

Identifiers shall be divided into the subcategories non-escaped identifier, escaped identifier, placeholder identi-
fier, and hierarchical identifier, as shown in Syntax 12.

Identifiers shall be used to specify a name of an ALF statement or a value of an ALF statement. Identifiers can
also appear in an arithmetic expression, in a boolean expression, or in a vector expression, referencing an already
defined statement by name.

A lowercase character used within a keyword or within an identifier shall be considered equivalent to the corre-
sponding uppercase character. This makes ALF case-insensitive. However, wherever an identifier is used to
specify the name of a statement, the usage of the exact letters shall be preserved by the parser to enable usage of
the same name by a case-sensitive application.

6.11.1 Non-escaped identifier

A non-escaped identifier shall be defined as shown in Syntax 13.

A non-escaped identifier shall be used, when there is no lexical conflict, i.e., no appearance of a character with
special meaning, and no semantic conflict, i.e., the identifier is not used elsewhere as a keyword.

6.11.2 Escaped identifier

An escaped identifier shall be defined as shown in Syntax 14.

An escaped identifier shall be used, when there is a lexical conflict, i.e., an appearance of a character with special
meaning, or a semantic conflict, i.e., the identifier is used elsewhere as a keyword.

identifier ::=
non_escaped_identifier

| escaped_identifier
| placeholder_identifier
| hierarchical_identifier

Syntax 12—Identifier

non_escaped_identifier ::=
letter { letter | digit | _ | $ | # }

Syntax 13—Non-escaped identifier

escaped_identifier ::=
\ escapable_character { escapable_character }

escapable_character ::=
letter | digit | special

Syntax 14—Escaped identifier
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 35

1

5

10

15

20

25

30

35

40

45

50

55
6.11.3 Placeholder identifier

A placeholder identifier shall be defined as a non-escaped identifier enclosed by angular brackets without
whitespace, as shown in Syntax 15.

A placeholder identifier shall be used to represent a formal parameter in a template statement (see 8.9), which is
to be replaced by an actual parameter in a template instantiation statement (see 8.10).

6.11.4 Hierarchical identifier

A hierarchical identifier shall be defined as shown in Syntax 16.

A hierarchical identifier shall be used to specify a hierarchical name of a statement, i.e., the name of a child pre-
ceded by the name of its parent. A dot within a hierarchical identifier shall be used to separate a parent from a
child, unless the dot is directly preceded by an escape character.

Example

\id1.id2.\id3 is a hierarchical identifier, where id2 is a child of \id1, and \id3 is a child of id2.

id1\.id2.\id3 is a hierarchical identifier, where \id3 is a child of “id1.id2”.

id1\.id2\.id3 specifies the pseudo-hierarchical name “id1.id2.id3”.

6.12 Keyword

Keywords shall be lexically equivalent to non-escaped identifiers. Predefined keywords are listed in Table 3 —
Table 6 and Table 10 — Table 12. Additional keywords are predefined in 8.3.

The predefined keywords in this standard shall follow a more restrictive lexical rule than general non-escaped
identifiers, as shown in Syntax 17.

The reason for the more restrictive lexical rule is to encourage the use of words taken from a natural language as
keywords. Words in a natural language are constructed from lexical characters only, not from numbers. The
underscore can be used to indicate that there would be a whitespace or a dash in the word from the natural lan-
guage.

placeholder_identifier ::=
< non_escaped_identifier >

Syntax 15—Placeholder identifier

hierarchical_identifier ::=
identifier [\] . identifier

Syntax 16—Hierarchical identifier

keyword_identifier ::=
letter { [_] letter }

Syntax 17—Keyword
36 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

1

5

10

15

20

25

30

35

40

45

50

55
NOTE—This document presents keywords in all-uppercase letters for clarity.

6.13 Vector expression macro

A vector expression macro shall be defined as shown in Syntax 18.

A vector expression macro shall be used as a substitution for a predefined vector expression (see Section 10.12).
The alias declaration (see Section 8.1) shall be used to establish the substitution mechanism.

6.14 Rules for whitespace usage

Whitespace shall be used to separate lexical tokens from each other, according to the following rules:

a) Whitespace before and after a delimiter shall be optional.
b) Whitespace before and after an operator shall be optional.
c) Whitespace before and after a quoted string shall be optional.
d) Whitespace before and after a comment shall be mandatory. This rule shall override a), b), and c).
e) Whitespace between subsequent quoted strings shall be mandatory. This rule shall override c).
f) Whitespace between subsequent lexical tokens amongst the categories number, bit literal, based literal,

and identifier shall be mandatory.
g) Whitespace before and after a placeholder identifier shall be mandatory. This rule shall override a), b),

and c).
h) Whitespace after an escaped identifier shall be mandatory. This rule shall override a), b), and c).
i) Either whitespace or delimiter before a signed number shall be mandatory. This rule shall override a), b),

and c).
j) Either whitespace or delimiter before a symbolic edge literal shall be mandatory. This rule shall override

a), b), and c).

Whitespace before the first lexical token or after the last lexical token in a file shall be optional. Hence in all rules
prescribing mandatory whitespace, “before” shall not apply for the first lexical token in a file, and “after” shall
not apply for the last lexical token in a file.

6.15 Rules against parser ambiguity

In a syntax rule where multiple legal interpretations of a lexical token are possible, the resulting ambiguity shall
be resolved according to the following rules:

a) In a context where both bit literal and identifier are legal, a non-escaped identifier shall take priority over
a symbolic bit literal.

b) In a context where both bit literal and number are legal, an unsigned integer shall take priority over a
numeric bit literal.

c) In a context where both edge literal and identifier are legal, a non-escaped identifier shall take priority
over a bit edge literal.

d) In a context where both edge literal and number are legal, an unsigned integer shall take priority over a
bit edge literal.

If the interpretation as bit literal is desired in case a) or b), a based literal can be substituted for a bit literal.

vector_expression_macro ::=
. non_escaped_identifier

Syntax 18—Vector expression macro
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 37

1

5

10

15

20

25

30

35

40

45

50

55
If the interpretation as edge literal is desired in case c) or d), a based edge literal can be substituted for a bit edge
literal.
38 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

1

5

10

15

20

25

30

35

40

45

50

55
7. Auxiliary syntax rules

This section specifies auxiliary syntax rules which are used to build other syntax rules.

7.1 All-purpose value

An all-purpose value shall be defined as shown in Syntax 19.

7.2 Multiplier prefix value

A multiplier prefix value shall be defined as shown in Syntax 20.

The multiplier prefix value shall be represented either as an unsigned number (see Section 6.5) or a multiplier
prefix symbol (see Section 6.6).

7.3 String value

A string value shall be defined as shown in Syntax 21.

A string value shall represent textual data in general and the name of a referenced object in particular.

7.4 Arithmetic value

An arithmetic value shall be defined as shown in Syntax 22.

all_purpose_value ::=
number

| identifier
| quoted_string
| bit_literal
| based_literal
| edge_value
| pin_variable
| control_expression

Syntax 19—All purpose value

multiplier_prefix_value ::=
unsigned_number | multiplier_prefix_symbol

Syntax 20—Multiplier prefix value

string_value ::=
quoted_string | identifier

Syntax 21—String value

arithmetic_value ::=
number | identifier | bit_literal | based_literal

Syntax 22—Arithmetic value
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 39

1

5

10

15

20

25

30

35

40

45

50

55
An arithmetic value shall represent data for an arithmetic model or for an arithmetic assignment. Semantic
restrictions apply, depending on the particular type of arithmetic model.

7.5 Boolean value

A boolean value shall be defined as shown in Syntax 23.

A boolean value shall represent the contents of a pin variable (see 7.9).

7.6 Edge value

An edge value shall be defined as shown in Syntax 24.

An edge value shall represent a standalone edge literal that is not embedded in a vector expression.

7.7 Index value

An index value shall be defined as shown in Syntax 25.

An index value shall represent a particular position within a vector pin (see 9.5). The usage of identifier shall
only be allowed, if that identifier represents a constant (see 8.2) with a value of the category unsigned integer.

7.8 Index

An index shall be defined as shown in Syntax 26.

boolean_value ::=
alphanumeric_bit_literal | based_literal | integer

Syntax 23—Boolean value

edge_value ::=
(edge_literal)

Syntax 24—Edge value

index_value ::=
unsigned_integer | identifier

Syntax 25—Index value

index ::=
single_index | multi_index

single_index ::=
[index_value]

multi_index ::=
[index_value : index_value]

Syntax 26—Index
40 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

1

5

10

15

20

25

30

35

40

45

50

55
An index shall be used in conjunction with the name of a pin or a pingroup. A single index shall represent a par-
ticular scalar within a one-dimensional vector or a particular one-dimensional vector within a two-dimensional
matrix. A multi index shall represent a range of scalars or a range of vectors, wherein the most significant bit
(MSB) is specified by the left index value and the least significant bit (LSB) is specified by the right index value.

7.9 Pin variable and pin value

A pin variable and a pin value shall be defined as shown in Syntax 27.

A pin variable shall represent one of the following:

the name of a declared pin (see Section 9.5) in conjunction with an optional index (see Section 7.8),
the name of a declared pingroup (see Section 9.6) in conjunction with an optional index,
the name of a declared node (see Section 9.11), or
the name of a declared port (see Section 9.22) as a child of a scalar pin.

A pin value can be a pin variable or a boolean value (see Section 7.5).

7.10 Pin assignment

A pin assignment shall be defined as shown in Syntax 28.

A pin assignment shall represent an association between a pin variable and a pin value. The following rules
define the compatibility between a pin variable and a pin value.

a) The bitwidth of the pin value shall be equal to the bitwidth of the pin variable.
b) A bit literal or a based literal representing a single bit can be assigned to a scalar pin.
c) A based literal or an unsigned integer, representing a binary number can be assigned to a pingroup, to a

vector pin, or to a one-dimensional slice of a matrix pin.

7.11 Annotation

An annotation shall be divided into the subcategories single value annotation and multi value annotation, as
shown in Syntax 29

An annotation shall represent an association between an identifier and a set of annotation values (values for
shortness). In case of a single value annotation, only one value shall be legal. In case of a multi value annotation,
one or more values shall be legal. The annotation shall serve as a semantic qualifier of its parent statement. The
value shall be subject to semantic restrictions, depending on the identifier.

pin_variable ::=
pin_variable_identifier [index]

pin_value ::=
pin_variable | boolean_value

Syntax 27—Pin variable, pin-port variable and pin value

pin_assignment ::=
pin_variable = pin_value ;

Syntax 28—Pin assignment
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 41

1

5

10

15

20

25

30

35

40

45

50

55
The annotation identifier can be a keyword used for the declaration of an object (i.e., a generic object or a library-
specific object). An annotation using such an annotation identifier shall be called a reference annotation. The
annotation value of a reference annotation shall be the name of an object of matching type. A reference annota-
tion can be a single-value annotation or a multi-value annotation. The semantic meaning of a reference annota-
tion shall be defined in the context of its parent statement.

7.12 Annotation container

An annotation container shall be defined as shown in Syntax 30

An annotation container shall represent a collection of annotations. The annotation container shall serve as a
semantic qualifier of its parent statement. The annotation container identifier shall be a keyword. An annotation
within an annotation container shall be subject to semantic restrictions, depending on the annotation container
identifier.

7.13 ATTRIBUTE statement

An attribute statement shall be defined as shown in Syntax 31.

The attribute statement shall be used to associate arbitrary identifiers with the parent of the attribute statement.
Semantics of such identifiers can be defined depending on the parent of the attribute statement. The attribute
statement has a similar syntax definition as a multi-value annotation (see 7.11). While a multi-value annotation

annotation ::=
single_value_annotation

| multi_value_annotation
single_value_annotation ::=

annotation_identifier = annotation_value ;
annotation_value ::=

number
| identifier
| quoted_string
| bit_literal
| based_literal
| edge_value
| pin_variable
| control_expression
| boolean_expression
| arithmetic_expression

multi_value_annotation ::=
annotation_identifier { annotation_value { annotation_value } }

Syntax 29—Annotation

annotation_container ::=
annotation_container_identifier { annotation { annotation } }

Syntax 30—Annotation container

attribute ::=
ATTRIBUTE { identifier { identifier } }

Syntax 31—ATTRIBUTE statement
42 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

1

5

10

15

20

25

30

35

40

45

50

55
can have restricted semantics and a restricted set of applicable values, identifiers with and without predefined
semantics can co-exist within the same attribute statement.

Example

CELL myRAM8x128 {
ATTRIBUTE { rom asynchronous static }

}

7.14 PROPERTY statement

A property statement shall be defined as shown in Syntax 32.

The property statement shall be used to associate arbitrary annotations with the parent of the property statement.
The property statement has a similar syntax definition as an annotation container (see 7.12). While the keyword
of an annotation container usually restricts the semantics and the set of applicable annotations, the keyword
“property” does not. Annotations shall have no predefined semantics, when they appear within the property
statement, even if annotation identifiers with otherwise defined semantics are used.

Example

PROPERTY myProperties {
parameter1 = value1 ;
parameter2 = value2 ;
parameter3 { value3 value4 value5 }

}

7.15 INCLUDE statement

An include statement shall be defined as shown in Syntax 33.

The quoted string shall specify the name of a file. When the include statement is encountered during parsing of a
file, the application shall parse the specified file and then continue parsing the former file. The format of the file
containing the include statement and the format of the file specified by the include statement shall be the same.

Example

LIBRARY myLib {
INCLUDE “templates.alf”;
INCLUDE “technology.alf”;
INCLUDE “primitives.alf”;
INCLUDE “wires.alf”;

property ::=
PROPERTY [identifier] { annotation { annotation } }

Syntax 32—PROPERTY statement

include ::=
INCLUDE quoted_string ;

Syntax 33—INCLUDE statement
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 43

1

5

10

15

20

25

30

35

40

45

50

55
INCLUDE “cells.alf”;
}

Note: The filename specified by the quoted string shall be interpreted according to the rules of the application and/or the oper-
ating system. The ALF parser itself shall make no semantic interpretation of the filename.

7.16 ASSOCIATE statement and FORMAT annotation

An associate statement shall be defined as shown in Syntax 34.

The associate statement shall specify a relationship of the parent of the associate statement with an object
described in a file referenced by the quoted string. The format annotation shall specify the format of the associ-
ated file. In contrast to the include statement (see Section 7.15), the ALF parser is not expected to read the asso-
ciated file. The formal specification of the semantic validity of the association is beyond the scope of this
standard.

Using a keyword declaration (see Section 8.3) in conjunction with a context annotation (see Section 8.5.4), a val-
uetype annotation (see Section 8.5.1), a values annotation (see Section 8.5.2), and a default annotation (see
Section 8.5.3), the format annotation shall be defined as shown in Semantics 1.

The meaning of the annotation values is specified in the following Table 23.

associate ::=
ASSOCIATE quoted_string ;

| ASSOCIATE quoted_string { FORMAT_single_value_annotation }

Syntax 34—ASSOCIATE statement

KEYWORD FORMAT = single_value_annotation {
CONTEXT = ASSOCIATE;
VALUETYPE = identifier;
VALUES { vhdl verilog c \c++ alf }
DEFAULT = alf;

}

Semantics 1—FORMAT annotation

Table 23—FORMAT annotation values

Annotation value Description

vhdl The associated file is in a format specified by the IEEE 1076 std.

verilog The associated file is in a format specified by the IEEE 1364 std.

c The associated file is in a format specified by theANSI [** reference needed **]] std.

\c++ The associated file is in a format specified by the [** reference needed **] std.

alf The associated file is in a format specified by this standard
44 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

1

5

10

15

20

25

30

35

40

45

50

55
Note: The format annotation value does not specify the format version of the associated file. An application that can read the
associated file can obtain the version either from the associated file itself or by other means of version control.

7.17 REVISION statement

A revision statement shall be defined as shown in Syntax 35

A revision statement shall be used to identify the revision or version of the file to be parsed. One, and only one,
revision statement can appear at the beginning of an ALF file.

The set of legal string values within the revision statement shall be defined as shown in Table 24

The revision statement shall be optional, as the application program parsing the ALF file can provide other
means of specifying the revision or version of the file to be parsed. If a revision statement is encountered while a
revision has already been specified to the parser (e.g. if an included file is parsed), the parser shall be responsible
to decide whether the newly encountered revision is compatible with the originally specified revision and then
either proceed assuming the original revision or abandon.

This document suggests, but does not certify, that the IEEE version of the ALF standard proposed herein be
backward compatible with the Accellera version 2.0 and the OVI version 1.1.

7.18 Generic object

A generic object shall be defined as shown in Syntax 36.

revision ::=
ALF_REVISION string_value

Syntax 35—Revision statement

Table 24—Legal string values within the REVISION statement

String value Revision or version

“1.1” Version 1.1 by Open Verilog International (OVI), released on April 6, 1999.

“2.0” Version 2.0 by Accellera, released on December 14, 2000.

“P1603.2002-10-24” IEEE draft version as described in this document.

TBD IEEE 1603 release version.

generic_object ::=
alias_declaration

| constant_declaration
| class_declaration
| keyword_declaration
| semantics_declaration
| group_declaration
| template_declaration

Syntax 36—Generic object
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 45

1

5

10

15

20

25

30

35

40

45

50

55
The syntax items introduced in Syntax 36 are defined in Section 8.

7.19 Library-specific object

A library-specific object shall be defined as shown in Syntax 37.

The syntax items introduced in Syntax 37 are defined in Section 9.

7.20 All purpose item

An all purpose item shall be defined as shown in Syntax 38.

The syntax items introduced in Syntax 38 are defined in this Section 7 , in Section 8 and in Section 11.

library_specific_object ::=
library

| sublibrary
| cell
| primitive
| wire
| pin
| pingroup
| vector
| node
| layer
| via
| rule
| antenna
| site
| array
| blockage
| port
| pattern
| region

Syntax 37—Library-specific object

all_purpose_item ::=
generic_object

| include_statement
| associate_statement
| annotation
| annotation_container
| arithmetic_model
| arithmetic_model_container
| all_purpose_item_template_instantiation

Syntax 38—All purpose item
46 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

1

5

10

15

20

25

30

35

40

45

50

55
8. Generic objects and related statements

Add lead-in text

8.1 ALIAS declaration

An alias shall be declared as shown in Syntax 39.

The alias declaration shall specify an alias identifier (see Section 6.11) or a vector expression macro (see
Section 6.13).

The alias identifier can be used as a substitution of an original identifier, used to specify a name or a value of an
ALF statement. The alias identifier shall be semantically interpreted in the same way as the original identifier.

The vector expression macro can be used as a substitution of a vector expression.

Example

ALIAS reset = clear;
ALIAS #.rising_edge = (01 clock);

8.2 CONSTANT declaration

A constant shall be declared as shown in Syntax 40.

The constant declaration shall specify an identifier which can be used instead of a constant value, i.e., a number
or a based literal. The identifier shall be semantically interpreted in the same way as the constant value.

Example

CONSTANT vdd = 3.3;
CONSTANT opcode = ‘h0f3a;

8.3 KEYWORD declaration

A keyword shall be declared as shown in Syntax 41.

alias_declaration ::=
ALIAS alias_identifier = original_identifier ;

| ALIAS vector_expression_macro = (vector_expression)

Syntax 39—ALIAS declaration

constant_declaration ::=
CONSTANT constant_identifier = constant_value ;

constant_value ::=
number | based_literal

Syntax 40—CONSTANT declaration
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 47

1

5

10

15

20

25

30

35

40

45

50

55
A keyword declaration shall be used to define a new keyword in a category or in a subcategory of ALF state-
ments specified by a syntax item identifier. One or more annotations (see 8.5) can be used to qualify the contents
of the keyword declaration.

A legal syntax item identifier shall be defined as shown in Table 25.

8.4 SEMANTICS declaration

Semantics shall be declared as shown in Syntax 42—.

A semantics declaration shall be used to define context-specific rules in a category or in a subcategory of ALF
statements. The semantics item identifier shall make reference to a legal ALF statement or to a category or sub-
category of legal ALF statements.

The semantics identifier shall be a keyword identifier or a syntax item identifier or a hierarchical identifier. The
hierarchical identifier can be composed of one or more keyword identifiers and/or syntax item identifiers.

If the ALF type of the referenced ALF statement is annotation, the optional syntax item identifier
single_value_annotation or multi_value_annotation can be used.

keyword_declaration ::=
KEYWORD keyword_identifier = syntax_item_identifier ;

| KEYWORD keyword_identifier = syntax_item_identifier { { keyword_item } }
keyword_item ::=

VALUETYPE_single_value_annotation
| VALUES_multi_value_annotation
| DEFAULT_single_value_annotation
| CONTEXT_annotation
| REFERENCETYPE_annotation
| SI_MODEL_single_value_annotation

Syntax 41—KEYWORD declaration

Table 25—Syntax item identifier

Syntax item identifier Semantic meaning

annotation The keyword shall specify an annotation (see 7.11).

single_value_annotation The keyword shall specify a single value annotation (see 7.11).

multi_value_annotation The keyword shall specify a multi-value annotation (see 7.11).

annotation_container The keyword shall specify an annotation container (see 7.12).

arithmetic_model The keyword shall specify an arithmetic model (see 11.3).

arithmetic_submodel The keyword shall specify an arithmetic submodel (see 11.7).

arithmetic_model_container The keyword shall specify an arithmetic model container (see 11.8).
48 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

1

5

10

15

20

25

30

35

40

45

50

55
A semantic item can be used to qualify the contents of the semantics declaration. One or more annotations (see
8.5) can be used to qualify the contents of the semantics declaration.

8.5 Annotations and rules related to a KEYWORD or a SEMANTICS declaration

This subsection defines annotations which can be used as legal children of a keyword or a semantics declaration.

8.5.1 VALUETYPE annotation

The valuetype annotation shall be a single value annotation. The set of legal values shall depend on the syntax
item identifier associated with the keyword declaration, as shown in Table 26.

semanics_declaration ::=
SEMANTICS semantics_identifier = syntax_item_identifier ;

| SEMANTICS semantics_identifier [= syntax_item_identifier] { { semantics_item } }
semantics_item ::=

VALUES_multi_value_annotation
| DEFAULT_single_value_annotation
| CONTEXT_annotation
| REFERENCETYPE_annotation
| SI_MODEL_single_value_annotation

Syntax 42—SEMANTICS declaration

Table 26—VALUETYPE annotation

Syntax item identifier Set of legal values for
VALUETYPE

Default value
for

VALUETYPE
Comment

annotation
or single_value_annotation
or multi_value_annotation

number,
signed_integer,
unsigned_integer,
signed_real,
unsigned_real,
identifier,
quoted_string,
edge_value,
pin_variable,
control_expression,
boolean_expression,
arithmetic_expression.

identifier See Syntax 29, defi-
nition of annotation
value.

annotation_container N/A N/A An annotation con-
tainer (see
Syntax 30) has no
value.

arithmetic_model number,
signed_integer,
unsigned_integer,
signed_real,
unsigned_real,
identifier,
bit_literal,
based_literal.

number See Syntax 22, defi-
nition of arithmetic
value.
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 49

1

5

10

15

20

25

30

35

40

45

50

55
The valuetype annotation shall specify the category of legal ALF values applicable for an ALF statement whose
ALF type is given by the declared keyword.

The valuetype annotation can be partially self-described as shown in Semantics 2.

Example:

This example shows a correct and an incorrect usage of a declared keyword with specified valuetype.

KEYWORD Greeting = annotation { VALUETYPE = identifier ; }
CELL cell1 { Greeting = HiThere ; } // correct
CELL cell2 { Greeting = “Hi There” ; } // incorrect

The first usage is correct, since HiThere is an identifier. The second usage is incorrect, since “Hi There” is
a quoted string and not an identifier.

8.5.2 VALUES annotation

The values annotation shall be a multi value annotation. It shall be applicable in the case where the valuetype
annotation is also applicable. The values annotation shall specify a discrete set of legal values applicable for an
ALF statement using the declared keyword. The values annotation and the valuetype annotation shall be compatible.

The values annotation can be partially self-described as shown in Semantics 3.

arithmetic_submodel N/A N/A An arithmetic sub-
model (see 11.7)
shall always have
the same value-
type as its parent
arithmetic model.

arithmetic_model_container N/A N/A An arithmetic model
container (see 11.8)
has no value.

KEYWORD VALUETYPE = single_value_annotation {
CONTEXT = KEYWORD;

}

Semantics 2—Partial self-description of VALUETYPE annotation

KEYWORD VALUES = multi_value_annotation {
CONTEXT { KEYWORD SEMANTICS }

}

Semantics 3—Partial self-description of VALUES annotation

Table 26—VALUETYPE annotation (Continued)

Syntax item identifier Set of legal values for
VALUETYPE

Default value
for

VALUETYPE
Comment
50 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

1

5

10

15

20

25

30

35

40

45

50

55
Example:

This example shows a correct and an incorrect usage of a declared keyword with specified valuetype and values.

KEYWORD Greeting = annotation {
VALUETYPE = identifier ;
VALUES { HiThere Hello HowDoYouDo }

}
CELL cell3 { Greeting = Hello ; } // correct
CELL cell4 { Greeting = GoodBye ; } // incorrect

The first usage is correct, since Hello is contained within the set of values. The second usage is incorrect, since
GoodBye is not contained within the set of values.

8.5.3 DEFAULT annotation

The default annotation shall be a single value annotation applicable in the case where the valuetype annotation is
also applicable. Compatibility between the default annotation, the valuetype annotation, and the values annota-
tion shall be mandatory.

The default annotation shall specify a presumed value in absence of an ALF statement specifying a value.

A partial self-description of the default annotation is given in Semantics 4.

A default annotation shall also be applicable for an arithmetic model (see 11.3 and 11.9.4).

Example:

KEYWORD Greeting = annotation {
VALUETYPE = identifier ;
VALUES { HiThere Hello HowDoYouDo }
DEFAULT = Hello ;

}
CELL cell5 { /* no Greeting */ }

In this example, the absence of a Greeting statement is equivalent to the following:

CELL cell5 { Greeting = Hello ; }

8.5.4 CONTEXT annotation

The context annotation shall be a single value annotation or a multi value annotation. It shall specify the ALF
type of a legal parent of the statement using the declared keyword. The ALF type of a legal parent can be a pre-
defined keyword or a declared keyword.

KEYWORD DEFAULT = single_value_annotation {
CONTEXT { KEYWORD SEMANTICS arithmetic_model }

}

Semantics 4—Partial self-description of DEFAULT annotation
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 51

1

5

10

15

20

25

30

35

40

45

50

55
A hierarchical identifier can be used to specify the ALF type of a legal parent of the statement, constraint by the
ALF type of the grandparent or by the ALF type of the great-grandparent etc.

A partial self-description of the context annotation is given in Semantics 5.

Example:

KEYWORD LibraryQualifier = annotation { CONTEXT { LIBRARY SUBLIBRARY } }
KEYWORD CellQualifier = annotation { CONTEXT = CELL ; }
KEYWORD PinQualifier = annotation { CONTEXT = PIN ; }
LIBRARY library1 {

LibraryQualifier = foo ; // correct
CELL cell1 {
CellQualifier = bar ; // correct
PinQualifier = foobar ; // incorrect
}

}

The following change would legalize the example above:

KEYWORD PinQualifier = annotation { CONTEXT { PIN CELL } }

The following example shows the use of an hierarchical identifier.

KEYWORD PrimitivePinQualifier = annotation { CONTEXT = PRIMITIVE.PIN ; }

8.5.5 REFERENCETYPE annotation

The referencetype annotation shall be a single value annotation or a multi value annotation. The referencetype
annotation shall be legal if the syntax item identifier in the keyword declaration is annotation, single value anno-
tation or multi value annotation.

A partial self-description of the referencetype annotation is given in Semantics 6.

KEYWORD CONTEXT = annotation {
VALUETYPE = identifier;

}

Semantics 5—Partial self-description of CONTEXT annotation

KEYWORD REFERENCETYPE = annotation {
CONTEXT { KEYWORD SEMANTICS }
VALUES { CLASS LIBRARY SUBLIBRARY CELL PIN PINGROUP

PRIMITIVE WIRE NODE VECTOR LAYER VIA RULE ANTENNA
BLOCKAGE PORT SITE ARRAY PATTERN REGION
arithmetic_model arithmetic_submodel }

}

Semantics 6—Partial self-description of REFERENCETYPE annotation
52 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

1

5

10

15

20

25

30

35

40

45

50

55
The purpose of the referencetype annotation is to specify the ALF type of a referenced object. An object shall be
referenced by its ALF name or eventually by a hierarchical identifier involving the ALF name of the parent of
the object.

Example:

CLASS myClass;
KEYWORD myReference = single_value_annotation {

REFERENCETYPE = CLASS;
}
CELL myCell {

myReference = myClass;
}

In this example, the annotation “myReference” refers to an object of the ALF type “CLASS” with the ALF name
“myClass”.

8.5.6 SI_MODEL annotation

The SI-model annotation shall be a single value annotation. It shall specify a relation of a declared keyword with
the International System of Units and Measurements [** reference needed **]. The SI-model annotation is only
applicable for a keyword declaring an arithmetic model (see Section 11.3).

A self-description of the SI-model annotation is given in Semantics 7.

The set of legal annotation values is shown in the following Table 27.

KEYWORD SI_MODEL = single_value_annotation {
CONTEXT = KEYWORD;
VALUETYPE = identifier;
VALUES {

TIME FREQUENCY CURRENT VOLTAGE POWER ENERGY
RESISTANCE CAPACITANCE INDUCTANCE
DISTANCE AREA

}
}

Semantics 7—SI model annotation

Table 27—SI_MODEL annotation

annotation value mathematical
symbol base unit relationship with

other quantity
Reference to arithmetic

model declaration

TIME t Second see Section 11.11.1

FREQUENCY f Hertz 1 / t see

CURRENT I Ampere see

VOLTAGE V Volt see

RESISTANCE R Ohm V / I see
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 53

1

5

10

15

20

25

30

35

40

45

50

55
8.5.7 Rules for legal usage of KEYWORD and SEMANTICS declaration

The following rules shall apply for legal use of annotations within a keyword or a semantics declaration.

a) A keyword declaration can not overwrite, redefine, or otherwise invalidate a syntax rule.
b) A semantics declaration shall relate to a keyword declaration or a syntax rule. A semantics declaration

shall be compatible with a related keyword declaration or a related syntax rule.

Example:

KEYWORD myAnnotation = annotation {
VALUETYPE = identifier ;
VALUES { value1 value2 value3 value4 value5 }
CONTEXT { CELL PIN }

}
SEMANTICS CELL.myAnnotation = multi_value_annotation {

VALUES { value1 value2 value3 }
}
SEMANTICS PIN.myAnnotation = single_value_annotation {

VALUES { value4 value5 }
DEFAULT = value4;

}
CELL myCell {

myAnnotation { value1 value2 }
PIN myPin { myAnnotation = value5; }

}

8.6 CLASS declaration

A class shall be declared as shown in Syntax 43.

A class declaration shall be used to establish a semantic association between ALF statements, including, but not
restricted to, other class declarations. ALF statements shall be associated with each other, if they contain a refer-
ence to the same class. Such a reference is made by a class reference annotation (see Section 8.7).

CAPACITANCE C Farad I / (dV / dt) see

INDUCTANCE L Henry V / (dI / dt) see

ENERGY E Joule see

POWER P Watt I V, dE / dt see

DISTANCE d Meter see

AREA A Square meter d2 see

Table 27—SI_MODEL annotation (Continued)

annotation value mathematical
symbol base unit relationship with

other quantity
Reference to arithmetic

model declaration
54 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

1

5

10

15

20

25

30

35

40

45

50

55
The semantics specified by a class item within a class declaration shall be inherited by the statement containing
the reference. A class item can be an all purpose item (see Section 7.20), a geometric model (see Section 10.16)
or a geometric transformation (see Section 10.18).

8.7 Annotations related to a CLASS declaration

This subsection specifies how other objects can make a reference to a class by using either a general class refer-
ence annotation or a specific class reference annotation.

8.7.1 General CLASS reference annotation

A general class reference annotation shall be defined as shown in Semantics 8.

Note: A class declaration itself can not contain a general class reference annotation. This avoids circular reference.

Example

CLASS \1stclass { ATTRIBUTE { everything } }
CLASS \2ndclass { ATTRIBUTE { nothing } }
CELL cell1 { CLASS = \1stclass; }
CELL cell2 { CLASS = \2ndclass; }
CELL cell3 { CLASS { \1stclass \2ndclass } }
// cell1 inherits “everything”
// cell2 inherits “nothing”
// cell3 inherits “everything” and “nothing”

Note: It is possible that a reference to multiple classes can result in the inheritance of semantically incompatible attributes. It
is expected that an ALF compiler or an ALF interpreter detects such semantic incompatibility. However, the behavior of an
application as a consequence of this detection is not specified by this standard, since the desired behavior can depend on the
nature of the application.

class_declaration ::=
CLASS class_identifier ;

| CLASS class_identifier { { class_item } }
class_item ::=

all_purpose_item
| geometric_model
| geometric_transformation

Syntax 43—CLASS declaration

SEMANTICS CLASS = annotation {
CONTEXT {

library_specific_object
arithmetic_model

}
VALUETYPE = identifier;
REFERENCETYPE = CLASS;

}

Semantics 8—CLASS reference annotation
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 55

1

5

10

15

20

25

30

35

40

45

50

55
8.7.2 USAGE annotation

The usage annotation shall be defined as shown in Semantics 9.

The usage annotation shall specify, which specific class reference annotation can be legally used to make a refer-
ence to the class.

The set of legal annotation values is shown in the following Table 28.

Note: Knowing the ALF type of a legal parent of a specific class reference annotation, the ALF parser can evaluate the con-
tents of the class declaration for semantic correctness. If the usage annotation is not present, the ALF paraser can evaluate the
contents of the class declaration for semantic correctness only when encountering a reference to the class.

KEYWORD USAGE = annotation {
CONTEXT = CLASS;
VALUETYPE = identifier;
VALUES {

SWAP_CLASS RESTRICT_CLASS
SIGNAL_CLASS SUPPLY_CLASS CONNECT_CLASS
SELECT_CLASS NODE_CLASS
EXISTENCE_CLASS CHARACTERIZATION_CLASS
ORIENTATION_CLASS SYMMETRY_CLASS

}
}

Semantics 9—USAGE annotation

Table 28—USAGE annotation

annotation value definition of specific
class reference annotation

SWAP_CLASS see Section 9.4.3

RESTRICT_CLASS see

SIGNAL_CLASS see

SUPPLY_CLASS see

CONNECT_CLASS see

SELECT_CLASS see

NODE_CLASS see

EXISTENCE_CLASS see

CHARACTERIZATION_CLASS see

ORIENTATION_CLASS see

SYMMETRY_CLASS see
56 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

1

5

10

15

20

25

30

35

40

45

50

55
8.8 GROUP declaration

A group shall be declared as shown in Syntax 44.

A group declaration shall be used to specify the semantic equivalent of multiple similar ALF statements within a
single ALF statement. An ALF statement containing a group identifier shall be semantically replicated by substi-
tuting each group value for the group identifier, or, by substituting subsequent index values bound by the left
index value and by the right index value for the group identifier. The ALF parser shall verify whether each sub-
stitution results in a legal statement.

The ALF statement which has the same parent as the group declaration shall be semantically replicated, if the
group identifier is found within the statement itself or within a child of the statement or within a child of a child
of the statement etc. If the group identifier is found more than once within the statement or within its children,
the same group value or index value per replication shall be substituted for the group identifier, but no additional
replication shall occur.

The group identifier (i.e., the name associated with the group declaration) can be re-used as name of another
statement. As a consequence, the other statement shall be interpreted as multiple statements wherein the group
identifier within each replication shall be replaced by the all-purpose value. On the other hand, no name of any
visible statement shall be allowed to be re-used as group identifier.

Examples

The following example shows substitution involving group values.

// statement using GROUP:
CELL myCell {

GROUP data { data1 data2 data3 }
PIN data { DIRECTION = input ; }

}
// semantically equivalent statement:
CELL myCell {

PIN data1 { DIRECTION = input ; }
PIN data2 { DIRECTION = input ; }
PIN data3 { DIRECTION = input ; }

}

The following example shows substitution involving index values.

// statement using GROUP:
CELL myCell {

GROUP dataIndex { 1 : 3 }
PIN [1:3] data { DIRECTION = input ; }
PIN clock { DIRECTION = input ; }
SETUP = 0.5 { FROM { PIN = data[dataIndex]; } TO { PIN = clock ; } }

}
// semantically equivalent statement:

group_declaration ::=
GROUP group_identifier { all_purpose_value { all_purpose_value } }

| GROUP group_identifier { left_index_value : right_index_value }

Syntax 44—GROUP declaration
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 57

1

5

10

15

20

25

30

35

40

45

50

55
CELL myCell {
GROUP dataIndex { 1 : 3 }
PIN [1:3] data { DIRECTION = input ; }
PIN clock { DIRECTION = input ; }
SETUP = 0.5 { FROM { PIN = data[1]; } TO { PIN = clock ; } }
SETUP = 0.5 { FROM { PIN = data[2]; } TO { PIN = clock ; } }
SETUP = 0.5 { FROM { PIN = data[3]; } TO { PIN = clock ; } }

}

The following example shows multiple occurrences of the same group identifier within a statement.

// statement using GROUP:
CELL myCell {

GROUP dataIndex { 1 : 3 }
PIN [1:3] Din { DIRECTION = input ; }
PIN [1:3] Dout { DIRECTION = input ; }
DELAY = 1.0 { FROM {PIN=Din[dataIndex];} TO {PIN=Dout[dataIndex];} }

}
// semantically equivalent statement:
CELL myCell {

GROUP dataIndex { 1 : 3 }
PIN [1:3] Din { DIRECTION = input ; }
PIN [1:3] Dout { DIRECTION = input ; }
DELAY = 1.0 { FROM {PIN=Din[1];} TO {PIN=Dout[1];} }
DELAY = 1.0 { FROM {PIN=Din[2];} TO {PIN=Dout[2];} }
DELAY = 1.0 { FROM {PIN=Din[3];} TO {PIN=Dout[3];} }

}

8.9 TEMPLATE declaration

A template shall be declared as shown in Syntax 45.

A template declaration shall be used to specify one or more ALF statements with variable contents that can be
used many times. A template instantiation (see 8.10) shall specify the usage of such an ALF statement. Within
the template declaration, the variable contents shall be specified by a placeholder identifier (see 6.11.3).

8.10 TEMPLATE instantiation

A template shall be instantiated in form of a static template instantiation or a dynamic template instantiation, as
shown in Syntax 46

A template instantiation shall be semantically equivalent to the ALF statement or the ALF statements found
within the template declaration, after replacing the placeholder identifiers with replacement values. A static tem-
plate instantiation shall support replacement by order, using an all-purpose value, or alternatively, replacement
by reference, using an annotation (see 7.11). A dynamic template instantiation shall support replacement by refer-
ence only, using an annotation and/or an arithmetic model (see 7.11 and 11.3) and/or an arithmetic assignment.

template_declaration ::=
TEMPLATE template_identifier { ALF_statement { ALF_statement } }

Syntax 45—TEMPLATE declaration
58 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

1

5

10

15

20

25

30

35

40

45

50

55
In the case of replacement by reference, the reference shall be established by a non-escaped identifier matching
the placeholder identifier without the angular brackets. The matching shall be case-insensitive.

The following rules shall apply:

a) A static template instantiation shall be used when the replacement value of any placeholder identifier can
be determined during compilation of the library. Only a matching identifier shall be considered legal.
Each occurrence of the placeholder identifier shall be replaced by the annotation value associated with
the annotation identifier.

b) A dynamic template instantiation shall be used when the replacement value of at least one placeholder
identifier can only determined during runtime of the application. Only a matching identifier shall be con-
sidered legal.

c) Multiple replacement values within a multi-value annotation shall be legal if and only if the syntax rules
for the ALF statement within the template declaration allow substitution of multiple values for one place-
holder identifier.

d) In the case replacement by order, subsequently occurring placeholder identifiers in the template declara-
tion shall be replaced by subsequently occurring all-purpose values in the template instantiation. If a
placeholder identifier occurs more than once within the template declaration, all occurrences of that
placeholder identifier shall be immediately replaced by the same all-purpose value. The first amongst the
remaining placeholder identifiers shall then be considered the next placeholder to be replaced by the next
all-purpose value.

e) A static template instantiation for which a placeholder identifier is not replaced shall be legal if and only
if the semantic rules for the ALF statement support a placeholder identifier outside a template declara-
tion. However, the semantics of a placeholder identifier as an item to be substituted shall only apply
within the template declaration statement.

Examples

The following example illustrates rule a).

// statement using TEMPLATE declaration and instantiation:
TEMPLATE someAnnotations {

KEYWORD <oneAnnotation> = single_value_annotation ;
KEYWORD annotation2 = single_value_annotation ;
<oneAnnotation> = value1 ;
annotation2 = <anotherValue> ;

}
someAnnotations {

template_instantiation ::=
static_template_instantiation

| dynamic_template_instantiation
static_template_instantiation ::=

template_identifier [= static] ;
| template_identifier [= static] { { all_purpose_value } }
| template_identifier [= static] { { annotation } }

dynamic_template_instantiation ::=
template_identifier = dynamic { { dynamic_template_instantiation_item } }

dynamic_template_instantiation_item ::=
annotation

| arithmetic_model
| arithmetic_assignment

arithmetic_assignment ::=
identifier = arithmetic_expression ;

Syntax 46—TEMPLATE instantiation
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 59

1

5

10

15

20

25

30

35

40

45

50

55
oneAnnotation = annotation1 ;
anotherValue = value2 ;

}
// semantically equivalent statement:
KEYWORD annotation1 = single_value_annotation ;
KEYWORD annotation2 = single_value_annotation ;
annotation1 = value1 ;
annotation2 = value2 ;

The following example illustrates rule b).

// statement using TEMPLATE declaration and instantiation:
TEMPLATE someNumbers {

KEYWORD N1 = single_value_annotation { VALUETYPE=number ; }
KEYWORD N2 = single_value_annotation { VALUETYPE=number ; }
N1 = <number1> ;
N2 = <number2> ;

}
someNumbers = DYNAMIC {

number2 = number1 + 1;
}
// semantically equivalent statement, assuming number1=3 at runtime:
N1 = 3 ;
N2 = 4 ;

The following example illustrates rule c).

TEMPLATE moreAnnotations {
KEYWORD annotation3 = annotation ;
KEYWORD annotation4 = annotation ;
annotation3 { <someValue> }
annotation4 = <yetAnotherValue> ;

}
moreAnnotations {

someValue { value1 value2 }
yetAnotherValue = value3 ;

}
// semantically equivalent statement:
KEYWORD annotation3 = annotation ;
KEYWORD annotation4 = annotation ;
annotation3 { value1 value2 }
annotation4 = value3 ;

The following example illustrates rule e).

TEMPLATE evenMoreAnnotations {
KEYWORD <thisAnnotation> = single_value_annotation ;
KEYWORD <thatAnnotation> = single_value_annotation ;
<thatAnnotation> = <thisValue> ;
<thisAnnotation> = <thatValue> ;

}
// template instantiation by reference:
evenMoreAnnotations = STATIC {

thatAnnotation = day ;
60 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

1

5

10

15

20

25

30

35

40

45

50

55
thisAnnotation = month;
thatValue = April;
thisValue = Monday;

}
// semantically equivalent template instantiation by order:
evenMoreAnnotations = STATIC { day month Monday April }

// semantically equivalent statement:
KEYWORD day = single_value_annotation ;
KEYWORD month = single_value_annotation ;
month = April;
day = Monday;

The following example illustrates rule d).

// statement using TEMPLATE declaration and instantiation:
TEMPLATE encoreAnnotation {

KEYWORD context1 = annotation_container;
KEYWORD context2 = annotation_container;
KEYWORD annotation5 = single_value_annotation {
CONTEXT { context1 context2 }
VALUES { <something> <nothing> }
}
context1 { annotation5 = <nothing> ; }
context2 { annotation5 = <something> ; }

}
encoreAnnotation {

something = everything ;
}
// semantically equivalent statement:
KEYWORD context1 = annotation_container;
KEYWORD context2 = annotation_container;
KEYWORD annotation5 = single_value_annotation {

CONTEXT { context1 context2 }
VALUES { everything <nothing> }

}
context1 { annotation5 = <nothing> ; }
context2 { annotation5 = all ; }
// Both everything (without brackets) and <nothing> (with brackets)
// are legal values for annotation5.
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 61

1

5

10

15

20

25

30

35

40

45

50

55
62 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

1

5

10

15

20

25

30

35

40

45

50

55
9. Library-specific objects and related statements

Add lead-in text

9.1 LIBRARY and SUBLIBRARY declaration

A library and a sublibrary shall be declared as shown in Syntax 47.

A library shall serve as a repository of technology data for creation of an electronic integrated circuit. A subli-
brary can optionally be used to create different scopes of visibility for particular statements describing technol-
ogy data.

If any two objects of the same ALF type and the same ALF name appear in two libraries, or in two sublibraries
with the same library as parents, their usage for creation of an electronic circuit shall be mutually exclusive. For
example, two cells with the same name shall not be instantiated in the same integrated circuit. It shall be the
responsibility of the application tool to detect and properly handle such cases, as the selection of a library or a
sublibrary is controlled by the user of the application tool.

9.2 Annotations related to a LIBRARY or a SUBLIBRARY declaration

Add lead-in text

9.2.1 LIBRARY reference annotation

A library reference annotation shall be defined as shown in Semantics 10.

The purpose of a library reference annotation is to establish an association between a library or a sublibrary and
an arithmetic model (see Section 11.3).

library ::=
LIBRARY library_identifier ;

| LIBRARY library_identifier { { library_item } }
| library_template_instantiation

library_item ::=
sublibrary

| sublibrary_item
sublibrary ::=

SUBLIBRARY sublibrary_identifier ;
| SUBLIBRARY sublibrary_identifier { { sublibrary_item } }
| sublibrary_template_instantiation

sublibrary_item ::=
all_purpose_item

| cell
| primitive
| wire
| layer
| via
| rule
| antenna
| array
| site
| region

Syntax 47—LIBRARY and SUBLIBRARY declaration
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 63

1

5

10

15

20

25

30

35

40

45

50

55
A hierarchical identifier can be used to specify a reference to a sublibrary as a child of a library.

9.2.2 INFORMATION annotation container

An information annotation container shall be defined as shown in Semantics 11.

The information annotation container shall be used to associate its parent statement with a product specification.
The following semantic restrictions shall apply:

a) A library, a sublibrary, or a cell can be a legal parent of the information statement.
b) A wire, or a primitive can be a legal parent of the information statement, provided the parent of the wire

or the primitive is a library or a sublibrary.

SEMANTICS LIBRARY = annotation {
VALUETYPE = identifier;
CONTEXT = arithmetic_model;
REFERENCETYPE { LIBRARY SUBLIBRARY }

}

Semantics 10—LIBRARY reference annotation

KEYWORD INFORMATION = annotation_container {
CONTEXT { LIBRARY SUBLIBRARY CELL WIRE PRIMITIVE }

}
KEYWORD PRODUCT = single_value_annotation {

VALUETYPE = string_value; DEFAULT = ““;
CONTEXT = INFORMATION;

}
KEYWORD TITLE = single_value_annotation {

VALUETYPE = string_value; DEFAULT = ““;
CONTEXT = INFORMATION;

}
KEYWORD VERSION = single_value_annotation {

VALUETYPE = string_value; DEFAULT = ““;
CONTEXT = INFORMATION;

}
KEYWORD AUTHOR = single_value_annotation {

VALUETYPE = string_value; DEFAULT = ““;
CONTEXT = INFORMATION;

}
KEYWORD DATETIME = single_value_annotation {

VALUETYPE = string_value; DEFAULT = ““;
CONTEXT = INFORMATION;

}

Semantics 11—INFORMATION statement
64 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

1

5

10

15

20

25

30

35

40

45

50

55
The semantics of the information contents are specified in Table 29.

The product developer shall be responsible for any rules concerning the format and detailed contents of the string
value itself.

Example

LIBRARY myProduct {
INFORMATION {
PRODUCT = p10sc;
TITLE = “0.10 standard cell”;
VERSION = “v2.1.0”;
AUTHOR = “Major Asic Vendor, Inc.”;
DATETIME = “Mon Apr 8 18:33:12 PST 2002”;
}

}

9.3 CELL declaration

A cell shall be declared as shown in Syntax 48.

Table 29—Annotations within an INFORMATION statement

Annotation identifier Semantics of annotation value

PRODUCT A code name of a product described herein.

TITLE A descriptive title of the product described herein.

VERSION A version number of the product description.

AUTHOR The name of a person or company generating this product description.

DATETIME Date and time of day when this product description was created.

cell ::=
CELL cell_identifier ;

| CELL cell_identifier { { cell_item } }
| cell_template_instantiation

cell_item ::=
all_purpose_item

| pin
| pingroup
| primitive
| function
| non_scan_cell
| test
| vector
| wire
| blockage
| artwork
| pattern
| region

Syntax 48—CELL declaration
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 65

1

5

10

15

20

25

30

35

40

45

50

55
A cell shall represent an electronic circuit which can be used as a building block for a larger electronic circuit.

9.4 Annotations related to a CELL declaration

This section defines annotations and attribute values related to a cell declaration.

9.4.1 CELL reference annotation

A cell reference annotation shall be defined as shown in Semantics 12.

The purpose of a cell reference annotation is to establish an association between a cell and an arithmetic model
(see Section 11.3).

A hierarchical identifier can be used to specify a reference to a cell as a child of a library or a sublibrary.

9.4.2 CELLTYPE annotation

A celltype annotation shall be defined as shown in Semantics 13.

The celltype shall divide cells into categories, as specified in Table 30.

SEMANTICS CELL = annotation {
VALUETYPE = identifier;
CONTEXT = arithmetic_model;
REFERENCETYPE = CELL;

}

Semantics 12—CELL reference annotation

KEYWORD CELLTYPE = single_value_annotation {
CONTEXT = CELL;
VALUETYPE = identifier;
VALUES {

buffer combinational multiplexor flipflop latch
memory block core special

}
}

Semantics 13—CELLTYPE annotation

Table 30—CELLTYPE annotation values

Annotation value Description

buffer CELL is a buffer, i.e., an element for transmission of a digital signal without per-
forming a logic operation, except for possible logic inversion.

combinational CELL is a combinatorial logic element, i.e., an element performing a logic opera-
tion on two or more digital input signals.

multiplexor CELL is a multiplexor, i.e., an element for selective transmission of digital signals.
66 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

1

5

10

15

20

25

30

35

40

45

50

55
9.4.3 SWAP_CLASS annotation

A swap_class annotation shall be defined as shown in Semantics 14.

The value is the name of a declared CLASS. Multi-value annotation can be used. Cells referring to the same
CLASS can be swapped for certain applications.

Cell-swapping is only allowed, if the RESTRICT_CLASS annotation (see 9.4.4) authorizes usage of the cell and
the cells to be swapped are compatible from an application standpoint.

