A standard for an
Advanced Library Format (ALF)
describing Integrated Circuit (IC)

technology, cells, and blocks

This is an unapproved draft for an IEEE standard
and subject to change

IEEE P1603 Draft 8

February 1, 2003

IEEE P1603 Draft 8 Advanced Library Format (ALF) Reference Manual

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

Copyright© 2001, 2002, 2003 by IEEE. All rights reserved.

Add |EEE boilerplate

Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 8

The following individual s contributed to the creation, editing, and review of this document

Joe Daniels

Wolfgang Roethig, Ph.D.

IEEE P1603 Draft 8

chippewea@aol.com Technical Editor

wroethig@eda.org Official Reporter and WG Chair

Advanced Library Format (ALF) Reference Manual

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

Revision history:

|EEE P1596 Draft O
|EEE P1603 Draft 1
|EEE P1603 Draft 2
|EEE P1596 Draft 3
|EEE P1603 Draft 4
|EEE P1603 Draft 5
|EEE P1603 Draft 6
|EEE P1603 Draft 7

|EEE P1603 Draft 8

August 19, 2001
September 17, 2001
November 12, 2001
April 17, 2002
May 15, 2002

June 21, 2002
August 15, 2002
October 24, 2002
February 1, 2003

Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 8

Table of Contents

O 1 1o o 1 o PSSR 1
1.1 Scopeand purpose Of thiS SLANAAIU........cccevviieeriie e s 1

1.2 Application of thiSStAaNArd...........coiiririii e 2

121 Creation and characterization of library elements..........ccovvvrinnenneincee s 2

1.2.2 Basic implementation and performance analysiSof @an IC........cccvvvrinenninenencnes 3

1.2.3 Hierarchical implementation and virtual prototyping of an IC.........cccecvevvineineininene 5

1.3 Conventions used iNthiS StaNdardccceveeerireeie e 8

1.4 Contents Of thiS SEANAIM..........cciiiiiiee e et b e e 8

2. REFEIBNCES....ceeee ettt bbb h et b e bR At a e R e e e Rt Re bt e Re b e be Rt ebesreeeenreneas 9
T B 1< 1oL o] o USSR 10
4. Acronyms and @DDIEVIBLIONScoueieieieeieeieeeeeet sttt et ettt eb e s bt e et enee e eneenea 11
5. ALF language construction prinCipleS and OVEIVIEWccccoiieririenenieneese e sre e see e see e 13
5.1 ALF MEBTANQUAGEcveei ettt sttt b et b e sbe bbb se e e e e 13

5.2 Categories Of ALF SLALEMENTS........cooiiiieiieiere ettt b et be et e st e et s se e 14

5.3 Generic abjects and library-specifiC ODJECES.......c..ciiiiiiiiiiee e 16

5.4 Singular statements and plural SEBEEMENLS..........couiieirireiiee e e s e 18

5.5 Instantiation statement and assignment SEAEEMENLcccoeiirirere e e 20

5.6 Annotation, arithmetic model, and related StAEEMENES.........c.ccoireririerierree e 21

5.7 StatementS for Parser CONLIOot s e ebe e sbesae 23

5.8 Name space and visibility Of SEEEEMENES.........ccooiiiiiiiieeee e e 23

B. LEXICEI FUIES... .ottt b e bbbt b b e e et e st e e e Rt e Rt e R e e Re e bt e he s beehe b e be e et e ee e e 25
L R O =T £ = USRS 25

OO0 010 (1< o | ST TSP U S UPTUPTPPURRPPPRPIR 27

LRSI B L= [011 = SO TR U TSP 27

(O @ o= = (0] ST RPURSR 28
6.4.1 ATITNMELIC OPEIALONeceeiee ettt e e ese e e e s e e aesreenaesrennaens 28

(S N = o0 == T e 0 = o OSSR 29

(S C B = (= T o = 0] 1= (o) PO 29

L RS 1110 0= = o SRS 30

(O I V= | 0] < = o USRS 30

O I (Y 1= 7= 0] o = (o | SRS S 30

B.5 INUMDEN ...ttt b e bbbt et h e h e bt s bt s bt e be s bt sbe st e s bese et ens e e e e ene 31

6.6 INAEX VAIUE BN TNAEXcueiuietiieiie ettt ettt st s b e e b e s ne et se e e ebesaeebesre 31

6.7 Multiplier prefix symbol and multiplier prefiX Value..........ccceoveceevece e 32

8.8 BILHEEIEl ...t 33

6.9 BBSEU lILEIal ...t 34

6.10 BOOIBAN VAIUE ..ottt ettt b et b e eb et e s bt se e b et s e e s e benn e e enee e e e ene 34

6.1 ATITRMELIC VAIUEneee et ettt b e b bbb s b e e e e e 34

6.12 Edgeliteral and 0gE VAIUE.cceeie ettt st s e et ra et eneeeneenaennsnnennens 35

RS H [1= () 1= ST UE TSR P SRS URRPTTRON 35

IEEE P1603 Draft 8 Advanced Library Format (ALF) Reference Manual Y

10

15

20

25

30

35

40

50

55

Vi

(S0 C T R VT =S o= o o L= = SRS 36
6.13.2 Placeholder I0ENTITIErot b e eae e beeaes 36
6.13.3 INAEXEA IAENEITIErveeeee ettt sttt e st sbeear e eree b e saeenbeens 36
6.13.4 Full hierarchiCal IdENtIfIErcvvveiicieieccecece ettt eaeereeas 36
6.13.5 Partial hierarchical IAENTITIENcovieeiiiee e 37
SR ST = 'or= 0= 0 o U= U= S 37
6.13.7 KeYWOrd ideNntifier......coieeeeeecece s e e ene e ene s 38
L2 @ W o] (=0 =1 o 38
B.15 SEING VBIUE ... vttt ettt b et b et b ettt bbbt sttt et 39
B.16 GENENIC VAIUE ...ttt et s e et e et s et e e st e sabe s s beeesseesbesseeeabessabesssessresssaessnsesatessbesensesssessns 39
6.17 VECLOr EXPIESSION MBCTO. .. .c.eveueeererteneeteseeteseeseeeseseeseseeseseesessesesbesesseesbeebeesbensebesbebensenestenessenessens 39
6.18 RUIES fOr WHItESPACE USBGE......eeeeeereeeirietiieieie ettt ettt bbbt bbb 40
6.19 Rules agaiNst Parser @MDIGUILYeeveuiieeieceeeree sttt 40
Generic objects and related SLALEMENTS ..ot 41
A R 7= 0T T ol o] o 1= ot OSSR 41
A2 N L o101 oot SN 1 = o OSSR 41
7.3 ANNOLALION.tieiieciee ettt e et e s te e bt eebeeeabeeeeesabeesaseeaseesbesaseeaseesabeaseesaseesaeesnsesasessbeeenseesanesns 41
T4 ANNOLALION COMAINETccieeiiiitieceeeete e ste et e eteeebeeeeesbeesteeeseesbesaaseeaseesabeasseessesesaeesssesnbessbeeeaseesseeans 42
7.5 ATTRIBUTE SAEMENEc.eiiiiciietieciectiecte ettt sttt st sre e st et estestaestesraesbesbeesbessesssssnsssseensesresrenss 42
7.6 PROPERTY SEAEEIMENTciviiieeiieieiecite it eteetee st e et etseeesteeresstesaeestessaesbessbebessessbesssssssensssaeessessesrenss 43
T.7 ALIASAECIAIGONccuvectiitiecie ettt ettt ettt s e e re e s e s s b e saa e st e sabe st e sbeesbessessrssnsebeenaesbesrenns 43
7.8 CONSTANT AECIArAIION.......oeeiteiireeitee ittt erteeeiee e te e sreeste e sbeeesteessaesabeesseessseesaeesnsesnbessaseesseesanesns 44
7.9 KEYWORD GECIAraLIONeeiviiiiieceiec it creetee ettt eeeesbessteeseeesteeseesabeesaseenteessessnbeesssesasessessnseessnesns 44
7.10 SEMANTICS AECIAraIiONccveieeeiecec ittt ette st cttete et teeaeesaesaesbesaaesbessbebesbeesbessessrssnsssseensestesrenss 45
7.11 Annotations and rulesrelated to a KEYWORD or a SEMANTICS declaration..........ccccceeeeeenennne 46
7.11.1 VALUETYPE GNNOAHION......cueiitiitieieieiete ettt ste st st sreessesresaresteestesaeesaesaesneesaesnsesbesnsenns 46
T7.011.2 VALUES GNNOLAHON......ccciiiitieiieciieiee et e e ste st ereesbeessteeesaesabesssseeaseesanessessssssasesssesssenn 48
7.11.3 DEFAULT @NNOEHONccviiiiie ettt ettt et steesabe s tae e b e enbessneebeesabesbeesneeenens 48
7.11.4 CONTEXT QNNOALION.....cciiiiiiiiiiirieitestee st sreesresreere e esbesbeesbesaessrssasesseeeesbesseesaesseesbesnsenns 49
7.11.5 REFERENCETY PE QNNOLALIONccviivieiiciieiecreectectee et sttt sbeesbesraesrsssaenbesneesnesns 50
7.11.6 S| _MODEL @NNOALION.......cccitiiteieiieeeieeieieeteeteetes e stestestesaestessessesesseseesssseesessessessessessessens 51
7.11.7 Rulesfor lega usage of KEYWORD and SEMANTICS declaration...........ccccccevvveveennnne 52
T.02 CLASS AECIArALIONcveeieee ettt ctee et et ee st te e st e e ete e be e s beesaeesaeseabeesaeesabeesseesabeesbaesasesnbessnneensenses 53
7.13 Annotationsrelated t0 a CLASS AECIarationcoveceeiiiiiiee ettt sreeere e 53
7.13.1 General CLASS referenCe annOtationNccccceeiueeeieeiieeccee et esree et sae e steeeereesnee s 53
7.13.2 USAGE GNNOLALIONuviiiieecee ettt et st s steeeae e sbe e s saeebeesabeesseesaeeesbeesasesabessseesnseesanean 54
7.14 GROUP ECIAratiONeecveeeiee et etee ettt ettt e et e e s be e st e e ete e sbeeesbeessaesabeesseesaseesaeesnsesnbessbseenseesanesns 55
7.15 TEMPLATE AECIArAHIONcccviiieeie ettt eteesteettete et e et eaeeste s e sbeeaesbeebesbesssesbesasesreenbesaeesaestessenns 56
7.16 TEMPLATE INSLANEIALONc.ecitierieitectieitecieite et e st eeesteeeesteestesteesaessasssesssestessessbessesssssnsssseansessessenss 57
717 INCLUDE SEAEIMENT........c.eiiviiieeitiitie e ctesteeteete et e steesessteeaesbeestesbeessestasssessaensessesbessesssssasssesnsessessenss 60
7.18 ASSOCIATE statement and FORMAT anNOtatioNceeoeiiieeieecie et sveesreesne e 60
7.19 REVISION SEAEEIMENT......c.eiitiieeeitiitie it cie et eteeteeseesteeessteetesteestesbeessesbasssesssessesseebessesssssasesesnsessessenss 61
Library-specific objects and related StatemMENtS.........ccccveeeie e i 63
8.1 Library-speCifiC ODJECLccuiiie ettt re et n e e nreeraen 63
8.2 LIBRARY and SUBLIBRARY OECIArafiONccccveivrieiiieireeireiteesresteesrestaereereesresseesrssnesssesaessessenss 63
8.3 Annotationsrelated to aLIBRARY or aSUBLIBRARY declaration............coceevvevcveeveeneecveesnennns 64
8.3.1 LIBRARY referenCe annOtatiON........cccciviecieiie et stee et esteesree e steesaesre e snreesreesnne s 64
8.3.2 INFORMATION annotation CONMTAINETcccecieireeireeiieeeiteesteesreesseesseessteesaaesseesseesnsessseess 64
I Ot =l I 0 = == 1 o PO RS SI 66
8.5 Annotationsrelated to a CELL AeClaralion............cociiiieiiieiee ettt 66

Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 8

8.5.1 CELL referenCe anNOtAtiONcc.vieieeeiiei e ceeetescete et teeeres st s ssassabessbessanessbessbesanessnee s 66

8.5.2 CELLTYPE @NNOALIONcccviiiieiicieteetee e cee et cteeteeseesteereesbeessesressresseeneesaeeseesassnsestesnsensenns 67
8.5.3 RESTRICT _CLASS ANNOALION.....ecveiereeieeiereeeereeseesessessesseseesseseessessessesessssssssessessessessessnns 68
8.5.4 SWAP _CLASS GNNOAHION......ueitiieeeeieeereeeeesesesteseseeseesteseesesseesessessessessessessesseseensenseneens 69
8.5.5 SCAN_TYPE @NNOLALIONcoueeeivireesieetisesieseeseeie s eeresres e ssestesteseessessesee e eneesesnesnessessessesnnns 70
8.5.6 SCAN_USAGE @NNOALIONcceeveeeieecectisieseestesieseesieseeseeseesesressessesseseseeseesseeessensesessesssssens 70
8.5.7 BUFFERTYPE @NNOtALION......ccccviiiieitieiieie ettt seeseeseete e beste e besseessesaessesnnessesseessessenss 71
8.5.8 DRIVERTYPE @QNNOAiONcuveviiieerieeece et ste sttt te st sbeere et eresreeresneesaesaeensesnsensens 72
85.9 PARALLEL DRIVE @MNOALIONecveiviiesieseereeiereeeeteesesieseeseeseeseessesseseeseenseseesessessessesssssnns 72
8.5.10 PLACEMENT _TYPE @nNNOtAtiONccvieierieieireeieseeceteeeee et e e saesaesaeseseesessesnesnens 73
8.5.11 SITE reference annotation fOr @ CELLcovceiiiiiccee et 73
8.5.12 ATTRIBUTE VAIUESTOr @CELL ...cveeceeeeiee ettt ettt st s nen s 74
ST 1V (= = = 1 o o R 75
8.7 PINGROUP ECIAraLI ON.....veeeveeeeiecieceiiteecee e steete e besesaessbesssbessbessaessssesssesssssssbessressabessseesnsesssenens 77
8.8 Annotationsrelated to aPIN or aPINGROUP declaration............cceeceeieeeceeeie e 77
8.8.1 PIN referenCe annNOtatioN........c.ccouviiiieecee ettt ettt et e e et e s e e reeneas 77
8.8.2 MEMBERS GNNOALION........ceiiiiiiieitieccee ettt ettt re e sbe e e s teesaaesbeesaeeereesaeeereenreas 78
8.8.3 VIEW GNNOLAHION.......oiiiiiitieceecte ettt ettt ettt et e e s te e saae b e e s beeeare e ebeesnbeenneeeareas 78
8.8.4 PINTYPE QNNOALION........ccoiiiiiiiiteeciec ettt et ettt areeabe s eeeebe e sabeeseesbesenreenseesanes 79
8.8.5 DIRECTION @NNOAION.....c.cccviiuiietieeicteeeteiee st steeteeseesteeseesraesbesreesbessesssssasssseessesreessesnsensens 79
8.8.6 SIGNALTYPE GNNOLELIONcuveviieiirictiecte ettt see sttt e be b e besses e esssnnesseeressaesnness 80
8.8.7 ACTION GNNOLBEIONeevieieerierieere e ete e st este st este st e stesteesbesssesteesbessessssaesssssasensesteesresseens 82
8.8.8 POLARITY ANNOLALION ..c.veeueivieiiecte ettt e et st et e e st sres st easesbeeabesbesessaeensssasesesreesressees 83
8.8.9 CONTROL_POLARITY annotation CONLAINEcceiveieeiierieeiieeiesieeeesesee e esnesseeseesneas 85
8.8.10 DATATY PE @NNOLALION......ccviiveriiieetictieeeceeeteectesteeseesteeseestaestesbeesbessesssssesssssasensestesssessenss 86
8.8.11 INITIAL_VALUE @NNOLELION........ccoiuiitietiiiesiiceeie s et eree e sreetestestesbesse st seessesessesnesrestesaesnens 86
8.8.12 SCAN_POSITION @NNOLALIONeoeeueereetieieiteetesieseesiereeseeeeeetesaesaesrete s e seestessesasseesessessessens 87
8.8.13 STUCK GNNOLBLION.....cccviiitieeiiiteeeee et e steeereesteeesteeeeesabeesseesraeesbesssesbeesasessseesaeessseensesssrens 87
8.8.14 SUPPLY TYPE @NNOLAIIONcccveiveeiieiieeiece et et seesesseetesaesbesbaesbessesssssnsssssnsessesressaessenss 88
8.8.15 SIGNAL_CLASS AQNNOLALIONc.cciiiuieueetiiteiteetesteseesteseeseeeeseetesessestestesaesrestensesaensesessessessens 88
8.8.16 SUPPLY CLASS GNNOAiON.....c.ccceiuieriereiieitietesteseesieteeseeeeeetesaesaesbetestesaestesaesssssesessessessens 89
8.8.17 DRIVETYPE QNNOLALION.......ccciiitiiiiiitieticeeste e steeee st este st stesreeabessbebesbessbesssssbeennssaeesaesaees 0
8.8.18 SCOPE QNNOLBLION.......cccieiieeitieitie et e et e siteeete e sttt e steeeeesebeesareesseesbeessseesseesabeesessseesseesssessrens 91
8.8.19 CONNECT_CLASS QNNOLALION.......cceiueiriireiteiiesieseeieseeeeteseerestestesressesesessesssssssessessesseseens 92
8.8.20 SIDE @NNOLALIONeeccuiiiieectiecie et ettt ste et et e e steeeae e sabe e beesaeeesbeesabesabeesbaesaseesaeesabesnessarens 92
8.8.21 ROW and COLUMN @NNOLELION.........ceeiieeiieireeiiteeeee st eeteeereeeeteesaesreesreeeareesaeesbeeneesnnes 93
8.8.22 ROUTING _TYPE @NNOALIONccceiviirieieiieiticeeieseeeete e et te st sre b e s ss e b seesse e esesseenesneas 94
8.8.23 PULL GNNOLALIONcccvviiiiecie ettt ettt e ste e e e st e s aaeeaae e sbeesaesnbeesabeenseesaneenbeennesnrens 95
8.8.24 ATTRIBUTE valuesfor aPIN or aPINGROUP............cccccoieieiicicte et 96
8.9 PRIMITIVE AECIAIGLIONcveiveieeeiieeie ettt ettt ete et s ste e stesbeesaesbeestesbeenbesbeenbesaeesesaeessssneesens 97
8. 10 WIRE AECIAIAHIONoeeveiiiieeiee ittt et e etee et e stae st e e e e s steeebeesabesebeesaeeesbeesasesabeesbaeenseesaeesseensensnreens 98
8.11 Annotationsrelated t0 aWIRE deClarationccceeiviiiieeeiee ittt re e s enre e 98
8.11.1 WIRE referenCe annOtatioN...........ccoueeiieiiieeiieitee ettt sre e s eae et sareereesnee e saeeeneeenreas 98
8.11.2 WIRETY PE GNNOLBLIONccviiieriiicrieteeeecee et cte e eseesteeseesteessestessvesseeneesaeessesassnsesbeessensenns 99
8.11.3 SELECT CLASS QNNOALiON.....c.cccviuieeiitieeiiecteeteseste e sreseeaeseeeesessaesessestesaesrestesessessenseneens 99
8.12 NODE ECIAIALION......cccuviiiieeiie ettt ettt ettt te e s e e st e e saaeeare e sbeeebeeabeesabeenseesanesbeenseesnres 100
8.13 Annotationsrelated to0 aNODE deClaralioncecueeivieieeiiec ettt ebe e sreeere e 101
8.13.1 NODE reference annOtatioNccueeiiiiiiecieeitee ettt sreeeaae e sae e s aeeree e 101
8.13.2 NODETY PE @NNOALION.....ccvcivireiierietieiteereeereeresreeeesteesessaesaestessesbessestessesssessssssesnsesnes 101
8.13.3 NODE_CLASS ANNOLAION.....cceitiiieitisieieieeieieeieesesrestessesresseseessessesssssessssesssssessessessessessenes 103
8.14 VECTOR TECIArAiON.....voiveeieeiieeieiteeteereeeteetee et st steesaesteestesaessbesaeesbesbesbessesesssssessesnsesaesseessesssessenns 103
8.15 Annotationsrelated t0 a VECTOR deClarationcocueeveeeeeeeiiecieciee e 104
8.15.1 VECTOR reference annOtatioNceeieeeeeeiieeiiee e sressteesree e sreesaaesbeesreesaneesaeesnesnessnns 104
8.15.2 PURPOSE @NNOLALION........ceeiiiirieetieeiteeitteereesteeeseeesteesibeesseesseeesteesssesssessssesssesssesssesssessnns 104

IEEE P1603 Draft 8 Advanced Library Format (ALF) Reference Manual vii

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

viii

8.15.3 OPERATION @NNOAiON......coveiviiieitiereetieite ettt eree e e st st e stesreesbessaenbeeseesbesseesbesanesresnnes 105
8.15.4 LABEL GNNOLBLIONcveeieeiieeieiiiete ettt ettt et et se e st st saestaesbessbebeennesbesneeeresnnesreennes 106
8.15.5 EXISTENCE _CONDITION @nNOtatioNcceeveeeereeereeseseseesseseesseeesesseesessessessessessenes 106
8.15.6 EXISTENCE CLASS @NNOLatiONc.ccoviueeieieriesiiseesieseesesseeseesesressessessessesseseesseenseessssenses 107
8.15.7 CHARACTERIZATION_CONDITION annotation.........ccccoeeeeeriesereesieneeseeseesenseesenennes 107
8.15.8 CHARACTERIZATION_VECTOR @nnotation........ccccceueeereeeeenesereeseseeseeseeseeseeseeeens 107
8.15.9 CHARACTERIZATION_CLASS aNNOtAtiON ...c.cevveueereeeeeeeeeeeseseseseesieesseeeeeseeensenns 108
8.15.10 MONITOR @NNOLALION......cccviitieireitieteieeite et esteeeeeteereereesbesteesaesaeessessesbeeseesaesnsesbeensenseenns 108
Il I = o (< = o) 109
8.17 Annotationsrelated t0 ALAY ER AeCIarafioncccveiceeieeeeeeictee ettt sree s 109
8.17.1 LAYER reference annOtalioncccceeieeeeieiieecseeeereectesereeste s sseeeseessesessesssesssresssesssenesee 109
8.17.2 LAYERTYPE GNNOLALIONciiiiiceeiiieitee et seeeteeetes et estes st s sreeesseesbesssaesssessnbesssesssenesee 109
I G T = O T 0o = 1 o) 110
8.17.4 PREFERENCE QNNOALIONccveiiteeieiieitee ettt cteeiesseteessessabeesvessssessresssesssessnbesssessnnessnes 110
B.LB VIA TECIAIALION.cuviiitee ettt ettt e et e e st e e be e be e e et e e ereesabeesbseeaseesbeesnsesnbeesabeeseesaneesrs 111
8.19 Annotationsrelated to aVIA AeCIaralioncceeiiiiiiecie ettt 111
8.19.1 VIA referenCe anNOAiONcccveeiiieeiieciee et ete ettt eteeebe e steeereebeeesreeeaeesnbeessneeanee e 111
8.19.2 VIATYPE QNNOLALIONc.eeiveeieieieiecteeteetee ettt et et sts et e stesaeesaesbaesbesssenbeeseesbesseesbesaeesresneas 112
B.20 RULE GECIAIAION ...ttt ettt ettt ettt e be e e e st e e sbaeeateesbesebeesaaesabeenbeesnneesanas 112
8.21 ANTENNA AECIArAION.....cveeiveieieteceeetecteeete ettt see st ese e s e b e st e et e ebeesbesasssseentesaeeressaesseesreentenns 113
8.22 BLOCKAGE dECIAIAtiONocveeiveiveeiee ettt sttt sttt ettt et sreenes e saesbeesbesbeesbesnnenns 113
8.23 PORT AECIAIALION......ccvieeeeecuiiiteecie et e cte et e steeeteeete e s be e eteeeaseesbeseseeabeesabeeseesbesesaeesssesnbeeseesnseesaeas 114
8.24 Annotationsrelated to0 aPORT delCarationcceoeeiieeeciecieceecee ettt eree s 114
8.24.1 Referenceto a PORT using PIN reference annotation...........c.ccoeveieneenieenencecenescseeen 114
8.24.2 PORTTYPE GNNOLALIONcccviiiiiieitictiete ettt ettt stesree st s sbe st e eseesbeebessbesnessreennes 114
8.25 SITE AECIArALIONoeeiviecieecieccteeeee et sttt et ete e ste e s be e s beesabe e sbeeeseebaesabeebeesbeeesaeesaeesabeeseesnneesanas 115
8.26 Annotationsrelated t0 aSITE deClarationceeeceiiiecieeiec ettt s r s 115
8.26.1 SITE referenCe annOtatioN...........cccceeiveiiieccee ettt et e s ere e eaae b e sbeeeane e enas 115
8.26.2 ORIENTATION_CLASS anNOtaliON........ccceeeieirinieieseeeeteeieereerestesesrestesseseesesaessssseseenes 115
8.26.3 SYMMETRY _CLASS @NNOALONc.ecveieiciietectecteceete et et s ae e e sre e snesresre e 116
8.27 ARRAY TECIAIALION......cccuiecieiiteecie ettt et e sae e e s b e e e e e ebeesabeebeesbeeesbeesaaesabeenseesnneesaeas 117
8.28 Annotationsrelated to an ARRAY deClaration..........ccoveeicueeieiciee ettt 117
8.28.1 ARRAYTYPE GNNOALIONc.eccviitiiitiitiericiecreete ettt st st bt e e sbeene s b snresreeneas 117
8.28.2 LAYER reference annotation for ARRAYuviiiecei ettt 118
8.28.3 SITE reference annotation for ARRAYoo ittt st 118
8.29 PATTERN AECIAIGtiONccueiiveeieiticeee ettt ettt sttt st ete sttt et et e e beentebeenbesaeeneesaeensesreennenns 118
8.30 Annotationsrelated to aPATTERN deClaralion...........cccceeceiiiieeee ettt 119
8.30.1 PATTERN reference annotalionccecoeeiiiieieecie sttt st ere e 119
8.30.2 SHAPE GNNOALION......ccueiiieeitie it ccee st eetee ettt e eteebe e etbeeere e sabe e ebeessseeabessseebeesaresnseesresenns 119
8.30.3 VERTEX @NNOLAIION......cceeiviirieitiitieite ettt cite et et e ereeesseestesteesaesbaesaesssenbesseesesseessesanessesnens 120
8.30.4 ROUTE GNNOLALIONvvicieecie et e stee ettt st eetee e ete e saeesbeesbeeereesbessebeessaesnbeebeesnnessaes 121
8.30.5 LAYER reference annotation for PATTERNccocooiiiiiiiiee et 122
8.31 REGION AECIAIGLION......cveivieiieitiiiie ettt ettt et ete st ste et e st e e aa e st e eabesbeebesaeeasesaeensesreesbesbeesaeenrenns 122
8.32 Annotations related to a REGION deClaralioncoceeeceeieeeiiecee ettt eree s 123
8.32.1 REGION reference annotalionc.ecccieeeeeiiieecee ettt sre e st et esreesne e sas 123
8.32.2 BOOLEAN GNNOLBHIONcvecvieitiieieiteeteereeete et et et ste e e stesaeesaesaaesbesnbesbeessesbeesseeseenresreennes 123
Description of functional and physical implementationcccecvieece e 125
9.1 FUNCTION SLAEMENL ...c.veiveeiveiietecieeeteeteeeteereeereeeesteeseesteeseesbesssesteesbesseesessesssssasessestesssessesssesssenss 125
0.2 TEST SLAEMENE....ceeitiitiecieciee ettt e st etee e st be e besb e eas e beebessbesaessbesasesbeensesbeebaesbesbeesresnbenbesabenbenses 125
9.3 Definition and usage of apin Variable...........ccveeeiiieiie e s 125
9.3.1 Pinvariable and PiNVAIUEcceciiiecieieceeeee ettt sre e 125
Lo T 1 = (o= T 1107 | S 126

Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 8

10.

9.3.3 Usageof apin variablein the context of aFUNCTION or a TEST statement.................. 126

9.4 BEHAVIOR SEBIEMENLcveierereiireresreree s s er e en e s nne e 127
9.5 STRUCTURE statement and CELL iNStantiationcoevveereinnneeienssrceesesrseesesse e 129
9.6 STATETABLE SIEBEMENL........coiiererereiesieere et enas 129
9.7 NON_SCAN_CELL SEAEMENT......coeirirereererereiesreeesesrere s srs s essesnssesssesessssesssennns 130
9.8 RANGE SEEIEMENTceeveveiiisesrereesese st r e er e r s e nnn s e nn e nna 131
9.9 BO0IEAN EXPIESSION......vvueivisieieseeeeteseeseeseeessessestesteseeseesteseesessessessessessessessessessessnssensnsesensessesssssenses 132
9.10 BOOIEAN VAIUE SYSLEM ...ttt ettt sttt ene s ese e saesa e s e saen s e s te e e tene e e eneenennes 133
9.10.1 Scalar BOOIEAN VAIUE.........ccereeeiciieece ettt et s e e ene e e 133
9.10.2 Vectorized BOOIEAN VAIUE........ccccueeiie et 134
9.10.3 Non-assignable Bo0IEaN VAIUE............ccoiiiirieee s 135
9.11 Boolean Operations and OPEIELOIS..........curruerieririeierienesiesesees st ese e se et be et bene s 136
.11 1 LOQiCal OPEIHON.ccuiiertereeteseete sttt sttt ettt es et st st se et st se et e e s e eneseeneeas 136
0.11.2 BitWiSE OPEIEHON. ...c.cctiiitereete ettt sttt st sttt sttt et e bt b e en e 137
9.11.3 CoNditioNal OPEIELION.......ccerueiiitieerie ettt et b et b e sb et s se et e e e e e 139
9.11.4 Integer arithmEtiC OPEraLiONcc.eiiiiirieierie et s et 139
O0.11.5 ShiIft OPEIATON ...t et b et b e s bbbt b se et e et ne e 140
9.11.6 COMPAIiSON OPEFELION ...c.veveveie ittt ebesae st s ae b sbe e sbe b e s be e e be e e e e e et ene e e 140
9.12 Vector expression and CONtIol EXPIrESSIONcouerereareeeerereeeeresie e stesreseesbeseeseeeessseesessesaesaessesees 142
9.13 Specification Of @ pPattern Of EVENES........c..eooiiiiiiie e e 143
9.13.1 Specification Of @SINGIE BVENL........ccoiiiiiie e e 143
9.13.2 Specification of aCcomMPOUNd BVENTcoiiiiiiiie e e 144
9.13.3 Specification of acompound event with alternatives............cceeee e 145
9.13.4 Evaluation of a specified pattern of events against arealized pattern of events................ 146
9.13.5 Specification of aconditional pattern of eVENtS..........ccoceiiirinine e 149
9.14 Predefined PRIMITIVE ...ttt sttt 149
9.14.1 Predefined PRIMITIVE ALF_BUF ..ot 150
9.14.2 Predefined PRIMITIVE ALF_NOT ..ot st ere e 150
9.14.3 Predefined PRIMITIVE ALF_ANDc.coooiiiiecerre ettt 150
9.14.4 Predefined PRIMITIVE ALF_NAND ...ocoiiiireeereree e 150
9.14.5 Predefined PRIMITIVE ALF_ORccoioiiiiinninieeenisis ettt 151
9.14.6 Predefined PRIMITIVE ALF_NOR ..ottt 151
9.14.7 Predefined PRIMITIVE ALF_XORccoiiiiiireeeese ettt 151
9.14.8 Predefined PRIMITIVE ALF_XNOR.......ccoiiiiieieinesiieene et 151
9.14.9 Predefined PRIMITIVE ALF_BUFIFL.......ccooiiiieee et 152
9.14.10 Predefined PRIMITIVE ALF_BUFIFO.......ccoooiieiieee et 152
9.14.11 Predefined PRIMITIVE ALF_NOTIFL....ccoiiiieeerreereeee et 152
9.14.12 Predefined PRIMITIVE ALF_NOTHFIFO......c.cciiirieereseie e 152
9.14.13 Predefined PRIMITIVE ALF_MUX ... 153
9.14.14 Predefined PRIMITIVE ALF_LATCH. ...t 153
9.14.15 Predefined PRIMITIVE ALF_FLIPFLOP........cocooiiiieee et 153
9.15 WIRE INSEBNTIALTON ..ottt sttt ettt 154
9.16 GEOMELITC MOELcoieeeie ittt e r et 155
9.17 Predefined geometric models using TEMPLATE ..ot 158
9.17.1 Predefined TEMPLATE RECTANGLEcooiiiie e 158
9.17.2 Predefined TEMPLATE LINE......cco it 158
9.18 GEOMELITC LraNSFOMMBEIONc.viueeieeeieer et e r e e 158
9.19 ARTWORK SEBLEIMIENEecuiueteeeiiiisiete sttt st eb et b b b e bbbt beb et nne 160
9.20 VIA INSLBNTIALTON.veeeveierieiesiceesi e n e ettt 161
Description of electrical and physiCal MEASUrEMENES..........cceeiierieiieiere e s 163
O I N 11 0 o = o == Lo o 163
10.2 Arithmetic Operations and OPEILOLS.cccueierieeieeierees et ee e re e sre e e saesaestessaenbese e tesneenseenns 164

IEEE P1603 Draft 8 Advanced Library Format (ALF) Reference Manual ix

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

0 200 S T T = £ o 164
10.2.2 Floating point arithmetiC OPErationccocvvvverieiesereeee e 164
10.2.3 MaCro arithmetic OPEIGLOLccvveieeierere s s e e sre e sneseenen 165
10.3 ArithMELIC MOEoveeiieieeete e e ettt b e be e s e 165
10.4 HEADER, TABLE, and EQUATION StALEMENESccovveirieerieirieeriecsiesesieesee s sessesssseseenas 167
10.5 MIN, MAX, @nd TY P SEBEEMENEScoveeiieiiiieicriiecriesesie sttt st 169
10.6 Auxiliary arithmetic MOCELcooviieiieseec et seeneeneas 171
10.7 Arithmetic SUDMOTEL.........ciiiiiiciee ettt 171
10.8 Arithmetic MOEl CONTAINEYccviiieee ettt sttt b e beeaeeereeareeaeenas 172
10.8.1 General arithmetic MOdel CONLAINEYc.everereererereere e ene s 172
10.8.2 Arithmetic model contaiNer LIMIToovoiiiiiie ettt s erens 172
10.8.3 Arithmetic model container EARLY @nd LATE......cooo e 173
10.9 Generally applicable annotations for arithmetic MOdelS...........ccoeirreirirnen e 173
10.9.1 UNIT @NNOALION.viitietectieeieteeeeee ettt e ete st estesteetesaeebesbe e besseesbesssssesasesseereesaesseesaesseens 173
10.9.2 CALCULATION @NNOLELION.......cciiieriereeereseetesesiesisteseetesessesessesessessssessssessssesessessesessesessens 174
10.9.3 INTERPOLATION @NOLAtiON....cuviveurireieeiereeieseeiesisieseetesestesessesessesesesessesessssessessesessesessens 175
10.9.4 DEFAULT @NMNOALHONeviieieieeesieie st stee e e tesestesesteseste et ses e e ste e sse e ssenessanessns 176
10.9.5 MODEL reference annotationcccceeiiiieieiecie sttt sreesaesrae e sneens 177
10.10VIOLATION statement, MESSAGE TY PE and MESSAGE annotationcoceeeverevierereeennns 178
10.11Arithmetic models for timing, power and signal INtEgtYccoevererereiereeree e 180
05 0 I PSS 180
10.11.2 FREQUENCY ...ttt sttt sttt sttt et te e ne e e e stese et se s stesestesennens 181
FO.LL.3 DELAY oottt sttt sttt st sttt st et st et e st e st e et ettt et e st et s bene et e nennns 182
05 o A 1 P S 183
10.11.5 SLEWRATE ...ttt sttt sttt sttt sttt ettt et ettt st ettt e s tebentens 184
10.11.6 SETUP @A HOLDc.cctiieiiieeiesiee sttt ettt st st sttt 185
10.11.7 RECOVERY anNd REMOV ALccoiiiiieiesieit ettt s st st 186
10.11.8 NOCHANGE @NG ILLEGALooiiviiiieirieieieeete ettt st sttt et e e nennenens 187
10.11.9 PULSEWIDTH.....citiiiieiiieie st sieie sttt sttt sttt e s se s se s sbesessasessnns 188
LO.11.1OPERIODccetiieiesietiieteesteseesesastesaesessesesaeessesessesessesessesessesessesessasessanessessasesessessnsessesessens 190
00 0 N ST TSTSRSR 191
00 0 S YOS 192
O I s T N I TS 193
10.11.14NOISE and NOISE_MARGINcccciieirieitrieit ettt see s st stesessns 194
10.11.15POWER aNd ENERGYccceiiiisieintiisie st sesie sttt sessestesestesessesessesassesaesesaesesassensenens 196
10.12FROM 8Nd TO SEALEMENEScveveveeeieseeiirieieseeteseeiestese st seeseste st stesesbesessesesteseeseseeseseeseseesessssesenseseas 198
10.13Annotations related to timing, power and signal INEGIItYccveceereeeeiiiee e 198
10.13.1 EDGE_NUMBER @NMNOALION.ccectieeiirieiereeieseeesee sttt sttt st se e sanessns 198
10.13.2 PIN reference and EDGE_NUMBER annotation for FROM and TOccccceevevveveenen. 199
10.13.3 PIN reference and EDGE_NUMBER annotation for SLEWRATEccccooeovevevie v 200
10.13.4 PIN reference and EDGE_NUMBER annotation for PULSEWIDTHccccoovvivieene, 200
10.13.5 PIN reference and EDGE_NUMBER annotation for SKEWcccoccveeeveeveevivcie e, 201
10.13.6 PIN reference annotation for NOISE and NOISE_ MARGIN........cccoeviicieveieesecee s 201
10.13.7 MEASUREMENT @NNOALION........cceieiieeiereeteseeiesieiesietesesiesae e sae e seesesae e sse e seenestesessasessns 201
10.14Arithmetic models for environmental CONAItiONScoeveeiiirierienere e 203
L0O.14.1 PROCESS........cocotcetetiieteeste st et ststesasteseetesae e sae e ssesesse st stesessesesbesesbesesbesesteseabesesbesentensesensens 203
10.14.2 DERATE _CASE ...ttt sttt sttt ettt sttt sttt aebeaes 203
10.14.3 TEMPERATURE ..ottt sttt st st sttt e bt ne st 204
10.15Arithmetic modelS for €leCtriCal CITCUITS..........ooiieriiiie e 205
JO.15.1 VOLTAGE ..ottt sttt st st st sttt st sttt ettt st sttt s s benennns 205
10.15.2 CURRENT L..coutitititeirie sttt sttt sttt st sttt st se et see s sa e ne e ne e s see s see s sbenestenennns 206
10.15.3 CAPACITANCE ...ttt sttt sttt sttt st et tene st 207
10.15.4 RESISTANCE ..ottt sttt st st sttt sttt sttt ne st st et st bbb saebentens 209
10.15.5 INDUCTANCE ..ottt sttt sttt sttt sttt et st sttt sttt nnebe e 210

Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 8

10.16ANNOLAiONS FOr ElECIICAl CITCUITS....uviitiiiee ettt s s e sabe s sba e s nae e sree s 211

10.16.1 NODE reference annotation for electrical CIrCUILS..........ccvveeereierieiinere e 211
10.16.2 COMPONENT reference annotationccoveereirieienienesiee sttt s nesnene 212
10.16.3 PIN reference annotation for electrical CIrCUITS..........covvierenrinnesserre e 213
10.16.4 FLOW @NNOLALION.c.viuiieiirieiirieiesieies ettt st st se e se e se e ne s seesesbenesbesesbenens 214
10.17Miscellaneous arithmetic MOUEIS. ... e 215
10.17.1 DRIVE STRENGTH ..ottt sttt b e e b e st saebesaene s 215
10.17.2 SWITCHING_BITSwith PIN reference annotation............ccoeceeivveeeseneseneeneseeseesesnnnes 216
10.18Arithmetic models related to structural implementation ..o 216
0I5 T (@]\ N = I VA I 1 S 216
10.18.2 DRIVER anNd RECEIVER........cocoi ettt ettt st sre e s sbean 217
10.18.3 FANOUT, FANIN and CONNECTIONS.........covciececreete ettt sttt ve e 218
10.19Arithmetic models related to layout implementationcccovrnennineeneeee s 219
0I5 I S 74 S 219
FO.19.2 AREA ..ottt sttt sttt ettt ettt E et R et Re b s a bRttt be e be et ettt 220
10.19.3 PERIMETER.......cctiitiiete ettt ste sttt sttt st se et et st tesaetesaetesaeneste e senessenentens 221
10.19.4 EXTENSION......ocotieietiieteseete st etesesteseeteseete e e et seesesesseseste st sesaetessetesaesessesessesessesessensssens 222
10.19.5 THICKINESS.......ctietcteiste sttt sttt st sttt sttt tesbe e s be e be e seneeaens 223
T0.19.6 HEIGHT ...ocviieiisietsiee ettt sttt sttt sttt sttt sttt st be b e st e te e tenentens 224
0I5 A Y 1 I SRS 224
TO.19.8 LENGTH ..ottt sttt sttt sttt st b bttt s ae e st e e te e te e ntens 225
10.19.9 DISTANCE ..ottt sttt ettt sttt s be b e s aebesaetesae e s te e senensenentens 226
10.19.100VERHANG......ccictsieirietste sttt sttt ste st st sas b e besaebeseesesaesesaeseseesesseseseeseabesestesessanens 227
00 T Y1 o 2SSOSR 228
10.20Annotations related to arithmetic models for layout implementationccoecevveecnincenenene, 228
10.20.1 CONNECT_RULE @NNOALION.ccvcveiieeerieterieesieisieisieesteestesestesessesessesessesessesansessnsessnsens 228
10.20.2 BETWEEN @NMNOLAIONeveiieeiieisieeeie et esie s tee st ste s tesastesastesastesaesesaesessssessesessnsessnns 229
10.20.3 BETWEEN annotation for CONNECTIVITY ..ot 229
10.20.4 BETWEEN annotation for DISTANCE, LENGTH, OVERHANG.cccoceoveiiniiinens 230
10.20.5 MEASURE @NNOLALIONccveiveiirieierieiesieresiereseeseseesessesessesesseessesessesessasessesessesessessssessnsessnsens 231
10.20.6 REFERENCE annotation CONTAINEYcccourrireriireniniesie s s 232
10.20.7 ANTENNA reference annoOtation............cccoeeereieeenenie et 234
10.20.8 TARGET GNNOLEIIONcveviiveieeieiieieiestesestesestesestesestesastesesteseeseseesesaeseseesessesessesessesessesessesens 234
10.20.9 PATTERN reference annOtationc.ceeeeieieenienie et s 234
10.21Arithmetic submodels for timing and electrical data.............cccveveiieieeveie i 235
10.22Arithmetic submodels for phySiCal data............cevveieciecieiicee e e 236
(iNfOrmMative) SYNtaX FUIE SUMIMEIYcc.eiieiiieeieciesieese e st etee st te e et esteeseesaeeaesseessesreestessaestesssenseentanseensesnnennes 239
(informative) SEMANti CS MU SUMIMEAIYc.eciuiiueeieeiiesie et esteetee e et e eteeteste e e e saeeseesaeessesteessestaessessaansessennnesreensesnens 255
(L= A=) ST o Tl =T YT 281

IEEE P1603 Draft 8 Advanced Library Format (ALF) Reference Manual Xi

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

Xii

Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 8

List of Figures

Figure 1—Cell library Creation fIOWccvcieeoiicise s ne s r et en e e eneenanns 2
Figure 2—Basic |C implementation fIOWc.cccrieiie e re e nre s 4
Figure 3—BIOCK Creation FlIOWccucoicicice et a e sa et e e e seese e sene e e eneennnnn 5
Figure 4—IC prototyping and hierarchical implementation fIOWccovrrninnieie e 7
Figure 5—Parent/child relationship between ALF StAtEMENESccovovirierereee e 16
Figure 6—Parent/child relationship amongst library-specific ObJECtSccveireiirniinre s 18
Figure 7—Parent/child relationship involving singular statements and plural statementscocccovveervenieenn 20
Figure 8—Parent/child relationship involving instantiation and assignment statementsccccoeerecrncrnnenns 21
Figure 9—Scheme for constructing composite SIgNaltype VAIUEScccceviiiiiiine et 81
Figure 10—ROW and COLUMN relative to abounding boxX of @ CELLcccceiiieiinrieieceneneee e 9
Figure 11—NODETY PE in context of @ DC-CONNECLEA NELcceiuiiueieeierieeiereee e 102
Figure 12—Connection between layers during ManufaCturingcoccoeeereneenneee e 113
Figure 13—SHAPE annotation iTTUSIFLIONcooiiiiiieieiecee st bbb s nee 120
Figure 14—VERTEX annotation iHTUSIFEHONcccoueiirieieciieriese sttt s 121
Figure 15—ROUTE annotation iTUSIFEEIONoieiiiiirieicrie st nne 122
Figure 16—Relationship between FUNCTION @nd TEST ..o sesse s s 127
Figure 17—Timing diagram fOr SINQGIE @VENLScoiiiie i et sb e e s ee 144
Figure 18—Realized pattern Of BVENLS ..o b e b b s nee 147
Figure 19—Illustration of gEOMELIIC MOTELScociiiiiriiie e e s e 156
Figure 20—IIlustration of direct point-to-PoiNt CONNECLIONooeiieririeeierieie e e 157
Figure 21—Illustration of manhattan point-to-poinNt CONNECLIONccceeiririiriiine e 157
Figure 22—Illustration of FLIP, ROTATE, and SHIFT ... 159
Figure 23—Example of athree-dimensional table ... 169
Figure 24—Bounding regions for y(x) with INTERPOLATION=FItcccoiiiiiiiereree e 176
Figure 25—Illustration of RETAIN @A DELAY ..ottt et s st st sae e saeenae e snaenreens 184
Figure 26—I11ustration Of SLEWRATEcciiiiiiceceiee ettt st e et et s e ste e saeeneesreenaestesneesreens 185
Figure 27—Illustration of SETUP @nd HOLDcouviiiiiieiccice ettt st s nae st snaesreens 186
Figure 28—RECOVERY ant REMOV AL ...ttt sttt sb e et 187
Figure 29—Illustration of NOCHANGE aNd ILLEGALcoeoiiiiiiicicirrieeenes et 188
Figure 30—Illustration Of PULSEWIDTHccoiiiiiriiiinereeiiere sttt ss e 190
Figure 31—I11ustration Of PERIODcccciiiiiiiiiciccese et st ese et s e s saeeaesneeneesreenaesneensenseens 191
Figure 32—I1ustration Of JITTERcoii ittt et et e st e e et e e e e sreenaesaeennesreens 191
Figure 33—I1USLration Of SKEW ...ttt et sae e e sreesaesaeeneenreens 192
Figure 34—THRESHOLD measurement defiNitionccocceiieieeiicies st e s e see s enae 193
Figure 35—NOISE measurement defiNitionccccooeiieiinice ettt eaaesreens 195
Figure 36—Definition of NOISE MARGIN and LIMIT for NOISEccoooioiiiniiceee e 195
Figure 37—Illustration of PIN reference and EDGE NUMBER annotation within FROM and TO 200
Figure 38—Illustration of peak measurement with FROM or TO statementccccecveeeveveevesecie s eienieens 202
Figure 39—Electrical components and their terMINAISccocveviiie i ere s 212
Figure 40—A ssociation between electrical components and an iNPUL PINcccceceeveeieciesie e 214
Figure 41—Association between electrical components and an OULPUL PINccveceeeeeieeeeece s 214
Figure 42—Illustration of EXTENSIONcccooiiiiieiiiieie et see sttt st e seesaessae e snaesreesresnnenreens 223
Figure 43—Illustration of DISTANCE Versus OVERHANGcccooiiiiiiiiie et see et nneens 227
Figure 44—Illlustration of DISTANCE versus OVERHANG Versus LENGTHccoeviviiiivr e 231
Figure 45—I1ustration of MEASUREcooii ettt st esa et eae e saeeneesneeneesaesnnenreens 232
Figure 46—Illustration of REFERENCE fOr DISTANCEcccooiiiiiirneeenes e 233

IEEE P1603 Draft 8 Advanced Library Format (ALF) Reference Manual xiii

10

15

20

25

30

35

40

50

55

Xiv

Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 8

List of Tables

Table 1—Categories Of ALF SLALEMENTS.......cocveiriee ettt e e e ae s besae e e teseeneenaeneeneens 15
TaDI @ 2—GENEITC ODJECLS......c ettt ettt sttt b e bt b be et sa e ke e e se e e e e ebeeaesbesbesbeseenbesbenaens 16
Table 3—Library-specifiC ODJECLS... ..ot e e e 17
I o = e S T o [0 =TS = = 0= | OSSP RR 18
TaD € 5—PlUral SEELEMENLScuiiieieieeeriet bbbttt ettt ettt et b et be st e b e e bt seebeseebesbene e 19
Table 6—INStaNntiati ON SEALEMENES.......ccii ettt st st st s st b e e b e seebeseebesbenennas 20
Table 7—ASSIGNMENT SLALEIMENTS.cveieetiieee et er ettt sttt st et e et e et e e e be e et e e ebeseebeseebesbenenaas 21
Table 8—Other categories Of ALF SIAEEMENES.......co.iiiiiireeeeiirere sttt st s se e ene b b sae 22
Table 9—Annotations and annotation containers with generic KEyword...........ccocoerreneniene s 22
Table 10—Keywords related to arithmetic MOAE ... s 22
Table 11—StatementS for ALF ParSer CONEIOLco.ceiiiirieirieeriere et eb et enes 23
Table 12—List Of WhiteSpate CRAIACIEN'So ettt ettt e se bbb e 25
Table 13—List Of SPECIAI CHAIBCLEIS.ottt ettt b e b s e e e e 26
Table 14—List arithMELiC OPEIALOIS ... coieeeeeirieee ettt ettt et b e bbbt b e e se e e e e 28
Table 15—List Of DOOIEAN OPEIGLOLS.......coiuiieiteitirte ettt b et et bbb et sbesbeseese e e se e 29
Table 16—List Of relational OPEIEIOrS..........coirieiireeireeree ettt ettt b s bbb nnas 29
Table 17—List Of Shift OPEIEIOIS.ce ettt bese b bene e 30
Tabhle 18—LiSt Of EVENE OPEIGLOIS.......c.eeeteeeiireetereetereete ettt sttt sttt be e bt et e e ebeseebeseebesbenennas 30
Table 19—LiSt Of MELAOPEIALONSeovireitieteite ettt ettt bt st s e et e e b et b e e bt s besbesbesbeseeseeneeseeneane 30
Table 20—Multiplier prefix symbol and corresponding SI-Prefix ... e 33
Table 21—Character symbolSwithin @ qUOLEd SEFNQG.......coeiiiiiiieeee e 38
Table 22—SyNntax ItemM THENEITIEr ...ttt se bbb 44
Table 23—VALUETY PE GNNOALION.c.oiiiiietirieiirieie sttt sttt st sttt st ebe s b et st ebe e ebeseebeseesesbesennas 46
Table 24—SI _MODEL GNNOLALIONc.ccuiiitireeierieierieie sttt r bbbt b et se bbb sbebeseebe b e e neenes 52
Tah € 25—USAGE GNNOLALIONcveeeereeereseetese ettt b s es st r et r e se s e rese b e e e b e e ebe e en e e eneseenesnenenrenenna 54
Table 26—FORMAT @NNOALION VBIUESc.civeirieirieieeeesieesre et st r s se s nenenna 61
Table 27—L egal string values within the REVISION StELEMENccceiiirireneriere e e 61
Table 28—Annotations within an INFORMATION SEEEMENTc.cereireiierireree e 65
Table 29—CELLTY PE @nNNOAtiON VBIUES.........cociieiiriiiiiieesiese sttt bebe st 67
Table 30—Predefined RESTRICT_CLASS annotation VAIUES...........cooiirriiiie et 68
Table 31—SCAN_TY PE @nNNOtation VBIUES..........ccciiiieieeieiteeeeste e ste st ste e st ssaeste s esesaaesneseesresnesnnensens 70
Table 32—SCAN_USAGE annOtation VEAIUES..........cceieiiieieeiesee e see et eeesre e sae e steeae e e n e teeneesresnnesnesnnas 71
Table 33—BUFFERTY PE @NNOLatiON VAIUES.........c.ccereerireeieieieeereeere st ere e s s seene s nnas 71
Table 34—DRIVERTY PE @NNOALION VBIUES.........ccoiuiiiiirieceiecsie sttt sttt sttt s be s 72
Table 35—PLACEMENT_TY PE anNOtation VAIUES........c.cooiiiiiirieieie ettt st seene s 73
Table 36—Attribute values for a CELL with CELLTY PE MEMONYc.ooeiiiiiriiieeenenereresese e 74
Table 37—Attribute values for a CELL with CELLTY PE BIOCKccoiieiiiircerce e 74
Table 38—Attribute values for a CELL wWith CELLTY PE COre.........ccviiieiiinceree e 75
Table 39—Attribute values for a CELL with CELLTY PE SPECIAl.......ccecveiiieieie et 75
Table 40—V IEW @nNNOALION VBIUES........coiuiiieeiieirieeeee sttt sttt sttt b e s b e se bbb e 78
Table 41—PINTY PE @NNOLatiON VAIUESc.couiiiiiieeeeeeeiecs sttt st s s s besbene e 79
Table 42—DIRECTION @NNOALON VBIUESc.covcuireeiireeiisieiesietesiet ettt sttt sttt se b e b sbene e 80
Table 43—Fundamental SIGNALTY PE annOtation VBIUESc.cccciriireineinierceseses e 81
Table 44—Composite SIGNALTY PE annOtation VAIUES..........ccueiieieiecieie ettt esne e 82

IEEE P1603 Draft 8 Advanced Library Format (ALF) Reference Manual XV

10

15

20

25

30

35

40

50

55

Table 45—ACTION @NNOLALTION VBIUES........c.oiiiereriereeie sttt sttt bbbt st et ne et e b neebe e 83
Table 46—ACTION in conjunction With SIGNALTY PEooiiiiernene e e eve e s 83
Table 47—POLARITY aNNOALION VAIUES........ciuiriiie ettt s sa e s sttt e e sne b e 84
Table 486—POLARITY in conjunction With SIGNALTY PE.......coiieeee et s e 84
Table 49—CONTROL_POLARITY in conjunction With SIGNALTYPE........ccccooeiriieersese et ee e 85
Table 50—DATATY PE aNNOLatiON VAIUES.c.coueuiiiiirieierieie ettt st st sttt seene e 86
Table 51—STUCK @NNOALON VBIUES.........ccerieieririerieiesiete sttt b sttt et s beneene e 87
Table 52—SUPPLY TY PE @nNOLatiON VAIUESc.couiiiieieeieeietee ettt st st se e e e snesne e 88
Table 53—DRIVETY PE @NNOLatiON VBIUES.........cciiiiiitiie ettt s se e s e snesaesbeseeseeseeseens 91
Table 54—SCOPE @nNOLaLiON VEAIUEScouiiiiitiiiiie ettt sttt e et se it sae b b seeseenbese e e enesneeaeene 92
Tahle 55—SIDE aNNOatiON VAIUES........cceieiieieiieeeseseesiee sttt sreee e saeseesessessestessesseseenseseeneasessesseses 93
Table 56—ROUTING-TY PE @NOation VBIUESccccoveeeeeeeeeieeseseeseeseeeeeseesessessessessesse e seeseenseseesssnessesseses 94
Tabhle 57—PULL aNNOtatioN VAIUES.........ccovruiriiiieeseseeseeseseeaetesese st tesseee e seesaeseesessessessessessesssnsesessessessessenes 95
Table 58—AttribDUtE VAIUES FOr @PIN ..o et s sb e e sne b e 96
Table 59—Attribute values for a PIN of a CELL with CELLTY PE MEMONYcccooieiieieierere e 96
Table 60—Attribute values for a PIN within apair of SIgNalS........ccooiirirninnireeee s 96
Table 61—ATTRIBUTE valuesfor aPIN or a PINGROUP related to memory BISTccooviviiveiincccneens 97
Table 62—WIRETY PE aNNOatiON VAIUES........c..orerieieeieeieiee st ssessesse e saeseeseenseseeneenessessenes 99
Table 63—NODETY PE @nNOLation VEIUES..........coiiiirieiieeeeeeietese sttt e e sbe s e et seesee e eneenas 101
Table 64—PURPOSE aNNOLatiON VBIUEScouiiiiiieiieie ettt s b s st se et e e e eneenas 104
Table 65—OPERATION @nNOtatiOn VBIUES..........coiiruiiiirieitiriiieie sttt see st e e e e s e enesaesre e s 105
Table 66—LAYERTY PE anNNOtation VAIUES........cccvveiiiirisese et see e s see e eeesessesnessessessessenees 110
Table 67—PREFERENCE annOtatiON VAIUES...........cciceiuireeieiereeeeesesesestesieseseesseseessesaesesseessssessesssssessesssssenses 11
Table 68—VIATY PE @nNNOtAtioN VAIUES.........cviieieirie i seeees s et saesee e e se e eeeseesesnessessessessenees 112
Table 69—PORTTY PE @nNOLatiON VAIUES.cceiuiriieiiieniesie sttt st et sbe e sbeneas 115
Table 70—ARRAY TY PE @nNNOation VBIUES..........ccoiiiiiiiieie ettt et s s sbe e seesneneas 118
Table 71—SHAPE aNNOatiON VAIUES.........cceiiiiieiie ettt b st et 120
Table 72—VERTEX @nNOtation VAIUEScoviirirereesieeseeeeiesae s esesse e sse e seestesse e saeseessesessessessessessessessees 121
Table 73—Annotation values for PINs involved in FUNCTION and TESTccoovievinienene e 126
Table 74—Scalar DOOIEAN VAIUES........ccoeeeeirie ettt e s et ne st saesaene e e see e eneeneenis 133
Table 75—SymboliC DOOIEAN VAIUES..........ooiii it b e e 135
Tahle 76—L 0QICal OPEIALIONS.co.ciuiiuirieiieie ettt sttt ettt b et be b et e s bese e be e e se e bese e e e e e nnenis 136
Table 77—Evaluation Of 10giCal INVEISIONcc.iiiii i e st e 136
Table 78—Evaluation of logical AND and 10giCal ORcoeiiiniiiniine s 136
Tabhle 79—BitWiSE OPEIALIONS.cueiiieiiite sttt e b bbbt bbbttt sttt 137
Table 80—Evaluation of single-bit XOR and XNOR.........cccooiiiiiiiene et 138
Table 81—CoNnditioNal OPEIELION.........cciuiiirere ettt e e se et e et s b e ae bt se et se e e e e ennenis 139
Table 82—Integer arithmetic OPEIaLIONccoiiiireee e ettt be e b e s r e 139
Table 83—Shift OPEIELIONccuiciieeecece ettt s a e e e e sreeaeesre e st e sbe e s tenteeanenseeneesneenneenns 140
Table 84—NUMESiCal COMPAITSONcoviviiieirieerierrie ettt et st st et bbbttt e bt bns 140
Table 85—L 0giCal COMPAITSONc.veuirietirieeriere ettt sttt et et et ek e e et e ettt et et be b 141
Table 86—Evaluation of logical comparison involving drive Srength ... 141
Table 87—StINQG COMPAITSONc.vveeeitiiie et eete it e se st e ste st e e e see st e eae e s st esbesse e tesseeasesssenseaseesreeseesseensensenseaseeaneensennes 142
Table 88—Specification Of @SINGIE EVENLccci ettt sre e sre et e enneenas 143
Table 89—Operators for specification of acompouNd EVENLccceeviiciiie e 145
Table 90—Operators for specification of a compound event with alternatives..........ccoceeeveeevvceccencene e 145
Table 91—Operators for specification of permutations of compound eVents..........cccoecevereeerrceecencere e 146
Table 92—Satisfaction of a specified relation within arealized pattern of events...........cooevveeieineiniennenens 148
Table 93—Specification a conditional pattern of EVENLS............ecve e i 149
Table 94—GeometriC MOTEl TABNTITIENS. ..o e e s b e 155

XVi Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 8

Table 95—Sign used as unary arithmetic OPEIELONc.vvvieriireeee e er e e e s
Table 96—Binary arithmeEtiC OPErEIOIS.oii ittt bbb e e e e e s eeneeaeeae e
Table 97—MaCrO arithMELiC OPEIBIOISccueiueieereeieieeet ettt et ae e b s ae b e se e e e e e se e e enesae b e
Table 98—Cal CUlEtioN @NNOLELTONc.iieeeeieeeeie ettt ettt s b et b se et e e e et eb e e e s beeaesaeeeesbeneesee
Table 99—Interpolation @NMNOLALIONccecverireeie e e st sae e e e e e e e s neenesreeresreneenes
Table 100—MESSAGE_TY PE @NMNOLALIONcveiieeeeeireeeesiesestesieseeeeeseesesessesseseseeste s saesssseessensesessessessessesseses
Table 101—MEASUREMENT @NNOLALTONc.vcviieiirieiiieeiisieesieesieie sttt st s s s seenestenens
Table 102—Predefined arithmetic values for PROCESS...........cocoviiiiieeeiriee e s
Table 103—Predefined arithmetic values for DERATE CASE.........coo e

Table 104—FL OW annotation

Table 105—Interpretation of bit literalSfor CONNECTIVITY ..o
Table 106—CONNECT_RULE GNNOLBEIONc.civiiirieiirieiceieesieiesiees ettt st s s see e see e seesessenens
Table 107—Implications between CONNECT_RULE SpeCifiCations...........coeveeerreneeinenenenie e
Table 108—Annotation values for MEASURE...........cco et
Table 109—Annotation values for REFERENCE ..o
Table 110—Overview of arithmetic submodels for timing and electrical data...........cccocovvenvinnincencicee
Table 111—Overview of arithmetic submodels for physical data...........cooverreieenieree e

IEEE P1603 Draft 8

Advanced Library Format (ALF) Reference Manual

164
164
165
174
175
179
202
203
204
215
217
229
229
231
232
235
236

XVii

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

XViii

Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 8

IEEE Standard for an

Advanced Library Format (ALF)
describing Integrated Circuit (IC)
technology, cells, and blocks

1. Introduction

The introduction explains the scope and purpose of this standard, gives an overview of applications of this stan-
dard, explains the conventions used in this standard and summarizes the contents of this standard.

1.1 Scope and purpose of this standard

The scope of this standard is to serve as the data specification language of library elements for design applica-
tions used to implement an integrated circuit (IC). The range of abstraction shall include from the register-trans-
fer level (RTL) to the physical level. The language shall model behavior, timing, power, signal integrity, physical
abstraction and physical implementation rules of library elements.

Library elements for implementation of an IC include sets of predefined components, composed of transistors
and interconnect, and sets of predefined rules for the assembly of such components. The design of application-
specific ICs (ASICs) in particular relies on the availablility of predefined components, called cells. An IC the
uses predefined compound library elements with a standardized functionality, for example microprocessors, as
building blocks, is called a system on achip (SOC).

The design of an ASIC or of an SOC involves electronic design automation (EDA) tools. These tools assist the
designer in the choice and assembly of library elements for creating and implementing the IC and verifying the
functionality and performance specification of the IC. In order to create an IC involving severa million instances
of library elements within a managabl e time period counted in weeks or months, the usage of EDA toolsis man-
datory.

A suitable description of library elements for design applicationsinvolving EDA toolsisrequired. A key feature
isto represent alibrary element at alevel of abstraction that does not reveal the implementation of thelibrary ele-
ment itself. Thisisimportant for the following reasons:

— The complexity of the design dataitself mandates data reduction.

IEEE P1603 Draft 8 Advanced Library Format (ALF) Reference Manual 1

10

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

— The complexity of the verification process, i.e. the verification for functional, physical and electrical cor-
rectness, mandates that a library elements is already characterized and verified by itself. Only the data
necessary for creation and verification of the assembled IC isrepresented in the library.

— Alibrary element is considerd an intellectual property (1P) of the library provider.

Therefore, the purpose of this standard is to provide a modeling language and semantics for functional, physical
and electrical performance description of technology-specific libraries for cell-based and block-based design.
Without a standard, EDA tools would use multiple proprietary and tool-specific library descriptions. The seman-
tics would be defined by tool implementations only, which are subject to change and prone to mis-interpretation.
Also there would be redundancy using multiple descriptions for similar library aspects. Therefore this standard is
proposed to create a consistent library view suitable as a reference for designers as well as for electronic design
automation (EDA) tools.

1.2 Application of this standard

The ALF standard can be used by many different applications throughout the design flow. The major classes of
applications include creation and characterization of library elements, basic implementation and performance
analysis of an IC, hierarchical implementation and virtual prototyping of an IC.

1.2.1 Creation and characterization of library elements

ALF can be used to specify the desired functionality and characterization space of alibrary element, i.e., acell.

The application for creation of a cell is shown in Figure 1.

library cell p/ Characterization p-| library cell
specification | __ tool model
(ALF) T~ (ALF)
T

~
~—
~ |

. ~ -m| transistor
équivalence\ g | netlist .
checker (SPICE) library
compiler
|

model
generator

_ _ extraction v
HDLsimulation tool -
model compiled
(VHDL, Verilog) library
(binary)

cell
layout ! layout
editor (GDSII)

Figure 1—Cell library creation flow

A specification of alibrary element, i.e., acell can be described in ALF. This specification includes at the name
of the cell and itsterminals, i.e., pins and aformal description of the function performed by the cell. This formal
description is sufficient for the purpose of generating hardware description language (HDL) simulation modelsin
various languages, for example VHDL [see IEEE Std 1076-2002, |IEEE Standard VHDL Language Reference
Manual] or Verilog [see |EEE Std 1364-2001, | EEE Standard for Verilog Hardware Description Language].

Multiple HDL models can be generated for different purposes, where the difference is defined by the user’s pref-
erence for modeling style rather than by the functionality of the cell. For example one model can handle

2 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 8

unknown logic states in a crude way, resulting in fast simulation, another model can handle unknown logic states
in a case-by-case way resulting is slow but more accurate simulation. The ALF model can serve as a common
reference for all those HDL models.

A physical layout of a cell can be represented in the GDSII format [B11]. A transistor-level netlist of a cell in
SPICE format [B8] can be extracted from the physical layout. Such a transistor netlist includes parasitic electri-
cal components. Alternatively, a designer can create a transistor netlist by hand or by using an EDA tool that
maps a functional specification described in ALF into a transistor level netlist. Such a transistor netlist will be
less accurate than one extracted from layout, but it may be till be useful for prototyping alibrary.

Both the transistor netlist and the various HDL models can be compared against the functional specification
described in ALF. More importantly, the transistor netlist can be used to characterize the performance of the cell,
i.e., measure timing, power, noise, and other electrical characteristics by running a SPICE simulation. The set of
necessary SPICE simulations is determined and controlled by a characterization tool. The characterization tool
can infer pertinent information from the specification represented in ALF, as far asthisinformation relates to the
functionality of the cell itself. For example, the timing arcs that need to be characterized, can be represented in or
infered from ALF. The output of the characterization tool is alibrary cell model, populated with characterization
data, also represented in ALF.

Optionally, alibrary compiler can be used to combine al the library cell modelsinto abinary file, as adata prep-
aration step for an EDA application tool.

1.2.2 Basic implementation and performance analysis of an IC

The ALF library can be used in an IC implementation flow which uses cells as building blocks, an ASIC imple-
mentation flow in particular.

A basic flow for an IC implementation using cells as building blocks is shown in Figure 2.

library cell technology
models rules
(ALF)

interconnect
routing

RTL gate-level netlist gate-level netlist
design description with placement with placement
(VHDL, Verilog) and routing

performancs

parasitic file
(SPEF)
library cell analysis

models 4 erforma
(ALF) X - anaIyS|s

| parasitic
__ _p-_Extraction
models —_

\ [interconnect
(ALF) -

IEEE P1603 Draft 8 Advanced Library Format (ALF) Reference Manual 3

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

Figure 2—Basic IC implementation flow

Inthisflow, an RTL design description istransformed into anetlist by an RTL synthesistool. The netlist contains
instances of cells, also called gates, rather than transistors. This application can use the ALF library to find the
library elements needed to map the RTL description into a netlist containing instances of cells. The transistors
inside the cells are not described in the ALF cell models.

An equivalence checking tool can be used to decide whether the RTL-to-netlist transformation has been done
correctly, by comparing the RTL design description with the netlist. This application can use the same ALF
library as the RTL synthesis tool. Also, an HDL simulation tool (not shown in Figure 2) can be used to decide
whether both the RTL design description and the netlist behave as expected in response to a given stimulus. The
simulation tool can use an ALF model or an HDL model derived from the ALF model.

The flow in Figure 2 is simplified. Special netlist transformations, such as creation of data path structures, cre-
ation structures related to design for test (DFT), especially scan insertion, are not shown. However, the ALF cell
models also contain information pertaining to these applications.

The process of cell placement and interconnect routing is summarily refered to as layout. Special layout opera-
tions such as layout of a power supply structure, layout of a clock network structure, are not explicitely shown in
Figure 2. The ALF cell models contain abstract physical information, such as size and shape of the cell, location,
size and shape of the cell pins and routing blockages, which are pertinent for layout. Also, abstract information
concerning the artwork within the cell can be represented in ALF, for example, area, perimeter and connectivity
of artwork on specific layers. This information is pertinent for manufacturability, such as antenna rule and metal
density check.

In addition to cell models, technology rules for routing can also be represented in ALF, such as constraints for the
width and length of routing segments, distance between routing segments, distance between vias etc.

The implemented |C needs not only be correct in terms of functionality and layout, it also has to meet electrical
performance constraints, predominantly timing constraints. Other aspects of electrical performance, such as
power consumption, signal integrity and reliability become increasingly important. Signal integrity aspects
include the cleanliness of signal waveform shapes, immunity against noise induced by crosstalk and voltage
drop. Reliability aspects include dependable long-term operation in the presence of electromigration stress, hot
electron effect and thermal instability. The cell models in ALF support characterization data for timing, power,
signal integrity and reliability. For example, reliability data can be described as a limit for voltage, current, or
operation frequency. A particular feature in ALF is the representation of these data in the context of a stimulus,
described by a vector expression. With this feature, the data can be related to particular environmental operation
conditions, and a more accurate performance analysis can be performed.

Performance analysis happens within each step of the IC implementation process. RTL synthesis, cell placement
and interconnect routing applications have embedded static timing analysis (STA) and other performance analy-
sis capabilities. Also, after completion of each step, a standalone performance analysis can be applied, in order to
measure the achieved performance more accurately.

Electrical performance depends not only on the interaction between instances of cells, but also on the parasitics
introduced by the interconnect wires. After netlist creation, parasitics can be statistically estimated using a wire
load model (WLM). After placement, parasitics can be more accurately predicted by estimating the length of
particular routing wires between pins of placed cells. After routing, actual parasitics can be extracted and repre-
sented in a file using the standard paraistic exchange format (SPEF) [B4]. An interconnect model in ALF can
describe a statistical WLM, arule for parasitic estimation based on estimated routes, or an interconnect analysis
model. Theinterconnect analysis model specifiesthe desired level of granularity for the parasitics, and the cal cu-
lation of timing, noise, voltage, or current based on instances of parasitics and on an electrical model of adriver
cell. The data for the electrical model of a particular driver cell can be represented in ALF as a part of the cell
characterization data.

4 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 8

1.2.3 Hierarchical implementation and virtual prototyping of an IC

An IC implementation flow with cells as building blocks has its limits imposed by the number of objects, i.e.,
instances of cells and nets, that can be reasonably handled by designers and by application flows.

For 1Cs exceeding the limits of objects that can be reasonably handled, the following approaches are used, possi-
bly in combination with each other:

— Bottom-up design: Create larger building blocks from cells first, then use these blocks for |C implemen-
tation.

— Top-down design: Divide a design into subdesigns first, implement each subdesign as a block, then
assembl e the blocks.

— Virtua prototyping: Do asimplified so-called virtual implementation of the entire design first, then parti-
tion the virtually implemented design into blocks, use the results of the virtual implementation as con-
traints for actual implementation of each block, implement and assemble the blocks.

The common denominator for all these methods is creation of blocks, in order to reduce the number of objects
seen by the application.