9.4.4 RESTRICT_CLASS annotation

A restrict-class annotation shall be defined as shown in Semantics 15.

flipflop CELL is a flip-flop, i.e., a one-bit storage element with edge-sensitive clock

latch CELL is a latch, i.e., a one-bit storage element without edge-sensitive clock

memory CELL is a memory, i.e., a multi-bit storage element with selectable addresses.

block CELL is a hierarchical block, i.e., a complex element which has an associated
netlist for implementation purpose. All instances of the netlist are library ele-
ments, i.e., there is a CELL model for each of them in the library.

core CELL is a core, i.e., a complex element which has no associated netlist for imple-
mentation purpose. However, a netlist representation can exist for modeling pur-
pose.

special CELL is a special element, which does not fall into any other category of cells.
Examples: bus holder, protection diode, filler cell.

KEYWORD SWAP_CLASS = annotation {
CONTEXT = CELL;
VALUETYPE = identifier;
REFERENCETYPE = CLASS;

}

Semantics 14—SWAP_CLASS annotation

KEYWORD RESTRICT_CLASS = annotation {
CONTEXT { CELL CLASS }
VALUETYPE = identifier;
REFERENCETYPE = CLASS;

}
CLASS synthesis { USAGE = RESTRICT_CLASS ; }
CLASS scan { USAGE = RESTRICT_CLASS ; }
CLASS datapath { USAGE = RESTRICT_CLASS ; }
CLASS clock { USAGE = RESTRICT_CLASS ; }
CLASS layout { USAGE = RESTRICT_CLASS ; }

Semantics 15—RESTRICT_CLASS annotation

Table 30—CELLTYPE annotation values (Continued)

Annotation value Description
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 67

1

5

10

15

20

25

30

35

40

45

50

55
The value shall be the name of a declared CLASS.

The restrict-class annotation shall establish a necessary condition for the usage of a cell by an application per-
forming a design transformation involving instantiations of cells. An application other than a design transforma-
tion (e.g. analysis, file format translation) can disregard the restrict-class annotation or use it for informational
purpose only..

The meaning of the predefined restrict-class values in Semantics 15 is specified in Table 31.

Additional restrict-class values can be defined within the context of a LIBRARY or a SUBLIBRARY, using the
CLASS declaration and the SEMANTICS declaration in a similar way as shown in Semantics 15.

From the application standpoint, the following usage model for restrict-class shall apply:

a) A set of restrict-class values shall be associated with the application. These values are considered
“known” by the application. Usage of a cell shall only be authorized, if the set of restrict-class values
associated with the cell is a subset of the “known” restrict-class values.

b) Optionally, a boolean condition involving the set of “known” restrict-class values or a subset thereof can
be associated with the application. In addition to a), usage of a cell shall only be authorized, if the set of
restrict-class values associated with the cell satisfies the boolean condition.

Example:

Specification within the library:

CELL X { RESTRICT_CLASS { A B } }
CELL Y { RESTRICT_CLASS { C } }
CELL Z { RESTRICT_CLASS { A C F } }

Specification for the application:

Set of “known” restrict-class values = (A, B, C, D, E)
Boolean condition = (A and not B) or C

Result:

Usage of CELL X is not authorized, because boolean condition is not true.
Usage of CELL Y is authorized, because all values are “known”, and boolean condition is true.
Usage of CELL Z is not authorized, because value F is not “known”.

Table 31—Predefined values for RESTRICT_CLASS

Annotation value Description

synthesis Cell is suitable for creation or modification of a structual design
description (i.e., a netlist) while providing functional equivalence.

scan Cell is suitable for creation or modification of a scan chain within a netlist.

datapath Cell is suitable for structural implementation of a data flow graph.

clock Cell is suitable for distribution of a global synchronization signal.

layout Cell is suitable for usage within a physical artwork.
68 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

1

5

10

15

20

25

30

35

40

45

50

55
9.4.5 SCAN_TYPE annotation

A scan_type annotation shall be defined as shown in Semantics 16.

It can take the values shown in Table 32.

9.4.6 SCAN_USAGE annotation

A scan_usage annotation shall be defined as shown in Semantics 17.

It can take the values shown in Table 33.

KEYWORD SCAN_TYPE = single_value_annotation {
CONTEXT = CELL;
VALUETYPE = identifier;
VALUES { muxscan clocked lssd control_0 control_1 }

}

Semantics 16—SCAN_TYPE annotation

Table 32—SCAN_TYPE annotations for a CELL object

Annotation value Description

muxscan Cell contains a multiplexor for selection between non-scan-mode and
scan-mode data.

clocked Cell supports a dedicated scan clock.

lssd Cell is suitable for level sensitive scan design.

control_0 Combinatorial cell, controlling pin shall be 0 in scan mode.

control_1 Combinatorial cell, controlling pin shall be 1 in scan mode.

KEYWORD SCAN_USAGE = single_value_annotation {
CONTEXT = CELL;
VALUETYPE = identifier;
VALUES { input output hold }

}

Semantics 17—SCAN_USAGE annotation

Table 33—SCAN_USAGE annotations for a CELL object

Annotation value Description

input Primary input cell in a scan chain.

output Primary output cell in a scan chain.
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 69

1

5

10

15

20

25

30

35

40

45

50

55
The SCAN_USAGE annotation applies for a cell which is designed to be the primary input, output or intermediate
stage of a scan chain. It also applies for a block in case there is a particular scan-ordering requirement.

9.4.7 BUFFERTYPE annotation

A buffertype annotation shall be defined as shown in Semantics 18.

It can take the values shown in Table 34.

9.4.8 DRIVERTYPE annotation

A drivertype annotation shall be defined as shown in Semantics 19.

hold Intermediate cell in a scan chain.

KEYWORD BUFFERTYPE = single_value_annotation {
CONTEXT = CELL;
VALUETYPE = identifier;
VALUES { input output inout internal }
DEFAULT = internal;

}

Semantics 18—BUFFERTYPE annotation

Table 34—BUFFERTYPE annotations for a CELL object

Annotation value Description

input CELL has an external (i.e., off-chip) input pin.

output CELL has an external output pin.

inout CELL has an external bidirectional pin or an external input pin and an
external output pin.

internal CELL has no external pin.

KEYWORD DRIVERTYPE = single_value_annotation {
CONTEXT = CELL;
VALUETYPE = identifier;
VALUES { predriver slotdriver both }

}

Semantics 19—DRIVERTYPE annotation

Table 33—SCAN_USAGE annotations for a CELL object (Continued)

Annotation value Description
70 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

1

5

10

15

20

25

30

35

40

45

50

55
It can take the values shown in Table 35.

DRIVERTYPE applies only for a cell with BUFFERTYPE value input or output or inout.

9.4.9 PARALLEL_DRIVE annotation

A parallel_drive annotation shall be defined as shown in Semantics 20.

The annotation value shall specify the number of cells connected in parallel. This number shall be greater than
zero (0) ; the default shall be 1.

9.4.10 PLACEMENT_TYPE annotation

A placement_type annotation shall be defined as shown in Semantics 21.

The purpose of the placement-type annotation is to establish categories of cells in terms of placement and power
routing requirements.

Table 35—DRIVERTYPE annotations for a CELL object

Annotation value Description

predriver CELL is a predriver, i.e., the core part of an I/O buffer.

slotdriver CELL is a slotdriver, i.e., the pad of an I/O buffer with off-chip connection.

both CELL is both a predriver and a slot driver, i.e., a complete I/O buffer.

KEYWORD PARALLEL_DRIVE = single_value_annotation {
CONTEXT = CELL;
VALUETYPE = unsigned_integer;
DEFAULT = 1;

}

Semantics 20—PARALLEL_DRIVE annotation

KEYWORD PLACEMENT_TYPE = single_value_annotation {
CONTEXT = CELL;
VALUETYPE = identifier;
VALUES { pad core ring block connector }
DEFAULT = core;

}

Semantics 21—PLACEMENT_TYPE annotation
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 71

1

5

10

15

20

25

30

35

40

45

50

55
It can take the values shown in Table 36.

9.4.11 SITE reference annotation for a CELL

A site reference annotation in the context of a cell shall be defined as shown in Semantics 72.

The purpose of a site reference annotation in the context of a cell is to specify a legal placement location for the
cell.

9.4.12 ATTRIBUTE values for a CELL

An attribute in the context of a cell declaration shall specify more specific information within the category given
by the celltype annotation.

The attribute values shown in Table 37 can be used within a CELL with CELLTYPE=memory.

Table 36—PLACEMENT_TYPE annotations for a CELL object

Annotation value Description

pad The cell is an element to be placed in the I/O area of a die.

core The cell is a regular element to be placed in the core area of a die, using a regular
power structure.

ring The cell is a macro element with built-in power structure.

block The cell is an abstraction of a collection of regular elements, each of which uses
a regular power structure.

connector The cell is to be placed at the border of the core area of a die in order to establish
a connection between a regular power structure and a power ring in the I/O area.

SEMANTICS CELL.SITE = single_value_annotation;

Semantics 22—SITE reference annotation

Table 37—Attribute values for a CELL with CELLTYPE=memory

Attribute item Description

RAM Random Access Memory

ROM Read Only Memory

CAM Content Addressable Memory

static Static memory, needs no refreshment

dynamic Dynamic memory, needs refreshment

asynchronous operation self-timed
72 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

1

5

10

15

20

25

30

35

40

45

50

55
The attributes shown in Table 38 can be used within a CELL with CELLTYPE=block.

The attributes shown in Table 39 can be used within a CELL with CELLTYPE=core.

synchronous operation synchronized with a clock signal

Table 38—Attributes within a CELL with CELLTYPE=block

Attribute item Description

counter CELL is a counter, i.e., a complex sequential circuit going through a
predefined sequence of states in its normal operation mode where
each state represents an encoded control value.

shift_register CELL is a shift register, i.e., a complex sequential circuit going
through a predefined sequence of states in its normal operation
mode, where each subsequent state can be obtained from the previ-
ous one by a shift operation. Each bit represents a data value.

adder CELL is an adder, i.e., a combinatorial circuit performing an addition
of two operands.

subtractor CELL is a subtractor, i.e., a combinatorial circuit performing a sub-
traction of two operands.

multiplier CELL is a multiplier, i.e., a combinatorial circuit performing a multi-
plication of two operands.

comparator CELL is a comparator, i.e., a combinatorial circuit comparing the
magnitude of two operands.

ALU CELL is an arithmetic logic unit, i.e., a combinatorial circuit combin-
ing the functionality of adder, subtractor, and comparator.

Table 39—Attributes within a CELL with CELLTYPE=core

Attribute item Description

PLL CELL is a phase-locked loop.

DSP CELL is a digital signal processor.

CPU CELL is a central processing unit.

GPU CELL is a graphical processing unit.

Table 37—Attribute values for a CELL with CELLTYPE=memory (Continued)

Attribute item Description
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 73

1

5

10

15

20

25

30

35

40

45

50

55
The attributes shown in Table 40 can be used within a CELL with CELLTYPE=special.

9.5 PIN declaration

A pin shall be declared as a scalar pin or as a vector pin or a matrix pin, as shown in Syntax 49.

A pin shall represent a terminal of an electronic circuit. The purpose of a pin is exchange of information or
energy between the circuit and its environment. A constant value of information shall be called state. A time-
dependent value of information shall be called signal.

Table 40—Attributes within a CELL with CELLTYPE=special

Attribute item Description

busholder CELL enables a tristate bus to hold its last value before all drivers
went into high-impedance state (see 10.1).

clamp CELL connects a net to a constant value (logic value and drive
strength; see 10.1).

diode CELL is a diode (no FUNCTION statement).

capacitor CELL is a capacitor (no FUNCTION statement).

resistor CELL is a resistor (no FUNCTION statement).

inductor CELL is an inductor (no FUNCTION statement).

fillcell CELL is used to fill unused space in layout (no PIN, no FUNCTION
statement).

pin ::=
scalar_pin | vector_pin | matrix_pin

scalar_pin ::=
PIN pin_identifier ;

| PIN pin_identifier { { scalar_pin_item } }
| scalar_pin_template_instantiation

scalar_pin_item ::=
all_purpose_item

| pattern
| port

vector_pin ::=
PIN multi_index pin_identifier ;

| PIN multi_index pin_identifier { { vector_pin_item } }
| vector_pin_template_instantiation

vector_pin_item ::=
all_purpose_item

| range
matrix_pin ::=

PIN first_multi_index pin_identifier second_multi_index ;
| PIN first_multi_index pin_identifier second_multi_index { { matrix_pin_item } }
| matrix_pin_template_instantiation

matrix_pin_item ::=
vector_pin_item

Syntax 49—PIN declaration
74 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

1

5

10

15

20

25

30

35

40

45

50

55
The order of pin declarations within a cell declaration shall reflect the order in which pins are referenced, when
the cell is instantiated in a netlist. The view annotation (see Section 9.7.3) shall further specify which pin is visi-
ble in a netlist.

Note: The order of pin declarations is irrelevant, if pin reference by name is used.

A scalar pin can be associated with a general electrical signal. However, a vector pin or a matrix pin can only be
associated with a digital signal. One element of a vector pin or of a matrix pin shall be associated with one bit of
information, i.e., a binary digital signal.

A vector-pin can be considered as a bus, i.e., a combination of scalar pins. The declaration of a vector-pin shall
involve a multi index (see Section 7.8). A reference to a scalar within the vector-pin shall be established by the
pin identifier followed by a single index (see Section 7.8). A reference to a subvector within the vector-pin shall
be established by the pin identifier followed by a multi index.

A matrix-pin can be considered as a combination of vector-pins. A reference to a vector or to a submatrix,
respectively, within the matrix-pin shall be established by the pin identifier followed by a single index or by a
multi index, respectively.

Within a matrix-pin declaration, the first multi index shall specify the range of scalars or bits, and the second
multi index shall specify the range of vectors. Support for direct reference of a scalar within a matrix is not pro-
vided.

Example

PIN [5:8] myVectorPin ;
PIN [3:0] myMatrixPin [1:1000] ;

The pin variable myVectorPin[5] refers to the scalar associated with the MSB of myVectorPin.
The pin variable myVectorPin[8] refers to the scalar associated with the LSB of myVectorPin.
The pin variable myVectorPin[6:7] refers to a subvector within myVectorPin.
The pin variable myMatrixPin[500] refers to a vector within myMatrixPin.
The pin variable myMatrixPin[500:502] refers to 3 subsequent vectors within myMatrixPin.

Consider the following pin assignment:
myVectorPin=myMatrixPin[500];

This establishes the following exchange of information:
myVectorPin[5] receives information from element [3] of myMatrixPin[500].
myVectorPin[6] receives information from element [2] of myMatrixPin[500].
myVectorPin[7] receives information from element [1] of myMatrixPin[500].
myVectorPin[8] receives information from element [0] of myMatrixPin[500].

9.6 PINGROUP declaration

A pingroup shall be declared as a simple pingroup or as a vector pingroup, as shown in Syntax 50.

A pingroup in general shall serve the purpose to specify items applicable to a combination of pins. The combina-
tion of pins shall be specified by the members annotation.

A vector pingroup can only combine scalar pins. A vector pingroup can be used as a pin variable, in the same
capacity as a vector pin.
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 75

1

5

10

15

20

25

30

35

40

45

50

55
A simple pingroup can combine pins of any format, i.e., scalar pins, vector pins, and matrix pins. A simple pin-
group can not be used as a pin variable.

9.7 Annotations related to a PIN or a PINGROUP declaration

This section defines annotations and attribute values in the context of a pin declaration or a pingroup declaration.

9.7.1 PIN reference annotation

A pin reference annotation shall be defined as shown in .

The purpose of a pin reference annotation is to establish an association between a pin, a pingroup, a port (see
Section 9.22) or a node (see Section 9.11) and an arithmetic model (see Section 11.3) or a from-to statement (see
Section 11.12). In this context, the pin, pingroup, port or node is used as a reference point related to a timing
measurement or an electrical measurement.

A hierarchical identifier can be used to specify a reference to a pin, a pingroup, a port or a node as a child of a
cell, a pin or a wire.

9.7.2 MEMBERS annotation

A members annotation shall be defined as shown in Semantics 24.

The purpose of the members annotation is to specify the constituent pins of a pingroup.

9.7.3 VIEW annotation

A view annotation shall be defined as shown in Semantics 25.

The purpose of the view annotation is to specify the visibility of a pin in a netlist.

pingroup ::=
simple_pingroup | vector_pingroup

simple_pingroup ::=
PINGROUP pingroup_identifier
{ MEMBERS_multi_value_annotation { all_purpose_item } }

| simple_pingroup_template_instantiation
vector_pingroup ::=

| PINGROUP multi_index pingroup_identifier
{ MEMBERS_multi_value_annotation { vector_pingroup_item } }

| vector_pingroup_template_instantiation
vector_pingroup_item ::=

all_purpose_item
| range

Syntax 50—PINGROUP declaration

SEMANTICS PIN = annotation {
VALUETYPE = pin_variable;
CONTEXT { arithmetic_model FROM TO }
REFERENCETYPE { PIN PINGROUP PORT NODE }

}

Semantics 23—PIN reference annotation
76 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

1

5

10

15

20

25

30

35

40

45

50

55
It can take the values shown in Table 41.

9.7.4 PINTYPE annotation

A pintype annotation shall be defined as shown in Semantics 26.

The purpose of the pintype annotation is to establish broad categories of pins.

KEYWORD MEMBERS = multi_value_annotation {
CONTEXT = PINGROUP;
VALUETYPE = identifier;
REFERENCETYPE = PIN;

}

Semantics 24—MEMBERS annotation

KEYWORD VIEW = single_value_annotation {
CONTEXT { PIN PINGROUP }
VALUETYPE = identifier;
VALUES { functional physical both none }
DEFAULT = both;

}

Semantics 25—VIEW annotation

Table 41—VIEW annotations for a PIN object

Annotation value Description

functional pin appears in functional netlist.

physical pin appears in physical netlist.

both (default) pin appears in both functional and physical netlist.

none pin does not appear in netlist.

KEYWORD PINTYPE = single_value_annotation {
CONTEXT = PIN;
VALUETYPE = identifier;
VALUES { digital analog supply }
DEFAULT = digital;

}

Semantics 26—PINTYPE annotation
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 77

1

5

10

15

20

25

30

35

40

45

50

55
It can take the values shown in Table 42.

9.7.5 DIRECTION annotation

A direction annotation shall be defined as shown in Semantics 27.

The purpose of the direction annotation is to establish the flow of information and/or electrical energy through a
pin. Information/energy can flow into a cell or out of a cell through a pin. The information/energy flow is not to
be mistaken as the flow of electrical current through a pin.

The direction annotation can take the values shown in Table 43.

The direction annotation shall be orthogonal to the pintype annotation, i.e., all combinations of annotation values
are possible.

Examples

Table 42—PINTYPE annotations for a PIN object

Annotation value Description

digital (default) Digital signal pin.

analog Analog signal pin.

supply Power supply or ground pin.

KEYWORD DIRECTION = single_value_annotation {
CONTEXT = PIN;
VALUETYPE = identifier;
VALUES { input output both none }

}

Semantics 27—DIRECTION annotation

Table 43—DIRECTION annotations for a PIN object

Annotation value Description

input Information/energy flows through the pin into the cell. The pin is a
receiver or a sink.

output Information/energy flows through the pin out of the cell. The pin is a
driver or a source.

both Information/energy flows through the pin in and out of the cell. The
pin is both a receiver/sink and driver/source, dependent on the mode
of operation.

none No information/energy flows through the pin in or out of the cell.
The pin can be an internal pin without connection to its environment
or a feedthrough where both ends are represented by the same pin.
78 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

1

5

10

15

20

25

30

35

40

45

50

55
— The power and ground pins of a regular cell have DIRECTION=input.
— A level converter cell has a power supply pin with DIRECTION=input and another power supply pin

with DIRECTION=output.
— A level converter can have separate ground pins related to its power supply pins or a common ground pin

with DIRECTION=both.
— The power and ground pins of a feed through cell have the DIRECTION=none.

9.7.6 SIGNALTYPE annotation

A signaltype annotation shall be defined as shown in Semantics 28.

SIGNALTYPE classifies the functionality of a pin. The currently defined values apply for pins with PIN-
TYPE=DIGITAL.

Conceptually, a pin with PINTYPE = ANALOG can also have a SIGNALTYPE annotation. However, no values
are currently defined.

The fundamental SIGNALTYPE values are defined in Table 44

KEYWORD SIGNALTYPE = single_value_annotation {
CONTEXT = PIN;
VALUETYPE = identifier;
VALUES {

data scan_data address control select tie clear set
enable out_enable scan_enable scan_out_enable
clock master_clock slave_clock
scan_master_clock scan_slave_clock

}
DEFAULT = data;

}

Semantics 28—SIGNALTYPE annotation

Table 44—Fundamental SIGNALTYPE annotations for a PIN object

Annotation value Description

data (default) General data signal, i.e., a signal that carries information to be trans-
mitted, received, or subjected to logic operations within the CELL.

address Address signal of a memory, i.e., an encoded signal, usually a bus or
part of a bus, driving an address decoder within the CELL.

control General control signal, i.e., an encoded signal that controls at least
two modes of operation of the CELL, eventually in conjunction with
other signals. The signal value is allowed to change during real-time
circuit operation.

select Select signal, i.e., a signal that selects the data path of a multiplexor
or de-multiplexor within the CELL. Each selected signal has the
same SIGNALTYPE.

enable The signal enables storage of general input data in a latch or a flip-
flop or a memory
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 79

1

5

10

15

20

25

30

35

40

45

50

55
Figure 6 shows how to construct composite signaltypes.

Figure 6—Scheme for construction of composite signaltype values

The composite SIGNALTYPE values are defined in Table 45

tie The signal needs to be tied to a fixed value statically in order to
define a fixed or programmable mode of operation of the CELL,
eventually in conjunction with other signals. The signal value is not
allowed to change during real-time circuit operation.

clear Clear or reset signal of a flip-flop or latch, i.e., a signal that controls
the storage of the value 0 within the CELL.

set Preset or set signal of a flip-flop or latch, i.e., a signal that controls
the storage of the value 1 within the CELL.

clock Clock signal of a flip-flop or latch, i.e., a timing-critical signal that
triggers data storage within the CELL.

Table 45—Composite SIGNALTYPE annotations for a PIN object

Annotation value Description

scan_data Scan data signal, i.e., signal is relevant in scan mode only.

out_enable Enables visibility of general data at an output pin of a cell.

scan_enable Enables storage of scan input data in a latch or a flipflop.

scan_out_enable Enables visibility of scan data at an output pin of a cell.

master_clock Triggers storage of input data in the first stage of a flipflop in a two-
phase clocking scheme.

slave_clock Triggers data transfer from first the stage to the second stage of a
flipflop in a two-phase clocking scheme.

scan_clock Triggers storage of scan input data within a cell.

scan_master_clock Triggers storage of input scan data in the first stage of a flipflop in a
two-phase clocking scheme.

Table 44—Fundamental SIGNALTYPE annotations for a PIN object (Continued)

Annotation value Description

data

enable

clock

master_clock

slave_clock

out_enable

scan_data

scan_enable

scan_out_enable

scan_clock

scan_master_clock

scan_slave_clock
80 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

1

5

10

15

20

25

30

35

40

45

50

55
Within the definitions of Table 44 and Table 45, the elements flipflop, latch, multiplexor, or memory can be stan-
dalone cells or embedded in larger cells. In the former case, the celltype is flipflop, latch, multi-
plexor, or memory, respectively. In the latter case, the celltype can be block or core.

9.7.7 ACTION annotation

An action annotation shall be defined as shown in Semantics 29.

The purpose of the action annotation is to define, whether a signal is self-timed or synchronized with a clock sig-
nal.

The ACTION annotation can take the values shown in Table 46.

The ACTION annotation applies only to pins with certain SIGNALTYPE values, as shown in Table 47. The rule
applies also to any composite SIGNALTYPE values based on the fundamental values.

scan_slave_clock Triggers scan data transfer from the first stage to the second stage of
a flipflop in a two-phase clocking scheme.

KEYWORD ACTION = single_value_annotation {
CONTEXT = PIN;
VALUETYPE = identifier;
VALUES { asynchronous synchronous }

}

Semantics 29—ACTION annotation

Table 46—ACTION annotations for a PIN object

Annotation value Description

asynchronous Signal acts in an asynchronous way, i.e., self-timed.

synchronous Signal acts in a synchronous way, i.e., triggered by a clock signal.

Table 47—ACTION applicable in conjunction with SIGNALTYPE values

SIGNALTYPE value ACTION applicable

data, scan_data No

address No

control Yes

select No

Table 45—Composite SIGNALTYPE annotations for a PIN object (Continued)

Annotation value Description
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 81

1

5

10

15

20

25

30

35

40

45

50

55
9.7.8 POLARITY annotation

A polarity annotation shall be defined as shown in Semantics 30.

The purpose of the polarity annotation is to define the active state or the active edge of an input signal.

The POLARITY annotation can take the values shown in Table 48.

The POLARITY annotation applies only to pins with certain SIGNALTYPE values, as shown in Table 49..

enable, scan_enable, out_enable, scan_out_enable Yes

tie No

clear Yes

set Yes

clock, scan_clock, master_clock, slave_clock,
scan_master_clock, scan_slave_clock

No

KEYWORD POLARITY = single_value_annotation {
CONTEXT = PIN;
VALUETYPE = identifier;
VALUES { high low rising_edge falling_edge double_edge }

}

Semantics 30—POLARITY annotation

Table 48—POLARITY annotations for a PIN

Annotation value Description

high Signal is active high or to be driven high.

low Signal is active low or to be driven low.

rising_edge Signal is activated by rising edge.

falling_edge Signal is activated by falling edge.

double_edge Signal is activated by both rising and falling edge.

Table 49—POLARITY applicable in conjunction with SIGNALTYPE values

SIGNALTYPE value Applicable POLARITY

data, scan_data N/A

Table 47—ACTION applicable in conjunction with SIGNALTYPE values (Continued)

SIGNALTYPE value ACTION applicable
82 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

1

5

10

15

20

25

30

35

40

45

50

55
9.7.9 CONTROL_POLARITY annotation container

A control polarity annotation container shall be defined as shown in Semantics 31.

The control polarity annotation container can be used in the context of a pin with signaltype value control or
clock.

The purpose of the control polarity annotation container is to specify the active state or the active edge of an
input signal in association with a particular mode of operation. The name of the mode of operation is given by the
annotation identifier.

Example:

PIN ModeSel1 {
DIRECTION = input; SIGNALTYPE = control;
CONTROL_POLARITY { normal=high; scan=low; hold=low; }

}
PIN ModeSel2 {

DIRECTION = input; SIGNALTYPE = control;
CONTROL_POLARITY { scan=high; hold=low; }

}

address N/A

control N/A

select N/A

enable, scan_enable, out_enable,
scan_out_enable

high, low.

tie high, low.

clear high, low.

set high, low.

clock, scan_clock, master_clock, slave_clock,
scan_master_clock, scan_slave_clock

high, low, rising_edge,
falling_edge, double_edge,

KEYWORD CONTROL_POLARITY = annotation_container {
CONTEXT = PIN ;

}
SEMANTICS
CONTROL_POLARITY.identifier = single_value_annotation {

VALUETYPE = identifier ;
VALUES { high low rising_edge falling_edge double_edge }

}

Semantics 31—Control polarity annotation container

Table 49—POLARITY applicable in conjunction with SIGNALTYPE values (Continued)

SIGNALTYPE value Applicable POLARITY
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 83

1

5

10

15

20

25

30

35

40

45

50

55
// corresponding truth table:
// ModeSel1 ModeSel2 mode of operation
// 0 0 hold
// 0 1 scan
// 1 ? normal

9.7.10 DATATYPE annotation

A datatype annotation shall be defined as shown in Semantics 32.

The purpose of the datatype annotation is to define the arithmetic representation of a digital signal.

The DATATYPE annotation can take the values shown in Table 50.

DATATYPE is only relevant for a vector pin.

9.7.11 INITIAL_VALUE annotation

An initial value annotation shall be defined as shown in Semantics 33.

The purpose of the initial value annotation is to provide an initial value of a signal within a simulation model
derived from ALF. A signal shall have the initial value before a simulation event affects the signal. The default
value “U” means “uninitialized” (see Table 74).

KEYWORD DATATYPE = single_value_annotation {
CONTEXT { PIN PINGROUP }
VALUETYPE = identifier;
VALUES { signed unsigned }

}

Semantics 32—DATATYPE annotation

Table 50—DATATYPE annotations for a PIN object

Annotation value Description

signed Result of arithmetic operation is signed 2’s complement.

unsigned Result of arithmetic operation is unsigned.

KEYWORD INITIAL_VALUE = single_value_annotation {
CONTEXT = CELL;
VALUETYPE = boolean_value;
DEFAULT = U;

}

Semantics 33—INITIAL_VALUE annotation
84 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

1

5

10

15

20

25

30

35

40

45

50

55
9.7.12 SCAN_POSITION annotation

A scan position annotation shall be defined as shown in Semantics 34.

The purpose of the scan position annotation is to specify the position of the pin in scan chain, starting with 1 for
the primary input. The value 0 (which is the default) indicates that the pin is not on the scan chain.

9.7.13 STUCK annotation

A stuck annotation shall be defined as shown in Semantics 35.

The purpose of the stuck annotation is to specify a static fault model applicable for the pin.

The STUCK annotation can take the values shown in Table 51.

9.7.14 SUPPLYTYPE annotation

A supplytype annotation shall be defined as shown in Semantics 36.

KEYWORD SCAN_POSITION = single_value_annotation {
CONTEXT = PIN;
VALUETYPE = unsigned;
DEFAULT = 0;

}

Semantics 34—SCAN_POSITION annotation

KEYWORD STUCK = single_value_annotation {
CONTEXT = PIN;
VALUETYPE = identifier;
VALUES { stuck_at_0 stuck_at_1 both none }
DEFAULT = both;

}

Semantics 35—STUCK annotation

Table 51—STUCK annotations for a PIN object

Annotation value Description

stuck_at_0 Pin can exhibit a faulty static low state.

stuck_at_1 Pin can exhibit a faulty static high state.

both Pin can exhibit a faulty static high or low state.

none Pin can not exhibit a faulty static state.
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 85

1

5

10

15

20

25

30

35

40

45

50

55
The supplytype annotation can take the values shown in Table 52.

The purpose of the supplytype annotation is to define a subcategory of pins with pintype value supply (see Table
42).

9.7.15 SIGNAL_CLASS annotation

A signal-class annotation shall be defined as shown in Semantics 37.

The value shall be the name of a declared CLASS.

The purpose of the signal-class annotation is to specify which terminals of a cell with are functionally related to
each other. The signal-class annotation applies for a pin with arbitrary signaltype value (see Section 9.7.6).

Example:

A multiport memory can have a data bus related to an address bus and another data bus related to another address
bus. Note that the term “port” in “multiport” does not relate to the ALF port declaration (see Section 9.22).

CELL my2PortMemory {
CLASS ReadPort { USAGE = SIGNAL_CLASS; }
CLASS WritePort { USAGE = SIGNAL_CLASS; }
PIN [3:0] addr_A { SIGNALTYPE = address; SIGNAL_CLASS = ReadPort; }

KEYWORD SUPPLYTYPE = annotation {
CONTEXT { PIN CLASS }
VALUETYPE = identifier;
VALUES { power ground reference }

}

Semantics 36—SUPPLYTYPE annotation

Table 52—SUPPLYTYPE annotations for a PIN object

Annotation value Description

power Pin is electrically connected to a power supply, i.e., a constant non-zero
voltage source providing energy for operation of a circuit.

ground Pin is electrically connected to ground, i.e., a zero voltage source providing
the return path for electrical current through a power supply.

reference Pin exhibits a constant voltage level without providing significant energy
for operation of a circuit.

KEYWORD SIGNAL_CLASS = annotation {
CONTEXT { PIN PINGROUP }
VALUETYPE = identifier;
REFERENCETYPE = CLASS;

}

Semantics 37—SIGNAL_CLASS annotation
86 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

1

5

10

15

20

25

30

35

40

45

50

55
PIN [7:0] data_A { SIGNALTYPE = data; SIGNAL_CLASS = ReadPort; }
PIN [3:0] addr_B { SIGNALTYPE = address; SIGNAL_CLASS = WritePort; }
PIN [7:0] data_B { SIGNALTYPE = data; SIGNAL_CLASS = WritePort; }
PIN write_enable { SIGNALTYPE = enable; SIGNAL_CLASS = WritePort; }

}

9.7.16 SUPPLY_CLASS annotation

A supply-class annotation shall be defined as shown in Semantics 38.

The value shall be the name of a declared CLASS.

The purpose of the supply-class annotation is to specify a relation between a pin and a power supply system, rep-
resented by the refered class.

The supply-class annotation shall apply for a pin with any signaltype value (see Section 9.7.6) or supplytype
value (see Section 9.7.14).

The supply-class annotation shall also apply for a class with usage value connect-class (see Section 9.7.19). The
latter class shall represent a global net related to a power supply system.

The supply-class annotation shall also apply for the arithmetic models power and energy (see Section 11.11.15).

Example 1:

A cell can provide two local power supplies. Each pin is related to at least one power supply.

CELL myLevelShifter {
CLASS supply1 { USAGE = SUPPLY_CLASS; }
CLASS supply2 { USAGE = SUPPLY_CLASS; }
PIN Vdd1 { SUPPLYTYPE = power; SUPPLY_CLASS = supply1; }
PIN Din { SIGNALTYPE = data; SUPPLY_CLASS = supply1; }
PIN Vdd2 { SUPPLYTYPE = power; SUPPLY_CLASS = supply2; }
PIN Dout { SIGNALTYPE = data; SUPPLY_CLASS = supply2; }
PIN Gnd { SUPPLYTYPE = ground; SUPPLY_CLASS { supply1 supply2 } }

}

Example 2:

A library can provide two environmental power supplies. A supply pin of a cell has to be connected to a global
net related to an environmental power supply.

KEYWORD SUPPLY_CLASS = annotation {
CONTEXT { PIN CLASS POWER ENERGY }
VALUETYPE = identifier;
REFERENCETYPE = CLASS;

}

Semantics 38—SUPPLY_CLASS annotation
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 87

1

5

10

15

20

25

30

35

40

45

50

55
CLASS core { USAGE = SUPPLY_CLASS; }
CLASS io { USAGE = SUPPLY_CLASS; }
CLASS Vdd1 { USAGE=CONNECT_CLASS; SUPPLYTYPE=power; SUPPLY_CLASS=core; }
CLASS Vss1 { USAGE=CONNECT_CLASS; SUPPLYTYPE=ground; SUPPLY_CLASS=core; }
CLASS Vdd2 { USAGE=CONNECT_CLASS; SUPPLYTYPE=power; SUPPLY_CLASS=io; }
CLASS Vss2 { USAGE=CONNECT_CLASS; SUPPLYTYPE=ground; SUPPLY_CLASS=io; }
CELL myInternalCell {

PIN vdd { CONNECT_CLASS=Vdd1; }
PIN vss { CONNECT_CLASS=Vss1; }

}
CELL myPadCell {

PIN vdd { CONNECT_CLASS=Vdd2; }
PIN vss { CONNECT_CLASS=Vss2; }

}

9.7.17 DRIVETYPE annotation

A drivetype annotation shall be defined as shown in Semantics 39.

The purpose of the drivetype annotation is to specify a category of electrical characteristics for a pin, which
relate to the system of logic values and drive strengths (see Table 74).

The drivetype annotation can take the values shown in Table 53.

KEYWORD DRIVETYPE = single_value_annotation {
CONTEXT { PIN CLASS }
VALUETYPE = identifier;
VALUES {

cmos nmos pmos cmos_pass nmos_pass pmos_pass
ttl open_drain open_source

}
DEFAULT = cmos;

}

Semantics 39—DRIVETYPE annotation

Table 53—DRIVETYPE annotations for a PIN object

Annotation value Description

cmos (default) Standard cmos signal. The logic high level is equal to the power sup-
ply, the logic low level is equal to ground. The drive strength is
strong. No static current flows. Signal is amplified by cmos stage.

nmos Nmos or pseudo nmos signal. The logic high level is equal to the
power supply and its drive strength is resistive. The logic low level
voltage depends on the ratio of pull-up and pull-down transistor.
Static current flows in logic low state.
88 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

1

5

10

15

20

25

30

35

40

45

50

55
9.7.18 SCOPE annotation

A scope annotation shall be defined as shown in Semantics 40.

The purpose of the scope annotation is to specify a category of modeling usage for a pin. The scope annotation
specifies whether a pin can be involved in a control expression within a vector declaration (see Section 9.13) or
within a behavior statement (see Section 10.4).

The scope annotation can take the values shown in Table 54.

pmos Pmos or pseudo pmos signal. The logic low level is equal to ground
and its drive strength is resistive. The logic high level voltage
depends on the ratio of pull-up and pull-down transistor. Static cur-
rent flows in logic high state.

nmos_pass Nmos passgate signal. Signal is not amplified by passgate stage.
Logic low voltage level is preserved, logic high voltage level is lim-
ited by power supply minus nmos threshold voltage.

pmos_pass Pmos passgate signal. Signal is not amplified by passgate stage.
Logic high voltage level is preserved, logic high voltage level is lim-
ited by pmos threshold voltage.

cmos_pass Cmos passgate signal, i.e., a full transmission gate. Signal is not
amplified by passgate stage. Voltage levels are preserved.

ttl TTL signal. Both logic high and logic low voltage levels are load-
dependent, as static current can flow.

open_drain Open drain signal. Logic low level is equal to ground. Logic high
level corresponds to high impedance state.

open_source Open source signal. Logic high level is equal to the power supply.
Logic low level corresponds to high impedance state.

KEYWORD SCOPE = single_value_annotation {
CONTEXT = PIN;
VALUETYPE = identifier;
VALUES { behavior measure both none }
DEFAULT = both;

}

Semantics 40—SCOPE annotation

Table 54—SCOPE annotations for a PIN object

Annotation value Description

behavior The pin is used for modeling functional behavior. Pin can be
involved in a control expression within a BEHAVIOR statement.

Table 53—DRIVETYPE annotations for a PIN object (Continued)

Annotation value Description
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 89

1

5

10

15

20

25

30

35

40

45

50

55
9.7.19 CONNECT_CLASS annotation

A connect_class annotation shall be defined as shown in Semantics 41.

The value shall be the name of a declared CLASS.

The purpose of the connect-class annotation is to specify a relationship between a pin and an environmental rule
for connectivity. For application in conjunction with supply-class see Section 9.7.16. For application in conjunc-
tion with connect-rule see Section 11.20.1.

9.7.20 SIDE annotation

A side annotation shall be defined as shown in Semantics 42.

The purpose of the side annotation is to define an abstract location of a pin relative to the bounding box of a cell.

The side annotation can take the values shown in Table 55.

measure Measurements related to the pin can be described. Pin can be
involved in a control expression within a VECTOR declaration.

both (default) Pin can be involved in a control expression within a BEHAVIOR
statement or within a VECTOR declaration.

none Pin can not be involved in a control expression.

KEYWORD CONNECT_CLASS = single_value_annotation {
CONTEXT = PIN;
VALUETYPE = identifier;
REFERENCETYPE = CLASS;

}

Semantics 41—CONNECT_CLASS annotation

KEYWORD SIDE = single_value_annotation {
CONTEXT { PIN PINGROUP }
VALUETYPE = identifier;
VALUES { left right top bottom inside }

}

Semantics 42—SIDE annotation

Table 55—SIDE annotations for a PIN object

Annotation value Description

left pin is on the left side of the bounding box.

Table 54—SCOPE annotations for a PIN object (Continued)

Annotation value Description
90 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

1

5

10

15

20

25

30

35

40

45

50

55
9.7.21 ROW and COLUMN annotation

A row annotation and a column annotation shall be defined as shown in Semantics 43.

The purpose of a row and a column annotation is to indicate a location of a pin when a cell is placed within a
placement grid. The count of rows and columns shall start at the lower left corner of the bounding box of the cell,
as shown in figure 7.

Figure 7—ROW and COLUMN relative to a bounding box of a CELL

The row annotion is applicable for a pin with side value left or right. The column annotion is applicable for a pin
with side value top or bottom. Both row and column annotation are applicable for a pin with side value inside.

right pin is on the right side of the bounding box.

top pin is at the top of the bounding box.

bottom pin is at the bottom of the bounding box.

inside pin is inside the bounding box.

KEYWORD ROW = annotation {
CONTEXT { PIN PINGROUP }
VALUETYPE = unsigned_integer;

}
KEYWORD COLUMN = annotation {

CONTEXT { PIN PINGROUP }
VALUETYPE = unsigned_integer;

}

Semantics 43—ROW and COLUMN annotations

Table 55—SIDE annotations for a PIN object (Continued)

Annotation value Description

0

1

2

3

4

0 1 2 3

bounding box of cell

column

row this region has column=1, row=2
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 91

1

5

10

15

20

25

30

35

40

45

50

55
A single-value annotation is applicable for a scalar pin. A multi-value annotation is applicable for a vector pin or
for a vector pingroup. The number of values shall match the number of scalar pins within the vector pin or pin-
group. The order of values shall correspond to the order of scalar pins within the vector pin or pingroup.

9.7.22 ROUTING_TYPE annotation

A routing-type annotation shall be defined as shown in Semantics 44.

The purpose of the routing-type annotation is to specify the physical connection between a pin and a routed wire.

The routing-type annotation can take the values shown in Table 56.

9.7.23 PULL annotation

A pull annotation shall be defined as shown in Semantics 45.

The purpose of the pull annotation is to specify whether a pullup or a pulldown device is connected to the pin.

KEYWORD ROUTING_TYPE = single_value_annotation {
CONTEXT { PIN PORT }
VALUETYPE = identifier;
VALUES { regular abutment ring feedthrough }
DEFAULT = regular;

}

Semantics 44—ROUTING_TYPE annotation

Table 56—ROUTING-TYPE annotations for a PIN object

Annotation value Description

regular Pin has a via, connection by regular routing to the via

abutment Pin is the end of a wire segment, connection by abutment

ring Pin forms a ring around the cell, connection by abutment to any point
of the ring.

feedthrough Pin has two aligned ends of a wire segment, connection by abutment
on both ends

KEYWORD PULL = single_value_annotation {
CONTEXT = PIN;
VALUETYPE = identifier;
VALUES { up down both none }
DEFAULT = none;

}

Semantics 45—PULL annotation
92 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

1

5

10

15

20

25

30

35

40

45

50

55
The pull annotation can take the values shown in Table 57.

A pullup device ties the pin to a logic high level when no other signal is driving the pin. A pulldown device ties
the pin to a logic low level when no other signal is driving the pin. If both devices are connected, the pin is tied to
an intermediate voltage level, i.e. in-between logic high and logic low, when no other signal is driving the pin.

9.7.24 ATTRIBUTE values for a PIN or a PINGROUP

The attribute values shown in Table 58 are applicable for a pin or a pingroup with the following characteristics.

The attribute values shown in Table 59 are applicable for a pin or a pingroup of a cell with celltype value memory
in conjunction with a specific signaltype value.

Table 57—PULL annotations for a PIN object

Annotation value Description

up Pullup device connected to the pin.

down Pulldown device connected to the pin.

both Both pullup and pulldown device connected to pin.

none No pullup or pulldown device connected to the pin.

Table 58—Attributes within a PIN object

Attribute item Description

SCHMITT Schmitt trigger signal, i.e., the DC transfer characteristics exhibit a
hysteresis. Applicable for output pin.

TRISTATE Tristate signal, i.e., the signal can be in high impedance mode. Appli-
cable for output pin.

XTAL Crystal/oscillator signal. Applicable for output pin of an oscillator
circuit.

PAD Pin has external,i.e., off-chip connection.

Table 59—Attributes for pins of a memory

Attribute item SIGNALTYPE Description

ROW_ADDRESS_STROBE clock Samples the row address of the memory.
Applicable for scalar pin.

COLUMN_ADDRESS_STROBE clock Samples the column address of the memory.
Applicable for scalar pin.

ROW address Selects an addressable row of the memory.
Applicable for pin and pingroup.
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 93

1

5

10

15

20

25

30

35

40

45

50

55
The attribute values shown in Table 60 are applicable for a pair of signals.

In case there is more than one pair of signals related to each other by the attribute values inverted, non-inverted,
or differential, each pair shall be member of a dedicated pingroup.

The following restrictions apply for pairs of signals:

— The PINTYPE, SIGNALTYPE, and DIRECTION of both pins shall be the same.
— One PIN shall have the attribute INVERTED, the other NON_INVERTED.
— Either both pins or none of the pins shall have the attribute DIFFERENTIAL.
— POLARITY, if applicable, shall be complementary as follows:

HIGH is paired with LOW
RISING_EDGE is paired with FALLING_EDGE
DOUBLE_EDGE is paired with DOUBLE_EDGE

The attribute inverted, non-inverted also applies to pins of a cell for which the implementation of a pair of signals
is optional, i.e., one of the signals can be missing. The output pin of a flipflop or a latch is an example. The flip-
flop or the latch can have an output pin with attribute non-inverted and/or another output pin with attribute
inverted.

The attribute values shown in Table 61 shall be defined for memory BIST.

COLUMN address Selects an addressable column of the memory.
Applicable for pin and pingroup.

BANK address Selects an addressable bank of the memory.
Applicable for pin and pingroup.

Table 60—Attributes for pins representing pairs of signals

Attribute item Description

INVERTED Represents the inverted value within a pair of signals car-
rying complementary values.

NON_INVERTED Represents the non-inverted value within a pair of signals
carrying complementary values.

DIFFERENTIAL Signal is part of a differential pair, i.e., both the inverted
and non-inverted values are always required for physical
implementation.

Table 61—PIN or PINGROUP attributes for memory BIST

Attribute item Description

ROW_INDEX vector pin or pingroup with a contiguous range of values,
indicating a physical row of a memory.

Table 59—Attributes for pins of a memory (Continued)

Attribute item SIGNALTYPE Description
94 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

1

5

10

15

20

25

30

35

40

45

50

55
These attributes apply to the virtual pins associated with a BIST wrapper around the memory rather than to the
physical pins of the memory itself. The BIST wrapper can be represented as a test statement (see Section 10.2).

9.8 PRIMITIVE declaration

A primitive shall be declared as shown in Syntax 51.

The purpose of a primitive is to describe a virtual circuit. The virtual circuit can be functionally equivalent to a
physical electronic circuit represented as a cell (see Section 9.3). A primitive can be instantiated within a behav-
ior statement (see Section 10.4).

9.9 WIRE declaration

A wire shall be declared as shown in Syntax 52.

COLUMN_INDEX vector pin or pingroup with a contiguous range of values,
indicating a physical column of a memory.

BANK_INDEX vector pin or pingroup with a contiguous range of values,
indicating a physical bank of a memory.

DATA_INDEX vector pin or pingroup with a contiguous range of values,
indicating the bit position within a data bus of a memory.

DATA_VALUE scalar pin, representing a value stored in a physical mem-
ory location.

primitive ::=
PRIMITIVE primitive_identifier { { primitive_item } }

| PRIMITIVE primitive_identifier ;
| primitive_template_instantiation

primitive_item ::=
all_purpose_item

| pin
| pingroup
| function
| test

Syntax 51—PRIMITIVE statement

wire ::=
WIRE wire_identifier { { wire_item } }

| WIRE wire_identifier ;
| wire_template_instantiation

wire_item ::=
all_purpose_item

| node

Syntax 52—WIRE declaration

Table 61—PIN or PINGROUP attributes for memory BIST (Continued)

Attribute item Description
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 95

1

5

10

15

20

25

30

35

40

45

50

55
The purpose of a wire declaration is to describe an interconnect model. The interconnect model can be a statisti-
cal wireload model, a description of boundary parasitics within a complex cell, a model for interconnect analysis,
or a specification of a load seen by a driver.

9.10 Annotations related to a WIRE declaration

Add lead-in text

9.10.1 WIRE reference annotation

A wire reference annotation shall be defined as shown in .

The purpose of a wire reference annotation is to establish an association between a vector and an arithmetic
model (see Section 11.3).

A hierarchical identifier can be used to specify a reference to a wire as a child of a cell or a sublibrary or a library.

9.10.2 WIRETYPE annotation

A wiretype annotation shall be defined as shown in Semantics 47.

The purpose of the wiretype annotation is to define a purpose and a usage model for the wire statement.

The wiretype annotation can take the values shown in Table 62.

SEMANTICS WIRE = annotation {
VALUETYPE = identifier;
CONTEXT = arithmetic_model;
REFERENCETYPE = WIRE;

}

Semantics 46—WIRE reference annotation

KEYWORD WIRETYPE = single_value_annotation {
CONTEXT = WIRE;
VALUETYPE = identifier;
VALUES { estimated extracted interconnect load }

}

Semantics 47—WIRETYPE annotation

Table 62—WIRETYPE annotations for a WIRE object

Annotation value Description

estimated The wire declaration contains a statistical wireload model, i.e., a
model for estimation of R, L, C values for a net, without a structural
description of a circuit.
96 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

1

5

10

15

20

25

30

35

40

45

50

55
An R, L, C component within the context of the wire declaration shall be described as arithmetic model (see
Section 11). A related electrical measurement, e.g., voltage, current, noise, shall also be described as arithmetic
model.

9.10.3 SELECT_CLASS annotation

A select_class annotation shall be defined as shown in Semantics 48.

The identifier shall refer to the name of a declared class.

The purpose of the select class annotation is to provide a mechanism for selecting a set of wire objects by an
application. The user of the application can select a set of related wire objects by specifying the name of a class
rather than specifying the name of each wire object.

The semantics of the select class shall be under the responsibility of the library provider. The library provider can
define a select class based on criteria such as range of wire length, range of die size, accuracy requirements for
delay calculation etc.

The select class annotation is orthogonal to the wiretype annotation, as illustrated in the following example.

Example:

CLASS short_wire { USAGE = SELECT_CLASS ; }
CLASS long_wire { USAGE = SELECT_CLASS ; }
WIRE pre_layout_small {

WIRETYPE = estimated; SELECT_CLASS = short_wire;
// put statistical wireload model here

extracted The wire declaration contains a structural description of a circuit, i.e.
a netlist, related to the parent object, i.e. a cell. The R, L, C compo-
nents represent extracted parasitics from a physical implementation
of the cell.

interconnect The wire declaration contains a structural description of a circuit,
representing a model for interconnect analysis. A general R, L, C
interconnect network is expected to be reduced to the specified cir-
cuit for analysis purpose.

load The wire declaration contains a structural description of a circuit,
which is to be connected as a load to a device, i.e., a cell, for charac-
terization or test. A wire instantiation (see Section 11.11) shall be
used to describe such a connection.

KEYWORD SELECT_CLASS = annotation {
CONTEXT = WIRE;
VALUETYPE = identifier;
REFERENCETYPE = CLASS;

}

Semantics 48—SELECT_CLASS annotation

Table 62—WIRETYPE annotations for a WIRE object (Continued)

Annotation value Description
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 97

1

5

10

15

20

25

30

35

40

45

50

55
}
WIRE post_layout_small {

WIRETYPE = interconnect; SELECT_CLASS = short_wire;
// put interconnect analysis model here

}
WIRE pre_layout_large {

WIRETYPE = estimated; SELECT_CLASS = long_wire;
// put statistical wireload model here

}
WIRE post_layout_large {

WIRETYPE = interconnect; SELECT_CLASS = long_wire;
// put interconnect analysis model here

}

9.11 NODE declaration

A node shall be declared as shown in Syntax 53.

The purpose of a node declaration is to specify an electrical node in the context of a wire declaration (see
Section 9.9) or in the context of a cell declaration (see Section 9.3).

9.12 Annotations related to a NODE declaration

9.12.1 NODE reference annotation

A node reference annotation shall be defined as shown in .

The purpose of a node reference annotation is to establish an association between a pin, a pingroup, a port (see
Section 9.22) or a node (see Section 9.11) and an arithmetic model (see Section 11.3). In this context, the pin,
pingroup, port or node is used to specify the connectivity of an electrical component within a structural circuit.

A hierarchical identifier can be used to specify a reference to a pin, a port or a node as a child of a cell, a pin or a
wire.

node ::=
NODE node_identifier ;

| NODE node_identifier { { node_item } }
| node_template_instantiation

node_item ::=
all_purpose_item

Syntax 53—NODE statement

SEMANTICS NODE = multi_value_annotation {
VALUETYPE = pin_variable;
CONTEXT = arithmetic_model;
REFERENCETYPE { PIN PORT NODE }

}

Semantics 49—PIN reference annotation
98 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

1

5

10

15

20

25

30

35

40

45

50

55
9.12.2 NODETYPE annotation

A nodetype annotation shall be defined as shown in Semantics 50.

The values shall have the semantic meaning shown in Table 63.

A circuit wherein all nodes are interconnected by either a resistance or an inductance or a voltage source is called
a DC-connected net.

KEYWORD NODETYPE = single_value_annotation {
CONTEXT = NODE;
VALUETYPE = identifier;
VALUES { power ground source sink

driver receiver interconnect }
DEFAULT = interconnect;

}

Semantics 50—NODETYPE annotation

Table 63—NODETYPE annotation values

Annotation value Description

driver The node is the interface between an output pin of a cell and an
interconnect wire.

receiver The node is the interface between an interconnect wire and an
input pin of a cell.

source The node is a virtual start point of signal propagation.
In case of an ideal driver, the source node is collapsed with a
driver node . The collapsed node shall have the nodetype value
driver.

sink The node is a virtual end point of signal propagation.
In case of an ideal receiver, the sink node is collapsed with a
receiver node . The collapsed node shall have the nodetype value
receiver.

power The node supports electrical current for a rising signal at a
source or a driver node and a reference for a logic high signal
at a sink or receiver node.

ground The node supports electrical current for a falling signal at a
source or a driver node and a reference for logic a low signal
at a sink or a receiver node

interconnect The node serves for connecting purpose only.
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 99

1

5

10

15

20

25

30

35

40

45

50

55
The meaning of the nodetype annotation values in context of a DC-connected net is illustrated in the following
figure 8.

Figure 8—NODETYPE in context of a DC-connected net

The nodetype annotation specifies a way of separating a DC-connected net into three DC-connected subnets. The
DC-connected subnet between a source node and a driver node is considered a model of an internal interconnect
within a cell. The driver node shall be considered an output pin of the cell. The DC-connected subnet between a
receiver node and a sink node is considered a model of an internal interconnect within another cell. The driver
node shall be considered an input pin of the cell. The DC-connected subnet between a driver node and a receiver
node is considered a model of the external interconnect between two cells. The association of an interconnect
node with either cell or with the interconnect between the cells is infered by the connectivity within the DC-con-
nected net. A power or a ground node which is not part of the DC-connected net is considered global.

9.12.3 NODE_CLASS annotation

A node class annotation shall be defined as shown in Semantics 51.

The identifier shall refer to the name of a declared class.

The purpose of the node class annotation is to associate a node with a cell in the case where an association can
not be infered by the connectivity within a DC-connected net.

Example:

WIRE CrosstalkAccrossPowerDomains {
CLASS aggressor { USAGE = NODE_CLASS; }
CLASS victim { USAGE = NODE_CLASS; }
NODE vdd1 { NODETYPE = power; NODE_CLASS = aggressor; }
NODE driver1 { NODETYPE = driver; NODE_CLASS = aggressor; }
NODE vdd2 { NODETYPE = power; NODE_CLASS = victim; }
NODE driver2 { NODETYPE = driver; NODE_CLASS = victim; }

KEYWORD NODE_CLASS = annotation {
CONTEXT = NODE;
VALUETYPE = identifier;
REFERENCETYPE = CLASS;

}

Semantics 51—NODE_CLASS annotation

cell cell

driver nodesource node receiver node sink node

DC-connected subnet
DC-connected subnetDC-connected subnet

DC-connected net
100 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

1

5

10

15

20

25

30

35

40

45

50

55
// put electrical components here
// put crosstalk model here
}

The node declarations in this example provide a context for a crosstalk model, where the noise magnitude at the
victim’s driver node can depend on the supply voltage at the aggressor’s power node, the supply voltage at the
victim’s power node, the signal characteristics at the aggressor’s driver node and other parameters. The crosstalk
model itself is not shown here.

9.13 VECTOR declaration

A vector shall be declared as shown in Syntax 54.

The purpose of a vector is to provide a context for electrical characterization data or for functional test data. The
control expression (see 10.4) shall specify a stimulus related to characterization or test.

9.14 Annotations related to a VECTOR declaration

Add lead-in text

9.14.1 VECTOR reference annotation

A vector reference annotation shall be defined as shown in .

The purpose of a vector reference annotation is to establish an association between a vector and an arithmetic
model (see Section 11.3).

9.14.2 PURPOSE annotation

A purpose annotation shall be defined as shown in Semantics 53.

The purpose of the purpose annotation is to specify a category for the data found in the context of the vector. The
purpose annotation can also be inherited from a class referenced within the context of the vector.

vector ::=
VECTOR control_expression ;

| VECTOR control_expression { { vector_item } }
| vector_template_instantiation

vector_item ::=
all_purpose_item

| wire_instantiation

Syntax 54—VECTOR statement

SEMANTICS VECTOR = single_value_annotation {
VALUETYPE = control_expression;
CONTEXT = arithmetic_model;
REFERENCETYPE = VECTOR;

}

Semantics 52—VECTOR reference annotation
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 101

1

5

10

15

20

25

30

35

40

45

50

55
The values shall have the semantic meaning shown in Table 65.

9.14.3 OPERATION annotation

An operation annotation shall be defined as shown in Semantics 54.

The purpose of the operation annotation is to associate a mode of operation of the electronic circuit with the stim-
ulus specified within the vector declaration. This assocation can be used by an application for test vector genera-
tion or test vector verification.

KEYWORD PURPOSE = annotation {
CONTEXT { VECTOR CLASS }
VALUETYPE = identifier ;
VALUES { bist test timing power noise reliability }

}

Semantics 53—PURPOSE annotation

Table 64—PURPOSE annotation values

Annotation value Description

bist The vector contains data related to built-in self test

test The vector contains data related to test requiring external circuitry.

timing The vector contains an arithmetic model related to timing calculation (see
from Section 11.11.1 to Section 11.11.11)

power The vector contains an arithmetic model related to power calculation (see
Section 11.11.15)

noise The vector contains an arithmetic model related to noise calculation (see
Section 11.11.14)

reliability The vector contains an arithmetic model related to reliability calculation
(see Section 11.17.2, also Section 11.11.1 and Section 11.11.2)

KEYWORD OPERATION = single_value_annotation {
CONTEXT = VECTOR;
VALUETYPE = identifier;
VALUES {

read write read_modify_write refresh load
start end iddq

}
}

Semantics 54—OPERATION annotation
102 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

1

5

10

15

20

25

30

35

40

45

50

55
The values shall have the semantic meaning shown in Table 65.

9.14.4 LABEL annotation

A label annotation shall be defined as shown in Semantics 55.

The purpose of the label annotation is to enable a cross-reference between a statement within the context of a
vector and a corresponding statement outside the ALF library. For example, a cross-reference between a delay
model in context of a vector (see Section 11.17.1) and an annotated delay within an SDF file [**put reference to
IEEE1497 here**] can be established, since the SDF standard also supports a LABEL statement.

9.14.5 EXISTENCE_CONDITION annotation

An existence-condition annotation shall be defined as shown in Semantics 56.

Table 65—OPERATION annotation values

Annotation value Description

read Read operation at one address of a memory.

write Write operation at one address of a memory

read_modify_write Read followed by write of different value at same address of a
memory

start First operation within a sequence of operations required in a
particular mode.

end Last operation within a sequence of operations required in a
particular mode.

refresh Operation required to maintain the contents of the memory
without modifying it.

load Operation for supplying data to a control register.

iddq Operation for supply current measurements in quiescent state.

KEYWORD LABEL = single_value_annotation {
CONTEXT = VECTOR;
VALUETYPE = string_value;

}

Semantics 55—LABEL annotation

KEYWORD EXISTENCE_CONDITION = single_value_annotation {
CONTEXT { VECTOR CLASS }
VALUETYPE = boolean_expression;
DEFAULT = 1;

}

Semantics 56—EXISTENCE_CONDITION annotation
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 103

1

5

10

15

20

25

30

35

40

45

50

55
The purpose of the existence-condition is to define a necessary and sufficient condition for a vector to be relevant
for an application. This condition can also be inherited by the vector from a referenced class. A vector shall be
relevant unless the existence-condition evaluates False.

The set of pin variables involved in the vector declaration and the set of pin variables involved in the existence
condition shall be mutually exclusive.

For dynamic evaluation of the control expression within the vector declaration, the boolean expression within the
existence-condition can be treated as if it were a co-factor of the control expression.

9.14.6 EXISTENCE_CLASS annotation

An existence-class annotation shall be defined as shown in Semantics 57.

The identifier shall be the name of a declared class.

The purpose of the existence-class annotation is to provide a mechanism for selection of a relevant vector by an
application. The user of the application can select a set of relevant vectors by specifying the name of the class.
Another purpose is to share a common existence-condition amongst multiple vectors.

9.14.7 CHARACTERIZATION_CONDITION annotation

A characterization-condition annotation shall be defined as shown in Semantics 58.

The purpose of the characterization-condition annotation is to specify a unique condition under which the data in
the context of the vector were characterized. The characterization condition is only applicable if the vector decla-
ration eventually in conjunction with an existence-condition allows more than one condition.

The set of pin variables involved in the characterization-condition can overlap with the set of pin variables
involved in the vector declaration and/or the existence-condition, as long as the characterization condition is
compatible with the vector declaration and eventually with the existence-condition.

The characterization condition shall not be relevant for evaluation of either the vector declaration or the exist-
ence condition.

KEYWORD EXISTENCE_CLASS = annotation {
CONTEXT { VECTOR CLASS }
VALUETYPE = identifier;
REFERENCETYPE = CLASS;

}

Semantics 57—EXISTENCE_CLASS annotation

KEYWORD
CHARACTERIZATION_CONDITION = single_value_annotation {

CONTEXT { VECTOR CLASS }
VALUETYPE = boolean_expression;

}

Semantics 58—CHARACTERIZATION_CONDITION annotation
104 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

1

5

10

15

20

25

30

35

40

45

50

55
9.14.8 CHARACTERIZATION_VECTOR annotation

A characterization-vector annotation shall be defined as shown in Semantics 59.

The purpose of a characterization-vector annotation is to specify a complete stimulus for characterization in the
case where the vector declaration specifies only a partial stimulus.

The characterization-vector annotation and the characterization-condition annotation shall be mutually exclusive
within the context of the same vector.

9.14.9 CHARACTERIZATION_CLASS annotation

A characterization-class annotation shall be defined as shown in Semantics 60.

The identifier shall be the name of a declared class.

The purpose of the characterization-class annotation is to provide a mechanism for classification of characteriza-
tion data. Another purpose is to share a common characterization-condition or a common characterization-vector
amongst multiple vectors.

9.14.10 MONITOR annotation

A monitor annotation shall be defined as shown in Semantics 61.

The purpose of the monitor annotation is to specify a set of pin variables (see Section 7.9) involved in the evalu-
ation of a vector expression. Events on this set of pin variables need to be monitored for detection of a specified
event sequence (see Section 10.13.2).

KEYWORD CHARACTERIZATION_VECTOR =
single_value_annotation {

CONTEXT { VECTOR CLASS }
VALUETYPE = control_expression;

}

Semantics 59—CHARACTERIZATION_VECTOR annotation

KEYWORD CHARACTERIZATION_CLASS = annotation {
CONTEXT { VECTOR CLASS }
VALUETYPE = identifier;
REFERENCETYPE = CLASS;

}

Semantics 60—CHARACTERIZATION_CLASS annotation

KEYWORD MONITOR = annotation {
CONTEXT { VECTOR CLASS }
VALUETYPE = identifier;

}

Semantics 61—MONITOR annotation
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 105

1

5

10

15

20

25

30

35

40

45

50

55
9.15 LAYER declaration

A layer shall be declared as shown in Syntax 55.

A layer shall describe process technology for fabrication of an integrated electronic circuit and a set of related
physical data and constraints relevant for a design application.

The order of layer declarations within a library or a sublibrary shall reflect the order of physical creation of layers
by a manufacturing process. The layer which is created first shall be declared first. A virtual layer, i.e. a layer that
is not created by a manufacturing process, shall be declared last.

9.16 Annotations related to a LAYER declaration

Add lead-in text

9.16.1 LAYER reference annotation

A layer reference annotation shall be defined as shown in .

The purpose of a layer reference annotation is to establish an association between a layer and a pattern (see
Section 9.28), an array (see Section 9.26) or an arithmetic model (see Section 11.3).

9.16.2 LAYERTYPE annotation

A layertype annotation shall be defined as shown in Semantics 63.

layer ::=
LAYER layer_identifier ;

| LAYER layer_identifier { { layer_item } }
| layer_template_instantiation

layer_item ::=
all_purpose_item

Syntax 55—LAYER declaration

SEMANTICS LAYER = annotation {
VALUETYPE = identifier;
CONTEXT { arithmetic_model PATTERN ARRAY }
REFERENCETYPE = LAYER;

}

Semantics 62—LAYER reference annotation

KEYWORD LAYERTYPE = single_value_annotation {
CONTEXT = LAYER;
VALUETYPE = identifier;
VALUES {

routing cut substrate dielectric reserved abstract
}

}

Semantics 63—LAYERTYPE annotation
106 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

1

5

10

15

20

25

30

35

40

45

50

55
The values shall have the semantic meaning shown in Table 66.

9.16.3 PITCH annotation

A pitch annotation shall be defined as shown in Semantics 64.

The purpose of the pitch annotation is specification of the normative distance between parallel wire segments
within a layer with layertype value routing. This distance is measured between the center of two adjacent parallel
wires.

9.16.4 PREFERENCE annotation

A preference annotation shall be defined as shown in Semantics 65.

The purpose of the preference annotation is to specify the prefered routing direction for a routing segment on a
layer with layertype value routing (see Section 9.16.2).

Table 66—LAYERTYPE annotation values

Annotation value Description

routing Layer provides electrical connections within a plane.

cut Layer provides electrical connections between planes.

substrate Layer at the bottom.

dielectric Layer provides electrical isolation between planes.

reserved Layer is for proprietary use only.

abstract Layer is virtual, not manufacturable.

KEYWORD PITCH = single_value_annotation {
CONTEXT = LAYER;
VALUETYPE = unsigned_number;

}

Semantics 64—PITCH annotation

KEYWORD PREFERENCE = single_value_annotation {
CONTEXT = LAYER;
VALUETYPE = identifier;
VALUES { horizontal vertical acute obtuse }

}

Semantics 65—PREFERENCE annotation
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 107

1

5

10

15

20

25

30

35

40

45

50

55
The values shall have the semantic meaning shown in Table 66.

9.17 VIA declaration

A via shall be declared as shown in Syntax 56.

A via shall describe a stack of physical artwork for electrical connection between wire segments on different lay-
ers.

9.18 Annotations related to a VIA declaration

Add lead-in text

9.18.1 VIA reference annotation

A via reference annotation shall be defined as shown in .

The purpose of a via reference annotation is to establish an association between a via and an arithmetic model
(see Section 11.3).

Table 67—PREFERENCE annotation values

Annotation value Description

horizontal Prefered routing direction is horizontal, i.e., 0 degrees.

vertical Prefered routing direction is vertical, i.e., 90 degrees.

acute Prefered routing direction is 45 degrees.

obtuse Prefered routing direction is 135 degrees.

via ::=
VIA via_identifier ;

| VIA via_identifier { { via_item } }
| via_template_instantiation

via_item ::=
all_purpose_item

| pattern
| artwork

Syntax 56—VIA declaration

SEMANTICS VIA = annotation {
VALUETYPE = identifier;
CONTEXT = arithmetic_model;
REFERENCETYPE = VIA;

}

Semantics 66—VIA reference annotation
108 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

1

5

10

15

20

25

30

35

40

45

50

55
9.18.2 VIATYPE annotation

Single subheader

A viatype annotation shall be defined as shown in Semantics 67.

The values shall have the semantic meaning shown in Table 68.

9.19 RULE declaration

A rule shall be declared as shown in Syntax 57.

A rule declaration shall be used to define electrical or physical constraints involving physical objects. A physical
object shall be described as a pattern (see Section 9.28), a region (see Section 9.30), or a via instantiation (see
Section 10.20). The electrical or physical contraint shall be described as arithmetic model (see Section 11.3).

KEYWORD VIATYPE = single_value_annotation {
CONTEXT = VIA;
VALUETYPE = identifier;
VALUES { default non_default partial_stack full_stack }
DEFAULT = default;

}

Semantics 67—VIATYPE annotation

Table 68—VIATYPE annotation values

Annotation value Description

default via can be used per default.

non_default via can only be used if authorized by a RULE.

partial_stack via contains three patterns: the lower and upper routing layer
and the cut layer in-between. This can only be used to build
stacked vias. The bottom of a stack can be a default or a
non_default via.

full_stack via contains 2N+1 patterns (N>1). It describes the full stack
from bottom to top.

rule ::=
RULE rule_identifier ;

| RULE rule_identifier { { rule_item } }
| rule_template_instantiation

rule_item ::=
all_purpose_item

| pattern
| region
| via_instantiation

Syntax 57—RULE statement
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 109

1

5

10

15

20

25

30

35

40

45

50

55
9.20 ANTENNA declaration

An antenna shall be declared as shown in Syntax 58.

An antenna declaration shall be used to define manufacturability constraints involving physical objects or
regions (see Section 9.30), wherein the regions are created by physical objects. The physical objects shall be
associated with a layer (see Section 9.15). Within the context of an antenna declaration, arithmetic models for
size (see Section 11.19.1), area (see Section 11.19.2), perimeter (see Section 11.19.3) associated with a layer or
with a region can be described. The arithmetic models can be combined, based on electrical connectivity (see
Section 11.18.1) between the layers.

To evaluate connectivity in the context of an antenna declaration, the order of manufacturing given by the order
of layer declarations shall be considered. An object on a layer shall only be considered electrically connected to
an object on another layer, if the connection already exists when the uppermost layer of both layers is manufac-
tured. This is illustrated in the following figure 9.

Figure 9—Connection between layers during manufacturing

The dark objects on layer A and layer C on the left side of figure 9 are considered connected, because the connec-
tion is established through layer B which exists already when layer C is manufactured.

The dark objects on layer A and layer C on the right hand side of figure 9 are not considered connected, because
the connection involves layer D and E which do not yet exist when layer C is manufactured.

9.21 BLOCKAGE declaration

A blockage shall be declared as shown in Syntax 59.

A blockage declaration shall be used in context of a cell (see Section 9.3) to describe a part of the physical art-
work of the cell. No short circuit shall be created between the physical artwork described by the blockage and a
physical artwork created by an application. Physical or electrical constraints involving a blockage can be
described by a rule (see Section 9.19). A rule within the context of a blockage shall only be applicable for a phys-

antenna ::=
ANTENNA antenna_identifier ;

| ANTENNA antenna_identifier { { antenna_item } }
| antenna_template_instantiation

antenna_item ::=
all_purpose_item

| region

Syntax 58—ANTENNA declaration

Layer C

Layer A

Layer B

Layer D

Layer E

connected not
connected
110 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

1

5

10

15

20

25

30

35

40

45

50

55
ical object within the blockage in relation to its environment. A physical object within the blockage can also be
subjected to a more general rule, i.e. a rule that is declared outside the context of the blockage.

9.22 PORT declaration

A port shall be declared as shown in Syntax 60.

A port declaration shall be used in context of a scalar pin (see Section 9.5) to describe a part of the physical art-
work of a cell (see Section 9.3) provided to establish electrical connection between a pin and its environment.
Physical or electrical constraints involving a port can be described by a rule (see Section 9.19). A rule within the
context of a port shall only be applicable for physical objects within the blockage in relation to their environ-
ment. The physical objects within the port can also be subjected to a more general rule.

9.23 Annotations related to a PORT declaration

Add lead-in text

9.23.1 CONNECT_TYPE annotation

Single subheader

A connect_type annotation shall be defined as shown in Semantics 68.

blockage ::=
BLOCKAGE blockage_identifier ;

| BLOCKAGE blockage_identifier { { blockage_item } }
| blockage_template_instantiation

blockage_item ::=
all_purpose_item

| pattern
| region
| rule
| via_instantiation

Syntax 59—BLOCKAGE statement

port ::=
PORT port_identifier ;{ { port_item } }

| PORT port_identifier ;
| port_template_instantiation

port_item ::=
all_purpose_item

| pattern
| region
| rule
| via_instantiation

Syntax 60—PORT declaration
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 111

1

5

10

15

20

25

30

35

40

45

50

55
The values shall have the semantic meaning shown in Table 69.

9.24 SITE declaration

A site shall be declared as shown in Syntax 61.

A site declaration shall be used to specify a legal placement location for a cell (see Section 9.3).

9.25 Annotations related to a SITE declaration

Add lead-in text

9.25.1 SITE reference annotation

A site reference annotation shall be defined as shown in Semantics 69.

KEYWORD CONNECT_TYPE = single_value_annotation {
CONTEXT = PORT;
VALUETYPE = identifier;
VALUES { external internal }
DEFAULT = external;

}

Semantics 68—PORT_VIEW annotation

Table 69—CONNECT_TYPE annotation values

Annotation value Description

external A physical port of a block available for external connection

internal A physical port inside a block

site ::=
SITE site_identifier ;

| SITE site_identifier { { site_item } }
| site_template_instantiation

site_item ::=
all_purpose_item

| WIDTH_arithmetic_model
| HEIGHT_arithmetic_model

Syntax 61—SITE declaration

SEMANTICS SITE = annotation {
CONTEXT { CELL ARRAY CLASS }

}

Semantics 69—SITE reference annotation
112 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

1

5

10

15

20

25

30

35

40

45

50

55
The purpose of a site reference annotation is to establish an association between a site and a cell (see Section 9.3)
or an array (see Section 9.26). A cell or an array can inherit a site reference annotation from a class (see
Section 8.6).

9.25.2 ORIENTATION_CLASS annotation

An orientation class annotation shall be defined as shown in Semantics 70.

The purpose of the orientation class annotation is to specify a legal placement orientation for a cell (see
Section 9.3) on a site. The annotation value shall be the name of a declared class (see Section 8.6). The declared
class can contain a geometric transformation statement (see Section 10.18). The geometric transformation shall
indicate a transformation of coordinates from the cell as a standalone object to the cell placed on a site. The stan-
dalone cell is considered as the original object, whereas the cell placed on a site is the transformed object.

A cell can only be placed on a site, if a matching orientation class annotation value is found within both the cell
declaration and the site declaration.

9.25.3 SYMMETRY_CLASS annotation

A symmetry class annotation shall be defined as shown in Semantics 71.

The purpose of the symmetry class annotation is to specify a symmetry between legal placement orientations of a
cell (see Section 9.3) on a site.

A legal orientation is specified by the orientation class annnotation (see Section 9.25.2). If there is a set of com-
mon legal orientations for both cell and site with symmetry, the cell can be placed on the site using any orienta-
tion within that set.

Example

The site has legal orientations A and B. The cell has legal orientations A and B.

Case 1: A and B are not symmetrical.

CLASS A { PURPOSE = ORIENTATION_CLASS; }
CLASS B { PURPOSE = ORIENTATION_CLASS; }

KEYWORD ORIENTATION_CLASS = annotation {
CONTEXT { SITE CELL }
VALUETYPE = identifier;
REFERENCETYPE = CLASS;

}

Semantics 70—ORIENTATION_CLASS annotation

KEYWORD SYMMETRY_CLASS = multi_value_annotation {
CONTEXT = SITE;
VALUETYPE = identifier;
REFERENCETYPE = CLASS;

}

Semantics 71—SYMMETRY_CLASS annotation
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 113

1

5

10

15

20

25

30

35

40

45

50

55
SITE mySite { ORIENTATION_CLASS { A B } }
CELL myCell { ORIENTATION_CLASS { A B } }

When the site appears in orientation A, the cell shall be placed in orientation A. When the site appears in orienta-
tion B, the cell shall be placed in orientation B.

Case 2: A and B are symmetrical.

CLASS A { PURPOSE { ORIENTATION_CLASS SYMMETRY_CLASS } }
CLASS B { PURPOSE { ORIENTATION_CLASS SYMMETRY_CLASS } }
SITE mySite { ORIENTATION_CLASS { A B } SYMMETRY_CLASS { A B } }
CELL myCell { ORIENTATION_CLASS { A B } }

When the site appears in either orientation A or B, the cell can be placed in either orientation A or B.

9.26 ARRAY declaration

An array shall be declared as shown in Syntax 62.

An array declaration shall be used for the purpose to describe a grid for creating physical objects within design.
A geometric transformation (see Section 10.18) can be used to define a transformation of coordinates from a
basic constructive element of the array to an element placed within the array. The basic constructive element is
considered the original object, whereas the element placed within the array is the transformed object.

9.27 Annotations related to an ARRAY declaration

Add lead-in text

9.27.1 ARRAYTYPE annotation

An arraytype annotation shall be defined as shown in Semantics 72.

array ::=
ARRAY array_identifier ;

| ARRAY array_identifier { { array_item } }
| array_template_instantiation

array_item ::=
all_purpose_item

| geometric_transformation

Syntax 62—ARRAY statement

KEYWORD ARRAYTYPE = single_value_annotation {
CONTEXT = ARRAY;
VALUETYPE = identifier;
VALUES { floorplan placement

global_routing detailed_routing }
}

Semantics 72—ARRAYTYPE annotation
114 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

1

5

10

15

20

25

30

35

40

45

50

55
The values shall have the semantic meaning shown in Table 70.

9.27.2 LAYER reference annotation for ARRAY

A layer reference annotation in the context of an array shall be defined as shown in Semantics 73.

The layer reference annotation shall be applicable for an array with arraytype value detailed routing (see
Section 9.27.1). It shall specify a layer (see Section 9.15) with layertype value routing (see Section 9.16.2).

9.27.3 SITE reference annotation for ARRAY

A site reference annotation in the context of an array shall be defined as shown in Semantics 72.

The purpose of a site reference annotation in the context of an array is to specify the basic element from which
the array is constructed.

The site reference annotation is applicable for an array with arraytype value floorplan or placement (see
Section 9.27.1).

9.28 PATTERN declaration

A pattern shall be declared as shown in Syntax 63.

The purpose of a pattern declaration is the description of a geometry formed by a physical object.

Table 70—ARRAYTYPE annotation values

Annotation value Description

floorplan The array provides a grid for placing macrocells, i.e., cells with
celltype value can be block or core or memory.
The placement_type value shall be core.

placement The array provides a grid for placing regular cells, i.e., cells with
celltype value buffer, combinational, multiplexor, latch, flipflop
or special.
The placement_type value shall be core.

global_routing The array provides a grid for global routing.

detailed_routing The array provides a grid for detailed routing.

SEMANTICS ARRAY.LAYER = multi_value_annotation;

Semantics 73—LAYER reference annotation for ARRAY

SEMANTICS ARRAY.SITE = single_value_annotation;

Semantics 74—SITE reference annotation
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 115

1

5

10

15

20

25

30

35

40

45

50

55
9.29 Annotations related to a PATTERN declaration

Add lead-in text

9.29.1 PATTERN reference annotation

A pattern reference annotation shall be defined as shown in .

The purpose of a pattern reference annotation is to establish an association between a pattern and an arithmetic
model (see Section 11.3).

9.29.2 SHAPE annotation

A shape annotation shall be defined as shown in Semantics 76.

The shape annotation applies for a pattern associated with a layer with layertype value routing (see
Section 9.16.2).

pattern ::=
PATTERN pattern_identifier ;

| PATTERN pattern_identifier { { pattern_item } }
| pattern_template_instantiation

pattern_item ::=
all_purpose_item

| geometric_model
| geometric_transformation

Syntax 63—PATTERN declaration

SEMANTICS PATTERN = annotation {
VALUETYPE = identifier ;
CONTEXT = arithmetic_model ;
REFERENCETYPE = PATTERN ;

}

Semantics 75—PATTERN reference annotation

KEYWORD SHAPE = single_value_annotation {
CONTEXT = PATTERN;
VALUETYPE = identifier;
VALUES { line tee cross jog corner end }
DEFAULT = line;

}

Semantics 76—SHAPE annotation
116 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

1

5

10

15

20

25

30

35

40

45

50

55
The values shall have the semantic meaning shown in Table 71.

The meaning of the shape annotation values is further illustrated in Figure 10.

Figure 10—SHAPE annotation illustration

The shape annotation specifies whether a pattern is represented by a point or by a line. A pattern with shape
annotation value line or jog is represented by a line. A pattern with shape annotation value tee, cross, corner or
end is represented by a point.

9.29.3 VERTEX annotation

A vertex annotation shall be defined as shown in Semantics 77.

The vertex annotation applies for a pattern in conjunction with shape annotation value tee, cross, corner, or end
(see Section 9.29.2).

Table 71—SHAPE annotation values

Annotation value Description

line A routing segment in prefered routing direction.
Each end is connected with a via or with another routing segment.

jog A routing segment in non-prefered routing direction.
Each end is connected with a routing segment in prefered routing direc-
tion.

tee An intersection point between two orthogonal routing segments.
One of the routing segments ends at the intersection.

cross An intersection point between two orthogonal routing segments.
Both routing segments continue beyond the intersection.

corner An intersection point between two orthogonal routing segments.
Both routing segments end at the intersection.

end An unconnected point of an open routing segment.

line

tee

cross

jog

corner

end
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 117

1

5

10

15

20

25

30

35

40

45

50

55
The values shall have the semantic meaning shown in Table 72.

The meaning of the vertex annotation values is further illustrated in Figure 11.

Figure 11—VERTEX annotation illustration

9.29.4 ROUTE annotation

A route annotation shall be defined as shown in .

The route annotation applies for a pattern with shape annotation value line, jog, or tee (see Section 9.29.2).

KEYWORD VERTEX = single_value_annotation {
CONTEXT = PATTERN;
VALUETYPE = identifier;
VALUES { round angular }
DEFAULT = angular;

}

Semantics 77—VERTEX annotation

Table 72—VERTEX annotation values

Annotation value Description

angular The angle between intersecting routing segments shall be preserved.

round The angle between intersecting routing segments shall be rounded.

KEYWORD ROUTE = single_value_annotation {
CONTEXT = PATTERN;
VALUETYPE = identifier;
VALUES { horizontal acute vertical obtuse }

}

Semantics 78—ROUTE annotation

VERTEX = angular VERTEX = round
118 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

1

5

10

15

20

25

30

35

40

45

50

55
The purpose of a route annotation is to specify the actual routing direction for the pattern. This is illustrated in
Figure 12..

Figure 12—ROUTE annotation illustration

If the route annotation does not appear and a layer reference annotation (see Section 9.29.5) appears, the prefered
routing direction specified by the preference annotation (see Section 9.16.4) within the layer declaration shall
apply to infer the actual routing direction. If both route annotation and layer reference annotation appear, the
route annotation shall take precedence.

9.29.5 LAYER reference annotation for PATTERN

A layer reference annotation in the context of a pattern shall be defined as shown in.

The purpose of a layer reference annotation in the context of a pattern is to establish an association between a
pattern and a layer (see Section 9.15). The physical object represented by the pattern shall reside on a layer. A
pattern declaration without layer reference annotation shall be considered incomplete.

9.30 REGION declaration

A region object shall be declared as shown in .

SEMANTICS PATTERN.LAYER = single_value_annotation;

Semantics 79—LAYER reference annotation for PATTERN

region ::=
REGION region_name_identifier ;

| REGION region_name_identifier { { region_item } }
| region_template_instantiation

region_item ::=
all_purpose_item

| geometric_model
| geometric_transformation
| BOOLEAN_single_value_annotation

Syntax 64—REGION declaration

line tee jogpattern
route

horizontal

vertical
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 119

1

5

10

15

20

25

30

35

40

45

50

55
The purpose of a region declaration is the description of a geometry. The geometry can be formed by intersection
or union of physical objects. The geometry can also be described in abstract mathematical terms without being
associated with a particular physical object.

The specification of geometries by one or more geometric models (see Section 10.16) and/or by a boolean anno-
tation (see Section 9.31.2) shall be additive, i.e., the region shall be considered the union of the specified geome-
tries. If a geometric transformation (see Section 10.18) is present, it shall apply to all specified geometries within
the region.

9.31 Annotations related to a REGION declaration

9.31.1 REGION reference annotation

A region reference annotation shall be defined as shown in .

The purpose of a region reference annotation is to establish an association between a region and an arithmetic
model (see Section 11.3).

9.31.2 BOOLEAN annotation

A boolean annotation shall be defined as shown in .

The purpose of the boolean annotation is to specify a region by a boolean operation (see Section 10.11). The
name of a pattern (see Section 9.28) or the name of another region shall be considered a legal operand. The oper-
ators specified in Section 10.11.1, Table 78 and Section 10.11.2, Table 80 shall be considered legal operators.

SEMANTICS REGION = annotation {
VALUETYPE = identifier ;
CONTEXT = arithmetic_model ;
REFERENCETYPE = REGION ;

}

Semantics 80—PATTERN reference annotation

KEYWORD BOOLEAN = single_value_annotation {
CONTEXT = REGION ;
VALUETYPE = boolean_expression ;

}

Semantics 81—BOOLEAN annotation
120 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

1

5

10

15

20

25

30

35

40

45

50

55
10. Description of functional and physical implementation

Add lead-in text

10.1 FUNCTION statement

A function statement shall be defined as shown in Syntax 65.

The purpose of the function statement is to describe a canonical specification of a digital electronic circuit imple-
mented by a cell. A cell can contain at most one function statement.

The function statement can contain a behavior statement (see Section 10.4) or a set of one or more statetable
statements (see Section 10.6). The purpose of the behavior and statetable statements in this context is to formally
specify the logic state of a cell as a response to a given stimulus.

The function statement can also contain a specification for implementation using the structure statement (see
Section 10.5).

10.2 TEST statement

A test statement shall be defined as shown in Syntax 66.

The purpose of the test statement is to describe the interface between a cell and a test algorithm applied to the
cell. A cell can contain at most one test statement.

The test statement can contain a behavior statement (see Section 10.4) or a set of one or more statetable state-
ments (see Section 10.6). The purpose of the behavior and statetable statements in this context is to model the
interface between a cell and a test algorithm as a virtual digital circuit.

A test algorithm consists of a virtual input pattern and a virtual expected output pattern. The test statement does
not specify the test algorithm per se, but the mapping of the virtual pattern into a stimulus applicable to the
device under test, i.e., the cell. This is further explained in Section 10.3.

function ::=
FUNCTION { function_item { function_item } }

| function_template_instantiation
function_item ::=

all_purpose_item
| behavior
| structure
| statetable

Syntax 65—FUNCTION statement

test ::=
TEST { test_item { test_item } }

| test_template_instantiation
test_item ::=

all_purpose_item
| behavior
| statetable

Syntax 66—TEST statement
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 121

1

5

10

15

20

25

30

35

40

45

50

55
10.3 Declaration of a pin variable

Both the variables involved in the test statement and the signals involved in the function statement shall be con-
sidered as pin variables (see Section 7.9).

Pin variables shall be declared as pins or pingroups of the cell with pintype annotation value digital. The annota-
tion values for direction and view shall specify whether a pin can be used as a signal for function or as a variable
for test, according to the following Table 73.

An pin attribute value can be used to specify a test method related to a variable. See Table 61, “PIN or PIN-
GROUP attributes for memory BIST,” for specification of a particular test method.

A primary input variable for the test statement can hold a state of a virtual input pattern. A primary output vari-
able for the test statemen can hold the state of a virtual expected output pattern. A primary bidirectional variable
for the test statement can hold the state of a virtual input or output pattern, depending on the mode of the test
algorithm. An internal variable for the test statement communicates neither with the test algorithm nor with the
device under test.

An input signal of the cell can be controlled or non-controlled by the test algorithm. An output signal of the cell
can be observed or non-observed by the test algorithm. A bidirectional signal of the cell can be controlled or
non-controlled in input mode and observed or non-observed in output mode. An internal signal of the cell com-
municates neither with the test algorithm nor with the environment of the cell.

The relationship between pin variables involved in the test statement and in the function statement is illustrated
in the following figure 13. The information flow depicted therein shall be established by a behavior statement
(see Section 10.4) and/or by a set of statetable statements (see Section 10.6).

Table 73—Annotations for PINs involved in FUNCTION and TEST

category DIRECTION VIEW

input signal for function input functional or both

output signal for function output functional or both

bidirectional signal for function both functional or both

internal signal for function none none

primary input variable for test input none

primary output variable for test output none

primary bidirectional variable for test both none

internal variable for test none none
122 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

1

5

10

15

20

25

30

35

40

45

50

55
Figure 13—Relationship between FUNCTION and TEST

10.4 BEHAVIOR statement

A behavior statement shall be defined as shown in Syntax 67.

A control statement consists of a primary control statement, optionally followed by one or more alternative con-
trol statements. A primary control statement is identified by the at character followed by a control expression.
An alternative control statement is identified by the colon character followed by a control expression. A control
expression can be either a boolean expression (see Section 10.9) or a vector expression (see Section 10.12). The
order of alternativs control statements shall specify the order of priority. If the main control statement does not
evaluate true, the first alternative control statement is evaluated. If an alternative control statement does not eval-
uate true, the next alternative control statement is evaluated.

behavior ::=
BEHAVIOR { behavior_item { behavior_item } }

| behavior_template_instantiation
behavior_item ::=

boolean_assignment
| control_statement
| primitive_instantiation
| behavior_item_template_instantiation

boolean_assignment ::=
pin_variable = boolean_expression ;

control_statement ::=
primary_control_statement { alternative_control_statement }

primary_control_statement ::=
@ control_expression { boolean_assignment { boolean_assignment } }

alternative_control_statement ::=
: control_expression { boolean_assignment { boolean_assignment } }

control_expression ::=
(vector_expression)

| (boolean_expression)
primitive_instantiation ::=

primitive_identifier [identifier] { pin_value { pin_value } }
| primitive_identifier [identifier] { boolean_assignment { boolean_assignment } }

Syntax 67—BEHAVIOR statement

FUNCTIONTEST

controlled input signals

observed output signals

controlled / observed
bidirectional signals

non-controlled
input signals

non-observed
output signals

non-controlled / non-observed
bidirectional signals

internal
signals

internal
variables

primary input
variables

primary output
variables

primary bidirectional
variables
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 123

1

5

10

15

20

25

30

35

40

45

50

55
A boolean assignment assigns the evaluation result of a boolean expression to a pin variable (see Section 7.9). A
boolean assignment with a behavior statement as a parent shall be considered a continuous assignment, i.e. the
boolean expression is evaluated continuously.

A boolean assignment with a control statement as parent shall be considered a conditional assignment, i.e., the
boolean expression is only evaluated when the associated control expression evaluates true. When a boolean
expression is not evaluated, a pin variable shall hold its previously assigned value.

If the control expression is a boolean expression, the conditional assignment shall be called level-sensitive or
triggered by state. If the control expression is a vector expression, the conditional assignment shall be called
edge-sensitive or triggered by event.

A behavior item is further subjected to the following rules:

a) An information flow graph involving one or more continuous assignments and/or level-sensitive condi-
tional assignments can not contain a loop. The usage of a pin with direction annotation value both as a
primary input and as a primary output in an information flow graph shall not be considered as a loop.

b) An information flow graph involving one or more edge-sensitive conditional assignments can contain a
loop. The value of a pin variable immediately before the triggering event shall be considered for evalua-
tion of a boolean expression. The evaluation result shall be assigned to a pin variable immediately after
the triggering event.

c) An information flow graph established by boolean assignments can involve an implicitly declared vari-
able, i.e., the LHS of a boolean assignment has not been declared as a pin variable. An implicitly
declared variable can only be used in the context of its parent statement. An implicitly declared variable
involved in a continuous assignment can not be used in the context of a conditional assignment and vice-
versa.

A primitive instantiation establishes a reference to a predefined function statement within a primitive declaration
(see Section 9.8). A continuous assignment of a boolean expression to a pin variable can be given by a boolean
assignment within the primitive instantiation, wherein the pin variable shall be a declared pin within the primi-
tive declaration. Alternatively, a continuous assignment of a pin value to a pin variable can be given by a set of
pin values, wherein the order of pin values shall correspond to the order of pin declarations within the primitive
declaration.

A set of predefined primitve declarations is specified in Section 10.14.

10.5 STRUCTURE statement and CELL instantiation

A structure statement shall be defined as shown in Syntax 68.

structure ::=
STRUCTURE { cell_instantiation { cell_instantiation } }

| structure_template_instantiation
cell_instantiation ::=

cell_reference_identifier cell_instance_identifier ;
| cell_reference_identifier cell_instance_identifier { { cell_instance_pin_value } }
| cell_reference_identifier cell_instance_identifier { { cell_instance_pin_assignment } }
| cell_instantiation_template_instantiation

cell_instance_pin_assignment ::=
cell_reference_pin_variable = cell_instance_pin_value ;

Syntax 68—STRUCTURE statement
124 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

1

5

10

15

20

25

30

35

40

45

50

55
The purpose of a structure statement is to specify a structural implementation of a compound cell, i.e., a netlist. A
complete or a partial netlist can be specified. A component of a netlist can be a cell or a primitive. A structure
statement shall not substitute a behavior statement or a statetable statement.

A cell instantiation shall specify the mapping between a cell reference and a cell instance within the structure
statement. The mapping shall be established either by order or by name.

In case of mapping by order, a pin value (see Section 7.9) shall be associated with the cell instance. A corre-
sponding pin variable associated with the cell reference shall be infered by the order of pin declarations within
the cell reference.

If mapping by order is not possible without ambiguity, mapping shall be established by name, using pin assign-
ment (see Section 7.10). The left-hand side of the pin assignment shall represent a pin variable associated with
the cell reference. The right-hand side of the pin assignment shall represent a pin value associated with the cell
instance.

10.6 STATETABLE statement

A statetable statement shall be defined as shown in Syntax 69.

A statetable shall specify the state of a set of output pin variables dependent on the state of a set of input pin vari-
ables. Sequential behavior, i.e., next state as a function of previous state shall be modeled by a pin variable which
appears both as input and output pin variable within the statetable header. A pin variable with direction annota-
tion value both can also appear as input and output pin variable within the statetable header. However, the state of
the output pin variable does not depend on the state of the corresponding input pin variable, unless there is
sequential behavior.

In each statetable row, a statetable control value shall be associated with a particular input pin variable, and a
statetable data value shall be associated with a particular output variable. The association is given by the position
at which the pin variables appear in the header. Each statetable row shall have the same number of items as the
statetable header. The delimiting colon in each statetable row shall in the same position as in the statetable
header.

statetable ::=
STATETABLE [identifier]

{ statetable_header statetable_row { statetable_row } }
| statetable_template_instantiation

statetable_header ::=
input_pin_variable { input_pin_variable } : output_pin_variable { output_pin_variable } ;

statetable_row ::=
statetable_control_values : statetable_data_values ;

statetable_control_values ::=
statetable_control_value { statetable_control_value }

statetable_control_value ::=
boolean_value

| symbolic_bit_literal
| edge_value

statetable_data_values ::=
statetable_data_value { statetable_data_value }

statetable_data_value ::=
boolean_value

| ([!] input_pin_variable)
| ([~] input_pin_variable)

Syntax 69—STATETABLE statement
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 125

1

5

10

15

20

25

30

35

40

45

50

55
A statetable control value shall be compatible with the datatype of the corresponding input pin variable. A
statetable data value shall be compatible with the datatype of the corresponding output pin variable. An input pin
variable enclosed by parentheses shall specify that the value of the input pin variable be assigned to the output
pin variable. Such input pin variable need not appear in the statetable header. A preceding exclamation mark
shall indicate that the logically inverted value be assigned to the output variable. A preceding tilde shall indicate
that the bitwise inverted value be assigned to the output variable.

10.7 NON_SCAN_CELL statement

A non-scan cell statement shall be defined as shown in Syntax 70.

A non-scan cell statement applies for a scan cell. A scan cell is a cell with extra pins for testing purpose. The
non-scan cell reference within the non-scan cell statement specifies a cell that is functionally equivalent to the
scan cell, if the extra pins are not used. The cell without extra pins is referred to as non-scan cell. The name of the
non-scan cell is given by the non-scan cell identifier.

The pin mapping is given either by order or by name. In case of pin mapping by order, the pin values shall refer
to pin names of the scan cell. The order of the pin values corresponds to the pin declarations within the non-scan
cell. In case of pin mapping by name, the pin names of the non-scan cell shall appear at the left-hand side, and the
pin names of the scan cell shall appear at the right-hand side.

Example

// declaration of a non-scan cell
CELL myNonScanFlop {

PIN D { DIRECTION=input; SIGNALTYPE=data; }
PIN C { DIRECTION=input; SIGNALTYPE=clock; POLARITY=rising_edge; }
PIN Q { DIRECTION=output; SIGNALTYPE=data; }

}
// declaration of a scan cell
CELL myScanFlop {

PIN CK { DIRECTION=input; SIGNALTYPE=clock; }
PIN DI { DIRECTION=input; SIGNALTYPE=data; }
PIN SI { DIRECTION=input; SIGNALTYPE=scan_data; }
PIN SE { DIRECTION=input; SIGNALTYPE=scan_enable; POLARITY=high; }
PIN DO { DIRECTION=output; SIGNALTYPE=data; }
// put NON_SCAN_CELL statement here

}

The non-scan cell statement with pin mapping by order looks as follows:

NON_SCAN_CELL { myNonScanFlop { DI CK DO } }
// corresponding pins by order: D C Q

non_scan_cell ::=
NON_SCAN_CELL = non_scan_cell_reference

| NON_SCAN_CELL { non_scan_cell_reference { non_scan_cell_reference } }
| non_scan_cell_template_instantiation

non_scan_cell_reference ::=
non_scan_cell_identifier { { scan_cell_pin_identifier } }

| non_scan_cell_identifier { { non_scan_cell_pin_identifier = scan_cell_pin_identifier ; } }

Syntax 70—NON_SCAN_CELL statement
126 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

1

5

10

15

20

25

30

35

40

45

50

55
The non-scan cell statement with pin mapping by name looks as follows:

NON_SCAN_CELL { myNonScanFlop { Q=DO; D=DI; C=CK; } }

10.8 RANGE statement

A range statement shall be defined as shown in Syntax 71.

The range statement shall be used to specify a valid address space for elements of a vector- or matrix-pin.

If no range statement is specified, the valid address space A is given by the following mathematical relationship:

where

A is an unsigned integer representing the address space within a vector- or matrix-pin,
B is the bitwidth of the vector-or matrix-pin,

and

MSB is the left-most bit within the vector- or matrix-pin,
LSB is the right-most bit within the vector or- matrix-pin,

in accordance with Section 7.8.

The index values within a range statement shall be bound by the address space a, otherwise the range statement
shall not be considered valid.

Example

PIN [5:8] myVectorPin { RANGE { 3 : 13 } }

10.9 Boolean expression

A boolean expression shall be defined as shown in Syntax 72.

range ::=
RANGE { index_value : index_value }

Syntax 71—RANGE statement

B 1 LSB MSB–+ if LSB MSB>()
1 MSB LSB–+ if LSB MSB≤()




=

0 A 2B 1–≤ ≤

B 4=

0 A 15≤ ≤

3 A 13≤ ≤

bitwidth:

default address space:

address space defined by range statement:
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 127

1

5

10

15

20

25

30

35

40

45

50

55
The purpose of a boolean expression is to specify a boolean operation involving pin variables as operands. The
evaluation result of a boolean expression shall be a boolean value.

10.10 Boolean value system

10.10.1 Scalar boolean value

A scalar boolean value shall be described by an alphanumerical bit literal (see Section 6.7). A scalar boolean
value shall represent a logical value and optionally a drive strength. The set of logical values shall be false, true
and unknown. The set of drive strengths shall be strong, weak, and zero. The symbols used for scalar boolean val-
ues and their meaning shall be defined as shown in Table 74.

A boolean expression (see Section 10.9) can evaluate to a scalar boolean value represented by an alphanumeric
bit literal. For evaluation of a boolean expression, a scalar boolean value shall be reduced to a value 0, 1, or X
within a 3-value system, unless an alphabetic bit literal (L, H, W, Z, U) is explicitely specified as evaluation
result in the boolean expression.

boolean_expression ::=
(boolean_expression)

| pin_variable
| boolean_value
| boolean_unary boolean_expression
| boolean_expression boolean_binary boolean_expression
| boolean_expression ? boolean_expression :

{ boolean_expression ? boolean_expression : }
boolean_expression

boolean_unary ::=
! | ~ | & | ~& | | | ~| | ^ | ~^

boolean_binary ::=
& | && | | | || | ^ | ~^ | != | == | >= | <= | > | < | + | - | * | / | % | >> | <<

Syntax 72—Boolean expression

Table 74—Scalar boolean values

symbol logical value drive strength symbol for
reduced value comment

0 false strong 0

1 true strong 1

X or x unknown strong X or x

L or l false weak 0

H or h true weak 1

W or w unknown weak X or x

Z or z undefined zero X or x use for high impedance

U or u undefined undefined X or x use for uninitialized signal in simulation
128 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

1

5

10

15

20

25

30

35

40

45

50

55
10.10.2 Vectorized boolean value

A vectorized boolean value shall be described either by a based literal (see Section 6.8) or by an integer (see
Section 6.5). A vectorized boolean value can be mapped into a vector of alphanumerical bit literals. The number
of bit literals shall be called bitwidth.

An octal digit can be mapped into a three bit vector of bit literals, as shown in Table 75.

A hexadecimal digit can be mapped into a four bit vector of bit literals, as shown in Table 76.