The application for creation of ablock is shown in Figure 3.

library cell interconnect technology
models models rules
(ALF) (ALF) (ALF)

'

design cFie;l_cription Basic IC implementation flow (see Figure 2)
(VHDL, Verilog)

gate-level netlist parasitic file
with placement (SPEF)
and routing
block model block characterization block
specification performance model
(ALF) < analysis >4>< abstraction) (ALF)

Figure 3—Block creation flow

A block can be created by using the basic |C implementation flow (see 1.2.2, Figure 2). A block with afunction-
aity that can be used and re-used, is commonly refered to as intellectual property (IP) of the designer. In case of
a“hard” block, the primary output of the implementation flow, i.e., a gate-level netlist with placement and rout-
ing, are preserved and eventually transformed into a physical artwork. In case of a*“soft” block, only the primary
input of the implementation flow, i.e., the RTL design description, is preserved. The output of the implementa
tion flow serves only for the purpose of block characterization, i.e., creation of an abstract model for the block.
The block characterization consists of arepeated application of performance analysis within the range of desired
characterization followed by abstraction. Abstraction includes reduction of the physical implementation data and
association of the performance analysis data with a specified model. Both the specification of the model and the
model itself can be represented in ALF.

IEEE P1603 Draft 8 Advanced Library Format (ALF) Reference Manual 5

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

Variants to this flow include partial 1C implementation, for example only RTL synthesis and placement without
routing, especialy in the case of a soft block, where the implementation data is not preserved. The rationale for
not preserving the implementation data of a block is the possibility of achieving a better overall 1C implementa
tion result by implementing the block later in context of other blocks instead of implementing the block standa-
lon upfront.

Depending on whether a block is used as a hard block or a soft block, the ALF model can represent a different
level of abstraction. An ALF model for a hard block can have similar features as an ALF model for a cell (see
1.2.1and 1.2.2). In addition, the netlist and the parasitics representing the output of the implementation flow can
be partially preserved in the ALF model, especially at the boundary of the block. This enables accurate analysis
of the electrical interaction of a block with adjacent blocks in the context of an |C implementation. On the other
hand, an ALF model for a soft block can represent a statistical range or upper and lower bounds for characteriza-
tion data rather than “hard” characterization data, since there is a degree of variablity in the implementation of
actual instances of the block. Also, a statistical WLM can be encapsulated within the model of the block.

ALF supports specific modeling features for parametrizable blocks, i.e., blocks which can be implemented in
various physical shapes or sizes and with variable bitwidth and performance characteristics. The ALF constructs
group (see 7.14), template (see 7.15), static and dynamic template instantiation (see 7.16) can be used for this
purpose.

Independently whether ablock is ahard block or a soft block, the application for creating the IC can now use the
abstract model of the block as a library element rather than a cell. In a similar way as an ALF model of a cell
does not reveal transistor-level implementation details, an ALF model of a block ddoes not reveal gate-level
implementation details. However, the ALF model of ablock still provides enough information for an application
to implement or explore the implementation of an IC and analyze the performance and the compliance to logical
and physical design constraints.

An IC is designed in the context of a specific environment with specific constraints. Environmental constraints
include for the characteristics of the package, the printed board, the range of process, voltage, and temperature
(PVT) conditions. Other constraints are given by globally applicable physical design rules, for example the avail-
able routing layers, the amount of routing resources reserved for the power distribution, the available locations
for 10 pins at the boundary and in the center of a chip. The virtual prototyping approach can be used to evaluate
whether a design can be implemented within these constraints. The electrical characterization datain ALF, i.e.,
timing, power, noise, physical and electrical rules, estimation models for parasitics etc., can be represented as
mathematical functions of environmental conditions and constraints.

A conceptual flow for the virtual prototyping and hierarchical implementation of an I1C involving ALF models at
different levels of abstraction is shown in Figure 4.

6 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 8

RTL
design description
(VHDL, Verilog)

global design
constraints

technology

rules * *

|

|

(ALF) design planning, library block |
prototyping, models |

interconnect partitioning (ALF) |

models L
(ALF) . . | |<_ — — r/efmement, N
EEE— — repartition)
subdesign description ~ — —
and constraints 1
|

¢ desian hlock |
desian hlock |
library cell deS|gréb|Iock
models ; : models
(ALF) Block creation flow (seeFlgure3D (ALF)

aate-level ;pflicr |
nate-level netlist |

gate-level netlist
with placement >
and routing Block assembly

Figure 4—IC prototyping and hierarchical implementation flow

The design planning and prototyping application uses predefined models of blocks as library elements, refered to
as“library block models’. The design is partitioned into subdesigns. The block creation flow (see Figure 3), i.e., a
combination of block implementation and block characterization is applied to each subdesign. The applicable
library elements for each block are cells. The outputs of the block creation flow are the characterized models of
the subdesigns, refered to as “ design block models’. The design block models can be used to iterate on the design
planning application, resulting in a possible refinement and repartitioning of the design. Once the evaluation of
each block against the subdesign constraints and the evaluation of the virtually assembled blocks against the glo-
bal design constraints are satisfactory, the block implementation results, i.e., the netlist with placement and rout-
ing for each block, can be actually assembled to form the IC.

The design of an IC can use a combination of cells, hard blocks and soft blocks, blocks with fixed specification
and parametrizable blocks as library elements. Some of the library elements are available independently of the
design, others are created during the design and only for the purpose of the particular design. An abstract model
for a soft block can be used in conjunction with a more detailed model for a hard block. The abstract model can
be replaced with a more detailed model during implementation of the block. Technology rules and interconnect
models are used throughout the flow.

In summary, the ALF standard provides a common modeling language for library elements, technology rules and

interconnect models. ALF models at different levels of abstraction can be used concurrently by EDA applica
tions for planning, prototyping, implementation, analysis, optimization and verification of complex ICs.

IEEE P1603 Draft 8 Advanced Library Format (ALF) Reference Manual 7

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

1.3 Conventions used in this standard
The syntax for description of lexical and syntax rules uses the following conventions.

S definition of a syntax rule
| alternative definition
[item an optional item
[iteml | item2 | ...]
optional itemwith alternatives
{iten} optional itemthat can be repeated

{itenl | item2 | ... }
optional itens with alternatives which can be repeated
Item bol df ace specifies verbati musage of a string of characters.

ITEM uppercase bol df ace specifies verbati musage of a keyword.
prefix_item

prefix initalic is for explanation purpose only
PREFI X _item

prefix in uppercase italic indicates that a keyword is used

NOTE: These conventions do not prescribe usage of uppercase or lowercase characters, as ALF is case-insensitive.

1.4 Contents of this standard

The organization of the remainder of this standard is

— Clause 2 (References) provides references to other applicable standards that are assumed or required for

this standard.

Clause 3 (Definitions) defines terms used throughout the different specifications contained in this stan-
dard.

Clause 4 (Acronyms and abbreviations) defines the acronyms used in this standard.

Clause 5 (ALF language construction principles and overview) defines the language construction princi-
ples used in this standard.

Clause 6 (Lexical rules) specifiesthe lexical rules.

Clause 7 (Generic objects and related statements) defines syntax and semantics of generic objectsused in
this standard.

Clause 8 (Library-specific objects and related statements) defines syntax and semantics of library-spe-
cific objectsused in this standard.

Clause 9 (Description of functional and physical implementation) defines syntax and semantics of state-
ments related to functional and physical implementation of library elements used in this standard

Clause 10 (Description of electrical and physical measurements) defines syntax and semantics of state-
ments describing electrical and physical measurements related to library elements used in this standard.

Annexes. Following Clause 10 are a series of normative and informative annexes.

Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 8

2. References

This standard shall be used in conjunction with the following publication. When the following standard is super-
seded by an approved revision, the revision shall apply.

|EEE Std 1076-2002, |EEE Standard VHDL Language Reference Manual

|EEE Std 1364-2001, | EEE Standard for Verilog Hardware Description Language

|EEE Std 1497-2001, | EEE Standard for Standard Delay Format (SDF) for the Electronic Design Process
I SO/IEC 9899:1990, Programming Languages—C

ANSI/ISO/IEC 14882, C++ Standard

ISO/IEC 8859-1 : 1987(E), ASCI| character set!

U.S. National Bureau of Standards, Spec. Pub. 330, International System of Units (1971)

1130 publications are available from the 1SO Central Secretariat, Case Postale 56, 1 rue de Varembé, CH-1211, Genéve 20, Switzerland/
Suisse (http://www.iso.ch/). IEC publications are available from the Sales Department of the International Electrotechnical Commission,
Case Postale 131, 3, rue de Varembé, CH-1211, Genéve 20, Switzerland/Suisse (http://www.iec.ch/). ISO/IEC publications are aso available
in the United States from the Sales Department, American National Standards Institute, 11 West 42nd Street, 13th Floor, New York, NY
10036, USA.

IEEE P1603 Draft 8 Advanced Library Format (ALF) Reference Manual 9

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

3. Definitions

For the purposes of this standard, the following terms and definitions apply. The IEEE Sandard Dictionary of
Electrical and Electronics Terms [B1] should be consulted for terms not defined in this standard.

3.1 ALF: See: advanced library format.

3.2 ALF name: The name of an ALF object.

3.3 ALF object: An element described in ALF.

3.4 ALF type: Thetype of an ALF object.

3.5 ALF value: A value associated with an ALF abject.

3.6 advanced library format (ALF): The format of any file that can be parsed according to the syntax and
semantics defined within this standard.

3.7 application, electric design automation (EDA) application: Any software program that uses data repre-
sented in the Advanced Library Format (ALF). Examplesinclude RTL (Register Transfer Level) synthesistools,
static timing analyzers, etc. See also: advanced library format; register transfer level.

3.8 arc: See: timing arc.

3.9 argument: A data item required for the mathematical evaluation of an arithmetic model. See also: arith-
metic model.

3.10 arithmetic model: A description of a mathematical model for an electrical or physical measurement in
ALF

3.11 cell, library cell: An electronic circuit that is a component of alibrary described in ALF.
3.12 geometric model: A description of alayout geometry in ALF.

3.13register transfer level: A technology-independent description of adigital electronic design allowing infer-
ence of sequential and combinatoria logic components.

3.14 timing arc: An abstract representation of a measurement of an interval between two points in time during
operation of alibrary cell.

need probably more terms and definitions

10 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 8

4. Acronyms and abbreviations

This clause lists the acronyms and abbreviations used in this standard.

ALF
ASIC
BIST
BNF
CAE
CAM
CPU
DFT
DSP
EDA
EDIF
GPU
HDL
IC

1P
LSSD
MPU
PLL

advanced library format, title of the herein proposed standard
application specific integrated circuit

built-in self test

Backus-Naur form

computer-aided engineering [the term electronic design automation (EDA) is preferred]

content-addressable memory

central processing unit

design for test

digital signal processor

electronic design automation

electronic design interchange format

graphical processing unit

hardware description language

integrated circuit

intellectual property

level-sensitive scan design

MiCro processor unit

phase-locked loop

process/voltage/temperature (denoting a set of environmental conditions)
random access memory

resistance (times) capacitance

read-only memory

register transfer level

standard delay format (see |IEEE Std 1497-2001)2

system on achip

standard parasitic exchange format (see |EEE Std 1481-1999)
simulation program with integrated circuit emphasis [B8]
static timing analysis

VHSIC hardware description language (see IEEE Std 1076-2002)
very high-speed integrated circuit

very large-scale integration

wire load model

2For more information on references, see Clause 2.

IEEE P1603 Draft 8 Advanced Library Format (ALF) Reference Manual

11

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

12

Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 8

5. ALF language construction principles and overview
This section presents the ALF language construction principles and gives an overview of the language features.
The ALF statements and the rules for relationships between ALF statements are presented summarily. Keywords

are involved in the declaration of ALF statements. The keywords in ALF shall be case-insensitive. However,
uppercase is used for keywords throughout this section for clarity.

5.1 ALF meta-language

Syntax 1 establishes an ALF meta-language.

ALF_statement ::=
ALF type[[index] ALF _name[index]] [= ALF_value] ALF_statement_termination
ALF_type::=
identifier
@
ALF_name::=
identifier
| control_expression
ALF_value::=
number
| multiplier_prefix_symbol
| identifier
| quoted_string
| bit_literal
| based_literal
| edge_value
| arithmetic_expression
| boolean_expression
| control_expression
ALF_statement_termination ::=

|{{ALF_va|ue|:|; }
| {ALF_statement}}}

Syntax 1—Syntax construction for ALF meta-language

The ALF type is defined by an identifier (see 6.13) or by the operator “@" (see 6.4) or by the delimiter “:” (see
6.3). The usage of an identifier, an operator, or a delimiter as ALF type is defined by ALF language rules con-
cerning the particular ALF type. The identifier can be a predefined keyword (see 6.13.7).

The ALF name is defined by an identifier (see 6.13) or by a control expression (see 9.4). Depending on the ALF
type, the ALF name is mandatory or optional or not applicable. The usage of an identifier or a control expression
as ALF nameis defined by ALF language rules concerning the particular ALF type. The ALF nameis optionally
preceded by an index (see 6.6) to specify a vectorized object. Another index can optionally succeed the ALF
name to specify a 2-dimensional vectorized object. A 2-dimensional vectorized object shall be called matrix
object. An object without index shall be called scalar object. The usage of an index in conjunction with an ALF
name is defined by ALF language rules concerning the particular ALF type.

The ALF value is defined by a number (see 6.5), a multiplier prefix symbol (see 6.7), an identifier (see 6.13), a
guoted string (see 6.14), a bit literal (see 6.8), a based literal (see 6.9), an edge value (see 6.12), an arithmetic
expression (see 10.1), a boolean expression (see 9.9), or a control expression (see 9.4). Depending on the type of
the ALF statement, the ALF value is mandatory or optional or not applicable. The usage of a particular kind of
ALF valueisdefined by ALF language rules concerning the particular ALF type.

IEEE P1603 Draft 8 Advanced Library Format (ALF) Reference Manual 13

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

An ALF statement shall use the delimiters*;”, “{* and “}” to indicate its termination.

An ALF statement can contain one or more other ALF statements. The former is called parent of the latter. Con-
versely, the latter is called child of the former. An ALF statement with a child is called a compound ALF state-
ment. An ALF statement that is related to another ALF statement by anchestry in the parent/child relationship is
called an anchestor of the other ALF statement. Conversely, the latter is called a descendant of the former.

An ALF statement containing one or more ALF values, possibly interspersed with the delimiters “;” or “:”, is
called a semi-compound ALF statement. The items between the delimiters “{* and “}” are called contents of the
ALF statement. The usage of the delimiters “;” or “:” within the contents of an ALF statement isdefined by ALF
language rules concerning the particular ALF statement.

An ALF statement without child is caled an atomic ALF statement. An ALF statement which is either com-
pound or semi-compound is called a non-atomic ALF statement.

Example

a) ALF statement describing an unnamed object without val ue:
ARBI TRARY_ALF_TYPE {
/1 put children here
}
b) ALF statement describing an unnamed object with value:
ARBI TRARY_ALF _TYPE = arbitrary_ALF val ue;
or
ARBI TRARY_ALF TYPE = arbitrary_ALF val ue {
/1 put children here
}
c¢) ALF statement describing a named object without value:
ARBI TRARY_ALF_TYPE arbitrary_ALF_nane;
or
ARBI TRARY_ALF_TYPE arbitrary_ALF _name {
/1 put children here
}
d) ALF statement describing a named object with value:
ARBI TRARY_ALF _TYPE arbitrary_ALF_name = arbitrary_ALF_val ue;
or
ARBI TRARY_ALF TYPE arbitrary_ ALF nane
/1l put children here

arbitrary_ALF _val ue {

}

End of example

5.2 Categories of ALF statements

In this section, the terms statement, type, name, value are used for shortnessin lieu of ALF statement, ALF name,
ALF value, respectively.

14 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 8

Statements are divided into the following categories: generic object, library-specific object, arithmetic model,
arithmetic submodel, arithmetic model container, geometric model, annotation, annotation container, and auxil-

iary statement, as shownin Table 1.

Table 1—Categories of ALF statements

Category

Purpose

Syntax particularity

Generic object

Provide adefinition for use within other
ALF statements.

Statement is atomic, semi-compound or com-

pound.
Name is mandatory.

Value is either mandatory or not applicable.

Library-specific object

Describe the contents of alC technology
library.

Statement is atomic or compound.
Name is mandatory.
Value does not apply.

Category of parent islibrary-specific object.

specific measurement condition.

Arithmetic model Describe an abstract mathematical quan- | Statement is atomic or compound.
tity that can be calculated and possibly Name is optional.
measured within the design of an IC. Valueis mandatory, if atomic.
Arithmetic submodel Describe an arithmetic model under a Statement is atomic or compound.

Name does not apply.
Valueis mandatory, if atomic.
Category of parent isarithmetic model.

Arithmetic model con-
tainer

Provide a context for an arithmetic
mode!.

Statement is compound.
Name and value do not apply.
Category of child isarithmetic model.

Geometric model

Describe an abstract geometry used in
physical design of anIC.

Statement is semi-compound or compound.

Nameis optional.
Value does not apply.

Annotation

Provide aqualifier or a set of qualifiers
for an ALF statement.

Statement is atomic or semi-compound.
Name does not apply.

Value is mandatory, if atomic. Value does not

apply, if semi-compound.

Annotation container

Provide a context for an annotation.

Statement is compound.
Name and value do not apply.
Category of child isannotation.

Auxiliary statement

Provide an additional description within
the context of alibrary-specific object,
an arithmetic model, an arithmetic sub-
model, geometric model or another aux-
iliary statement.

Dependent on subcategory.

Figure 5 illustrates the parent/child relationship between categories of statements.

IEEE P1603 Draft 8

Advanced Library Format (ALF) Reference Manual

15

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

legend:
parent —® child
parent — — 3 child

no restrictive rules

with restrictive rules

s Y

arithmetic model container

arithmetic model 4—

-

~

y 4
library- speC|f|c Obj ect

N

generic object -

e

A

- S v _ -geometric model
A > auxn|ary Statement. _
[arithmetic submodel- — , -
\ - -
- I
>
library-specificobject — - ___» annotation container
arithmetic model — generic object
. J : — % annotation
auxiliary statement ~ —%
library-specific object

_ " » arithmetic model container

~ » arithmetic model

— - arithmetic submodel

— . auxiliary statement

> . a@nnotation container
A annotation

Figure 5—Parent/child relationship between ALF statements

More detailed rules for parent/child relationships for particular types of statements apply.

5.3 Generic objects and library-specific objects

Statements with mandatory name are called objects, i.e., generic object and library-specific object. Table 2 lists
the keywords and items in the category generic object. The keywords used in this category are called generic

keywords.
Table 2—Generic objects
Keyword Item Section
ALl AS Alias declaration See7.7.
CONSTANT Constant declaration See7.8.
16 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 8

Table 2—Generic objects (Continued)

Keyword Item Section
CLASS Class declaration See 7.12.
GROUP Group declaration See 7.14.
KEYWORD Keyword declaration See 7.9.
SEMANTI CS Semantics declaration See 7.10.
TEMPLATE Template declaration See 7.15.

Table 3—Library-specific objects

Keyword Item Section

LI BRARY Library declaration See8.2.

SUBLI BRARY Sublibrary declaration See8.2.

CELL Cell declaration See 8.4.

PRI M Tl VE Primitive declaration See 8.9.

W RE Wire declaration See 8.10.
PI'N Pin declaration See 8.6.

Pl NGROUP Pin group declaration See 8.7.

VECTOR Vector declaration See 8.14.
NODE Node declaration See8.12.
LAYER Layer declaration See 8.16.
VI A Viadeclaration See 8.18.
RULE Rule declaration See 8.20.
ANTENNA Antenna declaration See 8.21.
SITE Site declaration See 8.25.
ARRAY Array declaration See 8.27.
BLOCKAGE Blockage declaration See 8.22.
PORT Port declaration See 8.23.
PATTERN Pattern declaration See 8.29.
REG ON Region declaration See 8.31.

IEEE P1603 Draft 8

Advanced Library Format (ALF) Reference Manual

Table 3 lists the keywords and items in the category library-specific object. The keywords used in this category
are called library-specific keywords.

Figure 6 illustrates the parent/child relationship between statements within the category library-specific object.

17

10

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

library — = sublibrary

v

node

layer / \

wire cell

antenna pattern

port

primitive

sSte O\ / \1 ‘
vector pin pih-group pin
array
region /blockage
rule /

/ 'egend:
via parent ———>

child

Figure 6—Parent/child relationship amongst library-specific objects

A parent can have multiple library-specific objects of the same type as children. Each child is distinguished by

name.

5.4 Singular statements and plural statements

Auxiliary statements with predefined keywords are divided in the following subcategories: singular statement

and plural statement.

Aucxiliary statements with predefined keywords and without name are called singular statements. Auxiliary state-
ments with predefined keywords and with name, yet without value, are called plural statements.

Table4 liststhe singular statements.

Table 4—Singular statements

Keyword Item Value Complexity Section
FUNCTI ON Function statement N/A Compound See9.1.
TEST Test statement N/A Compound See9.2.
RANGE Range statement N/A Semi-compound See9.8.
FROM From statement N/A Compound See 10.12.
TO To statement N/A Compound See 10.12.

18 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 8

Table 4—Singular statements (Continued)

Keyword Item Value Complexity Section
VI OLATI ON Violation statement N/A Compound See 10.10.
HEADER Header statement N/A Compound See 10.4.
TABLE Table statement N/A Semi-compound See 10.4.
EQUATI ON Equation statement N/A Semi-compound See 10.4.
BEHAVI OR Behavior statement N/A Compound See 9.4.
STRUCTURE Structure statement N/A Compound See 9.5.
NON_SCAN_CELL Non-scan cell statement | Optional Compound or semi-compound See9.7.
ARTWORK Artwork statement Mandatory Compound or atomic See 9.19.
Table5 lists the plural statements.
Table 5—Plural statements
Keyword Item Name Complexity Section
STATETABLE State table statement Optional Semi-compound See 9.6.
@ Control statement Mandatory Compound See94.
Alternative control statement Mandatory Compound See9.4.
Figure 7 illustrates the parent/child relationship for singular statements and plural statements.
IEEE P1603 Draft 8 Advanced Library Format (ALF) Reference Manual 19

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

statetalﬁe be&avi or

legend:
parent —® child

primitive cell p pin
non-scan cell
artwork
function test range
violation-e— ; ;
— arithmetic model from
structure ¢ o

L arithmetic submodel

—arithmetic submo

. » header
L table
- equation

I

—®>control statement
—®alternative control statement

Figure 7—Parent/child relationship involving singular statements and plural statements

A parent can have at most one child of a particular type in the category singular statements, but multiple children

of aparticular type in the category plural statements.

5.5 Instantiation statement and assignment statement

Auxiliary statements without predefined keywords use the name of an object as keyword. Such statements are
divided in the following subcategories. instantiation statement and assignment statement.

Compound or semi-compound statements using the name of an object as keyword are called instantiation state-
ments. Their purpose is to specify an instance of the object.

Table 6 lists the instantiation statements.

Table 6—Instantiation statements

Item Section
Cell instantiation See 9.5.
Primitive instantiation See94.
Template instantiation See 7.16.
Viainstantiation See 9.20.
Wire instantiation See9.15

20 Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 8

Atomic statements without name using an identifier as keyword which has been defined within the context of
another object are called assignment statements. A value is mandatory for assignment statements, as their pur-
poseisto assign avaue to the identifier. Such an identifier is called avariable.

Table 7 lists the assignment statements.

Table 7—Assignment statements

Item Section
Pin assignment See 9.3.2, Syntax 68.
Arithmetic assignment See 7.16, Syntax 42.
Boolean assignment See 9.4, Syntax 69.

Figure 8 illustrates the parent/child relationship involving instantiation and assignment statements.

legend:

behavior parent ——® child no restrictive rules

parent = — —# child with restrictive rules

L primitiveinstantiation——)
- boolean assignment

—® control statement

—®alternative control statement ——
generic object

library-specific object ™
: TN A
sngular statement " A
non-scan cell structure T - templateinstantiation
I plural statement -
| . . - - » !
| y/ arithmetic model 4 |
~
artwork . cell instantiation ~ / arithmetic submodel” _ v \
\ v ¢ ’/ arithmetic model container arithmetic assignment

pin assignment e—Wwire instantiation

Figure 8—Parent/child relationship involving instantiation and assignment statements

A parent can have multiple children using the same keyword in the category instantiation statement, but at most
one child using the same variable in the category assignment statement.

5.6 Annotation, arithmetic model, and related statements

Multiple keywords are predefined in the categories arithmetic model, arithmetic model container, arithmetic
submodel, annotation, annotation container, and geometric model. Their semantics are established within the

IEEE P1603 Draft 8 Advanced Library Format (ALF) Reference Manual 21

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

context of their parent. Therefore they are called context-sensitive keywords. In addition, the ALF language
allows additional definition of keywords in these categories. Table 8 provides areference to sections where more
definitions about these categories can be found.

Table 8—Other categories of ALF statements

Item Section
Arithmetic model See 10.3.
Arithmetic submodel See 10.7.

Arithmetic model container See 10.8.

Annotation See7.3.
Annotation container See7.4.
Geometric model See 9.16.

There exist predefined keywords with generic semantics in the category annotation and annotation container.
They are called generic keywords, comparable to keywords for generic objects. Table 9 lists the generic key-
words in the category annotation and annotation container.

Table 9—Annotations and annotation containers with generic keyword

Keyword Item / subcategory Section
PROPERTY Annotation container. See 7.6.
ATTRI BUTE Multi-value annotation. See7.5.
| NFORVATI ON Annotation container. See 8.3.2.

Table 10 lists predefined keywords in categories related to arithmetic model.

Table 10—Keywords related to arithmetic model

Keyword Item / category Section

LIMT Arithmetic model container. See 10.8.2.

M N Arithmetic submodel, also operator within arithmetic expression. See 10.5,10.2.3.
MAX Arithmetic submodel, also operator within arithmetic expression. See 10.5,10.2.3.
TYP Arithmetic submodel. See 10.5.
DEFAULT Annotation. See 10.9.4.

ABS Operator within arithmetic expression. See 10.2.3.

EXP Operator within arithmetic expression. See 10.2.3.

LOG Operator within arithmetic expression. See 10.2.3.

22 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 8

The definitions of other predefined keywords, especially in the category arithmetic model, can be self-described
in ALF using the keyword declaration statement (see 7.9).

5.7 Statements for parser control

Table 11 provides areference to statements used for ALF parser control.

Table 11—Statements for ALF parser control

Keyword Satement Section
I NCLUDE Include statement See 7.17.
ASSCCI ATE Associate statement See7.18.
ALF_REVI SI ON Revision statement See 7.19.

The statements for parser control do not necessarily follow the ALF meta-language shown in Syntax 1.

5.8 Name space and visibility of statements

The following rules for name space and visibility shall apply.

a)
b)
<)

d)

e

A statement shall be visible within its parent statement, but not outside its parent statement.

A statement visible within another statement shall also be visible within achild of that other statement.
All objects (i.e., generic objects and library-specific objects) shall share a common name space within
their scope of visibility. No object shall use the same name as any other visible object. Conversely, an
object can use the same name as any other object outside the scope of its visibility.

The following exception of rule ¢) is allowed for specific objects and with specific semantic implica-
tions. An object of the same type and the same name can be redeclared, if semantic support for this
redeclaration is provided. The purpose of such a redeclaration is to supplement the original declaration
with new children statements which augment the original declaration without contradicting it.

All statements with optional names (i.e., property, arithmetic model, geometric model) shall share acom-
mon name space within their scope of visibility. No statement with optional name shall use the same
name as any other visible statement with optional name. Conversely, a statement can use the same
optional name as any other statement with optional name outside the scope of its visibility.

IEEE P1603 Draft 8 Advanced Library Format (ALF) Reference Manual 23

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

24

Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 8

6. Lexical rules
This section discusses the lexical rules.

The ALF source text files shall be a stream of Iexical tokens and whitespace. Lexical tokens shall be divided into
the categories delimiter, operator, comment, number, bit literal, based literal, edge, quoted string, and identifier.

Each lexical token shall be composed of one or more characters. Whitespace shall be used to separate lexical
tokens from each other. Whitespace shall not be allowed within alexical token with the exception of comment
and quoted string.

The specific rules for construction of lexical tokens and for usage of whitespace are defined in this section.

6.1 Character set
This standard shall use the ASCI| character set [see |SO/IEC 8859-1 : 1987(E), ASCII character set].

The ASCII character set shall be divided into the following categories: whitespace, |etter, digit, and special, as
shown in Syntax 2.

character ::=
whitespace
| letter
| digit
| special
whitespace ::=
space | horizontal_tab | new_line | vertical_tab | form_feed | carriage_return
letter ::=
uppercase | lowercase
uppercase ::=
AIBICIDIEIFIGIH|I'1J|K|L
INJOIPIQIRIS|ITIUIV W X]
lowercase ::= L.
| ?|b|0|d|e|f|g|h|lu|k|l|m|n|
igit ;1=
011121314,516,718]9
ia =

special ::
&1l =1+ 21 L =N\1.1$| |#
|(||£I|<||>I+|[||l]|l{||}| e L1 1@ 1= 1NV 1S |

Syntax 2—ASCII character set divided into categories

M
Y|Z
olpIgIr|s|itiulviw|X|y|z

Table 12 shows the list of whitespace characters and their ASCII code.

Table 12—List of whitespace characters

Name ASCII code (octal)
Space 200
Horizontal tab 011
New line 012
Vertical tab 013

IEEE P1603 Draft 8 Advanced Library Format (ALF) Reference Manual 25

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

Table 12—List of whitespace characters (Continued)

Name ASCII code (octal)
Form feed 014
Carriage return 015

Table 13 shows the list of special characters and their names used in this standard.

26

Table 13—List of special characters

Symbol

Name

Amperesand

Vertical bar

Caret

Tilde

Plus

Dash

Asterix

Slash

Percent

Question mark

Exclamation mark

Colon

Semicolon

Comma

Double quote

Single quote

At sign

Equal sign

Backslash

Dot

Dollar

Underscore

Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 8

Table 13—List of special characters (Continued)

Symbol Name
Pound
() Parenthesis (open, close)
< > Angular bracket (open, close)
[] Square bracket (open, close)
{ } Curly bracket (open, close)

6.2 Comment

A comment shall be divided into the subcategories in-line comment and block comment, as shown in Syntax 3.

comment ::=
in_line_comment
| block_comment
in_line_comment ::=
| I{ character} new_line
|/ [{ character} carriage_return
block_comment ::=
| *{character} * |

Syntax 3—Comment

The start of an in-line comment shall be determined by the occurence of two subsequent slash characters without
whitespace in-between. The end of an in-line comment shall be determined by the occurence of anew line or of a
carriage return character.

The start of a block comment shall be determined by the occurence of a slash character followed by an asterix
without whitespace in-between. The end of a block comment shall be determined by the occurence of an asterix
character followed by a slash character.

A comment shall have the same semantic meaning as a whitespace. Therefore, no syntax rule shall involve a
comment.

6.3 Delimiter

The specia characters shown in Syntax 4 shall be considered delimiters.

delimiter ;=

(DI,

Syntax 4—Delimiter

When appearing in a syntax rule, a delimiter shall be used to indicate the end of a statement or of a partial state-
ment, the begin and end of an expression or of a partial expression.

IEEE P1603 Draft 8 Advanced Library Format (ALF) Reference Manual 27

10

15

20

25

30

35

40

45

50

55

1

10

15

20

25

30

35

40

45

50

55

6.4 Operator

Operators shall be divided into the following subcategories: arithmetic operator, boolean operator, relational

operator, shift operator, event operator, and meta operator, as shown in Syntax 5.

operator ::=
arithmetic_operator

| boolean_operator

| relational _operator

| shift_operator

| event_operator

| meta_operator
arithmetic_operator ::=

L AR
boolean_operator ::=

E&II~& I~[I™ M~ 1 &]
relational _operator ::=

::|!_:|>:|<:|>|<
shift_operator ::=

<L |>>
event_operator ::=

S|~ <> <> | &> <& >
meta_op)erator =

=1?71@

Syntax 5—Operator

When appearing in a syntax rule, an operator shall be used within a statement or within an expression. An opera-
tor with one operand shall be called unary operator. An unary operator shall precede the operand. An operator
with two operands shall be called binary operator. A binary operator shall succeed the first operand and precede
the second operand.

6.4.1 Arithmetic operator

Table 14 shows the list of arithmetic operators and their names used in this standard.

Table 14—List arithmetic operators

Symboal Operator name Unary / binary Section
+ Plus Binary See9.11.4.
- Minus Both See9.11.4.
* Multiply Binary See9.11.4.
/ Divide Binary See 9.11.4.
% Modulus Binary See9.11.4.
*% Power Binary See 10.2.2.

Arithmetic operators shall be used to specify arithmetic operations.

28

Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 8

6.4.2 Boolean operator

Table 15 shows the list of boolean operators and their names used in this standard.

Table 15—List of boolean operators

Symbol Operator name Unary / binary Section
| Logical inversion Unary See9.11.1.
& & Logical and Binary See9.11.1.
|| Logical or Binary See9.11.1.
~ bit-wiseinversion Unary See9.11.2.
& bit-wise and Both See9.11.2.
~& bit-wise nand Both See9.11.2.
| bit-wise or Both See9.11.2.
~| bit-wise nor Both See9.11.2.
N Exclusive or Both See9.11.2.
~N Exclusive nor Both See9.11.2.
Boolean operators shall be used to specify boolean operations.
6.4.3 Relational operator
Table 16 shows the list of relational operators and their names used in this standard.
Table 16—List of relational operators
Symbol Operator name Unary / binary Section
== Equal Binary See9.11.6.
1= Not equal Binary See 9.11.6.
> Greater Binary See9.11.6.
< Lesser Binary See9.11.6.
>= Grester or equal Binary See 9.11.6.
<= Lesser or equal Binary See9.11.6.

Relational operators shall be used to specify mathematical relationships between numbers.

IEEE P1603 Draft 8

Advanced Library Format (ALF) Reference Manual

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

6.4.4 Shift operator

Table 17 shows the list of shift operators and their names used in this standard.

Table 17—List of shift operators

Symbol Operator name Unary / binary Section
<< Shift left Binary See9.11.5.
>> Shift right Binary See9.11.5.
Shift operators shall be used to specify manipulations of discrete mathematical values.
6.4.5 Event operator
Table 18 shows the list of event operators and their names used in this standard.
Table 18—List of event operators
Symbol Operator name Unary / binary Section
> Immediately followed by Binary See9.13.3.
~> Eventually followed by Binary See9.13.3.
<-> Immediately following each other Binary See9.13.4.
<~> Eventually following each other Binary See9.13.4.
&> Simultaneous or immediately followed by Binary See9.13.3.
<& > Simultaneous or immediately following each other Binary See9.13.4.

Event operators shall be used to express temporal relationships between discrete events.

6.4.6 Meta operator

Table 19 shows the list of meta operators and their names used in this standard.

Table 19—List of meta operators

50

55

Symbol Operator name Unary / binary Section
= Assignment Binary See9.3.2,7.16, 9.4.
? Condition Binary See 9.135.
@ Control Unary See 9.4.

30

Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 8

Meta operators shall be used to specify transactions between variables.

6.5 Number

Numbers shall be divided into subcategories signed integer, signed real, unsigned integer, and unsigned real.
Furthermore, the categories signed number, unsigned number, integer and real shall be defined as shown in
Syntax 6.

number ::=
signed_integer | signed_real | unsigned_integer | unsigned_real
signed_number ::=
signed_integer | signed_real
unsigned_number ::=
unsigned_integer | unsigned_real
integer ::=
signed_integer | unsigned_integer
signed_integer ::=
sign unsigned_integer
unsigned_integer ::=
digit {[_]digit}
real ::=
signed_rea | unsigned rea
signed_real ::=
sign unsigned_real
unsigned_real ::=
mantisse [exponent]
| unsigned_integer exponent
sign::=
+ |-
mantisse ::=
. unsigned_integer
| unsigned_integer . [unsigned_integer]
exponent ::=
E [sign] unsigned_integer
| €[sign] unsigned_integer

Syntax 6—Number

A number shall be used to represent a numerical quantity.

6.6 Index value and Index

An index value shall be defined as shown in Syntax 7.

index_vaue::=
unsigned_integer | atomic_identifier

Syntax 7—Index value

The purpose of an index value is to represent a position within a range of discrete, countable values. A discrete,
countable value shall be represented by an unsigned integer (see 6.5). The usage of atomic identifier (see 6.13)
asindex value shall only be allowed, if the semantic interpretation of the atomic identifier resolves to a value of
the category unsigned integer.

An index value can represent a particular position within a pin of the category vector pin, a matrix pin (see 8.6)
or apingroup (see 8.7).

IEEE P1603 Draft 8 Advanced Library Format (ALF) Reference Manual 31

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

An index value can also be used in the context of a group declaration (see 7.14) and in the context of a range
statement (see 9.8).

An index shall be defined as shown in Syntax 8.

index ::=

single | index | multi_index
single_index ::

T index value]
multi_index ::

[index_ value ! index _value |

Syntax 8—Index

An index shall be used in conjunction with the name of a pingroup, a vector pin or amatrix pin. A single index
shall represent a particular scalar within aone-dimensional vector or a particular one-dimensional vector within a
two-dimensional matrix. A multi index shall represent arange of scalars or arange of vectors, wherein the posi-
tion of the most significant bit (MSB) is specified by the |eft index value and the position of the least significant
bit (LSB) is specified by the right index value.

6.7 Multiplier prefix symbol and multiplier prefix value

A multiplier prefix symbol shall be defined as shown in Syntax 9.

multiplier_prefix_symbol ::=
unity { letter } | K { letter} [M EG{ letter} | G{ letter }
|M{Ietter}|U{Ietter}|N{Ietter}|P{ letter } | F{ letter}
K==
Kk
M =
M|m
E:=
Ele
G:=
Gig
U=
Uju
N =
Nin
P:=
Pip
F:=
Fif

Syntax 9—Multiplier prefix symbol

The purpose of amultiplier prefix symbol is the specification of a multiplier for the base unit associated with an
arithmetic model (see 10.3). Only the leading characters of the multiplier prefix symbol shall be used for identi-
fication of the corresponding number. Optional subsequent letters can be used to indicate the base unit. For
example, “pF" can be used to denote “ picofarad”, “MegaHz" can be used to denote “ megahertz”, etc.

32 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 8

A multiplier prefix symbol shall relate to the International System of Units [see U.S. National Bureau of Stan-
dards, Spec. Pub. 330, International System of Units (1971)] as shown in Table 20.

Table 20—Multiplier prefix symbol and corresponding Sl-prefix

Lexical token Sl-prefix (symbol) | SI-prefix (word) Numerical value

F f femto le-15

P p pico le-12

N n nano le-9

U 1] micro le-6

M m milli le-3

unity 1 one 1e0

K k kilo le+3

MVEG M mega le+6

G G giga le+9

A multiplier prefix value shall be defined as shown in Syntax 10.

multiplier_prefix_value ::=
unsigned_number | multiplier_prefix_symbol

Syntax 10—Multiplier prefix value

The multiplier prefix value shall be represented either as an unsigned number (see 6.5) or amultiplier prefix sym-
bol (see 6.7). An application shall interpret a multiplier prefix value semantically as unsigned number.

6.8 Bit literal

Bit literals shall be divided into the subcategories alphanumeric bit literal and symbolic bit literal, as shown in
Syntax 11.

bit_literal ::=
alphanumeric_bit_literal
| symbolic_bit_literal
aphanumeric_hit_literal
numeric_bit_literal
| alphabetic_bit_literal
numeric_bit_literal ::=

aphabetic _bit_literal ::=
X|ZIL1H|UW
IX1z|l1hjujw

symbolic_bit_literal ::=
?1*

Syntax 11—Bit literal

IEEE P1603 Draft 8 Advanced Library Format (ALF) Reference Manual 33

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

Bit literals shall be used to specify scalar values within a boolean val ue system (see 9.10).

6.9 Based literal

Based literals shall be divided into subcategories binary based literal, octal based literal, decimal based literal,
and hexadecimal based literal, as shown in Syntax 12.

based literal ::=
binary_based_literal | octal_based literal | decimal_based literal | hexadecimal_based_literal
binary_based_literal ::=
binary_base bit_literal { [_] bit_literal }
binary base::=
1 I Ib
octal_based_literal ::=
octal_base octal_digit { [_] octal_digit }
octal_base ::=
IO | lo
octal_digit ::=
bit_literal | 2131415167
decimal_based litera ::=
decimal_base digit { [_] digit}
decima_base ::=
1 D |Td
hexadecimal _based_literal ::=
hexadecimal_base hexadecimal_digit { [__] hexadecimal_digit }
hexadecimal_base ::=
1 H | lh
hexadecimal_digit ::=
octal_digit|8]9
|A|B|%AD|E|F
lajbicidie|f

Syntax 12—Based literal

Based literals shall be used to specify vectorized values within a boolean value system.

6.10 Boolean value

A boolean value shall be defined as shown in Syntax 13.

boolean value::=
aphanumeric_hit_literal | based_literal | integer

Syntax 13—Boolean value

The semantics of aboolean value are explained in section 9.10.

6.11 Arithmetic value
An arithmetic value shall be defined as shown in Syntax 14.

An arithmetic value shall represent data for an arithmetic model (see 10.3) or for an arithmetic assignment (see
7.16). Semantic restrictions apply, depending on the particular type of arithmetic model.

34 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 8

arithmetic_value ::=
number | identifier | bit_literal | based literal

Syntax 14—Arithmetic value

6.12 Edge literal and edge value

Edge literals shall be divided into subcategories bit edge literal, based edge literal, and symbolic edge literal, as
shown in Syntax 15.

edge literal ::=

bit_edge literal

| based_edge literal

| symbolic_edge literal
bit_edge literal ::=

bit_literal bit_literal
based_edge literal ::=

based_literal based_| Iiteral
symbollc edg;e literal ::

Syntax 15—Edge literal

Edge literals shall be used to specify a change of value within a boolean system. In general, bit edge literals shall
specify a change of a scalar value, based edge literals shall specify a change of a vectorized value, and symbolic
edge literals shall specify achange of ascalar or of a vectorized value.

An edge value shall be defined as shown in Syntax 16.

edge value::
(‘edge literal)

Syntax 16—Edge value

An edge value shall be used to represent a standalone edge literal that is not embedded in a vector expression.

6.13 Identifier

Identifiers shall be divided into the subcategories atomic identifier, indexed identifier, hierarchical identifier and
escaped identifier, as shown in Syntax 17. The subcategory atomic identifier shall be further divided into non-
escaped identifier and placeholder identifier The subcategory hierarchical identifier shall be further divided into
full hierarchical identifier and partial hierarchical identifier.

identifier ::=

atomic_identifier | indexed_identifier | hierarchical_identifier | escaped_identifier
atomic_identifier ::=

non_escaped_identifier | placeholder_identifier
hierarchical_identifier ::=

full_hierarchical_identifier | partial_hierarchical_identifier

Syntax 17—Identifier

IEEE P1603 Draft 8 Advanced Library Format (ALF) Reference Manual 35

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

Anidentifier shall be used to specify an ALF name or an ALF value. Anidentifier can also appear asavariablein
an arithmetic expression (see 10.1), in aboolean expression (see 9.9) or in a vector expression (see 9.12).

A lowercase character used within a keyword or within an identifier shall be considered equivalent to the corre-
sponding uppercase character, i.e., ALF shall be case-insensitive. However, whenever an identifier is used to
specify an ALF name, the usage of the exact uppercase or lowercase letters shall be preserved by the parser to
enable usage of the same name by a case-sensitive application.

6.13.1 Non-escaped identifier

A non-escaped identifier shall be defined as shown in Syntax 18.

non_escaped_identifier ::=
letter { letter |digit| | $|#}

Syntax 18—Non-escaped identifier

A non-escaped identifier shall be used, when there is no lexical conflict, i.e., no appearance of a character with
special meaning, and no semantic conflict, i.e., theidentifier is not used elsewhere as a keyword.

6.13.2 Placeholder identifier

A placeholder identifier shall be defined as a non-escaped identifier enclosed by angular brackets without
whitespace, as shown in Syntax 19.

placeholder_identifier ::=
< non_escaped_identifier >

Syntax 19—Placeholder identifier

A placeholder identifier shall be used to represent aformal parameter in atemplate statement (see 7.15), which is
to be replaced by an actual parameter in atemplate instantiation statement (see 7.16).

6.13.3 Indexed identifier

Anindexed identifier shall be defined as an atomic identifier followed by an index (see 6.6) without whitespace,
as shown in Syntax 20.

indexed_identifier ::=
atomic_identifier index

Syntax 20—Indexed identifier

The atomic identifier shall be interpreted as the ALF name of a one-or atwo-dimensional object, i.e., avector pin
or amatrix pin (see 8.6). The index shall be interpreted as the position of a scalar element within a one-dimen-
sional object or a one-dimensional dlice within atwo-dimensional object.

6.13.4 Full hierarchical identifier

A full hierarchical identifier shall be defined as shown in Syntax 21.

36 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 8

full_hierarchical_identifier ::=
atomic_identifier [index] . atomic_identifier [index] { . atomic_identifier [index] }

Syntax 21—Hierarchical identifier

A full hierarchical identifier shall be used to specify ahierarchical name, i.e., the name of achild preceded by the
name of its parent. A dot within a hierarchical identifier shall be used to separate a parent from a child.

6.13.5 Partial hierarchical identifier

A partial hierarchical identifier shall be defined as shown in Syntax 22.

partial_hierarchical_identifier ::=
atomic_identifier [index] { . atomic_identifier [index]} ..
{ atomic_identifier [index] { . atomic_identifier [index]} ..}
[atomic_identifier [index] { . atomic_identifier [index] }]

Syntax 22—~Partial hierarchical identifier

A partial hierarchical identifier shall be used to specify an incomplete hierarchical name. The two dots shall
indicate that the preceding atomic identifier is an anchestor of the subsequent atomic identifier. A partia hierar-
chical identifier terminated by two dots shall be interpreted as a reference to any possible descendant of the pre-
ceding anchestor.

NOTE — A restriction as to which descendant is applicable, can be given by a particular syntax or semantic rule.
6.13.6 Escaped identifier

An escaped identifier shall be defined as shown in Syntax 23.

escaped_identifier ::=

\ escapable_character { escapable_character }
escapable_character ::=

letter | digit | specia

Syntax 23—Escaped identifier

An escaped identifier shall be used to legalize the usage of a special character or the usage of an identifier other-
wise reserved as a keyword.

A dot within an escaped identifier shall be semanticaly interpreted in the same way as a dot within afull hierar-
chical identifier (see 6.13.4), unless the dot isimmediately preceded by a backslash.

A lexical sequence of characters according to Syntax 8 at the end of the escaped identifier or preceding a dot
within the escaped identifier shall be interpreted as an index (see 6.6) in the same way as within a full hierarchi-
cal identifier or within an indexed identifier (see 6.13.3), unlessthe lexical sequence of charactersisimmediately
preceded by a backslash.

A backdash within an escaped identifier shall semantically be considered part of an ALF name or of an ALF
value designated by the escaped indentifier, with exception of the leading backslash and a backslash immediately
preceding adot or an index.

Example

IEEE P1603 Draft 8 Advanced Library Format (ALF) Reference Manual 37

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

\id1[0].id2\[1] \id3\.id4 represents 3 levels of hierarchy.

The anchestor isthe element at position 0 of the one-dimensional object "id1”. The child of "id1[0]” isthe scalar
object "id2[1]”. The child of "id2[1]” isthe scalar object "id3.id4".

NOTE — The scalar object "id2[1]" by itself has to be declared as "\id2\[1]”. The scalar object "id3.id4” by itself hasto be
declared as"\id3\.id4".

End of example
6.13.7 Keyword identifier

Keywords shall be lexically equivalent to non-escaped identifiers. Predefined keywords are listed in Table 2 —
Table 5 and Table 9 — Table 11. Additional keywords are predefined in 7.9.

The predefined keywords in this standard shall follow a more restrictive lexical rule than general non-escaped
identifiers, as shown in Syntax 24.

keyword_identifier ::=
letter { [_] letter }

Syntax 24—Keyword identifier

The reason for the more restrictive lexical rule isto encourage the use of words taken from a natural language as
keywords. Words in a natural language are constructed from lexical characters only, not from numbers. The
underscore can be used to indicate that there would be a whitespace or a dash in the word from the natural lan-

guage.
NOTE—This document presents keywords in all-uppercase letters for clarity.
6.14 Quoted string

A quoted string shall be a sequence of zero or more characters enclosed between two double quote characters, as
shown in Syntax 25.

quoted_string ::=
" { character} "

Syntax 25—Quoted string

Within a quoted string, a sequence of characters starting with an escape character shall represent a symbol for
another character, as shown in Table 21.

Table 21—Character symbols within a quoted string

Symbol Character ASCII code (octal)
\g Alert or bell. 007
\h Backspace. 010
\t Horizontal tab. 011

38 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 8

Table 21—Character symbols within a quoted string (Continued)

\'n New line. 012
\'v Vertical tab. 013
\ f Form feed. 014
\r Carriage return. 015
\ " Double quote. 042
\\ Backslash. 134
\ digit digit digit ASCII character represented by three digit digit digit digit
octal ASCII code.

The start of a quoted string shall be determined by a double quote character. The end of a quoted string shall be
determined by a double quote character preceded by an even number of escape characters or by any other charac-
ter than escape character.

6.15 String value

A string value shall be defined as shown in Syntax 26.

string_value ::=
quoted_string | identifier

Syntax 26—String value

A string value shall represent textual datain general and the name of areferenced object in particular.

6.16 Generic value

An generic value shall be defined as shown in Syntax 27.

generic_vaue::=
number
| multiplier_prefix_symbol
| identifier
| quoted_string
| bit_literal
| based_literal
| edge_value

Syntax 27—Generic value

A generic value shall be used as an ALF value for an annotation (see 7.3), for a group declaration (see 7.14) or
for atemplate instantiation (see 7.16). Restrictions for applicable values in a particular context shall be defined
by semantic rules.

6.17 Vector expression macro

A vector expression macro shall be defined as shown in Syntax 28.

IEEE P1603 Draft 8 Advanced Library Format (ALF) Reference Manual 39

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

VeCtor_expression_macro ::=
. non_escaped_identifier

Syntax 28—Vector expression macro

A vector expression macro shall be used as a substitution for a predefined vector expression (see 9.12). The alias
declaration (see 7.7) shall be used to establish the substitution mechanism.

6.18 Rules for whitespace usage
Whitespace shall be used to separate lexical tokens from each other, according to the following rules.

a) Whitespace before and after adelimiter shall be optional.

b) Whitespace before and after an operator shall be optional.

¢) Whitespace before and after a quoted string shall be optional.

d) Whitespace before and after a comment shall be mandatory. Thisrule shall override @), b), and c).

€) Whitespace between subsequent quoted strings shall be mandatory. This rule shall override c).

f) Whitespace between subsequent lexical tokens amongst the categories number, bit literal, based literal,
and identifier shall be mandatory.

g) Whitespace before and after a placeholder identifier shall be mandatory. This rule shall override @), b),
and c).

h) Whitespace after an escaped identifier shall be mandatory. This rule shall override a), b), and c).

i) Either whitespace or delimiter before a signed number shall be mandatory. This rule shall override a), b),
and c).

j) Either whitespace or delimiter before a symbolic edge literal shall be mandatory. Thisrule shall override
a), b), and c).

Whitespace before thefirst lexical token or after the last lexical token in afile shall be optional. Hencein dl rules
prescribing mandatory whitespace, “before” shall not apply for the first lexical token in a file, and “after” shall
not apply for the last lexical token in afile.

6.19 Rules against parser ambiguity

In asyntax rule where multiple legal interpretations of alexical token are possible, the resulting ambiguity shall
be resolved according to the following rules.

a) Inacontext where both bit literal and identifier arelegal, anon-escaped identifier shall take priority over
asymbolic bit literal.

b) In acontext where both bit literal and number are legal, an unsigned integer shall take priority over a
numeric bit literal.

¢) Inacontext where both edge literal and identifier are legal, a non-escaped identifier shall take priority
over abit edgeliteral.

d) Inacontext where both edge literal and number are legal, an unsigned integer shall take priority over a
bit edge literal.

If the interpretation as bit literal is desired in case @) or b), a based literal can be substituted for a bit literal.

If the interpretation as edge literal isdesired in case €) or d), abased edge literal can be substituted for abit edge
literal.

40 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 8

7. Generic objects and related statements

7.1 Generic object

A generic object shall be defined as shown in Syntax 29.

generic_object ::=

aliias_declaration

| constant_declaration

| class_declaration

| keyword_declaration

| semantics_declaration

| group_declaration

| template_declaration

Syntax 29—Generic object

The purpose of a generic object is to specify a re-usable statement in ALF. A generic object shall be either a
declared alias (see 7.7), a declared constant (see 7.8), adeclared class (see 7.12), a declared keyword (see 7.9), a
declared semantics (see 7.10), adeclared group (see 7.14) or a declared template (see 7.15).

A generic object shall have an ALF name. Plural generic objects of the same ALF type can be declared within the
same context. They shall be distinguished by their ALF name.

7.2 All purpose item

An all-purpose item shall be defined as shown in Syntax 30.

al_purpose_item ::=
generic_object
| include_statement
| associate_statement
| annotation
| annotation_container
| arithmetic_model
| arithmetic_model_container
| all_purpose_item_template_instantiation

Syntax 30—All purpose item

The purpose of an all-purpose itemis to specify acategory of statements that are supported in the syntax rules of
alibrary-specific object (see 8.1), without semantic restrictions. The semantic restrictionsfor an all-purpose item
shall be defined by a keyword declaration (see 7.9) or by a semantics declaration (see 7.10).

An al-purpose item shall be either a generic object (see 7.1), an include statement (see 7.17), an associate state-

ment (see 7.18), an annotation (see 7.3), an annotation container (see 7.4), an arithmetic model (see 10.3), or an
arithmetic model container (see 10.8).

7.3 Annotation

An annotation shall be divided into the subcategories single value annotation and multi value annotation, as
shown in Syntax 31.

IEEE P1603 Draft 8 Advanced Library Format (ALF) Reference Manual 41

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

annotation ::=
single_value_annotation
| multi_value_annotation
single_value_annotation ::=
annotation_identifier = annotation_value ;
multi_value_annotation ::=
annotation_identifier { annotation_value { annotation_value} }
annotation_value ::=
generic_value
| control_expression
| boolean_expression
| arithmetic_expression

Syntax 31—Annotation
The purpose of an annotation is to describe a particular semantic aspect of a statement in ALF.

An annotation shall represent an association between an identifier and a set of annotation values (values for
shortness). In case of asingle value annotation, only one value shall belegal. In case of amulti value annotation,
one or more values shall be legal. The annotation shall serve as a semantic qualifier of its parent statement. The
value shall be subject to semantic restrictions, depending on the identifier.

The annotation identifier shall be either a declared keyword (see 7.9) or the ALF type of an object, i.e., ageneric
object (see 7.1) or a library-specific object (see 8.1). In the latter case, the annotation shall be called reference

annotation. A semantics declaration (see 7.10) shall be used to legalize a reference annotation. The annotation
value of areference annotation shall be the ALF name of an object of the specified ALF type.

7.4 Annotation container

An annotation container shall be defined as shown in Syntax 32.

annotation_container ::=
annotation_container_identifier { annotation { annotation} }

Syntax 32—Annotation container
An annotation container shall represent a collection of annotations. The annotation container shall serve as a
semantic qualifier of its parent statement. The annotation container identifier shall be a keyword. An annotation
within an annotation container shall be subject to semantic restrictions, depending on the annotation container
identifier.
7.5 ATTRIBUTE statement

An attribute statement shall be defined as shown in Syntax 33.

attribute ::=
ATTRIBUTE { identifier { identifier} }

Syntax 33—ATTRIBUTE statement

The attribute statement shall be used to associate arbitrary identifiers with the parent of the attribute statement.
Semantics of such identifiers can be defined depending on the parent of the attribute statement. The attribute
statement has a similar syntax definition as a multi-value annotation (see 7.3). While a multi-value annotation

42 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 8

can have restricted semantics and a restricted set of applicable values, identifiers with and without predefined
semantics can co-exist within the same attribute statement.

Example

CELL myRAMBx128 {
ATTRI BUTE { rom asynchronous static }
}

7.6 PROPERTY statement

A property statement shall be defined as shown in Syntax 34.

proE)erty = o _ '
ROPERTY [identifier] { annotation { annotation} }

Syntax 34—PROPERTY statement

The property statement shall be used to associate arbitrary annotations with the parent of the property statement.
The property statement has a similar syntax definition as an annotation container (see 7.4). While the keyword of
an annotation container usually restricts the semantics and the set of applicable annotations, the keyword “prop-
erty” does not. Annotations shall have no predefined semantics, when they appear within the property statement,
even if annotation identifiers with otherwise defined semantics are used.

Example
PROPERTY myProperties {
paranmeterl = val uel ;

paranmeter2 = val ue2 ;
paranmeter3 { val ue3 val ued4 val ue5 }

7.7 ALIAS declaration

An alias shall be declared as shown in Syntax 35.

dias_declaration ::=
AL ASalias identifier = original_identifier ;
| ALTAS vector_expression_macro = (vector_expression)

Syntax 35—ALIAS declaration

The alias declaration shall specify an aliasidentifier (see 6.13) or avector expression macro (see 6.17).

The dlias identifier can be used as a substitution of an original identifier, used to specify a name or avalue of an
ALF statement. The dias identifier shall be semantically interpreted in the same way asthe original identifier.

The vector expression macro can be used as a substitution of a vector expression.

IEEE P1603 Draft 8 Advanced Library Format (ALF) Reference Manual 43

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

Example

ALI AS reset = clear;
ALI AS #.rising_edge = (01 clock);

7.8 CONSTANT declaration

A constant shall be declared as shown in Syntax 36.

congtant_declaration ::=

CONSTANT constant_identifier = constant_value ;
constant_value ::=

number | based_literal

Syntax 36—CONSTANT declaration

The constant declaration shall specify an identifier which can be used instead of a constant value, i.e., a number
or abased literal. The identifier shall be semantically interpreted in the same way as the constant value.

Example

CONSTANT vdd = 3. 3;
CONSTANT opcode = ‘ hOf 3a;

7.9 KEYWORD declaration

A keyword shall be declared as shown in Syntax 37.

keyword declaration ::=
EYWORD keyword_identifier = syntax_item_identifier
|[KEYWORD keyword_identifier = syntax_item i dentifier{ { CONTEXT_annotation} }

Syntax 37—KEYWORD declaration

A keyword declaration shall be used to define a new keyword in a category or in a subcategory of ALF state-
ments specified by a syntax item identifier.

A keyword item can be used to qualify the contents of the keyword declaration. One or more annotations (see
7.11) can be used as akeyword item.

A legd syntax itemidentifier shall be defined as shown in Table 22.

Table 22—Syntax item identifier

Syntax item identifier Semantic meaning
annot ati on The keyword shall specify an annotation (see 7.3).
si ngl e_val ue_annot ati on The keyword shall specify a single value annotation (see 7.3).
nul ti _val ue_annotation The keyword shall specify a multi-value annotation (see 7.3).

44 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 8

Table 22—Syntax item identifier (Continued)

Syntax item identifier Semantic meaning
annot at i on_cont ai ner The keyword shall specify an annotation container (see 7.4).
arithnetic_nodel The keyword shall specify an arithmetic model (see 10.3).
arithmetic_subnodel The keyword shall specify an arithmetic submodel (see 10.7).
arithnetic_nmodel _contai ner The keyword shall specify an arithmetic model container (see 10.8).
geomnet ri c_nodel The keyword shall specify a geometric model (see 9.16).

A keyword declaration shall be equivaent to an extension of the ALF syntax. A keyword declaration shall not be

overwritten or duplicated.
Example
Declaration of a keyword:
KEYWORD My Si ngl eVal ueAnnot ati on = singl e_val ue_annotation ;
The equialent syntax rule in BNF looks as follows:

MySingleValueAnnotation ::= .
MySingleValueAnnotation = annotation value ;

End of example

7.10 SEMANTICS declaration

Semantics shall be declared as shown in Syntax 38.

semantics_declaration ::=
SEMANT | CS semantics_identifier = syntax_item identifier ;
| SEMANT I CS semantics_identifier [= syntax_item_identifier] { { semantics_item} }
semantics_item ::=
CONTEXT _annotation
| VALUETYPE_single value_annotation
| VALUES multi_value_annotation
| REFERENCETYPE_annotation
| DEFAULT _single_value_annotation
| S_MODEL_single value annotation

Syntax 38—SEMANTICS declaration

A semantics declaration shall be used to define context-specific rules in a category or in a subcategory of ALF

statements. The semantics item identifier shall make reference to alegal ALF statement or to a category or sub-

category of legal ALF statements.

IEEE P1603 Draft 8 Advanced Library Format (ALF) Reference Manual

45

10

15

20

25

30

35

40

45

55

10

15

20

25

30

35

40

45

50

55

The semanticsidentifier shall be akeyword identifier (see 6.13.7) or asyntax itemidentifier (see 7.9, Table 22) or
afull hierarchical identifier (see 6.13.4), composed of one or more keyword identifiers and/or syntax item iden-
tifiers.
A syntax itemidentifier can be used as ALF value of a semantics declaration under the following restriction:

a) Thesyntax item identifier in arelated keyword declaration is “annotation”,

and

b) thesyntax item identifier of the actual semantics declaration is“single value annotation” or “multi-value
annotation”.

A semantic item can be used to qualify the contents of the semantics declaration. One or more annotations (see
7.11) can be used as a semantic item.

A semantics declaration can be used to complement a keyword declaration or another semantics declaration. A
semantics declaration shall not be contradictory to an existing keyword or semantics declaration.

7.11 Annotations and rules related to a KEYWORD or a SEMANTICS declaration
This subsection defines annotations and rules related to a keyword or a semantics declaration.
7.11.1 VALUETYPE annotation

The valuetype annotation shall be a single value annotation. The set of legal values shall depend on the syntax
item identifier associated with the related keyword declaration, as shown in Table 23.

Table 23—VALUETYPE annotation

Set of legal valuesfor Default value

Syntax item identifier for Comment
VALUETYPE VALUETYPE
annot ati on nunber, i denti fi er %es/ntax 31, def'
or si gned_i nt eger, inition of annota-
si ngl e_val ue_annot ati on unsi gned_i nt eger, tion value.

or
mul ti _val ue_annot ati on

mul tiplier_prefix_val ue,
identifier,

string_val ue,

quot ed_stri ng,

bool ean_val ue,

edge_val ue,

control _expression,

bool ean_expr essi on,
arithneti c_expression.

annot ati on_cont ai ner

46

N/A

N/A

Advanced Library Format (ALF) Reference Manual

An annotation con-
tainer (see

Syntax 32) has no
value.

IEEE P1603 Draft 8

Table 23—VALUETYPE annotation (Continued)

. . - Set of legal valuesfor Default value
Syntax item identifier VALUETYPE for Comment
VALUETYPE
arithneti c_nodel nunber, nunber See Syntax 14, def-
si gned_i nt eger, inition of arith-
unsi gned_i nt eger, metic value.
identifier,
bit _literal,
based literal.
arithmeti c_subnodel N/A N/A An arithmetic sub-
model (see 10.7)
shall aways have
the same valuetype
asits parent arith-
metic model.
arithneti c_nodel _container | N/A N/A An arithmetic
model container
(see10.8) hasno
value.
geonetri c_nodel N/A N/A A geometric model

(see9.16) hasno
value.

The valuetype annotation shall specify the category of legal ALF values applicable for an ALF statement whose
ALF typeis given by the declared keyword.

The valuetype shall refer to the semantic interpretation of a value, not to the encountered lexical token. For
example, a non-escaped identifier (see 6.13.1) can be the name of a constant (see 7.8) holding anumerical value.

Therefore the identifier (see 6.13) would be semantically interpreted as a number (see 6.5).

The valuetype annotation can be partially self-described as shown in Semantics 1.

}

}
}

SEMANTI CS VALUETYPE {
VALUES {
nunber si gned_i nteger unsigned_i nt eger
mul tiplier_prefix_val ue
identifier quoted_string string_value
bit _literal based_literal bool ean_val ue edge_val ue
control _expressi on bool ean_expressi on
arithnetic_expression

KEYWORD VALUETYPE = singl e_val ue_annot ati on {
CONTEXT = SEMANTI CS;

Semantics 1—Partial self-description of VALUETYPE annotation

Example:

IEEE P1603 Draft 8 Advanced Library Format (ALF) Reference Manual

a7

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

This example shows a correct and an incorrect usage of a declared keyword with specified valuetype.

KEYWORD Greeting = annotation { VALUETYPE = identifier ; }
CELL celll { Geeting H There ; } // correct
CELL cell2 { Greeting “H There” ; } I/ incorrect

Thefirst usage is correct, since Hi Ther e isan identifier. The second usage isincorrect, since“ Hi There” is
aquoted string and not an identifier.

7.11.2 VALUES annotation

The values annotation shall be a multi value annotation. It shall be applicable in the case where the valuetype
annotation is also applicable. The values annotation shall specify a discrete set of legal values applicable for an
ALF statement using the declared keyword. The values annotation within the semantics declaration and the val uetype annota-

tion within arelated keyword declaration shall be compatible.

The values annotation can be partially self-described as shown in Semantics 2.

KEYWORD VALUES = mul ti _val ue_annotation {
CONTEXT = SEMANTI CS;

}

Semantics 2—Partial self-description of VALUES annotation

Example:

This example shows a correct and an incorrect usage of a declared keyword and semantics with specified value-
type and values.

KEYWORD Greeting = annotation { VALUETYPE = identifier ; }
SEMANTI CS Greeting { VALUES { Hi There Hell o HowbDoYouDo } }

}

CELL cell3 { Geeting Hello ; } // semantically correct
CELL cell4 { Geeting = GoodBye ; } // semantically incorrect

The first usageis correct, since Hel | o is contained within the set of values. The second usage isincorrect, since
GoodBye is not contained within the set of values.

End of example

7.11.3 DEFAULT annotation

The default annotation shall be a single value annotation applicable in the case where the valuetype annotation is
also applicable. Compatibility between the default annotation, the valuetype annotation, and the values annota-
tion shall be mandatory.

The default annotation shall specify a presumed value in absence of an ALF statement specifying avalue.

A partial self-description of the default annotation is given in Semantics 3.

A default annotation shall also be applicable for an arithmetic model (see 10.3 and 10.9.4).

Example:

48 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 8

KEYWORD DEFAULT = singl e_val ue_annotation {
CONTEXT { SEMANTI CS arithmetic_nodel }

}

Semantics 3—Partial self-description of DEFAULT annotation

KEYWORD Greeting = annotation {
VALUETYPE = identifier ;
VALUES { Hi There Hell o HowboYouDo }
DEFAULT = Hell o ;

}

CELL cell5 { /* no Greeting */ }
In this example, the absence of aGr eet i ng statement is equivalent to the following:

CELL cell5 { Geeting = Hello ; }
7.11.4 CONTEXT annotation
The context annotation shall be a single value annotation or a multi value annotation. It shall specify the ALF
type of alegal parent of the statement using the declared keyword. The ALF type of alegal parent can be apre-
defined keyword or a declared keyword.

A hierarchical identifier can be used to specify the ALF type of alegal parent of the statement, constraint by the
ALF type of the anchestor of the statement.

A partial self-description of the context annotation is given in Semantics 4.

KEYWORD CONTEXT = annot ati on;
SEMANTI CS CONTEXT {
CONTEXT { KEYWORD SEMANTI CS }
VALUETYPE = identifier;

}

Semantics 4—Partial self-description of CONTEXT annotation

A context annotation within a keyword declaration shall be equivalent to a syntax rule applicable to the syntax
item specified by the context annotation value. Only a keyword identifier (see 6.13.7) or a syntax item identifier
(see 7.9, Table 22) shall be alegal annotation value.

Example
Declaration of a keyword with context:
KEYWORD MyAnnot ati onCont ai ner = annot ati on_cont ai ner;

KEYWORD MyAnnot ati on = single_val ue_annotation {
CONTEXT = MyAnnot ati onCont ai ner;

}
The equialent syntax rule in BNF looks as follows:

MyAnnotationContainer ::= . .
MyAnnotationContainer { [MyAnnotation = annotation_value;] }

IEEE P1603 Draft 8 Advanced Library Format (ALF) Reference Manual 49

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

End of example

A context annotation within a semantics declaration shall be used to specify a legal anchestor of a statement.
Only a keyword identifier (see 6.13.7) or a syntax item identifier (see 7.9, Table 22) or a full hierarchical identi-
fier (see 6.13.4) or apartial hierarchical identifier (see 6.13.5) involving one or more keyword identifiers and/or
one or more syntax item identifiers shall be alegal annotation value.

Example:

KEYWORD Li braryQual ifier = annotation { CONTEXT { LIBRARY SUBLI BRARY } }
KEYWORD Cel | Qualifier = annotation { CONTEXT = CELL ; }
KEYWORD Pi nQualifier = annotation { CONTEXT = PIN ; }
LI BRARY |ibraryl {
Li braryQualifier = foo ; // correct

CELL cell1 {

CellQualifier = bar ; // correct

PinQualifier = foobar ; // incorrect, illegal context
}

}

The following change would legalize the example above:
KEYWORD Pi nQualifier = annotation { CONTEXT { PIN CELL } }
The following example shows the use of an hierarchical identifier.

KEYWORD PrimtivePinQualifier = annotation { CONTEXT = PIN ; }
SEMANTICS PrimtivePinQualifier { CONTEXT = PRRMTIVE. PIN; }

End of example

7.11.5 REFERENCETYPE annotation

The referencetype annotation shall be a single value annotation or a multi value annotation. The referencetype
annotation shall be legal if the syntax item identifier in the related keyword declaration is annotation, single

value annotation or multi value annotation.

A partial self-description of the referencetype annotation is given in Semantics 5.

KEYWORD REFERENCETYPE = annotati on {

CONTEXT = SEMANTI CS;

}
SEMANTI CS REFERENCETYPE {

VALUES { CLASS LI BRARY SUBLI BRARY CELL PI N Pl NGROUP
PRI M Tl VE W RE NODE VECTOR LAYER VI A RULE ANTENNA
BLOCKAGE PORT SI TE ARRAY PATTERN REG ON
arithmetic_nodel arithnetic_subnodel }

}

Semantics 5—Partial self-description of REFERENCETYPE annotation

50 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 8

The purpose of the referencetype annotation isto specify the ALF type of areferenced object. An object shall be
referenced by its ALF name or possibly by afull hierarchical identifier (see 6.13.4) involving the ALF name of
the parent of the object and the ALF name of the object itself.

Example:

The following example shows the definition of an annotation “myReference”, which refers to an object of the
ALF type “CLASS’ with the ALF name “myClass’.

CLASS nyd ass;

KEYWORD nyRef erence = singl e_val ue_annotati on;
SEMANTI CS nyRef erence { REFERENCETYPE = CLASS; }
nyRef erence = nyd ass;

In this example, a full hierarchical identifier is used to refer to a CLASS with the ALF name “myOtherClass’,
declared as a child of a CELL with ALF name “myCell”.

CELL nyCell {
CLASS nyQt her d ass;

}

nmyRef erence = myCel | . nyQt her d ass;
End of example
7.11.6 SI_MODEL annotation
The SI-model annotation shall be a single value annotation. It shall be only applicable for akeyword declaring an
arithmetic model (see 10.3). It shall specify a relation of a declared keyword with the International System of
Units [see U.S. National Bureau of Standards, Spec. Pub. 330, International System of Units (1971)]. In particu-
lar, it shall specify the base unit of an arithmetic model.

A self-description of the SI-model annotation is given in Semantics 6.

KEYWORD SI _MODEL = single_val ue_annotation {
CONTEXT = SEMANTI CS;
}
SEMANTI CS SI _MODEL {
VALUES {
TI ME FREQUENCY CURRENT VOLTAGE POWER ENERGY
RESI STANCE CAPACI TANCE | NDUCTANCE
DI STANCE AREA

Semantics 6—SI| model annotation

IEEE P1603 Draft 8 Advanced Library Format (ALF) Reference Manual 51

10

15

20

25

30

35

40

45

50

55

1

10

15

20

25

30

35

40

45

50

55

The set of legal annotation values is shown in Table 24.