Table 75—Mapping between octal base and binary base

Octal Binary (bit literal) Numerical value

0 000 0

1 001 1

2 010 2

3 011 3

4 100 4

5 101 5

6 110 6

7 111 7

Table 76—Mapping between hexadecimal base and binary base

Hexadecimal Binary (bit literal) Numerical value

0 0000 0

1 0001 1

2 0010 2

3 0011 3

4 0100 4

5 0101 5

6 0110 6

7 0111 7

8 1000 8

9 1001 9

a or A 1010 10
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 129

1

5

10

15

20

25

30

35

40

45

50

55
An alphabetic bit literal shall be mapped according to the following rules:

a) An alphabetic bit literal in octal base shall be mapped into three subsequent occurrences of the same bit
literal in binary base.

b) An alphabetic bit literal in hexadecimal base shall be mapped into four subsequent occurrences of the
same bit literal in binary base.

Example

'o2xw0u is equivalent to'b010_xxx_www_000_uuu
'hLux is equivalent to'bLLLL_uuuu_xxxx

An integer can be represented by a vector of bit literals, according to the following mathematical relationship.

where

N is the integer.
B is the bitwidth of the vector of bit literals.
p is the position of a bit within the vector, counted from 0 to B-1.
s(p) is the scalar value (zero or one) of the bit at position p.
S is the scalar value (zero or one) of the MSB, i.e., the bit at position B-1.

The bitwidth B of a vectorized boolean variable restricts the range of a corresponding integer N as follows:

b or B 1011 11

c or C 1100 12

d or D 1101 13

e or E 1110 14

f or F 1111 15

Table 76—Mapping between hexadecimal base and binary base (Continued)

Hexadecimal Binary (bit literal) Numerical value

N s p() 2p⋅
p 0=

B 1–

∑=

N s p() 2p⋅
p 0=

B 2–

∑ S 2B 1–⋅–=

unsigned integer

signed integer

0 N 2B 1–≤ ≤

2B 1–– N 2B 1– 1–≤ ≤

unsigned integer

signed integer
130 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

1

5

10

15

20

25

30

35

40

45

50

55
A vector pin (see Section 9.5) can be used as a pin variable holding a vectorized boolean value. The position of a
bit is related to an index within the pin declaration as follows:

where

i is the index within a vector pin.
LSB is the rightmost index within a vector pin. The corresponding position is 0.
MSB is the leftmost index within a vector pin. The corresponding position is B-1.

Example:

PIN [5:8] my_vector_pin;

10.10.3 Non-assignable boolean value

A non-assignable boolean value shall be described by a symbolic bit literal (see Section 6.7), as shown in Table
77.

A symbolic bit literal or a based literal containing a symbolic bit lieteral can not be assigned to a pin variable as
a boolean value. A symbolic bit literal can be used within a statetable control value, but not within a statetable
data value.

Within the context of a vectorized boolean value, a symbolic bit literal shall be mapped according to the follow-
ing rules:

a) A symbolic bit literal in octal base shall be mapped into three subsequent occurrences of the same bit lit-
eral in binary base.

b) A symbolic bit literal in hexadecimal base shall be mapped into four subsequent occurrences of the same
bit literal in binary base.

bit[index] position comment

my_vector_pin[5] 3 MSB

my_vector_pin[6] 2

my_vector_pin[7] 1

my_vector_pin[8] 0 LSB

Table 77—Symbolic boolean values

symbol logical value drive strength comment

? arbitrary arbitrary use for “don’t care”

* subject to random change arbitrary signal is not monitored

p LSB i– if LSB MSB>()
i LSB– if LSB MSB≤()




=

IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 131

1

5

10

15

20

25

30

35

40

45

50

55
10.11 Boolean operations and operators

10.11.1 Logical operation

The operators for a logical operation shall be defined as shown in Table 78

A boolean expression involving a logical inversion, and, or (see Table 78), nand, nor, exor, exnor (see Table 79)
shall be evaluated according to the rules of boolean algebra ** do we need a reference to a textbook on boolean
algebra here? **.

The result of the evaluation shall be true, false, or unknown.

If an alphabetic bit literal is used as operand, only the logical value, not the drive strength, shall be considered for
evaluation. An undefined logical value within an operand shall be considered unknown.

If a vectorized boolean value is used as operand, the logical value of the operand shall be obtained by applying a
logical or to all bits of the operand.

10.11.2 Bitwise operation

The operators for a bitwise operation shall be defined as shown in Table 79

A bit-wise inversion shall invert each bit of a vectorized boolean value.

Table 78—Logical Operation

Operator Description

! logical inversion

&& logical and

|| logical or

Table 79—Bitwise Operation

Operator Description

~ bit-wise inversion

& bit-wise and

| bit-wise or

^ bit-wise exclusive or (exor)

~& bit-wise and with inversion (nand)

~| bit-wise or with inversion (nor)

~! bit-wise exclusive or with inversion (exnor)
132 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

1

5

10

15

20

25

30

35

40

45

50

55
The operators for bit-wise operations, except bit-wise inversion, can be used as boolean unary or as boolean
binary operators.

A boolean unary operator for the operation and, or, exor, nand, nor, or exnor shall reduce a vectorized boolean
value to a scalar boolean value by applying a logical and, or, exor, nand, nor, or exnor to all bits of the operand.

A boolean binary operator for the operation and, or, exor, nand, nor, or exnor shall apply a logical and, or, exor,
nand, nor, or exnor to each corresponding bit of two vectorized boolean values. The operands shall be LSB-
aligned. If the operands have different bitwidths, the missing bits of the operand with smaller bitwidth shall be
considered undefined. The result of the operation shall be a vectorized boolean value.

A bit-wise operation involving only scalar boolean values or single bit vectorized boolean values as operands
shall be considered equivalent to the corresponding logical operation.

10.11.3 Conditional operation

The symbols used for a conditional operation shall be defined as shown in Table 80

If the boolean sub-expression to the left of the condition operator evaluates true, the boolean sub-expression to
the right of the condition operator shall be evaluated. Otherwise, the boolean expression to the right of the delim-
iter between alternatives shall be evaluated. If multiple conditions and alternatives exist within a boolean expres-
sion, the evaluation shall proceed from the left to the right.

10.11.4 Integer arithmetic operation

The operators for an integer arithmetic operation shall be defined as shown in Table 81.

Table 80—Conditional Operation

Symbol Description

? operator for a condition

: delimiter between alternatives

Table 81—Integer Arithmetic Operation

Operator Description

+ add

- subtract

* multiply

/ divide

% modulus
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 133

1

5

10

15

20

25

30

35

40

45

50

55
A boolean expression involving an integer arithmetic operation with operands represented as integer shall be
evaluated according to the rules of integer arithmetic ** do we need a reference to a textbook on integer arith-
metic here? **.

If an operand is represented as a based literal, the operand shall be converted into an integer according to
Section 10.10.2. This conversion is well-defined, if each bit has the logical value true or false. The MSB of a
based literal shall be interpreted according to the datatype annotation value (see Section 9.7.10) of a pin variable
associated with the based literal.

An operand represented as a bit literal shall be treated in the same way as a single bit binary based literal.

If a bit literal or a bit of a based literal has the logical value unknown, the conversion into an integer is not well-
defined. In this case, an application can optionally perform a partial evaluation of the boolean expression, by
replacing the value unknown with the value true or false.

10.11.5 Shift operation

The operators for a shift operation shall be defined as shown in Table 82

A shift operation shall involve two operands. The LHS operand shall be a vectorized boolean value, represented
by an integer, by a based literal, or, as a trivial case, by a bit literal. The RHS operand shall be an unsigned inte-
ger N in the range between zero and the bitwidth of the LHS operand, specifying the number of positions by
which the bits of the LHS operand are to be shifted.

For shift left, N bits of the LHS operand shall be replaced with the logical value unknown, starting from the LSB.
For shift right, N bits of the LHS operand shall be replaced with the logical value unknown, starting from the
MSB.

10.11.6 Comparison operation

The operators for a comparison operation shall be defined as shown in Table 83

Table 82—Shift Operation

Operator Description

<< shift left

>> shift right

Table 83—Comparison Operation

Operator Description

== equal

!= non equal

> greater

< less
134 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

1

5

10

15

20

25

30

35

40

45

50

55
A comparison involving operands represented as integer shall be evaluated according to the rules of integer
arithmetic ** do we need a reference to a textbook on integer arithmetic here? **.

If an operand is represented as a based literal, the operand shall be converted into an integer according to
Section 10.10.2. This conversion is well-defined, if each bit has the logical value true or false. The MSB of a
based literal shall be interpreted according to the datatype annotation value (see Section 9.7.10) of a pin variable
associated with the based literal.

If a bit of a based literal has the logical value unknown, the conversion into an integer is not well-defined. In this
case, an application can optionally perform a partial comparison, by replacing the value unknown with the value
true or false.

If the operands are integers or the conversion from based literal to integer is well-defined, a comparison shall
evaluate true or false. If the conversion from based literal to integer is not well-defined, a comparison can evalu-
ate unknown.

A comparison between scalar boolean values or single bit vectorized boolean values shall consider both the logi-
cal value and the drive strength as criterion for comparison

The equal comparison considering drive strength shall be evaluated according to the following Table 84

The non-equal comparison shall evaluate true, if the equal comparison evaluates false, and vice-versa.

Note: To compare scalar boolean values or single bit vectorized boolean values considering the logical value
only, the exor operation can be used instead of the non-equal comparison, and the exnor operation can be used
instead of the equal comparison.

>= greater or equal

<= lesser or equal

Table 84—Equal comparison considering drive strength

logical value
(true, false, unknown, or undefined)

drive strength
(strong, weak, zero, or undefined) result

same for both operands same for both operands true

same for both operands different for each operand false

different for each operand arbitrary false

Table 83—Comparison Operation

Operator Description
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 135

1

5

10

15

20

25

30

35

40

45

50

55
The greater comparison considering drive strength shall be evaluated according to the following Table 85

The lesser comparision shall be evaluated in the same way as the greater comparison, when the LHS operand and
the RHS operand switch places.

The greater-or-equal comparison shall be evaluated as logical or between greater comparison and equal com-
parison.

The lesser-or-equal comparison shall be evaluated as logical or between lesser comparison and equal compari-
son.

10.11.7 Operator priorities

The binding priority of operations in a boolean expression shall be from the strongest to the weakest in the fol-
lowing order:

a) operation enclosed by parentheses
b) boolean unary (!, ~, &, ~&, |, ~|, ^, ~^)
c) exor (^), exnor (~^), comparison (>, <, >=, <=, ==, !=), shift (<<, >>)
d) and (&, &&), nand (~&), multiply (*), divide (/), modulus (%)
e) or (|, ||), nor (~|), add (+), subtract (-)
f) operator and delimiter for conditional operation (?, :)

When operations of the same binding priority are subsequently encountered in a boolean expression, the evalua-
tion shall proceed from the left to the right.

10.12 Vector expression

A vector expression shall be defined as shown in Syntax 73.

Table 85—Greater comparison considering drive strength

logical value
LHS operand

logical value
RHS operand drive strength result

true false arbitrary true

true unknown arbitrary unknown

false true arbitrary false

false unknown arbitrary false

unknown true arbitrary unknown

unknown false arbitrary unknown

unknown unknown arbitrary unknown

true true same for both operands false

false false same for both operands false

true true different for each operand unknown

false false different for each operand unknown
136 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

1

5

10

15

20

25

30

35

40

45

50

55
The purpose of a vector expression to specify a sequence of events. In a static application context, the vector
expression shall be evaluated against a proposed sequence of events. In a dynamic application context, a vector
expression shall be evaluated against a monitored sequence of events.

A vector expression shall evaluate true, when the specified sequence of events is satisfied or detected, i.e., the
vector expression matches a proposed or monitored sequence of events. The true evaluation of a vector expres-
sion constitutes an event by itself, which can be used as a trigger within the context of a behavior statement (see
Section 10.4).

10.13 Operators for event specification

The term event is used synonymously to contents of an arbitrary vector expression.

10.13.1 Specification of a single event

An edge literal (see Section 6.9) shall be used as a vector unary operator to specify a single event. The operand
shall be a boolean expression. A single event on the operand shall be interpreted according to the following Table
86.

vector_expression ::=
(vector_expression)

| vector_unary boolean_expression
| vector_expression vector_binary vector_expression
| boolean_expression ? vector_expression :

{ boolean_expression ? vector_expression : }
vector_expression

| boolean_expression control_and vector_expression
| vector_expression control_and boolean_expression
| vector_expression_macro

vector_unary ::=
edge_literal

vector_binary ::=
& | && | | | || | -> | ~> | <-> | <~> | &> | <&>

control_and ::=
& | &&

Syntax 73—Vector expression

Table 86—Specification of a single event

row edge literal event on operand

1 first_bit_literal second_bit_literal value before is first_bit_literal, value after is second_bit_literal

2 first_based_literal second_based_literal value before is first_based_literal, value after is second_based_literal

3 ?? value before and after the event is arbitrary

4 ?* state of operand is random after the event

5 *? state of operand is random before the event

6 ?! operand changes from arbitrary value to arbitrary different value

7 ?~ every binary digit of the operand changes from arbitrary value to
arbitrary different value
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 137

1

5

10

15

20

25

30

35

40

45

50

55
An edge literal consisting of two consecutive alphanumerical bit literals (row 1) can be used for a scalar operand.
An edge literal consisting of two consecutive based literals (row 2) can be used for a scalar operand or for a vec-
torized operand, as long as the bitwidth of the operator is compatible ith the bitwidth of the operand. An edge lit-
eral consisting of two consecutive symbolic bit literals (row 3, 4, 5) can be used for either a scalar or a vectorized
operand. A symbolic edge literal (row 6, 7, 8) can be used for either a scalar or a vectorized operand.

An edge literal (row 8 in particular) can specify the same value before and after the event. Such a specification
shall be interpreted as event by exclusion, i.e., an event happens, but not on the operand.

An arbitrary value shall be comprised within the set of applicable values for the operand, i.e., a scalar operand or
a binary digit of a vectorized operand can have a value specified by an alphanumerical bit literal, an operand with
datatype unsigned can have an arbitrary unsigned integer value within the range of specified bitwidth, an oper-
and with datatype signed can have an arbitrary signed integer value within the range of specified bitwidth.

A random value shall be interpreted as an arbitrary value subjected to random change. In a dynamic application
context, an event on a variable is not monitored while the variable is in random value state.

A single event can be described by a timing diagram as illustrated in the following figure 14.

Figure 14—Timing diagrams for single events

The specification of a single event by itself does not imply any transition time. A single event can happen instan-
taneously. The transition time in figure 14 is only for the purpose of illustrating the difference between ?? and ?!.

8 ?- operand does not change its value

Table 86—Specification of a single event

row edge literal event on operand

vector unary operator corresponding timing diagram

01

‘d5‘d9

??

?*

*?

?!

?-

event occurence time

value=5 value=9
138 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

1

5

10

15

20

25

30

35

40

45

50

55
The operator ?? shall be considered neutral operator, since a specified single event involving ?? on an arbitrary
operand always matches a proposed single event on any operand. A single event involving the neutral operator
shall be considered neutral single event.

10.13.2 Temporal order within an event sequence

A vector binary operator shall be used to specify a temporal order between events, thus establishing an event
sequence. Each operand shall be a vector expression. The operation result shall be another vector expression.

The vector expression shall be evaluated against a proposed or monitored event sequence. The proposed or mon-
itored event sequence shall be established as follows:

a) A primary event sequence shall be established by representing in temporal order all single events on a set
of pin variables. The set of pin variables shall be specified either by the scope annotation (see
Section 9.7.18) within a pin declaration or by the monitor annotation (see Section 9.14.10) within a vec-
tor declaration. The elapsed time between subsequently occuring single events can vary between arbi-
trarily large and arbitrarily small values.

Note: In a dynamic application context, “all” single events can be eventually reduced to “the N latest relevant” single events,
where N is large enough to contain the specified vector expression.

b) The single events on pin variables involved in the vector expression shall be reduced to single events on
boolean expressions wherein the pin variables are involved. Other single events on these pin variables
shall be disregarded. The single events on pin variables not involved in the vector expression shall be not
be reduced.

Example:

A set of pin variables applicable for two vector expressions v1and v2 is A, B, C, D.
The vector expression v1 reads (01 (A&B) -> 10 (B|C)).
The vector expression v2 reads (1? A -> 10 (C & ! D)).

Therefore, the primary event sequence represents the single events on A, B, C and D.
The reduced event sequence for evaluation of v1 represents the single events on (A&B), (B|C) and D.
The reduced event sequence for evaluation of v2 represents the single events on A, B and (C & ! D).
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 139

1

5

10

15

20

25

30

35

40

45

50

55
The following picture shows sample event sequences.

The temporal order concept does not specify or imply a particular time interval between consecutive single
event. Mathematically, each time interval shall be greater than zero, but it can be arbitrarily close to zero. Two
single events can occur simultaneously, i.e., at the same time, either by implication or by co-incidence.

The following rules shall apply for the temporal order of events.

a) A value change of a boolean expression and a single event on a pin variable causing this value change
shall be considered simultaneous by implication.

b) A value change of a vectorized pin variable and a corresponding value change of any part of the vector-
ized pin variable shall be considered simultaneous by implication.

c) Within the context of a behavior statement, the assignment of a boolean expression to a pin variable as a
consequence of a value change of the boolean expression shall trigger an advancement in time.

d) Within the context of a control statement as part of a behavior statement, the assignment of a boolean
expression to a pin variable as a consequence of a value change of a control expression shall trigger an
advancement in time.

e) Single events on arbitrary independent pin variables can occur simultaneously by co-incidence.
f) In the context of a vector statement, all pin variables shall be considered independent, even though a

causal dependency between some pin variables can exist in the context of a behavior statement.

It is possible that the application does not support a monitor capable of detecting simultaneously occuring events
by co-incidence. In this case, the temporal order of such events is not predictable.

Example:

A behavior statement contains the boolean assignment Z = A&B.
The single event (01 (A&B)) is caused by the single event (01 A).
The single events (01 (A&B)) and (01 A) are considered to occur simultaneously by implication.
Within the context of the behavior statement, the single event (01 Z) is considered to occur after the single event
(01 (A&B)).
Outside the context of the behavior statement, the variables A and Z are considered independent. The numerical

primary event sequence A

B

C

D

reduced event sequence
A&B

B|C

D

reduced event sequence
A

B

C&!D

for evaluation of v1

for evaluation of v2
140 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

1

5

10

15

20

25

30

35

40

45

50

55
value of the measured propagation delay from A to Z could be greater than zero, lesser than zero, or zero. There-
fore, the single events (01 A) and (01 Z) could occur simultaneously by co-incidence.

10.13.3 Canonical specification of a sequence of events

The operators in the following Table 87 shall be used for a canonical specification of an event sequence.

The semantic meaning of the operators is furthermore detailed as follows:

The immediately followed by operator applied to a sequence of single events shall specify that the latest single
event within the LHS vector expression immediately precedes the earliest single event within the RHS vector
expression.

The eventually followed by operator applied to a sequence of single events shall specify that the latest single
event within the LHS vector expression occurs earlier than the earliest single event within the RHS vector
expression.

The simultaneous occurence operator applied to a sequence of single events shall specify that each Nth latest sin-
gle event within the LHS vector expression occurs at the same time as each Nth latest single event within the
RHS vector expression.

This rule can be formulated as follows:

a) Product involving immediately followed by and simultaneously occuring operator
(vM

1 -> vN
1) & (vM

2 -> vN
2) = (vM

1 & vM
2) -> (vN

1 & vN
2)

where vM
i and vN

i, respectively, are vector expressions describing a sequence of M single events each and N sin-
gle events each, respectively, ordered by the immediately followed by operator.

If the LHS and RHS vector expressions comprise a different number of subsequently occuring single events, the
shorter vector expression shall be left-extended with neutral single events.

b) Product involving sequences of events with different length
(vM

1 -> vN
1) & vN

2 = vM
1 -> (vN

1 & vN
2)

A set of mathematical rules for evaluation of a compound vector expression shall be established, wherein the the
symbols vi represent vector expressions within the compound vector expression.

Table 87—Canonical specification of an event

symbol operator name explanation

-> immediately followed by LHS event occurs before RHS event,
no event can occur in-between

~> eventually followed by LHS event occurs before RHS event,
an arbitrary number of events can occur in-between

&& or & simultaneous occurence LHS event and RHS event occur at the same time

|| or | alternative occurence Either LHS event or RHS event occur

&> closely followed by LHS event occurs immediately before RHS event,
or both events occur at the same time
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 141

1

5

10

15

20

25

30

35

40

45

50

55
c) Associativity for immediately followed by operator
v1 -> v2 -> v3 = (v1 -> v2) -> v3 = v1 -> (v2 -> v3)

d) Associativity for eventually followed by operator
v1 ~> v2 ~> v3 = (v1 ~> v2) ~> v3 = v1 ~> (v2 ~> v3)

e) Mixed associativity for immediately followed by and eventually followed by operator
v1 -> v2 ~> v3 = (v1 -> v2) ~> v3 = v1 -> (v2 ~> v3)
v1 ~> v2 -> v3 = (v1 ~> v2) -> v3 = v1 ~> (v2 -> v3)

f) Assocativity for simultaneous occurence operator
v1 & v2 & v3 = (v1 & v2) & v3 = v1 & (v2 & v3)

g) Commutativity for simultaneous occurence operator
v1 & v2 = v2 & v1

h) Reduction rule for simultaneous occurence operator
v1 & v1 = v1

i) Assocativity for alternative occurence operator
v1 | v2 | v3 = (v1 | v2) | v3 = v1 | (v2 | v3)

j) Commutativity for alternative occurence operator
v1 | v2 = v2 | v1

k) Reduction rule for alternative occurence operator
v1 | v1 = v1

l) Distributivity between immediately followed by operator and alternative occurence operator
(v1 | v2) -> v3 = (v1 -> v3) | (v2 -> v3)
v1 -> (v2 | v3) = (v1 -> v2) | (v1 -> v3)

m) Distributivity between eventually followed by operator and alternative occurence operator
(v1 | v2) ~> v3 = (v1 ~> v3) | (v2 ~> v3)
v1 ~> (v2 | v3) = (v1 ~> v2) | (v1 ~> v3)

n) Distributivity between simultaneous occurence operator and alternative occurence operator
(v1 | v2) & v3 = (v1 & v3) | (v2 & v3)

The closely followed by operator shall be mathematically defined as follows:

o) v1 &> v2 = (v1 & v2) | (v1 -> v2)

Therefore, the closely followed by operator applied to a sequence of single events shall specify that the latest sin-
gle event within the LHS vector expression immediately precedes the earliest single event within the RHS vector
expression, or, each Nth latest single event within the LHS vector expression occurs at the same time as each Nth
latest single event within the RHS vector expression.

A general vector expression can be mathematically formulated as a canonical “sum of products”.

where vs is a vector expression in “sum” form applying the alternative occurence operator to vector expressions
vp

j, and each vp
j is a vector expression in “product” form applying the operators immediately followed by, even-

tually followed by, or simultaneous occurence to single events vj(i). The usage of the symbols opj(i), Π and Σ for
vector binary operators is only for mathematical representation, it is not a syntax feature for a vector expression.
Also, the first operator opj(1) is irrelevant when converting the mathematical representation into a vector expres-
sion.

vj
p

vj 1()...opj i()vj i()...opj m()vj m() opj i()vj i()

i 1=

mj

∏= =

vs v1
p...|...vj

p...|...vn
p vj

p

j 1=

n

∑= =

opj(i) = -> | ~> | &
142 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

1

5

10

15

20

25

30

35

40

45

50

55
Example:

10.13.4 Specification of a completely permutable event

Permutation operations shall be defined for events immediately followed by each other, for events eventually fol-
lowed by each other, and for events closely followed by each otheer. The operands, i.e., arbitrary vector expres-
sions vi, shall be subjected to alternative event sequences with completely permutable temporal order.

The symbols for permutation operators are shown in the following Table 88.

The permutation operator for two events immediately followed by each other shall be mathematically defined as
follows:

p) v1 <-> v2 = (v1 -> v2) | (v2 -> v1)

The permutation operator for two events eventually followed by each other shall be mathematically defined as
follows:

q) v1 <~> v2 = (v1 ~> v2) | (v2 ~> v1)

The permutation operator for two events closely followed by each other shall be mathematically defined as fol-
lows:

r) v1 <&> v2 = (v1 &> v2) | (v2 &> v1)

Table 88—Specification of a completely permutable event

symbol operator name explanation

<-> permutation of events immediately fol-
lowed by each other

LHS event immediately followed by RHS event
or
RHS event immediately followed by LHS event

<~> permutation of events eventually fol-
lowed by each other

LHS event eventually followed by RHS event
or
RHS event eventually followed by LHS event

<&> permutation of events closely followed
by each other

LHS event immediately followed by RHS event
or
RHS event eventually followed by LHS event
or
LHS event and RHS event occur simultaneously

v1
p op1 i()v1 i()

i 1=

m1

∏=

v2
p op2 i()v2 i()

i 1=

m2

∏=

op1(2) = -> op1(3) = ->m1 = 3 op1(1) = nil

v1(1) = (01 A) v1(2) = (10 A) v1(3) = (10 B)

op2(2) = -> op2(3) = ->m2 = 3 op2(1) = nil
v2(1) = (01 B) v2(2) = (10 B) v2(3) = (10 A)

v
s

vj
p

j 1=

2

∑ (01 A) -> (10 A) -> (10 B) | (01 B) -> (10 B) - > (10 A)= =
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 143

1

5

10

15

20

25

30

35

40

45

50

55
The definition of a permutation operator for N events (N>2) shall be extended for N+1 events in the following
way:

If the operator <-> is globally replaced by <~> or <&>, respectively, the operator -> shall be globally replaced by
~> or &>, respectively.

A vector expression with N operands vk subjected to a permutation operator (i.e., <-> or <~> or <&>) is equiva-
lent to a vector expression with N! sum terms wherein each sum term represents a particular permutation of vk.
Each sum term consists of N product terms, i.e., a sequence of N events vj(i) subjected to a corresponding fol-
lowed by operator (i.e., -> or ~> or &>). There are N! such sequences of events. The (N+1)th operand can be
inserted in N+1 places within each sum term. Therefore a vector expression with N+1 operands vk subjected to a
permutation operator is equivalent to a vector expression with (N+1)! sum terms, each of which consists of N+1
product terms.

As each permutation operator is defined for N=2 events, the definition can be immediatley extended to N=3
events.

Permutation of 3 immediately followed events:

v1 <-> v2 <-> v3 =
(v1 -> v2 -> v3) | (v1 -> v3 -> v2) | (v3 -> v1 -> v2) | (v2 -> v1 -> v3) | (v2 -> v3 -> v1) | (v3 -> v2 -> v1)

Permutation of 3 eventually followed events:

v1 <~> v2 <~> v3 =
(v1 ~> v2 ~> v3) | (v1 ~> v3 ~> v2) | (v3 ~> v1 ~> v2) | (v2 ~> v1 ~> v3) | (v2 ~> v3 ~> v1) | (v3 ~> v2 ~> v1)

Permutation of 3 closely followed events:

v1 <&> v2 <&> v3 =
(v1 &>v2 &>v3) | (v1 &>v3 &>v2) | (v3 &>v1 &>v2) | (v2 &>v1 &>v3) | (v2 &>v3 &>v1) | (v3 &>v2 &>v1)

From N=3 events, the definition can be extended to N=4 events, and so forth.

10.13.5 Specification of a conditional event

A conditional event shall be defined by a condition operator with a vector expression and a boolean expression as
operands.

<->vk

k 1=

N 1+

∏ ->vj i()

i 1=

k 1–

∏ 
 
 

->vj N 1+() ->vj i()

i k=

N

∏ 
 
 

k 1=

N 1+

∑
j 1=

N!

∑ vj
p K 1+()

j 1=

N 1+()!

∑= =

<->vk

k 1=

N

∏ ->vj i()

i 1=

N

∏
j 1=

N!

∑ vj
p N()

j 1=

N!

∑= = vj
p N() ->vj i()

i 1=

N

∏=

vj
p N 1+() ->vj i()

i 1=

N 1+

∏=

with

with

vj i() vk()⊂where
144 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

1

5

10

15

20

25

30

35

40

45

50

55
The symbols for condition operators are shown in the following Table 88.

A conditional event involving the control-and operator, an arbitrary vector expression v and an arbitrary boolean
expression b shall be mathematically defined as follows:

s) v & b = (*1 b) -> v -> (1* b)

The vector expression v shall be evaluated while b is true. Commutativity shall apply for the operands v and b.

t) v & b = b & v

A conditional event involving the condition operator, the delimiter between alternatives, arbitrary vector expres-
sions v1 and v2 and an arbitrary boolean expression b shall be mathematically defined as follows:

u) b ? v1 : v2 = v1 & b | v2 & ! b

If the boolean expression to the left of the condition operator evaluates true, the vector expression to the right of
the condition operator shall be evaluated. Otherwise, the boolean expression to the right of the delimiter between
alternatives shall be evaluated. If multiple conditions and alternatives exist, the evaluation shall proceed from the
left to the right.

10.13.6 Operator priorities

The binding priority of operations in a vector expression shall be from the strongest to the weakest in the follow-
ing order:

a) operation enclosed by parentheses
b) vector unary , i.e., edge literal
c) permutation operators (<->, <~>, <&>)
d) and operator (&, &&), to be interpreted as simultaneous occurence or as control-and
e) followed-by operators (->, ~>, &>)
f) or operator (|, ||), to be interpreted as alternative
g) operator and delimiter for conditional operation (?, :)

When operations of the same binding priority are subsequently encountered in a boolean expression, the evalua-
tion shall proceed from the left to the right.

Table 89—Specification a conditional event

symbol operator name comment

&&
or
&

control-and operator overloaded symbol, also used for logical and (see
Table 78) and bitwise and (Table 79)

? condition operator see also Table 80

: delimiter between alternatives see also Table 80
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 145

1

5

10

15

20

25

30

35

40

45

50

55
10.14 Predefined PRIMITIVE

This section defines the predefined primitive declarations, wherein the prefix “ALF_” is reserved for the name of
such primitives.

10.14.1 Predefined PRIMITIVE ALF_BUF

The primitive ALF_BUF shall be defined as shown in .

10.14.2 Predefined PRIMITIVE ALF_NOT

The primitive ALF_NOT shall be defined as shown in .

10.14.3 Predefined PRIMITIVE ALF_AND

The primitive ALF_AND shall be defined as shown in .

10.14.4 Predefined PRIMITIVE ALF_NAND

The primitive ALF_NAND shall be defined as shown in .

10.14.5 Predefined PRIMITIVE ALF_OR

The primitive ALF_OR shall be defined as shown in .

PRIMITIVE ALF_BUF {
PIN in { DIRECTION = input; }
PIN [1:<bitwidth>] out { DIRECTION = output; }
GROUP index { 1 : <bitwidth> }
FUNCTION { BEHAVIOR { out[index] = in ; } }

}

Semantics 82—Predefined PRIMITIVE ALF_BUF

PRIMITIVE ALF_NOT {
PIN in { DIRECTION = input; }
PIN [1:<bitwidth>] out { DIRECTION = output; }
GROUP index { 1 : <bitwidth> }
FUNCTION { BEHAVIOR { out[index] = ! in ; } }

}

Semantics 83—Predefined PRIMITIVE ALF_NOT

PRIMITIVE ALF_AND {
PIN out { DIRECTION = output; }
PIN [1:<bitwidth>] in { DIRECTION = input; }
FUNCTION { BEHAVIOR { out = & in ; } }

}

Semantics 84—Predefined PRIMITIVE ALF_AND
146 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

1

5

10

15

20

25

30

35

40

45

50

55
10.14.6 Predefined PRIMITIVE ALF_NOR

The primitive ALF_NOR shall be defined as shown in .

10.14.7 Predefined PRIMITIVE ALF_XOR

The primitive ALF_XOR shall be defined as shown in .

10.14.8 Predefined PRIMITIVE ALF_XNOR

The primitive ALF_XNOR shall be defined as shown in .

10.14.9 Predefined PRIMITIVE ALF_BUFIF1

The primitive ALF_BUFIF1 shall be defined as shown in .

10.14.10 Predefined PRIMITIVE ALF_BUFIF0

The primitive ALF_BUFIF0 shall be defined as shown in .

PRIMITIVE ALF_NAND {
PIN out { DIRECTION = output; }
PIN [1:<bitwidth>] in { DIRECTION = input; }
FUNCTION { BEHAVIOR { out = ~& in ; } }

}

Semantics 85—Predefined PRIMITIVE ALF_NAND

PRIMITIVE ALF_OR {
PIN out { DIRECTION = output; }
PIN [1:<bitwidth>] in { DIRECTION = input; }
FUNCTION { BEHAVIOR { out = | in ; } }

}

Semantics 86—Predefined PRIMITIVE ALF_OR

PRIMITIVE ALF_NOR {
PIN out { DIRECTION = output; }
PIN [1:<bitwidth>] in { DIRECTION = input; }
FUNCTION { BEHAVIOR { out = ~| in ; } }

}

Semantics 87—Predefined PRIMITIVE ALF_NOR

PRIMITIVE ALF_XOR {
PIN out { DIRECTION = output; }
PIN [1:<bitwidth>] in { DIRECTION = input; }
FUNCTION { BEHAVIOR { out = ^ in ; } }

}

Semantics 88—Predefined PRIMITIVE ALF_XOR
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 147

1

5

10

15

20

25

30

35

40

45

50

55
10.14.11 Predefined PRIMITIVE ALF_NOTIF1

The primitive ALF_NOTIF1 shall be defined as shown in .

10.14.12 Predefined PRIMITIVE ALF_NOTFIF0

The primitive ALF_NOTIF0 shall be defined as shown in .

PRIMITIVE ALF_XNOR {
PIN out { DIRECTION = output; }
PIN [1:<bitwidth>] in { DIRECTION = input; }
FUNCTION { BEHAVIOR { out = ~^ in ; } }

}

Semantics 89—Predefined PRIMITIVE ALF_XNOR

PRIMITIVE ALF_BUFIF1 {
PIN out { DIRECTION = output; }
PIN in { DIRECTION = input; }
PIN enable { DIRECTION = input; }
FUNCTION { BEHAVIOR { out = (enable)? in : ‘bZ ; } }

}

Semantics 90—Predefined PRIMITIVE ALF_BUFIF1

PRIMITIVE ALF_BUFIF0 {
PIN out { DIRECTION = output; }
PIN in { DIRECTION = input; }
PIN enable { DIRECTION = input; }
FUNCTION { BEHAVIOR { out = (! enable)? in : ‘bZ ; } }

}

Semantics 91—Predefined PRIMITIVE ALF_BUFIF0

PRIMITIVE ALF_NOTIF1 {
PIN out { DIRECTION = output; }
PIN in { DIRECTION = input; }
PIN enable { DIRECTION = input; }
FUNCTION { BEHAVIOR { out = (enable)? ! in : ‘bZ ; } }

}

Semantics 92—Predefined PRIMITIVE ALF_NOTIF1

PRIMITIVE ALF_NOTIF0 {
PIN out { DIRECTION = output; }
PIN in { DIRECTION = input; }
PIN enable { DIRECTION = input; }
FUNCTION { BEHAVIOR { out = (! enable)? ! in : ‘bZ ; } }

}

Semantics 93—Predefined PRIMITIVE ALF_NOTIF0
148 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

1

5

10

15

20

25

30

35

40

45

50

55
10.14.13 Predefined PRIMITIVE ALF_MUX

The primitive ALF_MUX shall be defined as shown in .

10.14.14 Predefined PRIMITIVE ALF_LATCH

The primitive ALF_LATCH shall be defined as shown in .

10.14.15 Predefined PRIMITIVE ALF_FLIPFLOP

The primitive ALF_FLIPFLOP shall be defined as shown in .

PRIMITIVE ALF_MUX {
PIN Q { DIRECTION = output; }
PIN [1:0] D { DIRECTION = input; }
PIN S { DIRECTION = input; }
FUNCTION {

BEHAVIOR {
Q = ! S & D[0] | S & D[1] | D[0] & D[1] ;

}
}

}

Semantics 94—Predefined PRIMITIVE ALF_MUX

PRIMITIVE ALF_LATCH {
PIN Q { DIRECTION = output; }
PIN QN { DIRECTION = output; }
PIN D { DIRECTION = input; }
PIN ENABLE { DIRECTION = input; }
PIN CLEAR { DIRECTION = input; }
PIN SET { DIRECTION = input; }
PIN Q_CONFLICT { DIRECTION = input; }
PIN QN_CONFLICT { DIRECTION = input; }
FUNCTION {

BEHAVIOR {
@ (CLEAR && SET) {

Q = Q_CONFLICT ; QN = QN_CONFLICT ;
} : (CLEAR) {

Q = 0 ; QN = 1 ;
} : (SET) {

Q = 1 ; QN = 0 ;
} : (ENABLE) {

Q = D ; QN = ! D ;
}

}
}

}

Semantics 95—Predefined PRIMITIVE ALF_LATCH
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 149

1

5

10

15

20

25

30

35

40

45

50

55
10.15 WIRE instantiation

A wire instantiation shall be defined as shown in Syntax 74.

The purpose of a wire instantiation is to describe an electrical circuit for characterization or test. A reference of
the electrical circuit shall be given by a wire declaration (see Section 9.9). A cell, subjected to characterization or
test, can be connected with an instance of the electrical circuit.

The mapping between the wire reference and the wire instance shall be established either by order or by name.

In case of mapping by order, a pin value (see Section 7.9) shall be associated with the wire instance. A corre-
sponding pin variable associated with the wire reference shall be infered by the order of node declarations within
the wire reference.

If mapping by order is not possible without ambiguity, mapping shall be established by name, using pin assign-
ment (see Section 7.10). The left-hand side of the pin assignment shall represent the name of a node associated

PRIMITIVE ALF_FLIPFLOP {
PIN Q { DIRECTION = output; }
PIN QN { DIRECTION = output; }
PIN D { DIRECTION = input; }
PIN CLOCK { DIRECTION = input; }
PIN CLEAR { DIRECTION = input; }
PIN SET { DIRECTION = input; }
PIN Q_CONFLICT { DIRECTION = input; }
PIN QN_CONFLICT { DIRECTION = input; }
FUNCTION {

BEHAVIOR {
@ (CLEAR && SET) {

Q = Q_CONFLICT ; QN = QN_CONFLICT ;
} : (CLEAR) {

Q = 0 ; QN = 1 ;
} : (SET) {

Q = 1 ; QN = 0 ;
} : (01 CLOCK) {

Q = D ; QN = ! D ;
}

}
}

}

Semantics 96—Predefined PRIMITIVE ALF_FLIPFLOP

wire_instantiation ::=
wire_reference_identifier wire_instance_identifier ;

| wire_reference_identifier wire_instance_identifier { { wire_instance_pin_value } }
| wire_reference_identifier wire_instance_identifier { { wire_instance_pin_assignment } }
| wire_instantiation_template_instantiation

wire_instance_pin_assignment ::=
wire_reference_pin_variable = wire_instance_pin_value ;

Syntax 74—WIRE instantiation
150 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

1

5

10

15

20

25

30

35

40

45

50

55
with the wire reference. The right-hand side of the pin assignment shall represent a pin value associated with the
wire instance.

10.16 Geometric model

A geometric model shall be defined as shown in Syntax 75.

A geometric model shall describe the form of a physical object. A geometric model can appear in the context of
a pattern (see Section 9.32) or a region (see Section 9.34).

The numbers in the point statement shall be measured in units of distance (see Section 11.19.9).

The parent object of the geometric model can contain a geometric transformation (see Section 10.18) applicable
to the geometric model.

Table 90 specifiies the meaning of predefined geometric model identifiers.

The meaning of predefined geometric model identifiers is further illustrated in Figure 15.

geometric_model ::=
nonescaped_identifier [geometric_model_identifier]

{ geometric_model_item { geometric_model_item } }
| geometric_model_template_instantiation

geometric_model_item ::=
POINT_TO_POINT_single_value_annotation

| coordinates
coordinates ::=

COORDINATES { point { point } }
point ::=

x_number y_number

Syntax 75—Geometric model

Table 90—Geometric model identifiers

Identifier Description

DOT Describes one point.

POLYLINE Defined by N>1 directly connected points, forming an open object.

RING Defined by N>1 directly connected points, forming a closed object,
i.e., the last point is connected with first point. The object occupies
the boundary of the enclosed space.

POLYGON Defined by N>1 connected points, forming a closed object, i.e., the last
point is connected with first point. The object occupies the entire
enclosed space.
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 151

1

5

10

15

20

25

30

35

40

45

50

55
Figure 15—Illustration of geometric models

A point_to_point annotation shall be defined as shown in Semantics 97.

The point-to-point annotation applies for a polyline, a ring or a polygon. The annotation value specifies, how
subsequent points in the coordinates statement are to be connected.

The meaning of the annotation value direct is illustrated in Figure 16. It specifies the shortest possible connection
between points.

Figure 16—Illustration of direct point-to-point connection

KEYWORD POINT_TO_POINT = single_value_annotation {
CONTEXT { POLYLINE RING POLYGON }
VALUETYPE = identifier;
VALUES { direct manhattan }
DEFAULT = direct;

}

Semantics 97—POINT_TO_POINT annotation

POLYLINE RING POLYGON

.

.
.

.

.

DOT (5 dots)

9

8

7

6

5

4

3

2

1

-5 -4 -3 -2 -1 0 1 2 3 4 5

x

x

direct connection

direct connection

X-axis

Y-axis

direct connection

x

x

direct connection
from (-1/8) to (-1/5)

from (-1/5) to (3/5)

from (-3/5) to (3/8)

from (3/8) to (-1/8)
152 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

1

5

10

15

20

25

30

35

40

45

50

55
The meaning of the annotation value manhattan is illustrated in Figure 17. It specifies a connection between
points by moving in the x-direction first and then moving in the y-direction. This enables a non-redundant speci-
fication of a rectilinear object using N/2 points instead of N points.

Figure 17—Illustration of manhattan point-to-point connection

Example 1

POLYGON {
POINT_TO_POINT = direct;
COORDINATES { -1 5 3 5 3 8 -1 8 }

}

Example 2

POLYGON {
POINT_TO_POINT = manhattan;
COORDINATES { -1 5 3 8 }

}

Both statements describe the same rectangle.

10.17 Predefined geometric models using TEMPLATE

A template declaration (see Section 8.9) can be used to describe particular geometric models. This section
describes predefined geometric models.

10.17.1 Predefined TEMPLATE RECTANGLE

The template rectangle shall be predefined as shown in Semantics 98.

9

8

7

6

5

4

3

2

1

-5 -4 -3 -2 -1 0 1 2 3 4 5

x

x

manhattan connection from (-1/5) to (3/8)

manhattan connection from (-3/8) to (-1/5)

X-axis

Y-axis
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 153

1

5

10

15

20

25

30

35

40

45

50

55
10.17.2 Predefined TEMPLATE LINE

The template line shall be predefined as shown in Semantics 99.

10.18 Geometric transformation

A geometric transformation shall be defined as shown in Syntax 76.

A geometric model (see Section 10.16) shall be subjected to a geometric transformation if both statements
appear in the same context, i.e., they have the same parent.

The following rules shall apply for the geometric transformations shift, rotate and flip:

— A number associated with a geometric transformation shall be measured in units of distance (see
Section 11.19.9).

— A geometric transformation shall apply to the origin of a geometric model. Therefore, the result of subse-
quent transformations is independent of the order in which each individual transformation is applied.

TEMPLATE RECTANGLE {
POLYGON {

POINT_TO_POINT = manhattan;
COORDINATES { <left> <bottom> <right> <top> }

}
}

Semantics 98—Predefined TEMPLATE RECTANGLE

TEMPLATE LINE {
POLYLINE {

POINT_TO_POINT = direct;
COORDINATES { <x_start> <y_start> <x_end> <y_end> }

}
}

Semantics 99—Predefined TEMPLATE LINE

geometric_transformation ::=
shift

| rotate
| flip
| repeat

shift ::=
SHIFT { x_number y_number }

rotate ::=
ROTATE = number ;

flip ::=
FLIP = number ;

repeat ::=
REPEAT [= unsigned_integer] { geometric_transformation { geometric_transformation } }

Syntax 76—Geometric transformation
154 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

1

5

10

15

20

25

30

35

40

45

50

55
— The direction of the transformation shall be from the geometric model to the actual object.

The shift statement shall define the horizontal and vertical offset measured between the coordinates within a
declared geometric model and the actual coordinates of an object.

The rotate statement shall define the angle of rotation in degrees measured between the orientation of a defined
geometric model and the actual orientation of an object. The angle shall be measured in counter-clockwise direc-
tion, specified by a number between 0 and 360.

The flip statement shall define a mirror operation. The number shall represent the angle of the movement of the
object in degrees. By definition, the movement is orthogonal to the mirror axis. Therefore, the number 0 speci-
fies flip in horizontal direction, therefore the axis is vertical, whereas the number 90 specifies flip in vertical
direction, therefore the axis is horizontal.

The geometric transformations flip, rotate, and shift are further illustrated in Figure 18.

Figure 18—Illustration of FLIP, ROTATE, and SHIFT

The repeat statement shall describe the replication of an object. The unsigned integer shall define the total num-
ber of replications, including the original instance. Therefore, the number 1 means that the object appears once.
A repeat statement without unsigned integer shall indicate an arbitrary number of replications.

Examples

The following example replicates an object three times along the horizontal axis in a distance of 7 units.

REPEAT = 3 {
SHIFT { 7 0 }

}

The following example replicates an object five times along a 45-degree axis in a distance of 4 units.

REPEAT = 5 {
SHIFT { 4 4 }

}

The following example replicates an object two times along the horizontal axis and four times along the vertical
axis in a horizontal distance of 5 units and a vertical distance of 6 units.

SHIFTROTATEFLIP

legend: origin of the object
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 155

1

5

10

15

20

25

30

35

40

45

50

55
REPEAT = 2 {
SHIFT { 5 0 }
REPEAT = 4 {

SHIFT { 0 6 }
}

}

NOTE—The order of nested REPEAT statements does not matter. The following example gives the same result as the previ-
ous example.

REPEAT = 4 {
SHIFT { 0 6 }
REPEAT = 2 {

SHIFT { 5 0 }
}

}

10.19 ARTWORK statement

An artwork statement shall be defined as shown in Syntax 77.

The purpose of the artwork statement is to create a reference between an artwork described in a physical layout
format, e.g., GDSII [**put reference to GDSII here**], and the cell described in the ALF.

A geometric transformation (see Section 10.18) can be used to define a transformation of coordinates from the
artwork geometry to the cell geometry. The artwork is considered the original object whereas the cell is the trans-
formed object.

The artwork statement can also etablish a mapping between a pin within the artwork and a pin of the cell. The
name of the artwork pin shall appear on the left-hand side. The name of the cell pin shall appear on the right-hand
side.

Example

CELL my_cell {
PIN A { /* fill in pin items */ }
PIN Z { /* fill in pin items */ }
ARTWORK = \GDS2$!@#$ {

SHIFT { 0 0 }
ROTATE = 0;
\GDS2$!@#$A = A;
\GDS2$!@#$B = B;

artwork ::=
ARTWORK = artwork_identifier ;

| ARTWORK = artwork_reference
| ARTWORK { artwork_reference { artwork_reference } }
| artwork_template_instantiation

artwork_reference ::=
artwork_identifier { { geometric_transformation } { cell_pin_identifier } }

| artwork__identifier
{ { geometric_transformation } { artwork_pin_identifier = cell_pin_identifier ; } }

Syntax 77—ARTWORK statement
156 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

1

5

10

15

20

25

30

35

40

45

50

55
}
}

10.20 VIA instantiation

A via instantiation shall be defined as shown in Syntax 78.

The purpose of a via instantiation is to enable the definition of a design rule (see Section 9.22), a blockage (see
Section 9.24) or a port (see Section 9.25) involving a declared via (see Section 9.17). A geometric transforma-
tion (see Section 10.18) can be used to describe a transformation of coordinates from a via declaration to the via
instantiation. The declared via is considered the original object, whereas the instantiated via is the transformed
object.

via_instantiation ::=
via_identifier instance_identifier ;

| via_identifier instance_identifier { { geometric_transformation } }

Syntax 78—VIA instantiation
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 157

1

5

10

15

20

25

30

35

40

45

50

55
158 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

1

5

10

15

20

25

30

35

40

45

50

55
11. Description of electrical and physical measurements

Add lead-in text

11.1 Arithmetic expression

An arithmetic expression shall be defined as shown in Syntax 79.

The purpose of an arithmetic expression is the construction of an arithmetic model (see Section 11.3) or an arith-
metic assignment (see Section 8.10).

Examples for arithmetic expressions

1.24
- Vdd
C1 + C2
MAX (3.5*C , -Vdd/2 , 0.0)
(C > 10) ? Vdd**2 : 1/2*Vdd - 0.5*C

11.2 Arithmetic operations and operators

11.2.1 Unary arithmetic operator

An unary arithmetic operator shall be defined as shown in Syntax 80.

Table 91 defines the semantics of unary arithmetic operators.

arithmetic_expression ::=
(arithmetic_expression)

| arithmetic_value
| { boolean_expression ? arithmetic_expression : } arithmetic_expression
| [unary_arithmetic_operator] arithmetic_operand
| arithmetic_operand binary_arithmetic_operator arithmetic_operand
| macro_arithmetic_operator (arithmetic_operand { , arithmetic_operand })

arithmetic_operand ::=
arithmetic_expression

Syntax 79—Arithmetic expression

unary_arithmetic_operator ::=
+

| -

Syntax 80—Unary arithmetic operator

Table 91—Unary arithmetic operators

Operator Description Comment

+ Positive sign. Neutral operator.

- Negative sign.
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 159

1

5

10

15

20

25

30

35

40

45

50

55
11.2.2 Binary arithmetic operator

A binary arithmetic operator shall be defined as shown in Syntax 81.

Table 92 defines the semantics of binary arithmetic operators.

11.2.3 Macro arithmetic operator

A macro arithmetic operator shall be defined as shown in Syntax 82.

Table 93 defines the semantics of macro arithmetic operators.

binary_arithmetic_operator ::=
+

| -
| *
| /
| **
| %

Syntax 81—Binary arithmetic operator

Table 92—Binary arithmetic operators

Operator Description Comment

+ Addition

- Subtraction

* Multiplication

/ Division Result includes fractional part.

** Power

% Modulus Remainder of division.

macro_arithmetic_operator ::=
abs

| exp
| log
| min
| max

Syntax 82—Macro arithmetic operator

Table 93—Macro arithmetic operators

Operator Description Comment

log Natural logarithm. 1 operand, operand > 0

exp Natural exponential. 1 operand
160 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

1

5

10

15

20

25

30

35

40

45

50

55
11.2.4 Operator priorities

The priority of operators in arithmetic expressions shall be from strongest to weakest in the following order:

a) unary arithmetic operator (+, -)
b) power (**)
c) multiplication (*), division (/), modulo division (%)
d) addition (+), subtraction (-)

11.3 Arithmetic model

An arithmetic model shall be defined as a trivial arithmetic model, a partial arithmetic model, or a full arithmetic
model, as shown in Syntax 83.

The purpose of an arithmetic model is to specify a measurable or a calculatable quantity.

A trivial arithmetic model shall be defined as shown in Syntax 84.

The purpose of a trivial arithmetic model is to specify a constant arithmetic value associated with the arithmetic
model. Therefore, no mathematical operation is necessary to evaluate a trivial arithmetic model. A trivial arith-
metic model can contain a singular or a plural arithmetic model qualifier (see Syntax 88).

A partial arithmetic model shall be defined as shown in Syntax 85.

The purpose of a partial arithmetic model is to specify a singluar or a plural model qualifier (see Syntax 88), or a
table (see Syntax 91) or a trivial min-max statement (see Syntax 95). The specification contained within a partial
arithmetic model can be inherited by another arithmetic model of the same type, according to the following rules:

abs Absolute value. 1 operand

min Minimum. N operands, N > 1

max Maximum. N operands, N > 1

arithmetic_model ::=
trivial_arithmetic_model

| partial_arithmetic_model
| full_arithmetic_model
| arithmetic_model_template_instantiation

Syntax 83—Arithmetic model

trivial_arithmetic_model ::=
arithmetic_model_identifier [name_identifier] = arithmetic_value ;

| arithmetic_model_identifier [name_identifier] = arithmetic_value
{ { arithmetic_model_qualifier } }

Syntax 84—Trivial arithmetic model

Table 93—Macro arithmetic operators (Continued)

Operator Description Comment
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 161

1

5

10

15

20

25

30

35

40

45

50

55
a) If the partial arithmetic model has no name, the specification shall be inherited by all arithmetic models
of the same type appearing either within the same parent or within a descendant of the same parent.

b) If the partial arithmetic model has a name, the specification shall be only inherited by an arithmetic
model containing a reference to the name, using the model reference annotation (see Section 11.9.5).

c) An arithmetic model can override an inherited specification by its own specification.

A partial arithmetic model does not specify a mathematical operation or an arithmetic value. Therefore it can not
be mathematically evaluated.

A full arithmetic model shall be defined as shown in Syntax 86.

The purpose of a full arithmetic model is to specify mathematical data and a mathematical evaluation method
associated with the arithmetic model. This specification resides in the arithmetic model body (see Syntax 87). A
full arithmetic model can also contain a singular or a plural arithmetic model qualifier (see Syntax 88).

The arithmetic model identifier in Syntax 84, Syntax 85 and Syntax 86 shall be declared as a keyword (see
Section 8.3) and provide specific semantics for the arithmetic model.

An arithmetic model body shall be defined as shown in Syntax 87.

The purpose of the arithmetic model body is to specify mathematical data associated with a full arithmetic
model. The data is represented either by a header-table-equation statement (see Section 11.4), or by a min-typ-
max statement (see Section 11.5), or by a singular or a plural arithmetic submodel (see Section 11.7).

An arithmetic model qualifier shall be defined as shown in Syntax 88.

The purpose of an arithmetic model qualifier is to specify semantics related to an arithmetic model.

An inheritable arithmetic model qualifier, i.e., an annotation (see Section 7.11), an annotation container (see
Section 7.12) or a from-to statement (see Section 11.12) can be inherited by another arithmetic model using a
model reference annotation (see Section 11.9.5).

partial_arithmetic_model ::=
arithmetic_model_identifier [name_identifier] { { partial_arithmetic_model_item } }

partial_arithmetic_model_item ::=
arithmetic_model_qualifier

| table
| trivial_min-max

Syntax 85—Partial arithmetic model

full_arithmetic_model ::=
nonescaped_identifier [name_identifier]
{ { arithmetic_model_qualifier } arithmetic_model_body { arithmetic_model_qualifier } }

Syntax 86—Full arithmetic model

arithmetic_model_body ::=
header-table-equation [trivial_min-max]

| min-typ-max
| arithmetic_submodel { arithmetic_submodel }

Syntax 87—Arithmetic model body
162 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

1

5

10

15

20

25

30

35

40

45

50

55
A non-inheritable arithmetic model qualifier, i.e., an auxiliary arithmetic model (see Section 11.6), a violation
(see Section 11.10) or a wire instantiation (see Section 11.11) shall apply only for the arithmetic model under
evaluation.

11.4 HEADER, TABLE, and EQUATION statements

A header-table-equation statement shall be defined as shown in Syntax 89.

The purpose of a header-table-equation statement is to specify the mathematical data and a method for evaluation
of the mathematical data associated with a full arithmetic model (see Syntax 86).

A header statement shall be defined as shown in Syntax 90.

Each header arithmetic model shall represent a dimension of an arithmetic model.

Any arithmetic model (see Section 11.3) with a header as a parent shall be interpreted as a header arithmetic
model. A declared keyword (see Section 8.3) for arithmetic model shall apply as identifier.

Note: The syntax for header arithmetic model is a true subset of the syntax for arithmetic model.

A table statement shall be defined as shown in Syntax 91.

A table statement within a partial arithmetic model shall define a discrete set of legal and applicable values. A
table statement within a full arithmetic model shall represent a lookup table. If the arithmetic model body con-

arithmetic_model_qualifier ::=
inheritable_arithmetic_model_qualifier

| non_inheritable_arithmetic_model_qualifier
inheritable_arithmetic_model_qualifier ::=

annotation
| annotation_container
| from-to

non_inheritable_arithmetic_model_qualifier ::=
auxiliary_arithmetic_model

| violation

Syntax 88—Arithmetic model qualifier

header-table-equation ::=
header table | header equation

Syntax 89—Header table equation

header ::=
HEADER { header_arithmetic_model { header_arithmetic_model } }

header_arithmetic_model ::=
arithmetic_model_identifier [name_identifier] { { header_arithmetic_model_item } }

header_arithmetic_model_item ::=
inheritable_arithmetic_model_qualifier

| table
| trivial_min-max

Syntax 90—HEADER statement
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 163

1

5

10

15

20

25

30

35

40

45

50

55
tains a table statement, each header arithmetic model shall also contain a table statement. The table statement
within the header arithmetic model shall represent the lookup index for a particular dimension.

The mathematical relation between a lookup table and its lookup indices shall be established as follows:

where

N denotes the number of dimensions
S denotes the size of the lookup table, i.e., the number of arithmetic values within the lookup table
P denotes the position of an arithmetic value within the lookup table
i denotes the index corresponding to the order of appearance of a dimension within the header statement
S(i) denotes the size of a dimension, i.e., the number of arithmetic values in the table within a dimension
P(i) denotes the position of an arithmetic value within a dimension

A dimension can be either discrete or continuous. In the latter case, interpolation and extrapolation of table val-
ues is allowed, and the arithmetic values in this dimension shall appear in strictly monotonous ascending order.

An equation statement shall be defined as shown in Syntax 92.

The arithmetic expression within the equation statement shall represent the mathematical operation for evalua-
tion of the arithmetic model.

Each dimension shall be involved in the arithmetic expression. The arithmetic expression shall refer to a dimen-
sion by name, if a name identifier exists or by type otherwise. Consequently, the type or the name of a dimension
shall be unique.

A full arithmetic model or any of its dimensions can inherit a set of legal values from a partial arithmetic model
(see Syntax 85), represented by a table statement. Such a table statement can not substitute a lookup index within
a dimension, and it can not pose a restriction on the evaluation of an arithmetic expression. The header-table-
equation statement shall enable evaluation of the arithmetic model at least within the set or range of legal values,
but possibly beyond.

table ::=
TABLE { arithmetic_value { arithmetic value } }

Syntax 91—TABLE statement

equation ::=
EQUATION { arithmetic_expression }

| equation_template_instantiation

Syntax 92—EQUATION statement

S S i()
i 1=

N

∏=

P P i() S k()
k 1=

i 1–

∏
i 1=

N

∑=
0 P i() S i() 1–≤ ≤

0 P S 1–≤ ≤

N 1≥

S i() 1≥

S 1≥
164 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

1

5

10

15

20

25

30

35

40

45

50

55
11.5 MIN, MAX, and TYP statements

A min-typ-max statement shall be defined as shown in Syntax 93.

The purpose of a min-typ-max statement is to represent one or more possible sets of mathematical data associ-
ated with an arithmetic model, rather than a single actual set.

Data associated with a min statement shall represent the smallest possible evaluation result under a given evalua-
tion condition, i.e., actual evaluation results can be numerically greater.

Data associated with a max statement shall represent the greatest possible evaluation result under a given evalua-
tion condition, i.e., actual evaluation results can be numerically smaller.

Data associated with a typ statement shall represent a typical evaluation result under a given evaluation condi-
tion, i.e., actual evaluation results can be numerically greater or smaller.

A non-trivial min or max or typ statement shall be defined as shown in Syntax 94.

By definition, a non-trivial min or max statement is associated with a header-table-equation statement (see
Syntax 89) or a violation statement (see Section 11.10). A non-trivial typ statement is associated with a header-
table-equation statement.

Note: A violation statement is a particular arithmetic model qualifier (see Syntax 88).

A trivial min, max, or typ statement shall be defined as shown in Syntax 95

By definition, a trivial min, max, or typ statement is associated with a constant arithmetic value.

A trivial min-max statement within a partial arithmetic model (see Syntax 85) shall define the legal range of val-
ues for an arithmetic model. The arithmetic value associated with the trivial min statement represent the smallest
legal number. The arithmetic value associated with the trivial max statement represents the greatest legal number.

min-typ-max ::=
min-max | [min] typ [max]

min-max ::=
min | max | min max

min ::=
trivial_min | non_trivial_min

max ::=
trivial_max | non_trivial_max

typ ::=
trivial_typ | non_trivial_typ

Syntax 93—MIN-TYP-MAX statement

non_trivial_min ::=
MIN = arithmetic_value { violation }

| MIN { [violation] header-table-equation }
non_trivial_max ::=

MAX = arithmetic_value { violation }
| MAX { [violation] header-table-equation }

non_trivial_typ ::=
TYP { header-table-equation }

Syntax 94—Non-trivial MIN, MAX and TYP statements
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 165

1

5

10

15

20

25

30

35

40

45

50

55
A trivial min-max statement within a header arithmetic model (see Syntax 90) shall define the range of validity
of a particular dimension. An application tool can evaluate the header-table-equation statement (see Syntax 89)
outside the range of validity, however, the accuracy of the evaluation outside the range of validity is not guaran-
teed.

A trivial min-max statement shall be subjected to the following parsing rules:

a) Within a partial arithmetic model (see Syntax 85), a set of legal values defined by a table statement (see
Syntax 91) shall take precedence over a range of legal values defined by a trivial min-max statement.

b) Within an arithmetic model (see Syntax 83) that can be interpreted as either a partial arithmetic model
(see Syntax 85) or a full arithmetic model (see Syntax 86), the interpretation of a trivial min-max state-
ment as a min-typ-max statement (see Syntax 95) shall take precedence. As a consequence, the interpre-
tation of an arithmetic model as a full arithmetic model takes precedence.

The following Semantics 100 define the interpretation of min, max, typ as a particular arithmetic submodel (see
Section 11.7).

This interpretation shall only apply in the context of a semantic rule, without invalidating a more restrictive syn-
tax rule.

Note: The syntax rule for min, max, typ (see Syntax 93, Syntax 94, Syntax 95) is a true subset of the syntax rule for arithmetic
submodel (see Syntax 97).

11.6 Auxiliary arithmetic model

An auxiliary arithmetic model shall be defined as shown in Syntax 96.

The purpose of an auxiliary arithmetic model is to serve as a non-inheritable arithmetic model qualifier (see
Syntax 88) for another arithmetic model (see Syntax 83), called principal arithmetic model. The auxiliary arith-

trivial_min-max ::=
trivial_min | trivial_max | trivial_min trivial_max

trivial_min ::=
MIN = arithmetic_value ;

trivial_max ::=
MAX = arithmetic_value ;

trivial_typ ::=
TYP = arithmetic_value ;

Syntax 95—Trivial MIN, MAX and TYP statements

SEMANTICS MIN = arithmetic_submodel {
CONTEXT { arithmetic_model arithmetic_submodel }

}
SEMANTICS MAX = arithmetic_submodel {

CONTEXT { arithmetic_model arithmetic_submodel }
}
SEMANTICS TYP = arithmetic_submodel {

CONTEXT { arithmetic_model arithmetic_submodel }
}

Semantics 100—Interpretation of MIN, MAX, TYP as arithmetic submodel
166 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

1

5

10

15

20

25

30

35

40

45

50

55
metic model an be associated with a singular or plural inheritable arithmetic model qualifier (see Syntax 88),
with a constant arithmetic value, or both.

Any arithmetic model (see Section 11.3) with another arithmetic model as a parent shall be interpreted as an aux-
iliary arithmetic model. A declared keyword (see Section 8.3) for arithmetic model shall apply as identifier.

Note: The syntax for auxiliary arithmetic model is a true subset of the syntax for arithmetic model.

A constant arithmetic value associated with an auxiliary arithmetic model shall indicate that an applicable
dimension of the principal arithmetic model shall be evaluated under this constant arithmetic value or that the
principal arithmetic model itself is characterized by this constant arithmetic value.

Note: The auxiliary arithmetic model is not a dimension of the principal arithmetic model.

11.7 Arithmetic submodel

An arithmetic submodel shall be defined as shown in Syntax 97.

The purpose of an arithmetic submodel is to serve as arithmetic model body (see Syntax 87), wherein the data
associated with the full arithmetic model (see Syntax 83) is represented as one or more measurement-specific
sets rather than a single set. The arithmetic submodel identifier shall be declared as a keyword (see Section 8.3)
and provide specific semantics.

11.8 Arithmetic model container

11.8.1 General arithmetic model container

A general arithmetic model container shall be defined as shown in Syntax 98.

auxiliary_arithmetic_model ::=
arithmetic_model_identifier = arithmetic_value ;

| arithmetic_model_identifier [= arithmetic_value]
{ inheritable_arithmetic_model_qualifier { inheritable_arithmetic_model_qualifier } }

Syntax 96—Auxiliary arithmetic model

arithmetic_submodel ::=
arithmetic_submodel_identifier = arithmetic_value ;

| arithmetic_submodel_identifier { [violation] min-max }
| arithmetic_submodel_identifier { header-table-equation [trivial_min-max] }
| arithmetic_submodel_identifier { min-typ-max }
| arithmetic_submodel_template_instantiation

Syntax 97—Arithmetic submodel

arithmetic_model_container ::=
limit_arithmetic_model_container

| early-late_arithmetic_model_container
| arithmetic_model_container_identifier { arithmetic_model { arithmetic_model } }

Syntax 98—General arithmetic model container
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 167

1

5

10

15

20

25

30

35

40

45

50

55
The purpose of an arithmetic model container is to provide a context for an arithmetic model. The arithmetic
model container identifier shall be a declared keyword (see Section 8.3) and provide specific semantics.

11.8.2 Arithmetic model container LIMIT

The arithmetic model container limit shall be defined as shown in Syntax 99.

The purpose of the arithmetic model container limit is to specify one or more quantifiable design limits. The
design limit shall be represented as a min-max statement (see Section 11.5) in the context of a limit arithmetic
model or a limit arithmetic submodel.

Any arithmetic model (see Section 11.3) with a limit as a parent shall be interpreted as a limit arithmetic model.
A declared keyword (see Section 8.3) for arithmetic model shall apply as identifier. Any arithmetic submodel
(see Section 11.7) with a limit arithmetic model as a parent shall be interpreted as a limit arithmetic submodel. A
declared keyword (see Section 8.3) for arithmetic submodel shall apply as identifier.

Note: The syntax for limit arithmetic model is a true subset of the syntax for arithmetic model. The syntax for limit arithmetic
submodel is a true subset of the syntax for arithmetic submodel.

The following Semantics 101 define the interpretation of limit as arithmetic model container.

11.8.3 Arithmetic model container EARLY and LATE

The arithmetic model containers early and late shall be defined as shown in Syntax 100.

The purpose of the arithmetic model containers early and late is to specify an envelope of a timing waveform.
The arithmetic model delay (see Section 11.11.3), retain (see Section 11.11.4) or slewrate (see Section 11.11.5)
can be used to specify a timing waveform. The arithmetic model container early and late shall be associated with
the leading and trailing part of the envelope, respectively. A partial specification of the envelope, i.e., only the
leading part or only the trailing part, is possible.

The following Semantics 102 define the interpretation of early and late as arithmetic model container.

The arithmetic model containers early and late shall be children of a declared vector (see Section 9.13).

limit_arithmetic_model_container ::=
LIMIT { limit_arithmetic_model { limit_arithmetic_model } }

limit_arithmetic_model ::=
arithmetic_model_identifier [name_identifier]
{ { arithmetic_model_qualifier } limit_arithmetic_model_body }

limit_arithmetic_model_body ::=
limit_arithmetic_submodel { limit_arithmetic_submodel }

| min-max
limit_arithmetic_submodel ::=

arithmetic_submodel_identifier { [violation] min-max }

Syntax 99—Arithmetic model container LIMIT

SEMANTICS LIMIT = arithmetic_model_container;

Semantics 101—Arithmetic model container LIMIT
168 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

1

5

10

15

20

25

30

35

40

45

50

55
11.9 Generally applicable annotations for arithmetic models

Add lead-in text

11.9.1 UNIT annotation

A unit annotation shall be defined as shown in Semantics 103.

The purpose of the unit annotation is to specify a multiplier prefix value (see Section 7.2) associated with the
base unit of the arithmetic model. The base unit of an arithmetic model shall be specified by the SI-model anno-
tation (see Section 8.5.6).

If the unit annotation is not present, a locally declared arithmetic model shall inherit the unit annotation of a glo-
bally declared arithmetic model of the same ALF type. If the ALF type of the globally declared arithmetic model
is an SI-model annotation value, a locally declared arithmetic model with the same associated SI-model annota-
tion value shall inherit the unit annotation as well.

Note: The multiplier prefix value specification given by the unit annotation applies to an arithmetic model declaration. There-
fore it can be locally changed. The SI-model annotation applies to the keyword declaration (see Section 8.3) of an arithmetic
model. Therefore it can not be changed.

Example:

The arithmetic model delay (see Section 11.11.3) has the SI-model annotation value time. Therefore delay can
inherit the unit annotation value of the arithmetic model time (see Section 11.11.1).

early-late_arithmetic_model_container ::=
early_arithmetic_model_container

| late_arithmetic_model_container
| early_arithmetic_model_container late_arithmetic_model_container

early_arithmetic_model_container ::=
EARLY { early-late_arithmetic_model { early-late_arithmetic_model } }

late_arithmetic_model_container ::=
LATE { early-late_arithmetic_model { early-late_arithmetic_model } }

early-late_arithmetic_model ::=
DELAY_arithmetic_model

| RETAIN_arithmetic_model
| SLEWRATE_arithmetic_model

Syntax 100—Arithmetic model container EARLY and LATE

SEMANTICS EARLY = arithmetic_model_container
{ CONTEXT = VECTOR; }

SEMANTICS LATE = arithmetic_model_container
{ CONTEXT = VECTOR; }

Semantics 102—Arithmetic model container EARLY and LATE

KEYWORD UNIT = single_value_annotation {
CONTEXT = arithmetic_model ;
VALUETYPE = multiplier_prefix_value ;

}

Semantics 103—UNIT annotation
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 169

1

5

10

15

20

25

30

35

40

45

50

55
11.9.2 CALCULATION annotation

A calculation annotation shall be defined as shown in Semantics 104.

The meaning of the annotation values is shown in Table 94.

The following rules for combination of arithmetic model data shall apply:

a) Data shall be combined by adding them together.
b) Data can only be combined, if the respective arithmetic models have the same type.
c) Data can only be combined, if a common semantic interpretation of the respective arithmetic models

within their context exists.

Specifics of rule c) are described in sections for specific arithmetic models.

11.9.3 INTERPOLATION annotation

A interpolation annotation shall be defined as shown in Semantics 105.

The interpolation annotation shall apply for a dimension of a lookup table with a continuous range of values.
Every dimension in a lookup table can have its own interpolation annotation.

KEYWORD CALCULATION = annotation {
CONTEXT = library_specific_object.arithmetic_model ;
VALUES { absolute incremental }
DEFAULT = absolute ;

}

Semantics 104—CALCULATION annotation

Table 94—Calculation annotation

Annotation value Description

absolute The arithmetic model data is complete within itself.

incremental The arithmetic model data shall be combined with other arithmetic model data.

KEYWORD INTERPOLATION = single_value_annotation {
CONTEXT = HEADER.arithmetic_model ;
VALUES { linear fit ceiling floor }
DEFAULT = fit ;

}

Semantics 105—INTERPOLATION annotation
170 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

1

5

10

15

20

25

30

35

40

45

50

55
The meaning of the annotation values is shown in Table 95.

The mathematical operations for floor, ceiling, and linear are specified as follows:

where

x denotes the value in a dimension subjected to interpolation.
x- and x+ denote two subsequent values in the table associated with that dimension.

x- denotes the value to the left of x, such that x- < x, or else x- denotes the smallest value in the table.
x+ denotes the value to the right of x, such that x < x+, or else x+ denotes the largest value in the table.

y denotes the evaluation result of the arithmetic model.

The mathematical operation for fit can be chosen by the application, as long as the following conditions are satis-
fied:

y(x) is a continuous function of order N>0.
The first N-1 derivatives of y(x) are continuous.
y(x) is bound by y(x-) and y(x+).
In case of monotony, y(x) is also bound by linear interpolation applied to the left and the right neighbor of x.
In case of monotonous derivative, y(x) is also bound by linear interpolation applied to x itself.

These conditions are illustrated in Figure 19.

Table 95—Interpolation annotation

Annotation value Description

linear Linear interpolation shall be used.

ceiling The next greater value in the table shall be used.

floor The next lesser value in the table shall be used.

fit Linear or higher-order interpolation shall be used.

y x() y x
-()=

y x() x x
-–() y x

+()⋅ x
+

x–() y x
-()⋅+

x
+

x
-–

---=

y x() y x
+()=

floor

ceiling

linear
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 171

1

5

10

15

20

25

30

35

40

45

50

55
Figure 19—Bounding regions for y(x) with INTERPOLATION=fit

11.9.4 DEFAULT annotation

A default annotation (see Section 8.5.3) shall be applicable for an arithmetic model, unless the keyword declara-
tion (see Section 8.3) for the arithmetic model contains already a default annotation.

The purpose of the default annotation is the specification of an evaluation result for a full arithmetic model (see
Section 11.3, Syntax 86) or a header arithmetic model (see Section 11.4, Syntax 90) in case the arithmetic model
can not be evaluated otherwise. A default annotation shall not apply for a trivial arithmetic model (see
Section 11.3, Syntax 84). A default annotation for a partial arithmetic model (see Section 11.3, Syntax 85) shall
serve as inheritable arithmetic model qualifier (see Section 11.3, Syntax 88), to be acquired by another full
arithmetic model.

A default annotation value associated with a header arithmetic model or with a partial arithmetic model shall be
an arithmetic value (see Section 7.4) compatible with the arithmetic model’s valuetype (see Section 8.5.1). A
default annotation value associated with a full arithmetic model shall be either an arithmetic value compatible
with its valuetype, or, alternatively, an identifier refering to another arithmetic model or to an arithmetic sub-
model (see Section 11.7).

The following rules shall apply for the usage of the default annotation value:

a) If the application provides values for all header arithmetic models, no default annotation value shall be
used for the evaluation of a full arithmetic model.

b) If the application provides values for some, but not all header arithmetic models, and the remaining
header arithmetic models have associated default annotations, those default annotation values shall be
used.

c) If application values for all header arithmetic models are missing and the full arithmetic model has an
associated default annotation, this default annotation value shall be used.

d) If application values for all header arithmetic models are missing and the full arithmetic model has no
associated default annotation, but all header arithmetic models have, those default annotation values
shall be used.

In any other case, the evaluation of the full arithmetic model shall fail and result in an application error.

x- x+

y(x+)

y(x-)

x- x+

y(x+)

y(x-)

x- x+

y(x+)

y(x-)

arbitrary y(x) monotonous y(x) monotonous d y/dx
172 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

1

5

10

15

20

25

30

35

40

45

50

55
11.9.5 MODEL reference annotation

A model reference annotation shall be defined as shown in Semantics 106.

The purpose of a model reference annotation is to acquire an inheritable arithmetic model qualifier (see
Section 11.3, Syntax 88), an evaluation result (Syntax 91, Syntax 92) or both from another arithmetic model. The
model reference annotation value shall be the ALF name of the referenced arithmetic model.

An evaluation result can also be acquired from a referenced arithmetic submodel (see Section 11.7). In this case,
the model reference annotation value shall be a hierarchical identifier (see Section 6.11.4) composed of the ALF
name of the parent arithmetic model and the ALF type of the arithmetic submodel.

A calculation graph can be established by using the model reference annotation within a header arithmetic model
(see Section 11.4, Syntax 90). In this case, the evaluation of the arithmetic model containing the header arith-
metic model depends on the evaluation of the referenced model. A circular reference shall not be allowed.

The model reference annotation shall further be legal under the following restrictions:

a) Both the referencing and the referenced arithmetic model have the same ALF type,
or, alternatively:

b) the ALF type of either arithmetic model is an SI-model annotation value (see Section 8.5.6), and both
arithmetic models have the same associated SI-model annotation value.

c) The semantics of any arithmetic model qualifier are compatible with the semantics of any acquired arith-
metic model qualifier.

Examples:

Rule a): An arithmetic model of ALF type time (see Section 11.11.1) can refer to the arithmetic model of ALF
type time.

Rule b): The arithmetic model delay (see Section 11.11.3) has the SI-model annotation value time. Therefore an
arithmetic model of ALF type delay can refer to an arithmetic model of ALF type time and vice-versa.

Rule c): If both arithmetic models have an annotation of the same ALF type (e.g. unit annotation, see
Section 11.9.1), the annotation values shall be the same.

11.10 VIOLATION statement, MESSAGE TYPE and MESSAGE annotation

A violation statement shall be defined as shown in Syntax 101.

The purpose of a violation statement is to specify the consequence of an evaluation of an arithmetic model (see
Section 11.3) resulting in a violation of a design constraint or a design limit.

A violation statement shall be subjected to the restriction shown in Semantics 107.

KEYWORD MODEL = single_value_annotation {
CONTEXT = arithmetic_model ;
VALUETYPE = identifier ;
REFERENCETYPE { arithmetic_model arithmetic_submodel }

}

Semantics 106—MODEL reference annotation
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 173

1

5

10

15

20

25

30

35

40

45

50

55
The purpose of the restriction is to specify a legal anchestor of a violation statement. Only an arithmetic model
that serves the purpose of evaluating a design constraint or a design limit can be a legal anchestor of a violation
statement.

A violation statement can contain a message-type annotation, a message annotation and a behavior statement
(see Section 10.4).

The behavior statement shall be subjected to the restriction shown in Semantics 108.

The purpose of the restriction is to provide a triggering event for the consequence of a violation. The evaluation
of an arithmetic model with a vector as anchestor, and hence the consequence of a violation, is triggered by the
evaluation of the vector expression ,which is the name of the vector.

A message type annotation shall be defined as shown in Semantics 109.

violation ::=
VIOLATION { violation_item { violation_item } }

| violation_template_instantiation
violation_item ::=

MESSAGE_TYPE_single_value_annotation
| MESSAGE_single_value_annotation
| behavior

Syntax 101—VIOLATION statement

SEMANTICS VIOLATION {
CONTEXT {

SETUP HOLD RECOVERY REMOVAL NOCHANGE ILLEGAL
NOISE_MARGIN
LIMIT.arithmetic_model
LIMIT.arithmetic_model.MIN
LIMIT.arithmetic_model.MAX
LIMIT.arithmetic_model.arithmetic_submodel
LIMIT.arithmetic_model.arithmetic_submodel.MIN
LIMIT.arithmetic_model.arithmetic_submodel.MAX

}
}

Semantics 107—Restriction for VIOLATION statement

SEMANTICS VIOLATION.BEHAVIOR {
CONTEXT {

VECTOR.arithmetic_model
VECTOR.LIMIT.arithmetic_model
VECTOR.LIMIT.arithmetic_model.MIN
VECTOR.LIMIT.arithmetic_model.MAX
VECTOR.LIMIT.arithmetic_model.arithmetic_submodel
VECTOR.LIMIT.arithmetic_model.arithmetic_submodel.MIN
VECTOR.LIMIT.arithmetic_model.arithmetic_submodel.MAX

}
}

Semantics 108—Restriction for BEHAVIOR statement within VIOLATION
174 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

1

5

10

15

20

25

30

35

40

45

50

55
The purpose of the message type annotation value is to classify the severity of a violation.

The meaning of the annotation values is shown in .

A message annotation shall be defined as shown in Semantics 110.

The purpose of the message annotation is to specify verbatim the text of the message issued by the application
tool when a violation is encountered.

11.11 Arithmetic models for timing, power and signal integrity

11.11.1 TIME

The arithmetic model time shall be defined as shown in Semantics 111.

The purpose of the arithmetic model time is to specify a time interval in general.

— TIME in context of a declared library or sublibrary (see Section 9.1), a declared cell (see Section 9.3), or
a declared wire (see Section 9.9)

A partial arithmetic model (see Syntax 85 within Section 11.3) can be used to globally specify an inheritable
arithmetic model qualifier (see Syntax 88 within Section 11.3).

— TIME in context of a declared vector (see Section 9.13)

KEYWORD MESSAGE_TYPE = single_value_annotation {
CONTEXT = VIOLATION ;
VALUETYPE = identifier ;
VALUES { information warning error }

}

Semantics 109—MESSAGE_TYPE annotation

Table 96—MESSAGE_TYPE annotation

Annotation value Description

information The application tool shall issue an informative message when the violation is encountered.

warning The application tool shall issue a warning message when the violation is encountered.

error The application tool shall issue an error message when the violation is encountered.

KEYWORD MESSAGE = single_value_annotation {
CONTEXT = VIOLATION ;
VALUETYPE = quoted_string ;

}

Semantics 110—MESSAGE annotation
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 175

1

5

10

15

20

25

30

35

40

45

50

55
If the ALF name of the vector is a vector expression (see Section 10.12), a from-to statement (see Section 11.12)
shall be used as model qualifier. The arithmetic model shall represent a measured time interval between two sin-
gle events (see Section 10.13.1).

Otherwise, if the ALF name of the vector is a boolean expression (see Section 10.9), the arithmetic model shall
represent a time interval during which the boolean expression is true. A from-to statement shall not be used as
model qualifier.

As a child of the arithmetic model container limit (see Section 11.8.2), the arithmetic model shall specify a
design limit for a time interval. Otherwise, the arithmetic model shall specify a measured time interval.

— TIME as header arithmetic model (see Syntax 89 in Section 11.4)

The header arithmetic model time shall represent a dimension of another arithmetic model. The dimension time
shall generally describe a quantity changing over time, which can be visualized by a timing waveform.

If the grandparent or the great-grandparent of the header arithmetic model is a vector with a vector expression as
ALF name, a from statement can be used as model qualifier to define a temporal relationship between a single
event and the dimension time.

If the grandparent of the header arithmetic model is the arithmetic model container limit, the dimension time shall
describe a dependency between a design limit and the expected lifetime of an electronic circuit, rather than a tim-
ing waveform.

Note: By definition, the parent of a header arithmetic model is always a full arithmetic model.

— TIME as auxiliary arithmetic model (see Syntax 96 in Section 11.6)

The auxiliary arithmetic model time shall be used in conjunction with a measurement annotation (see
Section 11.13.7). The auxiliary arithmetic model shall specify the time interval during which the measurement is
taken.

If the grandparent of the auxiliary arithmetic model is a vector with a vector expression as ALF name, a from-to
statement can be used to define a temporal relationship between one or two single events in the vector expression
and the time interval.

KEYWORD TIME = arithmetic_model {
VALUETYPE = number ;
SI_MODEL = TIME ;

}
SEMANTICS TIME {

CONTEXT {
LIBRARY SUBLIBRARY CELL WIRE
VECTOR VECTOR.arithmetic_model_container
HEADER
arithmetic_model

}
}
TIME { UNIT = NanoSeconds ; }

Semantics 111—Arithmetic model TIME
176 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

1

5

10

15

20

25

30

35

40

45

50

55
11.11.2 FREQUENCY

The arithmetic model frequency shall be defined as shown in Semantics 112.

The purpose of the arithmetic model frequency is to specify a temporal frequency in general.

The arithmetic model frequency can be a child or a grandchild of a declared library or sublibrary (see
Section 9.1), a declared cell (see Section 9.3), wire (see Section 9.9) or vector (see Section 9.13).

— FREQUENCY in context of a declared vector (see Section 9.13)

As a child or a grandchild of a declared vector with a vector expression (see Section 10.12) as ALF name, the
arithmetic model shall specify a statistical occurence frequency of the vector.

As a child of the arithmetic model container limit (see Section 11.8.2), the arithmetic model shall specify a
design limit for an occurence frequency. Otherwise, the arithmetic model shall specify a measured occurence fre-
quency.

— FREQUENCY as header arithmetic model (see Syntax 89 in Section 11.4)

The header arithmetic model frequency shall represent a dimension of another arithmetic model.

If the grandparent or the great-grandparent of the header arithmetic model is a vector with a vector expression as
ALF name, the dimension frequency shall represent the occurrence frequency of the vector.

If the grandparent or the great-grandparent of the header arithmetic model is not a vector, the frequency dimen-
sion shall be represent a spectral dependency of the arithmetic model.

— FREQUENCY as auxiliary arithmetic model (see Syntax 96 in Section 11.6)

A frequency statement can be a child of an arithmetic model, thus representing an auxiliary arithmetic model.

The auxiliary arithmetic model frequency shall be used in conjunction with a measurement annotation (see
Section 11.13.7). The auxiliary arithmetic model shall specify the repetition frequency of the measurement.

KEYWORD FREQUENCY = arithmetic_model {
VALUETYPE = unsigned_number ;
SI_MODEL = FREQUENCY ;

}
SEMANTICS FREQUENCY {

CONTEXT {
LIBRARY SUBLIBRARY CELL WIRE
VECTOR VECTOR.arithmetic_model_container
HEADER
arithmetic_model

}
}
FREQUENCY { UNIT = GigaHertz; }

Semantics 112—Arithmetic model FREQUENCY
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 177

1

5

10

15

20

25

30

35

40

45

50

55
The auxiliary arithmetic models frequency and time (see Section 11.11.1) can be used interchangably, unless a
from or a to statement is associated with time. The measurement repetition frequency f and the measurement time
interval t can be equated by f = 1 / t.

11.11.3 DELAY

The arithmetic model delay shall be defined as shown in Semantics 113.

The purpose of the arithmetic model delay is to specify a time interval, implying a causal relationship between
two events. A from-to statement (see Section 11.12) shall be used as model qualifier.

— DELAY in context of a declared vector (see Section 9.13)

As a child or a grandchild of a declared vector with a vector expression (see Section 10.12) as ALF name, the
arithmetic model delay shall specify a measured time interval between two single events (see Section 10.13.1),
implying that the from-event is the cause of the to-event.

If the model qualifier features only a from or only a to statement, the arithmetic model delay shall be interpreted
as a partial time interval specification. The calculation annotation (see 11.9.2) shall be used in conjunction a par-
tial time interval specification. If the annotation value is incremental, the partial time interval shall be added to
another time interval. If the annotation value is absolute, the partial time interval shall be used as a default and
otherwise be substituted by a completely specified time interval.

— DELAY in context of a declared library or sublibrary (see Section 9.1), a declared cell (see Section 9.3),
or a declared wire (see Section 9.9)

As a partial arithmetic model (see Syntax 85 within Section 11.3), delay can be used for global specification of
a model qualifier. In particular, the arithmetic model threshold (see Section 11.11.13) within a from-to statement
can be globally specified.

The global specification of a model qualifier shall be inherited by the arithmetic models delay, retain (see
Section 11.11.4), setup and hold (see Section 11.11.6), recovery and removal (see Section 11.11.7) and skew (see
Section 11.11.12) in the context of a vector.

11.11.4 RETAIN

The arithmetic model retain shall be defined as shown in Semantics 114.

The purpose of the arithmetic model retain is to specify a time interval, during which a cause has no observable
effect. A from-to statement (see Section 11.12) shall be used as model qualifier.

KEYWORD DELAY = arithmetic_model { SI_MODEL = TIME ; }
SEMANTICS DELAY {

CONTEXT {
LIBRARY SUBLIBRARY CELL WIRE
VECTOR VECTOR.EARLY VECTOR.LATE

}
}

Semantics 113—Arithmetic model DELAY
178 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

1

5

10

15

20

25

30

35

40

45

50

55
As a child or a grandchild of a declared vector with a vector expression (see Section 10.12) as ALF name, the
arithmetic model retain shall specify a measured time interval between two single events (see Section 10.13.1),
implying that the to-event is the earliest observable effect of the from-event.

The arithmetic models retain and delay with matching model qualifiers can be jointly used. In this case, retain
shall represent the time interval between a cause (i.e., an input signal) and the earliest effect (i.e., initial change of
an output signal), and delay shall represent the time interval between a cause and the latest effect (i.e., final
change of an output signal). During the time interval between initial and final change, the output signal is consid-
ered unstable.

Retain in conjunction with delay is illustrated in Figure 20.

Figure 20—Illustration of RETAIN and DELAY

11.11.5 SLEWRATE

The arithmetic model slewrate statement shall be defined as shown in Semantics 115.

KEYWORD RETAIN = arithmetic_model { SI_MODEL = TIME ; }
SEMANTICS RETAIN{

CONTEXT {
VECTOR VECTOR.EARLY VECTOR.LATE

}
}

Semantics 114—Arithmetic model RETAIN

KEYWORD SLEWRATE = arithmetic_model { SI_MODEL = TIME ; }
SEMANTICS SLEWRATE {

CONTEXT {
LIBRARY LIBRARY.LIMIT
SUBLIBRARY SUBLIBRARY.LIMIT
CELL CELL.LIMIT
PIN PIN.LIMIT
WIRE WIRE.LIMIT
VECTOR VECTOR.LIMIT VECTOR.EARLY VECTOR.LATE
HEADER

}
}
SLEWRATE { MIN = 0; }

Semantics 115—Arithmetic model SLEWRATE

from to

from to

retain

delay

A

B

IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 179

1

5

10

15

20

25

30

35

40

45

50

55
The purpose of the arithmetic model slewrate is to specify the duration of a transient event, measured between
two reference points. A reference point shall be specified by the arithmetic model threshold (see
Section 11.11.13) within a from-to statement (see Section 11.12). No particular waveform shape shall be implied
for the transient event.

— SLEWRATE in context of a declared vector (see Section 9.13)

If slewrate is a child or a grandchild of a declared vector with a vector expression (see Section 10.12) as ALF
name, a pin reference annotation, eventually in conjunction with an edge number anotation, shall be used (see
Section 11.13.2) to refer to a single event (see Section 10.13.1).

— SLEWRATE in context of a declared pin (see Section 9.5)

If slewrate is a child or a grandchild of a declared pin, the arithmetic submodel rise or fall (see Section 11.21)
can be used as a substitute for a reference to a single event.

— SLEWRATE in context of a declared library or sublibrary (see Section 9.1), a declared cell (see
Section 9.3), or a declared wire (see Section 9.9)

As a partial arithmetic model (see Syntax 85 within Section 11.3), slewrate can be used for global specification
of a model qualifier. In particular, the arithmetic model threshold (see Section 11.11.13) within a from-to state-
ment can be globally specified.

The global specification of a model qualifier shall be inherited by the arithmetic model slewrate in the context of
a vector.

— SLEWRATE as header arithmetic model (see Syntax 89 in Section 11.4)

The header arithmetic model slewrate shall represent a dimension of another arithmetic model. The arithmetic
model shall be in the context of a vector. A reference to a single event shall be used as model qualifier.

Slewrate is illustrated in the following .

Figure 21—Illustration of SLEWRATE

slewrate.rise

from.threshold.rise to.threshold.rise

slewrate.fall

from.threshold.fall to.threshold.fall
180 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

1

5

10

15

20

25

30

35

40

45

50

55
11.11.6 SETUP and HOLD

The arithmetic models setup and hold shall be defined as shown in .

The purpose of the arithmetic models setup and hold is to specify timing constraints between a data signal and a
clock signal. Each arithmetic model shall be a child of a declared vector (see Section 9.13) with a vector expres-
sion (see Section 10.12) as ALF name. A from-to statement (see Section 11.12) shall be used as model qualifier.

The arithmetic model setup shall represent the minimal required time interval during which a data signal needs to
be stable before activation of a clock signal. This time interval can be positive, zero, or negative. The data signal
shall be refered to within a from statement. The clock signal shall be refered to within a to statement.

The arithmetic model hold shall represent the minimal required time interval during which a data signal needs to
be stable after activation of a clock signal. This time interval can be positive, zero, or negative. The clock signal
shall be refered to within a from statement. The data signal shall be refered to within a to statement.

Co-dependent arithmetic models setup and hold can be described as children of the same vector. A corresponding
timing diagram is illustrated in Figure 22.

Figure 22—Illustration of SETUP and HOLD

11.11.7 RECOVERY and REMOVAL

The arithmetic models recovery and removal shall be defined as shown in Semantics 117.

The purpose of the arithmetic models recovery and removal is to specify timing constraints between a clock sig-
nal and an asynchronous control signal. Each arithmetic model shall be a child of a declared vector (see
Section 9.13) with a vector expression (see Section 10.12) as ALF name. A from-to statement (see Section 11.12)
shall be used as model qualifier.

KEYWORD SETUP = arithmetic_model { SI_MODEL = TIME ; }
SEMANTICS SETUP { CONTEXT = VECTOR ; }
KEYWORD HOLD = arithmetic_model { SI_MODEL = TIME ; }
SEMANTICS HOLD { CONTEXT = VECTOR ; }

Semantics 116—Arithmetic models SETUP and HOLD

KEYWORD RECOVERY = arithmetic_model { SI_MODEL = TIME ; }
SEMANTICS RECOVERY { CONTEXT = VECTOR ; }
KEYWORD REMOVAL = arithmetic_model { SI_MODEL = TIME ; }
SEMANTICS REMOVAL { CONTEXT = VECTOR ; }

Semantics 117—Arithmetic models RECOVERY and REMOVAL

from to

from to

setup

hold

A

B

data signal

clock signal
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 181

1

5

10

15

20

25

30

35

40

45

50

55
The arithmetic model recovery shall represent the minimal required time interval between de-assertion of an
asynchronous control signal and activation of a clock signal. This time interval can be positive, zero, or negative.
The asynchronous control signal signal shall be refered to within a from statement. The clock signal shall be ref-
ered to within a to statement.

The arithmetic model removal shall represent the minimal required time interval between a suppressed activation
of a clock signal and de-assertion of an asynchronous control signal. This time interval can be positive, zero, or
negative. The clock signal shall be refered to within a from statement. The asynchronous control signal signal
shall be refered to within a to statement.

Co-dependent arithmetic models recovery and removal can be described as children of the same vector. A corre-
sponding timing diagram is illustrated in Figure 23.

Figure 23—RECOVERY and REMOVAL

11.11.8 NOCHANGE and ILLEGAL

The arithmetic models nochange and illegal shall be defined as shown in Semantics 118.

The purpose of the arithmetic models nochange and illegal is to specify requirements for the duration of a logi-
cal state in the context of a declared vector (see Section 9.13).

If the ALF name of the vector is a vector expression (see Section 10.12), a from-to statement (see Section 11.12)
can be used as model qualifier. The events occuring in-between the from-and to-events, including the from-and
to-events themselves, shall be considered a vector sub-expression.

— NOCHANGE in the context of a declared vector

KEYWORD NOCHANGE = arithmetic_model { SI_MODEL = TIME ; }
SEMANTICS NOCHANGE { CONTEXT = VECTOR ; }
NOCHANGE { MIN = 0; }
KEYWORD ILLEGAL = arithmetic_model { SI_MODEL = TIME ; }
SEMANTICS ILLEGAL { CONTEXT = VECTOR ; }
ILLEGAL { MIN = 0; }

Semantics 118—Arithmetic models NOCHANGE and ILLEGAL

from to

from to

recovery

removal

A

B

asynchronous

clock signal

control signal
A

or
182 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

1

5

10

15

20

25

30

35

40

45

50

55
If the ALF name of the vector is a boolean expression (see Section 10.9), the arithmetic model nochange shall
specify a minimum required time interval during which the boolean expression is true. A partial arithmetic model
nochange shall indicate a requirement for the boolean expression to be forever true.

Otherwise, if the ALF name of the vector is a vector expression (see Section 10.12), the arithmetic model
nochange shall specify a minimum required duration for the vector expression or for the vector sub-expression
specified by the from-to statement. A partial arithmetic model nochange shall specify that the vector expression
or the vector sub-expression is required to be observed as specified.

— ILLEGAL in the context of a declared vector

If the ALF name of the vector is a boolean expression (see Section 10.9), the arithmetic model illegal shall spec-
ify a maximum allowed time interval during which the boolean expression is true. A partial arithmetic model
illegal shall indicate a requirement for the boolean expression to be never true.

Otherwise, if the ALF name of the vector is a vector expression (see Section 10.12), the arithmetic model illegal
shall specify a maximum allowed duration for the vector expression or for the vector sub-expression specified by
the from-to statement. A partial arithmetic model illegal shall specify that the vector expression or the vector
sub-expression is not allowed to be observed as specified.

Nochange and illegal are illustrated in the following .

Figure 24—Illustration of NOCHANGE and ILLEGAL

If an actual event sequence involving the four signals A, B, C and D matches the beginning and the end of the
timing diagram (underlaid in grey), including the from-and to-events (marked with circles), the actual event
sequence in-between the from-and to-events shall be examined.

In the case of nochange, the actual event sequence is required to match the middle of the timing diagram, and
eventually a minimal time interval between from and to is required.

In the case of illegal, the actual event sequence is required not to match the middle of the timing diagram, or
eventually a maximum time interval between from and to is allowed.

11.11.9 PULSEWIDTH

The arithmetic model pulsewidth shall be defined as shown in Semantics 119.

The purpose of the arithmetic model pulsewidth is to specify the duration of a pulse, measured between two ref-
erence points. A reference point shall be specified by the arithmetic model threshold (see Section 11.11.13)

from to
nochange or illegal

A

B

C

D

IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 183

1

5

10

15

20

25

30

35

40

45

50

55
within a from-to statement (see Section 11.12). No particular waveform shape shall be implied for the sequence
of transient events.

For a noise waveform (see Section 11.11.14), i.e., a waveform that does not reach a constant logic value, pulse-
width shall be measured between the crossings of 50% magnitude.

— PULSEWIDTH in context of a declared vector (see Section 9.13)

If pulsewidth is a child or a grandchild of a declared vector with a vector expression (see Section 10.12) as ALF
name, a pin reference annotation, eventually in conjunction with an edge number anotation, shall be used (see
Section 11.13.2) to refer to a single event (see Section 10.13.1), representing the leading edge of the pulse.

— PULSEWIDTH in context of a declared pin (see Section 9.5)

If pulsewidth is a child or a grandchild of a declared pin, the arithmetic submodel rise or fall (see Section 11.21)
can be used as a substitute for a reference to a single event.

— PULSEWIDTH in context of a declared library or sublibrary (see Section 9.1), a declared cell (see
Section 9.3), or a declared wire (see Section 9.9)

As a partial arithmetic model (see Syntax 85 within Section 11.3), pulsewidth can be used for global specifica-
tion of a model qualifier. In particular, the arithmetic model threshold (see Section 11.11.13) within a from-to
statement can be globally specified. The global specification of a model qualifier shall be inherited by the arith-
metic model pulsewidth in the context of a vector.

— PULSEWIDTH as header arithmetic model (see Syntax 89 in Section 11.4)

The header arithmetic model pulsewidth shall represent a dimension of another arithmetic model. The arithmetic
model shall be in the context of a vector. A reference to a single event shall be used as model qualifier.

KEYWORD PULSEWIDTH=arithmetic_model { SI_MODEL = TIME; }
SEMANTICS PULSEWIDTH {

CONTEXT {
LIBRARY LIBRARY.LIMIT
SUBLIBRARY SUBLIBRARY.LIMIT
CELL CELL.LIMIT
PIN PIN.LIMIT
WIRE WIRE.LIMIT
VECTOR VECTOR.LIMIT
HEADER

}
}
PULSEWIDTH { MIN = 0; }

Semantics 119—Arithmetic model PULSEWIDTH
184 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

1

5

10

15

20

25

30

35

40

45

50

55
Pulsewidth is illustrated in the following .

Figure 25—Illustration of PULSEWIDTH

11.11.10 PERIOD

The arithmetic model period shall be defined as shown in Semantics 120.

The purpose of the arithmetic model period is to specify a time interval between periodical repetitions of events.

The arithmetic model period shall be in the context of a declared vector (see Section 9.13) with a vector expres-
sion (see Section 10.12) as ALF name. The vector expression shall specify a primitive sequence of events .

The header arithmetic model (see Syntax 89 in Section 11.4) period shall represent a dimension of another arith-
metic model, which shall be in the context of a vector.

Period is illustrated in the following .

Figure 26—Illustration of PERIOD

A primitive event sequence involving two signals A and B is repeated periodically.

KEYWORD PERIOD = arithmetic_model { SI_MODEL = TIME ; }
SEMANTICS PERIOD {

CONTEXT { VECTOR VECTOR.LIMIT HEADER }
}
PERIOD { MIN = 0; }

Semantics 120—Arithmetic model PERIOD

pulsewidth.risefrom.threshold.rise to.threshold.fall

pulsewidth.fall

from.threshold.fall to.threshold.rise

primitive
event sequence

periodical
repetition

A

B

A

B

period period period period
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 185

1

5

10

15

20

25

30

35

40

45

50

55
11.11.11 JITTER

The arithmetic model jitter shall be defined as shown in Semantics 121.

The purpose of the arithmetic model jitter is to specify the variability of a time interval between periodical repe-
titions of events. The measurement annotation (see Section 11.13.7) shall be applicable as model qualifier.

The arithmetic model jitter shall be in the context of a declared vector (see Section 9.13) with a vector expression
(see Section 10.12) as ALF name. The vector expression shall specify a primitive sequence of events .

The header arithmetic model (see Syntax 89 in Section 11.4) jitter shall represent a dimension of another arith-
metic model, which shall be in the context of a vector.

Jitter is illustrated in the following .

Figure 27—Illustration of JITTER

A primitive event sequence involving two signals A and B is repeated periodically. A timing diagram with and
without jitter is shown.

11.11.12 SKEW

The arithmetic model skew shall be defined as shown in Semantics 122.

The purpose of the arithmetic model skew is to specify a non-negative temporal separation between multiple sig-
nals.