Table 24—SI_MODEL annotation

Annotation value M at%r;%rgzili cal Base unit Rv(\?i ?rtxl g?ﬁe]rl P Refrﬁroznetl:%te%grrigzrgfic
quantity
TI ME t Second See10.11.1
FREQUENCY f Hertz 1/t See10.11.2
CURRENT | Ampere See 10.15.2
VOLTAGE \% Volt See 10.15.1
RESI STANCE R Ohm VIl See 10.154
CAPACI TANCE C Farad I/ (dV/ dt) See 10.15.3
| NDUCTANCE L Henry V/ (dl / dt) See 10.15.5
ENERGY E Joule See10.11.15
PONER P Watt 1V, dE/ dt See10.11.15
DI STANCE d Meter See 10.19.9
AREA A Square meter | d? See 10.19.2

7.11.7 Rules for legal usage of KEYWORD and SEMANTICS declaration

The following rules shall apply for legal use of annotations within a keyword or a semantics declaration.

a) A keyword declaration can not overwrite, redefine, or otherwise invalidate a syntax rule.
b) A semantics declaration shall relate to a keyword declaration or a syntax rule. A semantics declaration
shall be compatible with arelated keyword declaration or arelated syntax rule.
Example:

52

KEYWORD nyAnnot ati on = annotation {
CONTEXT { CELL PIN}
}

SEMANTI CS nyAnnot ation {
VALUES { val uel val ue2 val ue3 val ue4 val ue5 }
}

SEMANTI CS CELL. nyAnnotation = nulti_val ue_annotation {
VALUES { val uel value2 val ue3 }
}

SEMANTI CS PI N. nyAnnot ati on = single _val ue_annotation {
VALUES { val ue4 val ue5 }
DEFAULT = val ue4;
}
CELL nyCell {
myAnnot ati on { val uel val ue2 }
PIN nmyPin { nmyAnnotation = val ue5; }

Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 8

7.12 CLASS declaration

A class shall be declared as shown in Syntax 39.

class_declaration ::=

CL ASSclass identifier :

| CLASS class identifier { { class item} }
class item::=

all_purpose_item

| geometric_model

| geometric_transformation

Syntax 39—CLASS declaration

A class declaration shall be used to establish a semantic association between ALF statements, including, but not
restricted to, other class declarations. ALF statements shall be associated with each other, if they contain arefer-
ence to the same class. Such areference is made by a class reference annotation (see 7.13).

The semantics specified by a class item within a class declaration shall be inherited by the statement containing

the reference. A class item can be an all purpose item (see 7.2), a geometric model (see 9.16) or a geometric
transformation (see 9.18).

7.13 Annotations related to a CLASS declaration

This subsection specifies how other objects can make areference to a class by using either a general class refer-
ence annotation or a specific class reference annotation.

7.13.1 General CLASS reference annotation

A genera class reference annotation shall be defined as shown in Semantics 7.

KEYWORD CLASS = annotation {
CONTEXT { library_specific_object arithnetic_nodel }

}
SEMANTI CS CLASS { REFERENCETYPE = CLASS; }

Semantics 7—CLASS reference annotation

Example

CLASS \l1stclass { ATTRIBUTE { everything } }
CLASS \ 2ndclass { ATTRIBUTE { nothing } }
CELL celll { CLASS = \1stclass; }

CELL cell2 { CLASS = \2ndcl ass; }

CELL cell 3 { CLASS { \1lstclass \2ndclass } }
/1l celll inherits “everything”

/1 cell2 inherits “nothing”

/1 cell3 inherits “everything” and “nothing”

NOTES

1— A classdeclaration itself can not contain a general class reference annotation. This avoids circular reference.

IEEE P1603 Draft 8 Advanced Library Format (ALF) Reference Manual 53

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

2 — Itispossible that areference to multiple classes can result in the inheritance of semantically incompatible attributes. It is
expected that an ALF compiler or an ALF interpreter detects such semantic incompatibility. However, the behavior of an
application as a consequence of this detection is not specified by this standard, since the desired behavior can depend on the

nature of the application.

7.13.2 USAGE annotation

The usage annotation shall be defined as shown in Semantics 8.

KEYWORD USAGE = annotation { CONTEXT = CLASS; }

SEMANTI CS USAGE {
VALUETYPE = identifier;
VALUES {

SWAP_CLASS RESTRI CT_CLASS
SI GNAL_CLASS SUPPLY_CLASS CONNECT CLASS
SELECT_CLASS NODE_CLASS

EXI STENCE_CLASS CHARACTERI ZATI ON_CLASS
ORI ENTATI ON_CLASS SYMVETRY_CLASS

Semantics 8—USAGE annotation

The usage annotation shall specify, which specific class reference annotation can be legally used to make arefer-

enceto the class.

The set of legal annotation values is shown in Table 25.

Table 25—USAGE annotation

Definition of specific

Annotation value .
class reference annotation

SWAP_CLASS See8.5.4

RESTRI CT_CLASS See8.5.3

SI GNAL_CLASS See 8.8.15
SUPPLY_CLASS See 8.8.16
CONNECT_CLASS See 8.8.19
SELECT_CLASS See8.11.3
NODE_CLASS See 8.13.3
EXI STENCE_CLASS See 8.15.6

CHARACTERI ZATI ON_CLASS See 8.15.9

ORI ENTATI ON_CLASS See 8.26.2

SYMMETRY_CLASS See 8.26.3

54

Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 8

NOTE — Knowing the ALF type of alegal parent of a specific class reference annotation, the ALF parser can evauate the
contents of the class declaration for semantic correctness. If the usage annotation is not present, the ALF paraser can evaluate
the contents of the class declaration for semantic correctness only when encountering a reference to the class.

7.14 GROUP declaration

A group shall be declared as shown in Syntax 40.

group_declaration ::=
OUP group_identifier { generic_value{ generic_value} }
| GROUP group_identifier { left_index_value: right_index_value

Syntax 40—GROUP declaration

A group declaration shall be used to specify the semantic equivalent of multiple similar ALF statements within a
single ALF statement. An ALF statement containing a group identifier shall be semantically replicated by substi-
tuting each group value for the group identifier, or, by substituting subsequent index values bound by the left
index value and by the right index value for the group identifier. The ALF parser shall verify whether each sub-
gtitution resultsin alegal statement.

The ALF statement which has the same parent as the group declaration shall be semantically replicated, if the
group identifier is found within the statement itself or within a child of the statement or within a child of a child
of the statement etc. If the group identifier is found more than once within the statement or within its children,
the same group value or index value per replication shall be substituted for the group identifier, but no additional
replication shall occur.

The group identifier (i.e., the name associated with the group declaration) can be re-used as hame of another
statement. As a conseguence, the other statement shall be interpreted as multiple statements wherein the group
identifier within each replication shall be replaced by the generic value. On the other hand, ho name of any visi-
ble statement shall be allowed to be re-used as group identifier.

Examples
The following example shows substitution involving group values.

/1 statenent using GROUP:
CELL nyCell {
GROUP data { datal data2 data3 }
PIN data { DI RECTION = input ; }
}
/1 semantically equival ent statenent:
CELL nyCell {

PIN datal { DI RECTION = input ; }
PIN data2 { DI RECTION = input ; }
PIN data3 { DIRECTION = input ; }

}

The following example shows substitution involving index values.

/] statenment using GROUP:
CELL nyCell {
GROUP datalndex { 1 : 3}
PIN[1:3] data { DIRECTION = input ; }

IEEE P1603 Draft 8 Advanced Library Format (ALF) Reference Manual 55

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

PIN clock { DIRECTION = input ; }

SETUP = 0.5 { FROM{ PIN = data[datalndex]; } TO{ PIN = clock ; } }
}
/1 semantically equival ent statenent:
CELL nyCell {

GROUP datalndex { 1 : 3}

PIN[1:3] data { DIRECTION = input ; }

PIN clock { DIRECTION = input ; }

SETUP = 0.5 { FROM{ PIN = data[1]; } TO{ PIN = clock ; } }
SETUP = 0.5 { FROM{ PIN = data[2]; } TO{ PIN=clock ; } }
SETUP = 0.5 { FROM{ PIN = data[3]; } TO{ PIN=clock ; } }

}

The following example shows multiple occurrences of the same group identifier within a statement.

/] statenent using GROUP:
CELL nyCell {
GROUP datalndex { 1 : 3}
PIN[1:3] Din { DDRECTION = input ; }
PIN[1:3] Dout { DIRECTION = input ; }
DELAY = 1.0 { FROM {PI N=Di n[dat al ndex];} TO {PI N=Dout [dat al ndex];} }
}
/1 semantically equival ent statenent:
CELL nyCell {
GROUP datalndex { 1 : 3}
PIN[1:3] Din { DDRECTION = input ; }
PIN[1:3] Dout { DIRECTION = input ; }

DELAY = 1.0 { FROM {PIN=Din[1];} TO {PIN=Dout[1];} }
DELAY = 1.0 { FROM {PIN=Din[2];} TO {PIN=Dout[2];} }
DELAY = 1.0 { FROM {PIN=Di n[3];} TO {PIN=Dout[3];} }

7.15 TEMPLATE declaration

A template shall be declared as shown in Syntax 41.

template declaration ::=
EMPLATE template_identifier { ALF_statement { ALF_statement } }

Syntax 41—TEMPLATE declaration

A template declaration shall be used to specify one or more ALF statements with variable contents. A template
instantiation (see 7.16) shall specify the usage of such an ALF statement. Within the template declaration, the
variable contents shall be specified by a placeholder identifier (see 6.13.2).

An ALF statement within atemplate declaration shall be partially excempt from the semantics rule check defined
by valuetype, values, context, and referencetype, as follows:

a) A declared template shall be presumed alegal anchestor within an applicable context.

b) A placeholder identifier shall be presumed avalue within an applicable set of values.

c) A placeholder identifier shall be presumed a value of applicable valuetype.

d) A placeholder identifier shall be presumed alegal reference within an applicable referencetype.

56 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 8

The semantic rule check that can not be performed during parsing of the template declaration shall be defered

until parsing of the template instantiation.

7.16 TEMPLATE instantiation

A template shall be instantiated in form of a static template instantiation or a dynamic template instantiation, as
shown in Syntax 42 .

template_instantiation ::=
static_template_instantiation
| dynamic_template_instantiation
static_template_instantiation ::=
template_identifier [= StatiC] ;
| template:_identifier [= StatiC]{ { generic_value} }
| template_identifier [= StatlC] { { annotation }
dynamic_template_instantiation ::=
template_identifier = dynamic{ { dynamic_template instantiation_item} }
dynamic_template_instantiation_item ::=
annotation
| arithmetic_model
| arithmetic_assignment
arithmetic_assignment ::=
identifier = arithmetic_expression ,

Syntax 42—TEMPLATE instantiation

A template instantiation shall be semantically equivalent to the ALF statement or the ALF statements found
within the template declaration, after replacing the placeholder identifiers with replacement values. A static tem-
plate instantiation shall support replacement by order, using an generic value, or aternatively, replacement by
reference, using an annotation (see 7.3). A dynamic template instantiation shall support replacement by reference
only, using an annotation and/or an arithmetic model (see 7.3 and 10.3) and/or an arithmetic assignment.

In the case of replacement by reference, the reference shall be established by a non-escaped identifier matching
the placeholder identifier without the angular brackets. The matching shall be case-insensitive.

The following rules shall apply.

a)

b)

0)

d)

e

A static template instantiation shall be used when the replacement value of any placeholder identifier can
be determined during compilation of the library. Only a matching identifier shall be considered legal.
Each occurrence of the placeholder identifier shall be replaced by the annotation value associated with
the annotation identifier.

A dynamic template instantiation shall be used when the replacement value of at least one placeholder
identifier can only determined during runtime of the application. Only a matching identifier shall be con-
sidered legal.

Muultiple replacement values within a multi-value annotation shall be legal if and only if the syntax rules
for the ALF statement within the template declaration allow substitution of multiple values for one place-
holder identifier.

In the case replacement by order, subsequently occurring placeholder identifiersin the template declara-
tion shall be replaced by subsequently occurring generic values in the template instantiation. If a place-
holder identifier occurs more than once within the template declaration, all occurrences of that
placeholder identifier shall be immediately replaced by the same generic value. The first amongst the
remaining placeholder identifiers shall then be considered the next placeholder to be replaced by the next
generic value.

A static template instantiation for which a placeholder identifier is not replaced shall be legal if and only
if the semantic rules for the ALF statement support a placeholder identifier outside a template declara-

IEEE P1603 Draft 8 Advanced Library Format (ALF) Reference Manual 57

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

tion. However, the semantics of a placeholder identifier as an item to be substituted shall only apply
within the template declaration statement.

Examples

The following example illustrates rule a).

/1 statenent using TEMPLATE decl aration and instantiation:

TEMPLATE soneAnnot ati ons {
KEYWORD <oneAnnot ati on> = singl e_val ue_annotation ;
KEYWORD annot ati on2 = singl e val ue_annotation ;

}

sone

}

<oneAnnot at i on>

= val uel ;

annot ati on2 = <anot her Val ue> ;

Annot ations {
oneAnnot ati on =
anot her Val ue =

annot ati onl ;

val ue2 ;

/1 semantically equival ent statenent:
KEYWORD annot ati onl = single_val ue_annotation ;
KEYWORD annot at i on2

anno
anno

tationl = val uel ;
tation2 = val ue2 ;

= singl e_val ue_annotation ;

The following example illustrates rule b).

/1 statenent using TEMPLATE decl aration and instantiation:

TEMPLATE soneNunbers {

}

sone

}

/!l semantically equival ent statenent,

N1
N2

KEYWORD N1 = single_value_annotation { VALUETYPE=numnber
KEYWORD N2 = singl e_value_annotation { VALUETYPE=nunber
<numnber 1> ;

N1
N2

Nunber s
nunber 2

3 ;
4

<nunber 2> ;

DYNAM C {
nunberl + 1;

The following example illustrates rule c).

58

TEMPLATE nor eAnnot ati ons {

KEYWORD annot ati on3 = annotation ;
KEYWORD annot ati on4 = annotation ;
annotation3 { <sonmeVal ue> }

annot ati on4 = <yet Anot her Val ue> ;

}

nore

}

Annot ations {

sormeVal ue { val uel val ue2 }

yet Anot her Val ue

= val ue3 ;

/!l semantically equival ent statenent:
KEYWORD annot ati on3

= annotation ;

Advanced Library Format (ALF) Reference Manual

assum ng nunber 1=3 at

)
)

runti me:

IEEE P1603 Draft 8

KEYWORD annot ati on4 = annotation ;
annot ati on3 { val uel val ue2 }
annot ati on4 = val ue3 ;

The following example illustrates rule d).

TEMPLATE evenMor eAnnot ati ons {
KEYWORD <t hi sAnnot ati on> = singl e val ue_annotation ;
KEYWORD <t hat Annot ati on> = singl e_val ue_annotation ;
<t hat Annot ati on> = <t hi sVal ue> ;
<t hi sAnnot ati on> = <t hat Val ue> ;
}
/1 tenplate instantiation by reference:
evenMor eAnnot ati ons = STATI C {
t hat Annot ati on = day ;
t hi sAnnot ati on = nont h;
t hat Val ue April;
t hi sval ue Monday;

}

/1 semantically equivalent tenplate instantiation by order:

evenMreAnnot ati ons = STATIC { day nmonth Monday April }

/1 semantically equival ent statenent:
KEYWORD day = singl e _val ue_annotation ;
KEYWORD nont h = singl e_val ue_annot ati on ;
month = April;

day = Mbnday;

The following example illustrates rule €).

/1l statenment using TEMPLATE declaration and instantiation:

TEMPLATE encor eAnnot ati on {
KEYWORD contextl = annotation_cont ai ner;
KEYWORD cont ext2 = annotati on_cont ai ner;
KEYWORD annot ati on5 = single_val ue_annotation {

CONTEXT { contextl context2 }

VALUES { <son®et hi ng> <not hi ng> }
}
contextl { annotation5
context2 { annotation5

<not hing> ; }
<sonet hing> ; }

}

encoreAnnot ati on {
somet hing = everything ;
}
/1 semantically equival ent statenent:
KEYWORD contextl = annotation_cont ai ner;
KEYWORD cont ext2 = annotati on_cont ai ner;
KEYWORD annot ati on5 = single_val ue_annotation {
CONTEXT { contextl context2 }
VALUES { everything <nothing> }
}
contextl { annotationb <not hi ng> ; }
context2 { annotation5 = everything ; }

IEEE P1603 Draft 8 Advanced Library Format (ALF) Reference Manual

59

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

/1 Both everything (w thout brackets) and <nothing> (w th brackets)
/1l are legal values for annotationb.

7.17 INCLUDE statement

An include statement shall be defined as shown in Syntax 43.

include ::=

INCLUDE quoted_string ;

Syntax 43—INCLUDE statement

The quoted string shall specify the name of afile. When the include statement is encountered during parsing of a
file, the application shall parse the specified file and then continue parsing the former file. The format of the file
containing the include statement and the format of the file specified by the include statement shall be the same.

Example

LI BRARY nyLib {
| NCLUDE “tenpl ates. al f”;
I NCLUDE “technol ogy. al f”;
I NCLUDE “primtives.alf”;
I NCLUDE “wires.al f”;
| NCLUDE “cells.al f”;

}

NOTE — The filename specified by the quoted string shall be interpreted according to the rules of the application and/or the
operating system. The ALF parser itself shall make no semantic interpretation of the filename.

7.18 ASSOCIATE statement and FORMAT annotation

An associate statement shall be defined as shown in Syntax 44.

associate ::=
ASSOCIATE quoted_string ;

|ASSOCI AT E quoted_string { FORMAT_single value annotation }

Syntax 44—ASSOCIATE statement

The associate statement shall specify a relationship of the parent of the associate statement with an object
described in afile referenced by the quoted string. The format annotation shall specify the format of the associ-
ated file. In contrast to the include statement (see 7.17), the ALF parser is not expected to read the associated file.
The formal specification of the semantic validity of the association is beyond the scope of this standard.

Using a keyword declaration (see 7.9) in conjunction with a context annotation (see 7.11.4), a val uetype annota-

tion (see 7.11.1), a values annotation (see 7.11.2), and a default annotation (see 7.11.3), the format annotation
shall be defined as shown in Semantics 9.

60 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 8

}

}

KEYWORD FORMAT = singl e val ue_annotation {

SEMANTI CS FORVAT {

CONTEXT = ASSOCI ATE;

VALUETYPE = identifier;
VALUES { vhdl verilog c \c++ alf }
DEFAULT = al f;

Semantics 9—FORMAT annotation

The meaning of the annotation values is specified in Table 26.

Table 26—FORMAT annotation values

Annotation value Description

vhdl The associated fileisin aformat specified by the IEEE Std 1076-2002, IEEE Standard
VHDL Language Reference Manual

veril og The associated fileisin aformat specified by the IEEE Std 1364-2001, |EEE Standard
for Verilog Hardware Description Language

c The associated fileisin aformat specified by the ISO/IEC 9899:1990, Programming
Languages—C

\ c++ The associated fileisin aformat specified by the ANSI/ISO/IEC 14882, C++ Standard

al f The associated fileisin aformat specified by this standard

NOTE — The format annotation value does not specify the format version of the associated file. An application that can read
the associated file can obtain the version either from the associated file itself or by other means of version control.

7.19 REVISION statement

A revision statement shall be defined as shown in Syntax 45

I

evision ;:=
ALF _REVISION string_vaue

Syntax 45—Revision statement

A revision statement shall be used to identify the revision or version of the file to be parsed. One, and only one,
revision statement can appear at the beginning of an ALF file.

The set of legal string values within the revision statement shall be defined as shown in Table 27

Table 27—Legal string values within the REVISION statement

Sring value

Revision or version

IEEE P1603 Draft 8

Advanced Library Format, Version 1.1 by OVI

Advanced Library Format (ALF) Reference Manual 61

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

Table 27—Legal string values within the REVISION statement (Continued)

Sring value Revision or version

“2.0" Advanced Library Format, Version 2.0 by Accellera

“P1603. 2003- 02- 01" Advanced Library Format specified by this standard
** need to change this for every draft **

The revision statement shall be optional, as the application program parsing the ALF file can provide other
means of specifying the revision or version of thefile to be parsed. If arevision statement is encountered while a
revision has already been specified to the parser (e.g. if an included fileis parsed), the parser shall be responsible
to decide whether the newly encountered revision is compatible with the originally specified revision and then
either proceed assuming the original revision or abandon.

NOTE — This document suggests that this standard is largely backward compatible with the previous versions of the
Advanced Library Format mentioned in Table 27.

62 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 8

8. Library-specific objects and related statements

8.1 Library-specific object

A library-specific object shall be defined as shown in Syntax 46.

library_specific_object ::=

library

| sublibrary

| cell

| primitive

| wire

| pin

| pingroup

| vector

| node

| layer

| via

| rule

| antenna

| site

| array

| blockage

| port

| pattern

| region

Syntax 46—Library-specific object

A library-specific object shall be defined as alibrary (see 8.2), asublibrary (see 8.2), acell (see 8.4), aprimitive
(see 8.9), awire (see 8.10), apin (see 8.6), apingroup (see 8.7), avector (see 8.14), anode (see 8.12), alayer (see
8.16), avia (see 8.18), arule (see 8.20), an antenna (see 8.21), a site (see 8.25), an array (see 8.27), ablockage
(see 8.22), aport (see 8.23), a pattern (see 8.29) or aregion (see 8.31).

The purpose of a library-specific object is to specify a model for a technology item, distinguished by an ALF
name.

8.2 LIBRARY and SUBLIBRARY declaration
A library and a sublibrary shall be declared as shown in Syntax 47.

A library shall serve as arepository of technology data for creation of an electronic integrated circuit. A subli-
brary can optionally be used to create different scopes of visibility for particular statements describing technol-
ogy data.

Any two objects of the same ALF type and the same ALF name can not appear in onelibrary or in one sublibrary.
However, they can appear in two libraries, or in two sublibraries with the same library as parents. For example,
two cells (see 8.4) with the same name can appear in two different libraries. It shall be the responsibility of the
application tool to properly handle such cases, as the selection of alibrary or asublibrary is controlled by the user
of the application tool.

IEEE P1603 Draft 8 Advanced Library Format (ALF) Reference Manual 63

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

library ::=
LIBRARY library identifier ;
[LIBRARY Iibrary_identifier{ { library_item} }
| library_template_instantiation
library_item ::=
sublibrary
| sublibrary_item
sublibrary ::=
SUéLI BRARY sublibrary _identifier
| SUBLIBRARY sublibrary_identifier { { sublibrary_item} }
| sublibrary_template _instantiation
sublibrary_item ::=
all_purpose_item
| cell
| primitive
| wire
| layer
| via
| rule
| antenna
| array
| site
| region

Syntax 47—LIBRARY and SUBLIBRARY declaration

8.3 Annotations related to a LIBRARY or a SUBLIBRARY declaration
8.3.1 LIBRARY reference annotation

A library reference annotation shall be defined as shown in Semantics 10.

KEYWORD LI BRARY = annotation {
CONTEXT = arithnetic_nodel ;
}
SEMANTI CS LI BRARY {
REFERENCETYPE { LI BRARY SUBLI BRARY }

}

Semantics 10—LIBRARY reference annotation

The purpose of alibrary reference annotation is to establish an association between alibrary or a sublibrary and
an arithmetic model (see 10.3).

A full hierarchical identifier (see 6.13.4) can be used to specify areference to a sublibrary as achild of alibrary.
8.3.2 INFORMATION annotation container
An information annotation container shall be defined as shown in Semantics 11.

The information annotation container shall be used to associate its parent statement with a product specification.
The following semantic restrictions shall apply.

a) Alibrary, asublibrary, or acell can be alegal parent of the information statement.

b) A wire, or aprimitive can be alegal parent of the information statement, provided the parent of the wire
or the primitiveisalibrary or asublibrary.

64 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 8

}

}

}

}

}

}

}

}

}

}

}

KEYWORD | NFORVATI ON = annot ati on_cont ai ner {
CONTEXT { LI BRARY SUBLI BRARY CELL WRE PRI M Tl VE }

KEYWORD PRODUCT = si ngl e_val ue_annotati on {
CONTEXT = | NFORVATI ON;

SEMANTI CS PRODUCT {
VALUETYPE = string_val ue; DEFAULT = **;

KEYWORD Tl TLE = si ngl e_val ue_annot ati on {
CONTEXT = | NFORNMATI ON;

SEMANTI CS TI TLE {
VALUETYPE = string_val ue; DEFAULT = “*;

KEYWORD VERSI ON = si ngl e_val ue_annot ati on {
CONTEXT = | NFORVATI ON;

SEMANTI CS VERSI ON {
VALUETYPE = string_val ue; DEFAULT = "*;

KEYWORD AUTHOR = singl e_val ue_annotation {
CONTEXT = | NFORVATI ON;

SEMANTI CS AUTHOR {
VALUETYPE = string_val ue; DEFAULT = "*;

KEYWORD DATETI ME = singl e_val ue_annotati on {
CONTEXT = | NFORMATI ON;

SEMANTI CS DATETI ME {
VALUETYPE = string_val ue; DEFAULT = "*;

Semantics 11—INFORMATION statement

The semantics of the information contents are specified in Table 28.

Table 28—Annotations within an INFORMATION statement

Annotation identifier Semantics of annotation value
PRCDUCT A code name of aproduct described herein.
TI TLE A descriptive title of the product described herein.
VERSI ON A version number of the product description.
AUTHOR The name of a person or company generating this product description.
DATETI ME Date and time of day when this product description was created.

IEEE P1603 Draft 8

Advanced Library Format (ALF) Reference Manual

65

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

The product devel oper shall be responsible for any rules concerning the format and detailed contents of the string

value itself.

Example

LI BRARY nyProduct {
| NFORVMATI ON {
PRODUCT = pl0sc;
TITLE = “0.10 standard cel |”;
VERSI ON = “v2.1.07;
AUTHOR = “Maj or Asic Vendor, Inc.”;
DATETI ME = “Mon Apr 8 18:33:12 PST 2002";

}

8.4 CELL declaration

A cell shall be declared as shown in Syntax 48.

cel =

CELL cel_identifier ;

| CELL cell identifier { { cell_item} }

| cell_template_instantiation
cel_item::=

all_purpose_item

| pin

| pingroup

| primitive

| function

| non_scan_cell

| test

| vector

| wire

| blockage

| artwork

| pattern

| region

Syntax 48—CELL declaration

A cell shall represent an electronic circuit which can be used as a building block for alarger electronic circuit.

8.5 Annotations related to a CELL declaration
This section defines annotations and attribute values rel ated to a cell declaration.
8.5.1 CELL reference annotation

A cell reference annotation shall be defined as shown in Semantics 12.

KEYWORD CELL = annotation { CONTEXT = arithnetic_nodel; }
SEMANTI CS CELL { REFERENCETYPE = CELL; }

Semantics 12—CELL reference annotation

66 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 8

The purpose of a cell reference annotation is to establish an association between a cell and an arithmetic model

(see 10.3).
A hierarchical identifier can be used to specify areference to acell asachild of alibrary or asublibrary.
8.5.2 CELLTYPE annotation

A celltype annotation shall be defined as shown in Semantics 13.

KEYWORD CELLTYPE = singl e_val ue_annotation {
CONTEXT = CELL;
}
SEMANTI CS CELLTYPE {
VALUETYPE = identifier;
VALUES {
buf f er conbi national multiplexor flipflop Iatch
menory bl ock core speci al

}
}

Semantics 13—CELLTYPE annotation

The meaning of the celltype annotation valuesis specified in Table 29.

Table 29—CELLTYPE annotation values

Annotation value Description

buf fer CELL isabuffer, i.e., an element for transmission of adigital signal without per-
forming alogic operation, except for possible logic inversion.

conbi nati onal CELL isacombinatorial logic element, i.e., an element performing alogic opera-
tion on two or more digital input signals.

mul ti pl exor CELL isamultiplexor, i.e., an element for selective transmission of digital signals.

flipflop CELL isaflip-flop, i.e., aone-bit storage element with edge-sensitive clock

| atch CELL isalatch, i.e., aone-bit storage element without edge-sensitive clock

menory CELL isamemory, i.e., amulti-bit storage element with selectable addresses.

bl ock CELL isahierarchical block, i.e., acomplex element which has an associated

netlist for implementation purpose. All instances of the netlist are library ele-
ments, i.e., thereisa CELL model for each of them in the library.

core CELL isacore, i.e.,, acomplex element which has no associated netlist for imple-
mentation purpose. However, a netlist representation can exist for modeling pur-
pose.

speci al CELL isaspecial element, which does not fall into any other category of cells.

Examples: bus holder, protection diode, filler cell.

Example

IEEE P1603 Draft 8 Advanced Library Format (ALF) Reference Manual

67

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

CELL nmyNandGate {
CELLTYPE = conbi nati onal ;
/1 put detail ed description here

}
CELL nyFlipflop {

CELLTYPE = fli pfl op;
/1 put detail ed description here

}

8.5.3 RESTRICT_CLASS annotation

A restrict-class annotation shall be defined as shown in Semantics 14.

KEYWORD RESTRI CT_CLASS = annotation {
CONTEXT { CELL CLASS }
}
SEMANTI CS RESTRI CT_CLASS {
REFERENCETYPE = CLASS;
}
CLASS synthesis { USAGE = RESTRI CT_CLASS ;
CLASS scan { USAGE = RESTRICT_CLASS ; }
CLASS dat apath { USAGE = RESTRI CT_CLASS ;
CLASS cl ock { USAGE = RESTRICT_CLASS ; }
CLASS | ayout { USAGE = RESTRICT_CLASS ; }

}

}

Semantics 14—RESTRICT_CLASS annotation

The annotation value shall be the name of a declared class (see 7.12).

The restrict-class annotation shall establish a necessary condition for the usage of a cell by an application per-
forming a design transformation involving instantiations of cells. An application other than a design transforma-
tion (e.g. analysis, file format translation) can disregard the restrict-class annotation or use it for informational

purpose only.

The meaning of the predefined restrict-class values established by Semantics 14 is specified in Table 30.

Table 30—Predefined RESTRICT_CLASS annotation values

Annotation value Description
synt hesi s Cell is suitable for creation or modification of a structual design
description (i.e., anetlist) while providing functional equivalence.
scan Cell issuitable for creation or modification of ascan chain within anetlist.
dat apat h Cell issuitable for structural implementation of a data flow graph.
cl ock Cell issuitable for distribution of aglobal synchronization signal.
| ayout Cell is suitable for usage within a physical artwork.

Additional restrict-class values can be defined within the context of a library or a sublibrary (see 8.2), using a
class declaration (see 7.12) and a semantics declaration (see 7.10) in asimilar way as shown in Semantics 14.

68 Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 8

From the application standpoint, the following usage model for restrict-class shall apply.

a) A set of restrict-class values shall be associated with the application. These values are considered
“known” by the application. Usage of a cell shall only be authorized, if the set of restrict-class values
associated with the cell is a subset of the “known” restrict-class val ues.

b) Optionally, aboolean condition involving the set of “known” restrict-class values or a subset thereof can
be associated with the application. In addition to a), usage of acell shall only be authorized, if the set of
restrict-class values associated with the cell satisfies the boolean condition.

Example:

Specification within the library:

CLASS A { USAGE = RESTRI CT_CLASS; }
CLASS B { USAGE = RESTRI CT_CLASS: }
CLASS C { USAGE = RESTRI CT_CLASS: }
CLASS D { USAGE = RESTRI CT_CLASS: }
CLASS E { USAGE = RESTRI CT_CLASS: }
CLASS F { USAGE = RESTRI CT_CLASS: }
CLASS G { USAGE = RESTRI CT_CLASS: }

CELL X { RESTRICT_CLASS { AB} }

CELL Y { RESTRICT_CLASS { C} }

CELL Z { RESTRICT_CLASS { ACF } }
Specification for the application:

Set of “known” restrict-classvalues= (A, B, C, D, E)
Boolean condition=(A andnot B) or C

Result:
Usage of CELL X isnot authorized, because boolean condition is not true.
Usage of CELL Y isauthorized, because al values are “known”, and boolean condition is true.
Usage of CELL Z isnot authorized, because value F is not “known”.

8.5.4 SWAP_CLASS annotation

A swap-class annotation shall be defined as shown in Semantics 15.

KEYWORD SWAP_CLASS = annotation {
CONTEXT = CELL;

}

SEMANTI CS SWAP_CLASS {
REFERENCETYPE = CLASS;

}

Semantics 15—SWAP_CLASS annotation

The annotation val ue shall be the name of a declared class (see 7.12). Single-value or multi-value annotation can
be used.

Cells referring to the same class can be swapped for certain applications. Cell-swapping shall be only allowed
under the following conditions:

IEEE P1603 Draft 8 Advanced Library Format (ALF) Reference Manual 69

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

a) Therestrict-class annotation (see 8.5.3) authorizes usage of the cell.
b) Thecellsare compatible from an application standpoint.

Example:

CLASS U { USAGE = SWAP_CLASS; }
CLASS V { USAGE = SWAP_CLASS; }
CELL X1 { SWAP._ CLASS { UV } }
CELL X2 { SWAP_CLASS {
CELL Y1 { SWAP_CLASS {
CELL Y2 { SWAP_CLASS {

Ut }

uvi} }

Vil

Cell X1 can be swapped with cell X2, provided the application authorizes the usage of both X1 and X2.
Cell X1 can be swapped with cell Y1, provided the application authorizes the usage of both X1 and Y 1.
Cell Y1 can be swapped with cell Y2, provided the application authorizes the usage of both Y1 and Y 2.
Cell X2 can not be swapped with cell Y2, even if the application authorizes the usage of both X2 and Y 2.
End of example

8.5.5 SCAN_TYPE annotation

A scan type annotation shall be defined as shown in Semantics 16.

KEYWORD SCAN TYPE = singl e_val ue_annotati on {
CONTEXT = CELL;
}
SEMANTI CS SCAN_TYPE {
VALUETYPE = identifier;
VALUES { muxscan cl ocked | ssd control _0O control _1 }

}

Semantics 16—SCAN_TYPE annotation

The meaning of the scan type annotation valuesis specified in Table 31.

Table 31—SCAN_TYPE annotation values

Annotation value Description
nmuxscan Cdl contains amultiplexor for selection between non-scan-mode and
scan-mode data.
cl ocked Cell supports a dedicated scan clock.
| ssd Cell issuitable for level sensitive scan design.
control _0 Combinatorial cell, controlling pin shall be 0 in scan mode.
control _1 Combinatorial cell, controlling pin shall be 1 in scan mode.

8.5.6 SCAN_USAGE annotation

A scan usage annotation shall be defined as shown in Semantics 17.

70 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 8

KEYWORD SCAN USAGE = singl e_val ue_annotation {
CONTEXT = CELL;
}

SEMANTI CS SCAN_USAGE {
VALUETYPE = identifier;
VALUES { input output hold }

}

Semantics 17—SCAN_USAGE annotation

The meaning of the scan usage annotation valuesis specified in in Table 32.

Table 32—SCAN_USAGE annotation values

Annotation value Description
i nput Primary input cell in ascan chain.
out put Primary output cell in a scan chain.
hol d Intermediate cell in a scan chain.

The scan usage annotation is applicable for acell which is designed to be the primary input, output or intermedi-

ate stage of a scan chain.
8.5.7 BUFFERTYPE annotation

A buffertype annotation shall be defined as shown in Semantics 18.

KEYWORD BUFFERTYPE = singl e_val ue_annotation {
CONTEXT = CELL,;

}

SEMANTI CS BUFFERTYPE {
VALUETYPE = identifier;
VALUES { input output inout internal }
DEFAULT = internal;

}

Semantics 18—BUFFERTYPE annotation

The meaning of the buffertype annotation valuesis specified in Table 33.

Table 33—BUFFERTYPE annotation values

Annotation value Description
i nput CELL has an external (i.e., off-chip) input pin.
out put CELL has an external output pin.

IEEE P1603 Draft 8 Advanced Library Format (ALF) Reference Manual

71

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

Table 33—BUFFERTYPE annotation values (Continued)

Annotation value Description

i nout CELL has an external bidirectional pin or an external input pin and an
externa output pin.

i nternal CELL has no external pin.

8.5.8 DRIVERTYPE annotation

A drivertype annotation shall be defined as shown in Semantics 19.

KEYWORD DRI VERTYPE = singl e_val ue_annotation {
CONTEXT = CELL;

}

SEMANTI CS DRI VERTYPE {
VALUETYPE = identifier;
VALUES { predriver slotdriver both }

}

Semantics 19—DRIVERTYPE annotation

The meaning of the drivertype annotation values is specified in Table 34.

Table 34—DRIVERTYPE annotation values

Annotation value Description
predriver CELL isapredriver, i.e., the core part of an I/O buffer.
sl otdriver CELL isasdlotdriver, i.e., the pad of an 1/0 buffer with off-chip connection.
bot h CELL isboth apredriver and aslot driver, i.e., acomplete 1/O buffer.

The drivertype annotation applies only for a cell with buffertype value input or output or inout.
8.5.9 PARALLEL_DRIVE annotation

A parallel drive annotation shall be defined as shown in Semantics 20.

KEYWORD PARALLEL_DRI VE = singl e_val ue_annotation {
CONTEXT = CELL;

}

SEMANTI CS PARALLEL DRI VE {
VALUETYPE = unsi gned_i nt eger;
DEFAULT = 1,

}

Semantics 20—PARALLEL_DRIVE annotation

72 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 8

The annotation value shall specify the number of cells connected in paralel.
8.5.10 PLACEMENT_TYPE annotation

A placement type annotation shall be defined as shown in Semantics 21.

KEYWORD PLACEMENT _TYPE = singl e val ue_annotation {
CONTEXT = CELL;
}

SEMANTI CS PLACEMENT _TYPE {
VALUETYPE = identifier;
VALUES { pad core ring block connector }
DEFAULT = cor e,

}

Semantics 21—PLACEMENT _TYPE annotation

The purpose of the placement type annotation is to establish categories of cellsin terms of placement and power
routing requirements.

The meaning of the placement type annotation values is specified in Table 35.

Table 35—PLACEMENT_TYPE annotation values

Annotation value Description
pad The cell is an element to be placed in the I/O area of adie.
core Thecell isaregular element to be placed in the core area of adie, using aregular
power structure.
ring The cell isamacro element with built-in power structure.
bl ock The cell isan abstraction of acollection of regular elements, each of which uses

aregular power structure.

connect or Thecell isto be placed at the border of the core areaof adiein order to establish
a connection between aregular power structure and a power ring in the I/O area.

8.5.11 SITE reference annotation for a CELL

A site reference annotation (see 8.26.1) in the context of a cell shall be defined as shown in Semantics 22.

SEMANTI CS CELL. SI TE = singl e_val ue_annot ati on;

Semantics 22—SITE reference annotation

The purpose of a site reference annotation in the context of a cell isto specify alega placement location for the
cell.

IEEE P1603 Draft 8 Advanced Library Format (ALF) Reference Manual 73

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

8.5.12 ATTRIBUTE values for a CELL

An attribute in the context of a cell declaration shall specify more specific information within the category given

by the celltype annotation.

The attribute values shown in Table 36 can be used within cell with celltype annotation value memory.

Table 36—Attribute values for a CELL with CELLTYPE memory

Attributeitem Description
RAM Random Access Memory.
ROM Read Only Memory.
CAM Content Addressable Memory.
static Static memory, needs no refreshment.
dynami c Dynamic memory, needs refreshment.

asynchr onous

Operation self-timed.

synchr onous

Operation synchronized with a clock signal.

The attributes shown in Table 37 can be used within a cell with celltype annotation value block.

Table 37—Attribute values for a CELL with CELLTYPE block

Attributeitem

Description

count er

CELL isacounter, i.e., acomplex sequentia circuit going through a
predefined sequence of states in its normal operation mode where
each state represents an encoded control value.

shift_register

CELL isashift register, i.e., acomplex sequentia circuit going
through a predefined sequence of statesin its normal operation
mode, where each subsequent state can be obtained from the previ-
ous one by a shift operation. Each bit represents a data value.

adder

CELL isanadder, i.e., acombinatorial circuit performing an addition
of two operands.

subt ract or

CELL isasubtractor, i.e.,, acombinatorial circuit performing a sub-
traction of two operands.

mul tiplier

CELL isamultiplier, i.e.,, acombinatoria circuit performing amulti-
plication of two operands.

conpar at or CELL isacomparator, i.e., acombinatorial circuit comparing the
maghnitude of two operands.
ALU CELL isan arithmetic logic unit, i.e., acombinatorial circuit combin-

ing the functionality of adder, subtractor, and comparator.

74

Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 8

The attributes shown in Table 38 can be used within a cell with celltype annotation value core.

Table 38—Attribute values for a CELL with CELLTYPE core

Attributeitem Description
PLL CELL isaphase-locked loop.
DSP CELL isadigital signal processor.
CPU CELL isacentral processing unit.
GPU CELL isagraphical processing unit.

The attributes shown in Table 39 can be used within a cell with celltype annotation value special.

Table 39—Attribute values for a CELL with CELLTYPE special

Attributeitem Description
bushol der CELL enables atristate bus to hold itslast value before al drivers
went into high-impedance state (see Table 74 in 9.10).
cl anp CELL connects a net to a constant logic value (see 9.10).
di ode CELL isadiode.
capacitor CELL isacapacitor.
resistor CELL isaresistor.
i nduct or CELL isan inductor.
fillcell CELL isused to fill unused spacein layout.

A cell with attribute value busholder shall have one or more pin declarations (see 8.6). The direction annotation
value shall be both (see 8.8.5). A cell with attribute value clamp shall have one or more pin declarations. The
direction annotation value shall be output. The logical value and drive strength shall be defined within afunction
statement (see 9.1). A cell with attribute value diode, capacitor, resistor, or inductor shall have two pin declara-
tions and no function statement. A cell with attribute value fillcell shall have no pin declaration and no function
statement.

8.6 PIN declaration

A pin shall be declared asascalar pin or asavector pin or amatrix pin, as shown in Syntax 49.

A pin shall represent a terminal of an electronic circuit. The purpose of a pin is exchange of information or
energy between the circuit and its environment. A constant value of information shall be caled state. A time-
dependent value of information shall be called signal.

The order of pin declarations within a cell declaration shall reflect the order in which pins are referenced, when

the cell isinstantiated in a netlist. The view annotation (see 8.8.3) shall further specify which pinisvisiblein a
netlist.

IEEE P1603 Draft 8 Advanced Library Format (ALF) Reference Manual 75

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

pin =
scalar_pin | vector_pin | matrix_pin
scalar_pin ::=
N pin_identifier ;
| PIN pin_identifier { { scalar_pin_item} }
| scalar_pin_template _instantiation
scalar_pin_item ::=
all_purpose_item
| pattern
| port
vector_pin ::=
PI'N multi_index pin_identifier ;
| PIN muilti_index pin_identifier { { vector_pin_item} }
| vector_pin_template _instantiation
vector_pin_item ::=
all_purpose_item
| range
matrix_pin ::=
PIN first multi_index pin_identifier second_multi_index ;
| PIN first_multi_index pin_identifier second_multi_index { { matrix_pin_item} }
| matrix_pin_template_instantiation
matrix_pin_item ::=
vector_pin_item

Syntax 49—PIN declaration

A scalar pin can be associated with a general electrical signal. However, a vector pin or a matrix pin can only be
associated with a digital signal. One element of a vector pin or of amatrix pin shall be associated with one bit of
information, i.e., abinary digital signal.

A vector-pin can be considered as a bus, i.e., a combination of scalar pins. The declaration of a vector-pin shall
involve a multi index (see 6.6). A reference to ascalar within the vector-pin shall be established by the pin iden-
tifier followed by asingleindex (see 6.6). A reference to a subvector within the vector-pin shall be established by
the pin identifier followed by a multi index.

A matrix-pin can be considered as a combination of vector-pins. A reference to a vector or to a submatrix,
respectively, within the matrix-pin shall be established by the pin identifier followed by a single index or by a
multi index, respectively.

Within a matrix-pin declaration, the first multi index shall specify the range of scalars or bits, and the second
multi index shall specify the range of vectors. Support for direct reference of a scalar within a matrix is not pro-
vided.

Example

PIN [5:8] myVectorPin ;
PIN[3:0] nmyMatrixPin [1:1000] ;

The pin variable nyVect or Pi n[5] refersto the scalar associated with the MSB of nyVect or Pi n.
The pin variable nyVect or Pi n[8] refersto the scalar associated with the LSB of nyVect or Pi n.
The pin variable nyVect or Pi n[6: 7] refersto a subvector within myVect or Pi n.

The pin variablenyMat ri xPi n[500] refersto avector within nyMat ri xPi n.

The pinvariablenyMat ri xPi n[500: 502] refersto 3 subsequent vectors within nyMat ri xPi n.

Consider the following pin assignment:
nyVect or Pi n=nyMat ri xPi n[500] ;

76 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 8

This establishes the following exchange of information:
nmyVect or Pi n[5] receivesinformation from element [3] of myMat ri xPi n[500] .
nmyVect or Pi n[6] receivesinformation from element [2] of myMat ri xPi n[500] .
nmyVect or Pi n[7] receivesinformation from element [1] of myMat ri xPi n[500] .
nmyVect or Pi n[8] receivesinformation from element [0] of myMat ri xPi n[500] .

8.7 PINGROUP declaration

A pingroup shall be declared as a simple pingroup or as a vector pingroup, as shown in Syntax 50.

pingroup ::=
simple_pingroup | vector_pingroup

simple_pingroup ::=
Pﬁj\l qu ROUP pingroup_identifier
{ MEMBERS multi_value_annotation { al_purpose item} }
| simple_pingroup_template_instantiation

vector_pingroup ::=
| P]PN& ROUP multi_index pingroup_identifier
{ MEMBERS multi_value_annotation { vector_pingroup_item} }
| vector_pingroup_template_instantiation
vector_pingroup_item ::=
al_purpose_item
| range

Syntax 50—PINGROUP declaration

A pingroup in general shall serve the purpose to specify items applicable to a combination of pins. The combina
tion of pins shall be specified by the members annotation.

A vector pingroup can only combine scalar pins. A vector pingroup can be used as a pin variable, in the same
capacity asavector pin.

A simple pingroup can combine pins of any format, i.e., scalar pins, vector pins, and matrix pins. A simple pin-
group can not be used as a pin variable.

8.8 Annotations related to a PIN or a PINGROUP declaration
This section defines annotations and attribute values in the context of a pin declaration or a pingroup declaration.
8.8.1 PIN reference annotation

A pin reference annotation shall be defined as shown in Semantics 23.

KEYWORD PI N = annotation {
CONTEXT { arithnetic_nodel FROM TO }
}
SEMANTI CS PI N {
REFERENCETYPE { PI N Pl NGROUP PORT NODE }

}

Semantics 23—PIN reference annotation

IEEE P1603 Draft 8 Advanced Library Format (ALF) Reference Manual 77

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

The purpose of a pin reference annotation is to establish an association between a pin, a pingroup, a port (see
8.23) or anode (see 8.12) and an arithmetic model (see 10.3) or a from-to statement (see 10.12). In this context,
the pin, pingroup, port or node is used as a reference point related to a timing measurement or an electrical mea-
surement.

A hierarchical identifier can be used to specify areference to a pin, a pingroup, a port or a node as a child of a
cell, apin or awire.

8.8.2 MEMBERS annotation

A members annotation shall be defined as shown in Semantics 24.

KEYWORD MEMBERS = nulti _val ue_annotation {
CONTEXT = PI NGROUP;

}

SEMANTI CS MEMBERS {
REFERENCETYPE = PI N,

}

Semantics 24—MEMBERS annotation
The purpose of the members annotation is to specify the constituent pins of a pingroup.
8.8.3 VIEW annotation

A view annotation shall be defined as shown in Semantics 25.

KEYWORD VI EW = si ngl e_val ue_annot ati on {
CONTEXT { PI'N PI NGROUP }

}

SEMANTI CS VI EW {
VALUES { functional physical both none }
DEFAULT = bot h;

}

Semantics 25—VIEW annotation

The purpose of the view annotation is to specify the visibility of apinin anetlist.

It can take the values shown in Table 40.

Table 40—VIEW annotation values

Annotation value Description
functi onal pi n appearsin functional netlist.
physi cal pi n appearsin physical netlist.
bot h pi n appearsin both functional and physical netlist.
none pi n does not appear in netlist.

78 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 8

8.8.4 PINTYPE annotation

A pintype annotation shall be defined as shown in Semantics 26.

KEYWORD PI NTYPE = singl e_val ue_annotati on {
CONTEXT = PIN;
}
SEMANTI CS PI NTYPE {
VALUETYPE = identifier;
VALUES { digital analog supply }
DEFAULT = digital;
}

Semantics 26—PINTYPE annotation

The purpose of the pintype annotation isto establish broad categories of pins.

It can take the values shown in Table 41.

Table 41—PINTYPE annotation values

Annotation value Description
di gi tal Digital signal pin.
anal og Analog signal pin.
suppl y Power supply or ground pin.

8.8.5 DIRECTION annotation

A direction annotation shall be defined as shown in Semantics 27.

KEYWORD DI RECTI ON = si ngl e_val ue_annot ati on {
CONTEXT = PIN;

}

SEMANTI CS DI RECTI ON {
VALUES { input output both none }

}

Semantics 27—DIRECTION annotation

The purpose of the direction annotation is to establish the flow of information and/or electrical energy through a
pin. Information/energy can flow into a cell or out of a cell through a pin. The information/energy flow is not to

be mistaken as the flow of electrical current through a pin.

IEEE P1603 Draft 8 Advanced Library Format (ALF) Reference Manual

79

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

The direction annotation can take the values shown in Table 42.

Table 42—DIRECTION annotation values

Annotation value Description

i nput Information/energy flows through the pininto the cell. Thepinisa
receiver or asink.

out put Information/energy flows through the pin out of the cell. Thepinisa
driver or a source.

bot h Information/energy flows through the pinin and out of the cell. The
pinisboth areceiver/sink and driver/source, dependent on the mode
of operation.

none No information/energy flows through the pinin or out of the cell.

The pin can be an internal pin without connection to its environment
or afeedthrough where both ends are represented by the same pin.

The direction annotation shall be orthogonal to the pintype annotation (see 8.8.4), i.e., al combinations of anno-
tation values are possible.

Examples

— The power and ground pins of aregular cell have the direction value input.

— A level converter cell has a power supply pin with direction value input and ancther power supply pin
with direction value output.

— A level converter can have a common ground pin with direction value both or separate ground pins
related to its power supply pins, i.e., one ground pin with direction value input and another ground pin
with direction value output.

— The power and ground pins of afeed through cell have the direction value none.

8.8.6 SIGNALTYPE annotation

A signaltype annotation shall be defined as shown in Semantics 28.

KEYWORD SI GNALTYPE = singl e_val ue_annotation {
CONTEXT = PIN;
}
SEMANTI CS SI GNALTYPE {
VALUETYPE = identifier;
VALUES {
data scan_data address control select tie clear set
enabl e out _enabl e scan_enabl e scan_out _enabl e
cl ock master_cl ock slave_cl ock
scan_master _cl ock scan_sl ave_cl ock

}
DEFAULT = dat a;

}

Semantics 28—SIGNALTYPE annotation

80 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 8

The purpose of the signaltype annotation is to classify the functionality of a pin. The set of defined values apply

for pins with pintype value digital. Conceptualy, a pin with pintype value analog can also have a signaltype

annotation. However, no values are currently defined.

The fundamental signaltype values are defined in Table 43

Table 43—Fundamental SIGNALTYPE annotation values

Annotation value

Description

dat a

Genera data signal, i.e., asignal that carries information to be trans-
mitted, received, or subjected to logic operations within the CELL.

addr ess

Address signal of amemory, i.e., an encoded signal, usually abus or
part of abus, driving an address decoder within the CELL.

control

Genera control signad, i.e., an encoded signal that controls at least
two modes of operation of the CELL, possibly in conjunction with
other signals. The signal value is alowed to change during red-time
circuit operation.

sel ect

Select signal, i.e., asignal that selects the data path of a multiplexor
or de-multiplexor within the CELL. Each selected signa has the
same SI GNALTYPE.

enabl e

The signal enables storage of general input datain a latch or aflip-
flop or amemory

tie

The signal needs to be tied to afixed value statically in order to
define afixed or programmable mode of operation of the CELL, pos-
sibly in conjunction with other signals. The signal valueis not
allowed to change during real-time circuit operation.

cl ear

Clear or reset signal of aflip-flop or latch, i.e., asignal that controls
the storage of the value O within the CELL.

set

Preset or set signal of aflip-flop or latch, i.e., asignal that controls
the storage of the value 1 within the CELL.

cl ock

Clock signal of aflip-flop or latch, i.e., atiming-critical signal that
triggers data storage within the CELL.

Figure 9 shows how to construct composite signaltype values.

dat a

scan_data

enabl e

scan_enabl e

L
cl ock

out _enabl e

scan_out _enabl e

scan_cl ock

|
|
—>
|
> mast er _cl ock > scan_nast er _cl ock
> sl ave_cl ock >

scan_sl ave_cl ock

Figure 9—Scheme for constructing composite signaltype values

IEEE P1603 Draft 8

Advanced Library Format (ALF) Reference Manual

81

10

15

20

25

30

35

40

45

50

55

1

10

15

20

25

30

35

40

50

55

The composite signaltype values are defined in Table 44

Table 44—Composite SIGNALTYPE annotation values

Annotation value Description

scan_dat a Scan datasignal, i.e., signal isrelevant in scan mode only.

out _enabl e Enables visibility of general data at an output pin of a cell.

scan_enabl e Enables storage of scan input datain alatch or aflipflop.

scan_out _enabl e Enables visibility of scan data at an output pin of acell.

mast er _cl ock Triggers storage of input datain the first stage of aflipflop in atwo-
phase clocking scheme.

sl ave_cl ock Triggers data transfer from first the stage to the second stage of a
flipflop in atwo-phase clocking scheme.

scan_cl ock Triggers storage of scan input datawithin acell.

scan_nast er_cl ock Triggers storage of input scan datain the first stage of aflipflopina

two-phase clocking scheme.

scan_sl ave_cl ock Triggers scan data transfer from the first stage to the second stage of
aflipflop in atwo-phase clocking scheme.

Within the definitions of Table 43 and Table 44, the elements flipflop, latch, multiplexor, or memory can be stan-
dalone cells or embedded in larger cells. In the former case, the celltype value (see 8.5.2) is flipflop, latch, multi-
plexor, or memory, respectively. In the latter case, the celltype value can be block or core.

8.8.7 ACTION annotation

An action annotation shall be defined as shown in Semantics 29.

KEYWORD ACTI ON = singl e_val ue_annotation {
CONTEXT = PIN;

}

SEMANTI CS ACTI ON {
VALUES { asynchronous synchronous }

}

Semantics 29—ACTION annotation

The purpose of the action annotation is to define, whether asignal is self-timed or synchronized with a clock sig-
nal.

82 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 8

The action annotation can take the values shown in Table 45.

Table 45—ACTION annotation values

Annotation value

Description

asynchr onous

Signd actsin an asynchronous way;, i.e., self-timed

synchr onous

Signd actsin a synchronous way, i.e., triggered by a clock signal

The action annotation applies only in conjunction with specific signaltype values (see 8.8.6), as shown in

Table 46.

Table 46—ACTION in conjunction with SIGNALTYPE

fundamental composite .
SIGNALTYPE value SIGNALTY PE value ACTION applicable
data scan_data No
addr ess No
contr ol Yes
sel ect No
enabl e scan_enabl e Yes
out _enabl e
scan_out _enabl e
tie No
cl ear Yes
set Yes
cl ock scan_cl ock No
mast er _cl ock
sl ave_cl ock
scan_mast er _cl ock
scan_sl ave_cl ock

8.8.8 POLARITY annotation

A polarity annotation shall be defined as shown in Semantics 30.

The purpose of the polarity annotation is to define the active state or the active edge of an input signal.

IEEE P1603 Draft 8

Advanced Library Format (ALF) Reference Manual

83

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

KEYWORD POLARI TY = singl e _val ue_annotation {

CONTEXT = PIN;

}

SEMANTI CS POLARI TY {
VALUETYPE = identifier;

VALUES { high low rising edge falling edge doubl e _edge }

}

Semantics 30—POLARITY annotation

The polarity annotation can take the values shown in Table 47.

Table 47—POLARITY annotation values

Annotation value

Description

hi gh

Signal is active high or to be driven high.

| ow

Signal is active low or to be driven low.

ri si ng_edge

Signal is activated by rising edge.

falling_edge

Signal is activated by falling edge.

doubl e_edge

Signal is activated by both rising and falling edge.

The polarity annotation applies only in conjunction with specific signaltype values (see 8.8.6), as shown in

Table 48.

84

Table 48—POLARITY in conjunction with SIGNALTYPE

Advanced Library Format (ALF) Reference Manual

fundamental composite .
SIGNALTYPE value SIGNALTYPE value | /PPlicable POLARITY value
data scan_dat a N/A
addr ess N/A
control N/A
sel ect N/A
enabl e scan_enabl e hi gh
out _enabl e | ow
scan_out _enabl e
tie hi gh
| ow
cl ear hi gh
| ow
set hi gh
| ow

IEEE P1603 Draft 8

Table 48—POLARITY in conjunction with SIGNALTYPE (Continued)

fundamental composite .
SIGNALTYPE value SIGNALTYPE value | APPlicablePOLARITY value
cl ock scan_cl ock hi gh
nmast er _cl ock | ow
sl ave_cl ock ri si ng_edge
scan_nmaster_clock | falling_edge
scan_sl ave_cl ock doubl e_edge

8.8.9 CONTROL_POLARITY annotation container

A control polarity annotation container shall be defined as shown in Semantics 31.

KEYWORD CONTROL_PCOLARI TY = annotation_contai ner {
CONTEXT = PIN ;

}

SEMANTI CS

CONTROL_POLARI TY.identifier = single_value_annotation {
VALUES { high low rising_edge falling_edge doubl e_edge }

}

Semantics 31—Control polarity annotation container

The purpose of the control polarity annotation container is to specify the active state or the active edge of an
input signal in association with a particular mode of operation, wherein the name of the mode of operation is
given by the annotation identifier.

The control polarity annotation container can be used only in conjunction with specific signaltype values (see
8.8.6), as shown in Table 49.

Table 49—CONTROL_POLARITY in conjunction with SIGNALTYPE

fundamental composite Applicable annotation value
SIGNALTYPE value SIGNALTYPE value within CONTROL_POLARITY
contr ol hi gh
| ow
cl ock scan_cl ock hi gh
mast er _cl ock | ow
sl ave_cl ock ri si ng_edge
scan_naster_clock | falling_edge
scan_sl ave_cl ock doubl e_edge
other N/A

Example:

PI N ModeSel 1 {
DI RECTI ON = input; SIGNALTYPE = control;

IEEE P1603 Draft 8 Advanced Library Format (ALF) Reference Manual 85

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

CONTROL_POLARI TY { nor nal =hi gh; scan=l ow; hol d=Il ow;, }
}
PI N ModeSel 2 {
DI RECTI ON = i nput; SIGNALTYPE = control;
CONTROL_POLARI TY { scan=hi gh; hol d=l ow, }
}

The control-polarity specification in this example is equivalent to the following truth table.

ModeSell| ModeSel2 | Mode of operation

0 0 hold
0 1 scan
1 don'tcare | norma

8.8.10 DATATYPE annotation

A datatype annotation shall be defined as shown in Semantics 32.

KEYWORD DATATYPE = singl e_val ue_annotation {
CONTEXT { PIN Pl NGROUP }

}

SEMANTI CS DATATYPE {
VALUES { signed unsigned }

}

Semantics 32—DATATYPE annotation

The purpose of the datatype annotation is to define the arithmetic representation of a digital signal.

The datatype annotation can take the values shown in Table 50.

Table 50—DATATYPE annotation values

Annotation value Description
si gned Result of arithmetic operation is signed 2's complement.
unsi gned Result of arithmetic operation is unsigned.

The datatype annotation is only relevant for abus, i.e., avector pin (see Syntax 49 in 8.6).

8.8.11 INITIAL_VALUE annotation

Aninitial value annotation shall be defined as shown in Semantics 33.

The purpose of the initial value annotation is to provide an initial value of a signal within a simulation model

derived from ALF. A signal shall have the initial value before a simulation event affects the signal. The default
value “U” means “uninitialized” (see Table 74).

86 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 8

KEYWORD | NI TI AL_VALUE = singl e_val ue_annotation {
CONTEXT { PIN Pl NGROUP }

}

SEMANTI CS | NI TI AL_VALUE {
VALUETYPE = bool ean_val ue;
DEFAULT = U,

}

Semantics 33—INITIAL_VALUE annotation
8.8.12 SCAN_POSITION annotation

A scan position annotation shall be defined as shown in Semantics 34.

KEYWORD SCAN_POSI TI ON = si ngl e_val ue_annotati on {
CONTEXT = PIN;

}

SEMANTI CS SCAN_POCSI TI ON {
VALUETYPE = unsi gned_i nt eger;
DEFAULT = 0;

}

Semantics 34—SCAN_POSITION annotation

The purpose of the scan position annotation is to specify the position of the pin in scan chain, starting with 1 for
the primary input. The value 0 (which is the default) indicates that the pinis not on the scan chain.

8.8.13 STUCK annotation

A stuck annotation shall be defined as shown in Semantics 35.

KEYWORD STUCK = singl e_val ue_annotation {
CONTEXT = PIN;

}

SEMANTI CS STUCK {
VALUES { stuck_at 0 stuck_at_ 1 both none }
DEFAULT = bot h;

}

Semantics 35—STUCK annotation

The purpose of the stuck annotation is to specify a static fault model applicable for the pin.

The STUCK annotation can take the values shown in Table 51.

Table 51—STUCK annotation values

Annotation value Description

stuck_at O Pin can exhibit afaulty static low state.

IEEE P1603 Draft 8 Advanced Library Format (ALF) Reference Manual 87

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

Table 51—STUCK annotation values (Continued)

Annotation value Description
stuck_at 1 Pin can exhibit afaulty static high state.
bot h Pin can exhibit afaulty static high or low state.
none Pin can not exhibit afaulty static state.

8.8.14 SUPPLYTYPE annotation

A supplytype annotation shall be defined as shown in Semantics 36.

KEYWORD SUPPLYTYPE = annotation {
CONTEXT { PI N CLASS }

}

SEMANTI CS SUPPLYTYPE {
VALUETYPE = identifier;
VALUES { power ground reference }

}

Semantics 36—SUPPLYTYPE annotation

The supplytype annotation can take the values shown in Table 52.

Table 52—SUPPLYTYPE annotation values

Annotation value Description

power Piniselectrically connected to a power supply, i.e., a constant non-zero
voltage source providing energy for operation of acircuit.

ground Pinisédlectrically connected to ground, i.e., azero voltage source providing
the return path for electrical current through a power supply.

ref erence Pin exhibits a constant voltage level without providing significant energy
for operation of acircuit.

The purpose of the supplytype annotation is to define a subcategory of pins with pintype value supply (see
Table 41).

8.8.15 SIGNAL_CLASS annotation
A signal-class annotation shall be defined as shown in Semantics 37.
The value shall be the name of adeclared CLASS.

The purpose of the signal-class annotation is to specify which terminals of a cell with are functionally related to
each other. The signal-class annotation applies for a pin with arbitrary signaltype value (see 8.8.6).

Example:

88 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 8

KEYWORD S| GNAL _CLASS = annotation {
CONTEXT { PIN PI NGROUP }

}

SEMANTI CS SI GNAL_CLASS {
REFERENCETYPE = CLASS;

}

Semantics 37—SIGNAL_CLASS annotation

A multiport memory can have a data bus related to an address bus and another data bus related to another address
bus. Note that the term “port” in “multiport” does not relate to the ALF port declaration (see 8.23).

CELL my2Port Menory {
CLASS ReadPort { USAGE = SI GNAL_CLASS; }
CLASS WitePort { USACE = SI GNAL_CLASS; }

PIN [3:0] addr_A { SIGNALTYPE = address; SIGNAL_CLASS = ReadPort; }
PIN [7:0] data_A { SIGNALTYPE = dat a; SI GNAL_CLASS = ReadPort; }
PIN [3:0] addr_B { SIGNALTYPE = address; SIGNAL_CLASS = WitePort; }
PIN[7:0] data_B { SIGNALTYPE = dat a; SI GNAL_CLASS = WitePort; }

PINwite_enable { SIGNALTYPE = enabl e; SIGNAL_CLASS = WitePort; }
}

8.8.16 SUPPLY_CLASS annotation

A supply-class annotation shall be defined as shown in Semantics 38.

KEYWORD SUPPLY_CLASS = annotation {
CONTEXT { PIN CLASS PONER ENERGY }

}

SEMANTI CS SUPPLY_CLASS ({
REFERENCETYPE = CLASS;

}

Semantics 38—SUPPLY_CLASS annotation

The annotation value shall be the name of a declared class (see 7.12).

The purpose of the supply-class annotation isto specify arelation between a pin and a power supply system, rep-
resented by the refered class.

The supply-class annotation shall apply for a pin with any signaltype value (see 8.8.6) or any supplytype value
(see 8.8.14).

The supply-class annotation shall also apply for a class with usage value connect-class (see 8.8.19). The latter
class shall represent a global net related to a power supply system.

The supply-class annotation shall also apply for the arithmetic models power and energy (see 10.11.15).

Example 1:

A cell supports two power supplies. Each pin isrelated to at |east one power supply.

IEEE P1603 Draft 8 Advanced Library Format (ALF) Reference Manual 89

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

CLASS supplyl { USAGE
CLASS supply2 { USAGE
CELL myLevel Shifter {

SUPPLY_CLASS; }
SUPPLY_CLASS; }

PI N vddl { SUPPLYTYPE = power; SUPPLY CLASS = supplyl; }
PIN Din { SIGNALTYPE = data; SUPPLY _CLASS = supplyl; }
PI N vdd2 { SUPPLYTYPE = power; SUPPLY CLASS = supply2; }
PI N Dout { SIGNALTYPE = data; SUPPLY_CLASS = supply2; }
PIN Ghd { SUPPLYTYPE = ground; SUPPLY_CLASS { supplyl supply2 }
}
Example 2:

A library provides two environmental power supplies. A supply pin of acell has to be connected to a global net

related to an environmental power supply.

CLASS core { USAGE = SUPPLY_CLASS; }
CLASS io { USACE = SUPPLY_CLASS; }

}

CLASS Vvddl { USAGE=CONNECT_CLASS; SUPPLYTYPE=power; SUPPLY_CLASS=cor e;
CLASS Vssl1 { USAGE=CONNECT_CLASS; SUPPLYTYPE=ground; SUPPLY_CLASS=core; }

CLASS Vdd2 { USAGE=CONNECT_CLASS; SUPPLYTYPE=power; SUPPLY_CLASS=i o;
CLASS Vss2 { USAGE=CONNECT_CLASS; SUPPLYTYPE=ground; SUPPLY_CLASS=i o;
CELL mylnternal Cel |l {

PI'N vdd { CONNECT_CLASS=Vvdd1; }

PI N vss { CONNECT_CLASS=Vssl1; }
}
CELL nyPadCel | {

PI'N vdd { CONNECT_CLASS=Vdd2; }

PI N vss { CONNECT_CLASS=Vss2; }

}

8.8.17 DRIVETYPE annotation

A drivetype annotation shall be defined as shown in Semantics 39.

}

}

KEYWORD DRI VETYPE = singl e_val ue_annotati on {
CONTEXT { PIN CLASS }
}
SEMANTI CS DRI VETYPE {
VALUETYPE = identifier;
VALUES {
CNDS NNDS pNDS CNDS_passS NNDS_pass pnbS_pass
ttl open_drain open_source

}
DEFAULT = cnps;

}

Semantics 39—DRIVETYPE annotation

The purpose of the drivetype annotation is to specify a category of electrical characteristics for a pin, which

relate to the system of logic values and drive strengths (see Table 74).

90 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 8

}

The drivetype annotation can take the values shown in Table 53.

Table 53—DRIVETYPE annotation values

Annotation value Description

cnos

Standard cmos signal. The logic high level is equal to the power sup-
ply, thelogic low level is equal to ground. The drive strength is
strong. No static current flows. Signal is amplified by cmos stage.

nnos

Nmos or pseudo nmos signal. The logic high level is equal to the
power supply and its drive strength is resistive. The logic low level
voltage depends on the ratio of pull-up and pull-down transistor.
Static current flowsin logic low state.

pnos

Pmos or pseudo pmos signal. The logic low level isequal to ground
and its drive strength isresistive. The logic high level voltage
depends on the ratio of pull-up and pull-down transistor. Static cur-
rent flowsin logic high state.

nnos_pass Nmos passgate signa. Signal is not amplified by passgate stage.

Logic low voltage level is preserved, logic high voltage level islim-
ited by nmos threshold voltage.

pnos_pass Pmos passgate signal. Signal is not amplified by passgate stage.

Logic high voltage level is preserved, logic low voltage level islim-
ited by pmos threshold voltage.

cnos_pass Cmos passgate signal, i.e., afull transmission gate. Signal is not

amplified by passgate stage. VVoltage levels are preserved.

ttl

TTL signa. Both logic high and logic low voltage levels are |oad-
dependent, as static current can flow.

open_drain Open drain signal. Logic low level is equal to ground. Logic high

level corresponds to high impedance state.

open_sour ce Open source signal. Logic high level is equal to the power supply.

Logic low level corresponds to high impedance state.

8.8.18 SCOPE annotation

A scope annotation shall be defined as shown in Semantics 40.

KEYWORD SCOPE = singl e_val ue_annotation {
CONTEXT { PI N PI NGROUP }

}

SEMANTI CS SCOPE {
VALUES { behavi or neasure both none }
DEFAULT = bot h;

}

Semantics 40—SCOPE annotation

The purpose of the scope annotation is to specify a category of modeling usage for a pin. The scope annotation
specifies whether a pin can beinvolved in acontrol expression (see 9.12) within avector declaration (see 8.14) or
within abehavior statement (see 9.4).

IEEE P1603 Draft 8 Advanced Library Format (ALF) Reference Manual

91

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

The scope annotation can take the values shown in Table 54.

Table 54—SCOPE annotation values

Annotation value Description

behavi or The pinisused for modeling functional behavior. Pin can be
involved in a control expression within a BEHAVI OR statement.

neasure Measurements related to the pin can be described. Pin can be
involved in acontrol expression within a VECTOR declaration.

bot h Pin can be involved in a control expression within aBEHAVIOR
statement or within a VECTOR declaration.

none Pin can not be involved in a control expression.

8.8.19 CONNECT_CLASS annotation

A connect-class annotation shall be defined as shown in Semantics 41.

KEYWORD CONNECT_CLASS = singl e_val ue_annotation {
CONTEXT = PIN;

}

SEMANTI CS CONNECT_CLASS {
REFERENCETYPE = CLASS;

}

Semantics 41—CONNECT_CLASS annotation

The annotation value shall be the name of a declared class (see 7.12).

The purpose of the connect-class annotation is to specify arelationship between a pin and an environmental rule
for connectivity (see 10.18.1). The connect-class annotation can be used in conjunction with supply-class (see
8.8.16) or in conjunction with connect-rule (see 10.20.1).

8.8.20 SIDE annotation

A side annotation shall be defined as shown in Semantics 42.

KEYWORD S| DE = singl e_val ue_annotati on {
CONTEXT { PI'N PI NGROUP }

}

SEMANTI CS SI DE {
VALUETYPE = identifier;
VALUES { left right top bottominside }

}

Semantics 42—SIDE annotation

The purpose of the side annotation is to define an abstract location of apin relative to a bounding box of a cell.

92 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 8

The side annotation can take the values shown in Table 55.

Table 55—SIDE annotation values

Annotation value Description
| eft pi n ison theleft side of the bounding box.
ri ght pi n ison theright side of the bounding box.
top pi n isat thetop of the bounding box.
bott om pi n isat the bottom of the bounding box.
i nsi de pi n isinside the bounding box.

8.8.21 ROW and COLUMN annotation

A row annotation and a column annotation shall be defined as shown in Semantics 43.

KEYWORD ROW = annot ation {
CONTEXT { PI N PI NGROUP }

}

SEMANTI CS ROW {
VALUETYPE = unsi gned_i nt eger;

}

KEYWORD COLUWN = annotation {
CONTEXT { PI'N PI NGROUP }

}

SEMANTI CS COLUWN {
VALUETYPE = unsi gned_i nt eger;

}

Semantics 43—ROW and COLUMN annotations

The purpose of arow and a column annotation is to indicate a location of a pin when a cell is placed within a
placement grid. The count of rows and columns shall start at the lower |eft corner of the bounding box of the cell,
as shown in Figure 10.