In the context of a declared vector (see Section 9.13) with a vector expression (see Section 10.12) as ALF name,
a pin reference annotation, eventually in conjunction with a matching edge number anotation, shall be used (see

KEYWORD JITTER = arithmetic_model { SI_MODEL = TIME ; }
SEMANTICS JITTER {

CONTEXT { VECTOR VECTOR.LIMIT HEADER }
}
JITTER { MIN = 0; }

Semantics 121—Arithmetic model JITTER

jitter jitter

primitive
event sequence

periodical
repetition
without jitter

periodical
repetition
with jitter

A

B

A

B

A

B

186 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

1

5

10

15

20

25

30

35

40

45

50

55
Section 11.13.5) to refer to multiple single events (see Section 10.13.1). The arithmetic model itself shall not
specify a temporal order of the events. The temporal separation between events shall be considered for any order
of events allowed by the vector expression. If the vector expression specifies simultaneously occuring events (see
Section 10.13.3), but the arithmetic model skew specifies a non-zero temporal separation between these events,
the skew shall take precedence, and the temporal separation shall be considered for an arbitrary permutation of
order of occurence.

The header arithmetic model skew shall represent a dimension of another arithmetic model, which shall be in the
context of a vector. A reference to multiple single events shall be used as model qualifier.

Skew is illustrated in the following Figure 28.

Figure 28—Illustration of SKEW

The arithmetic model skew involves three signals A, B and C, and the vector expression restricts A and B to
occur before C.

11.11.13 THRESHOLD

The arithmetic model threshold shall be defined as shown in Semantics 123.

KEYWORD SKEW = arithmetic_model { SI_MODEL = TIME ; }
SEMANTICS SKEW {

CONTEXT { VECTOR VECTOR.LIMIT HEADER }
}
SKEW { MIN = 0; }

Semantics 122—Arithmetic model SKEW

KEYWORD THRESHOLD = arithmetic_model {
VALUETYPE = number ;
CONTEXT { PIN FROM TO }

}
THRESHOLD { MIN = 0; MAX = 1; }

Semantics 123—Arithmetic model THRESHOLD

A

B

C

or

B

A

C

skew

skew

skew

skew

Restriction by vector expression: A occurs before C, B occurs before C
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 187

1

5

10

15

20

25

30

35

40

45

50

55
The purpose of the arithmetic model threshold is to specify a reference point for a timing measurement.

Threshold shall be a normalized quantity, according to the following mathematical definition.

threshold.rise = (vtr - v0) / (v1 - v0)
threshold.fall = (vtf - v0) / (v1 - v0)

where

v0 is the nominal voltage level for the value logic zero,
v1 is the nominal voltage level for the value logic one,
vtr is a specified voltage level crossed during a rising transition,
vtf is a specified voltage level crossed during a falling transition,

subject to the following restrictions:

v0 < v1
v0 < vtr < v1 and v0 < vtf < v1.

Threshold is illustrated in Figure 29.

Figure 29—THRESHOLD measurement definition

The arithmetic model threshold can contain the arithmetic submodels rise and fall (see Section 11.21). If a tim-
ing-related arithmetic model refering to a single event (see Section 10.13.1) in the context of a declared vector
(see Section 9.13) inherits a definition for threshold, the matching arithmetic submodel rise or fall shall apply
according to the single event.

Note: The arithmetic submodel rise or fall is not necessary, if vtr = vtf.

Threshold can be specified in the context of a from-to statement (see Section 11.12) or in the context of a
declared pin (see Section 9.5). As a child of a from-to statement, threshold shall apply to the parent arithmetic
model of the from-to statement. As a child of a declared pin, threshold shall apply to the parent arithmetic model
of a from-to statement, if the from-to statement acontains a pin reference annotation (see Section 11.13.2), refer-
ing to the declared pin.

Note: Threshold in the context of a declared pin does not apply to slewrate (see Section 11.11.5) or pulsewidth (see
Section 11.11.9), since a from-to statement in the context of slewrate or pulsewidth can not contain a pin reference annotation.

11.11.14 NOISE and NOISE_MARGIN

The arithmetic models noise and noise margin shall be defined as shown in Semantics 124.

The purpose of the arithmetic model noise is to specify a noise measurement. The purpose of the arithmetic
model noise margin is to specify a tolerance against noise.

Noise shall be a normalized quantity, according to the following mathematical definition.

v0vtrv1 v0vtfv1

threshold.rise * (v1 - v0) threshold.fall * (v1 - v0)
188 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

1

5

10

15

20

25

30

35

40

45

50

55
noise.low = (vn - v0) / (v1 - v0)
noise.high = (v1 - vn) / (v1 - v0)

where

v0 is the nominal voltage level for the logic value logic zero,
v1 is the nominal voltage level for the value logic one,
vn is a measured voltage level caused by noise

Note:
Noise on a signal with the logic value zero is positive or negative, respectively, if vn > v0 or vn < v0, respectively.
Noise on a signal with the logic value one is positive or negative, respectively, if vn < v1 or vn > v1, respectively.

Noise is illustrated in Figure 29.

Figure 30—NOISE measurement definition

A distinction shall be made between a noise margin and a design limit for noise. A noise margin shall be defined
as a value for noise that ensures that the logic value of a signal is recognizable. A design limit for noise shall be
defined as a value of noise that is tolerable regardless whether the logic value is recognizable or not.

KEYWORD NOISE = arithmetic_model { VALUETYPE = number ; }
SEMANTICS NOISE {

CONTEXT {
LIBRARY.LIMIT SUBLIBRARY.LIMIT CELL.LIMIT
PIN PIN.LIMIT VECTOR VECTOR.LIMIT HEADER

}
}
KEYWORD NOISE_MARGIN = arithmetic_model {

VALUETYPE = number ;
}
SEMANTICS NOISE_MARGIN {

CONTEXT { CLASS LIBRARY SUBLIBRARY CELL PIN VECTOR }
}
NOISE_MARGIN { MIN = 0; }

Semantics 124—Arithmetic models NOISE and NOISE_MARGIN

v0vnv1 v0vnv1

noise.high * (v1 - v0)

noise.low * (v1 - v0)
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 189

1

5

10

15

20

25

30

35

40

45

50

55
The distinction between a noise margin and a design limit for noise is illustrated in Figure 31.

Figure 31—Definition of NOISE MARGIN and LIMIT for NOISE

Per definition, noise can be positive or negative, noise margin shall be positive, a maximum design limit for
noise shall be positive, and a minimum design limit for noise shall be negative.

— NOISE in context of a declared library or sublibrary (see Section 9.1) or a declared cell (see Section 9.3)

The arithmetic model container limit (see Section 11.8.2) can be used to specify a design limit for noise. An
arithmetic submodel high, low (see Section 11.21) can optionally be used.

A child shall inherit the design limit specification from its parent, unless a design limit is specified within the
child. In particular, a sublibrary can inherit from a library. A cell can inherit from a sublibrary or from a library.
A pin can inherit from a cell, a sublibrary or a library.

— NOISE in context of a declared pin (see Section 9.5)

A static noise measurement related to the pin can be described. An arithmetic submodel high, low can optionally
be used.

A design limit for noise can be described in the same way as in the context of a library, a sublibrary or a cell.

— NOISE in context of a declared vector (see Section 9.13)

A noise measurement in response to a stimulus provided by the vector can be described. A pin reference annota-
tion shall be used. A static noise measurement can be described using a boolean expression (see Section 10.9) as
a stimulus. A transient noise measurement, i.e., either a waveform for noise or a peak value for noise, can be
described using a vector expression (see Section 10.12) as stimulus.

A design limit for noise related to the stimulus can be specified using the arithmetic model container limit. A pin
reference annotation shall be used.

— NOISE as header arithmetic model (see Syntax 89 in Section 11.4)

A noise that acts as a stimulus can be described. A pin reference annotation shall be used.

— NOISE MARGIN in context of a declared class (see Section 8.6)

A static noise margin can be specified. An arithmetic submodel high, low can optionally be used. A declared pin
can inherit this specification by refering to the class.

v0v1

noise_margin.low * (v1 - v0)

noise_margin.high * (v1 - v0)

v0v1

limit.noise.low.max * (v1 - v0)

limit.noise.low.min * (v1 - v0)

limit.noise.high.max * (v1 - v0)

limit.noise.high.min * (v1 - v0)
190 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

1

5

10

15

20

25

30

35

40

45

50

55
— NOISE MARGIN in context of a declared library or sublibrary (see Section 9.1) or a declared cell (see
Section 9.3) or a declared pin (see Section 9.5).

A static noise margin can be specified. The arithmetic submodels high or low can optionally be used.

A child shall inherit the noise margin specification from its parent, unless a noise margin is specified within the
child. In particular, a sublibrary can inherit from a library. A cell can inherit from a sublibrary or from a library.
A pin can inherit from a cell, a sublibrary or a library. Inheritance from a class by a pin shall take precedence
over inheritance from a cell, a sublibrary or a library.

— NOISE MARGIN in the context of a declared vector (see Section 9.13)

A noise margin in the context of a stimulus given by the vector can be described. A pin reference annotation (see
Section 11.13.6) shall be used.

A state-dependent noise margin can be described using a boolean expression (see Section 10.9) as stimulus.

A sensitivity window for a noise margin can be described using a vector expression (see Section 10.12) as stimu-
lus. The arithmetic model time (see Section 11.11.1) shall be used as an auxiliary arithmetic model (see
Section 11.6). A from-to statement (see Section 11.12) shall be associated with time.

A transient noise margin, i.e., a noise margin that depends on the timing characteristics of the stimulus can be
described using a vector expression as stimulus and a timing-related arithmetic model, e.g. pulsewidth (see
Section 11.11.9) or slewrate (see Section 11.11.5), as a header arithmetic model (see Syntax 89 in Section 11.4).

11.11.15 POWER and ENERGY

The arithmetic models power and energy shall be defined as shown in Semantics 125.

The purpose of the arithmetic models power and energy is to specify the electrical power consumption of an elec-
tronic circuit.

— POWER in context of a declared class (see Section 8.6)

The arithmetic model container limit (see Section 11.8.2) can be used to specify a design limit for power con-
sumption associated with a class with usage annotation value supply-class (see Section 9.7.16). A measurement
annotation (see Section 11.13.7) shall be used.

KEYWORD POWER = arithmetic_model { VALUETYPE = number; }
SEMANTICS POWER {

CONTEXT {
LIBRARY SUBLIBRARY CELL VECTOR
CLASS.LIMIT CELL.LIMIT

}
}
POWER { UNIT = MilliWatt; }
KEYWORD ENERGY = arithmetic_model { VALUETYPE = number; }
SEMANTICS ENERGY {

CONTEXT { LIBRARY SUBLIBRARY CELL VECTOR }
}
ENERGY { UNIT = PicoJoule; }

Semantics 125—Arithmetic models POWER and ENERGY
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 191

1

5

10

15

20

25

30

35

40

45

50

55
— POWER in context of a declared library or sublibrary (see Section 9.1)

A partial arithmetic model (see Syntax 85 within Section 11.3) can be used to globally specify an inheritable
arithmetic model qualifier (see Syntax 88 within Section 11.3) for power.

— POWER in context of a declared cell (see Section 9.3)

Power consumption of a cell or a design limit for power consumption of a cell can be described. A measurement
annotation shall be used.

A partial arithmetic model can be used in the same way as in the context of library or sublibrary.

— POWER in context of a declared vector (see Section 9.13)

Power consumption related to a stimulus defined by the vector can be described. A measurement annotation
shall be used.

— ENERGY in context of a declared library or sublibrary (see Section 9.1) or a declared cell (see
Section 9.3)

A partial arithmetic model (see Syntax 85 within Section 11.3) can be used to globally specify an inheritable
arithmetic model qualifier (see Syntax 88 within Section 11.3) for energy.

— ENERGY in context of a declared vector (see Section 9.13)

Energy consumption related to a stimulus defined by the vector can be described. Total energy consumption
associated with different stimuli shall be additive, regardless whether the stimuli are mutually exclusive or not.
Also, energy consumption shall be additive with power consumption, if the measurement annotation value static
is associated with the latter.

11.12 FROM and TO statements

A from-to statement shall be defined as shown in Syntax 102.

The purpose of a from and a to statement is to define the start and end point, respectively, of a timing measure-
ment. The timing measurement shall be applicable for digital signals.

A from and a to statement can contain a pin reference annotation (see Section 11.13.2), an edge number annota-
tion (see Section 11.11.2) and a threshold arithmetic model (see Section 11.11.13).

from-to ::=
from | to | from to

from ::=
FROM { from-to_item { from-to_item } }

to ::=
TO { from-to_item { from-to_item } }

from-to_item ::=
PIN_reference_single_value_annotation

| EDGE_NUMBER_single_value_annotation
| THRESHOLD_arithmetic_model

Syntax 102—FROM and TO statements
192 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

1

5

10

15

20

25

30

35

40

45

50

55
A reference to a single event (see Section 10.13.1) is specified by the pin reference annotation in conjunction
with the edge number annotation. The single event referenced within the from and to statement, respectively,
shall be called from-event and to-event, respectively.

The from-and to-statements shall be subjected to the restriction shown in Semantics 126.

11.13 Annotations related to timing, power and signal integrity

Add lead-in text

11.13.1 EDGE_NUMBER annotation

An edge number annotation shall be defined as shown in .

The edge number annotation shall be a child of an arithmetic model (see Section 11.3) or a from-to statement (see
Section 11.12).

The purpose of the edge number annotation is to specify a reference to a single event (see Section 10.13.1) within
a vector expression. The vector expression shall be the name of a declared vector. The reference shall be estab-
lished by using the edge number annotation in conjunction with a pin reference annotation (see Section 9.8.1).
The pin reference annotation shall point to a pin variable (see Section 7.9) involved in the vector expression. The
edge number annotation shall point to a single event on the pin variable. Every single event on a pin variable
shall be counted in chronological order, starting with 0.

11.13.2 PIN reference and EDGE_NUMBER annotation for FROM and TO

A pin reference annotation shall be subjected to the restriction shown in Semantics 128.

SEMANTICS FROM {
CONTEXT {

TIME DELAY RETAIN SLEWRATE PULSEWIDTH
SETUP HOLD RECOVERY REMOVAL NOCHANGE ILLEGAL SKEW

}
}
SEMANTICS TO {

CONTEXT {
TIME DELAY RETAIN SLEWRATE PULSEWIDTH
SETUP HOLD RECOVERY REMOVAL NOCHANGE ILLEGAL SKEW

}
}

Semantics 126— Restriction for FROM and TO statements

KEYWORD EDGE_NUMBER = annotation {
CONTEXT { arithmetic_model FROM TO }
VALUETYPE = unsigned_integer ;
DEFAULT = 0;

}

Semantics 127—EDGE_NUMBER annotation
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 193

1

5

10

15

20

25

30

35

40

45

50

55
The purpose of the restriction is to define a reference to a single pin variable in the context of a from-to statement
(see Section 11.12).

An edge_number annotation shall be subjected to the restriction shown in Semantics 127.

The purpose of the restriction is to define a reference to a single event (see Section 10.13.1) in the context of a
from-to statement.

Example:

TIME { FROM { PIN=A; EDGE_NUMBER=1; } TO { PIN=B; EDGE_NUMBER=3; } }

The following Figure 32 illustrates the restriction using a timing diagram.

Figure 32—Illustration of PIN reference and EDGE NUMBER annotation within FROM and TO

A measurement is taken from edge number 1 at pin variable A to edge number 3 at pin variable B.

SEMANTICS FROM.PIN = single_value_annotation {
CONTEXT { TIME DELAY RETAIN SETUP HOLD
RECOVERY REMOVAL NOCHANGE ILLEGAL }

}
SEMANTICS TO.PIN = single_value_annotation {

CONTEXT { TIME DELAY RETAIN SETUP HOLD
RECOVERY REMOVAL NOCHANGE ILLEGAL }

}

Semantics 128—Restriction for PIN reference annotation within FROM and TO

SEMANTICS FROM.EDGE_NUMBER = single_value_annotation {
CONTEXT { TIME DELAY RETAIN SETUP HOLD
RECOVERY REMOVAL NOCHANGE ILLEGAL }

}
SEMANTICS TO.EDGE_NUMBER = single_value_annotation {

CONTEXT { TIME DELAY RETAIN SETUP HOLD
RECOVERY REMOVAL NOCHANGE ILLEGAL }

}

Semantics 129—Restriction for EDGE_NUMBER annotation within FROM and TO

0 1 2

0 1 2 3edge number

edge number

pin variable

A

B

from to
194 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

1

5

10

15

20

25

30

35

40

45

50

55
11.13.3 PIN reference and EDGE_NUMBER annotation for SLEWRATE

A pin reference annotation and an edge_number annotation shall be subjected to the restriction shown in .

The purpose of the restriction is to define a reference to a single event for which slewrate (see Section 11.11.5) is
measured.

11.13.4 PIN reference and EDGE_NUMBER annotation for PULSEWIDTH

A pin reference annotation and an edge_number annotation shall be subjected to the restriction shown in .

The purpose of the restriction is to define a reference to a single event which is the leading edge of a pulse for
which pulsewidth (see Section 11.11.9) is measured. The trailing edge shall be the following single event on the
same pin.

11.13.5 PIN reference and EDGE_NUMBER annotation for SKEW

A pin reference annotation and an edge number annotation shall be subjected to the restriction shown in .

The purpose of the restriction is to define a reference to plural events, for which skew (see Section 11.11.12) is
measured.

The number of annotation values within the pin reference and edge number annotation shall match. Subsequent
annotation values shall correspond to each other. i.e., the first annotation value within the pin reference annota-
tion shall correspond to the first annotation value within the edge number annotation, etc.

11.13.6 PIN reference annotation for NOISE and NOISE_MARGIN

A pin reference annotation shall be subjected to the restriction shown in .

SEMANTICS SLEWRATE.PIN = single_value_annotation ;
SEMANTICS SLEWRATE.EDGE_NUMBER = single_value_annotation ;

Semantics 130—Restriction for PIN reference and EDGE_NUMBER annotation within SLEWRATE

SEMANTICS PULSEWIDTH.PIN = single_value_annotation;
SEMANTICS PULSEWIDTH.EDGE_NUMBER = single_value_annotation;

Semantics 131—Restriction for PIN reference and EDGE_NUMBER annotation within PULSEWIDTH

SEMANTICS SKEW.PIN = multi_value_annotation ;
SEMANTICS SKEW.EDGE_NUMBER = multi_value_annotation ;

Semantics 132—Restriction for PIN reference and EDGE_NUMBER annotation within SKEW

SEMANTICS NOISE.PIN = single_value_annotation ;
SEMANTICS NOISE_MARGIN.PIN = single_value_annotation ;

Semantics 133—Restriction for PIN reference annotation within NOISE and NOISE MARGIN
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 195

1

5

10

15

20

25

30

35

40

45

50

55
The purpose of the restriction is to define a reference to a pin, for which noise or noise margin (see
Section 11.11.14) is described.

11.13.7 MEASUREMENT annotation

A measurement annotation shall be defined as shown in Semantics 134.

The purpose of the measurement annotation is to specify the mathematical definition of a temporal measurement.

The mathematical definition of the annotation values is shown in Table 97.

The arithmetic model time (see Section 11.11.1) or frequency (see Section 11.11.2) shall be used as auxiliary
arithmetic model (see Section 11.6), if the measurement annotation value is average, absolute average, or rms.
The auxiliary arithmetic model time shall be interpreted as the integration time T in Table 97. The auxiliary arith-
metic model frequency shall be interpreted as the repetition frequency f of the measurement, with f=1/T.

KEYWORD MEASUREMENT = single_value_annotation {
VALUETYPE = identifier ;
VALUES {

transient static average absolute_average rms peak
}
CONTEXT {

ENERGY POWER CURRENT VOLTAGE JITTER
}

}

Semantics 134—MEASUREMENT annotation

Table 97—MEASUREMENT annotation

Annotation value Mathematical description

transient measurement = x(t)

static measurement = x, with x constant

average

absolute_average

rms

peak measurement = max(max(x),-min(x)), with x = x(t)

1
T
--- x t() td

t 0=

t T=

∫measurement =

1
T
--- x t() td

t 0=

t T=

∫measurement =

1
T
--- x2 t() td

t 0=

t T=

∫measurement =
196 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

1

5

10

15

20

25

30

35

40

45

50

55
The auxiliary arithmetic model time can be used, if the parent arithmetic model is in the context of a declared
vector (see Section 9.13) and the measurement annotation value is peak. Either a from or a to statement (see
Section 11.12) can be used to specify the time interval between a single event (see Section 10.13.1) and the
occurence of the measurement or vice-versa.

This is illustrated in Figure 33.

Figure 33—Illustration of peak measurement with FROM or TO statement

11.14 Arithmetic models for environmental conditions

11.14.1 PROCESS

The arithmetic model process shall be defined as shown in Semantics 135.

The purpose of the arithmetic model process is to specify a dependency between an arithmetic model and a man-
ufacturing process condition. A partial arithmetic model (see Syntax 85 within Section 11.3), a header arith-
metic model (see Syntax 89 within Section 11.4), or an auxiliary arithmetic model (see Section 11.6) can be used.

The meaning of the predefined arithmetic values for process is explained in Table 98.

KEYWORD PROCESS = arithmetic_model {
VALUETYPE = identifier ;

}
SEMANTICS PROCESS {

CONTEXT {
CLASS LIBRARY SUBLIBRARY CELL WIRE
HEADER
arithmetic_model

}
}
PROCESS { DEFAULT = nom; TABLE { nom snsp snwp wnsp wnwp } }

Semantics 135—Arithmetic model PROCESS

Table 98—Predefined arithmetic values for PROCESS

Value Description

nom NMOS and PMOS transistors with nominal strength

snsp Strong NMOS transistor, strong PMOS transistor.

from to
time time

single
event

single
event

peak peak
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 197

19

1

5

10

15

20

25

30

35

40

45

50

55
8 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

11.14.2 DERATE_CASE

The arithmetic model derate case shall be defined as shown in Semantics 136.

The purpose of the arithmetic model derate case is to specify a dependency between an arithmetic model and an
environmental condition. A partial or a full arithmetic model (see Syntax 85, Syntax 86 within Section 11.3), a
header arithmetic model (see Syntax 89 within Section 11.4), or an auxiliary arithmetic model (see Section 11.6)
can be used.

The meaning of the predefined arithmetic values for derate case is explained in Table 99.

snwp Strong NMOS transistor, weak PMOS transistor.

wnsp Weak NMOS transistor, strong PMOS transistor.

wnwp Weak NMOS transistor, weak PMOS transistor.

KEYWORD DERATE_CASE = arithmetic_model {
VALUETYPE = identifier ;

}
SEMANTICS DERATE_CASE {

CONTEXT {
CLASS LIBRARY SUBLIBRARY CELL WIRE
HEADER
arithmetic_model

}
}
DERATE_CASE { DEFAULT = nom;

TABLE { nom bccom wccom bcind wcind bcmil wcmil }}
}

Semantics 136—Arithmetic model DERATE_CASE

Table 99—Predefined arithmetic values for DERATE CASE

Derating case Description

nom Nominal environmental condition

bccom Best case commercial condition

bcind Best case industrial condition

bcmil Best case military condition

wccom Worst case commercial condition

wcind Worst case industrial condition

wcmil Worst case military condition

Table 98—Predefined arithmetic values for PROCESS (Continued)

Value Description

1

5

10

15

20

25

30

35

40

45

50

55
A full arithmetic model can be used to describe the dependency between the condition and its defining parame-
ters (e.g., process, voltage, temperature).

11.14.3 TEMPERATURE

The arithmetic model temperature shall be defined as shown in Semantics 137.

The purpose of the arithmetic model temperature is to specify a dependency between an arithmetic model and an
environmental temperature. Temperature shall be measured in degrees Celsius. A partial or a full arithmetic
model (see Syntax 85, Syntax 86 within Section 11.3), a header arithmetic model (see Syntax 89 within
Section 11.4), or an auxiliary arithmetic model (see Section 11.6) can be used.

11.15 Arithmetic models for electrical circuits

11.15.1 VOLTAGE

The arithmetic model voltage shall be defined as shown in .

The purpose of the arithmetic model voltage is to specify either a measurement of electrical voltage or an electri-
cal component that can be modeled as a voltage source.

— VOLTAGE in context of a declared class (see Section 8.6)

KEYWORD TEMPERATURE = arithmetic_model {
VALUETYPE = number ;

}
SEMANTICS TEMPERATURE {

CONTEXT {
CLASS LIBRARY SUBLIBRARY CELL WIRE
LIMIT
HEADER
arithmetic_model

}
}
TEMPERATURE { UNIT = 1DegreeCelsius; MIN = -273; }

Semantics 137—Arithmetic model TEMPERATUREt

KEYWORD VOLTAGE = arithmetic_model {
VALUETYPE = number ;

}
SEMANTICS VOLTAGE {

CONTEXT {
CLASS LIBRARY SUBLIBRARY CELL PIN WIRE VECTOR HEADER
CLASS.LIMIT CELL.LIMIT PIN.LIMIT VECTOR.LIMIT

}
}
VOLTAGE { UNIT = 1Volt; }

Semantics 138—Arithmetic model VOLTAGE
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 199

1

5

10

15

20

25

30

35

40

45

50

55
An environmental voltage can be specified. An arithmetic submodel high, low (see Section 11.21) can optionally
be used. A pin (see Section 9.5) can inherit this specification by refering to the class. In particular, a supply class
annotation (see Section 9.7.16) or a connect class annotation (see Section 9.7.19) can be used for this purpose.

— VOLTAGE in context of a declared library or sublibrary (see Section 9.1)

A partial arithmetic model (see Syntax 85 within Section 11.3) can be used to globally specify an inheritable
arithmetic model qualifier (see Syntax 88 within Section 11.3) or a trivial min-max statement (see Section 95
within Section 11.5) for voltage.

— VOLTAGE in context of a declared cell (see Section 9.3)

A voltage source that is part of the implementation of a cell can be specified. A node reference annotation (see
Section 11.16.1) shall be used.

A design limit for a voltage related to the cell can be specified using the arithmetic model container limit (see
Section 11.8.2). Either a pin reference annotation (see Section 11.16.3) or a model reference annotation (see
Section 11.9.5) shall be used.

A partial arithmetic model can be used in the same way as in the context of library or sublibrary.

— VOLTAGE in context of a declared pin (see Section 9.5)

An environmental voltage related to a pin, e.g., a supply voltage, can be described. An arithmetic submodel high,
low can optionally be used.

A design limit for a voltage that can be applied to the pin can be described using the arithmetic model container
limit.

— VOLTAGE in context of a declared wire (see Section 9.9)

A voltage source within an electrically equivalent circuit used for interconnect analysis can be specified. A node
reference annotation shall be used.

— VOLTAGE in context of a declared vector (see Section 9.13)

A voltage measurement in response to a stimulus provided by the vector can be described. Either a pin reference
annotation or a model reference annotation shall be used.

A design limit for a voltage related to the stimulus can be specified using the arithmetic model container limit
(see Section 11.8.2). Either a pin reference annotation or a model reference annotationshall be used.

— VOLTAGE as header arithmetic model (see Syntax 89 in Section 11.4)

A voltage that acts as a stimulus can be described. Either a pin reference annotation or a model reference annota-
tion shall be used. In particular, if a wire instantiation (see Section 10.15) is present, a reference to a voltage
source specified within the declared wire can be established.

11.15.2 CURRENT

The arithmetic model current shall be defined as shown in .

The purpose of the arithmetic model current is to specify either a measurement of electrical current or an electri-
cal component that can be modeled as a current source.
200 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

1

5

10

15

20

25

30

35

40

45

50

55
— CURRENT in context of a declared library or sublibrary (see Section 9.1)

A partial arithmetic model (see Syntax 85 within Section 11.3) can be used to globally specify an inheritable
arithmetic model qualifier (see Syntax 88 within Section 11.3) for current.

— CURRENT in context of a declared cell (see Section 9.3)

A current source that is part of the implementation of a cell can be specified. A node reference annotation (see
Section 11.16.1) shall be used.

A design limit for a current related to the cell can be specified using the arithmetic model container limit (see
Section 11.8.2). Either a pin reference annotation (see Section 11.16.3) or a model reference annotation (see
Section 11.9.5) or a component reference annotation (see Section 11.16.2) shall be used.

A partial arithmetic model can be used in the same way as in the context of library or sublibrary.

— CURRENT in context of a declared wire (see Section 9.9)

A current source within an electrically equivalent circuit used for interconnect analysis can be specified. A node
reference annotation shall be used.

— CURRENT in context of a declared layer (see Section 9.15), a declared via (see Section 9.17), or a
declared rule (see Section 9.19)

A design limit for current can be specified using the arithmetic model container limit. A measurement annotation
(see Section 11.13.7) shall be used.

In the context of a layer, the current shall flow through a general layout segment created by that layer. In the con-
text of a via or in the context of a rule, the current shall flow through a particular layout segment in context of
other layout segments described within the via or within the rule. A pattern reference annotation (see
Section 11.20.9) shall be used.

— CURRENT in context of a declared vector (see Section 9.13)

A current measurement in response to a stimulus provided by the vector can be described. Either a pin reference
annotation or a model reference annotation or a component reference annotation shall be used.

KEYWORD CURRENT = arithmetic_model {
VALUETYPE = number ;

}
SEMANTICS CURRENT {

CONTEXT {
LIBRARY SUBLIBRARY CELL WIRE VECTOR HEADER
CELL.LIMIT VECTOR.LIMIT
LAYER.LIMIT VIA.LIMIT RULE.LIMIT

}
}
CURRENT { UNIT = MilliAmpere; }

Semantics 139—Arithmetic model CURRENT
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 201

1

5

10

15

20

25

30

35

40

45

50

55
A design limit for a current related to the stimulus can be specified using the arithmetic model container limit .
Either a pin reference annotation or a model reference annotation or a component reference annotation shall be
used.

— CURRENT as header arithmetic model (see Syntax 89 in Section 11.4)

A current that acts as a stimulus can be described. Either a pin reference annotation or a model reference annota-
tion or a component reference annotation shall be used. In particular, if a wire instantiation (see Section 10.15) is
present, a reference to a current source or to a component specified within the declared wire can be established.

11.15.3 CAPACITANCE

The arithmetic model capacitance shall be defined as shown in Semantics 134.

The purpose of the arithmetic model capacitance is to describe either a measurement of electrical capacitance or
an electrical component that can be modeled as a capacitor.

— CAPACITANCE in context of a declared library or sublibrary (see Section 9.1)

A partial arithmetic model (see Syntax 85 within Section 11.3) can be used to globally specify an inheritable
arithmetic model qualifier (see Syntax 88 within Section 11.3) for capacitance.

— CAPACITANCE in context of a declared cell (see Section 9.3)

A capacitor that is part of the implementation of a cell can be described. A node reference annotation (see
Section 11.16.1) shall be used.

A design limit for a capacitor related to the cell can be specified using the arithmetic model container limit (see
Section 11.8.2). Either a pin reference annotation (see Section 11.16.3) or a model reference annotation (see
Section 11.9.5) shall be used.

A partial arithmetic model can be used in the same way as in the context of library or sublibrary.

— CAPACITANCE in context of a declared pin (see Section 9.5)

The self-capacitance of a pin can be described as a child of a pin. An arithmetic submodel rise, fall, high, low
(see Section 11.21) can optionally be used.

KEYWORD CAPACITANCE = arithmetic_model {
VALUETYPE = number ;
SI_MODEL = CAPACITANCE ;

}
SEMANTICS CAPACITANCE {

CONTEXT {
LIBRARY SUBLIBRARY CELL CELL.LIMIT PIN PIN.LIMIT
WIRE LAYER RULE VECTOR HEADER

}
}
CAPACITANCE { UNIT = PicoFarad; MIN = 0; }

Semantics 140—Arithmetic model CAPACITANCE
202 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

1

5

10

15

20

25

30

35

40

45

50

55
A design limit for a capacitance that can be connected to the pin can be specified using the arithmetic model con-
tainer limit as a child of a pin.

— CAPACITANCE in context of a declared wire (see Section 9.9)

A capacitance with or without node reference annotation can be described.

A capacitance with node reference annotation shall represent a capacitor within an electrically equivalent circuit
used for interconnect analysis. If the wire is a child of the cell and a permanent connectivity between pins and
nodes of the cell and the nodes of the wire exists, the capacitance shall represent a parasitic capacitor within the
cell. Interconnect analysis shall either use a (lumped) self-capacitance of a pin or a (distributed) parasitic capaci-
tor connected to a pin.

A capacitance without node reference annotation shall represent an estimation model for interconnect capaci-
tance.

— CAPACITANCE in context of a declared layer (see Section 9.15)

An estimation model for capacitance of a general layout segment can be described. An arithmetic submodel hor-
izontal, vertical, acute, obtuse (see Section 11.22) can optionally be used.

— CAPACITANCE in context of a declared rule (see Section 9.19)

An estimation model for capacitance created by a particular layout pattern can be described.

— CAPACITANCE in context of a declared vector (see Section 9.13)

An effective capacitance can be described. Either a pin reference annotation or a model reference annotation shall
be used. The effective capacitance shall be interpreted as a virtual capacitor, which, under the specific stimulus
provided by the vector, behaves in a similar way as the actual load circuit.

— CAPACITANCE as header arithmetic model (see Syntax 89 in Section 11.4)

A capacitance as a dimension of an arithmetic model can be described. Either a pin reference annotation or a
model reference annotation shall be used.

The pin reference annotation shall be used to specify a lumped load capacitance. The self-capacitance of the pin
shall not be included in the load capacitance.

The model reference annotation shall be used to refer to another capacitor. In particular, if a wire instantiation
(see Section 10.15) is present, a reference to a capacitor described within the declared wire can be established.

11.15.4 RESISTANCE

The arithmetic model resistance shall be defined as shown in .

The purpose of the arithmetic model resistance is to describe either a measurement of electrical resistance or an
electrical component that can be modeled as a resistor.

— RESISTANCE in context of a declared library or sublibrary (see Section 9.1)

A partial arithmetic model (see Syntax 85 within Section 11.3) can be used to globally specify an inheritable
arithmetic model qualifier (see Syntax 88 within Section 11.3) for resistance.
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 203

1

5

10

15

20

25

30

35

40

45

50

55
— RESISTANCE in context of a declared cell (see Section 9.3)

A resistor that is part of the implementation of a cell can be described. A node reference annotation (see
Section 11.16.1) shall be used.

A design limit for a resistor related to the cell can be specified using the arithmetic model container limit (see
Section 11.8.2). A model reference annotation (see Section 11.9.5) shall be used.

A partial arithmetic model can be used in the same way as in the context of library or sublibrary.

— RESISTANCE in context of a declared wire (see Section 9.9)

A resistance with or without node reference annotation can be described.

A resistance with node reference annotation shall represent a resistor within an electrically equivalent circuit
used for interconnect analysis. If the wire is a child of the cell and a permanent connectivity between pins and
nodes of the cell and the nodes of the wire exists, the resistance shall represent a parasitic resistor within the cell.

A resistance without node reference annotation shall represent an estimation model for interconnect resistance.

— RESISTANCE in context of a declared layer (see Section 9.15)

An estimation model for resistance of a general layout segment can be described. An arithmetic submodel hori-
zontal, vertical, acute, obtuse (see Section 11.22) can optionally be used.

— RESISTANCE in context of a declared rule (see Section 9.19)

An estimation model for resistance created by a particular layout pattern can be described.

— RESISTANCE in context of a declared vector (see Section 9.13)

A driver resistance can be described. Either a pin reference annotation or a model reference annotation shall be
used. The driver resistance shall be interpreted as part of an electrically equivalent circuit, which, under the spe-
cific stimulus provided by the vector, behaves in a similar way as the actual driver circuit.

— RESISTANCE as header arithmetic model (see Syntax 89 in Section 11.4)

KEYWORD RESISTANCE = arithmetic_model {
VALUETYPE = number ;
SI_MODEL = RESISTANCE ;

}
SEMANTICS RESISTANCE {

CONTEXT {
LIBRARY SUBLIBRARY CELL WIRE LAYER RULE
CELL.LIMIT VECTOR HEADER

}
}
RESISTANCE { UNIT = KiloOhm; MIN = 0; }

Semantics 141—Arithmetic model RESISTANCE
204 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

1

5

10

15

20

25

30

35

40

45

50

55
A resistance as a dimension of an arithmetic model can be described. A model reference annotation shall be used.
In particular, if a wire instantiation (see Section 10.15) is present, a reference to a resistor described within the
declared wire can be established.

11.15.5 INDUCTANCE

The arithmetic model inductance shall be defined as shown in .

The purpose of the arithmetic model inductance is to describe either a measurement of electro-magnetic induc-
tance or an electro-magnetic component that can be modeled as an inductor (i.e., a component with self-induc-
tance) or a transformator (i.e., a component with mutual inductance).

— INDUCTANCE in context of a declared library or sublibrary (see Section 9.1)

A partial arithmetic model (see Syntax 85 within Section 11.3) can be used to globally specify an inheritable
arithmetic model qualifier (see Syntax 88 within Section 11.3) for inductance.

— INDUCTANCE in context of a declared cell (see Section 9.3)

An inductor or a transformator that is part of the implementation of a cell can be described. A node reference
annotation (see Section 11.16.1) shall be used.

A design limit for an inductor or for a transformator related to the cell can be specified using the arithmetic
model container limit (see Section 11.8.2). A pin reference annotation (see Section 11.16.3) or a model reference
annotation (see Section 11.9.5) shall be used.

A partial arithmetic model can be used in the same way as in the context of library or sublibrary.

— INDUCTANCE in context of a declared wire (see Section 9.9)

An inductance with or without node reference annotation can be described.

An inductance with node reference annotation shall represent a self-inductance or a mutual inductance within an
electrically equivalent circuit used for interconnect analysis. If the wire is a child of the cell and a permanent con-
nectivity between pins and nodes of the cell and the nodes of the wire exists, the inductance shall represent a par-
asitic self-inducatnace or mutual inductance within the cell.

An inductance without node reference annotation shall represent an estimation model for interconnect self-
inductance.

KEYWORD INDUCTANCE = arithmetic_model {
VALUETYPE = number ;
SI_MODEL = INDUCTANCE ;

}
SEMANTICS INDUCTANCE {

CONTEXT {
LIBRARY SUBLIBRARY CELL WIRE RULE
CELL.LIMIT HEADER

}
}
INDUCTANCE { UNIT = MicroHenry; MIN = 0; }

Semantics 142—Arithmetic model INDUCTANCE
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 205

1

5

10

15

20

25

30

35

40

45

50

55
— INDUCTANCE in context of a declared rule (see Section 9.19)

An estimation model for inductance created by a particular layout pattern can be described.

— INDUCTANCE as header arithmetic model (see Syntax 89 in Section 11.4)

An inductance as a dimension of an arithmetic model can be described. A model reference annotation shall be
used. In particular, if a wire instantiation (see Section 10.15) is present, a reference to a self-inductance or to a
mutual inductance described within the declared wire can be established.

11.16 Annotations for electrical circuits

11.16.1 NODE reference annotation for electrical circuits

The node reference annotation (see Section 9.12.1) shall be subjected to restrictions defined in the following.

The purpose of a node reference annotation with these restrictions is to specify the connectivity of an electrical
component within an electrical circuit.

The following restrictions shall further apply:

a) An arithmetic model with a node reference annotation shall always have an ALF name.
b) A node annotation associated with the arithmetic model voltage shall have two values, representing the

terminal nodes of a voltage source. The defined polarity of the first and the second terminal shall be pos-
itive and negative, respectively.

c) A node annotation associated with the arithmetic model current shall have two values, representing the
terminal nodes of a current source. The defined flow of the current shall be from the first to the second
terminal.

d) A node annotation associated with the arithmetic model capacitance shall have two values, representing
the terminal nodes of a capacitor.

e) A node annotation associated with the arithmetic model resistance shall have two values, representing
the terminal nodes of a resistor.

f) A node annotation associated with the arithmetic model inductance shall have either two values or four
values. Two values shall represent the terminal nodes of an inductor. Four values shall represent the ter-
minal nodes of two coupled inductors. The first two values shall represent the terminals accross which an
induced voltage is observed. The last two values shall represent the terminals accross which a controlling
current flows.

SEMANTICS VOLTAGE.NODE = multi_value_annotation {
CONTEXT { CELL WIRE } }

SEMANTICS CURRENT.NODE = multi_value_annotation {
CONTEXT { CELL WIRE } }

SEMANTICS CAPACITANCE.NODE = multi_value_annotation {
CONTEXT { CELL WIRE } }

SEMANTICS RESISTANCE.NODE = multi_value_annotation {
CONTEXT { CELL WIRE } }

SEMANTICS INDUCTANCE.NODE = multi_value_annotation {
CONTEXT { CELL WIRE } }

Semantics 143—Restrictions for NODE reference annotation
206 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

1

5

10

15

20

25

30

35

40

45

50

55
The electrical components and their terminals are illustrated in the following Figure 34.

Figure 34—Electrical components and their terminals

The numbers in Figure 34 indicate the first, second, third and fourth node annotation values. However, the node
annotation values shall be the ALF names of declared nodes.

11.16.2 COMPONENT reference annotation

A component reference annotation shall be defined as shown in Semantics 144.

The purpose of the component reference annotation is to relate the arithmetic model current (see
Section 11.15.2), power or energy (see Section 11.11.15) to an electrical component.

Electrical current shall flow through an electrical component with two terminals, i.e., a voltage source, a current
source, a capacitor, a resistor, or an inductor. The defined flow of the current shall be from the first terminal to the
second terminal.

Electrical power or energy shall be supplied by a voltage source or by a current source, stored in a capacitor or in
an inductor and dissipated in a resistor. A negative value shall mean that a voltage source or a current source is a
sink of power or energy rather than a source, that a capacitor or an inductor releases energy or power, or that a
resistor virtually supplies power.

Note: A resistor that supplies power is physically impossible. However, certain active electronic circuits, for example a NIC
(Negative Impedance Convertor), can be modeled using a “negative” resistor. The electrical energy “supplied” by the “nega-
tive” resistor is dissipated in other parts of the electronic circuit.

11.16.3 PIN reference annotation for electrical circuits

The pin reference annotation (see Section 9.7.1) shall be subjected to restrictions defined in the following.

The purpose of a pin reference annotation for electrical circuits is to specify an assocation between an electrical
component with two terminals and a pin variable, i.e., a declared pin, port or node (see Section 7.9).

KEYWORD COMPONENT = single_value_annotation {
CONTEXT { CURRENT POWER ENERGY }
VALUETYPE = identifier ;
REFERENCETYPE {

CURRENT VOLTAGE CAPACITANCE RESISTANCE INDUCTANCE
}

}

Semantics 144—COMPONENT annotation

C R L M

1

2

1

2

1

2

1

2

1

2

1

2

3

4

I1 2, C
V1 2,d

td
-------------⋅= V1 2, R I1 2,⋅= V1 2, L

I1 2,d

td
-----------⋅= V1 2, M

I3 4,d

td
-----------⋅=

V1 2, I1 2,
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 207

1

5

10

15

20

25

30

35

40

45

50

55
a) A pin reference annotation associated with the arithmetic model voltage shall specify a connection
between a pin, port or node and a voltage meter. The terminal with defined positive polarity shall be con-
nected to the pin, port or node. The terminal with defined negative polarity shall be connected to ground.

b) A pin reference annotation associated with the arithmetic model current shall specify a connection
between a pin, port or node and a current meter. The flow of the current shall be defined by the flow
annotation (see Section 11.16.4).

c) A pin reference annotation associated with the arithmetic model capacitance shall specify a connection
between a pin, port or node and one terminal of a capacitor. The other terminal of the capacitor shall be
connected to ground. The capacitor shall represent either a load capacitance or an effective capacitance.

d) A pin reference annotation associated with the arithmetic model resistance specify a connection between
a pin and one terminal of a resistor. The other terminal of the resistor shall be connected to a virtual volt-
age source. The resistor shall represent a driver resistance.

An electrical component can be associated with an input pin or with an output pin.

A node with nodetype annotation value receiver (see Section 9.12.2), a pin with direction annotation value input
(see Section 9.7.5), a port or a node connected to such a pin shall be consider an input pin.

The association between electrical components and an input pin involves a model of a stimulus and a model of a
receiver circuit, as illustrated in Figure 35.

Figure 35—Association between electrical components and an input pin

A node with nodetype annotation value driver (see Section 9.12.2), a pin with direction annotation value output
(see Section 9.7.5), a port or a node connected to such a pin shall be consider an output pin.

SEMANTICS VOLTAGE.PIN = single_value_annotation {
CONTEXT { VECTOR VECTOR.LIMIT HEADER } }

SEMANTICS CURRENT.PIN = single_value_annotation {
CONTEXT { VECTOR VECTOR.LIMIT HEADER } }

SEMANTICS CAPACITANCE.PIN = single_value_annotation {
CONTEXT { VECTOR HEADER } }

SEMANTICS RESISTANCE.PIN = single_value_annotation {
CONTEXT { VECTOR } }

Semantics 145—PIN reference annotation

model of stimulus (outside cell) model of receiver circuit (inside cell)

self-capacitancepin
or
pin.port
or
node

current meter

voltage

voltage source

of input pin

or
current source

meter
208 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

1

5

10

15

20

25

30

35

40

45

50

55
The association between electrical components and an output pin involves a model of a driver circuit and a
model of a load circuit, as illustrated in Figure 35.

Figure 36—Association between electrical components and an output pin

Note: In order to describe a more complex model for a stimulus, a load circuit, a driver circuit or a receiver circuit, an electri-
cal component in context of a declared wire can be used, as described in Section 11.15.

11.16.4 FLOW annotation

A flow annotation shall be defined as shown in Semantics 146.

The purpose of the flow annotation is to specify the defined measurement direction of a current in conjunction
with a pin reference annotation (see Section 11.16.3).

The meaning of the annotation values is shown in .

Note: The flow annotation is not applicable in conjunction with a node reference annotation (see Section 11.16.1) or a compo-
nent reference annotation (see Section 11.16.2), since the direction of current measurement is already defined by the order of
terminals of the electrical component.

KEYWORD FLOW = single_value_annotation {
CONTEXT = CURRENT ;
VALUETYPE = identifier ;
VALUES { in out }
DEFAULT = in;

}

Semantics 146—FLOW annotation

Table 100—FLOW annotation

Annotation value Description

in The defined flow of the current is from outside the cell to inside the cell.

out The defined flow of the current is from inside the cell to outside the cell.

model of driver circuit (inside cell) model of load circuit (outside cell)

load capacitance
or
effective capacitance

driver resistancevirtual
pin
or
pin.port
or
node

current meter

voltagevoltage source
meter
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 209

1

5

10

15

20

25

30

35

40

45

50

55
11.17 Miscellaneous arithmetic models

11.17.1 DRIVE STRENGTH

The arithmetic model drive strength shall be defined as shown in Semantics 147.

The purpose of the arithmetic model drive strength is to specify an abstract, unit-less measure for drivability
associated with a primitive circuit or a compound circuit.

A cell (see Section 9.3) shall be considered either a primitive circuit or a compound circuit, depending on its
celltype annotation (see Section 9.4.2). In case of a primitive circuit, drive strength can be a child of a cell. In
case of a compound circuit, drive strength can be a child of a pin (see Section 9.5) or a pingroup (see
Section 9.6).

A cell with celltype annotation value buffer, combinational, multiplexor, flipflop, or latch shall be considered a
primitive circuit. A cell with celltype annotation value memory, block, or core shall be considered a compound
circuit.

A partial arithmetic model (see Syntax 85 within Section 11.3) in the context of a class (see Section 8.6), a
library or a sublibrary (see Section 9.1) can be used to globally specify a set of discrete values or a range of val-
ues for drive strength, using a table statement (see Syntax 91 within Section 11.4) or a trivial min-max statement
(see Syntax 95 within Section 11.5), respectively.

11.17.2 SWITCHING_BITS with PIN reference annotation

Thearithmetic model switching bits shall be defined as shown in Semantics 148.

The purpose of the arithmetic model switching bits is to specify the number of binary value changes during a sin-
gle event (see Section 10.13.1) on a vectorized pin (see Section 9.5) or a pingroup (see Section 9.6) .

Drive strength can be used as header arithmetic model (see Syntax 89 in Section 11.4) for calculation of power
or energy (see Section 11.11.15) in context of a vector (see Section 9.13).

KEYWORD DRIVE_STRENGTH = arithmetic_model {
VALUETYPE = unsigned_number ;

}
SEMANTICS DRIVE_STRENGTH {

CONTEXT { CLASS LIBRARY SUBLIBRARY CELL PIN PINGROUP }
}

Semantics 147—Arithmetic model DRIVE_STRENGTH

KEYWORD SWITCHING_BITS = arithmetic_model {
VALUETYPE = unsigned_integer ;

}
SEMANTICS SWITCHING_BITS {

CONTEXT { VECTOR.POWER.HEADER VECTOR.ENERGY.HEADER }
}
SEMANTICS SWITCHING_BITS.PIN = single_value_annotation;

Semantics 148—Arithmetic model SWITCHING_BITS
210 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

1

5

10

15

20

25

30

35

40

45

50

55
The pin reference annotation (see Section 9.7.1) shall be used.

11.18 Arithmetic models related to structural implementation

11.18.1 CONNECTIVITY

The arithmetic model connectivity shall be defined as shown in Semantics 149.

The purpose of the arithmetic model connectivity is to specify an actual connection or a requirement for a con-
nection between physical objects.

Either a table statement (see Syntax 91 in Section 11.4) or a between annotation (see Section 11.20.2) shall be used
to establish a relation between physical objects and the arithmetic model connectivity.

The interpretation of connectivity as an actual connection or as a requirement for a connection shall be specified
by the connect-rule annotation (see Section 11.20.1).

The interpretation of the boolean values is specified in the following Table 101.

Note: The boolean value “?” is non-assignable (see Section 10.10.3) and can therefore only be used, if the connectivity is
modeled as a table (see Syntax 91 in Section 11.4).

11.18.2 DRIVER and RECEIVER

The arithmetic models driver and receiver shall be defined as shown in Semantics 150.

The purpose of the header arithmetic model (see Syntax 89 within Section 11.4) driver or receiver is to specify a
dependency between connectivity (see Section 11.18.1) and a declared class (see Section 8.6) with usage annota-
tion value connect-class (see Section 8.7.2, Section 9.7.19).

The header arithmetic model driver or receiver shall contain a table statement (see Syntax 91 in Section 11.4). The
parent arithmetic model connectivity shall contain either a one-dimensional lookup table involving either dimen-

KEYWORD CONNECTIVITY = arithmetic_model {
VALUETYPE = boolean ;
VALUES { 1 0 ? }

}
SEMANTICS CONNECTIVITY {
CONTEXT { LIBRARY SUBLIBRARY CELL RULE ANTENNA HEADER }

}

Semantics 149—Arithmetic model CONNECTIVITY

Table 101—Boolean values for CONNECTIVITY

Boolean value Interpretation as actual connection Interpretation as requirement for a connection

1 Connection exists. Requirement is true.

0 Connection does not exist. Requirement is false.

? Connection is not relevant. Requirement is not relevant.
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 211

1

5

10

15

20

25

30

35

40

45

50

55
sion driver or receiver, or alternatively a two-dimensional lookup table involving both dimensions driver and
receiver.

A declared pin (see Section 9.5) shall be subjected to a connection with another pin, if a connect-class annotation
exists for both pins, and the respective connect-class annotation values are found in a table statement within the
header arithmetic model driver or receiver.

The association of a pin with the dimension driver or receiver shall depend on the direction annotation value (see
Section 9.7.5). A pin with direction annotation value input shall be associated with the dimension receiver. A pin
with direction annotation value output shall be associated with the dimension driver. A pin with direction annota-
tion value both shall be associated with both dimensions driver and receiver.

Example:

CLASS Normal { USAGE = CONNECT_CLASS; }
CLASS Special { USAGE = CONNECT_CLASS; }
CONNECTIVITY Example1 {

HEADER { DRIVER { Normal Special } }
TABLE { 0 1 }

}
CONNECTIVITY Example2 {

HEADER {
DRIVER { Normal Special } }
RECEIVER { Special Normal } }

}
TABLE { 0 1 1 0 }

}

Example1 specifies the following:

A connection between an output pin and another output pin associated with Normal is false.
A connection between an output pin and another output pin associated with Special is true.

Example2 specified the following:

A connection between an output pin associated with Normal and an input pin associated with Special is false.
A connection between an output pin associated with Special and an input pin associated with Special is true.
A connection between an output pin associated with Normal and an input pin associated with Normal is true.
A connection between an output pin associated with Special and an input pin associated with Normal is false.

KEYWORD DRIVER = arithmetic_model {
VALUETYPE = identifier ;
REFERENCETYPE = CLASS ;

}
SEMANTICS DRIVER { CONTEXT = CONNECTIVITY.HEADER; }
KEYWORD RECEIVER = arithmetic_model {

VALUETYPE = identifier ;
REFERENCETYPE = CLASS ;

}
SEMANTICS RECEIVER { CONTEXT = CONNECTIVITY.HEADER; }

Semantics 150— Arithmetic models DRIVER and RECEIVER
212 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

1

5

10

15

20

25

30

35

40

45

50

55
11.18.3 FANOUT, FANIN and CONNECTIONS

The arithmetic model fanout shall be defined as shown in Semantics 151.

The purpose of the arithmetic model fanout is to specify the total number of input pins connected to a net.

The arithmetic model fanin shall be defined as shown in .

The purpose of the arithmetic model fanin is to specify the total number of output pins connected to a net.

The arithmetic model connections shall be defined as shown in .

The purpose of the arithmetic model connections is to specify the total number of pins connected to a net. The
arithmetic value for connections shall equal the sum of arithmetic values for fanout and fanin.

KEYWORD FANOUT = arithmetic_model {
VALUETYPE = unsigned_number ;

}
SEMANTICS FANOUT {

CONTEXT {
PIN.LIMIT WIRE.SIZE.HEADER WIRE.CAPACITANCE.HEADER
WIRE.RESISTANCE.HEADER WIRE.INDUCTANCE.HEADER

}
}

Semantics 151— Arithmetic model FANOUT

KEYWORD FANIN = arithmetic_model {
VALUETYPE = unsigned_number ;

}
SEMANTICS FANIN {

CONTEXT {
PIN.LIMI WIRE.SIZE.HEADER WIRE.CAPACITANCE.HEADER
WIRE.RESISTANCE.HEADER WIRE.INDUCTANCE.HEADER

}
}

Semantics 152— Arithmetic model FANIN

KEYWORD CONNECTIONS = arithmetic_model {
VALUETYPE = unsigned_number ;

}
SEMANTICS CONNECTIONS {

CONTEXT {
PIN.LIMIT WIRE.SIZE.HEADER WIRE.CAPACITANCE.HEADER
WIRE.RESISTANCE.HEADER WIRE.INDUCTANCE.HEADER

}
}

Semantics 153— Arithmetic model CONNECTIONS
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 213

1

5

10

15

20

25

30

35

40

45

50

55
The accounting of a pin shall depend on its direction annotation value (see).

A pin with direction annotation value input shall count for fanout and for connections. A pin with direction anno-
tation value output shall count for fanin and for connections. A pin with direction value both shall count for fanin
and for fanout and twice for connections. A pin without direction annotation or with direction annotation value
none shall not count.

— FANOUT, FANIN, or CONNECTIONS as limit arithmetic model (see) in the context of a pin (see)

A design limit for the number of pins or nodes connected to a net can be described. The declared pin wherein the
design limit is described shall count, according on its direction annotation value.

— FANOUT, FANIN, or CONNECTIONS as header arithmetic model (see) in the context of a wire (see)

The arithmetic value of size (see), capacitance (see), resistance (see), or inductance (see) can be calculated.

11.19 Arithmetic models related to layout implementation

11.19.1 SIZE

The arithmetic model size shall be defined as shown in Semantics 154.

The purpose of the arithmetic model size is to define an abstract, unit-less measure for the space occupied by a
physical object or the magnitude of a physical effect.

— SIZE as arithmetic model in the context of a cell (see) or a wire (see)

Size shall represent a measure for the space occupied by a placed cell or by a routed wire. The space occupied by
a design or a subdesign shall be calculated as the sum of the space occupied by each cell instance and each routed
wire. The space allocated for a design or a subdesign can be greater or equal to the space occupied by the design
or subdesign.

— SIZE as header arithmetic model (see) in context of a wire (see)

The arithmetic value of capacitance (see), resistance (see), or inductance (see) in the context of a wire can be
calculated. The dimension size shall represent a measure for space allocated for a design or subdesign wherein
the wire is routed.

KEYWORD SIZE = arithmetic_model {
VALUETYPE = unsigned_number ;

}
SEMANTICS SIZE {

CONTEXT {
CELL WIRE
WIRE.CAPACITANCE.HEADER
WIRE.RESISTANCE.HEADER
WIRE.INDUCTANCE.HEADER
ANTENNA ANTENNA.LIMIT PIN

}
}

Semantics 154—Arithmetic model SIZE
214 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

1

5

10

15

20

25

30

35

40

45

50

55
— SIZE as arithmetic model in the context of an antenna (see)

Size shall represent a measure for the magnitude of the antenna effect. A design limit for the magnitude of the
antenna effect can be given using the arithmetic model container limit (see). The calculated size shall be com-
pared against the design limit for size given in the context of the same antenna.

— SIZE as arithmetic model in the context of a pin (see)

Size shall represent a measure for the additive magnitude of an antenna (see), when the layout created by the
connection between a pin and a routed wire is subjected to an antenna effect. An antenna reference annotation
(see) and a target annotation (see) shall be used.

11.19.2 AREA

The arithmetic model area shall be defined as shown in Semantics 155.

The purpose of the arithmetic model area is to define a physical area, according to the International System of
Measurements and Units [reference needed].

— AREA as arithmetic model in the context of a cell (see) or a wire (see)

Area shall represent the physical area occupied by a placed cell or a routed wire, respectively. The area shall take
into account the required space between neighboring objects.

The physical area occupied by a design or a subdesign shall be calculated as the sum of the physical area occu-
pied by each cell instance and each routed wire. The physical area allocated for a design or a subdesign can be
greater or equal to the physical area occupied by the design or subdesign.

— AREA as header arithmetic model (see) in context of a wire (see)

The arithmetic value of capacitance (see), resistance (see), or inductance (see) can be calculated. The dimen-
sion area shall represent the physical area allocated for a design or subdesign wherein the wire is routed.

— AREA as header arithmetic model (see) in context of a layer (see)

The arithmetic value of capacitance (see), resistance (see) can be calculated. A design limit for current (see)
can be calculated. The dimension area shall represent the physical area occupied by a layout segment residing on
the layer.

— AREA as header arithmetic model (see) in context of a rule (see)

The arithmetic value of capacitance (see), resistance (see) or inductance (see) can be calculated. A design limit
for current (see), distance (see), overhang (see), width (see), length (see) or extension (see) can be calculated.

KEYWORD AREA = arithmetic_model {
VALUETYPE = unsigned_number ;
SI_MODEL = AREA ;

}
SEMANTICS AREA {

CONTEXT { CELL WIRE HEADER }
}

Semantics 155—Arithmetic model AREA
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 215

1

5

10

15

20

25

30

35

40

45

50

55
The dimension area shall represent the physical area occupied by a pattern or by a region. A pattern reference
annotation (see) or a region reference annotation (see) shall be used.

— AREA as header arithmetic model (see) in context of an antenna (see)

The arithmetic value of size (see) in the context of an antenna can be calculated. The dimension area shall rep-
resent the physical area occupied by a layout segment residing on a layer (see). A layer reference annotation (see
) shall be used.

11.19.3 PERIMETER

The arithmetic model perimeter shall be defined as shown in Semantics 156.

The purpose of the arithmetic model perimeter is to define the distance (see) measured when surrounding the
boundaries of a physical object.

— PERIMETER as arithmetic model in the context of a cell (see) or a wire (see)

Perimeter shall represent the perimeter surrounding a placed cell or a routed wire. The perimeter shall take into
account the required space between neighboring objects.

— PERIMETER as header arithmetic model (see) in context of a wire (see)

The arithmetic value of capacitance (see), resistance (see), or inductance (see) can be calculated. The dimen-
sion perimeter shall represent the perimeter surrounding a space allocated for a design or subdesign wherein the
wire is routed.

— PERIMETER as header arithmetic model (see) in context of a layer (see)

The arithmetic value of capacitance (see), resistance (see) can be calculated. A design limit for current (see)
can be calculated. The dimension perimeter shall represent the perimeter surrounding a layout segment residing
on the layer.

— PERIMETER as header arithmetic model (see) in context of a rule (see)

The arithmetic value of capacitance (see), resistance (see) or inductance (see) can be calculated. A design limit
for current (see), distance (see), overhang (see), width (see), length (see) or extension (see) can be calculated.
The dimension perimeter shall represent the perimeter surrounding a pattern or for a region. A pattern reference
annotation (see) or a region reference annotation (see) shall be used.

— PERIMETER as header arithmetic model (see) in context of an antenna (see)

KEYWORD PERIMETER = arithmetic_model {
VALUETYPE = unsigned_number ;
SI_MODEL = DISTANCE ;

}
SEMANTICS PERIMETER {

CONTEXT { CELL WIRE HEADER }
}

Semantics 156—Arithmetic model PERIMETER
216 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

1

5

10

15

20

25

30

35

40

45

50

55
The arithmetic value of size (see) in the context of an antenna can be calculated. The dimension perimeter shall
represent the perimeter surrounding a layout segment residing on a layer (see). A layer reference annotation (see
) shall be used.

11.19.4 EXTENSION

The arithmetic model extension shall be defined as shown in Semantics 157.

The purpose of the arithmetic model extension is to specify the size of a polygon created by expanding a point
within a geometric model (see Table 90 in Section 10.16). In the case of two allowed routing directions in an
interval of 90 degrees, the expansion shall result in a rectangle. In the case of four allowed routing directions in
an interval of 45 degrees, the expansion shall result in a hexagon.

This is illustrated in the following Figure 37.

Figure 37—Illustration of EXTENSION

The arithmetic submodels horizontal, vertical, acute and obtuse (see) can be used to specify anisotrop expan-
sion.

— EXTENSION as arithmetic model in the context of a layer (see)

Extension shall represent the expansion of an endpoint of a routing segment residing on a layer (see) with layer-
type annotation value routing (see).

— EXTENSION as arithmetic model in the context of a pattern (see)

Extension shall represent the expansion of a pattern (see) with an associated shape annotation or with an associ-
ated geometric model (see). Each reference point shall be subject to expansion.

— EXTENSION as limit arithmetic model (see) in the context of a rule (see)

KEYWORD EXTENSION = arithmetic_model {
VALUETYPE = unsigned_number ;
SI_MODEL = DISTANCE ;

}
SEMANTICS EXTENSION {

CONTEXT { LAYER PATTERN RULE.LIMIT HEADER }
}

Semantics 157—Arithmetic model EXTENSION

extension
.horizontal

extension
.vertical

extension
.vertical

extension
.horizontal

extension
.obtuse

extension
.acute
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 217

1

5

10

15

20

25

30

35

40

45

50

55
Extension shall represent a design limit for expansion of a pattern. Each reference point shall be subject to
expansion. A pattern reference annotation (see) shall be used.

— EXTENSION as header arithmetic model (see) in the context of a rule (see)

An arithmetic value of capacitance (see), resistance (see) or inductance (see) can be calculated. A design limit
for current (see), distance (see), overhang (see), width (see), length (see) or extension (see) can be calculated.
The dimension extension shall represent the expansion of a pattern with shape annotation value tee, cross, corner
or end (see). A pattern reference annotation (see) or a model reference annotation (see) shall be used. The
model reference annotation shall refer to an arithmetic model extension as a child of a pattern or to an arithmetic
submodel as a child of extension and a grandchild of pattern.

11.19.5 THICKNESS

The arithmetic model thickness shall be defined as shown in Semantics 158.

The purpose of the arithmetic model thickness is to specify the distance between the bottom and the top of a man-
ufactured layer (see).

Thickness as header arithmetic model (see) can be used to calculate an arithmetic value of capacitance (see),
resistance (see) or inductance (see) in the context of a rule (see).

11.19.6 HEIGHT

The arithmetic model height shall be defined as shown in Semantics 159.

The purpose of the arithmetic model height is to specify a vertical distance, i.e., a distance measured in y direc-
tion or in z direction.

— HEIGHT as arithmetic model in the context of a layer (see)

KEYWORD THICKNESS = arithmetic_model {
VALUETYPE = unsigned_number ;
SI_MODEL = DISTANCE ;

}
SEMANTICS EXTENSION {

CONTEXT { LAYER HEADER }
}

Semantics 158—Arithmetic model THICKNESS

KEYWORD HEIGHT = arithmetic_model {
VALUETYPE = unsigned_number ;
SI_MODEL = DISTANCE ;

}
SEMANTICS HEIGHT {

CONTEXT { CELL SITE REGION LAYER HEADER }
}

Semantics 159—Arithmetic model HEIGHT
218 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

1

5

10

15

20

25

30

35

40

45

50

55
Height shall represent a distance in z direction measured between the manufacturing substrate and the bottom of
a manufactured layer.

— HEIGHT as arithmetic model in the context of a cell (see), site (see) or region (see)

Height shall represent a distance in y direction measured between the bottom and the top of a rectangular cell ,
site, pattern or region.

— HEIGHT as header arithmetic model (see) in the context of a wire (see)

Height shall represent the distance in y direction measured between the bottom and the top of an allocated rectan-
gular space for a design or a subdesign wherein the wire is routed.

11.19.7 WIDTH

The arithmetic model width shall be defined as shown in Semantics 160.

The purpose of the arithmetic model width is to specify a distance within an x-y plane.

— WIDTH as arithmetic model in the context of a cell (see), a site (see) or a region (see)

Width shall represent a distance in x direction measured between the left and the right of a rectangular cell , site
or region.

— WIDTH as header arithmetic model (see) in the context of a wire (see)

Width shall represent the distance in x direction measured between the left and the right of an allocated rectangu-
lar space for a design or a subdesign wherein the wire is routed.

— WIDTH as arithmetic model or limit arithmetic model (see) in the context of a layer (see)

Width shall represent a distance or a design limit for a distance between the borders of a routing segment residing
on a layer with layertype annotation value routing (see). Width shall be measured orthogonal to the routing
direction, i.e., in y (i.e., 90 degree) direction if the routing is in x (i.e., 0 degree) direction and vice-versa, in 135
degree direction if the routing is in 45 degree direction and vice versa.

— WIDTH as arithmetic model in the context of a pattern (see)

Width shall represent the distance between the borders of a pattern (see) with an associated shape annotation
value line or jog (see) or with an associated a geometric model of type polyline or ring (see). Width shall be

KEYWORD WIDTH = arithmetic_model {
VALUETYPE = unsigned_number ;
SI_MODEL = DISTANCE ;

}
SEMANTICS WIDTH {

CONTEXT {
CELL SITE REGION LAYER LAYER.LIMIT
PATTERN RULE.LIMIT HEADER

}
}

Semantics 160—Arithmetic model WIDTH
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 219

1

5

10

15

20

25

30

35

40

45

50

55
measured orthogonal to the lines of the shape. A line shall be expanded by half the arithmetic value of width to
each side of the line.

— WIDTH as limit arithmetic model (see) in the context of a rule (see)

Width shall represent a design limit for the distance between the borders of a pattern with an associated shape
annotation value line or jog or with an associated a geometric model of type polyline or ring. A pattern reference
annotation (see) shall be used.

— WIDTH as header arithmetic model (see) in the context of a rule (see)

An arithmetic value of capacitance (see), resistance (see) or inductance (see) can be calculated. A design limit
for current (see), distance (see), overhang (see), width (see), length (see) or extension (see) can be calculated.
The dimension width shall represent the distance between the borders of a pattern with shape annotation value
line or end (see). A pattern reference annotation (see) or a model reference annotation (see) shall be used. The
model reference annotation shall refer to an arithmetic model width as a child of a pattern or to an arithmetic sub-
model as a child of width and a grandchild of pattern.

11.19.8 LENGTH

The arithmetic model length shall be defined as shown in Semantics 161.

— LENGTH as arithmetic model or limit arithmetic model (see) in the context of a layer (see)

Length shall represent a distance or a design limit for a distance between the end points of a routing segment
residing on a layer with layertype annotation value routing (see). Length shall be measured parallel to the rout-
ing direction.

— LENGTH as arithmetic model in the context of a pattern (see)

Length shall represent the distance between the end points of a pattern (see) with an associated shape annotation
value line or jog (see).

— LENGTH as limit arithmetic model (see) in the context of a rule (see)

Length shall represent a design limit for the distance between the end points of a pattern with an associated
shape annotation value line or jog. A pattern reference annotation (see) shall be used.

— LENGTH as header arithmetic model (see) in the context of a rule (see)

An arithmetic value of capacitance (see), resistance (see) or inductance (see) can be calculated. A design limit
for current (see), distance (see), overhang (see), width (see), length (see) or extension (see) can be calculated.
The dimension length shall represent the distance between the end points of a pattern with shape annotation

KEYWORD LENGTH = arithmetic_model {
VALUETYPE = unsigned_number ;
SI_MODEL = DISTANCE ;

}
SEMANTICS LENGTH {

CONTEXT { LAYER LAYER.LIMIT PATTERN RULE.LIMIT HEADER }
}

Semantics 161—Arithmetic model LENGTH
220 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

1

5

10

15

20

25

30

35

40

45

50

55
value line or jog (see). A pattern reference annotation (see), a model reference annotation (see) or a between
annotation (see) shall be used. The model reference annotation shall refer to an arithmetic model length as a
child of a pattern or to an arithmetic submodel as a child of length and a grandchild of pattern. A between anno-
tation shall refer to two patterns representing two parallel routing segments.

11.19.9 DISTANCE

The arithmetic model distance shall be defined as shown in Semantics 162.

The purpose of the arithmetic model distance is to define a space in-between two objects, according to the Inter-
national System of Measurements and Units [reference needed].

— DISTANCE as arithmetic model or as limit arithmetic model (see) in the context of a rule (see)

Distance shall represent a measured distance or a design limit for a distance between two patterns in the context
of the rule. A between annotation (see) shall be used.

The arithmetic submodels horizontal, vertical, acute and obtuse (see) can be used.

— DISTANCE as header arithmetic model (see) in the context of a rule (see)

An arithmetic value of capacitance (see), resistance (see) or inductance (see) can be calculated. A design limit
for current (see), distance (see), overhang (see), width (see), length (see) or extension (see) can be calculated.
The dimension distance shall represent the measured distance between two patterns. A between reference anno-
tation (see) or a model reference annotation shall be used. The model reference annotation shall refer to an arith-
metic model distance as a child of a rule or to a limit arithmetic model distance as a grandchild of a rule.

11.19.10 OVERHANG

The arithmetic model overhang shall be defined as shown in Semantics 163.

The purpose of the arithmetic model overhang is to define an overlapping space between two objects.

KEYWORD DISTANCE = arithmetic_model {
VALUETYPE = unsigned_number ;
SI_MODEL = DISTANCE ;

}
SEMANTICS DISTANCE {

CONTEXT { RULE RULE.LIMIT HEADER }
}

Semantics 162—Arithmetic model DISTANCE

KEYWORD OVERHANG = arithmetic_model {
VALUETYPE = unsigned_number ;
SI_MODEL = DISTANCE ;

}
SEMANTICS OVERHANG {

CONTEXT { RULE RULE.LIMIT HEADER }
}

Semantics 163—Arithmetic model OVERHANG
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 221

1

5

10

15

20

25

30

35

40

45

50

55
Overhang can be used as arithmetic model or as limit arithmetic model (see) or as header arithmetic model (see
) in the context of a rule (see), with similar semantic restrictions as distance (see).

Overhang can be interpreted as “negative” distance between the nearest parallel edges of two objects.

This is illustrated in the following Figure 38.

Figure 38—Illustration of DISTANCE versus OVERHANG

11.19.11 DENSITY

The arithmetic model density shall be defined as shown in Semantics 164.

The purpose of the arithmetic model density is to specify a design limit or a calculation model for metal density.
Metal density shall be defined as the area occupied by all metal segments residing on a layer (see) with layertype
annotation value routing (see), divided by an allocated area wherein the metal segments are found.

— DENSITY as limit arithmetic model (see) in the context of a layer (see)

A constant design limit for metal density can be specified.

— DENSITY as arithmetic model or as limit arithmetic model (see) in the context of a rule (see)

A design limit or a calculation model for metal density can be specified. A region reference annotation (see) can
be used to relate the design limit or the calculation model for metal density to a region (see) declared in the con-
text of the same rule. A model reference annotation (see) can be used to relate a design limit to a related calcula-
tion model.

KEYWORD DENSITY = arithmetic_model {
VALUETYPE = unsigned_number ;
MIN = 0;
MAX = 1;

}
SEMANTICS DENSITY {

CONTEXT { LAYER.LIMIT RULE RULE.LIMIT }
}

Semantics 164—Arithmetic model DENSITY

distance overhang
222 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

1

5

10

15

20

25

30

35

40

45

50

55
11.20 Annotations related to arithmetic models for layout implementation

Add lead-in text

11.20.1 CONNECT_RULE annotation

A connect-rule annotation shall be defined as shown in Semantics 165.

The purpose of the connect-rule annotation is to specify that the arithmetic model connectivity (see
Section 11.18.1) is to be interpreted as a requirement for connection rather than an actual connection.

The meaning of the annotation values is shown in Table 102.

If multiple requirements for connection between the same objects are specified, restrictions for the boolean val-
ues of the respective arithmetic models connectivity shall apply.

These restrictions are specified in the following Table 103.

Any combination of boolean values not shown in Table 103 shall be considered invalid.

11.20.2 BETWEEN annotation

A between annotation shall be defined as shown in Semantics 166.

KEYWORD CONNECT_RULE = single_value_annotation {
VALUETYPE = identifier ;
VALUES { must_short can_short cannot_short }
CONTEXT = CONNECTIVITY ;

}

Semantics 165—CONNECT_RULE annotation

Table 102—CONNECT_RULE annotation

Annotation value Description

must_short Electrical connection required.

can_short Electrical connection allowed.

cannot_short Electrical connection disallowed.

Table 103—Restrictions related to multiple requirements for connection

must_short cannot_short can_short

0 0 1

0 1 0

1 0 1
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 223

1

5

10

15

20

25

30

35

40

45

50

55
The purpose of the between annotation is to specify a reference to multiple objects related to an arithmetic model
distance (see Section 11.19.9), length (see Section 11.19.8), overhang (see Section 11.19.10), or connectivity
(see Section 11.18.1).

11.20.3 BETWEEN annotation for CONNECTIVITY

A between annotation shall be subjected to the restriction shown in .

The purpose of the restriction is to allow only a reference to objects which are semantically valid in the context
of connectivity (see).

11.20.4 BETWEEN annotation for DISTANCE, LENGTH, OVERHANG

A between annotation shall be subjected to the restriction shown in .

KEYWORD BETWEEN = multi_value_annotation {
VALUETYPE = identifier ;
CONTEXT { DISTANCE LENGTH OVERHANG CONNECTIVITY }

}

Semantics 166—BETWEEN annotation

SEMANTICS ANTENNA.CONNECTIVITY.BETWEEN {
REFERENCETYPE = LAYER;

}
SEMANTICS HEADER.CONNECTIVITY.BETWEEN {

REFERENCETYPE { PATTERN REGION LAYER }
}
SEMANTICS LIBRARY.CONNECTIVITY.BETWEEN {

REFERENCETYPE = CLASS ;
}
SEMANTICS SUBLIBRARY.CONNECTIVITY.BETWEEN {

REFERENCETYPE = CLASS ;
}
SEMANTICS CELL.CONNECTIVITY.BETWEEN {

REFERENCETYPE { PIN CLASS }
}

Semantics 167—BETWEEN annotation for CONNECTIVITY

SEMANTICS DISTANCE.BETWEEN {
REFERENCETYPE { PATTERN REGION }

}
SEMANTICS LENGTH.BETWEEN {

REFERENCETYPE { PATTERN REGION }
}
SEMANTICS OVERHANG.BETWEEN {

REFERENCETYPE { PATTERN REGION }
}

Semantics 168—BETWEEN annotation for DISTANCE, LENGTH, OVERHANG
224 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

1

5

10

15

20

25

30

35

40

45

50

55
The purpose of the restriction is to allow only a reference to objects which are semantically valid in the context
of distance (see), length (see) or overhang (see).

Furthermore, the number of annotation values, i.e., the number of referenced objects for distance, length, over-
hang shall be restricted to exactly two objects.

A distance between two objects can be generally defined. An overhang or a length involving two objects can be
defined only between the nearest parallel edges of two objects.

In the case of two objects with nearest parallel edges, distance prescribes an empty space between the objects.
Overhang prescribes an overlapping space between the objects. Length is defined as the distance between the end
points of the intersection formed by projecting the parallel edges onto each other.

This is illustrated in the following Figure 39.

Figure 39—IIllustration of DISTANCE versus OVERHANG versus LENGTH

11.20.5 MEASURE annotation

A measure annotation shall be defined as shown in Semantics 169.

The mathematical description of the annotation values is specified in the following .

KEYWORD MEASURE = single_value_annotation {
VALUETYPE = identifier ;
VALUES { euclidean horizontal vertical manhattan }
DEFAULT = euclidean ;
CONTEXT = DISTANCE ;

}

Semantics 169—DISTANCE_MEASUREMENT annotation

Table 104—Annotation values for MEASURE

Annotation value Mathematical description

euclidean

manhattan

horizontal

distance overhang
length length

x
2

y
2+measure =

x y+measure =

xmeasure =
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 225

1

5

10

15

20

25

30

35

40

45

50

55
Distance can be measured between two points, between a point and a line, or between two parallel lines. The
shape annotation (see) specifies whether a pattern is represented by a point or by a line.

The specification of x and y for the mathematical definition of the measure annotation values is illustrated in
Figure 40.

Figure 40—Illustration of MEASURE

Figure 40 shows distance between two points, a point and a line and between two parallel lines.

11.20.6 REFERENCE annotation container

A reference annotation container shall be defined as shown in Semantics 170.

The purpose of the reference annotation container is to specify the reference points for a measurement of dis-
tance (see).

An annotation within the reference annotation container shall associate a pattern (see) or a region (see) with a
reference point specified by an annotation value.

vertical

KEYWORD REFERENCE = annotation_container {
CONTEXT = DISTANCE ;
REFERENCETYPE { PATTERN REGION }

}
SEMANTICS REFERENCE.identifier = single_value_annotation {

VALUETYPE = identifier ;
VALUES { center origin near_edge far_edge }
DEFAULT = origin ;

}

Semantics 170—REFERENCE annotation container

Table 104—Annotation values for MEASURE (Continued)

Annotation value Mathematical description

ymeasure =

x

y y y

x x

point

point linelineline

point
226 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

1

5

10

15

20

25

30

35

40

45

50

55
The meaning of the annotation values is specified in the following .

The following restrictions shall further apply:

a) The annotation value origin can only apply in the following cases:
1) A shape annotation is associated with the pattern, and the annotation value is tee, cross, corner or

end. The reference point of the shape shall be considered the origin.
2) A geometric model (see) is associated with the pattern or region. A geometric transformation (see)

can describe the location of the origin. If no geometric transformation is given, the location of the
origin shall be the point x=0, y=0.

b) The annotation value center, near edge or far edge can only apply in the following cases:
1) A shape annotation is associated with the pattern, and the annotation value is line or jog. The

straight line connecting the end points shall be considered as center. The border of the line given by
width (see) shall be considered either as near edge or as far edge.

2) A predefined geometric model rectangle (see) is associated with the pattern or region. The point of
gravity of the rectangle shall be considered as center.

3) A predefined geometric model line (see) is associated with the pattern or region. The straight line
connecting the end points shall be considered as center.

The meaning of the reference annotation values is further illustrated in Figure 41.

Figure 41—Illustration of REFERENCE for DISTANCE

Table 105—Annotation values for REFERENCE

Annotation value Description

origin The reference point is the origin of a pattern or region.

center The reference point is the center of a pattern or region

near_edge The reference point is the edge of a pattern or region
which is nearest to a parallel edge of another pattern or
region.

far_edge The reference point is the edge of a pattern or region
which is farest from a parallel edge of another pattern or
region.

center

near edge

far edge
origin

origin

near edge

center

far edge

object2

object1
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 227

1

5

10

15

20

25

30

35

40

45

50

55
Figure 41 shows euclidean distance between all possible reference points of object1 and object2.

11.20.7 ANTENNA reference annotation

An antenna reference annotation shall be defined as shown in Semantics 171.

An antenna reference annotation shall be used to relate a calculated size (see) or area (see) or perimeter (see) in
the context of the pin with a calculation rule for size in the context of an antenna (see). Reference to multiple
antennas can be made using a multi-value annotation.

11.20.8 TARGET annotation

An target annotation shall be defined as shown in Semantics 171.

The target annotation shall be associated with the arithmetic model size (see) in the context of a pin (see).

The purpose of the target annotation is to specify a pattern (see) in the context of the same pin which is the vic-
tim of an antenna effect (see). The referenced pattern shall have a layer reference annotation (see) and a trivial
or a full arithmetic model (see) for area (see) or perimeter (see).

An antenna reference annotation (see) shall also be associated with the arithmetic model size. The refered
antenna (see) shall also contain an arithmetic model size, used as a calculation rule. The size in the context of the
pin shall be considered additive to the size formulated by the calculation rule. The arithmetic value for area or
perimeter in the referenced pattern shall further be used as evaluation results for the dimension area or perimeter
within the calculation rule.

11.20.9 PATTERN reference annotation

A pattern reference annotation shall be defined as shown in .

The purpose of the pattern reference annotation is to relate an arithmetic model or a header arithmetic model (see
) to a declared pattern (see).

SEMANTICS ANTENNA = annotation {
VALUETYPE = identifier ;
CONTEXT { PIN.SIZE PIN.AREA PIN.PERIMETER }
REFERENCETYPE = ANTENNA;

}

Semantics 171—ANTENNA reference annotation

SEMANTICS TARGET = annotation {
VALUETYPE = identifier ;
CONTEXT = PIN.SIZE;
REFERENCETYPE = PIN.PATTERN;

}

Semantics 172—TARGET annotation
228 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

1

5

10

15

20

25

30

35

40

45

50

55
11.21 Arithmetic submodels for timing and electrical data

The arithmetic submodels shown in Table 106 shall be applicable in the context of electrical modeling.

The arithmetic submodels high and low shall be defined as shown in .

SEMANTICS PATTERN = single_value_annotation {
VALUETYPE = identifier ;
CONTEXT {

LENGTH WIDTH HEIGHT SIZE AREA THICKNESS
PERIMETER EXTENSION

}
}

Semantics 173—PATTERN annotation

Table 106—Overview of arithmetic submodels for timing and electrical data

Keyword Description

HIGH Applicable for electrical data measured at a logic high state of a pin.

LOW Applicable for electrical data measured at a logic low state of a pin.

RISE Applicable for electrical data measured during a logic low to high transition of a pin.

FALL Applicable for electrical data measured during a logic high to low transition of a pin.

KEYWORD HIGH = arithmetic_submodel {
CONTEXT = arithmetic_model;

}
SEMANTICS HIGH { CONTEXT {

CLASS.VOLTAGE CLASS.LIMIT.VOLTAGE
PIN.VOLTAGE PIN.LIMIT.VOLTAGE
LIBRARY.NOISE_MARGIN LIBRARY.LIMIT.NOISE
PIN.NOISE PIN.NOISE_MARGIN PIN.LIMIT.NOISE
PIN.CAPACITANCE PIN.RESISTANCE

} }
KEYWORD LOW = arithmetic_submodel {

CONTEXT = arithmetic_model;
}
SEMANTICS LOW { CONTEXT {

CLASS.VOLTAGE CLASS.LIMIT.VOLTAGE
PIN.VOLTAGE PIN.LIMIT.VOLTAGE
LIBRARY.NOISE_MARGIN LIBRARY.LIMIT.NOISE
PIN.NOISE PIN.NOISE_MARGIN PIN.LIMIT.NOISE
PIN.CAPACITANCE PIN.RESISTANCE

} }

Semantics 174—Arithmetic submodels HIGH and LOW
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 229

1

5

10

15

20

25

30

35

40

45

50

55
The arithmetic submodels rise and fall shall be defined as shown in .

11.22 Arithmetic submodels for physical data

The arithmetic submodels shown in Table 107 shall be applicable in the context of physical modeling.

The arithmetic submodels horizontal , vertical, acute and obtuse shall be defined as shown in .

KEYWORD RISE = arithmetic_submodel {
CONTEXT = arithmetic_model;

}
SEMANTICS RISE { CONTEXT {

FROM.THRESHOLD TO.THRESHOLD PIN.THRESHOLD
PIN.CAPACITANCE PIN.RESISTANCE
PIN.SLEWRATE PIN.LIMIT.SLEWRATE
PIN.PULSEWIDTH PIN.LIMIT.PULSEWIDTH

} }
KEYWORD FALL = arithmetic_submodel {

CONTEXT = arithmetic_model;
}
SEMANTICS FALL { CONTEXT {

FROM.THRESHOLD TO.THRESHOLD PIN.THRESHOLD
PIN.CAPACITANCE PIN.RESISTANCE
PIN.SLEWRATE PIN.LIMIT.SLEWRATE
PIN.PULSEWIDTH PIN.LIMIT.PULSEWIDTH

} }

Semantics 175—Arithmetic submodels RISE and FALL

Table 107—Overview of arithmetic submodels for physical data

Keyword Description

HORIZONTAL Applicable for layout measurements in 0 degree, i.e., horizontal direction.

VERTICAL Applicable for layout measurements in 90 degree, i.e., vertical direction.

ACUTE Applicable for layout measurements in 45 degree direction.

OBTUSE Applicable for layout measurements in 135 degree direction.
230 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

1

5

10

15

20

25

30

35

40

45

50

55
KEYWORD HORIZONTAL = arithmetic_submodel {
CONTEXT = arithmetic_model;

}
SEMANTICS HORIZONTAL { CONTEXT {

WIDTH LENGTH EXTENSION DISTANCE OVERHANG
} }
KEYWORD VERTICAL = arithmetic_submodel {

CONTEXT = arithmetic_model;
}
SEMANTICS VERTICAL { CONTEXT {

WIDTH LENGTH EXTENSION DISTANCE OVERHANG
} }
KEYWORD ACUTE = arithmetic_submodel {

CONTEXT = arithmetic_model;
}
SEMANTICS ACUTE { CONTEXT {

WIDTH LENGTH EXTENSION DISTANCE OVERHANG
} }
KEYWORD OBTUSE = arithmetic_submodel {

CONTEXT = arithmetic_model;
}
SEMANTICS OBTUSE { CONTEXT {

WIDTH LENGTH EXTENSION DISTANCE OVERHANG
} }

Semantics 176—Arithmetic submodels HORIZONTAL, VERTICAL, ACUTE and OBTUSE
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 231

1

5

10

15

20

25

30

35

40

45

50

55
232 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

1

5

10

15

20

25

30

35

40

45

50

55
Annex A

(informative)

Syntax rule summary

This summary replicates the syntax detailed in the preceding clauses. If there is any conflict, in detail or com-
pleteness, the syntax presented in the clauses shall considered as the normative definition.

The current ordering is as each item appears in its subchapter; this needs to be updated to be complete.

A.1 ALF meta-language

ALF_statement ::= (see 5.1)
ALF_type [ALF_name] [= ALF_value] ALF_statement_termination

ALF_type ::=
non_escaped_identifier [index]

| @
| :

ALF_name ::=
identifier [index]

| control_expression
ALF_value ::=

identifier
| number
| arithmetic_expression
| boolean_expression
| control_expression

ALF_statement_termination ::=
;

| { { ALF_value | : | ; } }
| { { ALF_statement } }

A.2 Lexical definitions

character ::= (see 6.1)
whitespace

| letter
| digit
| special

whitespace ::=
space | vertical_tab | horizontal_tab | new_line | carriage_return | form_feed

letter ::=
uppercase | lowercase

uppercase ::=
A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W

| X | Y | Z
lowercase ::=

a | b | c | d | e | f | g | h | i | j | k | l | m | n | o | p | q | r | s | t | u | v | w | x | y | z
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 233

1

5

10

15

20

25

30

35

40

45

50

55
digit ::=
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

special ::=
& | | | ^ | ~ | + | - | * | / | % | ? | ! | : | ; | , | ” | ’ | @ | = | \ | . | $ | _ | #

| (|) | < | > | [|] | { | }
comment ::= (see 6.2)

in_line_comment
| block_comment

in_line_comment ::=
/ /{character}new_line

| / /{character}carriage_return
block_comment ::=

/ *{character}* /
delimiter ::= (see 6.3)

(|) | [|] | { | } | : | ; | ,
operator ::= (see 6.4)

arithmetic_operator
| boolean_operator
| relational_operator
| shift_operator
| event_sequence_operator
| meta_operator

arithmetic_operator ::=
+ | - | * | / | % | **

boolean_operator ::=
&& | || | ~& | ~| | ^ | ~^ | ~ | ! | & | |

relational_operator ::=
== | != | >= | <= | > | <

shift_operator ::=
<< | >>

event_sequence_operator ::=
-> | ~> | <-> | <~> | &> | <&>

meta_operator ::=
= | ? | @

number ::= (see 6.5)
signed_integer | signed_real | unsigned_integer | unsigned_real

signed_number ::=
signed_integer | signed_real

unsigned_number ::=
unsigned_integer | unsigned_real

integer ::=
signed_integer | unsigned_integer

signed_integer ::=
sign unsigned_integer

unsigned_integer ::=
digit { [_] digit }

real ::=
signed_real | unsigned_real

signed_real ::=
sign unsigned_real

unsigned_real ::=
mantisse [exponent]
234 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

1

5

10

15

20

25

30

35

40

45

50

55
| unsigned_integer exponent
sign ::=

+ | -
mantisse ::=

. unsigned_integer
| unsigned_integer . [unsigned_integer]

exponent ::=
E [sign] unsigned_integer

| e [sign] unsigned_integer
multiplier_prefix_symbol ::= (see 6.6)

unity { letter } | K { letter } | M E G { letter } | G { letter }
| M { letter } | U { letter } | N { letter } | P { letter } | F { letter }

unity ::=
1

K ::=
K | k

M ::=
M | m

E ::=
E | e

G ::=
G | g

U ::=
U | u

N ::=
N | n

P ::=
P | p

F ::=
F | f

bit_literal ::= (see 6.7)
alphanumeric_bit_literal

| symbolic_bit_literal
alphanumeric_bit_literal ::=

numeric_bit_literal
| alphabetic_bit_literal

numeric_bit_literal ::=
0 | 1

alphabetic_bit_literal ::=
X | Z | L | H | U | W

| x | z | l | h | u | w
symbolic_bit_literal ::=

? | *
based_literal ::= (see 6.8)

binary_based_literal | octal_based_literal | decimal_based_literal | hexadecimal_based_literal
binary_based_literal ::=

binary_base bit_literal { [_] bit_literal }
binary_base ::=

'B | 'b

octal_based_literal ::=
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 235

1

5

10

15

20

25

30

35

40

45

50

55
octal_base octal_digit { [_] octal_digit }
octal_base ::=

'O | 'o
octal_digit ::=

bit_literal | 2 | 3 | 4 | 5 | 6 | 7
decimal_based_literal ::=

decimal_base digit { [_] digit }
decimal_base ::=

'D | 'd
hexadecimal_based_literal ::=

hexadecimal_base hexadecimal_digit { [_] hexadecimal_digit }
hexadecimal_base ::=

'H | 'h
hexadecimal_digit ::=

octal | 8 | 9
| A | B | C | D | E | F
| a | b | c | d | e | f

edge_literal ::= (see 6.9)
bit_edge_literal

| based_edge_literal
| symbolic_edge_literal

bit_edge_literal ::=
bit_literal bit_literal

based_edge_literal ::=
based_literal based_literal

symbolic_edge_literal ::=
?~ | ?! | ?-

quoted_string ::= (see 6.10)
" { character } "

identifier ::= (see 6.11)
non_escaped_identifier

| escaped_identifier
| placeholder_identifier
| hierarchical_identifier

non_escaped_identifier ::= (see 6.11.1)
letter { letter | digit | _ | $ | # }

escaped_identifier ::= (see 6.11.2)
backslash escapable_character { escapable_character }

escapable_character ::=
letter | digit | special

placeholder_identifier ::= (see 6.11.3)
< non_escaped_identifier >

hierarchical_identifier ::= (see 6.11.4)
identifier [\] . identifier

keyword_identifier ::= (see 6.12)
letter { [_] letter }

vector_expression_macro ::= (see 6.13)
. non_escaped_identifier
236 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

1

5

10

15

20

25

30

35

40

45

50

55
A.3 Auxiliary definitions

all_purpose_value ::= (see 7.1)
number

| identifier
| quoted_string
| bit_literal
| based_literal
| edge_value
| pin_variable
| control_expression

multiplier_prefix_value ::= (see 7.2)
unsigned_number | multiplier_prefix_symbol

string_value ::= (see 7.3)
quoted_string | identifier

arithmetic_value ::= (see 7.4)
number | identifier | bit_literal | based_literal

boolean_value ::= (see 7.5)
alphanumeric_bit_literal | based_literal | integer

edge_value ::= (see 7.6)
(edge_literal)

index_value ::= (see 7.7)
unsigned_integer | identifier

index ::= (see 7.8)
single_index | multi_index

single_index ::=
[index_value]

multi_index ::=
[index_value : index_value]

pin_variable ::= (see 7.9)
pin_variable_identifier [index]

pin_value ::=
pin_variable | boolean_value

pin_assignment ::= (see 7.10)
pin_variable = pin_value ;

annotation ::= (see 7.11)
single_value_annotation

| multi_value_annotation
single_value_annotation ::=

annotation_identifier = annotation_value ;
annotation_value ::=

number
| identifier
| quoted_string
| bit_literal
| based_literal
| edge_value
| pin_variable
| control_expression
| boolean_expression
| arithmetic_expression

multi_value_annotation ::=
annotation_identifier { annotation_value { annotation_value } }
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 237

1

5

10

15

20

25

30

35

40

45

50

55
annotation_container ::= (see 7.12)
annotation_container_identifier { annotation { annotation } }

attribute ::= (see 7.13)
ATTRIBUTE { identifier { identifier } }

property ::= (see 7.14)
PROPERTY [identifier] { annotation { annotation } }

include ::= (see 7.15)
INCLUDE quoted_string ;

associate ::= (see 7.16)
ASSOCIATE quoted_string ;

| ASSOCIATE quoted_string { FORMAT_single_value_annotation }
revision ::= (see 7.17)

ALF_REVISION string_value
generic_object ::= (see 7.18)

alias_declaration
| constant_declaration
| class_declaration
| keyword_declaration
| semantics_declaration
| group_declaration
| template_declaration

library_specific_object ::= (see 7.19)
library

| sublibrary
| cell
| primitive
| wire
| pin
| pingroup
| vector
| node
| layer
| via
| rule
| antenna
| site
| array
| blockage
| port
| pattern
| region

all_purpose_item ::= (see 7.20)
generic_object

| include_statement
| associate_statement
| annotation
| annotation_container
| arithmetic_model
| arithmetic_model_container
| all_purpose_item_template_instantiation

A.4 Generic definitions

alias_declaration ::= (see 8.1)
238 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

1

5

10

15

20

25

30

35

40

45

50

55
ALIAS alias_identifier = original_identifier ;
| ALIAS vector_expression_macro = (vector_expression)

constant_declaration ::= (see 8.2)
CONSTANT constant_identifier = constant_value ;

constant_value ::=
number | based_literal

class_declaration ::= (see 8.6)
CLASS class_identifier ;

| CLASS class_identifier { { class_item } }
class_item ::=

all_purpose_item
| geometric_model
| geometric_transformation

keyword_declaration ::= (see 8.3)
KEYWORD keyword_identifier = syntax_item_identifier ;

| KEYWORD keyword_identifier = syntax_item_identifier { { keyword_item } }
keyword_item ::=

VALUETYPE_single_value_annotation
| VALUES_multi_value_annotation
| DEFAULT_single_value_annotation
| CONTEXT_annotation
| REFERENCETYPE_annotation
| SI_MODEL_single_value_annotation

semantics_declaration ::= (see 8.4)
SEMANTICS semantics_identifier = syntax_item_identifier ;

| SEMANTICS semantics_identifier [= syntax_item_identifier] { { semantics_item } }
semantics_item ::=

VALUES_multi_value_annotation
| DEFAULT_single_value_annotation
| CONTEXT_annotation
| REFERENCETYPE_annotation
| SI_MODEL_single_value_annotation

group_declaration ::= (see 8.8)
GROUP group_identifier { all_purpose_value { all_purpose_value } }

| GROUP group_identifier { left_index_value : right_index_value }
template_declaration ::= (see 8.9)

TEMPLATE template_identifier { ALF_statement { ALF_statement } }
template_instantiation ::= (see 8.10)

static_template_instantiation
| dynamic_template_instantiation

static_template_instantiation ::=
template_identifier [= static] ;

| template_identifier [= static] { { all_purpose_value } }
| template_identifier [= static] { { annotation } }

dynamic_template_instantiation ::=
template_identifier = dynamic { { dynamic_template_instantiation_item } }

dynamic_template_instantiation_item ::=
annotation

| arithmetic_model
| arithmetic_assignment

arithmetic_assignment ::=
identifier = arithmetic_expression ;
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 239

1

5

10

15

20

25

30

35

40

45

50

55
A.5 Library definitions

library ::= (see 9.1)
LIBRARY library_identifier ;

| LIBRARY library_identifier { { library_item } }
| library_template_instantiation

library_item ::=
sublibrary

| sublibrary_item
sublibrary ::=

SUBLIBRARY sublibrary_identifier ;
| SUBLIBRARY sublibrary_identifier { { sublibrary_item } }
| sublibrary_template_instantiation

sublibrary_item ::=
all_purpose_item

| cell
| primitive
| wire
| layer
| via
| rule
| antenna
| array
| site
| region

cell ::= (see 9.3)
CELL cell_identifier ;

| CELL cell_identifier { { cell_item } }
| cell_template_instantiation

cell_item ::=
all_purpose_item

| pin
| pingroup
| primitive
| function
| non_scan_cell
| test
| vector
| wire
| blockage
| artwork
| pattern
| region

pin ::= (see 9.5)
scalar_pin | vector_pin | matrix_pin

scalar_pin ::=
PIN pin_identifier ;

| PIN pin_identifier { { scalar_pin_item } }
| scalar_pin_template_instantiation

scalar_pin_item ::=
all_purpose_item

| pattern
| port

vector_pin ::=
240 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

1

5

10

15

20

25

30

35

40

45

50

55
PIN multi_index pin_identifier ;
| PIN multi_index pin_identifier { { vector_pin_item } }
| vector_pin_template_instantiation

vector_pin_item ::=
all_purpose_item

| range
matrix_pin ::=

PIN first_multi_index pin_identifier second_multi_index ;
| PIN first_multi_index pin_identifier second_multi_index { { matrix_pin_item } }
| matrix_pin_template_instantiation

matrix_pin_item ::=
vector_pin_item

pingroup ::= (see 9.6)
simple_pingroup | vector_pingroup

simple_pingroup ::=
PINGROUP pingroup_identifier

{ MEMBERS_multi_value_annotation { all_purpose_item } }
| simple_pingroup_template_instantiation

vector_pingroup ::=
| PINGROUP multi_index pingroup_identifier

{ MEMBERS_multi_value_annotation { vector_pingroup_item } }
| vector_pingroup_template_instantiation

vector_pingroup_item ::=
all_purpose_item

| range
primitive ::= (see 9.8)

PRIMITIVE primitive_identifier { { primitive_item } }
| PRIMITIVE primitive_identifier ;
| primitive_template_instantiation

primitive_item ::=
all_purpose_item

| pin
| pingroup
| function
| test

wire ::= (see 9.9)
WIRE wire_identifier { { wire_item } }

| WIRE wire_identifier ;
| wire_template_instantiation

wire_item ::=
all_purpose_item

| node
wire_instance_pin_assignment ::=

wire_reference_pin_variable = wire_instance_pin_value ;
node ::= (see 9.11)

NODE node_identifier ;
| NODE node_identifier { { node_item } }
| node_template_instantiation

node_item ::=
all_purpose_item

vector ::= (see 9.13)
VECTOR control_expression ;

| VECTOR control_expression { { vector_item } }
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 241

1

5

10

15

20

25

30

35

40

45

50

55
| vector_template_instantiation
vector_item ::=

all_purpose_item
| wire_instantiation

layer ::= (see 9.15)
LAYER layer_identifier ;

| LAYER layer_identifier { { layer_item } }
| layer_template_instantiation

layer_item ::=
all_purpose_item

via ::= (see 9.17)
VIA via_identifier ;

| VIA via_identifier { { via_item } }
| via_template_instantiation

via_item ::=
all_purpose_item

| pattern
| artwork

via_instantiation ::= (see 9.20)
via_identifier instance_identifier ;

| via_identifier instance_identifier { { geometric_transformation } }
rule ::= (see 9.19)

RULE rule_identifier ;
| RULE rule_identifier { { rule_item } }
| rule_template_instantiation

rule_item ::=
all_purpose_item

| pattern
| region
| via_instantiation

antenna ::= (see 9.20)
ANTENNA antenna_identifier ;

| ANTENNA antenna_identifier { { antenna_item } }
| antenna_template_instantiation

antenna_item ::=
all_purpose_item

blockage ::= (see 9.21)
BLOCKAGE blockage_identifier ;

| BLOCKAGE blockage_identifier { { blockage_item } }
| blockage_template_instantiation

blockage_item ::=
all_purpose_item

| pattern
| region
| rule
| via_instantiation

port ::= (see 9.22)
PORT port_identifier ;{ { port_item } }

| PORT port_identifier ;
| port_template_instantiation

port_item ::=
all_purpose_item

| pattern
242 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

1

5

10

15

20

25

30

35

40

45

50

55
| region
| rule
| via_instantiation

site ::= (see 9.24)
SITE site_identifier ;

| SITE site_identifier { { site_item } }
| site_template_instantiation

site_item ::=
all_purpose_item

| WIDTH_arithmetic_model
| HEIGHT_arithmetic_model

array ::= (see 9.26)
ARRAY array_identifier ;

| ARRAY array_identifier { { array_item } }
| array_template_instantiation

array_item ::=
all_purpose_item

| geometric_transformation
pattern ::= (see 9.28)