IEEE P1603 Draft 8 Advanced Library Format (ALF) Reference Manual 93

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

row | bounding box of cell | this region has column=1, row=2
a_ | _ _ _ _ L _Xx_ 1 | | _ _ _ L _
| | | | | |
3_ 1 L _ 1 _L_
| | | |
2_ 1 _ _ _ L _ _ _ 1 _L_
| | | | | |
i_40____ - _ 41 __ L __ _ 1__ _ _L_
| | | | | |
o_ |\ __C___1____L___1_ _ _ _L _
| 0 1 |2 1 3 cqumn'
—

Figure 10—ROW and COLUMN relative to a bounding box of a CELL
The row annotation is applicable for a pin with side value left or right. The column annotion is applicable for a
pin with side value top or bottom. Both row and column annotation are applicable for a pin with side value
inside.
A single-value annotation is applicable for a scalar pin. A multi-value annotation is applicable for a vector pin or
for a vector pingroup. The number of values shall match the number of scalar pins within the vector pin or pin-
group. The order of values shall correspond to the order of scalar pins within the vector pin or pingroup.
8.8.22 ROUTING_TYPE annotation

A routing-type annotation shall be defined as shown in Semantics 44.

KEYWORD ROUTI NG TYPE = singl e_val ue_annot ati on {
CONTEXT { PIN PORT }

}

SEMANTI CS ROUTI NG_TYPE {
VALUETYPE = identifier;
VALUES { regul ar abutrment ring feedthrough }
DEFAULT = regul ar;

}

Semantics 44—ROUTING_TYPE annotation

The purpose of the routing-type annotation isto specify the physical connection between a pin and arouted wire.

The routing-type annotation can take the values shown in Table 56.

Table 56—ROUTING-TYPE annotation values

Annotation value Description
regul ar Pin has avia, connection by regular routing to the via
abut nment Pin isthe end of awire segment, connection by abutment

94 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 8

Table 56—ROUTING-TYPE annotation values (Continued)

Annotation value Description
ring Pin forms aring around the cell, connection by abutment to any point
of thering.
f eedt hr ough Pin has two aligned ends of awire segment, connection by abutment
on both ends

8.8.23 PULL annotation

A pull annotation shall be defined as shown in Semantics 45.

KEYWORD PULL = single_val ue_annotation {
CONTEXT = PIN;

}

SEMANTI CS PULL {
VALUES { up down both none }
DEFAULT = none;

Semantics 45—PULL annotation

The purpose of the pull annotation is to specify whether a pullup or a pulldown device is connected to the pin.

The pull annotation can take the values shown in Table 57.

Table 57—PULL annotation values

Annotation value Description
up Pullup device connected to the pin.
down Pulldown device connected to the pin.
bot h Both pullup and pulldown device connected to pin.
none No pullup or pulldown device connected to the pin.

A pullup device ties the pin to alogic high level when no other signal is driving the pin. A pulldown device ties
the pinto alogic low level when no other signal is driving the pin. If both devices are connected, the pinistied to
an intermediate voltage level, i.e. in-between logic high and logic low, when no other signal is driving the pin.

IEEE P1603 Draft 8 Advanced Library Format (ALF) Reference Manual 95

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

8.8.24 ATTRIBUTE values for a PIN or a PINGROUP

The attribute values shown in Table 58 are applicable for a pin or a pingroup with the following characteristics.

Table 58—Attribute values for a PIN

Attributeitem Description

SCHM TT Schmitt trigger signal, i.e., the DC transfer characteristics exhibit a
hysteresis. Applicable for output pin.

TRI STATE Tristate signal, i.e., the signal can bein high impedance mode. Appli-
cable for output pin.

XTAL Crystal/oscillator signal. Applicable for output pin of an oscillator
circuit.

PAD Pin has external,i.e., off-chip connection.

The attribute values shown in Table 59 are applicable for apin or a pingroup of a cell with celltype value memory

in conjunction with a specific signaltype value.

Table 59—Attribute values for a PIN of a CELL with CELLTYPE memory

Attributeitem SIGNALTYPE Description

ROW ADDRESS_STROBE cl ock Samples the row address of the memory.
Applicable for scalar pin.

COLUMN_ADDRESS_STROBE cl ock Samples the column address of the memory.
Applicable for scalar pin.

ROW addr ess Selects an addressable row of the memory.
Applicable for pin and pingroup.

COLUWN addr ess Selects an addressable column of the memory.
Applicable for pin and pingroup.

BANK addr ess Selects an addressable bank of the memory.

Applicable for pin and pingroup.

The attribute values shown in Table 60 are applicable for a pair of signals.

Table 60—Attribute values for a PIN within a pair of signals

Attributeitem

Description

96 Advanced Library Format (ALF) Reference Manual

| NVERTED Represents the inverted value within a pair of signals car-
rying complementary values.
NON_I NVERTED Representsthe non-inverted value within apair of signals

carrying complementary values.

IEEE P1603 Draft 8

Table 60—Attribute values for a PIN within a pair of signals (Continued)

Attributeitem Description

DI FFERENTI AL Signal is part of adifferentid pair, i.e., both the inverted
and non-inverted values are always required for physical
implementation.

In case there is more than one pair of signals related to each other by the attribute values inverted, non-inverted,
or differential, each pair shall be member of a dedicated pingroup.

The following restrictions apply for pairs of signals.

— ThePI NTYPE, SI GNALTYPE, and DI RECTI ON of both pins shall be the same.
— One Pl Nshall have the attribute | NVERTED, the other NON_I NVERTED.
— Either both pins or none of the pins shall have the attribute DI FFERENTI AL.
— POLARI TY, if applicable, shall be complementary as follows:
HI GHis paired with LOW
Rl SI NG_EDGE is paired with FALLI NG_EDGE
DOUBLE_EDGE is paired with DOUBLE_EDGE

The attribute inverted, non-inverted also applies to pins of a cell for which theimplementation of apair of signals
is optional, i.e., one of the signals can be missing. The output pin of aflipflop or alatch is an example. The flip-
flop or the latch can have an output pin with attribute non-inverted and/or another output pin with attribute
inverted.

The attribute values shown in Table 61 shall be defined for memory BIST.

Table 61—ATTRIBUTE values for a PIN or a PINGROUP related to memory BIST

Attributeitem Description

ROW | NDEX Vector pin or pingroup with acontiguous range of values,
indicating a physical row of amemory.

COLUMN_| NDEX Vector pin or pingroup with acontiguous range of values,
indicating a physical column of a memory.

BANK_| NDEX Vector pin or pingroup with acontiguous range of values,
indicating a physical bank of a memory.

DATA | NDEX Vector pin or pingroup with acontiguous range of values,
indicating the bit position within a data bus of a memory.

DATA _VALUE Scalar pin, representing avalue stored in a physical mem-
ory location.

These attributes apply to the virtual pins associated with a Bl ST wrapper around the memory rather than to the
physical pins of the memory itself. The BIST wrapper can be represented as atest statement (see 9.2).

8.9 PRIMITIVE declaration

A primitive shall be declared as shown in Syntax 51.

IEEE P1603 Draft 8 Advanced Library Format (ALF) Reference Manual 97

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

primitive ::=
PRIMITIVE primitive_identifier { { primitive_item} }
|PRIMITIVE primitive_identifier ;
| primitive_template_instantiation
primitive_item ::=
al_purpose_item
| pin
| pingroup
| function
| test

Syntax 51—PRIMITIVE statement
The purpose of a primitive is to describe a virtua circuit. The virtual circuit can be functionally equivalent to a

physical electronic circuit represented as a cell (see 8.4). A primitive can be instantiated within a behavior state-
ment (see 9.4).

8.10 WIRE declaration

A wire shall be declared as shown in Syntax 52.

wire ;=
W/ RE wire_identifier { { wire_item} }
| WIRE wire_identifier ;
| wire_template_instantiation
wire item ;=
all_purpose_item
| node

Syntax 52—WIRE declaration
The purpose of awire declaration is to describe an interconnect model. The interconnect model can be a statisti-

cal wireload model, a description of boundary parasitics within a complex cell, amodel for interconnect analysis,
or a specification of aload seen by adriver.

8.11 Annotations related to a WIRE declaration
8.11.1 WIRE reference annotation

A wire reference annotation shall be defined as shown in Semantics 46.

KEYWORD W RE = annot ati on {
CONTEXT = arithnetic_nodel ;

}

SEMANTI CS W RE {
REFERENCETYPE = W RE;

}

Semantics 46—WIRE reference annotation

The purpose of a wire reference annotation is to establish an association between a vector and an arithmetic
model (see 10.3).

98 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 8

A hierarchical identifier can be used to specify areferenceto awire asachild of acell or asublibrary or alibrary.

8.11.2 WIRETYPE annotation

A wiretype annotation shall be defined as shown in Semantics 47.

}

VALUES {
}

KEYWORD W RETYPE = si ngl e_val ue_annotation {
CONTEXT =

W RE;

SEMANTI CS W RETYPE {
VALUETYPE = identifier;

estimated extracted interconnect |oad }

Semantics 47—WIRETYPE annotation

The purpose of the wiretype annotation is to define a purpose and a usage model for the wire statement.

The wiretype annotation can take the values shown in Table 62.

Table 62—WIRETYPE annotation values

Annotation value Description
esti mat ed The wire declaration contains a statistical wireload model, i.e., a
moded for estimation of R, L, C values for a net, without a structural
description of acircuit.
extract ed The wire declaration contains a structural description of acircuit, i.e.

anetlist, related to the parent object, i.e. acell. The R, L, C compo-
nents represent extracted parasitics from a physical implementation
of the cell.

i nt erconnect

The wire declaration contains a structural description of acircuit,
representing amodel for interconnect analysis. A general R, L, C
interconnect network is expected to be reduced to the specified cir-
cuit for analysis purpose.

| oad

The wire declaration contains a structural description of acircuit,
which isto be connected as aload to adevice, i.e., acell, for charac-
terization or test. A wire instantiation (see 9.15) shall be used to
describe such a connection.

An R, L, C component within the context of the wire declaration shall be described as an arithmetic model (see

10.3). A related electrical measurement, e.g., voltage, current, noise, shall also be described as arithmetic model.

8.11.3 SELECT_CLASS annotation

A select-class annotation shall be defined as shown in Semantics 48.

The identifier shall refer to the name of a declared class.

IEEE P1603 Draft 8 Advanced Library Format (ALF) Reference Manual

99

10

15

20

25

30

35

40

50

55

10

15

20

25

30

35

40

45

50

55

KEYWORD SELECT CLASS = annotation {
CONTEXT = W RE;

}

SEMANTI CS SELECT_CLASS {
REFERENCETYPE = CLASS;

}

Semantics 48—SELECT_CLASS annotation

The purpose of the select-class annotation is to provide a mechanism for selecting a set of wire objects by an
application. The user of the application can select a set of related wire objects by specifying the name of a class
rather than specifying the name of each wire object.

The semantics of the select class shall be under the responsibility of the library provider. Thelibrary provider can
define a select class based on criteria such as range of wire length, range of die size, accuracy requirements for
delay calculation etc.

The select class annotation is orthogonal to the wiretype annotation, asillustrated in the following example.
Example:

CLASS short_wire { USAGE = SELECT CLASS ; }

CLASS long_wire { USAGE = SELECT_CLASS ; }

W RE pre_layout _small {
W RETYPE = estimated; SELECT CLASS = short_wire;
/1 put statistical wreload nodel here

}

W RE post _|ayout_small {
W RETYPE = interconnect; SELECT CLASS = short_ wire;
/1 put interconnect analysis nodel here

}

W RE pre_l ayout | arge {
W RETYPE = estimated; SELECT_CLASS = | ong_wi re;
/1l put statistical wreload nodel here

}

W RE post _| ayout | arge {
W RETYPE = interconnect; SELECT CLASS = long wre;
/1l put interconnect analysis nodel here

8.12 NODE declaration

A node shall be declared as shown in Syntax 53.

node ::=
NODE node identifier ;
| NODE node identifier { { node item} }
| node_template_instantiation
node item ::=
al_purpose_item

Syntax 53—NODE statement

100 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 8

The purpose of anode declaration is to specify an electrical node in the context of awire declaration (see 8.10) or
in the context of a cell declaration (see 8.4).

8.13 Annotations related to a NODE declaration
8.13.1 NODE reference annotation

A node reference annotation shall be defined as shown in Semantics 49.

KEYWORD NODE = mul ti_val ue_annotation {
CONTEXT = arithnetic_nodel;

}

SEMANTI CS NODE {
REFERENCETYPE { PI N PORT NODE }

}

Semantics 49—NODE reference annotation

The purpose of a node reference annotation is to establish an association between a pin, a pingroup, a port (see
8.23) or anode (see 8.12) and an arithmetic model (see 10.3). In this context, the pin, pingroup, port or node is
used to specify the connectivity of an electrical component within a structural circuit.

A hierarchical identifier can be used to specify areference to apin, aport or anode as achild of acell, apinor a
wire.

8.13.2 NODETYPE annotation

A nodetype annotation shall be defined as shown in Semantics 50.

KEYWORD NODETYPE = singl e _val ue_annotation {
CONTEXT = NODE;
}
SEMANTI CS NODETYPE {
VALUETYPE = identifier;
VALUES { power ground source sink
driver receiver interconnect }
DEFAULT = interconnect;

}

Semantics 50—NODETYPE annotation

The values shall have the semantic meaning shown in Table 63.

Table 63—NODETYPE annotation values

Annotation value Description

driver The node is the interface between an output pin of acell and an
interconnect wire.

IEEE P1603 Draft 8 Advanced Library Format (ALF) Reference Manual 101

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

Table 63—NODETYPE annotation values (Continued)

Annotation value Description

recei ver The node is the interface between an interconnect wire and an
input pin of acell.

sour ce The node isavirtual start point of signal propagation.

In case of anideal driver, the source node is collapsed with a
driver node . The collapsed node shall have the nodetype value
driver.

si nk The node isavirtual end point of signal propagation.

In case of an ideal receiver, the sink node is collapsed with a
receiver node . The collapsed node shall have the nodetype value
receiver.

power The node supports electrical current for arising signal at a
source or adriver node and areference for alogic high signal
at asink or receiver node.

gr ound The node supports electrical current for afalling signal at a
source or adriver node and areference for logic alow signal
at asink or areceiver node

i nt er connect The node serves for connecting purpose only.

A circuit wherein all nodes are interconnected by either aresistance or an inductance or a voltage sourceiscalled
a DC-connected net.

The meaning of the nodetype annotation values in context of a DC-connected net isillustrated in Figure 11.

e ! DC-connected net |r _______ !

driver node ¢ eiveL node

DC-connected subnet DC-connected subnet

| DC—conneIcted subnet |

Figure 11—NODETYPE in context of a DC-connected net

The nodetype annotation specifies away of separating a DC-connected net into three DC-connected subnets. The
DC-connected subnet between a source node and adriver nodeis considered amodel of an internal interconnect
within acell. The driver node shall be considered an output pin of the cell. The DC-connected subnet between a
receiver node and a sink node is considered a model of an internal interconnect within another cell. The driver
node shall be considered an input pin of the cell. The DC-connected subnet between a driver node and areceiver
node is considered a model of the external interconnect between two cells. The association of an interconnect
node with either cell or with the interconnect between the cellsis infered by the connectivity within the DC-con-
nected net. A power or a ground node which is not part of the DC-connected net is considered global.

102 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 8

8.13.3 NODE_CLASS annotation

A node-class annotation shall be defined as shown in Semantics 51.

KEYWORD NODE _CLASS = annotation {
CONTEXT = NODE;

}

SEMANTI CS NODE_CLASS {
REFERENCETYPE = CLASS;

}

Semantics 51—NODE_CLASS annotation

Theidentifier shall refer to the name of a declared class.

The purpose of the node-class annotation is to associate a node with a cell in the case where an association can
not be infered by the connectivity within a DC-connected net.

Example:

W RE Crosst al kAcr ossPower Dorai ns {
CLASS aggressor { USAGE = NODE CLASS; }
CLASS victim{ USAGE = NODE CLASS; }
NCDE vdd1l { NODETYPE power; NODE_CLASS
NODE driverl { NODETYPE = driver; NODE_CLASS
NCDE vdd2 { NODETYPE power; NODE_CLASS
NODE driver2 { NODETYPE = driver; NODE_CLASS

/1 put electrical conponents here

/1 put crosstal k nodel here

}

aggressor; }
aggressor; }
victim }
victim }

The node declarations in this example provide a context for a crosstalk model, where the noise magnitude at the
victim’s driver node can depend on the supply voltage at the aggressor’s power node, the supply voltage at the
victim’s power node, the signal characteristics at the aggressor’s driver node and other parameters. The crosstalk
model itself is not shown here.

8.14 VECTOR declaration

A vector shall be declared as shown in Syntax 54.

vector ::=
VECTOR control_expression ;
IVECTOR control_expression { { vector_item} }
| vector_template_instantiation
vector_item ::=
all_purpose_item
| wire_instantiation

Syntax 54—VECTOR statement

IEEE P1603 Draft 8 Advanced Library Format (ALF) Reference Manual 103

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

The purpose of avector isto provide a context for electrical characterization data or for functional test data. The
control expression (see 9.4) shall specify a stimulus related to characterization or test.

8.15 Annotations related to a VECTOR declaration
8.15.1 VECTOR reference annotation

A vector reference annotation shall be defined as shown in Semantics 52.

KEYWORD VECTOR = singl e_val ue_annotation {
CONTEXT = arithnetic_nodel;

}

SEMANTI CS VECTOR {
VALUETYPE = control _expression;
REFERENCETYPE = VECTOR;

}

Semantics 52—VECTOR reference annotation

The purpose of a vector reference annotation is to establish an association between a vector and an arithmetic
model (see 10.3).

8.15.2 PURPOSE annotation

A purpose annotation shall be defined as shown in Semantics 53.

KEYWORD PURPCSE = annotati on {
CONTEXT { VECTOR CLASS }
}
SEMANTI CS PURPOSE {
VALUETYPE = identifier ;
VALUES { bist test timng power noise reliability }

}

Semantics 53—PURPOSE annotation

The purpose of the purpose annotation is to specify a category for the datafound in the context of the vector. The
purpose annotation can aso be inherited from a class referenced within the context of the vector.

The values shall have the semantic meaning shown in Table 65.

Table 64—PURPOSE annotation values

Annotation value Description
bi st The vector contains data related to built-in self test
t est The vector contains data related to test requiring external circuitry.
timng The vector contains an arithmetic model related to timing cal culation (see
from 10.11.1t0 10.11.11)

104 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 8

Table 64—PURPOSE annotation values (Continued)

Annotation value Description
power The vector contains an arithmetic model related to power calculation (see
10.11.15)
noi se The vector contains an arithmetic model related to noise calculation (see
10.11.14)
reliability The vector contains an arithmetic model related to reliability calculation

(see 10.11.1 and 10.11.2)

8.15.3 OPERATION annotation

An operation annotation shall be defined as shown in Semantics 54.

}

}
}

KEYWORD OPERATI ON = singl e_val ue_annot ati on {
CONTEXT = VECTOR;

SEMANTI CS OPERATI ON {
VALUETYPE = identifier;
VALUES {
read wite read_modify wite refresh | oad
start end iddg

Semantics 54—OPERATION annotation

The purpose of the operation annotation is to associate amode of operation of the electronic circuit with the stim-
ulus specified within the vector declaration. This assocation can be used by an application for test vector genera-

tion or test vector verification.

The values shall have the semantic meaning shown in Table 65.

Table 65—OPERATION annotation values

Annotation value

Description

read

Read operation at one address of a memory.

wite

Write operation at one address of a memory

read_nodify _wite

Read followed by write of different value at same address of a

IEEE P1603 Draft 8

memory
start First operation within a sequence of operations required in a
particular mode.
end Last operation within a sequence of operations required in a

particular mode.

Advanced Library Format (ALF) Reference Manual 105

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

Table 65—0OPERATION annotation values (Continued)

Annotation value Description
refresh Operation required to maintain the contents of the memory
without modifying it.
| oad Operation for supplying datato a control register.
i ddg Operation for supply current measurements in quiescent state.

8.15.4 LABEL annotation

A label annotation shall be defined as shown in Semantics 55.

KEYWORD LABEL = singl e_val ue_annotation {
CONTEXT = VECTOR;

}

SEMANTI CS LABEL ({
VALUETYPE = string_val ue;

}

Semantics 55—LABEL annotation

The purpose of the label annotation is to enable a cross-reference between a statement within the context of a
vector and a corresponding statement outside the ALF library. For example, a cross-reference between a delay
model in context of avector (see 10.11.3) and an annotated delay within an SDF file (see |IEEE Std 1497-2001)
can be established, since the SDF standard also supports a LABEL statement.

8.15.5 EXISTENCE_CONDITION annotation

An existence-condition annotation shall be defined as shown in Semantics 56.

KEYWORD EXI STENCE_CONDI TI ON = si ngl e_val ue_annot ation {
CONTEXT { VECTOR CLASS }

}

SEMANTI CS EXI STENCE_CONDI Tl ON {
VALUETYPE = bool ean_expr essi on;
DEFAULT = 1;

}

Semantics 56—EXISTENCE_CONDITION annotation

The purpose of the existence-condition isto define a necessary and sufficient condition for avector to be relevant
for an application. This condition can also be inherited by the vector from a referenced class. A vector shall be
relevant unless the existence-condition eval uates Fal se.

The set of pin variables involved in the vector declaration and the set of pin variables involved in the existence
condition shall be mutually exclusive.

For dynamic evaluation of the control expression within the vector declaration, the boolean expression within the
existence-condition can be treated asiif it were a co-factor of the control expression.

106 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 8

8.15.6 EXISTENCE_CLASS annotation

An existence-class annotation shall be defined as shown in Semantics 57.

KEYWORD EXI STENCE_CLASS = annotation {
CONTEXT { VECTOR CLASS }

}

SEMANTI CS EXI STENCE_CLASS {
REFERENCETYPE = CLASS;

}

Semantics 57—EXISTENCE_CLASS annotation

The identifier shall be the name of a declared class.

The purpose of the existence-class annotation is to provide a mechanism for selection of arelevant vector by an
application. The user of the application can select a set of relevant vectors by specifying the name of the class.
Another purpose isto share acommon existence-condition amongst multiple vectors.

8.15.7 CHARACTERIZATION_CONDITION annotation

A characterization-condition annotation shall be defined as shown in Semantics 58.

KEYWORD

CHARACTERI ZATI ON_CONDI TI ON = singl e_val ue_annotation {
CONTEXT { VECTOR CLASS }

}

SEMANTI CS CHARACTERI ZATI ON_CONDI TI ON {
VALUETYPE = bool ean_expr essi on;

}

Semantics 58—CHARACTERIZATION_CONDITION annotation

The purpose of the characterization-condition annotation is to specify a unique condition under which the datain
the context of the vector were characterized. The characterization condition is only applicable if the vector decla-
ration possibly in conjunction with an existence-condition allows more than one condition.

The set of pin variables involved in the characterization-condition can overlap with the set of pin variables
involved in the vector declaration and/or the existence-condition, as long as the characterization condition is
compatible with the vector declaration and possibly with the existence-condition.

The characterization condition shall not be relevant for evaluation of either the vector declaration or the exist-
ence condition.

8.15.8 CHARACTERIZATION_VECTOR annotation
A characterization-vector annotation shall be defined as shown in Semantics 59.

The purpose of a characterization-vector annotation is to specify a complete stimulus for characterization in the
case where the vector declaration specifies only apartial stimulus.

IEEE P1603 Draft 8 Advanced Library Format (ALF) Reference Manual 107

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

KEYWORD

CHARACTERI ZATI ON_VECTOR = si ngl e_val ue_annotati on {
CONTEXT { VECTOR CLASS }

}

SEMANTI CS CHARACTERI ZATI ON_VECTOR {
VALUETYPE = control _expression;

}

Semantics 59—CHARACTERIZATION_VECTOR annotation

The characterization-vector annotation and the characterization-condition annotation shall be mutually exclusive
within the context of the same vector.

8.15.9 CHARACTERIZATION_CLASS annotation

A characterization-class annotation shall be defined as shown in Semantics 60.

KEYWORD CHARACTERI ZATI ON_CLASS = annotation {
CONTEXT { VECTOR CLASS }

}

SEMANTI CS CHARACTERI ZATI ON_CLASS {
REFERENCETYPE = CLASS;

}

Semantics 60—CHARACTERIZATION_CLASS annotation

Theidentifier shall be the name of a declared class.

The purpose of the characterization-class annotation is to provide a mechanism for classification of characteriza-
tion data. Another purpose isto share acommon characterization-condition or a common characterizati on-vector
amongst multiple vectors.

8.15.10 MONITOR annotation

A monitor annotation shall be defined as shown in Semantics 61.

KEYWORD MONI TOR = annot ati on {
CONTEXT { VECTOR CLASS }

}

SEMANTI CS MONI TOR {
VALUETYPE = identifier;

}

Semantics 61—MONITOR annotation

The purpose of the monitor annotation isto specify aset of pin variables (see 9.3) involved in the evaluation of a
vector expression. Events on this set of pin variables need to be monitored for detection of a specified event
sequence (see 9.13.4).

108 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 8

8.16 LAYER declaration

A layer shall be declared as shown in Syntax 55.

layer ::=
LAYER layer_identifier ;
ILAYER layer identifier { { layer item} }
| layer_template instantiation
layer_item ::=
al_purpose_item

Syntax 55—LAYER declaration

A layer shall describe process technology for fabrication of an integrated electronic circuit and a set of related
physical data and constraints relevant for a design application.

The order of layer declarations within alibrary or asublibrary shall reflect the order of physical creation of layers

by amanufacturing process. The layer which is created first shall be declared first. A virtual layer, i.e. alayer that
is not created by a manufacturing process, shall be declared last.

8.17 Annotations related to a LAYER declaration
8.17.1 LAYER reference annotation

A layer reference annotation shall be defined as shown in Semantics 62.

KEYWORD LAYER = annotation {

CONTEXT { arithnetic_nodel PATTERN ARRAY }
}
SEMANTI CS LAYER {

REFERENCETYPE = LAYER

}

Semantics 62—LAYER reference annotation

The purpose of a layer reference annotation is to establish an association between a layer and a pattern (see
8.29), an array (see 8.27) or an arithmetic model (see 10.3).

8.17.2 LAYERTYPE annotation

A layertype annotation shall be defined as shown in Semantics 63.

KEYWORD LAYERTYPE = singl e_val ue_annot ation {
CONTEXT = LAYER,
}
SEMANTI CS LAYERTYPE
VALUES {
routing cut substrate dielectric reserved abstract
}
}

Semantics 63—LAYERTYPE annotation

IEEE P1603 Draft 8 Advanced Library Format (ALF) Reference Manual 109

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

The values shall have the semantic meaning shown in Table 66.

Table 66—LAYERTYPE annotation values

Annotation value Description
routing Layer provides electrical connections within a plane.
cut Layer provides electrical connections between planes.
substrate Layer at the bottom.
dielectric Layer provides electrical isolation between planes.
reserved Layer isfor proprietary use only.
abstract Layer isvirtual, not manufacturable.

8.17.3 PITCH annotation

A pitch annotation shall be defined as shown in Semantics 64.

KEYWORD PI TCH = singl e_val ue_annotation {
CONTEXT = LAYER;

}

SEMANTI CS PI TCH {
VALUETYPE = unsi gned_nunber;

}

Semantics 64—PITCH annotation

The purpose of the pitch annotation is specification of the normative distance between parallel wire segments
within alayer with layertype value routing. This distance is measured between the center of two adjacent parallel
wires.

8.17.4 PREFERENCE annotation

A preference annotation shall be defined as shown in Semantics 65.

KEYWORD PREFERENCE = si ngl e_val ue_annotation {
CONTEXT = LAYER,

}

SEMANTI CS PREFERENCE {
VALUETYPE = identifier;
VALUES { horizontal vertical acute obtuse }

}

Semantics 65—PREFERENCE annotation

The purpose of the preference annotation is to specify the prefered routing direction for a routing segment on a
layer with layertype value routing (see 8.17.2).

110 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 8

The values shall have the semantic meaning shown in Table 66.

Table 67—PREFERENCE annotation values

Annotation value Description
hori zont al Prefered routing direction is horizontal, i.e., O degrees.
verti cal Prefered routing direction is vertical, i.e., 90 degrees.
acute Prefered routing direction is 45 degrees.
obt use Prefered routing direction is 135 degrees.

8.18 VIA declaration

A via shall be declared as shown in Syntax 56.

via:=
V| A via_identifier
IVIA via_identifier { { via item} }
| via_template_instantiation
via item ;=
all_purpose_item
| pattern
| artwork

Syntax 56—VIA declaration

A viashall describe a stack of physical artwork for electrical connection between wire segments on different lay-
ers.

8.19 Annotations related to a VIA declaration
8.19.1 VIA reference annotation

A via reference annotation shall be defined as shown in Semantics 66.

KEYWORD VI A = annotation {
CONTEXT = arithnetic_nodel;

}

SEMANTI CS VI A {
REFERENCETYPE = VI A;

}

Semantics 66—VIA reference annotation

The purpose of a via reference annotation is to establish an association between a via and an arithmetic model
(see 10.3).

IEEE P1603 Draft 8 Advanced Library Format (ALF) Reference Manual 111

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

8.19.2 VIATYPE annotation

A viatype annotation shall be defined as shown in Semantics 67.

KEYWORD VI ATYPE = singl e_val ue_annotati on {
CONTEXT = VI A
}
SEMANTI CS VI ATYPE {
VALUETYPE = identifier;
VALUES { default non_default partial _stack full_stack }
DEFAULT = defaul t;

}

Semantics 67—VIATYPE annotation

The values shall have the semantic meaning shown in Table 68.

Table 68—VIATYPE annotation values

Annotation value Description
def aul t vi a can be used per default.
non_def aul t vi a can only be used if authorized by a RULE.
partial _stack vi a contains three patterns: the lower and upper routing layer

and the cut layer in-between. This can only be used to build
stacked vias. The bottom of astack can beadef aul t or a
non_defaul t via.

full _stack vi a contains 2N+1 patterns (N>1). It describes the full stack
from bottom to top.

8.20 RULE declaration

A rule shall be declared as shown in Syntax 57.

rule::=
RULE rule_identifier ;
|RULE rule identifier { { rule item} }
| rule_template_instantiation
rule_item ::=
all_purpose_item
| pattern
| region
| via_instantiation

Syntax 57—RULE statement

A rule declaration shall be used to define electrical or physical constraintsinvolving physical objects. A physical
object shall be described as a pattern (see 8.29), aregion (see 8.31), or avia instantiation (see 9.20). The electri-
cal or physical contraint shall be described as arithmetic model (see 10.3).

112 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 8

8.21 ANTENNA declaration

An antenna shall be declared as shown in Syntax 58.

antenna::=
ANTENNA antenna_identifier
| ANTENNA antenna_identifier { { antenna_item} }
| antenna_template_instantiation
antenna_item :;=
all_purpose_item
| region

Syntax 58—ANTENNA declaration

An antenna declaration shall be used to define manufacturability constraints involving physical objects or
regions (see 8.31), wherein the regions are created by physical objects. The physical objects shall be associated
with alayer (see 8.16). Within the context of an antenna declaration, arithmetic models for size (see 10.19.1),
area (see 10.19.2), perimeter (see 10.19.3) associated with a layer or with aregion can be described. The arith-
metic models can be combined, based on electrical connectivity (see 10.18.1) between the layers.

To evaluate connectivity in the context of an antenna declaration, the order of manufacturing given by the order
of layer declarations shall be considered. An object on alayer shall only be considered electrically connected to
an object on another layer, if the connection already exists when the uppermost layer of both layers is manufac-
tured. Thisisillustrated in Figure 12.

Figure 12—Connection between layers during manufacturing

The dark objects on layer A and layer C on the left side of Figure 12 are considered connected, because the con-
nection is established through layer B which exists aready when layer C is manufactured.

The dark objects on layer A and layer C on the right hand side of Figure 12 are not considered connected,
because the connection involves layer D and E which do not yet exist when layer C is manufactured.

8.22 BLOCKAGE declaration

A blockage shall be declared as shown in Syntax 59.

A blockage declaration shall be used in context of a cell (see 8.4) to describe a part of the physical artwork of the
cell. No short circuit shall be created between the physical artwork described by the blockage and a physical art-

work created by an application. Physical or electrical constraints involving a blockage can be described by arule
(see 8.20). A rule within the context of ablockage shall only be applicable for a physical object within the block-

IEEE P1603 Draft 8 Advanced Library Format (ALF) Reference Manual 113

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

blockage ::=
BL OCKAGE blockage identifier ;
| BLOCK AGE blockage identifier { { blockage_item} }
| blockage _template instantiation
blockage _item ::=
all_purpose_item
| pattern
| region
| rule
| via_instantiation

Syntax 59—BLOCKAGE statement

agein relation to its environment. A physical object within the blockage can aso be subjected to a more general
rule, i.e. arule that is declared outside the context of the blockage.

8.23 PORT declaration

A port shall be declared as shown in Syntax 60.

port ::=
PORT port_identifier
|PORT port_identifier{ { port_item} }
| port_template_instantiation
port_item ::=
all_purpose_item
| pattern
| region
| rule
| via_instantiation

Syntax 60—PORT declaration

A port declaration shall be used in context of a scalar pin (see 8.6) to describe a part of the physical artwork of a
cell (see 8.4) provided to establish electrical connection between a pin and its environment. Physical or electrical
congtraints involving aport can be described by arule (see 8.20). A rule within the context of a port shall only be
applicable for a physical object within the port in relation to its environment. A physical object within the port
can also be subjected to amore general rule, i.e. arulethat is declared outside the context of the port.

8.24 Annotations related to a PORT delcaration

8.24.1 Reference to a PORT using PIN reference annotation

The pin reference annotation (see 8.8.1) can be used to refer to the hierarchical name of a port.
8.24.2 PORTTYPE annotation

A porttype annotation shall be defined as shown in Semantics 68.

114 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 8

KEYWORD PORTTYPE = singl e _val ue_annotation {
CONTEXT = PORT;
}
SEMANTI CS PORTTYPE {
VALUETYPE = identifier;
VALUES { external internal }
DEFAULT = external;

}

Semantics 68—PORTTYPE annotation

The values shall have the semantic meaning shown in Table 69.

Table 69—PORTTYPE annotation values

Annotation value Description
ext er nal A physical port of ablock available for external connection
i nternal A physical port inside ablock

8.25 SITE declaration

A site shall be declared as shown in Syntax 61.

Site::=
SITE site identifier ;
| SI TE site identifier { { site item} }
| site_template instantiation
site_item ::=
all_purpose_item
| MIDTH_arithmetic_model
| HEIGHT _arithmetic_model

Syntax 61—SITE declaration

A site declaration shall be used to specify alegal placement location for a cell (see 8.4).

8.26 Annotations related to a SITE declaration
8.26.1 SITE reference annotation
A site reference annotation shall be defined as shown in Semantics 69.

The purpose of a site reference annotation is to establish an association between a site and a cell (see 8.4) or an
array (see 8.27). A cell or an array can inherit a site reference annotation from a class (see 7.12).

8.26.2 ORIENTATION_CLASS annotation

An orientation class annotation shall be defined as shown in Semantics 70.

IEEE P1603 Draft 8 Advanced Library Format (ALF) Reference Manual 115

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

KEYWORD SI TE = annotation {
CONTEXT { CELL ARRAY CLASS }
}
SEMANTI CS SI TE {
REFERENCETYPE = SI TE;

}

Semantics 69—SITE reference annotation

KEYWORD ORI ENTATI ON_CLASS = annotation {
CONTEXT { SI TE CELL }

}

SEMANTI CS ORI ENTATI ON_CLASS {
REFERENCETYPE = CLASS;

}

Semantics 70—ORIENTATION_CLASS annotation

The purpose of the orientation class annotation isto specify alega placement orientation for acell (see 8.4) on a
site. The annotation value shall be the name of a declared class (see 7.12). The declared class can contain a geo-
metric transformation statement (see 9.18). The geometric transformation shall indicate a transformation of
coordinates from the cell as a standalone object to the cell placed on a site. The standalone cell is considered as
the original object, whereas the cell placed on a site is the transformed object.

A cell can only be placed on a site, if a matching orientation class annotation value is found within both the cell
declaration and the site declaration.

8.26.3 SYMMETRY_CLASS annotation

A symmetry class annotation shall be defined as shown in Semantics 71.

KEYWORD SYMVETRY_CLASS = nul ti _val ue_annotation {
CONTEXT = SI TE;

}

SEMANTI CS SYMVETRY_CLASS ({
REFERENCETYPE = CLASS;

}

Semantics 71—SYMMETRY_CLASS annotation

The purpose of the symmetry class annotation isto specify asymmetry between legal placement orientations of a
cell (see 8.4) on asite.

A legal orientation is specified by the orientation class annnotation (see 8.26.2). If thereis a set of common legal

orientations for both cell and site with symmetry, the cell can be placed on the site using any orientation within
that set.

Example

The site haslegal orientations A and B. The cell has lega orientations A and B.

Case 1: Aand B are not symmetrical.

116 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 8

CLASS A { PURPCSE = ORI ENTATI ON_CLASS; }
CLASS B { PURPOSE = ORI ENTATI ON_CLASS; }
SITE nySite { ORI ENTATION CLASS { AB} }
CELL nyCell { ORIENTATION CLASS { AB} }

When the site appearsin orientation A, the cell shall be placed in orientation A. When the site appearsin orienta-
tion B, the cell shall be placed in orientation B.

Case 2: Aand B are symmetrical.
CLASS A { PURPCSE { ORI ENTATI ON CLASS SYMVETRY_CLASS } }
CLASS B { PURPCSE { ORI ENTATI ON CLASS SYMVETRY_CLASS } }
SITE nySite { ORI ENTATION CLASS { A B} SYMVETRY CLASS { AB} }
CELL nyCell { ORIENTATION CLASS { AB} }

When the site appearsin either orientation A or B, the cell can be placed in either orientation A or B.

8.27 ARRAY declaration

An array shall be declared as shown in Syntax 62.

array ;=
ARRAY array identifier
|ARRAY array identifier { { array_item} }
| array_template instantiation
array_item ::=
all_purpose_item
| geometric_transformation

Syntax 62—ARRAY declaration

An array declaration shall be used for the purpose to describe a grid for creating physical objects within design.
A geometric transformation (see 9.18) can be used to define a transformation of coordinates from a basic con-
structive element of the array to an element placed within the array. The basic constructive element is considered
the original object, whereas the element placed within the array is the transformed object.

8.28 Annotations related to an ARRAY declaration
8.28.1 ARRAYTYPE annotation

An arraytype annotation shall be defined as shown in Semantics 72.

KEYWORD ARRAYTYPE = singl e_val ue_annot ati on {
CONTEXT = ARRAY;
}
SEMANTI CS ARRAYTYPE {
VALUETYPE = identifier;
VALUES { fl oorplan pl acenent
gl obal _routing detail ed_routing }

Semantics 72—ARRAYTYPE annotation

IEEE P1603 Draft 8 Advanced Library Format (ALF) Reference Manual 117

10

15

20

25

30

35

40

45

50

55

1

10

15

20

25

30

35

40

45

50

55

The values shall have the semantic meaning shown in Table 70.

Table 70—ARRAYTYPE annotation values

Annotation value Description

f1 oorpl an The array provides agrid for placing macrocells, i.e., cells with
celltype value can be block or core or memory.
The placement_type value shall be core.

pl acenment Thearray providesagrid for placing regular cells, i.e., cellswith
celltype value buffer, combinational, multiplexor, latch, flipflop
or special.
The placement_type value shall be core.

gl obal _routing The array provides agrid for global routing.

det ai | ed_routing The array provides a grid for detailed routing.

8.28.2 LAYER reference annotation for ARRAY

A layer reference annotation in the context of an array shall be defined as shown in Semantics 73.

SEMANTI CS ARRAY. LAYER = mul ti _val ue_annot ati on;

Semantics 73—LAYER reference annotation for ARRAY

The layer reference annotation shall be applicable for an array with arraytype value detailed routing (see 8.28.1).
It shall specify alayer (see 8.16) with layertype value routing (see 8.17.2).

8.28.3 SITE reference annotation for ARRAY

A site reference annotation in the context of an array shall be defined as shown in Semantics 74.

SEMANTI CS ARRAY. SI TE = singl e_val ue_annot ati on;

Semantics 74—SITE reference annotation for ARRAY

The purpose of a site reference annotation in the context of an array is to specify the basic element from which
the array is constructed.

The site reference annotation is applicable for an array with arraytype value floorplan or placement (see 8.28.1).

8.29 PATTERN declaration
A pattern shall be declared as shown in Syntax 63.

The purpose of a pattern declaration is the description of a geometry formed by a physical object.

118 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 8

attern ;=
PATTERN pattern_identifier ;
| PATTERN pattern_identifier { { pattern_item} }
| pattern_template_instantiation
pattern_item ::=
all_purpose_item
| geometric_model
| geometric_transformation

Syntax 63—PATTERN declaration

8.30 Annotations related to a PATTERN declaration
8.30.1 PATTERN reference annotation

A pattern reference annotation shall be defined as shown in Semantics 75.

KEYWORD PATTERN = annotation {
CONTEXT = arithnetic_nodel ;

}

SEMANTI CS PATTERN ({
REFERENCETYPE = PATTERN ;

}

Semantics 75—PATTERN reference annotation

The purpose of a pattern reference annotation is to establish an association between a pattern and an arithmetic

model (see 10.3).
8.30.2 SHAPE annotation

A shape annotation shall be defined as shown in Semantics 76.

KEYWORD SHAPE = singl e_val ue_annotation {
CONTEXT = PATTERN;

}

SEMANTI CS SHAPE {
VALUETYPE = identifier;

DEFAULT = line;
}

VALUES { line tee cross jog corner end }

Semantics 76—SHAPE annotation

The shape annotation applies for a pattern associated with alayer with layertype value routing (see 8.17.2).

IEEE P1603 Draft 8 Advanced Library Format (ALF) Reference Manual

119

10

15

20

25

30

35

40

45

50

55

1

10

15

20

25

30

35

40

50

55

The values shall have the semantic meaning shown in Table 71.

Table 71—SHAPE annotation values

Annotation value Description
line A routing segment in prefered routing direction.
Each end is connected with avia or with another routing segment.
jog A routing segment in non-prefered routing direction.
Each end is connected with a routing segment in prefered routing direc-
tion.
t ee An intersection point between two orthogonal routing segments.

One of the routing segments ends at the intersection.

Cross An intersection point between two orthogonal routing segments.
Both routing segments continue beyond the intersection.

cor ner An intersection point between two orthogonal routing segments.
Both routing segments end at the intersection.

end An unconnected point of an open routing segment.

The meaning of the shape annotation valuesis further illustrated in Figure 13.

E— ine 1109
—T
7

T e

Cross

corner

end

Figure 13—SHAPE annotation illustration
The shape annotation specifies whether a pattern is represented by a point or by a line. A pattern with shape
annotation value line or jog is represented by aline. A pattern with shape annotation value tee, cross, corner or
end is represented by a point.
8.30.3 VERTEX annotation
A vertex annotation shall be defined as shown in Semantics 77.

The vertex annotation applies for a pattern in conjunction with shape annotation value tee, cross, corner, or end
(see 8.30.2).

120 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 8

KEYWORD VERTEX = singl e val ue_annotation {
CONTEXT = PATTERN,
}
SEMANTI CS VERTEX {
VALUETYPE = identifier;
VALUES { round angul ar }
DEFAULT = angul ar;

}

Semantics 77—VERTEX annotation

The values shall have the semantic meaning shown in Table 72.

Table 72—VERTEX annotation values

Annotation value Description
angul ar The angle between intersecting routing segments shall be preserved.
round The angle between intersecting routing segments shall be rounded.

The meaning of the vertex annotation valuesis further illustrated in Figure 14.

VERTEX = angular VERTEX =round

Figure 14—VERTEX annotation illustration
8.30.4 ROUTE annotation

A route annotation shall be defined as shown in Semantics 78.

KEYWORD ROUTE = singl e_val ue_annotati on {
CONTEXT = PATTERN;

}

SEMANTI CS ROUTE {
VALUETYPE = identifier;
VALUES { horizontal acute vertical obtuse }

}

Semantics 78—ROUTE annotation

IEEE P1603 Draft 8 Advanced Library Format (ALF) Reference Manual

121

10

15

20

25

30

35

40

45

50

55

1

10

15

20

25

30

35

40

50

55

The route annotation applies for a pattern with shape annotation value line, jog, or tee (see 8.30.2).

The purpose of a route annotation is to specify the actual routing direction for the pattern. Thisisillustrated in
Figure 15.

pattern line tee jog
route

horizontal T
vertical 1

Figure 15—ROUTE annotation illustration
If the route annotation does not appear and a layer reference annotation (see 8.30.5) appears, the prefered routing
direction specified by the preference annotation (see 8.17.4) within the layer declaration shall apply to infer the
actual routing direction. If both route annotation and layer reference annotation appear, the route annotation shall
take precedence.
8.30.5 LAYER reference annotation for PATTERN

A layer reference annotation in the context of a pattern shall be defined as shown in Semantics 79.

SEMANTI CS PATTERN. LAYER = si ngl e_val ue_annot ati on;

Semantics 79—LAYER reference annotation for PATTERN

The purpose of a layer reference annotation in the context of a pattern is to establish an association between a
pattern and a layer (see 8.16). The physical object represented by the pattern shall reside on a layer. A pattern
declaration without layer reference annotation shall be considered incompl ete.

8.31 REGION declaration

A region object shall be declared as shown in Syntax 64.

The purpose of aregion declaration is the description of a geometry. The geometry can be formed by intersection
or union of physical objects. The geometry can aso be described in abstract mathematical terms without being
associated with a particular physical object.

The specification of geometries by one or more geometric models (see 9.16) and/or by a boolean annotation (see

8.32.2) shall be additive, i.e., the region shall be considered the union of the specified geometries. If a geometric
transformation (see 9.18) is present, it shall apply to all specified geometries within the region.

122 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 8

region ::=
REGION region_name identifier ;
|REGION region_name_identifier{ { region_item} }
| region_template_instantiation
region_item ::=
all_purpose_item
| geometric_model
| geometric_transformation
| BOOLEAN_single value_annotation

Syntax 64—REGION declaration

8.32 Annotations related to a REGION declaration
8.32.1 REGION reference annotation

A region reference annotation shall be defined as shown in Semantics 80.

KEYWORD REG ON = annot ati on {
CONTEXT = arithnetic_nodel ;

}

SEMANTI CS REG ON
REFERENCETYPE = REG ON ;

}

Semantics 80—PATTERN reference annotation

The purpose of a region reference annotation is to establish an association between a region and an arithmetic
model (see 10.3).

8.32.2 BOOLEAN annotation

A boolean annotation shall be defined as shown in Semantics 81.

KEYWORD BOOLEAN = si ngl e_val ue_annotati on {
CONTEXT = REG ON ;

}

SEMANTI CS BOOLEAN {
VALUETYPE = bool ean_expression ;

}

Semantics 81 —BOOLEAN annotation

The purpose of the boolean annotation is to specify a region by a boolean operation (see 9.11). The name of a
pattern (see 8.29) or the name of another region shall be considered alegal operand. The operators specified in
Table 76 and Table 81 shall be considered legal operators.

IEEE P1603 Draft 8 Advanced Library Format (ALF) Reference Manual 123

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

124

Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 8

9. Description of functional and physical implementation

9.1 FUNCTION statement

A function statement shall be defined as shown in Syntax 65.

function ::=
FUNCTION { function_item { function_item} }
| function_template_instantiation
function_item ::=
all_purpose_item

| behavior

| structure

| statetable

Syntax 65—FUNCTION statement

The purpose of the function statement is to provide a compact specification of adigital electronic circuit imple-
mented by acell. A cell can contain at most one function statement.

The function statement can contain a behavior statement (see 9.4) or a set of one or more statetable statements
(see 9.6). The purpose of the behavior and statetable statementsis to formally specify the logic state space of the
circuit and the change in logic state as aresponse to a given stimulus.

The function statement can also contain a specification for implementation using the structure statement (see
9.5).

9.2 TEST statement

A test statement shall be defined as shown in Syntax 66.

test =
TEST { test_item { test_item} }
| test_template instantiation
test_item ::=
all_purpose_item
| behavior
| statetable

Syntax 66—TEST statement

The purpose of the test statement is to provide a compact specification of a test environment for a digital elec-
tronic circuit implemented by acell. A cell can contain at most one test statement.

The test statement can contain a behavior statement (see 9.4) or a set of one or more statetable statements (see

9.6). The purpose of the behavior and statetable statements is to formally specify the logic state space of the test
environment and the change in logic state as a response to a given stimulus.

9.3 Definition and usage of a pin variable
9.3.1 Pin variable and pin value

A pinvariable and a pin value shall be defined as shown in Syntax 67.

IEEE P1603 Draft 8 Advanced Library Format (ALF) Reference Manual 125

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

pin_variable ::=
pin_variable_identifier
pin_vaue::=
pin_variable | boolean_value

Syntax 67—~Pin variable and pin value
A pin variable shall represent one of the following:
the name of a declared pin (see 8.6) in conjunction with an optional index (see 6.6),
the name of a declared pingroup (see 8.7) in conjunction with an optional index,
the name of a declared node (see 8.12), or
the hierarchical name of a declared port (see 8.23) as a child of adeclared scalar pin.

A pin value shall be either an identifier refering to a pin variable or a boolean value (see 6.10).

A declared pin can be used as a pin variable involved in atest statement (see 9.2) or in afunction statement (see
9.1), according to its direction and view annotation value (see 9.3.3, Table 73).

9.3.2 Pin assignment

A pin assignment shall be defined as shown in Syntax 68.

pin_assignment ::=
pin_variable = pin_value ;

Syntax 68—Pin assignment

A pin assignment shall represent an association between a pin variable and a pin value. The following rules
define the compatibility between a pin variable and a pin value.

a) The bitwidth of the pin value shall be equal to the bitwidth of the pin variable.
b) A bitliteral or abased literal representing a single bit can be assigned to a scalar pin.
c) A based literal or an unsigned integer, representing a binary number can be assigned to a pingroup, to a
vector pin, or to aone-dimensional slice of amatrix pin.
9.3.3 Usage of a pin variable in the context of a FUNCTION or a TEST statement

A declared pin (see 8.6) with pintype annotation value digital (see 8.8.4) or adeclared pingroup (see 8.7) can be
used asapin variable.

A pin variable can be involved in a function statement (see 9.1) or in atest statement (see 9.2), depending on the
annotation values for direction (see 8.8.5) and view (see 8.8.3), according to Table 73.

Table 73—Annotation values for PINs involved in FUNCTION and TEST

Category DIRECTION VIEW
Input for function input functional or both
Output for function output functional or both
Bidirectional for function both functional or both

126 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 8

Table 73—Annotation values for PINs involved in FUNCTION and TEST (Continued)

Category DIRECTION VIEW
Internal for function none none
Input for test input none
Output for test output none
Bidirectiona for test both none
Internal for test none none

An attribute statement (see 7.5) can be used to specify arelationship between a pin variable and a particular test

method. See section 8.8.24, Table 61 for attribute values related to memory BIST.

The relationship between pin variablesinvolved in the test statement and in the function statement and the appli-

cable direction annotation values areillustrated in Figure 16.

pin variables subjected
to the test algorithm

pin variables not controlled / observed
by the test algorithm

e R e

input output bidirectional input output bidirectional
p| input
TEST / \ FUNCTION
internal B \ / output intern
< \/ > bidirectional

pin variables controlled / observed
by the test algorithm

Figure 16—Relationship between FUNCTION and TEST

The digital electronic circuit symbolized by the function box communicates with its environment. Part of its
environment is the test environment symbolized by the test box. A test algorithm, i.e., an algorithmically speci-
fied stimulus can be applied to the test environment. The test algorithm controls input variables and observes out-
put variables of the electronic circuit. In addition, the electronic circuit can have other input and output variables
which are not controlled or observed by the test algorithm. The electronic circuit and the test environment can
also have their internal variables which do not communicate with their environment.

NOTE: The direction and view annotations are defined from a circuit-centric perspective from which the test environment is
viewed as avirtual extension of the circuit.

9.4 BEHAVIOR statement

A behavior statement shall be defined as shown in Syntax 69.

IEEE P1603 Draft 8 Advanced Library Format (ALF) Reference Manual 127

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

behavior ::=
BEHAVIOR { behavior_item { behavior_item} }
| behavior_template_instantiation
behavior_item ::=
boolean_assignment
| control_statement
| primitive_instantiation
| behavior_item template _instantiation
boolean_assignment ::=
pin_variable = boolean_expression ;
control_statement ::=
primary_control_statement { alternative_control_statement }
primary_control_statement ::=
control_expression { boolean_assignment { boolean_assignment } }
alternative_control_statement ::=
: control_expression { boolean_assignment { boolean_assignment } }
primitive_instantiation ::=
primitive_identifier [identifier] pin_value{ pin_value} }
| primitive_identifier [identifier] { boolean_assignment { boolean_assignment } }

Syntax 69—BEHAVIOR statement

A control statement consists of a primary control statement, optionally followed by one or more alter native con-
trol statements. A primary control statement is identified by the at character followed by a control expression.
An alternative control statement is identified by the colon character followed by a control expression. A control
expression can be either a boolean expression (see 9.9) or a vector expression (see 9.12). The order of alternativs
control statements shall specify the order of priority. If the main control statement does not evaluate true, the first
alternative control statement is evaluated. If an alternative control statement does not evaluate true, the next
alternative control statement is evaluated.

A boolean assignment assigns the evaluation result of a boolean expression to a pin variable (see 9.3.1). A bool-
ean assignment with a behavior statement as a parent shall be considered a continuous assignment, i.e. the bool-
ean expression is evaluated continuously.

A boolean assignment with a control statement as parent shall be considered a conditional assignment, i.e., the
boolean expression is only evaluated when the associated control expression evaluates true. When a boolean
expression is not evaluated, a pin variable shall hold its previoudly assigned value.

If the control expression is a boolean expression, the conditional assignment shall be called level-sensitive or
triggered by state. If the control expression is a vector expression, the conditional assignment shall be called
edge-sensitive or triggered by event.

A behavior itemis further subjected to the following rules.

@ Aninformation flow graph involving one or more continuous assignments and/or |evel-sensitive condi-
tional assignments can not contain a loop. The usage of a pin with direction annotation value both as a
primary input and as a primary output in an information flow graph shall not be considered as a loop.

b) Aninformation flow graph involving one or more edge-sensitive conditional assignments can contain a
loop. The value of a pin variable immediately before the triggering event shall be considered for evalua-
tion of aboolean expression. The evaluation result shall be assigned to a pin variable immediately after
the triggering event.

¢) Aninformation flow graph established by boolean assignments can involve an implicitly declared vari-
able, i.e, the LHS of a boolean assignment has not been declared as a pin variable. An implicitly
declared variable can only be used in the context of its parent statement. An implicitly declared variable
involved in a continuous assignment can not be used in the context of a conditional assignment and vice-
versa

128 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 8

A primitive instantiation establishes a reference to a predefined function statement within a primitive declaration
(see 8.9). A continuous assignment of a boolean expression to a pin variable can be given by a boolean assign-
ment within the primitive instantiation, wherein the pin variable shall be a declared pin within the primitive dec-
laration. Alternatively, a continuous assignment of a pin value to a pin variable can be given by a set of pin
values, wherein the order of pin values shall correspond to the order of pin declarations within the primitive dec-
laration.

A set of predefined primitve declarations is specified in 9.14.

9.5 STRUCTURE statement and CELL instantiation

A structure statement shall be defined as shown in Syntax 70.

structure ::=
STRUCTURE { cell_instantiation { cell_instantiation} }
| structure_template_instantiation
cell_instantiation ::=
cell_reference identifier cell_instance identifier
| cell_reference_identifier cell_instance_identifier 1 { cell_instance_pin vaue} }
| cell_reference identifier cell_instance_identifier 1 { cell_instance pin_assignment } }
| cell_instantiation_template_instantiation
cell_instance_pin_assignment ::=
cell_reference pin_variable = cell_instance pin_value;

Syntax 70—STRUCTURE statement

The purpose of astructure statement is to specify astructural implementation of acompound cell, i.e., anetlist. A
complete or a partial netlist can be specified. A component of anetlist can be acell or aprimitive.

NOTE: A structure statement is intended to be complementary to a behavior or a statetable statement. An application that
requires knowledge of the functional behavior of a cell, for example a synthesis application, is expected to comprehend the
behavior statement rather than to infere the functional behavior from the structure statement.

A cell instantiation shall specify the mapping between a cell reference and a cell instance within the structure
statement. The mapping shall be established either by order or by name.

Mapping by order shall be establised using a pin value (see 9.3.1) associated with the cell instance. A corre-
sponding pin variable associated with the cell reference shall be infered by the order of pin declarations within
the cell reference.

Mapping by name shall be established using a pin assignment (see 9.3.2). The left-hand side of the pin assign-
ment shall represent a pin variable associated with the cell reference. The right-hand side of the pin assignment
shall represent a pin value associated with the cell instance.

9.6 STATETABLE statement
A statetable statement shall be defined as shown in Syntax 71.

A statetable shall specify the state of a set of output pin variables dependent on the state of a set of input pin vari-
ables. Sequentia behavior, i.e., next state as afunction of previous state shall be modeled by a pin variable which
appears both as input and output pin variable within the statetable header. A pin variable with direction annota-
tion value both can also appear asinput and output pin variable within the statetable header. However, the state of
the output pin variable does not depend on the state of the corresponding input pin variable, unless there is
sequentia behavior.

IEEE P1603 Draft 8 Advanced Library Format (ALF) Reference Manual 129

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

statetable ::=
STATETABLE [identifier]
{ statetable_header statetable row { statetable row } }

| statetable template instantiation
statetable_header ::=

input_pin_variable{ input_pin_variable} . output_pin_variable{ output_pin variable} ,
statetable row ::=

statetable_control_values . statetable data values,
statetable_control_values ::=

statetable_control_value { statetable_control_value }
statetable_control_value ::=

boolean_value

| symbolic_bit_literal

| edge value
statetable_data values::=

statetable_data value { statetable data value}
statetable_data value::=

boolean_value

[([!]input_pin variable)
| ([~ input_pin_variable)

Syntax 71—STATETABLE statement

In each statetable row, a statetable control value shall be associated with a particular input pin variable, and a
statetable data value shall be associated with a particular output variable. The association is given by the position
at which the pin variables appear in the header. Each statetable row shall have the same number of items as the
statetable header. The delimiting colon in each statetable row shall be in the same position as in the statetable
header.

A statetable control value shal be compatible with the datatype of the corresponding input pin variable. A
statetable data value shall be compatible with the datatype of the corresponding output pin variable. Aninput pin
variable enclosed by parentheses shall specify that the value of the input pin variable be assigned to the output
pin variable. Such input pin variable need not appear in the statetable header. A preceding exclamation mark
shall indicate that the logically inverted value be assigned to the output variable. A preceding tilde shall indicate
that the bitwise inverted value be assigned to the output variable.

It shall be the responsibility of the ALF parser to check for a consistent format of the statetable. It shall be the
responsibility of the application to check for complete and consistent contents of the statetable.

9.7 NON_SCAN_CELL statement

A non-scan cell statement shall be defined as shown in Syntax 72.

non_scan cell ::=
"NON_SCAN_ CELL = non_scan_cell_reference
INON_SCAN_CELL { non scan cell_reference { non_scan_cell_reference} }
| non_scan_cell_template_instantiation
non_scan_cell_reference ::=
non_scan_cell_identifier{ { scan_cell_pin_identifier } }
| non_scan_cell_identifier 1 { non_scan_cell_pin_identifier = scan_cell_pin_identifier ; } }

Syntax 72—NON_SCAN_CELL statement

A non-scan cell statement applies for a scan cell. A scan cell is a cell with extra pins for testing purpose. The
non-scan cell reference within the non-scan cell statement specifies a cell that is functionally equivalent to the

130 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 8

scan cell, if the extrapins are not used. The cell without extra pinsisreferred to as non-scan cell. The name of the
non-scan cell is given by the non-scan cdll identifier.

The pin mapping is given either by order or by name. In case of pin mapping by order, the pin values shall refer
to pin names of the scan cell. The order of the pin values corresponds to the pin declarations within the non-scan
cell. In case of pin mapping by name, the pin names of the non-scan cell shall appear at the left-hand side, and the
pin names of the scan cell shall appear at the right-hand side.

Example

/1 declaration of a non-scan cell
CELL myNonScanFl op {
PIN D { DI RECTI ON=i nput; SI GNALTYPE=data; }
PIN C { DI RECTI ON=i nput; SI GNALTYPE=cl ock; POLARI TY=ri si ng_edge; }
PIN Q { DI RECTI ON=out put; SI GNALTYPE=data; }
}
/1 declaration of a scan cell
CELL myScanFl op {
PI N CK { DI RECTI ON=i nput; SI GNALTYPE=cl ock; }
PIN DI { DI RECTI ON=i nput; SIGNALTYPE=dat a; }
PIN SI { DI RECTI ON=i nput; SI GNALTYPE=scan_data; }
PI N SE { DI RECTI ON=i nput; SI GNALTYPE=scan_enabl e; PCOLARI TY=hi gh; }
PIN DO { DI RECTI ON=out put; S| GNALTYPE=dat a; }
/1 put NON_SCAN CELL statenent here

}

The non-scan cell statement with pin mapping by order looks as follows:

NON_SCAN CELL { nyNonScanFlop { DI CK DO} }
/1 correspondi ng pins by order: D C Q

The non-scan cell statement with pin mapping by name looks as follows:

NON_SCAN CELL { nmyNonScanFlop { @&DO D=D; C=CK; } }

9.8 RANGE statement

A range statement shall be defined as shown in Syntax 73.

range ::=
%QANGE { index_value : index_value }

Syntax 73—RANGE statement

The range statement shall be used to specify a valid address space for elements of a vector pin or a matrix pin
(see 8.6) or a vector pingroup (see 8.7). In case of amatrix pin, the range shall pertain to the second multi-index
(see 8.6, Syntax 49).

If no range statement is specified, the valid address space A is given by the following mathematical relationship:
1+i —ig if(i.>iR)

0<A<2®°_1 B :[
T+ig—i, if(i <ig)

IEEE P1603 Draft 8 Advanced Library Format (ALF) Reference Manual 131

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

where
Aisan unsigned integer representing the address space within a vector-pin or a matrix-pin,
B is the bitwidth of the vector-pin or the matrix-pin,
i istheleft index within the vector-pin or the matrix-pin,
iristheright index bit within the vector-pin or the matrix-pin,
in accordance with 6.6.

The index values within a range statement shall be bound by the address space A, otherwise the range statement
shall not be considered valid.

Example

PIN [5:8] nmyVectorPin { RANGE { 3 : 13} }

bitwidth: B=4
default address space: 0<A<15
address space defined by range statement: 3<A<13

End of example

9.9 Boolean expression

A boolean expression shall be defined as shown in Syntax 74.

boolean_expression ::=
(‘boolean_expression)

| boolean_value

| identifier

| boolean_unary_operator boolean_expression

| boolean_expression boolean_binary_operator boolean_expression

| boolean_expression ? boolean_expression : boolean_expression
boolean_unary_operator ::=

D~ & 1~& || |~ 1™ 1~
boolean_binary_operator ::=
& 1&& ~& | ||| 1~ 1" [

| relational_operator
| arithmetic_operator
| shift_operator

Syntax 74—Boolean expression

The purpose of a boolean expression is to specify a boolean operation (see 9.11). The evaluation result of a
boolean expression shall be a boolean value (see 6.10, 9.10).

A legal operand in a boolean expression shall be a boolean value (see 6.10) or an identifier (see 6.13) represent-
ing a boolean value. In case of a comparison operation (see 9.11.6), alegal operand can also be a number (see
6.5) or astring value (see 6.15).

A legal operator in a boolean expression shall be a boolean unary operator, a boolean binary operator, an arith-
metic operator for integer arithmetic operation (see 6.4.1, 9.11.4), arelational operator for comparison opera-

132 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 8

tion (see 6.4.3, 9.11.6), ashift operator for shift operation (see 6.4.4, 9.11.5), or acombination of a questionmark
and a colon defining a conditional operation (see 9.11.3).

The precedence of operators in a boolean expression shall be from the strongest to the weakest in the following
order:

a) boolean operation enclosed by parentheses, i.e., ()

b) bitwise operation using aboolean unary operator, i.e., ~, &, ~&, |, ~|, *, ~ (see9.11.2)
c) logical inversion,i.e,! (see9.11.1)

d) shift i.e, <<, >> (see9.11.5)

€) comparison,i.e, ==, 1= > < >= <= (see9.11.6)

f) bitwise xor, xnor using a boolean binary operator, i.e., ™, ~* (see9.11.2)
g) multiply, divide, modulus, i.e., *,/, % (see9.11.4)

h) bitwise and, nand using a boolean binary operator, i.e., &, ~& (see9.11.2)
i) logical and,i.e, & & (see9.11.1)

j) add, subtract, i.e, +, - (see9.11.4)

k) bitwiseor, nor using aboolean binary operator, i.e., |, ~| (see9.11.2)

l) logical or,i.e, || (see9.11.1)

m) delimiter for conditional operation, i.e., ?, . (see9.11.3)

When operators of the same precedence are subsequently encountered in a boolean expression, the evaluation
shall proceed from the left to the right.

9.10 Boolean value system

9.10.1 Scalar boolean value

A scalar boolean value shall be described by an alphanumerical bit literal (see 6.8). A scalar boolean value
shall represent a logical value and optionally a drive strength. The set of logical values shall be false, true and

unknown. The set of drive strengths shall be strong, weak, and zero. The symbols used for scalar boolean values
and their meaning shall be defined as shown in Table 74.

Table 74—Scalar boolean values

. . Symbol for value
Symbol Logical value Drive strength in 3-value system Comment

0 false strong 0 Use when logical valueis defined and
drive strength is strong or not defined.

1 true strong 1

Xorx unknown strong Xorx

Lorl false weak 0 Use for modeling a bus holder, apull up
or apull down device.

Horh true wesk 1

Wor w unknown wesk Xorx

Zorz not defined zero Xorx Use for high impedance.

Uoru not defined not defined Xorx Use for uninitialized signal in simulation.

A boolean expression (see 9.9) can evaluate to a scalar boolean value represented by an al phanumeric bit literal.
For evaluation of a boolean expression, a scalar boolean value shall be reduced to avalue 0, 1, or X within a 3-

IEEE P1603 Draft 8 Advanced Library Format (ALF) Reference Manual

133

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

value system, unless an alphabetic bit literal (L, H, W, Z, U) is explicitely specified as evaluation result in the
boolean expression.

9.10.2 Vectorized boolean value
A vectorized boolean value shall be described either by abased literal (see 6.9) or by an integer (see6.5). A vec-
torized boolean value can be mapped into a vector of alphanumeric bit literals (see 6.8). The number of bit liter-

asshall be called bitwidth.

An octal digit (see 6.9) can be mapped into a three bit vector of bit literals, by numerically converting a number
in octal base to anumber in binary base.

A hexadecimal digit (see 6.9) can be mapped into a four bit vector of bit literals, by numerically converting a
number in hexadecimal base to a number in binary base. The uppercase |etters A through F or the corresponding
lowercase |etters a through f shall be used to represent the decimal numbers 10 through 15.
An alphabetic bit literal (see 6.8) shall be mapped according to the following rules.
a) Anaphabetic bit literal in octal base shall be mapped into three subsequent occurrences of the same bit
literal in binary base.

b) An alphabetic bit literal in hexadecimal base shall be mapped into four subsequent occurrences of the
same bit literal in binary base.

Example

' 02xwou isequivalent to' b010_xxx_ww_000_uuu
"hLux isequivalent to' bLLLL_uuuu_xxxx

End of example

An integer can be represented by a vector of bit literals, according to the following mathematical relationship:

B-1

unsigned integer N = Y s(p) P
p=0
B-2

signed integer N =3 s(p) 2P -s(B-1)2°*
p=0

where
N isthe integer.

B is the bitwidth of the vector of bit literals.
p isthe position of a bit within the vector, counted from O to B-1.
s(p) isthe scalar value (zero or one) of the bit at position p.
s(B-1) isthe scalar value (zero or one) of the bit at position B-1.
The bitwidth B of avectorized boolean variable restricts the range of a corresponding integer N as follows:
unsigned integer 0<N<2°_1

signed integer 2P teN<2®t

134 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 8

A vector pin (see 8.6) can be used as a pin variable holding a vectorized boolean value. The position of a bitis
related to an index within the pin declaration as follows:

. [i—ip (i, >ig)
ig—i if(i <ig)
where

i isthe index within a vector pin.
iR is the rightmost index within a vector pin. The corresponding position is 0.
i istheleftmost index within a vector pin. The corresponding position is B-1.

Example:

PIN [5:8] pinl;
PIN [7:4] pinz;

bit[index] bit[index] position
pi n1[5] pi n2[7] 3
pi n1[6] pi n2[6] 2
pi n1[7] pi n2[5] 1
pi n1[8] pi n2[4] 0

End of example
9.10.3 Non-assignable boolean value

A non-assignable boolean value shall be described by a symbalic bit literal (see 6.8), as shown in Table 75.

Table 75—Symbolic boolean values

Symbol Logical value Drive strength Comment
? arbitrary, yet constant arbitrary use for “don’'t care”
* subject to random change | arbitrary variable is not monitored

A symbolic bit literal or a based literal (see 6.9) containing a symbolic bit literal can not be assigned to a pin
variable as aboolean value. A symbolic bit literal can be used within a statetable (see 9.6) as a statetable control
value, but not as a statetable data value.

When being part of avectorized boolean value, a symbolic bit literal shall be mapped according to the following
rules.

a) A symboalic bit literal in octal base shall be mapped into three subsequent occurrences of the same bit lit-
eral in binary base.

b) A symbolic bit literal in hexadecimal base shall be mapped into four subsequent occurrences of the same
bit literal in binary base.

IEEE P1603 Draft 8 Advanced Library Format (ALF) Reference Manual 135

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

9.11 Boolean operations and operators

9.11.1 Logical operation

The operators for alogical operation shall be defined as shown in Table 76.

Table 76—Logical operations

Operator Description
| logical inversion
& & logical and
|| logical or

A logical inversion shall be evaluated within the 3-value system according to Table 77.

Table 77—Evaluation

of logical inversion

A TA
false true
true false
unknown unknown

A logical and or alogical or shall be evaluated within the 3-val ue system according to Table 78.

136

Table 78—Evaluation of logical AND and logical OR

A B A&& B Al B
false false false false
true false false true
unknown false fase unknown
false true false true
true true true true
unknown true unknown true
false unknown fase unknown
true unknown unknown true
unknown unknown unknown unknown

Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 8

If an alphabetic bit literal isused as operand, only the logical value, not the drive strength, shall be considered for
evaluation. An undefined logical value within an operand shall be considered unknown.

9.11.2 Bitwise operation

The operators for a bitwise operation shall be defined as shown in Table 79.

Table 79—Bitwise operations

Operator Description

~ bit-wise inversion

& bit-wise and

| bit-wise or

A bit-wise exclusive or (xor)

~& bit-wise and with inversion (nand)

~| bit-wise or with inversion (nor)

~N bit-wise exclusive or with inversion (xnor)

A bit-wise operation is defined as a repeated single-bit operation to al bits of the operand. The operators for bit-
wise operations, except bit-wise inversion, can be used as boolean unary or as boolean binary operators.

A bit-wise inversion operator shall apply alogical inversion (see Table 77) to each bit of a vectorized boolean
value. Theresult shall be avectorized boolean value containing the inverted hits.

A bit-wise boolean binary operator for one of the operations and, or, nand, nor, xor, xnor shall apply asingle-bit
operation to each corresponding bit of two vectorized boolean values. The operands shall be aligned to the right-
most hit. If the operands have different bitwidths, the missing bits of the operand with smaller bitwidth shall be
not defined, i.e., represented by the symbol ‘U’. If at least one operand is a vectorized boolean value, the result
shall be a vectorized boolean value. If both operands are scalar boolean values, the result shall be a scalar bool-
ean value.

The single-hit operation or and the single-bit operation and, respectively, shall be defined in the same way as the
logical operation or and the logical operation and, respectively (see Table 78).

isequivalentto A && B for single bit operands

A&
A | isequivalentto A || B for single bit operands

B
B

The single-bit operation nor and the single-bit operation nand, respectively, shall be defined by applying alogi-
cal inversion to the result of the logical operation or and the logical operation and, respectively.

A ~& B isequivaentto ! (A && B) for single bit operands
A ~| B isequivaentto ! (A || B) forsinglebit operands

IEEE P1603 Draft 8 Advanced Library Format (ALF) Reference Manual 137

10

15

20

25

30

35

40

45

50

55

1

10

15

20

25

30

35

40

50

55

The single-bit operations xor and xnor shall be defined according to Table 80.

Table 80—Evaluation of single-bit XOR and XNOR

A B A"B A-"B
fase false false true
true false true false
unknown false unknown unknown
fase true true false
true true false true
unknown true unknown unknown
fase unknown unknown unknown
true unknown unknown unknown
unknown unknown unknown unknown

A boolean unary operator for the operation and, or, xor, respectively, shall reduce a vectorized boolean value to
ascalar boolean value by applying a single-bit operation and, or, xor, respectively, to all bits of the operand com-
bined.

& V[3:1] isequivdentto V[3] && V[2] && V[1]
| V[3:1] isequivdentto V[3] || V[2] || M 1]
A \V[3:1] isequivalentto V[3] A V[2] A V[1]

A boolean unary operator for the operation nand, nor, xnor, respectively, shall apply a logical inversion to the
result of the operation and, or, xor, respectively.

~& V isequivadentto ! (& V)
~| V isequivdentto ! (| V)
~N V isequivaentto ! (~ V)

A vectorized boolean value can be used as operand for alogical operation. For this purpose, the vectorized bool-
ean value shall be reduced to a scalar boolean value by applying the bit-wise boolean unary operation or.

I (V) isequivaentto (] V)
A && V isequivaentto A && (| V)
V || B isequivaentto (| V) || B

NOTE: A and B stand for scalar boolean values, V stands for a vectorized boolean value.

138 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 8

9.11.3 Conditional operation

The evaluation of a boolean expression (see 9.9), a vector expression (see 9.12), or an arithmetic expression (see
10.1) involving the symbols shown in Table 81 shall be called a conditional operation.

Table 81—Conditional operation

Symbol Description

? delimiter between if-clause and then-clause

delimiter between then-clause and else-clause

The boolean expression to the left of the questionmark shall be called if-clause. The expression, i.e., a boolean
expression or a vector expression or an arithmetic expression, to the right of the questionmark shall be called
then-clause. The expression to the right of the colon shall be called else-clause.

If the if-clause evaluates true, the then-clause shall be evaluated. Otherwise, the else-clause shall be evaluated.

NOTE: The el se-clause within a conditional operation can represent a conditional operation in itself. Thus nested conditional
operations can be described, wherein the evaluation of clauses proceeds from the |eft to the right.

9.11.4 Integer arithmetic operation

The operators for an integer arithmetic operation shall be defined as shown in Table 82.

Table 82—Integer arithmetic operation

Operator Description
+ add
- subtract
* multiply
/ divide
% modulus

All operations involving the operators in Table 82 shall be integer operations. A legal operand shall be either an
integer or aboolean value that is converted into an integer.

A scalar boolean value (see 9.10.1) represented as a bit literal (see 6.8) shall be converted into an unsigned inte-
ger.

A vectorized boolean value (see 9.10.2) represented as a based literal (see 6.9) shall be converted into an

unsigned integer or into a signed integer. The conversion shall depend on the datatype annotation value (see
8.8.10) of the pin variable associated with the operand.

IEEE P1603 Draft 8 Advanced Library Format (ALF) Reference Manual 139

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

The application shall be responsible for handling exceptions. Exceptions include the following cases:
— integer conversion of a boolean value involving the logical value unknown,
— the operation division and modulus involving a second operand with value zero,
— any evaluation results that do not fit the bitwidth of the pin variable which the result is assigned to, i.e.,
overflow or underflow.
9.11.5 Shift operation

The operators for a shift operation shall be defined as shown in Table 83

Table 83—Shift operation

Operator Description

<< shift left

>> shift right

A shift operation shall involve two operands. The first operand shall be a vectorized boolean value (see 9.10.2),
represented by an integer (see 6.5), by abased literal (see 6.9), or, asatrivial case, by abit literal (see 6.8). The
second operand shall be an unsigned integer (see 6.5), specifying the number of positions N by which the bits of
the first operand are to be shifted.

For shift left, N bits of the first operand, starting from the right, shall be replaced with the logical value unknown.
For shift right, N bits of the first operand, starting from the left, shall be replaced with the logical value unknown.

9.11.6 Comparison operation

A comparison operation shall be defined as a humerical comparison, alogical comparison or a string compari-
son. The evaluation result shall be true, false or unknown.

The operators for anumerical comparison shall be defined as shown in Table 84.

Table 84—Numerical comparison

Operator Description
== equal
1= non-equal
> greater
< lesser
>= greater or equal
<= lesser or equal

140 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 8

A legal operand for anumerical comparison shall be a number (see 6.5) or aboolean value that can be interpreted
as an integer according to 9.10.2.

The operators for alogical comparison shall be defined as shown in Table 85.

Table 85—Logical comparison

Operator Description comment
~N equa in logical value, also called xnor symbols from Table 76 are
overloaded
N non-equal in logical value, also called xor
== equal in logical value and drive strength symbols from Table 84 are
overloaded
1= non-equal in logical value and drive strength

A legal operand for alogical comparison shall be a scalar boolean value (see 9.10.1, Table 74).

The operations equal in logical value and non-equal in logical value shall be evaluated as specified for the sin-
gle-bit operations xnor and xor in Table 80.

The operations equal in logical value and drive strength and non-equal in logical value and drive strength shall

be evaluated according to Table 86.

Table 86—Evaluation of logical comparison involving drive strength

L ogical value of operands A and B Drive strength of operands A and B Result for Result for
(true, false, unknown, or not defined) (strong, weak, zero, or not defined) A== A'=B
Same for both operands. Same for both operands. true false
Same for both operands. Different for each operand. fase true
Different for each operand. Any. fase true
Example
‘b0 ~" ‘bL evauatestrue
‘b0 == * bL evaluatesfalse
‘bl ~~ ‘ bH evauatestrue
‘bl == * bH evaluatesfalse
“bX ~" * bW evaluates unknown
‘bX == * bW evaluatesfalse
‘bZ ~~ * bZ evaluatesunknown
‘bZ == * bZ evauatestrue
End of example
IEEE P1603 Draft 8 Advanced Library Format (ALF) Reference Manual 141

25

30

35

40

45

50

55

1

10

15

20

25

30

35

40

45

50

55

The operators for a string comparison shall be defined as shown in Table 87.

Table 87—String comparison

Operator Description comment
== string values are equal symbols from Table 84 are
overloaded

1= string values are different

A legal operand for a string comparison shall be a string value (see 6.15). If at least one operand is a quoted
string (see 6.14), the comparison shall be case-sensitive. Otherwise, the comparison shall be case-insensitive. If
an operand is an identifier (see 6.13) representing a constant or a variable holding a string value, the comparison
shall apply to the string value rather than to the identifier.

9.12 Vector expression and control expression

A vector expression and a control expression shall be defined as shown in Syntax 75.

vector_expression ::=
vector_expression)
| single_event
| vector_expression vector_operator vector_expression
| boolean_expression ? vector_expression © vector_expression
| boolean_expression control_and vector_expression
| vector_expression control_and boolean_expression
| vector_expression_macro
single_event ::=
edge_literal boolean_expression
vector_operator ::=
event_operator | event_and | event_or
event_and ::=
&1&&
event_or ;=

|

control_and ::=
& 1&&
control_expression ::=
vector_expression)
| (boolean_expression

Syntax 75—Vector expression and control expression

The purpose of a control expression is to specify the ALF name of a declared vector (see 8.14), a control state-
ment within a behavior statement (see 9.4), or an annotation with valuetype control expression (see 7.11.1).

The purpose of a vector expression is to specify a pattern of events. A vector expression shall be satisfied when
the pattern of events specified within the vector expression matches an actually realized pattern of events within
an application context.

A lega operand for a vector expression shall be a single event (see 9.13.1) or a vector expression macro (see
6.17).

142 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 8

A legal operator for a vector expression shall be an event operator (see 6.4.5), i.e., an event-segquence operator
(see) or an event-permutation operator (see), an event-and (see), an event-or (see), a control-and (see), or a
combination of a questionmark and a colon defining a conditional operation (see 9.11.3).

The precedence of operatorsinvolved in avector expression shall be from the strongest to the weakest in the fol -
lowing order:

a) boolean operation enclosed by parentheses, i.e., (,)

b) edgeliteral (see6.12, 9.13.1)

C) event permutation operators, i.e., <~>, <->, <& > (see 9.13.3)

d) event-and operator and control-and operator, i.e., & , & & (see 9.13.2, 9.13.5)
€) event sequence operators, i.e., ~>, ->, & > (see 9.13.2, 9.13.3)

f) event-or operator, i.e., |, || (see9.13.3)

g) delimiter for conditional operation, i.e., ?, . (see9.11.3, 9.13.5)

When operators of the same precedence are subsequently encountered in avector expression, the evaluation shall
proceed from the left to the right.

9.13 Specification of a pattern of events

9.13.1 Specification of a single event

In order to evaluate a vector expression (see 9.12) against an actually realized pattern of events, a set of variables
shall be observed for atemporal change of their value (see 9.13.4). A change of value within one observed vari-
able shall be called asingle event. An edge literal (see 6.12) shall be used as unary operator to specify the pattern
of asingle event. The operand, i.e., the variable subjected to the change of value, shall be a boolean expression
(see9.9).

A single event shall be interpreted according to Table 88.

Table 88—Specification of a single event

Row Edgeliteral Event on operand

1 first_bit_literal second bit_literal value changes from first_bit_literal to second_bit_literal

2 first_based literal second_based_literal | value changesfrom first_based literal to second based literal

3 ”? value before and after the change is arbitrary

4 * value is random after the change

5 *? value is random before the change

6 ?! value changes from any value to a different value

7 ?~ every binary digit changes fromany value to a different value
8 ?- value does not change

An edge literal consisting of two consecutive alphanumerical bit literals (row 1) can be used for a scalar operand.
An edge literal consisting of two consecutive based literals (row 2) can be used for a scalar operand or for avec-
torized operand, as long as the bitwidth of the operator is compatible ith the bitwidth of the operand. An edge lit-

IEEE P1603 Draft 8 Advanced Library Format (ALF) Reference Manual 143

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

eral consisting of two consecutive symbolic bit literals (row 3, 4, 5) can be used for either ascalar or avectorized
operand. A symbolic edge literal (row 6, 7, 8) can be used for either a scalar or a vectorized operand.

The edge literal in row 8 specifies the same value before and after the event. Such a specification shall be inter-
preted as event by exclusion, i.e., a change of value does not happen on the operand but on another observed
variable.

An arbitrary value in row 3, 6, and 7 shall be comprised within the set of applicable values for the operand, i.e.,
ascalar operand or abinary digit of avectorized operand can have a value specified by an aphanumerical bit lit-
eral, an operand with datatype unsigned can have an arbitrary unsigned integer value within the range of speci-
fied bitwidth, an operand with datatype signed can have an arbitrary signed integer value within the range of
specified bitwidth.

A randomvaluein row 4 and 5 shall beinterpreted as avalue subjected to random change. The random changeis
not monitored.

The usage of an edge literal for specification of asingle event isillustrated by the timing diagram in Figure 17.

edge literal corresponding timing diagram
|
01 |
|

‘d5'd9 value=5 >|< value=9

?7? >|<
2 >|<

event occurence time

Figure 17—Timing diagram for single events

NOTE: The specification of a single event does not imply any transition time. The transition timein Figure 17 is only for the
purpose of illustrating the difference between ?? and ?!.

NOTE: The operator ?? can be called a neutral operator, since a specified single event involving ?? on an arbitrary operand
always matches a single event on any operand. A single event involving the neutral operator can be caled a neutral single
event.

9.13.2 Specification of a compound event
A pattern of events involving one or more single events shall be called a compound event. A pattern of events

involving more than one single event shall be called atruly compound event. A pattern of events involving only
one single event shall be called a degenerate compound event.

144 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 8

The operatorsin Table 90 shall be used for specification of atruly compound event.

Table 89—Operators for specification of a compound event

Operator Description
~> The event to the left is eventually followed by the event to the right
-> The event to the left isimmediately followed by the event to the right
&& or & The event to the left and the event to the right occur at the same time

The purpose of said operators is to specify atemporal relation between two single events A and B within a truly
compond event C.

— (A~>B) meansthat A occurs before B.

— (A->B) means that (A~>B) is satisfied and there exists no single event O that could satisfy both (A~>0)
and (O~>B).

— (A&B) meansthat both A and B occur, but neither (A~>B) nor (B~>A) is satisfied.

In order to extend the applicability of said operators to compound events, the earliest and latest events are
defined as follows:

— A single event A within C shall be called earliest event within C, if there exists no single event O within
C that could satisfy (O~>A).

— A single event B within C shall be called latest event within C, if there exists no single event O within C
that could satisfy (B~>O).

— Within adegenerate compound event, the single event shall be called both earliest and latest event.

NOTE: A truly compound event can have more than one earliest or latest event, since events can occur at the same time.

Using these definitions, said operators shall specify atemporal relation between two compound events C and D
asfollows:

— (C~>D) meansthat the latest event within C occurs before the earliest event within D.
— (C->D) meansthat (C~>D) is satisfied and there exists no single event O that could satisfy both (C~>0)
and (O~>D).
— (C&D) meansthat both C and D are satisfied and the latest events within C and D occur at the same time.
9.13.3 Specification of a compound event with alternatives

A vector expression that satisfies more than one pattern of events shall be called a compound event with alterna-
tives.

The operators in Table 90 shall be used for specification of a compound event with alternatives.

Table 90—Operators for specification of a compound event with alternatives

Operator Description

|| or | The vector expression is satisfied if the compound event to the left or the compound event to the
right occurs.

IEEE P1603 Draft 8 Advanced Library Format (ALF) Reference Manual 145

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

Table 90—Operators for specification of a compound event with alternatives

Operator Description

&> The vector expression (C& >D) is equivalent to (C& D | C->D), wherein C and D are compound
events.

A particular case of a compound event with alternatives is a permutation of compound events, i.e., a vector
expression that is satisfied when the compound events occur in permutable order.

An operator that specifies occurence of compound events in permutable order shall be called event permutation
operator. In contrast, an operator that specifies occurence of compound eventsin a particular order shall be called
event sequence operator.

The operatorsin Table 91 shall be used for specification of a permutation of compound events.

Table 91—Operators for specification of permutations of compound events

Evmggggt]g:ation Description Correspontzl)i;egr;/;nt sequence
<> (C<~>D) isequivaent to (C~>D | D~>C) ~> (see Table 89)
<> (C<->D) isequivaent to (C->D | D->C) -> (see Table 89)
<&> (C<&>D)isequivalentto (C&>D |D&>C) | &> (see Table 90)

Permutation of more than two compound events shall be defined as follows:
A vector expression wherein

a) al operands are related to each other by the same event permutation operator, and,
b) each operand is bound by higher prededence than said event permutation operator,

shall be satisfied, if any permutation of the operands, related to each other by the corresponding event sequence
operator, is satisfied.

Example:
(A<&>B<&>C) isequivalent to (A&>B&>C | A&>C&>B | C&>A&>B | B& >A&>C | B&>C&>A | C&>B&>A)

wherein A, B, C denote compound events, and A, B, C do not contain operators of the same or lower precedence
than &>, unless such operators are bound within parentheses.

End of example
9.13.4 Evaluation of a specified pattern of events against a realized pattern of events
A vector expression, i.e., a specified pattern of events, shall be evaluated against an actually realized pattern of

events in an application context. The realized pattern of events shall be established according to the following
rules a) and b):

146 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 8

a) A primary pattern of events on aset of pin variables (see 9.3) shall be observed. The set of pin variables
shall be specified by the monitor annotation (see 8.15.10) within avector declaration (see 8.14) or by the
scope annotation (see 8.8.18) within a pin or a pingroup declaration (see 8.6, 8.7). A monitor annotation
shall take precedence over a scope annotation.

b) The primary pattern of events shall be reduced by replacing the events on the pin variables involved in
the vector expression with events on boolean expressions involved in the vector expression. The events
on any pin variables not involved in the vector expression shall be not be replaced.

Example:

The set of pin variables applicable for two vector expressionsv,and v, isA, B, C, D.
The vector expression v, reads (01 (A& B) -> 10 (B|C)).
The vector expression v, reads (1? A -> 01 (C & ! D)).

Therefore, the single eventson A, B, C and D are observed.
For evaluation of v4, the events on (A& B), (B|C) and D are observed.
For evaluation of v,, theeventson A, B and (C & ! D) are observed.

Figure 18 shows a realized pattern of events. The grey circles and bold edges indicate where the realized pattern
of events satisfies the respective vector expression v; and V.

T T T T T T T T T T T T
primary pattern of events A | | T 1 [
- — —t— I I | |
I | | | | -
—t I I | | —
D 1| [| || |
| L1 | | | | | 1 | |
reduced pattern of events o] ! ! ' P '
for evaluation of vy A&B__| A I S [
(01(A&B)->10(BIC)) pBIc T "Il | | | A I
o L |1 | | | |
| L1 | | | | | |
reduced pattern of events Pl ' o | Ll
for evaluation of v, p— | | I
(1?A ->01(C & ! D)) B i T i
C&!D | | | Y L
1 | | | | 1

Figure 18—Realized pattern of events
End of example
The occurence time of each single event within arealized pattern of events can be interpreted as atotally ordered
set of real numbers, using the mathematical relation “lesser or equal”. It can be shown that the properties of a
totally ordered set are satisfied. The following notations are used:

A, B denote single events within arealized event pattern
t(A), t(B) denote the occurence time of respective single events A, B within arealized event pattern

IEEE P1603 Draft 8 Advanced Library Format (ALF) Reference Manual 147

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

For reference, the following properties are required for atotally ordered set:

1) Reflexivity: t(A) < t(A)

2) Weak antisymmetry: t(A) < t(B) and t(B) < t(A) impliest(A) = t(B)

3) Transitivity: t(A) < t(B) and t(B) < t(C) implies t(A) < t(C)

4) Comparability: For any element within the set, either t(A) < t(B) or t(B) < t(A)

A specified pattern of events shall be satisfied, if each relation between single events therein is satisfied by the
realized pattern of events, according to Table 92.

Table 92—Satisfaction of a specified relation within a realized pattern of events

Specified relation Condition for statisfaction by realized pattern of events

A&>B | (seeTable90) | t(A) <t(B)

A->B | (seeTable89) | t(A) <t(B), but not t(B) <t(A), i.e, t(A) <t(B)
A->B (seeTable 89) | t(A) <t(B), and no event O exists with t(A) < t(O) < t(B)

A&&B | (secTable89) | t(A) < t(B) and {(B) < t(A), i.e., t(A) = t(B)

A redlized pattern of events can be completely described using the relations A& & B, i.e., the single events A and B
occur at the sametime, and A->B, i.e., the single event A isimmediately followed by the single event B. In the case
of single events occuring at the same time, a distinction shall be made between at the same time by implication
and at the same time by coincidence.

NOTE: In order to evaluate the vector expression against the realized pattern of events, it is not necessary to record the actual
occurence time of the single events. It suffices to record the relations pertinent to the ordered set.

The following rules shall apply concerning the relations between single events within a realized pattern of
events:

a) A value change of a boolean expression and a single event on a pin variable causing this value change
shall be interpreted to occur at the same time by implication.

b) A value change of avectorized pin variable and a corresponding value change of any part of the vector-
ized pin variable shall be interpreted to occur at the same time by implication.

c¢) If avaue change of a pin variable occurs as a consequence of a value change of another pin variable
within the context of abehavior statement (see 9.4), the consequence shall be interpreted to occur imme-
diately followed by the cause.

d) If the elapsed time between single events on mutually independent pin variables is measured zero, said
events can be interpreted to occur at the same time by coincidence.

€) Inthe context of adeclared vector (see 8.14), al pin variables shall be considered mutually independent,
even though a causal dependency between some pin variables can exist in the context of abehavior state-
ment. Therefore events can not occur at the same time by implication within the context of a vector.

NOTE: It is possible that an application can not determine the temporal relation between events occuring at the same time by
coincidence. Instead, the events could be represented in random order with the temporal relation immediately followed by
each other. Therefore it is recommended to use the operator <& > to specify at the same time by coincidence and to use the
operator & & to specify at the same time by implication.

Example:

148 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 8

A behavior statement contains the boolean assignment Z = A& B.

The single event (01 (A& B)) is caused by the single event (01 A).

The single events (01 (A& B)) and (01 A) are interpreted to occur at the same time by implication.

Within the context of the behavior statement, the single event (01 Z) isinterpreted to occur after the single event
(01 (A& B)).

Outside the context of the behavior statement, the variables A and Z are considered independent. The numerical
value of the measured propagation delay from A to Z can be greater than zero, lesser than zero, or zero. There-
fore, the single events (01 A) and (01 Z) can occur at the same time by coincidence.

End of example

9.13.5 Specification of a conditional pattern of events

A pattern of events specified within avector expression shall be called aconditional pattern of events, if the eval-
uation against the realized pattern of events is made dependent on a condition described as a boolean expression.
A conditional pattern of events shall be evaluated against the realized pattern of events only if the boolean

expression evaluates true in the realized pattern of events.

A conditional pattern of events shall be described using the control-and operator or the if-then-else construct, as
specified in Table 93.

Table 93—Specification a conditional pattern of events

Operator Description Comment
&& or& pattern of events shall be evaluated control-and uses verloaded symbol, which isa so used
while boolean expression is true for logical and (see Table 76) and bitwise and (see
Table 79).
2and: if-then-else construct, see 9.11.3 If-then-el se construct exists for boolean expression
(see Syntax 74), for vector expression (see Syntax 75)
and for arithmetic expression (see Syntax 81).

The order of operands within a vector expression involving the control-and operator shall be free, i.e.:
(v & b) shall be equivalentto (b & V)
wherein v denotes a vector expression, and b denotes a boolean expression.

A vector expression involving the if-then-else construct can be transformed into a vector expression involving
the control-and operator, according to the following rule:

(b?vq:v,) shall beequivalentto (v; & b|v, & ! b)

wherein b denotes a boolean expression representing the if-clause, v, denotes a vector expression representing
the then-clause, and v, denotes a vector expression representing the el se-clause.

9.14 Predefined PRIMITIVE

This section defines the predefined primitive declarations, wherein the prefix “ALF_" isreserved for the name of
such primitives.

IEEE P1603 Draft 8 Advanced Library Format (ALF) Reference Manual 149

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

9.14.1 Predefined PRIMITIVE ALF_BUF

The primitive ALF_BUF shall be defined as shown in Semantics 82.

PRI M TI VE ALF_BUF {
PINin { DIRECTION = input; }

GROUP index { 1 : <bitw dth> }
FUNCTI ON { BEHAVIOR { out[index] =in ;

PIN [1: <bitwi dth>] out { DI RECTI ON = out put;

b}

}

Semantics 82—Predefined PRIMITIVE ALF_BUF

9.14.2 Predefined PRIMITIVE ALF_NOT

The primitive ALF_NOT shall be defined as shown in Semantics 83.

PRI M TI VE ALF_NOT {
PINin { DIRECTION = input; }

GROUP index { 1 : <bitw dth> }

FUNCTION { BEHAVIOR { out[index] ="! in ;

PIN [1: <bitwi dth>] out { DI RECTI ON = out put;

}

}
}

Semantics 83—Predefined PRIMITIVE ALF_NOT

9.14.3 Predefined PRIMITIVE ALF_AND

The primitive ALF_AND shall be defined as shown in Semantics 84.

PRI M Tl VE ALF_AND ({
PIN out { DIRECTION = output; }

FUNCTION { BEHAVIOR { out = & in ; } }
}

PIN [1:<bitwidth>] in { DIRECTION = input;

}

Semantics 84—Predefined PRIMITIVE ALF_AND

9.14.4 Predefined PRIMITIVE ALF_NAND

The primitive ALF_NAND shall be defined as shown in Semantics 85.

PRI M Tl VE ALF_NAND ({
PIN out { DI RECTION = output; }

FUNCTION { BEHAVIOR { out = ~&in ; } }
}

PIN[1l:<bitwidth>] in { D RECTION = input;

}

Semantics 85—Predefined PRIMITIVE ALF_NAND

150 Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 8

9.14.5 Predefined PRIMITIVE ALF_OR

The primitive ALF_OR shall be defined as shown in Semantics 86.

PRI M TI VE ALF_OR {
PIN out { DI RECTION = output; }

PIN[1l:<bitwidth>] in { DIRECTION = input; }
FUNCTION { BEHAVIOR { out = | in; } }
}
Semantics 86—Predefined PRIMITIVE ALF_OR
9.14.6 Predefined PRIMITIVE ALF_NOR
The primitive ALF_NOR shall be defined as shown in Semantics 87.
PRI M TI VE ALF_NOR {
PIN out { DI RECTION = output; }
PIN[1l:<bitwidth>] in { DIRECTION = input; }
FUNCTION { BEHAVIOR { out = ~| in; } }
}
Semantics 87—Predefined PRIMITIVE ALF_NOR
9.14.7 Predefined PRIMITIVE ALF_XOR
The primitive ALF_XOR shall be defined as shown in Semantics 88.
PRI M Tl VE ALF_XOR {
PIN out { DI RECTION = output; }
PIN [1:<bitwidth>] in { DI RECTION = input; }
FUNCTION { BEHAVIOR { out =" in; } }
}
Semantics 88—Predefined PRIMITIVE ALF_XOR
9.14.8 Predefined PRIMITIVE ALF_XNOR
The primitive ALF_XNOR shall be defined as shown in Semantics 89.
PRI M Tl VE ALF_XNOCR {
PIN out { DI RECTION = output; }
PIN[1l:<bitwidth>] in { DIRECTION = input; }

FUNCTION { BEHAVIOR { out = ~* in ; } }
}

IEEE P1603 Draft 8

Semantics 89—Predefined PRIMITIVE ALF_XNOR

Advanced Library Format (ALF) Reference Manual

151

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

9.14.9 Predefined PRIMITIVE ALF_BUFIF1

The primitive ALF_BUFIF1 shall be defined as shown in Semantics 90.

PRI M TI VE ALF_BUFI F1 {

PIN out { DI RECTION = out put;
PINin { D RECTION = input;

}
}

PIN enable { DI RECTION = input;

}

FUNCTI ON { BEHAVIOR { out = (enable)? in :

‘bz ; } }

Semantics 90—Predefined PRIMITIVE ALF_BUFIF1

9.14.10 Predefined PRIMITIVE ALF_BUFIFO

The primitive ALF_BUFIFO shall be defined as shown in Semantics 91.

PRI M Tl VE ALF_BUFI FO {

PIN out { DI RECTION = output;
PINin { D RECTION = input;

}
}

PI'N enable { DI RECTION = i nput;

FUNCTI ON { BEHAVI OR { out

:(l

}

enable)? in :

‘bZ ;

b}

Semantics 91—Predefined PRIMITIVE ALF_BUFIFO

9.14.11 Predefined PRIMITIVE ALF_NOTIF1

The primitive ALF_NOTIF1 shall be defined as shown in Semantics 92.

PRI M Tl VE ALF_NOTI F1 {

PIN out { DI RECTION = output;

}

PIN in

{ DRECTION = input; }

PIN enable { DI RECTION = input; }

FUNCTI ON { BEHAVI OR { out

= (enable)? !

in :

‘bZ ;

}}

Semantics 92—Predefined PRIMITIVE ALF_NOTIF1

9.14.12 Predefined PRIMITIVE ALF_NOTFIFO

The primitive ALF_NOTIFO shall be defined as shown in Semantics 93.

PRI M Tl VE ALF_NOTI FO {

PIN out { DI RECTION = output;
PINin { D RECTION = input;

}
}

PIN enable { DI RECTION = input; }

FUNCTI ON { BEHAVI OR { out = (!
}

enable)? ! in:

‘bz ; }}

152

Semantics 93—Predefined PRIMITIVE ALF_NOTIFO

Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 8

9.14.13 Predefined PRIMITIVE ALF_MUX

The primitive ALF_MUX shall be defined as shown in Semantics 94.

PRI M TI VE ALF_MJX {
PIN Q { DIRECTION = output; }
PIN[1:0] D{ DIRECTION = input; }
PIN S { DIRECTION = input; }
FUNCTI ON {
BEHAVI OR {
}Q=! S&DO0] | S&D1] | Do] & D1]
}
}

Semantics 94—Predefined PRIMITIVE ALF_MUX

9.14.14 Predefined PRIMITIVE ALF_LATCH

The primitive ALF_LATCH shall be defined as shown in Semantics 95.

PRI M Tl VE ALF_LATCH {
PIN Q { DIRECTION = output; }
PIN QN { DI RECTI ON = output; }
PIN D { DIRECTION = input; }
PIN ENABLE { DI RECTION = input; }
PIN CLEAR { DI RECTION = input; }
PI'N SET { DIRECTION = input; }
PIN Q CONFLICT { DIRECTION = input; }
PIN QN _CONFLI CT { DIRECTION = input; }
FUNCTI ON {
BEHAVI OR {
@(CLEAR && SET) {
Q = Q. CONFLICT ; QN = QN_CONFLICT ;
oo QLEAR) |

Q=0; N=1;
pooo(SET) |

Q=1; N=20;
} : (ENABLE) {

Q=D; N=1 D;

}
}
}

}

Semantics 95—Predefined PRIMITIVE ALF_LATCH

9.14.15 Predefined PRIMITIVE ALF_FLIPFLOP

The primitive ALF_FLIPFLOP shall be defined as shown in Semantics 96.

IEEE P1603 Draft 8 Advanced Library Format (ALF) Reference Manual

153

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

PRI M TI VE ALF_FLI PFLOP {

PIN Q { DIRECTION = output; }
PIN QN { DI RECTI ON = output; }
PIN D { DIRECTION = input; }

PIN CLOCK { DI RECTION = input; }
PIN CLEAR { DI RECTION = input; }
PI'N SET { DIRECTION = input; }

PIN Q CONFLICT { DIRECTION = input; }
PIN QN_CONFLICT { DIRECTION = input; }
FUNCTI ON {

BEHAVI OR {

@(CLEAR && SET) {
Q= Q CONFLICT : QN = QN_CONFLI CT ;
} o (CLEAR) {

Q:O;Q\]:]_;
pooo(SET) |
Q:]_;Q\]:O;
} (01 CLOCK) {
Q=D; N=1! D;
}
}

}
}

Semantics 96—Predefined PRIMITIVE ALF_FLIPFLOP

9.15 WIRE instantiation

A wire instantiation shall be defined as shown in Syntax 76.

wire_instantiation ::=
wire_reference_identifier wire_instance_identifier
| wire_reference_identifier wire_instance _identifier 1 { wire_instance pin_value} }
| wire_reference_identifier wire_instance identifier { { wire_instance pin_assignment }
| wire_instantiation_template_instantiation
wire_instance pin_assignment ::=
wire_reference_pin_variable = wire_instance_pin_value,

Syntax 76—WIRE instantiation

The purpose of awire instantiation is to describe an electrical circuit for characterization or test. A reference of
the electrical circuit shall be given by awire declaration (see 8.10). A cell, subjected to characterization or test,
can be connected with an instance of the electrical circuit.

The mapping between the wire reference and the wire instance shall be established either by order or by name.
In case of mapping by order, a pin value (see 9.3.1) shall be associated with the wire instance. A corresponding
pin variable associated with the wire reference shall be infered by the order of node declarations within the wire

reference.

If mapping by order is not possible without ambiguity, mapping shall be established by name, using pin assign-
ment (see 9.3.2). The left-hand side of the pin assignment shall represent the name of a node associated with the

154 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 8

wire reference. The right-hand side of the pin assignment shall represent a pin value associated with the wire

instance.

9.16 Geometric model

A geometric model shall be defined as shown in Syntax 77.

geometric_model ::=
nonescaped_identifier [geometric_model _identifier]

{ geometric_mode!_item { geometric_model_item} }

| geometric_model_template instantiation

geometric_model_item ::=
POINT_TO_POINT _single value_annotation

| coordinates
coordinates ::=

COORDINATES({ point { point} }
point ::=

X_number y_number

Syntax 77—Geometric model

A geometric model shall describe the form of a physical object. A geometric model can appear in the context of
apattern (see 8.29) or aregion (see 8.31).

The numbersin the point statement shall be measured in units of distance (see 10.19.9).

The parent object of the geometric model can contain a geometric transformation (see 9.18) applicable to the

geometric model.

The keywords for geometric models shown in Semantics 97 shall be predefined.

KEYWORD DOT = geonetric_nodel ;
KEYWORD POLYLI NE = geonetri c_nodel ;
KEYWORD RI NG = geonetri c_nodel ;
KEYWORD POLYGON = geonetric_nodel ;

Semantics 97—Predefined geometric models

Table 94 specifiies the meaning of predefined geometric model identifiers.

Table 94—Geometric model identifiers

IEEE P1603 Draft 8

Identifier Description
DOoT Describes one point.
POLYLI NE Defined by N>1 directly connected points, forming an open object.
RI NG Defined by N>1 directly connected points, forming a closed object,
i.e, the last point is connected with first point. The object occupies
the boundary of the enclosed space.

Advanced Library Format (ALF) Reference Manual

155

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

Table 94—Geometric model identifiers (Continued)

Identifier Description

POLYGON Defined by N>1 connected points, forming a closed object, i.e., the last
point is connected with first point. The object occupies the entire
enclosed space.

The meaning of predefined geometric model identifiersis further illustrated in Figure 19.

DOT (5 dots) POLYLINE RING POLYGON

Figure 19—Illustration of geometric models

A point_to_point annotation shall be defined as shown in Semantics 98.

KEYWORD PO NT_TO PO NT = single val ue_annotation {
CONTEXT { POLYLI NE RI NG POLYGON }

}

SEMANTI CS PO NT_TO PO NT {
VALUES { direct manhattan }
DEFAULT = direct;

}

Semantics 98—POINT_TO_POINT annotation

The point-to-point annotation applies for a polyline, a ring or a polygon. The annotation value specifies, how
subsequent pointsin the coordinates statement are to be connected.

The meaning of the annotation value direct isillustrated in Figure 20. It specifies the shortest possible connection
between points.

156 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 8

Y-axis A direct connection direct connection
9 7T from(-1,8) to(15) from (3,8) to (-1,8)
8
7
6 direct connection
5 . from(-35)t0(3,8)
4
3 d| rect connection
5 from (-1,5) to (3,5)
1
>
5 4 3 2101 2 3 4 5 X-axis

Figure 20—lllustration of direct point-to-point connection

The meaning of the annotation value manhattan is illustrated in Figure 21. It specifies a connection between
points by moving in the x-direction first and then moving in the y-direction. This enables a non-redundant speci-

fication of arectilinear object using N/ 2 pointsinstead of N points.

Y-axis
A manhattan connection from (-3,8) to (-1,5)

X

X

manhattan connection from (-1,5) to (3,8)

P N W 01O N 0O ©

L
5 -4 -3 -2 -101 2 3 4 5 X-axis

Figure 21—lllustration of manhattan point-to-point connection

Example 1

POLYGON {
PO NT_TO POINT =
COORDI NATES { -1

dire
53 38—18}

IEEE P1603 Draft 8 Advanced Library Format (ALF) Reference Manual

157

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

Example 2
POLYGON {

PO NT_TO PO NT = nanhatt an;
COORDINATES { -1 5 3 8}

}

Both statements describe the same rectangle.

9.17 Predefined geometric models using TEMPLATE

A template declaration (see 7.15) can be used to describe particular geometric models. This section describes
predefined geometric models.

9.17.1 Predefined TEMPLATE RECTANGLE

The template rectangle shall be predefined as shown in Semantics 99.

TEMPLATE RECTANGLE {
POLYGON {
PO NT_TO PO NT = manhatt an;
COORDI NATES { <left> <bottoms <right> <top> }

}
}

Semantics 99—Predefined TEMPLATE RECTANGLE

9.17.2 Predefined TEMPLATE LINE

The template line shall be predefined as shown in Semantics 100.

TEMPLATE LI NE {
POLYLI NE {
PO NT_TO PO NT = direct;
COCRDI NATES { <x_start> <y_start> <x_end> <y_end> }
}
}

Semantics 100—Predefined TEMPLATE LINE

9.18 Geometric transformation

A geometric transformation shall be defined as shown in Syntax 78.

A geometric model (see 9.16) shall be subjected to a geometric transformation if both statements appear in the
same context, i.e., they have the same parent.

The following rules shall apply for the geometric transformations shift, rotate and flip.

158 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 8

geometric_transformation ::=
shift
| rotate
| flip
| repeat

shift ::=
SHIFT { x_number y number }
rotate ::=
ROTATE = number ;
flip:=
"ELIP= number ;

repeat ;=
REPEAT [= unsigned_integer] { geometric_transformation { geometric_transformation} }

Syntax 78—Geometric transformation

— A number associated with a geometric transformation shall be measured in units of distance (see
10.19.9).

— A geometric transformation shall apply to the origin of a geometric model. Therefore, the result of subse-
quent transformations is independent of the order in which each individual transformation is applied.

— Thedirection of the transformation shall be from the geometric model to the actual object.

The shift statement shall define the horizontal and vertical offset measured between the coordinates within a
declared geometric model and the actual coordinates of an object.

The rotate statement shall define the angle of rotation in degrees measured between the orientation of a defined
geometric model and the actual orientation of an object. The angle shall be measured in counter-clockwise direc-
tion, specified by a number between 0 and 360.

The flip statement shall define a mirror operation. The number shall represent the angle of the movement of the
object in degrees. By definition, the movement is orthogonal to the mirror axis. Therefore, the number O speci-
fies flip in horizontal direction, therefore the axis is vertical, whereas the number 90 specifies flip in vertical
direction, therefore the axis is horizontal.

The geometric transformations flip, rotate, and shift are further illustrated in Figure 22.

FLIP : ROTATE . SHIFT
o
o o o P
legend: @ originof theobject | | i

Figure 22—Illustration of FLIP, ROTATE, and SHIFT

IEEE P1603 Draft 8 Advanced Library Format (ALF) Reference Manual 159

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

The repeat statement shall describe the replication of an object. The unsigned integer shall define the total num-
ber of replications, including the original instance. Therefore, the number 1 means that the object appears once.
A repeat statement without unsigned integer shall indicate an arbitrary number of replications.

Examples
The following example replicates an object three times a ong the horizontal axisin a distance of 7 units.

REPEAT = 3 {
SHFT { 70}
}

The following example replicates an object five times along a 45-degree axis in a horizontal and a vertical dis-
tance of 4 units each.

REPEAT = 5 {
SHFT { 4 4}
}

The following example replicates an object twice along the horizontal axis and four times along the vertical axis
in ahorizontal distance of 5 units and a vertical distance of 6 units.

REPEAT = 2 {
SHFT { 50 }
REPEAT = 4 {

SHIFT { 0 6 }
}
}

NOTE—The order of nested REPEAT statements does not matter. The following example gives the same result as the previ-
ous example.

REPEAT = 4 {
SHIFT { 0 6 }
REPEAT = 2 {

SHFT { 50 }
}

9.19 ARTWORK statement

An artwork statement shall be defined as shown in Syntax 79.

artwork ::=
ARTWORK = artwork identifier ;
|ARTWORK = artwork_reference
|ARTWORK { artwork_reference { artwork_reference} }
| artwork_template_instantiation
artwork_reference ::=
artwork_identifier { { geometric_transformation } { cell_pin_identifier} }
| artwork__identifier

{ { geometric_transformation } { artwork_pin_identifier = cell_pin_identifier ; } }

Syntax 79—ARTWORK statement

160 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 8

The purpose of the artwork statement is to create a reference between an artwork described in a physical layout
format, e.g., GDSII [B11], and the cell described in the ALF.

A geometric transformation (see 9.18) can be used to define a transformation of coordinates from the artwork
geometry to the cell geometry. The artwork is considered the original object whereas the cell is the transformed
object.

The artwork statement can also etablish a mapping between a pin within the artwork and a pin of the cell. The
name of the artwork pin shall appear on the left-hand side. The name of the cell pin shall appear on the right-hand
side.

Example
CELL ny_cel |l {
PINA{ /* fill inpinitens */ }
PINZz { /* fill in pinitens */ }

ARTWORK = \ GDS2$! @$ {
SHIFT { 00 }

ROTATE = 0;
\ CDS2$! @$A = A
\ CDS2$! @$B = B;

9.20 VIA instantiation

A viainstantiation shall be defined as shown in Syntax 80.

via instantiation :;=
via_identifier instance identifier |
| via_identifier instance identifier { { geometric_transformation} }

Syntax 80—VIA instantiation

The purpose of aviainstantiation isto enable the definition of a design rule (see 8.20), a blockage (see 8.22) or a
port (see 8.23) involving adeclared via (see 8.18). A geometric transformation (see 9.18) can be used to describe
atransformation of coordinates from a via declaration to the viainstantiation. The declared viais considered the
original object, whereas the instantiated viais the transformed object.

IEEE P1603 Draft 8 Advanced Library Format (ALF) Reference Manual 161

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

162

Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 8

10. Description of electrical and physical measurements

10.1 Arithmetic expression

An arithmetic expression shall be defined as shown in Syntax 81.

arithmetic_expression ::=
arithmetic_expression)

| arithmetic_value

| identifier

| boolean_expression ? arithmetic_expression : arithmetic_expression

| sign arithmetic_expression

| arithmetic_expression arithmetic_operator arithmetic_expression

| macro_arithmetic_operator (arithmetic_expron{ , arithmetic_expression })
macro_arithmetic_operator ::=

abs|exp |Tog | min|max

Syntax 81—Arithmetic expression

The purpose of an arithmetic expression is the construction of an arithmetic model (see 10.3) or an arithmetic
assignment (see 7.16).

A legal operand in an arithmetic expression shall be an arithmetic value or an identifier (see 6.13) representing an
arithmetic value.

A legal operator in an arithmetic expression shall be a sign (see 6.5, 10.2.1), an arithmetic operator for floating
point arithmetic operation (see 6.4.1, 10.2.2), a macro arithmetic operator (see 10.2.3), or a combination of a
questionmark and a colon defining a conditional operation (see 9.11.3).

The precedence of operatorsin arithmetic expressions shall be from strongest to weakest in the following order:

a arithmetic operation enclosed by parentheses, i.e,, (,)

b) sign,i.e, +, - (see10.2.1)

c) power,i.e,** (see10.2.2)

d) multiplication, division, modulus, i.e.,*, /, % (see 10.2.2)
€) addition, subtraction, i.e., +, - (see 10.2.2)

f) delimiter for conditional operation, i.e., ?, . (see 9.11.3)

When operators of the same precedence are subsequently encountered in an arithmetic expression, the evaluation
shall proceed from the left to the right.

Examples for arithmetic expressions
1.24
- vdd
Cl +
MAX (3.5*C, -vdd/2 , 0.0)
(C>10) ? vdd**2 : 1/2*Vvdd - 0.5*C

End of example

IEEE P1603 Draft 8 Advanced Library Format (ALF) Reference Manual 163

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

10.2 Arithmetic operations and operators
10.2.1 Sign inversion
A sign can be used as unary operator in an arithmetic expression.

Table 95 defines the semantics of the sign used as unary operator.

Table 95—Sign used as unary arithmetic operator

Operator Description

+ no sign inversion.

- sign inversion.

NOTE: The positive sign can be considered as neutral operator.

10.2.2 Floating point arithmetic operation

Table 96 defines the semantics of binary arithmetic operators.

Table 96—Binary arithmetic operators

Operator Description
+ Addition
- Subtraction
* Multiplication
/ Division
% Modulus
*x Power

All operations involving the operatorsin Table 96 , including division and modulus, shall be floating point oper-
ations.

The following mathematical restrictions apply:
— The second operand of division can not be zero.
— The second operand of modulus can not be zero.
— The second operand of power shall be a positive value if the first operand is zero.
— The second operand of power shall be an integer value if the first operand is negative.

The application shall be responsible for handling the mathematical restrictions.

164 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 8

10.2.3 Macro arithmetic operator

Table 97 defines the semantics of macro arithmetic operators.

Table 97—Macro arithmetic operators

Operator Description number of operands
| og Natural logarithm. 1 operand
exp Natural exponential. 1 operand
abs Absolute value. 1 operand
mn Minimum. Noperands, N > 1
max Maximum. N operands, N > 1

The following mathematical restrictions shall apply:
— Theoperand of the natural logarithm shall be a positive value.

The application shall be responsible for handling the mathematical restrictions.

10.3 Arithmetic model

An arithmetic model shall be defined as atrivial arithmetic model, apartial arithmetic model, or afull arithmetic
model, as shown in Syntax 82.

arithmetic_model ::=
trivial_arithmetic_model
| partial_arithmetic_model
| full _arithmetic_model
| arithmetic_model_template instantiation

Syntax 82—Arithmetic model

The purpose of an arithmetic model isto specify a measurable or a calculable quantity.

A trivial arithmetic model shall be defined as shown in Syntax 83.

trivial_arithmetic_mode! ::=
arithmetic_model_identifier [name_identifier]| = arithmetic_value ;
| arithmetic_model_identifier [name_identifier] = arithmetic_value
{ { arithmetic_model_qualifier } }

Syntax 83—Trivial arithmetic model

The purpose of atrivial arithmetic model isto specify a constant arithmetic value associated with the arithmetic
model. Therefore, no mathematical operation is necessary to evaluate a trivial arithmetic model. A trivial arith-
metic model can contain asingular or a plural arithmetic model qualifier (see Syntax 87).

IEEE P1603 Draft 8 Advanced Library Format (ALF) Reference Manual 165

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

A partial arithmetic model shall be defined as shown in Syntax 84.

partial_arithmetic_model ::=
arithmetic_model_identifier [name_identifier] { { partia_arithmetic_model_item } }
partial_arithmetic_model_item ::=
arithmetic_model_qudlifier
| table
| trivial_min-max

Syntax 84—Partial arithmetic model

The purpose of a partial arithmetic model isto specify asingluar or a plural model qualifier (see Syntax 87), or a
table (see Syntax 91) or atrivial min-max statement (see Syntax 94). The specification contained within a partial
arithmetic model can be inherited by another arithmetic model of the same type, according to the following rules.

a) If the partia arithmetic model has no name, the specification shall be inherited by all arithmetic models
of the same type appearing either within the same parent or within a descendant of the same parent.

b) If the partia arithmetic model has a name, the specification shall only be inherited by an arithmetic
model containing a reference to the name, using the model reference annotation (see 10.9.5).

¢) Anarithmetic model can override an inherited specification by its own specification.

A partial arithmetic model does not specify a mathematical operation or an arithmetic value. Therefore it can not
be mathematically evaluated.

A full arithmetic model shall be defined as shown in Syntax 85.

full_arithmetic_model ::=
arithmetic_model_identifier [name_identifier]
{ { arithmetic_model_qualifier } arithmetic_model_body { arithmetic_model_qualifier } }

Syntax 85—Full arithmetic model

The purpose of a full arithmetic model is to specify mathematical data and a mathematical evaluation method
associated with the arithmetic model. This specification resides in the arithmetic model body (see Syntax 86). A
full arithmetic model can also contain asingular or aplural arithmetic model qualifier (see Syntax 87).

The arithmetic model identifier in Syntax 83, Syntax 84 and Syntax 85 shall be declared as a keyword (see 7.9)
and provide specific semantics for the arithmetic model.

An arithmetic model body shall be defined as shown in Syntax 86.

arithmetic_model_body ::=
header-table-equation [trivial_min-max]
| min-typ-max
| arithmetic_submodel { arithmetic_submodel }

Syntax 86—Arithmetic model body

The purpose of the arithmetic model body is to specify mathematical data associated with a full arithmetic
model. The datais represented either by a header-table-equation statement (see 10.4), or by a min-typ-max state-
ment (see 10.5), or by asingular or aplural arithmetic submodel (see 10.7).

166 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 8

An arithmetic model qualifier shall be defined as shown in Syntax 87.

arithmetic_model_qualifier ::=
inheritable_arithmetic_model_qualifier
| non_inheritable_arithmetic_model_qualifier
inheritable_arithmetic_model_qualifier ::=
annotation
| annotation_container
| from-to
non_inheritable_arithmetic_model_qualifier ::=
auxiliary_arithmetic_model
| violation

Syntax 87—Arithmetic model qualifier

The purpose of an arithmetic model qualifier isto specify semantics related to an arithmetic model.

An inheritable arithmetic model qualifier, i.e., an annotation (see 7.3), an annotation container (see 7.4) or a
from-to statement (see 10.12) can be inherited by another arithmetic model using a model reference annotation
(see 10.9.5).

A non-inheritable arithmetic model qualifier, i.e., an auxiliary arithmetic model (see 10.6), a violation (see
10.10) or awire instantiation (see 9.15) shall apply only for the arithmetic model under evaluation.

10.4 HEADER, TABLE, and EQUATION statements

A header-table-equation statement shall be defined as shown in Syntax 88.

header-table-equation ::=
header table | header equation

Syntax 88—Header table equation

The purpose of a header-table-equation statement isto specify the mathematical data and amethod for evaluation
of the mathematical data associated with afull arithmetic model (see Syntax 85).

A header statement shall be defined as shown in Syntax 89.

header ::=
HEADER { header_arithmetic_model { header_arithmetic_model } }
header_arithmetic_ model ::=
arithmetic_model_identifier [name_identifier] { { header_arithmetic_model_item } }
header_arithmetic_ model_item ::=
inheritable_arithmetic_model_qualifier
| table
| trivial_min-max

Syntax 89—HEADER statement

Each header arithmetic model shall represent a dimension of an arithmetic model.

Any arithmetic model (see 10.3) with a header as a parent shall be interpreted as a header arithmetic model. A
declared keyword (see 7.9) for arithmetic model shall apply asidentifier.

IEEE P1603 Draft 8 Advanced Library Format (ALF) Reference Manual 167

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

NOTE — The syntax for header arithmetic model is atrue subset of the syntax for arithmetic model.

An equation statement shall be defined as shown in Syntax 90.

equation ::=
EQUATION { arithmetic_expression }

| equation_template instantiation

Syntax 90—EQUATION statement

The arithmetic expression within the equation statement shall represent the mathematical operation for evalua
tion of the arithmetic model.

Each dimension shall be involved in the arithmetic expression. The arithmetic expression shall refer to a dimen-
sion by name, if aname identifier exists or by type otherwise. Consequently, the type or the name of adimension
shall be unique.

A table statement shall be defined as shown in Syntax 91.

le::=
TABLE { arithmetic_value{ arithmetic value} }

Syntax 91—TABLE statement

A table statement within a partial arithmetic model shall define a discrete set of legal and applicable values. A
table statement within a full arithmetic model shall represent a lookup table. If the arithmetic model body con-
tains a table statement, each header arithmetic model shall also contain a table statement. The table statement
within the header arithmetic model shall represent the lookup index for a particular dimension.

The mathematical relation between alookup table and its lookup indices shall be established as follows:

N N>1
s= s0) 521
= 0<P(py, --pi-» Py) £S-1
N -1
- S(i)=1
P(Py P PN) = Y P[] S(K)
i=1 kl:ll Osp=<3(i)-1

where

N denotes the number of dimensions

Sdenotes the size of the lookup table, i.e., the number of arithmetic values within the lookup table

P(py, --p;--» Pn) denotes the position of an arithmetic value within the lookup table

i denotes the index corresponding to the order of appearance of a dimension within the header statement
(i) denotes the size of adimension, i.e., the number of arithmetic valuesin the table within adimension
p; denotes the position of an arithmetic value within adimension

Figure 23 shows an example of athree-dimensional table.

168 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 8

dimension 1: (g & a3) Y1) =4 table: Xo(30: Po, Co) X1(ay, bo, o) X2(@p, by, Co) X3(ag, Py, Co)
imenson2: (bgby) — S2=2 5294 x(@, by, Co) Xs(a, by, Co) Xg(@, by, Co) X7(ag, by, o)
imension 3: (coc;) (3 =3 Xg(@p, by, €1) Xg(@y, by, €1) X10(8, b, 1) X11(3s, b, €1)

X12(80, b1, €1) Xq3(89, by, €1) X14(8, by, C1) X15(8, by, €1)

P(p1, P2, P3) =1 +4p2+8p3 X16(30, Do, C2) X17(84, by, C2) X18(8, bo, C2) X19(33, bo, €2)

X20(8p, D1, €2) X21(8y, by, C3) Xo(8p, by,) X23(3, by, €)

Figure 23—Example of a three-dimensional table

A dimension can be either discrete or continuous. In the latter case, interpolation and extrapolation of table val-
uesis allowed, and the arithmetic valuesin this dimension shall appear in strictly monotonous ascending order.

A full arithmetic model or any of its dimensions can inherit a set of legal values from a partial arithmetic model
(see Syntax 84), represented by a table statement. Such atable statement can not substitute alookup index within
adimension, and it can not pose a restriction on the evaluation of an arithmetic expression.

Rules and restrictions for the mathematical evaluation of an arithmetic model can only be defined within the
header-table-equation statement. A legal set or alegal range of values defined within an arithmetic model shall
not interfere with the mathematical evaluation of the arithmetic model itself. In particular, an arithmetic expres-
sion shall be evaluated within the domain of its mathematical validity. A lookup table shall be evaluated accord-
ing to the inter polation annotation (see 10.9.3).

10.5 MIN, MAX, and TYP statements

A min-typ-max statement shall be defined as shown in Syntax 92.

min-typ-max ::=

min-max | [min] typ [max]
min-max ::=

min | max | min max
min ::=

trivial_min | non_trivial_min
max ::=

trivial_max | non_trivial_max
typ =

trivia_typ | non_trivial_typ

Syntax 92—MIN-TYP-MAX statement

The purpose of a min-typ-max statement is to represent one or more possible sets of mathematical data associ-
ated with an arithmetic model, rather than a single actual set.

Data associated with a min statement shall represent the smallest possible eval uation result under a given evalua-
tion condition, i.e., actual evaluation results can be numerically greater.

Data associated with a max statement shall represent the greatest possible eval uation result under a given evalua-
tion condition, i.e., actual evaluation results can be numerically smaller.

Data associated with a typ statement shall represent a typical evaluation result under a given evaluation condi-
tion, i.e., actual evaluation results can be numerically greater or smaller.

IEEE P1603 Draft 8 Advanced Library Format (ALF) Reference Manual 169

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

A non-trivial min or max or typ statement shall be defined as shown in Syntax 93.

non_trivia_min ::=
"MIN = aithmetic_value{ violation }
IMIN {[violation] header-table-equation }
non_trivial_max ::=
"MAX = arithmetic_value{ violation }
|MAX { [violation | header-table-equation }
non _trivial_typ ::=
TY P { header-table-equation }

Syntax 93—Non-trivial MIN, MAX and TYP statements

By definition, a non-trivial min or max statement is associated with a header-table-equation statement (see
Syntax 88) or a violation statement (see 10.10). A non-trivial typ statement is associated with a header-table-
equation statement.

NOTE — A violation statement is a particular arithmetic model qualifier (see Syntax 87).

A trivial min, max, or typ statement shall be defined as shown in Syntax 94

trivia_min-max ::=
trivial_min | trivial_max | trivial_min trivial_max

trivial_min ::=

MTN = arithmetic_value;
trivial_max ::=

MAX = arithmetic_value;
trivia_t

Tv\ﬁ) = arithmetic_value

Syntax 94—Trivial MIN, MAX and TYP statements

By definition, atrivial min, max, or typ statement is associated with a constant arithmetic value.

A trivial min-max statement within a partial arithmetic model (see Syntax 84) shall define the legal range of val-
ues for an arithmetic model. The arithmetic value associated with the trivial min statement represent the smallest
legal number. The arithmetic value associated with the trivial max statement represents the greatest legal number.

A trivial min-max statement within a header arithmetic model (see Syntax 89) shall define the range of validity
of a particular dimension. An application tool can evaluate the header-table-equation statement (see Syntax 88)
outside the range of validity, however, the accuracy of the evaluation outside the range of validity is not guaran-
teed.

A trivial min-max statement shall be subjected to the following parsing rules.

a) Within apartial arithmetic model (see Syntax 84), a set of legal values defined by atable statement (see
Syntax 91) shall take precedence over arange of legal values defined by atrivial min-max statement.

b) Within an arithmetic model (see Syntax 82) that can be interpreted as either a partial arithmetic model
(see Syntax 84) or afull arithmetic model (see Syntax 85), the interpretation of a trivial min-max state-
ment as a min-typ-max statement (see Syntax 94) shall take precedence. As a consequence, the interpre-
tation of an arithmetic model as afull arithmetic model takes precedence.

Semantics 101 defines the interpretation of min, max, typ as a particular arithmetic submodel (see 10.7).

170 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 8

KEYWORD M N = arithnetic_subnodel {
CONTEXT { arithnetic_nodel arithnetic_subnodel }

}
KEYWORD MAX = arithnetic_subnodel {

CONTEXT { arithnetic_nodel arithnetic_subnodel }

}
KEYWORD TYP = arithnetic_subnodel {

CONTEXT { arithnetic_nodel arithnetic_subnodel }
}

Semantics 101—Interpretation of MIN, MAX, TYP as arithmetic submodel

This interpretation shall only apply in the context of a semantic rule, without invalidating a more restrictive syn-
tax rule.

NOTE — The syntax rule for min, max, typ (see Syntax 92, Syntax 93, and Syntax 94, respectively) is a true subset of the
syntax rule for arithmetic submodel (see Syntax 96).

10.6 Auxiliary arithmetic model

An auxiliary arithmetic model shall be defined as shown in Syntax 95.

auxiliary_arithmetic_model ::=
arithmetic_model_identifier = arithmetic_vaue;
| arithmetic_model_identifier [= arithmetic_value]
{ inheritable_arithmetic_model_qualifier { inheritable_arithmetic_model_qualifier } }

Syntax 95—Auxiliary arithmetic model

An arithmetic model (see 10.3) with another arithmetic model as a parent shall be called auxiliary arithmetic
model. A declared keyword (see 7.9) for arithmetic model shall apply as identifier. The parent of the auxiliary
arithmetic model shall be called principal arithmetic model.

The purpose of an auxiliary arithmetic model is to serve as a non-inheritable arithmetic model qualifier (see
Syntax 87) for the principal arithmetic model. The auxiliary arithmetic model can be associated with a constant
arithmetic value and with an inheritable arithmetic model qualifier (see Syntax 87).

NOTE — The syntax for auxiliary arithmetic model is atrue subset of the syntax for arithmetic model.

A constant arithmetic value associated with an auxiliary arithmetic model shall indicate that an applicable
dimension of the principa arithmetic model shall be evaluated under this constant arithmetic value or that the
principal arithmetic model itself is characterized by this constant arithmetic value.

NOTE — The auxiliary arithmetic model is not a dimension of the principal arithmetic model.

10.7 Arithmetic submodel

An arithmetic submodel shall be defined as shown in Syntax 96.

IEEE P1603 Draft 8 Advanced Library Format (ALF) Reference Manual 171

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

arithmetic_submodd ::=
arithmetic_submodel_identifier = arithmetic_value
| arithmetic_submodel_identifier 1 [violation] min-max}
| arithmetic_submodel_identifier 1 header-table-equation [trivial_min-max] }
| arithmetic_submodel_identifier { min-typ-max
| arithmetic_submodel_template _instantiation

Syntax 96—Arithmetic submodel
The purpose of an arithmetic submodel is to serve as arithmetic model body (see Syntax 86), wherein the data
associated with the full arithmetic model (see Syntax 82) is represented as one or more measurement-specific

sets rather than a single set. The arithmetic submodel identifier shall be declared as a keyword (see 7.9) and pro-
vide specific semantics.

10.8 Arithmetic model container
10.8.1 General arithmetic model container

A general arithmetic model container shall be defined as shown in Syntax 97.

arithmetic_model_container ::=
limit_arithmetic_model _container
| early-late_arithmetic_model_container
| arithmetic_model_container_identifier { arithmetic_model { arithmetic_model } }

Syntax 97—General arithmetic model container

The purpose of an arithmetic model container is to provide a context for an arithmetic model. The arithmetic
model container identifier shall be a declared keyword (see 7.9) and provide specific semantics.

10.8.2 Arithmetic model container LIMIT

The arithmetic model container limit shall be defined as shown in Syntax 98.

limit_arithmetic model_container ::=
MIT { limit_arithmetic_model { limit_arithmetic_model } }

limit_arithmetic_model ::=

arithmetic_model_identifier [name_identifier]

{ { arithmetic_model_qudlifier } Iimit_arithmetic_model_body}
limit_arithmetic_model_body ::=

limit_arithmetic_submodel { limit_arithmetic_submodel }

| min-max
limit_arithmetic_submodel ::=

arithmetic_submodel_identifier { [violation] min-max }

Syntax 98—Arithmetic model container LIMIT

The purpose of the arithmetic model container limit is to specify one or more quantifiable design limits. The
design limit shall be represented as a min-max statement (see 10.5) in the context of alimit arithmetic model or a
limit arithmetic submodel.

Any arithmetic model (see 10.3) with a limit as a parent shall be interpreted as a limit arithmetic model. A
declared keyword (see 7.9) for arithmetic model shall apply as identifier. Any arithmetic submodel (see 10.7)

172 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 8

with alimit arithmetic model as a parent shall be interpreted as a limit arithmetic submodel. A declared keyword
(see 7.9) for arithmetic submodel shall apply asidentifier.

NOTE — The syntax for limit arithmetic model is atrue subset of the syntax for arithmetic model. The syntax for limit arith-
metic submodel is a true subset of the syntax for arithmetic submodel.

Semantics 102 defines the interpretation of limit as arithmetic model container.

KEYWORD LIMT = arithnetic_nodel container;

Semantics 102—Arithmetic model container LIMIT

10.8.3 Arithmetic model container EARLY and LATE

The arithmetic model containers early and late shall be defined as shown in Syntax 99.

early-late_arithmetic_model_container ::=
early_arithmetic_model_container
| late_arithmetic_model_container
| early_arithmetic_model_container late_arithmetic_model _container
early arithmetic_model_container ::=
EARLY { early-late_arithmetic_model { early-late_arithmetic_model } }
late arithmetic model_container ::=
LATE { early-late_arithmetic_mode! { early-late_arithmetic_mode } }
early-late_arithmetic_model ::=
DELAY _arithmetic_model
| RETAIN_arithmetic_model
| SLEWRATE_arithmetic_model

Syntax 99—Arithmetic model container EARLY and LATE

The purpose of the arithmetic model containers early and late is to specify an envelope of a timing waveform.
The arithmetic model delay (see 10.11.3), retain (see 10.11.4) or slewrate (see 10.11.5) can be used to specify a
timing waveform. The arithmetic model container early and late shall be associated with the leading and trailing
part of the envelope, respectively. A partial specification of the envelope, i.e., only the leading part or only the
trailing part, is possible.

Semantics 103 defines the interpretation of early and late as arithmetic model container.

KEYWORD EARLY = arithnetic_nodel contai ner
{ CONTEXT = VECTOR, }
KEYWORD LATE = arithnetic_nodel _contai ner
{ CONTEXT = VECTOR, }

Semantics 103—Arithmetic model container EARLY and LATE

The arithmetic model containers early and late shall be children of a declared vector (see 8.14).

10.9 Generally applicable annotations for arithmetic models
10.9.1 UNIT annotation

A unit annotation shall be defined as shown in Semantics 104.

IEEE P1603 Draft 8 Advanced Library Format (ALF) Reference Manual 173

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

KEYWORD UNI T = singl e_val ue_annotati on {
CONTEXT = arithnetic_nodel ;
}

SEMANTICS UNI T {
VALUETYPE = mul tiplier_prefix_value ;
}

Semantics 104—UNIT annotation

The purpose of the unit annotation isto specify amultiplier prefix value (see 6.7) associated with the base unit of
the arithmetic model. The base unit of an arithmetic model shall be specified by the S-model annotation (see
7.11.6).

If the unit annotation is not present, alocally declared arithmetic model shall inherit the unit annotation of a glo-
bally declared arithmetic model of the same ALF type. If the ALF type of the globally declared arithmetic model
isan SI-model annotation value, alocally declared arithmetic model with the same associated SI-model annota-
tion value shall inherit the unit annotation as well.

NOTE — The multiplier prefix value specification given by the unit annotation applies to an arithmetic model declaration.
Therefore it can be locally changed. The S-model annotation applies to the keyword declaration (see 7.9) of an arithmetic
model. Therefore it can not be changed.

Example:

The arithmetic model delay (see 10.11.3) has the SI-model annotation value time. Therefore delay can inherit the
unit annotation value of the arithmetic model time (see 10.11.1).

10.9.2 CALCULATION annotation

A calculation annotation shall be defined as shown in Semantics 105.

KEYWORD CALCULATI ON = singl e_val ue_annotation {
CONTEXT = arithnetic_nodel ;

}

SEMANTI CS CALCULATI ON {
CONTEXT = library_specific_object.arithmetic_nodel ;
VALUES { absolute increnental }
DEFAULT = absolute ;

}

Semantics 105—CALCULATION annotation

The meaning of the annotation values is shown in Table 98.

Table 98—Calculation annotation

Annotation value Description
absol ute The arithmetic model datais complete within itself.
i ncrenent al The arithmetic model data shall be combined with other arithmetic model data.

174 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 8

The following rules for combination of arithmetic model data shall apply.

a) Datashall be combined by adding them together.
b) Datacan only be combined, if the respective arithmetic models have the same type.

¢) Data can only be combined, if a common semantic interpretation of the respective arithmetic models

within their context exists.
A specific application of rule c) is described in section 10.11.3 for the arithmetic model delay.
10.9.3 INTERPOLATION annotation

A interpolation annotation shall be defined as shown in Semantics 106.

KEYWORD | NTERPOLATI ON = si ngl e_val ue_annotation {
CONTEXT = arithnetic_nodel ;
}
SEMANTI CS | NTERPOLATI ON {
CONTEXT = HEADER. arithmetic_nodel ;
VALUES { linear fit ceiling floor }
DEFAULT = fit ;

Semantics 106—INTERPOLATION annotation

The interpolation annotation shall apply for a dimension of a lookup table with a continuous range of values.

Every dimension in alookup table can have its own interpolation annotation.

The meaning of the annotation values is shown in Table 99.

Table 99—Interpolation annotation

Annotation value Evaluation method Handling data out of range
l'i near Linear interpolation Linear extrapolation
ceiling Select the next greater value in the table Select the largest value in the table
f1oor Select the next lesser value in the table Select the smallest value in the table
fit Linear or higher-order interpolation Linear extrapolation

The mathematical operations for floor, ceiling, and linear are specified as follows:

floor y(x) = y(x)
ceiling yo) = y(x)
linear y(x) = KX IO + (X =x) /(x)
X =X
where

IEEE P1603 Draft 8 Advanced Library Format (ALF) Reference Manual

175

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

x denotes the value in a dimension subjected to interpolation.

x" and X" denote two subsequent values in the table associated with that dimension.
X denotes the value to the left of x, such that X < x. If no such value exists, X' denotes the smallest value
inthe table.
x* denotes the value to the right of x, such that x < x*. If no such value exists, x* denotes the largest value
inthe table.

y denotes the evaluation result of the arithmetic model.

The mathematical operation for fit can be chosen by the application, aslong as the following conditions are satis-
fied:

y(X) is acontinuous function of order N>0, i.e., the first N-1 derivatives of y(x) are continuous.
y(X) is bound by y(x) and y(x").
In case of monotony, y(X) is aso bound by two straight linesin the region between x” and x*.
Onelineisconstructed by linear extrapolation based on x™ and its left neighbor.
The other line is constructed by linear extrapolation based on x™ and its right neighbor.
In case of amonotonous derivative, y(x) is also bound by another straight line.
Thislineis constructed by linear interpolation based on x” and x.

These conditions areillustrated in Figure 24.

arbitrary y(x) monotonous Y(X) monotonous dy/dx
X
A AX A \
YOO == YOO — —
|
Y — — - =K, Y —— = =%
| X | X
| | | |
| | | |
» 1 | > 1 1 »
X x* X x*

Figure 24—Bounding regions for y(x) with INTERPOLATION=fit
The application shall use a higher-order interpolation only if it provides a tighter bound than linear interpol ation.
10.9.4 DEFAULT annotation

A default annotation (see 7.11.3) shall be applicable for an arithmetic model, unless the keyword declaration (see
7.9) for the arithmetic model contains already a default annotation.

The purpose of the default annotation is the specification of an evaluation result for a full arithmetic model (see
Syntax 85) or aheader arithmetic model (see Syntax 89) in case the arithmetic model can not be evaluated other-
wise. A default annotation shall not apply for atrivial arithmetic model (see Syntax 83). A default annotation for
apartial arithmetic model (see Syntax 84) shall serve as inheritable arithmetic model qualifier (see Syntax 87),
to be acquired by another full arithmetic model.

176 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 8

A default annotation value associated with a header arithmetic model or with a partial arithmetic model shall be
an arithmetic value (see 6.11) compatible with the arithmetic model’s valuetype (see 7.11.1). A default annota-
tion value associated with a full arithmetic model shall be either an arithmetic value compatible with its value-
type, or, aternatively, an identifier refering to another arithmetic model or to an arithmetic submodel (see 10.7).

The following rules shall apply for the usage of the default annotation value.

a) If the application provides values for al header arithmetic models, no default annotation value shall be
used for the evaluation of afull arithmetic model.

b) If the application provides values for some, but not all header arithmetic models, and the remaining
header arithmetic models have associated default annotations, those default annotation values shall be
used.

c) If application values for al header arithmetic models are missing and the full arithmetic model has an
associated default annotation, this default annotation value shall be used.

d) If application values for all header arithmetic models are missing and the full arithmetic model has no
associated default annotation, but all header arithmetic models have, those default annotation values
shall be used.

In any other case, the evaluation of the full arithmetic model shall fail and result in an application error.
10.9.5 MODEL reference annotation

A model reference annotation shall be defined as shown in Semantics 107.

KEYWORD MODEL = singl e_val ue_annotation {
CONTEXT = arithnetic_nodel ;
}
SEMANTI CS MODEL {
REFERENCETYPE { arithnetic_nodel arithmetic_subnodel }

}

Semantics 107—MODEL reference annotation

The purpose of a model reference annotation is to acquire an inheritable arithmetic model qualifier (see
Syntax 87), an evaluation result (see Syntax 91 and Syntax 90) or both from another arithmetic model. The
model reference annotation value shall be the ALF name of the referenced arithmetic model.

An evaluation result can also be acquired from a referenced arithmetic submodel (see 10.7). In this case, the
model reference annotation value shall be ahierarchical identifier (see 6.13.4) composed of the ALF name of the
parent arithmetic model and the ALF type of the arithmetic submodel.

A calculation graph can be established by using the model reference annotation within aheader arithmetic model
(see Syntax 89). In this case, the evaluation of the arithmetic model containing the header arithmetic model
depends on the evaluation of the referenced model. A circular reference shall not be allowed.

The model reference annotation shall further be legal under the following restrictions:

a) Both the referencing and the referenced arithmetic model have the same ALF type,
or, aternatively:

b) the ALF type of either arithmetic model isan S-model annotation value (see 7.11.6), and both arithmetic
models have the same associated SI-model annotation value.

¢) Thesemantics of any arithmetic model qualifier are compatible with the semantics of any acquired arith-
metic model qualifier.

IEEE P1603 Draft 8 Advanced Library Format (ALF) Reference Manual 177

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

Examples:
Rule a): An arithmetic model of ALF type time (see 10.11.1) can refer to the arithmetic model of ALF typetime.

Rule b): The arithmetic model delay (see 10.11.3) has the SI-model annotation value time. Therefore an arith-
metic model of ALF type delay can refer to an arithmetic model of ALF type time and vice-versa.

Rule ¢): If both arithmetic models have an annotation of the same ALF type (e.g. unit annotation, see 10.9.1), the
annotation values shall be the same.

10.10 VIOLATION statement, MESSAGE TYPE and MESSAGE annotation

A violation statement shall be defined as shown in Syntax 100.

violation ::=
VIOLATION { violation_item { violation_item} }
| violation_template_instantiation
violation_item ::=
MESSAGE_TYPE_single value_annotation
| MESSAGE_single_value_annotation
| behavior

Syntax 100—VIOLATION statement

The purpose of aviolation statement is to specify the consequence of an evaluation of an arithmetic model (see
10.3) that resultsin aviolation of adesign constraint or adesign limit.

A violation statement shall be subjected to the restriction shown in Semantics 108.

SEMANTI CS VI OLATI ON {
CONTEXT {
SETUP HOLD RECOVERY REMOVAL NOCHANGE | LLEGAL
NO SE_ MARG N LIM T..

}
}

Semantics 108—Semantic restriction for VIOLATION statement

The purpose of the restriction is to specify alega anchestor of a violation statement. Only an arithmetic model
that serves the purpose of evaluating a design constraint or a design limit can be alega anchestor of a violation
statement.