PATTERN pattern_identifier ;

| PATTERN pattern_identifier { { pattern_item } }
| pattern_template_instantiation

pattern_item ::=
all_purpose_item

| geometric_model
| geometric_transformation

A.6 Function definitions

function ::= (see 10.1)
FUNCTION { function_item { function_item } }

| function_template_instantiation
function_item ::=

all_purpose_item
| behavior
| structure
| statetable

test ::= (see 10.2)
TEST { test_item { test_item } }

| test_template_instantiation
test_item ::=

all_purpose_item
| behavior
| statetable

behavior ::= (see 10.4)
BEHAVIOR { behavior_item { behavior_item }s }

| behavior_template_instantiation
behavior_item ::=

boolean_assignment
| control_statement
| primitive_instantiation
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 243

1

5

10

15

20

25

30

35

40

45

50

55
| behavior_item_template_instantiation
boolean_assignment ::=

pin_variable = boolean_expression ;
control_statement ::=

primary_control_statement { alternative_control_statement }
primary_control_statement ::=

@ control_expression { boolean_assignment { boolean_assignment } }
alternative_control_statement ::=

: control_expression { boolean_assignment { boolean_assignment } }
primitive_instantiation ::=

primitive_identifier [identifier] { pin_value { pin_value } }
| primitive_identifier [identifier] { boolean_assignment { boolean_assignment } }

structure ::= (see 10.5)
STRUCTURE { cell_instantiation { cell_instantiation } }

| structure_template_instantiation
cell_instantiation ::=

cell_reference_identifier cell_instance_identifier ;
| cell_reference_identifier cell_instance_identifier { { cell_instance_pin_value } }
| cell_reference_identifier cell_instance_identifier { { cell_instance_pin_assignment } }
| cell_instantiation_template_instantiation

cell_instance_pin_assignment ::=
cell_reference_pin_variable = cell_instance_pin_value ;

statetable ::= (see 10.6)
STATETABLE [identifier]

{ statetable_header statetable_row { statetable_row } }
| statetable_template_instantiation

statetable_header ::=
input_pin_variable { input_pin_variable } : output_pin_variable { output_pin_variable } ;

statetable_row ::=
statetable_control_values : statetable_data_values ;

statetable_control_values ::=
statetable_control_value { statetable_control_value }

statetable_control_value ::=
boolean_value

| symbolic_bit_literal
| edge_value

statetable_data_values ::=
statetable_data_value { statetable_data_value }

statetable_data_value ::=
boolean_value

| ([!] input_pin_variable)
| ([~] input_pin_variable)

non_scan_cell ::= (see 10.7)
NON_SCAN_CELL = non_scan_cell_reference

| NON_SCAN_CELL { non_scan_cell_reference { non_scan_cell_reference } }
| non_scan_cell_template_instantiation

non_scan_cell_reference ::=
non_scan_cell_identifier { { scan_cell_pin_identifier } }

| non_scan_cell_identifier { { non_scan_cell_pin_identifier = scan_cell_pin_identifier ; } }
range ::= (see 10.8)

RANGE { index_value : index_value }
boolean_expression ::= (see 10.9)
244 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

1

5

10

15

20

25

30

35

40

45

50

55
(boolean_expression)
| pin_variable
| boolean_value
| boolean_unary boolean_expression
| boolean_expression boolean_binary boolean_expression
| boolean_expression ? boolean_expression :

{ boolean_expression ? boolean_expression : }
boolean_expression

boolean_unary ::=
!

| ~
| &
| ~&
| |
| ~|
| ^
| ~^

boolean_binary ::=
&

| &&
| |
| ||
| ^
| ~^
| !=
| ==
| >=
| <=
| >
| <
+
*
/
%
>>
<<

vector_expression ::= (see 10.12)
(vector_expression)

| vector_unary boolean_expression
| vector_expression vector_binary vector_expression
| boolean_expression ? vector_expression :

{ boolean_expression ? vector_expression : }
vector_expression

| boolean_expression control_and vector_expression
| vector_expression control_and boolean_expression
| vector_expression_macro

vector_unary ::=
edge_literal

vector_binary ::=
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 245

1

5

10

15

20

25

30

35

40

45

50

55
&
| &&
| |
| ||
| ->
| ~>
| <->
| <~>
| &>
| <&>

control_and ::=
& | &&

control_expression ::=
(vector_expression)

| (boolean_expression)
geometric_model ::= (see 10.16)

nonescaped_identifier [geometric_model_identifier]
{ geometric_model_item { geometric_model_item } }

| geometric_model_template_instantiation
geometric_model_item ::=

POINT_TO_POINT_single_value_annotation
| coordinates

coordinates ::=
COORDINATES { point { point } }

point ::=
x_number y_number

geometric_transformation ::= (see 10.18)
shift

| rotate
| flip
| repeat

shift ::=
SHIFT { x_number y_number }

rotate ::=
ROTATE = number ;

flip ::=
FLIP = number ;

repeat ::=
REPEAT [= unsigned_integer] { geometric_transformation { geometric_transformation } }

artwork ::= (see 10.19)
ARTWORK = artwork_identifier ;

| ARTWORK = artwork_reference

| ARTWORK { artwork_reference { artwork_reference } }
| artwork_template_instantiation

artwork_reference ::=
artwork_identifier { { geometric_transformation } { cell_pin_identifier } }

| artwork__identifier { { geometric_transformation } { artwork_pin_identifier = cell_pin_identifier ; } }

A.7 Arithmetic definitions

arithmetic_expression ::= (see 11.1)
246 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

1

5

10

15

20

25

30

35

40

45

50

55
(arithmetic_expression)
| arithmetic_value
| { boolean_expression ? arithmetic_expression : } arithmetic_expression
| [unary_arithmetic_operator] arithmetic_operand
| arithmetic_operand binary_arithmetic_operator arithmetic_operand
| macro_arithmetic_operator (arithmetic_operand { , arithmetic_operand })

arithmetic_operand ::=
arithmetic_expression

unary_arithmetic_operator ::= (see 11.2.1)
+

| -
binary_arithmetic_operator ::= (see 11.2.2)

+
| -
| *
| /
| **
| %

macro_arithmetic_operator ::= (see 11.2.3)
abs

| exp
| log
| min
| max

arithmetic_model ::= (see 11.3)
trivial_arithmetic_model

| partial_arithmetic_model
| full_arithmetic_model
| arithmetic_model_template_instantiation

trivial_arithmetic_model ::= (see 11.2.1)
nonescaped_identifier [name_identifier] = arithmetic_value ;

| nonescaped_identifier [name_identifier] = arithmetic_value { { model_qualifier } }
partial_arithmetic_model ::= (see 11.2.2)

nonescaped_identifier [name_identifier] { { partial_arithmetic_model_item } }
partial_arithmetic_model_item ::=

model_qualifier
| table
| trivial_min-max

full_arithmetic_model ::= (see 11.2.3)
nonescaped_identifier [name_identifier] { { model_qualifier } model_body { model_qualifier } }

model_body ::=
header-table-equation [trivial_min-max]

| min-typ-max
| arithmetic_submodel { arithmetic_submodel }

header-table-equation ::= (see 11.4)
header table

| header equation
header ::= (see 11.3.1)

HEADER { partial_arithmetic_model { partial_arithmetic_model } }
table ::= (see 11.3.2)

TABLE { arithmetic_value { arithmetic value } }
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 247

1

5

10

15

20

25

30

35

40

45

50

55
equation ::= (see 11.3.3)
EQUATION { arithmetic_expression }

| equation_template_instantiation
model_qualifier ::= (see 11.4.1)

annotation
| annotation_container
| event_reference
| from-to
| auxiliary_arithmetic_model
| violation

auxiliary_arithmetic_model ::= (see 11.6)
nonescaped_identifier = arithmetic_value ;

| nonescaped_identifier [= arithmetic_value] { auxiliary_qualifier { auxiliary_qualifier } }
auxiliary_qualifier

annotation
| annotation_container
| event_reference
| from-to

arithmetic_submodel ::= (see 11.7)
nonescaped_identifier = arithmetic_value ;

| nonescaped_identifier { [violation] min-max }
| nonescaped_identifier { header-table-equation [trivial_min-max] }
| nonescaped_identifier { min-typ-max }
| arithmetic_submodel_template_instantiation

min-max ::= (see 11.4.4)
min [max]

| max [min]
min ::=

MIN = arithmetic_value ;
| MIN = arithmetic_value { violation }
| MIN { [violation] header-table-equation }

max ::=
MAX = arithmetic_value ;

| MAX = arithmetic_value { violation }
| MAX { [violation] header-table-equation }

min-typ-max ::= (see 11.5)
[min-max] typ [min-max]

typ ::=
TYP = arithmetic_value ;

| TYP { header-table-equation }
trivial_min-max ::= (see 11.4.6)

trivial_min [trivial_max]
| trivial_max [trivial_min]

trivial_min ::=
MIN = arithmetic_value ;

trivial_max ::=
MAX = arithmetic_value ;

arithmetic_model_container ::= (see 11.8)
limit

| early-late
| arithmetic_model_container_identifier { arithmetic_model { arithmetic_model } }

limit ::= (see 11.8.2)
LIMIT { limit_item { limit_item } }
248 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

1

5

10

15

20

25

30

35

40

45

50

55
limit_item ::=
limit_arithmetic_model

limit_arithmetic_model ::=
nonescaped_identifier [name_identifier] { { model_qualifier } limit_arithmetic_model_body }

limit_arithmetic_model_body ::=
limit_arithmetic_submodel { limit_arithmetic_submodel }

| min-max
limit_arithmetic_submodel ::=

nonescaped_identifier { [violation] min-max }
event_reference ::= (see 11.4.9)

PIN_reference_single_value_annotation [EDGE_NUMBER_single_value_annotation]
from-to ::= (see 11.12)

from [to]
| [from] to

from ::=
FROM { from-to_item { from-to_item } }

from-to_item ::=
event_reference

| THRESHOLD_arithmetic_model
to ::=

TO { from-to_item { from-to_item } }
early-late ::= (see 11.8.3)

early [late]
| [early] late

early ::=
EARLY { early-late_item { early-late_item } }

late ::=
LATE { early-late_item { early-late_item } }

early-late_item ::=
DELAY_arithmetic_model

| RETAIN_arithmetic_model
| SLEWRATE_arithmetic_model

violation ::= (see 11.10)
VIOLATION { violation_item { violation_item } }

| violation_template_instantiation
violation_item ::=

MESSAGE_TYPE_single_value_annotation
| MESSAGE_single_value_annotation
| behavior

wire_instantiation ::= (see 11.11)
wire_reference_identifier wire_instance_identifier ;

| wire_reference_identifier wire_instance_identifier { { wire_instance_pin_value } }
| wire_reference_identifier wire_instance_identifier { { wire_instance_pin_assignment } }
| wire_instantiation_template_instantiation

wire_instance_pin_assignment ::=
wire_reference_pin_variable = wire_instance_pin_value ;
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 249

1

5

10

15

20

25

30

35

40

45

50

55
250 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

1

5

10

15

20

25

30

35

40

45

50

55
Annex B

(informative)

Semantics rule summary

This summary replicates the semantics detailed in the preceding clauses. If there is any conflict, in detail or com-
pleteness, the semantics presented in the clauses shall considered as the normative definition.

The current ordering is as each item appears in its subchapter; this needs to be updated to be complete.

**I kept the font/formatting as it is from the original semantics sections; let me know if you want to change this
(how it appears in print)**

B.1 Auxiliary and generic definitions

KEYWORD FORMAT = single_value_annotation {
CONTEXT = ASSOCIATE;
VALUETYPE = identifier;
VALUES { vhdl verilog c \c++ alf }
DEFAULT = alf;

}

KEYWORD VALUETYPE = single_value_annotation {
CONTEXT = KEYWORD;

}

KEYWORD VALUES = multi_value_annotation {
CONTEXT { KEYWORD SEMANTICS }

}

KEYWORD DEFAULT = single_value_annotation {
CONTEXT { KEYWORD arithmetic_model }

}

KEYWORD CONTEXT = annotation {
VALUETYPE = identifier;

}

KEYWORD REFERENCETYPE = annotation {
CONTEXT { KEYWORD SEMANTICS }
VALUETYPE = identifier;

}
KEYWORD SI_MODEL = single_value_annotation {

CONTEXT = KEYWORD;
VALUETYPE = identifier;
VALUES {

TIME FREQUENCY CURRENT VOLTAGE POWER ENERGY
RESISTANCE CAPACITANCE INDUCTANCE
DISTANCE AREA FLUENCE FLUX

}
}

SEMANTICS CLASS = annotation {
CONTEXT { library_specific_object arithmetic_model }
VALUETYPE = identifier;
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 251

1

5

10

15

20

25

30

35

40

45

50

55
REFERENCETYPE = CLASS;
}

KEYWORD USAGE = annotation {
CONTEXT = CLASS;
VALUETYPE = identifier;
VALUES {

SWAP_CLASS RESTRICT_CLASS
SIGNAL_CLASS SUPPLY_CLASS CONNECT_CLASS
SELECT_CLASS NODE_CLASS
EXISTENCE_CLASS CHARACTERIZATION_CLASS
ORIENTATION_CLASS SYMMETRY_CLASS

}
}

B.2 Library definitions

SEMANTICS LIBRARY = annotation {
VALUETYPE = identifier;
REFERENCETYPE { LIBRARY SUBLIBRARY }

}

KEYWORD INFORMATION = annotation_container { (see 9.2.2)
CONTEXT { LIBRARY SUBLIBRARY CELL WIRE PRIMITIVE }

}

KEYWORD PRODUCT = single_value_annotation {
VALUETYPE = string_value; DEFAULT = ““; CONTEXT = INFORMATION;

}

KEYWORD TITLE = single_value_annotation {
VALUETYPE = string_value; DEFAULT = ““; CONTEXT = INFORMATION;

}

KEYWORD VERSION = single_value_annotation {
VALUETYPE = string_value; DEFAULT = ““; CONTEXT = INFORMATION;

}

KEYWORD AUTHOR = single_value_annotation {
VALUETYPE = string_value; DEFAULT = ““; CONTEXT = INFORMATION;

}

KEYWORD DATETIME = single_value_annotation {
VALUETYPE = string_value; DEFAULT = ““; CONTEXT = INFORMATION;

}

SEMANTICS CELL = annotation {
VALUETYPE = identifier;
REFERENCETYPE = CELL;

}

KEYWORD CELLTYPE = single_value_annotation { (see 9.4.2)
CONTEXT = CELL;
VALUETYPE = identifier;
VALUES {

buffer combinational multiplexor flipflop latch
memory block core special

}
}

252 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

1

5

10

15

20

25

30

35

40

45

50

55
KEYWORD SWAP_CLASS = annotation { (see 9.4.3)
CONTEXT = CELL;
VALUETYPE = identifier;
REFERENCETYPE = CLASS;

}

KEYWORD RESTRICT_CLASS = annotation { (see 9.4.4)
CONTEXT { CELL CLASS }
VALUETYPE = identifier;
REFERENCETYPE = CLASS;

}

KEYWORD SCAN_TYPE = single_value_annotation { (see 9.4.5)
CONTEXT = CELL;
VALUETYPE = identifier;
VALUES { muxscan clocked lssd control_0 control_1 }

}

KEYWORD SCAN_USAGE = single_value_annotation { (see 9.4.6)
CONTEXT = CELL;
VALUETYPE = identifier;
VALUES { input output hold }

}

KEYWORD BUFFERTYPE = single_value_annotation { (see 9.4.7)
CONTEXT = CELL;
VALUETYPE = identifier;
VALUES { input output inout internal }
DEFAULT = internal;

}

KEYWORD DRIVERTYPE = single_value_annotation { (see 9.4.8)
CONTEXT = CELL;
VALUETYPE = identifier;
VALUES { predriver slotdriver both }

}

KEYWORD PARALLEL_DRIVE = single_value_annotation { (see 9.4.9)
CONTEXT = CELL;
VALUETYPE = unsigned_integer;
DEFAULT = 1;

}

KEYWORD PLACEMENT_TYPE = single_value_annotation { (see 9.4.10)
CONTEXT = CELL;
VALUETYPE = identifier;
VALUES { pad core ring block connector }
DEFAULT = core;

}

KEYWORD MEMBERS = multi_value_annotation { (see 9.7.2)
CONTEXT = PINGROUP;
VALUETYPE = identifier;
REFERENCETYPE = PIN;

}

KEYWORD VIEW = single_value_annotation { (see 9.7.3)
CONTEXT { PIN PINGROUP }
VALUETYPE = identifier;
VALUES { functional physical both none }
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 253

1

5

10

15

20

25

30

35

40

45

50

55
DEFAULT = both;
}

KEYWORD PINTYPE = single_value_annotation { (see 9.7.4)
CONTEXT = PIN;
VALUETYPE = identifier;
VALUES { digital analog supply }
DEFAULT = digital;

}

KEYWORD DIRECTION = single_value_annotation { (see 9.7.5)
CONTEXT = PIN;
VALUETYPE = identifier;
VALUES { input output both none }

}

KEYWORD SIGNALTYPE = single_value_annotation { (see 9.7.6)
CONTEXT = PIN;
VALUETYPE = identifier;
VALUES {

data scan_data address control select tie clear set
enable out_enable scan_enable scan_out_enable
clock master_clock slave_clock
scan_master_clock scan_slave_clock

}
DEFAULT = data;

}

KEYWORD ACTION = single_value_annotation { (see 9.7.7)
CONTEXT = PIN;
VALUETYPE = identifier;
VALUES { asynchronous synchronous }

}

KEYWORD POLARITY = single_value_annotation { (see 9.7.8)
CONTEXT = PIN;
VALUETYPE = identifier;
VALUES { high low rising_edge falling_edge double_edge }

}

KEYWORD DATATYPE = single_value_annotation { (see 9.7.10)
CONTEXT { PIN PINGROUP }
VALUETYPE = identifier;
VALUES { signed unsigned }

}

KEYWORD INITIAL_VALUE = single_value_annotation { (see 9.7.11)
CONTEXT = CELL;
VALUETYPE = boolean_value;

}

KEYWORD SCAN_POSITION = single_value_annotation { (see 9.7.12)
CONTEXT = PIN;
VALUETYPE = unsigned;
DEFAULT = 0;

}

KEYWORD STUCK = single_value_annotation { (see 9.7.13)
CONTEXT = PIN;
VALUETYPE = identifier;
VALUES { stuck_at_0 stuck_at_1 both none }
254 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

1

5

10

15

20

25

30

35

40

45

50

55
DEFAULT = both;
}

KEYWORD SUPPLYTYPE = annotation { (see 9.7.14)
CONTEXT = PIN;
VALUETYPE = identifier;
VALUES { power ground reference }

}

KEYWORD SIGNAL_CLASS = annotation { (see 9.7.15)
CONTEXT { PIN PINGROUP }
VALUETYPE = identifier;
REFERENCETYPE = CLASS;

}

KEYWORD SUPPLY_CLASS = annotation { (see 9.7.16)
CONTEXT { PIN PINGROUP CLASS }
VALUETYPE = identifier;
REFERENCETYPE = CLASS;

}

KEYWORD DRIVETYPE = single_value_annotation { (see 9.7.17)
CONTEXT = PIN;
VALUETYPE = identifier;
VALUES {

cmos nmos pmos cmos_pass nmos_pass pmos_pass
ttl open_drain open_source

}
DEFAULT = cmos;

}

KEYWORD SCOPE = single_value_annotation { (see 9.7.18)
CONTEXT = PIN;
VALUETYPE = identifier;
VALUES { behavior measure both none }
DEFAULT = both;

}

KEYWORD CONNECT_CLASS = single_value_annotation { (see 9.7.19)
CONTEXT = PIN;
VALUETYPE = identifier;
REFERENCETYPE = CLASS;

}

KEYWORD SIDE = single_value_annotation { (see 9.7.20)
CONTEXT { PIN PINGROUP }
VALUETYPE = identifier;
VALUES { left right top bottom inside }

}

KEYWORD ROW = annotation { (see 9.7.21)
CONTEXT { PIN PINGROUP }
VALUETYPE = unsigned_integer;

}

KEYWORD COLUMN = annotation {
CONTEXT { PIN PINGROUP }
VALUETYPE = unsigned_integer;

}

KEYWORD ROUTING_TYPE = single_value_annotation { (see 9.7.22)
CONTEXT { PIN PORT }
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 255

1

5

10

15

20

25

30

35

40

45

50

55
VALUETYPE = identifier;
VALUES { regular abutment ring feedthrough }
DEFAULT = regular;

}

KEYWORD PULL = single_value_annotation { (see 9.7.23)
CONTEXT = PIN;
VALUETYPE = identifier;
VALUES { up down both none }
DEFAULT = none;

}

KEYWORD WIRETYPE = single_value_annotation { (see 9.10.2)
CONTEXT = WIRE;
VALUETYPE = identifier;
VALUES { estimated extracted analytical load }

}

KEYWORD SELECT_CLASS = annotation { (see 9.10.3)
CONTEXT = WIRE;
VALUETYPE = identifier;
REFERENCETYPE = CLASS;

}

KEYWORD NODETYPE = single_value_annotation { (see 9.12.2)
CONTEXT = NODE;
VALUETYPE = identifier;
VALUES { power ground source sink

driver receiver interconnect }
DEFAULT = interconnect;

}

KEYWORD NODE_CLASS = annotation { (see 9.12.3)
CONTEXT = NODE;
VALUETYPE = identifier;
REFERENCETYPE = CLASS;

}

KEYWORD PURPOSE = annotation { (see 9.14.2)
CONTEXT { VECTOR CLASS }
VALUETYPE = identifier ;
VALUES { bist test timing power noise reliability }

}

KEYWORD OPERATION = single_value_annotation { (see 9.14.3)
CONTEXT = VECTOR;
VALUETYPE = identifier;
VALUES {

read write read_modify_write refresh load
start end iddq

}
}

KEYWORD LABEL = single_value_annotation { (see 9.14.4)
CONTEXT = VECTOR;
VALUETYPE = string_value;

}

KEYWORD EXISTENCE_CONDITION = single_value_annotation { (see 9.14.5)
CONTEXT { VECTOR CLASS }
VALUETYPE = boolean_expression;
256 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

1

5

10

15

20

25

30

35

40

45

50

55
DEFAULT = 1;
}

KEYWORD EXISTENCE_CLASS = annotation { (see 9.14.6)
CONTEXT { VECTOR CLASS }
VALUETYPE = identifier;
REFERENCETYPE = CLASS;

}

KEYWORD
CHARACTERIZATION_CONDITION = single_value_annotation { (see 9.14.7)

CONTEXT { VECTOR CLASS }
VALUETYPE = boolean_expression;

}

KEYWORD CHARACTERIZATION_VECTOR = single_value_annotation { (see 9.14.8)
CONTEXT { VECTOR CLASS }
VALUETYPE = control_expression;

}

KEYWORD CHARACTERIZATION_CLASS = annotation {
CONTEXT { VECTOR CLASS } (see 9.14.9)
VALUETYPE = identifier;
REFERENCETYPE = CLASS;

}

KEYWORD LAYERTYPE = single_value_annotation { (see 9.16.2)
CONTEXT = LAYER;
VALUETYPE = identifier;
VALUES {

routing cut substrate dielectric reserved abstract
}

}

KEYWORD PITCH = single_value_annotation { (see 9.16.3)
CONTEXT = LAYER;
VALUETYPE = unsigned_number;

}

KEYWORD PREFERENCE = single_value_annotation { (see 9.16.4)
CONTEXT = LAYER;
VALUETYPE = identifier;
VALUES { horizontal vertical acute obtuse }

}

KEYWORD VIATYPE = single_value_annotation { (see 9.18.2)
CONTEXT = VIA;
VALUETYPE = identifier;
VALUES { default non_default partial_stack full_stack }
DEFAULT = default;

}

KEYWORD CONNECT_TYPE = single_value_annotation { (see 9.23.1)
CONTEXT = PORT;
VALUETYPE = identifier;
VALUES { external internal }
DEFAULT = external;

}

KEYWORD ORIENTATION_CLASS = annotation { (see 9.25.2)
CONTEXT { SITE CELL }
VALUETYPE = identifier;
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 257

1

5

10

15

20

25

30

35

40

45

50

55
REFERENCETYPE = CLASS;
}

KEYWORD SYMMETRY_CLASS = annotation { (see 9.25.3)
CONTEXT = SITE;
VALUETYPE = identifier;
REFERENCETYPE = CLASS;

}

KEYWORD ARRAYTYPE = single_value_annotation { (see 9.27.1)
CONTEXT = ARRAY;
VALUETYPE = identifier;
VALUES { floorplan placement

global_routing detailed_routing }
}

KEYWORD SHAPE = single_value_annotation { (see 9.29.2)
CONTEXT = PATTERN;
VALUETYPE = identifier;
VALUES { line tee cross jog corner end }
DEFAULT = line;

}

KEYWORD VERTEX = single_value_annotation { (see 9.29.3)
CONTEXT = PATTERN;
VALUETYPE = identifier;
VALUES { round linear }
DEFAULT = linear;

}

KEYWORD POINT_TO_POINT = single_value_annotation { (see 9.35)
CONTEXT { POLYLINE RING POLYGON }
VALUETYPE = identifier;
VALUES { direct manhattan }
DEFAULT = direct;

}

B.3 Arithmetic definitions

SEMANTICS VIOLATION { (see 11.10)
CONTEXT {

SETUP HOLD RECOVERY REMOVAL SKEW NOCHANGE ILLEGAL
LIMIT.arithmetic_model
LIMIT.arithmetic_model.MIN
LIMIT.arithmetic_model.MAX
LIMIT.arithmetic_model.arithmetic_submodel
LIMIT.arithmetic_model.arithmetic_submodel.MIN
LIMIT.arithmetic_model.arithmetic_submodel.MAX

}
}

SEMANTICS VIOLATION.BEHAVIOR {
CONTEXT {

VECTOR.arithmetic_model
VECTOR.LIMIT.arithmetic_model
VECTOR.LIMIT.arithmetic_model.MIN
258 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

1

5

10

15

20

25

30

35

40

45

50

55
VECTOR.LIMIT.arithmetic_model.MAX
VECTOR.LIMIT.arithmetic_model.arithmetic_submodel
VECTOR.LIMIT.arithmetic_model.arithmetic_submodel.MIN
VECTOR.LIMIT.arithmetic_model.arithmetic_submodel.MAX

}
}

KEYWORD MESSAGE_TYPE = single_value_annotation {
CONTEXT = VIOLATION ;
VALUETYPE = identifier ;
VALUES { information warning error }

}

KEYWORD MESSAGE = single_value_annotation {
CONTEXT = VIOLATION ;
VALUETYPE = quoted_string ;

}

KEYWORD UNIT = single_value_annotation { (see 11.9.1)
CONTEXT = arithmetic_model ;
VALUETYPE = multiplier_prefix_value ;
DEFAULT = 1 ;

}

KEYWORD CALCULATION = annotation { (see 11.9.2)
CONTEXT = library_specific_object.arithmetic_model ;
VALUES { absolute incremental }
DEFAULT = absolute ;

}

KEYWORD INTERPOLATION = single_value_annotation { (see 11.9.3)
CONTEXT = HEADER.arithmetic_model ;
VALUES { linear fit ceiling floor }
DEFAULT = fit ;

}

SEMANTICS PIN = single_value_annotation { (see 11.13.2)
CONTEXT {

FROM TO SLEWRATE PULSEWIDTH
CAPACITANCE RESISTANCE INDUCTANCE VOLTAGE CURRENT

}
REFERENCETYPE { PIN PIN.PORT NODE WIRE.NODE }

}
SEMANTICS SKEW.PIN = multi_value_annotation {

REFERENCETYPE { PIN PINGROUP PIN.PORT NODE WIRE.NODE }
}

KEYWORD EDGE_NUMBER = annotation { (see 11.11.2)
CONTEXT { FROM TO SLEWRATE PULSEWIDTH SKEW }
VALUETYPE = unsigned_integer ;
DEFAULT = 0;

}

SEMANTICS EDGE_NUMBER = single_value_annotation {
CONTEXT { FROM TO SLEWRATE PULSEWIDTH }

}

SEMANTICS SKEW.EDGE_NUMBER = multi_value_annotation ;

KEYWORD MEASUREMENT = single_value_annotation { (see 11.13.7)
VALUETYPE = identifier ;
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 259

1

5

10

15

20

25

30

35

40

45

50

55
VALUES {
transient static average absolute_average rms peak

}
CONTEXT {

ENERGY POWER CURRENT VOLTAGE FLUX FLUENCE JITTER
}

}

KEYWORD CONNECT_RULE = single_value_annotation { (see 11.20.1)
VALUETYPE = identifier ;
VALUES { must_short can_short cannot_short }
CONTEXT = CONNECTIVITY;

}

KEYWORD BETWEEN = multi_value_annotation { (see 11.20.2)
VALUETYPE = identifier ;
CONTEXT { DISTANCE LENGTH OVERHANG CONNECTIVITY }

}

KEYWORD DISTANCE_MEASUREMENT = single_value_annotation { (see 11.20.5)
VALUETYPE = identifier ;
VALUES { euclidean horizontal vertical manhattan }
DEFAULT = euclidean ;
CONTEXT = DISTANCE ;

}

KEYWORD REFERENCE = annotation_container { (see 11.20.6)
CONTEXT = DISTANCE ;

}

SEMANTICS REFERENCE.identifier = single_value_annotation {
VALUETYPE = identifier ;
VALUES { center origin near_edge far_edge }
DEFAULT = origin ;

}

SEMANTICS ANTENNA = annotation { (see 11.20.7)
VALUETYPE = identifier ;
CONTEXT { PIN.SIZE PIN.AREA PIN.PERIMETER }

}

SEMANTICS PATTERN = single_value_annotation { (see 11.20.9)
VALUETYPE = identifier ;
CONTEXT {

LENGTH WIDTH HEIGHT SIZE AREA THICKNESS
PERIMETER EXTENSION

}
}

260 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

1

5

10

15

20

25

30

35

40

45

50

55
Annex C

(informative)

Bibliography

[B1] Ratzlaff, C. L., Gopal, N., and Pillage, L. T., “RICE: Rapid Interconnect Circuit Evaluator,” Proceedings of
28th Design Automation Conference, pp. 555–560, 1991.

[B2] SPICE 2G6 User’s Guide.

[B3] Standard Delay Format Specification, Version 3.0, Open Verilog International, May 1995.

[B4] The IEEE Standard Dictionary of Electrical and Electronics Terms, Sixth Edition.
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 261

1

5

10

15

20

25

30

35

40

45

50

55
262 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

1

5

10

15

20

25

30

35

40

45

50

55
A
ABS 161
abs 160
ALIAS 47
alias 47
alphabetic_bit_literal 33
annotation

arithmetic models
average 196
can_short 223
cannot_short 223
must_short 223
peak 196
rms 196
static 196
transient 196

CELL
NON_SCAN_CELL 126

cell buffertype
inout 70
input 70
internal 70
output 70

cell celltype
block 67
buffer 66
combinational 66
core 67
flipflop 67
latch 67
memory 67
multiplexor 66
special 67

cell drivertype
both 71
predriver 71
slotdriver 71

cell scan_type
clocked 69
control_0 69
control_1 69
lssd 69
muxscan 69

cell scan_usage
hold 70
input 69
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 1

1

5

10

15

20

25

30

35

40

45

50

55
output 69
pin action

asynchronous 81
synchronous 81

pin datatype
signed 84
unsigned 84

pin direction
both 78
input 78
none 78
output 78

pin drivetype
cmos 88
cmos_pass 89
nmos 88
nmos_pass 89
open_drain 89
open_source 89
pmos 89
pmos_pass 89
ttl 89

pin orientation
bottom 91
left 90
right 91
top 91

pin pintype
analog 78
digital 78
supply 78

pin polarity
double_edge 82
falling_edge 82
high 82
low 82
rising_edge 82

pin pull
both 93, 99
down 93, 99, 103
none 93, 99, 103
up 93, 99, 103

pin scope
behavior 89
both 90
measure 90
2 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

1

5

10

15

20

25

30

35

40

45

50

55
none 90
pin signaltype

clear 80, 82, 83
clock 80, 82, 83
control 79, 81, 83
data 79, 81, 82
enable 79, 80, 82, 83
select 79, 81, 83
set 80, 82, 83

pin stuck
both 85, 86
none 85
stuck_at_0 85, 86
stuck_at_1 85, 86

pin view
both 77
functional 77
none 77
physical 77

arithmetic models 14
arithmetic operators

binary 160
unary 159

arithmetic_binary_operator 160
arithmetic_expression 159, 246
arithmetic_function_operator 160
arithmetic_unary_operator 159
atomic object 14
ATTRIBUTE 42
attribute 42

CELL 72, 73, 74
cell

asynchronous 72
CAM 72
dynamic 72
RAM 72
ROM 72
static 72
synchronous 73

pin
PAD 93
SCHMITT 93
TRISTATE 93
XTAL 93
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 3

1

5

10

15

20

25

30

35

40

45

50

55
B
based literal 33
based_literal 33
behavior 123
behavior_body 123
Binary operators

arithmetic 160
binary_base 33
bit 128
bit_edge_literal 34
bit_literal 33
boolean_binary_operator 128
boolean_expression 128
boolean_unary_operator 128

C
cell 65
cell_identifier 65, 126, 244
cell_template_instantiation 65
characterization 5
children object 13
CLASS 54
class 55
comment 25
CONSTANT 47
constant 47

D
decimal_base 33
deep submicron 5
delimiter 25

E
edge_literal 34
equation 164
equation_template_instantiation 164
escape codes 34
escape_character 27, 28
escaped_identifier 35
EXP 160
exp 160

F
function 121
Function operators

arithmetic 160
4 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

1

5

10

15

20

25

30

35

40

45

50

55
function_template_instantiation 121
functional model 5

G
generic objects 14
group 57
group_identifier 57

H
header 163
hex_base 33

I
identifier 13, 25
INCLUDE 43
include 43, 44
index 40

L
Library creation 1
library_template_instantiation 63
library-specific objects 14
literal 25
LOG 160
log 160
logic_values 125

M
MAX 161
max 160
MIN 161
min 160
mode of operation 5

N
nonescaped_identifier 35, 36
Number 31
numeric_bit_literal 33

O
octal_base 33
operation mode 5

P
pin_assignments 41
placeholder identifier 36
power constraint 5
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 5

1

5

10

15

20

25

30

35

40

45

50

55
Power model 5
predefined derating cases 198

bccom 198
bcind 198
bcmil 198
wccom 198
wcind 198
wcmil 199

predefined process names 197
snsp 198
snwp 198
wnsp 198
wnwp 198

primitive_identifier 95, 123
primitive_instantiation 123
primitive_template_instantiation 95
PROPERTY 43
property 43

Q
quoted string 34
quoted_string 34

R
RTL 4

S
sequential_assignment 123, 244
simulation model 5
statetable 125
statetable_body 125
string 39
symbolic_edge_literal 34

T
table 164
template 58
template_identifier 58
template_instantiation 59
timing constraints 5
timing models 5

U
Unary operators

arithmetic 159
unnamed_assignment 42
6 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

1

5

10

15

20

25

30

35

40

45

50

55
V
vector 101
vector_expression 101, 137
vector_template_instantiation 101
vector_unary_operator 137
vector-based modeling 5
Verilog 4
VHDL 4

W
wire 95, 98, 106, 108, 109, 110, 111, 112, 114, 116, 156, 157
wire_identifier 95, 98, 106, 108, 109, 110, 112
wire_template_instantiation 95, 98, 106, 108, 109, 110, 111, 112, 114, 116, 156, 246
word_edge_literal 34
IEEE P1603 Draft 7 Advanced Library Format (ALF) Reference Manual 7

1

5

10

15

20

25

30

35

40

45

50

55
8 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 7

	1. Introduction
	1.1 Motivation
	1.2 Goals
	1.3 Target applications
	1.4 Conventions
	1.5 Contents of this standard

	2. References
	3. Definitions
	4. Acronyms and abbreviations
	5. ALF language construction principles and overview
	5.1 ALF meta-language
	5.2 Categories of ALF statements
	5.3 Generic objects and library-specific objects
	5.4 Singular statements and plural statements
	5.5 Instantiation statement and assignment statement
	5.6 Annotation, arithmetic model, and related statements
	5.7 Statements for parser control
	5.8 Name space and visibility of statements

	6. Lexical rules
	6.1 Character set
	6.2 Comment
	6.3 Delimiter
	6.4 Operator
	6.4.1 Arithmetic operator
	6.4.2 Boolean operator
	6.4.3 Relational operator
	6.4.4 Shift operator
	6.4.5 Event sequence operator
	6.4.6 Meta operator

	6.5 Number
	6.6 Multiplier prefix symbol
	6.7 Bit literal
	6.8 Based literal
	6.9 Edge literal
	6.10 Quoted string
	6.11 Identifier
	6.11.1 Non-escaped identifier
	6.11.2 Escaped identifier
	6.11.3 Placeholder identifier
	6.11.4 Hierarchical identifier

	6.12 Keyword
	6.13 Vector expression macro
	6.14 Rules for whitespace usage
	6.15 Rules against parser ambiguity

	7. Auxiliary syntax rules
	7.1 All-purpose value
	7.2 Multiplier prefix value
	7.3 String value
	7.4 Arithmetic value
	7.5 Boolean value
	7.6 Edge value
	7.7 Index value
	7.8 Index
	7.9 Pin variable and pin value
	7.10 Pin assignment
	7.11 Annotation
	7.12 Annotation container
	7.13 ATTRIBUTE statement
	7.14 PROPERTY statement
	7.15 INCLUDE statement
	7.16 ASSOCIATE statement and FORMAT annotation
	7.17 REVISION statement
	7.18 Generic object
	7.19 Library-specific object
	7.20 All purpose item

	8. Generic objects and related statements
	8.1 ALIAS declaration
	8.2 CONSTANT declaration
	8.3 KEYWORD declaration
	8.4 SEMANTICS declaration
	8.5 Annotations and rules related to a KEYWORD or a SEMANTICS declaration
	8.5.1 VALUETYPE annotation
	8.5.2 VALUES annotation
	8.5.3 DEFAULT annotation
	8.5.4 CONTEXT annotation
	8.5.5 REFERENCETYPE annotation
	8.5.6 SI_MODEL annotation
	8.5.7 Rules for legal usage of KEYWORD and SEMANTICS declaration

	8.6 CLASS declaration
	8.7 Annotations related to a CLASS declaration
	8.7.1 General CLASS reference annotation
	8.7.2 USAGE annotation

	8.8 GROUP declaration
	8.9 TEMPLATE declaration
	8.10 TEMPLATE instantiation

	9. Library-specific objects and related statements
	9.1 LIBRARY and SUBLIBRARY declaration
	9.2 Annotations related to a LIBRARY or a SUBLIBRARY declaration
	9.2.1 LIBRARY reference annotation
	9.2.2 INFORMATION annotation container

	9.3 CELL declaration
	9.4 Annotations related to a CELL declaration
	9.4.1 CELL reference annotation
	9.4.2 CELLTYPE annotation
	9.4.3 SWAP_CLASS annotation
	9.4.4 RESTRICT_CLASS annotation
	9.4.5 SCAN_TYPE annotation
	9.4.6 SCAN_USAGE annotation
	9.4.7 BUFFERTYPE annotation
	9.4.8 DRIVERTYPE annotation
	9.4.9 PARALLEL_DRIVE annotation
	9.4.10 PLACEMENT_TYPE annotation
	9.4.11 SITE reference annotation for a CELL
	9.4.12 ATTRIBUTE values for a CELL

	9.5 PIN declaration
	9.6 PINGROUP declaration
	9.7 Annotations related to a PIN or a PINGROUP declaration
	9.7.1 PIN reference annotation
	9.7.2 MEMBERS annotation
	9.7.3 VIEW annotation
	9.7.4 PINTYPE annotation
	9.7.5 DIRECTION annotation
	9.7.6 SIGNALTYPE annotation
	9.7.7 ACTION annotation
	9.7.8 POLARITY annotation
	9.7.9 CONTROL_POLARITY annotation container
	9.7.10 DATATYPE annotation
	9.7.11 INITIAL_VALUE annotation
	9.7.12 SCAN_POSITION annotation
	9.7.13 STUCK annotation
	9.7.14 SUPPLYTYPE annotation
	9.7.15 SIGNAL_CLASS annotation
	9.7.16 SUPPLY_CLASS annotation
	9.7.17 DRIVETYPE annotation
	9.7.18 SCOPE annotation
	9.7.19 CONNECT_CLASS annotation
	9.7.20 SIDE annotation
	9.7.21 ROW and COLUMN annotation
	9.7.22 ROUTING_TYPE annotation
	9.7.23 PULL annotation
	9.7.24 ATTRIBUTE values for a PIN or a PINGROUP

	9.8 PRIMITIVE declaration
	9.9 WIRE declaration
	9.10 Annotations related to a WIRE declaration
	9.10.1 WIRE reference annotation
	9.10.2 WIRETYPE annotation
	9.10.3 SELECT_CLASS annotation

	9.11 NODE declaration
	9.12 Annotations related to a NODE declaration
	9.12.1 NODE reference annotation
	9.12.2 NODETYPE annotation
	9.12.3 NODE_CLASS annotation

	9.13 VECTOR declaration
	9.14 Annotations related to a VECTOR declaration
	9.14.1 VECTOR reference annotation
	9.14.2 PURPOSE annotation
	9.14.3 OPERATION annotation
	9.14.4 LABEL annotation
	9.14.5 EXISTENCE_CONDITION annotation
	9.14.6 EXISTENCE_CLASS annotation
	9.14.7 CHARACTERIZATION_CONDITION annotation
	9.14.8 CHARACTERIZATION_VECTOR annotation
	9.14.9 CHARACTERIZATION_CLASS annotation
	9.14.10 MONITOR annotation

	9.15 LAYER declaration
	9.16 Annotations related to a LAYER declaration
	9.16.1 LAYER reference annotation
	9.16.2 LAYERTYPE annotation
	9.16.3 PITCH annotation
	9.16.4 PREFERENCE annotation

	9.17 VIA declaration
	9.18 Annotations related to a VIA declaration
	9.18.1 VIA reference annotation
	9.18.2 VIATYPE annotation

	9.19 RULE declaration
	9.20 ANTENNA declaration
	9.21 BLOCKAGE declaration
	9.22 PORT declaration
	9.23 Annotations related to a PORT declaration
	9.23.1 CONNECT_TYPE annotation

	9.24 SITE declaration
	9.25 Annotations related to a SITE declaration
	9.25.1 SITE reference annotation
	9.25.2 ORIENTATION_CLASS annotation
	9.25.3 SYMMETRY_CLASS annotation

	9.26 ARRAY declaration
	9.27 Annotations related to an ARRAY declaration
	9.27.1 ARRAYTYPE annotation
	9.27.2 LAYER reference annotation for ARRAY
	9.27.3 SITE reference annotation for ARRAY

	9.28 PATTERN declaration
	9.29 Annotations related to a PATTERN declaration
	9.29.1 PATTERN reference annotation
	9.29.2 SHAPE annotation
	9.29.3 VERTEX annotation
	9.29.4 ROUTE annotation
	9.29.5 LAYER reference annotation for PATTERN

	9.30 REGION declaration
	9.31 Annotations related to a REGION declaration
	9.31.1 REGION reference annotation
	9.31.2 BOOLEAN annotation

	10. Description of functional and physical implementation
	10.1 FUNCTION statement
	10.2 TEST statement
	10.3 Declaration of a pin variable
	10.4 BEHAVIOR statement
	10.5 STRUCTURE statement and CELL instantiation
	10.6 STATETABLE statement
	10.7 NON_SCAN_CELL statement
	10.8 RANGE statement
	10.9 Boolean expression
	10.10 Boolean value system
	10.10.1 Scalar boolean value
	10.10.2 Vectorized boolean value
	10.10.3 Non-assignable boolean value

	10.11 Boolean operations and operators
	10.11.1 Logical operation
	10.11.2 Bitwise operation
	10.11.3 Conditional operation
	10.11.4 Integer arithmetic operation
	10.11.5 Shift operation
	10.11.6 Comparison operation
	10.11.7 Operator priorities

	10.12 Vector expression
	10.13 Operators for event specification
	10.13.1 Specification of a single event
	10.13.2 Temporal order within an event sequence
	10.13.3 Canonical specification of a sequence of events
	10.13.4 Specification of a completely permutable event
	10.13.5 Specification of a conditional event
	10.13.6 Operator priorities

	10.14 Predefined PRIMITIVE
	10.14.1 Predefined PRIMITIVE ALF_BUF
	10.14.2 Predefined PRIMITIVE ALF_NOT
	10.14.3 Predefined PRIMITIVE ALF_AND
	10.14.4 Predefined PRIMITIVE ALF_NAND
	10.14.5 Predefined PRIMITIVE ALF_OR
	10.14.6 Predefined PRIMITIVE ALF_NOR
	10.14.7 Predefined PRIMITIVE ALF_XOR
	10.14.8 Predefined PRIMITIVE ALF_XNOR
	10.14.9 Predefined PRIMITIVE ALF_BUFIF1
	10.14.10 Predefined PRIMITIVE ALF_BUFIF0
	10.14.11 Predefined PRIMITIVE ALF_NOTIF1
	10.14.12 Predefined PRIMITIVE ALF_NOTFIF0
	10.14.13 Predefined PRIMITIVE ALF_MUX
	10.14.14 Predefined PRIMITIVE ALF_LATCH
	10.14.15 Predefined PRIMITIVE ALF_FLIPFLOP

	10.15 WIRE instantiation
	10.16 Geometric model
	10.17 Predefined geometric models using TEMPLATE
	10.17.1 Predefined TEMPLATE RECTANGLE
	10.17.2 Predefined TEMPLATE LINE

	10.18 Geometric transformation
	10.19 ARTWORK statement
	10.20 VIA instantiation

	11. Description of electrical and physical measurements
	11.1 Arithmetic expression
	11.2 Arithmetic operations and operators
	11.2.1 Unary arithmetic operator
	11.2.2 Binary arithmetic operator
	11.2.3 Macro arithmetic operator
	11.2.4 Operator priorities

	11.3 Arithmetic model
	11.4 HEADER, TABLE, and EQUATION statements
	11.5 MIN, MAX, and TYP statements
	11.6 Auxiliary arithmetic model
	11.7 Arithmetic submodel
	11.8 Arithmetic model container
	11.8.1 General arithmetic model container
	11.8.2 Arithmetic model container LIMIT
	11.8.3 Arithmetic model container EARLY and LATE

	11.9 Generally applicable annotations for arithmetic models
	11.9.1 UNIT annotation
	11.9.2 CALCULATION annotation
	11.9.3 INTERPOLATION annotation
	11.9.4 DEFAULT annotation
	11.9.5 MODEL reference annotation

	11.10 VIOLATION statement, MESSAGE TYPE and MESSAGE annotation
	11.11 Arithmetic models for timing, power and signal integrity
	11.11.1 TIME
	11.11.2 FREQUENCY
	11.11.3 DELAY
	11.11.4 RETAIN
	11.11.5 SLEWRATE
	11.11.6 SETUP and HOLD
	11.11.7 RECOVERY and REMOVAL
	11.11.8 NOCHANGE and ILLEGAL
	11.11.9 PULSEWIDTH
	11.11.10 PERIOD
	11.11.11 JITTER
	11.11.12 SKEW
	11.11.13 THRESHOLD
	11.11.14 NOISE and NOISE_MARGIN
	11.11.15 POWER and ENERGY

	11.12 FROM and TO statements
	11.13 Annotations related to timing, power and signal integrity
	11.13.1 EDGE_NUMBER annotation
	11.13.2 PIN reference and EDGE_NUMBER annotation for FROM and TO
	11.13.3 PIN reference and EDGE_NUMBER annotation for SLEWRATE
	11.13.4 PIN reference and EDGE_NUMBER annotation for PULSEWIDTH
	11.13.5 PIN reference and EDGE_NUMBER annotation for SKEW
	11.13.6 PIN reference annotation for NOISE and NOISE_MARGIN
	11.13.7 MEASUREMENT annotation

	11.14 Arithmetic models for environmental conditions
	11.14.1 PROCESS
	11.14.2 DERATE_CASE
	11.14.3 TEMPERATURE

	11.15 Arithmetic models for electrical circuits
	11.15.1 VOLTAGE
	11.15.2 CURRENT
	11.15.3 CAPACITANCE
	11.15.4 RESISTANCE
	11.15.5 INDUCTANCE

	11.16 Annotations for electrical circuits
	11.16.1 NODE reference annotation for electrical circuits
	11.16.2 COMPONENT reference annotation
	11.16.3 PIN reference annotation for electrical circuits
	11.16.4 FLOW annotation

	11.17 Miscellaneous arithmetic models
	11.17.1 DRIVE STRENGTH
	11.17.2 SWITCHING_BITS with PIN reference annotation

	11.18 Arithmetic models related to structural implementation
	11.18.1 CONNECTIVITY
	11.18.2 DRIVER and RECEIVER
	11.18.3 FANOUT, FANIN and CONNECTIONS

	11.19 Arithmetic models related to layout implementation
	11.19.1 SIZE
	11.19.2 AREA
	11.19.3 PERIMETER
	11.19.4 EXTENSION
	11.19.5 THICKNESS
	11.19.6 HEIGHT
	11.19.7 WIDTH
	11.19.8 LENGTH
	11.19.9 DISTANCE
	11.19.10 OVERHANG
	11.19.11 DENSITY

	11.20 Annotations related to arithmetic models for layout implementation
	11.20.1 CONNECT_RULE annotation
	11.20.2 BETWEEN annotation
	11.20.3 BETWEEN annotation for CONNECTIVITY
	11.20.4 BETWEEN annotation for DISTANCE, LENGTH, OVERHANG
	11.20.5 MEASURE annotation
	11.20.6 REFERENCE annotation container
	11.20.7 ANTENNA reference annotation
	11.20.8 TARGET annotation
	11.20.9 PATTERN reference annotation

	11.21 Arithmetic submodels for timing and electrical data
	11.22 Arithmetic submodels for physical data

	Annex A
	A.1 ALF meta-language
	A.2 Lexical definitions
	A.3 Auxiliary definitions
	A.4 Generic definitions
	A.5 Library definitions
	A.6 Function definitions
	A.7 Arithmetic definitions
	Annex B
	B.1 Auxiliary and generic definitions
	B.2 Library definitions
	B.3 Arithmetic definitions
	Annex C