A violation statement can contain a message-type annotation, a message annotation, and a behavior statement
(see 9.4). A behavior statement as a child of aviolation statement shall only be legal, if its anchestor is a vector
(see 8.14). Thisruleisformulated in Semantics 109.

SEMANTI CS VI OLATI ON. BEHAVI OR { CONTEXT { VECTOR. . } }

Semantics 109—BEHAVIOR statement within VIOLATION

In asimulation application, the control expression (see 9.12) associated with the vector shall trigger the behavior
as a conseguence of the violation.

178 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 8

Example:

Consider aflipflop with the following functional behavior:

FUNCTI ON {
BEHAVI OR {
@(01l clock) { Q= data; Qpar =! data; }
}
}

The behavior will change if a setup violation is encountered.
VECTOR (?! data -> 01 clock) {
SETUP = 0.1 { FROM{ PIN = data; } TO{ PIN = clock; }
VI OLATI ON {
BEHAVIOR { Q = ‘bX; Qpar = ‘bX; }
}

}

End of example

A message type annotation shall be defined as shown in Semantics 110.

KEYWORD MESSAGE TYPE = singl e_val ue_annotati on {
CONTEXT = VI OLATI ON ;

}

SEMANTI CS MESSAGE_TYPE {
VALUETYPE = identifier ;
VALUES { information warning error }

}

Semantics 110—MESSAGE_TYPE annotation

The purpose of the message type annotation valueisto classify the severity of aviolation.

The meaning of the annotation values is shown in Table 100.

Table 100—MESSAGE_TYPE annotation

Annotation value Description
i nfornation The application tool shall issue an informative message when the violation is encountered.
war ni ng The application tool shall issue awarning message when the violation is encountered.
error The application tool shall issue an error message when the violation is encountered.

A message annotation shall be defined as shown in Semantics 111.

The purpose of the message annotation is to specify verbatim the text of the message issued by the application
tool when aviolation is encountered.

IEEE P1603 Draft 8 Advanced Library Format (ALF) Reference Manual 179

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

KEYWORD MESSAGE = singl e_val ue_annotati on {
CONTEXT = VI OLATI ON ;

}

SEMANTI CS MESSAGE {
VALUETYPE = quoted_string ;

}

Semantics 111—MESSAGE annotation

10.11 Arithmetic models for timing, power and signal integrity
10.11.1 TIME

The arithmetic model time shall be defined as shown in Semantics 112.

KEYWORD TI ME = arithnetic_nodel ;
SEMANTI CS TI ME {
CONTEXT {
LI BRARY SUBLI BRARY CELL W RE VECTOR arithnetic_nodel
VECTOR. ari t hneti c_nodel _cont ai ner
VECTOR. . HEADER LI M T. . HEADER
}
VALUETYPE = nunber ;
SI _MODEL = TI ME ;
}
TIME { UNIT = NanoSeconds ; }

Semantics 112—Arithmetic model TIME

The purpose of the arithmetic model time is to specify atimeinterval in general.

— TIME in context of adeclared library or sublibrary (see 8.2), adeclared cell (see 8.4), or adeclared wire
(see 8.10)

A partial arithmetic model (see Syntax 84) can be used to globally specify an inheritable arithmetic model qual-
ifier (see Syntax 87).

— TIME in context of adeclared vector (see 8.14)
If the control expression associated with the vector is a vector expression (see 9.12), a from-to statement (see
10.12) shall be used as model qualifier. The arithmetic model shall represent a measured time interval between
two single events (see 9.13.1).
Otherwise, if the control expression associated with the vector is a boolean expression (see 9.9), the arithmetic
model shall represent atime interval during which the boolean expression is true. A from-to statement shall not

be used as model qualifier.

As a child of the arithmetic model container limit (see 10.8.2), the arithmetic model shall specify a design limit
for atimeinterval. Otherwise, the arithmetic model shall specify a measured time interval.

— TIME as header arithmetic model (see Syntax 89)

180 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 8

The header arithmetic model time shall represent a dimension of another arithmetic model. The dimension time
shall generally describe a quantity changing over time, which can be visualized by atiming waveform.

If the anchestor of the header arithmetic model is a vector with an associated vector expression, afrom statement
can be used as model qualifier to define atemporal relationship between a single event and the dimension time.

If the anchestor of the header arithmetic model is the arithmetic model container limit, the dimension time shall
describe a dependency between a design limit and the expected lifetime of an electronic circuit, rather than atim-
ing waveform.

NOTE — By definition, the parent of a header arithmetic model is aways a full arithmetic model.

— TIME as auxiliary arithmetic model (see Syntax 95)

The auxiliary arithmetic model time shall be used in conjunction with a measurement annotation (see 10.13.7).
The auxiliary arithmetic model shall specify the timeinterval during which the measurement is taken.

If the anchestor of the auxiliary arithmetic model isavector with an associated vector expression, afrom-to state-
ment can be used to define atemporal relationship between one or two single eventsin the vector expression and
thetimeinterval.

10.11.2 FREQUENCY

The arithmetic model frequency shall be defined as shown in Semantics 113.

KEYWORD FREQUENCY = arithnetic_nodel ;
SEMANTI CS FREQUENCY {
CONTEXT {
LI BRARY SUBLI BRARY CELL W RE VECTOR arithnetic_nodel
VECTOR. arit hmet i c_nodel _cont ai ner
VECTOR. . HEADER LI M T. . HEADER
}
VALUETYPE = nunber ;
SI _MODEL = FREQUENCY ;
}
FREQUENCY { UNIT = G gaHertz; MN = 0; }

Semantics 113—Arithmetic model FREQUENCY

The purpose of the arithmetic model frequency is to specify atemporal frequency, i.e., a frequency measured in
units of 1/time.

NOTE: If someone desires to specify a spatial frequency, i.e., a frequency measured in units of 1/distance, a different key-
word can be declared (see 7.9).

The arithmetic model frequency can be a child or a grandchild of a declared library or sublibrary (see 8.2), a
declared cell (see 8.4), wire (see 8.10) or vector (see 8.14).

— FREQUENCY in context of adeclared vector (see 8.14)

As a descendant of a declared vector with an associated vector expression (see 9.12), the arithmetic model shall
specify a statistical occurence frequency of the vector.

IEEE P1603 Draft 8 Advanced Library Format (ALF) Reference Manual 181

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

As achild of the arithmetic model container limit (see 10.8.2), the arithmetic model shall specify a design limit
for an occurence frequency. Otherwise, the arithmetic model shall specify a measured occurence frequency.

— FREQUENCY as header arithmetic model (see Syntax 89)
The header arithmetic model frequency shall represent a dimension of another arithmetic model.

If the anchestor of the header arithmetic model is a vector with an associated vector expression, the dimension
frequency shall represent the occurrence frequency of the vector.

If the anchestor of the header arithmetic model is not a vector, the frequency dimension shall be represent a spec-
tral dependency of the arithmetic model.

— FREQUENCY as auxiliary arithmetic model (see Syntax 95)
A frequency statement can be a child of an arithmetic model, thus representing an auxiliary arithmetic model.

The auxiliary arithmetic model frequency shall be used in conjunction with a measurement annotation (see
10.13.7). The auxiliary arithmetic model shall specify the repetition frequency of the measurement.

The auxiliary arithmetic models frequency and time (see 10.11.1) can be used interchangably, unless a from or a
to statement is associated with time. The measurement repetition frequency f and the measurement time interval
tcanbeequated by f=1/1.

10.11.3 DELAY

The arithmetic model delay shall be defined as shown in Semantics 114.

KEYWORD DELAY = arithnetic_nodel ;
SEMANTI CS DELAY {
CONTEXT {
LI BRARY SUBLI BRARY CELL W RE
VECTOR VECTOR. EARLY VECTOR. LATE
}
SI _MODEL = TI ME ;
}

Semantics 114—Arithmetic model DELAY

The purpose of the arithmetic model delay is to specify atime interval, implying a causal relationship between
two events. A from-to statement (see 10.12) shall be used as model qualifier.

— DELAY in context of adeclared vector (see 8.14)

As achild or a grandchild of a declared vector with an associated vector expression (see 9.12), the arithmetic
model delay shall specify a measured time interval between two single events (see 9.13.1), which are refered to
as from-event and to-event (see 10.12). It shall be implied that the from-event is the cause of the to-event.

If the model qualifier features only afrom or only ato statement, the arithmetic model delay shall be interpreted
as apartial time interval specification. The calculation annotation (see 10.9.2) shall be used in conjunction with
apartia timeinterval specification. If the annotation value is incremental, the partial time interval shall be added
to another time interval. If the annotation value is absolute, the partial time interval shall be used as a default and
otherwise be substituted by a completely specified timeinterval.

182 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 8

— DELAY in context of adeclared library or sublibrary (see 8.2), a declared cell (see 8.4), or a declared
wire (see 8.10)

Asapartial arithmetic model (see Syntax 84), delay can be used for global specification of amodel qualifier. In
particular, the arithmetic model threshold (see 10.11.13) within a from-to statement can be globally specified.
The global specification of a model qualifier shall be inherited by the arithmetic models delay, retain (see
10.11.4), setup and hold (see 10.11.6), recovery and removal (see 10.11.7) and skew (see 10.11.12) in the context
of avector.

10.11.4 RETAIN

The arithmetic model retain shall be defined as shown in Semantics 115.

KEYWORD RETAIN = arithmetic_nodel
SEMANTI CS RETAI N{
CONTEXT {
VECTOR VECTOR. EARLY VECTOR. LATE

}
SI _MODEL = TIME ;

}

Semantics 115—Arithmetic model RETAIN

The purpose of the arithmetic model retain is to specify atime interval, during which a cause has no observable
effect. A from-to statement (see 10.12) shall be used as model qualifier.

As achild or a grandchild of a declared vector with an associated vector expression (see 9.12), the arithmetic
model retain shall specify a measured time interval between two single events (see 9.13.1), which are refered to
as fromrevent and to-event (see 10.12). It shall be implied that the to-event is the earliest observable effect of the
from-event.

The arithmetic models retain and delay with matching model qualifiers can be jointly used. In this case, retain
shall represent thetime interval between acause (i.e., an input signal) and the earliest effect (i.e., initial change of
an output signal), and delay shall represent the time interval between a cause and the latest effect (i.e., final
change of an output signal). During the timeinterval between initial and final change, the output signal is consid-
ered unstable.

Retain in conjunction with delay isillustrated in Figure 25.

IEEE P1603 Draft 8 Advanced Library Format (ALF) Reference Manual 183

10

15

20

25

30

35

40

45

50

55

5

10

15

20

25

30

35

40

45

50

55

Figure 25—lllustration of RETAIN and DELAY
10.11.5 SLEWRATE

The arithmetic model slewrate statement shall be defined as shown in Semantics 116.

KEYWORD SLEWRATE = arithnetic_nodel ;
SEMANTI CS SLEWRATE {
CONTEXT {
LI BRARY LI BRARY. LI M T SUBLI BRARY SUBLI BRARY.LIM T
CELL CELL.LIMT PINPINLIMT WRE WRE.LIMT
VECTOR VECTOR. EARLY VECTOR. LATE VECTOR. LIMT
VECTOR. . HEADER
}
SI _MODEL = TIME ;

}
SLEWRATE { MN = 0; }

Semantics 116—Arithmetic model SLEWRATE

The purpose of the arithmetic model slewrate is to specify the duration of a transient event, measured between
two reference points. A reference point shall be specified by the arithmetic model threshold (see 10.11.13) within
afrom-to statement (see 10.12). No particular waveform shape shall be implied for the transient event.

— SLEWRATE in context of adeclared vector (see 8.14)
If dewrate is a descendant of a declared vector with an associated vector expression (see 9.12), a pin reference
annotation, possibly in conjunction with an edge number anotation, shall be used (see 10.13.2) to refer to asin-
gleevent (see9.13.1).

— SLEWRATE in context of adeclared pin (see 8.6)

If dlewrate is a child or a grandchild of a declared pin, the arithmetic submodel rise or fall (see 10.21) can be
used as a substitute for areference to asingle event.

— SLEWRATE in context of a declared library or sublibrary (see 8.2), a declared cell (see 8.4), or a
declared wire (see 8.10)

Asapartial arithmetic model (see Syntax 84), slewrate can be used for global specification of amodel qualifier.
In particular, the arithmetic model threshold (see 10.11.13) within afrom-to statement can be globally specified.

The global specification of amodel qualifier shall be inherited by the arithmetic model slewrate in the context of
avector.

— SLEWRATE as header arithmetic model (see Syntax 89)

The header arithmetic model slewrate shall represent a dimension of another arithmetic model. The arithmetic
model shall be in the context of avector. A reference to a single event shall be used as model qualifier.

Slewrate isillustrated in Figure 26.

184 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 8

from.threshold.rise to.threshold.rise

from.threshold.fal to.threshold.fal
_ - —g—p!— — —

sewrate.fall

Figure 26—lllustration of SLEWRATE
10.11.6 SETUP and HOLD

The arithmetic models setup and hold shall be defined as shown in Semantics 117.

KEYWORD SETUP = arithnetic_nodel ;
SEMANTI CS SETUP { CONTEXT = VECTOR ; SI_MODEL = TIME ; }
KEYWORD HOLD = arithnetic_nodel ;
SEMANTI CS HOLD { CONTEXT = VECTOR ; SI_MODEL = TIME ; }

Semantics 117—Arithmetic models SETUP and HOLD

The purpose of the arithmetic models setup and hold isto specify timing constraints between a data signal and a
clock signal. Each arithmetic model shall be a child of a declared vector (see 8.14) with an associated vector
expression (see 9.12). A from-to statement (see 10.12) shall be used as model qualifier.

The arithmetic model setup shall represent the minimal required time interval during which adata signal needs to
be stable before activation of aclock signal. Thistime interva can be positive, zero, or negative. The data signal
shall be refered to within a from statement. The clock signal shall be refered to within ato statement.

The arithmetic model hold shall represent the minimal required time interval during which adata signal needs to
be stable after activation of aclock signal. Thistime interval can be positive, zero, or negative. The clock signal
shall be refered to within a from statement. The data signal shall be refered to within ato statement.

Co-dependent arithmetic model s setup and hold can be described as children of the same vector. A corresponding
timing diagram isillustrated in Figure 27.

IEEE P1603 Draft 8 Advanced Library Format (ALF) Reference Manual 185

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

data signal A

clock signal B |

i
|
from |to |
.
setup | |
from | to
hold)

Figure 27—Illustration of SETUP and HOLD
10.11.7 RECOVERY and REMOVAL

The arithmetic models recovery and removal shall be defined as shown in Semantics 118.

KEYWORD RECOVERY = arithmetic_nodel ;

SEMANTI CS RECOVERY { CONTEXT = VECTOR; SI_MODEL = TI ME; }
KEYWORD REMOVAL = arithnetic_nodel ;

SEMANTI CS REMOVAL { CONTEXT = VECTOR; SI_MODEL = TIME; }

Semantics 118—Arithmetic models RECOVERY and REMOVAL

The purpose of the arithmetic models recovery and removal is to specify timing constraints between a clock sig-
nal and an asynchronous control signal. Each arithmetic model shall be a child of a declared vector (see 8.14)
with an associated vector expression (see 9.12). A from-to statement (see 10.12) shall be used as model qualifier.

The arithmetic model recovery shall represent the minimal required time interval between de-assertion of an
asynchronous control signal and activation of aclock signal. Thistimeinterval can be positive, zero, or negative.
The asynchronous control signal signal shall be refered to within a from statement. The clock signal shall be ref-
ered to within ato statement.

The arithmetic model removal shall represent the minimal required time interval between a suppressed activation
of aclock signal and de-assertion of an asynchronous control signal. Thistime interval can be positive, zero, or
negative. The clock signal shall be refered to within a from statement. The asynchronous control signal signal
shall be refered to within ato statement.

Co-dependent arithmetic models recovery and removal can be described as children of the same vector. A corre-
sponding timing diagram isillustrated in Figure 28.

186 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 8

A
asynchronous or |
control signa
g A |
from—hto
recovery I
| |
| |
clock signal B I
I

from) to
removal

Figure 28—RECOVERY and REMOVAL
10.11.8 NOCHANGE and ILLEGAL

The arithmetic models nochange and illegal shall be defined as shown in Semantics 119.

KEYWORD NOCHANGE = arithmetic_nodel ;

SEMANTI CS NOCHANGE { CONTEXT = VECTOR; SI_MODEL = TI ME; }
NOCHANGE { MN = 0; }

KEYWORD | LLEGAL = arithnetic_nodel ;

SEMANTI CS | LLEGAL { CONTEXT = VECTOR; SI_MODEL = TIME; }
ILLEGAL {| MN = 0; }

Semantics 119—Arithmetic models NOCHANGE and ILLEGAL

The purpose of the arithmetic models nochange and illegal is to specify requirements for the observation or
duration of an event pattern in the context of a declared vector (see 8.14).

If the control expression associated with the vector is a vector expression (see 9.12), a from-event and a to-event
can be specified, using a from-to statement (see 10.12) as model qualifier.

— NOCHANGE in the context of a declared vector

If the control expression associated with the vector is a boolean expression (see 9.9), the arithmetic model
nochange shall specify arequirement for a minimum time interval during which the boolean expression istrue. A
partial arithmetic model nochange shall specify arequirement for the boolean expression to be forever true.

If the control expression associated with the vector is a vector expression (see 9.12), the arithmetic model
nochange shall specify a requirement for a minimum time interval during which the event pattern specified by
the vector expression is observed. If a from-to statement is specified, this requirement shall pertain only to the
event pattern bound by the from-event and the to-event. A partial arithmetic model nochange shall specify a
requirement for the event pattern specified by the vector expression or the event pattern bound by the from-event
and the to-event to be observed without change.

— |ILLEGAL inthe context of adeclared vector

IEEE P1603 Draft 8 Advanced Library Format (ALF) Reference Manual 187

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

If the control expression associated with the vector is a boolean expression (see 9.9), the arithmetic model illegal
shall specify arequirement for a maximum time interval during which the boolean expression is true. A partial
arithmetic model illegal shall specify arequirement for the boolean expression to be never true.

If the control expression associated with the vector is a vector expression (see 9.12), the arithmetic model illegal
shall specify arequirement for a maximum time interval during which the event pattern specified by the vector
expression is observed. If afrom-to statement is specified, this requirement shall pertain only to the event pattern
bound by the from-event and the to-event. A partial arithmetic model illegal shall specify a requirement for the
event pattern specified by the vector expression or the event pattern bound by the from-event and the to-event not
to be observed as specified.

Nochange and illegal in the context of avector expression areillustrated in Figure 29.

A"
|
B |
|
c L |
|
D \ —
I
frorrL |to
- nochange or 1llegal -

Figure 29—Illustration of NOCHANGE and ILLEGAL

A vector expression corresponding to the whole timing diagram (both grey and white parts) is required to trigger
the evaluation of the arithmetic model nochange or illegal.

If arealized sequence of events involving the four signals A, B, C and D matches the beginning and the end of
the timing diagram (underlaid in grey), including the from-and to-events (marked with small arrows), the actual
event sequence in-between the from-and to-events shall be examined.

In the case of nochange, the realized sequence of eventsis required to match the middle of the timing diagram,
and possibly aminimal time interval between from and to is required.

In the case of illegal, the realized sequence of eventsis required not to match the middle of the timing diagram,
or possibly a maximum time interval between fromand to is allowed.

10.11.9 PULSEWIDTH

The arithmetic model pulsewidth shall be defined as shown in Semantics 120.

The purpose of the arithmetic model pulsewidth is to specify the duration of a pulse, measured between two ref-
erence points. A reference point shall be specified by the arithmetic model threshold (see 10.11.13) within a

fromto statement (see 10.12). No particular waveform shape shall be implied for the sequence of transient
events.

188 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 8

KEYWORD PULSEW DTH = arithnetic_nodel ;
SEMANTI CS PULSEW DTH {
CONTEXT {
LI BRARY LI BRARY. LI M T SUBLI BRARY SUBLI BRARY.LIM T
CELL CELL.LIMT PINPINLIMT WRE WRE.LIMT
VECTOR VECTOR. . HEADER
}
SI _MODEL = TI Mg

}
PULSEWDTH { MN = 0; }

Semantics 120—Arithmetic model PULSEWIDTH

For anoise waveform (see 10.11.14), i.e., awaveform that does not reach a constant logic value, pulsewidth shall
be measured between the crossings of 50% magnitude.

— PULSEWIDTH in context of adeclared vector (see 8.14)
If pulsewidth isachild or agrandchild of a declared vector with an associated vector expression (see 9.12), apin
reference annotation, possibly in conjunction with an edge number anotation, shall be used (see 10.13.2) to refer
to asingle event (see 9.13.1), representing the leading edge of the pul se.

— PULSEWIDTH in context of adeclared pin (see 8.6)

If pulsewidth is a child or a grandchild of a declared pin, the arithmetic submodel rise or fall (see 10.21) can be
used as a substitute for areference to a single event.

— PULSEWIDTH in context of a declared library or sublibrary (see 8.2), a declared cell (see 8.4), or a
declared wire (see 8.10)

Asapartial arithmetic model (see Syntax 84), pulsewidth can be used for global specification of a model quali-
fier. In particul ar, the arithmetic model threshold (see 10.11.13) within a from-to statement can be globally spec-
ified. The global specification of a model qualifier shall be inherited by the arithmetic model pulsewidth in the
context of a vector.

— PULSEWIDTH as header arithmetic model (see Syntax 89)

The header arithmetic model pulsewidth shall represent a dimension of another arithmetic model. The arithmetic
model shall be in the context of avector. A reference to asingle event shall be used as model qualifier.

Pulsewidth isillustrated in Figure 30.

IEEE P1603 Draft 8 Advanced Library Format (ALF) Reference Manual 189

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

from.threshold.fall t

to.threshold.fall

} to.threshold.rise

10.11.10 PERIOD

Figure 30—lllustration of PULSEWIDTH

The arithmetic model period shall be defined as shown in Semantics 121.

KEYWORD PERI CD = arithmetic_nodel ;
SEMANTI CS PERI OD {

CONTEXT { VECTOR VECTOR LIM T VECTOR. . HEADER }
S| MODEL

}

= TIME ;

PEROD { MN = 0; }

Semantics 121—Arithmetic model PERIOD

The purpose of the arithmetic model period is to specify a primitive time interval between periodical repetitions

of events.

The arithmetic model period shall be in the context of a declared vector (see 8.14) with an associated vector
expression (see 9.12). The vector expression shall specify an event pattern within the primitive timeinterval (see

Figure 31).

The header arithmetic model (see Syntax 89) period shall represent a dimension of another arithmetic model,
which shall be in the context of avector.

Period isillustrated in Figure 31.

event pattern A’

within primitive |

timeinterval Bl

| | | |
periodical Al | | | |
repetition | | | | |
I I I 1 1
Bl | | I I
period period period period
190 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 8

Figure 31—lllustration of PERIOD
An event pattern involving two signals A and B is repeated periodically.
10.11.11 JITTER

The arithmetic model jitter shall be defined as shown in Semantics 122.

KEYWORD JI TTER = arithmeti c_nodel ;

SEMANTI CS JI TTER {
CONTEXT { VECTOR VECTOR. LIM T VECTOR. . HEADER }
SI_MODEL = TI ME ;

}

JITTER { MN = 0; }

Semantics 122—Arithmetic model JITTER

The purpose of the arithmetic model jitter isto specify the variability of a primitive time interval between period-
ical repetitions of an event pattern. The measurement annotation (see 10.13.7) shall be applicable as model qual-
ifier.

The arithmetic model jitter shall be in the context of a declared vector (see 8.14) with an associated vector
expression (see 9.12). The vector expression shall specify an event pattern within the primitive time interval (see
Figure 32).

A header arithmetic model (see Syntax 89) jitter shall represent a dimension of another arithmetic model, which
shall bein the context of avector.

Jitter isillustrated in Figure 32.

A |
primitive |
event sequence gl

| | | | |
periodical Al | | I |
repetition | |
without jitter ! ' l ' l
B | | | | |
R —>'j i t@_ | —J.meru— |
periodical | | |
repetition

|
:
withjitter Bl |
|

Figure 32—Illustration of JITTER

An event patterninvolving two signals A and B isrepeated periodically. A timing diagram with and without jitter
is shown.

IEEE P1603 Draft 8 Advanced Library Format (ALF) Reference Manual 191

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

10.11.12 SKEW

The arithmetic model skew shall be defined as shown in Semantics 123.

KEYWORD SKEW = arithneti c_nodel ;

SEMANTI CS SKEW {
CONTEXT { VECTOR VECTOR. LIM T VECTOR. . HEADER }
SI_MODEL = TI ME ;

}

SKEW{ MN = 0; }

Semantics 123—Arithmetic model SKEW

The purpose of the arithmetic model skew isto specify a non-negative temporal separation between multiple sig-
nals.

In the context of a declared vector (see 8.14) with an associated vector expression (see 9.12), a pin reference
annotation, possibly in conjunction with a matching edge number anotation, shall be used (see 10.13.5) to refer
to multiple single events (see 9.13.1). The arithmetic model itself shall not specify atemporal order of the events.
The temporal separation between events shall be considered for any order of events alowed by the vector
expression. If the vector expression specifies simultaneously occuring events (see 9.13.3), but the arithmetic
model skew specifies a non-zero temporal separation between these events, the skew shall take precedence, and
the temporal separation shall be considered for an arbitrary permutation of order of occurence.

The header arithmetic model skew shall represent a dimension of another arithmetic model, which shall be in the
context of avector. A reference to multiple single events shall be used as model qualifier.

Skew isillustrated in Figure 33.

A | T T
T |
skew
B | I |
| ‘ skew)
C 1 1 I
or
A | | T
. skew) |
B I | |
| ‘ skew)
C 1 1 I
Restriction by vector expression: A occurs before C, B occurs before C

Figure 33—lllustration of SKEW

The arithmetic model skew involves three signals A, B and C, and the vector expression restricts A and B to
occur before C.

192 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 8

10.11.13 THRESHOLD

The arithmetic model threshold shall be defined as shown in Semantics 124.

KEYWORD THRESHOLD = arithnetic_nodel ;
SEMANTI CS THRESHOLD {

CONTEXT { PIN FROM TO }

VALUETYPE = nunber ;

}
THRESHOLD { MN = 0; MAX = 1; }

Semantics 124—Arithmetic model THRESHOLD

The purpose of the arithmetic model threshold is to specify areference point for a timing measurement.
Threshold shall be a normalized quantity, according to the following mathematical definition:

threshold.rise = (Vt, - Vig) / (V1 - Vo)
threshold.fall = (vt; - Vi) / (vq - V)

where
Vg isthe nominal voltage level for the value logic zero,
vy isthe nominal voltage level for the value logic one,
vt, is a specified voltage level crossed during arising transition,
vt; is a specified voltage level crossed during afalling transition,

subject to the following restrictions:

V0<V1
Vo< Wt <vpandvgp< vt <Vvy.

Threshold isillustrated in Figure 34.

threshold.rise * (vy - Vo) __threshold.fall * (v - Vo)

Vi Vi Vg Vi Vi Vg

Figure 34—THRESHOLD measurement definition
The arithmetic model threshold can contain the arithmetic submodels rise and fall (see 10.21). If atiming-related
arithmetic model refering to a single event (see 9.13.1) in the context of a declared vector (see 8.14) inherits a
definition for threshold, the matching arithmetic submaodel rise or fall shall apply according to the single event.

NOTE — The arithmetic submode! rise or fall is not necessary, if vt, = i;.

Threshold can be specified in the context of a from-to statement (see 10.12) or in the context of a declared pin
(see 8.6). As a child of a from-to statement, threshold shall apply to the parent arithmetic model of the from-to

IEEE P1603 Draft 8 Advanced Library Format (ALF) Reference Manual 193

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

statement. As achild of a declared pin, threshold shall apply to the parent arithmetic model of a from-to state-
ment, if the from-to statement contains a pin reference annotation (see 10.13.2) refering to the declared pin.

NOTE — Threshold in the context of a declared pin does not apply to slewrate (see 10.11.5) or pulsewidth (see 10.11.9),
since afrom-to statement in the context of slewrate or pulsewidth can not contain a pin reference annotation.

10.11.14 NOISE and NOISE_MARGIN

The arithmetic models noise and noise margin shall be defined as shown in Semantics 125.

KEYWORD NO SE = arithnetic_nodel ;
SEMANTI CS NO SE {
CONTEXT {
LI BRARY. LIM T SUBLI BRARY.LIMT CELL.LIMT
PIN PIN.LIMT VECTOR VECTOR LIM T VECTOR. . HEADER

}
VALUETYPE = nunber ;

}

KEYWORD NO SE MARG@ N = arithmetic_nodel ;

SEMANTI CS NO SE_MARA N {
CONTEXT { CLASS LI BRARY SUBLI BRARY CELL PIN VECTOR }
VALUETYPE = nunber ;

}
NO SE MARG N { MN = 0; }

Semantics 125—Arithmetic models NOISE and NOISE_MARGIN

The purpose of the arithmetic model noise is to specify a noise measurement. The purpose of the arithmetic
model noise margin isto specify atolerance against noise.

Noise shall be anormalized quantity, according to the following mathematical definition:

noise.low = (vn - Vig) / (V4 - Vp)
noise.high = (v1 - vn) / (vq - V)

where
Vp isthe nominal voltage level for the value logic zero,
vy isthe nominal voltage level for the value logic one,

vn isameasured voltage level due to noise.

NOTE — Noise on asigna with the logic value zero is positive if vn > v, and negative if vn < v,
Noise on asignal with thelogic value oneis positive if vn < v,, and negative if vn > v;.

Noiseisillustrated in Figure 34.

194 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 8

noise.high* (vq - vp) \

noise.low * (vq - vp)

Vi vn Vg

Vi vn Vo

Figure 35—NOISE measurement definition
A distinction shall be made between a noise margin and adesign limit for noise. A noise margin shall be defined
as avalue for noise that ensures that the logic value of asignal is recognizable. A design limit for noise shall be
defined as avalue of noisethat is tolerable regardless whether the logic value is recognizable or not.

The distinction between a noise margin and a design limit for noiseisillustrated in Figure 36.

limit.noise.high.min * (v4 - vp)

imit.noisehighmax * (vi-vg) ~)~ ~

noise_margin.high * (v; - V) 3

. . —_ - mi i * _
noise_margin.low * (vy - Vo) limit.noise.low.max * (v - Vi)

4 limit.noise.low.min* (v - V) #
Vi Vo Vi Vo

Figure 36—Definition of NOISE MARGIN and LIMIT for NOISE

Per definition, noise can be positive or negative, noise margin shall be positive, a maximum design limit for
noise shall be positive, and a minimum design limit for noise shall be negative.

— NOISE in context of adeclared library or sublibrary (see 8.2) or adeclared cell (see 8.4)

The arithmetic model container limit (see 10.8.2) can be used to specify a design limit for noise. An arithmetic
submodel high, low (see 10.21) can optionally be used.

A child shall inherit the design limit specification from its parent, unless a design limit is specified within the
child. In particular, a sublibrary can inherit from alibrary. A cell can inherit from a sublibrary or from alibrary.
A pin caninherit from acell, asublibrary or alibrary.

— NOISE in context of adeclared pin (see 8.6)

A static noise measurement related to the pin can be described. An arithmetic submodel high, low can optionally
be used.

A design limit for noise can be described in the same way asin the context of alibrary, asublibrary or acell.

IEEE P1603 Draft 8 Advanced Library Format (ALF) Reference Manual 195

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

— NOISE in context of adeclared vector (see 8.14)
A noise measurement in response to a stimulus provided by the vector can be described. A pin reference annota-
tion shall be used. A static noise measurement can be described using a boolean expression (see 9.9) as a stimu-
lus. A transient noise measurement, i.e., either a waveform for noise or a peak value for noise, can be described
using a vector expression (see 9.12) as stimulus.

A design limit for noise related to the stimulus can be specified using the arithmetic model container limit. A pin
reference annotation shall be used.

— NOISE as header arithmetic model (see Syntax 89)
A noise that acts as a stimulus can be described. A pin reference annotation shall be used.
— NOISE MARGIN in context of a declared class (see 7.12)

A static noise margin can be specified. An arithmetic submodel high, low can optionally be used. A declared pin
can inherit this specification by refering to the class.

— NOISE MARGIN in context of a declared library or sublibrary (see 8.2) or a declared cell (see 8.4) or a
declared pin (see 8.6).

A static noise margin can be specified. The arithmetic submodels high or low can optionally be used.

A child shall inherit the noise margin specification from its parent, unless a noise margin is specified within the
child. In particular, a sublibrary can inherit from alibrary. A cell can inherit from a sublibrary or from alibrary.
A pin can inherit from a cell, a sublibrary or alibrary. Inheritance from a class by a pin shall take precedence
over inheritance from a cell, asublibrary or alibrary.

— NOISE MARGIN in the context of adeclared vector (see 8.14)

A noise margin in the context of a stimulus given by the vector can be described. A pin reference annotation (see
10.13.6) shall be used.

A state-dependent noise margin can be described using a boolean expression (see 9.9) as stimulus.

A sensitivity window for a noise margin can be described using a vector expression (see 9.12) as stimulus. The
arithmetic model time (see 10.11.1) shall be used as an auxiliary arithmetic model (see 10.6). A from-to state-
ment (see 10.12) shall be associated with time.

A transient noise margin, i.e., a noise margin that depends on the timing characteristics of the stimulus can be
described using a vector expression as stimulus and a timing-related arithmetic model, e.g. pulsewidth (see
10.11.9) or slewrate (see 10.11.5), as a header arithmetic model (see Syntax 89).

10.11.15 POWER and ENERGY

The arithmetic models power and energy shall be defined as shown in Semantics 126.

The purpose of the arithmetic models power and energy isto specify the electrical power consumption of an elec-
tronic circuit.

— POWER in context of adeclared class (see 7.12)

196 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 8

KEYWORD POAER = arithnetic_nodel ;
SEMANTI CS PONER {
CONTEXT {
LI BRARY SUBLI BRARY CELL VECTOR
CLASS. LIMT CELL.LIMT

}
VALUETYPE = nunber ;

}

POANER { UNIT = M1 1liwatt; }

KEYWORD ENERGY = arithmetic_nodel ;

SEMANTI CS ENERGY {
CONTEXT { LI BRARY SUBLI BRARY CELL VECTOR }
VALUETYPE = nunber;

}
ENERGY { UNIT = PicoJdoul e; }

Semantics 126—Arithmetic models POWER and ENERGY
The arithmetic model container limit (see 10.8.2) can be used to specify a design limit for power consumption
associated with a class with usage annotation value supply-class (see 8.8.16). A measurement annotation (see
10.13.7) shall be used.
— POWER in context of adeclared library or sublibrary (see 8.2)

A partial arithmetic model (see Syntax 84) can be used to globally specify an inheritable arithmetic model qual-
ifier (see Syntax 87) for power.

— POWER in context of adeclared cell (see 8.4)

Power consumption of acell or adesign limit for power consumption of a cell can be described. A measurement
annotation shall be used.

A partial arithmetic model can be used in the same way asin the context of library or sublibrary.
— POWER in context of adeclared vector (see 8.14)

Power consumption related to a stimulus defined by the vector can be described. A measurement annotation
shall be used.

— ENERGY in context of adeclared library or sublibrary (see 8.2) or adeclared cell (see 8.4)

A partial arithmetic model (see Syntax 84) can be used to globally specify an inheritable arithmetic model qual-
ifier (see Syntax 87) for energy.

— ENERGY in context of adeclared vector (see 8.14)
Energy consumption related to a stimulus defined by the vector can be described. Total energy consumption
associated with different stimuli shall be additive, regardless whether the stimuli are mutually exclusive or not.

Also, energy consumption shall be additive with power consumption, if the measurement annotation value static
is associated with the latter.

IEEE P1603 Draft 8 Advanced Library Format (ALF) Reference Manual 197

10

15

20

25

30

35

40

45

50

55

1

10

15

20

25

30

35

40

45

10.12 FROM and TO statements

A from-to statement shall be defined as shown in Syntax 101.

from-to ::=

from .=
FROM { from-to_item { from-to_item} }

t

from | to | from to

0:=
TO { from-to_item { from-to_item} }

from-to_item ::=

PIN_reference_single value_annotation
| EDGE_NUMBER single_value_annotation
| THRESHOLD _arithmetic_model

The purpose of afrom and a to statement is to define the start and end point, respectively, of atiming measure-

Syntax 101—FROM and TO statements

ment. The timing measurement shall be applicable for digital signals.

A from and ato statement can contain a pin reference annotation (see 10.13.2), an edge number annotation (see

10.13.1) and a threshold arithmetic model (see 10.11.13).

A referenceto asingle event (see 9.13.1) is specified by the pin reference annotation in conjunction with the edge
number annotation. The single event referenced within the from and to statement, respectively, shall be called

from-event and to-event, respectively.

The from-and to-statements shall be subjected to the restriction shown in Semantics 127.

SEMANTI CS FROM {
CONTEXT {
TI ME DELAY RETAI N SLEWRATE PULSEW DTH
SETUP HOLD RECOVERY REMOVAL NOCHANGE | LLEGAL SKEW
}
}
SEMANTI CS TO {
CONTEXT {
TI ME DELAY RETAI N SLEWRATE PULSEW DTH
SETUP HOLD RECOVERY REMOVAL NOCHANGE | LLEGAL SKEW

}
}

Semantics 127—Restriction for FROM and TO statements

10.13 Annotations related to timing, power and signal integrity
10.13.1 EDGE_NUMBER annotation
An edge number annotation shall be defined as shown in Semantics 128.

The edge number annotation shall be achild of an arithmetic model (see 10.3) or afrom-to statement (see 10.12).

198 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 8

KEYWORD EDGE_NUMBER = annotation {
CONTEXT { arithnetic_nodel FROM TO }
}
SEMANTI CS EDGE_NUMBER
CONTEXT { VECTOR. . }
VALUETYPE = unsi gned_i nteger ;
DEFAULT = O;

}

Semantics 128—EDGE_NUMBER annotation

The purpose of the edge number annotation isto specify areferenceto asingle event (see 9.13.1) within a vector
expression. The vector expression shall be the name of a declared vector. The reference shall be established by
using the edge number annotation in conjunction with a pin reference annotation (see 8.8.1). The pin reference
annotation shall point to a pin variable (see 9.3) involved in the vector expression. The edge number annotation
shall point to a single event on the pin variable. Every single event on a pin variable shall be counted in chrono-
logical order, starting with O.

10.13.2 PIN reference and EDGE_NUMBER annotation for FROM and TO

A pin reference annotation shall be subjected to the restriction shown in Semantics 129.

SEMANTI CS FROM PI'N = singl e_val ue_annot ati on {
CONTEXT { TI ME DELAY RETAI N SETUP HOLD
RECOVERY REMOVAL NOCHANGCE | LLEGAL }

}

SEMANTI CS TO. PIN = singl e_val ue_annotation {
CONTEXT { TI ME DELAY RETAI N SETUP HOLD
RECOVERY REMOVAL NOCHANCE | LLEGAL }

}

Semantics 129—Restriction for PIN reference annotation within FROM and TO

The purpose of the restriction isto define areference to asingle pin variable in the context of afrom-to statement
(see 10.12).

An edge_number annotation shall be subjected to the restriction shown in Semantics 130.

SEMANTI CS FROM EDGE_NUMBER = si ngl e_val ue_annotation {
CONTEXT { TI ME DELAY RETAIN SETUP HOLD
RECOVERY REMOVAL NOCHANGE | LLEGAL }

}

SEMANTI CS TO. EDGE_NUMBER = si ngl e_val ue_annot ation {
CONTEXT { TI ME DELAY RETAIN SETUP HOLD
RECOVERY REMOVAL NOCHANGE | LLEGAL }

}

Semantics 130—Restriction for EDGE_NUMBER annotation within FROM and TO

The purpose of the restriction is to define a reference to a single event (see 9.13.1) in the context of a from-to
statement.

IEEE P1603 Draft 8 Advanced Library Format (ALF) Reference Manual 199

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

Example:
TIME { FROM { PI N=A; EDGE_NUMBER=1; } TO { PIN=B; EDGE_NUMBER=3; } }

Figure 37 illustrates the restriction using a timing diagram.

pinvariable
A \
|
edge number 0 1 | 2
|
B | '
edge number 0 : 1 2 3J|
L
from > o

Figure 37—Illustration of PIN reference and EDGE NUMBER annotation within FROM and TO
A measurement is taken from edge number 1 at pin variable A to edge number 3 at pin variable B.
10.13.3 PIN reference and EDGE_NUMBER annotation for SLEWRATE

A pin reference annotation and an edge number annotation shall be subjected to the restriction shown in
Semantics 131.

SEMANTI CS SLEWRATE. PI N = singl e_val ue_annotati on ;
SEMANTI CS SLEWRATE. EDGE_NUMBER = si ngl e_val ue_annot ati on ;

Semantics 131—Restriction for PIN reference and EDGE_NUMBER annotation within SLEWRATE

The purpose of the restriction is to define a reference to a single event for which slewrate (see 10.11.5) is mea-
sured.

10.13.4 PIN reference and EDGE_NUMBER annotation for PULSEWIDTH

A pin reference annotation and an edge number annotation shall be subjected to the restriction shown in
Semantics 132.

SEMANTI CS PULSEW DTH. PI N = si ngl e_val ue_annot ati on;
SEMANTI CS PULSEW DTH. EDGE_NUMBER = si ngl e_val ue_annot ati on;

Semantics 132—Restriction for PIN reference and EDGE_NUMBER annotation within PULSEWIDTH
The purpose of the restriction is to define a reference to a single event which is the leading edge of a pulse for

which pulsewidth (see 10.11.9) is measured. The trailing edge shall be the following single event on the same
pin.

200 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 8

10.13.5 PIN reference and EDGE_NUMBER annotation for SKEW

A pin reference annotation and an edge number annotation shall be subjected to the restriction shown in
Semantics 133.

SEMANTI CS SKEWPIN = nul ti _val ue_annotation ;
SEMANTI CS SKEW EDGE_NUMBER = mul ti _val ue_annot ati on ;

Semantics 133—Restriction for PIN reference and EDGE_NUMBER annotation within SKEW

The purpose of the restriction isto define areference to plural events, for which skew (see 10.11.12) is measured.
The number of annotation values within the pin reference and edge number annotation shall match. Subsequent
annotation values shall correspond to each other. i.e., the first annotation value within the pin reference annota-
tion shall correspond to the first annotation value within the edge number annotation, etc.

10.13.6 PIN reference annotation for NOISE and NOISE_MARGIN

A pin reference annotation shall be subjected to the restriction shown in Semantics 134.

SEMANTI CS NO SE. PI N = singl e_val ue_annotation ;
SEMANTI CS NO SE_MARG N. PIN = singl e_val ue_annotation ;

Semantics 134—Restriction for PIN reference annotation within NOISE and NOISE MARGIN

The purpose of the restriction is to define areference to a pin, for which noise or noise margin (see 10.11.14) is
described.

10.13.7 MEASUREMENT annotation

A measurement annotation shall be defined as shown in Semantics 135.

KEYWORD MEASUREMENT = singl e_val ue_annotati on {
CONTEXT = arithnetic_nodel ;
}
SEMANTI CS MEASUREMENT {
CONTEXT { ENERGY PONER CURRENT VOLTAGE JI TTER }
VALUETYPE = identifier ;
VALUES {
transient static average absol ute_average rns peak

}

}

Semantics 135—MEASUREMENT annotation

The purpose of the measurement annotation is to specify the mathematical definition of atemporal measurement.

IEEE P1603 Draft 8 Advanced Library Format (ALF) Reference Manual 201

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

202

The mathematical definition of the annotation valuesis shown in Table 101.

Table 101 —MEASUREMENT annotation

Annotation value Mathematical description
transi ent measurement = x(t)
static measurement = x, with x constant
aver age t=T

1
measurement = T I x(t)at

t=0

absol ut e_aver age

t=T
1
measurement = T .[(1)l
t=0

rns t=T
1 2
measurement = /T- .[X" (t)dt
t=0

peak measurement = max(max(x),-min(x)), with x = x(t)

The arithmetic model time (see 10.11.1) or frequency (see 10.11.2) shall be used as auxiliary arithmetic model
(see 10.6), if the measurement annotation value is average, absolute average, or rms. The auxiliary arithmetic
model time shall be interpreted as the integration time T in Table 101. The auxiliary arithmetic model frequency
shall beinterpreted as the repetition frequency f of the measurement, with f=1/T.

The auxiliary arithmetic model time can be used, if the parent arithmetic model is in the context of a declared
vector (see 8.14) and the measurement annotation value is peak. Either afrom or ato statement (see 10.12) can be
used to specify the time interval between a single event (see 9.13.1) and the occurence of the measurement or
vice-versa

Thisisillustrated in Figure 38.

singl single
event event
peak peak
| I
	I	
from L gy to
fime fim

Figure 38—lllustration of peak measurement with FROM or TO statement

10.14 Arithmetic models for environmental conditions
10.14.1 PROCESS

The arithmetic model process shall be defined as shown in Semantics 136.

KEYWORD PROCESS = arithnetic_nodel ;
SEMANTI CS PROCESS {
CONTEXT {

arithmetic_nodel

}
VALUETYPE = identifier ;

}

CLASS LI BRARY SUBLI BRARY CELL W RE HEADER

PROCESS { DEFAULT = nom TABLE { nomsnsp snwp wnsp wnwp } }

Semantics 136—Arithmetic model PROCESS

The purpose of the arithmetic model processisto specify a dependency between an arithmetic model and a man-
ufacturing process condition. A partial arithmetic model (see Syntax 84), a header arithmetic model (see

Syntax 89), or an auxiliary arithmetic model (see 10.6) can be used.

The meaning of the predefined arithmetic values for processis explained in Table 102.

Table 102—Predefined arithmetic values for PROCESS

Value Description
nom NMOS and PMOS transistors with nominal strength
snsp Strong NMOS transistor, strong PMOS transistor.
snwp Strong NMOS transistor, weak PMOS transistor.
wnsp Weak NMOS transistor, strong PMOS transistor.
wnwp Weak NMOS transistor, weak PMOS transistor.

10.14.2 DERATE_CASE

The arithmetic model derate case shall be defined as shown in Semantics 137.

The purpose of the arithmetic model derate caseis to specify a dependency between an arithmetic model and an
environmental condition. A partial or afull arithmetic model (see Syntax 84 and Syntax 85), a header arithmetic

model (see Syntax 89), or an auxiliary arithmetic model (see 10.6) can be used.

IEEE P1603 Draft 8 Advanced Library Format (ALF) Reference Manual

203

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

KEYWORD DERATE CASE = arithmetic_nodel ;
SEMANTI CS DERATE_CASE {
CONTEXT {
CLASS LI BRARY SUBLI BRARY CELL W RE HEADER
ari thnetic_nodel

}
VALUETYPE = identifier ;

}
DERATE_CASE { DEFAULT = nom

TABLE { nom bccom weccom bcind weind bemi | weni |

}

}

Semantics 137—Arithmetic model DERATE_CASE

The meaning of the predefined arithmetic values for derate case is explained in Table 103.

A full arithmetic model can be used to describe the dependency between the condition and its defining parame-

Table 103—Predefined arithmetic values for DERATE CASE

Derating case Description
nom Nominal environmental condition
bccom Best case commercia condition
bci nd Best caseindustrial condition
bcmi | Best case military condition
weccom Worst case commercia condition
wei nd Worst case industrial condition
wem | Worst case military condition

ters (e.g., process, voltage, temperature).

10.14.3 TEMPERATURE

The arithmetic model temperature shall be defined as shown in Semantics 138.

KEYWORD TEMPERATURE = arithmetic_nodel ;
SEMANTI CS TEMPERATURE {
CONTEXT {
CLASS LI BRARY SUBLI BRARY CELL W RE
LIMT HEADER arithnetic_nodel

}
VALUETYPE = nunber ;

}
TEMPERATURE { UNIT = 1DegreeCel sius; MN = -273;

}

204

Semantics 138—Arithmetic model TEMPERATUREt

Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 8

The purpose of the arithmetic model temperatureisto specify a dependency between an arithmetic model and an
environmental temperature. Temperature shall be measured in degrees Celsius. A partial or a full arithmetic
model (see Syntax 84 and Syntax 85), a header arithmetic model (see Syntax 89), or an auxiliary arithmetic
model (see 10.6) can be used.

10.15 Arithmetic models for electrical circuits
10.15.1 VOLTAGE

The arithmetic model voltage shall be defined as shown in Semantics 139.

KEYWORD VOLTAGE = arithnetic_nodel ;
SEMANTI CS VOLTAGE {
CONTEXT {
CLASS LI BRARY SUBLI BRARY CELL PIN W RE VECTOR HEADER
CLASS.LIMT CELL.LIMT PINLIMT VECTOR LIMT

}
VALUETYPE = nunber

}
VOLTAGE { UNIT = 1Volt; }

Semantics 139—Arithmetic model VOLTAGE

The purpose of the arithmetic model voltage is to specify either ameasurement of electrical voltage or an electri-
cal component that can be model ed as a voltage source.

— VOLTAGE in context of adeclared class (see 7.12)
An environmental voltage can be specified. An arithmetic submodel high, low (see 10.21) can optionally be
used. A pin (see 8.6) can inherit this specification by refering to the class. In particular, a supply class annotation
(see 8.8.16) or a connect class annotation (see 8.8.19) can be used for this purpose.

— VOLTAGE in context of adeclared library or sublibrary (see 8.2)

A partial arithmetic model (see Syntax 84) can be used to globally specify an inheritable arithmetic model qual-
ifier (see Syntax 87) or atrivial min-max statement (see Syntax 94) for voltage.

— VOLTAGE in context of adeclared cell (see 8.4)

A voltage source that is part of the implementation of a cell can be specified. A node reference annotation (see
10.16.1) shall be used.

A design limit for a voltage related to the cell can be specified using the arithmetic model container limit (see
10.8.2). Either a pin reference annotation (see 10.16.3) or amodel reference annotation (see 10.9.5) shall be used.

A partial arithmetic model can be used in the same way as in the context of library or sublibrary.
— VOLTAGE in context of adeclared pin (see 8.6)

An environmental voltage related to apin, e.g., asupply voltage, can be described. An arithmetic submodel high,
low can optionally be used.

IEEE P1603 Draft 8 Advanced Library Format (ALF) Reference Manual 205

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

A design limit for a voltage that can be applied to the pin can be described using the arithmetic model container
limit.

— VOLTAGE in context of adeclared wire (see 8.10)

A voltage source within an electrically equivalent circuit used for interconnect analysis can be specified. A node
reference annotation shall be used.

— VOLTAGE in context of a declared vector (see 8.14)

A voltage measurement in response to a stimulus provided by the vector can be described. Either a pin reference
annotation or amodel reference annotation shall be used.

A design limit for a voltage related to the stimulus can be specified using the arithmetic model container limit
(see 10.8.2). Either a pin reference annotation or a model reference annotation shall be used.

— VOLTAGE as header arithmetic model (see Syntax 89)
A voltage that acts as a stimulus can be described. Either a pin reference annotation or a model reference annota-
tion shall be used. In particular, if awireinstantiation (see 9.15) is present, a reference to a voltage source speci-
fied within the declared wire can be established.
10.15.2 CURRENT

The arithmetic model current shall be defined as shown in Semantics 140.

KEYWORD CURRENT = arithnetic_nodel ;
SEMANTI CS CURRENT {
CONTEXT {
LI BRARY SUBLI BRARY CELL W RE VECTOR HEADER
CELL.LIMT VECTOR LIMT
LAYER LIMT VIALIMT RULE.LIMT

}
VALUETYPE = nunber ;

}
CURRENT { UNIT = MI1i Arpere; }

Semantics 140—Arithmetic model CURRENT

The purpose of the arithmetic model current is to specify either a measurement of electrical current or an electri-
cal component that can be model ed as a current source.

— CURRENT in context of adeclared library or sublibrary (see 8.2)

A partial arithmetic model (see Syntax 84) can be used to globally specify an inheritable arithmetic model qual-
ifier (see Syntax 87) for current.

— CURRENT in context of adeclared cell (see 8.4)

A current source that is part of the implementation of a cell can be specified. A node reference annotation (see
10.16.1) shall be used.

206 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 8

A design limit for a current related to the cell can be specified using the arithmetic model container limit (see
10.8.2). Either a pin reference annotation (see 10.16.3) or amodel reference annotation (see 10.9.5) or a compo-
nent reference annotation (see 10.16.2) shall be used.

A partial arithmetic model can be used in the same way asin the context of library or sublibrary.

— CURRENT in context of adeclared wire (see 8.10)

A current source within an electrically equivalent circuit used for interconnect analysis can be specified. A node
reference annotation shall be used.

— CURRENT in context of a declared layer (see 8.16), a declared via (see 8.18), or a declared rule (see
8.20)

A design limit for current can be specified using the arithmetic model container limit. A measurement annotation
(see 10.13.7) shall be used.

In the context of alayer, the current shall flow through a general layout segment created by that layer. In the con-
text of aviaor in the context of arule, the current shall flow through a particular layout segment in context of
other layout segments described within the via or within the rule. A pattern reference annotation (see 10.20.9)
shall be used.

— CURRENT in context of adeclared vector (see 8.14)

A current measurement in response to a stimulus provided by the vector can be described. Either a pin reference
annotation or amodel reference annotation or a component reference annotation shall be used.

A design limit for a current related to the stimulus can be specified using the arithmetic model container limit .
Either a pin reference annotation or a model reference annotation or a component reference annotation shall be
used.

— CURRENT as header arithmetic model (see Syntax 89)
A current that acts as a stimulus can be described. Either a pin reference annotation or amodel reference annota-
tion or a component reference annotation shall be used. In particular, if awire instantiation (see 9.15) is present,
areference to a current source or to a component specified within the declared wire can be established.

10.15.3 CAPACITANCE

The arithmetic model capacitance shall be defined as shown in Semantics 141.

KEYWORD CAPACI TANCE = arithnetic_nodel ;
SEMANTI CS CAPACI TANCE {
CONTEXT {
LI BRARY SUBLI BRARY CELL CELL.LIMT PINPIN.LIMT
W RE LAYER RULE VECTOR HEADER
}
VALUETYPE = nunber ;
S| _MODEL = CAPACI TANCE ;

}
CAPACI TANCE { UNIT = PicoFarad; MN = 0; }

Semantics 141—Arithmetic model CAPACITANCE

IEEE P1603 Draft 8 Advanced Library Format (ALF) Reference Manual 207

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

The purpose of the arithmetic model capacitance is to describe either a measurement of electrical capacitance or
an electrical component that can be modeled as a capacitor.

— CAPACITANCE in context of adeclared library or sublibrary (see 8.2)

A partial arithmetic model (see Syntax 84) can be used to globally specify an inheritable arithmetic model qual-
ifier (see Syntax 87) for capacitance.

— CAPACITANCE in context of adeclared cell (see 8.4)

A capacitor that is part of the implementation of a cell can be described. A node reference annotation (see
10.16.1) shall be used.

A design limit for a capacitor related to the cell can be specified using the arithmetic model container limit (see
10.8.2). Either a pin reference annotation (see 10.16.3) or amodel reference annotation (see 10.9.5) shall be used.

A partial arithmetic model can be used in the same way asin the context of library or sublibrary.
— CAPACITANCE in context of adeclared pin (see 8.6)

The self-capacitance of a pin can be described as a child of a pin. An arithmetic submodel rise, fall, high, low
(see 10.21) can optionally be used.

A design limit for a capacitance that can be connected to the pin can be specified using the arithmetic model con-
tainer limit as a child of a pin.

— CAPACITANCE in context of adeclared wire (see 8.10)
A capacitance with or without node reference annotation can be described.
A capacitance with node reference annotation shall represent a capacitor within an electrically equivalent circuit
used for interconnect analysis. If the wire is a child of the cell and a permanent connectivity between pins and
nodes of the cell and the nodes of the wire exists, the capacitance shall represent a parasitic capacitor within the
cell. Interconnect analysis shall either use a (lumped) self-capacitance of apin or a (distributed) parasitic capaci-
tor connected to a pin.

A capacitance without node reference annotation shall represent an estimation model for interconnect capaci-
tance.

— CAPACITANCE in context of adeclared layer (see 8.16)

An estimation model for capacitance of a general layout segment can be described. An arithmetic submodel hor-
izontal, vertical, acute, obtuse (see 10.22) can optionally be used.

— CAPACITANCE in context of adeclared rule (see 8.20)
An estimation model for capacitance created by a particular layout pattern can be described.
— CAPACITANCE in context of adeclared vector (see 8.14)
An effective capacitance can be described. Either a pin reference annotation or amodel reference annotation shall

be used. The effective capacitance shall be interpreted as a virtual capacitor, which, under the specific stimulus
provided by the vector, behavesin asimilar way asthe actual |oad circuit.

208 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 8

— CAPACITANCE as header arithmetic model (see Syntax 89)

A capacitance as a dimension of an arithmetic model can be described. Either a pin reference annotation or a
model reference annotation shall be used.

The pin reference annotation shall be used to specify alumped load capacitance. The self-capacitance of the pin
shall not be included in the load capacitance.

The model reference annotation shall be used to refer to another capacitor. In particular, if awire instantiation
(see 9.15) is present, areference to a capacitor described within the declared wire can be established.

10.15.4 RESISTANCE

The arithmetic model resistance shall be defined as shown in Semantics 142.

KEYWORD RESI STANCE = arithmetic_nodel ;
SEMANTI CS RESI STANCE {
CONTEXT {
LI BRARY SUBLI BRARY CELL W RE LAYER RULE
CELL.LIM T VECTOR HEADER
}
VALUETYPE = nunber ;
S| _MODEL = RESI STANCE ;

}
RESI STANCE { UNIT = KiloChm MN = 0; }

Semantics 142—Arithmetic model RESISTANCE

The purpose of the arithmetic model resistance is to describe either a measurement of electrical resistance or an
electrical component that can be modeled as a resistor.

— RESISTANCE in context of adeclared library or sublibrary (see 8.2)

A partial arithmetic model (see Syntax 84) can be used to globally specify an inheritable arithmetic model qual-
ifier (see Syntax 87) for resistance.

— RESISTANCE in context of adeclared cell (see 8.4)

A resistor that is part of the implementation of a cell can be described. A node reference annotation (see 10.16.1)
shall be used.

A design limit for a resistor related to the cell can be specified using the arithmetic model container limit (see
10.8.2). A model reference annotation (see 10.9.5) shall be used.

A partial arithmetic model can be used in the same way asin the context of library or sublibrary.
— RESISTANCE in context of a declared wire (see 8.10)
A resistance with or without node reference annotation can be described.
A resistance with node reference annotation shall represent a resistor within an electrically equivalent circuit

used for interconnect analysis. If the wire is a child of the cell and a permanent connectivity between pins and
nodes of the cell and the nodes of the wire exists, the resistance shall represent a parasitic resistor within the cell.

IEEE P1603 Draft 8 Advanced Library Format (ALF) Reference Manual 209

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

A resistance without node reference annotation shall represent an estimation model for interconnect resistance.
— RESISTANCE in context of adeclared layer (see 8.16)

An estimation model for resistance of a general layout segment can be described. An arithmetic submodel hori-
zontal, vertical, acute, obtuse (see 10.22) can optionally be used.

— RESISTANCE in context of adeclared rule (see 8.20)
An estimation model for resistance created by a particular layout pattern can be described.

— RESISTANCE in context of a declared vector (see 8.14)
A driver resistance can be described. Either a pin reference annotation or a model reference annotation shall be
used. The driver resistance shall be interpreted as part of an electrically equivalent circuit, which, under the spe-
cific stimulus provided by the vector, behavesin a similar way as the actual driver circuit.

— RESISTANCE as header arithmetic model (see Syntax 89)
A resistance as adimension of an arithmetic model can be described. A model reference annotation shall be used.
In particular, if awire instantiation (see 9.15) is present, a reference to a resistor described within the declared
wire can be established.
10.15.5 INDUCTANCE

The arithmetic model inductance shall be defined as shown in Semantics 143.

KEYWORD | NDUCTANCE = arithmetic_nodel ;
SEMANTI CS | NDUCTANCE {
CONTEXT {
LI BRARY SUBLI BRARY CELL W RE LAYER RULE
CELL.LIM T VECTOR HEADER
}
VALUETYPE = nunber ;
S| _MODEL = | NDUCTANCE ;
}
I NDUCTANCE { UNIT = le-6; MN = 0; }

Semantics 143—Arithmetic model INDUCTANCE

The purpose of the arithmetic model inductance is to describe either a measurement of electro-magnetic induc-
tance or an electro-magnetic component that can be modeled as an inductor (i.e., a component with self-induc-
tance) or atransformer (i.e., a component with mutual inductance).

— INDUCTANCE in context of adeclared library or sublibrary (see 8.2)

A partial arithmetic model (see Syntax 84) can be used to globally specify an inheritable arithmetic model qual-
ifier (see Syntax 87) for inductance.

— INDUCTANCE in context of adeclared cell (see 8.4)

An inductor or atransformer that is part of the implementation of a cell can be described. A node reference anno-
tation (see 10.16.1) shall be used.

210 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 8

A design limit for an inductor or for atransformer related to the cell can be specified using the arithmetic model
container limit (see 10.8.2). A pin reference annotation (see 10.16.3) or amodel reference annotation (see 10.9.5)
shall be used.
A partial arithmetic model can be used in the same way asin the context of library or sublibrary.

— INDUCTANCE in context of adeclared wire (see 8.10)
An inductance with or without node reference annotation can be described.
An inductance with node reference annotation shall represent a self-inductance or a mutual inductance within an
electrically equivalent circuit used for interconnect analysis. If the wireisachild of the cell and a permanent con-
nectivity between pins and nodes of the cell and the nodes of the wire exists, the inductance shall represent a par-

asitic self-inductance or mutual inductance within the cell.

An inductance without node reference annotation shall represent an estimation model for interconnect self-
inductance.

— INDUCTANCE in context of adeclared layer (see 8.16)

An estimation model for self-inductance of a general layout segment can be described. An arithmetic submodel
horizontal, vertical, acute, obtuse (see 10.22) can optionally be used.

— INDUCTANCE in context of adeclared rule (see 8.20)
An estimation model for inductance created by a particular layout pattern can be described.

— INDUCTANCE in context of adeclared vector (see 8.14)
An equivalent inductance can be described. A model reference annotation shall be used. The equivalent induc-
tance shall be interpreted as part of an electrically equivalent circuit, which, under the specific stimulus provided
by the vector, behaves in asimilar way as the actual circuit.

— INDUCTANCE as header arithmetic model (see Syntax 89)
An inductance as a dimension of an arithmetic model can be described. A model reference annotation shall be

used. In particular, if awire instantiation (see 9.15) is present, a reference to a self-inductance or to a mutual
inductance described within the declared wire can be established.

10.16 Annotations for electrical circuits
10.16.1 NODE reference annotation for electrical circuits
The node reference annotation (see 8.13.1) shall be subjected to restrictions defined in Semantics 144.

The purpose of a node reference annotation with these restrictions is to specify the connectivity of an electrical
component within an electrical circuit.

The following restrictions shall further apply:

@ Anarithmetic model with a node reference annotation shall always have an ALF name.

IEEE P1603 Draft 8 Advanced Library Format (ALF) Reference Manual 211

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

SEMANTI CS VOLTAGE. NODE = nul ti _val ue_annotation {
CONTEXT { CELL WRE } }

SEMANTI CS CURRENT. NODE = nul ti _val ue_annotation {
CONTEXT { CELL WRE } }

SEMANTI CS CAPACI TANCE. NODE = nul ti_val ue_annot ati on {
CONTEXT { CELL WRE } }

SEMANTI CS RESI STANCE. NODE = nul ti _val ue_annotation {
CONTEXT { CELL WRE } }

SEMANTI CS | NDUCTANCE. NODE = nul ti _val ue_annotation {
CONTEXT { CELL WRE } }

Semantics 144—Restrictions for NODE reference annotation

b) A node annotation associated with the arithmetic model voltage shall have two values, representing the
terminal nodes of a voltage source. The defined polarity of the first and the second terminal shall be pos-
itive and negative, respectively.

¢) A node annotation associated with the arithmetic model current shall have two values, representing the
terminal nodes of a current source. The defined flow of the current shall be from the first to the second
terminal.

d) A node annotation associated with the arithmetic model capacitance shall have two values, representing
the terminal nodes of a capacitor.

€) A node annotation associated with the arithmetic model resistance shall have two values, representing
the terminal nodes of aresistor.

f) A node annotation associated with the arithmetic model inductance shall have either two values or four
values. Two values shall represent the terminal nodes of an inductor. Four values shall represent the ter-
minal nodes of two coupled inductors. Thefirst two values shall represent the terminal s accross which an
induced voltage is observed. The last two values shall represent the terminal s accross which a controlling
current flows.

The electrical components and their terminals are illustrated in Figure 39.

1 1 1 1 1 1 3
Vi, Iy, c __ R % L- ‘ M
2 2 2 2 4

2 2
dv dl di
|1,2=C[’ﬁ'2 Via = RUy, Vl'2=LD-$’2 Vy, = |\/|[;..%1

Figure 39—Electrical components and their terminals

The numbers in Figure 39 indicate the first, second, third and fourth node annotation values. However, the node
annotation values shall be the ALF names of declared nodes.

10.16.2 COMPONENT reference annotation
A component reference annotation shall be defined as shown in Semantics 145.

The purpose of the component reference annotation isto relate the arithmetic model current (see 10.15.2), power
or energy (see 10.11.15) to an electrical component.

212 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 8

KEYWORD COMPONENT = singl e_val ue_annotati on {
CONTEXT = arithnetic_nodel ;
}

SEMANTI CS COVPONENT {
CONTEXT { CURRENT POWER ENERGY }
REFERENCETYPE {
CURRENT VOLTAGE CAPACI TANCE RESI STANCE | NDUCTANCE

}

}

Semantics 145—COMPONENT annotation

Electrical current shall flow through an electrical component with two terminals, i.e., a voltage source, a current
source, acapacitor, aresistor, or an inductor. The defined flow of the current shall be from thefirst terminal to the
second terminal.

Electrical power or energy shall be supplied by avoltage source or by acurrent source, stored in a capacitor or in
an inductor and dissipated in aresistor. A negative value shall mean that a voltage source or a current sourceisa
sink of power or energy rather than a source, that a capacitor or an inductor releases energy or power, or that a
resistor virtually supplies power.

NOTE — A resistor that supplies power is physically impossible. However, certain active electronic circuits, for example a
Negative Impedance Convertor [B10], can be modeled using a “negative” resistor. The electrical energy “supplied” by the
“negative’ resistor is dissipated in other parts of the electronic circuit.

10.16.3 PIN reference annotation for electrical circuits

The pin reference annotation (see 8.8.1) shall be subjected to restrictions defined in Semantics 146.

SEMANTI CS VOLTAGE. PI N = singl e_val ue_annotation {
CONTEXT { VECTOR VECTOR. LIM T VECTOR. . HEADER } }

SEMANTI CS CURRENT. PI N = singl e_val ue_annotation {
CONTEXT { VECTOR VECTOR. LIM T VECTOR. . HEADER } }

SEMANTI CS CAPACI TANCE. PIN = singl e_val ue_annotation {
CONTEXT { VECTOR VECTOR. . HEADER } }

SEMANTI CS RESI STANCE. PI N = si ngl e_val ue_annot ati on {
CONTEXT { VECTOR } }

Semantics 146—PIN reference annotation

The purpose of a pin reference annotation for electrical circuitsis to specify an assocation between an electrical
component with two terminals and a pin variable, i.e., a declared pin, port or node (see 9.3).

a) A pin reference annotation associated with the arithmetic model voltage shall specify a connection
between a pin, port or node and a voltage meter. The terminal with defined positive polarity shall be con-
nected to the pin, port or node. The terminal with defined negative polarity shall be connected to ground.

b) A pin reference annotation associated with the arithmetic model current shall specify a connection
between a pin, port or node and a current meter. The flow of the current shall be defined by the flow
annotation (see 10.16.4).

¢) A pin reference annotation associated with the arithmetic model capacitance shall specify a connection
between a pin, port or node and one terminal of a capacitor. The other terminal of the capacitor shall be
connected to ground. The capacitor shall represent either aload capacitance or an effective capacitance.

IEEE P1603 Draft 8 Advanced Library Format (ALF) Reference Manual 213

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

d) A pin reference annotation associated with the arithmetic model resistance shall specify a connection
between a pin and one terminal of aresistor. The other terminal of the resistor shall be connected to a vir-
tual voltage source. The resistor shall represent adriver resistance.

An electrical component can be associated with an input pin or with an output pin.

A node with nodetype annotation value receiver (see 8.13.2), a pin with direction annotation value input (see
8.8.5), aport, or a node connected to such a pin shall be considered an input pin.

The association between electrical components and an input pin involves amodel of a stimulus and a model of a
receiver circuit, asillustrated in Figure 40.

mode! of stimulus (outside cell) mode! of receiver circuit (inside cell)
;7 RN current meter , BN
| | - |
voltage source —
or ! pin ‘	i	
current source	or] S?If-capaqtance
	pinport	voltage — ofinputpin
	or meter l al	
N Y, node \ Y,

Figure 40—Association between electrical components and an input pin

A node with nodetype annotation value driver (see 8.13.2), a pin with direction annotation value output (see
8.8.5), aport, or anode connected to such a pin shall be considered an output pin.

The association between electrical components and an output pin involves a model of a driver circuit and a
model of aload circuit, asillustrated in Figure 41.

model of driver circuit (inside cell) model of load circuit (outside cell)
;7 N current meter N
| ' =~ '
— .
| - ‘ | load capacitance |
. . 4 pin
| virtual driver resistance | | or . |
| voltage sourc | pin.port voltagq _ effective capacitance |
\] or meter \ B J
~ ~ node ~ -

Figure 41—Association between electrical components and an output pin

NOTE — In order to describe a more complex model for a stimulus, aload circuit, a driver circuit or a receiver circuit, an
electrical component in context of a declared wire can be used, as described in 10.15.

10.16.4 FLOW annotation

A flow annotation shall be defined as shown in Semantics 147.

214 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 8

KEYWORD FLOW = si ngl e_val ue_annot ati on {
CONTEXT = arithnetic_nodel ;
}

SEMANTI CS FLOW {
CONTEXT = CURRENT ;
VALUES { in out }
DEFAULT = in;

}

Semantics 147—FLOW annotation

The purpose of the flow annotation is to specify the defined measurement direction of a current in conjunction
with a pin reference annotation (see 10.16.3).

The meaning of the annotation valuesis shown in Table 104.

Table 104—FLOW annotation

Annotation value Description
in The defined flow of the current isfrom outside the cell to inside the cell.
out The defined flow of the current isfrom inside the cell to outside the cell.

NOTE — The flow annotation is not applicable in conjunction with a node reference annotation (see 10.16.1) or a component
reference annotation (see 10.16.2), since the direction of current measurement is already defined by the order of terminals of
the electrical component.

10.17 Miscellaneous arithmetic models
10.17.1 DRIVE STRENGTH

The arithmetic model drive strength shall be defined as shown in Semantics 148.

KEYWORD DRI VE_STRENGTH = arithmetic_nodel ;

SEMANTI CS DRI VE_STRENGTH {
CONTEXT { CLASS LI BRARY SUBLI BRARY CELL PI N Pl NGROUP }
VALUETYPE = unsi gned_nunber ;

}
DRI VE_STRENGTH { MN = 0; }

Semantics 148—Arithmetic model DRIVE_STRENGTH

The purpose of the arithmetic model drive strength is to specify an abstract, unit-less measure for drivability
associated with a primitive circuit or a compound circuit.

A cell (see 8.4) shall be considered either a primitive circuit or a compound circuit, depending on its celltype

annotation (see 8.5.2). In case of aprimitive circuit, drive strength can be achild of acell. In case of acompound
circuit, drive strength can be a child of a pin (see 8.6) or a pingroup (see 8.7).

IEEE P1603 Draft 8 Advanced Library Format (ALF) Reference Manual 215

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

A cell with celltype annotation value buffer, combinational, multiplexor, flipflop, or latch shall be considered a
primitive circuit. A cell with celltype annotation value memory, block, or core shall be considered a compound
circuit.

A partial arithmetic model (see Syntax 84) in the context of aclass (see 7.12), alibrary or asublibrary (see 8.2)
can be used to globally specify a set of discrete values or arange of values for drive strength, using atable state-
ment (see Syntax 91) or atrivial min-max statement (see Syntax 94), respectively.

10.17.2 SWITCHING_BITS with PIN reference annotation

The arithmetic model switching bits shall be defined as shown in Semantics 149.

KEYWORD SW TCHI NG BI TS = arithnetic_nodel ;

SEMANTI CS SW TCHI NG _BI TS {
CONTEXT { VECTOR POVWER. HEADER VECTOR. ENERGY. HEADER }
VALUETYPE = unsi gned_i nt eger ;

}
SEMANTI CS SW TCHI NG BI TS. PIN = si ngl e_val ue_annot ati on;

Semantics 149—Arithmetic model SWITCHING_BITS

The purpose of the arithmetic model switching bitsisto specify the number of binary value changes during asin-
gle event (see 9.13.1) on a vectorized pin (see 8.6) or apingroup (see 8.7) .

Drive strength can be used as header arithmetic model (see Syntax 89) for calculation of power or energy (see
10.11.15) in context of a vector (see 8.14).

The pin reference annotation (see 8.8.1) shall be used.

10.18 Arithmetic models related to structural implementation
10.18.1 CONNECTIVITY

The arithmetic model connectivity shall be defined as shown in Semantics 150.

KEYWORD CONNECTI VI TY = arithmetic_nodel ;

SEMANTI CS CONNECTI VI TY {
CONTEXT { LI BRARY SUBLI BRARY CELL RULE ANTENNA HEADER }
VALUES { 1 0 ? }

}

Semantics 150—Arithmetic model CONNECTIVITY

The purpose of the arithmetic model connectivity is to specify an actual connection or a requirement for a con-
nection between physical objects. Either a table statement (see Syntax 91) or a between annotation (see 10.20.2)
shall be used to establish arelation between physical objects and the arithmetic model connectivity. The interpre-
tation of connectivity as a requirement for a connection shall be specified by the connect-rule annotation (see
10.20.1).

216 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 8

The arithmetic model connectivity shall evaluate to a bit literal (see 6.8). The interpretation of the bit literal is
specified in Table 105.

Table 105—Interpretation of bit literals for CONNECTIVITY

Bit literal Inter pretation as actual connection Inter pretation as requirement for a connection
1 Connection exists. Requirement istrue.
0 Connection does not exist. Requirement isfalse.
? Connection is not specified. Requirement is not specified.

NOTE — The hit literal “?" is defined as a non-assignabl e boolean value (see 9.10.3) and can therefore only be used, if the
connectivity ismodeled as atable (see Syntax 91).

10.18.2 DRIVER and RECEIVER

The arithmetic models driver and receiver shall be defined as shown in Semantics 151.

KEYWORD DRI VER = arithnetic_nodel ;
SEMANTI CS DRI VER {
CONTEXT = CONNECTI VI TY. HEADER;
REFERENCETYPE = CLASS ;
}
KEYWORD RECEI VER = arithmetic_nodel ;
SEMANTI CS RECEI VER {
CONTEXT = CONNECTI VI TY. HEADER;
REFERENCETYPE = CLASS ;

}

Semantics 151—Arithmetic models DRIVER and RECEIVER

The purpose of the header arithmetic model (see Syntax 89) driver or receiver is to specify a dependency
between connectivity (see 10.18.1) and a declared class (see 7.12) with usage annotation value connect-class (see
7.13.2 and 8.8.19).

The header arithmetic model driver or receiver shall contain a table statement (see Syntax 91). The parent arith-
metic model connectivity shall contain either a one-dimensional 1ookup table involving either dimension driver
or receiver, or dternatively atwo-dimensional 1ookup table involving both dimensions driver and receiver.

A declared pin (see 8.6) shall be subjected to a connection with another pin, if a connect-class annotation exists
for both pins, and the respective connect-class annotation values are found in a table statement within the header
arithmetic model driver or receiver.

The association of apin with the dimension driver or receiver shall depend on the direction annotation value (see
8.8.5). A pin with direction annotation value input shall be associated with the dimension receiver. A pin with
direction annotation value output shall be associated with the dimension driver. A pin with direction annotation
value both shall be associated with both dimensions driver and receiver.

Example:

IEEE P1603 Draft 8 Advanced Library Format (ALF) Reference Manual 217

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

CLASS Normal { USAGE = CONNECT_CLASS; }
CLASS Speci al { USAGE = CONNECT_CLASS; }
CONNECTI VI TY Exanpl el {
HEADER { DRI VER { Nornal Special } }
TABLE { 0 1}

}
CONNECTI VI TY Exanpl e2 {
HEADER {
DRI VER { Normal Special } }
RECEI VER { Special Normal } }
}
TABLE { 0110}
}

Examplel specifies the following:

A connection between an output pin and another output pin associated with Normal is false.
A connection between an output pin and another output pin associated with Special istrue.

Example2 specified the following:
A connection between an output pin associated with Normal and an input pin associated with Special isfalse.
A connection between an output pin associated with Special and an input pin associated with Special is true.
A connection between an output pin associated with Normal and an input pin associated with Normal is true.
A connection between an output pin associated with Special and an input pin associated with Normal isfalse.

10.18.3 FANOUT, FANIN and CONNECTIONS

The arithmetic model fanout shall be defined as shown in Semantics 152.

KEYWORD FANOQUT = arithnetic_nodel ;
SEMANTI CS FANQUT {
CONTEXT {
PIN.LIMT W RE. SI ZE. HEADER W RE. CAPACI TANCE. HEADER
W RE. RESI STANCE. HEADER W RE. | NDUCTANCE. HEADER

}
VALUETYPE = unsi gned_i nt eger ;

}

Semantics 152—Arithmetic model FANOUT

The purpose of the arithmetic model fanout is to specify the total number of input pins connected to a net.
The arithmetic model fanin shall be defined as shown in Semantics 153.

The purpose of the arithmetic model fanin is to specify the total number of output pins connected to a net.
The arithmetic model connections shall be defined as shown in Semantics 154.

The purpose of the arithmetic model connections is to specify the total number of pins connected to a net. The
arithmetic value for connections shall equal the sum of arithmetic values for fanout and fanin.

The accounting of apin shall depend on its direction annotation value (see 8.8.5).

218 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 8

KEYWORD FANIN = arithnetic_nodel ;
SEMANTI CS FANI N {
CONTEXT {
PIN.LIM W RE. SI ZE. HEADER W RE. CAPACI TANCE. HEADER
W RE. RESI STANCE. HEADER W RE. | NDUCTANCE. HEADER

}
VALUETYPE = unsi gned_i nt eger ;

}

Semantics 153—Arithmetic model FANIN

KEYWORD CONNECTI ONS = arithnetic_nodel ;
SEMANTI CS CONNECTI ONS {
CONTEXT {
PIN.LIMT W RE. SI ZE. HEADER W RE. CAPACI TANCE. HEADER
W RE. RESI STANCE. HEADER W RE. | NDUCTANCE. HEADER

}
VALUETYPE = unsi gned_i nt eger ;

}

Semantics 154—Arithmetic model CONNECTIONS
A pin with direction annotation value input shall count for fanout and for connections. A pin with direction anno-
tation value output shall count for fanin and for connections. A pin with direction value both shall count for fanin
and for fanout and twice for connections. A pin without direction annotation or with direction annotation value
none shall not count.

— FANOUT, FANIN, or CONNECTIONS as limit arithmetic model (see 10.8.2) in the context of a pin (see
8.6)

A design limit for the number of pins or nodes connected to anet can be described. The declared pin wherein the
design limit is described shall count, according to its direction annotation value.

— FANOUT, FANIN, or CONNECTIONS as header arithmetic model (see Syntax 89) in the context of a
wire (see 8.10)

The arithmetic value of size (see 10.19.1), capacitance (see 10.15.3), resistance (see 10.15.4), or inductance (see
10.15.5) can be calculated.

10.19 Arithmetic models related to layout implementation
10.19.1 SIZE
The arithmetic model size shall be defined as shown in Semantics 155.

The purpose of the arithmetic model size is to define an abstract, unit-less measure for the space occupied by a
physical object or the magnitude of a physical effect.

— SIZE as arithmetic model in the context of acell (see 8.4) or awire (see 8.10)

Size shall represent a measure for the space occupied by a placed cell or by arouted wire. The space occupied by
adesign or asubdesign shall be calculated as the sum of the space occupied by each cell instance and each routed

IEEE P1603 Draft 8 Advanced Library Format (ALF) Reference Manual 219

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

KEYWORD S| ZE = arithnetic_nodel ;
SEMANTI CS Sl ZE {
CONTEXT {
CELL ANTENNA ANTENNA. LIM T PIN W RE
W RE. CAPACI TANCE. HEADER
W RE. RESI STANCE. HEADER
W RE. | NDUCTANCE. HEADER

}
VALUETYPE = nunber ;

}
SIZE{ MN=0; }

Semantics 155—Arithmetic model SIZE

wire. The space allocated for a design or a subdesign can be greater or equal to the space occupied by the design
or subdesign.

— SIZE as header arithmetic model (see Syntax 89) in context of awire (see 8.10)
The arithmetic value of capacitance (see 10.15.3), resistance (see 10.15.4), or inductance (see 10.15.5) in the
context of awire can be calculated. The dimension size shall represent a measure for space allocated for adesign
or subdesign wherein the wire is routed.

— SIZE as arithmetic model in the context of an antenna (see 8.21)
Size shall represent a measure for the magnitude of the antenna effect. A design limit for the magnitude of the
antenna effect can be given using the arithmetic model container limit (see 10.8.2). The calculated size shall be
compared against the design limit for size given in the context of the same antenna.

— SIZE as arithmetic model in the context of a pin (see 8.6)
Size shall represent a measure for the additive magnitude of an antenna (see 8.21), when the layout created by
the connection between a pin and a routed wire is subjected to an antenna effect. An antenna reference annota-
tion (see 10.20.7) and atarget annotation (see 10.20.8) shall be used.
10.19.2 AREA

The arithmetic model area shall be defined as shown in Semantics 156.

KEYWORD AREA = arithmetic_nodel ;
SEMANTI CS AREA {
CONTEXT {
CELL WRE W RE. . HEADER LAYER. . HEADER
RULE. . HEADER ANTENNA. . HEADER
}
VALUETYPE = unsi gned_nunber ;
S| _MODEL = AREA ;
}
AREA { UNIT = le-12; MN = 0; }

Semantics 156—Arithmetic model AREA

220 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 8

The purpose of the arithmetic model area is to define a physical area, according to the International System of
Measurements and Units [reference needed)].

— AREA as arithmetic model in the context of a cell (see 8.4) or awire (see 8.10)

Areashall represent the physical area occupied by aplaced cell or arouted wire, respectively. The area shall take
into account the required space between neighboring objects.

The physical area occupied by a design or a subdesign shall be calculated as the sum of the physical area occu-
pied by each cell instance and each routed wire. The physical area allocated for a design or a subdesign can be
greater or equal to the physical area occupied by the design or subdesign.

— AREA as header arithmetic model (see Syntax 89) in context of awire (see 8.10)
The arithmetic value of capacitance (see 10.15.3), resistance (see 10.15.4), or inductance (see 10.15.5) can be
calculated. The dimension area shall represent the physical area allocated for a design or subdesign wherein the
wire is routed.

— AREA asheader arithmetic model (see Syntax 89) in context of alayer (see 8.16)
The arithmetic value of capacitance (see 10.15.3) or resistance (see 10.15.4) can be calculated. A design limit
for current (see 10.15.2) can be calculated. The dimension area shall represent the physical area occupied by a
layout segment residing on the layer.

— AREA as header arithmetic model (see Syntax 89) in context of arule (see 8.20)
The arithmetic value of capacitance (see 10.15.3), resistance (see 10.15.4), or inductance (see 10.15.5) can be
calculated. A design limit for current (see 10.15.2), distance (see 10.19.9), overhang (see 10.19.10), width (see
10.19.7), length (see 10.19.8), or extension (see 10.19.4) can be calculated. The dimension area shall represent
the physical area occupied by a pattern or by aregion. A pattern reference annotation (see 10.20.9) or aregion
reference annotation (see 8.32.1) shall be used.

— AREA as header arithmetic model (see Syntax 89) in context of an antenna (see 8.21)
The arithmetic value of size (see 10.19.1) in the context of an antenna can be calculated. The dimension area
shall represent the physical area occupied by alayout segment residing on a layer (see 8.16). A layer reference
annotation (see 8.17.1) shall be used.
10.19.3 PERIMETER

The arithmetic model perimeter shall be defined as shown in Semantics 157.

KEYWORD PERI METER = arithnetic_nodel ;
SEMANTI CS PERI METER {
CONTEXT {
CELL WRE W RE. . HEADER LAYER. . HEADER
RULE. . HEADER ANTENNA. . HEADER
}
S| _MODEL = DI STANCE ;
}

Semantics 157—Arithmetic model PERIMETER

IEEE P1603 Draft 8 Advanced Library Format (ALF) Reference Manual 221

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

The purpose of the arithmetic model perimeter is to define the distance (see) measured when surrounding the
boundaries of aphysical object.

— PERIMETER as arithmetic model in the context of a cell (see 8.4) or awire (see 8.10)

Perimeter shall represent the perimeter surrounding a placed cell or a routed wire. The perimeter shall take into
account the required space between neighboring objects.

— PERIMETER as header arithmetic model (see Syntax 89) in context of awire (see 8.10)
The arithmetic value of capacitance (see 10.15.3), resistance (see 10.15.4), or inductance (see 10.15.5) can be
calculated. The dimension perimeter shall represent the perimeter surrounding a space allocated for a design or
subdesign wherein the wire is routed.

— PERIMETER as header arithmetic model (see Syntax 89) in context of alayer (see 8.16)
The arithmetic value of capacitance (see 10.15.3) or resistance (see 10.15.4) can be calculated. A design limit
for current (see 10.15.2) can be calculated. The dimension perimeter shall represent the perimeter surrounding a
layout segment residing on the layer.

— PERIMETER as header arithmetic model (see Syntax 89) in context of arule (see 8.20)
The arithmetic value of capacitance (see 10.15.3), resistance (see 10.15.4), or inductance (see 10.15.5) can be
calculated. A design limit for current (see 10.15.2), distance (see 10.19.9), overhang (see 10.19.10), width (see
10.19.7), length (see 10.19.8), or extension (see 10.19.4) can be calculated. The dimension perimeter shall repre-
sent the perimeter surrounding a pattern or by aregion. A pattern reference annotation (see 10.20.9) or aregion
reference annotation (see 8.32.1) shall be used.

— PERIMETER as header arithmetic model (see Syntax 89) in context of an antenna (see 8.21)
The arithmetic value of size (see 10.19.1) in the context of an antenna can be calculated. The dimension perime-
ter shall represent the perimeter surrounding alayout segment residing on alayer (see 8.16). A layer reference
annotation (see 8.17.1) shall be used.
10.19.4 EXTENSION

The arithmetic model extension shall be defined as shown in Semantics 158.

KEYWORD EXTENSI ON = arithneti c_nodel ;

SEMANTI CS EXTENSI ON {
CONTEXT { LAYER PATTERN RULE. LIM T RULE. . HEADER }
S| _MODEL = DI STANCE ;

}

Semantics 158—Arithmetic model EXTENSION

The purpose of the arithmetic model extension is to specify the size of a polygon created by expanding a point
within a geometric model (see Table 94). In the case of two allowed routing directions in an interval of 90
degrees, the expansion shall result in arectangle. In the case of four allowed routing directions in intervals of 45
degrees, the expansion shall result in a hexagon.

Thisisillustrated in Figure 42.

222 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 8

extension extension
.horizontal .horizontal
- -
. extension
. | . .obtuse
extension extension
vertical | vertica

|
| extension
| .acute

Figure 42—Illustration of EXTENSION

The arithmetic submodels horizontal, vertical, acute and obtuse (see 10.22) can be used to specify anisotropic
expansion.

— EXTENSION as arithmetic model in the context of alayer (see 8.16)

Extension shall represent the expansion of an endpoint of a routing segment residing on a layer (see 8.16) with
layertype annotation value routing (see 8.17.2).

— EXTENSION as arithmetic model in the context of a pattern (see 8.29)

Extension shall represent the expansion of a pattern (see 8.29) with an associated shape annotation or with an
associated geometric model (see 9.16). Each reference point shall be subject to expansion.

— EXTENSION aslimit arithmetic model (see 10.8.2) in the context of arule (see 8.20)

Extension shall represent a design limit for expansion of a pattern. Each reference point shall be subject to
expansion. A pattern reference annotation (see 10.20.9) shall be used.

— EXTENSION as header arithmetic model (see Syntax 89) in context of arule (see 8.20)

The arithmetic value of capacitance (see 10.15.3), resistance (see 10.15.4), or inductance (see 10.15.5) can be
calculated. A design limit for current (see 10.15.2), distance (see 10.19.9), overhang (see 10.19.10), width (see
10.19.7), length (see 10.19.8), or extension (see 10.19.4) can be calculated. The dimension extension shall repre-
sent the expansion of a pattern with shape annotation value tee, cross, corner or end (see 8.30.2). A pattern ref-
erence annotation (see 10.20.9) or a model reference annotation (see 10.9.5) shall be used. The model reference
annotation shall refer to an arithmetic model extension as a child of a pattern or to an arithmetic submodel as a
child of extension and a grandchild of pattern.

10.19.5 THICKNESS
The arithmetic model thickness shall be defined as shown in Semantics 159.

The purpose of the arithmetic model thicknessisto specify the distance between the bottom and the top of a man-
ufactured layer (see 8.16).

Thickness as header arithmetic model (see Syntax 89) can be used to calculate an arithmetic value of capaci-
tance (see 10.15.3), resistance (see 10.15.4), or inductance (see 10.15.5) in the context of arule (see 8.20).

IEEE P1603 Draft 8 Advanced Library Format (ALF) Reference Manual 223

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

KEYWORD THI CKNESS = arithneti c_nodel ;
SEMANTI CS EXTENSI ON {

CONTEXT { LAYER RULE..HEADER }

S| _MODEL = DI STANCE ;

}

Semantics 159—Arithmetic model THICKNESS
10.19.6 HEIGHT

The arithmetic model height shall be defined as shown in Semantics 160.

KEYWORD HEI GHT = arithnetic_nodel ;

SEMANTI CS HEI GHT {
CONTEXT { CELL SITE REG ON LAYER W RE. . HEADER }
S| _MODEL = DI STANCE ;

}

Semantics 160—Arithmetic model HEIGHT

The purpose of the arithmetic model height isto specify avertical distance, i.e., a distance measured in 'y direc-
tion or in zdirection.

— HEIGHT as arithmetic model in the context of alayer (see 8.16)

Height shall represent a distance in z direction measured between the manufacturing substrate and the bottom of
amanufactured layer.

— HEIGHT as arithmetic model in the context of acell (see 8.4), site (see 8.25) or region (see 8.31)

Height shall represent a distance in y direction measured between the bottom and the top of a rectangular cell ,
sSite, pattern or region.

— HEIGHT as header arithmetic model (see Syntax 89) in context of awire (see 8.10)

Height shall represent the distance iny direction measured between the bottom and the top of an allocated rectan-
gular space for adesign or a subdesign wherein the wireis routed.

10.19.7 WIDTH

The arithmetic model width shall be defined as shown in Semantics 161.

KEYWORD W DTH = arithnetic_nodel ;
SEMANTI CS W DTH {
CONTEXT {
CELL SI TE REA ON LAYER LAYER. LIMT
PATTERN RULE. LIM T RULE. . HEADER
}
SI _MODEL = DI STANCE ;

}

Semantics 161—Arithmetic model WIDTH

224 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 8

The purpose of the arithmetic model width isto specify a distance within an x-y plane.
— WIDTH as arithmetic model in the context of acell (see 8.4), site (see 8.25) or region (see 8.31)

Width shall represent a distance in x direction measured between the left and the right border of a rectangular
cell, site or region.

— WIDTH as header arithmetic model (see Syntax 89) in context of awire (see 8.10)

Width shall represent the distance in x direction measured between the left and the right border of an allocated
rectangular space for adesign or a subdesign wherein the wire is routed.

— WIDTH as arithmetic model or limit arithmetic model (see 10.8.2) in the context of alayer (see 8.16)

Width shall represent a distance or adesign limit for a distance between the borders of arouting segment residing
on alayer with layertype annotation value routing (see 8.17.2). Width shall be measured orthogonal to the rout-
ing direction, i.e., iny (i.e., 90 degree) direction if the routing isin x (i.e., 0 degree) direction and vice-versa, in
135 degree direction if the routing isin 45 degree direction and vice versa.

— WIDTH as arithmetic model in the context of a pattern (see 8.29)

Width shall represent the distance between the borders of a pattern (see 8.29) with an associated shape annota-
tion value line or jog (see 8.30.2) or with an associated geometric model of type polyline or ring (see 9.16).
Width shall be measured orthogonal to the lines of the shape. A line shall be expanded by half the arithmetic
value of width to each side of theline.

— WIDTH aslimit arithmetic model (see 10.8.2) in the context of arule (see 8.20)
Width shall represent a design limit for the distance between the borders of a pattern with an associated shape

annotation value line or jog or with an associated a geometric model of type polyline or ring. A pattern reference
annotation (see 10.20.9) shall be used.

— WIDTH as header arithmetic model (see Syntax 89) in the context of arule (see 8.20)

The arithmetic value of capacitance (see 10.15.3), resistance (see 10.15.4), or inductance (see 10.15.5) can be
calculated. A design limit for current (see 10.15.2), distance (see 10.19.9), overhang (see 10.19.10), width (see
10.19.7), length (see 10.19.8), or extension (see 10.19.4) can be calculated. The dimension width shall represent
the distance between the borders of a pattern with shape annotation value line or end (see 8.30.2). A pattern ref-
erence annotation (see 10.20.9) or a model reference annotation (see 10.9.5) shall be used. The model reference
annotation shall refer to an arithmetic model extension as a child of a pattern or to an arithmetic submodel as a
child of extension and a grandchild of pattern.

10.19.8 LENGTH

The arithmetic model length shall be defined as shown in Semantics 162.

— LENGTH as arithmetic model or limit arithmetic model (see 10.8.2) in the context of alayer (see 8.16)
Length shall represent a distance or a design limit for a distance between the end points of a routing segment
residing on alayer with layertype annotation value routing (see 8.17.2). Length shall be measured parallel to the
routing direction.

— LENGTH as arithmetic model in the context of a pattern (see 8.29)

IEEE P1603 Draft 8 Advanced Library Format (ALF) Reference Manual 225

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

KEYWORD LENGTH = arithnetic_nodel ;
SEMANTI CS LENGTH {
CONTEXT {
LAYER LAYER LIM T PATTERN RULE. LIM T RULE. . HEADER
}

SI _MODEL = DI STANCE ;
}

Semantics 162—Arithmetic model LENGTH

Length shall represent the distance between the end points of a pattern (see) with an associated shape annotation
valuelineor jog (see).

— LENGTH aslimit arithmetic model (see 10.8.2) in the context of arule (see 8.20)

Length shall represent a design limit for the distance between the end points of a pattern with an associated
shape annotation value line or jog. A pattern reference annotation (see) shall be used.

— LENGTH as header arithmetic model (see Syntax 89) in the context of arule (see 8.20)

The arithmetic value of capacitance (see 10.15.3), resistance (see 10.15.4), or inductance (see 10.15.5) can be
calculated. A design limit for current (see 10.15.2), distance (see 10.19.9), overhang (see 10.19.10), width (see
10.19.7), or extension (see 10.19.4) can be calculated. The dimension length shall represent the distance between
the end points of a pattern with shape annotation value line or end (see 8.30.2). A pattern reference annotation
(see 10.20.9), amodel reference annotation (see 10.9.5) or a between annotation (see 10.20.4) shall be used. The
model reference annotation shall refer to an arithmetic model extension as a child of a pattern or to an arithmetic
submodel as a child of extension and a grandchild of pattern. A between annotation shall refer to two patterns
representing two parallel routing segments

10.19.9 DISTANCE

The arithmetic model distance shall be defined as shown in Semantics 163.

KEYWORD DI STANCE = arithnetic_nodel ;
SEMANTI CS DI STANCE {
CONTEXT { RULE RULE. LIM T RULE. . HEADER }
VALUETYPE = nunber ;
S| _MODEL = DI STANCE ;

}
DI STANCE { UNIT = 10e-6; MN = 0; }

Semantics 163—Arithmetic model DISTANCE

The purpose of the arithmetic model distance is to define a space in-between two objects, according to the Inter-
national System of Units [see U.S. National Bureau of Standards, Spec. Pub. 330, International System of Units
(19712)].

— DISTANCE as arithmetic model or as limit arithmetic model (see 10.8.2) in the context of arule (see
8.20)

Distance shall represent a measured distance or adesign limit for a distance between two patterns in the context
of therule. A between annotation (see 10.20.4) shall be used.

226 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 8

The arithmetic submodels horizontal, vertical, acute and obtuse (see 10.22) can be used.
— DISTANCE as header arithmetic model (see Syntax 89) in the context of arule (see 8.20)

The arithmetic value of capacitance (see 10.15.3), resistance (see 10.15.4), or inductance (see 10.15.5) can be
calculated. A design limit for current (see 10.15.2), length (see 10.19.8), overhang (see 10.19.10), width (see
10.19.7), or extension (see 10.19.4) can be calculated. The dimension distance shall represent the measured dis-
tance between two patterns. A between reference annotation (see 10.20.4) or model reference annotation (see
10.9.5) shall be used. The model reference annotation shall refer to an arithmetic model distance as a child of a
rule or to alimit arithmetic model distance as a grandchild of arule.

10.19.10 OVERHANG

The arithmetic model overhang shall be defined as shown in Semantics 164.

KEYWORD OVERHANG = arithnetic_nodel ;
SEMANTI CS OVERHANG {
CONTEXT { RULE RULE. LIM T RULE. . HEADER }
S| _MODEL = DI STANCE ;

}

Semantics 164—Arithmetic model OVERHANG

The purpose of the arithmetic model overhang is to define an overlapping space between two objects.

Overhang can be used as arithmetic model or as limit arithmetic model (see 10.8.2) or as header arithmetic
model (see Syntax 89) in the context of a rule (see 8.20), with similar semantic restrictions as distance (see
10.19.9).

Overhang can be interpreted as the distance between the nearest parallel edges in the region of overlap between
two objects.

NOTE: The use of the arithmetic model distance instead of overhang would imply that there is no overlap.

Thisisillustrated in Figure 43.

distance
| —P|

Figure 43—lllustration of DISTANCE versus OVERHANG

IEEE P1603 Draft 8 Advanced Library Format (ALF) Reference Manual 227

10

15

20

25

30

35

40

45

50

55

1

10

15

20

25

30

35

40

45

50

55

10.19.11 DENSITY

The arithmetic model density shall be defined as shown in Semantics 165.

KEYWORD DENSI TY = arithnetic_nodel ;
SEMANTI CS DENSI TY {
CONTEXT { LAYER LIMT RULE RULE.LIMT }
VALUETYPE = nunber ;

}
DENSITY { MN = 0; MAX = 1; }

Semantics 165—Arithmetic model DENSITY

The purpose of the arithmetic model density is to specify a design limit or a calculation model for metal density.
Metal density shall be defined as the area occupied by all metal segmentsresiding on alayer (see 8.16) with lay-
ertype annotation value routing (see 8.17.2), divided by an allocated area wherein the metal segments are found.
— DENSITY aslimit arithmetic model (see 10.8.2) in the context of alayer (see 8.16)
A constant design limit for metal density can be specified.
— DENSITY as arithmetic model or aslimit arithmetic model (see 10.8.2) in the context of arule (see 8.20)
A design limit or a calculation model for metal density can be specified. A region reference annotation (see
8.32.1) can be used to relate the design limit or the calculation model for metal density to a region (see 8.31)

declared in the context of the same rule. A model reference annotation (see 10.9.5) can be used to relate a design
limit to arelated calculation model.

10.20 Annotations related to arithmetic models for layout implementation
10.20.1 CONNECT_RULE annotation

A connect-rule annotation shall be defined as shown in Semantics 166.

KEYWORD CONNECT_RULE = si ngl e_val ue_annot ati on {
CONTEXT = arithnetic_nodel ;

}

SEMANTI CS CONNECT_RULE {
CONTEXT = CONNECTIVITY ;
VALUES { must_short can_short cannot_short }

}

Semantics 166—CONNECT_RULE annotation

The purpose of the connect-rule annotation is to specify that the arithmetic model connectivity (see 10.18.1) isto
be interpreted as a requirement for connection rather than an actual connection.

228 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 8

The meaning of the annotation valuesis shown in Table 106.

Table 106—CONNECT_RULE annotation

Annotation value Description
nmust _short Electrical connection required.
can_short Electrical connection allowed.
cannot _short Electrical connection disallowed.

Implications between requirements for a connection are shown in Table 107.

Table 107—Implications between CONNECT_RULE specifications

specified rule must_short can_short cannot_short
implied rule 1 0 ? 1 0 ? 1 0 ?
must_short 1 0 2 ? 0 ? 0 ? ?
can_ short 1 ? ? 1 0 ? 0 1 ?
cannot_short 0 ? ? 0 1 ? 1 0 2

A set of requirements for a connection that can be infered by implication according to Table 107 is redundant. A
set of requirements contradicting Table 107 shall be a conflict. The application shall be responsible for handling
redundant requirements and conflicts.

10.20.2 BETWEEN annotation

A between annotation shall be defined as shown in Semantics 167.

KEYWORD BETWEEN = rul ti _val ue_annot ati on {
CONTEXT = arithnetic_nodel ;
}
SEMANTI CS BETWEEN {
CONTEXT { DI STANCE LENGTH OVERHANG CONNECTI VI TY }

}

Semantics 167—BETWEEN annotation

The purpose of the between annotation is to specify a reference to multiple objects related to an arithmetic model
distance (see 10.19.9), length (see 10.19.8), overhang (see 10.19.10), or connectivity (see 10.18.1).

10.20.3 BETWEEN annotation for CONNECTIVITY

A between annotation shall be subjected to the restriction shown in Semantics 168.

IEEE P1603 Draft 8 Advanced Library Format (ALF) Reference Manual 229

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

SEMANTI CS ANTENNA. CONNECTI VI TY. BETVEEEN {
REFERENCETYPE = LAYER,

}

SEMANTI CS HEADER. CONNECTI VI TY. BETVEEEN {
REFERENCETYPE { PATTERN REG ON LAYER }

}

SEMANTI CS LI BRARY. CONNECTI VI TY. BETVEEEN {
REFERENCETYPE = CLASS ;

}

SEMANTI CS SUBLI BRARY. CONNECTI VI TY. BETVEEN {
REFERENCETYPE = CLASS ;

}

SEMANTI CS CELL. CONNECTI VI TY. BETVEEN {
REFERENCETYPE { PI N CLASS }

}

Semantics 168—BETWEEN annotation for CONNECTIVITY

The purpose of the restriction is to allow only areference to objects which are semantically valid in the context
of connectivity (see 10.18.1).

10.20.4 BETWEEN annotation for DISTANCE, LENGTH, OVERHANG

A between annotation shall be subjected to the restriction shown in Semantics 169.

SEMANTI CS DI STANCE. BETWEEN {
REFERENCETYPE { PATTERN REG ON }

}

SEMANTI CS LENGTH. BETVEEEN {
REFERENCETYPE { PATTERN REG ON }

}

SEMANTI CS OVERHANG. BETWEEN {
REFERENCETYPE { PATTERN REG ON }

}

Semantics 169—BETWEEN annotation for DISTANCE, LENGTH, OVERHANG

The purpose of the restriction is to alow only areference to objects which are semantically valid in the context
of distance (see 10.19.9), length (see 10.19.8), or overhang (see 10.19.10).

Furthermore, the number of annotation values, i.e., the number of referenced objects for distance, length, over-
hang shall be restricted to exactly two objects.

A distance between two objects can be generally defined. An overhang or a length involving two objects can be
defined only between the nearest parallel edges of two objects.

In the case of two objects with nearest parallel edges, distance prescribes an empty space between the objects.
Overhang prescribes an overlapping space between the objects. Length is defined as the distance between the end
points of the intersection formed by projecting the parallel edges onto each other.

Thisisillustrated in Figure 44.

230 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 8

distance

‘) length

length

Figure 44—llllustration of DISTANCE versus OVERHANG versus LENGTH
10.20.5 MEASURE annotation

A measure annotation shall be defined as shown in Semantics 170.

KEYWORD MEASURE = si ngl e_val ue_annotati on {
CONTEXT = arithnetic_nodel ;
}
SEMANTI CS MEASURE {
CONTEXT { DI STANCE LENGTH OVERHANG }
VALUETYPE = identifier ;
VALUES { euclidean horizontal vertical manhattan }
DEFAULT = euclidean ;

Semantics 170—DISTANCE_MEASUREMENT annotation

The mathematical description of the annotation values is specified in Table 108.

Table 108—Annotation values for MEASURE

Annotation value Mathematical description
eucl i dean
[2 2
measure = Xty
manhat t an
measure = Xty
hori zont al
measure = X
verti cal
measure = y

Distance can be measured between two points, between a point and a line, or between two paralel lines. The
shape annotation (see 8.30.2) specifies whether a pattern is represented by a point or by aline.

The specification of x and y for the mathematical definition of the measure annotation values is illustrated in
Figure 45.

IEEE P1603 Draft 8 Advanced Library Format (ALF) Reference Manual 231

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

point
-
7
Yoo s
¢ _
point |
T

Figure 45—Illustration of MEASURE
Figure 45 shows the distance between two points, between a point and aline, and between two paralle lines.
10.20.6 REFERENCE annotation container

A reference annotation container shall be defined as shown in Semantics 171.

KEYWORD REFERENCE = annot ati on_cont ai ner {
CONTEXT = arithnetic_nodel ;

}

SEMANTI CS REFERENCE {
CONTEXT { DI STANCE LENGTH OVERHANG }
REFERENCETYPE { PATTERN REQ ON }

}

SEMANTI CS REFERENCE. i dentifier = single_value_annotation {
VALUETYPE = identifier ;
VALUES { center origin near_edge far_edge }
DEFAULT = origin ;

}

Semantics 171—REFERENCE annotation container

The purpose of the reference annotation container is to specify the reference points for a measurement of dis-
tance (see 10.19.9).

An annotation within the reference annotation container shall associate a pattern (see 8.29) or aregion (see 8.31)
with areference point specified by an annotation value.

The meaning of the annotation valuesis specified in Table 109.

Table 109—Annotation values for REFERENCE

Annotation value Description
origin The reference point isthe origin of a pattern or aregion.
center Thereference point is the center of a pattern or aregion

232 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 8

Table 109—Annotation values for REFERENCE (Continued)

Annotation value Description

near _edge Thereference point is the edge of a pattern or aregion
which is nearest to a parallel edge of another pattern or
another region.

far_edge The reference point is the edge of a pattern or aregion
which isfarest from a parallel edge of another pattern or
another region.

The following restrictions shall further apply:

a) Theannotation value origin can only apply in the following cases:

1) A shape annotation is associated with the pattern, and the annotation value is tee, cross, corner or
end. The reference point of the shape shall be considered the origin.

2) A geometric model (see 9.16) is associated with the pattern or region. A geometric transformation
(see 9.18) can describe the location of the origin. If no geometric transformation is given, the loca-
tion of the origin shall be the point x=0, y=0.

b) Theannotation value center, near edge or far edge can only apply in the following cases:

1) A shape annotation is associated with the pattern, and the annotation value is line or jog. The
straight line connecting the end points shall be considered as center. The border of the line given by
width (see 10.19.7) shall be considered either as near edge or as far edge.

2) A predefined geometric model rectangle (see 9.16) is associated with the pattern or region. The
point of gravity of the rectangle shall be considered as center.

3) A predefined geometric model line (see 9.16) is associated with the pattern or region. The straight
line connecting the end points shall be considered as center.

The meaning of the reference annotation values is further illustrated in Figure 46.

far edge

S -
SR i IR I !

bject2
center I A Y o)

far edge V V V

Figure 46—lllustration of REFERENCE for DISTANCE

Figure 46 shows euclidean distance between all possible reference points of objectl and object2.

IEEE P1603 Draft 8 Advanced Library Format (ALF) Reference Manual 233

10

15

20

25

30

35

40

45

50

55

1

10

15

20

25

30

35

40

45

50

55

10.20.7 ANTENNA reference annotation

An antenna reference annotation shall be defined as shown in Semantics 172.

KEYWORD ANTENNA = annotation {
CONTEXT = arithnetic_nodel ;
}

SEMANTI CS ANTENNA {
CONTEXT { PIN. SI ZE PI N. AREA PI N. PERI METER }
REFERENCETYPE = ANTENNA;

}

Semantics 172—ANTENNA reference annotation

An antenna reference annotation shall be used to relate a calculated size (see 10.19.1) or area (see 10.19.2) or
perimeter (see 10.19.3) in the context of the pin with a calculation rule for size in the context of an antenna (see
8.21). A reference to multiple antennas can be made using a multi-value annotation.

10.20.8 TARGET annotation

An target annotation shall be defined as shown in Semantics 173.

KEYWORD TARGET = annotation {
CONTEXT = arithnetic_nodel ;

}

SEMANTI CS TARGET {
VALUETYPE = identifier ;
CONTEXT = PI N. SI ZE;
REFERENCETYPE = PI N. PATTERN,

}

Semantics 173—TARGET annotation

The target annotation shall be associated with the arithmetic model size (see 10.19.1) in the context of apin (see
8.6).

The purpose of the target annotation is to specify a pattern (see 8.29) in the context of the same pin which isthe
victim of an antenna effect (see 8.21). The referenced pattern shall have alayer reference annotation (see 8.17.1)
and atrivial or afull arithmetic model (see Syntax 83 and Syntax 85) for area (see 10.19.2) or perimeter (see
10.19.3).

An antenna reference annotation (see 10.20.7) shall also be associated with the arithmetic model size. The ref-
ered antenna (see 8.21) shall also contain an arithmetic model size, used asacalculation rule. The sizein the con-
text of the pin shall be considered additive to the size formulated by the calculation rule. The arithmetic value for
area or perimeter in the referenced pattern shall further be used as evaluation results for the dimension area or
perimeter within the calculation rule.

10.20.9 PATTERN reference annotation

A pattern reference annotation shall be defined as shown in Semantics 174.

234 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 8

KEYWORD PATTERN = singl e_val ue_annotation {
CONTEXT = arithnetic_nodel ;
}
SEMANTI CS PATTERN {
CONTEXT {
LENGTH W DTH HEI GHT S| ZE AREA THI CKNESS
PERI METER EXTENSI ON
}
REFERENCETYPE = PATTERN ;
}

Semantics 174—PATTERN annotation

The purpose of the pattern reference annotation isto relate an arithmetic model or aheader arithmetic model (see
Syntax 89) to a declared pattern (see 8.29).

10.21 Arithmetic submodels for timing and electrical data

The arithmetic submodels shown in Table 110 shall be applicable in the context of electrical modeling.

Table 110—Overview of arithmetic submodels for timing and electrical data

Keyword Description
H GH Applicable for electrical data measured at alogic hi gh state of apin.
Low Applicable for electrical data measured at alogic | ow state of apin.
Rl SE Applicable for electrical data measured during alogic | owto hi gh transition of apin.
FALL Applicable for electrical data measured during alogic hi gh tol owtransition of apin.

The arithmetic submodels high and low shall be defined as shown in Semantics 175.

KEYWORD HI GH = arithnetic_subnodel ;
SEMANTI CS HI GH { CONTEXT {
CLASS. VOLTAGE CLASS. LIM T. VOLTAGE
PI N. VOLTAGE PIN. LI M T. VOLTAGE PI N. CAPACI TANCE
PI N. NO SE PIN. NO SE_ MARG N PI N. LI M T. NO SE
LI BRARY. NO SE_MARG N LI BRARY. LI M T. NO SE
P}
KEYWORD LOW = arithnetic_subnodel ;
SEMANTI CS LOW { CONTEXT {
CLASS. VOLTAGE CLASS. LIM T. VOLTAGE
PI N. VOLTAGE PIN. LI M T. VOLTAGE PI N. CAPACI TANCE
PI N. NO SE PI N. NO SE_ MARG N PI N. LI M T. NO SE
LI BRARY. NO SE_MARG N LI BRARY. LI M T. NO SE

b}

Semantics 175—Arithmetic submodels HIGH and LOW

IEEE P1603 Draft 8 Advanced Library Format (ALF) Reference Manual 235

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

The arithmetic submodelsrise and fall shall be defined as shown in Semantics 176.

KEYWORD RI SE = arithnetic_subnodel ;

SEMANTI CS RI SE { CONTEXT {
FROM THRESHOLD TO. THRESHOLD PI N. THRESHOLD
Pl N. CAPACI TANCE PI N. SLEWRATE PI N. LI M T. SLEWRATE
PI N. PULSEW DTH PI N. LI M T. PULSEW DTH

P}

KEYWORD FALL = arithnetic_subnodel ;

SEMANTI CS FALL { CONTEXT {
FROM THRESHOLD TO. THRESHOLD PI N. THRESHOLD
PI N. CAPACI TANCE PI N. SLEWRATE PI N. LI M T. SLEWRATE
PI N. PULSEW DTH PI N. LI M T. PULSEW DTH

b}

Semantics 176—Arithmetic submodels RISE and FALL

10.22 Arithmetic submodels for physical data

The arithmetic submodels shown in Table 111 shall be applicable in the context of physical modeling.

Table 111—Overview of arithmetic submodels for physical data

Keyword Description
HORI ZONTAL Applicable for layout measurementsin O degree, i.e., horizontal direction.
VERTI CAL Applicable for layout measurementsin 90 degree, i.e., vertical direction.
ACUTE Applicable for layout measurements in 45 degree direction.
OBTUSE Applicable for layout measurements in 135 degree direction.

The arithmetic submodels horizontal , vertical, acute and obtuse shall be defined as shown in Semantics 177.

236 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 8

KEYWORD HORI ZONTAL = arithnetic_subnodel ;
SEMANTI CS HORI ZONTAL { CONTEXT {

W DTH LENGTH EXTENSI ON DI STANCE OVERHANG
P}
KEYWORD VERTI CAL = arithnmetic_subnodel ;
SEMANTI CS VERTI CAL { CONTEXT {

W DTH LENGTH EXTENSI ON DI STANCE OVERHANG
P}
KEYWORD ACUTE = arithnetic_subnodel ;
SEMANTI CS ACUTE { CONTEXT {

W DTH LENGTH EXTENSI ON DI STANCE OVERHANG
P}
KEYWORD OBTUSE = arithneti c_subnodel ;
SEMANTI CS OBTUSE { CONTEXT {

W DTH LENGTH EXTENSI ON DI STANCE OVERHANG

b}

Semantics 177—Arithmetic submodels HORIZONTAL, VERTICAL, ACUTE and OBTUSE

IEEE P1603 Draft 8

Advanced Library Format (ALF) Reference Manual

237

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

238

Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 8

Annex A

(informative)

Syntax rule summary

This summary replicates the syntax detailed in the preceding clauses. If there is any conflict, in detail or com-
pleteness, the syntax presented in the clauses shall considered as the normative definition.

ALF_statement ::= /I See Syntax 1 on page 13
ALF type[[index] ALF_name[index]][= ALF_value] ALF_statement_termination
ALF_type::=
identifier
|@
|:
ALF _name:.=
identifier
| control_expression
ALF value::=
number
| multiplier_prefix_symbol
| identifier
| quoted_string
| bit_literal
| based_literal
| edge value
| arithmetic_expression
| boolean_expression
| control_expression
ALF_statement_termination ::=

|"{{ALF_vaIue|Z|;}}
[{{ ALF_statement } }
character ::= /I See Syntax 2 on page 25
whitespace
| letter
| digit
| special
whitespace ::=
space | horizontal _tab | new_line | vertical_tab | form_feed | carriage return
letter ::=
uppercase | lowercase
uppercase ::=
AIBICIDIEIFIGIH|I'|JIK|L|M
INJOIPIQIRISITIUIVIWI[X]Y |Z
lowercase ::= o
albicidielfigrhlifjikiliminijo|piqgirisitiujviw|x|y|z
digit ::=
0121213141516 718]9
specia =
ENINI=1+ -1 1% 121015 L1 1@1=1V] IS |#
ICI)I< 1>l 11}

IEEE P1603 Draft 8 Advanced Library Format (ALF) Reference Manual 239

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

comment ::=

in_line_comment
| block_comment

in_line_comment ::=

[I{ character} new_line

/I See Syntax 3 on page 27

| / /{ character} carriage_return
block_comment ::=

[*{character}* /

delimiter ::=

(DI,

operator ::=

arithmetic_operator
| boolean_operator
| relational_operator
| shift_operator
| event_operator
| meta_operator

arithmetic_operator ::=

-1 11% %

boolean_operator ::=
&& [[[1~& [~[IM M~ T & |
relational_operator ::=

=|l=|>=|<=|>|<

shift_operator ::=

<<|>>

event_operator ::=
S>> <> &> <& >
meta_operator ::=

number

integer :

=1?1@

/I See Syntax 4 on page 27

/I See Syntax 5 on page 28

/I See Syntax 6 on page 31

signed_integer | signed_real | unsigned_integer | unsigned_real
signed_number ::=
signed_integer | signed_real
unsigned_number ::=
unsigned_integer | unsigned_real

signed_integer | unsigned_integer
signed_integer ::=

sign unsigned_integer

unsigned_integer ::=

digit {[_] digit}

real ::=

signed real |unsigned rea
signed red ::=

sign unsigned_real
unsigned_rea ::=

mantisse [exponent]

| unsigned_integer exponent
sign =

+ -
240

Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 8

mantisse

. unsigned_integer
| unsigned_integer . [unsigned integer]

exponent ::=

E [sign] unsigned_integer
| €[sign] unsigned_integer

index_value ::=

index ::=

unsigned_integer | atomic_identifier

single_index | multi_index

single_index ::=

[index_value]

multi_index ::=

[index_value : index_value |

multiplier_prefix_symbol ::=

unity ::=

K=

P:=

F:=

unity { letter} |K { letter} |M EG{ letter } | G{ letter }
[M { letter} |U { letter } | N { letter } | P{ letter } | F { letter}

1

K|k
M |m
Ele
Glg
Ulu
N|n
Pip
FIf

multiplier_prefix_value ::=

unsigned_number | multiplier_prefix_symbol

bit_litera ::=

alphanumeric_bit_literal
| symbolic_bit_literal

alphanumeric_bit_literal

numeric_bit_literal
| alphabetic_bit_literal

numeric_bit_literal ::=

01

aphabetic_bit_literal ::=

X|Z|L|H|U|W
IX]z[l1h|ujw

symbolic_bit_literal ::=

IEEE P1603 Draft 8

/I See Syntax 7 on page 31

/I See Syntax 8 on page 32

/I See Syntax 9 on page 32

/I See Syntax 10 on page 33

/I See Syntax 11 on page 33

Advanced Library Format (ALF) Reference Manual

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

?0*
based literal ::= /I See Syntax 12 on page 34
binary_based literal | octal_based literal | decimal_based literal | hexadecimal_based literal
binary_based literal ::=
binary_base bit_literal { [_] bit_litera }
binary base::=
'‘B|'b
octal_based literal ::=
octal_baseoctal_digit{ [_] octa_digit }
octal_base ::=
'‘Ol'o
octal_digit ::=
bit_literal |2]|3|4|5|6|7
decimal_based _litera ::=
decimal_basedigit{ [_] digit}
decimal_base ::=
'D|'d
hexadecimal_based literal ::=
hexadecimal _base hexadecimal_digit { [_] hexadecimal_digit }
hexadecimal_base ::=

'H|'h
hexadecimal_digit ::=
octal_digit|81]9
IAIBICIDIE|F
lalblc|d]e|f
boolean value::= /I See Syntax 13 on page 34
alphanumeric_bit_literal | based_literal | integer
arithmetic_value ::= /I See Syntax 14 on page 35
number | identifier | bit_literal | based_literal
edge literal ::= /I See Syntax 15 on page 35
bit_edge literal
| based_edge literal
| symbolic_edge literal
bit edge literal ::=
bit_literal bit_literal
based edge literal ::=

based_literal based literal
symbolic_edge literal ::=

P~ ?-

edge value::= /I See Syntax 16 on page 35
(edge literal)

identifier ::= /I See Syntax 17 on page 35

atomic_identifier | indexed_identifier | hierarchical _identifier | escaped_identifier
atomic_identifier ::=

non_escaped_identifier | placeholder_identifier
hierarchical_identifier ::=

full_hierarchical_identifier | partial_hierarchical _identifier

non_escaped identifier ::= /I See Syntax 18 on page 36
letter { letter |digit| | B|#)
placeholder_identifier ::= /I See Syntax 19 on page 36

< non_escaped_identifier >

242 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 8

indexed identifier ::= /I See Syntax 20 on page 36
atomic_identifier index

full_hierarchical_identifier ::= /I See Syntax 21 on page 37
atomic_identifier [index] . atomic_identifier [index] { . atomic_identifier [index] }

partial _hierarchical_identifier ::= /I See Syntax 22 on page 37
atomic_identifier [index] { . atomic_identifier [index]} ..
{ atomic_identifier [index] { . atomic_identifier [index]} ..}
[atomic_identifier [index] { . atomic_identifier [index]}]
escaped_identifier ::= /I See Syntax 23 on page 37
\ escapable _character { escapable _character }
escapable_character ::=
letter | digit | specia
keyword_identifier ::= /I See Syntax 24 on page 38
letter { [_] letter }
quoted string ::= /I See Syntax 25 on page 38
" { character} "
string_value ::= /I See Syntax 26 on page 39
quoted_string | identifier
generic_value ::= /I See Syntax 27 on page 39
number
| multiplier_prefix_symbol
| identifier
| quoted_string
| bit_literal
| based_litera
| edge_value
vector_expression_macro ::= /I See Syntax 28 on page 40
. non_escaped identifier
generic_object ::= /I See Syntax 29 on page 41
aias declaration
| constant_declaration
| class_declaration
| keyword_declaration
| semantics_declaration
| group_declaration
| template_declaration
all_purpose_item ::= /I See Syntax 30 on page 41
generic_object
| include_statement
| associate statement
| annotation
| annotation_container
| arithmetic_model
| arithmetic_model_container
| all_purpose_item_template_instantiation
annotation ::= /I See Syntax 31 on page 42
single value _annotation
| multi_value_annotation
single value annotation ::=
annotation_identifier = annotation_value ;
multi_value annotation ::=
annotation_identifier { annotation_value { annotation_vaue} }

annotation_value ::=

IEEE P1603 Draft 8 Advanced Library Format (ALF) Reference Manual

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

generic_value
| control_expression
| boolean_expression
| arithmetic_expression

annotation_container ;:= /I See Syntax 32 on page 42
annotation_container_identifier { annotation { annotation} }

attribute ::= /I See Syntax 33 on page 42
ATTRIBUTE { identifier { identifier} }

property = /I See Syntax 34 on page 43
PROPERTY [identifier] { annotation { annotation} }

alias declaration ::= /I See Syntax 35 on page 43

ALIASalias identifier = original_identifier ;
| AL1AS vector_expression_macro = (vector_expression)
constant_declaration ::= /I See Syntax 36 on page 44
CONSTANT constant_identifier = constant_value ;
constant_value ::=
number | based literal
keyword_declaration ::= /I See Syntax 37 on page 44
KEYWORD keyword identifier = syntax_item identifier ;
| KEYWORD keyword_identifier = syntax_item identifier { { CONTEXT _annotation } }
semantics_declaration ::= /I See Syntax 38 on page 45
SEMANTICS semantics _identifier = syntax_item_identifier ;
| SEMANTICS semantics_identifier [= syntax_item identifier] { { semantics_item} }
semantics item ::=
CONTEXT _annotation
| VALUETYPE_single value_annotation
| VALUES multi_value_annotation
| REFERENCETYPE_annotation
| DEFAULT _single value_annotation
| S_MODEL_single_value_annotation
class declaration ::= /I See Syntax 39 on page 53
CLASSclass identifier ;
| CLASSclass identifier { { class_item} }
class item::=
all_purpose_item
| geometric_model
| geometric_transformation
group_declaration ::= /I See Syntax 40 on page 55
GROUP group_identifier { generic_value{ generic_value} }
| GROUP group_identifier { left_index_value : right_index_value }

template_declaration ::= /I See Syntax 41 on page 56
TEMPLATE template_identifier { ALF_statement { ALF_statement } }
template _instantiation ::= /I See Syntax 42 on page 57

static_template_instantiation
| dynamic_template instantiation
static_template_instantiation ::=
template_identifier [= static] ;
| template_identifier [= static] { { generic_value} }
| template_identifier [= static] { { annotation} }
dynamic_template instantiation ::=
template_identifier = dynamic { { dynamic_template instantiation_item} }
dynamic_template_instantiation_item ::=

244 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 8

annotation
| arithmetic_model
| arithmetic_assignment
arithmetic_assignment ::=
identifier = arithmetic_expression ;
include ::= /I See Syntax 43 on page 60
INCL UDE quoted string ;
associate ::= /I See Syntax 44 on page 60
ASSOCIATE quoted_string ;
| ASSOCIATE quoted_string{ FORMAT _single_value_annotation }

revision ::= /I See Syntax 45 on page 61
ALF_REVISION string_value
library_specific_object ::= /I See Syntax 46 on page 63
library
| sublibrary
| cell
| primitive
| wire
| pin
| pingroup
| vector
| node
| layer
| via
| rule
| antenna
| site
| array
| blockage
| port
| pattern
| region
library ::= /I See Syntax 47 on page 64
LIBRARY library identifier ;
|LIBRARY library_identifier { { library_item} }
| library template instantiation
library item ::=
sublibrary
| sublibrary_item
sublibrary ::=
SUBLIBRARY sublibrary_identifier ;
| SUBLIBRARY sublibrary_identifier { { sublibrary_item} }
| sublibrary_template_instantiation
sublibrary_item ::=
all_purpose_item
| cell
| primitive
| wire
| layer
| via
[rule
| antenna
| array
| site
| region

IEEE P1603 Draft 8 Advanced Library Format (ALF) Reference Manual

245

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

cell ::

/I See Syntax 48 on page 66
CELL cdl_identifier ;
| CELL cell_identifier { { cell_item} }
| cell_template instantiation
cell_item::=
all_purpose_item
| pin
| pingroup
| primitive
| function
| non_scan_cell
| test
| vector
| wire
| blockage
| artwork
| pattern
| region
pin:= /I See Syntax 49 on page 76
scalar_pin | vector_pin | matrix_pin
scalar_pin ::=
PIN pin_identifier ;
| PIN pin_identifier { { scalar_pin_item} }
| scalar_pin_template instantiation
scalar_pin_item ::=
all_purpose_item
| pattern
| port
vector_pin ::=
PIN multi_index pin_identifier ;
| PIN multi_index pin_identifier { { vector_pin_item} }
| vector_pin_template instantiation
vector_pin_item ::=
all_purpose_item
| range
matrix_pin ::=
PIN first._multi_index pin_identifier second_multi_index ;
| PIN first_multi_index pin_identifier second_multi_index { { matrix_pin_item} }
| matrix_pin_template instantiation
matrix_pin_item ::=
vector_pin_item
pingroup ::= /I See Syntax 50 on page 77
simple_pingroup | vector_pingroup
simple_pingroup ::=
PINGROUP pingroup_identifier
{ MEMBERS multi_value_annotation { all_purpose item} }
| simple_pingroup_template instantiation
vector_pingroup ::=
| PINGROUP multi_index pingroup_identifier
{ MEMBERS multi_value_annotation { vector_pingroup_item} }
| vector_pingroup_template instantiation
vector_pingroup_item ::=
all_purpose_item

246 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 8

| range
primitive ::= /I See Syntax 51 on page 98
PRIMITIVE primitive_identifier { { primitive_item} }
| PRIMITIVE primitive_identifier ;
| primitive_template_instantiation
primitive_item ::=
all_purpose_item
| pin
| pingroup
| function
| test
wire ;= /I See Syntax 52 on page 98
WIRE wire identifier { { wire_ item} }
| WIRE wire_identifier ;
| wire_template_instantiation
wire item ::=
all_purpose_item
| node
node ::= /I See Syntax 53 on page 100
NODE node _identifier ;
| NODE node _identifier { { node_item} }
| node_template instantiation
node item::=
all_purpose_item
vector ;= /I See Syntax 54 on page 103
VECTOR control_expression ;
|[VECTOR control_expression { { vector_item} }
| vector_template instantiation
vector_item ::=
all_purpose_item
| wire_instantiation
layer ::= /I See Syntax 55 on page 109
LAYER layer_identifier ;
|LAYER layer_identifier { { layer_item} }
| layer_template instantiation
layer_item ::=
all_purpose_item
via:= /I See Syntax 56 on page 111
V1A via identifier ;
| VIA via_identifier { { via_item} }
| via_template instantiation

via item ::=
al_purpose_item
| pattern
| artwork
rule::= /I See Syntax 57 on page 112
RULE rule identifier ;
| RULE rule_identifier { { rule_item} }
| rule_template instantiation
rule_item ::=
al_purpose_item
| pattern
| region

IEEE P1603 Draft 8 Advanced Library Format (ALF) Reference Manual 247

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

| via_instantiation
antenna ::= /I See Syntax 58 on page 113
ANTENNA antenna_identifier ;
| ANTENNA antenna_identifier { { antenna_item} }
| antenna_template_instantiation
antenna item ::=
all_purpose_item
| region
blockage ::= /I See Syntax 59 on page 114
BL OCK AGE blockage identifier ;
| BLOCKAGE blockage_identifier { { blockage_item} }
| blockage template instantiation
blockage item ::=
all_purpose_item
| pattern
| region
[rule
| via_instantiation
port ::= /I See Syntax 60 on page 114
PORT port_identifier ;{ { port_item} }
| PORT port_identifier ;
| port_template instantiation

port_item ::=
all_purpose_item
| pattern
| region
[rule
| via_instantiation
Site::= /I See Syntax 61 on page 115

SITE site identifier ;
| SITE site identifier { { site_item} }
| site_template instantiation
site item ::=
all_purpose_item
| WIDTH_arithmetic_model
| HEIGHT arithmetic_model
array ;.= /I See Syntax 62 on page 117
ARRAY array identifier ;
| ARRAY array_identifier { { array_item} }
| array_template instantiation
array_item::=
all_purpose_item
| geometric_transformation
pattern ::= /I See Syntax 63 on page 119
PATTERN pattern_identifier ;
| PATTERN pattern_identifier { { pattern_item} }
| pattern_template_instantiation
pattern_item ::=
all_purpose_item
| geometric_model
| geometric_transformation
region ::= /I See Syntax 64 on page 123
REGION region_name_identifier ;
| REGION region_name_identifier { { region_item} }

248 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 8

| region_template instantiation
region_item ::=
all_purpose_item
| geometric_model
| geometric_transformation
| BOOLEAN single value annotation
function ::= /I See Syntax 65 on page 125
FUNCTION { function_item { function_item} }
| function_template instantiation

function_item ::=
all_purpose_item
| behavior
| structure
| statetable
test ::= /I See Syntax 66 on page 125

TEST { test_item { test_item} }
| test_template instantiation

test_item ::=
all_purpose_item
| behavior
| statetable
pin_variable::= /I See Syntax 67 on page 126
pin_variable identifier
pin_value::=
pin_variable | boolean value
pin_assignment ::= /I See Syntax 68 on page 126
pin_variable = pin_vaue;
behavior ::= /I See Syntax 69 on page 128

BEHAVIOR { behavior_item { behavior_item} }
| behavior_template instantiation
behavior_item ::=
boolean_assignment
| control_statement
| primitive_instantiation
| behavior_item template instantiation
boolean_assignment ::=
pin_variable = boolean_expression ;
control_statement ::=
primary_control_statement { alternative_control_statement }
primary_control_statement ::=
@ control_expression { boolean_assignment { boolean_assignment } }
alternative_control_statement ::=
- control_expression { boolean_assignment { boolean_assignment } }
primitive_instantiation ::=
primitive_identifier [identifier] { pin_value{ pin_value} }
| primitive_identifier [identifier] { boolean_assignment { boolean_assignment } }
structure ::= /I See Syntax 70 on page 129
STRUCTURE { cell_instantiation { cell_instantiation} }
| structure_template instantiation
cell_instantiation ::=
cell_reference_identifier cell_instance_identifier ;
| cell_reference_identifier cell_instance _identifier { { cell_instance pin value} }
| cell_reference_identifier cell_instance_identifier { { cell_instance pin_assignment } }

IEEE P1603 Draft 8 Advanced Library Format (ALF) Reference Manual 249

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

| cell _instantiation_template_instantiation
cell_instance pin_assignment ::=
cell_reference pin_variable = cell_instance pin value;
Statetable ::= /I See Syntax 71 on page 130
STATETABLE [identifier]
{ statetable_header statetable row { statetable row } }
| statetable_template instantiation
statetable_header ::=
input_pin_variable { input_pin_variable} : output_pin variable{ output_pin variable} ;
Statetable row ::=
statetable_control_values . statetable data values;
statetable control_values ::=
statetable _control_value { statetable control_value}
statetable _control_value ::=
boolean value
| symbolic_hit_literal
| edge_value
statetable data values::=
statetable data value { statetable data value}
statetable data value ::=
boolean value
| ([!]input_pin_variable)
| ([~]input_pin_variable)
non_scan cell ::= I/l See Syntax 72 on page 130
NON_SCAN_CELL = non_scan_cell_reference
INON_SCAN_CELL { non_scan cell_reference{ non_scan cell_reference} }
| non_scan cell_template instantiation
non_scan_cell_reference ::=
non_scan_cell_identifier { { scan_cell_pin_identifier} }
| non_scan_cell_identifier { { non_scan cell_pin_identifier = scan_cell_pin_identifier ; } }

range ::= /I See Syntax 73 on page 131
RANGE {index_value: index_value }
boolean_expression ::= /I See Syntax 74 on page 132

(' boolean_expression)
| boolean_value
| identifier
| boolean_unary_operator boolean_expression
| boolean_expression boolean_binary_operator boolean_expression
| boolean_expression ? boolean_expression : boolean_expression
boolean _unary_operator ::=

I~ 1& [~& (| I~ 1™ 1
boolean binary operator ::=
&|1&& [~& (||| I~ 1™ I

| relational_operator
| arithmetic_operator

| shift_operator
vector_expression ::= /I See Syntax 75 on page 142
('vector_expression)
| single_event

| vector_expression vector_operator vector_expression

| boolean_expression ? vector_expression . vector_expression
| boolean_expression control_and vector_expression

| vector_expression control_and boolean_expression

250 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 8

| vector_expression_macro
single event ::=

edge literal boolean_expression
vector_operator ;=

event_operator | event_and | event_or

event_and ::=

& |1&&
event_or ::=

1]
control_and ::=
& |&&
control_expression ::=
('vector_expression)
| (boolean_expression)
wire_instantiation ::= /I See Syntax 76 on page 154
wire_reference identifier wire instance_identifier ;
| wire_reference_identifier wire_instance_identifier { { wire_instance pin_value} }
| wire_reference_identifier wire_instance_identifier { { wire_instance pin_assignment } }
| wire_instantiation_template_instantiation
wire_instance pin_assignment ::=
wire_reference_pin_variable = wire_instance pin_value;
geometric_model ::= /I See Syntax 77 on page 155
nonescaped_identifier [geometric_model_identifier]
{ geometric_model_item { geometric_model_item} }
| geometric_model_template_instantiation
geometric_model_item ::=
POINT_TO_POINT_single value annotation

| coordinates
coordinates ::=

COORDINATES{ point { point} }
point ::=

X_number y_number
geometric_transformation ::= /I See Syntax 78 on page 159

shift

| rotate

[flip

| repeat
shift ::=

SHIFT { x_number y_number }
rotete ::=

ROTATE = number ;
flip::=

FLIP = number ;
repeat ::=

REPEAT [= unsigned_integer] { geometric_transformation { geometric_transformation} }
artwork ::= /I See Syntax 79 on page 160
ARTWORK = artwork_identifier ;
| ARTWORK = artwork_reference
| ARTWORK { artwork_reference { artwork_reference} }
| artwork_template instantiation
artwork_reference ::=
artwork_identifier { { geometric_transformation} { cell_pin_identifier} }

IEEE P1603 Draft 8 Advanced Library Format (ALF) Reference Manual

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

| artwork __identifier
{ { geometric_transformation } { artwork pin_identifier = cell_pin_identifier ; } }
via_instantiation ::= /I See Syntax 80 on page 161
via_identifier instance_identifier ;
| via_identifier instance_identifier { { geometric_transformation } }
arithmetic_expression ::= /I See Syntax 81 on page 163
(‘arithmetic_expression)
| arithmetic_value
| identifier
| boolean_expression ? arithmetic_expression : arithmetic_expression
| sign arithmetic_expression
| arithmetic_expression arithmetic_operator arithmetic_expression
| macro_arithmetic_operator (arithmetic_expression { , arithmetic_expression})
macro_arithmetic_operator ::=
abs|exp |log| min | max
arithmetic_model ::= /I See Syntax 82 on page 165
trivial_arithmetic_model
| partial_arithmetic_model
| full_arithmetic_model
| arithmetic_ model_template instantiation
trivial_arithmetic_ model ::= /I See Syntax 83 on page 165
arithmetic_model_identifier [name_identifier]| = arithmetic_value;
| arithmetic_model_identifier [name_identifier | = arithmetic_value
{ { arithmetic_model_qualifier } }
partial_arithmetic_model ::= /I See Syntax 84 on page 166
arithmetic_model_identifier [name_identifier] { { partial_arithmetic_model_item} }
partial_arithmetic_ model_item ::=
arithmetic_model_qualifier
| table
| trivial_min-max
full_arithmetic_model ::= /I See Syntax 85 on page 166
nonescaped_identifier [name_identifier]
{ { arithmetic_model_qualifier } arithmetic_model_body { arithmetic_model_qualifier } }

arithmetic_model_body ::= /I See Syntax 86 on page 166
header-table-equation [trivial_min-max]
| min-typ-max
| arithmetic_submodel { arithmetic_submodel }
arithmetic_model_qualifier ::= /I See Syntax 87 on page 167

inheritable_arithmetic_model _qualifier
| non_inheritable_arithmetic_model_qualifier
inheritable_arithmetic_model_qualifier ::=
annotation
| annotation_container
| from-to
non_inheritable_arithmetic_model_qualifier ::=
auxiliary_arithmetic_model

| violation

header-table-equation ::= /I See Syntax 88 on page 167
header table | header equation

header ::= /I See Syntax 89 on page 167

HEADER { header_arithmetic_model { header_arithmetic_mode! } }
header_arithmetic_model ::=
arithmetic_model_identifier [name_identifier] { { header_arithmetic_model_item} }

252 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 8

header arithmetic_model_item ::=
inheritable_arithmetic_model_qualifier
| table
| trivial_min-max
equation ::= /I See Syntax 90 on page 168
EQUATION { arithmetic_expression }
| equation_template instantiation

table::= /I See Syntax 91 on page 168
TABLE { arithmetic_value { arithmetic value} }

min-typ-max ::= /I See Syntax 92 on page 169
min-max | [min] typ [max]

min-max ::=
min | max | min max

min ::=
trivial_min | non_trivial_min

max ::=
trivial_max | non_trivial_max

typ:i=

trivial_typ | non_trivial_typ
non_trivia_min ::= /I See Syntax 93 on page 170
MIN = arithmetic_value{ violation }
IMIN {[violation] header-table-equation }
non_trivial_max ::=
MAX = arithmetic_value{ violation }
|[MAX {[violation] header-table-equation }
non_trivial_typ ::=
TY P { header-table-equation }

trivial_min-max ::= /I See Syntax 94 on page 170
trivial_min | trivial_max |trivial_min trivial_max
trivial_min ::=
MIN = arithmetic_value;
trivial_max ::=
MAX = arithmetic_value;
trivial_typ ::=
TYP = arithmetic_value;
auxiliary_arithmetic_model ::= /I See Syntax 95 on page 171

arithmetic_model_identifier = arithmetic_value ;
| arithmetic_model_identifier [= arithmetic_value]
{ inheritable_arithmetic_model_qualifier { inheritable arithmetic_model_qualifier } }
arithmetic_submodel ::= /I See Syntax 96 on page 172
arithmetic_submodel_identifier = arithmetic_value;
| arithmetic_submodel_identifier { [violation] min-max }
| arithmetic_submodel_identifier { header-table-equation [trivial_min-max] }
| arithmetic_submodel_identifier { min-typ-max }
| arithmetic_submodel_template instantiation
arithmetic_model_container ::= /I See Syntax 97 on page 172
limit_arithmetic_model_container
| early-late_arithmetic_model_container
| arithmetic_model_container_identifier { arithmetic_model { arithmetic_mode! } }
limit_arithmetic_model_container ::= /I See Syntax 98 on page 172
LIMIT { limit_arithmetic_ model { limit_arithmetic_model } }
limit_arithmetic_model ::=

IEEE P1603 Draft 8 Advanced Library Format (ALF) Reference Manual

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

arithmetic_model_identifier [name_identifier]
{ { arithmetic_model_qualifier } limit_arithmetic_model_body }
limit_arithmetic_model_body ::=
limit_arithmetic_submodel { limit_arithmetic_submodel }
| min-max
limit_arithmetic_submodel ::=
arithmetic_submodel_identifier { [violation] min-max }
early-late_arithmetic_model_container ::= Il See Syntax 99 on page 173
early arithmetic_model_container
| late_arithmetic_model_container
| early_arithmetic_model_container late_arithmetic_model_container
early_arithmetic_model_container ::=
EARLY { early-late_arithmetic_model { early-late_arithmetic_model } }
late_arithmetic_model_container ::=
LATE { early-late_arithmetic_model { early-late_arithmetic_model } }
early-late_arithmetic_model ::=
DELAY_arithmetic_model
| RETAIN_arithmetic_model
| SLEWRATE_arithmetic_model
violation ::= I/ See Syntax 100 on page 178
VIOLATION { violation_item { violation_item} }
| violation_template instantiation
violation_item ::=
MESSAGE_TYPE_single value annotation
| MESSAGE_single value annotation

| behavior

from-to ::= /I See Syntax 101 on page 198
from | to | from to

from::=
FROM { from-to_item { from-to_item} }

to::=

TO { from-to_item { from-to_item} }
from-to_item ::=
PIN_reference single value annotation
| EDGE_NUMBER single_value _annotation
| THRESHOLD_arithmetic_model

254 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 8

Annex B

(informative)

Semantics rule summary

This summary replicates the semantics detailed in the preceding clauses. If thereisany conflict, in detail or com-
pleteness, the semantics presented in the clauses shall considered as the normative definition.

KEYWORD VALUETYPE = singl e_val ue_annotation { /I See Semantics 1 on page 47
CONTEXT = SEMANTI CS;

}
SEMANTI CS VALUETYPE ({
VALUES ({
nunmber si gned_i nt eger unsigned_i nt eger
mul tiplier_prefix_val ue
identifier quoted_string string_val ue
bit _literal based_literal bool ean_val ue edge_val ue
control _expression bool ean_expressi on
arithneti c_expression

}

}

KEYWORD VALUES = multi _val ue_annotation { Il See Semantics 2 on page 48
CONTEXT = SEMANTI CS;

}

KEYWORD DEFAULT = single_val ue_annotation { Il See Semantics 3 on page 49
CONTEXT { SEMANTI CS arithnetic_nodel }

}

KEYWORD CONTEXT = annot ati on; /I See Semantics 4 on page 49

SEMANTI CS CONTEXT {
CONTEXT { KEYWORD SEMANTI CS }
VALUETYPE = identifier;

}

KEYWORD REFERENCETYPE = annotation { Il See Semantics 5 on page 50
CONTEXT = SEMANTI CS;

}

SEMANTI CS REFERENCETYPE {

VALUES { CLASS LI BRARY SUBLI BRARY CELL PI N Pl NGROUP
PRI M Tl VE W RE NODE VECTOR LAYER VI A RULE ANTENNA
BLOCKAGE PORT SI TE ARRAY PATTERN REG ON
arithnetic_nodel arithnetic_subnodel }

}

KEYWORD SI _MODEL = single_value_annotation { Il See Semantics 6 on page 51
CONTEXT = SEMANTI CS;

}

SEMANTI CS SI_MODEL {
VALUES {

TI ME FREQUENCY CURRENT VOLTAGE PONER ENERGY
RESI STANCE CAPACI TANCE | NDUCTANCE
DI STANCE AREA

IEEE P1603 Draft 8 Advanced Library Format (ALF) Reference Manual 255

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

}
}
KEYWORD CLASS = annotation { Il See Semantics 7 on page 53
CONTEXT { library_specific_object arithnetic_nodel }
}
SEMANTI CS CLASS { REFERENCETYPE = CLASS; }
KEYWORD USAGE = annotation { Il See Semantics 8 on page 54
CONTEXT = CLASS;
}
SEMANTI CS USACE {
VALUETYPE = identifier;
VALUES {
SWAP_CLASS RESTRI CT_CLASS
S| GNAL_CLASS SUPPLY_CLASS CONNECT_CLASS
SELECT_CLASS NODE_CLASS
EXI STENCE_CLASS CHARACTERI ZATI ON_CLASS
ORI ENTATI ON_CLASS SYMVETRY_CLASS

}
}
KEYWORD FORMAT = single val ue_annotation { Il See Semantics 9 on page 61
CONTEXT = ASSCCI ATE;
}
SEMANTI CS FORMAT {
VALUETYPE = identifier;
VALUES { vhdl verilog c \c++ alf }
DEFAULT = al f;
}
KEYWORD LI BRARY = annotation { /I See Semantics 10 on page 64
CONTEXT = arithnetic_nodel;
}
SEMANTI CS LI BRARY ({
REFERENCETYPE { LI BRARY SUBLI BRARY }
}
KEYWORD | NFORVATI ON = annot ati on_cont ai ner { /I See Semantics 11 on page 65
CONTEXT { LI BRARY SUBLI BRARY CELL W RE PRI M Tl VE }
}
KEYWORD PRODUCT = singl e_val ue_annotation { CONTEXT = | NFORMATI ON; }
SEMANTI CS PRODUCT {
VALUETYPE = string val ue; DEFAULT = ““;
}
KEYWORD Tl TLE = singl e_val ue_annotation { CONTEXT = | NFORMATI ON; }
SEMANTI CS TI TLE {
VALUETYPE = string_val ue; DEFAULT = “*;
}
KEYWORD VERSI ON = singl e_val ue_annotation { CONTEXT = | NFORMATI ON; }
SEMANTI CS VERSI ON {
VALUETYPE = string_val ue; DEFAULT = “*;
}
KEYWORD AUTHOR = si ngl e_val ue_annotation { CONTEXT = | NFORMATI ON; }

256 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 8

SEMANTI CS AUTHOR {
VALUETYPE = string_val ue; DEFAULT = “*;
}
KEYWORD DATETI ME = singl e_val ue_annotation { CONTEXT = | NFORMATI ON; }
SEVANTI CS DATETI ME {
VALUETYPE = string_val ue; DEFAULT = “*;

}

KEYWORD CELL = annotation { Il See Semantics 12 on page 66
CONTEXT = arithnetic_nodel ;

}

SEMANTI CS CELL {
REFERENCETYPE = CELL;

}

KEYWORD CELLTYPE = single value_annotation { Il See Semantics 13 on page 67
CONTEXT = CELL;

}

SEMANTI CS CELLTYPE {
VALUETYPE = identifier;
VALUES {
buf f er conbi national nultiplexor flipflop [atch
menory bl ock core speci al

}

}

KEYWORD RESTRI CT_CLASS = annotation { /I See Semantics 14 on page 68
CONTEXT { CELL CLASS }

}
SEMANTI CS RESTRI CT_CLASS {
REFERENCETYPE = CLASS;

}

CLASS synthesis { USAGE = RESTRI CT_CLASS ; }

CLASS scan { USAGE = RESTRICT_CLASS ; }

CLASS datapath { USAGE = RESTRICT_CLASS ; }

CLASS clock { USAGE = RESTRICT_CLASS ; }

CLASS | ayout { USACE = RESTRI CT_CLASS ; }

KEYWORD SWAP_CLASS = annotation { /I See Semantics 15 on page 69
CONTEXT = CELL;

}

SEMANTI CS SWAP_CLASS {
REFERENCETYPE = CLASS;

}

KEYWORD SCAN TYPE = singl e _val ue_annotation { /I See Semantics 16 on page 70
CONTEXT = CELL;

}

SEMANTI CS SCAN_TYPE {
VALUETYPE = identifier;
VALUES { muxscan cl ocked |ssd control O control _1 }

}

KEYWORD SCAN _USAGE = singl e_val ue_annotation { Il See Semantics 17 on page 71
CONTEXT = CELL;

}

IEEE P1603 Draft 8 Advanced Library Format (ALF) Reference Manual

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

SEMANTI CS SCAN_USAGE {
VALUETYPE = identifier;
VALUES { input output hold }

}

KEYWORD BUFFERTYPE = si ngl e_val ue_annotation {

CONTEXT = CELL;
}
SEMANTI CS BUFFERTYPE {
VALUETYPE = identifier;
VALUES { input output inout internal }
DEFAULT = internal;
}

KEYWORD DRI VERTYPE = singl e_val ue_annotation {

CONTEXT = CELL;
}
SEMANTI CS DRI VERTYPE {
VALUETYPE = identifier;
VALUES { predriver slotdriver both }

}

KEYWORD PARALLEL_DRI VE = singl e_val ue_annotation {

CONTEXT = CELL;

}

SEMANTI CS PARALLEL_DRI VE {
VALUETYPE = unsi gned_i nt eger;
DEFAULT = 1;

}

KEYWORD PLACEMENT _TYPE = singl e_val ue_annotation {

CONTEXT = CELL;
}
SEMANTI CS PLACEMENT_TYPE {
VALUETYPE = identifier;
VALUES { pad core ring block connector }
DEFAULT = core;
}

SEMANTI CS CELL. SI TE = singl e_val ue_annot ati on;

KEYWORD PI N = annotation {
CONTEXT { arithmetic_nodel FROM TO }
}
SEMANTI CS PI N {
REFERENCETYPE { PI' N PI NGROUP PORT NODE }
}
KEYWORD MEMBERS = nul ti _val ue_annotation {
CONTEXT = PI NGROUP;
}
SEMANTI CS MEMBERS {
REFERENCETYPE = PIN;
}
KEYWORD VI EW = singl e_val ue_annotati on {
CONTEXT { PIN Pl NGROUP }
}

258 Advanced Library Format (ALF) Reference Manual

Il See Semantics 18 on page 71

/I See Semantics 19 on page 72

/I See Semantics 20 on page 72

Il See Semantics 21 on page 73

/I See Semantics 22 on page 73
/I See Semantics 23 on page 77

/I See Semantics 24 on page 78

Il See Semantics 25 on page 78

IEEE P1603 Draft 8

SEMANTI CS VI EW {
VALUES { functional physical both none }
DEFAULT = bot h;

}

KEYWORD PI NTYPE = singl e_val ue_annotation { /I See Semantics 26 on page 79
CONTEXT = PIN;

}

SEMANTI CS PI NTYPE {
VALUETYPE = identifier;
VALUES { digital analog supply }
DEFAULT = digital;

}

KEYWORD DI RECTI ON = singl e _val ue_annotation { Il See Semantics 27 on page 79
CONTEXT = PIN;

}

SEMANTI CS DI RECTI ON {
VALUES { input output both none }

}

KEYWORD SI GNALTYPE = singl e_val ue_annotation { Il See Semantics 28 on page 80
CONTEXT = PIN;

}

SEMANTI CS SI GNALTYPE {
VALUETYPE = identifier
VALUES ({
data scan_data address control select tie clear set
enabl e out _enabl e scan_enabl e scan_out _enabl e
cl ock master_cl ock slave_cl ock
scan_naster_cl ock scan_sl ave_cl ock

}
DEFAULT = dat a;

}

KEYWORD ACTI ON = singl e _val ue_annotation { /I See Semantics 29 on page 82
CONTEXT = PIN;

}

SEMANTI CS ACTI ON {
VALUES { asynchronous synchronous }

}

KEYWORD POLARI TY = singl e_val ue_annotation { /I See Semantics 30 on page 84
CONTEXT = PIN;

}

SEMANTI CS POLARI TY {
VALUES { high low rising_edge falling_edge doubl e_edge }

}

KEYWORD CONTROL_POLARI TY = annot ation_contai ner { // SeeSemantics31 on page 85
CONTEXT = PIN ;

}

SEMANTI CS

CONTROL_POLARI TY.identifier = single_value_annotation {
VALUES { high Iow rising edge falling_edge doubl e_edge }

}

IEEE P1603 Draft 8 Advanced Library Format (ALF) Reference Manual

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

KEYWORD DATATYPE = singl e _val ue_annotation { Il See Semantics 32 on page 86
CONTEXT { PIN PI NGROUP }

}

SEMANTI CS DATATYPE {
VALUES { signed unsigned }

}

KEYWORD | NI TI AL_VALUE = single_value_annotation { // SeeSemantics 33 on page 87
CONTEXT { PIN PI NGROUP }

}

SEMANTI CS | NI TI AL_VALUE {
VALUETYPE = bool ean_val ue;
DEFAULT = U;

}

KEYWORD SCAN_POSI TI ON = singl e_val ue_annotation { // See Semantics 34 on page 87
CONTEXT = PI N;

}

SEMANTI CS SCAN_POCSI TI ON {
VALUETYPE = unsi gned_i nt eger;

DEFAULT = O;

}

KEYWORD STUCK = singl e_val ue_annotation { Il See Semantics 35 on page 87
CONTEXT = PIN;

}

SEMANTI CS STUCK {
VALUES { stuck_at_0 stuck_at_1 both none }
DEFAULT = bot h;

}

KEYWORD SUPPLYTYPE = annotation { Il See Semantics 36 on page 88
CONTEXT { PIN CLASS }

}

SEMANTI CS SUPPLYTYPE {
VALUETYPE = identifier;
VALUES { power ground reference }

}

KEYWORD SI GNAL_CLASS = annotation { /I See Semantics 37 on page 89
CONTEXT { PI'N PI NGROUP }

}

SEMANTI CS SI GNAL_CLASS { REFERENCETYPE = CLASS; }

KEYWORD SUPPLY_CLASS = annotation { /I See Semantics 38 on page 89

CONTEXT { PIN CLASS POVER ENERGY }

}

SEMANTI CS SUPPLY_CLASS { REFERENCETYPE = CLASS; }

KEYWORD DRI VETYPE = singl e _val ue_annotation { Il See Semantics 39 on page 90
CONTEXT { PIN CLASS }

}

SEMANTI CS DRI VETYPE {
VALUETYPE = identifier;
VALUES {
CNDS NNDS pPNDS CNDS_pass nNDS_pass pnos_pass

260

ttl

open_drai n open_source

Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 8

DEFAULT = cnps;
}

KEYWORD SCOPE = singl e_val ue_annotation {

Il See Semantics 40 on page 91

CONTEXT { PI'N PI NGROUP }

}
SEMANTI CS SCOPE {

VALUES { behavi or neasure both none }

DEFAULT = bot h;
}

KEYWORD CONNECT CLASS =

CONTEXT = PIN;
}

singl e_val ue_annotation { // See Semantics41 on page 92

SEMANTI CS CONNECT_CLASS { REFERENCETYPE = CLASS; }

KEYWORD SI DE = single_val ue_annotation {

/I See Semantics 42 on page 92

CONTEXT { PI'N PI NGROUP }

}
SEMANTI CS S| DE {

VALUETYPE = identifier;
VALUES { left right top bottominside }

}

KEYWORD ROW = annot ati on {

/I See Semantics 43 on page 93

CONTEXT { PI'N PI NGROUP }

}

SEMANTI CS ROW { VALUETYPE = unsigned_i nteger; }
KEYWORD COLUWN = annotation {
CONTEXT { PI'N Pl NGROUP }

}

SEMANTI CS COLUWN { VALUETYPE = unsi gned_i nteger; }
KEYWORD ROUTI NG TYPE = singl e_val ue_annotation { /I See Semantics 44 on page 94

CONTEXT { PI N PORT }
}

SEMANTI CS ROUTI NG_TYPE {
VALUETYPE = identifier;
VALUES { regul ar abutrment ring feedthrough }

DEFAULT = regul ar;
}

KEYWORD PULL = single _val ue_annotation { /I See Semantics 45 on page 95
CONTEXT = PIN;

}

SEMANTI CS PULL {
VALUES { up down both none }
DEFAULT = none;

}

KEYWORD W RE = annot ation { Il See Semantics 46 on page 98
CONTEXT = arithnetic_nodel;

}

SEMANTI CS W RE { REFERENCETYPE = WRE; }

KEYWORD W RETYPE = si ngl e_val ue_annot ati on { /I See Semantics 47 on page 99

CONTEXT = W RE;
}

IEEE P1603 Draft 8

Advanced Library Format (ALF) Reference Manual

261

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

SEMANTI CS W RETYPE {
VALUETYPE = identifier;
VALUES { estinmated extracted interconnect |oad }

}

KEYWORD SELECT_CLASS = annotation { I/ See Semantics 48 on page 100
CONTEXT = W RE;

}

SEMANTI CS SELECT_CLASS { REFERENCETYPE = CLASS; }

KEYWORD NODE = rnul ti _val ue_annotation { Il See Semantics 49 on page 101
CONTEXT = arithnetic_nodel ;

}

SEMANTI CS NODE {
REFERENCETYPE { PI N PORT NODE }

}

KEYWORD NODETYPE = singl e val ue_annotation { Il See Semantics 50 on page 101
CONTEXT = NODE;

}

SEMANTI CS NCDETYPE {
VALUETYPE = identifier;
VALUES { power ground source sink
driver receiver interconnect }
DEFAULT = i nterconnect;

}

KEYWORD NODE_CLASS = annotation { I/ See Semantics 51 on page 103
CONTEXT = NODE;

}

SEMANTI CS NODE_CLASS { REFERENCETYPE = CLASS; }

KEYWORD VECTOR = singl e_val ue_annotation { /I See Semantics 52 on page 104
CONTEXT = arithnetic_nodel;

}

SEMANTI CS VECTOR {
VALUETYPE = control _expression;
REFERENCETYPE = VECTOR,

}

KEYWORD PURPCSE = annotation { Il See Semantics 53 on page 104
CONTEXT { VECTCOR CLASS }

}

SEMANTI CS PURPCOSE {
VALUETYPE = identifier ;
VALUES { bist test timng power noise reliability }

}

KEYWORD OPERATI ON = singl e_val ue_annotation { /I See Semantics 54 on page 105
CONTEXT = VECTOR,

}

SEMANTI CS OPERATI ON {
VALUETYPE = identifier;
VALUES {
read wite read_nodify wite refresh | oad
start end iddq

}
}

262 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 8

KEYWORD LABEL = single_value_annotation { Il See Semantics 55 on page 106
CONTEXT = VECTOR,

}

SEMANTI CS LABEL { VALUETYPE = string_val ue; }

KEYWORD EXI STENCE_CONDI TI ON = si ngl e_val ue_annot ati on {
CONTEXT { VECTOR CLASS } Il See Semantics 56 on page 106

}

SEMANTI CS EXI STENCE_CONDI TI ON {
VALUETYPE = bool ean_expr essi on;
DEFAULT = 1,

}

KEYWORD EXI STENCE_CLASS = annotation { Il See Semantics 57 on page 107
CONTEXT { VECTOR CLASS }

}

SEMANTI CS EXI STENCE_CLASS { REFERENCETYPE = CLASS; }

KEYWORD CHARACTERI ZATI ON_CONDI TI ON = si ngl e_val ue_annot ati on {
CONTEXT { VECTOR CLASS } /I See Semantics 58 on page 107

}

SEMANTI CS CHARACTERI ZATI ON_CONDI Tl ON {
VALUETYPE = bool ean_expr essi on;

}

KEYWORD CHARACTERI ZATI ON_VECTOR = si ngl e_val ue_annot ati on {
CONTEXT { VECTOR CLASS } Il See Semantics 59 on page 108

}

SEMANTI CS CHARACTERI ZATI ON_VECTOR {
VALUETYPE = control _expression;

}

KEYWORD CHARACTERI ZATI ON_CLASS = annot ati on { /I See Semantics 60 on page 108
CONTEXT { VECTOR CLASS }

}

SEMANTI CS CHARACTERI ZATI ON_CLASS { REFERENCETYPE = CLASS; }

KEYWORD MONI TOR = annotation { /I See Semantics 61 on page 108
CONTEXT { VECTOR CLASS }

}

SEMANTI CS MONI TOR { VALUETYPE = identifier; }

KEYWORD LAYER = annotation { I/ See Semantics 62 on page 109
CONTEXT { arithnetic_nodel PATTERN ARRAY }

}

SEMANTI CS LAYER { REFERENCETYPE = LAYER; }

KEYWORD LAYERTYPE = singl e _val ue_annotation { /I See Semantics 63 on page 109
CONTEXT = LAYER;

}

SEMANTI CS LAYERTYPE {
VALUETYPE = identifier;
VALUES { routing cut substrate dielectric reserved abstract }

}

KEYWORD PI TCH = singl e_val ue_annotation { /I See Semantics 64 on page 110
CONTEXT = LAYER;

}

SEMANTI CS PI TCH { VALUETYPE = unsi gned_nunber; }

IEEE P1603 Draft 8 Advanced Library Format (ALF) Reference Manual

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

KEYWORD PREFERENCE = si ngl e_val ue_annotation { I/ See Semantics 65 on page 110
CONTEXT = LAYER;

}

SEMANTI CS PREFERENCE {
VALUETYPE = identifier;
VALUES { horizontal vertical acute obtuse }

}

KEYWORD VI A = annotation { I/ See Semantics 66 on page 111
CONTEXT = arithnetic_nodel;

}

SEMANTI CS VI A {
REFERENCETYPE = VI A;

}
KEYWORD VI ATYPE
CONTEXT = VI A;
}
SEMANTI CS VI ATYPE ({
VALUETYPE = identifier;
VALUES { default non_default partial _stack full _stack }
DEFAULT = defaul t;

singl e_val ue_annot ati on { Il See Semantics 67 on page 112

}

KEYWORD PORTTYPE = singl e_val ue_annotation { /I See Semantics 68 on page 115
CONTEXT = PORT;

}

SEMANTI CS PORTTYPE {
VALUETYPE = identifier;
VALUES { external internal }
DEFAULT = external;

}

KEYWORD SI TE = annotation { Il See Semantics 69 on page 116
CONTEXT { CELL ARRAY CLASS }

}

SEMANTI CS SI TE { REFERENCETYPE = SITE; }

KEYWORD ORI ENTATI ON_CLASS = annotation { /I See Semantics 70 on page 116
CONTEXT { SITE CELL }

}

SEMANTI CS ORI ENTATI ON_CLASS { REFERENCETYPE = CLASS; }

KEYWORD SYMVETRY_CLASS = nul ti _val ue_annotati on { // SeeSemantics 71 on page 116
CONTEXT = SI TE;

}

SEMANTI CS SYMMVETRY_CLASS { REFERENCETYPE = CLASS; }

KEYWORD ARRAYTYPE = singl e_val ue_annotation { /I See Semantics 72 on page 117
CONTEXT = ARRAY;

}

SEMANTI CS ARRAYTYPE {
VALUETYPE = identifier;
VALUES { floorplan placenent global _routing detailed routing }

}
SEMANTI CS ARRAY. LAYER = nul ti _val ue_annot ati on; /I See Semantics 73 on page 118

SEMANTI CS ARRAY. SI TE = si ngl e_val ue_annot ati on; /I See Semantics 74 on page 118

264 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 8

KEYWORD PATTERN = annotation { Il See Semantics 75 on page 119
CONTEXT = arithnetic_nodel ;

}

SEMANTI CS PATTERN { REFERENCETYPE = PATTERN ; }

KEYWORD SHAPE = singl e val ue_annotation { Il See Semantics 76 on page 119
CONTEXT = PATTERN,

}

SEMANTI CS SHAPE {
VALUETYPE = identifier;
VALUES { line tee cross jog corner end }

DEFAULT = | i ne;

}

KEYWORD VERTEX = singl e_val ue_annotation { Il See Semantics 77 on page 121
CONTEXT = PATTERN,

}

SEMANTI CS VERTEX {
VALUETYPE = identifier;
VALUES { round angul ar }
DEFAULT = angul ar;

}

KEYWORD ROUTE = singl e_val ue_annotation { Il See Semantics 78 on page 121
CONTEXT = PATTERN,

}

SEMANTI CS RQUTE {
VALUETYPE = identifier;
VALUES { horizontal acute vertical obtuse }

}

SEMANTI CS PATTERN. LAYER = singl e_val ue_annot ati on; // See Semantics 79 on page 122

KEYWORD REA ON = annot ation { /I See Semantics 80 on page 123
CONTEXT = arithnetic_nodel ;

}

SEMANTI CS REG ON { REFERENCETYPE = REG ON ; }

KEYWORD BOOLEAN = singl e_val ue_annotation { I/ See Semantics 81 on page 123
CONTEXT = REQ ON ;

}

SEMANTI CS BOOLEAN { VALUETYPE = bool ean_expression ; }

PRI M TI VE ALF_BUF { /I See Semantics 82 on page 150

PINin { DORECTION = input; }
PIN [1:<bitwidth>] out { DI RECTION = output; }
GROUP index { 1 : <bitwidth> }
FUNCTI ON { BEHAVIOR { out[index] =in ; } }
}
PRI M Tl VE ALF_NOT { /I See Semantics 83 on page 150
PINin { DIRECTION = input; }
PIN [1:<bitwi dth>] out { DI RECTION = output; }
GROUP index { 1 : <bitwidth>}
FUNCTI ON { BEHAVIOR { out[index] =1! in; } }
}
PRI M Tl VE ALF_AND ({ /I See Semantics 84 on page 150
PIN out { DI RECTION = output; }
PIN[1:<bitwidth>] in { D RECTION = input; }

IEEE P1603 Draft 8 Advanced Library Format (ALF) Reference Manual

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

FUNCTION { BEHAVICR { out = & in ; } }
}
PRI M TI VE ALF_NAND {

PIN out { DI RECTION = output; }

PIN[1:<bitwidth>] in { D RECTION = input;
FUNCTION { BEHAVIOR { out = ~& in ; } }

}

PRIM Tl VE ALF_OR {

PIN out { DI RECTION = output; }
PIN[1l:<bitwidth>] in { D RECTION = input;
FUNCTION { BEHAVIOR { out = | in; } }

}

PRI M TI VE ALF_NOR {

PIN out { DI RECTION = output; }
PIN[1:<bitwidth>] in { D RECTION = input;
FUNCTION { BEHAVIOR { out = ~| in; } }

}

PRI M Tl VE ALF_XOR {
PIN out { DI RECTI ON
PIN [1: <bitwi dth>] i
FUNCTI ON { BEHAVI OR

}

PRI M TI VE ALF_XNOR {
PIN out { DI RECTION = output; }
PIN[1l:<bitwidth>] in { D RECTION = input;
FUNCTION { BEHAVIOR { out = ~*in ; } }

}

PRI M Tl VE ALF_BUFI F1 {

PIN out { DI RECTION = output; }

PINin { DIRECTION = input; }

PIN enable { DI RECTION = input; }
FUNCTI ON { BEHAVIOR { out = (enable)? in :

}

PRI M Tl VE ALF_BUFI FO {
PIN out { DIRECTION = output; }
PINin { DI RECTION = input; }
PIN enable { DI RECTION = input; }
FUNCTI ON { BEHAVIOR { out = (!

}

PRIM TI VE ALF_NOTI F1 {
PIN out { DI RECTION = output; }
PINin { DIRECTION = input; }
PIN enable { DI RECTION = input; }
FUNCTI ON { BEHAVI CR { out

}
PRI M Tl VE ALF_NOTI FO {
PIN out { DI RECTION = output; }
PINin { DI RECTION = input; }
PIN enable { DI RECTION = input; }
FUNCTI ON { BEHAVIOR { out = (! enable)? !

out put; }
{ DI RECTION = input;
out ="~in; } }

~ 35 1l

266 Advanced Library Format (ALF) Reference Manual

enable)? in :

= (enable)? ! in:

in :

‘bz ;

I/ See Semantics 85 on page 150

Il See Semantics 86 on page 151

/I See Semantics 87 on page 151

Il See Semantics 88 on page 151

/I See Semantics 89 on page 151

Il See Semantics 90 on page 152

b}

/I See Semantics 91 on page 152

‘bz ; } }

/I See Semantics 92 on page 152

‘bz ; } 1}

/I See Semantics 93 on page 152

‘bz ; } }

IEEE P1603 Draft 8

PRI M Tl VE ALF_MJX { Il See Semantics 94 on page 153
PIN Q { DI RECTION = output; }
PIN[1:0] D{ DI RECTION = input; }
PIN S { DIRECTION = input; }

FUNCTI ON {
BEHAVI OR {
}Q=! S&DO0] | S&D1] | DO] &D1] ;
}
}
PRI M TI VE ALF_LATCH { /I See Semantics 95 on page 153
PIN Q { DI RECTION = output; }
PIN ON { DI RECTI ON = output; }
PIN D { DIRECTION = input; }
PI'N ENABLE { DI RECTION = input; }
PIN CLEAR { DI RECTION = input; }
PIN SET { DI RECTION = input; }
PIN Q CONFLICT { DI RECTION = input; }
PIN Q\N_CONFLI CT { DI RECTION = input; }
FUNCTI ON {
BEHAVI OR {
@ (CLEAR && SET) {
Q = Q CONFLICT ; QN = QN_CONFLICT ;
}o (GLEAR) |
Q=0; N=1;
pooo o SET) |
Q=1 AN =0 ;
} (ENABLE){
Q=D N=1! D;
}
}
}
}
PRI M TI VE ALF_FLI PFLOP { Il See Semantics 96 on page 154
PIN Q { DI RECTION = output; }
PIN ON { DI RECTI ON = output; }

PIN D { DIRECTION = input; }

PIN CLOCK { DIRECTION = input; }
PIN CLEAR { DIRECTION = input; }
PI N SET { DIRECTION = input; }

PIN Q CONFLICT { DIRECTION = input; }
PIN QN_CONFLICT { DIRECTION = input; }
FUNCTI ON {

BEHAVI OR {

@ (CLEAR && SET) {
Q= QCONFLICT ; QN = QN_CONFLICT :
} o (CLEAR) {

Q=0; N=1;
pooo(SET) |
Q=1; N=0;
} o (01 CLOCK) {

Q=D; N=1!D;

}

IEEE P1603 Draft 8 Advanced Library Format (ALF) Reference Manual 267

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

}
}
}
KEYWORD DOT = geometri c_nodel ; Il See Semantics 97 on page 155
KEYWORD POLYLI NE = geonetric_nodel ;
KEYWORD RI NG = geonetri c_nodel ;
KEYWORD POLYGON = geonetri c_nodel ;
KEYWORD PO NT_TO PO NT = singl e val ue_annotation { // See Semantics 98 on page 156
CONTEXT { POLYLI NE RI NG POLYGON }
}
SEMANTI CS PO NT_TO PO NT {
VALUES { direct manhattan }
DEFAULT = direct;

}
TEMPLATE RECTANGLE { /I See Semantics 99 on page 158
POLYGON {
PO NT_TO PO NT = manhatt an;
COORDI NATES { <left> <bottone <right> <top> }
}
}
TEMPLATE LI NE { /I See Semantics 100 on page 158
POLYLI NE {
PO NT_TO PO NT = direct;
COORDI NATES { <x_start> <y_start> <x_end> <y_end> }
}
}
KEYWORD M N = arithnetic_subnodel { /I See Semantics 101 on page 171
CONTEXT { arithnetic_nodel arithmetic_subnodel }
}

KEYWORD MAX = arithnetic_subnodel {

CONTEXT { arithnetic_nodel arithmetic_subnodel }
}
KEYWORD TYP = arithnetic_subnodel {

CONTEXT { arithnetic_nodel arithmetic_subnodel }

}
KEYWORD LIMT = arithnetic_nodel container; /I See Semantics 102 on page 173
KEYWORD EARLY = arithnetic_nodel contai ner /I See Semantics 103 on page 173

{ CONTEXT = VECTOR; }
KEYWORD LATE = arithmetic_nodel _cont ai ner
{ CONTEXT = VECTOR, }
KEYWORD UNI T = single_val ue_annotation { /I See Semantics 104 on page 174
CONTEXT = arithnetic_nodel ;
}
SEMANTICS UNI T {
VALUETYPE = nul tiplier_prefix_value ;
}
KEYWORD CALCULATI ON = singl e_val ue_annotation { // See Semantics 105 on page 174
CONTEXT = arithnetic_nodel ;
}
SEMANTI CS CALCULATI ON {
CONTEXT = library_specific_object.arithnmetic_nodel ;

268 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 8

VALUES { absolute increnental }
DEFAULT = absolute ;
}
KEYWORD | NTERPOLATI ON = si ngl e_val ue_annot ati on { // See Semantics 106 on page 175
CONTEXT = arithnetic_nodel ;
}
SEMANTI CS | NTERPOLATI ON {
CONTEXT = HEADER arithnetic_nodel ;
VALUES { linear fit ceiling floor }
DEFAULT = fit ;

}

KEYWORD MODEL = singl e _val ue_annotation { /I See Semantics 107 on page 177
CONTEXT = arithnetic_nodel ;

}

SEMANTI CS MCDEL {
REFERENCETYPE { arithnetic_nodel arithnetic_subnodel }

}

SEMANTI CS VI OLATI ON { /I See Semantics 108 on page 178

CONTEXT {
SETUP HOLD RECOVERY REMOVAL NOCHANGE | LLEGAL NO SE_ MARG N LIMT..

}

}

SEMANTI CS VI CLATI ON. BEHAVI OR { /I See Semantics 109 on page 178
CONTEXT { VECTOR.. }

}

KEYWORD MESSAGE TYPE = single_val ue_annotation { // SeeSemantics110 on page 179
CONTEXT = VI OLATI ON ;

}

SEMANTI CS MESSAGE_TYPE ({
VALUETYPE = identifier ;
VALUES { information warning error }

}

KEYWORD MESSACE = singl e _val ue_annotation { /I See Semantics 111 on page 180
CONTEXT = VI OLATI ON ;

}

SEMANTI CS MESSAGE {
VALUETYPE = quoted_string ;

}
KEYWORD TI ME = arithnetic_nodel ; /I See Semantics 112 on page 180
SEMANTI CS TI ME {

CONTEXT {

LI BRARY SUBLI BRARY CELL W RE VECTOR arithmetic_nodel
VECTOR. ari t hneti c_nodel _cont ai ner VECTOR . HEADER LI M T. . HEADER

}
VALUETYPE = nunber ;

SI _MODEL = TI ME ;
}
TIME { UNIT = NanoSeconds ; }
KEYWORD FREQUENCY = arithmetic_nodel ; /I See Semantics 113 on page 181

SEMANTI CS FREQUENCY {
CONTEXT {

IEEE P1603 Draft 8 Advanced Library Format (ALF) Reference Manual

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

LI BRARY SUBLI BRARY CELL W RE VECTOR arithnetic_nodel
VECTOR. arithneti c_nodel contai ner VECTOR. . HEADER LI M T. . HEADER
}
VALUETYPE = nunber ;
SI _MODEL = FREQUENCY ;
}
FREQUENCY { UNIT = G gaHertz; MN = 0; }

KEYWORD DELAY = arithnetic_nodel ; /I See Semantics 114 on page 182
SEMANTI CS DELAY {
CONTEXT {

LI BRARY SUBLI BRARY CELL W RE VECTOR VECTOR. EARLY VECTOR LATE
}
SI _MODEL = TI ME ;
}
KEYWORD RETAIN = arithnetic_nodel ; /I See Semantics 115 on page 183
SEMANTI CS RETAI N{
CONTEXT {
VECTOR VECTOR. EARLY VECTOR. LATE
}
SI _MODEL = TI ME ;
}

KEYWORD SLEWRATE = arithnetic_nodel ; /I See Semantics 116 on page 184
SEMANTI CS SLEWRATE {
CONTEXT {

LI BRARY LI BRARY. LIM T SUBLI BRARY SUBLI BRARY.LIM T
CELL CELL.LIMT PINPINLIMT WRE WRE.LIMT
VECTOR VECTOR. EARLY VECTOR. LATE VECTOR LIM T VECTOR. . HEADER

}
SI _MODEL = TIME ;

}

SLEWRATE { M N = 0; }

KEYWORD SETUP = arithnetic_nodel ; /I See Semantics 117 on page 185
SEMANTI CS SETUP { CONTEXT = VECTOR ; SI_MODEL = TIME ; }

KEYWORD HOLD = arithnetic_nodel ;

SEMANTI CS HOLD { CONTEXT = VECTOR ; SI_MODEL = TIME ; }

KEYWORD RECOVERY = arithnetic_nodel ; /I See Semantics 118 on page 186
SEMANTI CS RECOVERY { CONTEXT = VECTOR ; SI_MODEL = TIME ; }

KEYWORD REMOVAL = arithnetic_nodel ;
SEMANTI CS REMOVAL { CONTEXT = VECTOR ; SI_MODEL = TIME ; }
KEYWORD NOCHANGE = arithnetic_nodel ; /I See Semantics 119 on page 187
SEMANTI CS NOCHANGE { CONTEXT = VECTOR ; SI_MODEL = TIME ; }
NOCHANGE { MN = 0; }
KEYWORD | LLEGAL = arithmetic_nodel ;
SEMANTI CS | LLEGAL { CONTEXT = VECTOR ; SI_MODEL = TIME ; }
ILLEGAL {| MN = 0; }
KEYWORD PULSEW DTH=arit hneti c_nodel ; /I See Semantics 120 on page 189
SEMANTI CS PULSEW DTH {
CONTEXT {
LI BRARY LI BRARY. LI M T SUBLI BRARY SUBLI BRARY.LIM T
CELL CELL.LIMT PINPINLIMT WRE WRE. LIMT VECTOR VECTOR. . HEADER

270 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 8

}
SI _MODEL = TIME ;

}

PULSEWDTH { MN = 0; }
KEYWORD PERI CD = arithnetic_nodel ;

SEMANTI CS PERI OD {

/I See Semantics 121 on page 190

CONTEXT { VECTOR VECTOR. LIM T VECTOR. . HEADER }

SI_MODEL = TIME ;
}
PEROD { MN = 0; }

KEYWORD JI TTER = arithnetic_nodel ;

SEMANTI CS JI TTER {

/I See Semantics 122 on page 191

CONTEXT { VECTOR VECTOR. LIM T VECTOR. . HEADER }

SI_MODEL = TI ME
}
JITTER { MN

0; }

KEYWORD SKEW = arithnetic_nodel ;

SEMANTI CS SKEW {

/I See Semantics 123 on page 192

CONTEXT { VECTOR VECTOR. LIM T VECTCR. . HEADER }

SI_MODEL = TIME ;
}
SKEW{ MN = 0; }

KEYWORD THRESHOLD = arithnetic_nodel ;

SEMANTI CS THRESHOLD {

/I See Semantics 124 on page 193

CONTEXT { PIN FROM TO }

VALUETYPE = nunber
}

THRESHOLD { MN = 0; MAX = 1; }

KEYWORD NO SE = arithnetic_nodel ;

SEMANTI CS NOI SE {
CONTEXT {

/I See Semantics 125 on page 194

LI BRARY. LIM T SUBLI BRARY. LIM T CELL.LIMT
PIN PIN.LIMT VECTOR VECTOR LIM T VECTOR. . HEADER

}
VALUETYPE = nunber

}

KEYWORD NO SE MARA N = arithnetic_nodel ;

SEMANTI CS NOI SE_MARG N {
CONTEXT { CLASS LI BRARY SUBLI BRARY CELL PI N VECTCR }

VALUETYPE = nunber
}

NO SE MARG N { MN = 0; }

KEYWORD POWNER = arithnetic_nodel ;

SEMANTI CS POAER {

/I See Semantics 126 on page 197

CONTEXT { LI BRARY SUBLI BRARY CELL VECTOR CLASS.LIMT CELL.LIMT }

VALUETYPE = nunber
}

PONER { UNIT = MIIliwatt; }
KEYWORD ENERGY = arithmetic_nodel { VALUETYPE = nunber; }

IEEE P1603 Draft 8

Advanced Library Format (ALF) Reference Manual

271

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

SEMANTI CS ENERGY {
CONTEXT { LI BRARY SUBLI BRARY CELL VECTCR }
VALUETYPE = nunber ;

}

ENERGY { UNIT = PicoJdoul e; }

SEMANTI CS FROM { /I See Semantics 127 on page 198
CONTEXT {
TI ME DELAY RETAI N SLEWRATE PULSEW DTH
SETUP HOLD RECOVERY REMOVAL NOCHANGE | LLEGAL SKEW

}
}
SEMANTI CS TO {
CONTEXT {
TI ME DELAY RETAI N SLEWRATE PULSEW DTH
SETUP HOLD RECOVERY REMOVAL NOCHANGE | LLEGAL SKEW

}

}

KEYWORD EDGE_NUMBER = annot ation { /I See Semantics 128 on page 199
CONTEXT { arithnetic_nodel FROM TO }

}
SEMANTI CS EDGE_NUMBER {
CONTEXT { VECTOR.. }
VALUETYPE = unsi gned_i nt eger ;
DEFAULT = O;
}
SEMANTI CS FROM PI'N = singl e_val ue_annotati on { /I See Semantics 129 on page 199
CONTEXT { TI ME DELAY RETAI N SETUP HOLD
RECOVERY REMOVAL NOCHANGE | LLEGAL }

}
SEMANTI CS TO. PIN = single_val ue_annotation {
CONTEXT { TI ME DELAY RETAI N SETUP HOLD
RECOVERY REMOVAL NOCHANGE | LLEGAL }
}
SEMANTI CS FROM EDGE_NUMBER = si ngl e_val ue_annot ati on {
CONTEXT { TI ME DELAY RETAI N SETUP HOLD /I See Semantics 130 on page 199
RECOVERY REMOVAL NOCHANGE | LLEGAL }

}

SEMANTI CS TO. EDGE_NUMBER = si ngl e_val ue_annot ati on {
CONTEXT { TI ME DELAY RETAI N SETUP HOLD
RECOVERY REMOVAL NOCHANGE | LLEGAL }

}
SEMANTI CS SLEWRATE. PI N = si ngl e_val ue_annot ati on ; // See Semantics 131 on page 200

SEMANTI CS SLEWRATE. EDGE_NUMBER = si ngl e_val ue_annotati on ;
SEMANTI CS PULSEW DTH. PI N = si ngl e_val ue_annot at i on; // See Semantics 132 on page 200
SEMANTI CS PULSEW DTH. EDGE_NUMBER = si ngl e_val ue_annot ati on;

SEMANTI CS SKEWPIN = nmul ti _val ue_annotati on ; /I See Semantics 133 on page 201
SEMANTI CS SKEW EDGE_NUMBER = mnul ti _val ue_annot ation ;
SEMANTI CS NO SE. PIN = singl e_val ue_annotation ; /I See Semantics 134 on page 201

SEMANTI CS NO SE_MARG N. PIN = singl e_val ue_annotation ;

272 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 8

KEYWORD MEASUREMENT = singl e _val ue_annotation { // See Semantics 135 on page 201
CONTEXT = arithnetic_nodel ;
}
SEMANTI CS MEASUREMENT {
CONTEXT { ENERGY POWER CURRENT VOLTAGE JI TTER }
VALUETYPE = identifier ;
VALUES { transient static average absol ute_average rns peak }
}
KEYWORD PROCESS = arithnetic_nodel ; /I See Semantics 136 on page 203
SEMANTI CS PROCESS {
CONTEXT { CLASS LI BRARY SUBLI BRARY CELL W RE HEADER arithmetic_nodel }
VALUETYPE = identifier ;
}
PROCESS { DEFAULT = nom TABLE { nom snsp snwp wnsp wnwp } }
KEYWORD DERATE _CASE = arithnetic_nodel ; /I See Semantics 137 on page 204
SEMANTI CS DERATE_CASE {
CONTEXT { CLASS LI BRARY SUBLI BRARY CELL W RE HEADER arithmetic_nodel }
VALUETYPE = identifier ;
}
DERATE_CASE { DEFAULT = nom
TABLE { nom bccom wccom bci nd weind bemi| wem |}
}
KEYWORD TEMPERATURE = arithnetic_nodel { /I See Semantics 138 on page 204
}
SEMANTI CS TEMPERATURE {
CONTEXT {
CLASS LI BRARY SUBLI BRARY CELL WRE LIMT HEADER arithnetic_nodel
}
VALUETYPE = nunber
}
TEMPERATURE { UNIT = 1DegreeCel sius; MN = -273; }

KEYWORD VOLTACE = arithnetic_nodel ; /I See Semantics 139 on page 205
SEMANTI CS VOLTAGE {
CONTEXT {

CLASS LI BRARY SUBLI BRARY CELL PIN W RE VECTOR HEADER
CLASS.LIMT CELL.LIMT PIN.LIMT VECTOR LIMT
}
VALUETYPE = nunber
}
VOLTAGE { UNIT = 1Volt; }

KEYWORD CURRENT = arithnetic_nodel ; /I See Semantics 140 on page 206
SEMANTI CS CURRENT {
CONTEXT {

LI BRARY SUBLI BRARY CELL W RE VECTOR HEADER
CELL. LIMT VECTOR LIMT
LAYER LIMT VIALIMT RULE.LIMT

}
VALUETYPE = nunber ;

}
CURRENT { UNIT = MIIi Anpere; }
KEYWORD CAPACI TANCE = arithnetic_nodel ; /I See Semantics 141 on page 207

IEEE P1603 Draft 8 Advanced Library Format (ALF) Reference Manual

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

SEMANTI CS CAPACI TANCE {
CONTEXT {
LI BRARY SUBLI BRARY CELL CELL.LIMT PINPIN.LIMT
W RE LAYER RULE VECTOR HEADER
}
VALUETYPE = nunber ;
SI _MODEL = CAPACI TANCE ;

}
CAPACI TANCE { UNIT = PicoFarad; MN = 0; }

KEYWORD RESI STANCE = arithnetic_nodel ; /I See Semantics 142 on page 209
SEMANTI CS RESI STANCE {
CONTEXT {

LI BRARY SUBLI BRARY CELL W RE LAYER RULE CELL.LIM T VECTOR HEADER
}
VALUETYPE = nunber ;
SI _MODEL = RESI STANCE ;
}
RESI STANCE { UNIT = KiloChmp M N = 0; }

KEYWORD | NDUCTANCE = arithnetic_nodel ; /I See Semantics 143 on page 210
SEMANTI CS | NDUCTANCE {
CONTEXT {

LI BRARY SUBLI BRARY CELL W RE LAYER RULE CELL.LIM T VECTOR HEADER
}
VALUETYPE = nunber ;
S| _MODEL = | NDUCTANCE ;
}
I NDUCTANCE { UNIT = le-6; MN = 0; }
SEMANTI CS VOLTAGE. NODE = nul ti _val ue_annot ati on { // See Semantics 144 on page 212
CONTEXT { CELL WRE } }

SEMANTI CS CURRENT. NOCDE = nul ti_val ue_annotati on {
CONTEXT { CELL WRE } }

SEMANTI CS CAPACI TANCE. NODE = mul ti _val ue_annot ati on {
CONTEXT { CELL WRE } }

SEMANTI CS RESI STANCE. NODE = nul ti _val ue_annotati on {
CONTEXT { CELL WRE } }

SEMANTI CS | NDUCTANCE. NODE
CONTEXT { CELL WRE } }

KEYWORD COMPONENT = singl e_val ue_annotation { /I See Semantics 145 on page 213
CONTEXT = arithnetic_nodel ;

}

SEMANTI CS COVPONENT {
CONTEXT { CURRENT POAER ENERGY }
REFERENCETYPE { CURRENT VOLTAGE CAPACI TANCE RESI STANCE | NDUCTANCE }

}

SEMANTI CS VOLTAGE. PIN = singl e_val ue_annot ati on { // See Semantics 146 on page 213
CONTEXT { VECTOR VECTOR. LIM T VECTOR . HEADER } }

SEMANTI CS CURRENT. PIN = singl e_val ue_annotation {
CONTEXT { VECTOR VECTOR LIM T VECTOR . HEADER } }

SEMANTI CS CAPACI TANCE. PI N = singl e_val ue_annot ati on {
CONTEXT { VECTOR VECTOR.. HEADER } }

mul ti _val ue_annotati on {

274 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 8

SEMANTI CS RESI STANCE. PI N = singl e_val ue_annotation {
CONTEXT { VECTCR } }

KEYWORD FLOW = singl e_val ue_annot ati on { /I See Semantics 147 on page 215
CONTEXT = arithnetic_nodel ;

}

SEMANTI CS FLOW {
CONTEXT = CURRENT; VALUES { in out } DEFAULT = in;

}

KEYWORD DRI VE_STRENGTH = arithmetic_nodel ; /I See Semantics 148 on page 215

SEMANTI CS DRI VE_STRENGTH {
CONTEXT { CLASS LI BRARY SUBLI BRARY CELL PI N Pl NGROUP }
VALUETYPE = nunber ;

}
DRI VE_STRENGTH { M N = 0; }
KEYWORD SW TCHI NG BI TS = arithmetic_nodel ; /I See Semantics 149 on page 216
SEMANTI CS SW TCHI NG BI TS {
CONTEXT { VECTOR POWER. HEADER VECTOR. ENERGY. HEADER }
VALUETYPE = unsi gned_i nt eger ;
}
SEMANTI CS SW TCHI NG _BI TS. PI N = si ngl e_val ue_annot ati on;

KEYWORD CONNECTIVITY = arithnetic_nodel ; /I See Semantics 150 on page 216
SEMANTI CS CONNECTI VI TY {
CONTEXT { LI BRARY SUBLI BRARY CELL RULE ANTENNA HEADER }
VALUES { 1 0 ? }
}
KEYWORD DRI VER = arithnetic_nodel { /I See Semantics 151 on page 217

SEMANTI CS DRI VER {
CONTEXT = CONNECTI VI TY. HEADER;
REFERENCETYPE = CLASS ;
}
KEYWORD RECEI VER = arithmetic_nodel ;
SEMANTI CS RECEI VER {
CONTEXT = CONNECTI VI TY. HEADER,
REFERENCETYPE = CLASS ;
}

KEYWORD FANQUT = arithmetic_nodel ; /I See Semantics 152 on page 218
SEMANTI CS FANQUT {
CONTEXT {

PIN.LIMT WRE. SI ZE. HEADER W RE. CAPACI TANCE. HEADER
W RE. RESI STANCE. HEADER W RE. | NDUCTANCE. HEADER

}
VALUETYPE = unsi gned_i nteger ;

}

KEYWORD FANIN = arithnetic_nodel ; /I See Semantics 153 on page 219
SEMANTI CS FANI N {
CONTEXT {

PIN. LIM W RE. SI ZE. HEADER W RE. CAPACI TANCE. HEADER
W RE. RESI STANCE. HEADER W RE. | NDUCTANCE. HEADER

}
VALUETYPE = unsi gned_i nt eger ;

}

IEEE P1603 Draft 8 Advanced Library Format (ALF) Reference Manual 275

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

KEYWORD CONNECTI ONS = arithnetic_nodel ; /I See Semantics 154 on page 219
SEMANTI CS CONNECTI ONS {
CONTEXT {

PIN.LIMT W RE. SI ZE. HEADER W RE. CAPACI TANCE. HEADER
W RE. RESI STANCE. HEADER W RE. | NDUCTANCE. HEADER

}
VALUETYPE = unsi gned_i nt eger ;

}

KEYWORD SI ZE = arithnetic_nodel ; /I See Semantics 155 on page 220
SEMANTI CS S| ZE {
CONTEXT {

CELL ANTENNA ANTENNA. LIMT PIN W RE
W RE. CAPACI TANCE. HEADER W RE. RESI STANCE. HEADER W RE. | NDUCTANCE. HEADER
}
VALUETYPE = nunber ;
}
SIZE{ MN = 0; }

KEYWORD AREA = arithnetic_nodel ; /I See Semantics 156 on page 220
SEMANTI CS AREA {
CONTEXT {

CELL WRE W RE. . HEADER LAYER. . HEADER RULE. . HEADER ANTENNA. . HEADER
}
VALUETYPE = nunber ;
SI _MODEL = AREA ;
}
AREA { UNIT = le-12; MN = 0; }

KEYWORD PERI METER = arithnetic_nodel ; /I See Semantics 157 on page 221
SEMANTI CS PERI METER {
CONTEXT {

CELL WRE W RE. . HEADER LAYER. . HEADER RULE. . HEADER ANTENNA. . HEADER
}
SI _MODEL = DI STANCE ;
}
KEYWORD EXTENSI ON = arithneti c_nodel ; /I See Semantics 158 on page 222

SEMANTI CS EXTENSI ON {
CONTEXT { LAYER PATTERN RULE. LIM T RULE..HEADER }
SI _MODEL = DI STANCE ;
}
KEYWORD THI CKNESS = arit hneti c_nodel ; /I See Semantics 159 on page 224
SEMANTI CS EXTENSI ON {
CONTEXT { LAYER RULE. . HEADER }
S| _MODEL = DI STANCE ;
}
KEYWORD HEI GHT = arithmetic_nodel ; /I See Semantics 160 on page 224
SEMANTI CS HEI GHT {
CONTEXT { CELL SITE REG ON LAYER W RE. . HEADER }
S| _MODEL = DI STANCE ;
}

KEYWORD W DTH = arithnetic_nodel ; /I See Semantics 161 on page 224
SEMANTI CS W DTH {
CONTEXT {

276 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 8

CELL SITE REG ON LAYER LAYER. LIM T PATTERN RULE. LIM T RULE. . HEADER
}
S| _MODEL = DI STANCE ;
}
KEYWORD LENGTH = arithnetic_nodel ; /I See Semantics 162 on page 226

SEMANTI CS LENGTH {
CONTEXT { LAYER LAYER LIM T PATTERN RULE. LIM T RULE. . HEADER }
S| _MODEL = DI STANCE ;
}
KEYWORD DI STANCE = arithnetic_nodel ; /I See Semantics 163 on page 226

SEMANTI CS DI STANCE {
CONTEXT { RULE RULE. LIM T RULE. . HEADER }
VALUETYPE = nunber ;
SI _MODEL = DI STANCE ;
}
DISTANCE { UNNT = 10e-6; MN = 0; }
KEYWORD OVERHANG = arithnetic_nodel ; /I See Semantics 164 on page 227
SEMANTI CS OVERHANG {
CONTEXT { RULE RULE. LIM T RULE. . HEADER }
SI _MODEL = DI STANCE ;
}
KEYWORD DENSI TY = arithnmetic_nodel ; /I See Semantics 165 on page 228
SEMANTI CS DENSI TY {
CONTEXT { LAYER LIMT RULE RULE.LIMT }
VALUETYPE = nunber ;

}

DENSITY { MN = 0; MAX = 1; }

KEYWORD CONNECT_RULE = singl e _val ue_annotati on { // See Semantics 166 on page 228
CONTEXT = arithnetic_nodel ;

}

SEMANTI CS CONNECT_RULE {
CONTEXT = CONNECTI VI TY ;
VALUES { must_short can_short cannot_short }

}

KEYWORD BETWEEN = nul ti _val ue_annotati on { /I See Semantics 167 on page 229
CONTEXT = arithnetic_nodel ;

}

SEMANTI CS BETWEEN ({
CONTEXT { DI STANCE LENGTH OVERHANG CONNECTI VI TY }

}

SEMANTI CS ANTENNA. CONNECTI VI TY. BETVEEN { /I See Semantics 168 on page 230
REFERENCETYPE = LAYER;

}

SEMANTI CS HEADER. CONNECTI VI TY. BETWEEN {
REFERENCETYPE { PATTERN REG ON LAYER }

}

SEMANTI CS LI BRARY. CONNECTI VI TY. BETVEEN {
REFERENCETYPE = CLASS ;

}

IEEE P1603 Draft 8 Advanced Library Format (ALF) Reference Manual

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

SEMANTI CS SUBLI BRARY. CONNECTI VI TY. BETWEEN {
REFERENCETYPE = CLASS ;

}
SEMANTI CS CELL. CONNECTI VI TY. BETVEEN {
REFERENCETYPE { PI N CLASS }

}
SEMANTI CS DI STANCE. BETWEEN { /I See Semantics 169 on page 230
REFERENCETYPE { PATTERN REGQ ON }

}
SEMANTI CS LENGTH. BETVEEEN {
REFERENCETYPE { PATTERN REG ON }

}
SEMANTI CS OVERHANG. BETWEEN {
REFERENCETYPE { PATTERN REG ON }

}
KEYWORD MEASURE = singl e_val ue_annotation { /I See Semantics 170 on page 231
CONTEXT = arithnetic_nodel ;
}
SEMANTI CS MEASURE {
CONTEXT { DI STANCE LENGTH OVERHANG }
VALUETYPE = identifier ;
VALUES { euclidean horizontal vertical manhattan }
DEFAULT = euclidean ;

}

KEYWORD REFERENCE = annot ati on_cont ai ner { /I See Semantics 171 on page 232
CONTEXT = arithnetic_nodel ;

}

SEMANTI CS REFERENCE {
CONTEXT { DI STANCE LENGTH OVERHANG }
REFERENCETYPE { PATTERN REG ON }

}

SEMANTI CS REFERENCE. i dentifi er = single_value_annotation {
VALUETYPE = identifier ;
VALUES { center origin near_edge far_edge }
DEFAULT = origin ;

}

KEYWORD ANTENNA = annotation { /I See Semantics 172 on page 234
CONTEXT = arithnetic_nodel ;

}

SEMANTI CS ANTENNA
CONTEXT { PIN. SI ZE PI N. AREA PI N. PERI VETER }
REFERENCETYPE = ANTENNA;

}

KEYWORD TARCET = annotation { /I See Semantics 173 on page 234
CONTEXT = arithnetic_nodel ;

}

SEMANTI CS TARGET {
CONTEXT = PI N. SI ZE;
REFERENCETYPE = PI N. PATTERN;

}

278 Advanced Library Format (ALF) Reference Manual IEEE P1603 Draft 8

KEYWORD PATTERN = singl e _val ue_annotation {{ /I See Semantics 174 on page 235
CONTEXT = arithnetic_nodel ;

}

SEMANTI CS PATTERN {
CONTEXT { LENGTH W DTH HEI GHT SI ZE AREA THI CKNESS PERI METER EXTENSI ON }
REFERENCETYPE = PATTERN ;

}
KEYWORD HI GH = arithnetic_subnodel ; /I See Semantics 175 on page 235

SEMANTI CS HI GH { CONTEXT {
CLASS. VOLTAGE CLASS. LI M T. VOLTAGE PI N. VOLTAGE PI N. LI M T. VOLTAGE
PI N. CAPACI TANCE PI N. NO SE PI N. NO SE_MARG N PI N. LI M T. NO SE
LI BRARY. NO SE_MARG N LI BRARY. LI M T. NO SE

}}
KEYWORD LOW = arithnetic_subnodel ;
SEMANTI CS LOW{ CONTEXT ({
CLASS. VOLTAGE CLASS. LIM T. VOLTAGE PI N. VOLTAGE PIN. LIM T. VOLTAGE
Pl N. CAPACI TANCE PI'N. NO SE PIN. NO SE VARG N PIN. LIM T. NO SE
LI BRARY. NO SE_MARG N LI BRARY. LI M T. NO SE
}}
KEYWORD RI SE = arithnetic_subnodel ; /I See Semantics 176 on page 236
SEMANTI CS RI SE { CONTEXT ({
FROM THRESHOLD TO. THRESHOLD PI N. THRESHOLD PI N. CAPACI TANCE
PI'N. SLEWRATE PI N. LI M T. SLEMRATE PI N. PULSEW DTH PI N. LI M T. PULSEW DTH

b}
KEYWORD FALL = arithnetic_subnodel ;

SEMANTI CS FALL { CONTEXT {
FROM THRESHOLD TO. THRESHOLD PI N. THRESHOLD PI N. CAPACI TANCE
PI N. SLEWRATE PI N. LI M T. SLEWRATE PI N. PULSEW DTH PI N. LI M T. PULSEW DTH
b}
KEYWORD HORI ZONTAL = arithmeti c_subnodel ; /I See Semantics 177 on page 237
SEMANTI CS HORI ZONTAL { CONTEXT {
W DTH LENGTH EXTENSI ON DI STANCE OVERHANG
b}
KEYWORD VERTI CAL = arithmetic_subnodel ;
SEMANTI CS VERTI CAL { CONTEXT {
W DTH LENGTH EXTENSI ON DI STANCE OVERHANG
b}
KEYWORD ACUTE = arithnetic_subnodel ;
SEMANTI CS ACUTE { CONTEXT {
W DTH LENGTH EXTENSI ON DI STANCE OVERHANG
b}
KEYWORD OBTUSE = arithmetic_subnodel ;
SEMANTI CS OBTUSE { CONTEXT {
W DTH LENGTH EXTENSI ON DI STANCE OVERHANG
b}

IEEE P1603 Draft 8 Advanced Library Format (ALF) Reference Manual

279

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

280

Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 8

Annex C

(informative)

Bibliography

[B1] The IEEE Standard Dictionary of Electrical and Electronics Terms, Sixth Edition.
[B2] Advanced Library Format, Version 1.1 by OVI

[B3] Advanced Library Format, Version 2.0 by Accellera

[B4] |IEEE Std 1481-1999, ** need correct title and clause number for SPEF **

[B5] Bjarne Stroustrup: The C++ Programming Language (Third Edition and Special Edition), Addison-Wesley,
ISBN 0-201-88954-4 and 0-201-70073-5.

[B6] Zvi Kohavi: Switching and Finite Automata Theory, McGraw-Hill Publishing Company, ISBN 0-07-
035310-7

[B7] Matthew W. Crocker: Comptational Psycholinguistics - An Interdisciplinary Approach to the Study of Lan-
guage, Kluwer 1996, ISBN 0-7923-3802-2

[B8] SPICE 2G6 User’s Guide, Department of Electrical Engineering and Computer Sciences, University of Cal-
ifornia, Berkley, Ca., 94720

[B9] N. H. E. Weste, K. Eshraghian: Principles of CMOS VLS| Design, Addison-Wesley, 1985, 1990, ISBN 0-
201-08222-5

[B10] Analog circuit design textbook ** need reference **

[B11] GDSII format ** need reference **

IEEE P1603 Draft 8 Advanced Library Format (ALF) Reference Manual 281

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

282

Advanced Library Format (ALF) Reference Manual

IEEE P1603 Draft 8

	1. Introduction
	1.1 Scope and purpose of this standard
	1.2 Application of this standard
	1.2.1 Creation and characterization of library elements
	1.2.2 Basic implementation and performance analysis of an IC
	1.2.3 Hierarchical implementation and virtual prototyping of an IC

	1.3 Conventions used in this standard
	1.4 Contents of this standard

	2. References
	3. Definitions
	4. Acronyms and abbreviations
	5. ALF language construction principles and overview
	5.1 ALF meta-language
	5.2 Categories of ALF statements
	5.3 Generic objects and library-specific objects
	5.4 Singular statements and plural statements
	5.5 Instantiation statement and assignment statement
	5.6 Annotation, arithmetic model, and related statements
	5.7 Statements for parser control
	5.8 Name space and visibility of statements

	6. Lexical rules
	6.1 Character set
	6.2 Comment
	6.3 Delimiter
	6.4 Operator
	6.4.1 Arithmetic operator
	6.4.2 Boolean operator
	6.4.3 Relational operator
	6.4.4 Shift operator
	6.4.5 Event operator
	6.4.6 Meta operator

	6.5 Number
	6.6 Index value and Index
	6.7 Multiplier prefix symbol and multiplier prefix value
	6.8 Bit literal
	6.9 Based literal
	6.10 Boolean value
	6.11 Arithmetic value
	6.12 Edge literal and edge value
	6.13 Identifier
	6.13.1 Non-escaped identifier
	6.13.2 Placeholder identifier
	6.13.3 Indexed identifier
	6.13.4 Full hierarchical identifier
	6.13.5 Partial hierarchical identifier
	6.13.6 Escaped identifier
	6.13.7 Keyword identifier

	6.14 Quoted string
	6.15 String value
	6.16 Generic value
	6.17 Vector expression macro
	6.18 Rules for whitespace usage
	6.19 Rules against parser ambiguity

	7. Generic objects and related statements
	7.1 Generic object
	7.2 All purpose item
	7.3 Annotation
	7.4 Annotation container
	7.5 ATTRIBUTE statement
	7.6 PROPERTY statement
	7.7 ALIAS declaration
	7.8 CONSTANT declaration
	7.9 KEYWORD declaration
	7.10 SEMANTICS declaration
	7.11 Annotations and rules related to a KEYWORD or a SEMANTICS declaration
	7.11.1 VALUETYPE annotation
	7.11.2 VALUES annotation
	7.11.3 DEFAULT annotation
	7.11.4 CONTEXT annotation
	7.11.5 REFERENCETYPE annotation
	7.11.6 SI_MODEL annotation
	7.11.7 Rules for legal usage of KEYWORD and SEMANTICS declaration

	7.12 CLASS declaration
	7.13 Annotations related to a CLASS declaration
	7.13.1 General CLASS reference annotation
	7.13.2 USAGE annotation

	7.14 GROUP declaration
	7.15 TEMPLATE declaration
	7.16 TEMPLATE instantiation
	7.17 INCLUDE statement
	7.18 ASSOCIATE statement and FORMAT annotation
	7.19 REVISION statement

	8. Library-specific objects and related statements
	8.1 Library-specific object
	8.2 LIBRARY and SUBLIBRARY declaration
	8.3 Annotations related to a LIBRARY or a SUBLIBRARY declaration
	8.3.1 LIBRARY reference annotation
	8.3.2 INFORMATION annotation container

	8.4 CELL declaration
	8.5 Annotations related to a CELL declaration
	8.5.1 CELL reference annotation
	8.5.2 CELLTYPE annotation
	8.5.3 RESTRICT_CLASS annotation
	8.5.4 SWAP_CLASS annotation
	8.5.5 SCAN_TYPE annotation
	8.5.6 SCAN_USAGE annotation
	8.5.7 BUFFERTYPE annotation
	8.5.8 DRIVERTYPE annotation
	8.5.9 PARALLEL_DRIVE annotation
	8.5.10 PLACEMENT_TYPE annotation
	8.5.11 SITE reference annotation for a CELL
	8.5.12 ATTRIBUTE values for a CELL

	8.6 PIN declaration
	8.7 PINGROUP declaration
	8.8 Annotations related to a PIN or a PINGROUP declaration
	8.8.1 PIN reference annotation
	8.8.2 MEMBERS annotation
	8.8.3 VIEW annotation
	8.8.4 PINTYPE annotation
	8.8.5 DIRECTION annotation
	8.8.6 SIGNALTYPE annotation
	8.8.7 ACTION annotation
	8.8.8 POLARITY annotation
	8.8.9 CONTROL_POLARITY annotation container
	8.8.10 DATATYPE annotation
	8.8.11 INITIAL_VALUE annotation
	8.8.12 SCAN_POSITION annotation
	8.8.13 STUCK annotation
	8.8.14 SUPPLYTYPE annotation
	8.8.15 SIGNAL_CLASS annotation
	8.8.16 SUPPLY_CLASS annotation
	8.8.17 DRIVETYPE annotation
	8.8.18 SCOPE annotation
	8.8.19 CONNECT_CLASS annotation
	8.8.20 SIDE annotation
	8.8.21 ROW and COLUMN annotation
	8.8.22 ROUTING_TYPE annotation
	8.8.23 PULL annotation
	8.8.24 ATTRIBUTE values for a PIN or a PINGROUP

	8.9 PRIMITIVE declaration
	8.10 WIRE declaration
	8.11 Annotations related to a WIRE declaration
	8.11.1 WIRE reference annotation
	8.11.2 WIRETYPE annotation
	8.11.3 SELECT_CLASS annotation

	8.12 NODE declaration
	8.13 Annotations related to a NODE declaration
	8.13.1 NODE reference annotation
	8.13.2 NODETYPE annotation
	8.13.3 NODE_CLASS annotation

	8.14 VECTOR declaration
	8.15 Annotations related to a VECTOR declaration
	8.15.1 VECTOR reference annotation
	8.15.2 PURPOSE annotation
	8.15.3 OPERATION annotation
	8.15.4 LABEL annotation
	8.15.5 EXISTENCE_CONDITION annotation
	8.15.6 EXISTENCE_CLASS annotation
	8.15.7 CHARACTERIZATION_CONDITION annotation
	8.15.8 CHARACTERIZATION_VECTOR annotation
	8.15.9 CHARACTERIZATION_CLASS annotation
	8.15.10 MONITOR annotation

	8.16 LAYER declaration
	8.17 Annotations related to a LAYER declaration
	8.17.1 LAYER reference annotation
	8.17.2 LAYERTYPE annotation
	8.17.3 PITCH annotation
	8.17.4 PREFERENCE annotation

	8.18 VIA declaration
	8.19 Annotations related to a VIA declaration
	8.19.1 VIA reference annotation
	8.19.2 VIATYPE annotation

	8.20 RULE declaration
	8.21 ANTENNA declaration
	8.22 BLOCKAGE declaration
	8.23 PORT declaration
	8.24 Annotations related to a PORT delcaration
	8.24.1 Reference to a PORT using PIN reference annotation
	8.24.2 PORTTYPE annotation

	8.25 SITE declaration
	8.26 Annotations related to a SITE declaration
	8.26.1 SITE reference annotation
	8.26.2 ORIENTATION_CLASS annotation
	8.26.3 SYMMETRY_CLASS annotation

	8.27 ARRAY declaration
	8.28 Annotations related to an ARRAY declaration
	8.28.1 ARRAYTYPE annotation
	8.28.2 LAYER reference annotation for ARRAY
	8.28.3 SITE reference annotation for ARRAY

	8.29 PATTERN declaration
	8.30 Annotations related to a PATTERN declaration
	8.30.1 PATTERN reference annotation
	8.30.2 SHAPE annotation
	8.30.3 VERTEX annotation
	8.30.4 ROUTE annotation
	8.30.5 LAYER reference annotation for PATTERN

	8.31 REGION declaration
	8.32 Annotations related to a REGION declaration
	8.32.1 REGION reference annotation
	8.32.2 BOOLEAN annotation

	9. Description of functional and physical implementation
	9.1 FUNCTION statement
	9.2 TEST statement
	9.3 Definition and usage of a pin variable
	9.3.1 Pin variable and pin value
	9.3.2 Pin assignment
	9.3.3 Usage of a pin variable in the context of a FUNCTION or a TEST statement

	9.4 BEHAVIOR statement
	9.5 STRUCTURE statement and CELL instantiation
	9.6 STATETABLE statement
	9.7 NON_SCAN_CELL statement
	9.8 RANGE statement
	9.9 Boolean expression
	9.10 Boolean value system
	9.10.1 Scalar boolean value
	9.10.2 Vectorized boolean value
	9.10.3 Non-assignable boolean value

	9.11 Boolean operations and operators
	9.11.1 Logical operation
	9.11.2 Bitwise operation
	9.11.3 Conditional operation
	9.11.4 Integer arithmetic operation
	9.11.5 Shift operation
	9.11.6 Comparison operation

	9.12 Vector expression and control expression
	9.13 Specification of a pattern of events
	9.13.1 Specification of a single event
	9.13.2 Specification of a compound event
	9.13.3 Specification of a compound event with alternatives
	9.13.4 Evaluation of a specified pattern of events against a realized pattern of events
	9.13.5 Specification of a conditional pattern of events

	9.14 Predefined PRIMITIVE
	9.14.1 Predefined PRIMITIVE ALF_BUF
	9.14.2 Predefined PRIMITIVE ALF_NOT
	9.14.3 Predefined PRIMITIVE ALF_AND
	9.14.4 Predefined PRIMITIVE ALF_NAND
	9.14.5 Predefined PRIMITIVE ALF_OR
	9.14.6 Predefined PRIMITIVE ALF_NOR
	9.14.7 Predefined PRIMITIVE ALF_XOR
	9.14.8 Predefined PRIMITIVE ALF_XNOR
	9.14.9 Predefined PRIMITIVE ALF_BUFIF1
	9.14.10 Predefined PRIMITIVE ALF_BUFIF0
	9.14.11 Predefined PRIMITIVE ALF_NOTIF1
	9.14.12 Predefined PRIMITIVE ALF_NOTFIF0
	9.14.13 Predefined PRIMITIVE ALF_MUX
	9.14.14 Predefined PRIMITIVE ALF_LATCH
	9.14.15 Predefined PRIMITIVE ALF_FLIPFLOP

	9.15 WIRE instantiation
	9.16 Geometric model
	9.17 Predefined geometric models using TEMPLATE
	9.17.1 Predefined TEMPLATE RECTANGLE
	9.17.2 Predefined TEMPLATE LINE

	9.18 Geometric transformation
	9.19 ARTWORK statement
	9.20 VIA instantiation

	10. Description of electrical and physical measurements
	10.1 Arithmetic expression
	10.2 Arithmetic operations and operators
	10.2.1 Sign inversion
	10.2.2 Floating point arithmetic operation
	10.2.3 Macro arithmetic operator

	10.3 Arithmetic model
	10.4 HEADER, TABLE, and EQUATION statements
	10.5 MIN, MAX, and TYP statements
	10.6 Auxiliary arithmetic model
	10.7 Arithmetic submodel
	10.8 Arithmetic model container
	10.8.1 General arithmetic model container
	10.8.2 Arithmetic model container LIMIT
	10.8.3 Arithmetic model container EARLY and LATE

	10.9 Generally applicable annotations for arithmetic models
	10.9.1 UNIT annotation
	10.9.2 CALCULATION annotation
	10.9.3 INTERPOLATION annotation
	10.9.4 DEFAULT annotation
	10.9.5 MODEL reference annotation

	10.10 VIOLATION statement, MESSAGE TYPE and MESSAGE annotation
	10.11 Arithmetic models for timing, power and signal integrity
	10.11.1 TIME
	10.11.2 FREQUENCY
	10.11.3 DELAY
	10.11.4 RETAIN
	10.11.5 SLEWRATE
	10.11.6 SETUP and HOLD
	10.11.7 RECOVERY and REMOVAL
	10.11.8 NOCHANGE and ILLEGAL
	10.11.9 PULSEWIDTH
	10.11.10 PERIOD
	10.11.11 JITTER
	10.11.12 SKEW
	10.11.13 THRESHOLD
	10.11.14 NOISE and NOISE_MARGIN
	10.11.15 POWER and ENERGY

	10.12 FROM and TO statements
	10.13 Annotations related to timing, power and signal integrity
	10.13.1 EDGE_NUMBER annotation
	10.13.2 PIN reference and EDGE_NUMBER annotation for FROM and TO
	10.13.3 PIN reference and EDGE_NUMBER annotation for SLEWRATE
	10.13.4 PIN reference and EDGE_NUMBER annotation for PULSEWIDTH
	10.13.5 PIN reference and EDGE_NUMBER annotation for SKEW
	10.13.6 PIN reference annotation for NOISE and NOISE_MARGIN
	10.13.7 MEASUREMENT annotation

	10.14 Arithmetic models for environmental conditions
	10.14.1 PROCESS
	10.14.2 DERATE_CASE
	10.14.3 TEMPERATURE

	10.15 Arithmetic models for electrical circuits
	10.15.1 VOLTAGE
	10.15.2 CURRENT
	10.15.3 CAPACITANCE
	10.15.4 RESISTANCE
	10.15.5 INDUCTANCE

	10.16 Annotations for electrical circuits
	10.16.1 NODE reference annotation for electrical circuits
	10.16.2 COMPONENT reference annotation
	10.16.3 PIN reference annotation for electrical circuits
	10.16.4 FLOW annotation

	10.17 Miscellaneous arithmetic models
	10.17.1 DRIVE STRENGTH
	10.17.2 SWITCHING_BITS with PIN reference annotation

	10.18 Arithmetic models related to structural implementation
	10.18.1 CONNECTIVITY
	10.18.2 DRIVER and RECEIVER
	10.18.3 FANOUT, FANIN and CONNECTIONS

	10.19 Arithmetic models related to layout implementation
	10.19.1 SIZE
	10.19.2 AREA
	10.19.3 PERIMETER
	10.19.4 EXTENSION
	10.19.5 THICKNESS
	10.19.6 HEIGHT
	10.19.7 WIDTH
	10.19.8 LENGTH
	10.19.9 DISTANCE
	10.19.10 OVERHANG
	10.19.11 DENSITY

	10.20 Annotations related to arithmetic models for layout implementation
	10.20.1 CONNECT_RULE annotation
	10.20.2 BETWEEN annotation
	10.20.3 BETWEEN annotation for CONNECTIVITY
	10.20.4 BETWEEN annotation for DISTANCE, LENGTH, OVERHANG
	10.20.5 MEASURE annotation
	10.20.6 REFERENCE annotation container
	10.20.7 ANTENNA reference annotation
	10.20.8 TARGET annotation
	10.20.9 PATTERN reference annotation

	10.21 Arithmetic submodels for timing and electrical data
	10.22 Arithmetic submodels for physical data

	Annex A
	Annex B
	Annex C

